WorldWideScience

Sample records for detergent-insoluble noncaveolar microdomains

  1. A transferrin-like GPI-linked iron-binding protein in detergent-insoluble noncaveolar microdomains at the apical surface of fetal intestinal epithelial cells

    DEFF Research Database (Denmark)

    Danielsen, E M; van Deurs, B

    1995-01-01

    of ultracryosections of mucosal tissue, the protein was localized to the apical surface of the enterocytes, whereas it was absent from the basolateral plasma membrane. Interestingly, it was mainly found in patches of flat or invaginated apical membrane domains rather than at the surface of microvilli. Caveolae were...

  2. Characterisation of detergent-insoluble membranes in pollen tubes of Nicotiana tabacum (L.

    Directory of Open Access Journals (Sweden)

    Alessandra Moscatelli

    2015-02-01

    Full Text Available Pollen tubes are the vehicle for sperm cell delivery to the embryo sac during fertilisation of Angiosperms. They provide an intriguing model for unravelling mechanisms of growing to extremes. The asymmetric distribution of lipids and proteins in the pollen tube plasma membrane modulates ion fluxes and actin dynamics and is maintained by a delicate equilibrium between exocytosis and endocytosis. The structural constraints regulating polarised secretion and asymmetric protein distribution on the plasma membrane are mostly unknown. To address this problem, we investigated whether ordered membrane microdomains, namely membrane rafts, might contribute to sperm cell delivery. Detergent insoluble membranes, rich in sterols and sphingolipids, were isolated from tobacco pollen tubes. MALDI TOF/MS analysis revealed that actin, prohibitins and proteins involved in methylation reactions and in phosphoinositide pattern regulation are specifically present in pollen tube detergent insoluble membranes. Tubulins, voltage-dependent anion channels and proteins involved in membrane trafficking and signalling were also present. This paper reports the first evidence of membrane rafts in Angiosperm pollen tubes, opening new perspectives on the coordination of signal transduction, cytoskeleton dynamics and polarised secretion.

  3. Involvement of detergent-insoluble complexes in the intracellular transport of intestinal brush border enzymes

    DEFF Research Database (Denmark)

    Danielsen, E M

    1995-01-01

    A number of transmembrane digestive enzymes of the porcine small intestinal brush border membrane were found to be partially Triton X-100-insoluble at 0 degree C and colocalized in gradient centrifugation experiments with the GPI-anchored alkaline phosphatase in low-density, detergent-insoluble c...... intracellularly. I therefore propose that, in the enterocyte, the brush border enzymes are targeted directly from the trans-Golgi network toward the apical cell surface......., and their insolubility increased to that of the steady-state level soon after they achieved their mature, complex glycosylation, i.e., after passage through the Golgi complex. Detergent-insoluble complexes isolated by density gradient centrifugation were highly enriched in brush border enzymes, and the enrichment...

  4. Ligand-induced association of surface immunoglobulin with the detergent insoluble cytoskeleton may involve an 89K protein

    International Nuclear Information System (INIS)

    Gupta, S.K.; Woda, B.

    1986-01-01

    Membrane immunoglobulin of B-lymphocytes is thought to play an important role in antigen recognition and cellular activation. Binding of cross-linking ligands to surface immunoglobulin (SIg) on intact cells converts it to a detergent insoluble state, and this conversion is associated with the transmission of a mitogenic signal. Insolubilized membrane proteins may be solubilized by incubating the detergent insoluble cytoskeletons in buffers which convert F-actin to G-actin [(Buffer 1), 0.34M sucrose, 0.5mM ATP, 0.5mM Dithiothrietol and lmM EDTA]. Immunoprecipitation of SIg from the detergent soluble fraction of 35 S-methionine labeled non ligand treated rat B-cells results in the co-isolation of an 89K protein and a 44K protein, presumably actin. The 89K protein is not associated with the fraction of endogenous detergent insoluble SIg. On treatment of rat B cells with cross-linking ligand (anti-Ig) the 89K protein becomes detergent insoluble along with most of the SIg and co-isolates with SIg on immunoprecipitation of the detergent insoluble, buffer l solubilized fraction. The migration of the SIg-associated 89K protein from the detergent soluble fraction to the detergent insoluble fraction after ligand treatment, suggests that this protein might be involved in linking SIg to the underlying cytoskeleton and could be involved in the transmission of a mitogenic signal

  5. Acid Detergent Insoluble Protein as Tropical Forages Rumen Undegradable Protein Estimator Proteína insolúvel em detergente ácido como estimador da fração protéica não degradável no rúmen de forragens tropicais

    OpenAIRE

    Lara Toledo Henriques; Hérnan Maldonado Vasques; Edenio Detmann; José Fernando Coelho da Silva; Renata Cogo Clipes; Dirlei Molinari Donatele; Ismail Ramalho Haddade

    2010-01-01

    The undegradable rumen protein fraction estimated from neutral detergent insoluble nitrogen (NDIN) was studied. A total of 540 samples were used, obtained from manual grazing simulation and esophageal extrusa in elephant grass and mombaça grass, from hays and from tropical grasses submitted to different fertilizing levels and cutting ages. The samples were analyzed for dry mater, lignin in sulfuric acid (LAS), lignin permanganate (LPER), neutral detergent insoluble protein (NDIP) and acid det...

  6. Aminopeptidase N/CD13 is associated with raft membrane microdomains in monocytes

    DEFF Research Database (Denmark)

    Navarrete Santos, A; Roentsch, J; Danielsen, E M

    2000-01-01

    as in adhesion and cell-cell interactions. Here, we report for the first time that aminopeptidase N/CD13 in monocytes is partially localized in detergent-insoluble membrane microdomains enriched in cholesterol, glycolipids, and glycosylphosphoinositol-anchored proteins, referred to as "rafts." Raft fractions...... of monocytes were characterized by the presence of GM1 ganglioside as raft marker molecule and by the high level of tyrosine-phosphorylated proteins. Furthermore, similar to polarized cells, rafts in monocytic cells lack Na(+), K(+)-ATPase. Cholesterol depletion of monocytes by methyl-beta-cyclodextrin greatly...... reduces raft localization of aminopeptidase N/CD13 without affecting ala-p-nitroanilide cleaving activity of cells....

  7. Comparative properties of caveolar and noncaveolar preparations of kidney Na+/K+-ATPase.

    Science.gov (United States)

    Liu, Lijun; Ivanov, Alexander V; Gable, Marjorie E; Jolivel, Florent; Morrill, Gene A; Askari, Amir

    2011-10-11

    To evaluate previously proposed functions of renal caveolar Na(+)/K(+)-ATPase, we modified the standard procedures for the preparation of the purified membrane-bound kidney enzyme, separated the caveolar and noncaveolar pools, and compared their properties. While the subunits of Na(+)/K(+)-ATPase (α,β,γ) constituted most of the protein content of the noncaveolar pool, the caveolar pool also contained caveolins and major caveolar proteins annexin-2 tetramer and E-cadherin. Ouabain-sensitive Na(+)/K(+)-ATPase activities of the two pools had similar properties and equal molar activities, indicating that the caveolar enzyme retains its ion transport function and does not contain nonpumping enzyme. As minor constituents, both caveolar and noncaveolar pools also contained Src, EGFR, PI3K, and several other proteins known to be involved in stimulous-induced signaling by Na(+)/K(+)-ATPase, indicating that signaling function is not limited to the caveolar pool. Endogenous Src was active in both pools but was not further activated by ouabain, calling into question direct interaction of Src with native Na(+)/K(+)-ATPase. Chemical cross-linking, co-immunoprecipitation, and immunodetection studies showed that in the caveolar pool, caveolin-1 oligomers, annexin-2 tetramers, and oligomers of the α,β,γ-protomers of Na(+)/K(+)-ATPase form a large multiprotein complex. In conjunction with known roles of E-cadherin and the β-subunit of Na(+)/K(+)-ATPase in cell adhesion and noted intercellular β,β-contacts within the structure of Na(+)/K(+)-ATPase, our findings suggest that interacting caveolar Na(+)/K(+)-ATPases located at renal adherens junctions maintain contact of two adjacent cells, conduct essential ion pumping, and are capable of locus-specific signaling in junctional cells.

  8. Comparison of acid-detergent lignin, alkaline-peroxide lignin, and acid-detergent insoluble ash as internal markers for predicting fecal output and digestibility by cattle offered bermudagrass hays of varying nutrient composition.

    Science.gov (United States)

    Kanani, Juvenal; Philipp, Dirk; Coffey, Kenneth P; Kegley, Elizabeth B; West, Charles P; Gadberry, Shane; Jennings, John; Young, Ashley N; Rhein, Robert T

    2014-01-13

    The potential for acid-detergent insoluble ash (ADIA), alkaline-peroxide lignin (APL), and acid-detergent lignin (ADL) to predict fecal output (FO) and dry matter digestibility (DMD) by cattle offered bermudagrass [Cynodon dactylon (L.) Pers.] hays of different qualities was evaluated. Eight ruminally cannulated cows (594 ± 35.5 kg) were allocated randomly to 4 hay diets: low (L), medium low (ML), medium high (MH), and high (H) crude protein (CP) concentration (79, 111, 131, and 164 g CP/kg on a DM basis, respectively). Diets were offered in 3 periods with 2 diet replicates per period and were rotated across cows between periods. Cows were individually fed 20 g DM/kg of body weight in equal feedings at 08:00 and 16:00 h for a 10-d adaptation followed by a 5-d total fecal collection. Actual DM intake (DMI), DMD, and FO were determined based on hay offered, ort, and feces excreted. These components were then analyzed for ADL, APL, and ADIA concentration to determine marker recovery and marker-based estimates of FO and DMD. Forage DMI was affected by diet (P = 0.02), and DMI from MH and H was greater (P forages. Results from such studies may be used to develop improved equations to predict energy values of forages based on the relationship of dietary components to digestibility across a wide range of forages.

  9. Digestibilidade dos compostos nitrogenados insolúveis em detergente ácido em bovinos manejados em pastagem de capim-braquiária Digestibility of acid detergent insoluble nitrogen in cattle grazing signalgrass

    Directory of Open Access Journals (Sweden)

    Edenio Detmann

    2006-08-01

    Full Text Available Objetivou-se neste estudo avaliar as digestibilidades total e parcial dos compostos nitrogenados insolúveis em detergente ácido (NIDA em bovinos em pastejo. Foram utilizados cinco novilhos mestiços Holandês x Zebu (24 meses de idade e 304 kg de PV, canulados no esôfago, rúmen e abomaso, manejados em cinco piquetes de Brachiaria decumbens (0,34 ha, recebendo ou não suplementação com concentrado. O experimento foi realizado em quatro períodos experimentais de 21 dias, entre agosto e novembro de 2000. A avaliação da forragem selecionada pelos animais foi feita em amostras de extrusa esofágica e a estimativa do consumo e dos fluxos fecais e abomasais de MS e NIDA, foram estimados por intermédio de indicadores interno e externo. A avaliação estatística da digestibilidade do NIDA foi conduzida por ajustamento de equação de regressão linear, desconsiderando o parâmetro intercepto e utilizando-se como variáveis independente e dependente as estimativas de influxo e efluxo de NIDA, respectivamente. Os desvios do coeficiente de regressão a partir do valor paramétrico 1,0 foram considerados estimativas de digestibilidade. A comparação entre o consumo e os fluxos abomasal e fecal de NIDA indicou haver digestibilidade desta fração em nível total, atribuída exclusivamente a eventos intestinais (30,7%, uma vez que não foi observada digestibilidade no compartimento ruminal. Esse comportamento indica que o teor de NIDA de um alimento é somente indicador, e não preditor, da digestibilidade potencial dos compostos nitrogenados totais.The objective of this trial was to investigate ruminal, intestinal and total tract digestibility of acid detergent insoluble nitrogen (ADIN in grazing cattle. Five Holstein x Zebu steers averaging 304 kg of body weight and 24 months of age and fitted with esophageal, ruminal and abomasal cannulas were used in this study. Animals were maintained in five 0.34-ha paddocks of Brachiaria decumbens with or

  10. Functional microdomains in bacterial membranes.

    Science.gov (United States)

    López, Daniel; Kolter, Roberto

    2010-09-01

    The membranes of eukaryotic cells harbor microdomains known as lipid rafts that contain a variety of signaling and transport proteins. Here we show that bacterial membranes contain microdomains functionally similar to those of eukaryotic cells. These membrane microdomains from diverse bacteria harbor homologs of Flotillin-1, a eukaryotic protein found exclusively in lipid rafts, along with proteins involved in signaling and transport. Inhibition of lipid raft formation through the action of zaragozic acid--a known inhibitor of squalene synthases--impaired biofilm formation and protein secretion but not cell viability. The orchestration of physiological processes in microdomains may be a more widespread feature of membranes than previously appreciated.

  11. Microdomain forming proteins in oncogenesis

    Directory of Open Access Journals (Sweden)

    I. B. Zborovskaya

    2016-01-01

    Full Text Available Lipid rafts are lateral assembles of cholesterol, sphingomyelin, glicosphingolipids and specific proteins within cell plasma membrane. These microdomains are involved into a number of important cellular processes including membrane rearrangement, protein internalization, signal transduction, entry of viruses into the cell. Some of lipid rafts are stabilized by special microdomain-forming proteins such as caveolins, SPFH domain containing superfamily, tetraspanins, galectins, which maintain integrity of rafts and regulate signal transduction via forming of “signalosomes”. Involvement of the different lipid rafts is necessary in many situations such as binding of growth factors with their receptors, integrin regulation, cytoskeleton and extracellular matrix rearrangements, vesicular transport, etc. However, such classes of microdomain-forming proteins are still considered separately from each other. In this review we tried to perform complex analysis of microdomain-forming proteins in regulation of cancer assotiated processes.

  12. Membrane microdomains in immunoreceptor signaling

    Czech Academy of Sciences Publication Activity Database

    Hořejší, Václav; Hrdinka, Matouš

    2014-01-01

    Roč. 588, č. 15 (2014), s. 2392-2397 ISSN 0014-5793 R&D Projects: GA ČR(CZ) GBP302/12/G101 Institutional support: RVO:68378050 Keywords : membrane raft * microdomain * immunoreceptor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.169, year: 2014

  13. Membrane microdomain-associated uroplakin IIIa contributes to Src-dependent mechanisms of anti-apoptotic proliferation in human bladder carcinoma cells

    Directory of Open Access Journals (Sweden)

    Shigeru Kihira

    2012-08-01

    Our previous study demonstrated that tyrosine phosphorylation of p145met/β-subunit of hepatocyte growth factor receptor by epidermal growth factor receptor and Src contributes to the anti-apoptotic growth of human bladder carcinoma cell 5637 under serum-starved conditions. Here, we show that some other cell lines of human bladder carcinoma, but not other types of human cancer cells, also exhibit Src-dependent, anti-apoptotic proliferation under serum-starved conditions, and that low-density, detergent-insoluble membrane microdomains (MD serve as a structural platform for signaling events involving p145met, EGFR, and Src. As an MD-associated molecule that may contribute to bladder carcinoma-specific cellular function, we identified uroplakin IIIa (UPIIIa, an urothelium-specific protein. Results obtained so far revealed: 1 UPIIIa undergoes partial proteolysis in serum-starved cells; 2 a specific antibody to the extracellular domain of UPIIIa inhibits the proteolysis of UPIIIa and the activation of Src, and promotes apoptosis in serum-starved cells; and 3 knockdown of UPIIIa by short interfering RNA also promotes apoptosis in serum-starved cells. GM6001, a potent inhibitor of matrix metalloproteinase (MMP, inhibits the proteolysis of UPIIIa and promotes apoptosis in serum-starved cells. Furthermore, serum starvation promotes expression and secretion of the heparin-binding EGF-like growth factor in a manner that depends on the functions of MMP, Src, and UPIIIa. These results highlight a hitherto unknown signaling network involving a subset of MD-associated molecules in the anti-apoptotic mechanisms of human bladder carcinoma cells.

  14. Transmembrane voltage: Potential to induce lateral microdomains.

    Czech Academy of Sciences Publication Activity Database

    Malínský, Jan; Tanner, W.; Opekarová, Miroslava

    2016-01-01

    Roč. 1861, č. 8 (2016), s. 806-811 ISSN 1388-1981 R&D Projects: GA ČR(CZ) GA15-10641S Institutional support: RVO:68378041 Keywords : membrane microdomain * membrane potential * fluorescence spectroscopy * membrane structure * fluorescence microscopy Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.547, year: 2016

  15. Mechanotransduction and Metabolism in Cardiomyocyte Microdomains.

    Science.gov (United States)

    Pasqualini, Francesco S; Nesmith, Alexander P; Horton, Renita E; Sheehy, Sean P; Parker, Kevin Kit

    2016-01-01

    Efficient contractions of the left ventricle are ensured by the continuous transfer of adenosine triphosphate (ATP) from energy production sites, the mitochondria, to energy utilization sites, such as ionic pumps and the force-generating sarcomeres. To minimize the impact of intracellular ATP trafficking, sarcomeres and mitochondria are closely packed together and in proximity with other ultrastructures involved in excitation-contraction coupling, such as t-tubules and sarcoplasmic reticulum junctions. This complex microdomain has been referred to as the intracellular energetic unit. Here, we review the literature in support of the notion that cardiac homeostasis and disease are emergent properties of the hierarchical organization of these units. Specifically, we will focus on pathological alterations of this microdomain that result in cardiac diseases through energy imbalance and posttranslational modifications of the cytoskeletal proteins involved in mechanosensing and transduction.

  16. GSL-enriched membrane microdomains in innate immune responses.

    Science.gov (United States)

    Nakayama, Hitoshi; Ogawa, Hideoki; Takamori, Kenji; Iwabuchi, Kazuhisa

    2013-06-01

    Many pathogens target glycosphingolipids (GSLs), which, together with cholesterol, GPI-anchored proteins, and various signaling molecules, cluster on host cell membranes to form GSL-enriched membrane microdomains (lipid rafts). These GSL-enriched membrane microdomains may therefore be involved in host-pathogen interactions. Innate immune responses are triggered by the association of pathogens with phagocytes, such as neutrophils, macrophages and dendritic cells. Phagocytes express a diverse array of pattern-recognition receptors (PRRs), which sense invading microorganisms and trigger pathogen-specific signaling. PRRs can recognize highly conserved pathogen-associated molecular patterns expressed on microorganisms. The GSL lactosylceramide (LacCer, CDw17), which binds to various microorganisms, including Candida albicans, is expressed predominantly on the plasma membranes of human mature neutrophils and forms membrane microdomains together with the Src family tyrosine kinase Lyn. These LacCer-enriched membrane microdomains can mediate superoxide generation, migration, and phagocytosis, indicating that LacCer functions as a PRR in innate immunity. Moreover, the interactions of GSL-enriched membrane microdomains with membrane proteins, such as growth factor receptors, are important in mediating the physiological properties of these proteins. Similarly, we recently found that interactions between LacCer-enriched membrane microdomains and CD11b/CD18 (Mac-1, CR3, or αMβ2-integrin) are significant for neutrophil phagocytosis of non-opsonized microorganisms. This review describes the functional role of LacCer-enriched membrane microdomains and their interactions with CD11b/CD18.

  17. Functional imaging of microdomains in cell membranes.

    Science.gov (United States)

    Duggan, James; Jamal, Ghadir; Tilley, Mark; Davis, Ben; McKenzie, Graeme; Vere, Kelly; Somekh, Michael G; O'Shea, Paul; Harris, Helen

    2008-10-01

    The presence of microdomains or rafts within cell membranes is a topic of intense study and debate. The role of these structures in cell physiology, however, is also not yet fully understood with many outstanding problems. This problem is partly based on the small size of raft structures that presents significant problems to their in vivo study, i.e., within live cell membranes. But the structure and dynamics as well as the factors that control the assembly and disassembly of rafts are also of major interest. In this review we outline some of the problems that the study of rafts in cell membranes present as well as describing some views of what are considered the generalised functions of membrane rafts. We point to the possibility that there may be several different 'types' of membrane raft in cell membranes and consider the factors that affect raft assembly and disassembly, particularly, as some researchers suggest that the lifetimes of rafts in cell membranes may be sub-second. We attempt to review some of the methods that offer the ability to interrogate rafts directly as well as describing factors that appear to affect their functionality. The former include both near-field and far-field optical approaches as well as scanning probe techniques. Some of the advantages and disadvantages of these techniques are outlined. Finally, we describe our own views of raft functionality and properties, particularly, concerning the membrane dipole potential, and describe briefly some of the imaging strategies we have developed for their study.

  18. Reversible Dissolution of Microdomains in Detergent-Resistant Membranes at Physiological Temperature

    OpenAIRE

    Cremona, A.; Orsini, F.; Corsetto, P.A.; Hoogenboom, B.W.; Rizzo, A.M.

    2015-01-01

    The formation of lipid microdomains ("rafts") is presumed to play an important role in various cellular functions, but their nature remains controversial. Here we report on microdomain formation in isolated, detergent-resistant membranes from MDA-MB-231 human breast cancer cells, studied by atomic force microscopy (AFM). Whereas microdomains were readily observed at room temperature, they shrunk in size and mostly disappeared at higher temperatures. This shrinking in microdomain size was acco...

  19. Imaging alterations of cardiomyocyte cAMP microdomains in disease

    Directory of Open Access Journals (Sweden)

    Alexander eFroese

    2015-08-01

    Full Text Available 3’,5’-cyclic adenosine monophosphate (cAMP is an important second messenger which regulates heart function by acting in distinct subcellular microdomains. Recent years have provided deeper mechanistic insights into compartmentalized cAMP signaling and its link to cardiac disease. In this mini review, we summarize newest developments in this field achieved by cutting-edge biochemical and biophysical techniques. We further compile the data from different studies into a bigger picture of so far uncovered alterations in cardiomyocyte cAMP microdomains which occur in compensated cardiac hypertrophy and chronic heart failure. Finally, future research directions and translational perspectives are briefly discussed.

  20. Depolarization affects lateral microdomain structure of yeast plasma membrane

    Czech Academy of Sciences Publication Activity Database

    Herman, P.; Večeř, J.; Opekarová, Miroslava; Veselá, Petra; Jančíková, I.; Zahumenský, J.; Malínský, Jan

    2015-01-01

    Roč. 282, č. 3 (2015), s. 419-434 ISSN 1742-464X R&D Projects: GA ČR GAP205/12/0720 Institutional support: RVO:68378041 Keywords : gel microdomains * lipid order * transmembrane potential Subject RIV: EA - Cell Biology Impact factor: 4.237, year: 2015

  1. The roles of membrane microdomains (rafts) in T cell activation

    Czech Academy of Sciences Publication Activity Database

    Hořejší, Václav

    2003-01-01

    Roč. 191, - (2003), s. 148-164 ISSN 0105-2896 R&D Projects: GA MŠk LN00A026 Grant - others:Wellcome Trust(GB) J1116W24Z Institutional research plan: CEZ:AV0Z5052915 Keywords : membrane microdomain * raft * T cell Subject RIV: EC - Immunology Impact factor: 7.052, year: 2003

  2. Cell surface topology creates high Ca2+ signalling microdomains

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Olsen, Lars Folke; Hallett, Maurice B

    2010-01-01

    It has long been speculated that cellular microdomains are important for many cellular processes, especially those involving Ca2+ signalling. Measurements of cytosolic Ca2+ report maximum concentrations of less than few micromolar, yet several cytosolic enzymes require concentrations of more than...

  3. Reversible Dissolution of Microdomains in Detergent-Resistant Membranes at Physiological Temperature.

    Directory of Open Access Journals (Sweden)

    Andrea Cremona

    Full Text Available The formation of lipid microdomains ("rafts" is presumed to play an important role in various cellular functions, but their nature remains controversial. Here we report on microdomain formation in isolated, detergent-resistant membranes from MDA-MB-231 human breast cancer cells, studied by atomic force microscopy (AFM. Whereas microdomains were readily observed at room temperature, they shrunk in size and mostly disappeared at higher temperatures. This shrinking in microdomain size was accompanied by a gradual reduction of the height difference between the microdomains and the surrounding membrane, consistent with the behaviour expected for lipids that are laterally segregated in liquid ordered and liquid disordered domains. Immunolabeling experiments demonstrated that the microdomains contained flotillin-1, a protein associated with lipid rafts. The microdomains reversibly dissolved and reappeared, respectively, on heating to and cooling below temperatures around 37 °C, which is indicative of radical changes in local membrane order close to physiological temperature.

  4. Reversible Dissolution of Microdomains in Detergent-Resistant Membranes at Physiological Temperature

    Science.gov (United States)

    Cremona, Andrea; Orsini, Francesco; Corsetto, Paola A.; Hoogenboom, Bart W.; Rizzo, Angela M.

    2015-01-01

    The formation of lipid microdomains (“rafts”) is presumed to play an important role in various cellular functions, but their nature remains controversial. Here we report on microdomain formation in isolated, detergent-resistant membranes from MDA-MB-231 human breast cancer cells, studied by atomic force microscopy (AFM). Whereas microdomains were readily observed at room temperature, they shrunk in size and mostly disappeared at higher temperatures. This shrinking in microdomain size was accompanied by a gradual reduction of the height difference between the microdomains and the surrounding membrane, consistent with the behaviour expected for lipids that are laterally segregated in liquid ordered and liquid disordered domains. Immunolabeling experiments demonstrated that the microdomains contained flotillin-1, a protein associated with lipid rafts. The microdomains reversibly dissolved and reappeared, respectively, on heating to and cooling below temperatures around 37°C, which is indicative of radical changes in local membrane order close to physiological temperature. PMID:26147107

  5. Detergent insolubility of alkaline phosphatase during biosynthetic transport and endocytosis. Role of cholesterol

    NARCIS (Netherlands)

    Cerneus, D. P.; Ueffing, E.; Posthuma, G.; Strous, G. J.; van der Ende, A.

    1993-01-01

    Alkaline phosphatase is anchored to the outer leaflet of the plasma membrane by a covalently attached glycosyl-phosphatidylinositol anchor. We have studied the biosynthetic transport and endocytosis of alkaline phosphatase in the choriocarcinoma cell line BeWo, which endogenously expresses this

  6. The use of acid detergent insoluble nitrogen to predict digestibility of ...

    African Journals Online (AJOL)

    Animal Nutrition and Animal Products Institute, Private Bag. X2, lrene, 1675 ... predict digestibility of rumen undegradable protein (UDP-D) of heat processed ..... of soybean meal and sunflower seeds for dairy cattle in early lactation. J. Dairy ...

  7. Membrane-sculpting BAR domains generate stable lipid microdomains

    DEFF Research Database (Denmark)

    Zhao, Hongxia; Michelot, Alphée; Koskela, Essi V.

    2013-01-01

    Bin-Amphiphysin-Rvs (BAR) domain proteins are central regulators of many cellular processes involving membrane dynamics. BAR domains sculpt phosphoinositide-rich membranes to generate membrane protrusions or invaginations. Here, we report that, in addition to regulating membrane geometry, BAR...... domains can generate extremely stable lipid microdomains by "freezing" phosphoinositide dynamics. This is a general feature of BAR domains, because the yeast endocytic BAR and Fes/CIP4 homology BAR (F-BAR) domains, the inverse BAR domain of Pinkbar, and the eisosomal BAR protein Lsp1 induced...... phosphoinositide clustering and halted lipid diffusion, despite differences in mechanisms of membrane interactions. Lsp1 displays comparable low diffusion rates in vitro and in vivo, suggesting that BAR domain proteins also generate stable phosphoinositide microdomains in cells. These results uncover a conserved...

  8. Unraveling the role of membrane microdomains during microbial infections.

    Science.gov (United States)

    Bagam, Prathyusha; Singh, Dhirendra P; Inda, Maria Eugenia; Batra, Sanjay

    2017-10-01

    Infectious diseases pose major socioeconomic and health-related threats to millions of people across the globe. Strategies to combat infectious diseases derive from our understanding of the complex interactions between the host and specific bacterial, viral, and fungal pathogens. Lipid rafts are membrane microdomains that play important role in life cycle of microbes. Interaction of microbial pathogens with host membrane rafts influences not only their initial colonization but also their spread and the induction of inflammation. Therefore, intervention strategies aimed at modulating the assembly of membrane rafts and/or regulating raft-directed signaling pathways are attractive approaches for the. management of infectious diseases. The current review discusses the latest advances in terms of techniques used to study the role of membrane microdomains in various pathological conditions and provides updated information regarding the role of membrane rafts during bacterial, viral and fungal infections.

  9. Membrane-Sculpting BAR Domains Generate Stable Lipid Microdomains

    Science.gov (United States)

    Zhao, Hongxia; Michelot, Alphée; Koskela, Essi V.; Tkach, Vadym; Stamou, Dimitrios; Drubin, David G.; Lappalainen, Pekka

    2014-01-01

    SUMMARY Bin-Amphiphysin-Rvs (BAR) domain proteins are central regulators of many cellular processes involving membrane dynamics. BAR domains sculpt phosphoinositide-rich membranes to generate membrane protrusions or invaginations. Here, we report that, in addition to regulating membrane geometry, BAR domains can generate extremely stable lipid microdomains by “freezing” phosphoinositide dynamics. This is a general feature of BAR domains, because the yeast endocytic BAR and Fes/CIP4 homology BAR (F-BAR) domains, the inverse BAR domain of Pinkbar, and the eisosomal BAR protein Lsp1 induced phosphoinositide clustering and halted lipid diffusion, despite differences in mechanisms of membrane interactions. Lsp1 displays comparable low diffusion rates in vitro and in vivo, suggesting that BAR domain proteins also generate stable phosphoinositide microdomains in cells. These results uncover a conserved role for BAR superfamily proteins in regulating lipid dynamics within membranes. Stable microdomains induced by BAR domain scaffolds and specific lipids can generate phase boundaries and diffusion barriers, which may have profound impacts on diverse cellular processes. PMID:24055060

  10. Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi.

    Science.gov (United States)

    Malinsky, Jan; Opekarová, Miroslava; Grossmann, Guido; Tanner, Widmar

    2013-01-01

    The existence of specialized microdomains in plasma membranes, postulated for almost 25 years, has been popularized by the concept of lipid or membrane rafts. The idea that detergent-resistant membranes are equivalent to lipid rafts, which was generally abandoned after a decade of vigorous data accumulation, contributed to intense discussions about the validity of the raft concept. The existence of membrane microdomains, meanwhile, has been verified by unequivocal independent evidence. This review summarizes the current state of research in plants and fungi with respect to common aspects of both kingdoms. In these organisms, principally immobile microdomains large enough for microscopic detection have been visualized. These microdomains are found in the context of cell-cell interactions (plant symbionts and pathogens), membrane transport, stress, and polarized growth, and the data corroborate at least three mechanisms of formation. As documented in this review, modern methods of visualization of lateral membrane compartments are also able to uncover the functional relevance of membrane microdomains.

  11. A novel method for analysis of membrane microdomains: vesicular stomatitis virus glycoprotein microdomains change in size during infection, and those outside of budding sites resemble sites of virus budding

    International Nuclear Information System (INIS)

    Brown, Erica L.; Lyles, Douglas S.

    2003-01-01

    Membrane proteins, including viral envelope glycoproteins, may be organized into areas of locally high concentration, commonly referred to as membrane microdomains. Some viruses bud from detergent-resistant microdomains referred to as lipid rafts. However, vesicular stomatitis virus (VSV) serves as a prototype for viruses that bud from areas of plasma membrane that are not detergent resistant. We developed a new analytical method for immunoelectron microscopy data to determine whether the VSV envelope glycoprotein (G protein) is organized into plasma membrane microdomains. This method was used to quantify the distribution of the G protein in microdomains in areas of plasma membrane that did not contain budding sites. These microdomains were compared to budding virus envelopes to address the question of whether G protein-containing microdomains were formed only at the sites of budding. At early times postinfection, most of the G protein was organized into membrane microdomains outside of virus budding sites that were approximately 100-150 nm, with smaller amounts distributed into larger microdomains. In contrast to early times postinfection, the increased level of G protein in the host plasma membrane at later times postinfection led to distribution of G protein among membrane microdomains of a wider variety of sizes, rather than a higher G protein concentration in the 100- to 150-nm microdomains. VSV budding occurred in G protein-containing microdomains with a range of sizes, some of which were smaller than the virus envelope. These microdomains extended in size to a maximum of 300-400 nm from the tip of the budding virion. The data support a model for virus assembly in which G protein organizes into membrane microdomains that resemble virus envelopes prior to formation of budding sites, and these microdomains serve as the sites of assembly of internal virion components

  12. Spatio-temporal remodeling of functional membrane microdomains organizes the signaling networks of a bacterium.

    Directory of Open Access Journals (Sweden)

    Johannes Schneider

    2015-04-01

    Full Text Available Lipid rafts are membrane microdomains specialized in the regulation of numerous cellular processes related to membrane organization, as diverse as signal transduction, protein sorting, membrane trafficking or pathogen invasion. It has been proposed that this functional diversity would require a heterogeneous population of raft domains with varying compositions. However, a mechanism for such diversification is not known. We recently discovered that bacterial membranes organize their signal transduction pathways in functional membrane microdomains (FMMs that are structurally and functionally similar to the eukaryotic lipid rafts. In this report, we took advantage of the tractability of the prokaryotic model Bacillus subtilis to provide evidence for the coexistence of two distinct families of FMMs in bacterial membranes, displaying a distinctive distribution of proteins specialized in different biological processes. One family of microdomains harbors the scaffolding flotillin protein FloA that selectively tethers proteins specialized in regulating cell envelope turnover and primary metabolism. A second population of microdomains containing the two scaffolding flotillins, FloA and FloT, arises exclusively at later stages of cell growth and specializes in adaptation of cells to stationary phase. Importantly, the diversification of membrane microdomains does not occur arbitrarily. We discovered that bacterial cells control the spatio-temporal remodeling of microdomains by restricting the activation of FloT expression to stationary phase. This regulation ensures a sequential assembly of functionally specialized membrane microdomains to strategically organize signaling networks at the right time during the lifespan of a bacterium.

  13. Lck, membrane microdomains, and TCR triggering machinery: defining the new rules of engagement

    Czech Academy of Sciences Publication Activity Database

    Filipp, Dominik; Ballek, Ondřej; Manning, Jasper

    2012-01-01

    Roč. 3, June (2012), s. 155 ISSN 1664-3224 Institutional research plan: CEZ:AV0Z50520514 Keywords : Lck * Fyn * membrane microdomains * heavy and light DRMs * TCR triggering Subject RIV: EB - Genetics ; Molecular Biology

  14. Detection of cholesterol-rich microdomains in the inner leaflet of the plasma membrane

    International Nuclear Information System (INIS)

    Hayashi, Masami; Shimada, Yukiko; Inomata, Mitsushi; Ohno-Iwashita, Yoshiko

    2006-01-01

    The C-terminal domain (D4) of perfringolysin O binds selectively to cholesterol in cholesterol-rich microdomains. To address the issue of whether cholesterol-rich microdomains exist in the inner leaflet of the plasma membrane, we expressed D4 as a fusion protein with EGFP in MEF cells. More than half of the EGFP-D4 expressed in stable cell clones was bound to membranes in raft fractions. Depletion of membrane cholesterol with β-cyclodextrin reduced the amount of EGFP-D4 localized in raft fractions, confirming EGFP-D4 binding to cholesterol-rich microdomains. Subfractionation of the raft fractions showed most of the EGFP-D4 bound to the plasma membrane rather than to intracellular membranes. Taken together, these results strongly suggest the existence of cholesterol-rich microdomains in the inner leaflet of the plasma membrane

  15. Spatio-temporal Remodeling of Functional Membrane Microdomains Organizes the Signaling Networks of a Bacterium

    NARCIS (Netherlands)

    Schneider, Johannes; Klein, Teresa; Mielich-Süss, Benjamin; Koch, Gudrun; Franke, Christian; Kuipers, Oscar P; Kovács, Ákos T; Sauer, Markus; Lopez, Daniel

    Lipid rafts are membrane microdomains specialized in the regulation of numerous cellular processes related to membrane organization, as diverse as signal transduction, protein sorting, membrane trafficking or pathogen invasion. It has been proposed that this functional diversity would require a

  16. Glycosynapses: microdomains controlling carbohydrate-dependent cell adhesion and signaling

    Directory of Open Access Journals (Sweden)

    Senitiroh Hakomori

    2004-09-01

    Full Text Available The concept of microdomains in plasma membranes was developed over two decades, following observation of polarity of membrane based on clustering of specific membrane components. Microdomains involved in carbohydrate-dependent cell adhesion with concurrent signal transduction that affect cellular phenotype are termed "glycosynapse". Three types of glycosynapse have been distinguished: "type 1" having glycosphingolipid associated with signal transducers (small G-proteins, cSrc, Src family kinases and proteolipids; "type 2" having O-linked mucin-type glycoprotein associated with Src family kinases; and "type 3" having N-linked integrin receptor complexed with tetraspanin and ganglioside. Different cell types are characterized by presence of specific types of glycosynapse or their combinations, whose adhesion induces signal transduction to either facilitate or inhibit signaling. E.g., signaling through type 3 glycosynapse inhibits cell motility and differentiation. Glycosynapses are distinct from classically-known microdomains termed "caveolae", "caveolar membrane", or more recently "lipid raft", which are not involved in carbohydrate-dependent cell adhesion. Type 1 and type 3 glycosynapses are resistant to cholesterol-binding reagents, whereas structure and function of "caveolar membrane" or "lipid raft" are disrupted by these reagents. Various data indicate a functional role of glycosynapses during differentiation, development, and oncogenic transformation.O conceito de microdomínios em membrana plasmática foi desenvolvido há mais de duas décadas, após a observação da polaridade da membrana baseada no agrupamento de componentes específicos da membrana. Microdomínios envolvidos na adesão celular dependente de carboidrato, com transdução de sinal que afeta o fenótipo celular são denominados ''glicosinapses''. Três tipos de glicosinapse foram observados: ''tipo 1'' que possue glicoesfingolipídio associado com transdutores de sinal

  17. Cytoskeletal Components Define Protein Location to Membrane Microdomains*

    Science.gov (United States)

    Szymanski, Witold G.; Zauber, Henrik; Erban, Alexander; Gorka, Michal; Wu, Xu Na; Schulze, Waltraud X.

    2015-01-01

    The plasma membrane is an important compartment that undergoes dynamic changes in composition upon external or internal stimuli. The dynamic subcompartmentation of proteins in ordered low-density (DRM) and disordered high-density (DSM) membrane phases is hypothesized to require interactions with cytoskeletal components. Here, we systematically analyzed the effects of actin or tubulin disruption on the distribution of proteins between membrane density phases. We used a proteomic screen to identify candidate proteins with altered submembrane location, followed by biochemical or cell biological characterization in Arabidopsis thaliana. We found that several proteins, such as plasma membrane ATPases, receptor kinases, or remorins resulted in a differential distribution between membrane density phases upon cytoskeletal disruption. Moreover, in most cases, contrasting effects were observed: Disruption of actin filaments largely led to a redistribution of proteins from DRM to DSM membrane fractions while disruption of tubulins resulted in general depletion of proteins from the membranes. We conclude that actin filaments are necessary for dynamic movement of proteins between different membrane phases and that microtubules are not necessarily important for formation of microdomains as such, but rather they may control the protein amount present in the membrane phases. PMID:26091700

  18. Rotavirus RRV associates with lipid membrane microdomains during cell entry

    International Nuclear Information System (INIS)

    Isa, Pavel; Realpe, Mauricio; Romero, Pedro; Lopez, Susana; Arias, Carlos F.

    2004-01-01

    Rotavirus cell entry is a multistep process, not completely understood, which requires at least four interactions between the virus and cell surface molecules. In this work, we investigated the role of the sphingolipid- and cholesterol-enriched lipid microdomains (rafts) in the entry of rotavirus strain RRV to MA104 cells. We found that ganglioside GM1, integrin subunits α2 and β3, and the heat shock cognate protein 70 (hsc70), all of which have been implicated as rotavirus receptors, are associated with TX-100 and Lubrol WX detergent-resistant membranes (DRMs). Integrin subunits α2 and β3 were found to be particularly enriched in DRMs resistant to lysis by Lubrol WX. When purified RRV particles were incubated with cells at 4 deg. C, about 10% of the total infectious virus was found associated with DRMs, and the DRM-associated virus increased to 37% in Lubrol-resistant membrane domains after 60-min incubation at 37 deg. C. The virus was excluded from DRMs if the cells were treated with methyl-β-cyclodextrin (MβCD). Immunoblot analysis of the viral proteins showed that the virus surface proteins became enriched in DRMs upon incubation at 37 deg. C, being almost exclusively localized in Lubrol-resistant DRMs after 60 min. These data suggest that detergent-resistant membrane domains play an important role in the cell entry of rotaviruses, which could provide a platform to facilitate the efficient interaction of the rotavirus receptors with the virus particle

  19. Lipid composition of microdomains is altered in neuronopathic Gaucher disease sheep brain and spleen.

    Science.gov (United States)

    Hein, Leanne K; Rozaklis, Tina; Adams, Melissa K; Hopwood, John J; Karageorgos, Litsa

    2017-07-01

    Gaucher disease is a lysosomal storage disorder caused by a deficiency in glucocerebrosidase activity that leads to accumulation of glucosylceramide and glucosylsphingosine. Membrane raft microdomains are discrete, highly organized microdomains with a unique lipid composition that provide the necessary environment for specific protein-lipid and protein-protein interactions to take place. In this study we purified detergent resistant membranes (DRM; membrane rafts) from the occipital cortex and spleen from sheep affected with acute neuronopathic Gaucher disease and wild-type controls. We observed significant increases in the concentrations of glucosylceramide, hexosylsphingosine, BMP and gangliosides and decreases in the percentage of cholesterol and phosphatidylcholine leading to an altered DRM composition. Altered sphingolipid/cholesterol homeostasis would dramatically disrupt DRM architecture making them less ordered and more fluid. In addition, significant changes in the length and degree of lipid saturation within the DRM microdomains in the Gaucher brain were also observed. As these DRM microdomains are involved in many cellular events, an imbalance or disruption of the cell membrane homeostasis may impair normal cell function. This disruption of membrane raft microdomains and imbalance within the environment of cellular membranes of neuronal cells may be a key factor in initiating a cascade process leading to neurodegeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Function of plasma membrane microdomain-associated proteins during legume nodulation.

    Science.gov (United States)

    Qiao, Zhenzhen; Libault, Marc

    2017-10-03

    Plasma membrane microdomains are plasma membrane sub-compartments enriched in sphingolipids and sterols, and composed by a specific set of proteins. They are involved in recognizing signal molecules, transducing these signals, and controlling endocytosis and exocytosis processes. In a recent study, applying biochemical and microscopic methods, we characterized the soybean GmFWL1 protein, a major regulator of soybean nodulation, as a new membrane microdomain-associated protein. Interestingly, upon rhizobia inoculation of the soybean root system, GmFWL1 and one of its interacting partners, GmFLOT2/4, both translocate to the root hair cell tip, the primary site of interaction and infection between soybean and Rhizobium. The role of GmFWL1 as a plasma membrane microdomain-associated protein is also supported by immunoprecipitation assays performed on soybean nodules, which revealed 178 GmFWL1 protein partners including a large number of microdomain-associated proteins such as GmFLOT2/4. In this addendum, we provide additional information about the identity of the soybean proteins repetitively identified as GmFWL1 protein partners. Their function is discussed especially in regard to plant-microbe interactions and microbial symbiosis. This addendum will provide new insights in the role of plasma membrane microdomains in regulating legume nodulation.

  1. The role of membrane microdomains in transmembrane signaling through the epithelial glycoprotein Gp140/CDCP1

    Science.gov (United States)

    Alvares, Stacy M.; Dunn, Clarence A.; Brown, Tod A.; Wayner, Elizabeth E.; Carter, William G.

    2008-01-01

    Cell adhesion to the extracellular matrix (ECM) via integrin adhesion receptors initiates signaling cascades leading to changes in cell behavior. While integrin clustering is necessary to initiate cell attachment to the matrix, additional membrane components are necessary to mediate the transmembrane signals and the cell adhesion response that alter downstream cell behavior. Many of these signaling components reside in glycosphingolipid-rich and cholesterol-rich membrane domains such as Tetraspanin Enriched Microdomains (TEMs)/Glycosynapse 3 and Detergent-Resistant Microdomains (DRMs), also known as lipid rafts. In the following article, we will review examples of how components in these membrane microdomains modulate integrin adhesion after initial attachment to the ECM. Additionally, we will present data on a novel adhesion-responsive transmembrane glycoprotein Gp140/CUB Domain Containing Protein 1, which clusters in epithelial cell-cell contacts. Gp140 can then be phosphorylated by Src Family Kinases at tyrosine 734 in response to outside-in signals- possibly through interactions involving the extracellular CUB domains. Data presented here suggests that outside-in signals through Gp140 in cell-cell contacts assemble membrane clusters that associate with membrane microdomains to recruit and activate SFKs. Active SFKs then mediate phosphorylation of Gp140, SFK and PKCδ with Gp140 acting as a transmembrane scaffold for these kinases. We propose that the clustering of Gp140 and signaling components in membrane microdomains in cell-cell contacts contributes to changes in cell behavior. PMID:18269919

  2. Regulation of cellular communication by signaling microdomains in the blood vessel wall.

    Science.gov (United States)

    Billaud, Marie; Lohman, Alexander W; Johnstone, Scott R; Biwer, Lauren A; Mutchler, Stephanie; Isakson, Brant E

    2014-01-01

    It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.

  3. Regulation of Cellular Communication by Signaling Microdomains in the Blood Vessel Wall

    Science.gov (United States)

    Billaud, Marie; Lohman, Alexander W.; Johnstone, Scott R.; Biwer, Lauren A.; Mutchler, Stephanie; Isakson, Brant E.

    2014-01-01

    It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function. PMID:24671377

  4. Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes.

    Science.gov (United States)

    Yáñez-Mó, María; Barreiro, Olga; Gordon-Alonso, Mónica; Sala-Valdés, Mónica; Sánchez-Madrid, Francisco

    2009-09-01

    Membrane lipids and proteins are non-randomly distributed and are unable to diffuse freely in the plane of the membrane. This is because of multiple constraints imposed both by the cortical cytoskeleton and by the preference of lipids and proteins to cluster into diverse and specialized membrane domains, including tetraspanin-enriched microdomains, glycosylphosphatidyl inositol-linked proteins nanodomains and caveolae, among others. Recent biophysical characterization of tetraspanin-enriched microdomains suggests that they might be specially suited for the regulation of avidity of adhesion receptors and the compartmentalization of enzymatic activities. Moreover, modulation by tetraspanins of the function of adhesion receptors involved in inflammation, lymphocyte activation, cancer and pathogen infection suggests potential as therapeutic targets. This review explores this emerging picture of tetraspanin microdomains and discusses the implications for cell adhesion, proteolysis and pathogenesis.

  5. Microdomains in the membrane landscape shape antigen-presenting cell function.

    Science.gov (United States)

    Zuidscherwoude, Malou; de Winde, Charlotte M; Cambi, Alessandra; van Spriel, Annemiek B

    2014-02-01

    The plasma membrane of immune cells is a highly organized cell structure that is key to the initiation and regulation of innate and adaptive immune responses. It is well-established that immunoreceptors embedded in the plasma membrane have a nonrandom spatial distribution that is important for coupling to components of intracellular signaling cascades. In the last two decades, specialized membrane microdomains, including lipid rafts and TEMs, have been identified. These domains are preformed structures ("physical entities") that compartmentalize proteins, lipids, and signaling molecules into multimolecular assemblies. In APCs, different microdomains containing immunoreceptors (MHC proteins, PRRs, integrins, among others) have been reported that are imperative for efficient pathogen recognition, the formation of the immunological synapse, and subsequent T cell activation. In addition, recent work has demonstrated that tetraspanin microdomains and lipid rafts are involved in BCR signaling and B cell activation. Research into the molecular mechanisms underlying membrane domain formation is fundamental to a comprehensive understanding of membrane-proximal signaling and APC function. This review will also discuss the advances in the microscopy field for the visualization of the plasma membrane, as well as the recent progress in targeting microdomains as novel, therapeutic approach for infectious and malignant diseases.

  6. Tetraspan microdomains distinct from lipid rafts enrich select peptide-MHC class II complexes

    Czech Academy of Sciences Publication Activity Database

    Kropshofer, H.; Spindeldreher, S.; Rohn, T. A.; Platania, N.; Grygar, C.; Daniel, N.; Wolpl, A.; Langen, H.; Hořejší, Václav; Vogt, A. B.

    2002-01-01

    Roč. 3, č. 1 (2002), s. 61-68 ISSN 1529-2908 Institutional research plan: CEZ:AV0Z5052915 Keywords : MHC II * tetraspan microdomains * peptide presentation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 27.868, year: 2002

  7. Sphingolipid levels crucially modulate lateral microdomain organization of plasma membrane in living yeast

    Czech Academy of Sciences Publication Activity Database

    Večeř, J.; Veselá, Petra; Malínský, Jan; Herman, P.

    2014-01-01

    Roč. 588, č. 3 (2014), s. 443-449 ISSN 0014-5793 R&D Projects: GA ČR GAP205/12/0720 Institutional support: RVO:68378041 Keywords : membrane microdomain * lipid order * fluidity Subject RIV: BO - Biophysics Impact factor: 3.169, year: 2014

  8. N-3 fatty acids and membrane microdomains: from model membranes to lymphocyte function.

    Science.gov (United States)

    Shaikh, Saame Raza; Teague, Heather

    2012-12-01

    This article summarizes the author's research on fish oil derived n-3 fatty acids, plasma membrane organization and B cell function. We first cover basic model membrane studies that investigated how docosahexaenoic acid (DHA) targeted the organization of sphingolipid-cholesterol enriched lipid microdomains. A key finding here was that DHA had a relatively poor affinity for cholesterol. This work led to a model that predicted DHA acyl chains in cells would manipulate lipid-protein microdomain organization and thereby function. We then review how the predictions of the model were tested with B cells in vitro followed by experiments using mice fed fish oil. These studies reveal a highly complex picture on how n-3 fatty acids target lipid-protein organization and B cell function. Key findings are as follows: (1) n-3 fatty acids target not just the plasma membrane but also endomembrane organization; (2) DHA, but not eicosapentaenoic acid (EPA), disrupts microdomain spatial distribution (i.e. clustering), (3) DHA alters protein lateral organization and (4) changes in membrane organization are accompanied by functional effects on both innate and adaptive B cell function. Altogether, the research over the past 10 years has led to an evolution of the original model on how DHA reorganizes membrane microdomains. The work raises the intriguing possibility of testing the model at the human level to target health and disease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Mass spectrometric analysis of the glycosphingolipid-enriched microdomains of rat natural killer cells

    Czech Academy of Sciences Publication Activity Database

    Man, Petr; Novák, Petr; Cebecauer, M.; Horváth, Ondřej; Fišerová, Anna; Havlíček, Vladimír; Bezouška, Karel

    2005-01-01

    Roč. 5, - (2005), s. 113-122 ISSN 1615-9853 R&D Projects: GA ČR GV312/98/K034 Institutional research plan: CEZ:AV0Z5020903 Keywords : activation receptor * mebrane microdomains * natural killer cells Subject RIV: EE - Microbiology, Virology Impact factor: 6.088, year: 2005

  10. New Insight Into the Roles of Membrane Microdomains in Physiological Activities of Fungal Cells.

    Czech Academy of Sciences Publication Activity Database

    Malínský, Jan; Opekarová, Miroslava

    2016-01-01

    Roč. 325, mar. (2016), s. 119-180 ISSN 1937-6448 R&D Projects: GA ČR(CZ) GA15-10641S Institutional support: RVO:68378041 Keywords : membrane microdomain * membrane structure * fungi * membrane contact sites Subject RIV: EA - Cell Biology Impact factor: 3.752, year: 2015

  11. Nuclear Lipid Microdomain as Place of Interaction between Sphingomyelin and DNA during Liver Regeneration

    Directory of Open Access Journals (Sweden)

    Samuela Cataldi

    2013-03-01

    Full Text Available Nuclear sphingomyelin is a key molecule for cell proliferation. This molecule is organized with cholesterol and proteins to form specific lipid microdomains bound to the inner nuclear membrane where RNA is synthesized. Here, we have reported the ability of the sphingomyelin present in the nuclear microdomain to bind DNA and regulate its synthesis, and to highlight its role in cell proliferation induced by partial hepatectomy. During G1/S transition of the cell cycle, sphingomyelin and DNA content is very high and it is strongly reduced after exogenous sphingomyelinase treatment. During the S-phase of the cell cycle, the stimulation of sphingomyelinase and inhibition of sphingomyelin–synthase are accompanied by the DNA synthesis start. To assess the specificity of the results, experiments were repeated with trifluoperazine, a drug known to affect the synthesis of lipids and DNA and to stimulate sphingomyelinase activity. The activity of sphingomyelinase is stimulated in the first hour after hepatectomy and sphingomyelin–DNA synthesis is strongly attenuated. It may be hypothesized that the nuclear microdomain represents a specific area of the inner nuclear membrane that acts as an active site of chromatin anchorage thanks to the stabilizing action of sphingomyelin. Thus, sphingomyelin metabolism in nuclear lipid microdomains is suggested to regulate cell proliferation.

  12. Microdomain-forming proteins and the role of the reggies/flotillins during axon regeneration in zebrafish

    OpenAIRE

    Stürmer, Claudia

    2011-01-01

    The two proteins reggie-1 and reggie-2 (flotillins) were identified in axon-regenerating neurons in the central nervous system and shown to be essential for neurite growth and regeneration in fish and mammals. Reggies/flotillins are microdomain scaffolding proteins sharing biochemical properties with lipid raft molecules, form clusters at the cytoplasmic face of the plasma membrane and interact with signaling molecules in a cell type specific manner. In this review, reggie microdomains, lipid...

  13. Dynein Clusters into Lipid Microdomains on Phagosomes to Drive Rapid Transport toward Lysosomes.

    Science.gov (United States)

    Rai, Ashim; Pathak, Divya; Thakur, Shreyasi; Singh, Shampa; Dubey, Alok Kumar; Mallik, Roop

    2016-02-11

    Diverse cellular processes are driven by motor proteins that are recruited to and generate force on lipid membranes. Surprisingly little is known about how membranes control the force from motors and how this may impact specific cellular functions. Here, we show that dynein motors physically cluster into microdomains on the membrane of a phagosome as it matures inside cells. Such geometrical reorganization allows many dyneins within a cluster to generate cooperative force on a single microtubule. This results in rapid directed transport of the phagosome toward microtubule minus ends, likely promoting phagolysosome fusion and pathogen degradation. We show that lipophosphoglycan, the major molecule implicated in immune evasion of Leishmania donovani, inhibits phagosome motion by disrupting the clustering and therefore the cooperative force generation of dynein. These findings appear relevant to several pathogens that prevent phagosome-lysosome fusion by targeting lipid microdomains on phagosomes. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Dietary free fatty acids form alkaline phosphatase-enriched microdomains in the intestinal brush border membrane

    DEFF Research Database (Denmark)

    Hansen, Gert H; Rasmussen, Karina; Niels-Christiansen, Lise-Lotte

    2011-01-01

    this membrane passage in organ cultured intestinal mucosal explants. We found that in addition to a rapid uptake into the cytoplasm, a fraction of the fatty acid analogs were inserted directly into the brush border membrane. Furthermore, a brief exposure of microvillar membrane vesicles to a fat mixture...... mimicking a physiological solution of dietary mixed micelles, rearranged the lipid raft microdomain organization of the membranes. Thus, the fat mixture generated a low-density subpopulation of microvillar detergent resistant membranes (DRMs) highly enriched in alkaline phosphatase (AP). Since this GPI-linked...... enzyme is the membrane protein in the brush border with the highest affinity for lipid rafts, this implies that free fatty acids selectively insert stably into these membrane microdomains. We have previously shown that absorption of dietary lipids transiently induce a selective endocytosis of AP from...

  15. Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork.

    Science.gov (United States)

    Lenne, Pierre-François; Wawrezinieck, Laure; Conchonaud, Fabien; Wurtz, Olivier; Boned, Annie; Guo, Xiao-Jun; Rigneault, Hervé; He, Hai-Tao; Marguet, Didier

    2006-07-26

    It is by now widely recognized that cell membranes show complex patterns of lateral organization. Two mechanisms involving either a lipid-dependent (microdomain model) or cytoskeleton-based (meshwork model) process are thought to be responsible for these plasma membrane organizations. In the present study, fluorescence correlation spectroscopy measurements on various spatial scales were performed in order to directly identify and characterize these two processes in live cells with a high temporal resolution, without any loss of spatial information. Putative raft markers were found to be dynamically compartmented within tens of milliseconds into small microdomains (Ø confinement of the transferrin receptor protein. A free-like diffusion was observed when both the lipid-dependent and cytoskeleton-based organizations were disrupted, which suggests that these are two main compartmentalizing forces at work in the plasma membrane.

  16. Membrane compartment of Can1 (MCC): specialized functional microdomain of the yeast plasma membrane

    OpenAIRE

    Doudová, Lenka

    2017-01-01

    Membrane compartment of Can1 (MCC): specialized functional microdomain of the yeast plasma membrane Yeast plasma membrane is divided into several different compartments. Membrane compartment of Can1 is specific for its protein and lipid composition, furthermore it creates furrow-like invaginations on the plasma membrane. These invaginations are made by multiprotein complexes called eisosomes, which are located in the cytosolic side of MCCs. It was established that this domain plays an importa...

  17. Bicarbonate-responsive “soluble” adenylyl cyclase defines a nuclear cAMP microdomain

    Science.gov (United States)

    Zippin, Jonathan H.; Farrell, Jeanne; Huron, David; Kamenetsky, Margarita; Hess, Kenneth C.; Fischman, Donald A.; Levin, Lonny R.; Buck, Jochen

    2004-01-01

    Bicarbonate-responsive “soluble” adenylyl cyclase resides, in part, inside the mammalian cell nucleus where it stimulates the activity of nuclear protein kinase A to phosphorylate the cAMP response element binding protein (CREB). The existence of this complete and functional, nuclear-localized cAMP pathway establishes that cAMP signals in intracellular microdomains and identifies an alternate pathway leading to CREB activation. PMID:14769862

  18. Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi

    Czech Academy of Sciences Publication Activity Database

    Malínský, Jan; Opekarová, Miroslava; Grossmann, G.; Tanner, W.

    2013-01-01

    Roč. 64, April (2013), s. 501-529 ISSN 1543-5008 R&D Projects: GA ČR(CZ) GAP302/11/0146; GA ČR GAP205/12/0720 Institutional research plan: CEZ:AV0Z50390703 Institutional support: RVO:61388971 ; RVO:68378041 Keywords : membrane microdomain * lipid raft * detergent resistant membranes Subject RIV: EB - Genetics ; Molecular Biology; EA - Cell Biology (MBU-M) Impact factor: 18.900, year: 2013

  19. Eye lens membrane junctional microdomains: a comparison between healthy and pathological cases

    Energy Technology Data Exchange (ETDEWEB)

    Buzhynskyy, Nikolay; Scheuring, Simon [Institut Curie, Equipe Inserm Avenir, UMR168-CNRS, 26 Rue d' Ulm, 75248 Paris Cedex 05 (France); Sens, Pierre [ESPCI, CNRS-UMR 7083, 75231 Paris (France); Behar-Cohen, Francine, E-mail: simon.scheuring@curie.fr [UMRS Inserm 872, Universite Paris Descartes, Centre de Recherches des Cordeliers, 15 rue de l' Ecole de Medecine, 75270 Paris Cedex 06 (France)

    2011-08-15

    The eye lens is a transparent tissue constituted of tightly packed fiber cells. To maintain homeostasis and transparency of the lens, the circulation of water, ions and metabolites is required. Junctional microdomains connect the lens cells and ensure both tight cell-to-cell adhesion and intercellular flow of fluids through a microcirculation system. Here, we overview membrane morphology and tissue functional requirements of the mammalian lens. Atomic force microscopy (AFM) has opened up the possibility of visualizing the junctional microdomains at unprecedented submolecular resolution, revealing the supramolecular assembly of lens-specific aquaporin-0 (AQP0) and connexins (Cx). We compare the membrane protein assembly in healthy lenses with senile and diabetes-II cataract cases and novel data of the lens membranes from a congenital cataract. In the healthy case, AQP0s form characteristic square arrays confined by connexons. In the cases of senile and diabetes-II cataract patients, connexons were degraded, leading to malformation of AQP0 arrays and breakdown of the microcirculation system. In the congenital cataract, connexons are present, indicating probable non-membranous grounds for lens opacification. Further, we discuss the energetic aspects of the membrane organization in junctional microdomains. The AFM hence becomes a biomedical nano-imaging tool for the analysis of single-membrane protein supramolecular association in healthy and pathological membranes.

  20. Eye lens membrane junctional microdomains: a comparison between healthy and pathological cases

    Science.gov (United States)

    Buzhynskyy, Nikolay; Sens, Pierre; Behar-Cohen, Francine; Scheuring, Simon

    2011-08-01

    The eye lens is a transparent tissue constituted of tightly packed fiber cells. To maintain homeostasis and transparency of the lens, the circulation of water, ions and metabolites is required. Junctional microdomains connect the lens cells and ensure both tight cell-to-cell adhesion and intercellular flow of fluids through a microcirculation system. Here, we overview membrane morphology and tissue functional requirements of the mammalian lens. Atomic force microscopy (AFM) has opened up the possibility of visualizing the junctional microdomains at unprecedented submolecular resolution, revealing the supramolecular assembly of lens-specific aquaporin-0 (AQP0) and connexins (Cx). We compare the membrane protein assembly in healthy lenses with senile and diabetes-II cataract cases and novel data of the lens membranes from a congenital cataract. In the healthy case, AQP0s form characteristic square arrays confined by connexons. In the cases of senile and diabetes-II cataract patients, connexons were degraded, leading to malformation of AQP0 arrays and breakdown of the microcirculation system. In the congenital cataract, connexons are present, indicating probable non-membranous grounds for lens opacification. Further, we discuss the energetic aspects of the membrane organization in junctional microdomains. The AFM hence becomes a biomedical nano-imaging tool for the analysis of single-membrane protein supramolecular association in healthy and pathological membranes.

  1. A novel biotinylated lipid raft reporter for electron microscopic imaging of plasma membrane microdomains[S

    Science.gov (United States)

    Krager, Kimberly J.; Sarkar, Mitul; Twait, Erik C.; Lill, Nancy L.; Koland, John G.

    2012-01-01

    The submicroscopic spatial organization of cell surface receptors and plasma membrane signaling molecules is readily characterized by electron microscopy (EM) via immunogold labeling of plasma membrane sheets. Although various signaling molecules have been seen to segregate within plasma membrane microdomains, the biochemical identity of these microdomains and the factors affecting their formation are largely unknown. Lipid rafts are envisioned as submicron membrane subdomains of liquid ordered structure with differing lipid and protein constituents that define their specific varieties. To facilitate EM investigation of inner leaflet lipid rafts and the localization of membrane proteins therein, a unique genetically encoded reporter with the dually acylated raft-targeting motif of the Lck kinase was developed. This reporter, designated Lck-BAP-GFP, incorporates green fluorescent protein (GFP) and biotin acceptor peptide (BAP) modules, with the latter allowing its single-step labeling with streptavidin-gold. Lck-BAP-GFP was metabolically biotinylated in mammalian cells, distributed into low-density detergent-resistant membrane fractions, and was readily detected with avidin-based reagents. In EM images of plasma membrane sheets, the streptavidin-gold-labeled reporter was clustered in 20–50 nm microdomains, presumably representative of inner leaflet lipid rafts. The utility of the reporter was demonstrated in an investigation of the potential lipid raft localization of the epidermal growth factor receptor. PMID:22822037

  2. Single-Molecule Tracking Study of the Permeability and Transverse Width of Individual Cylindrical Microdomains in Solvent-Swollen Polystyrene-block-poly(ethylene oxide) Films.

    Science.gov (United States)

    Sapkota, Dol Raj; Tran-Ba, Khanh-Hoa; Elwell-Cuddy, Trevor; Higgins, Daniel A; Ito, Takashi

    2016-12-01

    Understanding the properties of solvent-swollen block copolymer (BCP) microdomains is important for better solvent-based control of microdomain morphology, orientation, and permeability. In this study, single-molecule tracking (SMT) was explored to assess the permeability and transverse width of individual cylindrical microdomains in solvent-swollen polystyrene-block-poly(ethylene oxide) (PS-b-PEO) films. PS-b-PEO films comprising shear-elongated cylindrical PEO microdomains were prepared by sandwiching its benzene or tetrahydrofuran (THF) solution between two glass substrates. SMT measurements were performed at different drying times to investigate the effects of solvent evaporation on the microdomain properties. SMT data showed one-dimensional (1D) motions of single fluorescent molecules (sulforhodamine B) based on their diffusion within the cylindrical microdomains. Microdomain permeability and transverse width were assessed from the single-molecule diffusion coefficients (D SMT ) and transverse variance of the 1D trajectories (σ δ 2 ), respectively. The D SMT and σ δ 2 values from individual 1D trajectories were widely distributed with no evidence of correlation on a single molecule basis, possibly because the individual microdomains in a film were swollen to different extents. On average, microdomain permeability (D) and effective radius (r) gradually decreased within the first 3 days of drying due to solvent evaporation, and changed negligibly thereafter. PS-b-PEO films prepared from THF solutions exhibited larger changes in D and r as compared with those from benzene solutions due to the better swelling of the PEO microdomains by THF. Importantly, changes in D were more prominent than those in r, suggesting that the permeability of the PEO microdomains is very susceptible to the presence of solvent. These results reveal the unique capability of SMT to assess the properties of individual cylindrical microdomains in a solvent-swollen BCP film.

  3. Distinct metamorphic evolution of alternating silica-saturated and silica-deficient microdomains within garnet in ultrahigh-temperature granulites: An example from Sri Lanka

    Directory of Open Access Journals (Sweden)

    P.L. Dharmapriya

    2017-09-01

    Full Text Available Here we report the occurrence of garnet porphyroblasts that have overgrown alternating silica-saturated and silica deficient microdomains via different mineral reactions. The samples were collected from ultrahigh-temperature (UHT metapelites in the Highland Complex, Sri Lanka. In some of the metapelites, garnet crystals have cores formed via a dehydration reaction, which had taken place at silica-saturated microdomains and mantle to rim areas formed via a dehydration reaction at silica-deficient microdomains. In contrast, some other garnets in the same rock cores had formed via a dehydration reaction which occurred at silica-deficient microdomains while mantle to rim areas formed via a dehydration reaction at silica-saturated microdomains. Based on the textural observations, we conclude that the studied garnets have grown across different effective bulk compositional microdomains during the prograde evolution. These microdomains could represent heterogeneous compositional layers (paleobedding/laminations in the precursor sediments or differentiated crenulation cleavages that existed during prograde metamorphism. UHT metamorphism associated with strong ductile deformation, metamorphic differentiation and crystallization of locally produced melt may have obliterated the evidence for such microdomains in the matrix. The lack of significant compositional zoning in garnet probably due to self-diffusion during UHT metamorphism had left mineral inclusions as the sole evidence for earlier microdomains with contrasting chemistry.

  4. Annexins as organizers of cholesterol- and sphingomyelin-enriched membrane microdomains in Niemann-Pick type C disease.

    Science.gov (United States)

    Domon, Magdalena; Nasir, Mehmet Nail; Matar, Gladys; Pikula, Slawomir; Besson, Françoise; Bandorowicz-Pikula, Joanna

    2012-06-01

    Growing evidence suggests that membrane microdomains enriched in cholesterol and sphingomyelin are sites for numerous cellular processes, including signaling, vesicular transport, interaction with pathogens, and viral infection, etc. Recently some members of the annexin family of conserved calcium and membrane-binding proteins have been recognized as cholesterol-interacting molecules and suggested to play a role in the formation, stabilization, and dynamics of membrane microdomains to affect membrane lateral organization and to attract other proteins and signaling molecules onto their territory. Furthermore, annexins were implicated in the interactions between cytosolic and membrane molecules, in the turnover and storage of cholesterol and in various signaling pathways. In this review, we focus on the mechanisms of interaction of annexins with lipid microdomains and the role of annexins in membrane microdomains dynamics including possible participation of the domain-associated forms of annexins in the etiology of human lysosomal storage disease called Niemann-Pick type C disease, related to the abnormal storage of cholesterol in the lysosome-like intracellular compartment. The involvement of annexins and cholesterol/sphingomyelin-enriched membrane microdomains in other pathologies including cardiac dysfunctions, neurodegenerative diseases, obesity, diabetes mellitus, and cancer is likely, but is not supported by substantial experimental observations, and therefore awaits further clarification.

  5. Nanosecond pulsed electric field (nsPEF) enhance cytotoxicity of cisplatin to hepatocellular cells by microdomain disruption on plasma membrane.

    Science.gov (United States)

    Yin, Shengyong; Chen, Xinhua; Xie, Haiyang; Zhou, Lin; Guo, Danjing; Xu, Yuning; Wu, Liming; Zheng, Shusen

    2016-08-15

    Previous studies showed nanosecond pulsed electric field (nsPEF) can ablate solid tumors including hepatocellular carcinoma (HCC) but its effect on cell membrane is not fully understood. We hypothesized nsPEF disrupt the microdomains on outer-cellular membrane with direct mechanical force and as a result the plasma membrane permeability increases to facilitate the small molecule intake. Three HCC cells were pulsed one pulse per minute, an interval longer than nanopore resealing time. The cationized ferritin was used to mark up the electronegative microdomains, propidium iodide (PI) for membrane permeabilization, energy dispersive X-ray spectroscopy (EDS) for the negative cell surface charge and cisplatin for inner-cellular cytotoxicity. We demonstrated that the ferritin marked-microdomain and negative cell surface charge were disrupted by nsPEF caused-mechanical force. The cell uptake of propidium and cytotoxicity of DNA-targeted cisplatin increased with a dose effect. Cisplatin gains its maximum inner-cellular cytotoxicity when combining with nsPEF stimulation. We conclude that nsPEF disrupt the microdomains on the outer cellular membrane directly and increase the membrane permeabilization for PI and cisplatin. The microdomain disruption and membrane infiltration changes are caused by the mechanical force from the changes of negative cell surface charge. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Nanosecond pulsed electric field (nsPEF) enhance cytotoxicity of cisplatin to hepatocellular cells by microdomain disruption on plasma membrane

    International Nuclear Information System (INIS)

    Yin, Shengyong; Chen, Xinhua; Xie, Haiyang; Zhou, Lin; Guo, Danjing; Xu, Yuning; Wu, Liming; Zheng, Shusen

    2016-01-01

    Previous studies showed nanosecond pulsed electric field (nsPEF) can ablate solid tumors including hepatocellular carcinoma (HCC) but its effect on cell membrane is not fully understood. We hypothesized nsPEF disrupt the microdomains on outer-cellular membrane with direct mechanical force and as a result the plasma membrane permeability increases to facilitate the small molecule intake. Three HCC cells were pulsed one pulse per minute, an interval longer than nanopore resealing time. The cationized ferritin was used to mark up the electronegative microdomains, propidium iodide (PI) for membrane permeabilization, energy dispersive X-ray spectroscopy (EDS) for the negative cell surface charge and cisplatin for inner-cellular cytotoxicity. We demonstrated that the ferritin marked-microdomain and negative cell surface charge were disrupted by nsPEF caused-mechanical force. The cell uptake of propidium and cytotoxicity of DNA-targeted cisplatin increased with a dose effect. Cisplatin gains its maximum inner-cellular cytotoxicity when combining with nsPEF stimulation. We conclude that nsPEF disrupt the microdomains on the outer cellular membrane directly and increase the membrane permeabilization for PI and cisplatin. The microdomain disruption and membrane infiltration changes are caused by the mechanical force from the changes of negative cell surface charge.

  7. Nanosecond pulsed electric field (nsPEF) enhance cytotoxicity of cisplatin to hepatocellular cells by microdomain disruption on plasma membrane

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Shengyong; Chen, Xinhua; Xie, Haiyang; Zhou, Lin [Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 310003 Hangzhou (China); Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, The Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003 (China); Guo, Danjing; Xu, Yuning [Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, The Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003 (China); Wu, Liming, E-mail: wlm@zju.edu.cn [Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 310003 Hangzhou (China); Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, The Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003 (China); Zheng, Shusen, E-mail: shusenzheng@zju.edu.cn [Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 310003 Hangzhou (China); Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, The Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003 (China)

    2016-08-15

    Previous studies showed nanosecond pulsed electric field (nsPEF) can ablate solid tumors including hepatocellular carcinoma (HCC) but its effect on cell membrane is not fully understood. We hypothesized nsPEF disrupt the microdomains on outer-cellular membrane with direct mechanical force and as a result the plasma membrane permeability increases to facilitate the small molecule intake. Three HCC cells were pulsed one pulse per minute, an interval longer than nanopore resealing time. The cationized ferritin was used to mark up the electronegative microdomains, propidium iodide (PI) for membrane permeabilization, energy dispersive X-ray spectroscopy (EDS) for the negative cell surface charge and cisplatin for inner-cellular cytotoxicity. We demonstrated that the ferritin marked-microdomain and negative cell surface charge were disrupted by nsPEF caused-mechanical force. The cell uptake of propidium and cytotoxicity of DNA-targeted cisplatin increased with a dose effect. Cisplatin gains its maximum inner-cellular cytotoxicity when combining with nsPEF stimulation. We conclude that nsPEF disrupt the microdomains on the outer cellular membrane directly and increase the membrane permeabilization for PI and cisplatin. The microdomain disruption and membrane infiltration changes are caused by the mechanical force from the changes of negative cell surface charge.

  8. Single-molecule tracking studies of flow-induced microdomain alignment in cylinder-forming polystyrene-poly(ethylene oxide) diblock copolymer films.

    Science.gov (United States)

    Tran-Ba, Khanh-Hoa; Higgins, Daniel A; Ito, Takashi

    2014-09-25

    Flow-based approaches are promising routes to preparation of aligned block copolymer microdomains within confined spaces. An in-depth characterization of such nanoscale morphologies within macroscopically nonuniform materials under ambient conditions is, however, often challenging. In this study, single-molecule tracking (SMT) methods were employed to probe the flow-induced alignment of cylindrical microdomains (ca. 22 nm in diameter) in polystyrene-poly(ethylene oxide) diblock copolymer (PS-b-PEO) films. Films of micrometer-scale thicknesses were prepared by overlaying a benzene solution droplet on a glass coverslip with a rectangular glass plate, followed by solvent evaporation under a nitrogen atmosphere. The microdomain alignment was quantitatively assessed from SMT data exhibiting the diffusional motions of individual sulforhodamine B fluorescent probes that preferentially partitioned into cylindrical PEO microdomains. Better overall microdomain orientation along the flow direction was observed near the substrate interface in films prepared at a higher flow rate, suggesting that the microdomain alignment was primarily induced by shear flow. The SMT data also revealed the presence of micrometer-scale grains consisting of highly ordered microdomains with coherent orientation. The results of this study provide insights into shear-based preparation of aligned cylindrical microdomains in block copolymer films from solutions within confined spaces.

  9. Overexpression of BAX INHIBITOR-1 Links Plasma Membrane Microdomain Proteins to Stress.

    Science.gov (United States)

    Ishikawa, Toshiki; Aki, Toshihiko; Yanagisawa, Shuichi; Uchimiya, Hirofumi; Kawai-Yamada, Maki

    2015-10-01

    BAX INHIBITOR-1 (BI-1) is a cell death suppressor widely conserved in plants and animals. Overexpression of BI-1 enhances tolerance to stress-induced cell death in plant cells, although the molecular mechanism behind this enhancement is unclear. We recently found that Arabidopsis (Arabidopsis thaliana) BI-1 is involved in the metabolism of sphingolipids, such as the synthesis of 2-hydroxy fatty acids, suggesting the involvement of sphingolipids in the cell death regulatory mechanism downstream of BI-1. Here, we show that BI-1 affects cell death-associated components localized in sphingolipid-enriched microdomains of the plasma membrane in rice (Oryza sativa) cells. The amount of 2-hydroxy fatty acid-containing glucosylceramide increased in the detergent-resistant membrane (DRM; a biochemical counterpart of plasma membrane microdomains) fraction obtained from BI-1-overexpressing rice cells. Comparative proteomics analysis showed quantitative changes of DRM proteins in BI-1-overexpressing cells. In particular, the protein abundance of FLOTILLIN HOMOLOG (FLOT) and HYPERSENSITIVE-INDUCED REACTION PROTEIN3 (HIR3) markedly decreased in DRM of BI-1-overexpressing cells. Loss-of-function analysis demonstrated that FLOT and HIR3 are required for cell death by oxidative stress and salicylic acid, suggesting that the decreased levels of these proteins directly contribute to the stress-tolerant phenotypes in BI-1-overexpressing rice cells. These findings provide a novel biological implication of plant membrane microdomains in stress-induced cell death, which is negatively modulated by BI-1 overexpression via decreasing the abundance of a set of key proteins involved in cell death. © 2015 American Society of Plant Biologists. All Rights Reserved.

  10. Deep-apical tubules: dynamic lipid-raft microdomains in the brush-border region of enterocytes

    DEFF Research Database (Denmark)

    Hansen, Gert H; Pedersen, Jens; Niels-Christiansen, Lise-Lotte

    2003-01-01

    microdomains. Deep-apical tubules were positioned close to the actin rootlets of adjacent microvilli in the terminal web region, which had a diameter of 50-100 nm, and penetrated up to 1 microm into the cytoplasm. Markers for transcytosis, IgA and the polymeric immunoglobulin receptor, as well as the resident...... lipid raft-containing compartments, but little is otherwise known about these raft microdomains. We therefore studied in closer detail apical lipid-raft compartments in enterocytes by immunogold electron microscopy and biochemical analyses. Novel membrane structures, deep-apical tubules, were visualized...... brush-border enzyme aminopeptidase N, were present in these deep-apical tubules. We propose that deep-apical tubules are a specialized lipid-raft microdomain in the brush-border region functioning as a hub in membrane trafficking at the brush border. In addition, the sensitivity to cholesterol depletion...

  11. Shotgun proteomics of plant plasma membrane and microdomain proteins using nano-LC-MS/MS.

    Science.gov (United States)

    Takahashi, Daisuke; Li, Bin; Nakayama, Takato; Kawamura, Yukio; Uemura, Matsuo

    2014-01-01

    Shotgun proteomics allows the comprehensive analysis of proteins extracted from plant cells, subcellular organelles, and membranes. Previously, two-dimensional gel electrophoresis-based proteomics was used for mass spectrometric analysis of plasma membrane proteins. In order to get comprehensive proteome profiles of the plasma membrane including highly hydrophobic proteins with a number of transmembrane domains, a mass spectrometry-based shotgun proteomics method using nano-LC-MS/MS for proteins from the plasma membrane proteins and plasma membrane microdomain fraction is described. The results obtained are easily applicable to label-free protein semiquantification.

  12. Human Immunodeficiency Virus Type 1 Nef protein modulates the lipid composition of virions and host cell membrane microdomains

    Directory of Open Access Journals (Sweden)

    Geyer Matthias

    2007-10-01

    Full Text Available Abstract Background The Nef protein of Human Immunodeficiency Viruses optimizes viral spread in the infected host by manipulating cellular transport and signal transduction machineries. Nef also boosts the infectivity of HIV particles by an unknown mechanism. Recent studies suggested a correlation between the association of Nef with lipid raft microdomains and its positive effects on virion infectivity. Furthermore, the lipidome analysis of HIV-1 particles revealed a marked enrichment of classical raft lipids and thus identified HIV-1 virions as an example for naturally occurring membrane microdomains. Since Nef modulates the protein composition and function of membrane microdomains we tested here if Nef also has the propensity to alter microdomain lipid composition. Results Quantitative mass spectrometric lipidome analysis of highly purified HIV-1 particles revealed that the presence of Nef during virus production from T lymphocytes enforced their raft character via a significant reduction of polyunsaturated phosphatidylcholine species and a specific enrichment of sphingomyelin. In contrast, Nef did not significantly affect virion levels of phosphoglycerolipids or cholesterol. The observed alterations in virion lipid composition were insufficient to mediate Nef's effect on particle infectivity and Nef augmented virion infectivity independently of whether virus entry was targeted to or excluded from membrane microdomains. However, altered lipid compositions similar to those observed in virions were also detected in detergent-resistant membrane preparations of virus producing cells. Conclusion Nef alters not only the proteome but also the lipid composition of host cell microdomains. This novel activity represents a previously unrecognized mechanism by which Nef could manipulate HIV-1 target cells to facilitate virus propagation in vivo.

  13. Proteomic identification of proteins translocated to membrane microdomains upon treatment of fibroblasts with the glycosphingolipid, C8-beta-D-lactosylceramide.

    Science.gov (United States)

    Kim, Seong-Youl; Wang, Teng-ke; Singh, Raman Deep; Wheatley, Christine L; Marks, David L; Pagano, Richard E

    2009-09-01

    Plasma membrane (PM) microdomains, including caveolae and other cholesterol-enriched subcompartments, are involved in the regulation of many cellular processes, including endocytosis, attachment and signaling. We recently reported that brief incubation of human skin fibroblasts with the synthetic glycosphingolipid, D-erythro-octanoyl-lactosylceramide (C8-D-e-LacCer), stimulates endocytosis via caveolae and induces the appearance of micron-size microdomains on the PM. To further understand the effects of C8-D-e-LacCer treatment on PM microdomains, we used a detergent-free method to isolate microdomain-enriched membranes from fibroblasts treated +/-C8-D-e-LacCer, and performed 2-DE and mass spectrophotometry to identify proteins that were altered in their distribution in microdomains. Several proteins were identified in the microdomain-enriched fractions, including lipid transfer proteins and proteins related to the functions of small GTPases. One protein, Rho-associated protein kinase 2 (ROCK2), was verified by Western blotting to occur in microdomain fractions and to increase in these fractions after D-e-LacCer treatment. Immunofluorescence revealed that ROCK2 exhibited an increased localization at or near the PM in C8-D-e-LacCer-treated cells. In contrast, ROCK2 distribution in microdomains was decreased by treatment of cells with C8-L-threo-lactosylceramide, a glycosphingolipid with non-natural stereochemistry. This study identifies new microdomain-associated proteins and provides evidence that microdomains play a role in the regulation of the Rho/ROCK signaling pathway.

  14. Investigation of cAMP microdomains as a path to novel cancer diagnostics.

    Science.gov (United States)

    Desman, Garrett; Waintraub, Caren; Zippin, Jonathan H

    2014-12-01

    Understanding of cAMP signaling has greatly improved over the past decade. The advent of live cell imaging techniques and more specific pharmacologic modulators has led to an improved understanding of the intricacies by which cAMP is able to modulate such a wide variety of cellular pathways. It is now appreciated that cAMP is able to activate multiple effector proteins at distinct areas in the cell leading to the activation of very different downstream targets. The investigation of signaling proteins in cancer is a common route to the development of diagnostic tools, prognostic tools, and/or therapeutic targets, and in this review we highlight how investigation of cAMP signaling microdomains driven by the soluble adenylyl cyclase in different cancers has led to the development of a novel cancer biomarker. Antibodies directed against the soluble adenylyl cyclase (sAC) are highly specific markers for melanoma especially for lentigo maligna melanoma and are being described as "second generation" cancer diagnostics, which are diagnostics that determine the 'state' of a cell and not just identify the cell type. Due to the wide presence of cAMP signaling pathways in cancer, we predict that further investigation of both sAC and other cAMP microdomains will lead to additional cancer biomarkers. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Peptide-selective inrichment of MHC II-peptide complexes in tetraspan microdomains distinct from lipid rafts

    Czech Academy of Sciences Publication Activity Database

    Kropshofer, H.; Spindeldreher, S.; Rohn, T. A.; Platania, N.; Grygar, C.; Wolpl, A.; Langen, H.; Hořejší, Václav; Vogt, A. B.

    2002-01-01

    Roč. 3, č. 1 (2002), s. 61-68 ISSN 1529-2908 R&D Projects: GA MŠk LN00A026 Keywords : Microdomain * tetraspan proteins * MHC class II Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 27.868, year: 2002

  16. FLUORESCENCE SPECTROSCOPIC STUDY OF THE FORMATION OF HYDROPHOBIC MICRODOMAINS IN AQUEOUS-SOLUTIONS OF POLY(ALKYLMETHYLDIALLYLAMMONIUM BROMIDES)

    NARCIS (Netherlands)

    YANG, YJ; Engberts, Jan B F N

    The conformational state of poly(alkylmethyldiallylammonium bromides) was studied in aqueous solutions using pyrene as a fluorescence probe. The results are indicative for the formation of hydrophobic microdomains in the case of several copolymers which possess sufficiently hydrophobic alkyl side

  17. FLUORESCENCE PROBING OF THE FORMATION OF HYDROPHOBIC MICRODOMAINS BY CROSS-LINKED POLY(ALKYLMETHYLDIALLYLAMMONIUM BROMIDES) IN AQUEOUS-SOLUTION

    NARCIS (Netherlands)

    WANG, GJ; ENGBERTS, J B F N

    Pyrene has been used as a fluorescence probe to investigate the conformational behavior of cross-linked poly(alkylmethyldiallylammonium bromides) in aqueous solutions. Binding of pyrene to hydrophobic microdomains, formed by the polysoaps, is reflected by a change in the ratio I-1/I-3 of the

  18. Assembly of fission yeast eisosomes in the plasma membrane of budding yeast: Import of foreign membrane microdomains

    Czech Academy of Sciences Publication Activity Database

    Vaškovičová, Katarína; Strádalová, Vendula; Efenberk, Aleš; Opekarová, Miroslava; Malínský, Jan

    2015-01-01

    Roč. 94, č. 1 (2015), s. 1-11 ISSN 0171-9335 R&D Projects: GA ČR(CZ) GAP302/11/0146 Institutional support: RVO:68378041 Keywords : plasma membrane * membrane microdomain * MCC Subject RIV: EA - Cell Biology Impact factor: 4.011, year: 2015

  19. A specific type of membrane microdomains is involved in the maintenance and translocation of kinase active Lck to lipid rafts

    Czech Academy of Sciences Publication Activity Database

    Ballek, Ondřej; Broučková, Adéla; Manning, Jasper; Filipp, Dominik

    2012-01-01

    Roč. 142, 1-2 (2012), s. 64-74 ISSN 0165-2478 R&D Projects: GA ČR GA310/09/2084 Institutional research plan: CEZ:AV0Z50520514 Keywords : pY394Lck * T-cell proximal signaling * membrane microdomains Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.337, year: 2012

  20. Caveolae/lipid rafts in fibroblast-like synoviocytes: ectopeptidase-rich membrane microdomains

    DEFF Research Database (Denmark)

    Riemann, D; Hansen, Gert Helge; Niels-Christiansen, L

    2001-01-01

    in the regulation of intra-articular levels of neuropeptides and chemotactic mediators as well as in adhesion and cell-cell interactions. Here, we report these peptidases in synoviocytes to be localized predominantly in glycolipid- and cholesterol-rich membrane microdomains known as 'rafts'. At the ultrastructural...... from about 60 to 160 nm. Cholesterol depletion of synoviocytes by methyl-beta-cyclodextrin disrupted >90% of the caveolae and reduced the raft localization of aminopeptidase N/CD13 without affecting Ala-p-nitroanilide-cleaving activity of confluent cell cultures. In co-culture experiments with T......-lymphocytes, cholesterol depletion of synoviocytes greatly reduced their capability to induce an early lymphocytic expression of aminopeptidase N/CD13. We propose caveolae/rafts to be peptidase-rich 'hot-spot' regions of the synoviocyte plasma membrane required for functional cell-cell interactions with lymphocytes...

  1. Lipid rafts exist as stable cholesterol-independent microdomains in the brush border membrane of enterocytes

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Immerdal, Lissi; Thorsen, Evy

    2001-01-01

    Glycosphingolipid/cholesterol-rich membranes ("rafts")can be isolated from many types of cells, but their existence as stable microdomains in the cell membrane has been elusive. Addressing this problem, we studied the distribution of galectin-4, a raft marker, and lactase, a protein excluded from...... rafts, on microvillar vesicles from the enterocyte brush border membrane. Magnetic beads coated with either anti-galectin-4 or anti-lactase antibodies were used for immunoisolation of vesicles followed by double immunogold labeling of the two proteins. A morphometric analysis revealed subpopulations...... of raft-rich and raft-poor vesicles by the following criteria: 1) the lactase/galectin-4 labeling ratio/vesicle captured by the anti-lactase beads was significantly higher (p

  2. Platelet activating factor-induced ceramide micro-domains drive endothelial NOS activation and contribute to barrier dysfunction.

    Directory of Open Access Journals (Sweden)

    Sanda Predescu

    Full Text Available The spatial and functional relationship between platelet activating factor-receptor (PAF-R and nitric oxide synthase (eNOS in the lateral plane of the endothelial plasma membrane is poorly characterized. In this study, we used intact mouse pulmonary endothelial cells (ECs as well as endothelial plasma membrane patches and subcellular fractions to define a new microdomain of plasmalemma proper where the two proteins colocalize and to demonstrate how PAF-mediated nitric oxide (NO production fine-tunes ECs function as gatekeepers of vascular permeability. Using fluorescence microscopy and immunogold labeling electron microscopy (EM on membrane patches we demonstrate that PAF-R is organized as clusters and colocalizes with a subcellular pool of eNOS, outside recognizable vesicular profiles. Moreover, PAF-induced acid sphingomyelinase activation generates a ceramide-based microdomain on the external leaflet of plasma membrane, inside of which a signalosome containing eNOS shapes PAF-stimulated NO production. Real-time measurements of NO after PAF-R ligation indicated a rapid (5 to 15 min increase in NO production followed by a > 45 min period of reduction to basal levels. Moreover, at the level of this new microdomain, PAF induces a dynamic phosphorylation/dephosphorylation of Ser, Thr and Tyr residues of eNOS that correlates with NO production. Altogether, our findings establish the existence of a functional partnership PAF-R/eNOS on EC plasma membrane, at the level of PAF-induced ceramide plasma membrane microdomains, outside recognized vesicular profiles.

  3. Controlling sub-microdomain structure in microphase-ordered block copolymers and their nanocomposites

    Science.gov (United States)

    Bowman, Michelle Kathleen

    Block copolymers exhibit a wealth of morphologies that continue to find ubiquitous use in a diverse variety of mature and emergent (nano)technologies, such as photonic crystals, integrated circuits, pharmaceutical encapsulents, fuel cells and separation membranes. While numerous studies have explored the effects of molecular confinement on such copolymers, relatively few have examined the sub-microdomain structure that develops upon modification of copolymer molecular architecture or physical incorporation of nanoscale objects. This work will address two relevant topics in this vein: (i) bidisperse brushes formed by single block copolymer molecules and (ii) copolymer nanocomposites formed by addition of molecular or nanoscale additives. In the first case, an isomorphic series of asymmetric poly(styrene-b -isoprene-b-styrene) (S1IS2) triblock copolymers of systematically varied chain length has been synthesized from a parent SI diblock copolymer. Small-angle x-ray scattering, coupled with dynamic rheology and self-consistent field theory (SCFT), reveals that the progressively grown S2 block initially resides in the I-rich matrix and effectively reduces the copolymer incompatibility until a critical length is reached. At this length, the S2 block co-locates with the S1 block so that the two blocks generate a bidisperse brush (insofar as the S1 and S2 lengths differ). This single-molecule analog to binary block copolymer blends affords unique opportunities for materials design at sub-microdomain length scales and provides insight into the transition from diblock to triblock copolymer (and thermoplastic elastomeric nature). In the second case, I explore the distribution of molecular and nanoscale additives in microphase-ordered block copolymers and demonstrate via SCFT that an interfacial excess, which depends strongly on additive concentration, selectivity and relative size, develops. These predictions are in agreement with experimental findings. Moreover, using a

  4. Coronavirus and influenza virus proteolytic priming takes place in tetraspanin-enriched membrane microdomains.

    Science.gov (United States)

    Earnest, James T; Hantak, Michael P; Park, Jung-Eun; Gallagher, Tom

    2015-06-01

    Coronaviruses (CoVs) and low-pathogenicity influenza A viruses (LP IAVs) depend on target cell proteases to cleave their viral glycoproteins and prime them for virus-cell membrane fusion. Several proteases cluster into tetraspanin-enriched microdomains (TEMs), suggesting that TEMs are preferred virus entry portals. Here we found that several CoV receptors and virus-priming proteases were indeed present in TEMs. Isolated TEMs, when mixed with CoV and LP IAV pseudoparticles, cleaved viral fusion proteins to fusion-primed fragments and potentiated viral transductions. That entering viruses utilize TEMs as a protease source was further confirmed using tetraspanin antibodies and tetraspanin short hairpin RNAs (shRNAs). Tetraspanin antibodies inhibited CoV and LP IAV infections, but their virus-blocking activities were overcome by expressing excess TEM-associated proteases. Similarly, cells with reduced levels of the tetraspanin CD9 resisted CoV pseudoparticle transductions but were made susceptible by overproducing TEM-associated proteases. These findings indicated that antibodies and CD9 depletions interfere with viral proteolytic priming in ways that are overcome by surplus proteases. TEMs appear to be exploited by some CoVs and LP IAVs for appropriate coengagement with cell receptors and proteases. Enveloped viruses use their surface glycoproteins to catalyze membrane fusion, an essential cell entry step. Host cell components prime these viral surface glycoproteins to catalyze membrane fusion at specific times and places during virus cell entry. Among these priming components are proteases, which cleave viral surface glycoproteins, unleashing them to refold in ways that catalyze virus-cell membrane fusions. For some enveloped viruses, these proteases are known to reside on target cell surfaces. This research focuses on coronavirus and influenza A virus cell entry and identifies TEMs as sites of viral proteolysis, thereby defining subcellular locations of virus

  5. A fluorescent glycolipid-binding peptide probe traces cholesterol dependent microdomain-derived trafficking pathways.

    Directory of Open Access Journals (Sweden)

    Steffen Steinert

    Full Text Available BACKGROUND: The uptake and intracellular trafficking of sphingolipids, which self-associate into plasma membrane microdomains, is associated with many pathological conditions, including viral and toxin infection, lipid storage disease, and neurodegenerative disease. However, the means available to label the trafficking pathways of sphingolipids in live cells are extremely limited. In order to address this problem, we have developed an exogenous, non-toxic probe consisting of a 25-amino acid sphingolipid binding domain, the SBD, derived from the amyloid peptide Abeta, and conjugated by a neutral linker with an organic fluorophore. The current work presents the characterization of the sphingolipid binding and live cell trafficking of this novel probe, the SBD peptide. SBD was the name given to a motif originally recognized by Fantini et al in a number of glycolipid-associated proteins, and was proposed to interact with sphingolipids in membrane microdomains. METHODOLOGY/PRINCIPAL FINDINGS: In accordance with Fantini's model, optimal SBD binding to membranes depends on the presence of sphingolipids and cholesterol. In synthetic membrane binding assays, SBD interacts preferentially with raft-like lipid mixtures containing sphingomyelin, cholesterol, and complex gangliosides in a pH-dependent manner, but is less glycolipid-specific than Cholera toxin B (CtxB. Using quantitative time-course colocalization in live cells, we show that the uptake and intracellular trafficking route of SBD is unlike that of either the non-raft marker Transferrin or the raft markers CtxB and Flotillin2-GFP. However, SBD traverses an endolysosomal route that partially intersects with raft-associated pathways, with a major portion being diverted at a late time point to rab11-positive recycling endosomes. Trafficking of SBD to acidified compartments is strongly disrupted by cholesterol perturbations, consistent with the regulation of sphingolipid trafficking by cholesterol

  6. Electron transfer at boron-doped diamond electrodes modified by graphitic micro-domains

    Energy Technology Data Exchange (ETDEWEB)

    Mahe, E.; Devilliers, D. [Pierre et Marie Curie Univ., Paris (France). Electrochemistry Lab.; Comninellis, C. [Lausanne Ecole Polytechnique, Lausanne (Switzerland). Groupe de Genie Electrochimique

    2006-07-01

    Boron-doped (BDD) electrodes have been used in electrolysis procedures for the last 10 years. The mechanical stability of the electrode, its large electrochemical window and its low capacitive current place this new electrode material as an alternative for replacing more costly or toxic materials such as mercury. However, the ferri/ferrocyanide system of boron-doped electrodes has shown contradictory results in the literature. This study proposed a cathodic pre-treatment which relied on the presence of residual graphitic domains formed during the preparation of the BDD film. An experiment was conducted in which the doping procedure was used to control the amount of graphitic phase on the electrode with highly oriented pyrolytic graphite (HOPG) grafted on the BDD surface. Surface characterization with Raman spectroscopy and Scanning Electron Microscopy (SEM) was then carried out using cyclic voltammetry and electrochemical impedance spectroscopy. The electroanalytical determination of the amount of graphitic micro-domains was described and a pulse procedure was proposed which obtained a reproducible surface state. 2 refs., 2 figs.

  7. Electrochemical reactivity at graphitic micro-domains on polycrystalline boron doped diamond thin-films electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mahe, E. [LI2C CNRS/UMR 7612, Laboratoire d' Electrochimie, Universite Pierre-et-Marie Curie - case courrier 51, 4, Place Jussieu, 75252 Paris Cedex 05 (France); Devilliers, D. [LI2C CNRS/UMR 7612, Laboratoire d' Electrochimie, Universite Pierre-et-Marie Curie - case courrier 51, 4, Place Jussieu, 75252 Paris Cedex 05 (France); Comninellis, Ch. [Unite de Genie Electrochimique, Institut de sciences des procedes chimiques et biologiques, Ecole Polytechnique Federale de Lausanne, 1015, Lausanne (Switzerland)

    2005-04-01

    This paper deals with the electrochemical reactivity of boron doped diamond (BDD) electrodes. A comparative study has been carried out to show the influence of the presence of graphitic micro-domains upon the surface of these films. Those graphitic domains are sometimes present on as-grown boron doped diamond electrodes. The effect of doping a pure Csp{sup 3} diamond electrode is established by highly oriented pyrolytic graphite (HOPG) abrasion onto the diamond surface. In order to establish the effect of doping on a pure Csp{sup 3} diamond electrode, the amount of graphitic domains was increased by means of HOPG crystals grafted onto the BDD surface. Indeed that method allows the enrichment of the Csp{sup 2} contribution of the electrode. The presence of graphitic domains can be correlatively associated with the presence of kinetically active redox sites. The electrochemical reactivity of boron doped diamond electrodes shows a distribution of kinetic constants on the whole surface of the electrode corresponding to different active sites. In this paper, we have studied by cyclic voltammetry and electrochemical impedance spectroscopy the kinetics parameters of the ferri/ferrocyanide redox couple in KCl electrolyte. A method is proposed to diagnose the presence of graphitic domains on diamond electrodes, and an electrochemical 'pulse cleaning' procedure is proposed to remove them.

  8. Lamellar Microdomains of Block-Copolymer-Based Ionic Supramolecules Exhibiting a Hierarchical Self-Assembly

    DEFF Research Database (Denmark)

    Ayoubi, Mehran Asad; Almdal, Kristoffer; Zhu, Kaizheng

    2014-01-01

    (Cn; n = 8, 12, and 16) trimethylammonium counterions (i.e., side chains) at various ion (pair) fractions X [i.e., counterion/side-chain grafting density; X = number of alkyl counterions (i.e., side chains) per acidic group of the parent PMAA block] these L-b-AC ionic supramolecules exhibit...... a spherical-in-lamellar hierarchical self-assembly. For these systems, (1) the effective Flory-Huggins interaction parameter between L- and AC-blocks chi'(Cn/x) was extracted, and (2) analysis of the lamellar microdomains showed that when there is an increase in X, alkyl counterion (i.e., side chain) length l......Based on a parent diblock copolymer of poly(styrene)-b-poly(methacrylic acid), PS-b-PMAA, linear-b-amphiphilic comb (L-b-AC) ionic supramolecules [Soft Matter 2013, 9, 1540-1555] are synthesized in which the poly(methacrylate) backbone of the ionic supramolecular AC-block is neutralized by alkyl...

  9. The Design of New HIV-IN Tethered Bifunctional Inhibitors using Multiple Microdomain Targeted Docking.

    Science.gov (United States)

    Ciubotaru, Mihai; Musat, Mihaela Georgiana; Surleac, Marius; Ionita, Elena; Petrescu, Andrei Jose; Abele, Edgars; Abele, Ramona

    2018-04-05

    Currently used antiretroviral HIV therapy drugs exclusively target critical groups in the enzymes essential for the viral life cycle. Increased mutagenesis of their genes, changes these viral enzymes which once mutated can evade therapeutic targeting, effects which confer drug resistance. To circumvent this, our review addresses a strategy to design and derive HIV-Integrase (HIV-IN) inhibitors which simultaneously target two IN functional domains, rendering it inactive even if the enzyme accumulates many mutations. First we review the enzymatic role of IN to insert the copied viral DNA into a chromosome of the host T lymphocyte, highlighting its main functional and structural features to be subjected to inhibitory action. From a functional and structural perspective we present all classes of HIV-IN inhibitors with their most representative candidates. For each chosen compound we also explain its mechanism of IN inhibition. We use the recently resolved cryo EM IN tetramer intasome DNA complex [1] onto which we dock various reference IN inhibitory chemical scaffolds such as to target adjacent functional IN domains. Pairing compounds with complementary activity, which dock in the vicinity of a IN structural microdomain, we design bifunctional new drugs which may not only be more resilient to IN mutations but also may be more potent inhibitors than their original counterparts. In the end of our review we propose synthesis pathways to link such paired compounds with enhanced synergistic IN inhibitory effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Electrochemical reactivity at graphitic micro-domains on polycrystalline boron doped diamond thin-films electrodes

    International Nuclear Information System (INIS)

    Mahe, E.; Devilliers, D.; Comninellis, Ch.

    2005-01-01

    This paper deals with the electrochemical reactivity of boron doped diamond (BDD) electrodes. A comparative study has been carried out to show the influence of the presence of graphitic micro-domains upon the surface of these films. Those graphitic domains are sometimes present on as-grown boron doped diamond electrodes. The effect of doping a pure Csp 3 diamond electrode is established by highly oriented pyrolytic graphite (HOPG) abrasion onto the diamond surface. In order to establish the effect of doping on a pure Csp 3 diamond electrode, the amount of graphitic domains was increased by means of HOPG crystals grafted onto the BDD surface. Indeed that method allows the enrichment of the Csp 2 contribution of the electrode. The presence of graphitic domains can be correlatively associated with the presence of kinetically active redox sites. The electrochemical reactivity of boron doped diamond electrodes shows a distribution of kinetic constants on the whole surface of the electrode corresponding to different active sites. In this paper, we have studied by cyclic voltammetry and electrochemical impedance spectroscopy the kinetics parameters of the ferri/ferrocyanide redox couple in KCl electrolyte. A method is proposed to diagnose the presence of graphitic domains on diamond electrodes, and an electrochemical 'pulse cleaning' procedure is proposed to remove them

  11. Membrane microdomains and the cytoskeleton constrain AtHIR1 dynamics and facilitate the formation of an AtHIR1-associated immune complex.

    Science.gov (United States)

    Lv, Xueqin; Jing, Yanping; Xiao, Jianwei; Zhang, Yongdeng; Zhu, Yingfang; Julian, Russell; Lin, Jinxing

    2017-04-01

    Arabidopsis hypersensitive-induced reaction (AtHIR) proteins function in plant innate immunity. However, the underlying mechanisms by which AtHIRs participate in plant immunity remain elusive. Here, using VA-TIRFM and FLIM-FRET, we revealed that AtHIR1 is present in membrane microdomains and co-localizes with the membrane microdomain marker REM1.3. Single-particle tracking analysis revealed that membrane microdomains and the cytoskeleton, especially microtubules, restrict the lateral mobility of AtHIR1 at the plasma membrane and facilitate its oligomerization. Furthermore, protein proximity index measurements, fluorescence cross-correlation spectroscopy, and biochemical experiments demonstrated that the formation of the AtHIR1 complex upon pathogen perception requires intact microdomains and cytoskeleton. Taken together, these findings suggest that microdomains and the cytoskeleton constrain AtHIR1 dynamics, promote AtHIR1 oligomerization, and increase the efficiency of the interactions of AtHIR1 with components of the AtHIR1 complex in response to pathogens, thus providing valuable insight into the mechanisms of defense-related responses in plants. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  12. Quantitative membrane proteomics reveals a role for tetraspanin enriched microdomains during entry of human cytomegalovirus.

    Directory of Open Access Journals (Sweden)

    Kasinath Viswanathan

    Full Text Available Human cytomegalovirus (HCMV depends on and modulates multiple host cell membrane proteins during each stage of the viral life cycle. To gain a global view of the impact of HCMV-infection on membrane proteins, we analyzed HCMV-induced changes in the abundance of membrane proteins in fibroblasts using stable isotope labeling with amino acids (SILAC, membrane fractionation and protein identification by two-dimensional liquid chromatography and tandem mass spectrometry. This systematic approach revealed that CD81, CD44, CD98, caveolin-1 and catenin delta-1 were down-regulated during infection whereas GRP-78 was up-regulated. Since CD81 downregulation was also observed during infection with UV-inactivated virus we hypothesized that this tetraspanin is part of the viral entry process. Interestingly, additional members of the tetraspanin family, CD9 and CD151, were also downregulated during HCMV-entry. Since tetraspanin-enriched microdomains (TEM cluster host cell membrane proteins including known CMV receptors such as integrins, we studied whether TEMs are required for viral entry. When TEMs were disrupted with the cholesterol chelator methyl-β-cylcodextrin, viral entry was inhibited and this inhibition correlated with reduced surface levels of CD81, CD9 and CD151, whereas integrin levels remained unchanged. Furthermore, simultaneous siRNA-mediated knockdown of multiple tetraspanins inhibited viral entry whereas individual knockdown had little effect suggesting essential, but redundant roles for individual tetraspanins during entry. Taken together, our data suggest that TEM act as platforms for receptors utilized by HCMV for entry into cells.

  13. MHC Class II and CD9 in Human Eosinophils Localize to Detergent-Resistant Membrane Microdomains

    Science.gov (United States)

    Akuthota, Praveen; Melo, Rossana C. N.; Spencer, Lisa A.

    2012-01-01

    Eosinophils function in murine allergic airways inflammation as professional antigen-presenting cells (APCs). In murine professional APC cell types, optimal functioning of MHC Class II depends on its lateral association in plasma membranes and colocalization with the tetraspanin CD9 into detergent-resistant membrane microdomains (DRMs). With human eosinophils, we evaluated the localization of MHC Class II (HLA-DR) to DRMs and the functional significance of such localization. In granulocyte-macrophage colony-stimulating factor–stimulated human eosinophils, antibody cross-linked HLA-DR colocalized by immunofluorescence microscopy focally on plasma membranes with CD9 and the DRM marker ganglioside GM1. In addition, HLA-DR coimmunoprecipitates with CD9 after chemical cross-linking of CD9. HLA-DR and CD9 were localized by Western blotting in eosinophil DRM subcellular fractions. DRM disruption with the cholesterol-depleting agent methyl-β-cyclodextrin decreased eosinophil surface expression of HLA-DR and CD9. We show that CD9 is abundant on the surface of eosinophils, presenting the first electron microscopy data of the ultrastructural immunolocalization of CD9 in human eosinophils. Disruption of HLA-DR–containing DRMs decreased the ability of superantigen-loaded human eosinophils to stimulate CD4+ T-cell activation (CD69 expression), proliferation, and cytokine production. Our results, which demonstrate that eosinophil MHC Class II localizes to DRMs in association with CD9 in a functionally significant manner, represent a novel insight into the organization of the antigen presentation complex of human eosinophils. PMID:21885678

  14. MHC Class II and CD9 in human eosinophils localize to detergent-resistant membrane microdomains.

    Science.gov (United States)

    Akuthota, Praveen; Melo, Rossana C N; Spencer, Lisa A; Weller, Peter F

    2012-02-01

    Eosinophils function in murine allergic airways inflammation as professional antigen-presenting cells (APCs). In murine professional APC cell types, optimal functioning of MHC Class II depends on its lateral association in plasma membranes and colocalization with the tetraspanin CD9 into detergent-resistant membrane microdomains (DRMs). With human eosinophils, we evaluated the localization of MHC Class II (HLA-DR) to DRMs and the functional significance of such localization. In granulocyte-macrophage colony-stimulating factor-stimulated human eosinophils, antibody cross-linked HLA-DR colocalized by immunofluorescence microscopy focally on plasma membranes with CD9 and the DRM marker ganglioside GM1. In addition, HLA-DR coimmunoprecipitates with CD9 after chemical cross-linking of CD9. HLA-DR and CD9 were localized by Western blotting in eosinophil DRM subcellular fractions. DRM disruption with the cholesterol-depleting agent methyl-β-cyclodextrin decreased eosinophil surface expression of HLA-DR and CD9. We show that CD9 is abundant on the surface of eosinophils, presenting the first electron microscopy data of the ultrastructural immunolocalization of CD9 in human eosinophils. Disruption of HLA-DR-containing DRMs decreased the ability of superantigen-loaded human eosinophils to stimulate CD4(+) T-cell activation (CD69 expression), proliferation, and cytokine production. Our results, which demonstrate that eosinophil MHC Class II localizes to DRMs in association with CD9 in a functionally significant manner, represent a novel insight into the organization of the antigen presentation complex of human eosinophils.

  15. Microbial products activate monocytic cells through detergent-resistant membrane microdomains.

    Science.gov (United States)

    Epelman, Slava; Berenger, Byron; Stack, Danuta; Neely, Graham G; Ma, Ling Ling; Mody, Christopher H

    2008-12-01

    Patients with cystic fibrosis suffer recurrent pulmonary infections that are characterized by an overactive yet ineffective and destructive inflammatory response that is associated with respiratory infections by Pseudomonas aeruginosa, a pathogen that produces a number of phlogistic molecules. To better understand this process, we used exoenzyme S (ExoS), one of the key P. aeruginosa-secreted exoproducts, which is known to stimulate cells via the Toll-like receptor (TLR) pathway. We found that ExoS induced proinflammatory cytokine production via the NF-kappaB, Erk1/2, and Src kinase pathways. Because Src kinases are concentrated within cholesterol-containing, detergent-resistant membrane microdomains (DRM) (also called lipid rafts) and DRM act as signaling platforms and amplifiers on the surface of cells, we addressed the role of DRM in ExoS signaling. ExoS bound directly to a subset of DRM and induced the phosphorylation of multiple proteins within DRM, including Src kinases. Disruption of DRM by cholesterol extraction prevented NF-kappaB and Erk 1/2 activation and TNF-alpha production in response to ExoS. Activation of monocytic cells by other TLR and Nod-like receptor agonists, such as lipoteichoic acid, lipopolysaccharide, and peptidoglycan, were also dependent on DRM, and disruption prevented TNF-alpha production. Disruption of DRM did not prevent ExoS binding but did release the Src kinase, Lyn, from the DRM fraction into the detergent-soluble fraction, a site in which Src kinases are not active. These studies show that ExoS, a TLR agonist, requires direct binding to DRM for optimal signaling, which suggests that DRM are possible therapeutic targets in cystic fibrosis.

  16. Membrane Microdomains and Cytoskeleton Organization Shape and Regulate the IL-7 Receptor Signalosome in Human CD4 T-cells*

    Science.gov (United States)

    Tamarit, Blanche; Bugault, Florence; Pillet, Anne-Hélène; Lavergne, Vincent; Bochet, Pascal; Garin, Nathalie; Schwarz, Ulf; Thèze, Jacques; Rose, Thierry

    2013-01-01

    Interleukin (IL)-7 is the main homeostatic regulator of CD4 T-lymphocytes (helper) at both central and peripheral levels. Upon activation by IL-7, several signaling pathways, mainly JAK/STAT, PI3K/Akt and MAPK, induce the expression of genes involved in T-cell differentiation, activation, and proliferation. We have analyzed the early events of CD4 T-cell activation by IL-7. We have shown that IL-7 in the first few min induces the formation of cholesterol-enriched membrane microdomains that compartmentalize its activated receptor and initiate its anchoring to the cytoskeleton, supporting the formation of the signaling complex, the signalosome, on the IL-7 receptor cytoplasmic domains. Here we describe by stimulated emission depletion microscopy the key roles played by membrane microdomains and cytoskeleton transient organization in the IL-7-regulated JAK/STAT signaling pathway. We image phospho-STAT5 and cytoskeleton components along IL-7 activation kinetics using appropriate inhibitors. We show that lipid raft inhibitors delay and reduce IL-7-induced JAK1 and JAK3 phosphorylation. Drug-induced disassembly of the cytoskeleton inhibits phospho-STAT5 formation, transport, and translocation into the nucleus that controls the transcription of genes involved in T-cell activation and proliferation. We fit together the results of these quantitative analyses and propose the following mechanism. Activated IL-7 receptors embedded in membrane microdomains induce actin-microfilament meshwork formation, anchoring microtubules that grow radially from rafted receptors to the nuclear membrane. STAT5 phosphorylated by signalosomes are loaded on kinesins and glide along the microtubules across the cytoplasm to reach the nucleus 2 min after IL-7 stimulation. Radial microtubules disappear 15 min later, while transversal microtubules, independent of phospho-STAT5 transport, begin to bud from the microtubule organization center. PMID:23329834

  17. Palmitoylated claudin7 captured in glycolipid-enriched membrane microdomains promotes metastasis via associated transmembrane and cytosolic molecules

    OpenAIRE

    Thuma, Florian; Heiler, Sarah; Schn?lzer, Martina; Z?ller, Margot

    2016-01-01

    In epithelial cells claudin7 (cld7) is a major component of tight junctions, but is also recovered from glycolipid-enriched membrane microdomains (GEM). In tumor cells, too, cld7 exists in two stages. Only GEM-located cld7, which is palmitoylated, promotes metastasis. Searching for the underlying mechanism(s) revealed the following. The metastatic capacity of the rat pancreatic adenocarcinoma cell line ASML is lost by a knockdown (kd) of cld7 and is not regained by rescuing cld7 with a mutate...

  18. Microvillar membrane microdomains exist at physiological temperature. Role of galectin-4 as lipid raft stabilizer revealed by "superrafts"

    DEFF Research Database (Denmark)

    Braccia, Anita; Villani, Maristella; Immerdal, Lissi

    2003-01-01

    rafts prepared by the two protocols were morphologically different but had essentially similar profiles of protein- and lipid components, showing that raft microdomains do exist at 37 degrees C and are not "low temperature artifacts." We also employed a novel method of sequential detergent extraction...... and the transmembrane aminopeptidase N, whereas the peripheral lipid raft protein annexin 2 was essentially absent. In conclusion, in the microvillar membrane, galectin-4, functions as a core raft stabilizer/organizer for other, more loosely raft-associated proteins. The superraft analysis might be applicable to other...

  19. Membrane mobility and microdomain association of the dopamine transporter studied with fluorescence correlation spectroscopy and fluorescence recovery after photobleaching

    DEFF Research Database (Denmark)

    Adkins, Erika M; Samuvel, Devadoss J; Fog, Jacob U

    2007-01-01

    To investigate microdomain association of the dopamine transporter (DAT), we employed FCS (fluorescence correlation spectroscopy) and FRAP (fluorescence recovery after photobleaching). In non-neuronal cells (HEK293), FCS measurements revealed for the YFP-DAT (DAT tagged with yellow fluorescent...... protein) a diffusion coefficient (D) of approximately 3.6 x 10(-9) cm2/s, consistent with a relatively freely diffusible protein. In neuronally derived cells (N2a), we were unable to perform FCS measurements on plasma membrane-associated protein due to photobleaching, suggesting partial immobilization...

  20. Membrane mobility and microdomain association of the dopaminetransporter studied with fluorescence correlation spectroscopy and fluorescence recovery after photobleaching

    DEFF Research Database (Denmark)

    Adkins, Erika; Samuvel, Devadoss; Fog, Jacob

    2007-01-01

    To investigate microdomain association of the dopamine transporter (DAT), we employed FCS (fluorescence correlation spectroscopy) and FRAP (fluorescence recovery after photobleaching). In non-neuronal cells (HEK293), FCS measurements revealed for the YFP-DAT (DAT tagged with yellow fluorescent...... protein) a diffusion coefficient (D) of ~3.6 × 10-9 cm2/s, consistent with a relatively freely diffusible protein. In neuronally derived cells (N2a), we were unable to perform FCS measurements on plasma membrane-associated protein due to photobleaching, suggesting partial immobilization...

  1. Gag induces the coalescence of clustered lipid rafts and tetraspanin-enriched microdomains at HIV-1 assembly sites on the plasma membrane.

    Science.gov (United States)

    Hogue, Ian B; Grover, Jonathan R; Soheilian, Ferri; Nagashima, Kunio; Ono, Akira

    2011-10-01

    The HIV-1 structural protein Gag associates with two types of plasma membrane microdomains, lipid rafts and tetraspanin-enriched microdomains (TEMs), both of which have been proposed to be platforms for HIV-1 assembly. However, a variety of studies have demonstrated that lipid rafts and TEMs are distinct microdomains in the absence of HIV-1 infection. To measure the impact of Gag on microdomain behaviors, we took advantage of two assays: an antibody-mediated copatching assay and a Förster resonance energy transfer (FRET) assay that measures the clustering of microdomain markers in live cells without antibody-mediated patching. We found that lipid rafts and TEMs copatched and clustered to a greater extent in the presence of membrane-bound Gag in both assays, suggesting that Gag induces the coalescence of lipid rafts and TEMs. Substitutions in membrane binding motifs of Gag revealed that, while Gag membrane binding is necessary to induce coalescence of lipid rafts and TEMs, either acylation of Gag or binding of phosphatidylinositol-(4,5)-bisphosphate is sufficient. Finally, a Gag derivative that is defective in inducing membrane curvature appeared less able to induce lipid raft and TEM coalescence. A higher-resolution analysis of assembly sites by correlative fluorescence and scanning electron microscopy showed that coalescence of clustered lipid rafts and TEMs occurs predominantly at completed cell surface virus-like particles, whereas a transmembrane raft marker protein appeared to associate with punctate Gag fluorescence even in the absence of cell surface particles. Together, these results suggest that different membrane microdomain components are recruited in a stepwise manner during assembly.

  2. Gag Induces the Coalescence of Clustered Lipid Rafts and Tetraspanin-Enriched Microdomains at HIV-1 Assembly Sites on the Plasma Membrane ▿

    Science.gov (United States)

    Hogue, Ian B.; Grover, Jonathan R.; Soheilian, Ferri; Nagashima, Kunio; Ono, Akira

    2011-01-01

    The HIV-1 structural protein Gag associates with two types of plasma membrane microdomains, lipid rafts and tetraspanin-enriched microdomains (TEMs), both of which have been proposed to be platforms for HIV-1 assembly. However, a variety of studies have demonstrated that lipid rafts and TEMs are distinct microdomains in the absence of HIV-1 infection. To measure the impact of Gag on microdomain behaviors, we took advantage of two assays: an antibody-mediated copatching assay and a Förster resonance energy transfer (FRET) assay that measures the clustering of microdomain markers in live cells without antibody-mediated patching. We found that lipid rafts and TEMs copatched and clustered to a greater extent in the presence of membrane-bound Gag in both assays, suggesting that Gag induces the coalescence of lipid rafts and TEMs. Substitutions in membrane binding motifs of Gag revealed that, while Gag membrane binding is necessary to induce coalescence of lipid rafts and TEMs, either acylation of Gag or binding of phosphatidylinositol-(4,5)-bisphosphate is sufficient. Finally, a Gag derivative that is defective in inducing membrane curvature appeared less able to induce lipid raft and TEM coalescence. A higher-resolution analysis of assembly sites by correlative fluorescence and scanning electron microscopy showed that coalescence of clustered lipid rafts and TEMs occurs predominately at completed cell surface virus-like particles, whereas a transmembrane raft marker protein appeared to associate with punctate Gag fluorescence even in the absence of cell surface particles. Together, these results suggest that different membrane microdomain components are recruited in a stepwise manner during assembly. PMID:21813604

  3. A genetically encoded ratiometric sensor to measure extracellular pH in microdomains bounded by basolateral membranes of epithelial cells.

    Science.gov (United States)

    Urra, Javier; Sandoval, Moisés; Cornejo, Isabel; Barros, L Felipe; Sepúlveda, Francisco V; Cid, L Pablo

    2008-10-01

    Extracellular pH, especially in relatively inaccessible microdomains between cells, affects transport membrane protein activity and might have an intercellular signaling role. We have developed a genetically encoded extracellular pH sensor capable of detecting pH changes in basolateral spaces of epithelial cells. It consists of a chimerical membrane protein displaying concatenated enhanced variants of cyan fluorescence protein (ECFP) and yellow fluorescence protein (EYFP) at the external aspect of the cell surface. The construct, termed pHCECSensor01, was targeted to basolateral membranes of Madin-Darby canine kidney (MDCK) cells by means of a sequence derived from the aquaporin AQP4. The fusion of pH-sensitive EYFP with pH-insensitive ECFP allows ratiometric pH measurements. The titration curve of pHCECSensor01 in vivo had a pK (a) value of 6.5 +/- 0.04. Only minor effects of extracellular chloride on pHCECSensor01 were observed around the physiological concentrations of this anion. In MDCK cells, the sensor was able to detect changes in pH secondary to H(+) efflux into the basolateral spaces elicited by an ammonium prepulse or lactate load. This genetically encoded sensor has the potential to serve as a noninvasive tool for monitoring changes in extracellular pH microdomains in epithelial and other tissues in vivo.

  4. Specific chlamydial inclusion membrane proteins associate with active Src family kinases in microdomains that interact with the host microtubule network.

    Science.gov (United States)

    Mital, Jeffrey; Miller, Natalie J; Fischer, Elizabeth R; Hackstadt, Ted

    2010-09-01

    Chlamydiae are Gram-negative obligate intracellular bacteria that cause diseases with significant medical and economic impact. Chlamydia trachomatis replicates within a vacuole termed an inclusion, which is extensively modified by the insertion of a number of bacterial effector proteins known as inclusion membrane proteins (Incs). Once modified, the inclusion is trafficked in a dynein-dependent manner to the microtubule-organizing centre (MTOC), where it associates with host centrosomes. Here we describe a novel structure on the inclusion membrane comprised of both host and bacterial proteins. Members of the Src family of kinases are recruited to the chlamydial inclusion in an active form. These kinases display a distinct, localized punctate microdomain-like staining pattern on the inclusion membrane that colocalizes with four chlamydial inclusion membrane proteins (Incs) and is enriched in cholesterol. Biochemical studies show that at least two of these Incs stably interact with one another. Furthermore, host centrosomes associate with these microdomain proteins in C. trachomatis-infected cells and in uninfected cells exogenously expressing one of the chlamydial effectors. Together, the data suggest that a specific structure on the C. trachomatis inclusion membrane may be responsible for the known interactions of chlamydiae with the microtubule network and resultant effects on centrosome stability.

  5. Interaction of AnxA6 with isolated and artificial lipid microdomains; importance of lipid composition and calcium content.

    Science.gov (United States)

    Domon, Magdalena M; Besson, Françoise; Tylki-Szymanska, Anna; Bandorowicz-Pikula, Joanna; Pikula, Slawomir

    2013-04-05

    Niemann-Pick type C (NPC) disease is a lipid storage disorder characterized by accumulation of lipids in the late endosome/lysosome (LE/LY) compartment. In our previous report we isolated membranes of the LE/LY compartment from NPC L1 skin fibroblasts with a mutation in the NPC1 gene and found that they were characterized by low fluidity which likely contributed to the impaired function of membrane proteins involved in storage and turnover of cholesterol. In this report we isolated lipid microdomains (DRMs) from membranes of various cellular compartments and observed an increased amount of DRMs in the LE/LY compartment of NPC L1 cells in comparison to control cells, with no change in the DRM content in the plasma membrane. In addition, in the NPC cells, the majority of the cholesterol-interacting protein, AnxA6, which participates in the transport and distribution of cholesterol, translocated to DRMs upon a rise in Ca(2+) concentration. The mechanism of this translocation was further studied in vitro using Langmuir monolayers. We found that Ca(2+) is the main factor which regulates the interaction of AnxA6 with monolayers composed of neutral lipids, such as DPPC and sphingomyelin, and may also determine AnxA6 localization in cholesterol and sphingomyelin enriched microdomains, thus contributing to the etiology of the NPC disease.

  6. Membrane Microdomain Structures of Liposomes and Their Contribution to the Cellular Uptake Efficiency into HeLa Cells.

    Science.gov (United States)

    Onuki, Yoshinori; Obata, Yasuko; Kawano, Kumi; Sano, Hiromu; Matsumoto, Reina; Hayashi, Yoshihiro; Takayama, Kozo

    2016-02-01

    The purpose of this study is to obtain a comprehensive relationship between membrane microdomain structures of liposomes and their cellular uptake efficiency. Model liposomes consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/cholesterol (Ch) were prepared with various lipid compositions. To detect distinct membrane microdomains in the liposomes, fluorescence-quenching assays were performed at temperatures ranging from 25 to 60 °C using 1,6-diphenyl-1,3,5-hexatriene-labeled liposomes and (2,2,6,6-tetramethylpiperidin-1-yl)oxyl. From the data analysis using the response surface method, we gained a better understanding of the conditions for forming distinct domains (Lo, Ld, and gel phase membranes) as a function of lipid composition. We further performed self-organizing maps (SOM) clustering to simplify the complicated behavior of the domain formation to obtain its essence. As a result, DPPC/DOPC/Ch liposomes in any lipid composition were integrated into five distinct clusters in terms of similarity of the domain structure. In addition, the findings from synchrotron small-angle X-ray scattering analysis offered further insight into the domain structures. As a last phase of this study, an in vitro cellular uptake study using HeLa cells was conducted using SOM clusters' liposomes with/without PEGylation. As a consequence of this study, higher cellular uptake was observed from liposomes having Ch-rich ordered domains.

  7. Dynamic partitioning of a glycosyl-phosphatidylinositol-anchored protein in glycosphingolipid-rich microdomains imaged by single-quantum dot tracking.

    Science.gov (United States)

    Pinaud, Fabien; Michalet, Xavier; Iyer, Gopal; Margeat, Emmanuel; Moore, Hsiao-Ping; Weiss, Shimon

    2009-06-01

    Recent experimental developments have led to a revision of the classical fluid mosaic model proposed by Singer and Nicholson more than 35 years ago. In particular, it is now well established that lipids and proteins diffuse heterogeneously in cell plasma membranes. Their complex motion patterns reflect the dynamic structure and composition of the membrane itself, as well as the presence of the underlying cytoskeleton scaffold and that of the extracellular matrix. How the structural organization of plasma membranes influences the diffusion of individual proteins remains a challenging, yet central, question for cell signaling and its regulation. Here we have developed a raft-associated glycosyl-phosphatidyl-inositol-anchored avidin test probe (Av-GPI), whose diffusion patterns indirectly report on the structure and dynamics of putative raft microdomains in the membrane of HeLa cells. Labeling with quantum dots (qdots) allowed high-resolution and long-term tracking of individual Av-GPI and the classification of their various diffusive behaviors. Using dual-color total internal reflection fluorescence (TIRF) microscopy, we studied the correlation between the diffusion of individual Av-GPI and the location of glycosphingolipid GM1-rich microdomains and caveolae. We show that Av-GPI exhibit a fast and a slow diffusion regime in different membrane regions, and that slowing down of their diffusion is correlated with entry in GM1-rich microdomains located in close proximity to, but distinct, from caveolae. We further show that Av-GPI dynamically partition in and out of these microdomains in a cholesterol-dependent manner. Our results provide direct evidence that cholesterol-/sphingolipid-rich microdomains can compartmentalize the diffusion of GPI-anchored proteins in living cells and that the dynamic partitioning raft model appropriately describes the diffusive behavior of some raft-associated proteins across the plasma membrane.

  8. Ca2+ Channel Re-localization to Plasma-Membrane Microdomains Strengthens Activation of Ca2+-Dependent Nuclear Gene Expression

    Directory of Open Access Journals (Sweden)

    Krishna Samanta

    2015-07-01

    Full Text Available In polarized cells or cells with complex geometry, clustering of plasma-membrane (PM ion channels is an effective mechanism for eliciting spatially restricted signals. However, channel clustering is also seen in cells with relatively simple topology, suggesting it fulfills a more fundamental role in cell biology than simply orchestrating compartmentalized responses. Here, we have compared the ability of store-operated Ca2+ release-activated Ca2+ (CRAC channels confined to PM microdomains with a similar number of dispersed CRAC channels to activate transcription factors, which subsequently increase nuclear gene expression. For similar levels of channel activity, we find that channel confinement is considerably more effective in stimulating gene expression. Our results identify a long-range signaling advantage to the tight evolutionary conservation of channel clustering and reveal that CRAC channel aggregation increases the strength, fidelity, and reliability of the general process of excitation-transcription coupling.

  9. Generation of stable lipid raft microdomains in the enterocyte brush border by selective endocytic removal of non-raft membrane

    DEFF Research Database (Denmark)

    Danielsen, E Michael; Hansen, Gert H

    2013-01-01

    The small intestinal brush border has an unusually high proportion of glycolipids which promote the formation of lipid raft microdomains, stabilized by various cross-linking lectins. This unique membrane organization acts to provide physical and chemical stability to the membrane that faces...... functions to enrich the contents of lipid raft components in the brush border. The lipophilic fluorescent marker FM, taken up into early endosomes in the terminal web region (TWEEs), was absent from detergent resistant membranes (DRMs), implying an association with non-raft membrane. Furthermore, neither...... major lipid raft-associated brush border enzymes nor glycolipids were detected by immunofluorescence microscopy in subapical punctae resembling TWEEs. Finally, two model raft lipids, BODIPY-lactosylceramide and BODIPY-GM1, were not endocytosed except when cholera toxin subunit B (CTB) was present...

  10. The Membrane-Associated Form of αs1-Casein Interacts with Cholesterol-Rich Detergent-Resistant Microdomains

    Science.gov (United States)

    Le Parc, Annabelle; Honvo Houéto, Edith; Pigat, Natascha; Chat, Sophie; Leonil, Joëlle; Chanat, Eric

    2014-01-01

    Caseins, the main milk proteins, interact with colloidal calcium phosphate to form the casein micelle. The mesostructure of this supramolecular assembly markedly influences its nutritional and technological functionalities. However, its detailed molecular organization and the cellular mechanisms involved in its biogenesis have been only partially established. There is a growing body of evidence to support the concept that αs1-casein takes center stage in casein micelle building and transport in the secretory pathway of mammary epithelial cells. Here we have investigated the membrane-associated form of αs1-casein in rat mammary epithelial cells. Using metabolic labelling we show that αs1-casein becomes associated with membranes at the level of the endoplasmic reticulum, with no subsequent increase at the level of the Golgi apparatus. From morphological and biochemical data, it appears that caseins are in a tight relationship with membranes throughout the secretory pathway. On the other hand, we have observed that the membrane-associated form of αs1-casein co-purified with detergent-resistant membranes. It was poorly solubilised by Tween 20, partially insoluble in Lubrol WX, and substantially insoluble in Triton X-100. Finally, we found that cholesterol depletion results in the release of the membrane-associated form of αs1-casein. These experiments reveal that the insolubility of αs1-casein reflects its partial association with a cholesterol-rich detergent-resistant microdomain. We propose that the membrane-associated form of αs1-casein interacts with the lipid microdomain, or lipid raft, that forms within the membranes of the endoplasmic reticulum, for efficient forward transport and sorting in the secretory pathway of mammary epithelial cells. PMID:25549363

  11. The membrane-associated form of α(s1)-casein interacts with cholesterol-rich detergent-resistant microdomains.

    Science.gov (United States)

    Le Parc, Annabelle; Honvo Houéto, Edith; Pigat, Natascha; Chat, Sophie; Leonil, Joëlle; Chanat, Eric

    2014-01-01

    Caseins, the main milk proteins, interact with colloidal calcium phosphate to form the casein micelle. The mesostructure of this supramolecular assembly markedly influences its nutritional and technological functionalities. However, its detailed molecular organization and the cellular mechanisms involved in its biogenesis have been only partially established. There is a growing body of evidence to support the concept that α(s1)-casein takes center stage in casein micelle building and transport in the secretory pathway of mammary epithelial cells. Here we have investigated the membrane-associated form of α(s1)-casein in rat mammary epithelial cells. Using metabolic labelling we show that α(s1)-casein becomes associated with membranes at the level of the endoplasmic reticulum, with no subsequent increase at the level of the Golgi apparatus. From morphological and biochemical data, it appears that caseins are in a tight relationship with membranes throughout the secretory pathway. On the other hand, we have observed that the membrane-associated form of α(s1)-casein co-purified with detergent-resistant membranes. It was poorly solubilised by Tween 20, partially insoluble in Lubrol WX, and substantially insoluble in Triton X-100. Finally, we found that cholesterol depletion results in the release of the membrane-associated form of α(s1)-casein. These experiments reveal that the insolubility of α(s1)-casein reflects its partial association with a cholesterol-rich detergent-resistant microdomain. We propose that the membrane-associated form of α(s1)-casein interacts with the lipid microdomain, or lipid raft, that forms within the membranes of the endoplasmic reticulum, for efficient forward transport and sorting in the secretory pathway of mammary epithelial cells.

  12. The assembly of GM1 glycolipid- and cholesterol-enriched raft-like membrane microdomains is important for giardial encystation.

    Science.gov (United States)

    De Chatterjee, Atasi; Mendez, Tavis L; Roychowdhury, Sukla; Das, Siddhartha

    2015-05-01

    Although encystation (or cyst formation) is an important step of the life cycle of Giardia, the cellular events that trigger encystation are poorly understood. Because membrane microdomains are involved in inducing growth and differentiation in many eukaryotes, we wondered if these raft-like domains are assembled by this parasite and participate in the encystation process. Since the GM1 ganglioside is a major constituent of mammalian lipid rafts (LRs) and known to react with cholera toxin B (CTXB), we used Alexa Fluor-conjugated CTXB and GM1 antibodies to detect giardial LRs. Raft-like structures in trophozoites are located in the plasma membranes and on the periphery of ventral discs. In cysts, however, they are localized in the membranes beneath the cyst wall. Nystatin and filipin III, two cholesterol-binding agents, and oseltamivir (Tamiflu), a viral neuraminidase inhibitor, disassembled the microdomains, as evidenced by reduced staining of trophozoites with CTXB and GM1 antibodies. GM1- and cholesterol-enriched LRs were isolated from Giardia by density gradient centrifugation and found to be sensitive to nystatin and oseltamivir. The involvement of LRs in encystation could be supported by the observation that raft inhibitors interrupted the biogenesis of encystation-specific vesicles and cyst production. Furthermore, culturing of trophozoites in dialyzed medium containing fetal bovine serum (which is low in cholesterol) reduced raft assembly and encystation, which could be rescued by adding cholesterol from the outside. Our results suggest that Giardia is able to form GM1- and cholesterol-enriched lipid rafts and these raft domains are important for encystation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. The membrane-associated form of α(s1-casein interacts with cholesterol-rich detergent-resistant microdomains.

    Directory of Open Access Journals (Sweden)

    Annabelle Le Parc

    Full Text Available Caseins, the main milk proteins, interact with colloidal calcium phosphate to form the casein micelle. The mesostructure of this supramolecular assembly markedly influences its nutritional and technological functionalities. However, its detailed molecular organization and the cellular mechanisms involved in its biogenesis have been only partially established. There is a growing body of evidence to support the concept that α(s1-casein takes center stage in casein micelle building and transport in the secretory pathway of mammary epithelial cells. Here we have investigated the membrane-associated form of α(s1-casein in rat mammary epithelial cells. Using metabolic labelling we show that α(s1-casein becomes associated with membranes at the level of the endoplasmic reticulum, with no subsequent increase at the level of the Golgi apparatus. From morphological and biochemical data, it appears that caseins are in a tight relationship with membranes throughout the secretory pathway. On the other hand, we have observed that the membrane-associated form of α(s1-casein co-purified with detergent-resistant membranes. It was poorly solubilised by Tween 20, partially insoluble in Lubrol WX, and substantially insoluble in Triton X-100. Finally, we found that cholesterol depletion results in the release of the membrane-associated form of α(s1-casein. These experiments reveal that the insolubility of α(s1-casein reflects its partial association with a cholesterol-rich detergent-resistant microdomain. We propose that the membrane-associated form of α(s1-casein interacts with the lipid microdomain, or lipid raft, that forms within the membranes of the endoplasmic reticulum, for efficient forward transport and sorting in the secretory pathway of mammary epithelial cells.

  14. KSHV cell attachment sites revealed by ultra sensitive tyramide signal amplification (TSA) localize to membrane microdomains that are up-regulated on mitotic cells.

    Science.gov (United States)

    Garrigues, H Jacques; Rubinchikova, Yelena E; Rose, Timothy M

    2014-03-01

    Cell surface structures initiating attachment of Kaposi's sarcoma-associated herpesvirus (KSHV) were characterized using purified hapten-labeled virions visualized by confocal microscopy with a sensitive fluorescent enhancement using tyramide signal amplification (TSA). KSHV attachment sites were present in specific cellular domains, including actin-based filopodia, lamellipodia, ruffled membranes, microvilli and intercellular junctions. Isolated microdomains were identified on the dorsal surface, which were heterogeneous in size with a variable distribution that depended on cellular confluence and cell cycle stage. KSHV binding domains ranged from scarce on interphase cells to dense and continuous on mitotic cells, and quantitation of bound virus revealed a significant increase on mitotic compared to interphase cells. KSHV also bound to a supranuclear domain that was distinct from microdomains in confluent and interphase cells. These results suggest that rearrangement of the cellular membrane during mitosis induces changes in cell surface receptors implicated in the initial attachment stage of KSHV entry. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Studies on micro-domain structure in segmented polyether polyurethane-ureas by positron annihilation lifetime and small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Yin Chuanyuan; Gu Qingchao

    1997-01-01

    The micro-domain structure of segmented polyether polyurethane-ureas is investigated by means of positron annihilation lifetime spectroscopy, small-angle X-ray scattering and differential scanning calorimetry. The experimental results show that the decrease in the domain volume and free volume results from the increase in the hard segment (polyurethane-urea segment) contents as the number-average molecular weight M n -bar of the soft segments (polyethylene glycol segments) is the same, and that the increase in domain volume and free volume result from the increase in the M n -bar of the soft segments when the hard segment content is the same or nearly the same. These results demonstrate that positron annihilation lifetime spectroscopy is a sensitive technique to probe the micro-domain structure in polymers

  16. Lipid raft localization of GABA A receptor and Na+, K+-ATPase in discrete microdomain clusters in rat cerebellar granule cells

    DEFF Research Database (Denmark)

    Dalskov, Stine-Mathilde; Immerdal, Lissi; Niels-Christiansen, Lise-Lotte W

    2005-01-01

    The microdomain localization of the GABA(A) receptor in rat cerebellar granule cells was studied by subcellular fractionation and fluorescence- and immunogold electron microscopy. The receptor resided in lipid rafts, prepared at 37 degrees C by extraction with the nonionic detergent Brij 98......, but the raft fraction, defined by the marker ganglioside GM(1) in the floating fractions following density gradient centrifugation, was heterogeneous in density and protein composition. Thus, another major raft-associated membrane protein, the Na(+), K(+)-ATPase, was found in discrete rafts of lower density......, reflecting clustering of the two proteins in separate membrane microdomains. Both proteins were observed in patchy "hot spots" at the cell surface as well as in isolated lipid rafts. Their insolubility in Brij 98 was only marginally affected by methyl-beta-cyclodextrin. In contrast, both the GABA(A) receptor...

  17. Calcium microdomains near R-type calcium channels control the induction of presynaptic LTP at parallel fiber to Purkinje cell synapses

    Science.gov (United States)

    Myoga, Michael H.; Regehr, Wade G.

    2011-01-01

    R-type calcium channels in postsynaptic spines signal through functional calcium microdomains to regulate a calcium-calmodulin sensitive potassium channel that in turn regulates postsynaptic hippocampal LTP. Here we ask whether R-type calcium channels in presynaptic terminals also signal through calcium microdomains to control presynaptic LTP. We focus on presynaptic LTP at parallel fiber to Purkinje cell synapses in the cerebellum (PF-LTP), which is mediated by calcium/calmodulin-stimulated adenylyl cyclases. Although most presynaptic calcium influx is through N-type and P/Q-type calcium channels, blocking these channels does not disrupt PF-LTP, but blocking R-type calcium channels does. Moreover, global calcium signaling cannot account for the calcium dependence of PF-LTP because R-type channels contribute modestly to overall calcium entry. These findings indicate that within presynaptic terminals, R-type calcium channels produce calcium microdomains that evoke presynaptic LTP at moderate frequencies that do not greatly increase global calcium levels,. PMID:21471358

  18. Neuroglobin overexpression plays a pivotal role in neuroprotection through mitochondrial raft-like microdomains in neuroblastoma SK-N-BE2 cells.

    Science.gov (United States)

    Garofalo, Tina; Ferri, Alberto; Sorice, Maurizio; Azmoon, Pardis; Grasso, Maria; Mattei, Vincenzo; Capozzi, Antonella; Manganelli, Valeria; Misasi, Roberta

    2018-04-01

    Since stressing conditions induce a relocalization of endogenous human neuroglobin (NGB) to mitochondria, this research is aimed to evaluate the protective role of NGB overexpression against neurotoxic stimuli, through mitochondrial lipid raft-associated complexes. To this purpose, we built a neuronal model of oxidative stress by the use of human dopaminergic neuroblastoma cells, SK-N-BE2, stably overexpressing NGB by transfection and treated with 1-methyl-4-phenylpyridinium ion (MPP+). We preliminary observed the redistribution of NGB to mitochondria following MPP+ treatment. The analysis of mitochondrial raft-like microdomains revealed that, following MPP+ treatment, NGB translocated to raft fractions (Triton X-100-insoluble), where it interacts with ganglioside GD3. Interestingly, the administration of agents capable of perturbating microdomain before MPP+ treatment, significantly affected viability in SK-N-BE2-NGB cells. The overexpression of NGB was able to abrogate the mitochondrial injuries on complex IV activity or mitochondrial morphology induced by MPP+ administration. The protective action of NGB on mitochondria only takes place if the mitochondrial lipid(s) rafts-like microdomains are intact, indeed NGB fails to protect complex IV activity when purified mitochondria were treated with the lipid rafts disruptor methyl-β-cyclodextrin. Thus, our unique in vitro model of stably transfected cells overexpressing endogenous NGB allowed us to suggest that the role in neuroprotection played by NGB is reliable only through interaction with mitochondrial lipid raft-associated complexes. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health.

    Science.gov (United States)

    Ibarguren, Maitane; López, David J; Escribá, Pablo V

    2014-06-01

    This review deals with the effects of synthetic and natural fatty acids on the biophysical properties of membranes, and on their implication on cell function. Natural fatty acids are constituents of more complex lipids, like triacylglycerides or phospholipids, which are used by cells to store and obtain energy, as well as for structural purposes. Accordingly, natural and synthetic fatty acids may modify the structure of the lipid membrane, altering its microdomain organization and other physical properties, and provoking changes in cell signaling. Therefore, by modulating fatty acids it is possible to regulate the structure of the membrane, influencing the cell processes that are reliant on this structure and potentially reverting pathological cell dysfunctions that may provoke cancer, diabetes, hypertension, Alzheimer's and Parkinson's disease. The so-called Membrane Lipid Therapy offers a strategy to regulate the membrane composition through drug administration, potentially reverting pathological processes by re-adapting cell membrane structure. Certain fatty acids and their synthetic derivatives are described here that may potentially be used in such therapies, where the cell membrane itself can be considered as a target to combat disease. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Isolation and characterization of lipid rafts in Emiliania huxleyi: a role for membrane microdomains in host-virus interactions.

    Science.gov (United States)

    Rose, Suzanne L; Fulton, James M; Brown, Christopher M; Natale, Frank; Van Mooy, Benjamin A S; Bidle, Kay D

    2014-04-01

    Coccolithoviruses employ a suite of glycosphingolipids (GSLs) to successfully infect the globally important coccolithophore Emiliania huxleyi. Lipid rafts, chemically distinct membrane lipid microdomains that are enriched in GSLs and are involved in sensing extracellular stimuli and activating signalling cascades through protein-protein interactions, likely play a fundamental role in host-virus interactions. Using combined lipidomics, proteomics and bioinformatics, we isolated and characterized the lipid and protein content of lipid rafts from control E. huxleyi cells and those infected with EhV86, the type strain for Coccolithovirus. Lipid raft-enriched fractions were isolated and purified as buoyant, detergent-resistant membranes (DRMs) in OptiPrep density gradients. Transmission electron microscopy of vesicle morphology, polymerase chain reaction amplification of the EhV major capsid protein gene and immunoreactivity to flotillin antisera served as respective physical, molecular and biochemical markers. Subsequent lipid characterization of DRMs via high performance liquid chromatography-triple quadrapole mass spectrometry revealed four distinct GSL classes. Parallel proteomic analysis confirmed flotillin as a major lipid raft protein, along with a variety of proteins affiliated with host defence, programmed cell death and innate immunity pathways. The detection of an EhV86-encoded C-type lectin-containing protein confirmed that infection occurs at the interface between lipid rafts and cellular stress/death pathways via specific GSLs and raft-associated proteins. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Identification, Localization, and Functional Implications of the Microdomain-Forming Stomatin Family in the Ciliated Protozoan Paramecium tetraurelia

    Science.gov (United States)

    Stuermer, Claudia A. O.; Plattner, Helmut

    2013-01-01

    The SPFH protein superfamily is assumed to occur universally in eukaryotes, but information from protozoa is scarce. In the Paramecium genome, we found only Stomatins, 20 paralogs grouped in 8 families, STO1 to STO8. According to cDNA analysis, all are expressed, and molecular modeling shows the typical SPFH domain structure for all subgroups. For further analysis we used family-specific sequences for fluorescence and immunogold labeling, gene silencing, and functional tests. With all family members tested, we found a patchy localization at/near the cell surface and on vesicles. The Sto1p and Sto4p families are also associated with the contractile vacuole complex. Sto4p also makes puncta on some food vacuoles and is abundant on vesicles recycling from the release site of spent food vacuoles to the site of nascent food vacuole formation. Silencing of the STO1 family reduces mechanosensitivity (ciliary reversal upon touching an obstacle), thus suggesting relevance for positioning of mechanosensitive channels in the plasmalemma. Silencing of STO4 members increases pulsation frequency of the contractile vacuole complex and reduces phagocytotic activity of Paramecium cells. In summary, Sto1p and Sto4p members seem to be involved in positioning specific superficial and intracellular microdomain-based membrane components whose functions may depend on mechanosensation (extracellular stimuli and internal osmotic pressure). PMID:23376944

  2. Generation of stable lipid raft microdomains in the enterocyte brush border by selective endocytic removal of non-raft membrane.

    Directory of Open Access Journals (Sweden)

    E Michael Danielsen

    Full Text Available The small intestinal brush border has an unusually high proportion of glycolipids which promote the formation of lipid raft microdomains, stabilized by various cross-linking lectins. This unique membrane organization acts to provide physical and chemical stability to the membrane that faces multiple deleterious agents present in the gut lumen, such as bile salts, digestive enzymes of the pancreas, and a plethora of pathogens. In the present work, we studied the constitutive endocytosis from the brush border of cultured jejunal explants of the pig, and the results indicate that this process functions to enrich the contents of lipid raft components in the brush border. The lipophilic fluorescent marker FM, taken up into early endosomes in the terminal web region (TWEEs, was absent from detergent resistant membranes (DRMs, implying an association with non-raft membrane. Furthermore, neither major lipid raft-associated brush border enzymes nor glycolipids were detected by immunofluorescence microscopy in subapical punctae resembling TWEEs. Finally, two model raft lipids, BODIPY-lactosylceramide and BODIPY-GM1, were not endocytosed except when cholera toxin subunit B (CTB was present. In conclusion, we propose that constitutive, selective endocytic removal of non-raft membrane acts as a sorting mechanism to enrich the brush border contents of lipid raft components, such as glycolipids and the major digestive enzymes. This sorting may be energetically driven by changes in membrane curvature when molecules move from a microvillar surface to an endocytic invagination.

  3. Generation of stable lipid raft microdomains in the enterocyte brush border by selective endocytic removal of non-raft membrane.

    Science.gov (United States)

    Danielsen, E Michael; Hansen, Gert H

    2013-01-01

    The small intestinal brush border has an unusually high proportion of glycolipids which promote the formation of lipid raft microdomains, stabilized by various cross-linking lectins. This unique membrane organization acts to provide physical and chemical stability to the membrane that faces multiple deleterious agents present in the gut lumen, such as bile salts, digestive enzymes of the pancreas, and a plethora of pathogens. In the present work, we studied the constitutive endocytosis from the brush border of cultured jejunal explants of the pig, and the results indicate that this process functions to enrich the contents of lipid raft components in the brush border. The lipophilic fluorescent marker FM, taken up into early endosomes in the terminal web region (TWEEs), was absent from detergent resistant membranes (DRMs), implying an association with non-raft membrane. Furthermore, neither major lipid raft-associated brush border enzymes nor glycolipids were detected by immunofluorescence microscopy in subapical punctae resembling TWEEs. Finally, two model raft lipids, BODIPY-lactosylceramide and BODIPY-GM1, were not endocytosed except when cholera toxin subunit B (CTB) was present. In conclusion, we propose that constitutive, selective endocytic removal of non-raft membrane acts as a sorting mechanism to enrich the brush border contents of lipid raft components, such as glycolipids and the major digestive enzymes. This sorting may be energetically driven by changes in membrane curvature when molecules move from a microvillar surface to an endocytic invagination.

  4. Super Resolution Fluorescence Microscopy and Tracking of Bacterial Flotillin (Reggie Paralogs Provide Evidence for Defined-Sized Protein Microdomains within the Bacterial Membrane but Absence of Clusters Containing Detergent-Resistant Proteins.

    Directory of Open Access Journals (Sweden)

    Felix Dempwolff

    2016-06-01

    Full Text Available Biological membranes have been proposed to contain microdomains of a specific lipid composition, in which distinct groups of proteins are clustered. Flotillin-like proteins are conserved between pro-and eukaryotes, play an important function in several eukaryotic and bacterial cells, and define in vertebrates a type of so-called detergent-resistant microdomains. Using STED microscopy, we show that two bacterial flotillins, FloA and FloT, form defined assemblies with an average diameter of 85 to 110 nm in the model bacterium Bacillus subtilis. Interestingly, flotillin microdomains are of similar size in eukaryotic cells. The soluble domains of FloA form higher order oligomers of up to several hundred kDa in vitro, showing that like eukaryotic flotillins, bacterial assemblies are based in part on their ability to self-oligomerize. However, B. subtilis paralogs show significantly different diffusion rates, and consequently do not colocalize into a common microdomain. Dual colour time lapse experiments of flotillins together with other detergent-resistant proteins in bacteria show that proteins colocalize for no longer than a few hundred milliseconds, and do not move together. Our data reveal that the bacterial membrane contains defined-sized protein domains rather than functional microdomains dependent on flotillins. Based on their distinct dynamics, FloA and FloT confer spatially distinguishable activities, but do not serve as molecular scaffolds.

  5. Clathrin- and Caveolin-Independent Entry of Human Papillomavirus Type 16—Involvement of Tetraspanin-Enriched Microdomains (TEMs)

    Science.gov (United States)

    Spoden, Gilles; Freitag, Kirsten; Husmann, Matthias; Boller, Klaus; Sapp, Martin; Lambert, Carsten; Florin, Luise

    2008-01-01

    Background Infectious entry of human papillomaviruses into their host cells is an important step in the viral life cycle. For cell binding these viruses use proteoglycans as initial attachment sites. Subsequent transfer to a secondary receptor molecule seems to be involved in virus uptake. Depending on the papillomavirus subtype, it has been reported that entry occurs by clathrin- or caveolin-mediated mechanisms. Regarding human papillomavirus type 16 (HPV16), the primary etiologic agent for development of cervical cancer, clathrin-mediated endocytosis was described as infectious entry pathway. Methodology/Principal Findings Using immunofluorescence and infection studies we show in contrast to published data that infectious entry of HPV16 occurs in a clathrin- and caveolin-independent manner. Inhibition of clathrin- and caveolin/raft-dependent endocytic pathways by dominant-negative mutants and siRNA-mediated knockdown, as well as inhibition of dynamin function, did not impair infection. Rather, we provide evidence for involvement of tetraspanin-enriched microdomains (TEMs) in HPV16 endocytosis. Following cell attachment, HPV16 particles colocalized with the tetraspanins CD63 and CD151 on the cell surface. Notably, tetraspanin-specific antibodies and siRNA inhibited HPV16 cell entry and infection, confirming the importance of TEMs for infectious endocytosis of HPV16. Conclusions/Significance Tetraspanins fulfill various roles in the life cycle of a number of important viral pathogens, including human immunodeficiency virus (HIV) and hepatitis C virus (HCV). However, their involvement in endocytosis of viral particles has not been proven. Our data indicate TEMs as a novel clathrin- and caveolin-independent invasion route for viral pathogens and especially HPV16. PMID:18836553

  6. Clathrin- and caveolin-independent entry of human papillomavirus type 16--involvement of tetraspanin-enriched microdomains (TEMs.

    Directory of Open Access Journals (Sweden)

    Gilles Spoden

    Full Text Available BACKGROUND: Infectious entry of human papillomaviruses into their host cells is an important step in the viral life cycle. For cell binding these viruses use proteoglycans as initial attachment sites. Subsequent transfer to a secondary receptor molecule seems to be involved in virus uptake. Depending on the papillomavirus subtype, it has been reported that entry occurs by clathrin- or caveolin-mediated mechanisms. Regarding human papillomavirus type 16 (HPV16, the primary etiologic agent for development of cervical cancer, clathrin-mediated endocytosis was described as infectious entry pathway. METHODOLOGY/PRINCIPAL FINDINGS: Using immunofluorescence and infection studies we show in contrast to published data that infectious entry of HPV16 occurs in a clathrin- and caveolin-independent manner. Inhibition of clathrin- and caveolin/raft-dependent endocytic pathways by dominant-negative mutants and siRNA-mediated knockdown, as well as inhibition of dynamin function, did not impair infection. Rather, we provide evidence for involvement of tetraspanin-enriched microdomains (TEMs in HPV16 endocytosis. Following cell attachment, HPV16 particles colocalized with the tetraspanins CD63 and CD151 on the cell surface. Notably, tetraspanin-specific antibodies and siRNA inhibited HPV16 cell entry and infection, confirming the importance of TEMs for infectious endocytosis of HPV16. CONCLUSIONS/SIGNIFICANCE: Tetraspanins fulfill various roles in the life cycle of a number of important viral pathogens, including human immunodeficiency virus (HIV and hepatitis C virus (HCV. However, their involvement in endocytosis of viral particles has not been proven. Our data indicate TEMs as a novel clathrin- and caveolin-independent invasion route for viral pathogens and especially HPV16.

  7. Clathrin- and caveolin-independent entry of human papillomavirus type 16--involvement of tetraspanin-enriched microdomains (TEMs).

    Science.gov (United States)

    Spoden, Gilles; Freitag, Kirsten; Husmann, Matthias; Boller, Klaus; Sapp, Martin; Lambert, Carsten; Florin, Luise

    2008-10-02

    Infectious entry of human papillomaviruses into their host cells is an important step in the viral life cycle. For cell binding these viruses use proteoglycans as initial attachment sites. Subsequent transfer to a secondary receptor molecule seems to be involved in virus uptake. Depending on the papillomavirus subtype, it has been reported that entry occurs by clathrin- or caveolin-mediated mechanisms. Regarding human papillomavirus type 16 (HPV16), the primary etiologic agent for development of cervical cancer, clathrin-mediated endocytosis was described as infectious entry pathway. Using immunofluorescence and infection studies we show in contrast to published data that infectious entry of HPV16 occurs in a clathrin- and caveolin-independent manner. Inhibition of clathrin- and caveolin/raft-dependent endocytic pathways by dominant-negative mutants and siRNA-mediated knockdown, as well as inhibition of dynamin function, did not impair infection. Rather, we provide evidence for involvement of tetraspanin-enriched microdomains (TEMs) in HPV16 endocytosis. Following cell attachment, HPV16 particles colocalized with the tetraspanins CD63 and CD151 on the cell surface. Notably, tetraspanin-specific antibodies and siRNA inhibited HPV16 cell entry and infection, confirming the importance of TEMs for infectious endocytosis of HPV16. Tetraspanins fulfill various roles in the life cycle of a number of important viral pathogens, including human immunodeficiency virus (HIV) and hepatitis C virus (HCV). However, their involvement in endocytosis of viral particles has not been proven. Our data indicate TEMs as a novel clathrin- and caveolin-independent invasion route for viral pathogens and especially HPV16.

  8. Molecular basis for interaction of Na+/K+-ATPase with other transporters in membrane microdomains of vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Hansen, Anne Kirstine; Matchkov, Vladimir; Bouzinova, Elena

    2008-01-01

    Ouabain, a specific inhibitor of the Na+/K+-pump, has previously been shown to interfere with intercellular communication. We have recently demonstrated a mechanism of this action of ouabain (1). We have showed that gap junctions between vascular smooth muscle cells (SMCs) are regulated through...... an interaction between the Na+/K+-pump and the Na+/Ca2+-exchanger leading to an increase in the intracellular calcium concentration in discrete areas near the plasma membrane. This regulation suggests a close association of the proteins in microdomains. We have also suggested that this Na...

  9. Gelation of Photonic Microdomain Structures Formed in Semi-Dilute Solutions of Ultra-High-Molecular-Weight Polystyrene-b-Polybutadiene with Various Polybutadiene Contents

    International Nuclear Information System (INIS)

    Okamoto, S; Ito, S; Ando, K; Mouri, M; Ikeda, A; Hasegawa, H; Koshikawa, N

    2010-01-01

    Well-ordered microdomain structures were obtained in semi-dilute solutions and successfully stabilized by gelation. We used polystyrene-b-polybutadiene (PS-b-PB) diblock copolymer with the weight-averaged molecular weight varying from several hundred thousands to millions g/mol. The solutions had iridescent colors because the domain spacing is on the order of the wavelength of visible light. As the structures are susceptible to distortion by flow or vibration, structural fixation was carried out by gelation. The polybutadiene used has the microstructure of 1,2-linkage and hence the chains can be cross-linkable. The Small-Angle X-ray Scattering and the UV-vis spectroscopic measurements showed that in the case of PS-b-PBs with the PB volume fraction, φ PB , greater than about 50 vol % the microdomain structures were successfully fixed by gelation, while largely distorted in the case of those with φ PB < ca. 50 vol %. The SAXS scattering intensities were quantitatively analyzed by the scattering functions numerically calculated based on the one- and two-dimensional paracrystal theories and on the concentration fluctuation between the polymers and the solvent molecules.

  10. Fluorescent probes for detecting cholesterol-rich ordered membrane microdomains: entangled relationships between structural analogies in the membrane and functional homologies in the cell

    Directory of Open Access Journals (Sweden)

    Gérald Gaibelet

    2017-02-01

    Full Text Available This review addresses the question of fluorescent detection of ordered membrane (micro domains in living (cultured cells, with a “practical” point of view since the situation is much more complicated than for studying model membranes. We first briefly recall the bases of model membrane structural organization involving liquid-ordered and -disordered phases, and the main features of their counterparts in cell membranes that are the various microdomains. We then emphasize the utility of the fluorescent probes derived from cholesterol, and delineate the respective advantages, limitations and drawbacks of the existing ones. In particular, besides their intra-membrane behavior, their relevant characteristics should integrate their different cellular fates for membrane turn-over, trafficking and metabolism, in order to evaluate and improve their efficiency for in-situ probing membrane microdomains in the cell physiology context. Finally, at the present stage, it appears that Bdp-Chol and Pyr-met-Chol display well complementary properties, allowing to use them in combination to improve the reliability of the current experimental approaches. But the field is still open, and there remains much work to perform in this research area.

  11. Ethanol Enhances TGF-β Activity by Recruiting TGF-β Receptors From Intracellular Vesicles/Lipid Rafts/Caveolae to Non-Lipid Raft Microdomains.

    Science.gov (United States)

    Huang, Shuan Shian; Chen, Chun-Lin; Huang, Franklin W; Johnson, Frank E; Huang, Jung San

    2016-04-01

    Regular consumption of moderate amounts of ethanol has important health benefits on atherosclerotic cardiovascular disease (ASCVD). Overindulgence can cause many diseases, particularly alcoholic liver disease (ALD). The mechanisms by which ethanol causes both beneficial and harmful effects on human health are poorly understood. Here we demonstrate that ethanol enhances TGF-β-stimulated luciferase activity with a maximum of 0.5-1% (v/v) in Mv1Lu cells stably expressing a luciferase reporter gene containing Smad2-dependent elements. In Mv1Lu cells, 0.5% ethanol increases the level of P-Smad2, a canonical TGF-β signaling sensor, by ∼ 2-3-fold. Ethanol (0.5%) increases cell-surface expression of the type II TGF-β receptor (TβR-II) by ∼ 2-3-fold from its intracellular pool, as determined by I(125) -TGF-β-cross-linking/Western blot analysis. Sucrose density gradient ultracentrifugation and indirect immunofluorescence staining analyses reveal that ethanol (0.5% and 1%) also displaces cell-surface TβR-I and TβR-II from lipid rafts/caveolae and facilitates translocation of these receptors to non-lipid raft microdomains where canonical signaling occurs. These results suggest that ethanol enhances canonical TGF-β signaling by increasing non-lipid raft microdomain localization of the TGF-β receptors. Since TGF-β plays a protective role in ASCVD but can also cause ALD, the TGF-β enhancer activity of ethanol at low and high doses appears to be responsible for both beneficial and harmful effects. Ethanol also disrupts the location of lipid raft/caveolae of other membrane proteins (e.g., neurotransmitter, growth factor/cytokine, and G protein-coupled receptors) which utilize lipid rafts/caveolae as signaling platforms. Displacement of these membrane proteins induced by ethanol may result in a variety of pathologies in nerve, heart and other tissues. © 2015 Wiley Periodicals, Inc.

  12. Inhibition of VEGF-dependent angiogenesis by the anti-CD82 monoclonal antibody 4F9 through regulation of lipid raft microdomains

    International Nuclear Information System (INIS)

    Nomura, Sayaka; Iwata, Satoshi; Hatano, Ryo; Komiya, Eriko; Dang, Nam H.; Iwao, Noriaki; Ohnuma, Kei; Morimoto, Chikao

    2016-01-01

    CD82 (also known as KAI1) belongs to the tetraspanin superfamily of type III transmembrane proteins, and is involved in regulating cell adhesion, migration and proliferation. In contrast to these well-established roles of CD82 in tumor biology, its function in endothelial cell (EC) activity and tumor angiogenesis is yet to be determined. In this study, we show that suppression of CD82 negatively regulates vascular endothelial growth factor (VEGF)-induced angiogenesis. Moreover, we demonstrate that the anti-CD82 mAb 4F9 effectively inhibits phosphorylation of VEGF receptor 2 (VEGFR2), which is the principal mediator of the VEGF-induced angiogenic signaling process in tumor angiogenesis, by regulating the organization of the lipid raft microdomain signaling platform in human EC. Our present work therefore suggests that CD82 on EC is a potential target for anti-angiogenic therapy in VEGFR2-dependent tumor angiogenesis. -- Highlights: •Knockdown of CD82 decreases EC migration, proliferation and angiogenesis. •Anti-CD82 mAb 4F9 inhibits EC migration, proliferation and angiogenesis. •4F9 inhibits VEGFR2 phosphorylation via control of CD82 distribution in lipid rafts.

  13. A Shotgun Proteomic Approach Reveals That Fe Deficiency Causes Marked Changes in the Protein Profiles of Plasma Membrane and Detergent-Resistant Microdomain Preparations from Beta vulgaris Roots.

    Science.gov (United States)

    Gutierrez-Carbonell, Elain; Takahashi, Daisuke; Lüthje, Sabine; González-Reyes, José Antonio; Mongrand, Sébastien; Contreras-Moreira, Bruno; Abadía, Anunciación; Uemura, Matsuo; Abadía, Javier; López-Millán, Ana Flor

    2016-08-05

    In the present study we have used label-free shotgun proteomic analysis to examine the effects of Fe deficiency on the protein profiles of highly pure sugar beet root plasma membrane (PM) preparations and detergent-resistant membranes (DRMs), the latter as an approach to study microdomains. Altogether, 545 proteins were detected, with 52 and 68 of them changing significantly with Fe deficiency in PM and DRM, respectively. Functional categorization of these proteins showed that signaling and general and vesicle-related transport accounted for approximately 50% of the differences in both PM and DRM, indicating that from a qualitative point of view changes induced by Fe deficiency are similar in both preparations. Results indicate that Fe deficiency has an impact in phosphorylation processes at the PM level and highlight the involvement of signaling proteins, especially those from the 14-3-3 family. Lipid profiling revealed Fe-deficiency-induced decreases in phosphatidic acid derivatives, which may impair vesicle formation, in agreement with the decreases measured in proteins related to intracellular trafficking and secretion. The modifications induced by Fe deficiency in the relative enrichment of proteins in DRMs revealed the existence of a group of cytoplasmic proteins that appears to be more attached to the PM in conditions of Fe deficiency.

  14. Broadband pH-Sensing Organic Transistors with Polymeric Sensing Layers Featuring Liquid Crystal Microdomains Encapsulated by Di-Block Copolymer Chains.

    Science.gov (United States)

    Seo, Jooyeok; Song, Myeonghun; Jeong, Jaehoon; Nam, Sungho; Heo, Inseok; Park, Soo-Young; Kang, Inn-Kyu; Lee, Joon-Hyung; Kim, Hwajeong; Kim, Youngkyoo

    2016-09-14

    We report broadband pH-sensing organic field-effect transistors (OFETs) with the polymer-dispersed liquid crystal (PDLC) sensing layers. The PDLC layers are prepared by spin-coating using ethanol solutions containing 4-cyano-4'-pentyl-biphenyl (5CB) and a diblock copolymer (PAA-b-PCBOA) that consists of LC-philic block [poly(4-cyano-biphenyl-4-oxyundecyl acrylate) (PCBOA)] and acrylic acid block [poly(acrylic acid) (PAA)]. The spin-coated sensing layers feature of 5CB microdomains (pH with only small amounts (10-40 μL) of analyte solutions in both static and dynamic perfusion modes. The positive drain current change is measured for acidic solutions (pH pH > 7) result in the negative change of drain current. The drain current trend in the present PDLC-i-OFET devices is explained by the shrinking-expanding mechanism of the PAA chains in the diblock copolymer layers.

  15. Inhibition of VEGF-dependent angiogenesis by the anti-CD82 monoclonal antibody 4F9 through regulation of lipid raft microdomains

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Sayaka; Iwata, Satoshi; Hatano, Ryo [Division of Clinical Immunology, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan); Komiya, Eriko [Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421 (Japan); Dang, Nam H. [Division of Hematology/Oncology, University of Florida, 1600 SW Archer Road- Box 100278, Room MSB M410A, Gainesville, FL, 32610 (United States); Iwao, Noriaki [Department of Hematology, School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421 (Japan); Ohnuma, Kei, E-mail: kohnuma@juntendo.ac.jp [Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan); Morimoto, Chikao [Division of Clinical Immunology, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan); Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan)

    2016-05-20

    CD82 (also known as KAI1) belongs to the tetraspanin superfamily of type III transmembrane proteins, and is involved in regulating cell adhesion, migration and proliferation. In contrast to these well-established roles of CD82 in tumor biology, its function in endothelial cell (EC) activity and tumor angiogenesis is yet to be determined. In this study, we show that suppression of CD82 negatively regulates vascular endothelial growth factor (VEGF)-induced angiogenesis. Moreover, we demonstrate that the anti-CD82 mAb 4F9 effectively inhibits phosphorylation of VEGF receptor 2 (VEGFR2), which is the principal mediator of the VEGF-induced angiogenic signaling process in tumor angiogenesis, by regulating the organization of the lipid raft microdomain signaling platform in human EC. Our present work therefore suggests that CD82 on EC is a potential target for anti-angiogenic therapy in VEGFR2-dependent tumor angiogenesis. -- Highlights: •Knockdown of CD82 decreases EC migration, proliferation and angiogenesis. •Anti-CD82 mAb 4F9 inhibits EC migration, proliferation and angiogenesis. •4F9 inhibits VEGFR2 phosphorylation via control of CD82 distribution in lipid rafts.

  16. Ankyrin-B coordinates the Na/K ATPase, Na/Ca exchanger, and InsP3 receptor in a cardiac T-tubule/SR microdomain.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available We report identification of an ankyrin-B-based macromolecular complex of Na/K ATPase (alpha 1 and alpha 2 isoforms, Na/Ca exchanger 1, and InsP3 receptor that is localized in cardiomyocyte T-tubules in discrete microdomains distinct from classic dihydropyridine receptor/ryanodine receptor "dyads." E1425G mutation of ankyrin-B, which causes human cardiac arrhythmia, also blocks binding of ankyrin-B to all three components of the complex. The ankyrin-B complex is markedly reduced in adult ankyrin-B(+/- cardiomyocytes, which may explain elevated [Ca2+]i transients in these cells. Thus, loss of the ankyrin-B complex provides a molecular basis for cardiac arrhythmia in humans and mice. T-tubule-associated ankyrin-B, Na/Ca exchanger, and Na/K ATPase are not present in skeletal muscle, where ankyrin-B is expressed at 10-fold lower levels than in heart. Ankyrin-B also is not abundantly expressed in smooth muscle. We propose that the ankyrin-B-based complex is a specialized adaptation of cardiomyocytes with a role for cytosolic Ca2+ modulation.

  17. Glycosphingolipides et fusion virus-cellule : données actuelles montrant le rôle des micro-domaines membranaires dans le cycle d’infection du VIH-1

    Directory of Open Access Journals (Sweden)

    Hammache Djilali

    2000-09-01

    Full Text Available Depuis plusieurs années, nous étudions les mécanismes moléculaires responsables de la fusion du virus de l’immunodéficience humaine (VIH avec la membrane plasmique des cellules cibles. Ces travaux ont permis de préciser le rôle essentiel joué par les micro-domaines de glycosphingolipides au cours de la fusion virus-cellule. En particulier, nous avons pu reconstituer un complexe de fusion fonctionnel faisant intervenir les différents partenaires moléculaires de la fusion : un micro-domaine de glycosphingolipide se présentant sous la forme d’un film monomoléculaire à l’interface eau-air, le récepteur CD4 et la glycoprotéine externe de l’enveloppe du virus, la gp120. La dynamique des interactions moléculaires dans ce complexe de fusion a pu être mesurée à l’aide d’un micro-tensiomètre. Ce système expérimental pourrait permettre d’évaluer l’activité d’inhibiteurs de fusion tels que des analogues synthétiques de glycosphingolipides.

  18. Analysis of the Poisson-Nernst-Planck equation in a ball for modeling the Voltage-Current relation in neurobiological microdomains

    Science.gov (United States)

    Cartailler, J.; Schuss, Z.; Holcman, D.

    2017-01-01

    The electro-diffusion of ions is often described by the Poisson-Nernst-Planck (PNP) equations, which couple nonlinearly the charge concentration and the electric potential. This model is used, among others, to describe the motion of ions in neuronal micro-compartments. It remains at this time an open question how to determine the relaxation and the steady state distribution of voltage when an initial charge of ions is injected into a domain bounded by an impermeable dielectric membrane. The purpose of this paper is to construct an asymptotic approximation to the solution of the stationary PNP equations in a d-dimensional ball (d = 1 , 2 , 3) in the limit of large total charge. In this geometry the PNP system reduces to the Liouville-Gelfand-Bratú (LGB) equation, with the difference that the boundary condition is Neumann, not Dirichlet, and there is a minus sign in the exponent of the exponential term. The entire boundary is impermeable to ions and the electric field satisfies the compatibility condition of Poisson's equation. These differences replace attraction by repulsion in the LGB equation, thus completely changing the solution. We find that the voltage is maximal in the center and decreases toward the boundary. We also find that the potential drop between the center and the surface increases logarithmically in the total number of charges and not linearly, as in classical capacitance theory. This logarithmic singularity is obtained for d = 3 from an asymptotic argument and cannot be derived from the analysis of the phase portrait. These results are used to derive the relation between the outward current and the voltage in a dendritic spine, which is idealized as a dielectric sphere connected smoothly to the nerve axon by a narrow neck. This is a fundamental microdomain involved in neuronal communication. We compute the escape rate of an ion from the steady density in a ball, which models a neuronal spine head, to a small absorbing window in the sphere. We

  19. Local structure of Rb2Li4(SeO4)3·2H2O by the modeling of X-ray diffuse scattering — from average-structure to microdomain model

    International Nuclear Information System (INIS)

    Komornicka, Dorota; Wołcyrz, Marek; Pietraszko, Adam

    2012-01-01

    Local structure of dirubidium tetralithium tris(selenate(VI)) dihydrate — Rb 2 Li 4 (SeO 4 ) 3 · 2H 2 O has been determined basing on the modeling of X-ray diffuse scattering. The origin of observed structured diffuse streaks is SeO 4 tetrahedra switching between two alternative positions in two quasi-planar layers existing in each unit cell and formation of domains with specific SeO 4 tetrahedra configuration locally fulfilling condition for C-centering in the 2a×2b×c superstructure cell. The local structure solution is characterized by a uniform distribution of rather large domains (ca. thousand of unit cells) in two layers, but also monodomains can be taken into account. Inside a single domain SeO 4 tetrahedra are ordered along ab-diagonal forming two-string ribbons. Inside the ribbons SeO 4 and LiO 4 tetrahedra share the oxygen corners, whereas ribbons are bound to each other by a net of hydrogen bonds and fastened by corner sharing SeO 4 tetrahedra of the neighboring layers. - Graphical abstract: Experimental sections of the reciprocal space showing diffraction effects observed for RLSO. Bragg spots are visible on sections with integer indices (1 kl section — on the left), streaks — on sections with fractional ones (1.5 kl section — on the right). At the center: resulting local structure of the A package modeled as a microdomain: two-string ribbons of ordered oxygen-corners-sharing SeO 4 and LiO 4 terahedra extended along ab-diagonal are seen; ribbons are bound by hydrogen bonds (shown in pink); the multiplied 2a×2b unit cell is shown. Highlights: ► X-ray diffuse scattering in RLSO was registered and modeled. ► The origin of diffuse streaks is SeO 4 tetrahedra switching in two structure layers. ► The local structure is characterized by a uniform distribution of microdomains. ► Inside a single domain SeO 4 tetrahedra are ordered along ab-diagonal forming ribbons. ► The ribbons are bound to each other by a net of hydrogen bonds.

  20. Proteomic analysis of membrane microdomain-associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 protein expression.

    LENUS (Irish Health Repository)

    Behan, A T

    2009-06-01

    The dorsolateral prefrontal cortex (dlpfc) is strongly implicated in the pathogenesis of schizophrenia (SCZ) and bipolar disorder (BPD) and, within this region, abnormalities in glutamatergic neurotransmission and synaptic function have been described. Proteins associated with these functions are enriched in membrane microdomains (MM). In the current study, we used two complementary proteomic methods, two-dimensional difference gel electrophoresis and one-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis followed by reverse phase-liquid chromatography-tandem mass spectrometry (RP-LC-MS\\/MS) (gel separation liquid chromatography-tandem mass spectrometry (GeLC-MS\\/MS)) to assess protein expression in MM in pooled samples of dlpfc from SCZ, BPD and control cases (n=10 per group) from the Stanley Foundation Brain series. We identified 16 proteins altered in one\\/both disorders using proteomic methods. We selected three proteins with roles in synaptic function (syntaxin-binding protein 1 (STXBP1), brain abundant membrane-attached signal protein 1 (BASP1) and limbic system-associated membrane protein (LAMP)) for validation by western blotting. This revealed significantly increased expression of these proteins in SCZ (STXBP1 (24% difference; P<0.001), BASP1 (40% difference; P<0.05) and LAMP (22% difference; P<0.01)) and BPD (STXBP1 (31% difference; P<0.001), BASP1 (23% difference; P<0.01) and LAMP (20% difference; P<0.01)) in the Stanley brain series (n=20 per group). Further validation in dlpfc from the Harvard brain subseries (n=10 per group) confirmed increased protein expression in SCZ of STXBP1 (18% difference; P<0.0001), BASP1 (14% difference; P<0.0001) but not LAMP (20% difference; P=0.14). No significant differences in STXBP1, BASP1 or LAMP protein expression in BPD dlpfc were observed. This study, through proteomic assessments of MM in dlpfc and validation in two brain series, strongly implicates LAMP, STXBP1 and BASP1 in SCZ and supports

  1. Laminin binding protein, 34/67 laminin receptor, carries stage-specific embryonic antigen-4 epitope defined by monoclonal antibody Raft.2

    International Nuclear Information System (INIS)

    Katagiri, Yohko U.; Kiyokawa, Nobutaka; Nakamura, Kyoko; Takenouchi, Hisami; Taguchi, Tomoko; Okita, Hajime; Umezawa, Akihiro; Fujimoto, Junichiro

    2005-01-01

    We previously produced monoclonal antibodies against the detergent-insoluble microdomain, i.e., the raft microdomain, of the human renal cancer cell line ACHN. Raft.2, one of these monoclonal antibodies, recognizes sialosyl globopentaosylceramide, which has the stage-specific embryonic antigen (SSEA)-4 epitope. Although the mouse embryonal carcinoma (EC) cell line F9 does not express SSEA-4, some F9 cells stained with Raft.2. Western analysis and matrix-assisted laser desorption ionization-time of flight mass spectrometry identified the Raft.2 binding molecule as laminin binding protein (LBP), i.e., 34/67 laminin receptor. Weak acid treatment or digestion with Clostridium perfringens sialidase reduced Raft.2 binding to LBP on nitrocellulose sheets and [ 14 C]galactose was incorporated into LBP, indicating LBP to have a sialylated carbohydrate moiety. Subcellular localization analysis by sucrose density-gradient centrifugation and examination by confocal microscopy revealed LBP to be localized on the outer surface of the plasma membrane. An SSEA-4-positive human EC cell line, NCR-G3 cells, also expressed Raft.2-binding LBP

  2. Cholera toxin entry into pig enterocytes occurs via a lipid raft- and clathrin-dependent mechanism

    DEFF Research Database (Denmark)

    Hansen, Gert H; Dalskov, Stine-Mathilde; Rasmussen, Christina Rehné

    2005-01-01

    The small intestinal brush border is composed of lipid raft microdomains, but little is known about their role in the mechanism whereby cholera toxin gains entry into the enterocyte. The present work characterized the binding of cholera toxin B subunit (CTB) to the brush border and its internaliz......The small intestinal brush border is composed of lipid raft microdomains, but little is known about their role in the mechanism whereby cholera toxin gains entry into the enterocyte. The present work characterized the binding of cholera toxin B subunit (CTB) to the brush border and its...... accompanied the toxin internalization whereas no formation of caveolae was observed. CTB was strongly associated with the buoyant, detergent-insoluble fraction of microvillar membranes. Neither CTB's raft association nor uptake via clathrin-coated pits was affected by methyl-beta-cyclodextrin, indicating...... that membrane cholesterol is not required for toxin binding and entry. The ganglioside GM(1) is known as the receptor for CTB, but surprisingly the toxin also bound to sucrase-isomaltase and coclustered with this glycosidase in apical membrane pits. CTB binds to lipid rafts of the brush border...

  3. [Screening of phosphoprotein associated with glycosphingolipid microdomains 1 (PAG1) by cDNA microarray and influence of overexpression of PAG1 on biologic behavior of human metastatic prostatic cancer cell line in vitro].

    Science.gov (United States)

    Yu, Wen-juan; Wang, Yue-wei; Xie, Zhi-gang; You, Jiang-feng; Wang, Jie-liang; Cui, Xiang-lin; Pei, Fei; Zheng, Jie

    2010-02-01

    To screen for novel gene(s) associated with tumor metastasis, and to investigate the effect of overexpression of phosphoprotein associated with glycosphingolipid microdomains 1 (PAG1) on the biological behaviors of human prostatic cancer cell line PC-3M-1E8 in vitro. Four cDNA microarrays were constructed using cDNA library of prostatic cancer cells PC-3M-1E8 (high metastatic potential), PC-3M-2B4 (low metastatic potential), lung cancer cells PG-BE1 (high metastatic potential)and PG-LH7 (low metastatic potential)to screen genes which were differentially expressed according to their different metastatic properties. From a battery of differentially expressed genes, PAG1, which was markedly downregulated in both high metastatic sublines of PC-3M and PG was chosen for further investigation. Real-time PCR and Western blot were used to confirm the gene expression of PAG1 at mRNA and protein levels. Full-length coding sequence of human PAG1 was subcloned into plasmid pcDNA3.0 and the recombinant plasmids were stably transfected into PC-3M-1E8. The cell proliferation ability, anchorage-independent growth, cell cycle distribution, apoptosis rates and invasive ability were detected by MTT, and in addition, soft agar colony formation, flow cytometry analysis and matrigel invasion assay using Boyden chamber were also carried out respectively. All experiments contained pcDNA3.0-PAG1-transfected clones, vector transfected clones and non-transfected parental cells. A total of 327 differentially expressed genes were obtained between the high and low metastatic sublines of PC-3M cells, including 123 upregulated and 204 downregulated genes in PC-3M-1E8. A total of 281 genes, including 167 upregulated and 114 downregulated genes were obtained in PG-BE1 cells. Nine genes were simultaneously downregulated and 8 genes were upregulated in both high metastatic cell lines of PC-3M and PG. The expression of PAG1 at mRNA and protein level were decreased in the high metastatic subline PC-3M-1

  4. Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis.

    Science.gov (United States)

    Grison, Magali S; Brocard, Lysiane; Fouillen, Laetitia; Nicolas, William; Wewer, Vera; Dörmann, Peter; Nacir, Houda; Benitez-Alfonso, Yoselin; Claverol, Stéphane; Germain, Véronique; Boutté, Yohann; Mongrand, Sébastien; Bayer, Emmanuelle M

    2015-04-01

    Plasmodesmata (PD) are nano-sized membrane-lined channels controlling intercellular communication in plants. Although progress has been made in identifying PD proteins, the role played by major membrane constituents, such as the lipids, in defining specialized membrane domains in PD remains unknown. Through a rigorous isolation of "native" PD membrane fractions and comparative mass spectrometry-based analysis, we demonstrate that lipids are laterally segregated along the plasma membrane (PM) at the PD cell-to-cell junction in Arabidopsis thaliana. Remarkably, our results show that PD membranes display enrichment in sterols and sphingolipids with very long chain saturated fatty acids when compared with the bulk of the PM. Intriguingly, this lipid profile is reminiscent of detergent-insoluble membrane microdomains, although our approach is valuably detergent-free. Modulation of the overall sterol composition of young dividing cells reversibly impaired the PD localization of the glycosylphosphatidylinositol-anchored proteins Plasmodesmata Callose Binding 1 and the β-1,3-glucanase PdBG2 and altered callose-mediated PD permeability. Altogether, this study not only provides a comprehensive analysis of the lipid constituents of PD but also identifies a role for sterols in modulating cell-to-cell connectivity, possibly by establishing and maintaining the positional specificity of callose-modifying glycosylphosphatidylinositol proteins at PD. Our work emphasizes the importance of lipids in defining PD membranes. © 2015 American Society of Plant Biologists. All rights reserved.

  5. Hunting for low abundant redox proteins in plant plasma membranes.

    Science.gov (United States)

    Lüthje, Sabine; Hopff, David; Schmitt, Anna; Meisrimler, Claudia-Nicole; Menckhoff, Ljiljana

    2009-04-13

    Nowadays electron transport (redox) systems in plasma membranes appear well established. Members of the flavocytochrome b family have been identified by their nucleotide acid sequences and characterized on the transcriptional level. For their gene products functions have been demonstrated in iron uptake and oxidative stress including biotic interactions, abiotic stress factors and plant development. In addition, NAD(P)H-dependent oxidoreductases and b-type cytochromes have been purified and characterized from plasma membranes. Several of these proteins seem to belong to the group of hypothetical or unknown proteins. Low abundance and the lack of amino acid sequence data for these proteins still hamper their functional analysis. Consequently, little is known about the physiological function and regulation of these enzymes. In recent years evidence has been presented for the existence of microdomains (so-called lipid rafts) in plasma membranes and their interaction with specific membrane proteins. The identification of redox systems in detergent insoluble membranes supports the idea that redox systems may have important functions in signal transduction, stress responses, cell wall metabolism, and transport processes. This review summarizes our present knowledge on plasma membrane redox proteins and discusses alternative strategies to investigate the function and regulation of these enzymes.

  6. Endocytic crosstalk: cavins, caveolins, and caveolae regulate clathrin-independent endocytosis.

    Directory of Open Access Journals (Sweden)

    Natasha Chaudhary

    2014-04-01

    Full Text Available Several studies have suggested crosstalk between different clathrin-independent endocytic pathways. However, the molecular mechanisms and functional relevance of these interactions are unclear. Caveolins and cavins are crucial components of caveolae, specialized microdomains that also constitute an endocytic route. Here we show that specific caveolar proteins are independently acting negative regulators of clathrin-independent endocytosis. Cavin-1 and Cavin-3, but not Cavin-2 or Cavin-4, are potent inhibitors of the clathrin-independent carriers/GPI-AP enriched early endosomal compartment (CLIC/GEEC endocytic pathway, in a process independent of caveola formation. Caveolin-1 (CAV1 and CAV3 also inhibit the CLIC/GEEC pathway upon over-expression. Expression of caveolar protein leads to reduction in formation of early CLIC/GEEC carriers, as detected by quantitative electron microscopy analysis. Furthermore, the CLIC/GEEC pathway is upregulated in cells lacking CAV1/Cavin-1 or with reduced expression of Cavin-1 and Cavin-3. Inhibition by caveolins can be mimicked by the isolated caveolin scaffolding domain and is associated with perturbed diffusion of lipid microdomain components, as revealed by fluorescence recovery after photobleaching (FRAP studies. In the absence of cavins (and caveolae CAV1 is itself endocytosed preferentially through the CLIC/GEEC pathway, but the pathway loses polarization and sorting attributes with consequences for membrane dynamics and endocytic polarization in migrating cells and adult muscle tissue. We also found that noncaveolar Cavin-1 can act as a modulator for the activity of the key regulator of the CLIC/GEEC pathway, Cdc42. This work provides new insights into the regulation of noncaveolar clathrin-independent endocytosis by specific caveolar proteins, illustrating multiple levels of crosstalk between these pathways. We show for the first time a role for specific cavins in regulating the CLIC/GEEC pathway, provide

  7. Protein- protein interaction detection system using fluorescent protein microdomains

    Science.gov (United States)

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2010-02-23

    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  8. Plasma membrane microdomains regulate turnover of transport proteins in yeast

    Czech Academy of Sciences Publication Activity Database

    Grossmann, G.; Malínský, Jan; Stahlschmidt, W.; Loibl, M.; Weig-Meckl, I.; Frommer, W.B.; Opekarová, Miroslava; Tanner, W.

    2008-01-01

    Roč. 183, č. 6 (2008), s. 1075-1088 ISSN 0021-9525 R&D Projects: GA ČR GA204/06/0009; GA ČR GA204/07/0133; GA ČR GC204/08/J024 Institutional research plan: CEZ:AV0Z50390703; CEZ:AV0Z50200510 Keywords : Lithium acetate * Membrane compartment of Can1 * Monomeric red fluorescent protein Subject RIV: EA - Cell Biology Impact factor: 9.120, year: 2008

  9. Magnetic Alignment of Block Copolymer Microdomains by Intrinsic Chain Anisotropy.

    Science.gov (United States)

    Rokhlenko, Yekaterina; Gopinadhan, Manesh; Osuji, Chinedum O; Zhang, Kai; O'Hern, Corey S; Larson, Steven R; Gopalan, Padma; Majewski, Paweł W; Yager, Kevin G

    2015-12-18

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δχ, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δχ≈2×10^{-8}. From field-dependent scattering data, we estimate that grains of ≈1.2  μm are present during alignment. These results demonstrate that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.

  10. Chemical composition and fermentation characteristics of elephant grass silage with biodiesel industry co-products

    OpenAIRE

    Cleef,Eric Haydt Castello Branco van; Silva Filho,José Cleto da; Neiva Júnior,Arnaldo Prata; Patiño Pardo,René Maurício; Rêgo,Aníbal Coutinho do; Gonçalves,Josemir de Souza

    2012-01-01

    The objective of this research was to evaluate the effect of three concentrations (3, 6, and 9%) of forage turnip (Raphanus sativus) and physic nut (Jatropha curcas) cakes on dry matter, crude protein, ether extract, neutral detergent fiber, acid detergent fiber, lignin, acid detergent insoluble nitrogen neutral detergent insoluble nitrogen contents, in vitro dry matter digestibility, pH values and concentrations of N-NH3 in elephant grass silages. It was used an entirely randomized design in...

  11. Promotion of human mesenchymal stem cell osteogenesis by PI3-kinase/Akt signaling, and the influence of caveolin-1/cholesterol homeostasis.

    Science.gov (United States)

    Baker, Natasha; Sohn, Jihee; Tuan, Rocky S

    2015-12-01

    Stem cells are considered an important resource for tissue repair and regeneration. Their utilization in regenerative medicine will be aided by mechanistic insight into their responsiveness to external stimuli. It is likely that, similar to all other cells, an initial determinant of stem cell responsiveness to external stimuli is the organization of signaling molecules in cell membrane rafts. The clustering of signaling molecules in these cholesterol-rich membrane microdomains can affect the activity, specificity, cross-talk and amplification of cell signaling. Membrane rafts fall into two broad categories, non-caveolar and caveolar, based on the absence or presence, respectively, of caveolin scaffolding proteins. We have recently demonstrated that caveolin-1 (Cav-1) expression increases during, and knockdown of Cav-1 expression enhances, osteogenic differentiation of human bone marrow derived mesenchymal stem cells (MSCs). The increase in Cav-1 expression observed during osteogenesis is likely a negative feedback mechanism. We hypothesize that focal adhesion signaling pathways such as PI3K/Akt signaling may be negatively regulated by Cav-1 during human MSC osteogenesis. Human bone marrow MSCs were isolated from femoral heads obtained after total hip arthroplasty. MSCs were incubated in standard growth medium alone or induced to osteogenically differentiate by the addition of supplements (β-glycerophosphate, ascorbic acid, dexamethasone, and 1,25-dihydroxyvitamin D3). The activation of and requirement for PI3K/Akt signaling in MSC osteogenesis were assessed by immunoblotting for phosphorylated Akt, and treatment with the PI3K inhibitor LY294002 and Akt siRNA, respectively. The influences of Cav-1 and cholesterol membrane rafts on PI3K/Akt signaling were investigated by treatment with Cav-1 siRNA, methyl-β-cyclodextrin, or cholesterol oxidase, followed by cellular sub-fractionation and/or immunoblotting for phosphorylated Akt. LY294002 and Akt siRNA inhibited MSC

  12. MAL Is a Regulator of the Recruitment of Myelin Protein PLP to Membrane Microdomains

    NARCIS (Netherlands)

    Bijlard, Marjolein; de Jonge, Jenny C.; Klunder, Bert; Nomden, Anita; Hoekstra, Dick; Baron, Wia

    2016-01-01

    In oligodendrocytes (OLGs), an indirect, transcytotic pathway is mediating transport of de novo synthesized PLP, a major myelin specific protein, from the apical-like plasma membrane to the specialized basolateral-like myelin membrane to prevent its premature compaction. MAL is a well-known

  13. Transmembrane adaptor proteins in membrane microdomains: important regulators of immunoreceptor signaling

    Czech Academy of Sciences Publication Activity Database

    Hořejší, Václav

    2004-01-01

    Roč. 29, 1-2 (2004), s. 43-49 ISSN 0165-2478 R&D Projects: GA MŠk LN00A026 Institutional research plan: CEZ:AV0Z5052915 Keywords : immunoreceptor * signalling Subject RIV: EC - Immunology Impact factor: 2.136, year: 2004

  14. Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains

    NARCIS (Netherlands)

    Müller, A.; Wenzel, M.; Strahl, H.; Grein, F.; Saaki, T.N.V.; Kohl, B.; Siersma, T.; Bandow, J.E.; Sahl, H.-G.; Schneider, T.; Hamoen, L.W.

    2016-01-01

    Daptomycin is a highly efficient last-resort antibiotic that targets the bacterial cell membrane. Despite its clinical importance, the exact mechanism by which daptomycin kills bacteria is not fully understood. Different experiments have led to different models, including (i) blockage of cell wall

  15. A new type of membrane raft-like microdomains and their possible involvement in TCR signaling

    Czech Academy of Sciences Publication Activity Database

    Otáhal, Pavel; Angelisová, Pavla; Hrdinka, Matouš; Brdička, Tomáš; Novák, Petr; Drbal, Karel; Hořejší, Václav

    2010-01-01

    Roč. 184, č. 7 (2010), s. 3689-3696 ISSN 0022-1767 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z50200510 Keywords : membrane rafts * LAT * T-receptor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.745, year: 2010

  16. Lipid raft microdomains: key sites for Coxsackievirus A9 infectious cycle

    International Nuclear Information System (INIS)

    Triantafilou, Kathy; Triantafilou, Martha

    2003-01-01

    Lipid rafts have an important property to preferentially concentrate some proteins, while excluding others. Lipid rafts can also act as functional platforms for multiple signalling and trafficking processes. Several reports have shown that lipid rafts play a crucial role in the assembly of several enveloped viruses and possibly their cell entry. In this study we investigated the importance of lipid raft formation in Coxsackievirus A9 (CAV-9) entry and cell infection. Here by using a variety of biochemical and biophysical methods, we report that receptor molecules integrin αvβ3 and GRP78, which are implicated in CAV-9 infection as well as accessory molecules such as MHC class I, are accumulated in increased concentrations in lipid rafts following CAV-9 infection. In addition our studies revealed that raft integrity is essential for this virus since CAV-9 activates the Raf/MAPK signalling pathway within the raft and raft-disrupting drugs such as nystatin and MCD can successfully inhibit CAV-9 infection

  17. Report: GPU Based Massive Parallel Kawasaki Kinetics In Monte Carlo Modelling of Lipid Microdomains

    OpenAIRE

    Lis, M.; Pintal, L.

    2013-01-01

    This paper introduces novel method of simulation of lipid biomembranes based on Metropolis Hastings algorithm and Graphic Processing Unit computational power. Method gives up to 55 times computational boost in comparison to classical computations. Extensive study of algorithm correctness is provided. Analysis of simulation results and results obtained with classical simulation methodologies are presented.

  18. Lipid rafts in epithelial brush borders: atypical membrane microdomains with specialized functions

    DEFF Research Database (Denmark)

    Danielsen, E Michael; Hansen, Gert H

    2003-01-01

    of the apical surface sterically accessible for membrane fusion/budding events. Many of these invaginations appear as pleiomorphic, deep apical tubules that extend up to 0.5-1 microm into the underlying terminal web region. Their sensitivity to methyl-beta-cyclodextrin suggests them to contain cholesterol...

  19. 3-dimensional examination of the adult mouse subventricular zone reveals lineage-specific microdomains.

    Science.gov (United States)

    Azim, Kasum; Fiorelli, Roberto; Zweifel, Stefan; Hurtado-Chong, Anahi; Yoshikawa, Kazuaki; Slomianka, Lutz; Raineteau, Olivier

    2012-01-01

    Recent studies suggest that the subventricular zone (SVZ) of the lateral ventricle is populated by heterogeneous populations of stem and progenitor cells that, depending on their exact location, are biased to acquire specific neuronal fates. This newly described heterogeneity of SVZ stem and progenitor cells underlines the necessity to develop methods for the accurate quantification of SVZ stem and progenitor subpopulations. In this study, we provide 3-dimensional topographical maps of slow cycling "stem" cells and progenitors based on their unique cell cycle properties. These maps revealed that both cell populations are present throughout the lateral ventricle wall as well as in discrete regions of the dorsal wall. Immunodetection of transcription factors expressed in defined progenitor populations further reveals that divergent lineages have clear regional enrichments in the rostro-caudal as well as in the dorso-ventral span of the lateral ventricle. Thus, progenitors expressing Tbr2 and Dlx2 were confined to dorsal and dorso-lateral regions of the lateral ventricle, respectively, while Mash1+ progenitors were more homogeneously distributed. All cell populations were enriched in the rostral-most region of the lateral ventricle. This diversity and uneven distribution greatly impede the accurate quantification of SVZ progenitor populations. This is illustrated by measuring the coefficient of error of estimates obtained by using increasing section sampling interval. Based on our empirical data, we provide such estimates for all progenitor populations investigated in this study. These can be used in future studies as guidelines to judge if the precision obtained with a sampling scheme is sufficient to detect statistically significant differences between experimental groups if a biological effect is present. Altogether, our study underlines the need to consider the SVZ of the lateral ventricle as a complex 3D structure and define methods to accurately assess neural stem cells or progenitor diversity and population sizes in physiological or experimental paradigms.

  20. 3-dimensional examination of the adult mouse subventricular zone reveals lineage-specific microdomains.

    Directory of Open Access Journals (Sweden)

    Kasum Azim

    Full Text Available Recent studies suggest that the subventricular zone (SVZ of the lateral ventricle is populated by heterogeneous populations of stem and progenitor cells that, depending on their exact location, are biased to acquire specific neuronal fates. This newly described heterogeneity of SVZ stem and progenitor cells underlines the necessity to develop methods for the accurate quantification of SVZ stem and progenitor subpopulations. In this study, we provide 3-dimensional topographical maps of slow cycling "stem" cells and progenitors based on their unique cell cycle properties. These maps revealed that both cell populations are present throughout the lateral ventricle wall as well as in discrete regions of the dorsal wall. Immunodetection of transcription factors expressed in defined progenitor populations further reveals that divergent lineages have clear regional enrichments in the rostro-caudal as well as in the dorso-ventral span of the lateral ventricle. Thus, progenitors expressing Tbr2 and Dlx2 were confined to dorsal and dorso-lateral regions of the lateral ventricle, respectively, while Mash1+ progenitors were more homogeneously distributed. All cell populations were enriched in the rostral-most region of the lateral ventricle. This diversity and uneven distribution greatly impede the accurate quantification of SVZ progenitor populations. This is illustrated by measuring the coefficient of error of estimates obtained by using increasing section sampling interval. Based on our empirical data, we provide such estimates for all progenitor populations investigated in this study. These can be used in future studies as guidelines to judge if the precision obtained with a sampling scheme is sufficient to detect statistically significant differences between experimental groups if a biological effect is present. Altogether, our study underlines the need to consider the SVZ of the lateral ventricle as a complex 3D structure and define methods to accurately assess neural stem cells or progenitor diversity and population sizes in physiological or experimental paradigms.

  1. Microdomains in the membrane landscape shape antigen-presenting cell function

    NARCIS (Netherlands)

    Zuidscherwoude, M.; Winde, C.M. de; Cambi, A.; Spriel, A.B. van

    2014-01-01

    The plasma membrane of immune cells is a highly organized cell structure that is key to the initiation and regulation of innate and adaptive immune responses. It is well-established that immunoreceptors embedded in the plasma membrane have a nonrandom spatial distribution that is important for

  2. Controlled specific placement of nanoparticles into microdomains of block copolymer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Joonwon, E-mail: joonwonbae@gmail.com [Department of Applied Chemistry, Dongduk Women' s University, Seoul 136-714 (Korea, Republic of); Kim, Jungwook [Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742 (Korea, Republic of); Park, Jongnam, E-mail: jnpark@unist.ac.kr [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of)

    2014-07-01

    Conceptually attractive hybrid materials composed of nanoparticles and elegant block copolymers have become important for diverse applications. In this work, controlled specific placement of nanoparticles such as gold (Au) and titania (TiO{sub 2}) into microphase separated domains in poly(styrene)-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer thin films was demonstrated. The effect of nanoparticle surface functionality on the spatial location of particles inside polymer film was observed by transmission electron microscopy. It was revealed that the location of nanoparticles was highly dependent on the surface ligand property of nanoparticle. In addition, the microphase separation behavior of thin block copolymer film was also affected by the nanoparticle surface functional groups. This study might provide a way to understand the properties and behaviors of numerous block copolymer/nanoparticle hybrid systems. - Highlights: • Controlled location of nanoparticles in the block copolymer matrix • Tailoring surface functionality of metal nanocrystals • Fabrication of homogeneous nanocomposites using organic inorganic components • Possibility for the preparation of nanohybrids.

  3. Controlled specific placement of nanoparticles into microdomains of block copolymer thin films

    International Nuclear Information System (INIS)

    Bae, Joonwon; Kim, Jungwook; Park, Jongnam

    2014-01-01

    Conceptually attractive hybrid materials composed of nanoparticles and elegant block copolymers have become important for diverse applications. In this work, controlled specific placement of nanoparticles such as gold (Au) and titania (TiO 2 ) into microphase separated domains in poly(styrene)-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer thin films was demonstrated. The effect of nanoparticle surface functionality on the spatial location of particles inside polymer film was observed by transmission electron microscopy. It was revealed that the location of nanoparticles was highly dependent on the surface ligand property of nanoparticle. In addition, the microphase separation behavior of thin block copolymer film was also affected by the nanoparticle surface functional groups. This study might provide a way to understand the properties and behaviors of numerous block copolymer/nanoparticle hybrid systems. - Highlights: • Controlled location of nanoparticles in the block copolymer matrix • Tailoring surface functionality of metal nanocrystals • Fabrication of homogeneous nanocomposites using organic inorganic components • Possibility for the preparation of nanohybrids

  4. The chemical composition of leaves from indigenous fodder trees in ...

    African Journals Online (AJOL)

    Unknown

    performed on the samples, except for crude fibre where the Van Soest analyses of neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent insoluble nitrogen (ADIN) and acid detergent lignin (ADL) were done instead. Atomic absorption (AA) spectrophotometry was used to measure the concentration of the ...

  5. The chemical composition of leaves from indigenous fodder trees in ...

    African Journals Online (AJOL)

    Unknown

    The standard Proximate analysis was performed on the samples, except for crude fibre where the Van Soest analyses of neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent insoluble nitrogen (ADIN) and acid detergent lignin (ADL) were done instead. Atomic absorption (AA) spectrophotometry was used ...

  6. Influence of lipid rafts on CD1d presentation by dendritic cells

    DEFF Research Database (Denmark)

    Peng, Wei; Martaresche, Cecile; Escande-Beillard, Nathalie

    2011-01-01

    corresponding to lipid rafts and we describe that alpha-GalCer enhanced CD1d amount in the low density detergent insoluble fraction. We conclude that the membrane environment of CD1d can influence antigen presentation mainly when the endocytic pathway is required. Flow cytometry analysis can provide additional...

  7. Microfabricated microengine for use as a mechanical drive and power source in the microdomain and fabrication process

    Science.gov (United States)

    Garcia, E.J.; Sniegowski, J.J.

    1997-05-20

    A microengine uses two synchronized linear actuators as a power source and converts oscillatory motion from the actuators into rotational motion via direct linkage connection to an output gear or wheel. The microengine provides output in the form of a continuously rotating output gear that is capable of delivering drive torque to a micromechanism. The microengine can be operated at varying speeds and its motion can be reversed. Linear actuators are synchronized in order to provide linear oscillatory motion to the linkage means in the X and Y directions according to a desired position, rotational direction and speed of said mechanical output means. The output gear has gear teeth on its outer perimeter for directly contacting a micromechanism requiring mechanical power. The gear is retained by a retaining means which allows said gear to rotate freely. The microengine is microfabricated of polysilicon on one wafer using surface micromachining batch fabrication. 30 figs.

  8. Probing plasma membrane microdomains in cowpea protoplasts using lipidated GFP-fusion proteins and multimode FRET microscopy

    NARCIS (Netherlands)

    Vermeer, J.E.M.; van Munster, E.B.; Vischer, N.O.; Gadella, T.

    2004-01-01

    Multimode fluorescence resonance energy transfer (FRET) microscopy was applied to study the plasma membrane organization using different lipidated green fluorescent protein (GFP)-fusion proteins co-expressed in cowpea protoplasts. Cyan fluorescent protein (CFP) was fused to the hyper variable region

  9. C Terminus of Nce102 Determines the Structure and Function of Microdomains in the Saccharomyces cerevisiae Plasma Membrane

    Czech Academy of Sciences Publication Activity Database

    Loibl, M.; Grossmann, G.; Strádalová, Vendula; Klingl, A.; Rachel, R.; Tanner, W.; Malínský, Jan; Opekarová, Miroslava

    2010-01-01

    Roč. 9, č. 8 (2010), s. 1184-1192 ISSN 1535-9778 R&D Projects: GA ČR(CZ) GA204/07/0133; GA ČR(CZ) GC204/08/J024 Grant - others:GA ČR(CZ) GA204/09/1924; GA ČR(CZ) KAN200520801 Program:GA; IA Institutional research plan: CEZ:AV0Z50390703; CEZ:AV0Z50200510 Keywords : cell * endoplasmic-reticulum * Saccharomyces cerevisiae Subject RIV: EA - Cell Biology Impact factor: 3.395, year: 2010

  10. Weak glycolipid binding of a microdomain-tracer peptide correlates with aggregation and slow diffusion on cell membranes.

    Directory of Open Access Journals (Sweden)

    Tim Lauterbach

    Full Text Available Organized assembly or aggregation of sphingolipid-binding ligands, such as certain toxins and pathogens, has been suggested to increase binding affinity of the ligand to the cell membrane and cause membrane reorganization or distortion. Here we show that the diffusion behavior of the fluorescently tagged sphingolipid-interacting peptide probe SBD (Sphingolipid Binding Domain is altered by modifications in the construction of the peptide sequence that both result in a reduction in binding to ganglioside-containing supported lipid membranes, and at the same time increase aggregation on the cell plasma membrane, but that do not change relative amounts of secondary structural features. We tested the effects of modifying the overall charge and construction of the SBD probe on its binding and diffusion behavior, by Surface Plasmon Resonance (SPR; Biacore analysis on lipid surfaces, and by Fluorescence Correlation Spectroscopy (FCS on live cells, respectively. SBD binds preferentially to membranes containing the highly sialylated gangliosides GT1b and GD1a. However, simple charge interactions of the peptide with the negative ganglioside do not appear to be a critical determinant of binding. Rather, an aggregation-suppressing amino acid composition and linker between the fluorophore and the peptide are required for optimum binding of the SBD to ganglioside-containing supported lipid bilayer surfaces, as well as for interaction with the membrane. Interestingly, the strength of interactions with ganglioside-containing artificial membranes is mirrored in the diffusion behavior by FCS on cell membranes, with stronger binders displaying similar characteristic diffusion profiles. Our findings indicate that for aggregation-prone peptides, aggregation occurs upon contact with the cell membrane, and rather than giving a stronger interaction with the membrane, aggregation is accompanied by weaker binding and complex diffusion profiles indicative of heterogeneous diffusion behavior in the probe population.

  11. Detergent-Resistant Membrane Microdomains Facilitate Ib Oligomer Formation and Biological Activity of Clostridium perfringens Iota-Toxin

    National Research Council Canada - National Science Library

    Hale, Martha

    2004-01-01

    ...) were extracted with cold Triton X-100. Western blotting revealed that Ib oligomers localized in DRMs extracted from Vero, but not MRC-5, cells while monomeric Ib was detected in the detergent-soluble fractions of both cell types...

  12. Diblock copolymers of polystyrene-b-poly(1,3-cyclohexadiene) exhibiting unique three-phase microdomain morphologies

    KAUST Repository

    Misichronis, Konstantinos

    2016-03-31

    The synthesis and molecular characterization of a series of conformationally asymmetric polystyrene-block-poly(1,3-cyclohexadiene) (PS-b-PCHD) diblock copolymers (PCHD: ∼90% 1,4 and ∼10% 1,2), by sequential anionic copolymerization high vacuum techniques, is reported. A wide range of volume fractions (0.27≤ϕPS≤0.91) was studied by transmission electron microscopy and small-angle X-ray scattering in order to explore in detail the microphase separation behavior of these flexible/semiflexible diblock copolymers. Unusual morphologies, consisting of PCHD core(PCHD-1,4)-shell(PCHD-1,2) cylinders in PS matrix and three-phase (PS, PCHD-1,4, PCHD-1,2) four-layer lamellae, were observed suggesting that the chain stiffness of the PCHD block and the strong dependence of the interaction parameter χ on the PCHD microstructures are important factors for the formation of this unusual microphase separation behavior in PS-b-PCHD diblock copolymers. © 2016 Wiley Periodicals, Inc.

  13. The cellular prion protein interacts with the tissue non-specific alkaline phosphatase in membrane microdomains of bioaminergic neuronal cells.

    Directory of Open Access Journals (Sweden)

    Myriam Ermonval

    Full Text Available BACKGROUND: The cellular prion protein, PrP(C, is GPI anchored and abundant in lipid rafts. The absolute requirement of PrP(C in neurodegeneration associated to prion diseases is well established. However, the function of this ubiquitous protein is still puzzling. Our previous work using the 1C11 neuronal model, provided evidence that PrP(C acts as a cell surface receptor. Besides a ubiquitous signaling function of PrP(C, we have described a neuronal specificity pointing to a role of PrP(C in neuronal homeostasis. 1C11 cells, upon appropriate induction, engage into neuronal differentiation programs, giving rise either to serotonergic (1C11(5-HT or noradrenergic (1C11(NE derivatives. METHODOLOGY/PRINCIPAL FINDINGS: The neuronal specificity of PrP(C signaling prompted us to search for PrP(C partners in 1C11-derived bioaminergic neuronal cells. We show here by immunoprecipitation an association of PrP(C with an 80 kDa protein identified by mass spectrometry as the tissue non-specific alkaline phosphatase (TNAP. This interaction occurs in lipid rafts and is restricted to 1C11-derived neuronal progenies. Our data indicate that TNAP is implemented during the differentiation programs of 1C11(5-HT and 1C11(NE cells and is active at their cell surface. Noteworthy, TNAP may contribute to the regulation of serotonin or catecholamine synthesis in 1C11(5-HT and 1C11(NE bioaminergic cells by controlling pyridoxal phosphate levels. Finally, TNAP activity is shown to modulate the phosphorylation status of laminin and thereby its interaction with PrP. CONCLUSION/SIGNIFICANCE: The identification of a novel PrP(C partner in lipid rafts of neuronal cells favors the idea of a role of PrP in multiple functions. Because PrP(C and laminin functionally interact to support neuronal differentiation and memory consolidation, our findings introduce TNAP as a functional protagonist in the PrP(C-laminin interplay. The partnership between TNAP and PrP(C in neuronal cells may provide new clues as to the neurospecificity of PrP(C function.

  14. Protection of adult rat cardiac myocytes from ischemic cell death: role of caveolar microdomains and delta-opioid receptors.

    Science.gov (United States)

    Patel, Hemal H; Head, Brian P; Petersen, Heidi N; Niesman, Ingrid R; Huang, Diane; Gross, Garrett J; Insel, Paul A; Roth, David M

    2006-07-01

    The role of caveolae, membrane microenvironments enriched in signaling molecules, in myocardial ischemia is poorly defined. In the current study, we used cardiac myocytes prepared from adult rats to test the hypothesis that opioid receptors (OR), which are capable of producing cardiac protection in vivo, promote cardiac protection in cardiac myocytes in a caveolae-dependent manner. We determined protein expression and localization of delta-OR (DOR) using coimmunohistochemistry, caveolar fractionation, and immunoprecipitations. DOR colocalized in fractions with caveolin-3 (Cav-3), a structural component of caveolae in muscle cells, and could be immunoprecipitated by a Cav-3 antibody. Immunohistochemistry confirmed plasma membrane colocalization of DOR with Cav-3. Cardiac myocytes were subjected to simulated ischemia (2 h) or an ischemic preconditioning (IPC) protocol (10 min ischemia, 30 min recovery, 2 h ischemia) in the presence and absence of methyl-beta-cyclodextrin (MbetaCD, 2 mM), which binds cholesterol and disrupts caveolae. We also assessed the cardiac protective effects of SNC-121 (SNC), a selective DOR agonist, on cardiac myocytes with or without MbetaCD and MbetaCD preloaded with cholesterol. Ischemia, simulated by mineral oil layering to inhibit gas exchange, promoted cardiac myocyte cell death (trypan blue staining), a response blunted by SNC (37 +/- 3 vs. 59 +/- 3% dead cells in the presence and absence of 1 muM SNC, respectively, P protective effects of IPC or SNC, resulting in cell death comparable to that of the ischemic group. By contrast, SNC-induced protection was not abrogated in cells incubated with cholesterol-saturated MbetaCD, which maintained caveolae structure and function. These findings suggest a key role for caveolae, perhaps through enrichment of signaling molecules, in contributing to protection of cardiac myocytes from ischemic damage.

  15. Diblock copolymers of polystyrene-b-poly(1,3-cyclohexadiene) exhibiting unique three-phase microdomain morphologies

    KAUST Repository

    Misichronis, Konstantinos; Chen, Jihua; Kahk, Jong K.; Imel, Adam; Dadmun, Mark; Hong, Kunlun; Hadjichristidis, Nikolaos; Mays, Jimmy W.; Avgeropoulos, Apostolos

    2016-01-01

    The synthesis and molecular characterization of a series of conformationally asymmetric polystyrene-block-poly(1,3-cyclohexadiene) (PS-b-PCHD) diblock copolymers (PCHD: ∼90% 1,4 and ∼10% 1,2), by sequential anionic copolymerization high vacuum techniques, is reported. A wide range of volume fractions (0.27≤ϕPS≤0.91) was studied by transmission electron microscopy and small-angle X-ray scattering in order to explore in detail the microphase separation behavior of these flexible/semiflexible diblock copolymers. Unusual morphologies, consisting of PCHD core(PCHD-1,4)-shell(PCHD-1,2) cylinders in PS matrix and three-phase (PS, PCHD-1,4, PCHD-1,2) four-layer lamellae, were observed suggesting that the chain stiffness of the PCHD block and the strong dependence of the interaction parameter χ on the PCHD microstructures are important factors for the formation of this unusual microphase separation behavior in PS-b-PCHD diblock copolymers. © 2016 Wiley Periodicals, Inc.

  16. MEMBRANE MOBILITY AND MICRODOMAIN LOCALIZATION OF THE DOPAMINE TRANSPORTER STUDIED BY CONFOCAL FLUORESCENCE CORRELATION SPECTROSCOPY (FCS) AND FRAP

    DEFF Research Database (Denmark)

    Adkins, Erica; (Vægter), Christian Bjerggaard; van Deurs, Bo

    FCS measurements in transiently transfected N2A neuroblastoma cells were impaired by photobleachning suggesting immobilization of the transporter in the membrane. This was confirmed by the use of fluorescence recovery after photobleaching (FRAP), which showed clear recovery of YFP-DAT fluorescence...

  17. A novel negative regulatory function of the phosphoprotein associated with glycosphingolipid-enriched microdomains: blocking Ras activation

    Czech Academy of Sciences Publication Activity Database

    Smida, M.; Posevitz-Fejfar, A.; Hořejší, Václav; Schraven, B.; Lindquist, J.A.

    2007-01-01

    Roč. 110, č. 2 (2007), s. 596-605 ISSN 0006-4971 R&D Projects: GA MŠk 1M0506 Institutional research plan: CEZ:AV0Z50520514 Keywords : PAG * Ras * lipid rafts Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 10.896, year: 2007

  18. Frações dos compostos nitrogenados associados à parede celular em forragens tropicais Fractions of cell wall nitrogenous compounds in tropical forages

    Directory of Open Access Journals (Sweden)

    L.T. Henriques

    2007-02-01

    Full Text Available The total and undegradable fractions of nitrogenous compounds associated to cell wall organic matrix in some tropical forages were evaluated. Samples of corn silage, elephantgrass silage and sugarcane were used. Neutral detergent insoluble nitrogenous compounds were divided in three different fractions associated with: hemicellulose (HN, cellulose (CN, and lignin (LN. The size of the different fractions varied among feeds. A portion of acid detergent insoluble nitrogen, which is the sum of CN and LN, was potentially degradable in the rumen. A portion of HN was not degradable in the rumen. The heterogeneous dimensions of degradable portion of all nitrogenous compounds among feeds can compromise the estimates of cell wall undegradable nitrogen by simple chemical approaches in tropical forages. The LN overestimated the lignin contents and the correction for those compounds on lignin has been suggested.

  19. The effects of glutamine/asparagine content on aggregation and heterologous prion induction by yeast prion-like domains.

    Science.gov (United States)

    Shattuck, Jenifer E; Waechter, Aubrey C; Ross, Eric D

    2017-07-04

    Prion-like domains are low complexity, intrinsically disordered domains that compositionally resemble yeast prion domains. Many prion-like domains are involved in the formation of either functional or pathogenic protein aggregates. These aggregates range from highly dynamic liquid droplets to highly ordered detergent-insoluble amyloid-like aggregates. To better understand the amino acid sequence features that promote conversion to stable, detergent-insoluble aggregates, we used the prediction algorithm PAPA to identify predicted aggregation-prone prion-like domains with a range of compositions. While almost all of the predicted aggregation-prone domains formed foci when expressed in cells, the ability to form the detergent-insoluble aggregates was highly correlated with glutamine/asparagine (Q/N) content, suggesting that high Q/N content may specifically promote conversion to the amyloid state in vivo. We then used this data set to examine cross-seeding between prion-like proteins. The prion protein Sup35 requires the presence of a second prion, [PIN + ], to efficiently form prions, but this requirement can be circumvented by the expression of various Q/N-rich protein fragments. Interestingly, almost all of the Q/N-rich domains that formed SDS-insoluble aggregates were able to promote prion formation by Sup35, highlighting the highly promiscuous nature of these interactions.

  20. Raft-mediated trafficking of apical resident proteins occurs in both direct and transcytotic pathways in polarized hepatic cells : Role of distinct lipid microdomains

    NARCIS (Netherlands)

    Slimane, TA; Trugnan, G; van Ijzendoorn, SCD; Hoekstra, D

    In polarized hepatic cells, pathways and molecular principles mediating the flow of resident apical bile canalicular proteins have not yet been resolved. Herein, we have investigated apical trafficking of a glycosylphosphatidylinositol-linked and two single transmembrane domain proteins on the one

  1. Super-resolution imaging of ciliary microdomains in isolated olfactory sensory neurons using a custom two-color stimulated emission depletion microscope

    Science.gov (United States)

    Meyer, Stephanie A.; Ozbay, Baris N.; Potcoava, Mariana; Salcedo, Ernesto; Restrepo, Diego; Gibson, Emily A.

    2016-06-01

    We performed stimulated emission depletion (STED) imaging of isolated olfactory sensory neurons (OSNs) using a custom-built microscope. The STED microscope uses a single pulsed laser to excite two separate fluorophores, Atto 590 and Atto 647N. A gated timing circuit combined with temporal interleaving of the different color excitation/STED laser pulses filters the two channel detection and greatly minimizes crosstalk. We quantified the instrument resolution to be ˜81 and ˜44 nm, for the Atto 590 and Atto 647N channels. The spatial separation between the two channels was measured to be under 10 nm, well below the resolution limit. The custom-STED microscope is incorporated onto a commercial research microscope allowing brightfield, differential interference contrast, and epifluorescence imaging on the same field of view. We performed immunolabeling of OSNs in mice to image localization of ciliary membrane proteins involved in olfactory transduction. We imaged Ca2+-permeable cyclic nucleotide gated (CNG) channel (Atto 594) and adenylyl cyclase type III (ACIII) (Atto 647N) in distinct cilia. STED imaging resolved well-separated subdiffraction limited clusters for each protein. We quantified the size of each cluster to have a mean value of 88±48 nm and 124±43 nm, for CNG and ACIII, respectively. STED imaging showed separated clusters that were not resolvable in confocal images.

  2. mRNA decay is regulated via the spatial sequestration of the conserved 5 '-3 ' exoribonuclease Xrn1 at a specific microdomain of the yeast plasma membrane

    Czech Academy of Sciences Publication Activity Database

    Vaškovičová, Katarína; Awadová, Thuraya; Veselá, Petra; Balážová, M.; Opekarová, Miroslava; Malínský, Jan

    2017-01-01

    Roč. 96, č. 6 (2017), s. 591-599 ISSN 0171-9335 R&D Projects: GA ČR(CZ) GA15-10641S Institutional support: RVO:68378041 Keywords : plasma membrane compartmentalization * eisosome * Pil1 Subject RIV: EA - Cell Biology OBOR OECD: Cell biology Impact factor: 3.712, year: 2016

  3. Morphogenesis of respiratory syncytial virus in human primary nasal ciliated epithelial cells occurs at surface membrane microdomains that are distinct from cilia

    International Nuclear Information System (INIS)

    Jumat, Muhammad Raihan; Yan, Yan; Ravi, Laxmi Iyer; Wong, Puisan; Huong, Tra Nguyen; Li, Chunwei; Tan, Boon Huan; Wang, De Yun; Sugrue, Richard J.

    2015-01-01

    The distribution of cilia and the respiratory syncytial virus (RSV) nucleocapsid (N) protein, fusion (F) protein, attachment (G) protein, and M2-1 protein in human ciliated nasal epithelial cells was examined at between 1 and 5 days post-infection (dpi). All virus structural proteins were localized at cell surface projections that were distinct from cilia. The F protein was also trafficked into the cilia, and while its presence increased as the infection proceeded, the N protein was not detected in the cilia at any time of infection. The presence of the F protein in the cilia correlated with cellular changes in the cilia and reduced cilia function. At 5 dpi extensive cilia loss and further reduced cilia function was noted. These data suggested that although RSV morphogenesis occurs at non-cilia locations on ciliated nasal epithelial cells, RSV infection induces changes in the cilia body that leads to extensive cilia loss. - Highlights: • Respiratory syncytial virus (RSV) infects nasal ciliated epithelial cells. • Virus morphogenesis occurs within filamentous projections distinct from cilia. • The RSV N protein was not detected in the cilia at any time during infection. • Trafficking of the F protein into the cilia occurred early in infection. • Presence of the F protein in cilia correlated with impaired cilia function

  4. Morphogenesis of respiratory syncytial virus in human primary nasal ciliated epithelial cells occurs at surface membrane microdomains that are distinct from cilia

    Energy Technology Data Exchange (ETDEWEB)

    Jumat, Muhammad Raihan [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Yan, Yan [Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119228 (Singapore); Ravi, Laxmi Iyer [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Wong, Puisan [Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore 117510 (Singapore); Huong, Tra Nguyen [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Li, Chunwei [Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119228 (Singapore); Tan, Boon Huan [Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore 117510 (Singapore); Wang, De Yun [Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119228 (Singapore); Sugrue, Richard J., E-mail: rjsugrue@ntu.edu.sg [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore)

    2015-10-15

    The distribution of cilia and the respiratory syncytial virus (RSV) nucleocapsid (N) protein, fusion (F) protein, attachment (G) protein, and M2-1 protein in human ciliated nasal epithelial cells was examined at between 1 and 5 days post-infection (dpi). All virus structural proteins were localized at cell surface projections that were distinct from cilia. The F protein was also trafficked into the cilia, and while its presence increased as the infection proceeded, the N protein was not detected in the cilia at any time of infection. The presence of the F protein in the cilia correlated with cellular changes in the cilia and reduced cilia function. At 5 dpi extensive cilia loss and further reduced cilia function was noted. These data suggested that although RSV morphogenesis occurs at non-cilia locations on ciliated nasal epithelial cells, RSV infection induces changes in the cilia body that leads to extensive cilia loss. - Highlights: • Respiratory syncytial virus (RSV) infects nasal ciliated epithelial cells. • Virus morphogenesis occurs within filamentous projections distinct from cilia. • The RSV N protein was not detected in the cilia at any time during infection. • Trafficking of the F protein into the cilia occurred early in infection. • Presence of the F protein in cilia correlated with impaired cilia function.

  5. Clarin-1, encoded by the Usher Syndrome III causative gene, forms a membranous microdomain: possible role of clarin-1 in organizing the actin cytoskeleton.

    Science.gov (United States)

    Tian, Guilian; Zhou, Yun; Hajkova, Dagmar; Miyagi, Masaru; Dinculescu, Astra; Hauswirth, William W; Palczewski, Krzysztof; Geng, Ruishuang; Alagramam, Kumar N; Isosomppi, Juha; Sankila, Eeva-Marja; Flannery, John G; Imanishi, Yoshikazu

    2009-07-10

    Clarin-1 is the protein product encoded by the gene mutated in Usher syndrome III. Although the molecular function of clarin-1 is unknown, its primary structure predicts four transmembrane domains similar to a large family of membrane proteins that include tetraspanins. Here we investigated the role of clarin-1 by using heterologous expression and in vivo model systems. When expressed in HEK293 cells, clarin-1 localized to the plasma membrane and concentrated in low density compartments distinct from lipid rafts. Clarin-1 reorganized actin filament structures and induced lamellipodia. This actin-reorganizing function was absent in the modified protein encoded by the most prevalent North American Usher syndrome III mutation, the N48K form of clarin-1 deficient in N-linked glycosylation. Proteomics analyses revealed a number of clarin-1-interacting proteins involved in cell-cell adhesion, focal adhesions, cell migration, tight junctions, and regulation of the actin cytoskeleton. Consistent with the hypothesized role of clarin-1 in actin organization, F-actin-enriched stereocilia of auditory hair cells evidenced structural disorganization in Clrn1(-/-) mice. These observations suggest a possible role for clarin-1 in the regulation and homeostasis of actin filaments, and link clarin-1 to the interactive network of Usher syndrome gene products.

  6. Useable diffraction data from a multiple microdomain-containing crystal of Ascaris suum As-p18 fatty-acid-binding protein using a microfocus beamline

    International Nuclear Information System (INIS)

    Gabrielsen, Mads; Riboldi-Tunnicliffe, Alan; Ibáñez-Shimabukuro, Marina; Griffiths, Kate; Roe, Andrew J.; Cooper, Alan; Smith, Brian O.; Córsico, Betina; Kennedy, Malcolm W.

    2012-01-01

    As-p18, an unusual fatty-acid-binding protein from a parasitic nematode, was expressed in bacteria, purified and crystallized. The use of a microfocus beamline was essential for data collection. As-p18 is a fatty-acid-binding protein from the parasitic nematode Ascaris suum. Although it exhibits sequence similarity to mammalian intracellular fatty-acid-binding proteins, it contains features that are unique to nematodes. Crystals were obtained, but initial diffraction data analysis revealed that they were composed of a number of ‘microdomains’. Interpretable data could only be collected using a microfocus beamline with a beam size of 12 × 8 µm

  7. Inhibition of GluR Current in Microvilli of Sensory Neurons via Na+-Microdomain Coupling Among GluR, HCN Channel, and Na+/K+ Pump

    Directory of Open Access Journals (Sweden)

    Yasuhiro Kawasaki

    2018-04-01

    Full Text Available Glutamatergic dendritic EPSPs evoked in cortical pyramidal neurons are depressed by activation of hyperpolarization-activated cyclic nucleotide-gated (HCN channels expressed in dendritic spines. This depression has been attributed to shunting effects of HCN current (Ih on input resistance or Ih deactivation. Primary sensory neurons in the rat mesencephalic trigeminal nucleus (MTN have the somata covered by spine-like microvilli that express HCN channels. In rat MTN neurons, we demonstrated that Ih enhancement apparently diminished the glutamate receptor (GluR current (IGluR evoked by puff application of glutamate/AMPA and enhanced a transient outward current following IGluR (OT-IGluR. This suggests that some outward current opposes inward IGluR. The IGluR inhibition displayed a U-shaped voltage-dependence with a minimal inhibition around the resting membrane potential, suggesting that simple shunting effects or deactivation of Ih cannot explain the U-shaped voltage-dependence. Confocal imaging of Na+ revealed that GluR activation caused an accumulation of Na+ in the microvilli, which can cause a negative shift of the reversal potential for Ih (Eh. Taken together, it was suggested that IGluR evoked in MTN neurons is opposed by a transient decrease or increase in standing inward or outward Ih, respectively, both of which can be caused by negative shifts of Eh, as consistent with the U-shaped voltage-dependence of the IGluR inhibition and the OT-IGluR generation. An electron-microscopic immunohistochemical study revealed the colocalization of HCN channels and glutamatergic synapses in microvilli of MTN neurons, which would provide a morphological basis for the functional interaction between HCN and GluR channels. Mathematical modeling eliminated the possibilities of the involvements of Ih deactivation and/or shunting effect and supported the negative shift of Eh which causes the U-shaped voltage-dependent inhibition of IGluR.

  8. Use of quantitative optical imaging to examine the role of cholesterol-rich lipid raft microdomains in the migration of breast cancer cells

    Science.gov (United States)

    You, Minghai; Chen, Jianling; Wang, Shaobing; Dong, Shiqing; Wang, Yuhua; Xie, Shusen; Wang, Zhengchao; Yang, Hongqin

    2018-04-01

    Lipid rafts have been extensively studied and shown to be involved in many cancers, including breast cancer. However, the exact role of lipid rafts in the migration of breast cancer cells remains unclear. This study was designed to examine lipid rafts (cholesterol) in the plasma membrane of breast cancer cells (MDA-MB-231 and MCF-7) and normal breast epithelial cells (MCF-10A) through generalized polarization values, and further investigate the role of cholesterol-rich lipid rafts in the migration of breast cancer cells. The results showed that the plasma membrane in breast cancer cells was more orderly than that in normal epithelial cells; this was correlated with expression changes of matrix metallopeptidase 9 (MMP-9) and urokinase-type plasminogen activator receptor (uPAR), the markers of cancer cell migration. Moreover, the breast cancer cells were more sensitive to the reagent that induced cholesterol depletion than the normal breast epithelial cells, while the capacity of cancer cells to migrate decreased significantly according to changes in MMP-9 and uPAR expression. To our best knowledge, this is the first demonstration of the relationship between cholesterol-rich lipid rafts and the migration of breast cancer cells; it could be useful for the prevention of breast cancer and early treatment through reduction of the level of cholesterol in the plasma membrane of the cells.

  9. A 43-kDa TDP-43 species is present in aggregates associated with frontotemporal lobar degeneration.

    Directory of Open Access Journals (Sweden)

    Patrick J Bosque

    Full Text Available The transactive response DNA-binding protein (TDP-43 is a major component of the abnormal intracellular inclusions that occur in two common neurodegenerative diseases of humans: (1 a subtype of frontotemporal lobar degeneration and (2 amyotrophic lateral sclerosis. Genetics, experiments in cultured cells and animals, and analogy with other neurodegenerative diseases indicate that the process of TDP-43 aggregation is fundamental to the pathogenesis of these 2 diseases, but the process by which this aggregation occurs is not understood. Biochemical fractionation has revealed truncated, phosphorylated and ubiquitinated forms of TDP-43 in a detergent-insoluble fraction from diseased CNS tissue, while these forms are absent from controls. However, a large amount of the normally predominant 43-kDa form of TDP-43 is present in the detergent-insoluble fraction even from control brains, so it has not been possible to determine if this form of TDP-43 is part of pathological aggregates in frontotemporal lobe degeneration. We used semi-denaturing detergent-agarose gel electrophoresis to isolate high molecular weight aggregates containing TDP-43 that are present in the cerebral cortex of individuals with frontotemporal lobar degeneration but not that of controls. These aggregates include the same covalently modified forms of TDP-43 seen in detergent-insoluble extracts. In addition, aggregates include a 43-kDa TDP-43 species. This aggregated 43-kDa form of TDP-43 is absent or present only at low levels in controls. The presence of 43-kDa TDP-43 in aggregates raises the possibility that covalent modification is not a primary step in the pathogenic aggregation of TDP-43 associated with frontotemporal lobar degeneration and amyotrophic lateral sclerosis.

  10. Synthesis and localization of two sulphated glycoproteins associated with basement membranes and the extracellular matrix

    DEFF Research Database (Denmark)

    Hogan, B L; Taylor, A; Kurkinen, M

    1982-01-01

    's membrane by mouse embryo parietal endoderm cells (Hogan, B. L.M., A. Taylor, and A.R. Cooper, 1982, Dev. Biol., 90:210-214). Both the Mr 180,000 and 150,000 sgps are deposited in the detergent-insoluble matrix of cultured cells, but they do not apparently undergo any disulphide-dependent intermolecular...... interactions and are not precursors or products of each other. They contain asparagine-linked oligosaccharides, but these are not the exclusive sites of sulphate labeling. Antiserum raised against the Mr 150,000 sgp C of Reichert's membranes has been used in an immunohistochemical analysis of rat skin...

  11. Effect of 0.4 mT power frequency magnetic field on F-actin assembly of CHL cells

    International Nuclear Information System (INIS)

    Chu Keping; Cai Zhiyin; Zhang Yukun; Xia Nuohong

    2007-01-01

    Objective: To investigate the effect of 0.4mT power frequency magnetic field on the microfilament (F- actin) assembly of Chinese hamster lung (CHL) cells. Methods: F-actin were marked with immunohistochemical method, then observed under a confocal microscope. The content of ECFRs in the preparation of the detergent-insoluble cytoskeleton was measured with Western-blotting. Results: The stress fiber's of CHL cells decreased after exposure to 0.4mT power frequency magnetic field for 30min, as well as after treatment with epidermal growth factor (ECF) of 50nM. Filopodias appeared at the periphery after exposure to magnetic field as well as treatment with EGF. The EGF receptor mass associated with the detergent-insoluble cytoskeleton increased after exposure to magnetic field as well as treatment with EGF. Conclusion: 0.4mT power frequency magnetic field induced assembly of F-actin in CHL cells. The change induced by magnetic field would be related to clustering of EGFR induced by magnetic field and passing the signal down. (authors)

  12. Age- and Hypertension-Associated Protein Aggregates in Mouse Heart Have Similar Proteomic Profiles.

    Science.gov (United States)

    Ayyadevara, Srinivas; Mercanti, Federico; Wang, Xianwei; Mackintosh, Samuel G; Tackett, Alan J; Prayaga, Sastry V S; Romeo, Francesco; Shmookler Reis, Robert J; Mehta, Jawahar L

    2016-05-01

    Neurodegenerative diseases are largely defined by protein aggregates in affected tissues. Aggregates contain some shared components as well as proteins thought to be specific for each disease. Aggregation has not previously been reported in the normal, aging heart or the hypertensive heart. Detergent-insoluble protein aggregates were isolated from mouse heart and characterized on 2-dimensional gels. Their levels increased markedly and significantly with aging and after sustained angiotensin II-induced hypertension. Of the aggregate components identified by high-resolution proteomics, half changed in abundance with age (392/787) or with sustained hypertension (459/824), whereas 30% (273/901) changed concordantly in both, each Phypertensive hearts, we posited that aging of fibroblasts may contribute to the aggregates observed in cardiac tissue. Indeed, as cardiac myofibroblasts "senesced" (approached their replicative limit) in vitro, they accrued aggregates with many of the same constituent proteins observed in vivo during natural aging or sustained hypertension. In summary, we have shown for the first time that compact (detergent-insoluble) protein aggregates accumulate during natural aging, chronic hypertension, and in vitro myofibroblast senescence, sharing many common proteins. Thus, aggregates that arise from disparate causes (aging, hypertension, and replicative senescence) may have common underlying mechanisms of accrual. © 2016 American Heart Association, Inc.

  13. Direct hierarchical assembly of nanoparticles

    Science.gov (United States)

    Xu, Ting; Zhao, Yue; Thorkelsson, Kari

    2014-07-22

    The present invention provides hierarchical assemblies of a block copolymer, a bifunctional linking compound and a nanoparticle. The block copolymers form one micro-domain and the nanoparticles another micro-domain.

  14. Microdomaines ordonnés de la membrane plasmique végétale : caractérisation et rôle dans la signalisation associée à la défense

    OpenAIRE

    Grosjean , Kevin

    2015-01-01

    Recent studies have shown the existence of lateral sub-compartmentalization of plant plasmamembrane similar to that of animal cells and yeasts. The aim of this thesis was to provide newelements to characterize this compartmentalization (physical properties of specific domains,mechanisms of their formation, determination of their size, etc...) and to study its role in thephysiology of plant cells.The development spectral confocal microscopy coupled with the use of an environment-sensitiveprobe...

  15. Solvent Annealing Induced Perpendicular Orientation of Cylindrical Microdomains in Polystyrene-b-poly(4-hydroxyl styrene)/PEG Oligomer Blend Thin Film Made by Spin-coating from Selective Solvent

    Energy Technology Data Exchange (ETDEWEB)

    Matsutani, Taito; Yamamoto, Katsuhiro, E-mail: yamamoto.katsuhiro@nitech.ac.jp [Department of Materials Science and Technology, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2011-01-01

    The microphase separated structure of PS-b-PHS/PEG blend thin film with thickness of 500 {approx} 600 nm was investigated by grazing incidence small angle X-ray scattering. The thin film was obtained by two different solutions; one was THF which was common good solvent for all components of polymers used here. The other is toluene which was selective solvent for PS and poor-solvent for PHS and PEG. The equilibrium morphology of the block copolymer and blend sample was hexagonally packed cylinder in the bulk and thin film. The structure in the thin film obtained by spin cast from toluene solution was non-equilibrium. After THF vopar annealing of the thin film (cast from toluene), the highly ordered and perpendicular oriented cylindrical structure was obtained. Perpendicular orientation was failure when the thin film sample made by spin cast from THF solution and subsequent THF vapor annealing. The perpendicular nano-holes were fabricated after removing PEG oligomer by washing with water.

  16. Preparation of synaptic plasma membrane and postsynaptic density proteins using a discontinuous sucrose gradient.

    Science.gov (United States)

    Bermejo, Marie Kristel; Milenkovic, Marija; Salahpour, Ali; Ramsey, Amy J

    2014-09-03

    Neuronal subcellular fractionation techniques allow the quantification of proteins that are trafficked to and from the synapse. As originally described in the late 1960's, proteins associated with the synaptic plasma membrane can be isolated by ultracentrifugation on a sucrose density gradient. Once synaptic membranes are isolated, the macromolecular complex known as the post-synaptic density can be subsequently isolated due to its detergent insolubility. The techniques used to isolate synaptic plasma membranes and post-synaptic density proteins remain essentially the same after 40 years, and are widely used in current neuroscience research. This article details the fractionation of proteins associated with the synaptic plasma membrane and post-synaptic density using a discontinuous sucrose gradient. Resulting protein preparations are suitable for western blotting or 2D DIGE analysis.

  17. Galectin-4 and small intestinal brush border enzymes form clusters

    DEFF Research Database (Denmark)

    Danielsen, E M; van Deurs, B

    1997-01-01

    that galectin-4 is indeed an intestinal brush border protein; we also localized galectin-4 throughout the cell, mainly associated with membraneous structures, including small vesicles, and to the rootlets of microvillar actin filaments. This was confirmed by subcellular fractionation, showing about half...... by a nonclassical pathway, and the brush border enzymes represent a novel class of natural ligands for a member of the galectin family. Newly synthesized galectin-4 is rapidly "trapped" by association with intracellular structures prior to its apical secretion, but once externalized, association with brush border......Detergent-insoluble complexes prepared from pig small intestine are highly enriched in several transmembrane brush border enzymes including aminopeptidase N and sucrase-isomaltase, indicating that they reside in a glycolipid-rich environment in vivo. In the present work galectin-4, an animal lectin...

  18. Protein kinase A regulatory subunit distribution in medulloblastoma

    International Nuclear Information System (INIS)

    Mucignat-Caretta, Carla; Denaro, Luca; Redaelli, Marco; D'Avella, Domenico; Caretta, Antonio

    2010-01-01

    Previous studies showed a differential distribution of the four regulatory subunits of cAMP-dependent protein kinases inside the brain, that changed in rodent gliomas: therefore, the distribution of these proteins inside the brain can give information on the functional state of the cells. Our goal was to examine human brain tumors to provide evidence for a differential distribution of protein kinase A in different tumors. The distribution of detergent insoluble regulatory (R1 and R2) and catalytic subunits of cAMP dependent kinases was examined in pediatric brain tumors by immunohistochemistry and fluorescent cAMP analogues binding. R2 is organized in large single dots in medulloblastomas, while it has a different appearance in other tumors. Fluorescent cAMP labelling was observed only in medulloblastoma. A different distribution of cAMP dependent protein kinases has been observed in medulloblastoma

  19. Biological effects of CCS in the absence of SOD1 enzyme activation: implications for disease in a mouse model for ALS.

    Science.gov (United States)

    Proescher, Jody B; Son, Marjatta; Elliott, Jeffrey L; Culotta, Valeria C

    2008-06-15

    The CCS copper chaperone is critical for maturation of Cu, Zn-superoxide dismutase (SOD1) through insertion of the copper co-factor and oxidization of an intra-subunit disulfide. The disulfide helps stabilize the SOD1 polypeptide, which can be particularly important in cases of amyotrophic lateral sclerosis (ALS) linked to misfolding of mutant SOD1. Surprisingly, however, over-expressed CCS was recently shown to greatly accelerate disease in a G93A SOD1 mouse model for ALS. Herein we show that disease in these G93A/CCS mice correlates with incomplete oxidation of the SOD1 disulfide. In the brain and spinal cord, CCS over-expression failed to enhance oxidation of the G93A SOD1 disulfide and if anything, effected some accumulation of disulfide-reduced SOD1. This effect was mirrored in culture with a C244,246S mutant of CCS that has the capacity to interact with SOD1 but can neither insert copper nor oxidize the disulfide. In spite of disulfide effects, there was no evidence for increased SOD1 aggregation. If anything, CCS over-expression prevented SOD1 misfolding in culture as monitored by detergent insolubility. This protection against SOD1 misfolding does not require SOD1 enzyme activation as the same effect was obtained with the C244,246S allele of CCS. In the G93A SOD1 mouse, CCS over-expression was likewise associated with a lack of obvious SOD1 misfolding marked by detergent insolubility. CCS over-expression accelerates SOD1-linked disease without the hallmarks of misfolding and aggregation seen in other mutant SOD1 models. These studies are the first to indicate biological effects of CCS in the absence of SOD1 enzymatic activation.

  20. Characterization of the epidermal growth factor receptor associated with cytoskeletons of A431 cells

    International Nuclear Information System (INIS)

    Roy, L.M.; Gittinger, C.K.; Landreth, G.E.

    1989-01-01

    Epidermal growth factor receptors (EGF-R) have been shown to be associated with the detergent-insoluble cytoskeleton of A431 cells, where they retained both a functional ligand-binding domain and tyrosine kinase activity. In the present study we have characterized the tyrosine kinase and ligand binding activities of this cytoskeletally associated EGF-R. The tyrosine kinase activity of the cytoskeletally associated EGF-R was stimulated by EGF treatment of intact cells as evidenced by increased autophosphorylation and phosphorylation of the exogenous substrate angiotensin II (AII). The kinetic behavior of the EGF-R associated with cytoskeletons of EGF-treated cells was similar to that of purified receptors. The stimulation of the receptor kinase activity required EGF treatment of intact cells prior to Triton extraction. If cytoskeletons were prepared from untreated cells and then incubated with EGF, there was no stimulation of the detergent-insoluble receptor kinase activity, indicating that the immobilized receptor was unable to undergo EGF-stimulated activation. Comparison of peptide maps from soluble and cytoskeletally associated EGF-R revealed qualitatively similar patterns; however, they are distinguished by a prominent 46 kD band in digests of the cytoskeletal EGF-R. Saturable binding of 125I-EGF to A431 cytoskeletons prepared from adherent and suspended cells demonstrated the presence of specific receptors on the cytoskeleton. High-affinity EGF-R were preferentially retained upon detergent extraction of adherent cells, whereas both low- and high-affinity receptors were solubilized from the cytoskeletons of suspended cells. Suspension of cells resulted in the solubilization of an additional 15% of the EGF-R to that solubilized in adherent cells, indicating that EGF-R can reversibly associate with the structural elements of the cell

  1. Raft-like membrane domains in pathogenic microorganisms.

    Science.gov (United States)

    Farnoud, Amir M; Toledo, Alvaro M; Konopka, James B; Del Poeta, Maurizio; London, Erwin

    2015-01-01

    The lipid bilayer of the plasma membrane is thought to be compartmentalized by the presence of lipid-protein microdomains. In eukaryotic cells, microdomains composed of sterols and sphingolipids, commonly known as lipid rafts, are believed to exist, and reports on the presence of sterol- or protein-mediated microdomains in bacterial cell membranes are also appearing. Despite increasing attention, little is known about microdomains in the plasma membrane of pathogenic microorganisms. This review attempts to provide an overview of the current state of knowledge of lipid rafts in pathogenic fungi and bacteria. The current literature on characterization of microdomains in pathogens is reviewed, and their potential role in growth, pathogenesis, and drug resistance is discussed. Better insight into the structure and function of membrane microdomains in pathogenic microorganisms might lead to a better understanding of their pathogenesis and development of raft-mediated approaches for therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Hydrophobically modified polyelectrolytes : synthesis, properties and interactions with surfactants

    NARCIS (Netherlands)

    Nieuwkerk, A.C.

    1998-01-01

    Hydrophobically modified polyelectrolytes can form micelle-like aggregates, so-called microdomains, in aqueous solution. The hydrophobic side chains constitute the apolar inner part of these microdomains and the hydrophilic groups on the polyelectrolyte backbone are at the surface of the

  3. In vitro utilization of lime treated olive cake as a component of complete feed for small ruminants.

    Science.gov (United States)

    Ishfaq, A; Sharma, R K; Rastogi, A; Malla, B A; Farooq, J

    2015-01-01

    The current in vitro study was carried out to determine the chemical composition and inclusion level of lime treated olive cake on acid detergent fiber (ADF) replacement basis in adult male goats. Crude olive cake was collected and evaluated for proximate composition and protein fractionation. It was treated with 6% lime and incubated for 1 week under room temperature in 2 kg sealed polythene bags and was evaluated for proximate composition after incubation. Different isonitrogenous complete diets containing 0-50% of lime treated olive cake on ADF replacement basis were formulated as per the requirement of adult male goats. In ADF replacement, fiber and concentrate sources were replaced by lime treated olive cake by replacing the 0-50% ADF percentage of the total 40% ADF value of complete feed. The formulated complete diets were tested for in vitro degradation parameters. Treatment of olive cake with 6% slaked lime increased availability of cellulose and alleviated digestibility depression caused by high ether extract percentage. Organic matter, nitrogen free extract, ADF and neutral detergent fiber were significantly lowered by lime treatment of olive cake. The cornell net carbohydrate and protein system analysis showed that non-degradable protein represented by acid detergent insoluble nitrogen (ADIN) was 21.71% whereas the non-available protein represented by neutral detergent insoluble nitrogen (NDIN) was 38.86% in crude olive cake. The in vitro dry matter degradation (IVDMD) values were comparable at all replacement levels. However, a point of inflection was observed at 40% ADF replacement level, which was supported by truly degradable organic matter (TDOM), microbial biomass production (MBP), efficiency of MBP and partitioning factor values (PF). In our study, we concluded that there is comparable difference in composition of Indian olive cake when compared with European olive cake. The most important finding was that about 78% of nitrogen present in Indian

  4. Protein co-products and by-products of the biodiesel industry for ruminants feeding

    Directory of Open Access Journals (Sweden)

    Ricardo Andrés Botero Carrera

    2012-05-01

    Full Text Available The objective of the experiment was to classify 20 protein co-products and by-products of the biodiesel industry with potential to use in ruminant feeding. The meals evaluated were: cottonseed, canudo-de-pito, crambe, sunflower, castor-oil seeds detoxified with calcium, non-detoxified castor-oil seeds and soybean; and the cakes were: cottonseed, peanut, babassu, crambe, palm oil, sunflower, licuri, macauba seeds, non-detoxified castor-oil seeds, turnip and jatropha. The samples were quantified to determine dry matter (DM, organic matter (OM, crude protein (CP, ether extract (EE, neutral detergent fiber corrected for ash and protein (NDFap, non-fiber carbohydrates (NFC, acid detergent fiber corrected for ash and protein (ADFap, lignin, cutin and starch levels. The CP profile was characterized in fractions A, B1, B2, B3 and C. The in vitro dry matter digestibility (IVDMD, in vitro neutral detergent fiber digestibility (IVNDFD, rumen degradable and undegradable protein, intestinal digestibility, indigestible neutral detergent fiber and undegradable neutral detergent insoluble protein were evaluated. The OM, CP, EE, NDFap, NFC, ADFap, lignin, cutin and starch contents varied from 81.95 to 95.41%, 18.92 to 57.75%, 0.56 to 18.40%, 10.13 to 62.30%, 3.89 to 27.88%, 6.15 to 36.86%, 1.19 to 5.04%, 0 to 17.87% and 0.68 to 14.50%, respectively. The values of fractions A, B1, B2, B3 and C ranged from 5.40 to 43.31%, 0.08 to 37.63%, 16.75 to 79.39%, 1.86 to 59.15% and 0.60 to 11.47%, respectively. Concentrations of IVDMD, IVNDFD, rumen-degradable and undegradable protein, intestinal digestibility, indigestible NDF and undegradable neutral detergent insoluble protein ranged from 31.00 to 95.92%, 55.04 to 97.74%, 41.06 to 97.61%, 2.39 to 58.94, 9.27 to 94.26%, 1.05 to 40.80% and 0.29 to 2.92%, respectively. Some of these products can replace soybean meal, specially the Macauba seeds cake, cottonseed meal and peanut and turnip cakes based on digestive

  5. Aggregation of ALS-linked FUS mutant sequesters RNA binding proteins and impairs RNA granules formation

    Energy Technology Data Exchange (ETDEWEB)

    Takanashi, Keisuke; Yamaguchi, Atsushi, E-mail: atsyama@restaff.chiba-u.jp

    2014-09-26

    Highlights: • Aggregation of ALS-linked FUS mutant sequesters ALS-associated RNA-binding proteins (FUS wt, hnRNP A1, and hnRNP A2). • Aggregation of ALS-linked FUS mutant sequesters SMN1 in the detergent-insoluble fraction. • Aggregation of ALS-linked FUS mutant reduced the number of speckles in the nucleus. • Overproduced ALS-linked FUS mutant reduced the number of processing-bodies (PBs). - Abstract: Protein aggregate/inclusion is one of hallmarks for neurodegenerative disorders including amyotrophic lateral sclerosis (ALS). FUS/TLS, one of causative genes for familial ALS, encodes a multifunctional DNA/RNA binding protein predominantly localized in the nucleus. C-terminal mutations in FUS/TLS cause the retention and the inclusion of FUS/TLS mutants in the cytoplasm. In the present study, we examined the effects of ALS-linked FUS mutants on ALS-associated RNA binding proteins and RNA granules. FUS C-terminal mutants were diffusely mislocalized in the cytoplasm as small granules in transiently transfected SH-SY5Y cells, whereas large aggregates were spontaneously formed in ∼10% of those cells. hnRNP A1, hnRNP A2, and SMN1 as well as FUS wild type were assembled into stress granules under stress conditions, and these were also recruited to FUS mutant-derived spontaneous aggregates in the cytoplasm. These aggregates stalled poly(A) mRNAs and sequestered SMN1 in the detergent insoluble fraction, which also reduced the number of nuclear oligo(dT)-positive foci (speckles) in FISH (fluorescence in situ hybridization) assay. In addition, the number of P-bodies was decreased in cells harboring cytoplasmic granules of FUS P525L. These findings raise the possibility that ALS-linked C-terminal FUS mutants could sequester a variety of RNA binding proteins and mRNAs in the cytoplasmic aggregates, which could disrupt various aspects of RNA equilibrium and biogenesis.

  6. In vitro utilization of lime treated olive cake as a component of complete feed for small ruminants

    Directory of Open Access Journals (Sweden)

    A. Ishfaq

    2015-01-01

    Full Text Available Aim: The current in vitro study was carried out to determine the chemical composition and inclusion level of lime treated olive cake on acid detergent fiber (ADF replacement basis in adult male goats. Materials and Methods: Crude olive cake was collected and evaluated for proximate composition and protein fractionation. It was treated with 6% lime and incubated for 1 week under room temperature in 2 kg sealed polythene bags and was evaluated for proximate composition after incubation. Different isonitrogenous complete diets containing 0-50% of lime treated olive cake on ADF replacement basis were formulated as per the requirement of adult male goats. In ADF replacement, fiber and concentrate sources were replaced by lime treated olive cake by replacing the 0-50% ADF percentage of the total 40% ADF value of complete feed. The formulated complete diets were tested for in vitro degradation parameters. Results: Treatment of olive cake with 6% slaked lime increased availability of cellulose and alleviated digestibility depression caused by high ether extract percentage. Organic matter, nitrogen free extract, ADF and neutral detergent fiber were significantly lowered by lime treatment of olive cake. The cornell net carbohydrate and protein system analysis showed that non-degradable protein represented by acid detergent insoluble nitrogen (ADIN was 21.71% whereas the non-available protein represented by neutral detergent insoluble nitrogen (NDIN was 38.86% in crude olive cake. The in vitro dry matter degradation (IVDMD values were comparable at all replacement levels. However, a point of inflection was observed at 40% ADF replacement level, which was supported by truly degradable organic matter (TDOM, microbial biomass production (MBP, efficiency of MBP and partitioning factor values (PF. Conclusion: In our study, we concluded that there is comparable difference in composition of Indian olive cake when compared with European olive cake. The most

  7. Fractionation of carbohydrate and protein content of some forage feeds of ruminants for nutritive evaluation.

    Science.gov (United States)

    Das, Lalatendu Keshary; Kundu, S S; Kumar, Dinesh; Datt, Chander

    2015-02-01

    To evaluate some forage feeds of ruminants in terms of their carbohydrate (CHO) and protein fractions using Cornell Net Carbohydrate and Protein System (CNCPS). Eleven ruminant feeds (six green fodders - maize, oat, sorghum, bajra, cowpea, berseem and five range herbages - para grass, guinea grass, hedge lucerne, setaria grass and hybrid napier) were selected for this study. Each feed was chemically analyzed for proximate principles (dry matter, crude protein [CP], ether extract, organic matter and ash), fiber fractions (neutral detergent fiber, acid detergent fiber, acid detergent lignin, cellulose and hemicellulose), primary CHO fractions (CHO, non-structural CHO, structural CHO and starch) and primary protein fractions (neutral detergent insoluble CP, acid detergent insoluble CP, non-protein nitrogen and soluble protein). The results were fitted to the equations of CNCPS to arrive at various CHO (CA - fast degrading, CB1 - intermediate degrading, CB2 - slow degrading and CC - non-degrading or unavailable) and protein (PA - instantaneously degrading, PB1 - fast degrading, PB2 - intermediate degrading, PB3 - slow degrading and PC - non-degrading or unavailable) fractions of test feeds. Among green fodders, cowpea and berseem had higher CA content while except hedge lucerne all range herbages had lower CA values. CB1 content of all feeds was low but similar. All feeds except cowpea, berseem, and hedge lucerne contained higher CB2 values. Oat among green fodders and hybrid napier among range herbages had lower CC fraction. Feeds such as bajra, cowpea, berseem and the setaria grass contained lower PA fraction. All green fodders had higher PB1 content except maize and cowpea while all range herbages had lower PB1 values except hedge lucerne. Para grass and hybrid napier contained exceptionally low PB2 fraction among all feeds. Low PC contents were reported in oat and berseem fodders. Based on our findings, it was concluded that feeds with similar CP and CHO content

  8. Avaliação de fontes de amônia para o tratamento de fenos de gramíneas tropicais. 2. Compostos nitrogenados Evaluation of ammonia sources to tropical grasses hays treatment. 2. Nitrogen compounds

    Directory of Open Access Journals (Sweden)

    Ricardo Andrade Reis

    2001-06-01

    Full Text Available Este estudo foi desenvolvido para se avaliarem as alterações nos conteúdos de compostos nitrogenados dos fenos de braquiária decumbens (Brachiaria decumbnes Stapf e jaraguá (Hyparrhenia rufa Ness Stapf não-tratados, tratados com uréia (U - 5,4% da MS, uréia (UL - 5,4% da MS mais labe-labe (Lablab purpureus L. Sweet, cv. Highworth-3,0% da MS ou amônia anidra (NH3 -3,0% da MS. A aplicação de amônia anidra ou de uréia aumentou os teores de N total, N insolúvel em detergente neutro, N insolúvel em detergente ácido, N não-protéico e N amoniacal. A amonização diminuiu as relações N insolúvel em detergente neutro/N total e N insolúvel em detergente ácido/N total e aumentou as relações N não-protéico/N total, N amoniacal/N total e os teores de PB. O N aplicado foi retido, principalmente, nas formas de NNP e N amoniacal.The experiment was conducted to evaluate the changes on the nitrogen compounds of the Brachiaria decumbens Stapf, jaraguá (Hyparrhenia rufa Ness Stapf grasses hay, untreated, treated with urea (5.4% DM, urea plus lab-lab (UL-5.4% DM plus Lablab purpureus L. Sweet, cv. Highworth-3.0% DM and anhydrous ammonia (NH3 - 3.0% DM. The chemical treatment with urea or NH3 increased the total N, neutral detergent insoluble N 9NDIN, acid detergent insoluble N (ADIN, non nitrogen protein (NNP, and the ammonical nitrogen (AN contents. Ammoniation decreased the NDIN/TN and ADIN/TN ratios. The chemical treatment increased the NNP/TN and NA/TN ratios, and the crude protein contents. The N applied as urea or NH3 was retained as NNP and in the ammoniacal form.

  9. Novel rat Alzheimer's disease models based on AAV-mediated gene transfer to selectively increase hippocampal Aβ levels

    Directory of Open Access Journals (Sweden)

    Dicker Bridget L

    2007-06-01

    Full Text Available Abstract Background Alzheimer's disease (AD is characterized by a decline in cognitive function and accumulation of amyloid-β peptide (Aβ in extracellular plaques. Mutations in amyloid precursor protein (APP and presenilins alter APP metabolism resulting in accumulation of Aβ42, a peptide essential for the formation of amyloid deposits and proposed to initiate the cascade leading to AD. However, the role of Aβ40, the more prevalent Aβ peptide secreted by cells and a major component of cerebral Aβ deposits, is less clear. In this study, virally-mediated gene transfer was used to selectively increase hippocampal levels of human Aβ42 and Aβ40 in adult Wistar rats, allowing examination of the contribution of each to the cognitive deficits and pathology seen in AD. Results Adeno-associated viral (AAV vectors encoding BRI-Aβ cDNAs were generated resulting in high-level hippocampal expression and secretion of the specific encoded Aβ peptide. As a comparison the effect of AAV-mediated overexpression of APPsw was also examined. Animals were tested for development of learning and memory deficits (open field, Morris water maze, passive avoidance, novel object recognition three months after infusion of AAV. A range of impairments was found, with the most pronounced deficits observed in animals co-injected with both AAV-BRI-Aβ40 and AAV-BRI-Aβ42. Brain tissue was analyzed by ELISA and immunohistochemistry to quantify levels of detergent soluble and insoluble Aβ peptides. BRI-Aβ42 and the combination of BRI-Aβ40+42 overexpression resulted in elevated levels of detergent-insoluble Aβ. No significant increase in detergent-insoluble Aβ was seen in the rats expressing APPsw or BRI-Aβ40. No pathological features were noted in any rats, except the AAV-BRI-Aβ42 rats which showed focal, amorphous, Thioflavin-negative Aβ42 deposits. Conclusion The results show that AAV-mediated gene transfer is a valuable tool to model aspects of AD pathology in

  10. Fractionation of carbohydrate and protein content of some forage feeds of ruminants for nutritive evaluation

    Directory of Open Access Journals (Sweden)

    Lalatendu Keshary Das

    2015-02-01

    Full Text Available Aim: To evaluate some forage feeds of ruminants in terms of their carbohydrate (CHO and protein fractions using Cornell Net Carbohydrate and Protein System (CNCPS. Materials and Methods: Eleven ruminant feeds (six green fodders - maize, oat, sorghum, bajra, cowpea, berseem and five range herbages - para grass, guinea grass, hedge lucerne, setaria grass and hybrid napier were selected for this study. Each feed was chemically analyzed for proximate principles (dry matter, crude protein [CP], ether extract, organic matter and ash, fiber fractions (neutral detergent fiber, acid detergent fiber, acid detergent lignin, cellulose and hemicellulose, primary CHO fractions (CHO, non-structural CHO, structural CHO and starch and primary protein fractions (neutral detergent insoluble CP, acid detergent insoluble CP, non-protein nitrogen and soluble protein. The results were fitted to the equations of CNCPS to arrive at various CHO (CA - fast degrading, CB1 - intermediate degrading, CB2 - slow degrading and CC - nondegrading or unavailable and protein (PA - instantaneously degrading, PB1 - fast degrading, PB2 - intermediate degrading, PB3 - slow degrading and PC - non-degrading or unavailable fractions of test feeds. Results: Among green fodders, cowpea and berseem had higher CA content while except hedge lucerne all range herbages had lower CA values. CB1 content of all feeds was low but similar. All feeds except cowpea, berseem, and hedge lucerne contained higher CB2 values. Oat among green fodders and hybrid napier among range herbages had lower CC fraction. Feeds such as bajra, cowpea, berseem and the setaria grass contained lower PA fraction. All green fodders had higher PB1 content except maize and cowpea while all range herbages had lower PB1 values except hedge lucerne. Para grass and hybrid napier contained exceptionally low PB2 fraction among all feeds. Low PC contents were reported in oat and berseem fodders. Conclusion: Based on our findings, it

  11. Use of dansyl-cholestanol as a probe of cholesterol behavior in membranes of living cells[S

    Science.gov (United States)

    Huang, Huan; McIntosh, Avery L.; Atshaves, Barbara P.; Ohno-Iwashita, Yoshiko; Kier, Ann B.; Schroeder, Friedhelm

    2010-01-01

    While plasma membrane cholesterol-rich microdomains play a role in cholesterol trafficking, little is known about the appearance and dynamics of cholesterol through these domains in living cells. The fluorescent cholesterol analog 6-dansyl-cholestanol (DChol), its biochemical fractionation, and confocal imaging of L-cell fibroblasts contributed the following new insights: i) fluorescence properties of DChol were sensitive to microenvironment polarity and mobility; (ii) DChol taken up by L-cell fibroblasts was distributed similarly as cholesterol and preferentially into cholesterol-rich vs. -poor microdomains resolved by affinity chromatography of purified plasma membranes; iii) DChol reported similar polarity (dielectric constant near 18) but higher mobility near phospholipid polar head group region for cholesterol in purified cholesterol-rich versus -poor microdomains; and iv) real-time confocal imaging, quantitative colocalization analysis, and fluorescence resonance energy transfer with cholesterol-rich and -poor microdomain markers confirmed that DChol preferentially localized in plasma membrane cholesterol-rich microdomains of living cells. Thus, DChol sensed a unique, relatively more mobile microenvironment for cholesterol in plasma membrane cholesterol-rich microdomains, consistent with the known, more rapid exchange dynamics of cholesterol from cholesterol-rich than -poor microdomains. PMID:20008119

  12. Domain-Specific Partitioning of Uterine Artery Endothelial Connexin43 and Caveolin-1.

    Science.gov (United States)

    Ampey, Bryan C; Morschauser, Timothy J; Ramadoss, Jayanth; Magness, Ronald R

    2016-10-01

    Uterine vascular adaptations facilitate rises in uterine blood flow during pregnancy, which are associated with gap junction connexin (Cx) proteins and endothelial nitric oxide synthase. In uterine artery endothelial cells (UAECs), ATP activates endothelial nitric oxide synthase in a pregnancy (P)-specific manner that is dependent on Cx43 function. Caveolar subcellular domain partitioning plays key roles in ATP-induced endothelial nitric oxide synthase activation and nitric oxide production. Little is known regarding the partitioning of Cx proteins to caveolar domains or their dynamics with ATP treatment. We observed that Cx43-mediated gap junction function with ATP stimulation is associated with Cx43 repartitioning between the noncaveolar and caveolar domains. Compared with UAECs from nonpregnant (NP) ewes, levels of ATP, PGI2, cAMP, NOx, and cGMP were 2-fold higher (PLucifer yellow dye transfer, a response abrogated by Gap27, but not Gap 26, indicating involvement of Cx43, but not Cx37. Confocal microscopy revealed domain partitioning of Cx43 and caveolin-1. In pregnant UAECs, LC/MS/MS analysis revealed only Cx43 in the caveolar domain. In contrast, Cx37 was located only in the noncaveolar pool. Western analysis revealed that ATP increased Cx43 distribution (1.7-fold; P=0.013) to the caveolar domain, but had no effect on Cx37. These data demonstrate rapid ATP-stimulated repartitioning of Cx43 to the caveolae, where endothelial nitric oxide synthase resides and plays an important role in nitric oxide-mediated increasing uterine blood flow during pregnancy. © 2016 American Heart Association, Inc.

  13. Regulation of vacuolar H+-ATPase in microglia by RANKL

    International Nuclear Information System (INIS)

    Serrano, Eric M.; Ricofort, Ryan D.; Zuo, Jian; Ochotny, Noelle; Manolson, Morris F.; Holliday, L. Shannon

    2009-01-01

    Vacuolar H + -ATPases (V-ATPases) are large electrogenic proton pumps composed of numerous subunits that play vital housekeeping roles in the acidification of compartments of the endocytic pathway. Additionally, V-ATPases play specialized roles in certain cell types, a capacity that is linked to cell type selective expression of isoforms of some of the subunits. We detected low levels of the a3 isoform of the a-subunit in mouse brain extracts. Examination of various brain-derived cell types by immunoblotting showed a3 was expressed in the N9 microglia cell line and in primary microglia, but not in other cell types. The expression of a3 in osteoclasts requires stimulation by Receptor Activator of Nuclear Factor κB-ligand (RANKL). We found that Receptor Activator of Nuclear Factor κB (RANK) was expressed by microglia. Stimulation of microglia with RANKL triggered increased expression of a3. V-ATPases in microglia were shown to bind microfilaments, and stimulation with RANKL increased the proportion of V-ATPase associated with the detergent-insoluble cytoskeletal fraction and with actin. In summary, microglia express the a3-subunit of V-ATPase. The expression of a3 and the interaction between V-ATPases and microfilaments was modulated by RANKL. These data suggest a novel molecular pathway for regulating microglia.

  14. Proteasomes remain intact, but show early focal alteration in their composition in a mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Kabashi, Edor; Agar, Jeffrey N; Hong, Yu; Taylor, David M; Minotti, Sandra; Figlewicz, Denise A; Durham, Heather D

    2008-06-01

    In amyotrophic lateral sclerosis caused by mutations in Cu/Zn-superoxide dismutase (SOD1), altered solubility and aggregation of the mutant protein implicates failure of pathways for detecting and catabolizing misfolded proteins. Our previous studies demonstrated early reduction of proteasome-mediated proteolytic activity in lumbar spinal cord of SOD1(G93A) transgenic mice, tissue particularly vulnerable to disease. The purpose of this study was to identify any underlying abnormalities in proteasomal structure. In lumbar spinal cord of pre-symptomatic mice [postnatal day 45 (P45) and P75], normal levels of structural 20S alpha subunits were incorporated into 20S/26S proteasomes; however, proteasomal complexes separated by native gel electrophoresis showed decreased immunoreactivity with antibodies to beta3, a structural subunit of the 20S proteasome core, and beta5, the subunit with chymotrypsin-like activity. This occurred prior to increase in beta5i immunoproteasomal subunit. mRNA levels were maintained and no association of mutant SOD1 with proteasomes was identified, implicating post-transcriptional mechanisms. mRNAs also were maintained in laser captured motor neurons at a later stage of disease (P100) in which multiple 20S proteins are reduced relative to the surrounding neuropil. Increase in detergent-insoluble, ubiquitinated proteins at P75 provided further evidence of stress on mechanisms of protein quality control in multiple cell types prior to significant motor neuron death.

  15. PDZ domain-binding motif of human T-cell leukemia virus type 1 Tax oncoprotein augments the transforming activity in a rat fibroblast cell line

    International Nuclear Information System (INIS)

    Hirata, Akira; Higuchi, Masaya; Niinuma, Akiko; Ohashi, Minako; Fukushi, Masaya; Oie, Masayasu; Akiyama, Tetsu; Tanaka, Yuetsu; Gejyo, Fumitake; Fujii, Masahiro

    2004-01-01

    While human T-cell leukemia virus type 1 (HTLV-1) is associated with the development of adult T-cell leukemia (ATL), HTLV-2 has not been reported to be associated with such malignant leukemias. HTLV-1 Tax1 oncoprotein transforms a rat fibroblast cell line (Rat-1) to form multiple large colonies in soft agar, and this activity is much greater than that of HTLV-2 Tax2. We have demonstrated here that the increased number of transformed colonies induced by Tax1 relative to Tax2 was mediated by a PDZ domain-binding motif (PBM) in Tax1, which is absent in Tax2. Tax1 PBM mediated the interaction of Tax1 with the discs large (Dlg) tumor suppressor containing PDZ domains, and the interaction correlated well with the transforming activities of Tax1 and the mutants. Through this interaction, Tax1 altered the subcellular localization of Dlg from the detergent-soluble to the detergent-insoluble fraction in a fibroblast cell line as well as in HTLV-1-infected T-cell lines. These results suggest that the interaction of Tax1 with PDZ domain protein(s) is critically involved in the transforming activity of Tax1, the activity of which may be a crucial factor in malignant transformation of HTLV-1-infected cells in vivo

  16. Nutritive value and fermentation quality of palisadegrass and stylo mixed silages.

    Science.gov (United States)

    da Silva, Juliana S; Ribeiro, Karina G; Pereira, Odilon G; Mantovani, Hilário C; Cecon, Paulo R; Pereira, Rosana C; Silva, Janaina de L

    2018-01-01

    The nutritive value and fermentation quality of palisadegrass (Brachiaria brizantha cv. Xaraes) and stylo (Stylosanthes capitata × S. macrocephala cv. Campo Grande) mixed silages were evaluated. The experiment was analyzed in a factorial scheme (5 × 2) in a completely randomized design using increasing levels of stylo (0, 25, 50, 75 and 100% on a fresh matter basis) on palisadegrass silages, with and without microbial inoculants (MI). With the increased ratio of stylo in mixed silages, dry matter (DM), crude protein (CP), acid detergent fiber (ADF), and lignin content increased in silages. The presence of MI promoted lower DM content, and higher neutral detergent fiber corrected for ash and protein, ADF and lignin content. The acid detergent insoluble nitrogen content and the lactic acid bacteria populations were not affected by treatments. The in vitroDM digestibility was affected by the interaction of levels of the stylo and MI. The pH, NH 3 -N/total nitrogen and butyric acid concentrations decreased with increasing levels of stylo. Better nutritive value and quality of fermentation was found in the silage containing higher proportions of this stylo mixed with palisadegrass. The microbial inoculant evaluated did not alter the nutritive value or quality of the fermentation of the silages in this experiment. © 2017 Japanese Society of Animal Science.

  17. Purification of a large molecular weight transglutaminase substrate from liver plasma membranes

    International Nuclear Information System (INIS)

    Slife, C.W.; Morris, G.S.; Tyrrell, D.J.

    1986-01-01

    Transglutaminases are enzymes which catalyze the covalent crosslinking of proteins by forming epsilon(γ-glutamyl)lysine isopeptide linkages. In earlier studies, the authors reported that a large molecular weight protein aggregate in rat liver plasma membranes served as a substrate for a plasma membrane-associated transglutaminase. The enzyme specifically incorporated a lysine analog, [ 3 H]putrescine, into a protein complex which remained at the top of an acrylamide gel upon electrophoresis in SDS and reducing agents. The complex has now been isolated by extracting the plasma membranes with detergent (octylglucoside) resuspending the detergent insoluble residues in 6 M guanidine HCl and chromatographing the residue on a 4% agarose column in 6 M guanidine HCl. Most of the radioactivity is found in the void volume fractions from the column. SDS polyacrylamide gel electrophoresis shows that these fractions contain mostly proteins that do not enter the acrylamide gel. Since this purification procedure is essentially the same as that used to isolate a rat hepatocyte adhesion factor from rat liver plasma membranes it is possible that the large molecular weight transglutaminase substrate and the adhesion factor are contained in the same protein aggregate

  18. A highly phosphorylated subpopulation of insulin-like growth factor II/mannose 6-phosphate receptors is concentrated in a clathrin-enriched plasma membrane fraction

    International Nuclear Information System (INIS)

    Corvera, S.; Folander, K.; Clairmont, K.B.; Czech, M.P.

    1988-01-01

    Insulin-like growth factor II (IGF-II)/mannose 6-phosphate (Man-6-P) receptors immunoprecipitated from purified plasma membranes of 32 P-labeled rat adipocytes are markedly heterogenous in their phosphorylation state. Approximately 80% of the plasma membrane receptors are solubilized in 1% (vol/vol) Triton X-100 and are phosphorylated on serine residues at a stoichiometry of ∼ 0.1-0.2 mol of phosphate per mol of receptor. In contrast, 15-20% of the receptors are Triton X-100-insoluble and are phosphorylated on serine and threonine residues at ∼ 4 or 5 mol of phosphate per mol of receptor. This Triton X-100-insoluble membrane subfraction contains only 5% of the total plasma membrane protein and yet contains all of the clathrin heavy chain associated with plasma membrane. Based on the relative yields of protein in the detergent-insoluble material, IGF-II/Man-6-P receptors are concentrated ∼ 3-fold in this clathrin-enriched subfraction. Taken together, these results indicate that insulin decreases the phosphorylation state of a highly phosphorylated subpopulation of IGF-II/Man-6-P receptors on the plasma membrane. In addition, insulin action may prevent the concentration of these receptors in a clathrin-enriched membrane subfraction

  19. Effect of γ-irradiated soybean on various physico-chemical characteristics with respect to ruminal feeding

    International Nuclear Information System (INIS)

    Mani, Veena; Chandra, Prakash

    2003-01-01

    Soybean seeds (Glycine max.) were irradiated at dose levels of 0, 1, 2, 5, 10 and 20 k Gy and different physical and chemical properties of irradiated soybean seeds were studied. Water activity (a w ) decreased with the increasing dose while browning index increased u up to 5 kGy dose and thereafter declined gradually. Proximate composition, cell wall constituents, acid detergent insoluble nitrogen, mineral composition, total soluble sugar and starch content did not reveal any significant change due to 20 kGy level irradiation. N-solubility in different buffers decreased with increased dose levels, however, differences were significant only at higher (10 and 20 kGy) levels. The proteins also indicated similar subunit gel pattern in all the samples. α-amino nitrogen was increased gradually from 50.29 to 56.40 μg/100 mg and trypsin inhibitor activity was diminished up to 28 per cent, if irradiation dose increased up to 20 kGy level. Lipoxygenase activity also depicted inactivation of enzyme up to 36 per cent at 20 kGy as compared to un-irradiated soybean. Free fatty acid and acidity increased with increasing dose but at 20 kGy level the value decreased. (author)

  20. The Us2 gene product of herpes simplex virus 2 is a membrane-associated ubiquitin-interacting protein.

    Science.gov (United States)

    Kang, Ming-Hsi; Roy, Bibhuti B; Finnen, Renée L; Le Sage, Valerie; Johnston, Susan M; Zhang, Hui; Banfield, Bruce W

    2013-09-01

    The Us2 gene encodes a tegument protein that is conserved in most members of the Alphaherpesvirinae. Previous studies on the pseudorabies virus (PRV) Us2 ortholog indicated that it is prenylated, associates with membranes, and spatially regulates the enzymatic activity of the MAP (mitogen-activated protein) kinase ERK (extracellular signal-related kinase) through direct binding and sequestration of ERK at the cytoplasmic face of the plasma membrane. Here we present an analysis of the herpes simplex virus 2 (HSV-2) Us2 ortholog and demonstrate that, like PRV Us2, HSV-2 Us2 is a virion component and that, unlike PRV Us2, it does not interact with ERK in yeast two-hybrid assays. HSV-2 Us2 lacks prenylation signals and other canonical membrane-targeting motifs yet is tightly associated with detergent-insoluble membranes and localizes predominantly to recycling endosomes. Experiments to identify cellular proteins that facilitate HSV-2 Us2 membrane association were inconclusive; however, these studies led to the identification of HSV-2 Us2 as a ubiquitin-interacting protein, providing new insight into the functions of HSV-2 Us2.

  1. Evaluation of certain crop residues for carbohydrate and protein fractions by cornell net carbohydrate and protein system

    Directory of Open Access Journals (Sweden)

    Venkateswarulu Swarna

    2015-06-01

    Full Text Available Four locally available crop residues viz., jowar stover (JS, maize stover (MS, red gram straw (RGS and black gram straw (BGS were evaluated for carbohydrate and protein fractions using Cornell Net Carbohydrate and Protein (CNCP system. Lignin (% NDF was higher in legume straws as compared to cereal stovers while Non-structural carbohydrates (NSC (% DM followed the reverse trend. The carbohydrate fractions A and B1 were higher in BGS while B2 was higher in MS as compared to other crop residues. The unavailable cell wall fraction (C was higher in legume straws when compared to cereal stovers. Among protein fractions, B1 was higher in legume straws when compared to cereal stovers while B2 was higher in cereal stovers as compared to legume straws. Fraction B3 largely, bypass protein was highest in MS as compared to other crop residues. Acid detergent insoluble crude protein (ADICP (% CP or unavailable protein fraction C was lowest in MS and highest in BGS. It is concluded that MS is superior in nutritional value for feeding ruminants as compared to other crop residues.

  2. Regulation of vacuolar H{sup +}-ATPase in microglia by RANKL

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Eric M.; Ricofort, Ryan D.; Zuo, Jian [Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610 (United States); Ochotny, Noelle [Department of Pharmacology, University of Toronto, Toronto, Ont., Canada M5G 1G6 (Canada); Manolson, Morris F. [Faculty of Dentistry, University of Toronto, Toronto, Ont., Canada M5G 1G6 (Canada); Holliday, L. Shannon, E-mail: sholliday@dental.ufl.edu [Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610 (United States); Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610 (United States)

    2009-11-06

    Vacuolar H{sup +}-ATPases (V-ATPases) are large electrogenic proton pumps composed of numerous subunits that play vital housekeeping roles in the acidification of compartments of the endocytic pathway. Additionally, V-ATPases play specialized roles in certain cell types, a capacity that is linked to cell type selective expression of isoforms of some of the subunits. We detected low levels of the a3 isoform of the a-subunit in mouse brain extracts. Examination of various brain-derived cell types by immunoblotting showed a3 was expressed in the N9 microglia cell line and in primary microglia, but not in other cell types. The expression of a3 in osteoclasts requires stimulation by Receptor Activator of Nuclear Factor {kappa}B-ligand (RANKL). We found that Receptor Activator of Nuclear Factor {kappa}B (RANK) was expressed by microglia. Stimulation of microglia with RANKL triggered increased expression of a3. V-ATPases in microglia were shown to bind microfilaments, and stimulation with RANKL increased the proportion of V-ATPase associated with the detergent-insoluble cytoskeletal fraction and with actin. In summary, microglia express the a3-subunit of V-ATPase. The expression of a3 and the interaction between V-ATPases and microfilaments was modulated by RANKL. These data suggest a novel molecular pathway for regulating microglia.

  3. Effects of applying oil-extracted microalgae on the fermentation quality, feed-nutritive value and aerobic stability of ensiled sweet sorghum.

    Science.gov (United States)

    Chen, Lei; Yuan, Xianjun; Li, Junfeng; Dong, Zhihao; Shao, Tao

    2018-02-19

    A laboratory-silo study was conducted to evaluate the fermentation quality, feed-nutritive value and aerobic stability of sweet sorghum silage with or without oil-extracted microalgae supplementation. Sweet sorghum was mixed with four microalgae levels (0%, 1%, 2% and 3% on a dry matter basis; Control, M1, M2 and M3, respectively) and ensiled for 45 d. Further, the four experimental silages were subjected to an aerobic stability test lasting 7 d. All the silages except M3 silage had good fermentative characteristics with low pH and ammonia nitrogen concentrations, and high lactic acid concentrations and favorable microbial parameters. Meanwhile, oil-extracted microalgae supplementation improved the feed-nutritional value of sweet sorghum silage. Fibre (neutral detergent fibre, acid detergent fibre, acid detergent lignin and cellulose) and acid detergent insoluble protein concentrations decreased (P sweet sorghum silage by 43.8 and more than 143%, respectively, and decreased the clostridia spore counts during the stage of air exposure. Sweet sorghum silage produced with 2% oil-extracted microalgae addition was the most suitable for animal use due to the optimal balance of fermentation quality, feed-nutritional value and aerobic stability, which is merit further in vivo studies using grazing ruminants. This article is protected by copyright. All rights reserved.

  4. Dual purpose wheat production with different levels of nitrogen topdressing

    Directory of Open Access Journals (Sweden)

    Éderson Luis Henz

    2016-04-01

    Full Text Available Currently, the practice of Crop-Livestock Integration is stimulated as a way of increasing the generation of foreign exchange for Brazil. Integrated systems improve land use efficiency as well as preserve, recover and increment or soil fertility. The aim of this research was to evaluate how different doses of nitrogen fertilization can affect production and quality of dual purpose wheat submitted to grazing. The experimental designed was randomized block with five treatments (0, 75, 150, 225 and 300 Kg N ha-1, like ammonium nitrate and four repetitions. The forage yield, the percentage crude protein (P=.0001 and acid detergent insoluble protein (P=.0054 had a linear increased because of the nitrogen addition doses. The crude protein percentage changed the estimate of all soluble carbohydrates (P=.0001 and non-fibrous carbohydrates (P=.0186, but did not influence the, nitrogen detergent fiber corrected with ash and proteins percentage contributing for content cell. The crops production (P=.0001 and the number of kernels per ear (P=.0001 showed significantly difference because of the nitrogen additions dose, increasing the number of fertile flowers. The nitrogen topdressing alters forage production, the chemical composition and the production of dual purpose wheat grains subjected to grazing.

  5. RNG1 is a Late Marker of the Apical Polar Ring in Toxoplasma gondii

    Science.gov (United States)

    Tran, Johnson Q.; de Leon, Jessica C.; Li, Catherine; Huynh, My-Hang; Beatty, Wandy; Morrissette, Naomi S.

    2010-01-01

    The asexually proliferating stages of apicomplexan parasites cause acute symptoms of diseases such as malaria, cryptosporidiosis and toxoplasmosis. These stages are characterized by the presence of two independent microtubule organizing centers (MTOCs). Centrioles are found at the poles of the intranuclear spindle. The apical polar ring (APR), a MTOC unique to apicomplexans, organizes subpellicular microtubules which impose cell shape and apical polarity on these protozoa. Here we describe the characteristics of a novel protein that localizes to the APR of Toxoplasma gondii which we have named ring-1 (RNG1). There are related RNG1 proteins in Neospora caninum and Sarcocystis neurona but no obvious homologs in Plasmodium spp., Cryptosporidium spp. or Babesia spp. RNG1 is a small, low-complexity, detergent-insoluble protein that assembles at the APR very late in the process of daughter parasite replication. We were unable to knock-out the RNG1 gene, suggesting that its gene product is essential. Tagged RNG1 lines have also allowed us to visualize the APR during growth of Toxoplasma in the microtubule-disrupting drug oryzalin. Oryzalin inhibits nuclear division and cytokinesis although Toxoplasma growth continues, and similar to earlier observations of unchecked centriole duplication in oryzalin-treated parasites, the APR continues to duplicate during aberrant parasite growth. PMID:20658557

  6. Identification of proteins sensitive to thermal stress in human neuroblastoma and glioma cell lines.

    Directory of Open Access Journals (Sweden)

    Guilian Xu

    Full Text Available Heat-shock is an acute insult to the mammalian proteome. The sudden elevation in temperature has far-reaching effects on protein metabolism, leads to a rapid inhibition of most protein synthesis, and the induction of protein chaperones. Using heat-shock in cells of neuronal (SH-SY5Y and glial (CCF-STTG1 lineage, in conjunction with detergent extraction and sedimentation followed by LC-MS/MS proteomic approaches, we sought to identify human proteins that lose solubility upon heat-shock. The two cell lines showed largely overlapping profiles of proteins detected by LC-MS/MS. We identified 58 proteins in detergent insoluble fractions as losing solubility in after heat shock; 10 were common between the 2 cell lines. A subset of the proteins identified by LC-MS/MS was validated by immunoblotting of similarly prepared fractions. Ultimately, we were able to definitively identify 3 proteins as putatively metastable neural proteins; FEN1, CDK1, and TDP-43. We also determined that after heat-shock these cells accumulate insoluble polyubiquitin chains largely linked via lysine 48 (K-48 residues. Collectively, this study identifies human neural proteins that lose solubility upon heat-shock. These proteins may represent components of the human proteome that are vulnerable to misfolding in settings of proteostasis stress.

  7. Fisetin Exerts Antioxidant and Neuroprotective Effects in Multiple Mutant hSOD1 Models of Amyotrophic Lateral Sclerosis by Activating ERK.

    Science.gov (United States)

    Wang, T H; Wang, S Y; Wang, X D; Jiang, H Q; Yang, Y Q; Wang, Y; Cheng, J L; Zhang, C T; Liang, W W; Feng, H L

    2018-05-21

    Oxidative stress exhibits a central role in the course of amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease commonly found to include a copper/zinc superoxide dismutase (SOD1) gene mutation. Fisetin, a natural antioxidant, has shown benefits in varied neurodegenerative diseases. The possible effect of fisetin in ALS has not been clarified as of yet. We investigated whether fisetin affected mutant hSOD1 ALS models. Three different hSOD1-related mutant models were used: Drosophila expressing mutant hSOD1 G85R , hSOD1 G93A NSC34 cells, and transgenic mice. Fisetin treatment provided neuroprotection as demonstrated by an improved survival rate, attenuated motor impairment, reduced ROS damage and regulated redox homeostasis compared with those in controls. Furthermore, fisetin increased the expression of phosphorylated ERK and upregulated antioxidant factors, which were reversed by MEK/ERK inhibition. Finally, fisetin reduced the levels of both mutant and wild-type hSOD1 in vivo and in vitro, as well as the levels of detergent-insoluble hSOD1 proteins. The results indicate that fisetin protects cells from ROS damage and improves the pathological behaviors caused by oxidative stress in disease models related to SOD1 gene mutations probably by activating ERK, thereby providing a potential treatment for ALS. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Effects of dietary fermented spent coffee ground on nutrient digestibility and nitrogen utilization in sheep.

    Science.gov (United States)

    Choi, Yongjun; Rim, Jong-Su; Na, Youngjun; Lee, Sang Rak

    2018-03-01

    The objective of the study was to determine the effect of fermented spent coffee ground (FSCG) on nutrient digestibility and nitrogen utilization in sheep. Fermentation of spent coffee ground (SCG) was conducted using Lactobacillus plantrum . Fermentation was performed at moisture content of 70% and temperature of 39°C with anaerobic air tension for 48 h. Four adult rams (initial body weight = 56.8±0.4 kg) were housed in a respiration-metabolism chamber and the treatments were: i) control (Basal diet; 0% SCG or FSCG), ii) 10% level of SCG, iii) 10% level of FSCG, and iv) 20% level of FSCG in 4×4 Latin square design. Each dietary experiment period lasted for 18-d with a 14-d of adaptation period and a 4-d of sample collection period. In SCG fermentation experimental result, acid detergent insoluble nitrogen (ADIN) concentration of FSCG (64.5% of total N) was lower than that of non-fermented SCG (78.8% of total N). Digestibility of dry matter and organic matter was similar among treatment groups. Although crude protein (CP) digestibility of the control was greater than FSCG groups (pdigestibility and nitrogen retention than non-fermented 10% SCG group (pdigestibility, thereby increasing CP digestibility and nitrogen utilization in sheep. Fermentation using microorganisms in feed ingredients with low digestibility could have a positive effect on improving the quality of raw feed.

  9. Proteasome inhibitors promote the sequestration of PrPSc into aggresomes within the cytosol of prion-infected CAD neuronal cells.

    Science.gov (United States)

    Dron, Michel; Dandoy-Dron, Françoise; Farooq Salamat, Muhammad Khalid; Laude, Hubert

    2009-08-01

    Dysfunction of the endoplasmic reticulum associated protein degradation/proteasome system is believed to contribute to the initiation or aggravation of neurodegenerative disorders associated with protein misfolding, and there is some evidence to suggest that proteasome dysfunctions might be implicated in prion disease. This study investigated the effect of proteasome inhibitors on the biogenesis of both the cellular (PrP(C)) and abnormal (PrP(Sc)) forms of prion protein in CAD neuronal cells, a newly introduced prion cell system. In uninfected cells, proteasome impairment altered the intracellular distribution of PrP(C), leading to a strong accumulation in the Golgi apparatus. Moreover, a detergent-insoluble and weakly protease-resistant PrP species of 26 kDa, termed PrP(26K), accumulated in the cells, whether they were prion-infected or not. However, no evidence was found that, in infected cells, this PrP(26K) species converts into the highly proteinase K-resistant PrP(Sc). In the infected cultures, proteasome inhibition caused an increased intracellular aggregation of PrP(Sc) that was deposited into large aggresomes. These findings strengthen the view that, in neuronal cells expressing wild-type PrP(C) from the natural promoter, proteasomal impairment may affect both the process of PrP(C) biosynthesis and the subcellular sites of PrP(Sc) accumulation, despite the fact that these two effects could essentially be disconnected.

  10. Tumor necrosis factor alpha increases epithelial barrier permeability by disrupting tight junctions in Caco-2 cells

    Directory of Open Access Journals (Sweden)

    W. Cui

    2010-04-01

    Full Text Available The objectives of this study were to determine the effect of tumor necrosis factor alpha (TNF-α on intestinal epithelial cell permeability and the expression of tight junction proteins. Caco-2 cells were plated onto Transwell® microporous filters and treated with TNF-α (10 or 100 ng/mL for 0, 4, 8, 16, or 24 h. The transepithelial electrical resistance and the mucosal-to-serosal flux rates of the established paracellular marker Lucifer yellow were measured in filter-grown monolayers of Caco-2 intestinal cells. The localization and expression of the tight junction protein occludin were detected by immunofluorescence and Western blot analysis, respectively. SYBR-Green-based real-time PCR was used to measure the expression of occludin mRNA. TNF-α treatment produced concentration- and time-dependent decreases in Caco-2 transepithelial resistance and increases in transepithelial permeability to the paracellular marker Lucifer yellow. Western blot results indicated that TNF-α decreased the expression of phosphorylated occludin in detergent-insoluble fractions but did not affect the expression of non-phosphorylated occludin protein. Real-time RT-PCR data showed that TNF-α did not affect the expression of occludin mRNA. Taken together, our data demonstrate that TNF-α increases Caco-2 monolayer permeability, decreases occludin protein expression and disturbs intercellular junctions.

  11. Losses and nutritional value of elephant grass silage with inclusion levels of cottonseed meal - doi: 10.4025/actascianimsci.v35i2.13736

    Directory of Open Access Journals (Sweden)

    Mauro Pereira de Figueiredo

    2013-03-01

    Full Text Available The experiment was conducted to evaluate losses and nutritive value of elephant grass silage containing increasing levels of cottonseed meal. The experimental design was completely randomized, with five treatments: 0, 7, 14, 21 and 28% inclusion of cottonseed meal, and four replications. The material was chopped and packed in PVC silos and stored for 80 days. The pH and dry matter (DM, crude protein, lignin and ether extract of the silages increased linearly with the addition of cottonseed meal, while the levels of acid detergent insoluble nitrogen, neutral detergent fiber, acid detergent fiber, cellulose and hemicellulose decreased linearly. The addition of 28% cottonseed meal reduced the in situ disappearance of DM (48h to values lower than those of silage without additives. The concentration of ammonia nitrogen and the losses from gases and effluent were reduced. The inclusion of 28% cottonseed meal in elephant grass silage containing 18.4% DM improved the fermentation characteristics of silage more efficiently by reducing the moisture content and effluent losses, starting at the 7% level of inclusion.

  12. Imaging Cytoskeleton Components by Electron Microscopy.

    Science.gov (United States)

    Svitkina, Tatyana

    2016-01-01

    The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers-actin filaments, microtubules, and intermediate filaments-are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton. This article describes application of rotary shadowing (or metal replica) EM for visualization of the cytoskeleton. The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction of cells to expose their cytoskeleton, chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved, and individual proteins can be identified by immunogold labeling. More importantly, replica EM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high resolution structural organization of the cytoskeleton in the same cell.

  13. Fibroblast Cluster Formation on 3D Collagen Matrices Requires Cell Contraction-Dependent Fibronectin Matrix Organization

    Science.gov (United States)

    da Rocha-Azevedo, Bruno; Ho, Chin-Han; Grinnell, Frederick

    2012-01-01

    Fibroblasts incubated on 3D collagen matrices in serum or lysophosphatidic acid (LPA)-containing medium self-organize into clusters through a mechanism that requires cell contraction. However, in platelet-derived growth factor (PDGF)-containing medium, cells migrate as individuals and do not form clusters even though they constantly encounter each other. Here, we present evidence that a required function of cell contraction in clustering is formation of fibronectin fibrillar matrix. We found that in serum or LPA but not in PDGF or basal medium, cells organized FN (both serum and cellular) into a fibrillar, detergent-insoluble matrix. Cell clusters developed concomitant with FN matrix formation. FN fibrils accumulated beneath cells and along the borders of cell clusters in regions of cell-matrix tension. Blocking Rho kinase or myosin II activity prevented FN matrix assembly and cell clustering. Using siRNA silencing and function-blocking antibodies and peptides, we found that cell clustering and FN matrix assembly required α5β1 integrins and fibronectin. Cells were still able to exert contractile force and compact the collagen matrix under the latter conditions, which showed that contraction was not sufficient for cell clustering to occur. Our findings provide new insights into how procontractile (serum/LPA) and promigratory (PDGF) growth factor environments can differentially regulate FN matrix assembly by fibroblasts interacting with collagen matrices and thereby influence mesenchymal cell morphogenetic behavior under physiologic circumstances such as wound repair, morphogenesis and malignancy. PMID:23117111

  14. Fibroblast cluster formation on 3D collagen matrices requires cell contraction dependent fibronectin matrix organization.

    Science.gov (United States)

    da Rocha-Azevedo, Bruno; Ho, Chin-Han; Grinnell, Frederick

    2013-02-15

    Fibroblasts incubated on 3D collagen matrices in serum or lysophosphatidic acid (LPA)-containing medium self-organize into clusters through a mechanism that requires cell contraction. However, in platelet-derived growth factor (PDGF)-containing medium, cells migrate as individuals and do not form clusters even though they constantly encounter each other. Here, we present evidence that a required function of cell contraction in clustering is formation of fibronectin (FN) fibrillar matrix. We found that in serum or LPA but not in PDGF or basal medium, cells organized FN (both serum and cellular) into a fibrillar, detergent-insoluble matrix. Cell clusters developed concomitant with FN matrix formation. FN fibrils accumulated beneath cells and along the borders of cell clusters in regions of cell-matrix tension. Blocking Rho kinase or myosin II activity prevented FN matrix assembly and cell clustering. Using siRNA silencing and function-blocking antibodies and peptides, we found that cell clustering and FN matrix assembly required α5β1 integrins and fibronectin. Cells were still able to exert contractile force and compact the collagen matrix under the latter conditions, which showed that contraction was not sufficient for cell clustering to occur. Our findings provide new insights into how procontractile (serum/LPA) and promigratory (PDGF) growth factor environments can differentially regulate FN matrix assembly by fibroblasts interacting with collagen matrices and thereby influence mesenchymal cell morphogenetic behavior under physiologic circumstances such as wound repair, morphogenesis and malignancy. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Elephant grass clones for silage production

    Directory of Open Access Journals (Sweden)

    Rerisson José Cipriano dos Santos

    2013-02-01

    Full Text Available Ensiling warm-season grasses often requires wilting due to their high moisture content, and the presence of low-soluble sugars in these grasses usually demands the use of additives during the ensiling process. This study evaluated the bromatological composition of the fodder and silage from five Pennisetum sp. clones (IPA HV 241, IPA/UFRPE Taiwan A-146 2.114, IPA/UFRPE Taiwan A-146 2.37, Elephant B, and Mott. The contents of 20 Polyvinyl chloride (PVC silos, which were opened after 90 days of storage, were used for the bromatological analysis and the evaluation of the pH, nitrogen, ammonia, buffer capacity, soluble carbohydrates, and fermentation coefficients. The effluent losses, gases and dry matter recovery were also calculated. Although differences were observed among the clones (p < 0.05 for the concentrations of dry matter, insoluble nitrogen in acid detergents, insoluble nitrogen in neutral detergents, soluble carbohydrates, fermentation coefficients, and in vitro digestibility in the forage before ensiling, no differences were observed for most of these variables after ensiling. All of the clones were efficient in the fermentation process. The IPA/UFRPE TAIWAN A-146 2.37 clone, however, presented a higher dry matter concentration and the best fermentation coefficient, resulting in a better silage quality, compared to the other clones.

  16. Reduced levels of folate transporters (PCFT and RFC) in membrane lipid rafts result in colonic folate malabsorption in chronic alcoholism.

    Science.gov (United States)

    Wani, Nissar Ahmad; Kaur, Jyotdeep

    2011-03-01

    We studied the effect of chronic ethanol ingestion on folate transport across the colonic apical membranes (CAM) in rats. Male Wistar rats were fed 1 g/kg body weight/day ethanol (20%) solution orally for 3 months and folate transport was studied in the isolated colon apical membrane vesicles. The folate transport was found to be carrier mediated, saturable, with pH optima at 5.0. Chronic ethanol ingestion reduced the folate transport across the CAM by decreasing the affinity of transporters (high Km) for the substrate and by decreasing the number of transporter molecules (low Vmax) on the colon luminal surface. The decreased transport activity at the CAM was associated with down-regulation of the proton-coupled folate transporter (PCFT) and the reduced folate carrier (RFC) which resulted in decreased PCFT and RFC protein levels in the colon of rats fed alcohol chronically. Moreover, the PCFT and the RFC were found to be distributed in detergent insoluble fraction of the CAM in rats. Floatation experiments on Optiprep density gradients demonstrated the association of the PCFT and the RFC protein with lipid rafts (LR). Chronic alcoholism decreased the PCFT and the RFC protein levels in the CAM LR in accordance with the decreased synthesis. Hence, we propose that downregulation in the expression of the PCFT and the RFC in colon results in reduced levels of these transporters in colon apical membrane LR as a mechanism of folate malabsorption during chronic alcoholism. Copyright © 2010 Wiley-Liss, Inc.

  17. Another one bites the dust: faecal silica levels in large herbivores correlate with high-crowned teeth

    Science.gov (United States)

    Hummel, Jürgen; Findeisen, Eva; Südekum, Karl-Heinz; Ruf, Irina; Kaiser, Thomas M.; Bucher, Martin; Clauss, Marcus; Codron, Daryl

    2011-01-01

    The circumstances of the evolution of hypsodonty (= high-crowned teeth) are a bone of contention. Hypsodonty is usually linked to diet abrasiveness, either from siliceous phytoliths (monocotyledons) or from grit (dusty environments). However, any empirical quantitative approach testing the relation of ingested silica and hypsodonty is lacking. In this study, faecal silica content was quantified as acid detergent insoluble ash and used as proxy for silica ingested by large African herbivores of different digestive types, feeding strategies and hypsodonty levels. Separate sample sets were used for the dry (n = 15 species) and wet (n = 13 species) season. Average faecal silica contents were 17–46 g kg−1 dry matter (DM) for browsing and 52–163 g kg−1 DM for grazing herbivores. No difference was detected between the wet (97.5 ± 14.4 g kg−1 DM) and dry season (93.5 ± 13.7 g kg−1 DM) faecal silica. In a phylogenetically controlled analysis, a strong positive correlation (dry season r = 0.80, p < 0.0005; wet season r = 0.74, p < 0.005) was found between hypsodonty index and faecal silica levels. While surprisingly our results do not indicate major seasonal changes in silica ingested, the correlation of faecal silica and hypsodonty supports a scenario of a dominant role of abrasive silica in the evolution of high-crowned teeth. PMID:21068036

  18. Reference: 575 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available proteins present in plasma membrane microdomains, appear to be involved in P. indica-induced growth promotion...tein is required for growth promotion and enhanced seed production mediated by the endophytic fungus Pirifor

  19. Phase diagrams of lipid mixtures relevant to the study of membrane rafts

    DEFF Research Database (Denmark)

    Goni, Felix; Alonso, Alicia; Bagatolli, Luis

    2008-01-01

    The present paper reviews the phase properties of phosphatidylcholine-sphingomyelin-cholesterol mixtures, that are often used as models for membrane "raft" microdomains. The available data based on X-ray, microscopic and spectroscopic observations, surface pressure and calorimetric measurements, ...

  20. to view fulltext PDF

    Indian Academy of Sciences (India)

    2012-05-08

    Meckl. I, Frommer WB, Opekarova M and Tanner W. 2008 Plasma membrane microdomains regulate turnover of transport proteins in yeast. J. Cell Biol. 183 1075-1088. Grossmann G, Opekarova M, Malinsky J, Weig-Meckl I and.

  1. Membrane Heterogeneity in Akt Activation in Prostate Cancer

    National Research Council Canada - National Science Library

    Hager, Martin H

    2008-01-01

    This project focuses on the novel finding from our group that the serine-threonine kinase Akt1 partitions into specialized membrane microdomains, termed lipid rafts, and that this localization event...

  2. The tetraspanin web revisited by super-resolution microscopy

    NARCIS (Netherlands)

    Zuidscherwoude, M.C.M.; Gottfert, F.; Dunlock, V.M.; Figdor, C.G.; Bogaart, G. van den; Spriel, A.B. van

    2015-01-01

    The spatial organization of membrane proteins in the plasma membrane is critical for signal transduction, cell communication and membrane trafficking. Tetraspanins organize functional higher-order protein complexes called 'tetraspanin-enriched microdomains (TEMs)' via interactions with partner

  3. Numerical analysis of laser ablation using the axisymmetric two-temperature model

    Science.gov (United States)

    Dziatkiewicz, Jolanta; Majchrzak, Ewa

    2018-01-01

    Laser ablation of the axisymmetric micro-domain is analyzed. To describe the thermal processes occurring in the micro-domain the two-temperature hyperbolic model supplemented by the boundary and initial conditions is used. This model takes into account the phase changes of material (solid-liquid and liquid-vapour) and the ablation process. At the stage of numerical computations the finite difference method with staggered grid is used. In the final part the results of computations are shown.

  4. The density of GM1-enriched lipid rafts correlates inversely with the efficiency of transfection mediated by cationic liposomes.

    Science.gov (United States)

    Kovács, Tamás; Kárász, Andrea; Szöllosi, János; Nagy, Peter

    2009-08-01

    Although cationic liposome-mediated transfection has become a standard procedure, the mechanistic details of the process are unknown. It has been suggested that endocytic uptake of lipoplexes is efficient, and transfectability is largely determined by later steps. In this article, we stained GM1-enriched membrane microdomains, a subclass of lipid rafts, with subunit B of cholera toxin and correlated transfection efficiency with their density by quantitatively evaluating microscopic images. We found a strong anticorrelation between the density of GM1-enriched membrane microdomains and the efficacy of transfection monitored by measuring the expression level of GFP in different cell lines transfected by lipofection using two different transfection agents. These findings imply that GM1-enriched membrane microdomains interfere with the process of lipofection. The blocked step must be endocytosis since the accumulation of fluorescently labeled plasmids was lower in cells with high content of GM1-enriched membrane microdomains. Such a correlation was not observed in cells transfected by electroporation. By comparing the efficiency of lipofection in several cell lines we found that those with a high density of GM1-enriched membrane microdomains were the most resistant to transfection. We conclude that the inhibition of lipofection by GM1-enriched membrane microdomains is a general rule, and that endocytosis of lipoplexes can be rate limiting in cells with high density of GM1-enriched membrane rafts. Copyright 2009 International Society for Advancement of Cytometry.

  5. SANS and SAXS study of block copolymer/homopolymer mixtures

    International Nuclear Information System (INIS)

    Hasegawa, Hirokazu; Tanaka, Hideaki; Hashimoto, Takeji; Han, C.C.

    1991-01-01

    The lateral and vertical components of the radius of gyration for a single block copolymer chain and those of a single homopolymer chain in the lamellar microdomain space formed by a mixture of diblock copolymers and homopolymers were investigated by means of small-angle neutron scattering (SANS) and the microdomain structures by small-angle X-ray scattering (SAXS). The homopolymers whose molecular weights are much smaller than that of the corresponding chains of the block copolymers were used so that the homopolymers were uniformly solubilized in the corresponding microdomains. The SANS result suggests that the homopolymer chains in the microdomain space as well as the block copolymer chains are more compressed in the direction parallel to the interface and more stretched in the direction perpendicular to the interface than the corresponding unperturbed polymer chains with the same molecular weight. On increasing the volume fraction of the homopolymers the thickness of the lamellar microdomains increases. The block copolymer chains were found to undergo an isochoric affine deformation on addition of the homopolymers or with the change of the thickness of the lamellar microdomains. (orig.)

  6. SANS study of polymer chains in confined space

    International Nuclear Information System (INIS)

    Hasegawa, Hirokazu; Tanaka, Hideaki; Hashimoto, Takeji; Han, C.C.

    1993-01-01

    The lateral and vertical components of the radius of gyration for a single block copolymer chain in the lamellar microdomain space formed by a mixture of diblock copolymers and homopolymers were investigated by means of small-angle neutron scattering (SANS), and the microdomain structures by small-angle X-ray scattering (SAXS). We used the homopolymers whose molecular weights are much smaller than that of the corresponding chains of the block copolymers so that the homopolymers are uniformly solubilized in the corresponding microdomains. The SANS result suggests that the block copolymer chains in the microdomain space are more compressed in the direction parallel to the interface and more stretched in the direction perpendicular to the interface than the corresponding unperturbed polymer chains with the same molecular weight. With increasing the volume fraction of the homopolymers the thickness of the lamellar microdomains increases. The block copolymer chains were found to undergo an isochoric affine deformation on addition of the homopolymers or with the change of the thickness of the lamellar microdomains. (author)

  7. Chemical composition and fermentation characteristics of elephant grass silage with biodiesel industry co-products Composição química e características fermentativas de silagens de capim elefante contendo coprodutos da indústria do biodiesel

    Directory of Open Access Journals (Sweden)

    Eric Haydt Castello Branco van Cleef

    2012-04-01

    Full Text Available The objective of this research was to evaluate the effect of three concentrations (3, 6, and 9% of forage turnip (Raphanus sativus and physic nut (Jatropha curcas cakes on dry matter, crude protein, ether extract, neutral detergent fiber, acid detergent fiber, lignin, acid detergent insoluble nitrogen neutral detergent insoluble nitrogen contents, in vitro dry matter digestibility, pH values and concentrations of N-NH3 in elephant grass silages. It was used an entirely randomized design in factorial arrangement [(2×3+1]. Experimental PVC silos were used and ensiled material was kept for 62 days. The addition of cakes increased the dry matter contents (PObjetivou-se avaliar o efeito da adição de três concentrações (3, 6, e 9% das tortas de nabo forrageiro (Raphanus sativus e de pinhão manso (Jatropha curcas sobre os teores de matéria seca, proteína bruta, extrato etéreo, fibra em detergente neutro, fibra em detergente ácido, lignina, nitrogênio insolúvel em detergente ácido, nitrogênio insolúvel em detergente neutro, digestibilidade in vitro da matéria seca, valores de pH e concentrações de N-NH3 em silagens de capim-elefante. Utilizou-se delineamento inteiramente casualizado em arranjo fatorial [(2×3+1]. Foram utilizados silos experimentais de PVC e o material ensilado permaneceu por 62 dias. A adição das tortas proporcionou aumento nos teores de matéria seca (P<0,05. As frações fibrosas foram diminuídas (P<0,05 com a inclusão das tortas no momento da ensilagem do capim e os teores de PB aumentados (P<0,05. A torta de nabo forrageiro proporcionou a manutenção dos valores de pH e de N-NH3 em níveis ideais e a de pinhão manso, adicionada a 9%, elevou esses valores (P<0,05. A DIVMS foi diminuída (P<0,05 quando as tortas foram adicionadas. As tortas de nabo forrageiro e pinhão manso podem ser utilizadas em pequenas quantidades na ensilagem do capim-elefante por melhorarem as características químicas e fermentativas

  8. Effect of physical effectiveness on digestibility of ration for cows in early lactation.

    Science.gov (United States)

    Stojanovic, B; Grubic, G; Djordjevic, N; Bozickovic, A; Ivetic, A; Davidovic, V

    2014-08-01

    A study was conducted to investigate the effects of a diet particle size on nutrient digestibility in cows in early lactation. Treatments were diets with forage to concentrate ratio 43:57% in diet dry matter, with four different physically effective fibres (peNDF) content based on different cut length of corn silage and alfalfa haylage. The physical effectiveness factors (pef) and peNDF content of TMRs (total mixed ration) were determined using Penn State Particle Separator (PSPS) with two (pef8.0 , peNDF8.0) or three (pef1.18, peNDF1.18) sieves. The reducing of cut length of forages and particle size of diets did not affect on dry matter intake, while decreased peNDF intake by 16.34 and 8.83%, for peNDF8.0 and peNDF1.18 respectively. Apparent total tract digestibility of the nutrients was measured using two indicators: acid insoluble ash (AIA) and acid detergent insoluble lignin (ADL). Decreasing of forages cut length significantly increased apparent total tract digestibility of neutral detergent fibre (NDF) from 48.39% to 53.84% and from 53.9% to 58.66%, of crude protein from 73.96% to 79.24% and from 71.56% to 77.90%, with contemporary decreasing of non-fibre carbohydrate from 90.89% to 84.81% and from 91.99% to 86.80%, with AIA or ADL as indicator respectively. Dietary value of net energy for lactation (NEL) and energy intake was not affected by the peNDF content of the diet. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  9. Molecular basis of perinatal hypophosphatasia with tissue-nonspecific alkaline phosphatase bearing a conservative replacement of valine by alanine at position 406. Structural importance of the crown domain.

    Science.gov (United States)

    Numa, Natsuko; Ishida, Yoko; Nasu, Makiko; Sohda, Miwa; Misumi, Yoshio; Noda, Tadashi; Oda, Kimimitsu

    2008-06-01

    Hypophosphatasia, a congenital metabolic disease related to the tissue-nonspecific alkaline phosphatase gene (TNSALP), is characterized by reduced serum alkaline phosphatase levels and defective mineralization of hard tissues. A replacement of valine with alanine at position 406, located in the crown domain of TNSALP, was reported in a perinatal form of hypophosphatasia. To understand the molecular defect of the TNSALP (V406A) molecule, we examined this missense mutant protein in transiently transfected COS-1 cells and in stable CHO-K1 Tet-On cells. Compared with the wild-type enzyme, the mutant protein showed a markedly reduced alkaline phosphatase activity. This was not the result of defective transport and resultant degradation of TNSALP (V406A) in the endoplasmic reticulum, as the majority of newly synthesized TNSALP (V406A) was conveyed to the Golgi apparatus and incorporated into a cold detergent insoluble fraction (raft) at a rate similar to that of the wild-type TNSALP. TNSALP (V406A) consisted of a dimer, as judged by sucrose gradient centrifugation, suggestive of its proper folding and correct assembly, although this mutant showed increased susceptibility to digestion by trypsin or proteinase K. When purified as a glycosylphosphatidylinositol-anchorless soluble form, the mutant protein exhibited a remarkably lower Kcat/Km value compared with that of the wild-type TNSALP. Interestingly, leucine and isoleucine, but not phenylalanine, were able to substitute for valine, pointing to the indispensable role of residues with a longer aliphatic side chain at position 406 of TNSALP. Taken together, this particular mutation highlights the structural importance of the crown domain with respect to the catalytic function of TNSALP.

  10. Sodium 4-phenylbutyrate acts as a chemical chaperone on misfolded myocilin to rescue cells from endoplasmic reticulum stress and apoptosis.

    Science.gov (United States)

    Yam, Gary Hin-Fai; Gaplovska-Kysela, Katarina; Zuber, Christian; Roth, Jürgen

    2007-04-01

    To evaluate the effect of chemical chaperones on the trafficking of secretion-incompetent primary open-angle glaucoma-associated mutant myocilin and the possibility to rescue cells coexpressing mutant and wild-type myocilin from endoplasmic reticulum (ER) stress and apoptosis. CHO-K1, HEK293 and human trabecular meshwork cells were transfected to express wild-type or mutant (C245Y, G364V, P370L, Y437H) myocilin-green fluorescent protein fusion protein and were treated or not with various chemical chaperones (glycerol, dimethylsulfoxide, or sodium 4-phenylbutyrate) for different time periods. The secretion, Triton X-100 solubility, and intracellular distribution of wild-type and mutant myocilin were analyzed by immunoprecipitation, Western blotting, and confocal double immunofluorescence. The effect of sodium 4-phenylbutyrate on ER stress proteins and apoptosis was examined in cells coexpressing mutant and wild-type myocilin. Treatment with sodium 4-phenylbutyrate, but not with glycerol or dimethylsulfoxide, reduced the amount of detergent-insoluble myocilin aggregates, diminished myocilin interaction with calreticulin, and restored the secretion of mutant myocilin. Heteromeric complexes formed by mutant and wild-type myocilin induced the ER stress-associated phosphorylated form of ER-localized eukaryotic initiation factor (eIF)-2alpha kinase and the active form of caspase 3, which resulted in an increased rate of apoptosis. Sodium 4-phenylbutyrate treatment of cells coexpressing mutant and wild-type myocilin relieved ER stress and significantly reduced the rate of apoptosis. These findings indicate that sodium 4-phenylbutyrate protects cells from the deleterious effects of ER-retained aggregated mutant myocilin. These data point to the possibility of a chemical chaperone treatment for myocilin-caused primary open-angle glaucoma.

  11. Losses through gases and effluent and nutritional value of Brachiaria decumbens with addition of soybean hulls

    Directory of Open Access Journals (Sweden)

    Carlos Clayton Oliveira Dantas

    2014-05-01

    Full Text Available The objective of this experiment was to evaluate the losses of nutrient through gases and effluents, the nutrient recovery, fermentation parameters and the chemical parameters of silages of Brachiaria decumbens with the addition of soybean hulls, testing five levels of inclusion: 0, 10, 20, 30 and 40% (as is, with five replications per treatment. After the standardization cut of the forage, performed at 5 cm from the soil level, the soil was fertilized with nitrogen and potassium in the form of ammonium sulfate and potassium chloride, respectively, at 60 kg/ha. After 60 days, the grass was cut at 10 cm from the soil and ensiled. Experimental silos with capacity of 10 liters with Bunsen valve were used. Silos had 3 kg of sand conditioned at the bottom for retention of the effluents. The results show that the contents of dry matter, crude protein, acid detergent insoluble fiber and total digestible nutrients presented positive linear behavior with the inclusion of soybean hulls. In the grass silages with addition of soybean hulls, there was greater recovery of dry matter in relation to the control silage, which is a reflection of the negative linear behavior for the values of losses of gases and effluent. There was quadratic behavior in the pH values and negative linear behavior for the ammonia N values and buffering capacity with the inclusion of the additive in the grass silage. Inclusion of soybean hulls is sufficient to improve the fermentation pattern and minimize the losses through gases and effluents, contributing to the nutrient recovery, in addition to promoting overall improvement of the nutritional value of Brachiaria grass silages.

  12. Nitrogen fractionation of certain conventional- and lesser-known by-products for ruminants

    Directory of Open Access Journals (Sweden)

    M.S. Mahesh

    2017-06-01

    Full Text Available Dietary proteins for ruminants are fractionated according to solubility, degradability and digestibility. In the present experiment, 11 vegetable protein meals and cakes used in ruminant nutrition were included with a main focus on determining various nitrogen (N fractions in vitro. Total N (N × 6.25 content varied from 22.98% (mahua cake to 65.16% (maize gluten meal, respectively. Guar meal korma contained the lowest and rice gluten meal had the highest acid detergent insoluble nitrogen (ADIN; N × 6.25. Borate-phosphate insoluble N (BIN, N × 6.25 and Streptomyces griseus protease insoluble N (PIN; N × 6.25 were higher (P < 0.01 in maize gluten meal than in other feeds, whereas groundnut cake and sunflower cake had lower (P < 0.01 BIN, and PIN, respectively. Available N, calculated with the assumption that ADIN is indigestible, was maximum in guar meal korma and minimum in rice gluten meal. Furthermore, rapid and slowly degradable N (N × 6.25 was found to be higher (P < 0.01 in groundnut cake and coconut cake, respectively. Intestinal digestion of rumen undegradable protein, expressed as percent of PIN, was maximum in guar meal korma and minimum in rice gluten meal. It was concluded that vegetable protein meals differed considerably in N fractions, and therefore, a selective inclusion of particular ingredient is needed to achieve desired level of N fractions to aid precision N rationing for an improved production performance of ruminants.

  13. Assessing diet quality of African ungulates from faecal analyses: the effect of forage quality, intake and herbivore species

    Directory of Open Access Journals (Sweden)

    J.M. Wrench

    1997-08-01

    Full Text Available Faecal phosphorous and nitrogen can be used as indicators of the nutritive content of the veld. Dietary P concentrations can be predicted with reasonable accuracy from faecal P concentrations in faeces of caged impala rams using a simple linear regression model, Y = 0.393X (r2 = 0.97. This regression holds whether impala are grazing or browsing as well as for high and low levels of intake. The regression equation used in the prediction of dietary P in zebra, blue wildebeest and cattle, did not differ significantly from this simple regression and a combined regression equation could be formulated. A faecal P concentration of less than 2 g P/kg OM would appear to indicate a P deficiency in most species. The prediction of dietary N is influenced by the intake of phenolic compounds and different regression equations exist for grazers and browsers. For prediction of dietary N concentrations, both the concentration of N and P in the faeces should be taken into account. This multiple regression equation is applicable for grazing impala at all levels of intake. For impala utilising browse, a regression model with faecal Acid Detergent Insoluble Nitrogen (ADIN and Acid Detergent Lignin (ADL should be used to predict dietary N concentration. For grazers, a faecal N concentration of less than 14 g/kg DM would indicate a deficiency. Dietary digestibility can be predicted accurately in some species using faecal N, P and ADL concentrations. However, more work needs to be done to quantify their effects.

  14. PrP-C1 fragment in cattle brains reveals features of the transmissible spongiform encephalopathy associated PrPsc.

    Science.gov (United States)

    Serra, Fabienne; Müller, Joachim; Gray, John; Lüthi, Ramona; Dudas, Sandor; Czub, Stefanie; Seuberlich, Torsten

    2017-03-15

    Three different types of bovine spongiform encephalopathy (BSE) are known and supposedly caused by distinct prion strains: the classical (C-) BSE type that was typically found during the BSE epidemic, and two relatively rare atypical BSE types, termed H-BSE and L-BSE. The three BSE types differ in the molecular phenotype of the disease associated prion protein, namely the N-terminally truncated proteinase K (PK) resistant prion protein fragment (PrP res ). In this study, we report and analyze yet another PrP res type (PrP res-2011 ), which was found in severely autolytic brain samples of two cows in the framework of disease surveillance in Switzerland in 2011. Analysis of brain tissues from these animals by PK titration and PK inhibitor assays ruled out the process of autolysis as the cause for the aberrant PrP res profile. Immunochemical characterization of the PrP fragments present in the 2011 cases by epitope mapping indicated that PrP res-2011 corresponds in its primary sequence to the physiologically occurring PrP-C1 fragment. However, high speed centrifugation, sucrose gradient assay and NaPTA precipitation revealed biochemical similarities between PrP res-2011 and the disease-associated prion protein found in BSE affected cattle in terms of detergent insolubility, PK resistance and PrP aggregation. Although it remains to be established whether PrP res-2011 is associated with a transmissible disease, our results point out the need of further research on the role the PrP-C1 aggregation and misfolding in health and disease. Copyright © 2017. Published by Elsevier B.V.

  15. Canine degenerative myelopathy: biochemical characterization of superoxide dismutase 1 in the first naturally occurring non-human amyotrophic lateral sclerosis model.

    Science.gov (United States)

    Crisp, Matthew J; Beckett, Jeffrey; Coates, Joan R; Miller, Timothy M

    2013-10-01

    Mutations in canine superoxide dismutase 1 (SOD1) have recently been shown to cause canine degenerative myelopathy, a disabling neurodegenerative disorder affecting specific breeds of dogs characterized by progressive motor neuron loss and paralysis until death, or more common, euthanasia. This discovery makes canine degenerative myelopathy the first and only naturally occurring non-human model of amyotrophic lateral sclerosis (ALS), closely paralleling the clinical, pathological, and genetic presentation of its human counterpart, SOD1-mediated familial ALS. To further understand the biochemical role that canine SOD1 plays in this disease and how it may be similar to human SOD1, we characterized the only two SOD1 mutations described in affected dogs to date, E40K and T18S. We show that a detergent-insoluble species of mutant SOD1 is present in spinal cords of affected dogs that increases with disease progression. Our in vitro results indicate that both canine SOD1 mutants form enzymatically active dimers, arguing against a loss of function in affected homozygous animals. Further studies show that these mutants, like most human SOD1 mutants, have an increased propensity to form aggregates in cell culture, with 10-20% of cells possessing visible aggregates. Creation of the E40K mutation in human SOD1 recapitulates the normal enzymatic activity but not the aggregation propensity seen with the canine mutant. Our findings lend strong biochemical support to the toxic role of SOD1 in canine degenerative myelopathy and establish close parallels for the role mutant SOD1 plays in both canine and human disorders. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. An ultraviolet-sensitive maternal mRNA encoding a cytoskeletal protein may be involved in axis formation in the ascidian embryo

    International Nuclear Information System (INIS)

    Jeffery, W.R.

    1990-01-01

    Ultraviolet (uv) irradiation of the vegetal hemisphere of fertilized eggs during ooplasmic segregation inhibits subsequent gastrulation and axis formation in ascidian embryos. The molecular basis of this phenomenon was investigated in by comparing in vivo protein synthesis and in vitro mRNA translation in normal and uv-irradiated embryos of the ascidian Styela clava. Analysis of protein synthesis by [35S]methionine incorporation, two-dimensional (2D) gel electrophoresis, and autoradiography showed that only 21 of 433 labeled polypeptides were missing or decreased in labeling intensity in uv-irradiated embryos. The most prominent of these was a 30,000 molecular weight (pI 6.0) polypeptide (p30). Extraction of gastrulae with the nonionic detergent Triton X-100 showed that p30 is retained in the detergent insoluble residue, suggesting that it is associated with the cytoskeleton. Several lines of evidence suggest that p30 may be involved in axis formation. First, p30 labeling peaks during gastrulation, when the embryonic axis is being established. Second, axis formation and p30 labeling are abolished by the same threshold uv dose, which is distinct from that required to inactivate muscle cell development. Third, the uv sensitivity period for abolishing p30 labeling and axis formation are both restricted to ooplasmic segregation. In vitro translation of egg RNA followed by 2D gel electrophoresis and autoradiography of the protein products showed that p30 is encoded by a maternal mRNA. The translation of p30 mRNA was abolished by uv irradiation of fertilized eggs during ooplasmic segregation suggesting that this message is a uv-sensitive target. The results are consistent with the hypothesis that uv irradiation blocks gastrulation and axis formation by inhibiting the translation of maternal mRNA localized in the vegetal hemisphere of the fertilized egg

  17. Tar DNA binding protein-43 (TDP-43 associates with stress granules: analysis of cultured cells and pathological brain tissue.

    Directory of Open Access Journals (Sweden)

    Liqun Liu-Yesucevitz

    2010-10-01

    Full Text Available Tar DNA Binding Protein-43 (TDP-43 is a principle component of inclusions in many cases of frontotemporal lobar degeneration (FTLD-U and amyotrophic lateral sclerosis (ALS. TDP-43 resides predominantly in the nucleus, but in affected areas of ALS and FTLD-U central nervous system, TDP-43 is aberrantly processed and forms cytoplasmic inclusions. The mechanisms governing TDP-43 inclusion formation are poorly understood. Increasing evidence indicates that TDP-43 regulates mRNA metabolism by interacting with mRNA binding proteins that are known to associate with RNA granules. Here we show that TDP-43 can be induced to form inclusions in cell culture and that most TDP-43 inclusions co-localize with SGs. SGs are cytoplasmic RNA granules that consist of mixed protein-RNA complexes. Under stressful conditions SGs are generated by the reversible aggregation of prion-like proteins, such as TIA-1, to regulate mRNA metabolism and protein translation. We also show that disease-linked mutations in TDP-43 increased TDP-43 inclusion formation in response to stressful stimuli. Biochemical studies demonstrated that the increased TDP-43 inclusion formation is associated with accumulation of TDP-43 detergent insoluble complexes. TDP-43 associates with SG by interacting with SG proteins, such as TIA-1, via direct protein-protein interactions, as well as RNA-dependent interactions. The signaling pathway that regulates SGs formation also modulates TDP-43 inclusion formation. We observed that inclusion formation mediated by WT or mutant TDP-43 can be suppressed by treatment with translational inhibitors that suppress or reverse SG formation. Finally, using Sudan black to quench endogenous autofluorescence, we also demonstrate that TDP-43 positive-inclusions in pathological CNS tissue co-localize with multiple protein markers of stress granules, including TIA-1 and eIF3. These data provide support for accumulating evidence that TDP-43 participates in the SG pathway.

  18. Prion Protein Promotes Kidney Iron Uptake via Its Ferrireductase Activity*

    Science.gov (United States)

    Haldar, Swati; Tripathi, Ajai; Qian, Juan; Beserra, Amber; Suda, Srinivas; McElwee, Matthew; Turner, Jerrold; Hopfer, Ulrich; Singh, Neena

    2015-01-01

    Brain iron-dyshomeostasis is an important cause of neurotoxicity in prion disorders, a group of neurodegenerative conditions associated with the conversion of prion protein (PrPC) from its normal conformation to an aggregated, PrP-scrapie (PrPSc) isoform. Alteration of iron homeostasis is believed to result from impaired function of PrPC in neuronal iron uptake via its ferrireductase activity. However, unequivocal evidence supporting the ferrireductase activity of PrPC is lacking. Kidney provides a relevant model for this evaluation because PrPC is expressed in the kidney, and ∼370 μg of iron are reabsorbed daily from the glomerular filtrate by kidney proximal tubule cells (PT), requiring ferrireductase activity. Here, we report that PrPC promotes the uptake of transferrin (Tf) and non-Tf-bound iron (NTBI) by the kidney in vivo and mainly NTBI by PT cells in vitro. Thus, uptake of 59Fe administered by gastric gavage, intravenously, or intraperitoneally was significantly lower in PrP-knock-out (PrP−/−) mouse kidney relative to PrP+/+ controls. Selective in vivo radiolabeling of plasma NTBI with 59Fe revealed similar results. Expression of exogenous PrPC in immortalized PT cells showed localization on the plasma membrane and intracellular vesicles and increased transepithelial transport of 59Fe-NTBI and to a smaller extent 59Fe-Tf from the apical to the basolateral domain. Notably, the ferrireductase-deficient mutant of PrP (PrPΔ51–89) lacked this activity. Furthermore, excess NTBI and hemin caused aggregation of PrPC to a detergent-insoluble form, limiting iron uptake. Together, these observations suggest that PrPC promotes retrieval of iron from the glomerular filtrate via its ferrireductase activity and modulates kidney iron metabolism. PMID:25572394

  19. Application potential of ATR-FT/IR molecular spectroscopy in animal nutrition: revelation of protein molecular structures of canola meal and presscake, as affected by heat-processing methods, in relationship with their protein digestive behavior and utilization for dairy cattle.

    Science.gov (United States)

    Theodoridou, Katerina; Yu, Peiqiang

    2013-06-12

    Protein quality relies not only on total protein but also on protein inherent structures. The most commonly occurring protein secondary structures (α-helix and β-sheet) may influence protein quality, nutrient utilization, and digestive behavior. The objectives of this study were to reveal the protein molecular structures of canola meal (yellow and brown) and presscake as affected by the heat-processing methods and to investigate the relationship between structure changes and protein rumen degradations kinetics, estimated protein intestinal digestibility, degraded protein balance, and metabolizable protein. Heat-processing conditions resulted in a higher value for α-helix and β-sheet for brown canola presscake compared to brown canola meal. The multivariate molecular spectral analyses (PCA, CLA) showed that there were significant molecular structural differences in the protein amide I and II fingerprint region (ca. 1700-1480 cm(-1)) between the brown canola meal and presscake. The in situ degradation parameters, amide I and II, and α-helix to β-sheet ratio (R_a_β) were positively correlated with the degradable fraction and the degradation rate. Modeling results showed that α-helix was positively correlated with the truly absorbed rumen synthesized microbial protein in the small intestine when using both the Dutch DVE/OEB system and the NRC-2001 model. Concerning the protein profiles, R_a_β was a better predictor for crude protein (79%) and for neutral detergent insoluble crude protein (68%). In conclusion, ATR-FT/IR molecular spectroscopy may be used to rapidly characterize feed structures at the molecular level and also as a potential predictor of feed functionality, digestive behavior, and nutrient utilization of canola feed.

  20. Proteomic screening for amyloid proteins.

    Directory of Open Access Journals (Sweden)

    Anton A Nizhnikov

    Full Text Available Despite extensive study, progress in elucidation of biological functions of amyloids and their role in pathology is largely restrained due to the lack of universal and reliable biochemical methods for their discovery. All biochemical methods developed so far allowed only identification of glutamine/asparagine-rich amyloid-forming proteins or proteins comprising amyloids that form large deposits. In this article we present a proteomic approach which may enable identification of a broad range of amyloid-forming proteins independently of specific features of their sequences or levels of expression. This approach is based on the isolation of protein fractions enriched with amyloid aggregates via sedimentation by ultracentrifugation in the presence of strong ionic detergents, such as sarkosyl or SDS. Sedimented proteins are then separated either by 2D difference gel electrophoresis or by SDS-PAGE, if they are insoluble in the buffer used for 2D difference gel electrophoresis, after which they are identified by mass-spectrometry. We validated this approach by detection of known yeast prions and mammalian proteins with established capacity for amyloid formation and also revealed yeast proteins forming detergent-insoluble aggregates in the presence of human huntingtin with expanded polyglutamine domain. Notably, with one exception, all these proteins contained glutamine/asparagine-rich stretches suggesting that their aggregates arose due to polymerization cross-seeding by human huntingtin. Importantly, though the approach was developed in a yeast model, it can easily be applied to any organism thus representing an efficient and universal tool for screening for amyloid proteins.

  1. Familial knockin mutation of LRRK2 causes lysosomal dysfunction and accumulation of endogenous insoluble α-synuclein in neurons.

    Science.gov (United States)

    Schapansky, Jason; Khasnavis, Saurabh; DeAndrade, Mark P; Nardozzi, Jonathan D; Falkson, Samuel R; Boyd, Justin D; Sanderson, John B; Bartels, Tim; Melrose, Heather L; LaVoie, Matthew J

    2018-03-01

    Missense mutations in the multi-domain kinase LRRK2 cause late onset familial Parkinson's disease. They most commonly with classic proteinopathy in the form of Lewy bodies and Lewy neurites comprised of insoluble α-synuclein, but in rare cases can also manifest tauopathy. The normal function of LRRK2 has remained elusive, as have the cellular consequences of its mutation. Data from LRRK2 null model organisms and LRRK2-inhibitor treated animals support a physiological role for LRRK2 in regulating lysosome function. Since idiopathic and LRRK2-linked PD are associated with the intraneuronal accumulation of protein aggregates, a series of critical questions emerge. First, how do pathogenic mutations that increase LRRK2 kinase activity affect lysosome biology in neurons? Second, are mutation-induced changes in lysosome function sufficient to alter the metabolism of α-synuclein? Lastly, are changes caused by pathogenic mutation sensitive to reversal with LRRK2 kinase inhibitors? Here, we report that mutation of LRRK2 induces modest but significant changes in lysosomal morphology and acidification, and decreased basal autophagic flux when compared to WT neurons. These changes were associated with an accumulation of detergent-insoluble α-synuclein and increased neuronal release of α-synuclein and were reversed by pharmacologic inhibition of LRRK2 kinase activity. These data demonstrate a critical and disease-relevant influence of native neuronal LRRK2 kinase activity on lysosome function and α-synuclein homeostasis. Furthermore, they also suggest that lysosome dysfunction, altered neuronal α-synuclein metabolism, and the insidious accumulation of aggregated protein over decades may contribute to pathogenesis in this late-onset form of familial PD. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Chemical composition, nitrogen degradability and in vitro ruminal biological activity of tannins in vines harvested from four tropical sweet potato (Ipomoea batatas L.) varieties.

    Science.gov (United States)

    Ali, R; Mlambo, V; Mangwe, M C; Dlamini, B J

    2016-02-01

    This study investigated the potential of vines from four sweet potato varieties (Tia Nong 57, Tia Nong 66, Ligwalagwala and Kenya) as alternative feed resources for ruminant livestock. The chemical composition [neutral detergent fibre (NDF), acid detergent fibre (ADF), crude protein (CP) and acid detergent insoluble nitrogen (ADIN)], in vitro ruminal nitrogen (N) degradability and in vitro ruminal biological activity of tannins in the vines, harvested at 70 and 110 days after planting (DAP), were determined. Variety and harvesting stage did not (p > 0.05) influence CP and NDF content of the vines. Concentration of CP ranged from 104.9 to 212.2 g/kg DM, while NDF ranged from 439.4 to 529.2 g/kg DM across harvesting stages and varieties. Nitrogen degradability (ND) at 70 and 110 DAP was highest (p ruminal cumulative gas production parameters (a, b and c). The in vitro ruminal biological activity of tannins, as measured by increment in gas production parameters upon PEG inclusion, had a maximum value of 18.2%, suggesting low to moderate antinutritional tannin activity. Ligwalagwala vines, with highly degradable N, would be the best protein supplement to use during the dry season when ruminant animals consume low N basal diets and maintenance is an acceptable production objective. Tia Nong 66 and Kenya varieties, with less degradable N, may be more suitable for use as supplements for high-producing animals such as dairy goats. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  3. Rice gluten meal as an alternative by-product feed for growing dairy calves.

    Science.gov (United States)

    Kumar, Rohit; Thakur, Sudarshan Singh; Mahesh, M S

    2016-03-01

    This experiment aimed at studying the nutritional characteristics and feeding value of rice gluten meal (RGM, a wet-milling by-product of rice) in growing dairy calves. RGM contained 464 g/kg of crude protein with 821 and 196 g/kg nitrogen (N) of borate-phosphate insoluble N and acid detergent insoluble N, respectively, which were higher (P calves (6-12 months) were randomly assigned into three groups based on comparable body weight and age. The first group (GP-I) was fed concentrate mixture containing mainly GNC as protein source, whilst it was replaced by RGM up to 50 and 75 % on N basis, in second (GP-II) and third (GP-III) groups, respectively. Thus, RGM constituted 140 and 210 g/kg of concentrate mixture of GP-II and GP-III, respectively. In addition, all animals were offered chopped green maize and wheat straw for the whole experimental period of 90 days. Results revealed that there was no difference in intake and digestibility of nutrients, N balance, average daily gain (ADG) and feed efficiency among three groups. Nevertheless, RGM-based diets produced cost-effective ADG than GP-I. Furthermore, experimental calves did not differ in haematological variables like glucose, blood urea N, plasma proteins and non-esterified fatty acids. This study demonstrated that RGM could be incorporated successfully in the concentrate mixture, replacing 75 % of GNC without any discernable compromise in the performance of growing calves.

  4. Vinculin promotes cell spreading by mechanically coupling integrins to the cytoskeleton

    Science.gov (United States)

    Ezzell, R. M.; Goldmann, W. H.; Wang, N.; Parasharama, N.; Ingber, D. E.

    1997-01-01

    Mouse F9 embryonic carcinoma 5.51 cells that lack the cytoskeletal protein vinculin spread poorly on extracellular matrix compared with wild-type F9 cells or two vinculin-transfected clones (5.51Vin3 and Vin4; Samuels et al., 1993, J. Cell Biol. 121, 909-921). In the present study, we used this model system to determine how the presence of vinculin promotes cytoskeletal alterations and associated changes in cell shape. Microscopic analysis of cell spreading at early times, revealed that 5.51 cells retained the ability to form filopodia; however, they could not form lamellipodia, assemble stress fibers, or efficiently spread over the culture substrate. Detergent (Triton X-100) studies revealed that these major differences in cell morphology and cytoskeletal organization did not result from differences in levels of total polymerized or cross-linked actin. Biochemical studies showed that 5.51 cells, in addition to lacking vinculin, exhibited slightly reduced levels of alpha-actinin and paxillin in their detergent-insoluble cytoskeleton. The absence of vinculin correlated with a decrease in the mechanical stiffness of the integrin-cytoskeleton linkage, as measured using cell magnetometry. Furthermore, when vinculin was replaced by transfection in 5.51Vin3 and 5.51Vin4 cells, the levels of cytoskeletal-associated alpha-actinin and paxillin, the efficiency of transmembrane mechanical coupling, and the formation of actin stress fibers were all restored to near wild-type levels. These findings suggest that vinculin may promote cell spreading by stabilizing focal adhesions and transferring mechanical stresses that drive cytoskeletal remodeling, rather than by altering the total level of actin polymerization or cross-linking.

  5. Accuracy of two optical chlorophyll meters in predicting chemical composition and in vitro ruminal organic matter degradability of Brachiaria hybrid, Megathyrsus maximus, and Paspalum atratum

    Directory of Open Access Journals (Sweden)

    Martin P. Hughes

    2017-03-01

    Full Text Available The objective of this study was to determine the accuracy and reliability of 2 optical chlorophyll meters: FieldScout CM 1,000 NDVI and Yara N-Tester, in predicting neutral detergent fibre (NDF, acid detergent fibre (ADF, acid detergent lignin (ADL, acid detergent insoluble nitrogen (ADIN and in vitro ruminal organic matter degradability (IVOMD of 3 tropical grasses. Optical chlorophyll measurements were taken at 3 stages (4, 8 and 12 weeks of regrowth in Brachiaria hybrid, and Megathyrsus maximus and at 6 and 12 weeks of regrowth in Paspalum atratum (cv. Ubon. Optical chlorophyll measurements showed the highest correlation (r = 0.57 to 0.85 with NDF concentration. The FieldScout CM 1,000 NDVI was better than the Yara N-Tester in predicting NDF (R2 = 0.70 and ADF (R2 = 0.79 concentrations in Brachiaria hybrid and NDF (R2 = 0.79 in M. maximus. Similarly, FieldScout CM 1,000 NDVI produced better estimates of 24 h IVOMD (IVOMD24h in Brachiaria hybrid (R2 = 0.81 and IVOMD48h in Brachiaria hybrid (R2 = 0.65 and M. maximus (R2 = 0.75. However, these prediction models had relatively low concordance correlation coefficients, i.e., CCC >0.90, but random errors were the main source of bias. It was, therefore, concluded that both optical chlorophyll meters were poor and unreliable predictors of ADIN and ADL concentrations. Overall, the FieldScout CM 1,000 NDVI shows potential to produce useful estimates of IVOMD24h and ADF in Brachiaria hybrid and IVOMD48h and NDF concentrations in M. maximus.

  6. A high molecular weight proteoglycan is differentially expressed during development of the mollusc Concholepas concholepas (Mollusca; Gastropoda; Muricidae).

    Science.gov (United States)

    Brandan, E; González, M; Inestrosa, N C; Tremblay, C; Urrea, R

    1992-12-15

    Incorporation of radioactive sulfate to hatched veliger larvae of the gastropod muricid Concholepas concholepas indicated that over 87% of the sulfated macromolecules were found in the detergent insoluble fraction, rich in extracellular matrix (ECM) components. The sulfated material was solubilized with guanidine salt followed by urea dialysis and fractionated by DEAE-Sephacel chromatography. Three sulfated compounds eluting at 0.7, 1.1, and 3.0 M NaCl, called peaks I, II, and III, respectively, were obtained. The sulfated compound present in peak I was degraded by pronase or sodium alkaline treatment to a small sulfated resistant material, suggesting the presence of a proteoglycan (PG). Filtration analysis on Sephacryl S-500 and SDS-PAGE of the intact PG indicates that it has a high molecular weight (360,000 to over 1 x 10(6)). Monoclonal antibodies (mAb) against this PG were produced. The specificity of one mAb, the 6H2, was demonstrated by size chromatography and ELISA analysis. The epitope recognized by this mAb seems to be present in the core protein of the PG. Both the extent of sulfation and the presence of different sulfated species of PGs were evaluated during the development of this mollusc. A twelvefold increase in the incorporation of sulfate to PGs per milligram of protein was found in veliger larvae compared to blastula-glastula stages. This change correlated well with the differential expression of the sulfated PG present in peak I. Biochemical and immunological analysis indicate that high levels of this PG are found in veliger and trocophore larvae in comparison with blastula-gastrula and early juveniles.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Nutritional evaluation of elephant-grass silages with different levels of by-products from the cashew juice industry

    Directory of Open Access Journals (Sweden)

    Ana Cristina Holanda Ferreira

    2015-12-01

    Full Text Available ABSTRACT This study was conducted to evaluate the intake, apparent digestibility (AD, and degradability in situ of elephant grass (Pennisetum purpureum Schum silages containing 0, 35.0, 70.0, 105.0, and 140.0 g kg-1 by-product from dried cashew apple (DCBP (as fed basis. A completely randomized design with four replicates was adopted. For the study of degradability in situ, one adult male cattle was used in a completely randomized design with split plots. Intake and AD of dry matter (DM, crude protein (CP, neutral detergent fiber (NDF, acid detergent fiber (ADF, hemicellulose, and cellulose were evaluated, and the digestible energy (DE and nitrogen balance (NB of the silages were determined. The degradability in situ of DM, CP, and NDF was also determined. Addition of DCBP provided an increase in the intakes of DM, CP, NDF, and ADF. No effects of the levels of addition of DCBP were observed on the coefficients of AD of the silages. Regarding NB, positive values were only detected in the treatment with 105.0 g kg-1 DCBP. In the analysis of the degradability in situ, the incubation periods increased the rates of disappearance of DM, CP, and NDF. However, no effect of the levels of DCBP were observed on the effective degradability of DM. The by-product from dried cashew apple can be included at up to 140.0 g kg-1 in silages of elephant grass, but the high contents of acid detergent insoluble nitrogen may compromise the use and availability of nitrogen to the animals.

  8. DOPA Decarboxylase Modulates Tau Toxicity.

    Science.gov (United States)

    Kow, Rebecca L; Sikkema, Carl; Wheeler, Jeanna M; Wilkinson, Charles W; Kraemer, Brian C

    2018-03-01

    The microtubule-associated protein tau accumulates into toxic aggregates in multiple neurodegenerative diseases. We found previously that loss of D 2 -family dopamine receptors ameliorated tauopathy in multiple models including a Caenorhabditis elegans model of tauopathy. To better understand how loss of D 2 -family dopamine receptors can ameliorate tau toxicity, we screened a collection of C. elegans mutations in dopamine-related genes (n = 45) for changes in tau transgene-induced behavioral defects. These included many genes responsible for dopamine synthesis, metabolism, and signaling downstream of the D 2 receptors. We identified one dopamine synthesis gene, DOPA decarboxylase (DDC), as a suppressor of tau toxicity in tau transgenic worms. Loss of the C. elegans DDC gene, bas-1, ameliorated the behavioral deficits of tau transgenic worms, reduced phosphorylated and detergent-insoluble tau accumulation, and reduced tau-mediated neuron loss. Loss of function in other genes in the dopamine and serotonin synthesis pathways did not alter tau-induced toxicity; however, their function is required for the suppression of tau toxicity by bas-1. Additional loss of D 2 -family dopamine receptors did not synergize with bas-1 suppression of tauopathy phenotypes. Loss of the DDC bas-1 reduced tau-induced toxicity in a C. elegans model of tauopathy, while loss of no other dopamine or serotonin synthesis genes tested had this effect. Because loss of activity upstream of DDC could reduce suppression of tau by DDC, this suggests the possibility that loss of DDC suppresses tau via the combined accumulation of dopamine precursor levodopa and serotonin precursor 5-hydroxytryptophan. Published by Elsevier Inc.

  9. Caveolin-1-mediated post-transcriptional regulation of inducible nitric oxide synthase in human colon carcinoma cells

    Directory of Open Access Journals (Sweden)

    EMANUELA FELLEY-BOSCO

    2002-01-01

    Full Text Available Reactive oxygen species are now widely recognized as important players contributing both to cell homeostasis and the development of disease. In this respect nitric oxide (NO is no exception. The discussion here will center on regulation of the inducible form of nitric oxide synthase (iNOS for two reasons. First, only iNOS produces micromolar NO concentrations, amounts that are high by comparison with the picomolar to nanomolar concentrations resulting from Ca2+-controlled NO production by endothelial eNOS or neuronal nNOS. Second, iNOS is not constitutively expressed in cells and regulation of this isoenzyme, in contrast to endothelial eNOS or neuronal nNOS, is widely considered to occur at the transcriptional level only. In particular, we were interested in the possibility that caveolin-1, a protein that functions as a tumor suppressor in colon carcinoma cells (Bender et al., 2002; this issue, might regulate iNOS activity. Our results provide evidence for the existence of a post-transcriptional mechanism controlling iNOS protein levels that involves caveolin-1-dependent sequestration of iNOS within a detergent-insoluble compartment. Interestingly, despite the high degree of conservation of the caveolin-1 scaffolding domain binding motif within all NOS enzymes, the interaction detected between caveolin-1 and iNOS in vitro is crucially dependent on presence of a caveolin-1 sequence element immediately adjacent to the scaffolding domain. A model is presented summarizing the salient aspects of these results. These observations are important in the context of tumor biology, since down-regulation of caveolin-1 is predicted to promote uncontrolled iNOS activity, genotoxic damage and thereby facilitate tumor development in humans

  10. Microstructural Heterogeneity in Native and Engineered Fibrocartilage Directs Micromechanics and Mechanobiology

    Science.gov (United States)

    Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P; Delucca, John F; McLeod, Claire M; Smith, Lachlan J; Duncan, Randall L; Mauck, Robert L; Elliott, Dawn M

    2015-01-01

    Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop microengineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, aging, and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue engineered constructs (hetTECs) with microscale non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical, and mechanobiological benchmarks of native tissue. Our tissue engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating, and regenerating fibrous tissues. PMID:26726994

  11. Microstructural heterogeneity directs micromechanics and mechanobiology in native and engineered fibrocartilage

    Science.gov (United States)

    Han, Woojin M.; Heo, Su-Jin; Driscoll, Tristan P.; Delucca, John F.; McLeod, Claire M.; Smith, Lachlan J.; Duncan, Randall L.; Mauck, Robert L.; Elliott, Dawn M.

    2016-04-01

    Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop micro-engineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, ageing and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue-engineered constructs (hetTECs) with non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical and mechanobiological benchmarks of native tissue. Our tissue-engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating and regenerating fibrous tissues.

  12. Distribution of short block copolymer chains in Binary Blends of Block Copolymers Having Hydrogen Bonding

    Science.gov (United States)

    Kwak, Jongheon; Han, Sunghyun; Kim, Jin Kon

    2014-03-01

    A binary mixture of two block copolymers whose blocks are capable of forming the hydrogen bonding allows one to obtain various microdomains that could not be expected for neat block copolymer. For instance, the binary blend of symmetric polystyrene-block-poly(2-vinylpyridine) copolymer (PS-b-P2VP) and polystyrene-block-polyhydroxystyrene copolymer (PS-b-PHS) blends where the hydrogen bonding occurred between P2VP and PHS showed hexagonally packed (HEX) cylindrical and body centered cubic (BCC) spherical microdomains. To know the exact location of short block copolymer chains at the interface, we synthesized deuterated polystyrene-block-polyhydroxystyrene copolymer (dPS-b-PHS) and prepared a binary mixture with PS-b-P2VP. We investigate, via small angle X-ray scattering (SAXS) and neutron reflectivity (NR), the exact location of shorter dPS block chain near the interface of the microdomains.

  13. Isolation of plasma membrane-associated membranes from rat liver.

    Science.gov (United States)

    Suski, Jan M; Lebiedzinska, Magdalena; Wojtala, Aleksandra; Duszynski, Jerzy; Giorgi, Carlotta; Pinton, Paolo; Wieckowski, Mariusz R

    2014-02-01

    Dynamic interplay between intracellular organelles requires a particular functional apposition of membrane structures. The organelles involved come into close contact, but do not fuse, thereby giving rise to notable microdomains; these microdomains allow rapid communication between the organelles. Plasma membrane-associated membranes (PAMs), which are microdomains of the plasma membrane (PM) interacting with the endoplasmic reticulum (ER) and mitochondria, are dynamic structures that mediate transport of proteins, lipids, ions and metabolites. These structures have gained much interest lately owing to their roles in many crucial cellular processes. Here we provide an optimized protocol for the isolation of PAM, PM and ER fractions from rat liver that is based on a series of differential centrifugations, followed by the fractionation of crude PM on a discontinuous sucrose gradient. The procedure requires ∼8-10 h, and it can be easily modified and adapted to other tissues and cell types.

  14. Antiproliferative effects of γ-tocotrienol are associated with lipid raft disruption in HER2-positive human breast cancer cells.

    Science.gov (United States)

    Alawin, Osama A; Ahmed, Rayan A; Ibrahim, Baher A; Briski, Karen P; Sylvester, Paul W

    2016-01-01

    A large percentage of human breast cancers are characterized by excessive or aberrant HER2 activity. Lipid rafts are specialized microdomains within the plasma membrane that are required for HER2 activation and signal transduction. Since the anticancer activity of γ-tocotrienol is associated with suppression in HER2 signaling, studies were conducted to examine the effects of γ-tocotrienol on HER2 activation within the lipid raft microdomain in HER2-positive SKBR3 and BT474 human breast cancer cells. Treatment with 0-5μM γ-tocotrienol induced a significant dose-dependent inhibition in cancer cell growth after a 5-day culture period, and these growth inhibitory effects were associated with a reduction in HER2 dimerization and phosphorylation (activation). Phosphorylated HER2 was found to be primarily located in the lipid raft microdomain of the plasma membrane in vehicle-treated control groups, whereas γ-tocotrienol treatment significantly inhibited this effect. Assay of plasma membrane subcellular fractions showed that γ-tocotrienol also accumulates exclusively within the lipid raft microdomain. Hydroxypropyl-β-cyclodextrin (HPβCD) is an agent that disrupts lipid raft integrity. Acute exposure to 3mM HPβCD alone had no effect, whereas an acute 24-h exposure to 20μM γ-tocotrienol alone significantly decreased SKBR3 and BT474 cell viability. However, combined treatment with these agents greatly reduced γ-tocotrienol accumulation in the lipid raft microdomain and cytotoxicity. In summary, these findings demonstrate that the anticancer effects of γ-tocotrienol are associated with its accumulation in the lipid raft microdomain and subsequent interference with HER2 dimerization and activation in SKBR3 and BT474 human breast cancer cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Structural diversity and evolution of the N-terminal isoform-specific region of ecdysone receptor-A and -B1 isoforms in insects

    Directory of Open Access Journals (Sweden)

    Kubo Takeo

    2010-02-01

    Full Text Available Abstract Background The ecdysone receptor (EcR regulates various cellular responses to ecdysteroids during insect development. Insects have multiple EcR isoforms with different N-terminal A/B domains that contain the isoform-specific activation function (AF-1 region. Although distinct physiologic functions of the EcR isoforms have been characterized in higher holometabolous insects, they remain unclear in basal direct-developing insects, in which only A isoform has been identified. To examine the structural basis of the EcR isoform-specific AF-1 regions, we performed a comprehensive structural comparison of the isoform-specific region of the EcR-A and -B1 isoforms in insects. Results The EcR isoforms were newly identified in 51 species of insects and non-insect arthropods, including direct-developing ametabolous and hemimetabolous insects. The comprehensive structural comparison revealed that the isoform-specific region of each EcR isoform contained evolutionally conserved microdomain structures and insect subgroup-specific structural modifications. The A isoform-specific region generally contained four conserved microdomains, including the SUMOylation motif and the nuclear localization signal, whereas the B1 isoform-specific region contained three conserved microdomains, including an acidic activator domain-like motif. In addition, the EcR-B1 isoform of holometabolous insects had a novel microdomain at the N-terminal end. Conclusions Given that the nuclear receptor AF-1 is involved in cofactor recruitment and transcriptional regulation, the microdomain structures identified in the isoform-specific A/B domains might function as signature motifs and/or as targets for cofactor proteins that play essential roles in the EcR isoform-specific AF-1 regions. Moreover, the novel microdomain in the isoform-specific region of the holometabolous insect EcR-B1 isoform suggests that the holometabolous insect EcR-B1 acquired additional transcriptional

  16. DHA-fluorescent probe is sensitive to membrane order and reveals molecular adaptation of DHA in ordered lipid microdomains☆

    Science.gov (United States)

    Teague, Heather; Ross, Ron; Harris, Mitchel; Mitchell, Drake C.; Shaikh, Saame Raza

    2012-01-01

    Docosahexaenoic acid (DHA) disrupts the size and order of plasma membrane lipid microdomains in vitro and in vivo. However, it is unknown how the highly disordered structure of DHA mechanistically adapts to increase the order of tightly packed lipid microdomains. Therefore, we studied a novel DHA-Bodipy fluorescent probe to address this issue. We first determined if the DHA-Bodipy probe localized to the plasma membrane of primary B and immortal EL4 cells. Image analysis revealed that DHA-Bodipy localized into the plasma membrane of primary B cells more efficiently than EL4 cells. We then determined if the probe detected changes in plasma membrane order. Quantitative analysis of time-lapse movies established that DHA-Bodipy was sensitive to membrane molecular order. This allowed us to investigate how DHA-Bodipy physically adapted to ordered lipid microdomains. To accomplish this, we employed steady-state and time-resolved fluorescence anisotropy measurements in lipid vesicles of varying composition. Similar to cell culture studies, the probe was highly sensitive to membrane order in lipid vesicles. Moreover, these experiments revealed, relative to controls, that upon incorporation into highly ordered microdomains, DHA-Bodipy underwent an increase in its fluorescence lifetime and molecular order. In addition, the probe displayed a significant reduction in its rotational diffusion compared to controls. Altogether, DHA-Bodipy was highly sensitive to membrane order and revealed for the first time that DHA, despite its flexibility, could become ordered with less rotational motion inside ordered lipid microdomains. Mechanistically, this explains how DHA acyl chains can increase order upon formation of lipid microdomains in vivo. PMID:22841541

  17. Targeting superoxide dismutase to endothelial caveolae profoundly alleviates inflammation caused by endotoxin.

    Science.gov (United States)

    Shuvaev, Vladimir V; Kiseleva, Raisa Yu; Arguiri, Evguenia; Villa, Carlos H; Muro, Silvia; Christofidou-Solomidou, Melpo; Stan, Radu V; Muzykantov, Vladimir R

    2018-02-28

    Inflammatory mediators binding to Toll-Like receptors (TLR) induce an influx of superoxide anion in the ensuing endosomes. In endothelial cells, endosomal surplus of superoxide causes pro-inflammatory activation and TLR4 agonists act preferentially via caveolae-derived endosomes. To test the hypothesis that SOD delivery to caveolae may specifically inhibit this pathological pathway, we conjugated SOD with antibodies (Ab/SOD, size ~10nm) to plasmalemmal vesicle-associated protein (Plvap) that is specifically localized to endothelial caveolae in vivo and compared its effects to non-caveolar target CD31/PECAM-1. Plvap Ab/SOD bound to endothelial cells in culture with much lower efficacy than CD31 Ab/SOD, yet blocked the effects of LPS signaling with higher efficiency than CD31 Ab/SOD. Disruption of cholesterol-rich membrane domains by filipin inhibits Plvap Ab/SOD endocytosis and LPS signaling, implicating the caveolae-dependent pathway(s) in both processes. Both Ab/SOD conjugates targeted to Plvap and CD31 accumulated in the lungs after IV injection in mice, but the former more profoundly inhibited LPS-induced pulmonary inflammation and elevation of plasma level of interferon-beta and -gamma and interleukin-27. Taken together, these results indicate that targeted delivery of SOD to specific cellular compartments may offer effective, mechanistically precise interception of pro-inflammatory signaling mediated by reactive oxygen species. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Membrane rafts: a potential gateway for bacterial entry into host cells.

    Science.gov (United States)

    Hartlova, Anetta; Cerveny, Lukas; Hubalek, Martin; Krocova, Zuzana; Stulik, Jiri

    2010-04-01

    Pathogenic bacteria have developed various mechanisms to evade host immune defense systems. Invasion of pathogenic bacteria requires interaction of the pathogen with host receptors, followed by activation of signal transduction pathways and rearrangement of the cytoskeleton to facilitate bacterial entry. Numerous bacteria exploit specialized plasma membrane microdomains, commonly called membrane rafts, which are rich in cholesterol, sphingolipids and a special set of signaling molecules which allow entry to host cells and establishment of a protected niche within the host. This review focuses on the current understanding of the raft hypothesis and the means by which pathogenic bacteria subvert membrane microdomains to promote infection.

  19. Disclosure of domain structure in cubic CaxZr1-xO2-x, 0x15 ≤ x ≤ 0x20, by Talbot image enhancement of high-resolution electron micrographs

    International Nuclear Information System (INIS)

    Rossell, H.J.; Wilson, I.J.; Sellar, J.R.

    1991-01-01

    High-resolution electron microscope images have been recorded of several cystalline samples of calcia-stabilized zirconia (Ca-CSZ) and of the fluorite-related superstructure phase φ 1 (CaZr 4 O 9 ). The contrast of the CSZ images has been enhanced markedly by the light-optical Talbot self-imaging technique. Is is demonstrated that the CSZ crystals contain a coherent dispersion of microdomains approximately 30 A in diameter, and that the structure of the microdomains is that of φ 1 . (orig.)

  20. Biophysical Techniques for Detection of cAMP and cGMP in Living Cells

    Directory of Open Access Journals (Sweden)

    Viacheslav O. Nikolaev

    2013-04-01

    Full Text Available Cyclic nucleotides cAMP and cGMP are ubiquitous second messengers which regulate myriads of functions in virtually all eukaryotic cells. Their intracellular effects are often mediated via discrete subcellular signaling microdomains. In this review, we will discuss state-of-the-art techniques to measure cAMP and cGMP in biological samples with a particular focus on live cell imaging approaches, which allow their detection with high temporal and spatial resolution in living cells and tissues. Finally, we will describe how these techniques can be applied to the analysis of second messenger dynamics in subcellular signaling microdomains.

  1. Membrane domains and polarized trafficking of sphingolipids

    NARCIS (Netherlands)

    Maier, O; Slimane, TA; Hoekstra, D

    The plasma membrane of polarized cells consists of distinct domains, the apical and basolateral membrane that are characterized by a distinct lipid and protein content. Apical protein transport is largely mediated by (glyco)sphingolipid-cholesterol enriched membrane microdomains, so called rafts. In

  2. Casein hydrolysate augments antimicrobial and antioxidative efficacy of cheddar whey based edible coating of retail-cut beefsteak

    Science.gov (United States)

    Hydrolysis of casein using chymotrypsin results in the formation of polypeptides (casein hydrolyzate, CH) with a hydrophobic aromatic amino acid on one end of the chain because the enzyme selectively cleaves the adjacent peptide-bond. Due to resonance of the aromatic micro-domain, thiols become redo...

  3. Reduced protein carbonylation of cube steak and catfish fillet using antioxidative coatings containing cheddar whey, casein hydrolyzate and oolong tea extract

    Science.gov (United States)

    Hydrolysis of casein using chymotrypsin results in the formation of polypeptides (casein hydrolyzate, CH) with a hydrophobic aromatic amino acid on one end of the chain because the enzyme selectively cleaves the adjacent peptide-bond. Due to resonance of the aromatic micro-domain, thiols become redo...

  4. Flotillins, Erlins, and HIRs: From Animal Base Camp to Plant New Horizons

    Czech Academy of Sciences Publication Activity Database

    Daněk, Michal; Valentová, O.; Martinec, Jan

    2016-01-01

    Roč. 35, č. 4 (2016), s. 191-214 ISSN 0735-2689 R&D Projects: GA ČR GA14-09685S Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * erlin * flotillin * hir * membrane microdomains * SPFH domain Subject RIV: CE - Biochemistry Impact factor: 6.825, year: 2016

  5. Vesicle formation in the block copolymer/ homopolymer mixture studied by scattering methods

    International Nuclear Information System (INIS)

    Koizumi, Satoshi; Hasegawa, Hirokazu; Hashimoto, Takeji; Suzuki, Junnich.

    1993-01-01

    We studied morphology and spatial segmental distribution of particular binary mixtures of poly(styrene-block-isoprene)(SI) and homopolystyren, either protonated (HS) or deuterated (DS), with small angle-X-ray scattering (SAXS) and neutron scattering (SANS). The block copolymer SI used itself had a lamellar microdomain. Molecular weights of HS and DS were identical to each other and equal also to that of polystyrene block (PS) in SI. SAXS results obtained for SI and HS mixtures show that: (1) HS is solubilized in the PS microdomains; (2) the polyisoprene lamella has the thickness independent of w HS , weight fraction of HS, but its undulation depends on w HS . These two findings, in turn, imply that the HS added is localized in the middle of the PS microdomains, i.e., in between the PS brushes emanating from the interface of SI. We further confirmed this implication by SANS with a deuterium labeling technique; the DS segments studied for the SI/DS mixture is localized in the middle of PS microdomain with the penetration depth of 10 nm between DS and PS block chains. (author)

  6. Chain elongation suppression of cyclic block copolymers in lamellar microphase-separated bulk

    NARCIS (Netherlands)

    Matsushita, Y; Iwata, H; Asari, T; Uchida, T; ten Brinke, G; Takano, A

    2004-01-01

    Chain elongation suppression of cyclic block copolymers in microphase-separated bulk was determined quantitatively. Solvent-cast and annealed films are confirmed to show alternating lamellar structure and their microdomain spacing D increases with increasing total molecular weight M according to the

  7. Caveolae and Caveolins in the Respiratory System

    NARCIS (Netherlands)

    Gosens, Reinoud; Mutawe, Mark; Martin, Sarah; Basu, Sujata; Bos, Sophie T.; Tran, Thai; Halayko, Andrew J.

    2008-01-01

    Caveolae are flask-shaped invaginations of the plasma membrane that are present in most structural cells. They owe their characteristic shape to complexes of unique proteins, the caveolins, which indirectly tether cholesterol and sphingolipid-enriched membrane microdomains to the cytoskeleton.

  8. Mechanisms of membrane binding of small GTPase K-Ras4B farnesylated hypervariable region.

    Science.gov (United States)

    Jang, Hyunbum; Abraham, Sherwin J; Chavan, Tanmay S; Hitchinson, Ben; Khavrutskii, Lyuba; Tarasova, Nadya I; Nussinov, Ruth; Gaponenko, Vadim

    2015-04-10

    K-Ras4B belongs to a family of small GTPases that regulates cell growth, differentiation and survival. K-ras is frequently mutated in cancer. K-Ras4B association with the plasma membrane through its farnesylated and positively charged C-terminal hypervariable region (HVR) is critical to its oncogenic function. However, the structural mechanisms of membrane association are not fully understood. Here, using confocal microscopy, surface plasmon resonance, and molecular dynamics simulations, we observed that K-Ras4B can be distributed in rigid and loosely packed membrane domains. Its membrane binding domain interaction with phospholipids is driven by membrane fluidity. The farnesyl group spontaneously inserts into the disordered lipid microdomains, whereas the rigid microdomains restrict the farnesyl group penetration. We speculate that the resulting farnesyl protrusion toward the cell interior allows oligomerization of the K-Ras4B membrane binding domain in rigid microdomains. Unlike other Ras isoforms, K-Ras4B HVR contains a single farnesyl modification and positively charged polylysine sequence. The high positive charge not only modulates specific HVR binding to anionic phospholipids but farnesyl membrane orientation. Phosphorylation of Ser-181 prohibits spontaneous farnesyl membrane insertion. The mechanism illuminates the roles of HVR modifications in K-Ras4B targeting microdomains of the plasma membrane and suggests an additional function for HVR in regulation of Ras signaling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Mechanisms of Membrane Binding of Small GTPase K-Ras4B Farnesylated Hypervariable Region*

    Science.gov (United States)

    Jang, Hyunbum; Abraham, Sherwin J.; Chavan, Tanmay S.; Hitchinson, Ben; Khavrutskii, Lyuba; Tarasova, Nadya I.; Nussinov, Ruth; Gaponenko, Vadim

    2015-01-01

    K-Ras4B belongs to a family of small GTPases that regulates cell growth, differentiation and survival. K-ras is frequently mutated in cancer. K-Ras4B association with the plasma membrane through its farnesylated and positively charged C-terminal hypervariable region (HVR) is critical to its oncogenic function. However, the structural mechanisms of membrane association are not fully understood. Here, using confocal microscopy, surface plasmon resonance, and molecular dynamics simulations, we observed that K-Ras4B can be distributed in rigid and loosely packed membrane domains. Its membrane binding domain interaction with phospholipids is driven by membrane fluidity. The farnesyl group spontaneously inserts into the disordered lipid microdomains, whereas the rigid microdomains restrict the farnesyl group penetration. We speculate that the resulting farnesyl protrusion toward the cell interior allows oligomerization of the K-Ras4B membrane binding domain in rigid microdomains. Unlike other Ras isoforms, K-Ras4B HVR contains a single farnesyl modification and positively charged polylysine sequence. The high positive charge not only modulates specific HVR binding to anionic phospholipids but farnesyl membrane orientation. Phosphorylation of Ser-181 prohibits spontaneous farnesyl membrane insertion. The mechanism illuminates the roles of HVR modifications in K-Ras4B targeting microdomains of the plasma membrane and suggests an additional function for HVR in regulation of Ras signaling. PMID:25713064

  10. Solvothermal Vapor Annealing of Lamellar Poly(styrene)-block-poly(d,l-lactide) Block Copolymer Thin Films for Directed Self-Assembly Application.

    Science.gov (United States)

    Cummins, Cian; Mokarian-Tabari, Parvaneh; Andreazza, Pascal; Sinturel, Christophe; Morris, Michael A

    2016-03-01

    Solvothermal vapor annealing (STVA) was employed to induce microphase separation in a lamellar forming block copolymer (BCP) thin film containing a readily degradable block. Directed self-assembly of poly(styrene)-block-poly(d,l-lactide) (PS-b-PLA) BCP films using topographically patterned silicon nitride was demonstrated with alignment over macroscopic areas. Interestingly, we observed lamellar patterns aligned parallel as well as perpendicular (perpendicular microdomains to substrate in both cases) to the topography of the graphoepitaxial guiding patterns. PS-b-PLA BCP microphase separated with a high degree of order in an atmosphere of tetrahydrofuran (THF) at an elevated vapor pressure (at approximately 40-60 °C). Grazing incidence small-angle X-ray scattering (GISAXS) measurements of PS-b-PLA films reveal the through-film uniformity of perpendicular microdomains after STVA. Perpendicular lamellar orientation was observed on both hydrophilic and relatively hydrophobic surfaces with a domain spacing (L0) of ∼32.5 nm. The rapid removal of the PLA microdomains is demonstrated using a mild basic solution for the development of a well-defined PS mask template. GISAXS data reveal the through-film uniformity is retained following wet etching. The experimental results in this article demonstrate highly oriented PS-b-PLA microdomains after a short annealing period and facile PLA removal to form porous on-chip etch masks for nanolithography application.

  11. Lipid raft localization of TLR2 and its co-receptors is independent of membrane lipid composition

    Directory of Open Access Journals (Sweden)

    Christine Hellwing

    2018-01-01

    Full Text Available Background Toll like receptors (TLRs are an important and evolutionary conserved class of pattern recognition receptors associated with innate immunity. The recognition of Gram-positive cell wall constituents strongly depends on TLR2. In order to be functional, TLR2 predominantly forms a heterodimer with TLR1 or TLR6 within specialized membrane microdomains, the lipid rafts. The membrane lipid composition and the physicochemical properties of lipid rafts are subject to modification by exogenous fatty acids. Previous investigations of our group provide evidence that macrophage enrichment with polyunsaturated fatty acids (PUFA induces a reordering of lipid rafts and non-rafts based on the incorporation of supplemented PUFA as well as their elongation and desaturation products. Methods In the present study we investigated potential constraining effects of membrane microdomain reorganization on the clustering of TLR2 with its co-receptors TLR1 and TLR6 within lipid rafts. To this end, RAW264.7 macrophages were supplemented with either docosahexaenoic acid (DHA or arachidonic acid (AA and analyzed for receptor expression and microdomain localization in context of TLR stimulation. Results and Conclusions Our analyses showed that receptor levels and microdomain localization were unchanged by PUFA supplementation. The TLR2 pathway, in contrast to the TLR4 signaling cascade, is not affected by exogenous PUFA at the membrane level.

  12. An in situ grazing incidence x-ray scattering study of block copolymer thin films during solvent vapor annealing

    Science.gov (United States)

    Gu, Xiaodan; Gunkel, Ilja; Hexemer, Alexander; Russell, Thomas

    2014-03-01

    Although solvent vapor annealing (SVA) has been widely applied to block copolymer (BCP) thin films to obtain well-ordered microdomains, the mechanism of enhancing lateral order is not well understood. Here, we used real time in situ grazing-incidence small-angle x-ray scattering (in situGISAXS) to study the self-assembly of PS-b-P2VP BCP BCPs with different molecular weights thin films in THF vapor, a near neutral solvent for both blocks. Both swelling and deswelling behavior of BCP thin films were examined. The extent of swellingand the solvent removal rate not only affect the domain spacing of BCPs but also dictate the extent of lateral ordering of the BCP microdomains. Larger grains were observed at higher values of the swelling ratio (close to disordering). To preserve the maximal lateral ordering of the microdomains in the swollen state, the fastest solvent removal rate is required to freeze in the ordered microdomain structure of the swollen BCP film. We thanks support from U.S. Department of Energy BES under contract BES-DE-FG02-96ER45612 and ALS doctoral fellowship.

  13. Perpendicular Structure Formation of Block Copolymer Thin Films during Thermal Solvent Vapor Annealing : Solvent and Thickness Effects

    NARCIS (Netherlands)

    Yang, Qiuyan; Loos, Katja

    2017-01-01

    Solvent vapor annealing of block copolymer (BCP) thin films can produce a range of interesting morphologies, especially when the perpendicular orientation of micro-domains with respect to the substrate plays a role. This, for instance, allows BCP thin films to serve as useful templates for

  14. Poly(ferrocenylsilane)-block-Polylactide Block Copolymers

    NARCIS (Netherlands)

    Roerdink, M.; van Zanten, Thomas S.; Hempenius, Mark A.; Zhong, Zhiyuan; Feijen, Jan; Vancso, Gyula J.

    2007-01-01

    A PFS/PLA block copolymer was studied to probe the effect of strong surface interactions on pattern formation in PFS block copolymer thin films. Successful synthesis of PFS-b-PLA was demonstrated. Thin films of these polymers show phase separation to form PFS microdomains in a PLA matrix, and

  15. Uniform Structure of Eukaryotic Plasma Membrane: Lateral Domains in Plants

    Czech Academy of Sciences Publication Activity Database

    Malínská, Kateřina; Zažímalová, Eva

    2011-01-01

    Roč. 12, č. 2 (2011), s. 148-155 ISSN 1389-2037 R&D Projects: GA MŠk(CZ) LC06034 Institutional research plan: CEZ:AV0Z50380511 Keywords : Plasma membrane * microdomains * lateral segregation Subject RIV: ED - Physiology Impact factor: 2.886, year: 2011

  16. Effect of planar extension on the structure and mechanical properties of polystyrene-poly(ethylene-¤co¤-butylene)-polystyrene triblock copolymers

    DEFF Research Database (Denmark)

    Daniel, C.; Hamley, I.W.; Mortensen, K.

    2000-01-01

    Two thermoplastic poly(styrene)-poly(ethylene-co-butylene) -poly(styrene) triblock copolymers containing either spherical or cylindrical poly(styrene) microdomains were pre-oriented through extensional flow. Small angle neutron scattering (SANS) measurements revealed that the pre-oriented triblock...

  17. Cytoplasmic organelles determine complexity and specificity of calcium signalling in adrenal chromaffin cells

    Czech Academy of Sciences Publication Activity Database

    Garsia-Sancho, J.; Verkhratsky, Alexei

    2008-01-01

    Roč. 192, č. 2 (2008), s. 263-271 ISSN 1748-1708 Institutional research plan: CEZ:AV0Z50390512 Keywords : Ca2+ signalling * calcium microdomains * chromaffin cells Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use Impact factor: 2.455, year: 2008

  18. Cholesterol modulates CFTR confinement in the plasma membrane of primary epithelial cells.

    Science.gov (United States)

    Abu-Arish, Asmahan; Pandzic, Elvis; Goepp, Julie; Matthes, Elizabeth; Hanrahan, John W; Wiseman, Paul W

    2015-07-07

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma-membrane anion channel that, when mutated, causes the disease cystic fibrosis. Although CFTR has been detected in a detergent-resistant membrane fraction prepared from airway epithelial cells, suggesting that it may partition into cholesterol-rich membrane microdomains (lipid rafts), its compartmentalization has not been demonstrated in intact cells and the influence of microdomains on CFTR lateral mobility is unknown. We used live-cell imaging, spatial image correlation spectroscopy, and k-space image correlation spectroscopy to examine the aggregation state of CFTR and its dynamics both within and outside microdomains in the plasma membrane of primary human bronchial epithelial cells. These studies were also performed during treatments that augment or deplete membrane cholesterol. We found two populations of CFTR molecules that were distinguishable based on their dynamics at the cell surface. One population showed confinement and had slow dynamics that were highly cholesterol dependent. The other, more abundant population was less confined and diffused more rapidly. Treatments that deplete the membrane of cholesterol caused the confined fraction and average number of CFTR molecules per cluster to decrease. Elevating cholesterol had the opposite effect, increasing channel aggregation and the fraction of channels displaying confinement, consistent with CFTR recruitment into cholesterol-rich microdomains with dimensions below the optical resolution limit. Viral infection caused the nanoscale microdomains to fuse into large platforms and reduced CFTR mobility. To our knowledge, these results provide the first biophysical evidence for multiple CFTR populations and have implications for regulation of their surface expression and channel function. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Avaliação da queima e da adição de milho desintegrado com palha e sabugo na ensilagem de cana-de-açúcar Effect of burning and addition of dehydrated corn cob and straw on sugar cane silage

    Directory of Open Access Journals (Sweden)

    Thiago Fernandes Bernardes

    2007-04-01

    Full Text Available Neste trabalho, avaliou-se a fermentação da cana-de-açúcar queimada, ensilada com ou sem uso de aditivo seco. Os tratamentos (seis no total consistiram da silagem de cana crua ou queimada, adicionada de 0, 50 ou 100 g/kg de milho desintegrado com palha e sabugo (MDPS, com base no peso verde da forragem. Foram determinados os teores de MS, PB, nitrogênio insolúvel em detergente ácido (NIDA, FDN, FDA, celulose, hemicelulose e lignina. Na avaliação das características fermentativas, foram determinados os valores de carboidratos solúveis, o poder tamponante, o pH e as concentrações de nitrogênio amoniacal e etanol. Como características microbiológicas, avaliou-se o desenvolvimento de leveduras. A inclusão de MDPS elevou os teores de MS e reduziu discretamente os teores de N-NH3 e etanol das silagens, não ocasionando efeito nos valores de pH e na população de leveduras. A presença do fogo reduziu a concentração de MS das silagens, elevou os teores de etanol e leveduras e diminuiu os teores de N-NH3. A fermentação etanólica durante a ensilagem não foi controlada com a inclusão de aditivo seco ou com o uso do fogo.This research aimed to evaluate the effects of burning and the use of dry additive on the sugar cane silage fermentative pattern. Six treatments were tested: natural or burned sugarcane, associated to three supplementation levels: 0, 50 or 100 g/kg of dehydrated corn grain, cob, and straw (CGCS based on forage fresh mater. The following response variables were determined in the forage: DM, CP, acid detergent insoluble nitrogen (ADIN, NDF, ADF, cellulose, hemicellulose and lignin concentrations. Considering the fermentative traits, soluble carbohydrate levels, buffering capacity, pH, ammonia nitrogen and ethanol levels were measured. The CGCS inclusion increased DM concentration and slightly reduced ethanol and N-NH3 levels in silages, but did not affect pH or yeast growth. Burning reduced DM and N-NH3 concentration

  20. Cytosolic PrP Can Participate in Prion-Mediated Toxicity

    Science.gov (United States)

    Thackray, Alana M.; Zhang, Chang; Arndt, Tina

    2014-01-01

    ABSTRACT Prion diseases are characterized by a conformational change in the normal host protein PrPC. While the majority of mature PrPC is tethered to the plasma membrane by a glycosylphosphatidylinositol anchor, topological variants of this protein can arise during its biosynthesis. Here we have generated Drosophila transgenic for cytosolic ovine PrP in order to investigate its toxic potential in flies in the absence or presence of exogenous ovine prions. While cytosolic ovine PrP expressed in Drosophila was predominantly detergent insoluble and showed resistance to low concentrations of proteinase K, it was not overtly detrimental to the flies. However, Drosophila transgenic for cytosolic PrP expression exposed to classical or atypical scrapie prion inocula showed a faster decrease in locomotor activity than similar flies exposed to scrapie-free material. The susceptibility to classical scrapie inocula could be assessed in Drosophila transgenic for panneuronal expression of cytosolic PrP, whereas susceptibility to atypical scrapie required ubiquitous PrP expression. Significantly, the toxic phenotype induced by ovine scrapie in cytosolic PrP transgenic Drosophila was transmissible to recipient PrP transgenic flies. These data show that while cytosolic PrP expression does not adversely affect Drosophila, this topological PrP variant can participate in the generation of transmissible scrapie-induced toxicity. These observations also show that PrP transgenic Drosophila are susceptible to classical and atypical scrapie prion strains and highlight the utility of this invertebrate host as a model of mammalian prion disease. IMPORTANCE During prion diseases, the host protein PrPC converts into an abnormal conformer, PrPSc, a process coupled to the generation of transmissible prions and neurotoxicity. While PrPC is principally a glycosylphosphatidylinositol-anchored membrane protein, the role of topological variants, such as cytosolic PrP, in prion-mediated toxicity and

  1. Improved feed protein fractionation schemes for formulating rations with the cornell net carbohydrate and protein system.

    Science.gov (United States)

    Lanzas, C; Broderick, G A; Fox, D G

    2008-12-01

    Adequate predictions of rumen-degradable protein (RDP) and rumen-undegradable protein (RUP) supplies are necessary to optimize performance while minimizing losses of excess nitrogen (N). The objectives of this study were to evaluate the original Cornell Net Carbohydrate Protein System (CNCPS) protein fractionation scheme and to develop and evaluate alternatives designed to improve its adequacy in predicting RDP and RUP. The CNCPS version 5 fractionates CP into 5 fractions based on solubility in protein precipitant agents, buffers, and detergent solutions: A represents the soluble nonprotein N, B1 is the soluble true protein, B2 represents protein with intermediate rates of degradation, B3 is the CP insoluble in neutral detergent solution but soluble in acid detergent solution, and C is the unavailable N. Model predictions were evaluated with studies that measured N flow data at the omasum. The N fractionation scheme in version 5 of the CNCPS explained 78% of the variation in RDP with a root mean square prediction error (RMSPE) of 275 g/d, and 51% of the RUP variation with RMSPE of 248 g/d. Neutral detergent insoluble CP flows were overpredicted with a mean bias of 128 g/d (40% of the observed mean). The greatest improvements in the accuracy of RDP and RUP predictions were obtained with the following 2 alternative schemes. Alternative 1 used the inhibitory in vitro system to measure the fractional rate of degradation for the insoluble protein fraction in which A = nonprotein N, B1 = true soluble protein, B2 = insoluble protein, C = unavailable protein (RDP: R(2) = 0.84 and RMSPE = 167 g/d; RUP: R(2) = 0.61 and RMSPE = 209 g/d), whereas alternative 2 redefined A and B1 fractions as the non-amino-N and amino-N in the soluble fraction respectively (RDP: R(2) = 0.79 with RMSPE = 195 g/d and RUP: R(2) = 0.54 with RMSPE = 225 g/d). We concluded that implementing alternative 1 or 2 will improve the accuracy of predicting RDP and RUP within the CNCPS framework.

  2. Threonine 89 Is an Important Residue of Profilin-1 That Is Phosphorylatable by Protein Kinase A.

    Directory of Open Access Journals (Sweden)

    David Gau

    Full Text Available Dynamic regulation of actin cytoskeleton is at the heart of all actin-based cellular events. In this study, we sought to identify novel post-translational modifications of Profilin-1 (Pfn1, an important regulator of actin polymerization in cells.We performed in vitro protein kinase assay followed by mass-spectrometry to identify Protein Kinase A (PKA phosphorylation sites of Pfn1. By two-dimensional gel electrophoresis (2D-GE analysis, we further examined the changes in the isoelectric profile of ectopically expressed Pfn1 in HEK-293 cells in response to forskolin (FSK, an activator of cAMP/PKA pathway. Finally, we combined molecular dynamics simulations (MDS, GST pull-down assay and F-actin analyses of mammalian cells expressing site-specific phosphomimetic variants of Pfn1 to predict the potential consequences of phosphorylation of Pfn1.We identified several PKA phosphorylation sites of Pfn1 including Threonine 89 (T89, a novel site. Consistent with PKA's ability to phosphorylate Pfn1 in vitro, FSK stimulation increased the pool of the most negatively charged form of Pfn1 in HEK-293 cells which can be attenuated by PKA inhibitor H89. MDS predicted that T89 phosphorylation destabilizes an intramolecular interaction of Pfn1, potentially increasing its affinity for actin. The T89D phosphomimetic mutation of Pfn1 elicits several changes that are hallmarks of proteins folded into alternative three-dimensional conformations including detergent insolubility, protein aggregation and accelerated proteolysis, suggesting that T89 is a structurally important residue of Pfn1. Expression of T89D-Pfn1 induces actin:T89D-Pfn1 co-clusters and dramatically reduces overall actin polymerization in cells, indicating an actin-sequestering action of T89D-Pfn1. Finally, rendering T89 non-phosphorylatable causes a positive charge shift in the isoelectric profile of Pfn1 in a 2D gel electrophoresis analysis of cell extracts, a finding that is consistent with

  3. The energy and protein value of wheat, maize and blend DDGS for cattle and evaluation of prediction methods.

    Science.gov (United States)

    De Boever, J L; Blok, M C; Millet, S; Vanacker, J; De Campeneere, S

    2014-11-01

    The chemical composition inclusive amino acids (AAs) and the energy and protein value of three wheat, three maize and seven blend (mainly wheat) dried distillers grains and solubles (DDGS) were determined. The net energy for lactation (NEL) was derived from digestion coefficients obtained with sheep. The digestible protein in the intestines (DVE) and the degraded protein balance (OEB) were determined by nylon bag incubations in the rumen and the intestines of cannulated cows. Additional chemical parameters like acid-detergent insoluble CP (ADICP), protein solubility in water, in borate-phosphate buffer and in pepsin-HCl, in vitro digestibility (cellulase, protease, rumen fluid) and colour scores (L*, a*, b*) were evaluated as potential predictors of the energy and protein value. Compared to wheat DDGS (WDDGS), maize DDGS (MDDGS) had a higher NEL-value (8.49 v. 7.38 MJ/kg DM), a higher DVE-content (216 v. 198 g/kg DM) and a lower OEB-value (14 v. 66 g/kg DM). The higher energy value of MDDGS was mainly due to the higher crude fat (CFA) content (145 v. 76 g/kg DM) and also to better digestible cell-walls, whereas the higher protein value was mainly due to the higher percentage of rumen bypass protein (RBP: 69.8 v. 55.6%). The NEL-value of blend DDGS (BDDGS) was in between that of the pure DDGS-types, whereas its DVE-value was similar to MDDGS. Although lower in CP and total AAs, MDDGS provided a similar amount of essential AAs as the other DDGS-types. Lysine content was most reduced in the production of WDDGS and cysteine in MDDGS. Fat content explained 68.6% of the variation in NEL, with hemicellulose and crude ash as extra explaining variables. The best predictor for RBP as well as for OEB was the protein solubility in pepsin-HCl (R 2=77.3% and 83.5%). Intestinal digestibility of RBP could best be predicted by ADF (R 3=73.6%) and the combination of CFA and NDF could explain 60.2% of the variation in the content of absorbable microbial protein. The availability of

  4. Critical significance of the region between Helix 1 and 2 for efficient dominant-negative inhibition by conversion-incompetent prion protein.

    Directory of Open Access Journals (Sweden)

    Yuzuru Taguchi

    Full Text Available Prion diseases are fatal infectious neurodegenerative disorders in man and animals associated with the accumulation of the pathogenic isoform PrP(Sc of the host-encoded prion protein (PrP(c. A profound conformational change of PrP(c underlies formation of PrP(Sc and prion propagation involves conversion of PrP(c substrate by direct interaction with PrP(Sc template. Identifying the interfaces and modalities of inter-molecular interactions of PrPs will highly advance our understanding of prion propagation in particular and of prion-like mechanisms in general. To identify the region critical for inter-molecular interactions of PrP, we exploited here dominant-negative inhibition (DNI effects of conversion-incompetent, internally-deleted PrP (ΔPrP on co-expressed conversion-competent PrP. We created a series of ΔPrPs with different lengths of deletions in the region between first and second α-helix (H1∼H2 which was recently postulated to be of importance in prion species barrier and PrP fibril formation. As previously reported, ΔPrPs uniformly exhibited aberrant properties including detergent insolubility, limited protease digestion resistance, high-mannose type N-linked glycans, and intracellular localization. Although formerly controversial, we demonstrate here that ΔPrPs have a GPI anchor attached. Surprisingly, despite very similar biochemical and cell-biological properties, DNI efficiencies of ΔPrPs varied significantly, dependant on location and inversely correlated with the size of deletion. This data demonstrates that H1∼H2 and the region C-terminal to it are critically important for efficient DNI. It also suggests that this region is involved in PrP-PrP interaction and conversion of PrP(C into PrP(Sc. To reconcile the paradox of how an intracellular PrP can exert DNI, we demonstrate that ΔPrPs are subject to both proteasomal and lysosomal/autophagic degradation pathways. Using autophagy pathways ΔPrPs obtain access to the locale

  5. Influence at the partial substitution partial of Coastcross hay on the ingestion of some nutritional component in diets containing different sources of nitrogen, in steers/ Influência da substituição parcial do feno de Coastcross pela casca de soja sobre a ingestão de alguns componentes nutricionais de dietas contendo diferentes fontes de nitrogênio, em bovinos

    Directory of Open Access Journals (Sweden)

    Valdecir de Souza Castro

    2005-06-01

    Full Text Available This experiment was conducted in order to evaluate the effect of two levels of soybean hulls (SH and three sources of nitrogen on the ingestion of dry matter (DM, organic matter (OM, crude protein (CP, neutral detergent fiber (NDF, acid detergent fiber (ADF, non fiber carbohydrates (NFC and acid detergent insoluble protein (ADIP, in steers. Six Holstein x Zebu steers, with 12 months of age and 229 kg of live weight, rumen fistulated, were used. The animals were distributed in six treatments in a 6 x 6 Latin square design. They were individually fed allowing 10% DM leftover. The nitrogen sources did not influence the ingestion of DM, OM, CP, NDF and ADF. However, it was observed greater ingestion of NFC when animals were fed with starea than when they received “avian slaughter byproducts flour”. It was concluded that the soybean hulls can partially substitute the roughage fraction of bovine ration, and that the starea can totally substitute the soybean meal without detriment in the ingestion of the studied nutritional components.Este experimento foi realizado para avaliar o efeito de dois níveis de casca de soja (CS e de três fontes de nitrogênio sobre a ingestão de matéria seca (MS, matéria orgânica (MO, proteína bruta (PB, fibra em detergente neutro (FDN, fibra em detergente ácido (FDA, carboidratos não fibrosos (CNF e de proteína insolúvel em detergente ácido (PIDA, em bovinos. Foram usados seis novilhos Holandês x Zebu com idade média de 12 meses e pesando em média 229 kg de peso, fistulados no rúmen. Os animais foram distribuídos em seis tratamentos em quadrado latino 6 x 6, alimentados individualmente de tal forma que ocorresse sobra de 10% da matéria seca fornecida. As fontes de nitrogênio não influenciaram a ingestão de MS, MO, PB, FDN e de FDA. Porém, foram observadas maiores ingestões de CNF quando os animais foram alimentados com amiréia do que quando receberam farinha de subprodutos de abatedouro av

  6. Estimates of diet selection in cattle grazing cornstalk residues by measurement of chemical composition and near infrared reflectance spectroscopy of diet samples collected by ruminal evacuation.

    Science.gov (United States)

    Petzel, Emily A; Smart, Alexander J; St-Pierre, Benoit; Selman, Susan L; Bailey, Eric A; Beck, Erin E; Walker, Julie A; Wright, Cody L; Held, Jeffrey E; Brake, Derek W

    2018-05-04

    Six ruminally cannulated cows (570 ± 73 kg) fed corn residues were placed in a 6 × 6 Latin square to evaluate predictions of diet composition from ruminally collected diet samples. After complete ruminal evacuation, cows were fed 1-kg meals (dry matter [DM]-basis) containing different combinations of cornstalk and leaf and husk (LH) residues in ratios of 0:100, 20:80, 40:60, 60:40, 80:20, and 100:0. Diet samples from each meal were collected by removal of ruminal contents after 1-h and were either unrinsed, hand-rinsed or machine-rinsed to evaluate effects of endogenous compounds on predictions of diet composition. Diet samples were analyzed for neutral (NDF) and acid (ADF) detergent fiber, acid detergent insoluble ash (ADIA), acid detergent lignin (ADL), crude protein (CP), and near infrared reflectance spectroscopy (NIRS) to calculate diet composition. Rinsing type increased NDF and ADF content and decreased ADIA and CP content of diet samples (P content of diet samples. Differences in concentration between cornstalk and LH residues within each chemical component were standardized by calculating a coefficient of variation (CV). Accuracy and precision of estimates of diet composition were analyzed by regressing predicted diet composition and known diet composition. Predictions of diet composition were improved by increasing differences in concentration of chemical components between cornstalk and LH residues up to a CV of 22.6 ± 5.4%. Predictions of diet composition from unrinsed ADIA and machine-rinsed NIRS had the greatest accuracy (slope = 0.98 and 0.95, respectively) and large coefficients of determination (r2 = 0.86 and 0.74, respectively). Subsequently, a field study (Exp. 2) was performed to evaluate predictions of diet composition in cattle (646 ± 89 kg) grazing corn residue. Five cows were placed in 1 of 10 paddocks and allowed to graze continuously or to strip-graze corn residues. Predictions of diet composition from ADIA, ADL, and NIRS did not

  7. The p53/HSP70 inhibitor, 2-phenylethynesulfonamide, causes oxidative stress, unfolded protein response and apoptosis in rainbow trout cells

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Fanxing; Tee, Catherine; Liu, Michelle [Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Sherry, James P. [Aquatic Contaminants Research Division, Environment Canada, Burlington, Ontario L7R 4A6 (Canada); Dixon, Brian; Duncker, Bernard P. [Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Bols, Niels C., E-mail: ncbols@uwaterloo.ca [Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2014-01-15

    Highlights: •2-Phenylethynesulfonamide (PES) is an inhibitor of p53 and HSP 70 in mammals. •In the fish epithelial cell line, RTgill-W1, PES enhanced ROS generation and was cytotoxic. •RTgill-W1 death was by apoptosis and blocked by the anti-oxidant N-acetylcysteine. •This is the first report linking PES-induced cell death to ROS. •With this background PES should be useful for studying fish cell survival pathways. -- Abstract: The effect of 2-phenylethynesulfonamide (PES), which is a p53 and HSP70 inhibitor in mammalian cells, was studied on the rainbow trout (Oncorhynchus mykiss) gill epithelial cell line, RTgill-W1, in order to evaluate PES as a tool for understanding the cellular survival pathways operating in fish. As judged by three viability assays, fish cells were killed by 24 h exposures to PES, but cell death was blocked by the anti-oxidant N-acetylcysteine (NAC). Cell death had several hallmarks of apoptosis: DNA laddering, nuclear fragmentation, Annexin V staining, mitochondrial membrane potential decline, and caspases activation. Reactive oxygen species (ROS) production peaked in several hours after the addition of PES and before cell death. HSP70 and BiP levels were higher in cultures treated with PES for 24 h, but this was blocked by NAC. As well, PES treatment caused HSP70, BiP and p53 to accumulate in the detergent-insoluble fraction, and this too was prevented by NAC. Of several possible scenarios to explain the results, the following one is the simplest. PES enhances the generation of ROS, possibly by inhibiting the anti-oxidant actions of p53 and HSP70. ER stress arises from the ROS and from PES inhibiting the chaperone activities of HSP70. The ER stress in turn initiates the unfolded protein response (UPR), but this fails to restore ER homeostasis so proteins aggregate and cells die. Despite these multiple actions, PES should be useful for studying fish cellular survival pathways.

  8. Magnitude Differences in Bioactive Compounds, Chemical Functional Groups, Fatty Acid Profiles, Nutrient Degradation and Digestion, Molecular Structure, and Metabolic Characteristics of Protein in Newly Developed Yellow-Seeded and Black-Seeded Canola Lines.

    Science.gov (United States)

    Theodoridou, Katerina; Zhang, Xuewei; Vail, Sally; Yu, Peiqiang

    2015-06-10

    Recently, new lines of yellow-seeded (CS-Y) and black-seeded canola (CS-B) have been developed with chemical and structural alteration through modern breeding technology. However, no systematic study was found on the bioactive compounds, chemical functional groups, fatty acid profiles, inherent structure, nutrient degradation and absorption, or metabolic characteristics between the newly developed yellow- and black-seeded canola lines. This study aimed to systematically characterize chemical, structural, and nutritional features in these canola lines. The parameters accessed include bioactive compounds and antinutrition factors, chemical functional groups, detailed chemical and nutrient profiles, energy value, nutrient fractions, protein structure, degradation kinetics, intestinal digestion, true intestinal protein supply, and feed milk value. The results showed that the CS-Y line was lower (P ≤ 0.05) in neutral detergent fiber (122 vs 154 g/kg DM), acid detergent fiber (61 vs 99 g/kg DM), lignin (58 vs 77 g/kg DM), nonprotein nitrogen (56 vs 68 g/kg DM), and acid detergent insoluble protein (11 vs 35 g/kg DM) than the CS-B line. There was no difference in fatty acid profiles except C20:1 eicosenoic acid content (omega-9) which was in lower in the CS-Y line (P structure spectral profile, there were no significant differences in functional groups of amides I and II, α helix, and β-sheet structure as well as their ratio between the two new lines, indicating no difference in protein structure makeup and conformation between the two lines. In terms of energy values, there were significant differences in total digestible nutrient (TDN; 149 vs 133 g/kg DM), metabolizable energy (ME; 58 vs 52 MJ/kg DM), and net energy for lactation (NEL; 42 vs 37 MJ/kg DM) between CS-Y and CS-B lines. For in situ rumen degradation kinetics, the two lines differed in soluble fraction (S; 284 vs 341 g/kg CP), potential degradation fraction (D; 672 vs 590 g/kg CP), and effective degraded

  9. Short communication: Comparison of 3 solid digesta passage markers in dairy cows.

    Science.gov (United States)

    Lee, C; Hristov, A N

    2014-03-01

    This study investigated the usefulness of acid-detergent fiber-bound (15)N [acid detergent insoluble (ADI)-(15)N] as a solid digesta passage marker in dairy cows compared with chromium (Cr) and ytterbium (Yb) (as labeled fiber or forage, respectively). Intrinsically (ADI-(15)N) or extrinsically (Cr, Yb) labeled alfalfa hay was pulse-dosed intraruminally to 7 lactating dairy cows. Following marker administration, spot fecal samples were collected for up to 72 h for marker analyses. Urine and milk samples were also collected and analyzed for Yb and Cr. Fecal marker excretion data were processed using 2-compartment mathematical age-dependent/age-independent (Gn→G1) models. The rate of passage of the marker in the first, age-dependent compartment tended to be slower for Yb compared with Cr and ADI-(15)N, which resulted in a trend for longer mean retention time (MRT) in this compartment when Yb was used as a marker (19.0 h) compared with Cr and ADI-(15)N (14.5 and 13.9h, respectively). The rate constant of marker disappearance for the second or age-independent compartment tended to be greater for Yb compared with Cr and ADI-(15)N, which led to a shorter MRT of Yb in this compartment (15.6) versus ADI-(15)N (32.1) and Cr (24.8h). The cumulative MRT was greater for ADI-(15)N versus Cr and Yb (46.0, 39.3, and 34.4h, respectively). Total MRT of marker tended to be greater for ADI-(15)N than for Yb (46.6 vs. 36.6h, respectively). Urine and milk analyses data suggested no measurable losses of Yb along the digestive tract, but about 0.79% of Cr dosed intraruminally was secreted or excreted in milk and urine in the 48-h period following marker administration. Collectively, this study confirmed previous observations that ADI-(15)N can be used reliably as a solid digesta passage marker for ruminants, producing pre-duodenal and total-tract retention times similar to that of Cr-labeled fiber. Retention time in the age-independent compartment was underestimated when Yb was used as

  10. Degradation parameters of amaranth, barley and quinoa in alpacas fed grass hay.

    Science.gov (United States)

    Nilsen, B; Johnston, N P; Stevens, N; Robinson, T F

    2015-10-01

    This study was conducted to determine the compartment 1 (C1) characteristics of alpacas (fistulated male, 7 ± 1.5 years old, 61 ± 5 kg BW) fed grass hay (GH) supplemented with amaranth (AM), quinoa (Q) and barley (B) grains. Alpacas were provided water ad libitum while housed in metabolism crates. The GH and GH plus treatments were fed at 0700 every day. Treatment periods were for 14 days in which GH or GH plus one of the grain treatments were randomly allocated. On day 14, volatile fatty acids (VFA), pH and ammonia nitrogen (NH3 -N) were determined at 1, 3, 6, 10, 14, 18 and 24 h post-feeding. C1 degradation of each feed component was also determined with the alpacas being fed GH only and the samples incubated for 0, 2, 4, 8, 14, 24, 48 and 72 h. Dry matter (DM), neutral detergent fibre (NDF) and crude protein (CP) were determined and were divided into three categories: a = immediately soluble; b = the non-soluble but degradable; and u = non-degradable/unavailable, potential extent of degradation (PE), degradation rate (c) and effective degradation (ED). C1 passage rate was determined using acid detergent insoluble ash as a marker and was calculated to be 5.5%∙h-1. Total DM intake was highest (p < 0.05) for B and resulted in a higher (p < 0.05) CP intake. GH and AM were different in mean pH (6.81 and 6.66, respectively). B NH3 -N was greater (p < 0.05) than the other treatments. Total VFA was greatest (p < 0.05) for AM, with the greatest composition differences being a shift form acetate percentage to butyrate. DM, NDF and CP degradation was different across the treatments, where PE and ED were higher (p < 0.05) for the grain treatments. The pseudo-grains AM and Q had similar C1 degradation characteristics to B. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  11. Avaliação de Diferentes Híbridos de Sorgo (Sorghum bicolor, L. Moench quanto aos Componentes da Planta e Silagens Produzidas Evaluation of Different Sorghum Hybrids (Sorghum bicolor, L. Moench Related to Plant Components and Produced Silages

    Directory of Open Access Journals (Sweden)

    Mikael Neumann

    2002-01-01

    Full Text Available O experimento foi conduzido com o objetivo de avaliar as características qualitativas dos componentes da planta e da silagem e as características de fermentação da silagem de diferentes híbridos de sorgo forrageiros AGX-213 e AG-2002 e de duplo propósito AGX-217 e AG-2005E. O componente panícula apresentou maiores teores de matéria seca (MS, proteína bruta (PB, matéria mineral (MM e digestibilidade in vitro da matéria seca (DIVMS e menores teores dos constituintes da parede celular da planta com relação aos componentes colmo e folhas. Não houve diferenças entre as silagens dos híbridos de sorgo para os teores de MM e DIVMS. A silagem do AG-2005E apresentou maior teor de MS (35,50%, PB (6,69%, extrato etéreo (2,28% e extrativos não-nitrogenados (58,56% frente aos demais genótipos. Não houve diferença entre as silagens para os teores de nitrogênio insolúvel na FDA. As silagens de híbridos de sorgo forrageiro (AGX-213 e AG-2002 apresentaram menor pH e teor de N-NH3 (% do N total em comparação aos híbridos de duplo propósito (AGX-217 e AG-2005E.The experiment was conducted with the purpose to evaluate the qualitative traits of the plant components and fermentation characteristics of silages from different sorghum hybrids AGX-213, AG-2002 (forage and AGX-217, AG-2005E (double purpose. The panicle component showed higher percentages of dry matter (DM, crude protein (CP, mineral material (MM and in vitro dry matter digestibility (IVDMD, and lower percentages of plant cell wall than the stems and leaves. No differences were observed among the sorghum silages for MM and IVDMD percentages. The AG-2005E silage showed higher contents of DM (35.5%, CP (6.69%, ether extract (2.28% and nitrogen-free extract (58.56% in comparison with the other genotypes. No difference was observed among the sorghum silages for acid detergent insoluble nitrogen (ADIN content. The silages of the forage hybrids (AGX-213 and AG-2002 showed lower pH and

  12. Gas Exchanges and Dehydration in Different Intensities of Conditioning in Tifton 85 Bermudagrass: Nutritional Value during Hay Storage

    Directory of Open Access Journals (Sweden)

    M. Pasqualotto

    2015-06-01

    more intense before cutting, although after cutting they decreased until ceasing within 4 hours. The lowest values of acid detergent insoluble nitrogen were obtained with low conditioning intensity after 30 days of storage, 64.8 g/kg DM. The in vitro dry matter of Tifton 85 bermudagrass did not differ among the storage times or the conditioning intensities. There was no fungi present in the samples collected during the storage period up to 90 days after dehydration, with less than 30 colony forming units found on plate counting. The use of mower conditioners in different intensities of injury did not speed up the dehydration time of Tifton 85.

  13. Composição químico-bromatológica de variedades de cana-de-açúcar (Saccharum spp L. com diferentes ciclos de produção (precoce e intermediário em três idades de corte Chemical composition of sugar cane varieties (Saccharum spp L. with different cycles of production in three cut time

    Directory of Open Access Journals (Sweden)

    Alberto Magno Fernandes

    2003-08-01

    composition, the potentialy degradable fraction of NDF (B2 and undegradable fraction (C and to estimate the ruminal fill of sugar cane with different cycles of production (early and intermediate, in three cut times (426, 487 and 549 days. The laboratorial analysis consisted in dry matter (DM, organic matter, ash, crude protein (CP, ether extract, lignin, neutral detergent fiber (NDF, neutral detergent fiber corrected for ash and protein, acid detergent fiber (ADF, neutral detergent insoluble protein, acid detergent insoluble protein and neutral detergent protein soluble. The TDN was calculated by chemical composition. The degradable and undegradable fractions, and fiber digestion rate, as well as the ruminal fill were estimated by kinetic parameters obtained throught in situ incubation. The advanced cut time increased the DM in 9.5%. The intermediate varieties presented higher TDN than early varieties, which had the highest contents of NDF and ADF, whose respective values were 487.56 and 471.03, and 287.87 and 247,54 g/kg DM for the early and intermediate varieties, respectively. The TDN increased linearly with the cut time, varying from 62.45 to 63.50%; however the NDF and ADF contents presented quadratic behavior. The early varieties presented higher content of CP than the intermediate only in the cut time of 549 days; contrarily, the brix of the sugar cane was superior to the intermediate varieties in the last cut. The early varieties presented larger total ruminal fill and lower fiber digestion rate. The degradable fraction of the fiber was reduced and the undegradable fraction was linearly increased with the age of the plants.

  14. Effects of Bacterial Inoculants and Absorbents on Fermentation Properties and Chemical Composition of Fresh Sugar Beet Pulp Silage Using Laboratory silos

    Directory of Open Access Journals (Sweden)

    Saeid Seidali Dolat-Abad

    2016-04-01

    treatment after mixing the fresh sugar beet pulp with absorbents or inoculants. Ensilages were filled in laboratory silos and packed and then were kept for 90 d in room temperature at dark. After opening the concentration of volatile and non-volatile fatty acids, crude protein, fibers, total and ammonia-N and the values of pH were measured in final produced silages. Results and Discussion In the experiment 1, concentration of dry matter (DM, neutral detergent insoluble fibers (NDF and acid detergent insoluble fibers were higher in absorbents treated silage (P>0.01 when compared with untreated one. Application of absorbents resulted in silages with lower seepages (P>0.01 production compared to the control. However, application of the absorbents to the beet pulp produced silages with lower in vitro DM digestibility (P>0.05. Straw treated silage had the highest NDF concentration and the lowest apparent and true in vitro DM digestibility. Application of absorbents produced silages with lower lactic acid (P>0.01 and higher pH (P> 0.05 and ammonia-N (P>0.01 concentration. Adding straw to sugar beet pulp produced silages with higher acetate concentration, total volatile fatty acids concentrations (VFA (P> 0.01, the ratio of ammonia-N from total N (P>0.01 but lower ratios of lactate to acetate (P>0.01, lactate to acetate + propionate (P>0.01 and lactate to VFA (P>0.05 when compared with control group. In contrast, adding pith to sugar beet pulp produced silages with lower acetate concentration (P>0.01, propionate concentration (P>0.01, total VFA (P> 0.01 but higher ratios of lactate to acetate (P> 0.01, lactate to acetate + propionate (P> 0.01 and lactate to VFA (P>0.05 when compared with control group. The Fleig point was not affected by the different treatments. Application of bacterial inoculant resulted in silages with higher DM concentration (P>0.01, water soluble carbohydrates concentration (P> 0.01 and in vitro DM digestibility (P>0.05 but lower crude protein concentration

  15. Fabrication of 20 nm half-pitch gratings by corrugation-directed self-assembly

    International Nuclear Information System (INIS)

    Kim, Ho-Cheol; Rettner, Charles T; Sundstroem, Linnea

    2008-01-01

    The evolution of the scaling of modern semiconductor devices is governed by the ability to create scalable high-resolution patterns on substrates. Since it is becoming increasingly difficult and expensive to extend to smaller dimensions using optical lithography, there is a great deal of interest in alternative patterning methods. The self-assembly of block copolymers in thin films, which provides periodic patterns of 10-50 nm length scales, has been recognized as a promising candidate for such patterning. To be practical, however, this approach must provide control over the orientation and lateral placement of the microdomains. We report here our discovery of the controlled alignment of the lamellar microdomains of a block copolymer containing hybrid material using topographic pre-patterns on substrates. We find that this hybrid material forms lamellae with a half-pitch of approximately 20 nm perpendicular to the lines of a surface corrugation

  16. Distributions of chain ends and junction points in ordered block copolymers

    International Nuclear Information System (INIS)

    Mayes, A.M.; Johnson, R.D.; Russell, T.P.; Smith, S.D.; Satija, S.K.; Majkrzak, C.F.

    1993-01-01

    Chain configurations in ordered symmetric poly(styrene-b-methyl methacrylate) diblock copolymers were examined by neutron reflectively. In a thin-film geometry the copolymers organize into lamellar microdomains oriented parallel to the substrate surface. The copolymers organize into lamellar microdomains oriented parallel to the substrate surface. The copolymers were synthesized with small fractions of deuterated segments at either the chain ends or centers. This selective labeling permitted characterization of the spatial distribution of chain ends and junction points normal to the plane of the film. From the reflectivity analysis, the junction points are found to be confined to the PS/PMMA interfacial regions. The chain ends, however, are well distributed through their respective domains, exhibiting only a weak maximum in concentration at the center of the domains

  17. Dark matter RNA: an intelligent scaffold for the dynamic regulation of the nuclear information landscape

    Science.gov (United States)

    St. Laurent, Georges; Savva, Yiannis A.; Kapranov, Philipp

    2012-01-01

    Perhaps no other topic in contemporary genomics has inspired such diverse viewpoints as the 95+% of the genome, previously known as “junk DNA,” that does not code for proteins. Here, we present a theory in which dark matter RNA plays a role in the generation of a landscape of spatial micro-domains coupled to the information signaling matrix of the nuclear landscape. Within and between these micro-domains, dark matter RNAs additionally function to tether RNA interacting proteins and complexes of many different types, and by doing so, allow for a higher performance of the various processes requiring them at ultra-fast rates. This improves signal to noise characteristics of RNA processing, trafficking, and epigenetic signaling, where competition and differential RNA binding among proteins drives the computational decisions inherent in regulatory events. PMID:22539933

  18. An Improved Targeted cAMP Sensor to Study the Regulation of Adenylyl Cyclase 8 by Ca2+ Entry through Voltage-Gated Channels

    Science.gov (United States)

    Everett, Katy L.; Cooper, Dermot M. F.

    2013-01-01

    Here we describe an improved sensor with reduced pH sensitivity tethered to adenylyl cyclase (AC) 8. The sensor was used to study cAMP dynamics in the AC8 microdomain of MIN6 cells, a pancreatic β-cell line. In these cells, AC8 was activated by Ca2+ entry through L-type voltage-gated channels following depolarisation. This activation could be reconstituted in HEK293 cells co-expressing AC8 and either the α1C or α1D subunit of L-type voltage-gated Ca2+ channels. The development of this improved sensor opens the door to the study of cAMP microdomains in excitable cells that have previously been challenging due to the sensitivity of fluorescent proteins to pH changes. PMID:24086669

  19. An improved targeted cAMP sensor to study the regulation of adenylyl cyclase 8 by Ca2+ entry through voltage-gated channels.

    Directory of Open Access Journals (Sweden)

    Katy L Everett

    Full Text Available Here we describe an improved sensor with reduced pH sensitivity tethered to adenylyl cyclase (AC 8. The sensor was used to study cAMP dynamics in the AC8 microdomain of MIN6 cells, a pancreatic β-cell line. In these cells, AC8 was activated by Ca(2+ entry through L-type voltage-gated channels following depolarisation. This activation could be reconstituted in HEK293 cells co-expressing AC8 and either the α1C or α1D subunit of L-type voltage-gated Ca(2+ channels. The development of this improved sensor opens the door to the study of cAMP microdomains in excitable cells that have previously been challenging due to the sensitivity of fluorescent proteins to pH changes.

  20. TEM and AFM study of WO3 nanosize growth on α-Al2O3

    International Nuclear Information System (INIS)

    Al-Mohammad, A.

    2007-07-01

    WO 3 thin films have been deposited by thermal evaporation on (0001) and (1012 ) planes of alumina oxide single crystal and annealed either in Oxygen or in air atmosphere. The morphology and crystallographic structure of films (as-deposited and annealed films) have been characterized by Atomic Force Microscope (AFM), transmission electron microscope (TEM), and transmission electron diffraction (TED). During annealing, the films undergo important morphological and structural changes. The annealed films exhibit large grains. These grains have the monoclinic structure in epitaxial orientations. The grains are made of twinned microdomains elongated in the [100] direction resulting of a preferential growth. The microdomains are along the three different directions on the (0001) α-Al 2 O 3 surface and only one direction on the (1012 ) α-Al 2 O 3 one.(author)

  1. Lipid Raft: A Floating Island Of Death or Survival

    Science.gov (United States)

    George, Kimberly S.; Wu, Shiyong

    2012-01-01

    Lipid rafts are microdomains of the plasma membrane enriched in cholesterol and sphingolipids, and play an important role in the initiation of many pharmacological agent-induced signaling pathways and toxicological effects. The structure of lipid rafts is dynamic, resulting in an ever-changing content of both lipids and proteins. Cholesterol, as a major component of lipid rafts, is critical for the formation and configuration of lipid rafts microdomains, which provide signaling platforms capable of activating both pro-apoptotic and anti-apoptotic signaling pathways. A change of cholesterol level can result in lipid rafts disruption and activate or deactivate raft-associated proteins, such as death receptor proteins, protein kinases, and calcium channels. Several anti-cancer drugs are able to suppress growth and induce apoptosis of tumor cells through alteration of lipid raft contents via disrupting lipid raft integrity. PMID:22289360

  2. Dynamic complexity: plant receptor complexes at the plasma membrane.

    Science.gov (United States)

    Burkart, Rebecca C; Stahl, Yvonne

    2017-12-01

    Plant receptor complexes at the cell surface perceive many different external and internal signalling molecules and relay these signals into the cell to regulate development, growth and immunity. Recent progress in the analyses of receptor complexes using different live cell imaging approaches have shown that receptor complex formation and composition are dynamic and take place at specific microdomains at the plasma membrane. In this review we focus on three prominent examples of Arabidopsis thaliana receptor complexes and how their dynamic spatio-temporal distribution at the PM has been studied recently. We will elaborate on the newly emerging concept of plasma membrane microdomains as potential hubs for specific receptor complex assembly and signalling outputs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Interactions des antibiotiques ituriniques avec la membrane plasmique. Apport des systèmes biomimétiques des membranes (synthèse bibliographique

    Directory of Open Access Journals (Sweden)

    Nasir, MN.

    2013-01-01

    Full Text Available Interactions of iturinic antibiotics with plasma membrane. Contribution of biomimetic membranes. Iturinic antibiotics are produced by Bacillus subtilis strains and constitute a family including iturin A, mycosubtilin and bacillomycins D, F and Lc. These are cyclic lipopeptides with β-amino fatty acids linked up to a peptide constituted by seven α-aminoacids with an invariable LDDLLDL chiral sequence. The first three α-aminoacids containing the tyrosyl residue are the same for all members. They are well known for their strong antifungal activities but they also have antibacterial and hemolytic properties. These biological properties are due to their amphiphilic nature, allowing interactions with different membrane components. Sterols found in plasma membranes are the privileged interaction partners of these lipopeptides. Moreover, the tyrosyl residue of the iturinic antibiotics seems to play an important role during their fixation to the plasma membrane, the result of which is often cellular lysis. Within plasma membranes, there are particular regions with a high sterol content. These microdomains have a different composition compared to the rest of the membrane; they are rich in certain lipids and proteins and are involved in many key cellular processes. The perturbation of these microdomains could therefore have an important impact on the cell. Due to their composition, these microdomains may constitute the preferential target of iturin antibiotics. This review aims to summarize the studies relating to the biological activities of iturinic antibiotics. It focuses in particular on the existing knowledge regarding iturin antibiotics at the molecular level and discusses both the key chemical groups of these drugs and the potentiality of microdomains to constitute a target for these molecules.

  4. Electron beam irradiation effect on nanostructured molecular sieve catalysts

    International Nuclear Information System (INIS)

    Yuan Zhongyong; Zhou Wuzong; Parvulescu, Viorica; Su Baolian

    2003-01-01

    Electron impact can induce chemical changes on particle surfaces of zeolites and molecular sieve catalysts. Some experimental observations of electron irradiation effect on molecular sieve catalysts are presented, e.g., electron-beam-induced growth of bare silver nanowires from zeolite crystallites, formation of vesicles in calcium phosphate, migration of microdomains in iron-oxide doped mesoporous silicas, structural transformation from mesostructured MCM-41 to microporous ZSM-5, etc. The formation mechanisms of the surface structures are discussed

  5. Rapid transitions between defect configurations in a block copolymer melt.

    Science.gov (United States)

    Tsarkova, Larisa; Knoll, Armin; Magerle, Robert

    2006-07-01

    With in situ scanning force microscopy, we image the ordering of cylindrical microdomains in a thin film of a diblock copolymer melt. Tracking the evolution of individual defects reveals elementary steps of defect motion via interfacial undulations and repetitive transitions between distinct defect configurations on a time scale of tens of seconds. The velocity of these transitions suggests a cooperative movement of clusters of chains. The activation energy for the opening/closing of a connection between two cylinders is estimated.

  6. TCR Triggering Induces the Formation of Lck-RacK1-Actinin-1 Multiprotein Network Affecting Lck Redistribution

    Czech Academy of Sciences Publication Activity Database

    Ballek, Ondřej; Valečka, Jan; Dobešová, Martina; Broučková, Adéla; Manning, Jasper; Řehulka, P.; Stulík, J.; Filipp, Dominik

    2016-01-01

    Roč. 7, podzim (2016), č. článku 449. ISSN 1664-3224 R&D Projects: GA ČR(CZ) GBP302/12/G101 Institutional support: RVO:68378050 Keywords : TCR triggering * RACK 1 * Lck * membrane microdomains * adapter protein * tyrosine phosphorylation * scaffolding protein * migrating cell s Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.429, year: 2016

  7. cGMP Signaling in the Cardiovascular System—The Role of Compartmentation and Its Live Cell Imaging

    Science.gov (United States)

    Bork, Nadja I.; Nikolaev, Viacheslav O.

    2018-01-01

    The ubiquitous second messenger 3′,5′-cyclic guanosine monophosphate (cGMP) regulates multiple physiologic processes in the cardiovascular system. Its intracellular effects are mediated by stringently controlled subcellular microdomains. In this review, we will illustrate the current techniques available for real-time cGMP measurements with a specific focus on live cell imaging methods. We will also discuss currently accepted and emerging mechanisms of cGMP compartmentation in the cardiovascular system. PMID:29534460

  8. Probability of stochastic processes and spacetime geometry

    International Nuclear Information System (INIS)

    Canessa, E.

    2007-01-01

    We made a first attempt to associate a probabilistic description of stochastic processes like birth-death processes with spacetime geometry in the Schwarzschild metrics on distance scales from the macro- to the micro-domains. We idealize an ergodic system in which system states communicate through a curved path composed of transition arrows where each arrow corresponds to a positive, analogous birth or death rate. (author)

  9. Regulation of AMPA receptor localization in lipid rafts

    OpenAIRE

    Hou, Qingming; Huang, Yunfei; Amato, Stephen; Snyder, Solomon H.; Huganir, Richard L.; Man, Heng-Ye

    2008-01-01

    Lipid rafts are special microdomains enriched in cholesterol, sphingolipids and certain proteins, and play important roles in a variety of cellular functions including signal transduction and protein trafficking. We report that in cultured cortical and hippocampal neurons the distribution of lipid rafts is development-dependent. Lipid rafts in mature neurons exist on the entire cell-surface and display a high degree of mobility. AMPA receptors co-localize and associate with lipid rafts in the...

  10. Sphingolipid trafficking - Sorted out?

    OpenAIRE

    van Meer, G.; Burger, K.N.J.

    1992-01-01

    Studies of intracellular membrane traffic have traditionally focused on the protein components of membranes, but what about lipids? Recent findings have drawn attention to the transport of one type of lipid, the sphingolipids. Their unique physical properties may allow them to aggregate into microdomains in membranes that concentrate sphingolipids into specific transport pathways. Gerrit van Meer and Koert Burger consider here the routes of sphingolipid biosynthesis and transport, and the rol...

  11. Simvastatin treatment reduces the cholesterol content of membrane/lipid rafts, implicating the N -methyl-D-aspartate receptor in anxiety: a literature review

    Directory of Open Access Journals (Sweden)

    Júlia Niehues da Cruz

    2017-04-01

    Full Text Available ABSTRACT Membrane/lipid rafts (MLRs are plasmalemmal microdomains that are essential for neuronal signaling and synaptic development/stabilization. Inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme-A reductase (statins can disable the N-methyl-D-aspartate (NMDA receptor through disruption of MLRs and, in turn, decrease NMDA-mediated anxiety. This hypothesis will contribute to understanding the critical roles of simvastatin in treating anxiety via the NMDA receptor.

  12. Mechanisms of nuclear lamina growth in interphase

    Czech Academy of Sciences Publication Activity Database

    Zhironkina, O.A.; Kurchashova, S.Y.; Pozharskaia, V.A.; Cherepanynets, V.D.; Strelkova, O.S.; Hozák, Pavel; Kireev, I.I.

    2016-01-01

    Roč. 145, č. 4 (2016), s. 419-432 ISSN 0948-6143 R&D Projects: GA ČR GA16-03403S Grant - others:Russian Fund for Basic Research(RU) 13-04-00885; Russian Fund for Basic Research(RU) 15-54-78077 Institutional support: RVO:68378050 Keywords : Nuclear lamina * Microdomains * Interphase * Nucleus * DNA replication * Cell cycle Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.553, year: 2016

  13. Membrane remodeling, an early event in benzo[α]pyrene-induced apoptosis

    International Nuclear Information System (INIS)

    Tekpli, Xavier; Rissel, Mary; Huc, Laurence; Catheline, Daniel; Sergent, Odile; Rioux, Vincent; Legrand, Philippe; Holme, Jorn A.; Dimanche-Boitrel, Marie-Therese; Lagadic-Gossmann, Dominique

    2010-01-01

    Benzo[α]pyrene (B[α]P) often serves as a model for mutagenic and carcinogenic polycyclic aromatic hydrocarbons (PAHs). Our previous work suggested a role of membrane fluidity in B[α]P-induced apoptotic process. In this study, we report that B[α]P modifies the composition of cholesterol-rich microdomains (lipid rafts) in rat liver F258 epithelial cells. The cellular distribution of the ganglioside-GM1 was markedly changed following B[α]P exposure. B[α]P also modified fatty acid composition and decreased the cholesterol content of cholesterol-rich microdomains. B[α]P-induced depletion of cholesterol in lipid rafts was linked to a reduced expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase). Aryl hydrocarbon receptor (AhR) and B[α]P-related H 2 O 2 formation were involved in the reduced expression of HMG-CoA reductase and in the remodeling of membrane microdomains. The B[α]P-induced membrane remodeling resulted in an intracellular alkalinization observed during the early phase of apoptosis. In conclusion, B[α]P altered the composition of plasma membrane microstructures through AhR and H 2 O 2 dependent-regulation of lipid biosynthesis. In F258 cells, the B[α]P-induced membrane remodeling was identified as an early apoptotic event leading to an intracellular alkalinization.

  14. Studies on microphase-separated structures of block copolymers by neutron reflectivity measurement

    International Nuclear Information System (INIS)

    Torikai, Naoya; Noda, Ichiro; Matsushita, Yushu; Karim, A.; Satija, S.K.; Han, C.C.; Ebisawa, Toru.

    1996-01-01

    Segmental distributions of block copolymer chains in lamellar microphase-separated structure and those of homopolymers in block copolymer/homopolymer blends also with lamellar structures were studied by neutron reflectivity measurements. It was revealed that polystyrene and poly(2-vinylpyridine) lamellae were alternately stacked within the thin films of pure block copolymers spin-coated on silicon wafers, and they were preferentially oriented along the direction parallel to film surface. Polystyrene lamella appeared at air surfaces of the films, while poly(2-vinylpyridine) lamella did on silicon surfaces. Segment distribution at lamellar interface was well described by an error function, and the width of the lamellar interface, defined by a full-width half-maximum value of interfacial profile, was estimated to be about 4.5 nm. Segments of block chains adjacent to the chemical junction points connecting different block chains were strongly localized near the lamellar interfaces, while those on the free ends of block chains were distributed all over the lamellar microdomains with their distribution maxima at the centers of lamellae. On the other hand, it was clarified that homopolymers dissolved in the corresponding lamellar microdomains of block copolymers were also distributed throughout the microdomains with their concentration maxima at the centers of the lamellae. (author)

  15. Organic Semiconductor-Containing Supramolecules: Effect of Small Molecule Crystallization and Molecular Packing

    KAUST Repository

    Rancatore, Benjamin J.

    2016-01-21

    © 2016 American Chemical Society. Small molecules (SMs) with unique optical or electronic properties provide an opportunity to incorporate functionality into block copolymer (BCP)-based supramolecules. However, the assembly of supramolecules based on these highly crystalline molecules differs from their less crystalline counterparts. Here, two families of organic semiconductor SMs are investigated, where the composition of the crystalline core, the location (side- vs end-functionalization) of the alkyl solubilizing groups, and the constitution (branched vs linear) of the alkyl groups are varied. With these SMs, we present a systematic study of how the phase behavior of the SMs affects the overall assembly of these organic semiconductor-based supramolecules. The incorporation of SMs has a large effect on the interfacial curvature, the supramolecular periodicity, and the overall supramolecular morphology. The crystal packing of the SM within the supramolecule does not necessarily lead to the assembly of the comb block within the BCP microdomains, as is normally observed for alkyl-containing supramolecules. An unusual lamellar morphology with a wavy interface between the microdomains is observed due to changes in the packing structure of the small molecule within BCP microdomains. Since the supramolecular approach is modular and small molecules can be readily switched out, present studies provide useful guidance toward access supramolecular assemblies over several length scales using optically active and semiconducting small molecules.

  16. Orienting Block Copolymer Thin Films via Entropy and Surface Plasma Treatment

    Science.gov (United States)

    Ho, Rong-Ming; Lu, Kai-Yuan; Lo, Ting-Ya; Dehghan, Ashkan; Shi, An-Chang; Prokopios, Georgopanos; Avgeropoulos, Apostolos

    Controlling the orientation of nanostructured thin films of block copolymers (BCPs) is essential for next generation lithography. In the thin-film state, how to achieve the perpendicular orientation of the nanostructured microdomains remains challenging due to the interfacial effects from the air and also the substrate, especially for the blocks with silicon containing segments which usually have different surface energies, favoring parallel microdomain orientation. Here, we show that entropic effect can be used to control the orientation of BCP thin films. Specifically, we used the architecture of star-block copolymers consisting of polystyrene (PS) and poly(dimethylsiloxane) (PDMS) blocks to regulate the entropic contribution to the self-assembled nanostructures. Moreover, we aim to achieve the formation of perpendicular orientation from the air surface via surface plasma treatment to neutralize the interfacial energy difference. By combining the architecture effect (entropy effect) on BCP self-assembly and the surface plasma treatment (enthalpy effect), well-defined perpendicular PDMS microdomains in the PS-b-PDMS thin film can be formed from the bottom of non-neutral substrate and the top of the thin film surface, giving great potential for lithographic applications.

  17. Pathways toward unidirectional alignment in block copolymer thin films on faceted surfaces

    Science.gov (United States)

    Gunkel, Ilja; Gu, Xiaodan; Sarje, Abhinav; Hexemer, Alexander; Russell, Thomas

    2015-03-01

    Solvent vapor annealing (SVA) has been shown recently to be an effective means to produce long-range lateral order in block copolymer (BCP) thin films in relatively short times. Furthermore, using substrates with faceted surfaces allows for generating unidirectionally aligned BCP microdomains on the size scale of an entire wafer. While in recent years SVA has been largely demystified, the detailed pathways toward obtaining unidirectional alignment still remain unclear. Grazing-incidence X-ray scattering (GISAXS) is a very powerful tool for characterizing the structure and morphology of BCPs in thin films, and is particularly useful for studying structural changes in BCP thin films during SVA. We here present in situ GISAXS experiments on cylinder-forming PS-b-P2VP BCP thin films on faceted Sapphire substrates during annealing in THF. We show that the degree of alignment of cylindrical microdomains is greatly enhanced at solvent concentrations close to the order-disorder transition of the copolymer. Furthermore, we observed that inducing disorder by further increasing the solvent concentration and subsequent quenching to the ordered (not yet glassy) state induced the highest degree of alignment with nearly unidirectional alignment of the microdomains in less than 30 min.

  18. Models of plasma membrane organization can be applied to mitochondrial membranes to target human health and disease with polyunsaturated fatty acids.

    Science.gov (United States)

    Raza Shaikh, Saame; Brown, David A

    2013-01-01

    Bioactive n-3 polyunsaturated fatty acids (PUFA), abundant in fish oil, have potential for treating symptoms associated with inflammatory and metabolic disorders; therefore, it is essential to determine their fundamental molecular mechanisms. Recently, several labs have demonstrated the n-3 PUFA docosahexaenoic acid (DHA) exerts anti-inflammatory effects by targeting the molecular organization of plasma membrane microdomains. Here we briefly review the evidence that DHA reorganizes the spatial distribution of microdomains in several model systems. We then emphasize how models on DHA and plasma membrane microdomains can be applied to mitochondrial membranes. We discuss the role of DHA acyl chains in regulating mitochondrial lipid-protein clustering, and how these changes alter several aspects of mitochondrial function. In particular, we summarize effects of DHA on mitochondrial respiration, electron leak, permeability transition, and mitochondrial calcium handling. Finally, we conclude by postulating future experiments that will augment our understanding of DHA-dependent membrane organization in health and disease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Modeling biomembranes.

    Energy Technology Data Exchange (ETDEWEB)

    Plimpton, Steven James; Heffernan, Julieanne; Sasaki, Darryl Yoshio; Frischknecht, Amalie Lucile; Stevens, Mark Jackson; Frink, Laura J. Douglas

    2005-11-01

    Understanding the properties and behavior of biomembranes is fundamental to many biological processes and technologies. Microdomains in biomembranes or ''lipid rafts'' are now known to be an integral part of cell signaling, vesicle formation, fusion processes, protein trafficking, and viral and toxin infection processes. Understanding how microdomains form, how they depend on membrane constituents, and how they act not only has biological implications, but also will impact Sandia's effort in development of membranes that structurally adapt to their environment in a controlled manner. To provide such understanding, we created physically-based models of biomembranes. Molecular dynamics (MD) simulations and classical density functional theory (DFT) calculations using these models were applied to phenomena such as microdomain formation, membrane fusion, pattern formation, and protein insertion. Because lipid dynamics and self-organization in membranes occur on length and time scales beyond atomistic MD, we used coarse-grained models of double tail lipid molecules that spontaneously self-assemble into bilayers. DFT provided equilibrium information on membrane structure. Experimental work was performed to further help elucidate the fundamental membrane organization principles.

  20. Lipid dip-pen nanolithography on self-assembled monolayers

    International Nuclear Information System (INIS)

    Gavutis, Martynas; Navikas, Vytautas; Rakickas, Tomas; Vaitekonis, Šarūnas; Valiokas, Ramūnas

    2016-01-01

    Dip-pen nanolithography (DPN) with lipids as an ink enables functional micro/nanopatterning on different substrates at high process speeds. However, only a few studies have addressed the influence of the physicochemical properties of the surface on the structure and phase behavior of DPN-printed lipid assemblies. Therefore, by combining the scanning probe and optical imaging techniques in this work we have analyzed lipid microdomain formation on the self-assembled monolayers (SAMs) on gold as well-defined model surfaces that displayed hydrophilic (protein-repellent) or hydrophobic (protein-adhesive) characteristics. We have found that on the tri(ethylene glycol)-terminated SAM the lipid ink transfer was fast (∼10 –1 μm 3 s −1 ), quasi-linear and it yielded unstable, sparsely packed lipid microspots. Contrary to this, on the methyl-terminated SAM the lipid transfer was ∼20 times slower, nonlinear, and the obtained stable dots of ∼1 μm in diameter consisted of lipid multilayers. Our comparative analysis indicated that the measured lipid transfer was consistent with the previously reported so-called polymer transfer model (Felts et al 2012, Nanotechnology 23 215301). Further on, by employing the observed distinct contrast in the DPN ink behavior we constructed confined lipid microdomains on pre-patterned SAMs, in which the lipids assembled either into monolayer or multilamellar phases. Such microdomains can be further utilized for lipid membrane mimetics in microarray and lab-on-a-chip device formats. (paper)

  1. CD82 endocytosis and cholesterol-dependent reorganization of tetraspanin webs and lipid rafts

    Science.gov (United States)

    Xu, Congfeng; Zhang, Yanhui H.; Thangavel, Muthusamy; Richardson, Mekel M.; Liu, Li; Zhou, Bin; Zheng, Yi; Ostrom, Rennolds S.; Zhang, Xin A.

    2009-01-01

    Tetraspanin CD82 suppresses cell migration, tumor invasion, and tumor metastasis. To determine the mechanism by which CD82 inhibits motility, most studies have focused on the cell surface CD82, which forms tetraspanin-enriched microdomains (TEMs) with other transmembrane proteins, such as integrins. In this study, we found that CD82 undergoes endocytosis and traffics to endosomes and lysosomes. To determine the endocytic mechanism of CD82, we demonstrated that dynamin and clathrin are not essential for CD82 internalization. Depletion or sequestration of sterol in the plasma membrane markedly inhibited the endocytosis of CD82. Despite the demand on Cdc42 activity, CD82 endocytosis is distinct from macropinocytosis and the documented dynamin-independent pinocytosis. As a TEM component, CD82 reorganizes TEMs and lipid rafts by redistributing cholesterol into these membrane microdomains. CD82-containing TEMs are characterized by the cholesterol-containing microdomains in the extreme light- and intermediate-density fractions. Moreover, the endocytosis of CD82 appears to alleviate CD82-mediated inhibition of cell migration. Taken together, our studies demonstrate that lipid-dependent endocytosis drives CD82 trafficking to late endosomes and lysosomes, and CD82 reorganizes TEMs and lipid rafts through redistribution of cholesterol.—Xu, C., Zhang, Y. H., Thangavel, M., Richardson, M. M., Liu, L., Zhou, B., Zheng, Y., Ostrom, R. S., Zhang, X. A. CD82 endocytosis and cholesterol-dependent reorganization of tetraspanin webs and lipid rafts. PMID:19497983

  2. Valor nutritivo e características fermentativas de silagens de capim-elefante com adição de casca de café Nutritive value and fermentation characteristics of elephantgrass silages with addition of coffee hulls

    Directory of Open Access Journals (Sweden)

    Gleidson Giordano Pinto de Carvalho

    2007-12-01

    Full Text Available O experimento foi conduzido para avaliar a composição química, a digestibilidade in vitro da MS (DIVMS e as características fermentativas de silagens de capim-elefante com diferentes níveis de casca de café. Utilizou-se o capim-elefante contendo 17,2% de MS, cortado aos 45 dias de crescimento. Os níveis de adição foram de 0, 6, 12, 18 e 24% de casca de café, na base da matéria natural (peso/peso, com quatro repetições por tratamento. O material foi acondicionado em silos de PVC, adotando-se compactação de 500 kg/m³. Observou-se aumento dos teores de MS, FDA, nitrogênio insolúvel em detergente ácido e lignina, em função dos níveis de casca de café. O teor de PB apresentou comportamento quadrático, estimando-se valor máximo de 9,9% de PB para o nível de 16,4% de adição de casca de café. Os valores de FDN reduziram linearmente e os teores de ácido lático das silagens comportaram-se de maneira quadrática em função dos níveis de casca de café, estimando-se valor máximo de 11,4% para o nível de 25,6% de casca. A casca de café foi eficiente em aumentar o teor de MS, mas diminuiu a DIVMS das silagens. A utilização de casca de café na ensilagem de capim-elefante melhorou as características fermentativas da silagem.The experiment evaluated the chemical composition, in vitro DM digestibility (IVDMD, and fermentative characteristics of elephant grass silages with different coffee hull levels. The elephant grass presented 17.2% of dry matter (DM, cut with 45 days of growing. The coffee hull addition levels were 0, 6, 12, 18, and 24%, in fresh matter basis (weight/weight with four replications per treatment. The material was ensiled in cylindrical plastic silos. In the ensiling process, the forage packing density was 500 kg/m³. It was observed increase of DM, acid detergent fiber, acid detergent insoluble nitrogen, and lignin concentration, as a function of coffee hull levels. Crude protein showed quadratic

  3. CHEMICAL AND FERMENTATIVE CHARACTERISTICS OF ELEPHANT GRASS ENSILED WITH INCREAS-ING LEVELS OF DENIDRATED CASHEW FRUIT BY-PRODUCT CARACTERÍSTICAS QUÍMICAS E FERMENTATIVAS DO CAPIM-ELEFANTE ENSILADO COM NÍVEIS CRESCENTES DE SUBPRODUTO DA AGROINDÚSTRIA DO CAJU

    Directory of Open Access Journals (Sweden)

    Warley Efrem Campos

    2007-12-01

    Full Text Available

    Nutritive value of silages of Elephant grass (Pen-nisetum   purpureum, Schum. mixed with 0; 3.5%; 7.0%; 10.5% and 14.0 %  of dehydrated by product from juice industry of cashew fruit (Anacardium occidentale, L (DBC was determined. A randomized design was used with four replicates. Silages were opened after 65 days and samples taken for analysis of dry matter (DM, crude protein (CP, neutral detergent fiber (NDF, acid detergent fiber (ADF, hemicellulose HCEL, cellulose (CEL, lig-nin (LIG, crude energy (CE, ash, neutral detergent inso-luble nitrogen (NDIN and acid detergent insoluble nitro-gen (ADIN. Were also analyzed, pH, ammonia nitrogen and organic acids (lactic, acetic, butyric and propionic. Regarding fermentative parameters, there was an expected decrease in pH and the increasing levels of DBC did not affect the concentrations of N-NH3/NT and organic acids. It is concluded that dehydrated cashew by product can be ensiled along with Elephant grass without altering its fer-mentative characteristics. On the other side, the increased cell walls and ADIN contents of the silage may affect its nutritional value.

    Key-words: Cashew byproducts, nutritive value, tropical grass.

    O trabalho foi desenvolvido com o objetivo de se avaliar o valor nutritivo das silagens de capim-elefante (Pennisetum purpureum, Schum. com adição de 0%; 3,5%; 7%; 10,% e 14% do subproduto do pseudofruto do caju (Anacardium occidentale, L. desidratado (subproduto da agroindústria do suco de caju. Utilizou-se o delineamento inteiramente casualizado, com quatro repetições. Após 65 dias, os silos foram abertos e coletadas amostras para determinação dos teores de matéria seca (MS, proteína bruta (PB, fibra em detergente neutro (FDN, fibra em detergente ácido (FDA, hemicelulose (HCEL, celulose (CEL, lignina (LIG, energia bruta (EB, cinzas, nitrogênio insolúvel em detergente neutro (NIDN e nitrog

  4. In vitro digestibility of jitirana using caecal liquor of ostriches Digestibilidade "in vitro" da jitirana com inóculo cecal de avestruzes

    Directory of Open Access Journals (Sweden)

    Marcus Roberto Goes Ferreira Costa

    2010-06-01

    Full Text Available To evaluated the in vitro digestibility of jitirana using ostriches ceacal liquor, it were used entirely randomized design on factorial schedule (4x2, with four cut age of forage (60; 75; 90 and 105 days old and two types forage in natura or hay. There was a significative interaction between cut age and jitirana type to in vitro digestibility of dry matter and proteic fractions, and the means obtained were 59.57% to dry matter, 28.07% to crude protein and 21.7% to neutral detergent insoluble protein. It were not observed significative interaction to in vitro digestibility of fiber fraction, and the means obtained were 45.20% to neutral detergent fiber and 49.83% to neutral detergent fiber corrected to ash and protein. In relation to the different cut age of jitirana plant, to the in vitro digestibility of dry matter to the in natura type, the means stayed between 71.75 and 53.87%, while to the jitirana hay type the in vitro digestibility of dry matter the means stayed between 61.36 and 50.23%. For both jitirana type in natura or hay, the cut age on 60 days old propitiated the best values of digestibility when compared to the cut age on 105 days old, as a higher available and nutritional quality to the fermentative caecal activity.Para avaliar a digestibilidade in vitro da jitirana com inóculo cecal de avestruzes, usou-se delineamento inteiramente casualizado em esquema fatorial (4x2, com quatro diferentes idades de corte (60; 75; 90 e 105 dias e duas formas de uso, in natura ou em feno. Houve interação significativa para digestibilidade in vitro da matéria seca e de frações proteicas da jitirana, com média total de 59,57% para matéria seca; 28,07% proteína bruta e 21,70% para proteína insolúvel em detergente neutro. Não foi observada interação significativa para a digestibilidade in vitro da fração fibrosa da jitirana, com média total de 45,20% para fibra em detergente neutro e 49,83% fibra em detergente neutro corrigida para

  5. Indicators for estimating the total apparent digestibility in horses Indicadores para estimativa da digestibilidade aparente total em equinos

    Directory of Open Access Journals (Sweden)

    Roberta Ariboni Brandi

    2011-03-01

    Full Text Available The objective of this study to evaluate various indicators to estimate the total nutrient digestibility in horses. We used four adult mares, breed, grouped in a 4 x 4 Latin square balanced fed diets containing equal parts of hay Tifton 85 (Cynodon sp and concentrated experimental containing corn subjected to four processes: a diet containing ground corn ; flaked corn diet 2, 3 rolled corn, and 4 extruded corn. The weighting coefficient of digestibility of nutrients by the indicators was done through the bias. The accuracy and precision were determined by comparing the predicted and observed data, and the robustness of the biases by comparing with other factors studied. The chromic oxide methods showed similar values of apparent digestibility of nutrients when compared to the total collection method. We observed higher accuracy for the acid detergent lignin as compared to the other indicators tested. However, the acid detergent lignin underestimated the digestibility of nutrients when compared to the total collection. The acid detergent insoluble ash overestimated the digestibility of nutrients when compared to the total collection. The chromic oxide is presented as a better indicator for estimating the total apparent digestibility in horses due to its higher accuracy among the markers evaluated.Objetivou-se neste estudo avaliar diferentes indicadores para estimativa das digestibilidades aparente total em equinos. Foram utilizadas quatro éguas adultas, sem raça definida, agrupadas em um quadrado latino 4 x 4 balanceado, alimentadas com dietas que continham partes iguais de feno da gramínea Tifton 85 (Cynodon sp e concentrado experimental que continha milho submetido a quatro processamentos: dieta um milho triturado; dieta dois milho floculado; dieta três milho laminado e dieta quatro milho extrusado. A ponderação dos coeficientes de digestibilidade dos nutrientes pelos indicadores foi efetuada por meio do viés. A acurácia e a precis

  6. Shredded beet pulp substituted for corn silage in diets fed to dairy cows under ambient heat stress: Feed intake, total-tract digestibility, plasma metabolites, and milk production.

    Science.gov (United States)

    Naderi, N; Ghorbani, G R; Sadeghi-Sefidmazgi, A; Nasrollahi, S M; Beauchemin, K A

    2016-11-01

    The effects of substituting increasing concentrations of dried, shredded beet pulp for corn silage on dry matter intake, nutrient digestibility, rumen fermentation, blood metabolites, and milk production of lactating dairy cows was evaluated under conditions of ambient heat stress. Four multiparous (126±13d in milk) and 4 primiparous (121±11d in milk) Holstein cows were used in a 4×4 Latin square design experiment with 4 periods of 21d. Each period had 14d of adaptation and 7d of sampling, and parity was the square. Dietary treatments were (dry matter basis): 16% of dietary dry matter as corn silage without BP (0BP, control diet); 8% corn silage and 8% beet pulp (8BP); 4% corn silage and 12% beet pulp (12BP); and 0% corn silage and 16% beet pulp (16BP). Alfalfa hay was included in all diets (24% dietary dry matter). Dietary concentrations of forage neutral detergent fiber and nonfiber carbohydrates were 21.3 and 39.2% (0BP), 16.5 and 40.9% (8BP), 14.1 and 42.2% (12BP), and 11.7 and 43.4% (16BP), respectively (dry matter basis). The ambient temperature-humidity index indicated that the cows were in heat stress for almost the entire duration of the study. Dry matter intake and nutrient digestibilities were similar across treatments and between multi- and primiparous cows. Mean rumen pH tended to decrease with increasing proportions of beet pulp in the diet. Also, increasing proportions of beet pulp in the diet linearly decreased acetate and butyrate concentrations in the rumen and increased propionate concentrations, leading to a linear decrease in acetate:propionate ratio. Milk yield linearly increased (38.5, 39.3, 40.9, and 39.6kg/d for 0BP, 8BP, 12BP, and 16BP, respectively), but fat content linearly decreased (3.46, 3.47, 3.27, and 2.99), such that we observed no effect on fat-corrected milk. Substituting beet pulp for corn silage increased the neutral detergent insoluble crude protein content of the diet, leading to a decrease in rumen concentration of

  7. PKA catalytic subunit compartmentation regulates contractile and hypertrophic responses to β-adrenergic signaling

    Science.gov (United States)

    Yang, Jason H.; Polanowska-Grabowska, Renata K.; Smith, Jeffrey S.; Shields, Charles W.; Saucerman, Jeffrey J.

    2014-01-01

    β-adrenergic signaling is spatiotemporally heterogeneous in the cardiac myocyte, conferring exquisite control to sympathetic stimulation. Such heterogeneity drives the formation of protein kinase A (PKA) signaling microdomains, which regulate Ca2+ handling and contractility. Here, we test the hypothesis that the nucleus independently comprises a PKA signaling microdomain regulating myocyte hypertrophy. Spatially-targeted FRET reporters for PKA activity identified slower PKA activation and lower isoproterenol sensitivity in the nucleus (t50 = 10.60±0.68 min; EC50 = 89.00 nmol/L) than in the cytosol (t50 = 3.71±0.25 min; EC50 = 1.22 nmol/L). These differences were not explained by cAMP or AKAP-based compartmentation. A computational model of cytosolic and nuclear PKA activity was developed and predicted that differences in nuclear PKA dynamics and magnitude are regulated by slow PKA catalytic subunit diffusion, while differences in isoproterenol sensitivity are regulated by nuclear expression of protein kinase inhibitor (PKI). These were validated by FRET and immunofluorescence. The model also predicted differential phosphorylation of PKA substrates regulating cell contractility and hypertrophy. Ca2+ and cell hypertrophy measurements validated these predictions and identified higher isoproterenol sensitivity for contractile enhancements (EC50 = 1.84 nmol/L) over cell hypertrophy (EC50 = 85.88 nmol/L). Over-expression of spatially targeted PKA catalytic subunit to the cytosol or nucleus enhanced contractile and hypertrophic responses, respectively. We conclude that restricted PKA catalytic subunit diffusion is an important PKA compartmentation mechanism and the nucleus comprises a novel PKA signaling microdomain, insulating hypertrophic from contractile β-adrenergic signaling responses. PMID:24225179

  8. A compact, multifunctional fusion module directs cholesterol-dependent homomultimerization and syncytiogenic efficiency of reovirus p10 FAST proteins.

    Directory of Open Access Journals (Sweden)

    Tim Key

    2014-03-01

    Full Text Available The homologous p10 fusion-associated small transmembrane (FAST proteins of the avian (ARV and Nelson Bay (NBV reoviruses are the smallest known viral membrane fusion proteins, and are virulence determinants of the fusogenic reoviruses. The small size of FAST proteins is incompatible with the paradigmatic membrane fusion pathway proposed for enveloped viral fusion proteins. Understanding how these diminutive viral fusogens mediate the complex process of membrane fusion is therefore of considerable interest, from both the pathogenesis and mechanism-of-action perspectives. Using chimeric ARV/NBV p10 constructs, the 36-40-residue ectodomain was identified as the major determinant of the differing fusion efficiencies of these homologous p10 proteins. Extensive mutagenic analysis determined the ectodomain comprises two distinct, essential functional motifs. Syncytiogenesis assays, thiol-specific surface biotinylation, and liposome lipid mixing assays identified an ∼25-residue, N-terminal motif that dictates formation of a cystine loop fusion peptide in both ARV and NBV p10. Surface immunofluorescence staining, FRET analysis and cholesterol depletion/repletion studies determined the cystine loop motif is connected through a two-residue linker to a 13-residue membrane-proximal ectodomain region (MPER. The MPER constitutes a second, independent motif governing reversible, cholesterol-dependent assembly of p10 multimers in the plasma membrane. Results further indicate that: (1 ARV and NBV homomultimers segregate to distinct, cholesterol-dependent microdomains in the plasma membrane; (2 p10 homomultimerization and cholesterol-dependent microdomain localization are co-dependent; and (3 the four juxtamembrane MPER residues present in the multimerization motif dictate species-specific microdomain association and homomultimerization. The p10 ectodomain therefore constitutes a remarkably compact, multifunctional fusion module that directs syncytiogenic

  9. Exosomal lipids impact notch signaling and induce death of human pancreatic tumoral SOJ-6 cells.

    Directory of Open Access Journals (Sweden)

    Sadia Beloribi

    Full Text Available Exosomes are of increasing interest as alternative mode of cell-to-cell communication. We previously reported that exosomes secreted by human SOJ-6 pancreatic tumor cells induce (glycoprotein ligand-independent cell death and inhibit Notch-1 pathway, this latter being particularly active during carcinogenesis and in cancer stem cells. Therefore, we asked whether exosomal lipids were key-elements for cell death and hypothesized that cholesterol-rich membrane microdomains were privileged sites of exosome interactions with tumor cells. To address these questions and based on the lipid composition of exosomes from SOJ-6 cells (Ristorcelli et al. (2008 FASEB J. 22; 3358-3369 enriched in cholesterol and sphingomyelin (lipids forming liquid-ordered phase, Lo and depleted in phospholipids (lipids forming liquid-disordered phase, Ld, we designed Synthetic Exosome-Like Nanoparticles (SELN with ratios Lo/Ld from 3.0 to 6.0 framing that of SOJ-6 cell exosomes. SELN decreased tumor cell survival, the higher the Lo/Ld ratio, the lower the cell survival. This decreased survival was due to activation of cell death with inhibition of Notch pathway. FRET analyses indicated fusions/exchanges of SELN with cell membranes. Fluorescent SELN co-localized with the ganglioside GM1 then with Rab5A, markers of lipid microdomains and of early endosomes, respectively. These interactions occurred at lipid microdomains of plasma and/or endosome membranes where the Notch-1 pathway matures. We thus demonstrated a major role for lipids in interactions between SELN and tumor cells, and in the ensued cell death. To our knowledge this is the first report on such effects of lipidic nanoparticles on tumor cell behavior. This may have implications in tumor progression.

  10. Remodeling of the postsynaptic plasma membrane during neural development.

    Science.gov (United States)

    Tulodziecka, Karolina; Diaz-Rohrer, Barbara B; Farley, Madeline M; Chan, Robin B; Di Paolo, Gilbert; Levental, Kandice R; Waxham, M Neal; Levental, Ilya

    2016-11-07

    Neuronal synapses are the fundamental units of neural signal transduction and must maintain exquisite signal fidelity while also accommodating the plasticity that underlies learning and development. To achieve these goals, the molecular composition and spatial organization of synaptic terminals must be tightly regulated; however, little is known about the regulation of lipid composition and organization in synaptic membranes. Here we quantify the comprehensive lipidome of rat synaptic membranes during postnatal development and observe dramatic developmental lipidomic remodeling during the first 60 postnatal days, including progressive accumulation of cholesterol, plasmalogens, and sphingolipids. Further analysis of membranes associated with isolated postsynaptic densities (PSDs) suggests the PSD-associated postsynaptic plasma membrane (PSD-PM) as one specific location of synaptic remodeling. We analyze the biophysical consequences of developmental remodeling in reconstituted synaptic membranes and observe remarkably stable microdomains, with the stability of domains increasing with developmental age. We rationalize the developmental accumulation of microdomain-forming lipids in synapses by proposing a mechanism by which palmitoylation of the immobilized scaffold protein PSD-95 nucleates domains at the postsynaptic plasma membrane. These results reveal developmental changes in lipid composition and palmitoylation that facilitate the formation of postsynaptic membrane microdomains, which may serve key roles in the function of the neuronal synapse. © 2016 Tulodziecka et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Alterations of cAMP-dependent signaling in dystrophic skeletal muscle

    Directory of Open Access Journals (Sweden)

    Rüdiger eRudolf

    2013-10-01

    Full Text Available Autonomic regulation processes in striated muscles are largely mediated by cAMP/PKA-signaling. In order to achieve specificity of signaling its spatial-temporal compartmentation plays a critical role. We discuss here how specificity of cAMP/PKA-signaling can be achieved in skeletal muscle by spatio-temporal compartmentation. While a microdomain containing PKA type I in the region of the neuromuscular junction is important for post-synaptic, activity-dependent stabilization of the nicotinic acetylcholine receptor, PKA type I and II microdomains in the sarcomeric part of skeletal muscle are likely to play different roles, including the regulation of muscle homeostasis. These microdomains are due to specific A-kinase anchoring proteins, like rapsyn and myospryn. Importantly, recent evidence indicates that compartmentation of the cAMP/PKA-dependent signaling pathway and pharmacological activation of cAMP production are aberrant in different skeletal muscles disorders. Thus, we discuss here their potential as targets for palliative treatment of certain forms of dystrophy and myasthenia. Under physiological conditions, the neuropeptide, α-calcitonin-related peptide, as well as beta-adrenergic agonists are the most-mentioned natural triggers for activating cAMP/PKA signaling in skeletal muscle. While the precise domains and functions of these first messengers are still under investigation, agonists of β2-adrenoceptors clearly exhibit anabolic activity under normal conditions and reduce protein degradation during atrophic periods. Past and recent studies suggest direct sympathetic innervation of skeletal muscle fibers. In summary, the organization and roles of cAMP-dependent signaling in skeletal muscle are increasingly understood, revealing crucial functions in processes like nerve-muscle interaction and muscle trophicity.

  12. Studies on interfaces between immiscible polymers by neutron reflectivity

    International Nuclear Information System (INIS)

    Torikai, Naoya; Noda, Ichiro; Matsushita, Yushu; Tasaki, Seiji; Ebisawa, Toru; Karim, Alamgir; Han, C.C.

    1995-01-01

    Segment distributions of partially deuterium-labeled styrene-2-vinylpyridine block copolymers in lamellar microphase-separated structure were investigated by neutron reflectivity (NR) measurements. Each component lamellae were alternatively stacked in spin-coated thin films and interfacial thickness between those lamellae was about 45 A. Also, it was found that the segments of block chains near a chemical junction point connecting different component blocks are strongly localized in the vicinity of lamellar interface, while those on the free ends are localized at the center of lamellar microdomain with a fairly wide distribution. (author)

  13. Studies on interfaces between immiscible polymers by neutron reflectivity

    Energy Technology Data Exchange (ETDEWEB)

    Torikai, Naoya; Noda, Ichiro [Nagoya Univ. (Japan). School of Engineering; Matsushita, Yushu; Tasaki, Seiji; Ebisawa, Toru; Karim, Alamgir; Han, C.C.

    1995-06-01

    Segment distributions of partially deuterium-labeled styrene-2-vinylpyridine block copolymers in lamellar microphase-separated structure were investigated by neutron reflectivity (NR) measurements. Each component lamellae were alternatively stacked in spin-coated thin films and interfacial thickness between those lamellae was about 45 A. Also, it was found that the segments of block chains near a chemical junction point connecting different component blocks are strongly localized in the vicinity of lamellar interface, while those on the free ends are localized at the center of lamellar microdomain with a fairly wide distribution. (author).

  14. Biochemical and morphological changes in endothelial cells in response to hypoxic interstitial edema

    Directory of Open Access Journals (Sweden)

    Miserocchi Giuseppe

    2006-01-01

    Full Text Available Abstract Background A correlation between interstial pulmonary matrix disorganization and lung cellular response was recently documented in cardiogenic interstitial edema as changes in the signal-cellular transduction platforms (lipid microdomains: caveoale and lipid rafts. These findings led to hypothesize a specific "sensing" function by lung cells resulting from a perturbation in cell-matrix interaction. We reason that the cell-matrix interaction may differ between the cardiogenic and the hypoxic type of lung edema due to the observed difference in the sequential degradation of matrix proteoglycans (PGs family. In cardiogenic edema a major fragmentation of high molecular weight PGs of the interfibrillar matrix was found, while in hypoxia the fragmentation process mostly involved the PGs of the basement membrane controlling microvascular permeability. Based on these considerations, we aim to describe potential differences in the lung cellular response to the two types of edema. Methods We analysed the composition of plasma membrane and of lipid microdomains in lung tissue samples from anesthetized rabbits exposed to mild hypoxia (12 % O2 for 3–5 h causing interstitial lung edema. Lipid analysis was performed by chromatographic techniques, while protein analysis by electrophoresis and Western blotting. Lipid peroxidation was assessed on total plasma membranes by a colorimetric assay (Bioxytech LPO-586, OxisResearch. Plasma membrane fluidity was also assessed by fluorescence. Lipid microdomains were isolated by discontinuous sucrose gradient. We also performed a morphometric analysis on lung cell shape on TEM images from lung tissue specimen. Results After hypoxia, phospholipids content in plasma membranes remained unchanged while the cholesterol/phospholipids ratio increased significantly by about 9% causing a decrease in membrane fluidity. No significant increase in lipid peroxidation was detected. Analysis of lipid microdomains showed a

  15. Galectin-2 at the enterocyte brush border of the small intestine

    DEFF Research Database (Denmark)

    Thomsen, Martha Kampp; Hansen, Gert H; Danielsen, E Michael

    2009-01-01

    boundary. Together with the membrane glycolipids these lectins form stable lipid raft microdomains that also harbour several of the major digestive microvillar enzymes. In the present work, we identified a lactose-sensitive 14-kDa protein enriched in a microvillar detergent resistant fraction as galectin-2....... Its release from closed, right-side-out microvillar membrane vesicles shows that at least some of the galectin-2 resides at the lumenal surface of the brush border, indicating that it plays a role in the organization/stabilization of the lipid raft domains. Galectin-2 was released more effectively...

  16. Small-angle neutron scattering investigation of the chain conformation of lamellar polystyrene/isoprene phase in solid state

    International Nuclear Information System (INIS)

    Constantinescu, L.M.

    1994-01-01

    Small-angle neutron scattering has been used in the study of chain conformation of lamellar styrene/isoprene block copolymers oriented in large single crystals. The radius of gyration of deuterated polystyrene chains around the normal to the interface has been measured. By comparing this direct evolution of the lateral dimension of the chains with the average chain separation given by the molecular area (the surface available at the interface for each covalent bond linking the blocks together) we characterized the transverse interpenetration degree of the chains. The polystyrene chains are displayed in simple strata own micro-domains, without an important interpenetration. (Author) 9 Figs., 2 Tabs., 25 Refs

  17. Subcellular Redox Targeting: Bridging in Vitro and in Vivo Chemical Biology.

    Science.gov (United States)

    Long, Marcus J C; Poganik, Jesse R; Ghosh, Souradyuti; Aye, Yimon

    2017-03-17

    Networks of redox sensor proteins within discrete microdomains regulate the flow of redox signaling. Yet, the inherent reactivity of redox signals complicates the study of specific redox events and pathways by traditional methods. Herein, we review designer chemistries capable of measuring flux and/or mimicking subcellular redox signaling at the cellular and organismal level. Such efforts have begun to decipher the logic underlying organelle-, site-, and target-specific redox signaling in vitro and in vivo. These data highlight chemical biology as a perfect gateway to interrogate how nature choreographs subcellular redox chemistry to drive precision redox biology.

  18. Probing endocytosis from the enterocyte brush border using fluorescent lipophilic dyes

    DEFF Research Database (Denmark)

    Danielsen, E Michael

    2015-01-01

    The small intestinal brush border is a specialized cell membrane that needs to withstand the solubilizing effect of bile salts during assimilation of dietary nutrients and to achieve detergent resistance; it is highly enriched in glycolipids organized in lipid raft microdomains. In the present work......-toluenesulfonate), and CellMask Orange plasma membrane stain were used to study endocytosis from the enterocyte brush border of organ-cultured porcine mucosal explants. All the dyes readily incorporated into the brush border but were not detectably endocytosed by 5 min, indicating a slow uptake compared with other cell types...

  19. Ionic protein-lipid interaction at the plasma membrane: what can the charge do?

    Science.gov (United States)

    Li, Lunyi; Shi, Xiaoshan; Guo, Xingdong; Li, Hua; Xu, Chenqi

    2014-03-01

    Phospholipids are the major components of cell membranes, but they have functional roles beyond forming lipid bilayers. In particular, acidic phospholipids form microdomains in the plasma membrane and can ionically interact with proteins via polybasic sequences, which can have functional consequences for the protein. The list of proteins regulated by ionic protein-lipid interaction has been quickly expanding, and now includes membrane proteins, cytoplasmic soluble proteins, and viral proteins. Here we review how acidic phospholipids in the plasma membrane regulate protein structure and function via ionic interactions, and how Ca(2+) regulates ionic protein-lipid interactions via direct and indirect mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Fabrication of metallized nanoporous films from the self-assembly of a block copolymer and homopolymer mixture.

    Science.gov (United States)

    Li, Xue; Zhao, Shuying; Zhang, Shuxiang; Kim, Dong Ha; Knoll, Wolfgang

    2007-06-19

    Inorganic compound HAuCl4, which can form a complex with pyridine, is introduced into a poly(styrene-block-2-vinylpyridine) (PS-b-P2VP) block copolymer/poly(methyl methacrylate) (PMMA) homopolymer mixture. The orientation of the cylindrical microdomains formed by the P2VP block, PMMA, and HAuCl4 normal to the substrate surface can be generated via cooperative self-assembly of the mixture. Selective removal of the homopolymer can lead to porous nanostructures containing metal components in P2VP domains, which have a novel photoluminescence property.

  1. In situ investigation of formation of self-assembled nanodomain structure in lithium niobate after pulse laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shur, V. Ya.; Kuznetsov, D. K.; Mingaliev, E. A.; Yakunina, E. M.; Lobov, A. I.; Ievlev, A. V. [Ferroelectric Laboratory, Institute of Physics and Applied Mathematics, Ural State University, Lenin Ave. 51, Ekaterinburg 620083 (Russian Federation)

    2011-08-22

    The evolution of the self-assembled quasi-regular micro- and nanodomain structures after pulse infrared laser irradiation was studied by in situ optical observation. The average periods of the structures are much less than the sizes of the laser spots. The polarization reversal occurs through covering of the whole irradiated area by the nets of the spatially separated nanodomain chains and microdomain rays--''hatching effect.'' The main stages of the anisotropic nanodomain kinetics: nucleation, growth, and branching, have been singled out. The observed abnormal domain kinetics was attributed to the action of the pyroelectric field arising during cooling after laser heating.

  2. An oligogalacturonide-derived molecular probe demonstrates the dynamics of calcium-mediated pectin complexation in cell walls of tip-growing structures

    DEFF Research Database (Denmark)

    Mravec, Jozef; Kracun, Stjepan Kresimir; Rydahl, Maja Gro

    2017-01-01

    walls and in mediating cell-to-cell adhesion. Current immunological methods enable only steady-state detection of egg box formation in situ. Here we present a tool for efficient real-time visualisation of available sites for HG crosslinking within cell wall microdomains. Our approach is based on calcium-mediated...... thermodynamic model. Using defined carbohydrate microarrays, we show that the long OG probe binds exclusively to HG that has a very low degree of esterification and in the presence of divalent ions. We used this probe to study real-time dynamics of HG during elongation of Arabidopsis pollen tubes and root hairs...

  3. Photoinduced critical opalescence and reversible all-optical switching in photosensitive liquid crystals

    International Nuclear Information System (INIS)

    Tabiryan, Nelson V.; Serak, Svetlana V.; Grozhik, Vladimir A.

    2003-01-01

    We present the results of a study of the critical opalescence that is observed as a result of reversible trans-cis photoisomerization in the vicinity of photoinduced isothermal phase transitions in azobenzene liquid crystals (azo LCs). The opalescence is caused by the generation of randomly oriented microdomains and microdroplets of isotropic phase in the illuminated area of the azo LC. Transformations between the strongly light-scattering nematic phase and the transparent isotropic phase of the azo LC are induced all-optically by combination of green (λ=532 nm) and violet (λ=409 nm) laser beams

  4. Photoinduced critical opalescence and reversible all-optical switching in photosensitive liquid crystals

    Science.gov (United States)

    Tabiryan, Nelson V.; Serak, Svetlana V.; Grozhik, Vladimir A.

    2003-03-01

    We present the results of a study of the critical opalescence that is observed as a result of reversible trans-cis photoisomerization in the vicinity of photoinduced isothermal phase transitions in azobenzene liquid crystals (azo LCs). The opalescence is caused by the generation of randomly oriented microdomains and microdroplets of isotropic phase in the illuminated area of the azo LC. Transformations between the strongly light-scattering nematic phase and the transparent isotropic phase of the azo LC are induced all-optically by combination of green (λ=532 nm) and violet (λ=409 nm) laser beams.

  5. Na, K-ATPase as signaling transducer

    OpenAIRE

    Li, Juan

    2007-01-01

    It is now generally agreed that Na,K-ATPase (NKA), in addition to its role in the maintenance of Na+ and K+ gradients across the cell membrane, is a signal transducer. Our group has identified a novel signaling pathway where NKA interact with IP3R to form a signaling microdomain. Ouabain, a specific ligand of NKA, activates this pathway, triggers slow Ca2+ oscillations and activates NF-κB. In current study, the molecular mechanisms and some important downstream effects of NK...

  6. Research advances on flotillins

    Directory of Open Access Journals (Sweden)

    Li Li

    2011-10-01

    Full Text Available Abstract The proteins of flotillin-1 and flotillin-2 were originally discovered in axon regeneration of goldfish retinal ganglion cells. They are generally used as marker proteins of lipid rafts and considered to be scaffolding proteins of lipid microdomains. Although they are ubiquitously expressed and well-conserved from fly to man, their exact functions remain controversial. In this review, we summarize the structure of flotillins and some functions of them, such as regulating axon regeneration, endocytosis, T cell activation, insulin signaling, membrane protein recruitment, roles in the progression of some diseases and so on.

  7. Application of extended-crystal diffraction techniques to the symmetry and structure analysis of 221-PbBiSrCaCuO

    International Nuclear Information System (INIS)

    Goodman, P.; Miller, P.

    1993-01-01

    The discovery of a series of layer-perovskite superconducting compounds by Maeda et al. (1988) presented a challenge for present day electron diffraction techniques, due to their common occurrence as mixed phases, and the existence of complex structural modulations of more than one type. Cowley's (1976) theory developed specifically for describing diffraction effects from layered crystals having a micro-domainal sub-structure seems particularly well suited to the task of solving these structures, while the technique of extended-crystal diffraction is shown here to be capable of providing data of sufficient precision for this analysis. The present study is made on the 221 compound of PbBiSrCaCuO. Using the above diffraction techniques it is shown that the true symmetry of the whole structure is orthorhombic, Amaa, and not monoclinic as previously assumed, and that the superlattice reflections arise as a result of a basic microdomainal constitution, rather than from a uniform and incommensurate modulation. 8 figs

  8. Adsorbed Polymer Nanolayers on Solids: Mechanism, Structure and Applications

    Science.gov (United States)

    Sen, Mani Kuntal

    In this thesis, by combining various advanced x-ray scattering, spectroscopic and other surface sensitive characterization techniques, I report the equilibrium polymer chain conformations, structures, dynamics and properties of polymeric materials at the solid-polymer melt interfaces. Following the introduction, in chapter 2, I highlight that the backbone chains (constituted of CH and CH2 groups) of the flattened polystyrene (PS) chains preferentially orient normal to the weakly interactive substrate surface via thermal annealing regardless of the initial chain conformations, while the orientation of the phenyl rings becomes randomized, thereby increasing the number of surface-segmental contacts (i.e., enthalpic gain) which is the driving force for the flattening process of the polymer chains even onto a weakly interactive solid. In chapter 3, I elucidate the flattened structures in block copolymer (BCP) thin films where both blocks lie flat on the substrate, forming a 2D randomly phase-separated structure irrespective of their microdomain structures and interfacial energetics. In chapter 4, I reveal the presence of an irreversibly adsorbed BCP layer which showed suppressed dynamics even at temperatures far above the individual glass transition temperatures of the blocks. Furthermore, this adsorbed BCP layer plays a crucial role in controlling the microdomain orientation in the entire film. In chapter 5, I report a radically new paradigm of designing a polymeric coating layer of a few nanometers thick ("polymer nanolayer") with anti-biofouling properties.

  9. PKA and PDE4D3 anchoring to AKAP9 provides distinct regulation of cAMP signals at the centrosome

    Science.gov (United States)

    Terrin, Anna; Monterisi, Stefania; Stangherlin, Alessandra; Zoccarato, Anna; Koschinski, Andreas; Surdo, Nicoletta C.; Mongillo, Marco; Sawa, Akira; Jordanides, Niove E.; Mountford, Joanne C.

    2012-01-01

    Previous work has shown that the protein kinase A (PKA)–regulated phosphodiesterase (PDE) 4D3 binds to A kinase–anchoring proteins (AKAPs). One such protein, AKAP9, localizes to the centrosome. In this paper, we investigate whether a PKA–PDE4D3–AKAP9 complex can generate spatial compartmentalization of cyclic adenosine monophosphate (cAMP) signaling at the centrosome. Real-time imaging of fluorescence resonance energy transfer reporters shows that centrosomal PDE4D3 modulated a dynamic microdomain within which cAMP concentration selectively changed over the cell cycle. AKAP9-anchored, centrosomal PKA showed a reduced activation threshold as a consequence of increased autophosphorylation of its regulatory subunit at S114. Finally, disruption of the centrosomal cAMP microdomain by local displacement of PDE4D3 impaired cell cycle progression as a result of accumulation of cells in prophase. Our findings describe a novel mechanism of PKA activity regulation that relies on binding to AKAPs and consequent modulation of the enzyme activation threshold rather than on overall changes in cAMP levels. Further, we provide for the first time direct evidence that control of cell cycle progression relies on unique regulation of centrosomal cAMP/PKA signals. PMID:22908311

  10. The shedding activity of ADAM17 is sequestered in lipid rafts

    International Nuclear Information System (INIS)

    Tellier, Edwige; Canault, Matthias; Rebsomen, Laure; Bonardo, Bernadette; Juhan-Vague, Irene; Nalbone, Gilles; Peiretti, Franck

    2006-01-01

    The tumor necrosis factor-alpha (TNF) converting enzyme (ADAM17) is a metalloprotease-disintegrin responsible for the cleavage of several biologically active transmembrane proteins. However, the substrate specificity of ADAM17 and the regulation of its shedding activity are still poorly understood. Here, we report that during its transport through the Golgi apparatus, ADAM17 is included in cholesterol-rich membrane microdomains (lipid rafts) where its prodomain is cleaved by furin. Consequently, ADAM17 shedding activity is sequestered in lipid rafts, which is confirmed by the fact that metalloproteinase inhibition increases the proportion of ADAM17 substrates (TNF and its receptors TNFR1 and TNFR2) in lipid rafts. Membrane cholesterol depletion increases the ADAM17-dependent shedding of these substrates demonstrating the importance of lipid rafts in the control of this process. Furthermore, ADAM17 substrates are present in different proportions in lipid rafts, suggesting that the entry of each of these substrates in these particular membrane microdomains is specifically regulated. Our data support the idea that one of the mechanisms regulating ADAM17 substrate cleavage involves protein partitioning in lipid rafts

  11. Constructing dual-defense mechanisms on membrane surfaces by synergy of PFSA and SiO2 nanoparticles for persistent antifouling performance

    Science.gov (United States)

    Zhou, Linjie; Gao, Kang; Jiao, Zhiwei; Wu, Mengyuan; He, Mingrui; Su, Yanlei; Jiang, Zhongyi

    2018-05-01

    Synthetic antifouling membrane surfaces with dual-defense mechanisms (fouling-resistant and fouling-release mechanism) were constructed through the synergy of perfluorosulfonic acid (PFSA) and SiO2 nanoparticles. During the nonsolvent induced phase separation (NIPS) process, the amphiphilic PFSA polymers spontaneously segregated to membrane surfaces and catalyzed the hydrolysis-polycondensation of tetraethyl orthosilicate (TEOS) to generate hydrophilic SiO2 nanoparticles (NPs). The resulting PVDF/PFSA/SiO2 hybrid membranes were characterized by contact angle measurements, FTIR, XPS, SEM, AFM, TGA, and TEM. The hydrophilic microdomains and low surface energy microdomains of amphiphilic PFSA polymers respectively endowed membrane surfaces with fouling-resistant mechanism and fouling-release mechanism, while the hydrophilic SiO2 NPs intensified the fouling-resistant mechanism. When the addition of TEOS reached 3 wt%, the hybrid membrane with optimal synergy of PFSA and SiO2 NPs displayed low flux decline (17.4% DRt) and high flux recovery (99.8% FRR) during the filtration of oil-in-water emulsion. Meanwhile, the long-time stability test verified that the hybrid membrane possessed persistent antifouling performance.

  12. Structured illumination to spatially map chromatin motions.

    Science.gov (United States)

    Bonin, Keith; Smelser, Amanda; Moreno, Naike Salvador; Holzwarth, George; Wang, Kevin; Levy, Preston; Vidi, Pierre-Alexandre

    2018-05-01

    We describe a simple optical method that creates structured illumination of a photoactivatable probe and apply this method to characterize chromatin motions in nuclei of live cells. A laser beam coupled to a diffractive optical element at the back focal plane of an excitation objective generates an array of near diffraction-limited beamlets with FWHM of 340  ±  30  nm, which simultaneously photoactivate a 7  ×  7 matrix pattern of GFP-labeled histones, with spots 1.70  μm apart. From the movements of the photoactivated spots, we map chromatin diffusion coefficients at multiple microdomains of the cell nucleus. The results show correlated motions of nearest chromatin microdomain neighbors, whereas chromatin movements are uncorrelated at the global scale of the nucleus. The method also reveals a DNA damage-dependent decrease in chromatin diffusion. The diffractive optical element instrumentation can be easily and cheaply implemented on commercial inverted fluorescence microscopes to analyze adherent cell culture models. A protocol to measure chromatin motions in nonadherent human hematopoietic stem and progenitor cells is also described. We anticipate that the method will contribute to the identification of the mechanisms regulating chromatin mobility, which influences most genomic processes and may underlie the biogenesis of genomic translocations associated with hematologic malignancies. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  13. Plasma membrane lipids and their role in fungal virulence.

    Science.gov (United States)

    Rella, Antonella; Farnoud, Amir M; Del Poeta, Maurizio

    2016-01-01

    There has been considerable evidence in recent years suggesting that plasma membrane lipids are important regulators of fungal pathogenicity. Various glycolipids have been shown to impart virulent properties in several fungal species, while others have been shown to play a role in host defense. In addition to their role as virulence factors, lipids also contribute to other virulence mechanisms such as drug resistance, biofilm formation, and release of extracellular vesicles. In addition, lipids also affect the mechanical properties of the plasma membrane through the formation of packed microdomains composed mainly of sphingolipids and sterols. Changes in the composition of lipid microdomains have been shown to disrupt the localization of virulence factors and affect fungal pathogenicity. This review gathers evidence on the various roles of plasma membrane lipids in fungal virulence and how lipids might contribute to the different processes that occur during infection and treatment. Insight into the role of lipids in fungal virulence can lead to an improved understanding of the process of fungal pathogenesis and the development of new lipid-mediated therapeutic strategies. Published by Elsevier Ltd.

  14. Shaping intercellular channels of plasmodesmata: the structure-to-function missing link.

    Science.gov (United States)

    Nicolas, William J; Grison, Magali S; Bayer, Emmanuelle M

    2017-12-18

    Plasmodesmata (PD) are a hallmark of the plant kingdom and a cornerstone of plant biology and physiology, forming the conduits for the cell-to-cell transfer of proteins, RNA and various metabolites, including hormones. They connect the cytosols and endomembranes of cells, which allows enhanced cell-to-cell communication and synchronization. Because of their unique position as intercellular gateways, they are at the frontline of plant defence and signalling and constitute the battleground for virus replication and spreading. The membranous organization of PD is remarkable, where a tightly furled strand of endoplasmic reticulum comes into close apposition with the plasma membrane, the two connected by spoke-like elements. The role of these structural features is, to date, still not completely understood. Recent data on PD seem to point in an unexpected direction, establishing a close parallel between PD and membrane contact sites and defining plasmodesmal membranes as microdomains. However, the implications of this new viewpoint are not fully understood. Aided by available phylogenetic data, this review attempts to reassess the function of the different elements comprising the PD and the relevance of membrane lipid composition and biophysics in defining specialized microdomains of PD, critical for their function. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Coupling of SK channels, L-type Ca2+ channels, and ryanodine receptors in cardiomyocytes.

    Science.gov (United States)

    Zhang, Xiao-Dong; Coulibaly, Zana A; Chen, Wei Chun; Ledford, Hannah A; Lee, Jeong Han; Sirish, Padmini; Dai, Gu; Jian, Zhong; Chuang, Frank; Brust-Mascher, Ingrid; Yamoah, Ebenezer N; Chen-Izu, Ye; Izu, Leighton T; Chiamvimonvat, Nipavan

    2018-03-16

    Small-conductance Ca 2+ -activated K + (SK) channels regulate the excitability of cardiomyocytes by integrating intracellular Ca 2+ and membrane potentials on a beat-to-beat basis. The inextricable interplay between activation of SK channels and Ca 2+ dynamics suggests the pathology of one begets another. Yet, the exact mechanistic underpinning for the activation of cardiac SK channels remains unaddressed. Here, we investigated the intracellular Ca 2+ microdomains necessary for SK channel activation. SK currents coupled with Ca 2+ influx via L-type Ca 2+ channels (LTCCs) continued to be elicited after application of caffeine, ryanodine or thapsigargin to deplete SR Ca 2+ store, suggesting that LTCCs provide the immediate Ca 2+ microdomain for the activation of SK channels in cardiomyocytes. Super-resolution imaging of SK2, Ca v 1.2 Ca 2+ channel, and ryanodine receptor 2 (RyR2) was performed to quantify the nearest neighbor distances (NND) and localized the three molecules within hundreds of nanometers. The distribution of NND between SK2 and RyR2 as well as SK2 and Ca v 1.2 was bimodal, suggesting a spatial relationship between the channels. The activation mechanism revealed by our study paved the way for the understanding of the roles of SK channels on the feedback mechanism to regulate the activities of LTCCs and RyR2 to influence local and global Ca 2+ signaling.

  16. Evolution of lateral ordering in symmetric block copolymer thin films upon rapid thermal processing

    International Nuclear Information System (INIS)

    Ceresoli, Monica; Ferrarese Lupi, Federico; Seguini, Gabriele; Perego, Michele; Sparnacci, Katia; Gianotti, Valentina; Antonioli, Diego; Laus, Michele; Boarino, Luca

    2014-01-01

    This work reports experimental findings about the evolution of lateral ordering of lamellar microdomains in symmetric PS-b-PMMA thin films on featureless substrates. Phase separation and microdomain evolution are explored in a rather wide range of temperatures (190–340 °C) using a rapid thermal processing (RTP) system. The maximum processing temperature that enables the ordering of block copolymers without introducing any significant degradation of macromolecules is identified. The reported results clearly indicate that the range of accessible temperatures in the processing of these self-assembling materials is mainly limited by the thermal instability of the grafted random copolymer layer, which starts to degrade at T > 300 °C, inducing detachment of the block copolymer thin film. For T ⩽ 290 °C, clear dependence of correlation length (ξ) values on temperature is observed. The highest level of lateral order achievable in the current system in a quasi-equilibrium condition was obtained at the upper processing temperature limit after an annealing time as short as 60 s. (paper)

  17. Human Endometrial CD98 Is Essential for Blastocyst Adhesion

    Science.gov (United States)

    Domínguez, Francisco; Simón, Carlos; Quiñonero, Alicia; Ramírez, Miguel Ángel; González-Muñoz, Elena; Burghardt, Hans; Cervero, Ana; Martínez, Sebastián; Pellicer, Antonio; Palacín, Manuel; Sánchez-Madrid, Francisco; Yáñez-Mó, María

    2010-01-01

    Background Understanding the molecular basis of embryonic implantation is of great clinical and biological relevance. Little is currently known about the adhesion receptors that determine endometrial receptivity for embryonic implantation in humans. Methods and Principal Findings Using two human endometrial cell lines characterized by low and high receptivity, we identified the membrane receptor CD98 as a novel molecule selectively and significantly associated with the receptive phenotype. In human endometrial samples, CD98 was the only molecule studied whose expression was restricted to the implantation window in human endometrial tissue. CD98 expression was restricted to the apical surface and included in tetraspanin-enriched microdomains of primary endometrial epithelial cells, as demonstrated by the biochemical association between CD98 and tetraspanin CD9. CD98 expression was induced in vitro by treatment of primary endometrial epithelial cells with human chorionic gonadotropin, 17-β-estradiol, LIF or EGF. Endometrial overexpression of CD98 or tetraspanin CD9 greatly enhanced mouse blastocyst adhesion, while their siRNA-mediated depletion reduced the blastocyst adhesion rate. Conclusions These results indicate that CD98, a component of tetraspanin-enriched microdomains, appears to be an important determinant of human endometrial receptivity during the implantation window. PMID:20976164

  18. Temperature-dependent imaging of living cells by AFM

    International Nuclear Information System (INIS)

    Espenel, Cedric; Giocondi, Marie-Cecile; Seantier, Bastien; Dosset, Patrice; Milhiet, Pierre-Emmanuel; Le Grimellec, Christian

    2008-01-01

    Characterization of lateral organization of plasma membranes is a prerequisite to the understanding of membrane structure-function relationships in living cells. Lipid-lipid and lipid-protein interactions are responsible for the existence of various membrane microdomains involved in cell signalization and in numerous pathologies. Developing approaches for characterizing microdomains associate identification tools like recognition imaging with high-resolution topographical imaging. Membrane properties are markedly dependent on temperature. However, mesoscopic scale topographical information of cell surface in a temperature range covering most of cell biology experimentation is still lacking. In this work we have examined the possibility of imaging the temperature-dependent behavior of eukaryotic cells by atomic force microscopy (AFM). Our results establish that the surface of living CV1 kidney cells can be imaged by AFM, between 5 and 37 deg. C, both in contact and tapping modes. These first temperature-dependent data show that large cell structures appeared essentially stable at a microscopic scale. On the other hand, as shown by contact mode AFM, the surface was highly dynamic at a mesoscopic scale, with marked changes in apparent topography, friction, and deflection signals. When keeping the scanning conditions constant, a progressive loss in the image contrast was however observed, using tapping mode, on decreasing the temperature

  19. Viruses and Tetraspanins: Lessons from Single Molecule Approaches

    Science.gov (United States)

    Dahmane, Selma; Rubinstein, Eric; Milhiet, Pierre-Emmanuel

    2014-01-01

    Tetraspanins are four-span membrane proteins that are widely distributed in multi-cellular organisms and involved in several infectious diseases. They have the unique property to form a network of protein-protein interaction within the plasma membrane, due to the lateral associations with one another and with other membrane proteins. Tracking tetraspanins at the single molecule level using fluorescence microscopy has revealed the membrane behavior of the tetraspanins CD9 and CD81 in epithelial cell lines, providing a first dynamic view of this network. Single molecule tracking highlighted that these 2 proteins can freely diffuse within the plasma membrane but can also be trapped, permanently or transiently, in tetraspanin-enriched areas. More recently, a similar strategy has been used to investigate tetraspanin membrane behavior in the context of human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) infection. In this review we summarize the main results emphasizing the relationship in terms of membrane partitioning between tetraspanins, some of their partners such as Claudin-1 and EWI-2, and viral proteins during infection. These results will be analyzed in the context of other membrane microdomains, stressing the difference between raft and tetraspanin-enriched microdomains, but also in comparison with virus diffusion at the cell surface. New advanced single molecule techniques that could help to further explore tetraspanin assemblies will be also discussed. PMID:24800676

  20. In Situ GISAXS Study on Solvent Vapour Induced Orientation Switching in PS-b-P4VP Block Copolymer Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Gowd, E Bhoje; Boehme, Marcus; Stamm, Manfred, E-mail: gowd@ipfdd.de, E-mail: bhojegowd@yahoo.com [Department of Nanostructured Materials Leibniz Institute of Polymer Research Dresden Hohe Strasse 6, 01069, Dresden (Germany)

    2010-11-15

    We investigated the orientation changes of cylindrical P4VP microdomains in PS-b-P4VP thin films upon annealing in different solvent vapours using the time-resolved in situ grazing-incidence small-angle X-ray scattering (GISAXS) for the first time. Swelling of perpendicular cylinders (C perpendicular) in a non-selective solvent vapours (chloroform) leads to the orientation change to in-plane cylinders (C//) and it occurs through a disordered state. On the other hand, swelling of perpendicular cylinders (C perpendicular) in a selective solvent vapours (1,4-dioxane) leads the morphological change from cylindrical to BCC spherical morphology. Solvent evaporation results in shrinkage of the matrix in the vertical direction and subsequently merges the spheres into the perpendicularly aligned cylinders. The selectivity of the solvent to constituting blocks and the solvent evaporation rate may be mainly responsible for such orientation change of cylindrical P4VP microdomains in PS-b-P4VP thin films.

  1. Multiscale models and stochastic simulation methods for computing rare but key binding events in cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Guerrier, C. [Applied Mathematics and Computational Biology, IBENS, Ecole Normale Supérieure, 46 rue d' Ulm, 75005 Paris (France); Holcman, D., E-mail: david.holcman@ens.fr [Applied Mathematics and Computational Biology, IBENS, Ecole Normale Supérieure, 46 rue d' Ulm, 75005 Paris (France); Mathematical Institute, Oxford OX2 6GG, Newton Institute (United Kingdom)

    2017-07-01

    The main difficulty in simulating diffusion processes at a molecular level in cell microdomains is due to the multiple scales involving nano- to micrometers. Few to many particles have to be simulated and simultaneously tracked while there are exploring a large portion of the space for binding small targets, such as buffers or active sites. Bridging the small and large spatial scales is achieved by rare events representing Brownian particles finding small targets and characterized by long-time distribution. These rare events are the bottleneck of numerical simulations. A naive stochastic simulation requires running many Brownian particles together, which is computationally greedy and inefficient. Solving the associated partial differential equations is also difficult due to the time dependent boundary conditions, narrow passages and mixed boundary conditions at small windows. We present here two reduced modeling approaches for a fast computation of diffusing fluxes in microdomains. The first approach is based on a Markov mass-action law equations coupled to a Markov chain. The second is a Gillespie's method based on the narrow escape theory for coarse-graining the geometry of the domain into Poissonian rates. The main application concerns diffusion in cellular biology, where we compute as an example the distribution of arrival times of calcium ions to small hidden targets to trigger vesicular release.

  2. Synapse geometry and receptor dynamics modulate synaptic strength.

    Directory of Open Access Journals (Sweden)

    Dominik Freche

    Full Text Available Synaptic transmission relies on several processes, such as the location of a released vesicle, the number and type of receptors, trafficking between the postsynaptic density (PSD and extrasynaptic compartment, as well as the synapse organization. To study the impact of these parameters on excitatory synaptic transmission, we present a computational model for the fast AMPA-receptor mediated synaptic current. We show that in addition to the vesicular release probability, due to variations in their release locations and the AMPAR distribution, the postsynaptic current amplitude has a large variance, making a synapse an intrinsic unreliable device. We use our model to examine our experimental data recorded from CA1 mice hippocampal slices to study the differences between mEPSC and evoked EPSC variance. The synaptic current but not the coefficient of variation is maximal when the active zone where vesicles are released is apposed to the PSD. Moreover, we find that for certain type of synapses, receptor trafficking can affect the magnitude of synaptic depression. Finally, we demonstrate that perisynaptic microdomains located outside the PSD impacts synaptic transmission by regulating the number of desensitized receptors and their trafficking to the PSD. We conclude that geometrical modifications, reorganization of the PSD or perisynaptic microdomains modulate synaptic strength, as the mechanisms underlying long-term plasticity.

  3. Agonist-induced PIP(2) hydrolysis inhibits cortical actin dynamics: regulation at a global but not at a micrometer scale.

    Science.gov (United States)

    van Rheenen, Jacco; Jalink, Kees

    2002-09-01

    Phosphatidylinositol 4, 5-bisphosphate (PIP(2)) at the inner leaflet of the plasma membrane has been proposed to locally regulate the actin cytoskeleton. Indeed, recent studies that use GFP-tagged pleckstrin homology domains (GFP-PH) as fluorescent PIP(2) sensors suggest that this lipid is enriched in membrane microdomains. Here we report that this concept needs revision. Using three distinct fluorescent GFP-tagged pleckstrin homology domains, we show that highly mobile GFP-PH patches colocalize perfectly with various lipophilic membrane dyes and, hence, represent increased lipid content rather than PIP(2)-enriched microdomains. We show that bright patches are caused by submicroscopical folds and ruffles in the membrane that can be directly visualized at approximately 15 nm axial resolution with a novel numerically enhanced imaging method. F-actin motility is inhibited significantly by agonist-induced PIP(2) breakdown, and it resumes as soon as PIP(2) levels are back to normal. Thus, our data support a role for PIP(2) in the regulation of cortical actin, but they challenge a model in which spatial differences in PIP(2) regulation of the cytoskeleton exist at a micrometer scale.

  4. CCR5 internalisation and signalling have different dependence on membrane lipid raft integrity.

    Science.gov (United States)

    Cardaba, Clara Moyano; Kerr, Jason S; Mueller, Anja

    2008-09-01

    The chemokine receptor, CCR5, acts as a co-receptor for human immunodeficiency virus entry into cells. CCR5 has been shown to be targeted to cholesterol- and sphingolipid-rich membrane microdomains termed lipid rafts or caveolae. Cholesterol is essential for CCL4 binding to CCR5 and for keeping the conformational integrity of the receptor. Filipin treatment leads to loss of caveolin-1 from the membrane and therefore to a collapse of the caveolae. We have found here that sequestration of membrane cholesterol with filipin did not affect receptor signalling, however a loss of ligand-induced internalisation of CCR5 was observed. Cholesterol extraction with methyl-beta-cyclodextrin (MCD) reduced signalling through CCR5 as measured by release of intracellular Ca(2+) and completely abolished the inhibition of forskolin-stimulated cAMP accumulation with no effect on internalisation. Pertussis toxin (PTX) treatment inhibited the intracellular release of calcium that is transduced via Galphai G-proteins. Depletion of cholesterol destroyed microdomains in the membrane and switched CCR5/G-protein coupling to a PTX-independent G-protein. We conclude that cholesterol in the membrane is essential for CCR5 signalling via the Galphai G-protein subunit, and that integrity of lipid rafts is not essential for effective CCR5 internalisation however it is crucial for proper CCR5 signal transduction via Galphai G-proteins.

  5. Dimerization and endocytosis of the sucrose transporter StSUT1 in mature sieve elements.

    Science.gov (United States)

    Liesche, Johannes; Schulz, Alexander; Krügel, Undine; Grimm, Bernhard; Kühn, Christina

    2008-12-01

    The sucrose transporter StSUT1 from Solanum tuberosum was shown to be regulated post-translationally by redox reagents. Its activity is increased at least 10-fold in the presence of oxidizing agents if expressed in yeast. Oxidation has also an effect on plasma membrane targeting and dimerization of the protein. In response to oxidizing agents, StSUT1 is targeted to lipid raft-like microdomains and SUT1 protein is detectable in the detergent resistant membrane fraction of plant plasma membranes. Interestingly, StSUT1 treated with brefeldin A seems to aggregate in endocytic compartments in mature sieve elements.1 Further analysis of SUT1 targeting will certainly provide more information about the putative involvement of lipid raft-like microdomains in endocytic events. We provide here additional information on the dimerization and endocytosis of the SUT1 protein. The oligomerization of overexpressed SoSUT1 from Spinacia oleracea in transgenic potato plants was analyzed by two-dimensional gel electrophoresis and endocytosis of the StSUT1 protein was confirmed by immunogold labeling.

  6. Rapid shear alignment of sub-10 nm cylinder-forming block copolymer films based on thermal expansion mismatch

    Science.gov (United States)

    Nicaise, Samuel M.; Gadelrab, Karim R.; G, Amir Tavakkoli K.; Ross, Caroline A.; Alexander-Katz, Alfredo; Berggren, Karl K.

    2018-01-01

    Directed self-assembly of block copolymers (BCPs) provided by shear-stress can produce aligned sub-10 nm structures over large areas for applications in integrated circuits, next-generation data storage, and plasmonic structures. In this work, we present a fast, versatile BCP shear-alignment process based on coefficient of thermal expansion mismatch of the BCP film, a rigid top coat and a substrate. Monolayer and bilayer cylindrical microdomains of poly(styrene-b-dimethylsiloxane) aligned preferentially in-plane and orthogonal to naturally-forming or engineered cracks in the top coat film, allowing for orientation control over 1 cm2 substrates. Annealing temperatures, up to 275 °C, provided low-defect alignment up to 2 mm away from cracks for rapid (<1 min) annealing times. Finite-element simulations of the stress as a function of annealing time, annealing temperature, and distance from cracks showed that shear stress during the cooling phase of the thermal annealing was critical for the observed microdomain alignment.

  7. Domains of increased thickness in microvillar membranes of the small intestinal enterocyte

    DEFF Research Database (Denmark)

    Kunding, Andreas H; Christensen, Sune M; Danielsen, E Michael

    2010-01-01

    The apical surface of the enterocyte is sculpted into a dense array of cylindrical microvillar protrusions by supporting actin filaments. Membrane microdomains (rafts) enriched in cholesterol and glycosphingolipids comprise roughly 50% of the microvillar membrane and play a vital role in orchestr......The apical surface of the enterocyte is sculpted into a dense array of cylindrical microvillar protrusions by supporting actin filaments. Membrane microdomains (rafts) enriched in cholesterol and glycosphingolipids comprise roughly 50% of the microvillar membrane and play a vital role...... in orchestrating absorptive/digestive action of dietary nutrients at this important cellular interface. Increased membrane thickness is believed to be a morphological characteristic of rafts. Thus, we investigated whether the high contents of lipid rafts in the microvillar membrane is reflected in local variations...... was clearly monophasic. The encountered domains of increased thickness (DITs) occupied 48% of the microvillar membrane and from the data we estimated the area of a single DIT to have a lower limit of 600 nm(2). In other experiments we mapped the organization of biochemically defined lipid rafts by immunogold...

  8. RaftProt: mammalian lipid raft proteome database.

    Science.gov (United States)

    Shah, Anup; Chen, David; Boda, Akash R; Foster, Leonard J; Davis, Melissa J; Hill, Michelle M

    2015-01-01

    RaftProt (http://lipid-raft-database.di.uq.edu.au/) is a database of mammalian lipid raft-associated proteins as reported in high-throughput mass spectrometry studies. Lipid rafts are specialized membrane microdomains enriched in cholesterol and sphingolipids thought to act as dynamic signalling and sorting platforms. Given their fundamental roles in cellular regulation, there is a plethora of information on the size, composition and regulation of these membrane microdomains, including a large number of proteomics studies. To facilitate the mining and analysis of published lipid raft proteomics studies, we have developed a searchable database RaftProt. In addition to browsing the studies, performing basic queries by protein and gene names, searching experiments by cell, tissue and organisms; we have implemented several advanced features to facilitate data mining. To address the issue of potential bias due to biochemical preparation procedures used, we have captured the lipid raft preparation methods and implemented advanced search option for methodology and sample treatment conditions, such as cholesterol depletion. Furthermore, we have identified a list of high confidence proteins, and enabled searching only from this list of likely bona fide lipid raft proteins. Given the apparent biological importance of lipid raft and their associated proteins, this database would constitute a key resource for the scientific community. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Candida albicans Targets a Lipid Raft/Dectin-1 Platform to Enter Human Monocytes and Induce Antigen Specific T Cell Responses.

    Directory of Open Access Journals (Sweden)

    Valeria de Turris

    Full Text Available Several pathogens have been described to enter host cells via cholesterol-enriched membrane lipid raft microdomains. We found that disruption of lipid rafts by the cholesterol-extracting agent methyl-β-cyclodextrin or by the cholesterol-binding antifungal drug Amphotericin B strongly impairs the uptake of the fungal pathogen Candida albicans by human monocytes, suggesting a role of raft microdomains in the phagocytosis of the fungus. Time lapse confocal imaging indicated that Dectin-1, the C-type lectin receptor that recognizes Candida albicans cell wall-associated β-glucan, is recruited to lipid rafts upon Candida albicans uptake by monocytes, supporting the notion that lipid rafts act as an entry platform. Interestingly disruption of lipid raft integrity and interference with fungus uptake do not alter cytokine production by monocytes in response to Candida albicans but drastically dampen fungus specific T cell response. In conclusion, these data suggest that monocyte lipid rafts play a crucial role in the innate and adaptive immune responses to Candida albicans in humans and highlight a new and unexpected immunomodulatory function of the antifungal drug Amphotericin B.

  10. In Situ GISAXS Study on Solvent Vapour Induced Orientation Switching in PS-b-P4VP Block Copolymer Thin Films

    International Nuclear Information System (INIS)

    Gowd, E Bhoje; Boehme, Marcus; Stamm, Manfred

    2010-01-01

    We investigated the orientation changes of cylindrical P4VP microdomains in PS-b-P4VP thin films upon annealing in different solvent vapours using the time-resolved in situ grazing-incidence small-angle X-ray scattering (GISAXS) for the first time. Swelling of perpendicular cylinders (C perpendicular) in a non-selective solvent vapours (chloroform) leads to the orientation change to in-plane cylinders (C//) and it occurs through a disordered state. On the other hand, swelling of perpendicular cylinders (C perpendicular) in a selective solvent vapours (1,4-dioxane) leads the morphological change from cylindrical to BCC spherical morphology. Solvent evaporation results in shrinkage of the matrix in the vertical direction and subsequently merges the spheres into the perpendicularly aligned cylinders. The selectivity of the solvent to constituting blocks and the solvent evaporation rate may be mainly responsible for such orientation change of cylindrical P4VP microdomains in PS-b-P4VP thin films.

  11. Tetraspanin Assemblies in Virus Infection

    Directory of Open Access Journals (Sweden)

    Luise Florin

    2018-05-01

    Full Text Available Tetraspanins (Tspans are a family of four-span transmembrane proteins, known as plasma membrane “master organizers.” They form Tspan-enriched microdomains (TEMs or TERMs through lateral association with one another and other membrane proteins. If multiple microdomains associate with each other, larger platforms can form. For infection, viruses interact with multiple cell surface components, including receptors, activating proteases, and signaling molecules. It appears that Tspans, such as CD151, CD82, CD81, CD63, CD9, Tspan9, and Tspan7, coordinate these associations by concentrating the interacting partners into Tspan platforms. In addition to mediating viral attachment and entry, these platforms may also be involved in intracellular trafficking of internalized viruses and assist in defining virus assembly and exit sites. In conclusion, Tspans play a role in viral infection at different stages of the virus replication cycle. The present review highlights recently published data on this topic, with a focus on events at the plasma membrane. In light of these findings, we propose a model for how Tspan interactions may organize cofactors for viral infection into distinct molecular platforms.

  12. Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers-Mast Cell Case.

    Science.gov (United States)

    Halova, Ivana; Draber, Petr

    2016-01-01

    The plasma membrane contains diverse and specialized membrane domains, which include tetraspanin-enriched domains (TEMs) and transmembrane adaptor protein (TRAP)-enriched domains. Recent biophysical, microscopic, and functional studies indicated that TEMs and TRAP-enriched domains are involved in compartmentalization of physicochemical events of such important processes as immunoreceptor signal transduction and chemotaxis. Moreover, there is evidence of a cross-talk between TEMs and TRAP-enriched domains. In this review we discuss the presence and function of such domains and their crosstalk using mast cells as a model. The combined data based on analysis of selected mast cell-expressed tetraspanins [cluster of differentiation (CD)9, CD53, CD63, CD81, CD151)] or TRAPs [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), and phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG)] using knockout mice or specific antibodies point to a diversity within these two families and bring evidence of the important roles of these molecules in signaling events. An example of this diversity is physical separation of two TRAPs, LAT and NTAL, which are in many aspects similar but show plasma membrane location in different microdomains in both non-activated and activated cells. Although our understanding of TEMs and TRAP-enriched domains is far from complete, pharmaceutical applications of the knowledge about these domains are under way.

  13. Fluorescence Recovery After Photobleaching Analysis of the Diffusional Mobility of Plasma Membrane Proteins: HER3 Mobility in Breast Cancer Cell Membranes.

    Science.gov (United States)

    Sarkar, Mitul; Koland, John G

    2016-01-01

    The fluorescence recovery after photobleaching (FRAP) method is a straightforward means of assessing the diffusional mobility of membrane-associated proteins that is readily performed with current confocal microscopy instrumentation. We describe here the specific application of the FRAP method in characterizing the lateral diffusion of genetically encoded green fluorescence protein (GFP)-tagged plasma membrane receptor proteins. The method is exemplified in an examination of whether the previously observed segregation of the mammalian HER3 receptor protein in discrete plasma membrane microdomains results from its physical interaction with cellular entities that restrict its mobility. Our FRAP measurements of the diffusional mobility of GFP-tagged HER3 reporters expressed in MCF7 cultured breast cancer cells showed that despite the observed segregation of HER3 receptors within plasma membrane microdomains their diffusion on the macroscopic scale is not spatially restricted. Thus, in FRAP analyses of various HER3 reporters a near-complete recovery of fluorescence after photobleaching was observed, indicating that HER3 receptors are not immobilized by long-lived physical interactions with intracellular species. An examination of HER3 proteins with varying intracellular domain sequence truncations also indicated that a proposed formation of oligomeric HER3 networks, mediated by physical interactions involving specific HER3 intracellular domain sequences, either does not occur or does not significantly reduce HER3 mobility on the macroscopic scale.

  14. The plasma membrane as a capacitor for energy and metabolism

    Science.gov (United States)

    Ray, Supriyo; Kassan, Adam; Busija, Anna R.; Rangamani, Padmini

    2016-01-01

    When considering which components of the cell are the most critical to function and physiology, we naturally focus on the nucleus, the mitochondria that regulate energy and apoptotic signaling, or other organelles such as the endoplasmic reticulum, Golgi, ribosomes, etc. Few people will suggest that the membrane is the most critical element of a cell in terms of function and physiology. Those that consider the membrane critical will point to its obvious barrier function regulated by the lipid bilayer and numerous ion channels that regulate homeostatic gradients. What becomes evident upon closer inspection is that not all membranes are created equal and that there are lipid-rich microdomains that serve as platforms of signaling and a means of communication with the intracellular environment. In this review, we explore the evolution of membranes, focus on lipid-rich microdomains, and advance the novel concept that membranes serve as “capacitors for energy and metabolism.” Within this framework, the membrane then is the primary and critical regulator of stress and disease adaptation of the cell. PMID:26771520

  15. In-situ visualization and order quantification of symmetric diblock copolymer directed self-assembly

    International Nuclear Information System (INIS)

    Salaün, M.; Le Gallic, M.; Picard, E.; Zelsmann, M.

    2013-01-01

    In this work, atomic force microscopy (AFM) investigations of lamellar PS-b-PMMA block copolymer layers are performed during the self-assembly process. These in-situ experiments are made on both un-patterned planar substrates and topographical substrates (graphoepitaxy experiments) at different temperatures and for different durations. Image processing software is used to produce AFM movies of the same location on the sample and to measure polymer micro-phase domain lengths versus annealing time. We observed that micro-domain formation starts after only a few minutes of heating. On planar substrates, the micro-domain length evolution with time (t) is in accordance with the literature, following a power law ∼ t 0.29 . On the other hand, in substrate channels and in conditions used, we show that the domain length dependence follows a two-step process. Initially, the system adopts a similar kinetic dependence as that of the planar substrate, but at longer times, drastically reduced time dependence is observed due to the topographical confinement of the domains. - Highlights: ► Live atomic force microscopy of block copolymer directed self-assembly is performed. ► Values of polymer self-assembly kinetic in topographical trenches are measured. ► Opens the way to a better understanding of graphoepitaxy order nucleation and growth

  16. Tetraspanins and Transmembrane Adaptor Proteins as Plasma Membrane Organizers – Mast Cell Case

    Directory of Open Access Journals (Sweden)

    Ivana eHalova

    2016-05-01

    Full Text Available The plasma membrane contains diverse and specialized membrane domains, which include tetraspanin-enriched domains (TEMs and transmembrane adaptor protein (TRAP-enriched domains. Recent biophysical, microscopic and functional studies indicated that TEMs and TRAP-enriched domains are involved in compartmentalization of physicochemical events of such important processes as immunoreceptor signal transduction and chemotaxis. Moreover, there is evidence of a cross-talk between TEMs and TRAP-enriched domains. In this review we discuss the presence and function of such domains and their crosstalk using mast cells as a model. The combined data based on analysis of selected mast cell-expressed tetraspanins [cluster of differentiation (CD9, CD53, CD63, CD81, CD151] or TRAPs [linker for activation of T cells (LAT, non-T cell activation linker (NTAL, and phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG] using knockout mice or specific antibodies point to a diversity within these two families and bring evidence of the important roles of these molecules in signaling events. An example of this diversity is physical separation of two TRAPs, LAT and NTAL, which are in many aspects similar but show plasma membrane location in different microdomains in both non-activated and activated cells. Although our understanding of TEMs and TRAP-enriched domains is far from complete, pharmaceutical applications of the knowledge about these domains are under way.

  17. Multiscale models and stochastic simulation methods for computing rare but key binding events in cell biology

    International Nuclear Information System (INIS)

    Guerrier, C.; Holcman, D.

    2017-01-01

    The main difficulty in simulating diffusion processes at a molecular level in cell microdomains is due to the multiple scales involving nano- to micrometers. Few to many particles have to be simulated and simultaneously tracked while there are exploring a large portion of the space for binding small targets, such as buffers or active sites. Bridging the small and large spatial scales is achieved by rare events representing Brownian particles finding small targets and characterized by long-time distribution. These rare events are the bottleneck of numerical simulations. A naive stochastic simulation requires running many Brownian particles together, which is computationally greedy and inefficient. Solving the associated partial differential equations is also difficult due to the time dependent boundary conditions, narrow passages and mixed boundary conditions at small windows. We present here two reduced modeling approaches for a fast computation of diffusing fluxes in microdomains. The first approach is based on a Markov mass-action law equations coupled to a Markov chain. The second is a Gillespie's method based on the narrow escape theory for coarse-graining the geometry of the domain into Poissonian rates. The main application concerns diffusion in cellular biology, where we compute as an example the distribution of arrival times of calcium ions to small hidden targets to trigger vesicular release.

  18. Interfacial Behavior of Polymers: Using Interfaces to Manipulate Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Thomas P. [Univ. of Massachusetts, Amherst, MA (United States). Dept. of Polymer Science and Engineering

    2015-02-26

    The self-assembly of block copolymers into arrays of nanoscopic domains with areal densities approaching 10 terbit/in2 offer tremendous promise for the fabrication of ultrahigh density storage devices, batteries and other energy relevant devices. Interfacial interactions play a key role in dictating the orientation and ordering of these self-assembling materials. We have investigated the use of preferential and neutral solvents to overcome interfacial interactions and to rapid accelerate the dynamics of these materials, since the high molecular weight of the polymers significantly slows diffusion processes. Using a tailor-made chamber, we have introduced solvent vapor annealing (SVA) where solvent with a well-defined vapor pressures sells the copolymer film, enabling control over the solvent content in the film and, therefore, the thermodynamics governing the microphase separation of the copolymer, the interactions with the substrate and air interfaces and the dynamics. This tailor-made chamber also allows us to perform in situ grazing incidence x-ray scattering studies where the copolymer films can be characterized on the nanoscopic level over macroscopic distances. The methodologies developed in our laboratories are now used in numerous laboratories world-wide. We have found that arrays of block copolymer microdomains with perfect orientational order can be achieved over macroscopic areas using the SVA processes but the translational order is perturbed during the film drying process. As the copolymer film is swollen, the confinement of the film to the substrate introduces a frustration to the ordering of the microdomains. After equilibrium is achieved, when the swollen films are brought very close to the ordering transition, near perfect ordering is achieved. However, upon removal of the solvent, the confinement of the film to the substrate introduces translational disorder. We have investigated the influence of the rate of solvent removal and have found that

  19. Ferroelastic Phase Transition in Pb_3(PO_4)_2 Studied by Computer Simulation

    Science.gov (United States)

    Parlinski, K.; Kawazoe, Y.

    1997-01-01

    A model of lead phosphate which describes its rhombohedral-monoclinic improper ferroelastic phase transition is proposed. It contains a reduced number of degrees of freedom but it is constructed consistently with symmetry changes at the phase transition. Potential parameters of the model are derived from available experimental data. The crystallites of 25× 25× 25 and 121× 121 × 25 unit cells have been simulated by the molecular-dynamics technique. The results determine the phase transition at the L point of reciprocal space, the order parameter, and the temperature behavior of monoclinic lattice parameters. In the rhombohedral phase the calculated dynamical structure factor shows inelastic peaks from which a soft branch of underdamped phonons has been established. The model has been used to calculate a diffuse scattering function which shows above T_c a maximum at an incommensurate wave vector located along the L F line of the Brillouin zone. The mentioned line is parallel to the ternary symmetry axis. On the basis of the above results we were able to vizualize the nature of the dynamical monoclinic microdomains persisting in the high-temperature rhombohedral phase. It has been shown that above T_c the fluctuations can be treated as temporary orientational monoclinic microdomains. Each type of microdomains always contains an irregular sequence of antiphase domains. Un modèle permettant de décrire la transition de phase ferroélastique impropre, rhomboédrique-monoclinique, du phosphate de plomb est proposé ci-dessous. Il est construit à partir d'un nombre réduit de degrés de liberté, tout en tenant compte des changements de symétrie caractéristique de la transition de phase. Les paramètres du modèle sont déduits quantitativement des résultats expérimentaux disponibles. La technique de dynamique moléculaire a permis de simuler le comportement des cristallites comportant 25× 25× 25 et 121× 121 × 25 mailles. Les résultats permettent de d

  20. Characterization of lipid rafts in human platelets using nuclear magnetic resonance: A pilot study

    Directory of Open Access Journals (Sweden)

    Joshua F. Ceñido

    2017-07-01

    Full Text Available Lipid microdomains (‘lipid rafts’ are plasma membrane subregions, enriched in cholesterol and glycosphingolipids, which participate dynamically in cell signaling and molecular trafficking operations. One strategy for the study of the physicochemical properties of lipid rafts in model membrane systems has been the use of nuclear magnetic resonance (NMR, but until now this spectroscopic method has not been considered a clinically relevant tool. We performed a proof-of-concept study to test the feasibility of using NMR to study lipid rafts in human tissues. Platelets were selected as a cost-effective and minimally invasive model system in which lipid rafts have previously been studied using other approaches. Platelets were isolated from plasma of medication-free adult research participants (n=13 and lysed with homogenization and sonication. Lipid-enriched fractions were obtained using a discontinuous sucrose gradient. Association of lipid fractions with GM1 ganglioside was tested using HRP-conjugated cholera toxin B subunit dot blot assays. 1H high resolution magic-angle spinning nuclear magnetic resonance (HRMAS NMR spectra obtained with single-pulse Bloch decay experiments yielded spectral linewidths and intensities as a function of temperature. Rates of lipid lateral diffusion that reported on raft size were measured with a two-dimensional stimulated echo longitudinal encode-decode NMR experiment. We found that lipid fractions at 10–35% sucrose density associated with GM1 ganglioside, a marker for lipid rafts. NMR spectra of the membrane phospholipids featured a prominent ‘centerband’ peak associated with the hydrocarbon chain methylene resonance at 1.3 ppm; the linewidth (full width at half-maximum intensity of this ‘centerband’ peak, together with the ratio of intensities between the centerband and ‘spinning sideband’ peaks, agreed well with values reported previously for lipid rafts in model membranes. Decreasing

  1. Nutrient Digestibility, Rumen Fermentation Parameters, and Production Performance in Response to Dietary Grain Source and Oil Supplement of Holstein Dairy Cows

    Directory of Open Access Journals (Sweden)

    Shahryar Kargar

    2016-04-01

    composited in proportion to milk yield, preserved with potassium dichromate, stored at 4°C, and analyzed for fat, protein, lactose, and total solids using an infrared analyzer (MilkoScan 134 BN; Foss Electric, Hillerød, Denmark. At the end of each experimental period, rumen samples were obtained at 4 h after the morning feeding using the stomach tube technique. Rumen pH was determined immediately after the samples were collected using a mobile pH meter (HI 8314 membrane pH meter, Hanna Instruments, Villafranca, Italy. Rumen fluid samples were acidified by sulfuric acid and analyzed for volatile fatty acid by gas chromatography (model no. CP-9002 Vulcanusweg 259 a.m., Chrompack, Delft, the Netherlands. Two fecal grab samples per cow were taken from the rectum twice daily across day 19 to 23 of each period and frozen at −20°C until analyzed. Acid detergent insoluble ash was used as an internal marker to determine apparent total-tract nutrient digestibility. Data were composited within period and analyzed with the MIXED MODEL procedure of SAS (SAS Institute, 2003 to account for effects of square, period within square, cow within square, treatments (grain source and oil supplement, and the interaction between grain source (barley vs. corn and oil supplement (fish oil vs. soybean oil. Results and Discussion Apparent total-tract digestibility of dry matter (P = 0.05 and ether extract (P < 0.01 were greater in the corn- vs. barley-based diets. Fish oil tended (P = 0.07 to decrease and decreased (P = 0.03 apparent total-tract digestibility of non-fibrous carbohydrate and ether extract as compared to soybean oil, respectively. An interaction of main treatment effects tended to occur for molar concentration of propionate (P = 0.09. Barley-based diets increased molar concentration of propionate compared to corn-based diets for cows fed soybean oil, but not for cows fed fish oil. Dry matter intake tended (P = 0.09 to be greater for barley- vs. corn-based diets, but was reduced for

  2. Avaliação de fontes de urease na amonização de fenos de Brachiaria brizantha com dois teores de umidade Evaluation of urease sources in the ammoniation of Brachiaria brizantha hays with two moisture levels

    Directory of Open Access Journals (Sweden)

    Liandra Maria Abaker Bertipaglia

    2005-04-01

    moisture contents (15 or 30% moisture, and three urease source (Brachiaria decumbens hay, elephantgrass (Pennisetum purpureum, leucena (Leucaena leucocephala was evaluated. The crude protein (CP, soluble nitrogen fraction (A, borate phosphate true protein fractions (B1 and B2, potentially degradable protein fraction (B3, acid detergent insoluble protein (C were analyzed. The NDF, ADF, cellulose, hemicellulose and lignin contents and in vitro dry matter digestibility (IVDMD were analyzed. The experiment was conducted according to a completely randomized block design with 10 treatments (two control, 15 and 30% moisture, without urea and urease; two controls, 15 and 30% moisture, with urea and urease; six combinations of urease source and moisture levels, with three replicates. Ammoniation increased CP, and A fractions of the hays baled with different moisture contents associated to urease source; however urea application did not affect the B1, and B2 values. The B3 and C values decreased due to the urea application. The ammoniation of the high moisture hay (30%, associated or not to urease source reduced NDF. External urease source did not affect the cell wall contents of the brachiaria hay, compared to the urea treatment without external urease. Ammoniation with urea had a unconsistent effect on the ADF, and cellulose contents of the hay. The treatment did not affect the lignin content of the hay. The urea application with 15 or 30% moisture increased soluble nitrogen of Brachiaria brizantha hay and decreased the unavailable nitrogen to the ruminant.

  3. Avaliação de cinco híbridos de milho (Zea mays, L. em diferentes estádios de maturação: 3. Composição químico-bromatológica Evaluation of five corn hybrids (Zea mays, L. at different maturity stages: 3. Chemical-bromatology composition

    Directory of Open Access Journals (Sweden)

    Lúcia Maria Zeoula

    2003-06-01

    collected of corn hybrid were adopted trying to estimate phases of maturity of the plant: 30, 34, 38, 42 and 46% of dry matter (DM. For stages of maturity, proceed separation stem + sheath, lamina leaf, and grain at analysis chemicals. In fraction grain, was determinated levels total nitrogen and starch in the different maturation stages. In the fractions of leaf lamina and stem + sheath, levels the following analysis chemicals was determinated: acid detergent fiber (ADF, neuter detergent fiber (NDF, lignin, acid detergent insoluble nitrogen (ADIN and total nitrogen. All the variables presented differences between the hybrids and days after seeding (DAS. With the advance of the maturity, observed a decrease of crude protein (CP and of crude starch practicably not varied. For fraction lamina leaf, verification that, increased levels the dry matter at plant, and decreased the levels starch, CP and ADID, contrary the fraction stem + sheath, increased levels. The levels NDF, ADF and lignin the lamina leaf increased, but this nutrition at fraction stem + sheath the corn hybrid, practicably, not varied with advance the maturity of stages.

  4. Bromatological and microbiological characteristics of sugarcane silages treated with calcium oxide Características bromatológicas e microbiológicas de silagens de cana- de- açúcar tratadas com óxido de cálcio

    Directory of Open Access Journals (Sweden)

    Jucilene Cavali

    2010-07-01

    Full Text Available It was evaluated the addition of calcium oxide (0; 0.5; 1.0; 1.5; and 2.0% of dry matter effect on the chemical composition and ruminal degradability of the dry matter and neutral detergent fiber, on the losses of dry matter, and on the microbial population in sugar cane silages. A design with five levels of calcium oxide and three replications was used. All the variables were influenced by the addition of calcium oxide in the silages, except the composition in acid detergent insoluble protein, water soluble carbohydrates and lignin. The dry matter content and pH linearly increased while the contents of organic matter, hemicellulose and crude protein linearly decreased with the levels of calcium oxide. Neutral detergent fiber corrected for ashes and protein and acid detergent fiber were adjusted for the quadratic models with calculated minimal values of 33.3 and 22.5% for the levels 1.73 and 1.49% of calcium oxide, respectively. The in vitro digestibility of the dry matter and the content of amoniacal nitrogen adjusted to quadratic models with maximal levels of 80.1% and 9.1% for the levels of 1.8 and 0.7% of calcium oxide, respectively. The minimal production of gas (3.18% was observed at the level of 1.39% of calcium oxide. Production of effluent and recovery of dry matter of the ensiled mass showed a reduction and a linear increase, respectively, with addition of calcium oxide. The highest lactic acid bacterial population was observed in the silage treated with 1.5% of calcium oxide. The addition of calcium oxide increased degradability of the soluble fraction of the dry matter, which was higher than 50% and reduced the non- degradable fraction of the neutral detergent fiber. Addition of calcium oxide level higher than 1.0% in the sugar cane during ensilage improves in vitro dry matter digestibility and the recovery of dry matter, increases populations of lactic acid bacteria and reduces production of yeasts.Avaliou- se o efeito da adi

  5. Composição químico-bromatológica da silagem de capim-elefante com níveis de casca de café Chemical composition of elephant grass silages as affected by coffee hulls addition levels

    Directory of Open Access Journals (Sweden)

    Dawson José Guimarães Faria

    2007-04-01

    coffee hulls, (0; 6; 12; 18 and 24%; fresh matter basis on the chemical-bromatological composition, fermentation characteristic and in vitro DM digestibility (IVDMD of the elephantgrass silages. The variables were analyzed as a 2 x 5 factorial arrangement (processing and level of inclusion, distributed in a complete randomized experimental design with three replications. Processing and level of inclusion increased DM concentration and did not influence the crude protein concentration of silages. Linear effect of the inclusions level on NDF and ADF was observed, with decrease of NDF and increase of ADF. Processing and level of inclusions influenced the lignin concentration. Quadratic effect of inclusions level was observed for neutral and acid detergent insoluble nitrogen concentration. There was an interaction between processing and level of inclusions on pH. A quadratic effect of the inclusion level on the two processing forms was observed. Linear reduction of the ammoniacal nitrogen was observed with the level of inclusion, with higher values for ground hulls. For IVDMD, a quadratic effect was observed as a function of the inclusion level, with IVDMD of whole hulls being lower compared to the ground hulls. The coffee hull was efficient as an additive to reduce humidity of the silages. Coffee hull addition did not improve silage bromatological characteristics but it did improve fermentative characteristics. Thus, inclusion of the coffe hull could be adapted until the level of 12%, whole or ground.

  6. Prediction of the Composition of Fresh Pastures by Near Infrared Reflectance or Interactance-Reflectance Spectroscopy Predicción de la composición de pradera fresca mediante espectroscopía de reflectancia o interactancia-reflectancia en el infrarrojo cercano

    Directory of Open Access Journals (Sweden)

    Daniel Alomar

    2009-06-01

    Full Text Available Fast and precise analytical tools can contribute to optimize pasture management decisions. This work was carried out to evaluate the potential of one such technique, near infrared spectroscopy (NIRS, to predict the nutritional value of pastures without previous drying of the samples, comparing two forms of collecting the spectra: reflectance, or interactance-reflectance (fiber optic probe. Samples (n = 107 from different swards were taken across the humid and temperate regions (Los Ríos and Los Lagos of southern Chile. Once their spectra were collected, dry matter (DM and several chemical constituents, such as crude protein (CP, metabolizable energy (ME, neutral (NDF and acid detergent fiber (ADF, soluble carbohydrates (SC, soluble crude protein (SCP and neutral detergent insoluble N (NDFIN, were determined as reference data. Calibrations were developed and the best ranked were selected (by cross-validation according to a lower standard error of cross validation (SE CV and a higher determination coefficient of cross validation (R²CV. Calibrations in the reflectance mode, for DM and CP, reached a high R²CV (0.99 and 0.91, respectively and a SE CV (6.5 and 18.4 g kg-1. Equations for ADF, SCP and ME were ranked next, with R²CV of 0.87, 0.84 and 0.82, respectively, and SE CV of 15.88 g kg-1, 15.45 g kg-1 and 0.34 Mj kg-1. Equations for NDF, SC and NDFIN, with R²CV of 0.78, 0.77 and 0.61, respectively, and SE CV of 35.57, 94.54 and 1.89 g kg-1, respectively, are considered unreliable for prediction purposes. Interactance-reflectance, on the other hand, resulted in poorer equations for all fractions.Disponer de técnicas bromatológicas rápidas y precisas ayudaría a optimizar decisiones en el manejo de praderas. En este trabajo se evaluó el potencial de una de tales técnicas, la espectroscopía de reflectancia en el infrarrojo cercano (NIRS para predecir el valor nutricional de praderas al estado fresco y comparar dos formas de colectar los

  7. Diffusion mediated coagulation and fragmentation based study of domain formation in lipid bilayer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Laxminarsimha V., E-mail: laxman@iitk.ac.in [Mechanics and Applied Mathematics Group, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Roy, Subhradeep [Department of Biomedical Engineering and Mechanics (MC 0219), Virginia Tech, 495 Old Turner Street, Blacksburg, VA 24061 (United States); Das, Sovan Lal [Mechanics and Applied Mathematics Group, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2017-01-15

    We estimate the equilibrium size distribution of cholesterol rich micro-domains on a lipid bilayer by solving Smoluchowski equation for coagulation and fragmentation. Towards this aim, we first derive the coagulation kernels based on the diffusion behaviour of domains moving in a two dimensional membrane sheet, as this represents the reality better. We incorporate three different diffusion scenarios of domain diffusion into our coagulation kernel. Subsequently, we investigate the influence of the parameters in our model on the coagulation and fragmentation behaviour. The observed behaviours of the coagulation and fragmentation kernels are also manifested in the equilibrium domain size distribution and its first moment. Finally, considering the liquid domains diffusing in a supported lipid bilayer, we fit the equilibrium domain size distribution to a benchmark solution.

  8. Calcium/calmodulin-dependent kinase II and nitric oxide synthase 1-dependent modulation of ryanodine receptors during β-adrenergic stimulation is restricted to the dyadic cleft.

    Science.gov (United States)

    Dries, Eef; Santiago, Demetrio J; Johnson, Daniel M; Gilbert, Guillaume; Holemans, Patricia; Korte, Sanne M; Roderick, H Llewelyn; Sipido, Karin R

    2016-10-15

    The dyadic cleft, where coupled ryanodine receptors (RyRs) reside, is thought to serve as a microdomain for local signalling, as supported by distinct modulation of coupled RyRs dependent on Ca 2+ /calmodulin-dependent kinase II (CaMKII) activation during high-frequency stimulation. Sympathetic stimulation through β-adrenergic receptors activates an integrated signalling cascade, enhancing Ca 2+ cycling and is at least partially mediated through CaMKII. Here we report that CaMKII activation during β-adrenergic signalling is restricted to the dyadic cleft, where it enhances activity of coupled RyRs thereby contributing to the increase in diastolic events. Nitric oxide synthase 1 equally participates in the local modulation of coupled RyRs. In contrast, the increase in the Ca 2+ content of the sarcoplasmic reticulum and related increase in the amplitude of the Ca 2+ transient are primarily protein kinase A-dependent. The present data extend the concept of microdomain signalling in the dyadic cleft and give perspectives for selective modulation of RyR subpopulations and diastolic events. In cardiac myocytes, β-adrenergic stimulation enhances Ca 2+ cycling through an integrated signalling cascade modulating L-type Ca 2+ channels (LTCCs), phospholamban and ryanodine receptors (RyRs). Ca 2+ /calmodulin-dependent kinase II (CaMKII) and nitric oxide synthase 1 (NOS1) are proposed as prime mediators for increasing RyR open probability. We investigate whether this pathway is confined to the high Ca 2+ microdomain of the dyadic cleft and thus to coupled RyRs. Pig ventricular myocytes are studied under whole-cell voltage-clamp and confocal line-scan imaging with Fluo-4 as a [Ca 2+ ] i indicator. Following conditioning depolarizing pulses, spontaneous RyR activity is recorded as Ca 2+ sparks, which are assigned to coupled and non-coupled RyR clusters. Isoproterenol (ISO) (10 nm) increases Ca 2+ spark frequency in both populations of RyRs. However, CaMKII inhibition reduces

  9. Intradomain Textures in Block Copolymers: Multizone Alignment and Biaxiality

    Science.gov (United States)

    Prasad, Ishan; Seo, Youngmi; Hall, Lisa M.; Grason, Gregory M.

    2017-06-01

    Block copolymer (BCP) melt assembly has been studied for decades, focusing largely on self-organized spatial patterns of periodically ordered segment density. Here, we demonstrate that underlying the well-known composition profiles (i.e., ordered lamella, cylinders, spheres, and networks) are generic and heterogeneous patterns of segment orientation that couple strongly to morphology, even in the absence of specific factors that promote intra or interchain segment alignment. We employ both self-consistent field theory and coarse-grained simulation methods to measure polar and nematic order parameters of segments in a freely jointed chain model of diblock melts. We show that BCP morphologies have a multizone texture, with segments predominantly aligned normal and parallel to interdomain interfaces in the respective brush and interfacial regions of the microdomain. Further, morphologies with anisotropically curved interfaces (i.e., cylinders and networks) exhibit biaxial order that is aligned to the principal curvature axes of the interface.

  10. Blood Groups in Infection and Host Susceptibility.

    Science.gov (United States)

    Cooling, Laura

    2015-07-01

    Blood group antigens represent polymorphic traits inherited among individuals and populations. At present, there are 34 recognized human blood groups and hundreds of individual blood group antigens and alleles. Differences in blood group antigen expression can increase or decrease host susceptibility to many infections. Blood groups can play a direct role in infection by serving as receptors and/or coreceptors for microorganisms, parasites, and viruses. In addition, many blood group antigens facilitate intracellular uptake, signal transduction, or adhesion through the organization of membrane microdomains. Several blood groups can modify the innate immune response to infection. Several distinct phenotypes associated with increased host resistance to malaria are overrepresented in populations living in areas where malaria is endemic, as a result of evolutionary pressures. Microorganisms can also stimulate antibodies against blood group antigens, including ABO, T, and Kell. Finally, there is a symbiotic relationship between blood group expression and maturation of the gastrointestinal microbiome. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. The Role of Sphingolipids on Innate Immunity to Intestinal Salmonella Infection.

    Science.gov (United States)

    Huang, Fu-Chen

    2017-08-07

    Salmonella spp. remains a major public health problem for the whole world. To reduce the use of antimicrobial agents and drug-resistant Salmonella , a better strategy is to explore alternative therapy rather than to discover another antibiotic. Sphingolipid- and cholesterol-enriched lipid microdomains attract signaling proteins and orchestrate them toward cell signaling and membrane trafficking pathways. Recent studies have highlighted the crucial role of sphingolipids in the innate immunity against infecting pathogens. It is therefore mandatory to exploit the role of the membrane sphingolipids in the innate immunity of intestinal epithelia infected by this pathogen. In the present review, we focus on the role of sphingolipids in the innate immunity of intestinal epithelia against Salmonella infection, including adhesion, autophagy, bactericidal effect, barrier function, membrane trafficking, cytokine and antimicrobial peptide expression. The intervention of sphingolipid-enhanced foods to make our life healthy or pharmacological agents regulating sphingolipids is provided at the end.

  12. Dendritic protein synthesis in the normal and diseased brain

    Science.gov (United States)

    Swanger, Sharon A.; Bassell, Gary J.

    2015-01-01

    Synaptic activity is a spatially-limited process that requires a precise, yet dynamic, complement of proteins within the synaptic micro-domain. The maintenance and regulation of these synaptic proteins is regulated, in part, by local mRNA translation in dendrites. Protein synthesis within the postsynaptic compartment allows neurons tight spatial and temporal control of synaptic protein expression, which is critical for proper functioning of synapses and neural circuits. In this review, we discuss the identity of proteins synthesized within dendrites, the receptor-mediated mechanisms regulating their synthesis, and the possible roles for these locally synthesized proteins. We also explore how our current understanding of dendritic protein synthesis in the hippocampus can be applied to new brain regions and to understanding the pathological mechanisms underlying varied neurological diseases. PMID:23262237

  13. Self-Assembly of Narrowly Dispersed Brush Diblock Copolymers with Domain Spacing more than 100 nm

    Science.gov (United States)

    Gu, Weiyin; Sveinbjornsson, Benjamin; Hong, Sung Woo; Grubbs, Robert; Russell, Thomas

    2012-02-01

    Self-assembled structures of high molecular weight (MW), narrow molecular weight distribution brush block copolymers containing polylactic acid (PLA) and polystyrene (PS) side chains with similar MWs were studied in both the melt and thin films. The polynorbornene-backbone-based brush diblock copolymers containing approximately equal volume fractions of each block self-assembled into highly ordered lamellae with domain spacing over 100 nm, as revealed by SAXS, GISAXS and AFM. The domain size increased approximately linearly with backbone length, which indicated an extended conformation of the backbone in the ordered state. The length of side chains also played a significant role in terms of controlling the domain size. As the degree of polymerization (DP) increased, the symmetric brush diblock copolymers with longer side chains tended to form larger lamellar microdomains in comparison to those that have the same DP but shorter side chains.

  14. Lipid Bilayer Composition Affects Transmembrane Protein Orientation and Function

    Directory of Open Access Journals (Sweden)

    Katie D. Hickey

    2011-01-01

    Full Text Available Sperm membranes change in structure and composition upon ejaculation to undergo capacitation, a molecular transformation which enables spermatozoa to undergo the acrosome reaction and be capable of fertilization. Changes to the membrane environment including lipid composition, specifically lipid microdomains, may be responsible for enabling capacitation. To study the effect of lipid environment on proteins, liposomes were created using lipids extracted from bull sperm membranes, with or without a protein (Na+ K+-ATPase or -amylase. Protein incorporation, function, and orientation were determined. Fluorescence resonance energy transfer (FRET confirmed protein inclusion in the lipid bilayer, and protein function was confirmed using a colourometric assay of phosphate production from ATP cleavage. In the native lipid liposomes, ATPase was oriented with the subunit facing the outer leaflet, while changing the lipid composition to 50% native lipids and 50% exogenous lipids significantly altered this orientation of Na+ K+-ATPase within the membranes.

  15. Protein subcellular localization assays using split fluorescent proteins

    Science.gov (United States)

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2009-09-08

    The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).

  16. Spatially restricted actin-regulatory signaling contributes to synapse morphology

    Science.gov (United States)

    Nicholson, Daniel A.; Cahill, Michael E.; Tulisiak, Christopher T.; Geinisman, Yuri; Penzes, Peter

    2012-01-01

    The actin cytoskeleton in dendritic spines is organized into microdomains, but how signaling molecules that regulate actin are spatially governed is incompletely understood. Here we examine how the localization of the RacGEF kalirin-7, a well-characterized regulator of actin in spines, varies as a function of postsynaptic density (PSD) area and spine volume. Using serial section electron microscopy (EM), we find that extrasynaptic, but not synaptic, expression of kalirin-7 varies directly with synapse size and spine volume. Moreover, we find that overall expression levels of kalirin-7 differ in spines bearing perforated and non-perforated synapses, due primarily to extrasynaptic pools of kalirin-7 expression in the former. Overall, our findings indicate that kalirin-7 is differentially compartmentalized in spines as a function of both synapse morphology and spine size. PMID:22458534

  17. Cell-geometry-dependent changes in plasma membrane order direct stem cell signalling and fate

    Science.gov (United States)

    von Erlach, Thomas C.; Bertazzo, Sergio; Wozniak, Michele A.; Horejs, Christine-Maria; Maynard, Stephanie A.; Attwood, Simon; Robinson, Benjamin K.; Autefage, Hélène; Kallepitis, Charalambos; del Río Hernández, Armando; Chen, Christopher S.; Goldoni, Silvia; Stevens, Molly M.

    2018-03-01

    Cell size and shape affect cellular processes such as cell survival, growth and differentiation1-4, thus establishing cell geometry as a fundamental regulator of cell physiology. The contributions of the cytoskeleton, specifically actomyosin tension, to these effects have been described, but the exact biophysical mechanisms that translate changes in cell geometry to changes in cell behaviour remain mostly unresolved. Using a variety of innovative materials techniques, we demonstrate that the nanostructure and lipid assembly within the cell plasma membrane are regulated by cell geometry in a ligand-independent manner. These biophysical changes trigger signalling events involving the serine/threonine kinase Akt/protein kinase B (PKB) that direct cell-geometry-dependent mesenchymal stem cell differentiation. Our study defines a central regulatory role by plasma membrane ordered lipid raft microdomains in modulating stem cell differentiation with potential translational applications.

  18. Electrochemical Hydrogen Storage in a Highly Ordered Mesoporous Carbon

    Directory of Open Access Journals (Sweden)

    Dan eLiu

    2014-10-01

    Full Text Available A highly order mesoporous carbon has been synthesized through a strongly acidic, aqueous cooperative assembly route. The structure and morphology of the carbon material were investigated using TEM, SEM and nitrogen adsorption-desorption isotherms. The carbon was proven to be meso-structural and consisted of graphitic micro-domain with larger interlayer space. AC impedance and electrochemical measurements reveal that the synthesized highly ordered mesoporous carbon exhibits a promoted electrochemical hydrogen insertion process and improved capacitance and hydrogen storage stability. The meso-structure and enlarged interlayer distance within the highly ordered mesoporous carbon are suggested as possible causes for the enhancement in hydrogen storage. Both hydrogen capacity in the carbon and mass diffusion within the matrix were improved.

  19. Lipids in the cell: organisation regulates function.

    Science.gov (United States)

    Santos, Ana L; Preta, Giulio

    2018-06-01

    Lipids are fundamental building blocks of all cells and play important roles in the pathogenesis of different diseases, including inflammation, autoimmune disease, cancer, and neurodegeneration. The lipid composition of different organelles can vary substantially from cell to cell, but increasing evidence demonstrates that lipids become organised specifically in each compartment, and this organisation is essential for regulating cell function. For example, lipid microdomains in the plasma membrane, known as lipid rafts, are platforms for concentrating protein receptors and can influence intra-cellular signalling. Lipid organisation is tightly regulated and can be observed across different model organisms, including bacteria, yeast, Drosophila, and Caenorhabditis elegans, suggesting that lipid organisation is evolutionarily conserved. In this review, we summarise the importance and function of specific lipid domains in main cellular organelles and discuss recent advances that investigate how these specific and highly regulated structures contribute to diverse biological processes.

  20. The Tetraspanin CD151 in Papillomavirus Infection

    Directory of Open Access Journals (Sweden)

    Konstanze D. Scheffer

    2014-02-01

    Full Text Available Human papillomaviruses (HPV are non-enveloped DNA tumor viruses that infect skin and mucosa. The most oncogenic subtype, HPV16, causes various types of cancer, including cervical, anal, and head and neck cancers. During the multistep process of infection, numerous host proteins are required for the delivery of virus genetic information into the nucleus of target cells. Over the last two decades, many host-cell proteins such as heparan sulfate proteoglycans, integrins, growth factor receptors, actin and the tetraspanin CD151 have been described to be involved in the process of infectious entry of HPV16. Tetraspanins have the ability to organize membrane microdomains and to directly influence the function of associated molecules, including binding of receptors to their ligands, receptor oligomerization and signal transduction. Here, we summarize the current knowledge on CD151, and CD151-associated partners during HPV infection and discuss the underlying mechanisms.

  1. Blood Groups in Infection and Host Susceptibility

    Science.gov (United States)

    2015-01-01

    SUMMARY Blood group antigens represent polymorphic traits inherited among individuals and populations. At present, there are 34 recognized human blood groups and hundreds of individual blood group antigens and alleles. Differences in blood group antigen expression can increase or decrease host susceptibility to many infections. Blood groups can play a direct role in infection by serving as receptors and/or coreceptors for microorganisms, parasites, and viruses. In addition, many blood group antigens facilitate intracellular uptake, signal transduction, or adhesion through the organization of membrane microdomains. Several blood groups can modify the innate immune response to infection. Several distinct phenotypes associated with increased host resistance to malaria are overrepresented in populations living in areas where malaria is endemic, as a result of evolutionary pressures. Microorganisms can also stimulate antibodies against blood group antigens, including ABO, T, and Kell. Finally, there is a symbiotic relationship between blood group expression and maturation of the gastrointestinal microbiome. PMID:26085552

  2. Lipid rafts and B cell signaling.

    Science.gov (United States)

    Gupta, Neetu; DeFranco, Anthony L

    2007-10-01

    B cells comprise an essential component of the humoral immune system. They are equipped with the unique ability to synthesize and secrete pathogen-neutralizing antibodies, and share with professional antigen presenting cells the ability to internalize foreign antigens, and process them for presentation to helper T cells. Recent evidence indicates that specialized cholesterol- and glycosphingolipid-rich microdomains in the plasma membrane commonly referred to as lipid rafts, serve to compartmentalize key signaling molecules during the different stages of B cell activation including B cell antigen receptor (BCR)-initiated signal transduction, endocytosis of BCR-antigen complexes, loading of antigenic peptides onto MHC class II molecules, MHC-II associated antigen presentation to helper T cells, and receipt of helper signals via the CD40 receptor. Here we review the recent literature arguing for a role of lipid rafts in the spatial organization of B cell function.

  3. Tailoring uniform gold nanoparticle arrays and nanoporous films for next-generation optoelectronic devices

    Science.gov (United States)

    Farid, Sidra; Kuljic, Rade; Poduri, Shripriya; Dutta, Mitra; Darling, Seth B.

    2018-06-01

    High-density arrays of gold nanodots and nanoholes on indium tin oxide (ITO)-coated glass surfaces are fabricated using a nanoporous template fabricated by the self-assembly of diblock copolymers of poly (styrene-block-methyl methacrylate) (PS-b-PMMA) structures. By balancing the interfacial interactions between the polymer blocks and the substrate using random copolymer, cylindrical block copolymer microdomains oriented perpendicular to the plane of the substrate have been obtained. Nanoporous PS films are created by selectively etching PMMA cylinders, a straightforward route to form highly ordered nanoscale porous films. Deposition of gold on the template followed by lift off and sonication leaves a highly dense array of gold nanodots. These materials can serve as templates for the vapor-liquid-solid (VLS) growth of semiconductor nanorod arrays for next generation hybrid optoelectronic applications.

  4. Data for identification of GPI-anchored peptides and ω-sites in cancer cell lines

    Directory of Open Access Journals (Sweden)

    Yusuke Masuishi

    2016-06-01

    Full Text Available We present data obtained using a focused proteomics approach to identify the glycosylphosphatidylinositol (GPI-anchored peptides in 19 human cancer cell lines. GPI-anchored proteins (GPI-APs, which localize to the outer leaflet of the membrane microdomains commonly referred to as lipid rafts play important roles in diverse biological processes. Due to the complex structure of the GPI-anchor moiety, it has been difficult to identify GPI-anchored peptide sequences on the proteomic scale by database searches using tools such as MASCOT. Here we provide data from 73 ω-sites derived from 49 GPI-APs in 19 human cancer cell lines. This article contains data related to the research article entitled “Identification of glycosylphosphatidylinositol-anchored proteins and ω-sites using TiO2-based affinity purification followed by hydrogen fluoride treatment” (Masuishi et al., 2016 [1].

  5. A composite approach boosts transduction coefficients of piezoceramics for energy harvesting

    Science.gov (United States)

    Yu, Xiaole; Hou, Yudong; Zheng, Mupeng; Zhao, Haiyan; Zhu, Mankang

    2018-03-01

    Piezoelectric energy harvesting is a hotspot in the field of new energy, the core goal of which is to prepare piezoceramics with a high transduction coefficient (d33×g33). The traditional solid-solution design strategy usually causes the same variation trend of d33 and ɛr, resulting in a low d33×g33 value. In this work, a composite design strategy was proposed that uses PZN-PZT/ZnAl2O4 as an example. By introducing ZnAl2O4, which is nonferroelectric with low ɛr, to the PZN-PZT piezoelectric matrix, ɛr decreased rapidly while d33 remained relatively stable. This behavior was ascribed to the increase of Q33 caused by an interfacial effect facilitating the formation of micro-domain structure.

  6. A composite approach boosts transduction coefficients of piezoceramics for energy harvesting

    Directory of Open Access Journals (Sweden)

    Xiaole Yu

    2018-03-01

    Full Text Available Piezoelectric energy harvesting is a hotspot in the field of new energy, the core goal of which is to prepare piezoceramics with a high transduction coefficient (d33×g33. The traditional solid–solution design strategy usually causes the same variation trend of d33 and εr, resulting in a low d33×g33 value. In this work, a composite design strategy was proposed that uses PZN–PZT/ZnAl2O4 as an example. By introducing ZnAl2O4, which is nonferroelectric with low εr, to the PZN–PZT piezoelectric matrix, εr decreased rapidly while d33 remained relatively stable. This behavior was ascribed to the increase of Q33 caused by an interfacial effect facilitating the formation of micro-domain structure.

  7. New insights on glucosylated lipids: metabolism and functions.

    Science.gov (United States)

    Ishibashi, Yohei; Kohyama-Koganeya, Ayako; Hirabayashi, Yoshio

    2013-09-01

    Ceramide, cholesterol, and phosphatidic acid are major basic structures for cell membrane lipids. These lipids are modified with glucose to generate glucosylceramide (GlcCer), cholesterylglucoside (ChlGlc), and phosphatidylglucoside (PtdGlc), respectively. Glucosylation dramatically changes the functional properties of lipids. For instance, ceramide acts as a strong tumor suppressor that causes apoptosis and cell cycle arrest, while GlcCer has an opposite effect, downregulating ceramide activities. All glucosylated lipids are enriched in lipid rafts or microdomains and play fundamental roles in a variety of cellular processes. In this review, we discuss the biological functions and metabolism of these three glucosylated lipids. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Restructuring in block copolymer thin films

    DEFF Research Database (Denmark)

    Posselt, Dorthe; Zhang, Jianqi; Smilgies, Detlef-M.

    2017-01-01

    Block copolymer (BCP) thin films have been proposed for a number of nanotechnology applications, such as nanolithography and as nanotemplates, nanoporous membranes and sensors. Solvent vapor annealing (SVA) has emerged as a powerful technique for manipulating and controlling the structure of BCP...... thin films, e.g., by healing defects, by altering the orientation of the microdomains and by changing the morphology. Due to high time resolution and compatibility with SVA environments, grazing-incidence small-angle X-ray scattering (GISAXS) is an indispensable technique for studying the SVA process......, providing information of the BCP thin film structure both laterally and along the film normal. Especially, state-of-the-art combined GISAXS/SVA setups at synchrotron sources have facilitated in situ and real-time studies of the SVA process with a time resolution of a few seconds, giving important insight...

  9. A novel ferrimagnetic irido-cuprate: IrSr2GdCu2O8

    International Nuclear Information System (INIS)

    Dos Santos-Garcia, A.J.; Aguirre, Myriam H.; Moran, E.; Saez Puche, R.; Alario-Franco, M.A.

    2006-01-01

    We have performed an investigation of the structural, microstructural and magnetic properties of the new compound IrSr 2 GdCu 2 O 8 . The sample was prepared under high temperature (∼1393K) and high-pressure conditions (∼60Kbars) in a Belt type apparatus. X-ray diffraction (XRD) analysis shows that this irido-cuprate is isostructural with the corresponding Ru-1212 phase. Structurally, this material shows an interesting hierarchy of ordering phenomena, whose observation actually depends on the technique used to analyze the material: from a 'simple' cell a p xa p x3a p which is supported by XRD, through a 'diagonal' one, ∼2a p x2a p x3a p as seen by SAED, to a microdomain texture of this last one cell supported by HREM. A ferrimagnetic Ir IV -Gd III spin ordering is observed below 15K. The iridium oxidation state seems to be +4

  10. Cholesterol depletion of enterocytes. Effect on the Golgi complex and apical membrane trafficking

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Niels-Christiansen, L L; Thorsen, Evy

    2000-01-01

    Intestinal brush border enzymes, including aminopeptidase N and sucrase-isomaltase, are associated with "rafts" (membrane microdomains rich in cholesterol and sphingoglycolipids). To assess the functional role of rafts in the present work, we studied the effect of cholesterol depletion on apical......, the rates of the Golgi-associated complex glycosylation and association with rafts of newly synthesized aminopeptidase N were reduced, and less of the enzyme had reached the brush border membrane after 2 h of labeling. In contrast, the basolateral Na(+)/K(+)-ATPase was neither missorted nor raft......-associated. Our results implicate the Golgi complex/trans-Golgi network in raft formation and suggest a close relationship between this event and apical membrane trafficking....

  11. The Lipid Raft Proteome of African Trypanosomes Contains Many Flagellar Proteins.

    Science.gov (United States)

    Sharma, Aabha I; Olson, Cheryl L; Engman, David M

    2017-08-24

    Lipid rafts are liquid-ordered membrane microdomains that form by preferential association of 3-β-hydroxysterols, sphingolipids and raft-associated proteins often having acyl modifications. We isolated lipid rafts of the protozoan parasite Trypanosoma brucei and determined the protein composition of lipid rafts in the cell. This analysis revealed a striking enrichment of flagellar proteins and several putative signaling proteins in the lipid raft proteome. Calpains and intraflagellar transport proteins, in particular, were found to be abundant in the lipid raft proteome. These findings provide additional evidence supporting the notion that the eukaryotic cilium/flagellum is a lipid raft-enriched specialized structure with high concentrations of sterols, sphingolipids and palmitoylated proteins involved in environmental sensing and cell signaling.

  12. Renewable Pentablock Copolymers Containing Bulky Natural Rosin for Tough Bioplastics

    Science.gov (United States)

    Rahman, Md Anisur; Ganewatta, Mitra S.; Lokupitiya, Hasala N.; Liang, Yuan; Stefik, Morgan; Tang, Chuanbing

    Renewable polymers have received significant attention due to environmental concerns on petrochemical counterparts. One of the most abundant natural biomass is resin acids. However, most polymers derived from resin acids are low molecular weight and brittle because of the high chain entanglement molecular weight resulted from the bulky hydrophenanthrene pendant group. It is well established that the brittleness can be overcome by synthesizing multi-block copolymers with low entanglement molecular weight components. We investigated the effects of chain architecture and microdomain orientation on mechanical properties of both tri and pentablock copolymers. We synthesized rosin-containing A-B-A-B-A type pentablock and A-B-A type triblock copolymers to improve their mechanical properties. Pentablock copolymers showed higher strength and better toughness as compared to triblock copolymers, both superior to homopolymers. The greater toughness of pentablock copolymers is due to the presence of the rosin based midblock chains that act as bridging chains between two polynorbornene blocks.

  13. Structural analysis of nanocomposites based on HDPE/EPDM blends.

    Science.gov (United States)

    Zitzumbo, Roberto; Alonso, Sergio; Avalos, Felipe; Ortiz, José C; López-Manchado, Miguel A; Arroyo, Miguel

    2006-02-01

    Intercalated and exfoliated nanocomposites based on HDPE and EPDM blends with an organoclay have been obtained through the addition of EPDM-g-MA as a compatibilizer. The combined effect of clay and EPDM-g-MA on the rheological behaviour is very noticeable with a sensible increase in viscosity which suggests the formation of a structural net of percolation induced by the presence of intercalated and exfoliated silicate layer. As deduced from rheological studies, a morphology based on nanostructured micro-domains dispersed in HDPE continuous phase is proposed for EPDM/HDPE blend nanocomposites. XRD and SEM analysis suggest that two different transport phenomena take simultaneously place during the intercalation process in the melt. One due to diffusion of HDPE chains into the tactoid and the other to diffusion of EPDM-g-MA into the silicate galleries.

  14. Role of amphipathic helix of a herpesviral protein in membrane deformation and T cell receptor downregulation.

    Directory of Open Access Journals (Sweden)

    Chan-Ki Min

    2008-11-01

    Full Text Available Lipid rafts are membrane microdomains that function as platforms for signal transduction and membrane trafficking. Tyrosine kinase interacting protein (Tip of T lymphotropic Herpesvirus saimiri (HVS is targeted to lipid rafts in T cells and downregulates TCR and CD4 surface expression. Here, we report that the membrane-proximal amphipathic helix preceding Tip's transmembrane (TM domain mediates lipid raft localization and membrane deformation. In turn, this motif directs Tip's lysosomal trafficking and selective TCR downregulation. The amphipathic helix binds to the negatively charged lipids and induces liposome tubulation, the TM domain mediates oligomerization, and cooperation of the membrane-proximal helix with the TM domain is sufficient for localization to lipid rafts and lysosomal compartments, especially the mutivesicular bodies. These findings suggest that the membrane-proximal amphipathic helix and TM domain provide HVS Tip with the unique ability to deform the cellular membranes in lipid rafts and to downregulate TCRs potentially through MVB formation.

  15. Regulation of AMPA receptor localization in lipid rafts

    Science.gov (United States)

    Hou, Qingming; Huang, Yunfei; Amato, Stephen; Snyder, Solomon H.; Huganir, Richard L.; Man, Heng-Ye

    2009-01-01

    Lipid rafts are special microdomains enriched in cholesterol, sphingolipids and certain proteins, and play important roles in a variety of cellular functions including signal transduction and protein trafficking. We report that in cultured cortical and hippocampal neurons the distribution of lipid rafts is development-dependent. Lipid rafts in mature neurons exist on the entire cell-surface and display a high degree of mobility. AMPA receptors co-localize and associate with lipid rafts in the plasma membrane. The association of AMPARs with rafts is under regulation; through the NOS–NO pathway, NMDA receptor activity increases AMPAR localization in rafts. During membrane targeting, AMPARs insert into or at close proximity of the surface raft domains. Perturbation of lipid rafts dramatically suppresses AMPA receptor exocytosis, resulting in significant reduction in AMPAR cell-surface expression. PMID:18411055

  16. Full color stop bands in hybrid organic/inorganic block copolymer photonic gels by swelling-freezing.

    Science.gov (United States)

    Kang, Changjoon; Kim, Eunjoo; Baek, Heeyoel; Hwang, Kyosung; Kwak, Dongwoo; Kang, Youngjong; Thomas, Edwin L

    2009-06-10

    We report a facile way of fabricating hybrid organic/inorganic photonic gels by selective swelling and subsequent infiltration of SiO(2) into one type of lamellar microdomain previously self-assembled from modest-molecular-weight block copolymers. Transparent, in-plane lamellar films were first prepared by assembly of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP), and subsequently the P2VP domains were swollen with a selective solvent, methanol. The swollen structures were then fixated by synthesizing SiO(2) nanoparticles within P2VP domains. The resulting frozen photonic gels (f-photonic gels) exhibited strong reflective colors with stop bands across the visible region of wavelengths.

  17. Fabrication of Ordered Nanopattern by using ABC Triblock Copolymer with Salt in Toluene.

    Science.gov (United States)

    Huang, Hailiang; Zhong, Benbin; Zu, Xihong; Luo, Hongsheng; Lin, Wenjing; Zhang, Minghai; Zhong, Yazhou; Yi, Guobin

    2017-08-15

    Ordered nanopatterns of triblock copolymer polystyrene-block-poly(2-vinylpyridine)-block- poly (ethylene oxide)(PS-b-P2VP-b-PEO) have been achieved by the addition of lithium chloride (LiCl). The morphological and structural evolution of PS-b-P2VP-b-PEO/LiCl thin films were systematically investigated by varying different experimental parameters, including the treatment for polymer solution after the addition of LiCl, the time scale of ultrasonic treatment and the molar ratio of Li + ions to the total number of oxygen atoms (O) in PEO block and the nitrogen atoms (N) in P2VP block. When toluene was used as the solvent for LiCl, ordered nanopattern with cylinders or nanostripes could be obtained after spin-coating. The mechanism of nanopattern transformation was related to the loading of LiCl in different microdomains.

  18. Protein diffusion in plant cell plasma membranes: The cell-wall corral

    Directory of Open Access Journals (Sweden)

    Alexandre eMartinière

    2013-12-01

    Full Text Available Studying protein diffusion informs us about how proteins interact with their environment. Work on protein diffusion over the last several decades has illustrated the complex nature of biological lipid bilayers. The plasma membrane contains an array of membrane-spanning proteins or proteins with peripheral membrane associations. Maintenance of plasma membrane microstructure can be via physical features that provide intrinsic ordering such as lipid microdomains, or from membrane-associated structures such as the cytoskeleton. Recent evidence indicates, that in the case of plant cells, the cell wall seems to be a major player in maintaining plasma membrane microstructure. This interconnection / interaction between cell-wall and plasma membrane proteins most likely plays an important role in signal transduction, cell growth, and cell physiological responses to the environment.

  19. Protein diffusion in plant cell plasma membranes: the cell-wall corral.

    Science.gov (United States)

    Martinière, Alexandre; Runions, John

    2013-01-01

    Studying protein diffusion informs us about how proteins interact with their environment. Work on protein diffusion over the last several decades has illustrated the complex nature of biological lipid bilayers. The plasma membrane contains an array of membrane-spanning proteins or proteins with peripheral membrane associations. Maintenance of plasma membrane microstructure can be via physical features that provide intrinsic ordering such as lipid microdomains, or from membrane-associated structures such as the cytoskeleton. Recent evidence indicates, that in the case of plant cells, the cell wall seems to be a major player in maintaining plasma membrane microstructure. This interconnection / interaction between cell-wall and plasma membrane proteins most likely plays an important role in signal transduction, cell growth, and cell physiological responses to the environment.

  20. Inositol trisphosphate receptor mediated spatiotemporal calcium signalling.

    Science.gov (United States)

    Miyazaki, S

    1995-04-01

    Spatiotemporal Ca2+ signalling in the cytoplasm is currently understood as an excitation phenomenon by analogy with electrical excitation in the plasma membrane. In many cell types, Ca2+ waves and Ca2+ oscillations are mediated by inositol 1,4,5-trisphosphate (IP3) receptor/Ca2+ channels in the endoplasmic reticulum membrane, with positive feedback between cytosolic Ca2+ and IP3-induced Ca2+ release creating a regenerative process. Remarkable advances have been made in the past year in the analysis of subcellular Ca2+ microdomains using confocal microscopy and of Ca2+ influx pathways that are functionally coupled to IP3-induced Ca2+ release. Ca2+ signals can be conveyed into the nucleus and mitochondria. Ca2+ entry from outside the cell allows repetitive Ca2+ release by providing Ca2+ to refill the endoplasmic reticulum stores, thus giving rise to frequency-encoded Ca2+ signals.

  1. Recent Insights into Clostridium perfringens Beta-Toxin

    Directory of Open Access Journals (Sweden)

    Masahiro Nagahama

    2015-02-01

    Full Text Available Clostridium perfringens beta-toxin is a key mediator of necrotizing enterocolitis and enterotoxemia. It is a pore-forming toxin (PFT that exerts cytotoxic effect. Experimental investigation using piglet and rabbit intestinal loop models and a mouse infection model apparently showed that beta-toxin is the important pathogenic factor of the organisms. The toxin caused the swelling and disruption of HL-60 cells and formed a functional pore in the lipid raft microdomains of sensitive cells. These findings represent significant progress in the characterization of the toxin with knowledge on its biological features, mechanism of action and structure-function having been accumulated. Our aims here are to review the current progresses in our comprehension of the virulence of C. perfringens type C and the character, biological feature and structure-function of beta-toxin.

  2. Identification of Key Residues in Virulent Canine Distemper Virus Hemagglutinin That Control CD150/SLAM-Binding Activity▿

    Science.gov (United States)

    Zipperle, Ljerka; Langedijk, Johannes P. M.; Örvell, Claes; Vandevelde, Marc; Zurbriggen, Andreas; Plattet, Philippe

    2010-01-01

    Morbillivirus cell entry is controlled by hemagglutinin (H), an envelope-anchored viral glycoprotein determining interaction with multiple host cell surface receptors. Subsequent to virus-receptor attachment, H is thought to transduce a signal triggering the viral fusion glycoprotein, which in turn drives virus-cell fusion activity. Cell entry through the universal morbillivirus receptor CD150/SLAM was reported to depend on two nearby microdomains located within the hemagglutinin. Here, we provide evidence that three key residues in the virulent canine distemper virus A75/17 H protein (Y525, D526, and R529), clustering at the rim of a large recessed groove created by β-propeller blades 4 and 5, control SLAM-binding activity without drastically modulating protein surface expression or SLAM-independent F triggering. PMID:20631152

  3. A study of the dynamics of seizure propagation across micro domains in the vicinity of the seizure onset zone.

    Science.gov (United States)

    Basu, Ishita; Kudela, Pawel; Korzeniewska, Anna; Franaszczuk, Piotr J; Anderson, William S

    2015-08-01

    The use of micro-electrode arrays to measure electrical activity from the surface of the brain is increasingly being investigated as a means to improve seizure onset zone (SOZ) localization. In this work, we used a multivariate autoregressive model to determine the evolution of seizure dynamics in the [Formula: see text] Hz high frequency band across micro-domains sampled by such micro-electrode arrays. We showed that a directed transfer function (DTF) can be used to estimate the flow of seizure activity in a set of simulated micro-electrode data with known propagation pattern. We used seven complex partial seizures recorded from four patients undergoing intracranial monitoring for surgical evaluation to reconstruct the seizure propagation pattern over sliding windows using a DTF measure. We showed that a DTF can be used to estimate the flow of seizure activity in a set of simulated micro-electrode data with a known propagation pattern. In general, depending on the location of the micro-electrode grid with respect to the clinical SOZ and the time from seizure onset, ictal propagation changed in directional characteristics over a 2-10 s time scale, with gross directionality limited to spatial dimensions of approximately [Formula: see text]. It was also seen that the strongest seizure patterns in the high frequency band and their sources over such micro-domains are more stable over time and across seizures bordering the clinically determined SOZ than inside. This type of propagation analysis might in future provide an additional tool to epileptologists for characterizing epileptogenic tissue. This will potentially help narrowing down resection zones without compromising essential brain functions as well as provide important information about targeting anti-epileptic stimulation devices.

  4. Local pH domains regulate NHE3-mediated Na+ reabsorption in the renal proximal tubule

    Science.gov (United States)

    Burford, James L.; McDonough, Alicia A.; Holstein-Rathlou, Niels-Henrik; Peti-Peterdi, Janos

    2014-01-01

    The proximal tubule Na+/H+ exchanger 3 (NHE3), located in the apical dense microvilli (brush border), plays a major role in the reabsorption of NaCl and water in the renal proximal tubule. In response to a rise in blood pressure NHE3 redistributes in the plane of the plasma membrane to the base of the brush border, where NHE3 activity is reduced. This NHE3 redistribution is assumed to provoke pressure natriuresis; however, it is unclear how NHE3 redistribution per se reduces NHE3 activity. To investigate if the distribution of NHE3 in the brush border can change the reabsorption rate, we constructed a spatiotemporal mathematical model of NHE3-mediated Na+ reabsorption across a proximal tubule cell and compared the model results with in vivo experiments in rats. The model predicts that when NHE3 is localized exclusively at the base of the brush border, it creates local pH microdomains that reduce NHE3 activity by >30%. We tested the model's prediction experimentally: the rat kidney cortex was loaded with the pH-sensitive fluorescent dye BCECF, and cells of the proximal tubule were imaged in vivo using confocal fluorescence microscopy before and after an increase of blood pressure by ∼50 mmHg. The experimental results supported the model by demonstrating that a rise of blood pressure induces the development of pH microdomains near the bottom of the brush border. These local changes in pH reduce NHE3 activity, which may explain the pressure natriuresis response to NHE3 redistribution. PMID:25298526

  5. Life depends upon two kinds of water.

    Directory of Open Access Journals (Sweden)

    Philippa Wiggins

    Full Text Available BACKGROUND: Many well-documented biochemical processes lack a molecular mechanism. Examples are: how ATP hydrolysis and an enzyme contrive to perform work, such as active transport; how peptides are formed from amino acids and DNA from nucleotides; how proteases cleave peptide bonds, how bone mineralses; how enzymes distinguish between sodium and potassium; how chirality of biopolymers was established prebiotically. METHODOLOGY/PRINCIPAL FINDINGS: It is shown that involvement of water in all these processes is mandatory, but the water must be of the simplified configuration in which there are only two strengths of water-water hydrogen bonds, and in which these two types of water coexist as microdomains throughout the liquid temperature range. Since they have different strengths of hydrogen bonds, the microdomains differ in all their physical and chemical properties. Solutes partition asymmetrically, generating osmotic pressure gradients which must be compensated for or abolished. Displacement of the equilibrium between high and low density waters incurs a thermodynamic cost which limits solubility, depresses ionisation of water, drives protein folding and prevents high density water from boiling at its intrinsic boiling point which appears to be below 0 degrees C. Active processes in biochemistry take place in sequential partial reactions, most of which release small amounts of free energy as heat. This ensures that the system is never far from equilibrium so that efficiency is extremely high. Energy transduction is neither possible and nor necessary. Chirality was probably established in prebiotic clays which must have carried stable populations of high density and low density water domains. Bioactive enantiomorphs partition into low density water in which they polymerise spontaneously. CONCLUSIONS/SIGNIFICANCE: The simplified model of water has great explanatory power.

  6. The CD157-integrin partnership controls transendothelial migration and adhesion of human monocytes.

    Science.gov (United States)

    Lo Buono, Nicola; Parrotta, Rossella; Morone, Simona; Bovino, Paola; Nacci, Giulia; Ortolan, Erika; Horenstein, Alberto L; Inzhutova, Alona; Ferrero, Enza; Funaro, Ada

    2011-05-27

    CD157, a member of the CD38 gene family, is an NAD-metabolizing ectoenzyme and a signaling molecule whose role in polarization, migration, and diapedesis of human granulocytes has been documented; however, the molecular events underpinning this role remain to be elucidated. This study focused on the role exerted by CD157 in monocyte migration across the endothelial lining and adhesion to extracellular matrix proteins. The results demonstrated that anti-CD157 antibodies block monocyte transmigration and adhesion to fibronectin and fibrinogen but that CD157 cross-linking is sufficient to overcome the block, suggesting an active signaling role for the molecule. Consistent with this is the observation that CD157 is prevalently located within the detergent-resistant membrane microdomains to which, upon clustering, it promotes the recruitment of β(1) and β(2) integrin, which, in turn, leads to the formation of a multimolecular complex favoring signal transduction. This functional cross-talk with integrins allows CD157 to act as a receptor despite its intrinsic structural inability to do so on its own. Intracellular signals mediated by CD157 rely on the integrin/Src/FAK (focal adhesion kinase) pathway, resulting in increased activity of the MAPK/ERK1/2 and the PI3K/Akt downstream signaling pathways, which are crucial in the control of monocyte transendothelial migration. Collectively, these findings indicate that CD157 acts as a molecular organizer of signaling-competent membrane microdomains and that it forms part of a larger molecular machine ruled by integrins. The CD157-integrin partnership provides optimal adhesion and transmigration of human monocytes.

  7. The CD157-Integrin Partnership Controls Transendothelial Migration and Adhesion of Human Monocytes*

    Science.gov (United States)

    Lo Buono, Nicola; Parrotta, Rossella; Morone, Simona; Bovino, Paola; Nacci, Giulia; Ortolan, Erika; Horenstein, Alberto L.; Inzhutova, Alona; Ferrero, Enza; Funaro, Ada

    2011-01-01

    CD157, a member of the CD38 gene family, is an NAD-metabolizing ectoenzyme and a signaling molecule whose role in polarization, migration, and diapedesis of human granulocytes has been documented; however, the molecular events underpinning this role remain to be elucidated. This study focused on the role exerted by CD157 in monocyte migration across the endothelial lining and adhesion to extracellular matrix proteins. The results demonstrated that anti-CD157 antibodies block monocyte transmigration and adhesion to fibronectin and fibrinogen but that CD157 cross-linking is sufficient to overcome the block, suggesting an active signaling role for the molecule. Consistent with this is the observation that CD157 is prevalently located within the detergent-resistant membrane microdomains to which, upon clustering, it promotes the recruitment of β1 and β2 integrin, which, in turn, leads to the formation of a multimolecular complex favoring signal transduction. This functional cross-talk with integrins allows CD157 to act as a receptor despite its intrinsic structural inability to do so on its own. Intracellular signals mediated by CD157 rely on the integrin/Src/FAK (focal adhesion kinase) pathway, resulting in increased activity of the MAPK/ERK1/2 and the PI3K/Akt downstream signaling pathways, which are crucial in the control of monocyte transendothelial migration. Collectively, these findings indicate that CD157 acts as a molecular organizer of signaling-competent membrane microdomains and that it forms part of a larger molecular machine ruled by integrins. The CD157-integrin partnership provides optimal adhesion and transmigration of human monocytes. PMID:21478153

  8. Expression of phosphoinositide-specific phospholipase C isoforms in native endothelial cells.

    Science.gov (United States)

    Béziau, Delphine M; Toussaint, Fanny; Blanchette, Alexandre; Dayeh, Nour R; Charbel, Chimène; Tardif, Jean-Claude; Dupuis, Jocelyn; Ledoux, Jonathan

    2015-01-01

    Phospholipase C (PLC) comprises a superfamily of enzymes that play a key role in a wide array of intracellular signalling pathways, including protein kinase C and intracellular calcium. Thirteen different mammalian PLC isoforms have been identified and classified into 6 families (PLC-β, γ, δ, ε, ζ and η) based on their biochemical properties. Although the expression of PLC isoforms is tissue-specific, concomitant expression of different PLC has been reported, suggesting that PLC family is involved in multiple cellular functions. Despite their critical role, the PLC isoforms expressed in native endothelial cells (ECs) remains undetermined. A conventional PCR approach was initially used to elucidate the mRNA expression pattern of PLC isoforms in 3 distinct murine vascular beds: mesenteric (MA), pulmonary (PA) and middle cerebral arteries (MCA). mRNA encoding for most PLC isoforms was detected in MA, MCA and PA with the exception of η2 and β2 (only expressed in PA), δ4 (only expressed in MCA), η1 (expressed in all but MA) and ζ (not detected in any vascular beds tested). The endothelial-specific PLC expression was then sought in freshly isolated ECs. Interestingly, the PLC expression profile appears to differ across the investigated arterial beds. While mRNA for 8 of the 13 PLC isoforms was detected in ECs from MA, two additional PLC isoforms were detected in ECs from PA and MCA. Co-expression of multiple PLC isoforms in ECs suggests an elaborate network of signalling pathways: PLC isoforms may contribute to the complexity or diversity of signalling by their selective localization in cellular microdomains. However in situ immunofluorescence revealed a homogeneous distribution for all PLC isoforms probed (β3, γ2 and δ1) in intact endothelium. Although PLC isoforms play a crucial role in endothelial signal transduction, subcellular localization alone does not appear to be sufficient to determine the role of PLC in the signalling microdomains found in the

  9. FRET imaging of hemoglobin concentration in Plasmodium falciparum-infected red cells.

    Directory of Open Access Journals (Sweden)

    Alessandro Esposito

    Full Text Available During its intraerythrocytic asexual reproduction cycle Plasmodium falciparum consumes up to 80% of the host cell hemoglobin, in large excess over its metabolic needs. A model of the homeostasis of falciparum-infected red blood cells suggested an explanation based on the need to reduce the colloid-osmotic pressure within the host cell to prevent its premature lysis. Critical for this hypothesis was that the hemoglobin concentration within the host cell be progressively reduced from the trophozoite stage onwards.The experiments reported here were designed to test this hypothesis by direct measurements of the hemoglobin concentration in live, infected red cells. We developed a novel, non-invasive method to quantify the hemoglobin concentration in single cells, based on Förster resonance energy transfer between hemoglobin molecules and the fluorophore calcein. Fluorescence lifetime imaging allowed the quantitative mapping of the hemoglobin concentration within the cells. The average fluorescence lifetimes of uninfected cohorts was 270+/-30 ps (mean+/-SD; N = 45. In the cytoplasm of infected cells the fluorescence lifetime of calcein ranged from 290+/-20 ps for cells with ring stage parasites to 590+/-13 ps and 1050+/-60 ps for cells with young trophozoites and late stage trophozoite/early schizonts, respectively. This was equivalent to reductions in hemoglobin concentration spanning the range from 7.3 to 2.3 mM, in line with the model predictions. An unexpected ancillary finding was the existence of a microdomain under the host cell membrane with reduced calcein quenching by hemoglobin in cells with mature trophozoite stage parasites.The results support the predictions of the colloid-osmotic hypothesis and provide a better understanding of the homeostasis of malaria-infected red cells. In addition, they revealed the existence of a distinct peripheral microdomain in the host cell with limited access to hemoglobin molecules indicating the

  10. pH- and temperature-sensitive polymeric microspheres for drug delivery: the dissolution of copolymers modulates drug release.

    Science.gov (United States)

    Fundueanu, Gheorghe; Constantin, Marieta; Stanciu, Cristina; Theodoridis, Georgios; Ascenzi, Paolo

    2009-12-01

    Most pH-/temperature-responsive polymers for controlled release of drugs are used as cross-linked hydrogels. However, the solubility properties of the linear polymers below and above the lower critical solution temperature (LCST) are not exploited. Here, the preparation and characterization of poly (N-isopropylacrylamide-co-methacrylic acid-co-methyl methacrylate) (poly (NIPAAm-co-MA-co-MM)) and poly (N-isopropylacrylamide-co-acrylamide) (poly (NIPAAm-co-AAm)), known as "smart" polymers (SP), is reported. Both poly (NIPAAm-co-MA-co-MM) and poly (NIPAAm-co-AAm) display pH- and temperature-responsive properties. Poly (NIPAAm-co-MA-co-MM) was designed to be insoluble in the gastric fluid (pH = 1.2), but soluble in the intestinal fluid (pH = 6.8 and 7.4), at the body temperature (37 degrees C). Poly (NIPAAm-co-AAm) was designed to have a lower critical solution temperature (LCST) corresponding to 37 degrees C at pH = 7.4, therefore it is not soluble above the LCST. The solubility characteristics of these copolymers were exploited to modulate the rate of release of drugs by changing pH and/or temperature. These copolymers were solubilized with hydrophobic cellulose acetate butyrate (CAB) and vitamin B(12) (taken as a water soluble drug model system) in an acetone/methanol mixture and dispersed in mineral oil. By a progressive evaporation of the solvent, the liquid droplets were transformed into loaded CAB/SP microspheres. Differential scanning calorimetric studies and scanning electron microscopy analysis demonstrated that the polymeric components of the microspheres precipitated separately during solvent evaporation forming small microdomains. Moreover, vitamin B(12) was found to be molecularly dispersed in both microdomains with no specific affinity for any polymeric component of microspheres. The release of vitamin B(12) was investigated as a function of temperature, pH, and the CAB/SP ratio.

  11. Sorafenib suppresses TGF-β responses by inducing caveolae/lipid raft-mediated internalization/degradation of cell-surface type II TGF-β receptors: Implications in development of effective adjunctive therapy for hepatocellular carcinoma.

    Science.gov (United States)

    Chung, Chih-Ling; Wang, Shih-Wei; Sun, Wei-Chih; Shu, Chih-Wen; Kao, Yu-Chen; Shiao, Meng-Shin; Chen, Chun-Lin

    2018-04-18

    Sorafenib is the only FDA approved drug for the treatment of advanced hepatocellular carcinoma (HCC) and other malignancies. Studies indicate that TGF-β signalling is associated with tumour progression in HCC. Autocrine and paracrine TGF-β promotes tumour growth and malignancy by inducing epithelial-mesenchymal transition (EMT). Sorafenib is believed to antagonize tumour progression by inhibiting TGF-β-induced EMT. It improves survival of patients but HCC later develops resistance and relapses. The underlying mechanism of resistance is unknown. Understanding of the molecular mechanism of sorafenib inhibition of TGF-β-induced signalling or responses in HCC may lead to development of adjunctive effective therapy for HCC. In this study, we demonstrate that sorafenib suppresses TGF-β responsiveness in hepatoma cells, hepatocytes, and animal liver, mainly by downregulating cell-surface type II TGF-β receptors (TβRII) localized in caveolae/lipid rafts and non-lipid raft microdomains via caveolae/lipid rafts-mediated internalization and degradation. Furthermore, sorafenib-induced downregulation and degradation of cell-surface TβRII is prevented by simultaneous treatment with a caveolae disruptor or lysosomal inhibitors. On the other hand, sorafenib only downregulates cell-surface TβRII localized in caveolae/lipid rafts but not localized in non-lipid raft microdomains in hepatic stellate cells. These results suggest that sorafenib inhibits TGF-β signalling mainly by inducing caveolae/lipid raft-mediated internalization and degradation of cell-surface TβR-II in target cells. They may also imply that treatment with agents which promote formation of caveolae/lipid rafts, TGF-β receptor kinase inhibitors (e.g., LY2157299) or TGF-β peptide antagonists (by liver-targeting delivery) may be considered as effective adjunct therapy with sorafenib for HCC. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Dissipative particle dynamics of triblock copolymer melts: A midblock conformational study at moderate segregation

    Science.gov (United States)

    Tallury, Syamal S.; Spontak, Richard J.; Pasquinelli, Melissa A.

    2014-12-01

    As thermoplastic elastomers, triblock copolymers constitute an immensely important class of shape-memory soft materials due to their unique ability to form molecular networks stabilized by physical, rather than chemical, cross-links. The extent to which such networks develop in triblock and higher-order multiblock copolymers is sensitive to the formation of midblock bridges, which serve to connect neighboring microdomains. In addition to bridges, copolymer molecules can likewise form loops and dangling ends upon microphase separation or they can remain unsegregated. While prior theoretical and simulation studies have elucidated the midblock bridging fraction in triblock copolymer melts, most have only considered strongly segregated systems wherein dangling ends and unsegregated chains become relatively insignificant. In this study, simulations based on dissipative particle dynamics are performed to examine the self-assembly and networkability of moderately segregated triblock copolymers. Utilizing a density-based cluster-recognition algorithm, we demonstrate how the simulations can be analyzed to extract information about microdomain formation and permit explicit quantitation of the midblock bridging, looping, dangling, and unsegregated fractions for linear triblock copolymers varying in chain length, molecular composition, and segregation level. We show that midblock conformations can be sensitive to variations in chain length, molecular composition, and bead repulsion, and that a systematic investigation can be used to identify the onset of strong segregation where the presence of dangling and unsegregated fractions are minimal. In addition, because this clustering approach is robust, it can be used with any particle-based simulation method to quantify network formation of different morphologies for a wide range of triblock and higher-order multiblock copolymer systems.

  13. Critical role of the lipid rafts in caprine herpesvirus type 1 infection in vitro.

    Science.gov (United States)

    Pratelli, Annamaria; Colao, Valeriana

    2016-01-04

    The fusion machinery for herpesvirus entry in the host cells involves the interactions of viral glycoproteins with cellular receptors, although additional viral and cellular domains are required. Extensive areas of the plasma membrane surface consist of lipid rafts organized into cholesterol-rich microdomains involved in signal transduction, protein sorting, membrane transport and in many processes of viruses infection. Because of the extraction of cholesterol leads to disorganization of lipid microdomains and to dissociation of proteins bound to the lipid rafts, we investigated the effect of cholesterol depletion by methyl-β-cyclodextrin (MβCD) on caprine herpesvirus 1 (CpHV.1) in three important phases of virus infection such as binding, entry and post-entry. MβCD treatment did not prejudice virus binding to cells, while a dose-dependent reduction of the virus yield was observed at the virus entry stage, and 30 mM MβCD reduced infectivity evidently. Treatment of MDBK after virus entry revealed a moderate inhibitory effect suggesting that cholesterol is mainly required during virus entry rather than during the post-entry stage. Alteration of the envelope lipid composition affected virus entry and a noticeable reduction in virus infectivity was detected in the presence of 15 mM MβCD. Considering that the recognition of a host cell receptor is a crucial step in the start-up phase of infection, these data are essential for the study of CpHV.1 pathogenesis. To date virus receptors for CpHV.1 have not yet been identified and further investigations are required to state that MβCD treatment affects the expression of the viral receptors. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Nanoscale Relationship Between CD4 and CD25 of T Cells Visualized with NSOM/QD-Based Dual-Color Imaging System

    Science.gov (United States)

    Fan, Jinping; Lu, Xiaoxu; Liu, Shengde; Zhong, Liyun

    2015-10-01

    In this study, by using of near-field scanning optical microscopy (NSOM)/immune-labeling quantum dot (QD)-based dual-color imaging system, we achieved the direct visualization of nanoscale profiles for distribution and organization of CD4 and CD25 molecules in T cells. A novel and interesting finding was that though CD25 clustering as nanodomains were observed on the surface of CD4+CD25high regulatory T cells, these CD25 nanodomains were not co-localized with CD4 nanodomains. This result presented that the formation of these CD25 nanodomains on the surface of CD4+CD25high T cells were not associated with the response of T cell receptor (TCR)/CD3-dependent signal transduction. In contrast, on the surface of CD4+CD25low T cells, CD25 molecules distributed randomly without forming nanodomains while CD4 clustering as nanodomains can be observed; on the surface of CD8+CD25+ T cells, CD25 clustering as nanodomains and co-localization with CD8 nanodomains were observed. Collectively, above these results exhibited that TCR/CD3-based microdomains were indeed required for TCR/CD3-mediated T cells activation and enhanced the immune activity of CD4+CD25low T cells or CD8+CD25+ T cells. In particular, it was found that the formation of CD25 nanodomains and their segregation from TCR/CD3 microdomains were the intrinsic capability of CD4+CD25high T cells, suggesting this specific imaging feature of CD25 should be greatly associated with the regulatory activity of CD4+CD25high T cells. Importantly, this novel NSOM/QD-based dual-color imaging system will provide a useful tool for the research of distribution-function relationship of cell-surface molecules.

  15. Expression of phosphoinositide-specific phospholipase C isoforms in native endothelial cells.

    Directory of Open Access Journals (Sweden)

    Delphine M Béziau

    Full Text Available Phospholipase C (PLC comprises a superfamily of enzymes that play a key role in a wide array of intracellular signalling pathways, including protein kinase C and intracellular calcium. Thirteen different mammalian PLC isoforms have been identified and classified into 6 families (PLC-β, γ, δ, ε, ζ and η based on their biochemical properties. Although the expression of PLC isoforms is tissue-specific, concomitant expression of different PLC has been reported, suggesting that PLC family is involved in multiple cellular functions. Despite their critical role, the PLC isoforms expressed in native endothelial cells (ECs remains undetermined. A conventional PCR approach was initially used to elucidate the mRNA expression pattern of PLC isoforms in 3 distinct murine vascular beds: mesenteric (MA, pulmonary (PA and middle cerebral arteries (MCA. mRNA encoding for most PLC isoforms was detected in MA, MCA and PA with the exception of η2 and β2 (only expressed in PA, δ4 (only expressed in MCA, η1 (expressed in all but MA and ζ (not detected in any vascular beds tested. The endothelial-specific PLC expression was then sought in freshly isolated ECs. Interestingly, the PLC expression profile appears to differ across the investigated arterial beds. While mRNA for 8 of the 13 PLC isoforms was detected in ECs from MA, two additional PLC isoforms were detected in ECs from PA and MCA. Co-expression of multiple PLC isoforms in ECs suggests an elaborate network of signalling pathways: PLC isoforms may contribute to the complexity or diversity of signalling by their selective localization in cellular microdomains. However in situ immunofluorescence revealed a homogeneous distribution for all PLC isoforms probed (β3, γ2 and δ1 in intact endothelium. Although PLC isoforms play a crucial role in endothelial signal transduction, subcellular localization alone does not appear to be sufficient to determine the role of PLC in the signalling microdomains found

  16. Shear Alignment of Diblock Copolymers for Patterning Nanowire Meshes

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, Kyle T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-08

    Metallic nanowire meshes are useful as cheap, flexible alternatives to indium tin oxide – an expensive, brittle material used in transparent conductive electrodes. We have fabricated nanowire meshes over areas up to 2.5 cm2 by: 1) mechanically aligning parallel rows of diblock copolymer (diBCP) microdomains; 2) selectively infiltrating those domains with metallic ions; 3) etching away the diBCP template; 4) sintering to reduce ions to metal nanowires; and, 5) repeating steps 1 – 4 on the same sample at a 90° offset. We aligned parallel rows of polystyrene-b-poly(2-vinylpyridine) [PS(48.5 kDa)-b-P2VP(14.5 kDa)] microdomains by heating above its glass transition temperature (Tg ≈ 100°C), applying mechanical shear pressure (33 kPa) and normal force (13.7 N), and cooling below Tg. DiBCP samples were submerged in aqueous solutions of metallic ions (15 – 40 mM ions; 0.1 – 0.5 M HCl) for 30 – 90 minutes, which coordinate to nitrogen in P2VP. Subsequent ozone-etching and sintering steps yielded parallel nanowires. We aimed to optimize alignment parameters (e.g. shear and normal pressures, alignment duration, and PDMS thickness) to improve the quality, reproducibility, and scalability of meshes. We also investigated metals other than Pt and Au that may be patterned using this technique (Cu, Ag).

  17. A study of the dynamics of seizure propagation across micro domains in the vicinity of the seizure onset zone

    Science.gov (United States)

    Basu, Ishita; Kudela, Pawel; Korzeniewska, Anna; Franaszczuk, Piotr J.; Anderson, William S.

    2015-08-01

    Objective. The use of micro-electrode arrays to measure electrical activity from the surface of the brain is increasingly being investigated as a means to improve seizure onset zone (SOZ) localization. In this work, we used a multivariate autoregressive model to determine the evolution of seizure dynamics in the 70-110 Hz high frequency band across micro-domains sampled by such micro-electrode arrays. We showed that a directed transfer function (DTF) can be used to estimate the flow of seizure activity in a set of simulated micro-electrode data with known propagation pattern. Approach. We used seven complex partial seizures recorded from four patients undergoing intracranial monitoring for surgical evaluation to reconstruct the seizure propagation pattern over sliding windows using a DTF measure. Main results. We showed that a DTF can be used to estimate the flow of seizure activity in a set of simulated micro-electrode data with a known propagation pattern. In general, depending on the location of the micro-electrode grid with respect to the clinical SOZ and the time from seizure onset, ictal propagation changed in directional characteristics over a 2-10 s time scale, with gross directionality limited to spatial dimensions of approximately 9 m{{m}2}. It was also seen that the strongest seizure patterns in the high frequency band and their sources over such micro-domains are more stable over time and across seizures bordering the clinically determined SOZ than inside. Significance. This type of propagation analysis might in future provide an additional tool to epileptologists for characterizing epileptogenic tissue. This will potentially help narrowing down resection zones without compromising essential brain functions as well as provide important information about targeting anti-epileptic stimulation devices.

  18. Coupled Ca2+/H+ transport by cytoplasmic buffers regulates local Ca2+ and H+ ion signaling.

    Science.gov (United States)

    Swietach, Pawel; Youm, Jae-Boum; Saegusa, Noriko; Leem, Chae-Hun; Spitzer, Kenneth W; Vaughan-Jones, Richard D

    2013-05-28

    Ca(2+) signaling regulates cell function. This is subject to modulation by H(+) ions that are universal end-products of metabolism. Due to slow diffusion and common buffers, changes in cytoplasmic [Ca(2+)] ([Ca(2+)]i) or [H(+)] ([H(+)]i) can become compartmentalized, leading potentially to complex spatial Ca(2+)/H(+) coupling. This was studied by fluorescence imaging of cardiac myocytes. An increase in [H(+)]i, produced by superfusion of acetate (salt of membrane-permeant weak acid), evoked a [Ca(2+)]i rise, independent of sarcolemmal Ca(2+) influx or release from mitochondria, sarcoplasmic reticulum, or acidic stores. Photolytic H(+) uncaging from 2-nitrobenzaldehyde also raised [Ca(2+)]i, and the yield was reduced following inhibition of glycolysis or mitochondrial respiration. H(+) uncaging into buffer mixtures in vitro demonstrated that Ca(2+) unloading from proteins, histidyl dipeptides (HDPs; e.g., carnosine), and ATP can underlie the H(+)-evoked [Ca(2+)]i rise. Raising [H(+)]i tonically at one end of a myocyte evoked a local [Ca(2+)]i rise in the acidic microdomain, which did not dissipate. The result is consistent with uphill Ca(2+) transport into the acidic zone via Ca(2+)/H(+) exchange on diffusible HDPs and ATP molecules, energized by the [H(+)]i gradient. Ca(2+) recruitment to a localized acid microdomain was greatly reduced during intracellular Mg(2+) overload or by ATP depletion, maneuvers that reduce the Ca(2+)-carrying capacity of HDPs. Cytoplasmic HDPs and ATP underlie spatial Ca(2+)/H(+) coupling in the cardiac myocyte by providing ion exchange and transport on common buffer sites. Given the abundance of cellular HDPs and ATP, spatial Ca(2+)/H(+) coupling is likely to be of general importance in cell signaling.

  19. Promotion of bone morphogenetic protein signaling by tetraspanins and glycosphingolipids.

    Directory of Open Access Journals (Sweden)

    Zhiyu Liu

    2015-05-01

    Full Text Available Bone morphogenetic proteins (BMPs belong to the transforming growth factor β (TGFβ superfamily of secreted molecules. BMPs play essential roles in multiple developmental and homeostatic processes in metazoans. Malfunction of the BMP pathway can cause a variety of diseases in humans, including cancer, skeletal disorders and cardiovascular diseases. Identification of factors that ensure proper spatiotemporal control of BMP signaling is critical for understanding how this pathway is regulated. We have used a unique and sensitive genetic screen to identify the plasma membrane-localized tetraspanin TSP-21 as a key new factor in the C. elegans BMP-like "Sma/Mab" signaling pathway that controls body size and postembryonic M lineage development. We showed that TSP-21 acts in the signal-receiving cells and genetically functions at the ligand-receptor level. We further showed that TSP-21 can associate with itself and with two additional tetraspanins, TSP-12 and TSP-14, which also promote Sma/Mab signaling. TSP-12 and TSP-14 can also associate with SMA-6, the type I receptor of the Sma/Mab pathway. Finally, we found that glycosphingolipids, major components of the tetraspanin-enriched microdomains, are required for Sma/Mab signaling. Our findings suggest that the tetraspanin-enriched membrane microdomains are important for proper BMP signaling. As tetraspanins have emerged as diagnostic and prognostic markers for tumor progression, and TSP-21, TSP-12 and TSP-14 are all conserved in humans, we speculate that abnormal BMP signaling due to altered expression or function of certain tetraspanins may be a contributing factor to cancer development.

  20. 21-Methylpyrenyl-cholesterol stably and specifically associates with lipoprotein peripheral hemi-membrane: A new labelling tool

    Energy Technology Data Exchange (ETDEWEB)

    Gaibelet, Gérald [INSERM U563, CHU Purpan, Toulouse (France); CEA, SB2SM and UMR8221 CNRS, IBiTec-Saclay, Gif-sur-Yvette (France); Tercé, François [Université Toulouse III, UMR 1048, Toulouse (France); INSERM U1048, Toulouse (France); Bertrand-Michel, Justine [Université Toulouse III, UMR 1048, Toulouse (France); INSERM U1048, Lipidomic Platform Metatoul, Toulouse (France); Allart, Sophie [Plateau Technique d’Imagerie Cellulaire, INSERM U1043, Toulouse (France); Azalbert, Vincent [Université Toulouse III, UMR 1048, Toulouse (France); INSERM U1048, Toulouse (France); Lecompte, Marie-France [INSERM U563, Faculté de Médecine de Rangueil, Toulouse (France); Collet, Xavier [Université Toulouse III, UMR 1048, Toulouse (France); INSERM U1048, Toulouse (France); Orlowski, Stéphane, E-mail: stephane.orlowski@cea.fr [INSERM U563, CHU Purpan, Toulouse (France); CEA, SB2SM and UMR8221 CNRS, IBiTec-Saclay, Gif-sur-Yvette (France)

    2013-11-01

    Highlights: •21-Methylpyrenyl-cholesterol specifically and stably associates to lipoproteins. •It is not esterified by LCAT, and thus reliably labels their peripheral hemi-membrane. •HDL vs. LDL are well distinguishable by various fluorescent labelling characteristics. •LDL peripheral hemi-membrane harbors cholesterol-rich ordered lipid (micro)domains. •Cultured cells can be stained by such labelled lipoproteins-mediated delivery. -- Abstract: Lipoproteins are important biological components. However, they have few convenient fluorescent labelling probes currently reported, and their physiological reliability can be questioned. We compared the association of two fluorescent cholesterol derivatives, 22-nitrobenzoxadiazole-cholesterol (NBD-Chol) and 21-methylpyrenyl-cholesterol (Pyr-met-Chol), to serum lipoproteins and to purified HDL and LDL. Both lipoproteins could be stably labelled by Pyr-met-Chol, but virtually not by NBD-Chol. At variance with NBD-Chol, LCAT did not esterify Pyr-met-Chol. The labelling characteristics of lipoproteins by Pyr-met-Chol were well distinguishable between HDL and LDL, regarding dializability, associated probe amount and labelling kinetics. We took benefit of the pyrene labelling to approach the structural organization of LDL peripheral hemi-membrane, since Pyr-met-Chol-labelled LDL, but not HDL, presented a fluorescence emission of pyrene excimers, indicating that the probe was present in an ordered lipid micro-environment. Since the peripheral membrane of LDL contains more sphingomyelin (SM) than HDL, this excimer formation was consistent with the existence of cholesterol- and SM-enriched lipid microdomains in LDL, as already suggested in model membranes of similar composition and reminiscent to the well-described “lipid rafts” in bilayer membranes. Finally, we showed that Pyr-met-Chol could stain cultured PC-3 cells via lipoprotein-mediated delivery, with a staining pattern well different to that observed with NBD

  1. 21-Methylpyrenyl-cholesterol stably and specifically associates with lipoprotein peripheral hemi-membrane: A new labelling tool

    International Nuclear Information System (INIS)

    Gaibelet, Gérald; Tercé, François; Bertrand-Michel, Justine; Allart, Sophie; Azalbert, Vincent; Lecompte, Marie-France; Collet, Xavier; Orlowski, Stéphane

    2013-01-01

    Highlights: •21-Methylpyrenyl-cholesterol specifically and stably associates to lipoproteins. •It is not esterified by LCAT, and thus reliably labels their peripheral hemi-membrane. •HDL vs. LDL are well distinguishable by various fluorescent labelling characteristics. •LDL peripheral hemi-membrane harbors cholesterol-rich ordered lipid (micro)domains. •Cultured cells can be stained by such labelled lipoproteins-mediated delivery. -- Abstract: Lipoproteins are important biological components. However, they have few convenient fluorescent labelling probes currently reported, and their physiological reliability can be questioned. We compared the association of two fluorescent cholesterol derivatives, 22-nitrobenzoxadiazole-cholesterol (NBD-Chol) and 21-methylpyrenyl-cholesterol (Pyr-met-Chol), to serum lipoproteins and to purified HDL and LDL. Both lipoproteins could be stably labelled by Pyr-met-Chol, but virtually not by NBD-Chol. At variance with NBD-Chol, LCAT did not esterify Pyr-met-Chol. The labelling characteristics of lipoproteins by Pyr-met-Chol were well distinguishable between HDL and LDL, regarding dializability, associated probe amount and labelling kinetics. We took benefit of the pyrene labelling to approach the structural organization of LDL peripheral hemi-membrane, since Pyr-met-Chol-labelled LDL, but not HDL, presented a fluorescence emission of pyrene excimers, indicating that the probe was present in an ordered lipid micro-environment. Since the peripheral membrane of LDL contains more sphingomyelin (SM) than HDL, this excimer formation was consistent with the existence of cholesterol- and SM-enriched lipid microdomains in LDL, as already suggested in model membranes of similar composition and reminiscent to the well-described “lipid rafts” in bilayer membranes. Finally, we showed that Pyr-met-Chol could stain cultured PC-3 cells via lipoprotein-mediated delivery, with a staining pattern well different to that observed with NBD

  2. Chemical Imaging of the Cell Membrane by NanoSIMS

    International Nuclear Information System (INIS)

    Weber, P.K.; Kraft, M.L.; Frisz, J.F.; Carpenter, K.J.; Hutcheon, I.D.

    2010-01-01

    The existence of lipid microdomains and their role in cell membrane organization are currently topics of great interest and controversy. The cell membrane is composed of a lipid bilayer with embedded proteins that can flow along the two-dimensional surface defined by the membrane. Microdomains, known as lipid rafts, are believed to play a central role in organizing this fluid system, enabling the cell membrane to carry out essential cellular processes, including protein recruitment and signal transduction. Lipid rafts are also implicated in cell invasion by pathogens, as in the case of the HIV. Therefore, understanding the role of lipid rafts in cell membrane organization not only has broad scientific implications, but also has practical implications for medical therapies. One of the major limitations on lipid organization research has been the inability to directly analyze lipid composition without introducing artifacts and at the relevant length-scales of tens to hundreds of nanometers. Fluorescence microscopy is widely used due to its sensitivity and specificity to the labeled species, but only the labeled components can be observed, fluorophores can alter the behavior of the lipids they label, and the length scales relevant to imaging cell membrane domains are between that probed by fluorescence resonance energy transfer (FRET) imaging (<10 nm) and the diffraction limit of light. Topographical features can be imaged on this length scale by atomic force microscopy (AFM), but the chemical composition of the observed structures cannot be determined. Immuno-labeling can be used to study the distribution of membrane proteins at high resolution, but not lipid composition. We are using imaging mass spectrometry by secondary ion mass spectrometry (SIMS) in concert with other high resolution imaging methods to overcome these limitations. The experimental approach of this project is to combine molecule-specific stable isotope labeling with high-resolution SIMS using a

  3. The PMCA pumps in genetically determined neuronal pathologies.

    Science.gov (United States)

    Calì, Tito; Brini, Marisa; Carafoli, Ernesto

    2018-01-10

    Ca 2+ signals regulate most aspects of animal cell life. They are of particular importance to the nervous system, in which they regulate specific functions, from neuronal development to synaptic plasticity. The homeostasis of cell Ca 2+ must thus be very precisely regulated: in all cells Ca 2+ pumps transport it from the cytosol to the extracellular medium (the Plasma Membrane Ca 2+ ATPases, hereafter referred to as PMCA pumps) or to the lumen of intracellular organelles (the Sarco/Endoplasmatic Reticulum Ca 2+ ATPase and the Secretory Pathway Ca 2+ ATPase, hereafter referred to as SERCA and SPCA pumps, respectively). In neurons and other excitable cells a powerful plasma membrane Na + /Ca 2+ exchanger (NCX) also exports Ca 2+ from cells. Quantitatively, the PMCA pumps are of minor importance to the bulk regulation of neuronal Ca 2+ . However, they are important in the regulation of Ca 2+ in specific sub-plasma membrane microdomains which contain a number of enzymes that are relevant to neuronal function. The PMCA pumps (of which 4 basic isoforms are expressed in animal cells) are P-type ATPases that are characterized by a long C-terminal cytosolic tail which is the site of interaction with most of the regulatory factors of the pump, the most important being calmodulin. In resting neurons, at low intracellular Ca 2+ the C-terminal tail of the PMCA interacts with the main body of the protein keeping it in an autoinhibited state. Local Ca 2+ increase activates calmodulin that removes the C-terminal tail from the inhibitory sites. Dysregulation of the Ca 2+ signals are incompatible with healthy neuronal life. A number of genetic mutations of PMCA pumps are associated with pathological phenotypes, those of the neuron-specific PMCA 2 and PMCA 3 being the best characterized. PMCA 2 mutations are associated with deafness and PMCA 3 mutations are linked to cerebellar ataxias. Biochemical analysis of the mutated pumps overexpressed in model cells have revealed their

  4. Visualization of ferroelectric domain structures in lithium niobate by means of confocal nonlinear microscopy; Visualisierung ferroelektrischer Domaenenstrukturen in Lithiumniobat mittels konfokaler nichtlinearer Mikroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Berth, Gerhard

    2010-07-01

    In the field of integrated optics nonlinear-optical effects play a central role. A typical example for the commercial use of such phenomena is the frequency conversion. A deciding parameter is here the phase matching, which determines the quantity of the constructive interaction range of contributing optical fields. In view of a high efficiency of such processes the dispersion of a crystal must be balanced for the contributing frequencies. In nonlinear components on the base of optical waveguides the principle of the ''quasi-phase matching'' is applied, which uses the microdomain inversion. Phase jumps occuring at the domain boundaries compensate in the mean the different phase velocities. The application range of such periodical structures depends essentially on sharpness, homogeneity, depth extent, and period of the domain structure. The nonlinear confocal laser scanning microscopy makes a mapping of this transferred ferroelectric domain structure possible. Primary aim of this thesis is the characterization and mapping of the transferred ferroelectric domain structure in lithium niobate. A modularly kept confocal microscope makes here a nonlinear analysis in reflection and transmission geometry possible. In both geometries systematic studies as function of important process parameters were performed. It was shown that because of the larger nonlinear coherence length in the transmission modus the SHG ensues above all in forward direction. By depth-resolved studies at Z-cut PPLN structured between the surface region and the volume crystal a flippling of the SHG contrast could be observed. In samples with circular pole structure additionally in the crystal a transition to a hexagonal structure took place. In the Ti:PPLN strip waveguide a strong and specific increasement of the nonlinear signal of the domain walls was discovered. Here also the usual SHG surface contrast between dhe domains and the boundaries is inverted. Also differently processed

  5. Strategies for targeting tetraspanin proteins: potential therapeutic applications in microbial infections.

    Science.gov (United States)

    Hassuna, Noha; Monk, Peter N; Moseley, Gregory W; Partridge, Lynda J

    2009-01-01

    The identification of novel targets and strategies for therapy of microbial infections is an area of intensive research due to the failure of conventional vaccines or antibiotics to combat both newly emerging diseases (e.g. viruses such as severe acute respiratory syndrome (SARS) and new influenza strains, and antibiotic-resistant bacteria) and entrenched, pandemic diseases exemplified by HIV. One clear approach to this problem is to target processes of the host organism rather than the microbe. Recent data have indicated that members of the tetraspanin superfamily, proteins with a widespread distribution in eukaryotic organisms and 33 members in humans, may provide such an approach. Tetraspanins traverse the membrane four times, but are distinguished from other four-pass membrane proteins by the presence of conserved charged residues in the transmembrane domains and a defining 'signature' motif in the larger of the two extracellular domains (the EC2). They characteristically form promiscuous associations with one another and with other membrane proteins and lipids to generate a specialized type of microdomain: the tetraspanin-enriched microdomain (TEM). TEMs are integral to the main role of tetraspanins as 'molecular organizers' involved in functions such as membrane trafficking, cell-cell fusion, motility, and signaling. Increasing evidence demonstrates that tetraspanins are used by intracellular pathogens as a means of entering and replicating within human cells. Although previous investigations focused mainly on viruses such as hepatitis C and HIV, it is now becoming clear that other microbes associate with tetraspanins, using TEMs as a 'gateway' to infection. In this article we review the properties and functions of tetraspanins/TEMs that are relevant to infective processes and discuss the accumulating evidence that shows how different pathogens exploit these properties in infection and in the pathogenesis of disease. We then investigate the novel and exciting

  6. Prominin-2 expression increases protrusions, decreases caveolae and inhibits Cdc42 dependent fluid phase endocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Raman Deep, E-mail: Takhter.Ramandeep@mayo.edu; Schroeder, Andreas S.; Scheffer, Luana; Holicky, Eileen L.; Wheatley, Christine L.; Marks, David L., E-mail: Marks.david@mayo.edu; Pagano, Richard E.

    2013-05-10

    Highlights: •Prominin-2 expression induced protrusions that co-localized with lipid raft markers. •Prominin-2 expression decreased caveolae, caveolar endocytosis and increased pCav1. •Prominin-2 expression inhibited fluid phase endocytosis by inactivation of Cdc42. •These endocytic effects can be reversed by adding exogenous cholesterol. •Caveolin1 knockdown restored fluid phase endocytosis in Prominin2 expressing cells. -- Abstract: Background: Membrane protrusions play important roles in biological processes such as cell adhesion, wound healing, migration, and sensing of the external environment. Cell protrusions are a subtype of membrane microdomains composed of cholesterol and sphingolipids, and can be disrupted by cholesterol depletion. Prominins are pentaspan membrane proteins that bind cholesterol and localize to plasma membrane (PM) protrusions. Prominin-1 is of great interest as a marker for stem and cancer cells, while Prominin-2 (Prom2) is reportedly restricted to epithelial cells. Aim: To characterize the effects of Prom-2 expression on PM microdomain organization. Methods: Prom2-fluorescent protein was transfected in human skin fibroblasts (HSF) and Chinese hamster ovary (CHO) cells for PM raft and endocytic studies. Caveolae at PM were visualized using transmission electron microscopy. Cdc42 activation was measured and caveolin-1 knockdown was performed using siRNAs. Results: Prom2 expression in HSF and CHO cells caused extensive Prom2-positive protrusions that co-localized with lipid raft markers. Prom2 expression significantly decreased caveolae at the PM, reduced caveolar endocytosis and increased caveolin-1 phosphorylation. Prom2 expression also inhibited Cdc42-dependent fluid phase endocytosis via decreased Cdc42 activation. Effects on endocytosis were reversed by addition of cholesterol. Knockdown of caveolin-1 by siRNA restored Cdc42 dependent fluid phase endocytosis in Prom2-expressing cells. Conclusions: Prom2 protrusions primarily

  7. A novel mechanism of regulating breast cancer cell migration via palmitoylation-dependent alterations in the lipid raft affiliation of CD44.

    Science.gov (United States)

    Babina, Irina S; McSherry, Elaine A; Donatello, Simona; Hill, Arnold D K; Hopkins, Ann M

    2014-02-10

    Most breast cancer-related deaths result from metastasis, a process involving dynamic regulation of tumour cell adhesion and migration. The adhesion protein CD44, a key regulator of cell migration, is enriched in cholesterol-enriched membrane microdomains termed lipid rafts. We recently reported that raft affiliation of CD44 negatively regulates interactions with its migratory binding partner ezrin. Since raft affiliation is regulated by post-translational modifications including palmitoylation, we sought to establish the contribution of CD44 palmitoylation and lipid raft affiliation to cell migration. Recovery of CD44 and its binding partners from raft versus non-raft membrane microdomains was profiled in non-migrating and migrating breast cancer cell lines. Site-directed mutagenesis was used to introduce single or double point mutations into both CD44 palmitoylation sites (Cys286 and Cys295), whereupon the implications for lipid raft recovery, phenotype, ezrin co-precipitation and migratory behaviour was assessed. Finally CD44 palmitoylation status and lipid raft affiliation was assessed in primary cultures from a small panel of breast cancer patients. CD44 raft affiliation was increased during migration of non-invasive breast cell lines, but decreased during migration of highly-invasive breast cells. The latter was paralleled by increased CD44 recovery in non-raft fractions, and exclusive non-raft recovery of its binding partners. Point mutation of CD44 palmitoylation sites reduced CD44 raft affiliation in invasive MDA-MB-231 cells, increased CD44-ezrin co-precipitation and accordingly enhanced cell migration. Expression of palmitoylation-impaired (raft-excluded) CD44 mutants in non-invasive MCF-10a cells was sufficient to reversibly induce the phenotypic appearance of epithelial-to-mesenchymal transition and to increase cell motility. Interestingly, cell migration was associated with temporal reductions in CD44 palmitoylation in wild-type breast cells. Finally

  8. Thyroid function appears to be significantly reduced in Space-borne MDS mice

    Science.gov (United States)

    Saverio Ambesi-Impiombato, Francesco; Curcio, Francesco; Fontanini, Elisabetta; Perrella, Giuseppina; Spelat, Renza; Zambito, Anna Maria; Damaskopoulou, Eleni; Peverini, Manola; Albi, Elisabetta

    It is known that prolonged space flights induced changes in human cardiovascular, muscu-loskeletal and nervous systems whose function is regulated by the thyroid gland but, until now, no data were reported about thyroid damage during space missions. We have demonstrated in vitro that, during space missions (Italian Soyuz Mission "ENEIDE" in 2005, Shuttle STS-120 "ESPERIA" in 2007), thyroid in vitro cultured cells did not respond to thyroid stimulating hor-mone (TSH) treatment; they appeared healthy and alive, despite their being in a pro-apopotic state characterised by a variation of sphingomyelin metabolism and consequent increase in ce-ramide content. The insensitivity to TSH was largely due to a rearrangement of specific cell membrane microdomains, acting as platforms for TSH-receptor (TEXUS-44 mission in 2008). To study if these effects were present also in vivo, as part of the Mouse Drawer System (MDS) Tissue Sharing Program, we performed experiments in mice maintained onboard the Interna-tional Space Station during the long-duration (90 days) exploration mission STS-129. After return to earth, the thyroids isolated from the 3 animals were in part immediately frozen to study the morphological modification in space and in part immediately used to study the effect of TSH treatment. For this purpose small fragments of tissue were treated with 10-7 or 10-8 M TSH for 1 hour by using untreated fragments as controls. Then the fragments were fixed with absolute ethanol for 10 min at room temperature and centrifuged for 20 min. at 3000 x g. The supernatants were used for cAMP analysis whereas the pellet were used for protein amount determination and for immunoblotting analysis of TSH-receptor, sphingomyelinase and sphingomyelin-synthase. The results showed a modification of the thyroid structure and also the values of cAMP production after treatment with 10-7 M TSH for 1 hour were significantly lower than those obtained in Earth's gravity. The treatment with TSH

  9. Recent advances in ion and electron spectroscopy of polymer surfaces

    Science.gov (United States)

    Gardella, Joseph A.

    1988-01-01

    The structure of microdomains and bonding at multicomponent polymer material interfaces has been studied using a variety of surface sensitive spectroscopic techniques. In our laboratory, low energy ion scattering spectroscopy (ISS) and static secondary ion mass spectrometry (SIMS) serve to complement results from angular dependent X-ray photoelectron spectroscopy (XPS or ESCA), Fourier transform infrared (FTIR) with attenuated total reflectance (ATR) sampling and SEM techniques to provide a quantitative picture of the relationships between structure, bonding, morphology and microdomain formation in near surface regions of polymeric systems. The added surface sensitivity of ISS can yield quantitative information at a sampling depth of 3-5 Å, which, with ESCA and FTIR analysis yields a "non-destructive" depth profile of domain formation in copolymer and blend systems. These studies will be illustrated with results from siloxane and siloxane/polycarbonate copolymer systems, where a complete picture of surface domain formation and morphology as a function of composition and polymer crystallinity has been developed. ISS can also yield information regarding the orientation of surface functional groups which ESCA and FTIR do not have either sensitivity and/or sufficient detection limits to analyze. These studies will be illustrated by the analysis of plasma hydrolysis/oxidation of stereoregular poly(methyl-methacrylate). The effects of functional group orientation on reactivity will be explored using results from ISS, ESCA and FTIR for stereoregular (isotatic, syndiotactic) and random (atactic) PMMA. Electron energy loss spectroscopy at high resolution (HREELS) has recently been extended to the examination of polymer and organic surfaces. Vibrational information from this experiment can yield very precise results about surface functional groups (1-20 Å) but at much lower resolution than is typical from IR and Raman techniques. However, the promise of evaluating surface

  10. Inhibition of Helicobacter pylori CagA-Induced Pathogenesis by Methylantcinate B from Antrodia camphorata

    Directory of Open Access Journals (Sweden)

    Chun-Jung Lin

    2013-01-01

    Full Text Available The bacterial pathogen Helicobacter pylori (Hp is the leading risk factor for the development of gastric cancer. Hp virulence factor, cytotoxin-associated gene A (CagA interacted with cholesterol-enriched microdomains and leads to induction of inflammation in gastric epithelial cells (AGS. In this study, we identified a triterpenoid methylantcinate B (MAB from the medicinal mushroom Antrodia camphoratawhich inhibited the translocation and phosphorylation of CagA and caused a reduction in hummingbird phenotype in HP-infected AGS cells. Additionally, MAB suppressed the Hp-induced inflammatory response by attenuation of NF-κB activation, translocation of p65 NF-κB, and phosphorylation of IκB-α, indicating that MAB modulates CagA-mediated signaling pathway. Additionally, MAB also suppressed the IL-8 luciferase activity and its secretion in HP-infected AGS cells. On the other hand, molecular structure simulations revealed that MAB interacts with CagA similarly to that of cholesterol. Moreover, binding of cholesterol to the immobilized CagA was inhibited by increased levels of MAB. Our results demonstrate that MAB is the first natural triterpenoid which competes with cholesterol bound to CagA leading to attenuation of Hp-induced pathogenesis of epithelial cells. Thus, this study indicates that MAB may have a scope to develop as a therapeutic candidate against Hp CagA-induced inflammation.

  11. Microscopic studies on Y2Ba4Cu7O15-δ by use of TEM and NQR techniques

    International Nuclear Information System (INIS)

    Kato, Masaki; Nakanishi, Makoto; Yoshimura, Kazuyoshi; Kosuge, Koji; Miyano, Toshio; Kakihana, Masato

    1998-01-01

    Y 2 Ba 4 Cu 7 O 15-δ compounds were characterized by microscopic investigation using TEM and NQR techniques. The authors synthesized Y247 compounds by two kinds of preparation methods: the conventional solid-state reaction (sample A) and the polymerized-complex method (sample B). The value of T c for sample A was found o be 65 K and that for sample B as 93 K by ac-χ measurements. As a result of TEM experiments, stacking faults along the c axis were observed more frequently in sample B than in sample A. These stacking faults resulted in microdomains containing pure Y123 or Y124 thin blocks of several unit cells. NQR experiments revealed that the microscopic environment of Cu(2) sites in sample A differed from either of those in the Y123 and Y124 compounds. NQR frequency values (ν Q ) of Cu(2) sites agreed well with those calculated by the point charge model applied for the Y247 structure. The spectra of Cu(2) sites in sample B could be regarded, however, as a combination of those of pure Y123, Y124, and also Y247 compounds. This fact was coincident with the result of TEM experiments. The authors concluded that the superconductivity of Y247 with higher T c originates from the thin block of Y123

  12. Involvement of glycosphingolipid-enriched lipid rafts in inflammatory responses.

    Science.gov (United States)

    Iwabuchi, Kazuhisa

    2015-01-01

    Glycosphingolipids (GSLs) are membrane components consisting of hydrophobic ceramide and hydrophilic sugar moieties. GSLs cluster with cholesterol in cell membranes to form GSL-enriched lipid rafts. Biochemical analyses have demonstrated that GSL-enriched lipid rafts contain several kinds of transducer molecules, including Src family kinases. Among the GSLs, lactosylceramide (LacCer, CDw17) can bind to various microorganisms, is highly expressed on the plasma membranes of human phagocytes, and forms lipid rafts containing the Src family tyrosine kinase Lyn. LacCer-enriched lipid rafts mediate immunological and inflammatory reactions, including superoxide generation, chemotaxis, and non-opsonic phagocytosis. Therefore, LacCer-enriched membrane microdomains are thought to function as pattern recognition receptors (PRRs), which recognize pathogen-associated molecular patterns (PAMPs) expressed on microorganisms. LacCer also serves as a signal transduction molecule for functions mediated by CD11b/CD18-integrin (αM/β2-integrin, CR3, Mac-1), as well as being associated with several key cellular processes. LacCer recruits PCKα/ε and phospholipase A2 to stimulate PECAM-1 expression in human monocytes and their adhesion to endothelial cells, as well as regulating β1-integrin clustering and endocytosis on cell surfaces. This review describes the organizational and inflammation-related functions of LacCer-enriched lipid rafts.

  13. A cellular backline: specialization of host membranes for defence.

    Science.gov (United States)

    Faulkner, Christine

    2015-03-01

    In plant-pathogen interactions, the host plasma membrane serves as a defence front for pathogens that invade from the extracellular environment. As such, the lipid bilayer acts as a scaffold that targets and delivers defence responses to the site of attack. During pathogen infection, numerous changes in plasma membrane composition, organization, and structure occur. There is increasing evidence that this facilitates the execution of a variety of responses, highlighting the regulatory role membranes play in cellular responses. Membrane microdomains such as lipid rafts are hypothesized to create signalling platforms for receptor signalling in response to pathogen perception and for callose synthesis. Further, the genesis of pathogen-associated structures such as papillae and the extra-haustorial membrane necessitates polarization of membranes and membrane trafficking pathways. Unlocking the mechanisms by which this occurs will enable greater understanding of how targeted defences, some of which result in resistance, are executed. This review will survey some of the changes that occur in host membranes during pathogen attack and how these are associated with the generation of defence responses. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Lipids in host-pathogen interactions: pathogens exploit the complexity of the host cell lipidome.

    Science.gov (United States)

    van der Meer-Janssen, Ynske P M; van Galen, Josse; Batenburg, Joseph J; Helms, J Bernd

    2010-01-01

    Lipids were long believed to have a structural role in biomembranes and a role in energy storage utilizing cellular lipid droplets and plasma lipoproteins. Research over the last decades has identified an additional role of lipids in cellular signaling, membrane microdomain organization and dynamics, and membrane trafficking. These properties make lipids an attractive target for pathogens to modulate host cell processes in order to allow their survival and replication. In this review we will summarize the often ingenious strategies of pathogens to modify the lipid homeostasis of host cells, allowing them to divert cellular processes. To this end pathogens take full advantage of the complexity of the lipidome. The examples are categorized in generalized and emerging principles describing the involvement of lipids in host-pathogen interactions. Several pathogens are described that simultaneously induce multiple changes in the host cell signaling and trafficking mechanisms. Elucidation of these pathogen-induced changes may have important implications for drug development. The emergence of high-throughput lipidomic techniques will allow the description of changes of the host cell lipidome at the level of individual molecular lipid species and the identification of lipid biomarkers.

  15. Role of spatial inhomogenity in GPCR dimerisation predicted by receptor association-diffusion models

    Science.gov (United States)

    Deshpande, Sneha A.; Pawar, Aiswarya B.; Dighe, Anish; Athale, Chaitanya A.; Sengupta, Durba

    2017-06-01

    G protein-coupled receptor (GPCR) association is an emerging paradigm with far reaching implications in the regulation of signalling pathways and therapeutic interventions. Recent super resolution microscopy studies have revealed that receptor dimer steady state exhibits sub-second dynamics. In particular the GPCRs, muscarinic acetylcholine receptor M1 (M1MR) and formyl peptide receptor (FPR), have been demonstrated to exhibit a fast association/dissociation kinetics, independent of ligand binding. In this work, we have developed a spatial kinetic Monte Carlo model to investigate receptor homo-dimerisation at a single receptor resolution. Experimentally measured association/dissociation kinetic parameters and diffusion coefficients were used as inputs to the model. To test the effect of membrane spatial heterogeneity on the simulated steady state, simulations were compared to experimental statistics of dimerisation. In the simplest case the receptors are assumed to be diffusing in a spatially homogeneous environment, while spatial heterogeneity is modelled to result from crowding, membrane micro-domains and cytoskeletal compartmentalisation or ‘corrals’. We show that a simple association-diffusion model is sufficient to reproduce M1MR association statistics, but fails to reproduce FPR statistics despite comparable kinetic constants. A parameter sensitivity analysis is required to reproduce the association statistics of FPR. The model reveals the complex interplay between cytoskeletal components and their influence on receptor association kinetics within the features of the membrane landscape. These results constitute an important step towards understanding the factors modulating GPCR organisation.

  16. Activation of PKA in cell requires higher concentration of cAMP than in vitro: implications for compartmentalization of cAMP signalling.

    Science.gov (United States)

    Koschinski, Andreas; Zaccolo, Manuela

    2017-10-26

    cAMP is a ubiquitous second messenger responsible for the cellular effects of multiple hormones and neurotransmitters via activation of its main effector, protein kinase A (PKA). Multiple studies have shown that the basal concentration of cAMP in several cell types is about 1 μM. This value is well above the reported concentration of cAMP required to half-maximally activate PKA, which measures in the 100-300 nM range. Several hypotheses have been suggested to explain this apparent discrepancy including inaccurate measurements of intracellular free cAMP, inaccurate measurement of the apparent activation constant of PKA or shielding of PKA from bulk cytosolic cAMP via localization of the enzyme to microdomains with lower basal cAMP concentration. However, direct experimental evidence in support of any of these models is limited and a firm conclusion is missing. In this study we use multiple FRET-based reporters for the detection of cAMP and PKA activity in intact cells and we establish that the sensitivity of PKA to cAMP is almost twenty times lower when measured in cell than when measured in vitro. Our findings have important implications for the understanding of compartmentalized cAMP signalling.

  17. Anchored PKA as a gatekeeper for gap junctions.

    Science.gov (United States)

    Pidoux, Guillaume; Taskén, Kjetil

    2015-01-01

    Anchored protein kinase A (PKA) bound to A Kinase Anchoring Protein (AKAP) mediates effects of localized increases in cAMP in defined subcellular microdomains and retains the specificity in cAMP-PKA signaling to distinct extracellular stimuli. Gap junctions are pores between adjacent cells constituted by connexin proteins that provide means of communication and transfer of small molecules. While the PKA signaling is known to promote human trophoblast cell fusion, the gap junction communication through connexin 43 (Cx43) is a prerequisite for this process. We recently demonstrated that trophoblast fusion is regulated by ezrin, a known AKAP, which binds to Cx43 and delivers PKA in the vicinity gap junctions. We found that disruption of the ezrin-Cx43 interaction abolished PKA-dependent phosphorylation of Cx43 as well as gap junction communication and subsequently cell fusion. We propose that the PKA-ezrin-Cx43 macromolecular complex regulating gap junction communication constitutes a general mechanism to control opening of Cx43 gap junctions by phosphorylation in response to cAMP signaling in various cell types.

  18. Digital holographic microscopy of phase separation in multicomponent lipid membranes

    Science.gov (United States)

    Farzam Rad, Vahideh; Moradi, Ali-Reza; Darudi, Ahmad; Tayebi, Lobat

    2016-12-01

    Lateral in-homogeneities in lipid compositions cause microdomains formation and change in the physical properties of biological membranes. With the presence of cholesterol and mixed species of lipids, phospholipid membranes segregate into lateral domains of liquid-ordered and liquid-disordered phases. Coupling of two-dimensional intralayer phase separations and interlayer liquid-crystalline ordering in multicomponent membranes has been previously demonstrated. By the use of digital holographic microscopy (DHMicroscopy), we quantitatively analyzed the volumetric dynamical behavior of such membranes. The specimens are lipid mixtures composed of sphingomyelin, cholesterol, and unsaturated phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine. DHMicroscopy in a transmission mode is an effective tool for quantitative visualization of phase objects. By deriving the associated phase changes, three-dimensional information on the morphology variation of lipid stacks at arbitrary time scales is obtained. Moreover, the thickness distribution of the object at demanded axial planes can be obtained by numerical focusing. Our results show that the volume evolution of lipid domains follows approximately the same universal growth law of previously reported area evolution. However, the thickness of the domains does not alter significantly by time; therefore, the volume evolution is mostly attributed to the changes in area dynamics. These results might be useful in the field of membrane-based functional materials.

  19. CD38 is a signaling molecule in B-cell chronic lymphocytic leukemia cells.

    Science.gov (United States)

    Deaglio, Silvia; Capobianco, Andrea; Bergui, Luciana; Dürig, Jan; Morabito, Fortunato; Dührsen, Ulrich; Malavasi, Fabio

    2003-09-15

    The prognosis for patients with B-cell chronic lymphocytic leukemia (B-CLL) is generally less favorable for those expressing CD38. Our working hypothesis is that CD38 is not merely a marker in B-CLL, but that it plays a receptor role with pathogenetic potential ruling the proliferation of the malignant clone. CD38 levels were generally low in the patients examined and monoclonal antibody (mAb) ligation was inefficient in signaling. Other cellular models indicated that molecular density and surface organization are critical for CD38 functionality. Interleukin 2 (IL-2) induced a marked up-modulation and surface rearrangement of CD38 in all the patients studied. On reaching a specific expression threshold, CD38 becomes an efficient receptor in purified B-CLL cells. Indeed, mAb ligation is followed by Ca2+ fluxes and by a markedly increased proliferation. The unsuitability of CD38 to perform as a receptor is obviated through close interaction with the B-cell-receptor (BCR) complex and CD19. On mAb binding, CD38 translocates to the membrane lipid microdomains, as shown by a colocalization with the GM1 ganglioside and with CD81, a raft-resident protein. Finally, CD38 signaling in IL-2-treated B-CLL cells prolonged survival and induced the appearance of plasmablasts, providing a pathogenetic hypothesis for the occurrence of Richter syndrome.

  20. WIP regulates persistence of cell migration and ruffle formation in both mesenchymal and amoeboid modes of motility.

    Directory of Open Access Journals (Sweden)

    Inmaculada Banon-Rodriguez

    Full Text Available The spatial distribution of signals downstream from receptor tyrosine kinases (RTKs or G-protein coupled receptors (GPCR regulates fundamental cellular processes that control cell migration and growth. Both pathways rely significantly on actin cytoskeleton reorganization mediated by nucleation-promoting factors such as the WASP-(Wiskott-Aldrich Syndrome Protein family. WIP (WASP Interacting Protein is essential for the formation of a class of polarised actin microdomain, namely dorsal ruffles, downstream of the RTK for PDGF (platelet-derived growth factor but the underlying mechanism is poorly understood. Using lentivirally-reconstituted WIP-deficient murine fibroblasts we define the requirement for WIP interaction with N-WASP (neural WASP and Nck for efficient dorsal ruffle formation and of WIP-Nck binding for fibroblast chemotaxis towards PDGF-AA. The formation of both circular dorsal ruffles in PDGF-AA-stimulated primary fibroblasts and lamellipodia in CXCL13-treated B lymphocytes are also compromised by WIP-deficiency. We provide data to show that a WIP-Nck signalling complex interacts with RTK to promote polarised actin remodelling in fibroblasts and provide the first evidence for WIP involvement in the control of migratory persistence in both mesenchymal (fibroblast and amoeboid (B lymphocytes motility.

  1. Advanced electrical current measurements of microdischarges: evidence of sub-critical pulses and ion currents in barrier discharge in air

    Science.gov (United States)

    Synek, Petr; Zemánek, Miroslav; Kudrle, Vít; Hoder, Tomáš

    2018-04-01

    Electrical current measurements in corona or barrier microdischarges are a challenge as they require both high temporal resolution and a large dynamic range of the current probe used. In this article, we apply a simple self-assembled current probe and compare it to commercial ones. An analysis in the time and frequency domain is carried out. Moreover, an improved methodology is presented, enabling both temporal resolution in sub-nanosecond times and current sensitivity in the order of tens of micro-amperes. Combining this methodology with a high-tech oscilloscope and self-developed software, a unique statistical analysis of currents in volume barrier discharge driven in atmospheric-pressure air is made for over 80 consecutive periods of a 15 kHz applied voltage. We reveal the presence of repetitive sub-critical current pulses and conclude that these can be identified with the discharging of surface charge microdomains. Moreover, extremely low, long-lasting microsecond currents were detected which are caused by ion flow, and are analysed in detail. The statistical behaviour presented gives deeper insight into the discharge physics of these usually undetectable current signals.

  2. Force regulated dynamics of RPA on a DNA fork.

    Science.gov (United States)

    Kemmerich, Felix E; Daldrop, Peter; Pinto, Cosimo; Levikova, Maryna; Cejka, Petr; Seidel, Ralf

    2016-07-08

    Replication protein A (RPA) is a single-stranded DNA binding protein, involved in most aspects of eukaryotic DNA metabolism. Here, we study the behavior of RPA on a DNA substrate that mimics a replication fork. Using magnetic tweezers we show that both yeast and human RPA can open forked DNA when sufficient external tension is applied. In contrast, at low force, RPA becomes rapidly displaced by the rehybridization of the DNA fork. This process appears to be governed by the binding or the release of an RPA microdomain (toehold) of only few base-pairs length. This gives rise to an extremely rapid exchange dynamics of RPA at the fork. Fork rezipping rates reach up to hundreds of base-pairs per second, being orders of magnitude faster than RPA dissociation from ssDNA alone. Additionally, we show that RPA undergoes diffusive motion on ssDNA, such that it can be pushed over long distances by a rezipping fork. Generally the behavior of both human and yeast RPA homologs is very similar. However, in contrast to yeast RPA, the dissociation of human RPA from ssDNA is greatly reduced at low Mg(2+) concentrations, such that human RPA can melt DNA in absence of force. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Formation of nanophases in epoxy thermosets containing amphiphilic block copolymers with linear and star-like topologies.

    Science.gov (United States)

    Wang, Lei; Zhang, Chongyin; Cong, Houluo; Li, Lei; Zheng, Sixun; Li, Xiuhong; Wang, Jie

    2013-07-11

    In this work, we investigated the effect of topological structures of block copolymers on the formation of the nanophase in epoxy thermosets containing amphiphilic block copolymers. Two block copolymers composed of poly(ε-caprolactone) (PCL) and poly(2,2,2-trifluoroethyl acrylate) (PTFEA) blocks were synthesized to possess linear and star-shaped topologies. The star-shaped block copolymer composed a polyhedral oligomeric silsesquioxane (POSS) core and eight poly(ε-caprolactone)-block-poly(2,2,2-trifluoroethyl acrylate) (PCL-b-PTFEA) diblock copolymer arms. Both block copolymers were synthesized via the combination of ring-opening polymerization and reversible addition-fragmentation chain transfer/macromolecular design via the interchange of xanthate (RAFT/MADIX) process; they were controlled to have identical compositions of copolymerization and lengths of blocks. Upon incorporating both block copolymers into epoxy thermosets, the spherical PTFEA nanophases were formed in all the cases. However, the sizes of PTFEA nanophases from the star-like block copolymer were significantly lower than those from the linear diblock copolymer. The difference in the nanostructures gave rise to the different glass transition behavior of the nanostructured thermosets. The dependence of PTFEA nanophases on the topologies of block copolymers is interpreted in terms of the conformation of the miscible subchain (viz. PCL) at the surface of PTFEA microdomains and the restriction of POSS cages on the demixing of the thermoset-philic block (viz. PCL).

  4. Segregation of lipids near acetylcholine-receptor channels imaged by cryo-EM

    Directory of Open Access Journals (Sweden)

    Nigel Unwin

    2017-07-01

    Full Text Available Rapid communication at the chemical synapse depends on the action of ion channels residing in the postsynaptic membrane. The channels open transiently upon the binding of a neurotransmitter released from the presynaptic nerve terminal, eliciting an electrical response. Membrane lipids also play a vital but poorly understood role in this process of synaptic transmission. The present study examines the lipid distribution around nicotinic acetylcholine (ACh receptors in tubular vesicles made from postsynaptic membranes of the Torpedo ray, taking advantage of the recent advances in cryo-EM. A segregated distribution of lipid molecules is found in the outer leaflet of the bilayer. Apparent cholesterol-rich patches are located in specific annular regions next to the transmembrane helices and also in a more extended `microdomain' between the apposed δ subunits of neighbouring receptors. The particular lipid distribution can be interpreted straightforwardly in relation to the gating movements revealed by an earlier time-resolved cryo-EM study, in which the membranes were exposed briefly to ACh. The results suggest that in addition to stabilizing the protein, cholesterol may play a mechanical role by conferring local rigidity to the membrane so that there is productive coupling between the extracellular and membrane domains, leading to opening of the channel.

  5. Biomediated Precipitation of Calcium Carbonate in a Slightly Acidic Hot Spring

    Science.gov (United States)

    Jiang, L.

    2015-12-01

    A slightly acidic hot spring named "Female Tower" (T=73.5 °C, pH=6.64) is located in the Jifei Geothermal Field, Yunnan Province, Southwest China. The precipitates in the hot spring are composed of large amounts of calcite, aragonite, and sulfur. Scanning electron microscopy (SEM) analyses revealed that the microbial mats were formed of various coccoid, rod-shaped, and filamentous microbes. Transmission electron microscopy (TEM) showed that the intracellular sulfur granules were commonly associated with these microbes. A culture-independent molecular phylogenetic analysis demonstrated that the majority of the bacteria in the spring were sulfur-oxidizing bacteria. In the spring water, H2S concentration was up to 60 ppm, while SO42- concentration was only about 10 ppm. We speculated that H2S might be utilized by sulfur-oxidizing bacteria in this hot spring water, leading to the intracellular formation of sulfur granules. In the meantime, this reaction increased the pH in the micron-scale microdomains, which fostered the precipitation of calcium carbonate in the microbial mats. The results of this study indicated that the sulfur-oxidizing bacteria could play an important role in calcium carbonate precipitation in slightly acidic hot spring environments.

  6. New self-assembly strategies for next generation lithography

    Science.gov (United States)

    Schwartz, Evan L.; Bosworth, Joan K.; Paik, Marvin Y.; Ober, Christopher K.

    2010-04-01

    Future demands of the semiconductor industry call for robust patterning strategies for critical dimensions below twenty nanometers. The self assembly of block copolymers stands out as a promising, potentially lower cost alternative to other technologies such as e-beam or nanoimprint lithography. One approach is to use block copolymers that can be lithographically patterned by incorporating a negative-tone photoresist as the majority (matrix) phase of the block copolymer, paired with photoacid generator and a crosslinker moiety. In this system, poly(α-methylstyrene-block-hydroxystyrene)(PαMS-b-PHOST), the block copolymer is spin-coated as a thin film, processed to a desired microdomain orientation with long-range order, and then photopatterned. Therefore, selfassembly of the block copolymer only occurs in select areas due to the crosslinking of the matrix phase, and the minority phase polymer can be removed to produce a nanoporous template. Using bulk TEM analysis, we demonstrate how the critical dimension of this block copolymer is shown to scale with polymer molecular weight using a simple power law relation. Enthalpic interactions such as hydrogen bonding are used to blend inorganic additives in order to enhance the etch resistance of the PHOST block. We demonstrate how lithographically patternable block copolymers might fit in to future processing strategies to produce etch-resistant self-assembled features at length scales impossible with conventional lithography.

  7. Preparation and Characterization of Self-Assembled Nanoparticles of Hyaluronic Acid-Deoxycholic Acid Conjugates

    Directory of Open Access Journals (Sweden)

    Xuemeng Dong

    2010-01-01

    Full Text Available Novel amphiphilic biopolymers were synthesized using hyaluronic acid (HA as a hydrophilic segment and deoxycholic acid (DOCA as a hydrophobic segment by a 1-ethyl-3-(3-dimethylaminopropyl carbodiimide mediated coupling reaction. The structural characteristics of the HA-DOCA conjugates were investigated using H1 NMR. Self-assembled nanoparticles were prepared based on HA-DOCA conjugates, and its characteristics were investigated using dynamic laser light scattering, transmission electron microscopy (TEM, and fluorescence spectroscopy. The mean diameter was about 293.5 nm with unimodal size distribution in distilled water. The TEM images revealed that the shape of HA-DOCA self-aggregates was spherical. The critical aggregation concentration (CAC was in the range of 0.025–0.056 mg/mL. The partition equilibrium constant (Kv of pyrene in self-aggregates solution was from 1.45×104 to 3.64×104. The aggregation number of DOCA groups per hydrophobic microdomain, estimated by the fluorescence quenching method using cetylpyridinium chloride, increased with increasing degree of substitution.

  8. Cardiac voltage gated calcium channels and their regulation by β-adrenergic signaling.

    Science.gov (United States)

    Kumari, Neema; Gaur, Himanshu; Bhargava, Anamika

    2018-02-01

    Voltage-gated calcium channels (VGCCs) are the predominant source of calcium influx in the heart leading to calcium-induced calcium release and ultimately excitation-contraction coupling. In the heart, VGCCs are modulated by the β-adrenergic signaling. Signaling through β-adrenergic receptors (βARs) and modulation of VGCCs by β-adrenergic signaling in the heart are critical signaling and changes to these have been significantly implicated in heart failure. However, data related to calcium channel dysfunction in heart failure is divergent and contradictory ranging from reduced function to no change in the calcium current. Many recent studies have highlighted the importance of functional and spatial microdomains in the heart and that may be the key to answer several puzzling questions. In this review, we have briefly discussed the types of VGCCs found in heart tissues, their structure, and significance in the normal and pathological condition of the heart. More importantly, we have reviewed the modulation of VGCCs by βARs in normal and pathological conditions incorporating functional and structural aspects. There are different types of βARs, each having their own significance in the functioning of the heart. Finally, we emphasize the importance of location of proteins as it relates to their function and modulation by co-signaling molecules. Its implication on the studies of heart failure is speculated. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Glutamate dehydrogenase affects resistance to cell wall antibiotics in Bacillus subtilis.

    Science.gov (United States)

    Lee, Yong Heon; Kingston, Anthony W; Helmann, John D

    2012-03-01

    The glutamate dehydrogenase RocG of Bacillus subtilis is a bifunctional protein with both enzymatic and regulatory functions. Here we show that the rocG null mutant is sensitive to β-lactams, including cefuroxime (CEF), and to fosfomycin but that resistant mutants arise due to gain-of-function mutations in gudB, which encodes an otherwise inactive glutamate dehydrogenase. In the presence of CEF, ΔrocG ΔgudB mutant cells exhibit growth arrest when they reach mid-exponential phase. Using microarray-based transcriptional profiling, we found that the σ(W) regulon was downregulated in the ΔrocG ΔgudB null mutant. A survey of σ(W)-controlled genes for effects on CEF resistance identified both the NfeD protein YuaF and the flotillin homologue YuaG (FloT). Notably, overexpression of yuaFG in the rocG null mutant prevents the growth arrest induced by CEF. The YuaG flotillin has been shown previously to localize to defined lipid microdomains, and we show here that the yuaFGI operon contributes to a σ(W)-dependent decrease in membrane fluidity. We conclude that glutamate dehydrogenase activity affects the expression of the σ(W) regulon, by pathways that are yet unclear, and thereby influences resistance to CEF and other antibiotics.

  10. Redox modification of caveolar proteins in the cardiovascular system- role in cellular signalling and disease.

    Science.gov (United States)

    Bubb, Kristen J; Birgisdottir, Asa Birna; Tang, Owen; Hansen, Thomas; Figtree, Gemma A

    2017-08-01

    Rapid and coordinated release of a variety of reactive oxygen species (ROS) such as superoxide (O 2 .- ), hydrogen peroxide (H 2 O 2 ) and peroxynitrite, in specific microdomains, play a crucial role in cell signalling in the cardiovascular system. These reactions are mediated by reversible and functional modifications of a wide variety of key proteins. Dysregulation of this oxidative signalling occurs in almost all forms of cardiovascular disease (CVD), including at the very early phases. Despite the heavily publicized failure of "antioxidants" to improve CVD progression, pharmacotherapies such as those targeting the renin-angiotensin system, or statins, exert at least part of their large clinical benefit via modulating cellular redox signalling. Over 250 proteins, including receptors, ion channels and pumps, and signalling proteins are found in the caveolae. An increasing proportion of these are being recognized as redox regulated-proteins, that reside in the immediate vicinity of the two major cellular sources of ROS, nicotinamide adenine dinucleotide phosphate oxidase (Nox) and uncoupled endothelial nitric oxide synthase (eNOS). This review focuses on what is known about redox signalling within the caveolae, as well as endogenous protective mechanisms utilized by the cell, and new approaches to targeting dysregulated redox signalling in the caveolae as a therapeutic strategy in CVD. Copyright © 2017. Published by Elsevier Inc.

  11. Sodium signaling and astrocyte energy metabolism

    KAUST Repository

    Chatton, Jean-Yves; Magistretti, Pierre J.; Barros, L. Felipe

    2016-01-01

    The Na+ gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na+-dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na+ load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na+ extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na+ following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na+ as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na+ and the metabolic machinery. © 2016 Wiley Periodicals, Inc.

  12. P120-GAP associated with syndecan-2 to function as an active switch signal for Src upon transformation with oncogenic ras

    International Nuclear Information System (INIS)

    Huang, J.-W.; Chen, C.-L.; Chuang, N.-N.

    2005-01-01

    BALB/3T3 cells transfected with plasmids pcDNA3.1-[S-ras(Q 61 K)] of shrimp Penaeus japonicus were applied to reveal a complex of p120-GAP/syndecan-2 being highly expressed upon transformation. Of interest, most of the p120-GAP/syndecan-2 complex was localized at caveolae, a membrane microdomain enriched with caveolin-1. To confirm the molecular interaction between syndecan-2 and p120-GAP, we further purified p120-GAP protein from mouse brains by using an affinity column of HiTrap-RACK1 and expressed mouse RACK1-encoded fusion protein and mouse syndecan-2-encoded fusion protein in bacteria. We report molecular affinities exist between p120-GAP and RACK1, syndecan-2 and RACK1 as well as p120-GAP and syndecan-2. The selective affinity between p120-GAP and syndecan-2 was found to be sufficient to detach RACK1. The p120-GAP/syndecan-2 complex was demonstrated to keep Src tyrosine kinase in an activated form. On the other hand, the syndecan-2/RACK1 complex was found to have Src in an inactivated form. These data indicate that the p120-GAP/syndecan-2 complex at caveolae could provide a docking site for Src to transmit tyrosine signaling, implying that syndecan-2/p120-GAP functions as a tumor promoter upon transformation with oncogenic ras of shrimp P. japonicus

  13. A V1143F mutation in the neuronal-enriched isoform 2 of the PMCA pump is linked with ataxia.

    Science.gov (United States)

    Vicario, Mattia; Zanni, Ginevra; Vallese, Francesca; Santorelli, Filippo; Grinzato, Alessandro; Cieri, Domenico; Berto, Paola; Frizzarin, Martina; Lopreiato, Raffaele; Zonta, Francesco; Ferro, Stefania; Sandre, Michele; Marin, Oriano; Ruzzene, Maria; Bertini, Enrico; Zanotti, Giuseppe; Brini, Marisa; Calì, Tito; Carafoli, Ernesto

    2018-04-12

    The fine regulation of intracellular calcium is fundamental for all eukaryotic cells. In neurons, Ca 2+ oscillations govern the synaptic development, the release of neurotransmitters and the expression of several genes. Alterations of Ca 2+ homeostasis were found to play a pivotal role in neurodegenerative progression. The maintenance of proper Ca 2+ signaling in neurons demands the continuous activity of Ca 2+ pumps and exchangers to guarantee physiological cytosolic concentration of the cation. The plasma membrane Ca 2+ ATPases (PMCA pumps) play a key role in the regulation of Ca 2+ handling in selected sub-plasma membrane microdomains. Among the four basic PMCA pump isoforms existing in mammals, isoforms 2 and 3 are particularly enriched in the nervous system. In humans, genetic mutations in the PMCA2 gene in association with cadherin 23 mutations have been linked to hearing loss phenotypes, while those occurring in the PMCA3 gene were associated with X-linked congenital cerebellar ataxias. Here we describe a novel missense mutation (V1143F) in the calmodulin binding domain (CaM-BD) of the PMCA2 protein. The mutant pump was present in a patient showing congenital cerebellar ataxia but no overt signs of deafness, in line with the absence of mutations in the cadherin 23 gene. Biochemical and molecular dynamics studies on the mutated PMCA2 have revealed that the V1143F substitution alters the binding of calmodulin to the CaM-BD leading to impaired Ca 2+ ejection. Copyright © 2018. Published by Elsevier Inc.

  14. A biophysical model for transcription factories

    International Nuclear Information System (INIS)

    Canals-Hamann, Ana Z; Neves, Ricardo Pires das; Reittie, Joyce E; Iñiguez, Carlos; Soneji, Shamit; Enver, Tariq; Buckle, Veronica J; Iborra, Francisco J

    2013-01-01

    Transcription factories are nuclear domains where gene transcription takes place although the molecular basis for their formation and maintenance are unknown. In this study, we explored how the properties of chromatin as a polymer may contribute to the structure of transcription factories. We found that transcriptional active chromatin contains modifications like histone H4 acetylated at Lysine 16 (H4K16ac). Single fibre analysis showed that this modification spans the entire body of the gene. Furthermore, H4K16ac genes cluster in regions up to 500 Kb alternating active and inactive chromatin. The introduction of H4K16ac in chromatin induces stiffness in the chromatin fibre. The result of this change in flexibility is that chromatin could behave like a multi-block copolymer with repetitions of stiff-flexible (active-inactive chromatin) components. Copolymers with such structure self-organize through spontaneous phase separation into microdomains. Consistent with such model H4K16ac chromatin form foci that associates with nascent transcripts. We propose that transcription factories are the result of the spontaneous concentration of H4K16ac chromatin that are in proximity, mainly in cis

  15. Hydrophobicity of electron beam modified surface of hydroxyapatite films

    Energy Technology Data Exchange (ETDEWEB)

    Gregor, M., E-mail: gregor@fmph.uniba.sk [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia); Plecenik, T. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia); Tofail, S.A.M. [Materials & Surface Science Institute, University of Limerick, Limerick (Ireland); Zahoran, M.; Truchly, M. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia); Vargova, M. [Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, 84215 Bratislava (Slovakia); Laffir, F. [Materials & Surface Science Institute, University of Limerick, Limerick (Ireland); Plesch, G. [Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, 84215 Bratislava (Slovakia); Kus, P.; Plecenik, A. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia)

    2015-05-15

    Highlights: • Surface potential of hydroxyapatite films were modified by focused electron beam. • Micron-sized domains of modified surface potential were created. • Wettability and surface free energy of the irradiated areas was studied. • Possible mechanisms of increased surface hydrophobicity are discussed. - Abstract: Arrays of micron-sized domains of modified surface potential were created on hydroxyapatite films by mid-energy (20 keV) electron beam irradiation available in a laboratory scanning electron microscope. The dosage of electron beam was varied between 10{sup −3} and 10{sup 3} μC/cm{sup 2} to inject charge into the film surface. Contrary to the conventional electrowetting theory, the dosage of injected charge used in creating such microdomains caused a gradual increase of the water contact angle from 57° to 93° due to the elimination of the polar component of the surface free energy. Surface contamination by carbonaceous species can be held only partially responsible for such behavior at lower dosage of electron beam. A transfer of free surface charge to water and an electron beam induced disruption of polar orientation of OH ions have been attributed to be influencial factors in the overall dewetting behavior.

  16. Weak link behaviour in YBa2Cu3O7-δ system studied by a site percolation model

    International Nuclear Information System (INIS)

    Arulgnanam, A.; Balasubramanian, A.

    1992-01-01

    The superconductivity in the YBaCuO system can be explained in terms of the superconducting percolation of 90 K orthorhombic microdomain. Kubo et al. have studied the percolation behaviour of the 123 system and estimated the total critical oxygen occupancy P c to be 0.75 for the orthorhombic I structure using at 150x180 lattice model. In this paper, we report our work on the percolative behaviour of the 123 system, using a Monte Carlo method. We have studied the effect on P c of increasing the lattice dimension up to 500x500. For P c ≤0.60 no percolative behaviour was observed, suggesting the tetragonal phase. Few times percolation was observed for 0.60≤P≤0.65 indicating the phase transformation from tetragonal to orthorhombic. For 0.65≤P≤0.77 (or 0.230≤δ≤0.35) weak percolative behaviour was observed suggesting the formation of orthorhombic II structure, which is in good agreement with the value observed by Cava et al. For 0.77≤P≤1.0 strong percolation was exhibited indicating the formation of orthorhombic I phase. We have explained the weak link region observed for 0.60≤P≤0.77. We estimated the total critical oxygen occupancy P c =0.766 for an orthorhombic I structure for the lattice. (orig.)

  17. FY 2000 report on the results of the regional consortium R and D project - Regional consortium field. First year report. R and D of highly integrated micro-protein reactor array system; 2000 nendo chiiki consortium kenkyu kaihatsu jigyo - chiiki consortium bun'ya. Koshusekigata micro protein reactor array system no kenkyu kaihatsu (dai 1 nendo) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    By micro-processing, micro-protein reactor array is fabricated, and inside it a very trace of gene is amplified by PCR (polymerase chain reaction) and then was amplified by adding the transcription/translation reaction mixture to it. By causing the protein synthesis reaction using the amplified gene, a highly integrated protein library is constructed. For it, the development of a new micro-protein reactor array system ({mu} PRAS) was proceeded with. Studies were made in the following 8 fields: 1) materials of micro reactor array and the manufacturing method; 2) development of the element unit of {mu} PRAS; 3) trial manufacture of micro reactor array chip and the evaluation; 4) trial manufacture of the micro-domain high-speed DNA manipulation system; 5) method to control non-specific DNA amplification in unimolecular PCR; 6) basic study of technology of molecular evolution of degrading enzymes of degradation-resistant substances such as dioxin; 7) method to construct the enzyme lipase library and computer simulation; 8) optimization of a system to synthesize optical activity useful compounds using enzyme lipase. (NEDO)

  18. Probabilistic encoding of stimulus strength in astrocyte global calcium signals.

    Science.gov (United States)

    Croft, Wayne; Reusch, Katharina; Tilunaite, Agne; Russell, Noah A; Thul, Rüdiger; Bellamy, Tomas C

    2016-04-01

    Astrocyte calcium signals can range in size from subcellular microdomains to waves that spread through the whole cell (and into connected cells). The differential roles of such local or global calcium signaling are under intense investigation, but the mechanisms by which local signals evolve into global signals in astrocytes are not well understood, nor are the computational rules by which physiological stimuli are transduced into a global signal. To investigate these questions, we transiently applied receptor agonists linked to calcium signaling to primary cultures of cerebellar astrocytes. Astrocytes repetitively tested with the same stimulus responded with global signals intermittently, indicating that each stimulus had a defined probability for triggering a response. The response probability varied between agonists, increased with agonist concentration, and could be positively and negatively modulated by crosstalk with other signaling pathways. To better understand the processes determining the evolution of a global signal, we recorded subcellular calcium "puffs" throughout the whole cell during stimulation. The key requirement for puffs to trigger a global calcium wave following receptor activation appeared to be the synchronous release of calcium from three or more sites, rather than an increasing calcium load accumulating in the cytosol due to increased puff size, amplitude, or frequency. These results suggest that the concentration of transient stimuli will be encoded into a probability of generating a global calcium response, determined by the likelihood of synchronous release from multiple subcellular sites. © 2015 Wiley Periodicals, Inc.

  19. Neutrons and model membranes

    Science.gov (United States)

    Fragneto, G.

    2012-11-01

    Current research in membrane protein biophysics highlights the emerging role of lipids in shaping membrane protein function. Cells and organisms have developed sophisticated mechanisms for controlling the lipid composition and many diseases are related to the failure of these mechanisms. One of the recent advances in the field is the discovery of the existence of coexisting micro-domains within a single membrane, important for regulating some signaling pathways. Many important properties of these domains remain poorly characterized. The characterization and analysis of bio-interfaces represent a challenge. Performing measurements on these few nanometer thick, soft, visco-elastic and dynamic systems is close to the limits of the available tools and methods. Neutron scattering techniques including small angle scattering, diffraction, reflectometry as well as inelastic methods are rapidly developing for these studies and are attracting an increasing number of biologists and biophysicists at large facilities. This manuscript will review some recent progress in the field and provide perspectives for future developments. It aims at highlighting neutron reflectometry as a versatile method to tackle questions dealing with the understanding and function of biomembranes and their components. The other important scattering methods are only briefly introduced.