WorldWideScience

Sample records for detectors by object of detection

  1. Quantitative comparison using Generalized Relative Object Detectability (G-ROD) metrics of an amorphous selenium detector with high resolution Microangiographic Fluoroscopes (MAF) and standard flat panel detectors (FPD).

    Science.gov (United States)

    Russ, M; Shankar, A; Jain, A; Setlur Nagesh, S V; Ionita, C N; Scott, C; Karim, K S; Bednarek, D R; Rudin, S

    2016-02-27

    A novel amorphous selenium (a-Se) direct detector with CMOS readout has been designed, and relative detector performance investigated. The detector features include a 25 μ m pixel pitch, and 1000 μ m thick a-Se layer operating at 10V/ μ m bias field. A simulated detector DQE was determined, and used in comparative calculations of the Relative Object Detectability (ROD) family of prewhitening matched-filter (PWMF) observer and non-prewhitening matched filter (NPWMF) observer model metrics to gauge a-Se detector performance against existing high resolution micro-angiographic fluoroscopic (MAF) detectors and a standard flat panel detector (FPD). The PWMF-ROD or ROD metric compares two x-ray imaging detectors in their relative abilities in imaging a given object by taking the integral over spatial frequencies of the Fourier transform of the detector DQE weighted by an object function, divided by the comparable integral for a different detector. The generalized-ROD (G-ROD) metric incorporates clinically relevant parameters (focal-spot size, magnification, and scatter) to show the degradation in imaging performance for detectors that are part of an imaging chain. Preliminary ROD calculations using simulated spheres as the object predicted superior imaging performance by the a-Se detector as compared to existing detectors. New PWMF-G-ROD and NPWMF-G-ROD results still indicate better performance by the a-Se detector in an imaging chain over all sphere sizes for various focal spot sizes and magnifications, although a-Se performance advantages were degraded by focal spot blurring. Nevertheless, the a-Se technology has great potential to provide breakthrough abilities such as visualization of fine details including of neuro-vascular perforator vessels and of small vascular devices.

  2. Fusion of an Ensemble of Augmented Image Detectors for Robust Object Detection.

    Science.gov (United States)

    Wei, Pan; Ball, John E; Anderson, Derek T

    2018-03-17

    A significant challenge in object detection is accurate identification of an object's position in image space, whereas one algorithm with one set of parameters is usually not enough, and the fusion of multiple algorithms and/or parameters can lead to more robust results. Herein, a new computational intelligence fusion approach based on the dynamic analysis of agreement among object detection outputs is proposed. Furthermore, we propose an online versus just in training image augmentation strategy. Experiments comparing the results both with and without fusion are presented. We demonstrate that the augmented and fused combination results are the best, with respect to higher accuracy rates and reduction of outlier influences. The approach is demonstrated in the context of cone, pedestrian and box detection for Advanced Driver Assistance Systems (ADAS) applications.

  3. Fusion of an Ensemble of Augmented Image Detectors for Robust Object Detection

    Directory of Open Access Journals (Sweden)

    Pan Wei

    2018-03-01

    Full Text Available A significant challenge in object detection is accurate identification of an object’s position in image space, whereas one algorithm with one set of parameters is usually not enough, and the fusion of multiple algorithms and/or parameters can lead to more robust results. Herein, a new computational intelligence fusion approach based on the dynamic analysis of agreement among object detection outputs is proposed. Furthermore, we propose an online versus just in training image augmentation strategy. Experiments comparing the results both with and without fusion are presented. We demonstrate that the augmented and fused combination results are the best, with respect to higher accuracy rates and reduction of outlier influences. The approach is demonstrated in the context of cone, pedestrian and box detection for Advanced Driver Assistance Systems (ADAS applications.

  4. Detection of gamma-neutron radiation by solid-state scintillation detectors. Detection of gamma-neutron radiation by novel solid-state scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhikov, V.; Grinyov, B.; Piven, L.; Onyshchenko, G.; Sidletskiy, O. [Institute for Scintillation Materials of the NAS of Ukraine, Kharkov, (Ukraine); Naydenov, S. [Institute for Single Crystals of the National Academy of Sciences of Ukraine, Kharkov, (Ukraine); Pochet, T. [DETEC-Europe, Vannes (France); Smith, C. [Naval Postgraduate School, Monterey, CA (United States)

    2015-07-01

    It is known that solid-state scintillators can be used for detection of both gamma radiation and neutron flux. In the past, neutron detection efficiencies of such solid-state scintillators did not exceed 5-7%. At the same time it is known that the detection efficiency of the gamma-neutron radiation characteristic of nuclear fissionable materials is by an order of magnitude higher than the efficiency of detection of neutron fluxes alone. Thus, an important objective is the creation of detection systems that are both highly efficient in gamma-neutron detection and also capable of exhibiting high gamma suppression for use in the role of detection of neutron radiation. In this work, we present the results of our experimental and theoretical studies on the detection efficiency of fast neutrons from a {sup 239}Pu-Be source by the heavy oxide scintillators BGO, GSO, CWO and ZWO, as well as ZnSe(Te, O). The most probable mechanism of fast neutron interaction with nuclei of heavy oxide scintillators is the inelastic scattering (n, n'γ) reaction. In our work, fast neutron detection efficiencies were determined by the method of internal counting of gamma-quanta that emerge in the scintillator from (n, n''γ) reactions on scintillator nuclei with the resulting gamma energies of ∼20-300 keV. The measured efficiency of neutron detection for the scintillation crystals we considered was ∼40-50 %. The present work included a detailed analysis of detection efficiency as a function of detector and area of the working surface, as well as a search for new ways to create larger-sized detectors of lower cost. As a result of our studies, we have found an unusual dependence of fast neutron detection efficiency upon thickness of the oxide scintillators. An explanation for this anomaly may involve the competition of two factors that accompany inelastic scattering on the heavy atomic nuclei. The transformation of the energy spectrum of neutrons involved in the (n, n

  5. The Detection of Faint Space Objects Using Solid State Imaging Detectors.

    Science.gov (United States)

    1983-12-31

    are con.iposed of baryonic matter . New arguments were presented against halos being composed of planets or asteroids. D. Hegyi was also invited to...being made up of baryonic matter . 5.0 THE CHARGE-COUPLED DEVICE IMAGING SYSTEM Our major hardware improvement during the past year is a stainless steel...Hegyi Department of Physics University of Michigan Ann Arbor, Michigan ABSIR:CT The problems with massive halos being composed of baryonic matter are

  6. WE-G-204-05: Relative Object Detectability Evaluation of a New High Resolution A-Se Direct Detection System Compared to Indirect Micro-Angiographic Fluoroscopic (MAF) Detectors

    International Nuclear Information System (INIS)

    Russ, M; Nagesh, S Setlur; Ionita, C; Bednarek, D; Rudin, S; Scott, C; Karim, K

    2015-01-01

    Purpose: To evaluate the task specific imaging performance of a new 25µm pixel pitch, 1000µm thick amorphous selenium direct detection system with CMOS readout for typical angiographic exposure parameters using the relative object detectability (ROD) metric. Methods: The ROD metric uses a simulated object function weighted at each spatial frequency by the detectors’ detective quantum efficiency (DQE), which is an intrinsic performance metric. For this study, the simulated objects were aluminum spheres of varying diameter (0.05–0.6mm). The weighted object function is then integrated over the full range of detectable frequencies inherent to each detector, and a ratio is taken of the resulting value for two detectors. The DQE for the 25µm detector was obtained from a simulation of a proposed a-Se detector using an exposure of 200µR for a 50keV x-ray beam. This a-Se detector was compared to two microangiographic fluoroscope (MAF) detectors [the MAF-CCD with pixel size of 35µm and Nyquist frequency of 14.2 cycles/mm and the MAF-CMOS with pixel size of 75µm and Nyquist frequency of 6.6 cycles/mm] and a standard flat-panel detector (FPD with pixel size of 194µm and Nyquist frequency of 2.5cycles/mm). Results: ROD calculations indicated vastly superior performance by the a-Se detector in imaging small aluminum spheres. For the 50µm diameter sphere, the ROD values for the a-Se detector compared to the MAF-CCD, the MAF-CMOS, and the FPD were 7.3, 9.3 and 58, respectively. Detector performance in the low frequency regime was dictated by each detector’s DQE(0) value. Conclusion: The a-Se with CMOS readout is unique and appears to have distinctive advantages of incomparable high resolution, low noise, no readout lag, and expandable design. The a-Se direct detection system will be a powerful imaging tool in angiography, with potential break-through applications in diagnosis and treatment of neuro-vascular disease. Supported by NIH Grant: 2R01EB002873 and an

  7. WE-G-204-05: Relative Object Detectability Evaluation of a New High Resolution A-Se Direct Detection System Compared to Indirect Micro-Angiographic Fluoroscopic (MAF) Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Russ, M; Nagesh, S Setlur; Ionita, C; Bednarek, D; Rudin, S [Toshiba Stroke and Vascular Research Center, University at Buffalo (SUNY), Buffalo, NY (United States); Scott, C; Karim, K [University of Waterloo, Waterloo, ON (Canada)

    2015-06-15

    Purpose: To evaluate the task specific imaging performance of a new 25µm pixel pitch, 1000µm thick amorphous selenium direct detection system with CMOS readout for typical angiographic exposure parameters using the relative object detectability (ROD) metric. Methods: The ROD metric uses a simulated object function weighted at each spatial frequency by the detectors’ detective quantum efficiency (DQE), which is an intrinsic performance metric. For this study, the simulated objects were aluminum spheres of varying diameter (0.05–0.6mm). The weighted object function is then integrated over the full range of detectable frequencies inherent to each detector, and a ratio is taken of the resulting value for two detectors. The DQE for the 25µm detector was obtained from a simulation of a proposed a-Se detector using an exposure of 200µR for a 50keV x-ray beam. This a-Se detector was compared to two microangiographic fluoroscope (MAF) detectors [the MAF-CCD with pixel size of 35µm and Nyquist frequency of 14.2 cycles/mm and the MAF-CMOS with pixel size of 75µm and Nyquist frequency of 6.6 cycles/mm] and a standard flat-panel detector (FPD with pixel size of 194µm and Nyquist frequency of 2.5cycles/mm). Results: ROD calculations indicated vastly superior performance by the a-Se detector in imaging small aluminum spheres. For the 50µm diameter sphere, the ROD values for the a-Se detector compared to the MAF-CCD, the MAF-CMOS, and the FPD were 7.3, 9.3 and 58, respectively. Detector performance in the low frequency regime was dictated by each detector’s DQE(0) value. Conclusion: The a-Se with CMOS readout is unique and appears to have distinctive advantages of incomparable high resolution, low noise, no readout lag, and expandable design. The a-Se direct detection system will be a powerful imaging tool in angiography, with potential break-through applications in diagnosis and treatment of neuro-vascular disease. Supported by NIH Grant: 2R01EB002873 and an

  8. Computational characterization of HPGe detectors usable for a wide variety of source geometries by using Monte Carlo simulation and a multi-objective evolutionary algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, J.G., E-mail: jglezg2002@gmail.es [Departamento de Física, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria (Spain); Rubiano, J.G. [Departamento de Física, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria (Spain); Instituto Universitario de Estudios Ambientales y Recursos Naturales, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria (Spain); Winter, G. [Instituto Universitario de Sistemas Inteligentes y Aplicaciones Numéricas en la Ingeniería, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria (Spain); Guerra, A.G.; Alonso, H.; Arnedo, M.A.; Tejera, A.; Martel, P. [Departamento de Física, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria (Spain); Instituto Universitario de Estudios Ambientales y Recursos Naturales, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria (Spain); Bolivar, J.P. [Departamento de Física Aplicada, Universidad de Huelva, 21071 Huelva (Spain)

    2017-06-21

    In this work, we have developed a computational methodology for characterizing HPGe detectors by implementing in parallel a multi-objective evolutionary algorithm, together with a Monte Carlo simulation code. The evolutionary algorithm is used for searching the geometrical parameters of a model of detector by minimizing the differences between the efficiencies calculated by Monte Carlo simulation and two reference sets of Full Energy Peak Efficiencies (FEPEs) corresponding to two given sample geometries, a beaker of small diameter laid over the detector window and a beaker of large capacity which wrap the detector. This methodology is a generalization of a previously published work, which was limited to beakers placed over the window of the detector with a diameter equal or smaller than the crystal diameter, so that the crystal mount cap (which surround the lateral surface of the crystal), was not considered in the detector model. The generalization has been accomplished not only by including such a mount cap in the model, but also using multi-objective optimization instead of mono-objective, with the aim of building a model sufficiently accurate for a wider variety of beakers commonly used for the measurement of environmental samples by gamma spectrometry, like for instance, Marinellis, Petris, or any other beaker with a diameter larger than the crystal diameter, for which part of the detected radiation have to pass through the mount cap. The proposed methodology has been applied to an HPGe XtRa detector, providing a model of detector which has been successfully verificated for different source-detector geometries and materials and experimentally validated using CRMs. - Highlights: • A computational method for characterizing HPGe detectors has been generalized. • The new version is usable for a wider range of sample geometries. • It starts from reference FEPEs obtained through a standard calibration procedure. • A model of an HPGe XtRa detector has been

  9. Computational characterization of HPGe detectors usable for a wide variety of source geometries by using Monte Carlo simulation and a multi-objective evolutionary algorithm

    International Nuclear Information System (INIS)

    Guerra, J.G.; Rubiano, J.G.; Winter, G.; Guerra, A.G.; Alonso, H.; Arnedo, M.A.; Tejera, A.; Martel, P.; Bolivar, J.P.

    2017-01-01

    In this work, we have developed a computational methodology for characterizing HPGe detectors by implementing in parallel a multi-objective evolutionary algorithm, together with a Monte Carlo simulation code. The evolutionary algorithm is used for searching the geometrical parameters of a model of detector by minimizing the differences between the efficiencies calculated by Monte Carlo simulation and two reference sets of Full Energy Peak Efficiencies (FEPEs) corresponding to two given sample geometries, a beaker of small diameter laid over the detector window and a beaker of large capacity which wrap the detector. This methodology is a generalization of a previously published work, which was limited to beakers placed over the window of the detector with a diameter equal or smaller than the crystal diameter, so that the crystal mount cap (which surround the lateral surface of the crystal), was not considered in the detector model. The generalization has been accomplished not only by including such a mount cap in the model, but also using multi-objective optimization instead of mono-objective, with the aim of building a model sufficiently accurate for a wider variety of beakers commonly used for the measurement of environmental samples by gamma spectrometry, like for instance, Marinellis, Petris, or any other beaker with a diameter larger than the crystal diameter, for which part of the detected radiation have to pass through the mount cap. The proposed methodology has been applied to an HPGe XtRa detector, providing a model of detector which has been successfully verificated for different source-detector geometries and materials and experimentally validated using CRMs. - Highlights: • A computational method for characterizing HPGe detectors has been generalized. • The new version is usable for a wider range of sample geometries. • It starts from reference FEPEs obtained through a standard calibration procedure. • A model of an HPGe XtRa detector has been

  10. Performance of SEM scintillation detector evaluated by modulation transfer function and detective quantum efficiency function.

    Science.gov (United States)

    Bok, Jan; Schauer, Petr

    2014-01-01

    In the paper, the SEM detector is evaluated by the modulation transfer function (MTF) which expresses the detector's influence on the SEM image contrast. This is a novel approach, since the MTF was used previously to describe only the area imaging detectors, or whole imaging systems. The measurement technique and calculation of the MTF for the SEM detector are presented. In addition, the measurement and calculation of the detective quantum efficiency (DQE) as a function of the spatial frequency for the SEM detector are described. In this technique, the time modulated e-beam is used in order to create well-defined input signal for the detector. The MTF and DQE measurements are demonstrated on the Everhart-Thornley scintillation detector. This detector was alternated using the YAG:Ce, YAP:Ce, and CRY18 single-crystal scintillators. The presented MTF and DQE characteristics show good imaging properties of the detectors with the YAP:Ce or CRY18 scintillator, especially for a specific type of the e-beam scan. The results demonstrate the great benefit of the description of SEM detectors using the MTF and DQE. In addition, point-by-point and continual-sweep e-beam scans in SEM were discussed and their influence on the image quality was revealed using the MTF. © 2013 Wiley Periodicals, Inc.

  11. Computational characterization of HPGe detectors usable for a wide variety of source geometries by using Monte Carlo simulation and a multi-objective evolutionary algorithm

    Science.gov (United States)

    Guerra, J. G.; Rubiano, J. G.; Winter, G.; Guerra, A. G.; Alonso, H.; Arnedo, M. A.; Tejera, A.; Martel, P.; Bolivar, J. P.

    2017-06-01

    In this work, we have developed a computational methodology for characterizing HPGe detectors by implementing in parallel a multi-objective evolutionary algorithm, together with a Monte Carlo simulation code. The evolutionary algorithm is used for searching the geometrical parameters of a model of detector by minimizing the differences between the efficiencies calculated by Monte Carlo simulation and two reference sets of Full Energy Peak Efficiencies (FEPEs) corresponding to two given sample geometries, a beaker of small diameter laid over the detector window and a beaker of large capacity which wrap the detector. This methodology is a generalization of a previously published work, which was limited to beakers placed over the window of the detector with a diameter equal or smaller than the crystal diameter, so that the crystal mount cap (which surround the lateral surface of the crystal), was not considered in the detector model. The generalization has been accomplished not only by including such a mount cap in the model, but also using multi-objective optimization instead of mono-objective, with the aim of building a model sufficiently accurate for a wider variety of beakers commonly used for the measurement of environmental samples by gamma spectrometry, like for instance, Marinellis, Petris, or any other beaker with a diameter larger than the crystal diameter, for which part of the detected radiation have to pass through the mount cap. The proposed methodology has been applied to an HPGe XtRa detector, providing a model of detector which has been successfully verificated for different source-detector geometries and materials and experimentally validated using CRMs.

  12. Dedicated supernova detection by a network of neutral current spherical TPC detectors

    International Nuclear Information System (INIS)

    Vergados, J. D.; Giomataris, Y.

    2007-01-01

    Supernova neutrinos can easily be detected by a spherical gaseous TPC detector measuring very low energy nuclear recoils. The expected rates are quite large for a neutron-rich target since the neutrino-nucleus neutral current interaction yields a coherent contribution of all neutrons. As a matter of fact, for a typical supernova at 10 kpc, about 1000 events are expected using a spherical detector of radius 4 m with Xe gas at a pressure of 10 atm. A worldwide network of several such simple, stable, and low-cost supernova detectors with a running time of a few centuries is quite feasible

  13. SU-D-204-05: Quantitative Comparison of a High Resolution Micro-Angiographic Fluoroscopic (MAF) Detector with a Standard Flat Panel Detector (FPD) Using the New Metric of Generalized Measured Relative Object Detectability (GM-ROD)

    Energy Technology Data Exchange (ETDEWEB)

    Russ, M; Ionita, C; Bednarek, D; Rudin, S [Toshiba Stroke and Vascular Research Center, University at Buffalo (SUNY), Buffalo, NY (United States)

    2015-06-15

    Purpose: In endovascular image-guided neuro-interventions, visualization of fine detail is paramount. For example, the ability of the interventionist to visualize the stent struts depends heavily on the x-ray imaging detector performance. Methods: A study to examine the relative performance of the high resolution MAF-CMOS (pixel size 75µm, Nyquist frequency 6.6 cycles/mm) and a standard Flat Panel Detector (pixel size 194µm, Nyquist frequency 2.5 cycles/mm) detectors in imaging a neuro stent was done using the Generalized Measured Relative Object Detectability (GM-ROD) metric. Low quantum noise images of a deployed stent were obtained by averaging 95 frames obtained by both detectors without changing other exposure or geometric parameters. The square of the Fourier transform of each image is taken and divided by the generalized normalized noise power spectrum to give an effective measured task-specific signal-to-noise ratio. This expression is then integrated from 0 to each of the detector’s Nyquist frequencies, and the GM-ROD value is determined by taking a ratio of the integrals for the MAF-CMOS to that of the FPD. The lower bound of integration can be varied to emphasize high frequencies in the detector comparisons. Results: The MAF-CMOS detector exhibits vastly superior performance over the FPD when integrating over all frequencies, yielding a GM-ROD value of 63.1. The lower bound of integration was stepped up in increments of 0.5 cycles/mm for higher frequency comparisons. As the lower bound increased, the GM-ROD value was augmented, reflecting the superior performance of the MAF-CMOS in the high frequency regime. Conclusion: GM-ROD is a versatile metric that can provide quantitative detector and task dependent comparisons that can be used as a basis for detector selection. Supported by NIH Grant: 2R01EB002873 and an equipment grant from Toshiba Medical Systems Corporation.

  14. Thermal neutron detection by means of an organic solid-state track detector

    International Nuclear Information System (INIS)

    Doerschel, B.; Streubel, G.

    1979-01-01

    Thermal neutrons can be detected by means of organic solid-state track detectors if they are combined with radiators in which charged secondary particles are produced in neutron interaction processes. The secondary particles can produce etchable tracks in the detector material. For thermal neutron fluence determination from the track densities, the thermal neutron sensitivity was calculated for cellulose triacetate detectors with LiF radiators, taking into account energy and angular distribution of the alpha particles produced in the LiF radiator. This value is in good agreement with the sensitivity measured during irradiation in different neutron fields if corrections are considered the production of etchable or visuable tracks. Measuring range and measuring accuracy meet the requirements of thermal neutron detection in personnel dosimetry. Possibilities of extending the measuring range are discussed. (author)

  15. Detection of on-surface objects with an underground radiography detector system using cosmic-ray muons

    Science.gov (United States)

    Fujii, Hirofumi; Hara, Kazuhiko; Hayashi, Kohei; Kakuno, Hidekazu; Kodama, Hideyo; Nagamine, Kanetada; Sato, Kazuyuki; Sato, Kotaro; Kim, Shin-Hong; Suzuki, Atsuto; Takahashi, Kazuki; Takasaki, Fumihiko

    2017-05-01

    We have developed a compact muon radiography detector to investigate the status of the nuclear debris in the Fukushima Daiichi Reactors. Our previous observation showed that a large portion of the Unit-1 Reactor fuel had fallen to floor level. The detector must be located underground to further investigate the status of the fallen debris. To investigate the performance of muon radiography in such a situation, we observed 2 m cubic iron blocks located on the surface of the ground through different lengths of ground soil. The iron blocks were imaged and their corresponding iron density was derived successfully.

  16. Detection of boron in metal alloys with solid state nuclear track detector by neutron induced autoradiography

    International Nuclear Information System (INIS)

    Ali Nabipour; Hosseini, A.; Afarideh, H.

    2002-01-01

    Neutron induced autoradiography is very useful technique for detection as well as measurement of Boron densities in metal alloys. The method is relatively simple and quite sensitive in comparison with other techniques with resolution in the range of PPM. Using this technique with it is also possible to investigate microscopic scattering of Boron in metal alloys. In comparison with most techniques neutron induced autoradiography has its own difficulties and limitations. In this research measurement of Boron densities and investigation of that diffusion in metal alloys has been carried out. A flat nicely polished Boron doped metal samples is covered with a track detecting plastic (CR-39 solid state nuclear track detector) and exposed to thermal neutron dose. After irradiation the plastic detector have been removed and put in an etching solution. Since the diffusion rate of corrosive solution in those area, which heavy ions have been, produces as the result of nuclear reaction with thermal neutron are more than the other areas, some cavities are formed. The diameter of cavities or tracks cross section are increased with increasing the etching time, to some extent that it is possible to observe the cavities with optical microscopes. The density of tracks on the detector surface is directly related to the Boron concentration in the sample and thermal neutron dose. So by measuring the number of tracks on surface of the detector it would possible to calculate the concentration of Boron in metal samples. (Author)

  17. The detection of 'virtual' objects using echoes by humans: Spectral cues.

    Science.gov (United States)

    Rowan, Daniel; Papadopoulos, Timos; Archer, Lauren; Goodhew, Amanda; Cozens, Hayley; Lopez, Ricardo Guzman; Edwards, David; Holmes, Hannah; Allen, Robert

    2017-07-01

    Some blind people use echoes to detect discrete, silent objects to support their spatial orientation/navigation, independence, safety and wellbeing. The acoustical features that people use for this are not well understood. Listening to changes in spectral shape due to the presence of an object could be important for object detection and avoidance, especially at short range, although it is currently not known whether it is possible with echolocation-related sounds. Bands of noise were convolved with recordings of binaural impulse responses of objects in an anechoic chamber to create 'virtual objects', which were analysed and played to sighted and blind listeners inexperienced in echolocation. The sounds were also manipulated to remove cues unrelated to spectral shape. Most listeners could accurately detect hard flat objects using changes in spectral shape. The useful spectral changes for object detection occurred above approximately 3 kHz, as with object localisation. However, energy in the sounds below 3 kHz was required to exploit changes in spectral shape for object detection, whereas energy below 3 kHz impaired object localisation. Further recordings showed that the spectral changes were diminished by room reverberation. While good high-frequency hearing is generally important for echolocation, the optimal echo-generating stimulus will probably depend on the task. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Prospects for direct detection of inflationary gravitational waves by next generation interferometric detectors

    International Nuclear Information System (INIS)

    Kuroyanagi, Sachiko; Chiba, Takeshi; Sugiyama, Naoshi

    2011-01-01

    We study the potential impact of detecting the inflationary gravitational wave background by the future space-based gravitational wave detectors, such as DECIGO and BBO. The signal-to-noise ratio of each experiment is calculated for chaotic/natural/hybrid inflation models by using the precise predictions of the gravitational wave spectrum based on numerical calculations. We investigate the dependence of each inflation model on the reheating temperature which influences the amplitude and shape of the spectrum, and find that the gravitational waves could be detected for chaotic/natural inflation models with high reheating temperature. From the detection of the gravitational waves, a lower bound on the reheating temperature could be obtained. The implications of this lower bound on the reheating temperature for particle physics are also discussed.

  19. The use of a photoionization detector to detect harmful volatile chemicals by emergency personnel

    Directory of Open Access Journals (Sweden)

    Neil D Patel

    2009-09-01

    Full Text Available Neil D Patel1, William D Fales1, Robert N Farrell1,21Michigan State University, Kalamazoo Center for Medical Studies, Kalamazoo, MI, USA; 2Portage Fire Department, Portage, MI, USAObjective: The objective of this investigation was to determine if a photoionization detector (PID could be used to detect the presence of a simulated harmful chemical on simulated casualties of a chemical release.Methods: A screening protocol, based on existing radiation screening protocols, was developed for the purposes of the investigation. Three simulated casualties were contaminated with a simulated chemical agent and two groups of emergency responders were involved in the trials. The success–failure ratio of the participants was used to judge the performance of the PID in this application.Results: A high success rate was observed when the screening protocol was properly adhered to (97.67%. Conversely, the success rate suffered when participants deviated from the protocol (86.31%. With one exception, all failures were noted to have been the result of a failure to correctly observe the established screening protocol.Conclusions: The results of this investigation indicate that the PID may be an effective screening tool for emergency responders. However, additional study is necessary to both confirm the effectiveness of the PID and refine the screening protocol if necessary.Keywords: prehospital, device, protocol, photoionization detectors

  20. The use of a photoionization detector to detect harmful volatile chemicals by emergency personnel

    Science.gov (United States)

    Patel, Neil D; Fales, William D; Farrell, Robert N

    2009-01-01

    Objective The objective of this investigation was to determine if a photoionization detector (PID) could be used to detect the presence of a simulated harmful chemical on simulated casualties of a chemical release. Methods A screening protocol, based on existing radiation screening protocols, was developed for the purposes of the investigation. Three simulated casualties were contaminated with a simulated chemical agent and two groups of emergency responders were involved in the trials. The success–failure ratio of the participants was used to judge the performance of the PID in this application. Results A high success rate was observed when the screening protocol was properly adhered to (97.67%). Conversely, the success rate suffered when participants deviated from the protocol (86.31%). With one exception, all failures were noted to have been the result of a failure to correctly observe the established screening protocol. Conclusions The results of this investigation indicate that the PID may be an effective screening tool for emergency responders. However, additional study is necessary to both confirm the effectiveness of the PID and refine the screening protocol if necessary. PMID:27147829

  1. Ruggedization of CdZnTe detectors and detector assemblies for radiation detection applications

    Energy Technology Data Exchange (ETDEWEB)

    Lu, P.H., E-mail: pinghe.lu@redlen.com; Gomolchuk, P.; Chen, H.; Beitz, D.; Grosser, A.W.

    2015-06-01

    This paper described improvements in the ruggedization of CdZnTe detectors and detector assemblies for use in radiation detection applications. Research included experimenting with various conductive and underfill adhesive material systems suitable for CZT substrates. A detector design with encapsulation patterning was developed to protect detector surfaces and to control spacing between CZT anode and PCB carrier. Robustness of bare detectors was evaluated through temperature cycling and metallization shear testing. Attachment processes using well-chosen adhesives and PCB carrier materials were optimized to improve reliability of detector assemblies, resulted in Improved Attachment Detector Assembly. These detector assemblies were subjected to aggressive temperature cycling, and varying levels of drop/shock and vibration, in accordance with modified JEDEC, ANSI and FedEx testing standards, to assess their ruggedness. Further enhanced detector assembly ruggedization methods were investigated involving adhesive conformal coating, potting and dam filling on detector assemblies, which resulted in the Enhanced Ruggedization Detector Assembly. Large numbers of CZT detectors and detector assemblies with 5 mm and 15 mm thick, over 200 in total, were tested. Their performance was evaluated by exposure to various radioactive sources using comprehensive predefined detector specifications and testing protocols. Detector assemblies from improved attachment and enhanced ruggedization showed stable performances during the harsh environmental condition tests. In conclusion, significant progress has been made in improving the reliability and enhancing the ruggedness of CZT detector assemblies for radiation detection applications deployed in operational environments. - Highlights: • We developed ruggedization methods to enhance reliability of CZT detector assemblies. • Attachment of CZT radiation detectors was improved through comparative studies. • Bare detector metallization

  2. A comparison of moving object detection methods for real-time moving object detection

    Science.gov (United States)

    Roshan, Aditya; Zhang, Yun

    2014-06-01

    Moving object detection has a wide variety of applications from traffic monitoring, site monitoring, automatic theft identification, face detection to military surveillance. Many methods have been developed across the globe for moving object detection, but it is very difficult to find one which can work globally in all situations and with different types of videos. The purpose of this paper is to evaluate existing moving object detection methods which can be implemented in software on a desktop or laptop, for real time object detection. There are several moving object detection methods noted in the literature, but few of them are suitable for real time moving object detection. Most of the methods which provide for real time movement are further limited by the number of objects and the scene complexity. This paper evaluates the four most commonly used moving object detection methods as background subtraction technique, Gaussian mixture model, wavelet based and optical flow based methods. The work is based on evaluation of these four moving object detection methods using two (2) different sets of cameras and two (2) different scenes. The moving object detection methods have been implemented using MatLab and results are compared based on completeness of detected objects, noise, light change sensitivity, processing time etc. After comparison, it is observed that optical flow based method took least processing time and successfully detected boundary of moving objects which also implies that it can be implemented for real-time moving object detection.

  3. Fast neutron detection by means of an organic solid state track detector

    International Nuclear Information System (INIS)

    Doerschel, B.; Streubel, G.

    1980-01-01

    Solid state track detectors consisting of cellulose triacetate foils are appropriate for measuring the fast neutron fluence without applying external radiators. Detector sensitivity has been determined as a function of neutron energy by performing irradiations with various neutron sources and monoenergetic neutrons of different energies. A comparison with theoretical results given in the literature for a simple model of track recording has shown sufficient agreement. The measuring errors and the influence of spectral changes in the neutron field on detector response are discussed for the studied method of fluence measurement. By means of these errors the measuring range has been determined for well defined irradiation conditions, taking into account spectral changes in the neutron field. (author)

  4. Search Strategy of Detector Position For Neutron Source Multiplication Method by Using Detected-Neutron Multiplication Factor

    International Nuclear Information System (INIS)

    Endo, Tomohiro

    2011-01-01

    In this paper, an alternative definition of a neutron multiplication factor, detected-neutron multiplication factor kdet, is produced for the neutron source multiplication method..(NSM). By using kdet, a search strategy of appropriate detector position for NSM is also proposed. The NSM is one of the practical subcritical measurement techniques, i.e., the NSM does not require any special equipment other than a stationary external neutron source and an ordinary neutron detector. Additionally, the NSM method is based on steady-state analysis, so that this technique is very suitable for quasi real-time measurement. It is noted that the correction factors play important roles in order to accurately estimate subcriticality from the measured neutron count rates. The present paper aims to clarify how to correct the subcriticality measured by the NSM method, the physical meaning of the correction factors, and how to reduce the impact of correction factors by setting a neutron detector at an appropriate detector position

  5. Localization accuracy of compact binary coalescences detected by the third-generation gravitational-wave detectors and implication for cosmology

    Science.gov (United States)

    Zhao, Wen; Wen, Linqing

    2018-03-01

    We use the Fisher information matrix to investigate the angular resolution and luminosity distance uncertainty for coalescing binary neutron stars (BNSs) and neutron star-black hole binaries (NSBHs) detected by the third-generation (3G) gravitational-wave (GW) detectors. Our study focuses on an individual 3G detector and a network of up to four 3G detectors at different locations including the United States, Europe, China, and Australia for the proposed Einstein Telescope (ET) and Cosmic Explorer (CE) detectors. In particular, we examine the effect of the Earth's rotation, as GW signals from BNS and low-mass NSBH systems could be hours long for 3G detectors. In this case, an individual detector can be effectively treated as a detector network with long baselines formed by the trajectory of the detector as it rotates with the Earth. Therefore, a single detector or two-detector networks could also be used to localize the GW sources effectively. We find that a time-dependent antenna beam-pattern function can help better localize BNS and NSBH sources, especially edge-on ones. The medium angular resolution for one ET-D detector is around 150 deg2 for BNSs at a redshift of z =0.1 , which improves rapidly with a decreasing low-frequency cutoff flow in sensitivity. The medium angular resolution for a network of two CE detectors in the United States and Europe, respectively, is around 20 deg2 at z =0.2 for the simulated BNS and NSBH samples. While for a network of two ET-D detectors, the similar angular resolution can be achieved at a much higher redshift of z =0.5 . The angular resolution of a network of three detectors is mainly determined by the baselines between detectors regardless of the CE or ET detector type. The medium angular resolution of BNS for a network of three detectors of the ET-D or CE type in the United States, Europe, and Australia is around 10 deg2 at z =2 . We discuss the implications of our results for multimessenger astronomy and, in particular, for

  6. The importance of the time scale in radiation detection exemplified by comparing conventional and avalache semiconductor detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tove, P A; Cho, Z H; Huth, G C [California Univ., Los Angeles (USA). Lab. of Nuclear Medicine and Radiation Biology

    1976-02-01

    The profound importance of the time scale of a radiation detection process is discussed in an analysis of limitations in energy resolution and timing, with emphasis on semiconductor detectors used for X-ray detection. The basic event detection time involves stopping of the particle and creating a distribution of free electrons and holes containing all desired information (energy, time position) about the particle or quantum, in a time approximately equal to 10/sup -12/s. The process of extracting this information usually involves a much longer time because the signal is generated in the relatively slow process of charge collection, and further prolongation may be caused by signal processing required to depress noise for improving energy resolution. This is a common situation for conventional semiconductor detectors with external amplifiers where time constants of 10/sup -5/-10/sup -4/s may be optimum, primarily because of amplifier noise. A different situation applies to the avalanche detector where internal amplification helps in suppressing noise without expanding the time scale of detections, resulting in an optimum time of 10/sup -9/-10/sup -8/s. These two cases are illustrated by plotting energy resolution vs. time constant, for different magnitudes of the parallel and series type noise sources. The effects of the inherent energy spread due to statistips and spatial inhomogeneities are also discussed to illustrate the potential of these two approaches for energy and time determination. Two constructional approaches for avalanche detectors are briefly compared.

  7. Development of a stable and sensitive semiconductor detector by using a mixture of lead(II) iodide and lead monoxide for NDT radiation dose detection

    Science.gov (United States)

    Heo, Y. J.; Kim, K. T.; Han, M. J.; Moon, C. W.; Kim, J. E.; Park, J. K.; Park, S. K.

    2018-03-01

    Recently, high-energy radiation has been widely used in various industrial fields, including the medical industry, and increasing research efforts have been devoted to the development of radiation detectors to be used with high-energy radiation. In particular, nondestructive industrial applications use high-energy radiation for ships and multilayered objects for accurate inspection. Therefore, it is crucial to verify the accuracy of radiation dose measurements and evaluate the precision and reproducibility of the radiation output dose. Representative detectors currently used for detecting the dose in high-energy regions include Si diodes, diamond diodes, and ionization chambers. However, the process of preparing these detectors is complex in addition to the processes of conducting dosimetric measurements, analysis, and evaluation. Furthermore, the minimum size that can be prepared for a detector is limited. In the present study, the disadvantages of original detectors are compensated by the development of a detector made of a mixture of polycrystalline PbI2 and PbO powder, which are both excellent semiconducting materials suitable for detecting high-energy gamma rays and X-rays. The proposed detector shows characteristics of excellent reproducibility and stable signal detection in response to the changes in energy, and was analyzed for its applicability. Moreover, the detector was prepared through a simple process of particle-in-binder to gain control over the thickness and meet the specific value designated by the user. A mixture mass ratio with the highest reproducibility was determined through reproducibility testing with respect to changes in the photon energy. The proposed detector was evaluated for its detection response characteristics with respect to high-energy photon beam, in terms of dose-rate dependence, sensitivity, and linearity evaluation. In the reproducibility assessment, the detector made with 15 wt% PbO powder showed the best characteristics of 0

  8. Signal-to-noise ratio and detective quantum efficiency determination by and alternative use of photographic detectors

    International Nuclear Information System (INIS)

    Burgudzhiev, Z.; Koleva, D.

    1986-01-01

    A known theoretical model of an alternative use of silver-halogenid pnotographic emulsions in which the number of the granulas forming the photographic image is used as a detector output instead of the microdensiometric blackening density is applied to some real photographic emulsions. It is found that by this use the Signal-to-Noise ratio of the photographic detector can be increased to about 5 times while its detective quantum efficiency can reach about 20%, being close to that of some photomultipliers

  9. Comparison of filters for gravitational wave burst detection by interferometric detectors

    International Nuclear Information System (INIS)

    Bizouard, M-A; Arnaud, N; Barsuglia, M; Brisson, V; Cavalier, F; Davier, M; Hello, P; Kreckelbergh, S; Porter, E K; Pradier, T

    2003-01-01

    During the last few years, several filters have been developed for the detection of short gravitational waves. In this presentation we give the main results of a comparison of time domain filters using simulated noise data. This benchmark focused on three points: the filter efficiency versus the false alarm rate for different families of signals, the accuracy of the signal arrival time estimation and the robustness of the filters to a non-perfect whitening procedure of the detector noise. It has been shown that it is mandatory to use a battery of filters because their performance depends on the signal. Concerning the timing accuracy, one can expect a precision much smaller than 1 ms even for low signal-to-noise-ratio signals as long as the waveforms exhibit a well defined peak. Finally, we have determined the requirements on the data whitening procedure which are needed to be able to predict the false alarm rate

  10. Comparison of filters for gravitational wave burst detection by interferometric detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bizouard, M-A; Arnaud, N; Barsuglia, M; Brisson, V; Cavalier, F; Davier, M; Hello, P; Kreckelbergh, S; Porter, E K; Pradier, T [Laboratoire de l' Accelerateur Lineaire, BP 34, Batiment 200, Campus d' Orsay, 91898 Orsay Cedex (France)

    2003-09-07

    During the last few years, several filters have been developed for the detection of short gravitational waves. In this presentation we give the main results of a comparison of time domain filters using simulated noise data. This benchmark focused on three points: the filter efficiency versus the false alarm rate for different families of signals, the accuracy of the signal arrival time estimation and the robustness of the filters to a non-perfect whitening procedure of the detector noise. It has been shown that it is mandatory to use a battery of filters because their performance depends on the signal. Concerning the timing accuracy, one can expect a precision much smaller than 1 ms even for low signal-to-noise-ratio signals as long as the waveforms exhibit a well defined peak. Finally, we have determined the requirements on the data whitening procedure which are needed to be able to predict the false alarm rate.

  11. Suppression background device in neutron detection by a scintillation detector

    International Nuclear Information System (INIS)

    Degtyarev, A.P.; Kozyr', Yu.E.; Prokopets, G.A.

    1980-01-01

    A pulse shape discriminator for suppression of cosmic and gamma background as well as for suppression of intrinsic noises of a photomultiplier is described. Identification of signals of background and neutrons is performed by means of comparison of relative intensity of fast and slow components of scintillator luminescence. Basic discriminator flowsheet which contains integrating and differential RC circuits and time-to-amplitude converter is given. The discriminator provides minimum energy of detected neutrons equal to 500 keV when using a FEhU-36 neutron detector with a stilbene crystal [ru

  12. A study of earthquake-induced building detection by object oriented classification approach

    Science.gov (United States)

    Sabuncu, Asli; Damla Uca Avci, Zehra; Sunar, Filiz

    2017-04-01

    Among the natural hazards, earthquakes are the most destructive disasters and cause huge loss of lives, heavily infrastructure damages and great financial losses every year all around the world. According to the statistics about the earthquakes, more than a million earthquakes occur which is equal to two earthquakes per minute in the world. Natural disasters have brought more than 780.000 deaths approximately % 60 of all mortality is due to the earthquakes after 2001. A great earthquake took place at 38.75 N 43.36 E in the eastern part of Turkey in Van Province on On October 23th, 2011. 604 people died and about 4000 buildings seriously damaged and collapsed after this earthquake. In recent years, the use of object oriented classification approach based on different object features, such as spectral, textural, shape and spatial information, has gained importance and became widespread for the classification of high-resolution satellite images and orthophotos. The motivation of this study is to detect the collapsed buildings and debris areas after the earthquake by using very high-resolution satellite images and orthophotos with the object oriented classification and also see how well remote sensing technology was carried out in determining the collapsed buildings. In this study, two different land surfaces were selected as homogenous and heterogeneous case study areas. In the first step of application, multi-resolution segmentation was applied and optimum parameters were selected to obtain the objects in each area after testing different color/shape and compactness/smoothness values. In the next step, two different classification approaches, namely "supervised" and "unsupervised" approaches were applied and their classification performances were compared. Object-based Image Analysis (OBIA) was performed using e-Cognition software.

  13. Birth of the Object: Detection of Objectness and Extraction of Object Shape through Object Action Complexes

    DEFF Research Database (Denmark)

    Kraft, Dirk; Pugeault, Nicolas; Baseski, Emre

    2008-01-01

    We describe a process in which the segmentation of objects as well as the extraction of the object shape becomes realized through active exploration of a robot vision system. In the exploration process, two behavioral modules that link robot actions to the visual and haptic perception of objects...... interact. First, by making use of an object independent grasping mechanism, physical control over potential objects can be gained. Having evaluated the initial grasping mechanism as being successful, a second behavior extracts the object shape by making use of prediction based on the motion induced...... system, knowledge about its own embodiment as well as knowledge about geometric relationships such as rigid body motion. This prior knowledge allows the extraction of representations that are semantically richer compared to many other approaches....

  14. Radon detection in soils by solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Moraes, M.A.P.V. de; Khouri, M.T.F.C.

    1986-01-01

    The solid state nuclear track detectors technique was developed to be used in radon detection, by alpha particles tracks, and its application in uranium prospecting on the ground. The sensitive films to alpha particles used are the cellulose nitrate films LR 115 and CA 8015. Several simulations experiments and field measurements were carried out to verify the method possibilities. Maps of some anomalies in Caetite City (Bahia, Brazil) were made with the densities of tracks obtained. The results were compared with scintillation counter measurements. (Author) [pt

  15. Evaluating State-of-the-art Object Detector on Challenging Traffic Light Data

    DEFF Research Database (Denmark)

    Jensen, Morten Bornø; Nasrollahi, Kamal; Moeslund, Thomas B.

    2017-01-01

    -of-the-art, real-time object detection system You Only Look Once, (YOLO) on the public LISA Traffic Light dataset available through the VIVA-challenge, which contain a high number of annotated traffic lights, captured in varying light and weather conditions. The YOLO object detector achieves an AUC of impres...

  16. Track-before-detect procedures for detection of extended object

    Science.gov (United States)

    Fan, Ling; Zhang, Xiaoling; Shi, Jun

    2011-12-01

    In this article, we present a particle filter (PF)-based track-before-detect (PF TBD) procedure for detection of extended objects whose shape is modeled by an ellipse. By incorporating of an existence variable and the target shape parameters into the state vector, the proposed algorithm performs joint estimation of the target presence/absence, trajectory and shape parameters under unknown nuisance parameters (target power and noise variance). Simulation results show that the proposed algorithm has good detection and tracking capabilities for extended objects.

  17. Track-before-detect procedures for detection of extended object

    Directory of Open Access Journals (Sweden)

    Fan Ling

    2011-01-01

    Full Text Available Abstract In this article, we present a particle filter (PF-based track-before-detect (PF TBD procedure for detection of extended objects whose shape is modeled by an ellipse. By incorporating of an existence variable and the target shape parameters into the state vector, the proposed algorithm performs joint estimation of the target presence/absence, trajectory and shape parameters under unknown nuisance parameters (target power and noise variance. Simulation results show that the proposed algorithm has good detection and tracking capabilities for extended objects.

  18. Neutron detector for detecting rare events of spontaneous fission

    International Nuclear Information System (INIS)

    Ter-Akop'yan, G.M.; Popeko, A.G.; Sokol, E.A.; Chelnokov, L.P.; Smirnov, V.I.; Gorshkov, V.A.

    1981-01-01

    The neutron detector for registering rare events of spontaneous fission by detecting multiple neutron emission is described. The detector represents a block of plexiglas of 550 mm diameter and 700 mm height in the centre of which there is a through 160 mm diameter channel for the sample under investigation. The detector comprises 56 3 He filled counters (up to 7 atm pressure) with 1% CO 2 addition. The counters have a 500 mm length and a 32 mm diameter. The sampling of fission events is realized by an electron system which allows determining the number of detected neutrons, numbers of operated counters, signal amplitude and time for fission event detecting. A block diagram of a neutron detector electron system is presented and its operation principle is considered. For protection against cosmic radiation the detector is surronded by a system of plastic scintillators and placed behind the concrete shield of 6 m thickness. The results of measurements of background radiation are given. It has been found that the background radiation of single neutron constitutes about 150 counts per hour, the detecting efficiency of single neutron equals 0.483 +- 0.005, for a 10l detector sensitive volume. By means of the detector described the parameters of multiplicity distribution of prompt neutrons for 256 Fm spontaneous fission are measured. The average multiplicity equals 3.59+-0.06 the dispersion being 2.30+-0.65

  19. Distribution majorization of corner points by reinforcement learning for moving object detection

    Science.gov (United States)

    Wu, Hao; Yu, Hao; Zhou, Dongxiang; Cheng, Yongqiang

    2018-04-01

    Corner points play an important role in moving object detection, especially in the case of free-moving camera. Corner points provide more accurate information than other pixels and reduce the computation which is unnecessary. Previous works only use intensity information to locate the corner points, however, the information that former and the last frames provided also can be used. We utilize the information to focus on more valuable area and ignore the invaluable area. The proposed algorithm is based on reinforcement learning, which regards the detection of corner points as a Markov process. In the Markov model, the video to be detected is regarded as environment, the selections of blocks for one corner point are regarded as actions and the performance of detection is regarded as state. Corner points are assigned to be the blocks which are seperated from original whole image. Experimentally, we select a conventional method which uses marching and Random Sample Consensus algorithm to obtain objects as the main framework and utilize our algorithm to improve the result. The comparison between the conventional method and the same one with our algorithm show that our algorithm reduce 70% of the false detection.

  20. The subjective experience of object recognition: comparing metacognition for object detection and object categorization.

    Science.gov (United States)

    Meuwese, Julia D I; van Loon, Anouk M; Lamme, Victor A F; Fahrenfort, Johannes J

    2014-05-01

    Perceptual decisions seem to be made automatically and almost instantly. Constructing a unitary subjective conscious experience takes more time. For example, when trying to avoid a collision with a car on a foggy road you brake or steer away in a reflex, before realizing you were in a near accident. This subjective aspect of object recognition has been given little attention. We used metacognition (assessed with confidence ratings) to measure subjective experience during object detection and object categorization for degraded and masked objects, while objective performance was matched. Metacognition was equal for degraded and masked objects, but categorization led to higher metacognition than did detection. This effect turned out to be driven by a difference in metacognition for correct rejection trials, which seemed to be caused by an asymmetry of the distractor stimulus: It does not contain object-related information in the detection task, whereas it does contain such information in the categorization task. Strikingly, this asymmetry selectively impacted metacognitive ability when objective performance was matched. This finding reveals a fundamental difference in how humans reflect versus act on information: When matching the amount of information required to perform two tasks at some objective level of accuracy (acting), metacognitive ability (reflecting) is still better in tasks that rely on positive evidence (categorization) than in tasks that rely more strongly on an absence of evidence (detection).

  1. Modifications of radiation detection response of PADC track detectors by photons

    CERN Document Server

    Sinha, D

    1998-01-01

    Photon induced modifications in polyalyldiglycol carbonate (PADC) track detectors have been studied in the dose range of 10 sup 1 -10 sup 6 Gy. It was found that some of the properties like bulk-etch rate, track-etch rate got enhanced at the dose of 10 sup 6 Gy. Activation energy for bulk-etching has been determined for different gamma doses. In order to correlate the high etch rate with the chemical modifications, UV-Vis, IR and ESR studies were carried out. These studies clearly give the indication that radiation damage results into radical formation through bond cleavage. TGA study was performed for understanding the thermal resistance of this detector. The results are presented and discussed.

  2. Detection of atmospheric muons with ALICE detectors

    International Nuclear Information System (INIS)

    Alessandro, B.; Cortes Maldonado, I.; Cuautle, E.; Fernandez Tellez, A.; Gomez Jimenez, R.; Gonzalez Santos, H.; Herrera Corral, G.; Leon, I.; Martinez, M.I.; Munoz Mata, J.L.; Podesta, P.; Ramirez Reyes, A.; Rodriguez Cahuantzi, M.; Sitta, M.; Subieta, M.; Tejeda Munoz, G.; Vargas, A.; Vergara, S.

    2010-01-01

    The calibration, alignment and commissioning of most of the ALICE (A Large Ion Collider Experiment at the CERN LHC) detectors have required a large amount of cosmic events during 2008. In particular two types of cosmic triggers have been implemented to record the atmospheric muons passing through ALICE. The first trigger, called ACORDE trigger, is performed by 60 scintillators located on the top of three sides of the large L3 magnet surrounding the central detectors, and selects atmospheric muons. The Silicon Pixel Detector (SPD) installed on the first two layers of the Inner Tracking System (ITS) gives the second trigger, called SPD trigger. This trigger selects mainly events with a single atmospheric muon crossing the SPD. Some particular events, in which the atmospheric muon interacts with the iron of the L3 magnet and creates a shower of particles crossing the SPD, are also selected. In this work the reconstruction of events with these two triggers will be presented. In particular, the performance of the ACORDE detector will be discussed by the analysis of multi-muon events. Some physical distributions are also shown.

  3. PastVision+: Thermovisual Inference of Recent Medicine Intake by Detecting Heated Objects and Cooled Lips

    Directory of Open Access Journals (Sweden)

    Martin Cooney

    2017-11-01

    Full Text Available This article addresses the problem of how a robot can infer what a person has done recently, with a focus on checking oral medicine intake in dementia patients. We present PastVision+, an approach showing how thermovisual cues in objects and humans can be leveraged to infer recent unobserved human–object interactions. Our expectation is that this approach can provide enhanced speed and robustness compared to existing methods, because our approach can draw inferences from single images without needing to wait to observe ongoing actions and can deal with short-lasting occlusions; when combined, we expect a potential improvement in accuracy due to the extra information from knowing what a person has recently done. To evaluate our approach, we obtained some data in which an experimenter touched medicine packages and a glass of water to simulate intake of oral medicine, for a challenging scenario in which some touches were conducted in front of a warm background. Results were promising, with a detection accuracy of touched objects of 50% at the 15 s mark and 0% at the 60 s mark, and a detection accuracy of cooled lips of about 100 and 60% at the 15 s mark for cold and tepid water, respectively. Furthermore, we conducted a follow-up check for another challenging scenario in which some participants pretended to take medicine or otherwise touched a medicine package: accuracies of inferring object touches, mouth touches, and actions were 72.2, 80.3, and 58.3% initially, and 50.0, 81.7, and 50.0% at the 15 s mark, with a rate of 89.0% for person identification. The results suggested some areas in which further improvements would be possible, toward facilitating robot inference of human actions, in the context of medicine intake monitoring.

  4. Object-oriented analysis and design of a GEANT based detector simulator

    International Nuclear Information System (INIS)

    Amako, K.; Kanzaki, J.; Sasaki, T.; Takaiwa, Y.; Nakagawa, Y.; Yamagata, T.

    1994-01-01

    The authors give a status report of the project to design a detector simulation program by reengineering GEANT with the object-oriented methodology. They followed the Object Modeling Technique. They explain the object model they constructed. Also problems of the technique found during their study are discussed

  5. Detection of alpha particles and Cf-252 fission fragments with solid track detectors and surface barrier detector. Efficiency calculation

    International Nuclear Information System (INIS)

    Khouri, M.T.F.C.; Koskinas, M.F.; Andrade, C. de; Vilela, E.C.; Hinostroza, H.; Kaschiny, J.E.A.; Costa, M.S. da; Rizzo, P.; Santos, W.M.S.

    1990-01-01

    A technique for particle detection by using track solid detector and also types of revealing and result analysis are presented concerned to Cf-252 fission fragments detection. Measurements of alpha particles detection efficiency using Makrofol E and surface barrier detector are performed. (L.C.J.A.)

  6. Attribute and topology based change detection in a constellation of previously detected objects

    Science.gov (United States)

    Paglieroni, David W.; Beer, Reginald N.

    2016-01-19

    A system that applies attribute and topology based change detection to networks of objects that were detected on previous scans of a structure, roadway, or area of interest. The attributes capture properties or characteristics of the previously detected objects, such as location, time of detection, size, elongation, orientation, etc. The topology of the network of previously detected objects is maintained in a constellation database that stores attributes of previously detected objects and implicitly captures the geometrical structure of the network. A change detection system detects change by comparing the attributes and topology of new objects detected on the latest scan to the constellation database of previously detected objects.

  7. Analysis of the imaging performance in indirect digital mammography detectors by linear systems and signal detection models

    International Nuclear Information System (INIS)

    Liaparinos, P.; Kalyvas, N.; Kandarakis, I.; Cavouras, D.

    2013-01-01

    Purpose: The purpose of this study was to provide an analysis of imaging performance in digital mammography, using indirect detector instrumentation, by combining the Linear Cascaded Systems (LCS) theory and the Signal Detection Theory (SDT). Observer performance was assessed, by examining frequently employed detectors, consisting of phosphor-based X-ray converters (granular Gd 2 O 2 S:Tb and structural CsI:Tl), coupled with the recently introduced complementary metal-oxide-semiconductor (CMOS) sensor. By applying combinations of various irradiation conditions (filter-target and exposure levels at 28 kV) on imaging detectors, our study aimed to find the optimum system set-up for digital mammography. For this purpose, the signal to noise transfer properties of the medical imaging detectors were examined for breast carcinoma detectability. Methods: An analytical model was applied to calculate X-ray interactions within software breast phantoms and detective media. Modeling involved: (a) three X-ray spectra used in digital mammography: 28 kV Mo/Mo (Mo: 0.030 mm), 28 kV Rh/Rh (Rh: 0.025 mm) and 28 kV W/Rh (Rh: 0.060 mm) at different entrance surface air kerma (ESAK) of 3 mGy and 5 mGy, (b) a 5 cm thick Perspex software phantom incorporating a small Ca lesion of varying size (0.1–1 cm), and (c) two 200 μm thick phosphor-based X-ray converters (Gd2O2S:Tb, CsI:Tl), coupled to a CMOS based detector of 22.5 μm pixel size. Results: Best (lowest) contrast threshold (CT) values were obtained with the combination: (i) W/Rh target-filter, (ii) 5 mGy (ESAK), and (iii) CsI:Tl-CMOS detector. For lesion diameter 0.5 cm the CT was found improved, in comparison to other anode/filter combinations, approximately 42% than Rh/Rh and 55% than Mo/Mo, for small sized carcinoma (0.1 cm) and approximately 50% than Rh/Rh and 125% than Mo/Mo, for big sized carcinoma (1 cm), considering 5 mGy X-ray beam. By decreasing lesion diameter and thickness, a limiting CT (100%) was occurred for size

  8. Detection of secondary electrons with pixelated hybrid semiconductor detectors

    International Nuclear Information System (INIS)

    Gebert, Ulrike Sonja

    2011-01-01

    Within the scope of this thesis, secondary electrons were detected with a pixelated semiconductor detector named Timepix. The Timepix detector consists of electronics and a sensor made from a semiconductor material. The connection of sensor and electronics is done for each pixel individually using bump bonds. Electrons with energies above 3 keV can be detected with the sensor. One electron produces a certain amount of electron-hole pairs according to its energy. The charge then drifts along an electric field to the pixel electronics, where it induces an electric signal. Even without a sensor it is possible to detect an electric signal from approximately 1000 electrons directly in the pixel electronics. Two different detector systems to detect secondary electrons using the Timepix detector were investigated during this thesis. First of all, a hybrid photon detector (HPD) was used to detect single photoelectrons. The HPD consists of a vacuum vessel with an entrance window and a cesium iodine photocathode at the inner surface of the window. Photoelectrons are released from the photocathode by incident light and are accelerated in an electric field towards the Timepix detector, where the point of interaction and the arrival time of the electron is determined. With a proximity focusing setup, a time resolution of 12 ns (with an acceleration voltage of 20 kV between photocathode and Timepix detector) was obtained. The HPD examined in this thesis showed a strong dependence of the dark rate form the acceleration voltage and the pressure in the vacuum vessel. At a pressure of few 10 -5 mbar and an acceleration voltage of 20 kV, the dark rate was about 800 Hz per mm 2 area of the read out photocathode. One possibility to reduce the dark rate is to identify ion feedback events. With a slightly modified setup it was possible to reduce the dark rate to 0.5 Hz/mm 2 . To achieve this, a new photocathode was mounted in a shorter distance to the detector. The measurements where

  9. Detection of nitro-based and peroxide-based explosives by fast polarity-switchable ion mobility spectrometer with ion focusing in vicinity of Faraday detector.

    Science.gov (United States)

    Zhou, Qinghua; Peng, Liying; Jiang, Dandan; Wang, Xin; Wang, Haiyan; Li, Haiyang

    2015-05-29

    Ion mobility spectrometer (IMS) has been widely deployed for on-site detection of explosives. The common nitro-based explosives are usually detected by negative IMS while the emerging peroxide-based explosives are better detected by positive IMS. In this study, a fast polarity-switchable IMS was constructed to detect these two explosive species in a single measurement. As the large traditional Faraday detector would cause a trailing reactant ion peak (RIP), a Faraday detector with ion focusing in vicinity was developed by reducing the detector radius to 3.3 mm and increasing the voltage difference between aperture grid and its front guard ring to 591 V, which could remove trailing peaks from RIP without loss of signal intensity. This fast polarity-switchable IMS with ion focusing in vicinity of Faraday detector was employed to detect a mixture of 10 ng 2,4,6-trinitrotoluene (TNT) and 50 ng hexamethylene triperoxide diamine (HMTD) by polarity-switching, and the result suggested that [TNT-H](-) and [HMTD+H](+) could be detected in a single measurement. Furthermore, the removal of trailing peaks from RIP by the Faraday detector with ion focusing in vicinity also promised the accurate identification of KClO4, KNO3 and S in common inorganic explosives, whose product ion peaks were fairly adjacent to RIP.

  10. Early detection of deteriorations affecting neutrons boron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Domenech, T.; Hamrita, H.; Normand, S. [CEA, LIST, Laboratoire Capteur et Architectures Electroniques, F-91191 Gif/Yvette (France); Daviaud, J. P. [EDF, DPN, 1 place Pleyel, 93 282 Saint Denis Cedex (France); Laroche, M. [EDF, SEPTEN, 12-14 rue Dutrievoz, 69628 Villeurbanne Cedex (France)

    2011-07-01

    The objective of these studies is to design and to industrialize a new device taking back the features of the actual system of control of boron detectors and updating them by adding some analysis of the pulses shapes for predictive maintenance. (authors)

  11. Object detection by correlation coefficients using azimuthally averaged reference projections.

    Science.gov (United States)

    Nicholson, William V

    2004-11-01

    A method of computing correlation coefficients for object detection that takes advantage of using azimuthally averaged reference projections is described and compared with two alternative methods-computing a cross-correlation function or a local correlation coefficient versus the azimuthally averaged reference projections. Two examples of an application from structural biology involving the detection of projection views of biological macromolecules in electron micrographs are discussed. It is found that a novel approach to computing a local correlation coefficient versus azimuthally averaged reference projections, using a rotational correlation coefficient, outperforms using a cross-correlation function and a local correlation coefficient in object detection from simulated images with a range of levels of simulated additive noise. The three approaches perform similarly in detecting macromolecular views in electron microscope images of a globular macrolecular complex (the ribosome). The rotational correlation coefficient outperforms the other methods in detection of keyhole limpet hemocyanin macromolecular views in electron micrographs.

  12. Local detection efficiency of a NbN superconducting single photon detector explored by a scattering scanning near-field optical microscope.

    Science.gov (United States)

    Wang, Qiang; Renema, Jelmer J; Engel, Andreas; van Exter, Martin P; de Dood, Michiel J A

    2015-09-21

    We propose an experiment to directly probe the local response of a superconducting single photon detector using a sharp metal tip in a scattering scanning near-field optical microscope. The optical absorption is obtained by simulating the tip-detector system, where the tip-detector is illuminated from the side, with the tip functioning as an optical antenna. The local detection efficiency is calculated by considering the recently introduced position-dependent threshold current in the detector. The calculated response for a 150 nm wide detector shows a peak close to the edge that can be spatially resolved with an estimated resolution of ∼ 20 nm, using a tip with parameters that are experimentally accessible.

  13. Simulation and Digitization of a Gas Electron Multiplier Detector Using Geant4 and an Object-Oriented Digitization Program

    Science.gov (United States)

    McMullen, Timothy; Liyanage, Nilanga; Xiong, Weizhi; Zhao, Zhiwen

    2017-01-01

    Our research has focused on simulating the response of a Gas Electron Multiplier (GEM) detector using computational methods. GEM detectors provide a cost effective solution for radiation detection in high rate environments. A detailed simulation of GEM detector response to radiation is essential for the successful adaption of these detectors to different applications. Using Geant4 Monte Carlo (GEMC), a wrapper around Geant4 which has been successfully used to simulate the Solenoidal Large Intensity Device (SoLID) at Jefferson Lab, we are developing a simulation of a GEM chamber similar to the detectors currently used in our lab. We are also refining an object-oriented digitization program, which translates energy deposition information from GEMC into electronic readout which resembles the readout from our physical detectors. We have run the simulation with beta particles produced by the simulated decay of a 90Sr source, as well as with a simulated bremsstrahlung spectrum. Comparing the simulation data with real GEM data taken under similar conditions is used to refine the simulation parameters. Comparisons between results from the simulations and results from detector tests will be presented.

  14. Object tracking by occlusion detection via structured sparse learning

    KAUST Repository

    Zhang, Tianzhu

    2013-06-01

    Sparse representation based methods have recently drawn much attention in visual tracking due to good performance against illumination variation and occlusion. They assume the errors caused by image variations can be modeled as pixel-wise sparse. However, in many practical scenarios these errors are not truly pixel-wise sparse but rather sparsely distributed in a structured way. In fact, pixels in error constitute contiguous regions within the object\\'s track. This is the case when significant occlusion occurs. To accommodate for non-sparse occlusion in a given frame, we assume that occlusion detected in previous frames can be propagated to the current one. This propagated information determines which pixels will contribute to the sparse representation of the current track. In other words, pixels that were detected as part of an occlusion in the previous frame will be removed from the target representation process. As such, this paper proposes a novel tracking algorithm that models and detects occlusion through structured sparse learning. We test our tracker on challenging benchmark sequences, such as sports videos, which involve heavy occlusion, drastic illumination changes, and large pose variations. Experimental results show that our tracker consistently outperforms the state-of-the-art. © 2013 IEEE.

  15. Position detectors, methods of detecting position, and methods of providing positional detectors

    Science.gov (United States)

    Weinberg, David M.; Harding, L. Dean; Larsen, Eric D.

    2002-01-01

    Position detectors, welding system position detectors, methods of detecting various positions, and methods of providing position detectors are described. In one embodiment, a welding system positional detector includes a base that is configured to engage and be moved along a curved surface of a welding work piece. At least one position detection apparatus is provided and is connected with the base and configured to measure angular position of the detector relative to a reference vector. In another embodiment, a welding system positional detector includes a weld head and at least one inclinometer mounted on the weld head. The one inclinometer is configured to develop positional data relative to a reference vector and the position of the weld head on a non-planar weldable work piece.

  16. Modeling of detection efficiency of HPGe semiconductor detector by Monte Carlo method

    International Nuclear Information System (INIS)

    Rapant, T.

    2003-01-01

    Over the past ten years following the gradual adoption of new legislative standards for protection against ionizing radiation was significant penetration of gamma-spectrometry between standard radioanalytical methods. In terms of nuclear power plant gamma-spectrometry has shown as the most effective method of determining of the activity of individual radionuclides. Spectrometric laboratories were gradually equipped with the most modern technical equipment. Nevertheless, due to the use of costly and time intensive experimental calibration methods, the possibilities of gamma-spectrometry were partially limited. Mainly in late 90-ies during substantial renovation and modernization works. For this reason, in spectrometric laboratory in Nuclear Power Plants Bohunice in cooperation with the Department of Nuclear Physics FMPI in Bratislava were developed and tested several calibration procedures based on computer simulations using GEANT program. In presented thesis the calibration method for measuring of bulk samples based on auto-absorption factors is described. The accuracy of the proposed method is at least comparable with other used methods, but it surpasses them significantly in terms of efficiency and financial time and simplicity. The described method has been used successfully almost for two years in laboratory spectrometric Radiation Protection Division in Bohunice nuclear power. It is shown by the results of international comparison measurements and repeated validation measurements performed by Slovak Institute of Metrology in Bratislava.

  17. Automatic and objective oral cancer diagnosis by Raman spectroscopic detection of keratin with multivariate curve resolution analysis

    Science.gov (United States)

    Chen, Po-Hsiung; Shimada, Rintaro; Yabumoto, Sohshi; Okajima, Hajime; Ando, Masahiro; Chang, Chiou-Tzu; Lee, Li-Tzu; Wong, Yong-Kie; Chiou, Arthur; Hamaguchi, Hiro-O.

    2016-01-01

    We have developed an automatic and objective method for detecting human oral squamous cell carcinoma (OSCC) tissues with Raman microspectroscopy. We measure 196 independent Raman spectra from 196 different points of one oral tissue sample and globally analyze these spectra using a Multivariate Curve Resolution (MCR) analysis. Discrimination of OSCC tissues is automatically and objectively made by spectral matching comparison of the MCR decomposed Raman spectra and the standard Raman spectrum of keratin, a well-established molecular marker of OSCC. We use a total of 24 tissue samples, 10 OSCC and 10 normal tissues from the same 10 patients, 3 OSCC and 1 normal tissues from different patients. Following the newly developed protocol presented here, we have been able to detect OSCC tissues with 77 to 92% sensitivity (depending on how to define positivity) and 100% specificity. The present approach lends itself to a reliable clinical diagnosis of OSCC substantiated by the “molecular fingerprint” of keratin.

  18. Determination of the detection efficiency of a HPGe detector by means of the MCNP 4A simulation code

    International Nuclear Information System (INIS)

    Leal, B.

    2004-01-01

    In the majority of the laboratories, the calibration in efficiency of the detector is carried out by means of the standard sources measurement of gamma photons that have a determined activity, or for matrices that contain a variety of radionuclides that can embrace the energy range of interest. Given the experimental importance that has the determination from the curves of efficiency to the effects of establishing the quantitative results, is appealed to the simulation of the response function of the detector used in the Regional Center of Nuclear Studies inside the energy range of 80 keV to 1400 keV varying the density of the matrix, by means of the application of the Monte Carlo code MCNP-4A. The adjustment obtained shows an acceptance grade in the range of 100 to 600 keV, with a smaller percentage discrepancy to 5%. (Author)

  19. Assessing the performance of a differential evolution algorithm in structural damage detection by varying the objective function

    OpenAIRE

    Villalba-Morales, Jesús Daniel; Laier, José Elias

    2014-01-01

    Structural damage detection has become an important research topic in certain segments of the engineering community. These methodologies occasionally formulate an optimization problem by defining an objective function based on dynamic parameters, with metaheuristics used to find the solution. In this study, damage localization and quantification is performed by an Adaptive Differential Evolution algorithm, which solves the associated optimization problem. Furthermore, this paper looks at the ...

  20. Detection of electron and hole traps in CdZnTe radiation detectors by thermoelectric emission spectroscopy and thermally stimulated conductivity

    International Nuclear Information System (INIS)

    Lee, E.Y.; Brunett, B.A.; Olsen, R.W.; Van Scyoc, J.M. III; Hermon, H.; James, R.B.

    1998-01-01

    The electrical properties of CdZnTe radiation detectors are largely determined by electron and hole traps in this material. The traps, in addition to degrading the detector performance, can function as dopants and determine the resistivity of the material. Thermoelectric emission spectroscopy and thermally stimulated conductivity are used to detect these traps in a commercially available spectrometer-grade CdZnTe detector, and the electrical resistivity is measured as a function of temperature. A deep electron trap having an energy of 695 meV and cross section of 8 x 10 -16 cm 2 is detected and three hole traps having energies of 70 ± 20 meV, 105 ± 30 meV and 694 ± 162 meV are detected. A simple model based on these traps explains quantitatively all the data, including the electrical properties at room temperature and also their temperature dependence

  1. Long-term and transient time variation of cosmic ray fluxes detected in Argentina by CARPET cosmic ray detector

    Science.gov (United States)

    De Mendonça, R. R. S.; Raulin, J.-P.; Bertoni, F. C. P.; Echer, E.; Makhmutov, V. S.; Fernandez, G.

    2011-07-01

    We present results obtained at El Leoncito (CASLEO, San Juan, Argentina) with the CARPET charged particles detector installed in April 2006. The observed modulation of the cosmic ray flux is discussed as a function of its time variability and it is related to longer solar activity variations and to shorter variations during solar and geomagnetic transient activity. Short period (few minutes, few hours) cosmic ray modulation events are observed during rain time (precipitation) and significant variations of the atmospheric electric field. Complementary observations of the atmospheric electric field indicate that its time variations play an important role in the detected cosmic ray event.

  2. Neutron threshold activation detectors (TAD) for the detection of fissions

    Science.gov (United States)

    Gozani, Tsahi; Stevenson, John; King, Michael J.

    2011-10-01

    Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons (≈3 vs. ≈0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron "flash") where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector material. The technique

  3. Neutron threshold activation detectors (TAD) for the detection of fissions

    International Nuclear Information System (INIS)

    Gozani, Tsahi; Stevenson, John; King, Michael J.

    2011-01-01

    Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons (∼3 vs. ∼0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron 'flash') where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector material. The technique

  4. Neutron threshold activation detectors (TAD) for the detection of fissions

    Energy Technology Data Exchange (ETDEWEB)

    Gozani, Tsahi, E-mail: tgozani@rapiscansystems.com [Rapiscan Laboratories, Inc., 520 Almanor Ave., Sunnyvale, CA 94085 (United States); Stevenson, John; King, Michael J. [Rapiscan Laboratories, Inc., 520 Almanor Ave., Sunnyvale, CA 94085 (United States)

    2011-10-01

    Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons ({approx}3 vs. {approx}0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron 'flash') where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector

  5. Detecting Energy Spectrum Of The Products Of Reaction 6Li(n,alpha)3H By The Home-Made Gaseous Detectors In Vietnam

    International Nuclear Information System (INIS)

    Luong Huu Phuoc; Phung Van Duan; Le Van Mien; Nguyen Tat Thang; Tran Hoai Nam

    2008-01-01

    There are shown some of results of study in designing and making first gaseous detectors of big sizes in Vietnam. The detectors were used for test measurement of detecting energy spectrum of the products of reaction 6 Li(n,alpha) 3 H caused by thermal neutrons. On the spectrum there were observed two energy peaks of tritons and alpha particles separately. In the test measurement there were used two neutron isotopic sources with total output 2x1.1x10 7 n/s. The study was implemented at Hanoi University of Technology. (author)

  6. Non-invasive detection of aortic and coronary atherosclerosis in homozygous familial hypercholesterolemia by 64 slice multi-detector row computed tomography angiography

    Science.gov (United States)

    Homozygous familial hypercholesterolemia (HoFH) is a rare disorder characterized by the early onset of atherosclerosis, often at the ostia of coronary arteries. In this study we document for the first time that aortic and coronary atherosclerosis can be detected using 64 slice multiple detector row ...

  7. Understanding of Object Detection Based on CNN Family and YOLO

    Science.gov (United States)

    Du, Juan

    2018-04-01

    As a key use of image processing, object detection has boomed along with the unprecedented advancement of Convolutional Neural Network (CNN) and its variants since 2012. When CNN series develops to Faster Region with CNN (R-CNN), the Mean Average Precision (mAP) has reached 76.4, whereas, the Frame Per Second (FPS) of Faster R-CNN remains 5 to 18 which is far slower than the real-time effect. Thus, the most urgent requirement of object detection improvement is to accelerate the speed. Based on the general introduction to the background and the core solution CNN, this paper exhibits one of the best CNN representatives You Only Look Once (YOLO), which breaks through the CNN family’s tradition and innovates a complete new way of solving the object detection with most simple and high efficient way. Its fastest speed has achieved the exciting unparalleled result with FPS 155, and its mAP can also reach up to 78.6, both of which have surpassed the performance of Faster R-CNN greatly. Additionally, compared with the latest most advanced solution, YOLOv2 achieves an excellent tradeoff between speed and accuracy as well as an object detector with strong generalization ability to represent the whole image.

  8. Detection of Buried Objects by Means of a SAP Technique: Comparing MUSIC- and SVR-Based Approaches

    Science.gov (United States)

    Meschino, S.; Pajewski, L.; Pastorino, M.; Randazzo, A.; Schettini, G.

    2012-04-01

    This work is focused on the application of a Sub-Array Processing (SAP) technique to the detection of metallic cylindrical objects embedded in a dielectric half-space. The identification of buried cables, pipes, conduits, and other cylindrical utilities, is an important problem that has been extensively studied in the last years. Most commonly used approaches are based on the use of electromagnetic sensing: a set of antennas illuminates the ground and the collected echo is analyzed in order to extract information about the scenario and to localize the sought objects [1]. In a SAP approach, algorithms for the estimation of Directions of Arrival (DOAs) are employed [2]: they assume that the sources (in this paper, currents induced on buried targets) are in the far-field region of the receiving array, so that the received wavefront can be considered as planar, and the main angular direction of the field can be estimated. However, in electromagnetic sensing of buried objects, the scatterers are usually quite near to the antennas. Nevertheless, by dividing the whole receiving array in a suitable number of sub-arrays, and by finding a dominant DOA for each one, it is possible to localize objects that are in the far-field of the sub-array, although being in the near-field of the array. The DOAs found by the sub-arrays can be triangulated, obtaining a set of crossings with intersections condensed around object locations. In this work, the performances of two different DOA algorithms are compared. In particular, a MUltiple SIgnal Classification (MUSIC)-type method [3] and Support Vector Regression (SVR) based approach [4] are employed. The results of a Cylindrical-Wave Approach forward solver are used as input data of the detection procedure [5]. To process the crossing pattern, the region of interest is divided in small windows, and a Poisson model is adopted for the statistical distribution of intersections in the windows. Hypothesis testing procedures are used (imposing

  9. Detection of Buried Objects : The MUD Project

    NARCIS (Netherlands)

    Quesson, B.A.J.; Vossen, R. van; Zampolli, M.; Beckers, A.L.D.

    2011-01-01

    The aim of the Mine Underwater Detection (MUD) project at TNO is to experimentally investigate the acoustic and magnetic detection of explosives underwater, buried in a soft sediment layer. This problem is relevant for the protection of harbors and littoral assets against terrorist attacks and for

  10. Measurements of fast neutrons by bubble detectors

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, F.; Martinez, H. [Laboratorio de Espectroscopia, Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Apartado Postal 48-3, 62251, Cuernavaca Morelos (Mexico); Leal, B. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510, Ciudad Universitaria, Mexico D. F. (Mexico); Rangel, J. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510, Ciudad Universitaria, Mexico D. F (Mexico); Reyes, P. G. [Facultad de Ciencias, Universidad Autonoma del Estado de Mexico, Instituto Literario 100, Col. Centro, 50000, Toluca Estado de Mexico (Mexico)

    2013-07-03

    Neutron bubble detectors have been studied using Am-Be and D-D neuron sources, which give limited energy information. The Bubble Detector Spectrometer (BDS) have six different energy thresholds ranging from 10 KeV to 10 Mev. The number of bubbles obtained in each measurement is related to the dose (standardized response R) equivalent neutrons through sensitivity (b / {mu}Sv) and also with the neutron flux (neutrons per unit area) through a relationship that provided by the manufacturer. Bubble detectors were used with six different answers (0.11 b/ {mu}Sv, 0093 b/{mu}Sv, 0.14 b/{mu}Sv, 0.17 b/{mu}Sv, 0051 b/{mu}Sv). To test the response of the detectors (BDS) radiate a set of six of them with different energy threshold, with a source of Am-Be, placing them at a distance of one meter from it for a few minutes. Also, exposed to dense plasma focus Fuego Nuevo II (FN-II FPD) of ICN-UNAM, apparatus which produces fusion plasma, generating neutrons by nuclear reactions of neutrons whose energy emitting is 2.45 MeV. In this case the detectors were placed at a distance of 50 cm from the pinch at 90 Degree-Sign this was done for a certain number of shots. In both cases, the standard response is reported (Dose in {mu}Sv) for each of the six detectors representing an energy range, this response is given by the expression R{sub i}= B{sub i} / S{sub i} where B{sub i} is the number of bubbles formed in each and the detector sensitivity (S{sub i}) is given for each detector in (b / {mu}Sv). Also, reported for both cases, the detected neutron flux (n cm{sup -2}), by a given ratio and the response involves both standardized R, as the average cross section sigma. The results obtained have been compared with the spectrum of Am-Be source. From these measurements it can be concluded that with a combination of bubble detectors, with different responses is possible to measure the equivalent dose in a range of 10 to 100 {mu}Sv fields mixed neutron and gamma, and pulsed generated fusion

  11. On the event detected by the Mont Blanc underground neutrino detector on February 23, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Dadykin, V L; Zatsepin, G T; Korchagin, V B

    1988-02-01

    The event detected by the Mont Balnc Soviet -Italian scintillation detector on February 23, 1987 at 2:52:37 are discussed. The corrected energies of the pulases of the event and the probability of the event imitation by the background are presented.

  12. Design and implementation of an XML based object-oriented detector description database for CMS

    International Nuclear Information System (INIS)

    Liendl, M.

    2003-04-01

    This thesis deals with the development of a detector description database (DDD) for the compact muon solenoid (CMS) experiment at the large hadron collider (LHC) located at the European organization for nuclear research (CERN). DDD is a fundamental part of the CMS offline software with its main applications, simulation and reconstruction. Both are in need of different models of the detector in order to efficiently solve their specific tasks. In the thesis the requirements to a detector description database are analyzed and the chosen solution is described in detail. It comprises the following components: an XML based detector description language, a runtime system that implements an object-oriented transient representation of the detector, and an application programming interface to be used by client applications. One of the main aspects of the development is the design of the DDD components. The starting point is a domain model capturing concisely the characteristics of the problem domain. The domain model is transformed into several implementation models according to the guidelines of the model driven architecture (MDA). Implementation models and appropriate refinements thereof are foundation for adequate implementations. Using the MDA approach, a fully functional prototype was realized in C++ and XML. The prototype was successfully tested through seamless integration into both the simulation and the reconstruction framework of CMS. (author)

  13. Life Finder Detectors: An Overview of Detector Technologies for Detecting Life on Other Worlds

    Science.gov (United States)

    Rauscher, Bernard J.; Domagal-Goldman, Shawn; Greenhouse, Matthew A.; Hsieh, Wen-Ting; McElwain, Michael W.; Moseley, Samuel H.; Noroozian, Omid; Norton, Tim; Kutyrev, Alexander; Rinehart, Stephen; stock, Joseph

    2015-01-01

    Future large space telescopes will seek evidence for life on other worlds by searching for spectroscopic biosignatures. Atmospheric biosignature gases include oxygen, ozone, water vapor, and methane. Non-biological gases, including carbon monoxide and carbon dioxide, are important for discriminating false positives. All of these gases imprint spectroscopic features in the UV through mid-IR that are potentially detectable using future space based coronagraphs or star shades for starlight suppression.Direct spectroscopic biosignature detection requires sensors capable of robustly measuring photon arrival rates on the order of 10 per resolution element per hour. Photon counting is required for some wavefront sensing and control approaches to achieve the requisite high contrast ratios. We review life finder detector technologies that either exist today, or are under development, that have the potential to meet these challenging requirements. We specifically highlight areas where more work or development is needed.Life finder detectors will be invaluable for a wide variety of other major science programs. Because of its cross cutting nature; UV, optical, and infrared (UVOIR) detector development features prominently in the 2010 National Research Council Decadal Survey, 'New Worlds, New Horizons in Astronomy and Astrophysics', and the NASA Cosmic Origins Program Technology Roadmap.

  14. Real breakthrough in detection of radioactive sources by portal monitors with plastic detectors and New Advanced Source Identification Algorithm (ASIA-New)

    Energy Technology Data Exchange (ETDEWEB)

    Stavrov, Andrei; Yamamoto, Eugene [Rapiscan Systems, Inc., 14000 Mead Street, Longmont, CO, 80504 (United States)

    2015-07-01

    Radiation Portal Monitors (RPM) with plastic detectors represent the main instruments used for primary border (customs) radiation control. RPM are widely used because they are simple, reliable, relatively inexpensive and have a high sensitivity. However, experience using the RPM in various countries has revealed the systems have some grave shortcomings. There is a dramatic decrease of the probability of detection of radioactive sources under high suppression of the natural gamma background (radiation control of heavy cargoes, containers and, especially, trains). NORM (Naturally Occurring Radioactive Material) existing in objects under control trigger the so-called 'nuisance alarms', requiring a secondary inspection for source verification. At a number of sites, the rate of such alarms is so high it significantly complicates the work of customs and border officers. This paper presents a brief description of new variant of algorithm ASIA-New (New Advanced Source Identification Algorithm), which was developed by the Rapiscan company. It also demonstrates results of different tests and the capability of a new system to overcome the shortcomings stated above. New electronics and ASIA-New enables RPM to detect radioactive sources under a high background suppression (tested at 15-30%) and to verify the detected NORM (KCl) and the artificial isotopes (Co- 57, Ba-133 and other). New variant of ASIA is based on physical principles, a phenomenological approach and analysis of some important parameter changes during the vehicle passage through the monitor control area. Thanks to this capability main advantage of new system is that this system can be easily installed into any RPM with plastic detectors. Taking into account that more than 4000 RPM has been installed worldwide their upgrading by ASIA-New may significantly increase probability of detection and verification of radioactive sources even masked by NORM. This algorithm was tested for 1,395 passages of

  15. Study by Monte Carlo methods of an explosive detection system using a D-D generator and Nal (Tl) detectors

    International Nuclear Information System (INIS)

    Cevallos R, L. E.; Guzman G, K. A.; Gallego, E.; Garcia F, G.; Vega C, H. R.

    2017-10-01

    The detection of hidden explosive material is very important for national security. Using Monte Carlo methods, with the code MCNP6, several proposed configurations of a detection system with a Deuterium-Deuterium (D-D) generator, in conjunction with NaI (Tl) scintillation detectors, have been evaluated to intercept hidden explosives. The response of the system to various explosive samples such as Rdx and ammonium nitrate are analyzed as the main components of home-military explosives. The D-D generator produces fast neutrons of 2.5 MeV in a maximum field of 10 10 n/s (Dd-110) which is surrounded with high density polyethylene in order to thermalized the fast neutrons making them interact with the sample inspected, giving rise to the emission of gamma rays that generates a characteristic spectrum of the elements that constitute it, being able in this way to determine its chemical composition and identify the type of substance. The necessary shielding is evaluated to estimate the admissible operation dose, with thicknesses of lead and borated polyethylene, in order to place it at some point of the Laboratory of Neutron Measurements of the Polytechnic University of Madrid where the shielding is optimal. The results show that its functionality is promising in the field of national security for the explosives inspection. (Author)

  16. Detection of the ice assertion on aircraft using empirical mode decomposition enhanced by multi-objective optimization

    Science.gov (United States)

    Bagherzadeh, Seyed Amin; Asadi, Davood

    2017-05-01

    In search of a precise method for analyzing nonlinear and non-stationary flight data of an aircraft in the icing condition, an Empirical Mode Decomposition (EMD) algorithm enhanced by multi-objective optimization is introduced. In the proposed method, dissimilar IMF definitions are considered by the Genetic Algorithm (GA) in order to find the best decision parameters of the signal trend. To resolve disadvantages of the classical algorithm caused by the envelope concept, the signal trend is estimated directly in the proposed method. Furthermore, in order to simplify the performance and understanding of the EMD algorithm, the proposed method obviates the need for a repeated sifting process. The proposed enhanced EMD algorithm is verified by some benchmark signals. Afterwards, the enhanced algorithm is applied to simulated flight data in the icing condition in order to detect the ice assertion on the aircraft. The results demonstrate the effectiveness of the proposed EMD algorithm in aircraft ice detection by providing a figure of merit for the icing severity.

  17. Detection of foreign objects using bobbin probe eddy current test

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hee Sung; Kweon, Young Ho; Lee, Dong Ha; Shin, Wook Jo; Yim, Chan Ki [ECT Group, Sae-An Engineering Corporation, Seoul (Korea, Republic of)

    2016-08-15

    Residual foreign objects at the secondary side (top of the tubesheet and tube support plates) of a steam generator are likely to cause a leak by causing wear in the tube. The extent of wear is significantly affected by the material, shape, and size of the foreign object, and the corrosion properties of the tube. The presence of foreign objects at the top of the tubesheet and tube support plates has been identified using remote visual inspection methods such as the foreign object search and retrieval and eddy current test (ECT). The detection of the residual foreign object at the secondary side of a steam generator has limitations that depend on the material properties and the condition of contact with the tube. In this study, which is vertical and horizontal from the upper tubesheet, the corresponding bobbin ECT signals were collected and analyzed to measure its ability to detect foreign objects.

  18. Added value of integrated circuit detector in head CT: objective and subjective image quality in comparison to conventional detector design.

    Science.gov (United States)

    Korn, Andreas; Bender, Benjamin; Spira, Daniel; Schabel, Christoph; Bhadelia, Rafeeque; Claussen, Claus; Ernemann, Ulrike; Brodoefel, Harald

    2014-12-01

    A new computed tomography (CT) detector with integrated electric components and shorter conducting pathways has recently been introduced to decrease system inherent electronic noise. The purpose of this study was to assess the potential benefit of such integrated circuit detector (ICD) in head CT by comparing objective and subjective image quality in low-dose examinations with a conventional detector design. Using a conventional detector, reduced-dose noncontrast head CT (255 mAs; effective dose, 1.7 mSv) was performed in 25 consecutive patients. Following transition to ICD, 25 consecutive patients were scanned using identical imaging parameters. Images in both groups were reconstructed with iterative reconstruction (IR) and filtered back projection (FBP) and assessed in terms of quantitative and qualitative image quality. Acquisition of head CT using ICD increased signal-to-noise ratio of gray and white matter by 14% (10.0 ± 1.6 vs. 11.4 ± 2.5; P = .02) and 17% (8.2 ± 0.8 vs. 9.6 ± 1.5; P = .000). The associated improvement in contrast-to-noise ratio was 12% (2.0 ± 0.5 vs. 2.2 ± 0.6; P = .121). In addition, there was a 51% increase in objective image sharpness (582 ± 85 vs. 884.5 ± 191; change in HU/Pixel; P < .000). Compared to standard acquisitions, subjective grading of noise and overall image quality scores were significantly improved with ICD (2.1 ± 0.3 vs. 1.6 ± 0.3; P < .000; 2.0 ± 0.5 vs. 1.6 ± 0.3; P = .001). Moreover, streak artifacts in the posterior fossa were substantially reduced (2.3 ± 0.7 vs. 1.7 ± 0.5; P = .004). At the same radiation level, acquisition of head CT with ICD achieves superior objective and subjective image quality and provides potential for significant dose reduction. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  19. Development of 2-d position-sensitive neutron detector with individual readout. Operation test and establishment of detection system by means of neutron beam

    International Nuclear Information System (INIS)

    Tanaka, Hiroki; Yamagishi, Hideshi; Nakamura, Tatsuya; Soyama, Kazuhiko; Aizawa, Kazuya

    2005-04-01

    We have been developing the 2-d position-sensitive neutron detector with individual readout as next-generation-type detector system for neutron scattering experiments using intense pulsed neutron source. The detection system is designed to fulfill the specifications required for each neutron spectrometer, such as a count rate, efficiency, neutron/gamma-ray ratio, a spatial resolution and a size, by using suitable detector heads. The fundamental and imaging performances of the developed system assembled with a Multi-wire proportional counter head were evaluated using a collimated neutron beam. The system worked stably for long hours at the 4 He gas pressure of 5 atm with a mixture of 30% C 2 H 6 (0.26 atom 3 He) at gas gain of 450. The spatial resolutions were 1.4, 1.6 mm (FWHM) for a cathode- and a back strip- direction, respectively, considering a beam size. It was also confirmed that the spatial uniformity of the detection efficiency over the whole sensitive detection area was rather good, ±8% deviation from the average with the optimum discrimination level. (author)

  20. Development of leak detector by radiation. 2

    International Nuclear Information System (INIS)

    Suzuki, Takashi; Okano, Yasuhiro; Chisaka, Haruo

    1997-01-01

    Leak detector by radiation has been developed by cooperative research between Water Authority and us. In his fiscal year, the most suitable arrangement of detector system was simulated by Monte Carlo method. The first, the experimental values were compared with the results of simulation. The second, calculation was carried out by changing the quality of reflective materials and distance between radiation source and detector. The simulation results were agreed with the experimental results. On the basis of the rate of presence of leak, the most suitable arrangement of detector system was obtained under the conditions that both radiation source and detector covered with graphite or iron of 5 cm thickness and separated each other 3 cm apart. However, by comparing FOM (figure of merit), the suitable arrangement was that radiation source and detector adjoined each other and covered by graphite or iron of 20 cm thickness. (S.Y.)

  1. Wet bar detection by using water absorption detector

    International Nuclear Information System (INIS)

    Kim, Hee Soo; Bae, Yong Chae; Kee, Chang Doo

    2008-01-01

    Water leaks in water-cooled generator stator windings can generate serious accidents such as insulation breakdown and result in unexpected sudden outages. Thus, it is important to diagnose their water absorption for effective operation of the power plant. Especially, since the capacitance values that are measured for diagnosis are very small so special diagnosis methods like stochastic theory are needed. KEPRI developed a more advanced water absorption detector and diagnosis technology for it. They were applied to a real system and the results of the water absorption test for stator windings agree with the water leak test

  2. Alpha- and gamma-detection by the avalanche detectors with metal-resistor-semiconductor structure

    International Nuclear Information System (INIS)

    Vetokhin, S.S.; Evtushenko, V.P.; Zalesskij, V.B.; Malyshev, S.A.; Chudakov, V.A.; Shunevich, S.A.

    1992-01-01

    Possibility to use silicon avalanche photodetectors with metal-resistor-semiconductor structure with 0.12 cm 2 photosensitive area as detectors of α-particles, as well as, photodetector of γ-quanta scintillation detector is shown. When detection of α-particles the energy resolution reaches 10%. R energy resolution for avalanche photodetector-CsI(Tl) scintillator system cooled up to - 60 deg C at 59 keV ( 241 Am) and 662 keV ( 137 Cs) energy of γ-quanta constitutes 60% and 80%, respectively. R minimal value in the conducted experiments is determined by the degree of irregularity of avalanche amplification along the photodetector area

  3. Breast cancer detection rates using four different types of mammography detectors

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, Alistair; Warren, Lucy M.; Dance, David R.; Young, Kenneth C. [Royal Surrey County Hospital, National Coordinating Centre for the Physics in Mammography (NCCPM), Guildford (United Kingdom); University of Surrey, Department of Physics, Guildford (United Kingdom); Wallis, Matthew G. [Cambridge University Hospitals NHS Foundation Trust, Cambridge (United Kingdom); NIHR Cambridge Biomedical Research Centre, Cambridge Breast Unit, Cambridge (United Kingdom); Cooke, Julie [Jarvis Breast Screening and Diagnostic Centre, Guildford (United Kingdom); Given-Wilson, Rosalind M. [St George' s Healthcare NHS Trust, Department of Radiology, London (United Kingdom); Chakraborty, Dev P. [University of Pittsburgh, Department of Radiology, Pittsburgh, PA (United States); Halling-Brown, Mark D. [Royal Surrey County Hospital, Scientific Computing, Department of Medical Physics, Guildford (United Kingdom); Looney, Padraig T. [Royal Surrey County Hospital, National Coordinating Centre for the Physics in Mammography (NCCPM), Guildford (United Kingdom)

    2016-03-15

    To compare the performance of different types of detectors in breast cancer detection. A mammography image set containing subtle malignant non-calcification lesions, biopsy-proven benign lesions, simulated malignant calcification clusters and normals was acquired using amorphous-selenium (a-Se) detectors. The images were adapted to simulate four types of detectors at the same radiation dose: digital radiography (DR) detectors with a-Se and caesium iodide (CsI) convertors, and computed radiography (CR) detectors with a powder phosphor (PIP) and a needle phosphor (NIP). Seven observers marked suspicious and benign lesions. Analysis was undertaken using jackknife alternative free-response receiver operating characteristics weighted figure of merit (FoM). The cancer detection fraction (CDF) was estimated for a representative image set from screening. No significant differences in the FoMs between the DR detectors were measured. For calcification clusters and non-calcification lesions, both CR detectors' FoMs were significantly lower than for DR detectors. The calcification cluster's FoM for CR NIP was significantly better than for CR PIP. The estimated CDFs with CR PIP and CR NIP detectors were up to 15 % and 22 % lower, respectively, than for DR detectors. Cancer detection is affected by detector type, and the use of CR in mammography should be reconsidered. (orig.)

  4. Simultaneous Determination of Six Food Additives in drinks by high performance liquid chromatography coupled to diode array detector detection

    International Nuclear Information System (INIS)

    Yan, Q.

    2013-01-01

    A reversed-phase high performance liquid chromatographic method for the successful separation and determination of 6 synthetic food additives (aspartame, acesulfame potassium, benzoic acid, sodium saccharin, tartrazine and sunset yellow) was developed. A EclipseXDB-C18 column (250x4.6 mm I.D.; 5 micro m) was used and the mobile phase contained methanol and 0.02 mol/L ammonium acetate (pH 6.0) (30:70, v/v) was pumped at a flow rate of 0.7 mL/min at room temperature. Successful separation conditions were obtained for all the compounds using an optimized gradient elution within 10 min. The diode array detector was used to monitor the food additives at 230 nm. The method was thoroughly validated, detection limits for all substances varied between 0.03 and 1.35 micro g/mg, the intra-day precision (as RSD) ranged from 1.57% to 4.72 %, the inter-day precision (as RSD) was between 2.05 % and 4.18 %. Satisfactory recoveries, ranging from 90.00 % to 109.87 %, were obtained. The proposed system was applied to drink samples. (author)

  5. Monte Carlo simulation of neutron detection efficiency for NE213 scintillation detector

    International Nuclear Information System (INIS)

    Xi Yinyin; Song Yushou; Chen Zhiqiang; Yang Kun; Zhangsu Yalatu; Liu Xingquan

    2013-01-01

    A NE213 liquid scintillation neutron detector was simulated by using the FLUKA code. The light output of the detector was obtained by transforming the secondary particles energy deposition using Birks formula. According to the measurement threshold, detection efficiencies can be calculated by integrating the light output. The light output, central efficiency and the average efficiency as a function of the front surface radius of the detector, were simulated and the results agreed well with experimental results. (authors)

  6. Standard practice for detection sensitivity mapping of In-Plant Walk-through metal detectors

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1997-01-01

    1.1 This standard practice covers a procedure for determining the weakest detection path through the portal aperture and the worst-case orthogonal orientation of metallic test objects. It results in detection sensitivity maps, which model the detection zone in terms related to detection sensitivity and identify the weakest detection paths. Detection sensitivity maps support sensitivity adjustment and performance evaluation procedures (see Practices C1269 and C1309). Note 1—Unsymmetrical metal objects possessing a primary longitudinal component, such as handguns and knives, usually have one particular orientation that produces the weakest detection signal. The orientation and the path through the detector aperture where the weakest response is produced may not be the same for all test objects, even those with very similar appearance. Note 2—In the case of multiple specified test objects or for test objects that are orientation sensitive, it may be necessary to map each object several times to determine ...

  7. Evaluating and Improving Automatic Sleep Spindle Detection by Using Multi-Objective Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    Min-Yin Liu

    2017-05-01

    Full Text Available Sleep spindles are brief bursts of brain activity in the sigma frequency range (11–16 Hz measured by electroencephalography (EEG mostly during non-rapid eye movement (NREM stage 2 sleep. These oscillations are of great biological and clinical interests because they potentially play an important role in identifying and characterizing the processes of various neurological disorders. Conventionally, sleep spindles are identified by expert sleep clinicians via visual inspection of EEG signals. The process is laborious and the results are inconsistent among different experts. To resolve the problem, numerous computerized methods have been developed to automate the process of sleep spindle identification. Still, the performance of these automated sleep spindle detection methods varies inconsistently from study to study. There are two reasons: (1 the lack of common benchmark databases, and (2 the lack of commonly accepted evaluation metrics. In this study, we focus on tackling the second problem by proposing to evaluate the performance of a spindle detector in a multi-objective optimization context and hypothesize that using the resultant Pareto fronts for deriving evaluation metrics will improve automatic sleep spindle detection. We use a popular multi-objective evolutionary algorithm (MOEA, the Strength Pareto Evolutionary Algorithm (SPEA2, to optimize six existing frequency-based sleep spindle detection algorithms. They include three Fourier, one continuous wavelet transform (CWT, and two Hilbert-Huang transform (HHT based algorithms. We also explore three hybrid approaches. Trained and tested on open-access DREAMS and MASS databases, two new hybrid methods of combining Fourier with HHT algorithms show significant performance improvement with F1-scores of 0.726–0.737.

  8. Detection of nuclear radiations; Detectores de radiaciones nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Tanarro Sanz, A

    1959-07-01

    A summary of the lectures about the ordinary detectors of nuclear radiations given by the author in the Courses of Introduction to Nuclear Engineering held at the JEN up to the date of publication is given. Those lectures are considered to be a necessary introduction to Nuclear Instrumentation and Applied electronics to Nuclear Engineering so it has been intent to underline those characteristics of radiation detectors that must be taken in consideration in choosing or designing the electronic equipment associated to them in order to take advantage of each detector possibilities. (Author) 8 refs.

  9. UTILIZATION OF PHOSWICH DETECTORS FOR SIMULTANEOUS, MULTIPLE RADIATION DETECTION

    International Nuclear Information System (INIS)

    Miller, William H.; Manuel Diaz de Leon

    2003-01-01

    A phoswich radiation detector is comprised of a phosphor sandwich in which several different phosphors are viewed by a common photomultiplier. By selecting the appropriate phosphors, this system can be used to simultaneously measure multiple radiation types (alpha, beta, gamma and/or neutron) with a single detector. Differentiation between the signals from the different phosphors is accomplished using digital pulse shape discrimination techniques. This method has been shown to result in accurate discrimination with highly reliable and versatile digital systems. This system also requires minimal component count (i.e. only the detector and a computer for signal processing). A variety of detectors of this type have been built and tested including: (1) a triple phoswich system for alpha/beta/gamma swipe counting, (2) two well-type detectors for measuring low levels of low energy photons in the presence of a high energy background, (3) a large area detector for measuring beta contamination in the presence of a photon background, (4) another large area detector for measuring low energy photons from radioactive elements such as uranium in the presence of a photon background. An annular geometry, triple phoswich system optimized for measuring alpha/beta/gamma radiation in liquid waste processing streams is currently being designed

  10. UTILIZATION OF PHOSWICH DETECTORS FOR SIMULTANEOUS, MULTIPLE RADIATION DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    William H. Miller; Manuel Diaz de Leon

    2003-04-15

    A phoswich radiation detector is comprised of a phosphor sandwich in which several different phosphors are viewed by a common photomultiplier. By selecting the appropriate phosphors, this system can be used to simultaneously measure multiple radiation types (alpha, beta, gamma and/or neutron) with a single detector. Differentiation between the signals from the different phosphors is accomplished using digital pulse shape discrimination techniques. This method has been shown to result in accurate discrimination with highly reliable and versatile digital systems. This system also requires minimal component count (i.e. only the detector and a computer for signal processing). A variety of detectors of this type have been built and tested including: (1) a triple phoswich system for alpha/beta/gamma swipe counting, (2) two well-type detectors for measuring low levels of low energy photons in the presence of a high energy background, (3) a large area detector for measuring beta contamination in the presence of a photon background, (4) another large area detector for measuring low energy photons from radioactive elements such as uranium in the presence of a photon background. An annular geometry, triple phoswich system optimized for measuring alpha/beta/gamma radiation in liquid waste processing streams is currently being designed.

  11. Edge and line detection of complicated and blurred objects

    OpenAIRE

    Haugsdal, Kari

    2010-01-01

    This report deals with edge and line detection in pictures with complicated and/or blurred objects. It explores the alternatives available, in edge detection, edge linking and object recognition. Choice of methods are the Canny edge detection and Local edge search processing combined with regional edge search processing in the form of polygon approximation.

  12. Image objects detection based on boosting neural network

    NARCIS (Netherlands)

    Liang, N.; Hegt, J.A.; Mladenov, V.M.

    2010-01-01

    This paper discusses the problem of object area detection of video frames. The goal is to design a pixel accurate detector for grass, which could be used for object adaptive video enhancement. A boosting neural network is used for creating such a detector. The resulted detector uses both textural

  13. Simulation of micromegas detector by Garfield program

    International Nuclear Information System (INIS)

    Zhang Xiaodong; Zhang Yi; Yang Herun; Xu Hushan; Duan Limin; Li Chunyan; Li Zuyu

    2007-01-01

    In this paper, a batch file which describes the detailed structure and the corresponding physical process of Micro-Mesh Gaseous Structure (Micromegas) detector, the macro commands and the control structures based on the Garfield program has been developed. And using the Garfield program controlled by this batch file, the detector's gain and spatial resolution have been investigated under different conditions. These results obtained by the simulation program not only exhibit the influences of the mesh and drift voltage, the mixture gas proportion, the distance between the mesh cathode and the printed circuit board readout anode, and the Lines Per Inch of the mesh cathode on the gain and spatial resolution of the detector, but also are very important to optimize the design, shorten the experimental period, and save cost during the detector development. Additionally, they also indicate that the Garfield program is a powerful tool for the Micromegas detector design and optimization. (authors)

  14. Results of solid state nuclear track detector technique application in radon detection, by alpha particles tracks, for uranium prospecting in Caetite (BA-Brazil)

    International Nuclear Information System (INIS)

    Moraes, M.A.P.V. de; Khouri, M.T.F.C.

    1988-11-01

    The solid state nuclear track detector technique has been used in radon detection, by alpha particles tracks for uranium prospecting on the ground in Caetite city (Bahia-Brazil). The sensitive film to alpha particles used were CA 8015 exposed during 15 days and the results of three anomalies of this region are showed in a form of maps, made with the density of tracks obtained, and were compared with scintillation counter measurements. The technique showed to be simple and an effective auxiliary for the prospection of uranium ore bodies. The initial uranium exploration costs can be reduced by using this technique. (author) [pt

  15. ALGORITHMS FOR OPTIMIZATION OF SYSYTEM PERFORMANCE IN LAYERED DETECTION SYSTEMS UNDER DETECTOR COORELATION

    International Nuclear Information System (INIS)

    Wood, Thomas W.; Heasler, Patrick G.; Daly, Don S.

    2010-01-01

    Almost all of the 'architectures' for radiation detection systems in Department of Energy (DOE) and other USG programs rely on some version of layered detector deployment. Efficacy analyses of layered (or more generally extended) detection systems in many contexts often assume statistical independence among detection events and thus predict monotonically increasing system performance with the addition of detection layers. We show this to be a false conclusion for the ROC curves typical of most current technology gamma detectors, and more generally show that statistical independence is often an unwarranted assumption for systems in which there is ambiguity about the objects to be detected. In such systems, a model of correlation among detection events allows optimization of system algorithms for interpretation of detector signals. These algorithms are framed as optimal discriminant functions in joint signal space, and may be applied to gross counting or spectroscopic detector systems. We have shown how system algorithms derived from this model dramatically improve detection probabilities compared to the standard serial detection operating paradigm for these systems. These results would not surprise anyone who has confronted the problem of correlated errors (or failure rates) in the analogous contexts, but is seems to be largely underappreciated among those analyzing the radiation detection problem - independence is widely assumed and experimental studies typical fail to measure correlation. This situation, if not rectified, will lead to several unfortunate results. Including overconfidence in system efficacy, overinvestment in layers of similar technology, and underinvestment in diversity among detection assets.

  16. Objective image characterization of a spectral CT scanner with dual-layer detector

    Science.gov (United States)

    Ozguner, Orhan; Dhanantwari, Amar; Halliburton, Sandra; Wen, Gezheng; Utrup, Steven; Jordan, David

    2018-01-01

    This work evaluated the performance of a detector-based spectral CT system by obtaining objective reference data, evaluating attenuation response of iodine and accuracy of iodine quantification, and comparing conventional CT and virtual monoenergetic images in three common phantoms. Scanning was performed using the hospital’s clinical adult body protocol. Modulation transfer function (MTF) was calculated for a tungsten wire and visual line pair targets were evaluated. Image noise power spectrum (NPS) and pixel standard deviation were calculated. MTF for monoenergetic images agreed with conventional images within 0.05 lp cm-1. NPS curves indicated that noise texture of 70 keV monoenergetic images is similar to conventional images. Standard deviation measurements showed monoenergetic images have lower noise except at 40 keV. Mean CT number and CNR agreed with conventional images at 75 keV. Measured iodine concentration agreed with true concentration within 6% for inserts at the center of the phantom. Performance of monoenergetic images at detector based spectral CT is the same as, or better than, that of conventional images. Spectral acquisition and reconstruction with a detector based platform represents the physical behaviour of iodine as expected and accurately quantifies the material concentration.

  17. Remote impact of rotating objects on semiconductor detector of gamma radiation

    International Nuclear Information System (INIS)

    Mel'nik, I.A.

    2005-01-01

    Remote impact of rotating objects (such as electric motors, flywheels) on meter and ionizing radiation detector readings were studied. A model, explaining diminution of readings of scintillation and gas-discharge intensimeters at switched on hygroscopic electric motor and at mechanically rotating flywheel, is proposed

  18. Software Analysis of Mining Images for Objects Detection

    Directory of Open Access Journals (Sweden)

    Jan Tomecek

    2013-11-01

    Full Text Available The contribution is dealing with the development of the new module of robust FOTOMNG system for editing images from a video or miningimage from measurements for subsequent improvement of detection of required objects in the 2D image. The generated module allows create a finalhigh-quality picture by combination of multiple images with the search objects. We can combine input data according to the parameters or basedon reference frames. Correction of detected 2D objects is also part of this module. The solution is implemented intoFOTOMNG system and finishedwork has been tested in appropriate frames, which were validated core functionality and usability. Tests confirmed the function of each part of themodule, its accuracy and implications of integration.

  19. Object Detection and Classification by Decision-Level Fusion for Intelligent Vehicle Systems

    Directory of Open Access Journals (Sweden)

    Sang-Il Oh

    2017-01-01

    Full Text Available To understand driving environments effectively, it is important to achieve accurate detection and classification of objects detected by sensor-based intelligent vehicle systems, which are significantly important tasks. Object detection is performed for the localization of objects, whereas object classification recognizes object classes from detected object regions. For accurate object detection and classification, fusing multiple sensor information into a key component of the representation and perception processes is necessary. In this paper, we propose a new object-detection and classification method using decision-level fusion. We fuse the classification outputs from independent unary classifiers, such as 3D point clouds and image data using a convolutional neural network (CNN. The unary classifiers for the two sensors are the CNN with five layers, which use more than two pre-trained convolutional layers to consider local to global features as data representation. To represent data using convolutional layers, we apply region of interest (ROI pooling to the outputs of each layer on the object candidate regions generated using object proposal generation to realize color flattening and semantic grouping for charge-coupled device and Light Detection And Ranging (LiDAR sensors. We evaluate our proposed method on a KITTI benchmark dataset to detect and classify three object classes: cars, pedestrians and cyclists. The evaluation results show that the proposed method achieves better performance than the previous methods. Our proposed method extracted approximately 500 proposals on a 1226 × 370 image, whereas the original selective search method extracted approximately 10 6 × n proposals. We obtained classification performance with 77.72% mean average precision over the entirety of the classes in the moderate detection level of the KITTI benchmark dataset.

  20. Development of low noise preamplifier for the detection and position determination of single electrons in a Cerenkov Ring Imaging Detector by charge division

    International Nuclear Information System (INIS)

    Spencer, E.; Coyle, P.; Williams, D

    1987-10-01

    A preamplifier having 500 electrons noise (rms) has been developed for the detection and location of single electrons in a CRID detector at the SLD. A single channel contains preamp, RC-CR shaper, gain adjustment, driver, and calibration circuitry. Noise and linearity measurements are presented

  1. A comparison of feature detectors and descriptors for object class matching

    DEFF Research Database (Denmark)

    Hietanen, Antti; Lankinen, Jukka; Kämäräinen, Joni-Kristian

    2016-01-01

    appearance variation can be large. We extend the benchmarks to the class matching setting and evaluate state-of-the-art detectors and descriptors with Caltech and ImageNet classes. Our experiments provide important findings with regard to object class matching: (1) the original SIFT is still the best...

  2. Ground Penetrating Radar (GPR) for Detection of Underground Objects

    International Nuclear Information System (INIS)

    Amry Amin Abas; Mohd Kamal Shah Shamsuddin; Wan Zainal Abidin; Awang Sarfarudin Awang Putra

    2011-01-01

    Ground Penetrating Radar (GPR) utilizes an electromagnetic microwave that is transmitted into the matter under investigation. Any objects with different dielectric properties from the medium of the matter under investigation will reflect the waves and will be picked up by the receivers embedded in the antenna. We have applied GPR in various application such as concrete inspection, underground utility detection, grave detection, archaeology, oil contamination of soil, soil layer thickness measurement and etc. This paper will give general findings of the application of GPR to provide solutions to the industry and public. The results of the GPR surveys will be discussed. (author)

  3. The Simulation of Energy Distribution of Electrons Detected by Segmental Ionization Detector in High Pressure Conditions of ESEM

    Czech Academy of Sciences Publication Activity Database

    Neděla, Vilém; Konvalina, Ivo; Oral, Martin; Hudec, Jiří

    2015-01-01

    Roč. 21, S4 (2015), s. 264-269 ISSN 1431-9276 R&D Projects: GA ČR(CZ) GA14-22777S Institutional support: RVO:68081731 Keywords : electron-gas interactions * Monte Carlo simulation * signal amplification * segmented ionization detector Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.730, year: 2015

  4. Ferromagnetic Objects Magnetovision Detection System.

    Science.gov (United States)

    Nowicki, Michał; Szewczyk, Roman

    2013-12-02

    This paper presents the application of a weak magnetic fields magnetovision scanning system for detection of dangerous ferromagnetic objects. A measurement system was developed and built to study the magnetic field vector distributions. The measurements of the Earth's field distortions caused by various ferromagnetic objects were carried out. The ability for passive detection of hidden or buried dangerous objects and the determination of their location was demonstrated.

  5. Ferromagnetic Objects Magnetovision Detection System

    Directory of Open Access Journals (Sweden)

    Michał Nowicki

    2013-12-01

    Full Text Available This paper presents the application of a weak magnetic fields magnetovision scanning system for detection of dangerous ferromagnetic objects. A measurement system was developed and built to study the magnetic field vector distributions. The measurements of the Earth’s field distortions caused by various ferromagnetic objects were carried out. The ability for passive detection of hidden or buried dangerous objects and the determination of their location was demonstrated.

  6. History of infrared detectors

    Science.gov (United States)

    Rogalski, A.

    2012-09-01

    This paper overviews the history of infrared detector materials starting with Herschel's experiment with thermometer on February 11th, 1800. Infrared detectors are in general used to detect, image, and measure patterns of the thermal heat radiation which all objects emit. At the beginning, their development was connected with thermal detectors, such as thermocouples and bolometers, which are still used today and which are generally sensitive to all infrared wavelengths and operate at room temperature. The second kind of detectors, called the photon detectors, was mainly developed during the 20th Century to improve sensitivity and response time. These detectors have been extensively developed since the 1940's. Lead sulphide (PbS) was the first practical IR detector with sensitivity to infrared wavelengths up to ˜3 μm. After World War II infrared detector technology development was and continues to be primarily driven by military applications. Discovery of variable band gap HgCdTe ternary alloy by Lawson and co-workers in 1959 opened a new area in IR detector technology and has provided an unprecedented degree of freedom in infrared detector design. Many of these advances were transferred to IR astronomy from Departments of Defence research. Later on civilian applications of infrared technology are frequently called "dual-use technology applications." One should point out the growing utilisation of IR technologies in the civilian sphere based on the use of new materials and technologies, as well as the noticeable price decrease in these high cost technologies. In the last four decades different types of detectors are combined with electronic readouts to make detector focal plane arrays (FPAs). Development in FPA technology has revolutionized infrared imaging. Progress in integrated circuit design and fabrication techniques has resulted in continued rapid growth in the size and performance of these solid state arrays.

  7. Seeing Objects as Faces Enhances Object Detection.

    Science.gov (United States)

    Takahashi, Kohske; Watanabe, Katsumi

    2015-10-01

    The face is a special visual stimulus. Both bottom-up processes for low-level facial features and top-down modulation by face expectations contribute to the advantages of face perception. However, it is hard to dissociate the top-down factors from the bottom-up processes, since facial stimuli mandatorily lead to face awareness. In the present study, using the face pareidolia phenomenon, we demonstrated that face awareness, namely seeing an object as a face, enhances object detection performance. In face pareidolia, some people see a visual stimulus, for example, three dots arranged in V shape, as a face, while others do not. This phenomenon allows us to investigate the effect of face awareness leaving the stimulus per se unchanged. Participants were asked to detect a face target or a triangle target. While target per se was identical between the two tasks, the detection sensitivity was higher when the participants recognized the target as a face. This was the case irrespective of the stimulus eccentricity or the vertical orientation of the stimulus. These results demonstrate that seeing an object as a face facilitates object detection via top-down modulation. The advantages of face perception are, therefore, at least partly, due to face awareness.

  8. Seeing Objects as Faces Enhances Object Detection

    Directory of Open Access Journals (Sweden)

    Kohske Takahashi

    2015-09-01

    Full Text Available The face is a special visual stimulus. Both bottom-up processes for low-level facial features and top-down modulation by face expectations contribute to the advantages of face perception. However, it is hard to dissociate the top-down factors from the bottom-up processes, since facial stimuli mandatorily lead to face awareness. In the present study, using the face pareidolia phenomenon, we demonstrated that face awareness, namely seeing an object as a face, enhances object detection performance. In face pareidolia, some people see a visual stimulus, for example, three dots arranged in V shape, as a face, while others do not. This phenomenon allows us to investigate the effect of face awareness leaving the stimulus per se unchanged. Participants were asked to detect a face target or a triangle target. While target per se was identical between the two tasks, the detection sensitivity was higher when the participants recognized the target as a face. This was the case irrespective of the stimulus eccentricity or the vertical orientation of the stimulus. These results demonstrate that seeing an object as a face facilitates object detection via top-down modulation. The advantages of face perception are, therefore, at least partly, due to face awareness.

  9. Implanted cardiac devices are reliably detected by commercially available metal detectors

    DEFF Research Database (Denmark)

    Holm, Katja Fiedler; Hjortshøj, Søren Pihlkjær; Pehrson, Steen

    2013-01-01

    Explosions of Cardiovascular Implantable Electronic Devices (CIEDs) (pacemakers, defibrillators, and loop recorders) are a well-recognized problem during cremation, due to lithium-iodine batteries. In addition, burial of the deceased with a CIED can present a potential risk for environmental...... contamination. Therefore, detection of CIEDs in the deceased would be of value. This study evaluated a commercially available metal detector for detecting CIEDs....

  10. Optical readout of a triple-GEM detector by means of a CMOS sensor

    Energy Technology Data Exchange (ETDEWEB)

    Marafini, M. [INFN Sezione di Roma (Italy); Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma (Italy); Patera, V. [INFN Sezione di Roma (Italy); Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma (Italy); Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Pinci, D., E-mail: davide.pinci@roma1.infn.it [INFN Sezione di Roma (Italy); Sarti, A. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Dipartimento di Scienze di Base e Applicate per Ingegneria, Sapienza Università di Roma (Italy); Sciubba, A. [INFN Sezione di Roma (Italy); Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma (Italy); Dipartimento di Scienze di Base e Applicate per Ingegneria, Sapienza Università di Roma (Italy); Spiriti, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy)

    2016-07-11

    In last years, the development of optical sensors has produced objects able to provide very interesting performance. Large granularity is offered along with a very high sensitivity. CMOS sensors with millions of pixels able to detect as few as two or three photons per pixel are commercially available and can be used to read-out the optical signals provided by tracking particle detectors. In this work the results obtained by optically reading-out a triple-GEM detector by a commercial CMOS sensor will be presented. A standard detector was assembled with a transparent window below the third GEM allowing the light to get out. The detector is supplied with an Ar/CF{sub 4} based gas mixture producing 650 nm wavelength photons matching the maximum quantum efficiency of the sensor.

  11. Phase contrast imaging: Effect of increased object-detector distances at X-ray diagnostic and megavoltage energies

    Energy Technology Data Exchange (ETDEWEB)

    Loveland, J.; Gundogdu, O. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Morton, E. [Rapiscan Systems, Units 2,3,4, Radnor Park Trading Estate, Congleton, Cheshire CW12 4XJ (United Kingdom); Wells, K. [CVSSP, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Bradley, D.A., E-mail: d.a.bradley@surrey.ac.uk [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2011-10-01

    The effect of varying object to detector separation at constant and varying magnification has been investigated at an accelerating potential of 30 kVp. Edge-contrast enhancement provided by phase effects was investigated for a drinking straw and found to provide up to 2.52{+-}0.02x the contrast for a PVC Heaviside step function. An optimum magnification of 1.5x was found to apply for the microfocus X-ray tube setup used. Imaging at nominal megavoltage energies was investigated using a Rapiscan Systems Eagle M4500 series scanner. For a fixed source-detector separation, increased magnification improved edge contrast and spatial resolution.

  12. Phase contrast imaging: Effect of increased object-detector distances at X-ray diagnostic and megavoltage energies

    International Nuclear Information System (INIS)

    Loveland, J.; Gundogdu, O.; Morton, E.; Wells, K.; Bradley, D.A.

    2011-01-01

    The effect of varying object to detector separation at constant and varying magnification has been investigated at an accelerating potential of 30 kVp. Edge-contrast enhancement provided by phase effects was investigated for a drinking straw and found to provide up to 2.52±0.02x the contrast for a PVC Heaviside step function. An optimum magnification of 1.5x was found to apply for the microfocus X-ray tube setup used. Imaging at nominal megavoltage energies was investigated using a Rapiscan Systems Eagle M4500 series scanner. For a fixed source-detector separation, increased magnification improved edge contrast and spatial resolution.

  13. Detection and Classification of Buried Metallic Objects UX-1225

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Frank; Smith, Torquil; Becker, Alex; Gasperikova, Erika

    2005-03-31

    In summary the technical objectives of this project were: (1) To develop and demonstrate a methodology for the quantitative evaluation of existing active electromagnetic (AEM) systems and for the design of new systems. (2) To implement a new methodology for optimizing an AEM system for detecting and classifying UXO of a given class in a specified geologic setting and in a given noise environment. (3) To design and build a prototype of an active EM system for detecting and characterizing a metallic object in the ground.

  14. Study by Monte Carlo methods of an explosives detection system made up with a D-D neutron generator and NaI(Tl) gamma detectors.

    Science.gov (United States)

    Cevallos Robalino, Lenin E; García Fernández, Gonzalo Felipe; Gallego, Eduardo; Guzmán-García, Karen A; Vega-Carrillo, Hector Rene

    2018-02-17

    Detection of hidden explosives is of utmost importance for homeland security. Several configurations of an Explosives Detection System (EDS) to intercept hidden threats, made up with a Deuterium-Deuterium (D-D) compact neutron generator and NaI (Tl) scintillation detectors, have been evaluated using MCNP6 code. The system's response to various samples of explosives, such as RDX and Ammonium Nitrate, is analysed. The D-D generator is able to produce fast neutrons with 2.5 MeV energy in a maximum yield of 10 10 n/s. It is surrounded by high-density polyethylene to thermalize the fast neutrons and to optimize interactions with the sample inspected, whose emission of gamma rays gives a characteristic spectrum of the elements that constitute it. This procedure allows to determine its chemical composition and to identify the type of substance. The necessary shielding is evaluated to estimate its thicknesses depending on the admissible dose of operation, using lead and polyethylene. The results show that its functionality is promising in the field of national security for explosives inspection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Theoretical determination of the neutron detection efficiency of plastic track detectors. Pt. 1

    International Nuclear Information System (INIS)

    Pretzsch, G.

    1982-01-01

    A theoretical model to determine the neutron detection efficiency of organic solid state nuclear track detectors without external radiator is described. The model involves the following calculation steps: production of heavy charged particles within the detector volume, characterization of the charged particles by appropriate physical quantities, application of suitable registration criteria, formation of etch pits. The etch pits formed are described by means of a distribution function which is doubly differential in both diameter and depth of the etch pits. The distribution function serves as the input value for the calculation of the detection efficiency. The detection efficiency is defined as the measured effect per neutron fluence. Hence it depends on the evaluation technique considered. The calculation of the distribution function is carried out for cellulose triacetate. The determination of the concrete detection efficiency using the light microscope and light transmission measurements as the evaluation technique will be described in further publications. (orig.)

  16. Improved detection limits for electrospray ionization on a magnetic sector mass spectrometer by using an array detector.

    Science.gov (United States)

    Cody, R B; Tamura, J; Finch, J W; Musselman, B D

    1994-03-01

    Array detection was compared with point detection for solutions of hen egg-white lysozyme, equine myoglobin, and ubiquitin analyzed by electrospray ionization with a magnetic sector mass spectrometer. The detection limits for samples analyzed by using the array detector system were at least 10 times lower than could be achieved by using a point detector on the same mass spectrometer. The minimum detectable quantity of protein corresponded to a signal-to-background ratio of approximately 2∶1 for a 500 amol/μL solution of hen egg-white lysozyme. However, the ultimate practical sample concentrations appeared to be in the 10-100 fmol/μL range for the analysis of dilute solutions of relatively pure proteins or simple mixtures.

  17. Test and further development of a silicon picsel detector for detecting ionising radiation

    International Nuclear Information System (INIS)

    Lechner, P.

    1990-12-01

    The concept of a silicon detector with a MOSFET as an integrating amplification element (DEP-MOSFET) is introduced. The method of functioning of different version and a picture cell (picsel) detector, which makes energy and location resolution possible, is discussed. Quantitative relationships which describe the operation of the component as a detector, and quantitative relationships for the energy resolution of a DEP-MOSFET are derived theoretically. Measurements provide the proof of the detection function of different versions and the confirmation of the results of the theoretical model. The excellent noise properties of DEP-MOSFET detectors with closed structure are pointed out. The further development of the explained detector concept by integration of a JFET as the amplifying element (here introduced in the form of a computer simulation and quantitative relationships which describe the behaviour as a detector) promises progress with regard to energy resolution and radiation resistance, and offers the possibility of producing a picsel detector made from closed structures with little technological effort. (orig.) [de

  18. Determination of the detection efficiency of a HPGe detector by means of the MCNP 4A simulation code; Determinacion de la eficiencia de deteccion de un detector HPGe mediante el codigo de simulacion MCNP 4A

    Energy Technology Data Exchange (ETDEWEB)

    Leal, B. [Centro Regional de Estudios Nucleares, A.P. 579C, 98068 Zacatecas (Mexico)

    2004-07-01

    In the majority of the laboratories, the calibration in efficiency of the detector is carried out by means of the standard sources measurement of gamma photons that have a determined activity, or for matrices that contain a variety of radionuclides that can embrace the energy range of interest. Given the experimental importance that has the determination from the curves of efficiency to the effects of establishing the quantitative results, is appealed to the simulation of the response function of the detector used in the Regional Center of Nuclear Studies inside the energy range of 80 keV to 1400 keV varying the density of the matrix, by means of the application of the Monte Carlo code MCNP-4A. The adjustment obtained shows an acceptance grade in the range of 100 to 600 keV, with a smaller percentage discrepancy to 5%. (Author)

  19. Development of smart wireless detector system for gamma ray detection

    International Nuclear Information System (INIS)

    Nolida Yussup; Nur Aira Abdul Rahman; Ismail Mustapha; Jaafar Abdullah; Mohd Ashhar Khalid; Hearie Hassan; Yoong, Chong Foh

    2012-01-01

    Data transmission in field works especially that is related to industry, gas and chemical is paramount importance to ensure data accuracy and delivery time. A development of wireless detector system for remote data acquisition to be applied in conducting fieldwork in industry is described in this paper. A wireless communication which is applied in the project development is a viable and cost-effective method of transmitting data from the detector to the laptop on the site to facilitate data storage and analysis automatically, which can be used in various applications such as column scanning. The project involves hardware design for the detector and electronics parts besides programming for control board and user interface. A prototype of a wireless gamma scintillation detector is developed with capabilities of transmitting data to computer via radio frequency (RF) and recording the data within the 433 MHz band at baud rate of 19200. (author)

  20. Development of smart wireless detector system for gamma ray detection

    International Nuclear Information System (INIS)

    Nolida Yussup; Nur Aira Abd. Rahman; Chong, Foh Yoong; Mohd Ashhar Khalid; Ismail Mustapha; Jaafar Abdullah; Hearie Hassan

    2010-01-01

    Data transmission in field works especially that is related to industry, gas and chemical is paramount importance to ensure data accuracy and delivery time. A development of wireless detector system for remote data acquisition to be applied in conducting fieldwork in industry is described in this paper. A wireless communication which is applied in the project development is a viable and cost-effective method of transmitting data from the detector to the laptop on the site to facilitate data storage and analysis automatically, which can be used in various applications such as column scanning. The project involves hardware design for the detector and electronics parts besides programming for control board and user interface. A prototype of a wireless gamma scintillation detector is developed with capabilities of transmitting data to computer via radio frequency (RF) and recording the data within the 433 MHz band at baud rate of 19200. (author)

  1. Detection of secondary electrons with pixelated hybrid semiconductor detectors; Sekundaerelektronennachweis mit pixelierten hybriden Halbleiterdetektoren

    Energy Technology Data Exchange (ETDEWEB)

    Gebert, Ulrike Sonja

    2011-09-14

    Within the scope of this thesis, secondary electrons were detected with a pixelated semiconductor detector named Timepix. The Timepix detector consists of electronics and a sensor made from a semiconductor material. The connection of sensor and electronics is done for each pixel individually using bump bonds. Electrons with energies above 3 keV can be detected with the sensor. One electron produces a certain amount of electron-hole pairs according to its energy. The charge then drifts along an electric field to the pixel electronics, where it induces an electric signal. Even without a sensor it is possible to detect an electric signal from approximately 1000 electrons directly in the pixel electronics. Two different detector systems to detect secondary electrons using the Timepix detector were investigated during this thesis. First of all, a hybrid photon detector (HPD) was used to detect single photoelectrons. The HPD consists of a vacuum vessel with an entrance window and a cesium iodine photocathode at the inner surface of the window. Photoelectrons are released from the photocathode by incident light and are accelerated in an electric field towards the Timepix detector, where the point of interaction and the arrival time of the electron is determined. With a proximity focusing setup, a time resolution of 12 ns (with an acceleration voltage of 20 kV between photocathode and Timepix detector) was obtained. The HPD examined in this thesis showed a strong dependence of the dark rate form the acceleration voltage and the pressure in the vacuum vessel. At a pressure of few 10{sup -5} mbar and an acceleration voltage of 20 kV, the dark rate was about 800 Hz per mm{sup 2} area of the read out photocathode. One possibility to reduce the dark rate is to identify ion feedback events. With a slightly modified setup it was possible to reduce the dark rate to 0.5 Hz/mm{sup 2}. To achieve this, a new photocathode was mounted in a shorter distance to the detector. The

  2. Development of a modular directional and spectral neutron detection system using solid-state detectors

    Energy Technology Data Exchange (ETDEWEB)

    Weltz, A., E-mail: weltza3@gmail.com; Torres, B.; McElwain, L.; Dahal, R.; Huang, J.; Bhat, I.; Lu, J.; Danon, Y.

    2015-08-21

    A detection system using room-temperature, microstructured solid-state thermal neutron detectors with very low leakage current has been developed at Rensselaer Polytechnic Institute (RPI) with the ability to provide positional and spectral information about an unknown neutron source. The Directional and Spectral Neutron Detection System (DSNDS) utilizes a set of small-but-scalable, zero-bias solid-state thermal neutron detectors which have demonstrated high thermal neutron efficiency and adequate gamma insensitivity. The DSNDS can gather spectral information about an unknown neutron source with a relatively small number of detectors, simplifying the detector electronics and minimizing cost; however, the DSNDS is modular in design, providing the capability to increase the detection efficiency and angular resolution. The system used in this paper was comprised of a stack of five high-density polyethylene (HDPE) disks with a thickness of 5 cm and a diameter of 30 cm, the middle disk containing 16 detectors positioned as one internal (moderated) and one external (unmoderated) ring of solid-state neutron detectors. These two detector rings provide the ability to determine the directionality of a neutron source. The system gathers spectral information about a neutron source in two ways: by measuring the relative responses of the internal ring of detectors as well as measuring the ratio of the internal-to-external detector responses. Experiments were performed with variable neutron spectra: a {sup 252}Cf spontaneous fission neutron source which was HDPE moderated, HDPE reflected, lead (Pb) shielded, and bare in order to benchmark the system for spectral sensitivity. Simulations were performed in order to characterize the neutron spectra corresponding to each of the source configurations and showed agreement with experimental measurements. The DSNDS demonstrates the ability to determine the relative angle of the source and the hardness of the neutron spectrum. By using the

  3. Detecting Target Objects by Natural Language Instructions Using an RGB-D Camera

    Directory of Open Access Journals (Sweden)

    Jiatong Bao

    2016-12-01

    Full Text Available Controlling robots by natural language (NL is increasingly attracting attention for its versatility, convenience and no need of extensive training for users. Grounding is a crucial challenge of this problem to enable robots to understand NL instructions from humans. This paper mainly explores the object grounding problem and concretely studies how to detect target objects by the NL instructions using an RGB-D camera in robotic manipulation applications. In particular, a simple yet robust vision algorithm is applied to segment objects of interest. With the metric information of all segmented objects, the object attributes and relations between objects are further extracted. The NL instructions that incorporate multiple cues for object specifications are parsed into domain-specific annotations. The annotations from NL and extracted information from the RGB-D camera are matched in a computational state estimation framework to search all possible object grounding states. The final grounding is accomplished by selecting the states which have the maximum probabilities. An RGB-D scene dataset associated with different groups of NL instructions based on different cognition levels of the robot are collected. Quantitative evaluations on the dataset illustrate the advantages of the proposed method. The experiments of NL controlled object manipulation and NL-based task programming using a mobile manipulator show its effectiveness and practicability in robotic applications.

  4. Confocal laser-induced fluorescence detector for narrow capillary system with yoctomole limit of detection.

    Science.gov (United States)

    Weaver, Mitchell T; Lynch, Kyle B; Zhu, Zaifang; Chen, Huang; Lu, Joann J; Pu, Qiaosheng; Liu, Shaorong

    2017-04-01

    Laser-induced fluorescence (LIF) detectors for low-micrometer and sub-micrometer capillary on-column detection are not commercially available. In this paper, we describe in details how to construct a confocal LIF detector to address this issue. We characterize the detector by determining its limit of detection (LOD), linear dynamic range (LDR) and background signal drift; a very low LOD (~70 fluorescein molecules or 12 yoctomole fluorescein), a wide LDR (greater than 3 orders of magnitude) and a small background signal drift (~1.2-fold of the root mean square noise) are obtained. For detecting analytes inside a low-micrometer and sub-micrometer capillary, proper alignment is essential. We present a simple protocol to align the capillary with the optical system and use the position-lock capability of a translation stage to fix the capillary in position during the experiment. To demonstrate the feasibility of using this detector for narrow capillary systems, we build a 2-μm-i.d. capillary flow injection analysis (FIA) system using the newly developed LIF prototype as a detector and obtain an FIA LOD of 14 zeptomole fluorescein. We also separate a DNA ladder sample by bare narrow capillary - hydrodynamic chromatography and use the LIF prototype to monitor the resolved DNA fragments. We obtain not only well-resolved peaks but also the quantitative information of all DNA fragments. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Detection and Localization of Subsurface Two-Dimensional Metallic Objects

    Science.gov (United States)

    Meschino, S.; Pajewski, L.; Schettini, G.

    2009-04-01

    probably locate the target) and extract the center position of the object. We also consider some other localization-connected aspects. For example how to obtain a likely estimation of the soil permittivity and of the cylinders radius. Finally, when multiple objects are present, we refine our localization procedure by performing a Clustering Analysis of the crossing pattern. In particular, we apply the K-means algorithm to extract the coordinates of the objects centroids and the clusters extension. References [1] Şahin A., Miller L., "Object Detection Using High Resolution Near-Field Array Processing", IEEE Trans. on Geoscience and Remote Sensing, vol.39, no.1, Jan. 2001, pp. 136-141. [2] Gross F.B., "Smart Antennas for Wireless Communications", Mc.Graw-Hill 2005. [3] Hoaglin D.C., "A Poisonnes Plot", The American Statistician, vol.34, no.3 August 1980, pp.146-149.

  6. Computer aided detection of surgical retained foreign object for prevention

    International Nuclear Information System (INIS)

    Hadjiiski, Lubomir; Marentis, Theodore C.; Rondon, Lucas; Chan, Heang-Ping; Chaudhury, Amrita R.; Chronis, Nikolaos

    2015-01-01

    Purpose: Surgical retained foreign objects (RFOs) have significant morbidity and mortality. They are associated with approximately $1.5 × 10 9 annually in preventable medical costs. The detection accuracy of radiographs for RFOs is a mediocre 59%. The authors address the RFO problem with two complementary technologies: a three-dimensional (3D) gossypiboma micro tag, the μTag that improves the visibility of RFOs on radiographs, and a computer aided detection (CAD) system that detects the μTag. It is desirable for the CAD system to operate in a high specificity mode in the operating room (OR) and function as a first reader for the surgeon. This allows for fast point of care results and seamless workflow integration. The CAD system can also operate in a high sensitivity mode as a second reader for the radiologist to ensure the highest possible detection accuracy. Methods: The 3D geometry of the μTag produces a similar two dimensional (2D) depiction on radiographs regardless of its orientation in the human body and ensures accurate detection by a radiologist and the CAD. The authors created a data set of 1800 cadaver images with the 3D μTag and other common man-made surgical objects positioned randomly. A total of 1061 cadaver images contained a single μTag and the remaining 739 were without μTag. A radiologist marked the location of the μTag using an in-house developed graphical user interface. The data set was partitioned into three independent subsets: a training set, a validation set, and a test set, consisting of 540, 560, and 700 images, respectively. A CAD system with modules that included preprocessing μTag enhancement, labeling, segmentation, feature analysis, classification, and detection was developed. The CAD system was developed using the training and the validation sets. Results: On the training set, the CAD achieved 81.5% sensitivity with 0.014 false positives (FPs) per image in a high specificity mode for the surgeons in the OR and 96

  7. Computational cost for detecting inspiralling binaries using a network of laser interferometric detectors

    International Nuclear Information System (INIS)

    Pai, Archana; Bose, Sukanta; Dhurandhar, Sanjeev

    2002-01-01

    We extend a coherent network data-analysis strategy developed earlier for detecting Newtonian waveforms to the case of post-Newtonian (PN) waveforms. Since the PN waveform depends on the individual masses of the inspiralling binary, the parameter-space dimension increases by one from that of the Newtonian case. We obtain the number of templates and estimate the computational costs for PN waveforms: for a lower mass limit of 1M o-dot , for LIGO-I noise and with 3% maximum mismatch, the online computational speed requirement for single detector is a few Gflops; for a two-detector network it is hundreds of Gflops and for a three-detector network it is tens of Tflops. Apart from idealistic networks, we obtain results for realistic networks comprising of LIGO and VIRGO. Finally, we compare costs incurred in a coincidence detection strategy with those incurred in the coherent strategy detailed above

  8. Computational cost for detecting inspiralling binaries using a network of laser interferometric detectors

    CERN Document Server

    Pai, A; Dhurandhar, S V

    2002-01-01

    We extend a coherent network data-analysis strategy developed earlier for detecting Newtonian waveforms to the case of post-Newtonian (PN) waveforms. Since the PN waveform depends on the individual masses of the inspiralling binary, the parameter-space dimension increases by one from that of the Newtonian case. We obtain the number of templates and estimate the computational costs for PN waveforms: for a lower mass limit of 1M sub o sub - sub d sub o sub t , for LIGO-I noise and with 3% maximum mismatch, the online computational speed requirement for single detector is a few Gflops; for a two-detector network it is hundreds of Gflops and for a three-detector network it is tens of Tflops. Apart from idealistic networks, we obtain results for realistic networks comprising of LIGO and VIRGO. Finally, we compare costs incurred in a coincidence detection strategy with those incurred in the coherent strategy detailed above.

  9. Department of Radiation Detectors - Overview

    International Nuclear Information System (INIS)

    Piekoszewski, J.

    1997-01-01

    Work carried out in 1996 in the Department of Radiation Detectors concentrated on three subjects: (i) Semiconductor Detectors (ii) X-ray Tube Generators (iii) Material Modification Using Ion and Plasma Beams. The Departamental objectives are: a search for new types of detectors, adapting modern technologies (especially of industrial microelectronics) to detector manufacturing, producing unique detectors tailored for physics experiments, manufacturing standard detectors for radiation measuring instruments. These objectives were accomplished in 1996 by: research on unique detectors for nuclear physics (e.g. a spherical set of particle detectors silicon ball), detectors for particle identification), development of technology of high-resistivity silicon detectors HRSi (grant proposal), development of thermoelectric cooling systems (grant proposal), research on p-i-n photodiode-based personal dosimeters, study of applicability of industrial planar technology in producing detectors, manufacturing detectors developed in previous years, re-generating and servicing customer detectors of various origin. The Department conducts research on the design and technology involved in producing X-ray generators based on X-ray tubes of special construction. Various tube models and their power supplies were developed. Some work has also been devoted to the detection and dosimetry of X-rays. X-ray tube generators are applied to non-destructive testing and are components of analytical systems such as: X-ray fluorescence chemical composition analysis, gauges of layer thickness and composition stress measurements, on-line control of processes, others where an X-ray tube may replace a radio-isotope source. In 1996, the Department: reviewed the domestic demand for X-ray generators, developed an X-ray generator for diagnosis of ostheroporosis of human limbs, prepared a grant proposal for the development of a new instrument for radiotherapy, the so-called needle-like X-ray tube. (author)

  10. Department of Radiation Detectors - Overview

    Energy Technology Data Exchange (ETDEWEB)

    Piekoszewski, J. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1997-12-31

    Work carried out in 1996 in the Department of Radiation Detectors concentrated on three subjects: (i) Semiconductor Detectors (ii) X-ray Tube Generators (iii) Material Modification Using Ion and Plasma Beams. The Departamental objectives are: a search for new types of detectors, adapting modern technologies (especially of industrial microelectronics) to detector manufacturing, producing unique detectors tailored for physics experiments, manufacturing standard detectors for radiation measuring instruments. These objectives were accomplished in 1996 by: research on unique detectors for nuclear physics (e.g. a spherical set of particle detectors silicon ball), detectors for particle identification), development of technology of high-resistivity silicon detectors HRSi (grant proposal), development of thermoelectric cooling systems (grant proposal), research on p-i-n photodiode-based personal dosimeters, study of applicability of industrial planar technology in producing detectors, manufacturing detectors developed in previous years, re-generating and servicing customer detectors of various origin. The Department conducts research on the design and technology involved in producing X-ray generators based on X-ray tubes of special construction. Various tube models and their power supplies were developed. Some work has also been devoted to the detection and dosimetry of X-rays. X-ray tube generators are applied to non-destructive testing and are components of analytical systems such as: X-ray fluorescence chemical composition analysis, gauges of layer thickness and composition stress measurements, on-line control of processes, others where an X-ray tube may replace a radio-isotope source. In 1996, the Department: reviewed the domestic demand for X-ray generators, developed an X-ray generator for diagnosis of ostheroporosis of human limbs, prepared a grant proposal for the development of a new instrument for radiotherapy, the so-called needle-like X-ray tube. (author).

  11. Study of improved K{sub S}{sup 0} detection at the Belle II detector

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Leonard; Kuehn, Wolfgang; Lange, Soeren [II. Physikalisches Institut, JLU Giessen (Germany); Collaboration: Belle II-Collaboration

    2016-07-01

    In the near future, the Belle II experiment at the SuperKEKB accelerator at KEK in Tsukuba, Japan, will start operation at a luminosity a factor 40 higher than its predecessor experiment, Belle. The physics program includes the search for physics beyond the Standard Model of particle physics by the investigation of CP violating processes and rare B meson decays. Many important decay channels involve K{sub S}{sup 0} mesons. The detector features two layers of silicon pixel cells (PXD) closest to the interaction point surrounded by four layers of double sided silicon strip detectors (SVD). The high background level of the Pixel Detector requires an online data reduction system: Using the SVD and the surrounding detectors, the online reconstructed tracks of charged particles are extrapolated to the PXD layers, where Regions of Interest (ROIs) are defined around the intercepts. Only the pixel data inside these ROIs are stored. Thus, particles creating an insufficient number of hits in the outer detectors are not reconstructed and subsequently no ROIs are created, resulting in the loss of the related hits in the Pixel Detector. As a consequence, particles creating a sufficient number of hits in all six layers, but not in the outer four, are lost. In this contribution, we perform online tracking using all six layers to find the tracks of pions for improved K{sub S}{sup 0} detection. The combinatorics of the hit-track assignments is reduced by artificial neural networks.

  12. Enumeration of connected Catalan objects by type

    OpenAIRE

    Rhoades, Brendon

    2010-01-01

    Noncrossing set partitions, nonnesting set partitions, Dyck paths, and rooted plane trees are four classes of Catalan objects which carry a notion of type. There exists a product formula which enumerates these objects according to type. We define a notion of `connectivity' for these objects and prove an analogous product formula which counts connected objects by type. Our proof of this product formula is combinatorial and bijective. We extend this to a product formula which counts objects wit...

  13. Minimum Delay Moving Object Detection

    KAUST Repository

    Lao, Dong

    2017-11-09

    We present a general framework and method for detection of an object in a video based on apparent motion. The object moves relative to background motion at some unknown time in the video, and the goal is to detect and segment the object as soon it moves in an online manner. Due to unreliability of motion between frames, more than two frames are needed to reliably detect the object. Our method is designed to detect the object(s) with minimum delay, i.e., frames after the object moves, constraining the false alarms. Experiments on a new extensive dataset for moving object detection show that our method achieves less delay for all false alarm constraints than existing state-of-the-art.

  14. Minimum Delay Moving Object Detection

    KAUST Repository

    Lao, Dong

    2017-01-08

    We present a general framework and method for detection of an object in a video based on apparent motion. The object moves relative to background motion at some unknown time in the video, and the goal is to detect and segment the object as soon it moves in an online manner. Due to unreliability of motion between frames, more than two frames are needed to reliably detect the object. Our method is designed to detect the object(s) with minimum delay, i.e., frames after the object moves, constraining the false alarms. Experiments on a new extensive dataset for moving object detection show that our method achieves less delay for all false alarm constraints than existing state-of-the-art.

  15. Minimum Delay Moving Object Detection

    KAUST Repository

    Lao, Dong; Sundaramoorthi, Ganesh

    2017-01-01

    We present a general framework and method for detection of an object in a video based on apparent motion. The object moves relative to background motion at some unknown time in the video, and the goal is to detect and segment the object as soon it moves in an online manner. Due to unreliability of motion between frames, more than two frames are needed to reliably detect the object. Our method is designed to detect the object(s) with minimum delay, i.e., frames after the object moves, constraining the false alarms. Experiments on a new extensive dataset for moving object detection show that our method achieves less delay for all false alarm constraints than existing state-of-the-art.

  16. Minimum Delay Moving Object Detection

    KAUST Repository

    Lao, Dong; Sundaramoorthi, Ganesh

    2017-01-01

    We present a general framework and method for detection of an object in a video based on apparent motion. The object moves relative to background motion at some unknown time in the video, and the goal is to detect and segment the object as soon

  17. Assessment of applicability of portable HPGe detector with in situ object counting system based on performance evaluation of thyroid radiobioassays

    Energy Technology Data Exchange (ETDEWEB)

    Park, Min Seok; Kwon, Tae Eun; Pak, Min Jung; Park, Se Young; Ha, Wi Ho; Jin, Young Woo [National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2017-06-15

    Different cases exist in the measurement of thyroid radiobioassays owing to the individual characteristics of the subjects, especially the potential variation in the counting efficiency. An In situ Object Counting System (ISOCS) was developed to perform an efficiency calibration based on the Monte Carlo calculation, as an alternative to conventional calibration methods. The purpose of this study is to evaluate the applicability of ISOCS to thyroid radiobioassays by comparison with a conventional thyroid monitoring system. The efficiency calibration of a portable high-purity germanium (HPGe) detector was performed using ISOCS software. In contrast, the conventional efficiency calibration, which needed a radioactive material, was applied to a scintillator-based thyroid monitor. Four radioiodine samples that contained 125I and 131I in both aqueous solution and gel forms were measured to evaluate radioactivity in the thyroid. ANSI/HPS N13.30 performance criteria, which included the relative bias, relative precision, and root-mean-squared error, were applied to evaluate the performance of the measurement system. The portable HPGe detector could measure both radioiodines with ISOCS but the thyroid monitor could not measure 125I because of the limited energy resolution of the NaI(Tl) scintillator. The 131I results from both detectors agreed to within 5% with the certified results. Moreover, the 125I results from the portable HPGe detector agreed to within 10% with the certified results. All measurement results complied with the ANSI/HPS N13.30 performance criteria. The results of the intercomparison program indicated the feasibility of applying ISOCS software to direct thyroid radiobioassays. The portable HPGe detector with ISOCS software can provide the convenience of efficiency calibration and higher energy resolution for identifying photopeaks, compared with a conventional thyroid monitor with a NaI(Tl) scintillator. The application of ISOCS software in a radiation

  18. Active Exploration for Robust Object Detection

    OpenAIRE

    Velez, Javier J.; Hemann, Garrett A.; Huang, Albert S.; Posner, Ingmar; Roy, Nicholas

    2011-01-01

    Today, mobile robots are increasingly expected to operate in ever more complex and dynamic environments. In order to carry out many of the higher-level tasks envisioned a semantic understanding of a workspace is pivotal. Here our field has benefited significantly from successes in machine learning and vision: applications in robotics of off-the-shelf object detectors are plentiful. This paper outlines an online, any-time planning framework enabling the active exploration of such detections. O...

  19. Does long-term object priming depend on the explicit detection of object identity at encoding?

    Directory of Open Access Journals (Sweden)

    Carlos Alexandre Gomes

    2015-03-01

    Full Text Available It is currently unclear whether objects have to be explicitly identified at encoding for reliable behavioural long-term object priming to occur. We conducted two experiments that investigated long-term object and non-object priming using a selective-attention encoding manipulation that reduces explicit object identification. In Experiment 1, participants either counted dots flashed within an object picture (shallow encoding or engaged in an animacy task (deep encoding at study, whereas, at test, they performed an object-decision task. Priming, as measured by reaction times, was observed for both types of encoding, and was of equivalent magnitude. In Experiment 2, non-object priming (faster reaction times for studied relative to unstudied non-objects was also obtained under the same selective-attention encoding manipulation as in Experiment 1, and the magnitude of the priming effect was equivalent between experiments. In contrast, we observed a linear decrement in recognition memory accuracy across conditions (deep encoding of Experiment 1 > shallow encoding Experiment 1 > shallow encoding of Experiment 2, suggesting that priming was not contaminated by explicit memory strategies. We argue that our results are more consistent with the identification/production framework than the perceptual/conceptual distinction, and we conclude that priming of pictures largely ignored at encoding can be subserved by the automatic retrieval of two types of instances: one at the motor-level and another at an object-decision level.

  20. Contribution to the study of position sensitive detectors with high spatial resolution for thermal neutron detection

    International Nuclear Information System (INIS)

    Idrissi Fakhr-Eddine, Abdellah.

    1978-01-01

    With a view to improving the spatial resolution of the localization of thermal neutrons, the work covers four position sensitive detectors: - 800 cell multi-detectors (1 dimension), - linear 'Jeu de Jacquet' detectors (1 dimension) - Multi-detector XYP 128x128 (2 dimensions), - 'Jeu de Jacquet' detector with 2 dimensions. Mention is made of the various position finding methods known so far, as well as the reasons for selecting BF 3 as detector gas. A study is then made of the parameters of the multiwire chamber whose principle will form the basis of most of the position detecting appliances subsequently dealt with. Finally, a description is given of the detection tests of the thermal neutrons in the multiwire chamber depending on the pressure, a parameter that greatly affects the accuracy of the position finding. The single dimension position tests on two kinds of appliance, the 800 cell multi-detector for the wide angle diffraction studies, and the linear 'Jeu de Jacquet' detector designed for small angle diffraction are mentioned. A description is then given of two position appliances with two dimensions; the multi-detector XYP 128x128 and the two dimensional 'Jeu de Jacquet' detector. In the case of this latter detector, only the hoped for characteristics are indicated [fr

  1. Minimum Delay Moving Object Detection

    KAUST Repository

    Lao, Dong

    2017-05-14

    This thesis presents a general framework and method for detection of an object in a video based on apparent motion. The object moves, at some unknown time, differently than the “background” motion, which can be induced from camera motion. The goal of proposed method is to detect and segment the object as soon it moves in an online manner. Since motion estimation can be unreliable between frames, more than two frames are needed to reliably detect the object. Observing more frames before declaring a detection may lead to a more accurate detection and segmentation, since more motion may be observed leading to a stronger motion cue. However, this leads to greater delay. The proposed method is designed to detect the object(s) with minimum delay, i.e., frames after the object moves, constraining the false alarms, defined as declarations of detection before the object moves or incorrect or inaccurate segmentation at the detection time. Experiments on a new extensive dataset for moving object detection show that our method achieves less delay for all false alarm constraints than existing state-of-the-art.

  2. Spin correlation and entanglement detection in Cooper pair splitters by current measurements using magnetic detectors

    Science.gov (United States)

    Busz, Piotr; Tomaszewski, Damian; Martinek, Jan

    2017-08-01

    We analyze a model of a double quantum dot Cooper pair splitter coupled to two ferromagnetic detectors and demonstrate the possibility of determination of spin correlation by current measurements. We use perturbation theory, taking account of the exchange interaction with the detectors, which leads to complex spin dynamics in the dots. This affects the measured spin and restricts the use of ferromagnetic detectors to the nonlinear current-voltage characteristic regime at the current plateau, where the relevant spin projection is conserved, in contrast to the linear current-voltage characteristic regime, in which the spin information is distorted. Moreover, we show that for separable states the spin correlation can only be determined in a limited parameter regime, much more restricted than in the case of entangled states. We propose an entanglement test based on the Bell inequality.

  3. Foreign Object Detection by Sub-Terahertz Quasi-Bessel Beam Imaging

    Directory of Open Access Journals (Sweden)

    Hyang Sook Chun

    2012-12-01

    Full Text Available Food quality monitoring, particularly foreign object detection, has recently become a critical issue for the food industry. In contrast to X-ray imaging, terahertz imaging can provide a safe and ionizing-radiation-free nondestructive inspection method for foreign object sensing. In this work, a quasi-Bessel beam (QBB known to be nondiffracting was generated by a conical dielectric lens to detect foreign objects in food samples. Using numerical evaluation via the finite-difference time-domain (FDTD method, the beam profiles of a QBB were evaluated and compared with the results obtained via analytical calculation and experimental characterization (knife edge method, point scanning method. The FDTD method enables a more precise estimation of the beam profile. Foreign objects in food samples, namely crickets, were then detected with the QBB, which had a deep focus and a high spatial resolution at 210 GHz. Transmitted images using a Gaussian beam obtained with a conventional lens were compared in the sub-terahertz frequency experimentally with those using a QBB generated using an axicon.

  4. Detector location selection based on VIP analysis in near-infrared detection of dural hematoma

    Directory of Open Access Journals (Sweden)

    Qiuming Sun

    2018-03-01

    Full Text Available Detection of dural hematoma based on multi-channel near-infrared differential absorbance has the advantages of rapid and non-invasive detection. The location and number of detectors around the light source are critical for reducing the pathological characteristics of the prediction model on dural hematoma degree. Therefore, rational selection of detector numbers and their distances from the light source is very important. In this paper, a detector position screening method based on Variable Importance in the Projection (VIP analysis is proposed. A preliminary modeling based on Partial Least Squares method (PLS for the prediction of dural position μa was established using light absorbance information from 30 detectors located 2.0–5.0 cm from the light source with a 0.1 cm interval. The mean relative error (MRE of the dural position μa prediction model was 4.08%. After VIP analysis, the number of detectors was reduced from 30 to 4 and the MRE of the dural position μa prediction was reduced from 4.08% to 2.06% after the reduction in detector numbers. The prediction model after VIP detector screening still showed good prediction of the epidural position μa. This study provided a new approach and important reference on the selection of detector location in near-infrared dural hematoma detection. Keywords: Detector location screening, Epidural hematoma detection, Variable importance in the projection

  5. Error in measuring radon in soil gas by means of passive detectors

    International Nuclear Information System (INIS)

    Tanner, A.B.

    1991-01-01

    Passive detection of radon isotopes depends on diffusion of radon atoms from the sites of their generation to the location of the detecting or collecting device. Because some radon decays en route to a passive detector in soil, the radon concentration measured by the detector must be less than the concentration in those soil pores where it is undiminished by diffusion to the detector cavity. The true radon concentration may be significantly underestimated in moist soils. (author)

  6. Comparison of filters for detecting gravitational wave bursts in interferometric detectors

    International Nuclear Information System (INIS)

    Arnaud, Nicolas; Barsuglia, Matteo; Bizouard, Marie-Anne; Brisson, Violette; Cavalier, Fabien; Davier, Michel; Hello, Patrice; Kreckelbergh, Stephane; Porter, Edward K.; Pradier, Thierry

    2003-01-01

    Filters developed in order to detect short bursts of gravitational waves in interferometric detector outputs are compared according to three main points. Conventional receiver operating characteristics (ROC) are first built for all the considered filters and for three typical burst signals. Optimized ROC are shown for a simple pulse signal in order to estimate the best detection efficiency of the filters in the ideal case, while realistic ones obtained with filters working with several 'templates' show how detection efficiencies can be degraded in a practical implementation. Second, estimations of biases and statistical errors on the reconstruction of the time of arrival of pulse-like signals are then given for each filter. Such results are crucial for future coincidence studies between gravitational wave detectors but also with neutrino or optical detectors. As most of the filters require a pre-whitening of the detector noise, the sensitivity to a nonperfect noise whitening procedure is finally analyzed. For this purpose lines of various frequencies and amplitudes are added to a Gaussian white noise and the outputs of the filters are studied in order to monitor the excess of false alarms induced by the lines. The comparison of the performances of the different filters finally show that they are complementary rather than competitive

  7. Measurements of Low Frequency Noise of Infrared Photo-Detectors with Transimpedance Detection System

    Directory of Open Access Journals (Sweden)

    Ciura Łukasz

    2014-08-01

    Full Text Available The paper presents the method and results of low-frequency noise measurements of modern mid-wavelength infrared photodetectors. A type-II InAs/GaSb superlattice based detector with nBn barrier architecture is compared with a high operating temperature (HOT heterojunction HgCdTe detector. All experiments were made in the range 1 Hz - 10 kHz at various temperatures by using a transimpedance detection system, which is examined in detail. The power spectral density of the nBn’s dark current noise includes Lorentzians with different time constants while the HgCdTe photodiode has more uniform 1/f - shaped spectra. For small bias, the low-frequency noise power spectra of both devices were found to scale linearly with bias voltage squared and were connected with the fluctuations of the leakage resistance. Leakage resistance noise defines the lower noise limit of a photodetector. Other dark current components give raise to the increase of low-frequency noise above this limit. For the same voltage biasing devices, the absolute noise power densities at 1 Hz in nBn are 1 to 2 orders of magnitude lower than in a MCT HgCdTe detector. In spite of this, low-frequency performance of the HgCdTe detector at ~ 230K is still better than that of InAs/GaSb superlattice nBn detector.

  8. Moving object detection in top-view aerial videos improved by image stacking

    Science.gov (United States)

    Teutsch, Michael; Krüger, Wolfgang; Beyerer, Jürgen

    2017-08-01

    Image stacking is a well-known method that is used to improve the quality of images in video data. A set of consecutive images is aligned by applying image registration and warping. In the resulting image stack, each pixel has redundant information about its intensity value. This redundant information can be used to suppress image noise, resharpen blurry images, or even enhance the spatial image resolution as done in super-resolution. Small moving objects in the videos usually get blurred or distorted by image stacking and thus need to be handled explicitly. We use image stacking in an innovative way: image registration is applied to small moving objects only, and image warping blurs the stationary background that surrounds the moving objects. Our video data are coming from a small fixed-wing unmanned aerial vehicle (UAV) that acquires top-view gray-value images of urban scenes. Moving objects are mainly cars but also other vehicles such as motorcycles. The resulting images, after applying our proposed image stacking approach, are used to improve baseline algorithms for vehicle detection and segmentation. We improve precision and recall by up to 0.011, which corresponds to a reduction of the number of false positive and false negative detections by more than 3 per second. Furthermore, we show how our proposed image stacking approach can be implemented efficiently.

  9. A Real-Time Method to Estimate Speed of Object Based on Object Detection and Optical Flow Calculation

    Science.gov (United States)

    Liu, Kaizhan; Ye, Yunming; Li, Xutao; Li, Yan

    2018-04-01

    In recent years Convolutional Neural Network (CNN) has been widely used in computer vision field and makes great progress in lots of contents like object detection and classification. Even so, combining Convolutional Neural Network, which means making multiple CNN frameworks working synchronously and sharing their output information, could figure out useful message that each of them cannot provide singly. Here we introduce a method to real-time estimate speed of object by combining two CNN: YOLOv2 and FlowNet. In every frame, YOLOv2 provides object size; object location and object type while FlowNet providing the optical flow of whole image. On one hand, object size and object location help to select out the object part of optical flow image thus calculating out the average optical flow of every object. On the other hand, object type and object size help to figure out the relationship between optical flow and true speed by means of optics theory and priori knowledge. Therefore, with these two key information, speed of object can be estimated. This method manages to estimate multiple objects at real-time speed by only using a normal camera even in moving status, whose error is acceptable in most application fields like manless driving or robot vision.

  10. Neutron detection performance of silicon carbide and diamond detectors with incomplete charge collection properties

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, M., E-mail: michael.hodgson@becq.co.uk [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Lohstroh, A.; Sellin, P. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Thomas, D. [NPL, Teddington TW11 0LW (United Kingdom)

    2017-03-01

    The benefits of neutron detection and spectroscopy with carbon based, wide band gap, semiconductor detectors have previously been discussed within the literature. However, at the time of writing there are still limitations with these detectors related to availability, cost, size and perceived quality. This study demonstrates that lower quality materials—indicated by lower charge collection efficiency (CCE), poor resolution and polarisation effect—available at wafer scale and lower cost, can fulfil requirements for fast neutron detection and spectroscopy for fluxes over several orders of magnitude, where only coarse energy discrimination is required. In this study, a single crystal diamond detector (D-SC, with 100% CCE), a polycrystalline diamond (D-PC, with ≈4% CCE) and semi-insulating silicon carbide (SiC-SI, with ≈35% CCE) have been compared for alpha and fast neutron performance. All detectors demonstrated alpha induced polarisation effects in the form of a change of both energy peak position and count rate with irradiation time. Despite these operational issues the ability to detect fast neutrons and distinguish neutron energies was observed. This performance was demonstrated over a wide dynamic range (500–40,000 neutrons/s), with neutron induced polarisation being demonstrated in D-PC and SiC-SI at high fluxes.

  11. Design of a versatile detector for the detection of charged particles, neutrons and gamma rays. Neutron interaction with the matter

    International Nuclear Information System (INIS)

    Perez P, J.J.

    1991-01-01

    The Fostron detector detects charged particles, neutrons and gamma rays with a reasonable discrimination power. Because the typical detectors for neutrons present a great uncertainty in the detection, this work was focused mainly to the neutron detection in presence of gamma radiation. Also there are mentioned the advantages and disadvantages of the Fostron detector

  12. Modeling the frequency-dependent detective quantum efficiency of photon-counting x-ray detectors.

    Science.gov (United States)

    Stierstorfer, Karl

    2018-01-01

    To find a simple model for the frequency-dependent detective quantum efficiency (DQE) of photon-counting detectors in the low flux limit. Formula for the spatial cross-talk, the noise power spectrum and the DQE of a photon-counting detector working at a given threshold are derived. Parameters are probabilities for types of events like single counts in the central pixel, double counts in the central pixel and a neighboring pixel or single count in a neighboring pixel only. These probabilities can be derived in a simple model by extensive use of Monte Carlo techniques: The Monte Carlo x-ray propagation program MOCASSIM is used to simulate the energy deposition from the x-rays in the detector material. A simple charge cloud model using Gaussian clouds of fixed width is used for the propagation of the electric charge generated by the primary interactions. Both stages are combined in a Monte Carlo simulation randomizing the location of impact which finally produces the required probabilities. The parameters of the charge cloud model are fitted to the spectral response to a polychromatic spectrum measured with our prototype detector. Based on the Monte Carlo model, the DQE of photon-counting detectors as a function of spatial frequency is calculated for various pixel sizes, photon energies, and thresholds. The frequency-dependent DQE of a photon-counting detector in the low flux limit can be described with an equation containing only a small set of probabilities as input. Estimates for the probabilities can be derived from a simple model of the detector physics. © 2017 American Association of Physicists in Medicine.

  13. Detection of High-Z Objects using Multiple Scattering of Cosmic Ray Muons

    International Nuclear Information System (INIS)

    Hogan, Gary E.; Borozdin, Konstantin N.; Gomez, John; Morris, Christopher; Priedhorsky, William C.; Saunders, Alexander; Schultz, Larry J.; Teasdale, Margaret E.

    2004-01-01

    Detection of high-Z material hidden inside a large volume of ordinary cargo is an important and timely task given the danger associated with illegal transport of uranium and heavier elements. Existing radiography techniques are inefficient for shielded material, often expensive and involve radiation hazards, real and perceived. We recently demonstrated that radiographs can be formed using cosmic-ray muons. Here, we show that compact, high-Z objects can be detected and located in 3 dimensions with muon radiography. The natural flux of cosmic-ray muons, approximately 10,000 m-2min-1, can generate a reliable detection signal in a fraction of a minute, using large-area muon detectors as used in particle and nuclear physics

  14. Detectability of changes in cosmic-ray counting rate measured with the Liulin detector

    International Nuclear Information System (INIS)

    Malusek, A.; Kubancak, J.; Ambrozova, I.

    2011-05-01

    Experimental data are needed to improve and validate models predicting the dynamics of solar particle events because the mechanisms of processes leading to the acceleration of solar energetic particles are not yet fully understood. The aim of this work was to examine whether the spectrometer of deposited energy, Liulin, positioned at the Lomnický štít mountain observatory can collect such data. Decision thresholds and detection limits for the increase or decrease in the average number of particles detected by Liulin were determined for a period in February 2011. The changes in counts corresponding to the decision thresholds and detection limits relative to the average number of detected particles were about 17% and 33%, respectively. The Forbush decrease with a maximum change of about 6.8%, which started on February 18, was detectable neither during the 10-minute acquisition time nor during any other, longer period. Statistical analysis showed that an acquisition time about 7 hours would be needed to detect a 5% decrease. As this time was shorter than the duration of the Forbush decrease (about 56 hours), we theorize that the current placement of the Liulin detector inside a living room shielded by a thick concrete ceiling may have had an adverse impact on the detectability of the the cosmic ray counting rate decrease. To test this hypothesis, we recommend positioning the Liulin detector outside the main observatory building.. (author)

  15. Feature-fused SSD: fast detection for small objects

    Science.gov (United States)

    Cao, Guimei; Xie, Xuemei; Yang, Wenzhe; Liao, Quan; Shi, Guangming; Wu, Jinjian

    2018-04-01

    Small objects detection is a challenging task in computer vision due to its limited resolution and information. In order to solve this problem, the majority of existing methods sacrifice speed for improvement in accuracy. In this paper, we aim to detect small objects at a fast speed, using the best object detector Single Shot Multibox Detector (SSD) with respect to accuracy-vs-speed trade-off as base architecture. We propose a multi-level feature fusion method for introducing contextual information in SSD, in order to improve the accuracy for small objects. In detailed fusion operation, we design two feature fusion modules, concatenation module and element-sum module, different in the way of adding contextual information. Experimental results show that these two fusion modules obtain higher mAP on PASCAL VOC2007 than baseline SSD by 1.6 and 1.7 points respectively, especially with 2-3 points improvement on some small objects categories. The testing speed of them is 43 and 40 FPS respectively, superior to the state of the art Deconvolutional single shot detector (DSSD) by 29.4 and 26.4 FPS.

  16. Acoustic Particle Detection with the ANTARES Detector

    Directory of Open Access Journals (Sweden)

    M. Neff

    2010-01-01

    Full Text Available The (Antares Modules for Acoustic Detection Under the Sea AMADEUS system within the (Astronomy with a Neutrino Telescope and Abyss environmental RESsearch ANTARES neutrino telescope is designed to investigate detection techniques for acoustic signals produced by particle cascades. While passing through a liquid a cascade deposits energy and produces a measurable pressure pulse. This can be used for the detection of neutrinos with energies exceeding 1018 eV. The AMADEUS setup consists of 36 hydrophones grouped in six local clusters measuring about one cubic meter each. This article focuses on acoustic particle detection, the hardware of the AMADEUS detector and techniques used for acoustic signal processing.

  17. Acoustic Particle Detection with the ANTARES Detector

    Directory of Open Access Journals (Sweden)

    Richardt C

    2010-01-01

    Full Text Available The (Antares Modules for Acoustic Detection Under the Sea AMADEUS system within the (Astronomy with a Neutrino Telescope and Abyss environmental RESsearch ANTARES neutrino telescope is designed to investigate detection techniques for acoustic signals produced by particle cascades. While passing through a liquid a cascade deposits energy and produces a measurable pressure pulse. This can be used for the detection of neutrinos with energies exceeding  eV. The AMADEUS setup consists of 36 hydrophones grouped in six local clusters measuring about one cubic meter each. This article focuses on acoustic particle detection, the hardware of the AMADEUS detector and techniques used for acoustic signal processing.

  18. Experimental response function of NaI(Tl) scintillation detector for gamma photons and tomographic measurements for defect detection

    International Nuclear Information System (INIS)

    Sharma, Amandeep; Singh, Karamjit; Singh, Bhajan; Sandhu, B.S.

    2011-01-01

    The response function of gamma detector is an important factor for spectrum analysis because some photons and secondary electrons may escape the detector volume before fully depositing their energy, of course destroys the ideal delta function response. An inverse matrix approach, for unfolding of observed pulse-height distribution to a true photon spectrum, is used for construction of experimental response function by formulating a 40 x 40 matrix with bin mesh (E 1/2 ) of 0.025 (MeV) 1/2 for the present measurements. A tomographic scanner system, operating in a non-destructive and non-invasive way, is also presented for inspection of density variation in any object. The incoherent scattered intensity of 662 keV gamma photons, obtained by unfolding (deconvolution) the experimental pulse-height distribution of NaI(Tl) scintillation detector, provides the desired information. The method is quite sensitive, for showing inclusion of medium Z (atomic number) material (iron) in low Z material (aluminium) and detecting a void of ∼2 mm in size for iron block, to investigate the inhomogeneities in the object. Also, the grey scale images (using 'MATLAB') are shown to visualise the presence of defects/inclusion in metal samples.

  19. A mechanical design for positioning of gm detector for system of avian flu virus detection equipment

    International Nuclear Information System (INIS)

    Rahmat; Budi Santoso; Krismawan; Abdul Jalil

    2010-01-01

    Mechanical design for positioning of GM detector system has been done. It is used for avian flu detection equipment. The requirements for the design are to protect detection system against shock, portable, and easy to maintain. The mechanical system consists of connectors, cable assemblies, holders, casing, housing and detectors cover. The selected material should have small gamma radiation absorption property in order to give optimum counts for the detector. The design result should give a system that is easy to operate, cheap and easy to assemble. (author)

  20. Mechanical design for positioning of GM detector for system of avian flu virus detection equipment

    International Nuclear Information System (INIS)

    Rahmat; Budi Santoso; Krismawan; Abdul Jalil

    2010-01-01

    Mechanical design for positioning of GM detector system has been done. It is used for avian flu detection equipment. The requirements for the design are to protect detection system against shock, portable, and easy to maintain. The mechanical system consists of connectors, cable assemblies, holders, casing, housing and detectors cover. The selected material should have small gamma radiation absorption property in order to give optimum counts for the detector. The design result should give a system that is easy to operate, cheap and easy to assemble. (author)

  1. Effect of chewing speed on the detection of a foreign object in food.

    Science.gov (United States)

    Paphangkorakit, J; Ladsena, V; Rukyuttithamkul, T; Khamtad, T

    2016-03-01

    Accidentally biting hard on a piece of hard foreign object in food is among the causes of tooth fracturing and could be associated with oral sensibility. This study has investigated the effect of chewing speed on the ability to detect a foreign object in food in human. Fourteen healthy subjects were asked to randomly chew one of 10 cooked rice balls, five of which containing a foreign object made from a tiny uncooked rice grain, until they detected the rice grain. Each subject chewed the test foods both at 50 (slow) and 100 (fast) chews min(-1). The accuracy of detection and the number of chews before detection (CBD) were recorded and compared between the two chewing speeds using paired t-tests. The results showed that almost all subjects detected the foreign object by biting. The accuracy of detection was more than 90% and not significantly different between slow and fast chewing but the mean CBD in slow chewing (11·7 ± 1·3 chews) was significantly different from that in fast chewing (20·7 ± 1·9 chews; P chews before a foreign object in food could be detected and was, presumably, more effective in detecting the object compared to fast chewers. If each chew bears equal probability of teeth encountering the foreign object, slow chewing might also reduce the chance of accidentally biting hard on the foreign object and fracturing the tooth. © 2015 John Wiley & Sons Ltd.

  2. Improved Space Object Orbit Determination Using CMOS Detectors

    Science.gov (United States)

    Schildknecht, T.; Peltonen, J.; Sännti, T.; Silha, J.; Flohrer, T.

    2014-09-01

    CMOS-sensors, or in general Active Pixel Sensors (APS), are rapidly replacing CCDs in the consumer camera market. Due to significant technological advances during the past years these devices start to compete with CCDs also for demanding scientific imaging applications, in particular in the astronomy community. CMOS detectors offer a series of inherent advantages compared to CCDs, due to the structure of their basic pixel cells, which each contains their own amplifier and readout electronics. The most prominent advantages for space object observations are the extremely fast and flexible readout capabilities, feasibility for electronic shuttering and precise epoch registration, and the potential to perform image processing operations on-chip and in real-time. The major challenges and design drivers for ground-based and space-based optical observation strategies have been analyzed. CMOS detector characteristics were critically evaluated and compared with the established CCD technology, especially with respect to the above mentioned observations. Similarly, the desirable on-chip processing functionalities which would further enhance the object detection and image segmentation were identified. Finally, we simulated several observation scenarios for ground- and space-based sensor by assuming different observation and sensor properties. We will introduce the analyzed end-to-end simulations of the ground- and space-based strategies in order to investigate the orbit determination accuracy and its sensitivity which may result from different values for the frame-rate, pixel scale, astrometric and epoch registration accuracies. Two cases were simulated, a survey using a ground-based sensor to observe objects in LEO for surveillance applications, and a statistical survey with a space-based sensor orbiting in LEO observing small-size debris in LEO. The ground-based LEO survey uses a dynamical fence close to the Earth shadow a few hours after sunset. For the space-based scenario

  3. Detection of low momentum protons with the new HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Vilardi, Ignazio

    2008-10-15

    In this theis the recoil detector for the HERMES experiment at HERA is described. It consists of a silicon strip detector, a scintillating fiber tracker, and a photon detector for the {delta}{sup +} background rejection, all surrounded by a superconducting 1 Tesla solenoid. Results of cosmic ray tests are presented. (HSI)

  4. Detection of low momentum protons with the new HERMES recoil detector

    International Nuclear Information System (INIS)

    Vilardi, Ignazio

    2008-10-01

    In this theis the recoil detector for the HERMES experiment at HERA is described. It consists of a silicon strip detector, a scintillating fiber tracker, and a photon detector for the Δ + background rejection, all surrounded by a superconducting 1 Tesla solenoid. Results of cosmic ray tests are presented. (HSI)

  5. Detection and Classification of Objects in Synthetic Aperture Radar Imagery

    National Research Council Canada - National Science Library

    Cooke, Tristrom

    2006-01-01

    .... The reports concern the detection of faint trails, and the theory and evaluation of a number of existing and novel methods for the detection and classification of ground and maritime targets with SAR imagery...

  6. Performance comparison of multi-detector detection statistics in targeted compact binary coalescence GW search

    OpenAIRE

    Haris, K; Pai, Archana

    2016-01-01

    Global network of advanced Interferometric gravitational wave (GW) detectors are expected to be on-line soon. Coherent observation of GW from a distant compact binary coalescence (CBC) with a network of interferometers located in different continents give crucial information about the source such as source location and polarization information. In this paper we compare different multi-detector network detection statistics for CBC search. In maximum likelihood ratio (MLR) based detection appro...

  7. Dose efficiency and low-contrast detectability of an amorphous silicon x-ray detector for digital radiography

    International Nuclear Information System (INIS)

    Aufrichtig, Richard

    2000-01-01

    The effect of dose reduction on low-contrast detectability is investigated theoretically and experimentally for a production grade amorphous silicon (a-Si) x-ray detector and compared with a standard thoracic screen-film combination. A non-prewhitening matched filter observer model modified to include a spatial response function and internal noise for the human visual system (HVS) is used to calculate a signal-to-noise ratio (SNR) related to object detectability. Other inputs to the SNR calculation are the detective quantum efficiency (DQE) and the modulation transfer function (MTF) of the imaging system. Besides threshold detectability, the model predicts the equivalent perception dose ratio (EPDR), which is the fraction of the screen-film exposure for which the digital detector provides equal detectability. Images of a contrast-detail phantom are obtained with the digital detector at dose levels corresponding to 27%, 41%, 63% and 100% of the dose used for screen-film. The images are used in a four-alternative forced choice (4-AFC) observer perception study in order to measure threshold detectability. A statistically significant improvement in contrast detectability is measured with the digital detector at 100% and 63% of the screen-film dose. There is no statistical difference between screen-film and digital at 41% of the dose. On average, the experimental EPDR is 44%, which agrees well with the model prediction of 40%. (author)

  8. Determination of absolute detection efficiencies for detectors of interest in homeland security

    International Nuclear Information System (INIS)

    Ayaz-Maierhafer, Birsen; DeVol, Timothy A.

    2007-01-01

    The absolute total and absolute peak detection efficiencies of gamma ray detector materials NaI:Tl, CdZnTe, HPGe, HPXe, LaBr 3 :Ce and LaCl 3 :Ce were simulated and compared to that of polyvinyltoluene (PVT). The dimensions of the PVT detector were 188.82 cmx60.96 cmx5.08 cm, which is a typical size for a single-panel portal monitor. The absolute total and peak detection efficiencies for these detector materials for the point, line and spherical source geometries of 60 Co (1332 keV), 137 Cs (662 keV) and 241 Am (59.5 keV) were simulated at various source-to-detector distances using the Monte Carlo N-Particle software (MCNP5-V1.30). The comparison of the absolute total detection efficiencies for a point, line and spherical source geometry of 60 Co and 137 Cs at different source-to-detector distance showed that the absolute detection efficiency for PVT is higher relative to the other detectors of typical dimensions for that material. However, the absolute peak detection efficiency of some of these detectors are higher relative to PVT, for example the absolute peak detection efficiency of NaI:Tl (7.62 cm diameterx7.62 cm long), HPGe (7.62 cm diameterx7.62 cm long), HPXe (11.43 cm diameterx60.96 cm long), and LaCl 3 :Ce (5.08 cm diameterx5.08 cm long) are all greater than that of a 188.82 cmx60.96 cmx5.08 cm PVT detector for 60 Co and 137 Cs for all geometries studied. The absolute total and absolute peak detection efficiencies of a right circular cylinder of NaI:Tl with various diameters and thicknesses were determined for a point source. The effect of changing the solid angle on the NaI:Tl detectors showed that with increasing solid angle and detector thickness, the absolute efficiency increases. This work establishes a common basis for differentiating detector materials for passive portal monitoring of gamma ray radiation

  9. Multiple Gamma-Ray Detection Capability of a CeBr3 Detector for Gamma Spectroscopy

    Directory of Open Access Journals (Sweden)

    A. A. Naqvi

    2017-01-01

    Full Text Available The newly developed cerium tribromide (CeBr3 detector has reduced intrinsic gamma-ray activity with gamma energy restricted to 1400–2200 keV energy range. This narrower region of background gamma rays allows the CeBr3 detector to detect more than one gamma ray to analyze the gamma-ray spectrum. Use of multiple gamma-ray intensities in elemental analysis instead of a single one improves the accuracy of the estimated results. Multigamma-ray detection capability of a cylindrical 75 mm × 75 mm (diameter × height CeBr3 detector has been tested by analyzing the chlorine concentration in water samples using eight chlorine prompt gamma rays over 517 to 8578 keV energies utilizing a D-D portable neutron generator-based PGNAA setup and measuring the corresponding minimum detection limit (MDC of chlorine. The measured MDC of chlorine for gamma rays with 517–8578 keV energies varies from 0.07 ± 0.02 wt% to 0.80 ± 0.24. The best value of MDC was measured to be 0.07 ± 0.02 wt% for 788 keV gamma rays. The experimental results are in good agreement with Monte Carlo calculations. The study has shown excellent detection capabilities of the CeBr3 detector for eight prompt gamma rays over 517–8578 keV energy range without significant background interference.

  10. The effect of faulty local detectors on a detection network

    International Nuclear Information System (INIS)

    Mirjalily, G.; Emadi, S.

    2002-01-01

    Distributed detection theory has received increasing attention recently. Development of multiple sensors for signal detection results in improved performance and increased reliability. in a detection network, each local sensor decides locally whether a signal is detected or not. The local decisions are sent to the fusion center, where the final decision is made. In this paper, a theoretic approach is considered to data fusion when one of the sensors is faulty. If the fusion center does not have any knowledge of this fault, the performance of the system is different than its normal performance. The changes in the error probabilities depend on the type of the fault and on the threshold value of the fission center test. We derived some expressions of the changes in the values of error probabilities. For some type of faults, the system false alarm probability increases significantly, whereas for some other faults, the system detection probability decreases significantly. To illustrate the results, a numerical example is also given

  11. YOLO Object Detector for Onboard Driving Images

    OpenAIRE

    Soto i Serrano, Albert

    2017-01-01

    With the evolution of artificial intelligence and, specially, machine learning, tech and car manufacturing companies are in research of the car of the future. Along with the arrival of new powerful hardware, deep learning is expected to be one of the most outstanding fields in the automotive sector. In this paper, we will be developing an object detection system with neural networks using the You Only Look Once (YOLO) network architecture. We will train and evaluate the model using various da...

  12. Enhancement of concentration range of chromatographically detectable components with array detector mass spectrometry

    Science.gov (United States)

    Enke, Christie

    2013-02-19

    Methods and instruments for high dynamic range analysis of sample components are described. A sample is subjected to time-dependent separation, ionized, and the ions dispersed with a constant integration time across an array of detectors according to the ions m/z values. Each of the detectors in the array has a dynamically adjustable gain or a logarithmic response function, producing an instrument capable of detecting a ratio of responses or 4 or more orders of magnitude.

  13. Method and circuit for stabilizing conversion gain of radiation detectors of a radiation detection system

    International Nuclear Information System (INIS)

    Stoub, E.W.

    1986-01-01

    A method is described for calibrating the gain of an array of radiation detectors of a radiation detection system comprising the steps of: (a) measuring in parallel for each radiation detector using a predetermined calibration point the energy map status, thereby obtaining an energy response vector whose elements correspond to the individual output of each radiation detector, each predetermined calibration point being a prescribed location corresponding to one of the radiation detectors; (b) multiplying that energy response vector with a predetermined deconvolution matrix, the deconvolution matrix being the inversion of a contribution matrix containing matrix elements C/sub IJ/, each such matrix element C/sub IJ/ of the contribution matrix representing the relative contribution level of a radiation detector j of the detection system for a point radiation source placed at a location i, thereby obtaining a gain vector product for the radiation detectors; (c) adjusting the gains of the radiation detectors with respect to the gain vector product such that a unity gain vector is essentially obtained; (d) measuring again the energy map status according to step (a); and (e) if the energy map status fails to essentially produce a unity gain vector repeat steps (a) to (d) until the energy map status substantially corresponds to unity

  14. Radiation damage of pixelated photon detector by neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Isamu [KEK, 1-1 Oho Tsukuba 305-0801 (Japan)], E-mail: isamu.nakamura@kek.jp

    2009-10-21

    Radiation Damage of Pixelated Photon Detector by neutron irradiation is reported. MPPC, one of PPD or Geiger-mode APD, developed by Hamamatsu Photonics, is planned to be used in many high energy physics experiments. In such experiments radiation damage is a serious issue. A series of neutron irradiation tests is performed at the Reactor YAYOI of the University of Tokyo. MPPCs were irradiated at the reactor up to 10{sup 12}neutron/cm{sup 2}. In this paper, the effect of neutron irradiation on the basic characteristics of PPD including gain, noise rate, photon detection efficiency is presented.

  15. A Novel Arc Fault Detector for Early Detection of Electrical Fires.

    Science.gov (United States)

    Yang, Kai; Zhang, Rencheng; Yang, Jianhong; Liu, Canhua; Chen, Shouhong; Zhang, Fujiang

    2016-04-09

    Arc faults can produce very high temperatures and can easily ignite combustible materials; thus, they represent one of the most important causes of electrical fires. The application of arc fault detection, as an emerging early fire detection technology, is required by the National Electrical Code to reduce the occurrence of electrical fires. However, the concealment, randomness and diversity of arc faults make them difficult to detect. To improve the accuracy of arc fault detection, a novel arc fault detector (AFD) is developed in this study. First, an experimental arc fault platform is built to study electrical fires. A high-frequency transducer and a current transducer are used to measure typical load signals of arc faults and normal states. After the common features of these signals are studied, high-frequency energy and current variations are extracted as an input eigenvector for use by an arc fault detection algorithm. Then, the detection algorithm based on a weighted least squares support vector machine is designed and successfully applied in a microprocessor. Finally, an AFD is developed. The test results show that the AFD can detect arc faults in a timely manner and interrupt the circuit power supply before electrical fires can occur. The AFD is not influenced by cross talk or transient processes, and the detection accuracy is very high. Hence, the AFD can be installed in low-voltage circuits to monitor circuit states in real-time to facilitate the early detection of electrical fires.

  16. A Novel Arc Fault Detector for Early Detection of Electrical Fires

    Science.gov (United States)

    Yang, Kai; Zhang, Rencheng; Yang, Jianhong; Liu, Canhua; Chen, Shouhong; Zhang, Fujiang

    2016-01-01

    Arc faults can produce very high temperatures and can easily ignite combustible materials; thus, they represent one of the most important causes of electrical fires. The application of arc fault detection, as an emerging early fire detection technology, is required by the National Electrical Code to reduce the occurrence of electrical fires. However, the concealment, randomness and diversity of arc faults make them difficult to detect. To improve the accuracy of arc fault detection, a novel arc fault detector (AFD) is developed in this study. First, an experimental arc fault platform is built to study electrical fires. A high-frequency transducer and a current transducer are used to measure typical load signals of arc faults and normal states. After the common features of these signals are studied, high-frequency energy and current variations are extracted as an input eigenvector for use by an arc fault detection algorithm. Then, the detection algorithm based on a weighted least squares support vector machine is designed and successfully applied in a microprocessor. Finally, an AFD is developed. The test results show that the AFD can detect arc faults in a timely manner and interrupt the circuit power supply before electrical fires can occur. The AFD is not influenced by cross talk or transient processes, and the detection accuracy is very high. Hence, the AFD can be installed in low-voltage circuits to monitor circuit states in real-time to facilitate the early detection of electrical fires. PMID:27070618

  17. Design and implementation of the reconstruction software for the photon multiplicity detector in object oriented programming framework

    International Nuclear Information System (INIS)

    Chattopadhayay, Subhasis; Ghosh, Premomoy; Gupta, R.; Mishra, D.; Phatak, S.C.; Sood, G.

    2002-01-01

    High granularity photon multiplicity detector (PMD) is scheduled to take data in Relativistic Heavy Ion Collision(RHIC) this year. A detailed scheme has been designed and implemented in object oriented programming framework using C++ for the monitoring and reconstruction job of PMD data

  18. Minimum Delay Moving Object Detection

    KAUST Repository

    Lao, Dong

    2017-01-01

    This thesis presents a general framework and method for detection of an object in a video based on apparent motion. The object moves, at some unknown time, differently than the “background” motion, which can be induced from camera motion. The goal

  19. Foreign object detection and removal to improve automated analysis of chest radiographs

    International Nuclear Information System (INIS)

    Hogeweg, Laurens; Sánchez, Clara I.; Melendez, Jaime; Maduskar, Pragnya; Ginneken, Bram van; Story, Alistair; Hayward, Andrew

    2013-01-01

    Purpose: Chest radiographs commonly contain projections of foreign objects, such as buttons, brassier clips, jewellery, or pacemakers and wires. The presence of these structures can substantially affect the output of computer analysis of these images. An automated method is presented to detect, segment, and remove foreign objects from chest radiographs.Methods: Detection is performed using supervised pixel classification with a kNN classifier, resulting in a probability estimate per pixel to belong to a projected foreign object. Segmentation is performed by grouping and post-processing pixels with a probability above a certain threshold. Next, the objects are replaced by texture inpainting.Results: The method is evaluated in experiments on 257 chest radiographs. The detection at pixel level is evaluated with receiver operating characteristic analysis on pixels within the unobscured lung fields and an A z value of 0.949 is achieved. Free response operator characteristic analysis is performed at the object level, and 95.6% of objects are detected with on average 0.25 false positive detections per image. To investigate the effect of removing the detected objects through inpainting, a texture analysis system for tuberculosis detection is applied to images with and without pathology and with and without foreign object removal. Unprocessed, the texture analysis abnormality score of normal images with foreign objects is comparable to those with pathology. After removing foreign objects, the texture score of normal images with and without foreign objects is similar, while abnormal images, whether they contain foreign objects or not, achieve on average higher scores.Conclusions: The authors conclude that removal of foreign objects from chest radiographs is feasible and beneficial for automated image analysis

  20. WE-FG-207B-11: Objective Image Characterization of Spectral CT with a Dual-Layer Detector

    International Nuclear Information System (INIS)

    Ozguner, O; Halliburton, S; Dhanantwari, A; Utrup, S; Wen, G; Jordan, D

    2016-01-01

    Purpose: To obtain objective reference data for the spectral performance on a dual-layer detector CT platform (IQon, Philips) and compare virtual monoenergetic to conventional CT images. Methods: Scanning was performed using the hospital’s clinical adult body protocol: helical acquisition at 120kVp, with CTDIvol=15mGy. Multiple modules (591, 515, 528) of a CATPHAN 600 phantom and a 20 cm diameter cylindrical water phantom were scanned. No modifications to the standard protocol were necessary to enable spectral imaging. Both conventional and virtual monoenergetic images were generated from acquired data. Noise characteristics were assessed through Noise Power Spectra (NPS) and pixel standard deviation from water phantom images. Spatial resolution was evaluated using Modulation Transfer Functions (MTF) of a tungsten wire as well as resolution bars. Low-contrast detectability was studied using contrast-to-noise ratio (CNR) of a low contrast object. Results: MTF curves of monoenergetic and conventional images were almost identical. MTF 50%, 10%, and 5% levels for monoenergetic images agreed with conventional images within 0.05lp/cm. These observations were verified by the resolution bars, which were clearly resolved at 7lp/cm but started blurring at 8lp/cm for this protocol in both conventional and 70 keV images. NPS curves indicated that, compared to conventional images, the noise power distribution of 70 keV monoenergetic images is similar (i.e. noise texture is similar) but exhibit a low frequency peak at keVs higher and lower than 70 keV. Standard deviation measurements show monoenergetic images have lower noise except at 40 keV where it is slightly higher. CNR of monoenergetic images is mostly flat across keV values and is superior to that of conventional images. Conclusion: Values for standard image quality metrics are the same or better for monoenergetic images compared to conventional images. Results indicate virtual monoenergetic images can be used without

  1. WE-FG-207B-11: Objective Image Characterization of Spectral CT with a Dual-Layer Detector

    Energy Technology Data Exchange (ETDEWEB)

    Ozguner, O [Case Western Reserve University, Cleveland, OH (United States); Halliburton, S; Dhanantwari, A; Utrup, S [Philips Healthcare, Highland Heights, OH (United States); Wen, G [The University of Texas at Austin, Austin, TX (United States); Jordan, D [University Hospitals Case Medical Center, Cleveland, OH (United States)

    2016-06-15

    Purpose: To obtain objective reference data for the spectral performance on a dual-layer detector CT platform (IQon, Philips) and compare virtual monoenergetic to conventional CT images. Methods: Scanning was performed using the hospital’s clinical adult body protocol: helical acquisition at 120kVp, with CTDIvol=15mGy. Multiple modules (591, 515, 528) of a CATPHAN 600 phantom and a 20 cm diameter cylindrical water phantom were scanned. No modifications to the standard protocol were necessary to enable spectral imaging. Both conventional and virtual monoenergetic images were generated from acquired data. Noise characteristics were assessed through Noise Power Spectra (NPS) and pixel standard deviation from water phantom images. Spatial resolution was evaluated using Modulation Transfer Functions (MTF) of a tungsten wire as well as resolution bars. Low-contrast detectability was studied using contrast-to-noise ratio (CNR) of a low contrast object. Results: MTF curves of monoenergetic and conventional images were almost identical. MTF 50%, 10%, and 5% levels for monoenergetic images agreed with conventional images within 0.05lp/cm. These observations were verified by the resolution bars, which were clearly resolved at 7lp/cm but started blurring at 8lp/cm for this protocol in both conventional and 70 keV images. NPS curves indicated that, compared to conventional images, the noise power distribution of 70 keV monoenergetic images is similar (i.e. noise texture is similar) but exhibit a low frequency peak at keVs higher and lower than 70 keV. Standard deviation measurements show monoenergetic images have lower noise except at 40 keV where it is slightly higher. CNR of monoenergetic images is mostly flat across keV values and is superior to that of conventional images. Conclusion: Values for standard image quality metrics are the same or better for monoenergetic images compared to conventional images. Results indicate virtual monoenergetic images can be used without

  2. User-assisted Object Detection by Segment Based Similarity Measures in Mobile Laser Scanner Data

    NARCIS (Netherlands)

    Oude Elberink, S.J.; Kemboi, B.J.

    2014-01-01

    This paper describes a method that aims to find all instances of a certain object in Mobile Laser Scanner (MLS) data. In a userassisted approach, a sample segment of an object is selected, and all similar objects are to be found. By selecting samples from multiple classes, a classification can be

  3. Enhancing the performance of cooperative face detector by NFGS

    Science.gov (United States)

    Yesugade, Snehal; Dave, Palak; Srivastava, Srinkhala; Das, Apurba

    2015-07-01

    Computerized human face detection is an important task of deformable pattern recognition in today's world. Especially in cooperative authentication scenarios like ATM fraud detection, attendance recording, video tracking and video surveillance, the accuracy of the face detection engine in terms of accuracy, memory utilization and speed have been active areas of research for the last decade. The Haar based face detection or SIFT and EBGM based face recognition systems are fairly reliable in this regard. But, there the features are extracted in terms of gray textures. When the input is a high resolution online video with a fairly large viewing area, Haar needs to search for face everywhere (say 352×250 pixels) and every time (e.g., 30 FPS capture all the time). In the current paper we have proposed to address both the aforementioned scenarios by a neuro-visually inspired method of figure-ground segregation (NFGS) [5] to result in a two-dimensional binary array from gray face image. The NFGS would identify the reference video frame in a low sampling rate and updates the same with significant change of environment like illumination. The proposed algorithm would trigger the face detector only when appearance of a new entity is encountered into the viewing area. To address the detection accuracy, classical face detector would be enabled only in a narrowed down region of interest (RoI) as fed by the NFGS. The act of updating the RoI would be done in each frame online with respect to the moving entity which in turn would improve both FR (False Rejection) and FA (False Acceptance) of the face detection system.

  4. Determining root correspondence between previously and newly detected objects

    Science.gov (United States)

    Paglieroni, David W.; Beer, N Reginald

    2014-06-17

    A system that applies attribute and topology based change detection to networks of objects that were detected on previous scans of a structure, roadway, or area of interest. The attributes capture properties or characteristics of the previously detected objects, such as location, time of detection, size, elongation, orientation, etc. The topology of the network of previously detected objects is maintained in a constellation database that stores attributes of previously detected objects and implicitly captures the geometrical structure of the network. A change detection system detects change by comparing the attributes and topology of new objects detected on the latest scan to the constellation database of previously detected objects.

  5. Study of the detective quantum efficiency for the kinestatic charge detector as a megavoltage imaging device

    Science.gov (United States)

    Samant, Sanjiv S.; Gopal, Arun; DiBianca, Frank A.

    2003-06-01

    Megavoltage x-ray imaging suffers from relatively poor contrast and spatial resolution compared to diagnostic kilovoltage x-ray imaging due to the dominant Compton scattering in the former. Recently available amorphous silicon/selenium based flat-panel imagers overcome many of the limitations of poor contrast and spatial resolution that affect conventional video based electronic portal imaging devices (EPIDs). An alternative technology is presented here: kinestatic charge detection (KCD). The KCD uses a slot photon beam, high-pressure gas (xenon, 100 atm) and a multi-ion rectangular chamber in scanning mode. An electric field is used to regulate the cation drift velocity. By matching the scanning speed with that of the cation drift, the cations remain static in the object frame of reference, allowing temporal integration of the signal. KCD imaging is characterized by reduced scatter and a high signal-to-noise ratio. Measurements and Monte Carlo simulations of modulation transfer function (MTF), noise power spectrum (NPS) and the detective quantum efficiency (DQE) of a prototype small field of view KCD detector (384 channels, 0.5 mm spacing) were carried out. Measurements yield DQE[0]=0.19 and DQE[0.5cy/mm]=0.01. KCD imaging is compared to film and commercial EPID systems using phantoms, with the KCD requiring an extremely low dose (0.1 cGy) per image. A proposed cylindrical chamber design with a higher ion-collection depth is expected to further improve image quality (DQE[0]>0.25).

  6. Optimising the design of gas microstrip detectors for soft x-ray detection

    International Nuclear Information System (INIS)

    Bateman, J.; Barlow, R.; Derbyshire, G.

    2001-01-01

    This report describes development work in which systematic changes in the electrode pattern of a Gas Microstrip Detector are explored in the search for higher avalanche gains and enhanced stability. It is found that the width of the cathode structure is the main determinant of the detector stability. With the correct cathode width, gas gains of >50 000 are comfortably attainable with low detector noise so that x-rays can potentially be detected down to the limit of a single x-ray-produced photoelectron. (author)

  7. Examination of suspicious objects by virus analysts

    Science.gov (United States)

    Ananin, E. V.; Ananina, I. S.; Nikishova, A. V.

    2018-05-01

    The paper presents data on virus threats urgency. But in order for antiviruses to work properly, all data on new implementations of viruses should be added to its database. For that to be done, all suspicious objects should be investigated. It is a dangerous process and should be done in the virtual system. However, it is not secure for the main system as well. So the diagram of a secure workplace for a virus analyst is proposed. It contains software for its protection. Also all kinds of setting to ensure security of the process of investigating suspicious objects are proposed. The proposed approach allows minimizing risks caused by the virus.

  8. Selective Filtration of Gadolinium Trichloride for Use in Neutron Detection in Large Water Cherenkov Detectors

    International Nuclear Information System (INIS)

    Vagins, Mark R.

    2013-01-01

    Super-??Kamiokande Water Cherenkov detectors have been used for many years as inexpensive, effective detectors for neutrino interactions and nucleon decay searches. While many important measurements have been made with these detectors a major drawback has been their inability to detect the absorption of thermal neutrons. We believe an inexpensive, effective technique could be developed to overcome this situation via the addition to water of a solute with a large neutron cross section and energetic gamma daughters which would make neutrons detectable. Gadolinium seems an excellent candidate especially since in recent years it has become very inexpensive, now less than $8 per kilogram in the form of commercially-available gadolinium trichloride, GdCl 3 . This non-toxic, non-reactive substance is highly soluble in water. Neutron capture on gadolinium yields a gamma cascade which would be easily seen in detectors like Super-Kamiokande. We have been investigating the use of GdCl 3 as a possible upgrade for the Super-Kamiokande detector with a view toward improving its performance as a detector for atmospheric neutrinos, supernova neutrinos, wrong-sign solar neutrinos, reactor neutrinos, proton decay, and also as a target for the coming T2K long-baseline neutrino experiment. This focused study of selective water filtration and GdCl 3 extraction techniques, conducted at UC Irvine, followed up on highly promising benchtop-scale and kiloton-scale work previously carried out with the assistance of 2003 and 2005 Advanced Detector Research Program grants

  9. Saliency-Guided Detection of Unknown Objects in RGB-D Indoor Scenes.

    Science.gov (United States)

    Bao, Jiatong; Jia, Yunyi; Cheng, Yu; Xi, Ning

    2015-08-27

    This paper studies the problem of detecting unknown objects within indoor environments in an active and natural manner. The visual saliency scheme utilizing both color and depth cues is proposed to arouse the interests of the machine system for detecting unknown objects at salient positions in a 3D scene. The 3D points at the salient positions are selected as seed points for generating object hypotheses using the 3D shape. We perform multi-class labeling on a Markov random field (MRF) over the voxels of the 3D scene, combining cues from object hypotheses and 3D shape. The results from MRF are further refined by merging the labeled objects, which are spatially connected and have high correlation between color histograms. Quantitative and qualitative evaluations on two benchmark RGB-D datasets illustrate the advantages of the proposed method. The experiments of object detection and manipulation performed on a mobile manipulator validate its effectiveness and practicability in robotic applications.

  10. A system and a method for detecting the position of an object

    International Nuclear Information System (INIS)

    Brown, M.H.; Harrison, J.G.

    1982-01-01

    The position of an object e.g. a manipulator, in an enclosure is detected by two video cameras from which signals representative of images in the cameras are supplied to a mini-computer. The mini-computer scans the signals to detect the position of the object in the signals, and relates this position to the spatial coordinates of the object in the enclosure. Means are provided for controlling the movement of the object within the enclosure, which may be a hostile environment e.g. radio-active. (author)

  11. Object Detection: Current and Future Directions

    Directory of Open Access Journals (Sweden)

    Rodrigo eVerschae

    2015-11-01

    Full Text Available Object detection is a key ability required by most computer and robot vision systems. The latest research on this area has been making great progress in many directions. In the current manuscript we give an overview of past research on object detection, outline the current main research directions, and discuss open problems and possible future directions.

  12. A surface barrier detector for simultaneous detection of α and β particles

    International Nuclear Information System (INIS)

    Shiraishi, Fumio

    1981-01-01

    Semiconductor detectors are indispensable as the solid detectors with high energy resolution. Ge detectors are used for gamma-ray spectroscopy and its applied fields, while Si detectors are used as the detectors for charged particles such as α and β rays and low energy X-ray. In this paper, it is reported that the Si detector developed in the author's laboratory is suitable to monitor very weak radioactivity. The Si detector is a rectifier, but in order to capture radiation, it has large area and increased thickness, and a window is provided for incident charged particles. The Si detectors are classified into three types according to the manufacturing methods, namely surface barrier type, PN joint type and Li drift type. The Si detector introduced here is of surface barrier type, but it is characterized by the use of P-type Si with superhigh purity. The method of manufacturing this detector, its specifications and characteristics are described. Because of the surface barrier type, it can be produced simply in short time, and the yield of products is good. The stability is good, and the sensitivity is high, accordingly very weak radioactivity can be measured. As the examples of measurements, the results of uranium ore and fertilizer on the market are compared. Also the utilization as surface contamination meters is explained. (Kako, I.)

  13. Detecting gravitational waves from precessing binaries of spinning compact objects: Adiabatic limit

    International Nuclear Information System (INIS)

    Buonanno, Alessandra; Chen Yanbei; Vallisneri, Michele

    2003-01-01

    Black-hole (BH) binaries with single-BH masses m=(5-20)M · , moving on quasicircular orbits, are among the most promising sources for first-generation ground-based gravitational-wave (GW) detectors. Until now, the development of data-analysis techniques to detect GWs from these sources has been focused mostly on nonspinning BHs. The data-analysis problem for the spinning case is complicated by the necessity to model the precession-induced modulations of the GW signal, and by the large number of parameters needed to characterize the system, including the initial directions of the spins, and the position and orientation of the binary with respect to the GW detector. In this paper we consider binaries of maximally spinning BHs, and we work in the adiabatic-inspiral regime to build families of modulated detection templates that (i) are functions of very few physical and phenomenological parameters, (ii) model remarkably well the dynamical and precessional effects on the GW signal, with fitting factors on average > or approx. 0.97, (iii) but, however, might require increasing the detection thresholds, offsetting at least partially the gains in the fitting factors. Our detection-template families are quite promising also for the case of neutron-star-black-hole binaries, with fitting factors on average ≅0.93. For these binaries we also suggest (but do not test) a further template family, which would produce essentially exact waveforms written directly in terms of the physical spin parameters

  14. Investigation of enviromental objects by microanalysis methods

    OpenAIRE

    Osīte, Agnese

    2008-01-01

    Investigation of environmental objects by microanalysis methods AEROSOL PARTICLES, SOOT, METALLIC ELEMENTS, WATER, PINE NEEDLES, STRIPPING POTENTIOMETRY, INDUCTIVELY COUPLED PLASMA MASSPECTROMETRY, ENERGY DISPERIVE X-RAY FLUORESCENCE Performing the fractionated sampling by both commercially available and laboratory constructed devices, mass concentrations of four fractions of solid particles PM10, PM2.5-10, PM2.5 and PM1 were determined. Mass concentrations of soot were ...

  15. Control of the neutron detector count rate by optical imaging

    International Nuclear Information System (INIS)

    Roquemore, A.L.; Johnson, L.C.

    1992-01-01

    The signal processing electronics used for the NE451 detectors on the TFTR multichannel neutron collimator are presently showing saturation effects at high counting rates equivalent to neutron yields of ∼10 16 n/s. While nonlinearity due to pulse pileup can be corrected for in most present TFTR experiments, additional steps are required for neutron source strengths above ∼3x10 16 n/s. These pulse pileup effects could be reduced by inserting sleeves in the collimator shielding to reduce the neutron flux in the vicinity of the detectors or by reducing the volume of detector exposed to the flux. We describe a novel method of avoiding saturation by optically controlling the number neutron events processed by the detector electronics. Because of the optical opacity of the ZnS-plastic detectors such as NE451, photons from a proton-recoil scintillation arise from a spatially localized area of the detector. By imaging a selected portion of the detector onto a photomultiplier, we reduce the effective volume of the detector in a controllable, reversible way. A prototype system, consisting of a focusing lens, a field lens, and a variable aperture, has been constructed. Results of laboratory feasibility tests are presented

  16. Geiger-mueller radiation detector with means for detecting and indicating the existence of radiation overload

    International Nuclear Information System (INIS)

    Kovacs, T.; Mills, A.P.; Pfeiffer, L.N.

    1981-01-01

    When subjected to radiation overload existing geiger-mueller counters may give an erroneously low reading, resulting in possible hazard to personnel. The instant invention discloses simple and inexpensive apparatus to remedy this dangerous shortcoming. Depending on the geometry of the detector tube, two possible failure modes have been identified, and circuitry is disclosed to detect the existence of these respective failure modes. The disclosed apparatus indicates the absence of an overload condition, in addition to signaling, by both visible and audible means, the existence of excessive radiation that might result in erroneously low reading of the geiger-mueller counter

  17. Ticor-based scintillation detectors for detection of mixed radiation

    CERN Document Server

    Litvinov, L A; Kolner, V B; Ryzhikov, V D; Volkov, V G; Tarasov, V A; Zelenskaya, O V

    2002-01-01

    Detection of mixed radiation of thermal neutrons and gamma-rays have been realized using a new ceramic material based on small-crystalline long-wave scintillator alpha-Al sub 2 O sub 3 :Ti (Ticor) and lithium fluoride. Characteristics are presented for scintillators with Si-PIN-PD type photoreceivers and PMT under sup 2 sup 3 sup 9 Pu alpha-particles, sup 2 sup 0 sup 7 Bi internal conversion electrons,as well as sup 2 sup 4 sup 1 Am and sup 1 sup 3 sup 7 Cs gamma-quanta. Detection efficiency of thermal neutron is estimated for composite materials based on Ticor and lithium fluoride.

  18. Highly accurate determination of relative gamma-ray detection efficiency for Ge detector and its application

    International Nuclear Information System (INIS)

    Miyahara, H.; Mori, C.; Fleming, R.F.; Dewaraja, Y.K.

    1997-01-01

    When quantitative measurements of γ-rays using High-Purity Ge (HPGe) detectors are made for a variety of applications, accurate knowledge of oy-ray detection efficiency is required. The emission rates of γ-rays from sources can be determined quickly in the case that the absolute peak efficiency is calibrated. On the other hand, the relative peak efficiencies can be used for determination of intensity ratios for plural samples and for comparison to the standard source. Thus, both absolute and relative detection efficiencies are important in use of γ-ray detector. The objective of this work is to determine the relative gamma-ray peak detection efficiency for an HPGe detector with the uncertainty approaching 0.1% . We used some nuclides which emit at least two gamma-rays with energies from 700 to 2400 keV for which the relative emission probabilities are known with uncertainties much smaller than 0.1%. The relative peak detection efficiencies were calculated from the measurements of the nuclides, 46 Sc, 48 Sc, 60 Co and 94 Nb, emitting two γ- rays with the emission probabilities of almost unity. It is important that various corrections for the emission probabilities, the cascade summing effect, and the self-absorption are small. A third order polynomial function on both logarithmic scales of energy and efficiency was fitted to the data, and the peak efficiency predicted at certain energy from covariance matrix showed the uncertainty less than 0.5% except for near 700 keV. As an application, the emission probabilities of the 1037.5 and 1212.9 keV γ-rays for 48 Sc were determined using the function of the highly precise relative peak efficiency. Those were 0.9777+0,.00079 and 0.02345+0.00017 for the 1037.5 and 1212.9 keV γ-rays, respectively. The sum of these probabilities is close to unity within the uncertainty which means that the certainties of the results are high and the accuracy has been improved considerably

  19. Detection alpha particles and Cf-252 fission fragments with track solid detectors and with surface barrier detectors: efficiency determination

    International Nuclear Information System (INIS)

    Khouri, M.T.F.C.; Koskinas, M.F.; Andrade, C. de; Vilela, E.C.; Hinostroza, H.; Kaschiny, J.R.A.; Costa, M.S. da; Rizzo, P.; Santos, W.M.S.

    1990-01-01

    The technique of particle detection by solid track detectors, types of developing and analysis of results are presented. Efficiency measurements of alpha particle detection with Makrofol e and surface barrier detector are made. Detection of Cf-252 fission fragments is shown. (L.C.)

  20. Detection of SNM by Pulsed Neutron Interrogation

    International Nuclear Information System (INIS)

    Pedersen, Bent; Mayorov, Valeriy; Roesgen, Eric; Mosconi, Marita; Crochemore, Jean-Michel; Ocherashvili, Aharon; Beck, Arie; Ettedgui, Hanania

    2014-01-01

    A method for the detection of special nuclear materials (SNM) in shielded containers which is both sensitive and easily applicable under field conditions is presented. The method applies neutron induced fission in SNM by means of an external pulsed neutron source with subsequent detection of the fast prompt fission neutrons. Liquid scintillation detectors surrounding the container under investigation are able to discriminate gamma rays from fast neutrons by the so-called pulse shape discrimination technique (PSD)

  1. The Prototype of Real-time Object Detection System Based on SMS

    Directory of Open Access Journals (Sweden)

    M. Hana Mirza

    2010-08-01

    Full Text Available The powerful algorithm to detect object movement in development of room monitoring system is very urgent. The commond algorithm needs complex computation. In this research, the prototype of real-time object detection system using simple algorithm is developed, i.e. using the determination of the max noise/pixel value and the tolerance threshold of image accurately, and then the system automatically send a SMS (short message services to user when the object movement is detected. The developed prototype used a Logitech QuickCam webcam, a Siemens C45 mobile phone and a data cable, and the Borland Delphi 7 with additional components and Serial PortNG Tvideo as system software. The application also includes a database to store the captured images whenever object movement is detected. The test results by varying conditions of light intensities using a 5-watt light bulb, fluorescent lamp 20 and 40 watts indicate that the application is able to automatically detect the presence of moving objects with 100% success rate. The success rate is strongly influenced by the determination of the max noise/pixel value and the tolerance threshold during system configuration. This application is also capable of sending SMS automatically when the system detects a moving object with an average time of 8.35 seconds.

  2. Automatic object recognition and change detection of urban trees

    NARCIS (Netherlands)

    Van der Sande, C.J.

    2010-01-01

    Monitoring of tree objects is relevant in many current policy issues and relate to the quality of the public space, municipal urban green management, management fees for green areas or Kyoto protocol reporting and all have one thing in common: the need for an up to date tree database. This study,

  3. Association of apolipoprotein b/apolipoprotein A1 ratio and coronary artery stenosis and plaques detected by multi-detector computed tomography in healthy population.

    Science.gov (United States)

    Jung, Chang Hee; Hwang, Jenie Yoonoo; Shin, Mi Seon; Yu, Ji Hee; Kim, Eun Hee; Bae, Sung Jin; Yang, Dong Hyun; Kang, Joon-Won; Park, Joong-Yeol; Kim, Hong-Kyu; Lee, Woo Je

    2013-05-01

    Despite the noninvasiveness and accuracy of multidetector computed tomography (MDCT), its use as a routine screening tool for occult coronary atherosclerosis is unclear. We investigated whether the ratio of apolipoprotein B (apoB) to apolipoprotein A1 (apoA1), an indicator of the balance between atherogenic and atheroprotective cholesterol transport could predict occult coronary atherosclerosis detected by MDCT. We collected the data of 1,401 subjects (877 men and 524 women) who participated in a routine health screening examination of Asan Medical Center. Significant coronary artery stenosis defined as > 50% stenosis was detected in 114 subjects (8.1%). An increase in apoB/A1 quartiles was associated with increased percentages of subjects with significant coronary stenosis and noncalcified plaques (NCAP). After adjustment for confounding variables, each 0.1 increase in serum apoB/A1 was significantly associated with increased odds ratios (ORs) for coronary stenosis and NCAP of 1.23 and 1.18, respectively. The optimal apoB/A1 ratio cut off value for MDCT detection of significant coronary stenosis was 0.58, which had a sensitivity of 70.2% and a specificity of 48.2% (area under the curve, 0.61; 95% CI, 0.58-0.63, P < 0.001). Our results indicate that apoB/A1 ratio is a good indicator of occult coronary atherosclerosis detected by coronary MDCT.

  4. Buried object detection in GPR images

    Science.gov (United States)

    Paglieroni, David W; Chambers, David H; Bond, Steven W; Beer, W. Reginald

    2014-04-29

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  5. Colour Terms Affect Detection of Colour and Colour-Associated Objects Suppressed from Visual Awareness.

    Science.gov (United States)

    Forder, Lewis; Taylor, Olivia; Mankin, Helen; Scott, Ryan B; Franklin, Anna

    2016-01-01

    The idea that language can affect how we see the world continues to create controversy. A potentially important study in this field has shown that when an object is suppressed from visual awareness using continuous flash suppression (a form of binocular rivalry), detection of the object is differently affected by a preceding word prime depending on whether the prime matches or does not match the object. This may suggest that language can affect early stages of vision. We replicated this paradigm and further investigated whether colour terms likewise influence the detection of colours or colour-associated object images suppressed from visual awareness by continuous flash suppression. This method presents rapidly changing visual noise to one eye while the target stimulus is presented to the other. It has been shown to delay conscious perception of a target for up to several minutes. In Experiment 1 we presented greyscale photos of objects. They were either preceded by a congruent object label, an incongruent label, or white noise. Detection sensitivity (d') and hit rates were significantly poorer for suppressed objects preceded by an incongruent label compared to a congruent label or noise. In Experiment 2, targets were coloured discs preceded by a colour term. Detection sensitivity was significantly worse for suppressed colour patches preceded by an incongruent colour term as compared to a congruent term or white noise. In Experiment 3 targets were suppressed greyscale object images preceded by an auditory presentation of a colour term. On congruent trials the colour term matched the object's stereotypical colour and on incongruent trials the colour term mismatched. Detection sensitivity was significantly poorer on incongruent trials than congruent trials. Overall, these findings suggest that colour terms affect awareness of coloured stimuli and colour- associated objects, and provide new evidence for language-perception interaction in the brain.

  6. Colour Terms Affect Detection of Colour and Colour-Associated Objects Suppressed from Visual Awareness.

    Directory of Open Access Journals (Sweden)

    Lewis Forder

    Full Text Available The idea that language can affect how we see the world continues to create controversy. A potentially important study in this field has shown that when an object is suppressed from visual awareness using continuous flash suppression (a form of binocular rivalry, detection of the object is differently affected by a preceding word prime depending on whether the prime matches or does not match the object. This may suggest that language can affect early stages of vision. We replicated this paradigm and further investigated whether colour terms likewise influence the detection of colours or colour-associated object images suppressed from visual awareness by continuous flash suppression. This method presents rapidly changing visual noise to one eye while the target stimulus is presented to the other. It has been shown to delay conscious perception of a target for up to several minutes. In Experiment 1 we presented greyscale photos of objects. They were either preceded by a congruent object label, an incongruent label, or white noise. Detection sensitivity (d' and hit rates were significantly poorer for suppressed objects preceded by an incongruent label compared to a congruent label or noise. In Experiment 2, targets were coloured discs preceded by a colour term. Detection sensitivity was significantly worse for suppressed colour patches preceded by an incongruent colour term as compared to a congruent term or white noise. In Experiment 3 targets were suppressed greyscale object images preceded by an auditory presentation of a colour term. On congruent trials the colour term matched the object's stereotypical colour and on incongruent trials the colour term mismatched. Detection sensitivity was significantly poorer on incongruent trials than congruent trials. Overall, these findings suggest that colour terms affect awareness of coloured stimuli and colour- associated objects, and provide new evidence for language-perception interaction in the brain.

  7. Colour Terms Affect Detection of Colour and Colour-Associated Objects Suppressed from Visual Awareness

    OpenAIRE

    Forder, Lewis; Taylor, Olivia; Mankin, Helen; Scott, Ryan B.; Franklin, Anna

    2016-01-01

    The idea that language can affect how we see the world continues to create controversy. A potentially important study in this field has shown that when an object is suppressed from visual awareness using continuous flash suppression (a form of binocular rivalry), detection of the object is differently affected by a preceding word prime depending on whether the prime matches or does not match the object. This may suggest that language can affect early stages of vision. We replicated this parad...

  8. Decoupling Object Detection and Categorization

    Science.gov (United States)

    Mack, Michael L.; Palmeri, Thomas J.

    2010-01-01

    We investigated whether there exists a behavioral dependency between object detection and categorization. Previous work (Grill-Spector & Kanwisher, 2005) suggests that object detection and basic-level categorization may be the very same perceptual mechanism: As objects are parsed from the background they are categorized at the basic level. In…

  9. Object Detection Based on Fast/Faster RCNN Employing Fully Convolutional Architectures

    Directory of Open Access Journals (Sweden)

    Yun Ren

    2018-01-01

    Full Text Available Modern object detectors always include two major parts: a feature extractor and a feature classifier as same as traditional object detectors. The deeper and wider convolutional architectures are adopted as the feature extractor at present. However, many notable object detection systems such as Fast/Faster RCNN only consider simple fully connected layers as the feature classifier. In this paper, we declare that it is beneficial for the detection performance to elaboratively design deep convolutional networks (ConvNets of various depths for feature classification, especially using the fully convolutional architectures. In addition, this paper also demonstrates how to employ the fully convolutional architectures in the Fast/Faster RCNN. Experimental results show that a classifier based on convolutional layer is more effective for object detection than that based on fully connected layer and that the better detection performance can be achieved by employing deeper ConvNets as the feature classifier.

  10. DOUBLE COMPACT OBJECTS. III. GRAVITATIONAL-WAVE DETECTION RATES

    Energy Technology Data Exchange (ETDEWEB)

    Dominik, Michal; Belczynski, Krzysztof; Bulik, Tomasz [Astronomical Observatory, University of Warsaw, Al. Ujazdowskie 4, 00-478 Warsaw (Poland); Berti, Emanuele [Department of Physics and Astronomy, The University of Mississippi, University, MS 38677 (United States); O’Shaughnessy, Richard [Center for Gravitation, Cosmology, and Astrophysics, University of Wisconsin-Milwaukee, Milwaukee, WI (United States); Mandel, Ilya [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Fryer, Christopher [CCS-2, MSD409, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Holz, Daniel E. [Enrico Fermi Institute, Department of Physics, and Kavli Institute for Cosmological Physics University of Chicago, Chicago, IL 60637 (United States); Pannarale, Francesco [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA (United Kingdom)

    2015-06-20

    The unprecedented range of second-generation gravitational-wave (GW) observatories calls for refining the predictions of potential sources and detection rates. The coalescence of double compact objects (DCOs)—i.e., neutron star–neutron star (NS–NS), black hole–neutron star (BH–NS), and black hole–black hole (BH–BH) binary systems—is the most promising source of GWs for these detectors. We compute detection rates of coalescing DCOs in second-generation GW detectors using the latest models for their cosmological evolution, and implementing inspiral-merger-ringdown gravitational waveform models in our signal-to-noise ratio calculations. We find that (1) the inclusion of the merger/ringdown portion of the signal does not significantly affect rates for NS–NS and BH–NS systems, but it boosts rates by a factor of ∼1.5 for BH–BH systems; (2) in almost all of our models BH–BH systems yield by far the largest rates, followed by NS–NS and BH–NS systems, respectively; and (3) a majority of the detectable BH–BH systems were formed in the early universe in low-metallicity environments. We make predictions for the distributions of detected binaries and discuss what the first GW detections will teach us about the astrophysics underlying binary formation and evolution.

  11. Detection in coincidence of gravitational wave bursts with a network of interferometric detectors: Geometric acceptance and timing

    International Nuclear Information System (INIS)

    Arnaud, Nicolas; Barsuglia, Matteo; Bizouard, Marie-Anne; Canitrot, Philippe; Cavalier, Fabien; Davier, Michel; Hello, Patrice; Pradier, Thierry

    2002-01-01

    Detecting gravitational wave bursts (characterized by short durations and poorly modeled waveforms) requires coincidences between several interferometric detectors in order to reject nonstationary noise events. As the wave amplitude seen in a detector depends on its location with respect to the source direction and as the signal to noise ratio of these bursts is expected to be low, coincidences between antennas may not be very likely. This paper investigates this question from a statistical point of view by using a simple model of a network of detectors; it also estimates the timing precision of a detection in an interferometer, which is an important issue for the reconstruction of the source location based on time delays

  12. Objective Methods for Reliable Detection of Concealed Depression

    Directory of Open Access Journals (Sweden)

    Cynthia eSolomon

    2015-04-01

    Full Text Available Recent research has shown that it is possible to automatically detect clinical depression from audio-visual recordings. Before considering integration in a clinical pathway, a key question that must be asked is whether such systems can be easily fooled. This work explores the potential of acoustic features to detect clinical depression in adults both when acting normally and when asked to conceal their depression. Nine adults diagnosed with mild to moderate depression as per the Beck Depression Inventory (BDI-II and Patient Health Questionnaire (PHQ-9 were asked a series of questions and to read a excerpt from a novel aloud under two different experimental conditions. In one, participants were asked to act naturally and in the other, to suppress anything that they felt would be indicative of their depression. Acoustic features were then extracted from this data and analysed using paired t-tests to determine any statistically significant differences between healthy and depressed participants. Most features that were found to be significantly different during normal behaviour remained so during concealed behaviour. In leave-one-subject-out automatic classification studies of the 9 depressed subjects and 8 matched healthy controls, an 88% classification accuracy and 89% sensitivity was achieved. Results remained relatively robust during concealed behaviour, with classifiers trained on only non-concealed data achieving 81% detection accuracy and 75% sensitivity when tested on concealed data. These results indicate there is good potential to build deception-proof automatic depression monitoring systems.

  13. Colour Terms Affect Detection of Colour and Colour-Associated Objects Suppressed from Visual Awareness

    Science.gov (United States)

    Forder, Lewis; Taylor, Olivia; Mankin, Helen; Scott, Ryan B.; Franklin, Anna

    2016-01-01

    The idea that language can affect how we see the world continues to create controversy. A potentially important study in this field has shown that when an object is suppressed from visual awareness using continuous flash suppression (a form of binocular rivalry), detection of the object is differently affected by a preceding word prime depending on whether the prime matches or does not match the object. This may suggest that language can affect early stages of vision. We replicated this paradigm and further investigated whether colour terms likewise influence the detection of colours or colour-associated object images suppressed from visual awareness by continuous flash suppression. This method presents rapidly changing visual noise to one eye while the target stimulus is presented to the other. It has been shown to delay conscious perception of a target for up to several minutes. In Experiment 1 we presented greyscale photos of objects. They were either preceded by a congruent object label, an incongruent label, or white noise. Detection sensitivity (d’) and hit rates were significantly poorer for suppressed objects preceded by an incongruent label compared to a congruent label or noise. In Experiment 2, targets were coloured discs preceded by a colour term. Detection sensitivity was significantly worse for suppressed colour patches preceded by an incongruent colour term as compared to a congruent term or white noise. In Experiment 3 targets were suppressed greyscale object images preceded by an auditory presentation of a colour term. On congruent trials the colour term matched the object’s stereotypical colour and on incongruent trials the colour term mismatched. Detection sensitivity was significantly poorer on incongruent trials than congruent trials. Overall, these findings suggest that colour terms affect awareness of coloured stimuli and colour- associated objects, and provide new evidence for language-perception interaction in the brain. PMID:27023274

  14. Dedicated detectors for surface studies by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Bibicu, I.; Rogalski, M.S.; Nicolescu, G.

    2001-01-01

    Moessbauer spectroscopy is a nuclear resonance method largely utilized in solid state studies. Following resonant nuclear absorption, gamma radiations, conversion X-rays, conversion or Auger electrons are emitted. By detection of gamma radiations information about the sample as a whole are obtained while by detection of electrons or X radiation one obtains data on the surface layer. Our laboratory was among the firsts to produce and use flow gas proportional detectors for surface studies by Moessbauer spectroscopy. Four types of detectors were devised: - detectors for electron detection (90% He + 10% CH 4 ); - detectors for conversion X-ray detection (90% Ar + 10% CH 4 ); - detectors for electrons or internal conversion X rays; - detectors for simultaneous detection of electrons and conversion X rays emitted from the same source. All detectors allow simultaneous Moessbauer measurements both for surface and volume for a given sample. Details of construction are presented for the four types of detectors

  15. Reported Use of Objectives by Medical Students.

    Science.gov (United States)

    Mast, Terrill A.; And Others

    The way that medical students used objectives throughout the curriculum and factors that influenced their level of use was studied at Southern Illinois University School of Medicine, a three-year medical school with an entirely objectives-based curriculum. A questionnaire mailed to 75 students yielded a 75 percent return. The predominant modes for…

  16. The fate of object memory traces under change detection and change blindness.

    Science.gov (United States)

    Busch, Niko A

    2013-07-03

    Observers often fail to detect substantial changes in a visual scene. This so-called change blindness is often taken as evidence that visual representations are sparse and volatile. This notion rests on the assumption that the failure to detect a change implies that representations of the changing objects are lost all together. However, recent evidence suggests that under change blindness, object memory representations may be formed and stored, but not retrieved. This study investigated the fate of object memory representations when changes go unnoticed. Participants were presented with scenes consisting of real world objects, one of which changed on each trial, while recording event-related potentials (ERPs). Participants were first asked to localize where the change had occurred. In an additional recognition task, participants then discriminated old objects, either from the pre-change or the post-change scene, from entirely new objects. Neural traces of object memories were studied by comparing ERPs for old and novel objects. Participants performed poorly in the detection task and often failed to recognize objects from the scene, especially pre-change objects. However, a robust old/novel effect was observed in the ERP, even when participants were change blind and did not recognize the old object. This implicit memory trace was found both for pre-change and post-change objects. These findings suggest that object memories are stored even under change blindness. Thus, visual representations may not be as sparse and volatile as previously thought. Rather, change blindness may point to a failure to retrieve and use these representations for change detection. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Updates on Performance of Physics Objects with the Upgraded CMS detector for High Luminosity LHC.

    CERN Document Server

    CMS Collaboration

    2016-01-01

    This document contains a collection of performance plots obtained with the simulation of the upgrade Phase2 CMS detector for HL-LHC at the centre of mass energy of 14 TeV. Two pileup scenarios with and average = 140 and 200 collisions per event have been considered. We present updated results compared to the Technical Proposal (CMS-TDR-15-02) and Scope Document (CERN-LHCC-2015-019) for: track, muon, jet reconstruction and btagging performance. In addition, a set of plots containing studies of performance as a function of the linear pile up density along the beam axis are presented for tracking, vertexing, b-tagging, tau identification, muon isolation and missing $E_T$ resolution.

  18. Evaluation of myocardial ischemia by multiple detector computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Fabio Vieira, E-mail: rccury@me.com [Hospital do Coracao (HCor), Sao Paulo, SP (Brazil); Cury, Roberto Caldeira [Hospital Samaritano, Sao Paulo, SP (Brazil)

    2015-01-15

    For years, cardiovascular diseases have been the leading cause of death worldwide, bringing on important social and economic consequences. Given this scenario, the search for a method capable of diagnosing coronary artery diseases in an early and accurate way is increasingly higher. The coronary computed tomography angiogram is already widely established for the stratification of coronary artery diseases, and, more recently, the computed tomography myocardial perfusion imaging has been providing relevant information by correlating ischemia and the coronary anatomy. The objective of this review is to describe the evaluation of myocardial ischemia by multiple detector computed tomography. This study will resort to controlled clinical trials that show the possibility of a single method to identify the atherosclerotic load, presence of coronary artery luminal narrowing and possible myocardial ischemia, by means of a fast, practical and reliable method validated by a multicenter study. (author)

  19. Absolute peak detection efficiencies of a Ge(Li) detector for high gamma-ray energies

    International Nuclear Information System (INIS)

    Katagiri, Masaki

    1985-11-01

    Absolute peak detection efficiencies of a Ge(Li) detector for gamma-rays of 3.5 MeV to 12 MeV were measured using four (p,γ) reactions and a (n,γ) reaction. Two-line-method was used to obtaine peak detection efficiencies. The efficiencies with the both cases are agreed very well. Utilization of (n,γ) reaction is, therefore, effective for measuring these efficiencies, because high energy gamma-rays can be generated easily by using a neutron source. These results were applied to calibration of a gamma-ray standard source, emitting 6.13 MeV gamma-rays, and of intensities of 56 Co standard gamma-ray source. (author)

  20. Radiography by selective detection of scatter field velocity components

    Science.gov (United States)

    Jacobs, Alan M. (Inventor); Dugan, Edward T. (Inventor); Shedlock, Daniel (Inventor)

    2007-01-01

    A reconfigurable collimated radiation detector, system and related method includes at least one collimated radiation detector. The detector has an adjustable collimator assembly including at least one feature, such as a fin, optically coupled thereto. Adjustments to the adjustable collimator selects particular directions of travel of scattered radiation emitted from an irradiated object which reach the detector. The collimated detector is preferably a collimated detector array, where the collimators are independently adjustable. The independent motion capability provides the capability to focus the image by selection of the desired scatter field components. When an array of reconfigurable collimated detectors is provided, separate image data can be obtained from each of the detectors and the respective images cross-correlated and combined to form an enhanced image.

  1. Detecting part of the transition radiation detector for the GINES installation at UNK

    International Nuclear Information System (INIS)

    Shikhliarov, K.K.; Gavalian, V.G.; Aginian, M.A.

    1995-01-01

    The detecting part of an X-ray transition radiation detector based on thin-walled mylar straws is considered in this paper. The performance of xenon-filled straws in the self-quenching mode is studied in detail. The measurements have been carried out both with radioactive sources and under the electron beam of the Yerevan synchrotron. (orig.)

  2. Determination of alpha particle detection efficiency of an imaging plate (IP) detector

    International Nuclear Information System (INIS)

    Rahman, N.M; Iida, Takao; Yamazawa, Hiromi; Moriizumi, Jun

    2006-01-01

    In order to determine the detection efficiency of the imaging plate (IP) detector, the true radioactivity of the alpha particles, which sampled in the collection media, should be known. The true radioactivity could be accurately predicted with the help of the reference alpha spectrometer measurement. The detection efficiency calculated for the IP was estimated with the theoretical curve and the experimental data. It is assumed that the air sample contained the decay products of both 222 Rn and 220 Rn series, the most significant sources of alpha particles. The present study estimated the detection efficiency of the IP as 39.3% with an uncertainty of 2.9 that is well enough to confirm the future use of the IP as a radiation detector. Experimental materials and methods are described. (S.Y.)

  3. A detector system for two-dimensional, position-sensitive detection of neutrons and gamma quanta

    International Nuclear Information System (INIS)

    Scholz, A.

    1988-08-01

    While the well-known Anger Camera utilizes a large number of photomultiplier tubes, which are arranged in a regular array behind a scintillation crystal, the new detector system makes use of electron optics to transfer the scintillation image of a large scintillation crystal (Li-6-glass) onto a small position detector. Because of this, only few photodetectors are required for position readout, associated with only a small number of amplifier chains and a very simple position reconstruction algorithm. The reduced complexity of the readout electronics ultimately leads to an improved maintainability and reliability of the detector system. A prototype of the new detector system was built and tested. After giving an overview on already known and realized detector configurations, the basic considerations, which led to the final detector design, will be explained. Different methods of detector readout and position determination are discussed. Measurement results which were obtained with the prototype detector system are presented and explained by means of simulation calculations. (orig./HP) [de

  4. Detection of heavy nuclei in the plastic track detector CR-39

    International Nuclear Information System (INIS)

    Fumuro, F.; Ihara, R.; Ohta, I.; Sato, Y.; Tezuka, I.; Tasaka, S.; Sugimoto, H.

    1982-01-01

    Relativistic cosmic ray nuclei were detected in an emulsion chamber composed of a pile of solid state track detectors (CR-39) and the emulsion plates. The 460 heavy nuclei were observed by scanning of emulsion and CR-39 plastic plates. The normalized track etch rate (Vsub(t)/Vsub(b))-1 for relativistic iron group was measured as 1.3+-0.05 and bulk etch rate Vsub(b) as 1.63+-0.08 μm/hour after 32 hours etch in 6.8 N NaOH at 70 0 C. The charge detection threshold was obtained to be Z=6 for β=1 with the dip angle larger than 75 degrees. The charge resolution was estimated to be Δ Z=0.7 for iron, and Δ Z=0.4 for magnesium and silicon nuclei

  5. Absolute efficiency calibration of HPGe detector by simulation method

    International Nuclear Information System (INIS)

    Narayani, K.; Pant, Amar D.; Verma, Amit K.; Bhosale, N.A.; Anilkumar, S.

    2018-01-01

    High resolution gamma ray spectrometry by HPGe detectors is a powerful radio analytical technique for estimation of activity of various radionuclides. In the present work absolute efficiency calibration of the HPGe detector was carried out using Monte Carlo simulation technique and results are compared with those obtained by experiment using standard radionuclides of 152 Eu and 133 Ba. The coincidence summing correction factors for the measurement of these nuclides were also calculated

  6. Heavy ion measurements by use of chemical detectors

    International Nuclear Information System (INIS)

    Huebner, K.; Erzgraeber, G.; Eichhorn, K.

    1980-01-01

    In order to test whether the threshold system polyvinyl alcohol/methyl organe/chloral hydrate/sodium tetraborate permits quantitative detection of individual particles, the chemical detector was irradiated at the JINR U-200 cyclotron with 4 He, 12 C, 18 O, 22 Ne ions having different LET. Irradiations were performed with detectors of four different borax concentrations (the chloral hydrate concentration being constant). The colour change dose Dsub(u) increases linearly with increasing borax concentration and at constant borax concentration with increasing LET. Hence it follows that the G value of dehydrochlorination decreases with increasing LET. Fluence ranges measurable with detectors of different composition are given for the heavy ions studied. (author)

  7. Measurement of indoor radon concentration by CR-39 track detector

    International Nuclear Information System (INIS)

    Yamamoto, Masayoshi; Yoneda, Shigeru; Nakanishi, Takashi.

    1990-01-01

    A convenient and cheap method for measuring indoor radon ( 222 Rn) concentration with a CR-39 track detector is described. The detector consisted of two sheets of CR-39 enclosed separately in two plastic pots : one covered by a filter (cup method) and another no covering (bare method). The bare method was used here to supplement the cup method. To compare with the result of the CR-39 detector, alpha-ray spectrometry was carried out with a Si(Au) detector in a controlled radon exposure chamber. Indoor radon concentration measured in 133 houses in several districts of Ishikawa Prefecture have been found to range from 6 Bq/m 3 to as high as 113 Bq/m 3 with a median value of 24 Bq/m 3 . The problems to measure indoor radon concentration using the CR-39 detector are also discussed with emphasis on the position of setting the detector in the room and the possible thoron contribution to the detector. (author)

  8. Clinical experience with the objective symmetry detector method for gammaencephalography

    International Nuclear Information System (INIS)

    Sachs, C.; Ericson, K.; Lind, M.

    1982-01-01

    The objective symmetry detector method for gammaencephalography previously described has been further developed. A rapid micro-computerized automatic measuring device has been constructed and the method used in screening of neurologic patients. The previously chosen classification boundaries between normal and pathologic isotope distributions were not entirely satisfactory for clinical screening of patients with neurologic symptoms. By use of new classification boundaries, 87 per cent of patients with brain tumours could be separated from patients with neurologic symptoms but without gross brain lesions and from neurologically healthy subjects. (Auth.)

  9. Small target detection using objectness and saliency

    Science.gov (United States)

    Zhang, Naiwen; Xiao, Yang; Fang, Zhiwen; Yang, Jian; Wang, Li; Li, Tao

    2017-10-01

    We are motived by the need for generic object detection algorithm which achieves high recall for small targets in complex scenes with acceptable computational efficiency. We propose a novel object detection algorithm, which has high localization quality with acceptable computational cost. Firstly, we obtain the objectness map as in BING[1] and use NMS to get the top N points. Then, k-means algorithm is used to cluster them into K classes according to their location. We set the center points of the K classes as seed points. For each seed point, an object potential region is extracted. Finally, a fast salient object detection algorithm[2] is applied to the object potential regions to highlight objectlike pixels, and a series of efficient post-processing operations are proposed to locate the targets. Our method runs at 5 FPS on 1000*1000 images, and significantly outperforms previous methods on small targets in cluttered background.

  10. Shadow Detection Based on Regions of Light Sources for Object Extraction in Nighttime Video

    Directory of Open Access Journals (Sweden)

    Gil-beom Lee

    2017-03-01

    Full Text Available Intelligent video surveillance systems detect pre-configured surveillance events through background modeling, foreground and object extraction, object tracking, and event detection. Shadow regions inside video frames sometimes appear as foreground objects, interfere with ensuing processes, and finally degrade the event detection performance of the systems. Conventional studies have mostly used intensity, color, texture, and geometric information to perform shadow detection in daytime video, but these methods lack the capability of removing shadows in nighttime video. In this paper, a novel shadow detection algorithm for nighttime video is proposed; this algorithm partitions each foreground object based on the object’s vertical histogram and screens out shadow objects by validating their orientations heading toward regions of light sources. From the experimental results, it can be seen that the proposed algorithm shows more than 93.8% shadow removal and 89.9% object extraction rates for nighttime video sequences, and the algorithm outperforms conventional shadow removal algorithms designed for daytime videos.

  11. Detection of exudates in fundus imagery using a constant false-alarm rate (CFAR) detector

    Science.gov (United States)

    Khanna, Manish; Kapoor, Elina

    2014-05-01

    Diabetic retinopathy is the leading cause of blindness in adults in the United States. The presence of exudates in fundus imagery is the early sign of diabetic retinopathy so detection of these lesions is essential in preventing further ocular damage. In this paper we present a novel technique to automatically detect exudates in fundus imagery that is robust against spatial and temporal variations of background noise. The detection threshold is adjusted dynamically, based on the local noise statics around the pixel under test in order to maintain a pre-determined, constant false alarm rate (CFAR). The CFAR detector is often used to detect bright targets in radar imagery where the background clutter can vary considerably from scene to scene and with angle to the scene. Similarly, the CFAR detector addresses the challenge of detecting exudate lesions in RGB and multispectral fundus imagery where the background clutter often exhibits variations in brightness and texture. These variations present a challenge to common, global thresholding detection algorithms and other methods. Performance of the CFAR algorithm is tested against a publicly available, annotated, diabetic retinopathy database and preliminary testing suggests that performance of the CFAR detector proves to be superior to techniques such as Otsu thresholding.

  12. Development of the Very Low Angle Detector (VLAD) for detection of epithermal neutrons at low momentum transfers

    International Nuclear Information System (INIS)

    Tardocchi, M.; Andreani, C.; Cremonesi, O.; Gorini, G.; Perelli-Cippo, E.; Pietropaolo, A.; Rhodes, N.; Schooneveld, E.; Senesi, R.

    2006-01-01

    New perspectives for epithermal neutron spectroscopy are opened up by the recent development of new instrumentation for inverse geometry time of flight spectrometers at pulsed neutron sources. One example is the Very Low Angle Detector (VLAD) bank which will be installed as an upgrade of the VESUVIO neutron spectrometer, at the ISIS pulsed neutron source. VLAD is developed for detecting epithermal neutrons in the 1-100 eV energy range at very low scattering angles (l deg. - 5 deg.). VLAD will extend the kinematical region covered by today's neutron scattering experiments to the region of low wave vector transfers ( -1 ) and high energy transfers (>1 eV). Accessing such kinematical region will allow new experimental studies in condensed matter systems. The neutron detection is based on Resonance Detectors (RD), which consist of the combination of a resonance foil used as neutron-to-gamma converter and a photon detector. The results obtained with a prototype VLAD detector confirm the potential of this kind of experiments at scattering angles as low as 2 deg. - 5 deg. GEANT4 simulations are used to address issues, such as detector cross talk, which arise with the construction of compact RD arrays

  13. modern utilization of accurate methods for gamma-ray spectral analysis detected by high pure germanium (HPGE) detectors through different applications

    International Nuclear Information System (INIS)

    El-Sayed, M.M.

    2006-01-01

    this thesis presents a novel way for application of wavelet transform theory in gamma-ray spectroscopy . this technique was applied for searching real and weak peaks, solving problem of multiplets, smoothing and de-noising gamma-ray spectra, and using artificial neural network for identifying peaks. a brief description about gamma-ray spectrum analysis is presented. we discussed the necessary formulas and algorithms of wavelet theory to solve these main problems in gamma -ray spectrum analysis. the algorithm of peak search was applied on different types of spectra, IAEA spectra and other sources of gamma spectra. the algorithm of multiplets algorithm was applied successfully on different types of multiplets. the algorithm of de noising was applied successfully on different sources of spectra.finally, a database for neutron activation laboratory is created. this data base consists of five routines, wavelet gamma spectrum analysis, peak identification, elemental concentration , neutron flux determination,and detector efficiency calculation

  14. A Facile, Nonreactive Hydrogen Peroxide (H2O2) Detection Method Enabled by Ion Chromatography with UV Detector.

    Science.gov (United States)

    Song, Mingrui; Wang, Junli; Chen, Baiyang; Wang, Lei

    2017-11-07

    Hydrogen peroxide (H 2 O 2 ) is ubiquitous in the natural environment, and it is now widely used for pollutant control in water and wastewater treatment processes. However, current analytical methods for H 2 O 2 inevitably require reactions between H 2 O 2 and other reactants to yield signals and are thus likely subjective to the interferences of coexisting colored, oxidative, and reductive compounds. In order to overcome these barriers, we herein for the first time propose to analyze H 2 O 2 by ion chromatography (IC) using an ultraviolet (UV) detector. The proposal is based on two principles: first, that H 2 O 2 can deprotonate to hydroperoxyl ion (HO 2 - ) when eluent pH is higher than the acid-dissociation coefficient of H 2 O 2 (pK a = 11.6); and second, that after separation from other compounds via IC column, H 2 O 2 can be quantified by a UV detector. Under favorable operating conditions, this method has successfully achieved acceptable recoveries (>91%) of H 2 O 2 dosed to ultrapure and natural waters, a calibration curve with R 2 > 0.99 for a wide range of H 2 O 2 concentrations from 0.1 to 50 mg/L and a method detection limit of 0.027 mg/L. In addition, this approach was shown to be capable of distinguishing H 2 O 2 from anions (e.g., fluoride and chloride) and organics (e.g., glycolate) and monochloramine, suggesting that it is insensitive to many neighboring compounds as long as they do not react quickly with H 2 O 2 . Hence, this study proves the combination of IC and UV detector a facile and reliable method for H 2 O 2 measurement.

  15. Neutron generation time of the reactor 'crocus' by an interval distribution method for counts collected by two detectors

    International Nuclear Information System (INIS)

    Haldy, P.-A.; Chikouche, M.

    1975-01-01

    The distribution is considered of time intervals between a count in one neutron detector and the consequent event registered in a second one. A 'four interval' probability generating function was derived by means of which the expression for the distribution of the time intervals, lasting from triggering detection in the first detector to subsequent count in the second, one could be obtained. The experimental work was conducted in the zero thermal power reactor Crocus, using a neutron source provided by spontaneous fission, a BF 3 counter for the first detector and an He 3 detector for the second instrument. (U.K.)

  16. Neutron detection time distributions of multisphere LiI detectors and AB rem meter at a 20 MeV electron linac

    International Nuclear Information System (INIS)

    Liu, J.C.; Rokni, S.; Vylet, V.; Arora, R.; Semones, E.; Justus, A.

    1997-01-01

    Neutron detection time distribution is an important factor for the dead-time correction for moderator type neutron detectors used in pulsed radiation fields. Measurements of the neutron detection time distributions of multisphere LiL detectors (2''3'' , 5'', 8'', 10'' and 12'' in diameter) and an AB rem meter were made inside an ANL 20 MeV electron linac room. Calculations of the neutron detection time distributions were also made using Monte Carlo codes. The first step was to calculate the neutron energy spectra at the target and detector positions, using a coupled EGS4-MORSE code with a giant-resonant photoneutron generation scheme. The calculated detector spectrum was found in agreement with the multisphere measurements. Then, neutrons hitting the detector surface were scored as a function of energy and the travel time in the room using MCNP. Finally, the above neutron fluence as a function of energy and travel time was used as the source term, and the neutrons detected by 6 Li or 10 B in the sensor were scored as a function of detection time for each detector using MCNP. The calculations of the detection time distributions agree with the measurements. The results also show that the detection time distributions of detectors with large moderators depend mainly on the moderator thickness and neutron spectrum. However, for small detectors, the neutron travel time in the field is also crucial. Therefore, all four factors (neutron spectrum, neutron travel time in the field, detector moderator thickness and detector response function) may play inter-related roles in the detection time distribution of moderator type detectors. (Author)

  17. Toxic Compounds Analysis With High Performance Liquid Chromatography Detected By Electro Chemical Detector (Ecd)

    OpenAIRE

    Hideharu Shintaniq

    2014-01-01

    The principal area of application of high performance liquid chromatography-electrochemical detector (HPLC-ECD) has been in the analysis of naturally-occurring analytes, such as catecholamines, and pharmaceuticals in biological samples, HPLC-ECD has also applied to the analysis of pesticides and other analytes of interest to the toxicologist. In this paper, toxic area is described. In these, ammatoxins, aromatic amine, nitro-compounds, algal toxins, fungal toxins, pesticides, veterinary drug ...

  18. Object Detection Based on Template Matching through Use of Best-So-Far ABC

    Directory of Open Access Journals (Sweden)

    Anan Banharnsakun

    2014-01-01

    Full Text Available Best-so-far ABC is a modified version of the artificial bee colony (ABC algorithm used for optimization tasks. This algorithm is one of the swarm intelligence (SI algorithms proposed in recent literature, in which the results demonstrated that the best-so-far ABC can produce higher quality solutions with faster convergence than either the ordinary ABC or the current state-of-the-art ABC-based algorithm. In this work, we aim to apply the best-so-far ABC-based approach for object detection based on template matching by using the difference between the RGB level histograms corresponding to the target object and the template object as the objective function. Results confirm that the proposed method was successful in both detecting objects and optimizing the time used to reach the solution.

  19. Evaluation of a miniature microscope objective designed for fluorescence array microscopy detection of Mycobacterium tuberculosis.

    Science.gov (United States)

    McCall, Brian; Olsen, Randall J; Nelles, Nicole J; Williams, Dawn L; Jackson, Kevin; Richards-Kortum, Rebecca; Graviss, Edward A; Tkaczyk, Tomasz S

    2014-03-01

    A prototype miniature objective that was designed for a point-of-care diagnostic array microscope for detection of Mycobacterium tuberculosis and previously fabricated and presented in a proof of concept is evaluated for its effectiveness in detecting acid-fast bacteria. To evaluate the ability of the microscope to resolve submicron features and details in the image of acid-fast microorganisms stained with a fluorescent dye, and to evaluate the accuracy of clinical diagnoses made with digital images acquired with the objective. The lens prescription data for the microscope design are presented. A test platform is built by combining parts of a standard microscope, a prototype objective, and a digital single-lens reflex camera. Counts of acid-fast bacteria made with the prototype objective are compared to counts obtained with a standard microscope over matched fields of view. Two sets of 20 smears, positive and negative, are diagnosed by 2 pathologists as sputum smear positive or sputum smear negative, using both a standard clinical microscope and the prototype objective under evaluation. The results are compared to a reference diagnosis of the same sample. More bacteria are counted in matched fields of view in digital images taken with the prototype objective than with the standard clinical microscope. All diagnostic results are found to be highly concordant. An array microscope built with this miniature lens design will be able to detect M tuberculosis with high sensitivity and specificity.

  20. What are the underlying units of perceived animacy? Chasing detection is intrinsically object-based.

    Science.gov (United States)

    van Buren, Benjamin; Gao, Tao; Scholl, Brian J

    2017-10-01

    One of the most foundational questions that can be asked about any visual process is the nature of the underlying 'units' over which it operates (e.g., features, objects, or spatial regions). Here we address this question-for the first time, to our knowledge-in the context of the perception of animacy. Even simple geometric shapes appear animate when they move in certain ways. Do such percepts arise whenever any visual feature moves appropriately, or do they require that the relevant features first be individuated as discrete objects? Observers viewed displays in which one disc (the "wolf") chased another (the "sheep") among several moving distractor discs. Critically, two pairs of discs were also connected by visible lines. In the Unconnected condition, both lines connected pairs of distractors; but in the Connected condition, one connected the wolf to a distractor, and the other connected the sheep to a different distractor. Observers in the Connected condition were much less likely to describe such displays using mental state terms. Furthermore, signal detection analyses were used to explore the objective ability to discriminate chasing displays from inanimate control displays in which the wolf moved toward the sheep's mirror-image. Chasing detection was severely impaired on Connected trials: observers could readily detect an object chasing another object, but not a line-end chasing another line-end, a line-end chasing an object, or an object chasing a line-end. We conclude that the underlying units of perceived animacy are discrete visual objects.

  1. Shadow detection of moving objects based on multisource information in Internet of things

    Science.gov (United States)

    Ma, Zhen; Zhang, De-gan; Chen, Jie; Hou, Yue-xian

    2017-05-01

    Moving object detection is an important part in intelligent video surveillance under the banner of Internet of things. The detection of moving target's shadow is also an important step in moving object detection. On the accuracy of shadow detection will affect the detection results of the object directly. Based on the variety of shadow detection method, we find that only using one feature can't make the result of detection accurately. Then we present a new method for shadow detection which contains colour information, the invariance of optical and texture feature. Through the comprehensive analysis of the detecting results of three kinds of information, the shadow was effectively determined. It gets ideal effect in the experiment when combining advantages of various methods.

  2. CASTOR detector. Model, objectives and simulated performance

    International Nuclear Information System (INIS)

    Angelis, A. L. S.; Mavromanolakis, G.; Panagiotou, A. D.; Aslanoglou, X.; Nicolis, N.; Lobanov, M.; Erine, S.; Kharlov, Y. V.; Bogolyubsky, M. Y.; Kurepin, A. B.; Chileev, K.; Wlodarczyk, Z.

    2001-01-01

    It is presented a phenomenological model describing the formation and evolution of a Centauro fireball in the baryon-rich region in nucleus-nucleus interactions in the upper atmosphere and at the LHC. The small particle multiplicity and imbalance of electromagnetic and hadronic content characterizing a Centauro event and also the strongly penetrating particles (assumed to be strangelets) frequently accompanying them can be naturally explained. It is described the CASTOR calorimeter, a sub detector of the ALICE experiment dedicated to the search for Centauro in the very forward, baryon-rich region of central Pb+Pb collisions at the LHC. The basic characteristics and simulated performance of the calorimeter are presented

  3. Use of silicon drift detectors for the detection of medium-light elements in PIXE

    International Nuclear Information System (INIS)

    Alberti, R.; Bjeoumikhov, A.; Grassi, N.; Guazzoni, C.; Klatka, T.; Longoni, A.; Quattrone, A.

    2008-01-01

    In order to fully exploit in PIXE the superior performance of silicon drift detectors especially for the detection of low- and medium-energy X-rays, avoiding in particular the negative effects of backscattered particles, we developed a custom spectrometer based on a 10 mm 2 chip with a thermoelectric Peltier cooler and home-designed front-end electronics, coupled to a weakly focusing polycapillary lens. This paper briefly describes the detector + lens assembly and reports the results of first tests carried out at an external beam line of the LABEC laboratory in Florence. Excellent energy resolution is achieved under real operating conditions in a PIXE run (measured FWHM at 1 keV is 81 eV with a count-rate of 480 cps) and also the lineshapes are very good (FW1/10M over FWHM ratio is 2.1). As a whole, our preliminary tests gave encouraging results and also helped to point out some aspects which it is worthwhile to investigate further (e.g. how X-ray peak intensity ratios may be affected by inaccurate lens alignment), in order to profit fully from such a good performance of the spectrometer

  4. The prototype detection unit of the KM3NeT detector

    Energy Technology Data Exchange (ETDEWEB)

    Adrian-Martinez, S.; Ardid, M.; Llorens Alvarez, C.D.; Martinez-Mora, J.A.; Saldana, M. [Universitat Politecnica de Valencia, Instituto de Investigacion para la Gestion Integrada de las Zonas Costeras, Gandia (Spain); Ageron, M.; Bertin, V.; Beurthey, S.; Billault, M.; Brunner, J.; Caillat, L.; Cosquer, A.; Coyle, P.; Destelle, J.J.; Dornic, D.; Henry, S.; Keller, P.; Lamare, P.; Tezier, D.; Theraube, S. [Aix Marseille Universite CNRS/IN2P3, CPPM UMR 7346, Marseille (France); Aharonian, F.; Drury, L. [DIAS, Dublin (Ireland); Aiello, S.; Giordano, V.; Leonora, E.; Randazzo, N.; Sipala, V. [INFN, Sezione di Catania, Catania (Italy); Albert, A.; Drouhin, D.; Racca, C. [GRPHE, Universite de Haute Alsace, IUT de Colmar, Colmar (France); Ameli, F.; Biagioni, A.; De Bonis, G.; Lonardo, A.; Nicolau, C.A.; Simeone, F.; Vicini, P. [INFN, Sezione di Roma, Rome (Italy); Anassontzis, E.G.; Resvanis, L. [National and Kapodistrian University of Athens, Deparment of Physics, Athens (Greece); Androulakis, G.C.; Balasi, K.; Belias, A.; Drakopoulou, E.; Kappos, E.; Manolopoulos, K.; Markou, C.; Pikounis, K.; Rapidis, P.A.; Stavropoulos, G.; Tzamariudaki, E. [Institute of Nuclear Physics, NCSR ' ' Demokritos' ' , Athens (Greece); Anghinolfi, M.; Cereseto, R.; Hugon, C.; Musico, P.; Orzelli, A. [INFN, Sezione di Genova, Genova (Italy); Anton, G.; Classen, L.; Eberl, T.; Gal, T.; Graf, K.; Heid, T.; Herold, B.; Hofestaedt, J.; Hoessl, J.; James, C.W.; Kalekin, O.; Kappes, A.; Katz, U.; Lahmann, R.; Reubelt, J.; Schnabel, J.; Seitz, T.; Stransky, D.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Anvar, S.; Chateau, F.; Durand, D.; Le Provost, H.; Louis, F.; Moudden, Y.; Zonca, E. [CEA, Irfu/Sedi, Centre de Saclay, Gif-sur-Yvette (France); Avgitas, T.; Baret, B.; Baron, S.; Boutonnet, C.; Champion, C.; Coleiro, A.; Colonges, S.; Creusot, A.; Galata, S.; Gracia Ruiz, R.; Kouchner, A.; Lindsey Clark, M.; Loucatos, S.; Van Elewyck, V. [APC,Universite Paris Diderot, CNRS/IN2P3 CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Band, H.; Berbee, E.; Berkien, A.; Beveren, V. van; Boer Rookhuizen, H.; Bouwhuis, M.; D' Amico, A.; Gajanana, D.; Gebyehu, M.; Heijboer, A.; Heine, E.; Hoek, M. van der; Hogenbirk, J.; Jansweijer, P.; Jongen, M.; Kieft, G.; Kok, H.; Koopstra, J.; Korporaal, A.; Melis, K.W.; Michael, T.; Mos, S.; Peek, H.; Schmelling, J.; Steijger, J.; Timmer, P.; Vermeulen, J.; Werneke, P.; Wiggers, L.; Zwart, A. [Nikhef, Amsterdam (Netherlands); Barbarino, G.; Barbato, F.; De Rosa, G.; Di Capua, F.; Garufi, F.; Vivolo, D. [INFN, Sezione di Napoli, Naples (Italy); Universita ' Federico II' , Dipartimento di Fisica, Naples (Italy); Barbarito, E.; Ceres, A.; Circella, M.; Mongelli, M.; Sgura, I. [INFN, Sezione di Bari, Bari (Italy); Barrios, J.; Calvo, D.; Hernandez-Rey, J.J.; Real, D.; Zornoza, J.D.; Zuniga, J. [CSIC-Universitat de Valencia, IFIC-Instituto de Fisica Corpuscular, Valencia (Spain); Berg, A.M. van den; Dorosti-Hasankiadeh, Q.; Hevinga, M.A.; Kavatsyuk, O.; Loehner, H.; Wooning, R.H.L. van [KVI-CART, University of Groningen, Groningen (Netherlands); Beverini, N. [INFN, Sezione di Pisa, Pisa (Italy); Universita di Pisa, Dipartimento di Fisica, Pisa (Italy); Biagi, S. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Bianucci, S.; Bouhadef, B.; Calamai, M.; Maccioni, E.; Morganti, M.; Raffaelli, F.; Terreni, G. [Universita di Pisa, Dipartimento di Fisica, Pisa (Italy); Birbas, A.; Bourlis, G.; Christopoulou, B.; Gizani, N.; Leisos, A.; Lenis, D.; Tsirigotis, A.; Tzamarias, S. [Hellenic Open University, School of Science and Technology, Patras (Greece); Bormuth, R.; Jong, M. de; Samtleben, D.F.E. [Nikhef, Amsterdam (Netherlands); Leiden University, Leiden Institute of Physics, Leiden (Netherlands); Bouche, V.; Capone, A.; Fermani, P.; Masullo, R.; Perrina, C. [INFN, Sezione di Roma, Rome (Italy); Universita di Roma La Sapienza, Dipartimento di Fisica, Rome (Italy); Bozza, C.; Grella, G. [Universita ' Federico II' , Dipartimento di Fisica, Naples (Italy); Universita di Salerno, Dipartimento di Fisica, Fisciano (Italy); Bruijn, R.; Koffeman, E.; Wolf, E. de [Nikhef, Amsterdam (Netherlands); University of Amsterdam, Institute of Physics, Amsterdam (Netherlands); Cacopardo, G.; Caruso, F.; Cocimano, R.; Coniglione, R.; Costa, M.; Cuttone, G.; D' Amato, C.; Distefano, C.; Grasso, R.; Grmek, A.; Imbesi, M.; Kulikovskiy, V.; Larosa, G.; Lattuada, D.; Leismueller, K.P.; Migneco, E.; Miraglia, A.; Musumeci, M.; Orlando, A.; Papaleo, R.; Pellegriti, M.G.; Collaboration: KM3NeT Collaboration; and others

    2016-02-15

    A prototype detection unit of the KM3NeT deep-sea neutrino telescope has been installed at 3500m depth 80 km offshore the Italian coast. KM3NeT in its final configuration will contain several hundreds of detection units. Each detection unit is a mechanical structure anchored to the sea floor, held vertical by a submerged buoy and supporting optical modules for the detection of Cherenkov light emitted by charged secondary particles emerging from neutrino interactions. This prototype string implements three optical modules with 31 photomultiplier tubes each. These optical modules were developed by the KM3NeT Collaboration to enhance the detection capability of neutrino interactions. The prototype detection unit was operated since its deployment in May 2014 until its decommissioning in July 2015. Reconstruction of the particle trajectories from the data requires a nanosecond accuracy in the time calibration. A procedure for relative time calibration of the photomultiplier tubes contained in each optical module is described. This procedure is based on the measured coincidences produced in the sea by the {sup 40}K background light and can easily be expanded to a detector with several thousands of optical modules. The time offsets between the different optical modules are obtained using LED nanobeacons mounted inside them. A set of data corresponding to 600 h of livetime was analysed. The results show good agreement with Monte Carlo simulations of the expected optical background and the signal from atmospheric muons. An almost background-free sample of muons was selected by filtering the time correlated signals on all the three optical modules. The zenith angle of the selected muons was reconstructed with a precision of about 3 {sup circle}. (orig.)

  5. The prototype detection unit of the KM3NeT detector

    International Nuclear Information System (INIS)

    Adrian-Martinez, S.; Ardid, M.; Llorens Alvarez, C.D.; Martinez-Mora, J.A.; Saldana, M.; Ageron, M.; Bertin, V.; Beurthey, S.; Billault, M.; Brunner, J.; Caillat, L.; Cosquer, A.; Coyle, P.; Destelle, J.J.; Dornic, D.; Henry, S.; Keller, P.; Lamare, P.; Tezier, D.; Theraube, S.; Aharonian, F.; Drury, L.; Aiello, S.; Giordano, V.; Leonora, E.; Randazzo, N.; Sipala, V.; Albert, A.; Drouhin, D.; Racca, C.; Ameli, F.; Biagioni, A.; De Bonis, G.; Lonardo, A.; Nicolau, C.A.; Simeone, F.; Vicini, P.; Anassontzis, E.G.; Resvanis, L.; Androulakis, G.C.; Balasi, K.; Belias, A.; Drakopoulou, E.; Kappos, E.; Manolopoulos, K.; Markou, C.; Pikounis, K.; Rapidis, P.A.; Stavropoulos, G.; Tzamariudaki, E.; Anghinolfi, M.; Cereseto, R.; Hugon, C.; Musico, P.; Orzelli, A.; Anton, G.; Classen, L.; Eberl, T.; Gal, T.; Graf, K.; Heid, T.; Herold, B.; Hofestaedt, J.; Hoessl, J.; James, C.W.; Kalekin, O.; Kappes, A.; Katz, U.; Lahmann, R.; Reubelt, J.; Schnabel, J.; Seitz, T.; Stransky, D.; Tselengidou, M.; Anvar, S.; Chateau, F.; Durand, D.; Le Provost, H.; Louis, F.; Moudden, Y.; Zonca, E.; Avgitas, T.; Baret, B.; Baron, S.; Boutonnet, C.; Champion, C.; Coleiro, A.; Colonges, S.; Creusot, A.; Galata, S.; Gracia Ruiz, R.; Kouchner, A.; Lindsey Clark, M.; Loucatos, S.; Van Elewyck, V.; Band, H.; Berbee, E.; Berkien, A.; Beveren, V. van; Boer Rookhuizen, H.; Bouwhuis, M.; D'Amico, A.; Gajanana, D.; Gebyehu, M.; Heijboer, A.; Heine, E.; Hoek, M. van der; Hogenbirk, J.; Jansweijer, P.; Jongen, M.; Kieft, G.; Kok, H.; Koopstra, J.; Korporaal, A.; Melis, K.W.; Michael, T.; Mos, S.; Peek, H.; Schmelling, J.; Steijger, J.; Timmer, P.; Vermeulen, J.; Werneke, P.; Wiggers, L.; Zwart, A.; Barbarino, G.; Barbato, F.; De Rosa, G.; Di Capua, F.; Garufi, F.; Vivolo, D.; Barbarito, E.; Ceres, A.; Circella, M.; Mongelli, M.; Sgura, I.; Barrios, J.; Calvo, D.; Hernandez-Rey, J.J.; Real, D.; Zornoza, J.D.; Zuniga, J.; Berg, A.M. van den; Dorosti-Hasankiadeh, Q.; Hevinga, M.A.; Kavatsyuk, O.; Loehner, H.; Wooning, R.H.L. van; Beverini, N.; Biagi, S.; Bianucci, S.; Bouhadef, B.; Calamai, M.; Maccioni, E.; Morganti, M.; Raffaelli, F.; Terreni, G.; Birbas, A.; Bourlis, G.; Christopoulou, B.; Gizani, N.; Leisos, A.; Lenis, D.; Tsirigotis, A.; Tzamarias, S.; Bormuth, R.; Jong, M. de; Samtleben, D.F.E.; Bouche, V.; Capone, A.; Fermani, P.; Masullo, R.; Perrina, C.; Bozza, C.; Grella, G.; Bruijn, R.; Koffeman, E.; Wolf, E. de; Cacopardo, G.; Caruso, F.; Cocimano, R.; Coniglione, R.; Costa, M.; Cuttone, G.; D'Amato, C.; Distefano, C.; Grasso, R.; Grmek, A.; Imbesi, M.; Kulikovskiy, V.; Larosa, G.; Lattuada, D.; Leismueller, K.P.; Migneco, E.; Miraglia, A.; Musumeci, M.; Orlando, A.; Papaleo, R.; Pellegriti, M.G.

    2016-01-01

    A prototype detection unit of the KM3NeT deep-sea neutrino telescope has been installed at 3500m depth 80 km offshore the Italian coast. KM3NeT in its final configuration will contain several hundreds of detection units. Each detection unit is a mechanical structure anchored to the sea floor, held vertical by a submerged buoy and supporting optical modules for the detection of Cherenkov light emitted by charged secondary particles emerging from neutrino interactions. This prototype string implements three optical modules with 31 photomultiplier tubes each. These optical modules were developed by the KM3NeT Collaboration to enhance the detection capability of neutrino interactions. The prototype detection unit was operated since its deployment in May 2014 until its decommissioning in July 2015. Reconstruction of the particle trajectories from the data requires a nanosecond accuracy in the time calibration. A procedure for relative time calibration of the photomultiplier tubes contained in each optical module is described. This procedure is based on the measured coincidences produced in the sea by the 40 K background light and can easily be expanded to a detector with several thousands of optical modules. The time offsets between the different optical modules are obtained using LED nanobeacons mounted inside them. A set of data corresponding to 600 h of livetime was analysed. The results show good agreement with Monte Carlo simulations of the expected optical background and the signal from atmospheric muons. An almost background-free sample of muons was selected by filtering the time correlated signals on all the three optical modules. The zenith angle of the selected muons was reconstructed with a precision of about 3 circle . (orig.)

  6. The prototype detection unit of the KM3NeT detector

    Science.gov (United States)

    Adrián-Martínez, S.; Ageron, M.; Aharonian, F.; Aiello, S.; Albert, A.; Ameli, F.; Anassontzis, E. G.; Androulakis, G. C.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Avgitas, T.; Balasi, K.; Band, H.; Barbarino, G.; Barbarito, E.; Barbato, F.; Baret, B.; Baron, S.; Barrios, J.; Belias, A.; Berbee, E.; van den Berg, A. M.; Berkien, A.; Bertin, V.; Beurthey, S.; van Beveren, V.; Beverini, N.; Biagi, S.; Biagioni, A.; Bianucci, S.; Billault, M.; Birbas, A.; Boer Rookhuizen, H.; Bormuth, R.; Bouché, V.; Bouhadef, B.; Bourlis, G.; Boutonnet, C.; Bouwhuis, M.; Bozza, C.; Bruijn, R.; Brunner, J.; Cacopardo, G.; Caillat, L.; Calamai, M.; Calvo, D.; Capone, A.; Caramete, L.; Caruso, F.; Cecchini, S.; Ceres, A.; Cereseto, R.; Champion, C.; Château, F.; Chiarusi, T.; Christopoulou, B.; Circella, M.; Classen, L.; Cocimano, R.; Coleiro, A.; Colonges, S.; Coniglione, R.; Cosquer, A.; Costa, M.; Coyle, P.; Creusot, A.; Cuttone, G.; D'Amato, C.; D'Amico, A.; De Bonis, G.; De Rosa, G.; Deniskina, N.; Destelle, J.-J.; Distefano, C.; Di Capua, F.; Donzaud, C.; Dornic, D.; Dorosti-Hasankiadeh, Q.; Drakopoulou, E.; Drouhin, D.; Drury, L.; Durand, D.; Eberl, T.; Elsaesser, D.; Enzenhöfer, A.; Fermani, P.; Fusco, L. A.; Gajanana, D.; Gal, T.; Galatà, S.; Garufi, F.; Gebyehu, M.; Giordano, V.; Gizani, N.; Gracia Ruiz, R.; Graf, K.; Grasso, R.; Grella, G.; Grmek, A.; Habel, R.; van Haren, H.; Heid, T.; Heijboer, A.; Heine, E.; Henry, S.; Hernández-Rey, J. J.; Herold, B.; Hevinga, M. A.; van der Hoek, M.; Hofestädt, J.; Hogenbirk, J.; Hugon, C.; Hößl, J.; Imbesi, M.; James, C. W.; Jansweijer, P.; Jochum, J.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Kappos, E.; Katz, U.; Kavatsyuk, O.; Keller, P.; Kieft, G.; Koffeman, E.; Kok, H.; Kooijman, P.; Koopstra, J.; Korporaal, A.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Le Provost, H.; Leismüller, K. P.; Leisos, A.; Lenis, D.; Leonora, E.; Lindsey Clark, M.; Llorens Alvarez, C. D.; Löhner, H.; Lonardo, A.; Loucatos, S.; Louis, F.; Maccioni, E.; Mannheim, K.; Manolopoulos, K.; Margiotta, A.; Mariş, O.; Markou, C.; Martínez-Mora, J. A.; Martini, A.; Masullo, R.; Melis, K. W.; Michael, T.; Migliozzi, P.; Migneco, E.; Miraglia, A.; Mollo, C. M.; Mongelli, M.; Morganti, M.; Mos, S.; Moudden, Y.; Musico, P.; Musumeci, M.; Nicolaou, C.; Nicolau, C. A.; Orlando, A.; Orzelli, A.; Papaikonomou, A.; Papaleo, R.; Păvălaş, G. E.; Peek, H.; Pellegrino, C.; Pellegriti, M. G.; Perrina, C.; Piattelli, P.; Pikounis, K.; Popa, V.; Pradier, Th.; Priede, M.; Pühlhofer, G.; Pulvirenti, S.; Racca, C.; Raffaelli, F.; Randazzo, N.; Rapidis, P. A.; Razis, P.; Real, D.; Resvanis, L.; Reubelt, J.; Riccobene, G.; Rovelli, A.; Saldaña, M.; Samtleben, D. F. E.; Sanguineti, M.; Santangelo, A.; Sapienza, P.; Schmelling, J.; Schnabel, J.; Sciacca, V.; Sedita, M.; Seitz, T.; Sgura, I.; Simeone, F.; Sipala, V.; Spitaleri, A.; Spurio, M.; Stavropoulos, G.; Steijger, J.; Stolarczyk, T.; Stransky, D.; Taiuti, M.; Terreni, G.; Tézier, D.; Théraube, S.; Thompson, L. F.; Timmer, P.; Trasatti, L.; Trovato, A.; Tselengidou, M.; Tsirigotis, A.; Tzamarias, S.; Tzamariudaki, E.; Vallage, B.; Van Elewyck, V.; Vermeulen, J.; Vernin, P.; Vicini, P.; Viola, S.; Vivolo, D.; Werneke, P.; Wiggers, L.; Wilms, J.; de Wolf, E.; van Wooning, R. H. L.; Zonca, E.; Zornoza, J. D.; Zúñiga, J.; Zwart, A.

    2016-02-01

    A prototype detection unit of the KM3NeT deep-sea neutrino telescope has been installed at 3500m depth 80 km offshore the Italian coast. KM3NeT in its final configuration will contain several hundreds of detection units. Each detection unit is a mechanical structure anchored to the sea floor, held vertical by a submerged buoy and supporting optical modules for the detection of Cherenkov light emitted by charged secondary particles emerging from neutrino interactions. This prototype string implements three optical modules with 31 photomultiplier tubes each. These optical modules were developed by the KM3NeT Collaboration to enhance the detection capability of neutrino interactions. The prototype detection unit was operated since its deployment in May 2014 until its decommissioning in July 2015. Reconstruction of the particle trajectories from the data requires a nanosecond accuracy in the time calibration. A procedure for relative time calibration of the photomultiplier tubes contained in each optical module is described. This procedure is based on the measured coincidences produced in the sea by the ^{40}K background light and can easily be expanded to a detector with several thousands of optical modules. The time offsets between the different optical modules are obtained using LED nanobeacons mounted inside them. A set of data corresponding to 600 h of livetime was analysed. The results show good agreement with Monte Carlo simulations of the expected optical background and the signal from atmospheric muons. An almost background-free sample of muons was selected by filtering the time correlated signals on all the three optical modules. The zenith angle of the selected muons was reconstructed with a precision of about 3°.

  7. Slow speed object detection for haul trucks

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-09-15

    Caterpillar integrates radar technology with its current camera based system. Caterpillar has developed the Integrated Object Detection System, a slow speed object detection system for mining haul trucks. Object detection is a system that aids the truck operator's awareness of their surroundings. The system consists of a color touch screen display along with medium- and short-range radar as well as cameras, harnesses and mounting hardware. It is integrated into the truck's Work Area Vision System (WAVS). After field testing in 2007, system commercialization began in 2008. Prototype systems are in operation in Australia, Utah and Arizona and the Integrated Object Detection System will be available in the fourth quarter of 2009 and on production trucks 785C, 789C, 793D and 797B. The article is adapted from a presentation by Mark Richards of Caterpillar to the Haulage & Loading 2009 conference, May, held in Phoenix, AZ. 1 fig., 5 photos.

  8. Detection of hepatocellular carcinoma by Gd-EOB-DTPA-enhanced liver MRI: Comparison with triple phase 64 detector row helical CT

    International Nuclear Information System (INIS)

    Akai, Hiroyuki; Kiryu, Shigeru; Matsuda, Izuru; Satou, Jirou; Takao, Hidemasa; Tajima, Taku; Watanabe, Yasushi; Imamura, Hiroshi; Kokudo, Norihiro; Akahane, Masaaki; Ohtomo, Kuni

    2011-01-01

    Purpose: To compare the diagnostic performance of Gd-EOB-DTPA-enhanced MRI with that of triple phase 64-MDCT in the detection of hepatocellular carcinoma (HCC). Patients and methods: Thirty-four patients with 52 surgically proven lesions underwent Gd-EOB-DTPA-enhanced MRI and triple phase 64-MDCT. Two observers independently evaluated MR and CT imaging on a lesion-by-lesion basis. Sensitivity, positive and negative predictive values and reproducibility were evaluated. The diagnostic accuracy of each modality was assessed with alternative-free response receiver operating characteristic (ROC) analysis. Results: Both observers showed higher sensitivity in detecting lesions with MRI compared to CT, however, only the difference between the two imaging techniques for observer 2 was significant (P = 0.034). For lesions 1 cm or smaller, MRI and CT showed equal sensitivity (both 62.5%) with one observer, and MRI proved superior to CT with the other observer (MRI 75% vs. CT 56.3%), but the latter difference was not significant (P = 0.083). The difference in positive and negative predictive value between the two imaging techniques for each observer was not significant (P > 0.05). The areas under the ROC curve for each observer were 0.843 and 0.861 for MRI vs. 0.800 and 0.833 for CT and the differences were not significant. Reproducibility was higher using MRI for both observers, but the result was not significant (MRI 32/33 vs. CT 29/33, P = 0.083). Conclusion: Gd-EOB-DTPA-enhanced MRI tended to show higher diagnostic accuracy, sensitivity and reproducibility compared to triple phase 64-MDCT in the detection of hepatocellular carcinoma, however statistical significance was not achieved.

  9. Boiling detection using signals of self-powered neutron detectors and thermocouples

    International Nuclear Information System (INIS)

    Kozma, R.

    1989-01-01

    A specially-equipped simulated fuel assembly has been placed into the core of the 2 MW research reactor of the IRI, Delft. In this paper the recent results concerning the detection of coolant boiling in the simulated fuel assembly are introduced. Applying the theory of boiling temperature noise, different stages of boiling, i.e. one-phase flow, subcooled boiling, volume boiling, were identified in the measurements using the low-frequency noise components of the thermocouple signals. It has been ascertained that neutron noise spectra remained unchanged when subcooled boiling appeared, and that they changed reasonably only when developed volume boiling took place in the channels. At certain neutron detector positions neutron spectra did not vary at all, although developed volume boiling occurred at a distance of 3-4 cm from these neutron detectors. This phenomenon was applied in studying the field-of-view of neutron detectors

  10. Design of a versatile detector for the detection of charged particles, neutrons and gamma rays. Neutron interaction with the matter; Diseno de un detector versatil para la deteccion de particulas cargadas, neutrones y rayos gamma. Interaccion neutronica con la materia

    Energy Technology Data Exchange (ETDEWEB)

    Perez P, J J [Comision Nacional de Seguridad Nuclear y Salvaguardias, Mexico, D.F. (Mexico)

    1991-07-01

    The Fostron detector detects charged particles, neutrons and gamma rays with a reasonable discrimination power. Because the typical detectors for neutrons present a great uncertainty in the detection, this work was focused mainly to the neutron detection in presence of gamma radiation. Also there are mentioned the advantages and disadvantages of the Fostron detector.

  11. Quantitative profile of lipid classes in blood by normal phase chromatography with evaporative light scattering detector: application in the detection of lipid class abnormalities in liver cirrhosis.

    Science.gov (United States)

    Chamorro, Laura; García-Cano, Ana; Busto, Rebeca; Martínez-González, Javier; Albillos, Agustín; Lasunción, Miguel Ángel; Pastor, Oscar

    2013-06-05

    The lack of analytical methods specific for each lipid class, particularly for phospholipids and sphyngolipids, makes necessary their separation by preparative techniques before quantification. LC-MS would be the election method but for daily work in the clinical laboratory this is not feasible for different reasons, both economic and time consuming. In the present work, we have optimized an HPLC method to quantify lipid classes in plasma and erythrocytes and applied it to samples from patients with cirrhosis. Lipid classes were analyzed by normal phase liquid chromatography with evaporative light scattering detection. We employed a quaternary solvent system to separate twelve lipid classes in 15 min. Interday, intraday and recovery for quantification of lipid classes in plasma were excellent with our methodology. The total plasma lipid content of cirrhotic patients vs control subjects was decreased with diminished CE (81±33 vs 160±17 mg/dL) and PC (37±16 vs 60±19 mg/dL). The composition of erythrocytes showed a decrease in acidic phospholipids: PE, PI and PS. Present methodology provides a reliable quantification of lipid classes in blood. The lipid profile of cirrhotics showed alterations in the PC/PE plasma ratio and in the phospholipid content of erythrocytes, which might reflect alterations in hepatocyte and erythrocyte membrane integrity. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. The effects of changes in object location on object identity detection: A simultaneous EEG-fMRI study.

    Science.gov (United States)

    Yang, Ping; Fan, Chenggui; Wang, Min; Fogelson, Noa; Li, Ling

    2017-08-15

    Object identity and location are bound together to form a unique integration that is maintained and processed in visual working memory (VWM). Changes in task-irrelevant object location have been shown to impair the retrieval of memorial representations and the detection of object identity changes. However, the neural correlates of this cognitive process remain largely unknown. In the present study, we aim to investigate the underlying brain activation during object color change detection and the modulatory effects of changes in object location and VWM load. To this end we used simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) recordings, which can reveal the neural activity with both high temporal and high spatial resolution. Subjects responded faster and with greater accuracy in the repeated compared to the changed object location condition, when a higher VWM load was utilized. These results support the spatial congruency advantage theory and suggest that it is more pronounced with higher VWM load. Furthermore, the spatial congruency effect was associated with larger posterior N1 activity, greater activation of the right inferior frontal gyrus (IFG) and less suppression of the right supramarginal gyrus (SMG), when object location was repeated compared to when it was changed. The ERP-fMRI integrative analysis demonstrated that the object location discrimination-related N1 component is generated in the right SMG. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Automatic cumulative sums contour detection of FBP-reconstructed multi-object nuclear medicine images.

    Science.gov (United States)

    Protonotarios, Nicholas E; Spyrou, George M; Kastis, George A

    2017-06-01

    The problem of determining the contours of objects in nuclear medicine images has been studied extensively in the past, however most of the analysis has focused on a single object as opposed to multiple objects. The aim of this work is to develop an automated method for determining the contour of multiple objects in positron emission tomography (PET) and single photon emission computed tomography (SPECT) filtered backprojection (FBP) reconstructed images. These contours can be used for computing body edges for attenuation correction in PET and SPECT, as well as for eliminating streak artifacts outside the objects, which could be useful in compressive sensing reconstruction. Contour detection has been accomplished by applying a modified cumulative sums (CUSUM) scheme in the sinogram. Our approach automatically detects all objects in the image, without requiring a priori knowledge of the number of distinct objects in the reconstructed image. This method has been tested in simulated phantoms, such as an image-quality (IQ) phantom and two digital multi-object phantoms, as well as a real NEMA phantom and a clinical thoracic study. For this purpose, a GE Discovery PET scanner was employed. The detected contours achieved root mean square accuracy of 1.14 pixels, 1.69 pixels and 3.28 pixels and a Hausdorff distance of 3.13, 3.12 and 4.50 pixels, for the simulated image-quality phantom PET study, the real NEMA phantom and the clinical thoracic study, respectively. These results correspond to a significant improvement over recent results obtained in similar studies. Furthermore, we obtained an optimal sub-pattern assignment (OSPA) localization error of 0.94 and 1.48, for the two-objects and three-objects simulated phantoms, respectively. Our method performs efficiently for sets of convex objects and hence it provides a robust tool for automatic contour determination with precise results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Moving object detection using background subtraction

    CERN Document Server

    Shaikh, Soharab Hossain; Chaki, Nabendu

    2014-01-01

    This Springer Brief presents a comprehensive survey of the existing methodologies of background subtraction methods. It presents a framework for quantitative performance evaluation of different approaches and summarizes the public databases available for research purposes. This well-known methodology has applications in moving object detection from video captured with a stationery camera, separating foreground and background objects and object classification and recognition. The authors identify common challenges faced by researchers including gradual or sudden illumination change, dynamic bac

  15. On the Detectability of Interstellar Objects Like 1I/'Oumuamua

    Science.gov (United States)

    Ragozzine, Darin

    2018-04-01

    Almost since Oort's 1950 hypothesis of a tenuously bound cloud of comets, planetary formation theorists have realized that the process of planet formation must have ejected very large numbers of planetesimals into interstellar space. Unforunately, these objects are distributed over galactic volumes, while they are only likely to be detectable if they pass within a few AU of Earth, resulting in an incredibly sparse detectable population. Furthermore, hypotheses for the formation and distribution of these bodies allows for uncertainties of orders of magnitude in the expected detection rate: our analysis suggested LSST would discover 0.01-100 objects during its lifetime (Cook et al. 2016). The discovery of 1I/'Oumuamua by a survey less powerful that LSST indicates either a low probability event and/or that properties of this population are on the more favorable end of the spectrum. We revisit the detailed detection analysis of Cook et al. 2016 in light of the detection of 1I/'Oumuamua. We use these results to better understand 1I/'Oumuamua and to update our assessment of future detections of interstellar objects. We highlight some key questions that can be answered only by additional discoveries.

  16. Embedded Detection and Correction of SEU Bursts in SRAM Memories Used as Radiation Detectors

    CERN Document Server

    Secondo, R.; Danzeca, S.; Losito, R.; Peronnard, P.; Masi, A.; Brugger, M.; Dusseau, L.

    2016-01-01

    SRAM memories are widely used as particle fluence detectors in high radiation environments, such as in the Radiation Monitoring System (RadMon) currently in operation in the CERN accelerator complex. Multiple Cell Upsets (MCUs), arising from micro-latchup events, are characterized by a large number of SEUs, ultimately affecting the measurement of particle fluxes and resulting in corrupted data and accuracy losses. A study of the generation of this type of SEU bursts was performed on an 8 Mbit 90-nm SRAM memory. Experimental tests were carried out with a focused beam of protons on target as well as in a mixed field environment dominated by high energy hadrons. A solution approach using an on-line detection and correction algorithm embedded on an FPGA was investigated and evaluated for use on a RadMon device.

  17. Experimental investigation of energy resolution in a semiconductor detector (surface barrier and Si (Li) detector) in the detection of protons

    International Nuclear Information System (INIS)

    Nordborg, C.

    1974-05-01

    The action of electronic effects on the energy resolution of the detector is investigated. The results are applicable not only to protons but also to heavier charged particles. It should be possible to reach a resolution of about 6 to 7 keV for 10 MeV protons with electronic detectors. Magnetic spectrometers could achieve a resolution of 2 to 3 keV. It is convenient to use Peltier elements for cooling semiconductor spectrometers. (Auth.)

  18. DETECTION AND CLASSIFICATION OF POLE-LIKE OBJECTS FROM MOBILE MAPPING DATA

    Directory of Open Access Journals (Sweden)

    K. Fukano

    2015-08-01

    Full Text Available Laser scanners on a vehicle-based mobile mapping system can capture 3D point-clouds of roads and roadside objects. Since roadside objects have to be maintained periodically, their 3D models are useful for planning maintenance tasks. In our previous work, we proposed a method for detecting cylindrical poles and planar plates in a point-cloud. However, it is often required to further classify pole-like objects into utility poles, streetlights, traffic signals and signs, which are managed by different organizations. In addition, our previous method may fail to extract low pole-like objects, which are often observed in urban residential areas. In this paper, we propose new methods for extracting and classifying pole-like objects. In our method, we robustly extract a wide variety of poles by converting point-clouds into wireframe models and calculating cross-sections between wireframe models and horizontal cutting planes. For classifying pole-like objects, we subdivide a pole-like object into five subsets by extracting poles and planes, and calculate feature values of each subset. Then we apply a supervised machine learning method using feature variables of subsets. In our experiments, our method could achieve excellent results for detection and classification of pole-like objects.

  19. Detection of radioactivity by semiconductors

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The class of detectors discussed in this chapter has a responsive component involving a diode, a junction between two types of semiconductor materials. Although diode detectors are not particularly efficient in counting radioactive emissions, they are superior to other commercially available detectors in spectroscopy. Consequently, diode detectors are used extensively for quanlitative purposes and for quantitative purposes when mixtures of radionuclides are present, not the usual situation with biological or medical research. Topics addressed in this chapter are as follows: Band Theory; Semiconductors and Junctions; and Radiation Detectors. 6 refs., 14 figs

  20. Optimizing detection of road furniture (pole-like object in Mobile Laser Scanner data

    Directory of Open Access Journals (Sweden)

    D. Li

    2013-10-01

    Full Text Available Due to the road safety problem is becoming more and more serious recent years, existing road safety assessment by using automatic method is necessary. Meanwhile, since the pole-like objects have large effect on road safety and are in high demand as facilities to be managed, the automatic pole-like objects extraction is becoming a hot issue. As a result, a robust, quick and automatic pole-like object detection algorithm in MLS data is proposed in this paper. Two datasets are tested to show performance of the proposed algorithm, it demonstrates that it is feasible to detect tree with an overall accuracy of over 92% and other pole-like object of 72% in dataset A and 82% of tree points and 75% of other pole points in dataset B.

  1. Evaluation of Timepix silicon detector for the detection of 18F positrons

    Science.gov (United States)

    Wang, Q.; Tous, J.; Liu, Z.; Ziegler, S.; Shi, K.

    2014-05-01

    Timepix is an evolving energy and position sensitive pixel detector. It consists of a silicon detector (sensitive layer 300 μm thick) bump-bonded to the Timepix readout chip developed by the Medipix2 collaboration. This study aims to test the feasibility of using the acquired energy and position signals from Timepix for positron imaging. The signals of the commonly used fluorine-18 PET (positron emission tomography) tracer [18F]FDG were measured using Timepix operated both in single particle counting (Medipix) and in time over threshold (TOT) modes. The spatial resolution (SR) was measured using the absorber edge method (AEM) and was calculated from the over-sampled line spread function. The track of a positron in the Timepix detector was characterized as a cluster and the energy weighted centroid of each cluster was considered as readout for the position of the positron incidence. The measurement results were compared with theoretical predictions using Monte-Carlo simulations. In addition, imaging of a tissue slice of a mouse heart was analysed with reference to standard phosphor plate imaging. Our results show that the SR was improved from 177.1±4.1 μm (centroid without energy weighting) to 155.5±3.1 μm μm (centroid with energy weighting). About 12% enhancement of SR was achieved with energy information in TOT mode. The sensitivity of Timepix was 0.35 cps/Bq based on the measurements. The measuring background and the ratio between detected positrons and gamma rays were also evaluated and were found to be consistent with theoretical predictions. A small enhancement of image quality was also achieved by applying energy information to the data of the measured tissue sample. Our results show that the inclusion of energy information could slightly enhance the positron measurement compared to without energy information and the Timepix provides a high SR and sensitivity for positron detection. Thus, Timepix is a potentially effective tool for 2D positron imaging.

  2. Redshift determination of the BL Lac object 3C 66A by the detection of its host galaxy cluster at z = 0.340

    Science.gov (United States)

    Torres-Zafra, Juanita; Cellone, Sergio A.; Buzzoni, Alberto; Andruchow, Ileana; Portilla, José G.

    2018-03-01

    The BL Lac object 3C 66A is one of the most luminous extragalactic sources at TeV γ-rays (very high energy, i.e. E > 100 GeV). Since TeV γ-ray radiation is absorbed by the extragalactic background light (EBL), it is crucial to know the redshift of the source in order to reconstruct its original spectral energy distribution, as well as to constrain EBL models. However, the optical spectrum of this BL Lac is almost featureless, so a direct measurement of z is very difficult; in fact, the published redshift value for this source (z = 0.444) has been strongly questioned. Based on EBL absorption arguments, several constraints to its redshift, in the range 0.096 GMOS-N multi-object spectroscopy. We found spectroscopic evidence of two galaxy groups along the blazar's line of sight: one at z ≃ 0.020 and the second one at z ≃ 0.340. The first one is consistent with a known foreground structure, while the second group presented here has six spectroscopically confirmed members. Their location along a red sequence in the colour-magnitude diagram allows us to identify 34 additional candidate members of the more distant group. The blazar's spectrum shows broad absorption features that we identify as arising in the intergalactic medium, thus allowing us to tentatively set a redshift lower limit at z_3C66A ≳ 0.33. As a consequence, we propose that 3C 66A is hosted in a galaxy that belongs to a cluster at z = 0.340.

  3. DEPFET detectors for direct detection of MeV dark matter particles

    Energy Technology Data Exchange (ETDEWEB)

    Baehr, A.; Ninkovic, J.; Treis, J. [Max-Planck-Gesellschaft Halbleiterlabor, Munich (Germany); Kluck, H.; Schieck, J. [Institut fuer Hochenergiephysik, Oesterreichische Akademie der Wissenschaften, Vienna (Austria); Atominstitut, Technische Universitaet Wien, Vienna (Austria)

    2017-12-15

    The existence of dark matter is undisputed, while the nature of it is still unknown. Explaining dark matter with the existence of a new unobserved particle is among the most promising possible solutions. Recently dark matter candidates in the MeV mass region received more and more interest. In comparison to the mass region between a few GeV to several TeV, this region is experimentally largely unexplored. We discuss the application of a RNDR DEPFET semiconductor detector for direct searches for dark matter in the MeV mass region. We present the working principle of the RNDR DEPFET devices and review the performance obtained by previously performed prototype measurements. The future potential of the technology as dark matter detector is discussed and the sensitivity for MeV dark matter detection with RNDR DEPFET sensors is presented. Under the assumption of six background events in the region of interest and an exposure of 1 kg year a sensitivity of about anti σ{sub e} = 10{sup -41} cm{sup 2} for dark matter particles with a mass of 10 MeV can be reached. (orig.)

  4. Direct Dark Matter Detection through the use of a Xenon Based TPC Detector

    Science.gov (United States)

    Daniel, Jonathan; Akerib, Daniel; LZ group at SLAC

    2018-01-01

    The vast majority of matter in the universe is unaccounted for. Only 15% of the universe's mass density is visible matter, while the other 85% is Dark Matter (DM). The Weakly Interacting Massive Particle (WIMP) is currently the frontrunner of the DM candidates. The Large Underground Xenon (LUX) and next generation LUX-ZEPLIN (LZ) experiments are designed to directly detect WIMPs. Both experiments are xenon-based Time Projection Chambers (TPC) used to observe possible WIMP interactions. These interactions produce photons and electrons with the photons being collected in a set of two photomultiplier tube (PMT) arrays and the electrons drifted upwards in the detector by a strong electric field to create a secondary production of photons in gaseous xenon. These two populations of photons are classified as S1 and S2 signals, respectively. Using these signals we reconstruct the energy and position of the interaction and in doing so we can eliminate background events that would otherwise “light up” the detector. My participation in the experiment, while at SLAC, was the creation of the grids that produce the large electric field, along with additional lab activities aimed at testing the grids. While at Stan State, I work on background modeling in order to distinguish a possible WIMP signal from ambient backgrounds.

  5. Region Based CNN for Foreign Object Debris Detection on Airfield Pavement.

    Science.gov (United States)

    Cao, Xiaoguang; Wang, Peng; Meng, Cai; Bai, Xiangzhi; Gong, Guoping; Liu, Miaoming; Qi, Jun

    2018-03-01

    In this paper, a novel algorithm based on convolutional neural network (CNN) is proposed to detect foreign object debris (FOD) based on optical imaging sensors. It contains two modules, the improved region proposal network (RPN) and spatial transformer network (STN) based CNN classifier. In the improved RPN, some extra select rules are designed and deployed to generate high quality candidates with fewer numbers. Moreover, the efficiency of CNN detector is significantly improved by introducing STN layer. Compared to faster R-CNN and single shot multiBox detector (SSD), the proposed algorithm achieves better result for FOD detection on airfield pavement in the experiment.

  6. Development of a neutron detector with high detection efficiency and high spatial resolution and its applications to reactor physics experiments

    International Nuclear Information System (INIS)

    Tojo, Takao

    1979-09-01

    For detection of thermal neutrons in multiplying systems, a scintillator mixture of ZnS(Ag), 6 LiF and polyethylene was prepared, and its characteristics were shown. A sintillation detector using the mixture and a long acrylic-resin light guide was developed for measuring thermal neutrons in an U-H 2 O subcritical assembly(JAERISA). The detector was applied in the following reactor physics measurements with JAERISA: (1) cadmium ratio, (2) infinite multiplication factor, (3) material buckling, and (4) prompt neutron lifetime by pulsed neutron method. These experiments revealed that neutrons in the assembly are successfully detected by the detector owing to its outstanding characteristics of gamma-ray insensitivity, high detection efficiency and high spatial resolution. In the process of activity measurement of a foil activation detector with a GM counter, it was shown that accurate counting loss correction are difficult by usual method, because of the appreciable resolving time dependence on counting rates. In accurate correction, a new method was introduced for precise measurement of the resolving time; the dependence was made clear. A new correction method was developed, which enables direct reading of the corrected counting rates, even at high counting rates. (author)

  7. Foliage penetration radar detection and characterization of objects under trees

    CERN Document Server

    Davis, Mark

    2011-01-01

    This book covers all aspects of foliage penetration (FOPEN) radar, concentrating on both airborne military radar systems as well as earth resource mapping radars. It is the first concise and thorough treatment of FOPEN, covering the results of a decade-long investment by DARPA in characterizing foliage and earth surface with ultrawideband UHF and VHF synthetic aperture radar (SAR).

  8. Detection of radioactive material in public places: BARC's handheld tele radionuclide detector

    International Nuclear Information System (INIS)

    Bharade, S.K.; Sinha, Vineet; Vinod, M.; Ananthakrishnan, T.S.; Jindal, G.D.; Srivastava, Shikha; Sarade, Bhagyashree; Kamble, Ashok D.; Pithawa, C.K.; Subramanian, Venkat

    2011-01-01

    Electronics Division, BARC has developed a compact and portable system for detection of radioactive nuclides like 60 Co, 137 Cs etc. with high levels of radioactivity. These radioactive sources, because of their long life and relative ease of availability, have the potential of being used in radiological dispersion devices (dirty bombs) for panic creation in public places. The unit comprises of a compact CsI detector, photo diode and front-end electronics, micro-controller, a GPS module and Blue-tooth connectivity. The application software running on the mobile phone provides the interface as well as transmission of data to remote server. This is highly suitable for covert operations. The person, who carries this instrument, suitably camouflaged, also has a mobile phone in his pocket, which is connected to the system via blue tooth. On detection of activity above set limit, the system sends an alarm to the mobile phone. The mobile phone can be kept in vibration mode in order to avoid any undue attention. The graphical display on screen of mobile phone provides an indication of activity and the isotope identification. Simultaneously, the mobile phone sends information about the activity detected and source identification automatically along with the location of the instrument (longitude and latitude), provided by the GPS module in the instrument, to a remote server. The remote server provides radiation information on a map with position-coordinates. Based on this, necessary action can be initiated by the security personnel. (author)

  9. The detection of objects in a turbid underwater medium using orbital angular momentum (OAM)

    Science.gov (United States)

    Cochenour, Brandon; Rodgers, Lila; Laux, Alan; Mullen, Linda; Morgan, Kaitlyn; Miller, Jerome K.; Johnson, Eric G.

    2017-05-01

    We present an investigation of the optical property of orbital angular momentum (OAM) for use in the detection of objects obscured by a turbid underwater channel. In our experiment, a target is illuminated by a Gaussian beam. An optical vortex is formed by passing the object-reflected and backscattered light through a diffractive spiral phase plate at the receiver, which allows for the spatial separation of coherent and non-coherent light. This provides a method for discriminating target from environment. Initial laboratory results show that the ballistic target return can be detected 2-3 orders of magnitude below the backscatter clutter level. Furthermore, the detection of this coherent component is accomplished with the use of a complicated optical heterodyning scheme. The results suggest new optical sensing techniques for underwater imaging or LIDAR.

  10. Detection of bubble nucleation event in superheated drop detector ...

    Indian Academy of Sciences (India)

    2016-12-08

    Dec 8, 2016 ... ... in a system. The frequency response of the amplifier used to amplify. 1 ... (WSa, Physical Acoustics Corporation) and the pres- sure sensor is a .... The total pressure recovery takes place at a maximum. Figure 8. A typical ...

  11. The objects of visuospatial short-term memory: Perceptual organization and change detection.

    Science.gov (United States)

    Nikolova, Atanaska; Macken, Bill

    2016-01-01

    We used a colour change-detection paradigm where participants were required to remember colours of six equally spaced circles. Items were superimposed on a background so as to perceptually group them within (a) an intact ring-shaped object, (b) a physically segmented but perceptually completed ring-shaped object, or (c) a corresponding background segmented into three arc-shaped objects. A nonpredictive cue at the location of one of the circles was followed by the memory items, which in turn were followed by a test display containing a probe indicating the circle to be judged same/different. Reaction times for correct responses revealed a same-object advantage; correct responses were faster to probes on the same object as the cue than to equidistant probes on a segmented object. This same-object advantage was identical for physically and perceptually completed objects, but was only evident in reaction times, and not in accuracy measures. Not only, therefore, is it important to consider object-level perceptual organization of stimulus elements when assessing the influence of a range of factors (e.g., number and complexity of elements) in visuospatial short-term memory, but a more detailed picture of the structure of information in memory may be revealed by measuring speed as well as accuracy.

  12. Direct detection of dark matter with the EDELWEISS-III experiment: signals induced by charge trapping, data analysis and characterization of cryogenic detector sensitivity to low-mass WIMPs

    International Nuclear Information System (INIS)

    Arnaud, Quentin

    2015-01-01

    The EDELWEISS-III experiment is dedicated to direct dark matter searches aiming at detecting WIMPS. These massive particles should account for more than 80% of the mass of the Universe and be detectable through their elastic scattering on nuclei constituting the absorber of a detector. As the expected WIMP event rate is extremely low ( 20 GeV). Finally, a study dedicated to the optimization of solid cryogenic detectors to low mass WIMP searches is presented. This study is performed on simulated data using a statistical test based on a profiled likelihood ratio that allows for statistical background subtraction and spectral shape discrimination. This study combined with results from Run308, has lead the EDELWEISS experiment to favor low mass WIMP searches ( [fr

  13. Learning to Detect Human-Object Interactions

    KAUST Repository

    Chao, Yu-Wei; Liu, Yunfan; Liu, Xieyang; Zeng, Huayi; Deng, Jia

    2017-01-01

    In this paper we study the problem of detecting human-object interactions (HOI) in static images, defined as predicting a human and an object bounding box with an interaction class label that connects them. HOI detection is a fundamental problem in computer vision as it provides semantic information about the interactions among the detected objects. We introduce HICO-DET, a new large benchmark for HOI detection, by augmenting the current HICO classification benchmark with instance annotations. We propose Human-Object Region-based Convolutional Neural Networks (HO-RCNN), a novel DNN-based framework for HOI detection. At the core of our HO-RCNN is the Interaction Pattern, a novel DNN input that characterizes the spatial relations between two bounding boxes. We validate the effectiveness of our HO-RCNN using HICO-DET. Experiments demonstrate that our HO-RCNN, by exploiting human-object spatial relations through Interaction Patterns, significantly improves the performance of HOI detection over baseline approaches.

  14. Learning to Detect Human-Object Interactions

    KAUST Repository

    Chao, Yu-Wei

    2017-02-17

    In this paper we study the problem of detecting human-object interactions (HOI) in static images, defined as predicting a human and an object bounding box with an interaction class label that connects them. HOI detection is a fundamental problem in computer vision as it provides semantic information about the interactions among the detected objects. We introduce HICO-DET, a new large benchmark for HOI detection, by augmenting the current HICO classification benchmark with instance annotations. We propose Human-Object Region-based Convolutional Neural Networks (HO-RCNN), a novel DNN-based framework for HOI detection. At the core of our HO-RCNN is the Interaction Pattern, a novel DNN input that characterizes the spatial relations between two bounding boxes. We validate the effectiveness of our HO-RCNN using HICO-DET. Experiments demonstrate that our HO-RCNN, by exploiting human-object spatial relations through Interaction Patterns, significantly improves the performance of HOI detection over baseline approaches.

  15. Role of Computer Aided Diagnosis (CAD in the detection of pulmonary nodules on 64 row multi detector computed tomography

    Directory of Open Access Journals (Sweden)

    K Prakashini

    2016-01-01

    Full Text Available Aims and Objectives: To determine the overall performance of an existing CAD algorithm with thin-section computed tomography (CT in the detection of pulmonary nodules and to evaluate detection sensitivity at a varying range of nodule density, size, and location. Materials and Methods: A cross-sectional prospective study was conducted on 20 patients with 322 suspected nodules who underwent diagnostic chest imaging using 64-row multi-detector CT. The examinations were evaluated on reconstructed images of 1.4 mm thickness and 0.7 mm interval. Detection of pulmonary nodules, initially by a radiologist of 2 years experience (RAD and later by CAD lung nodule software was assessed. Then, CAD nodule candidates were accepted or rejected accordingly. Detected nodules were classified based on their size, density, and location. The performance of the RAD and CAD system was compared with the gold standard that is true nodules confirmed by consensus of senior RAD and CAD together. The overall sensitivity and false-positive (FP rate of CAD software was calculated. Observations and Results: Of the 322 suspected nodules, 221 were classified as true nodules on the consensus of senior RAD and CAD together. Of the true nodules, the RAD detected 206 (93.2% and 202 (91.4% by the CAD. CAD and RAD together picked up more number of nodules than either CAD or RAD alone. Overall sensitivity for nodule detection with the CAD program was 91.4%, and FP detection per patient was 5.5%. The CAD showed comparatively higher sensitivity for nodules of size 4-10 mm (93.4% and nodules in hilar (100% and central (96.5% location when compared to RAD′s performance. Conclusion: CAD performance was high in detecting pulmonary nodules including the small size and low-density nodules. CAD even with relatively high FP rate, assists and improves RAD′s performance as a second reader, especially for nodules located in the central and hilar region and for small nodules by saving RADs time.

  16. Shlaer-Mellor object-oriented analysis and recursive design, an effective modern software development method for development of computing systems for a large physics detector

    International Nuclear Information System (INIS)

    Kozlowski, T.; Carey, T.A.; Maguire, C.F.

    1995-01-01

    After evaluation of several modern object-oriented methods for development of the computing systems for the PHENIX detector at RHIC, we selected the Shlaer-Mellor Object-Oriented Analysis and Recursive Design method as the most appropriate for the needs and development environment of a large nuclear or high energy physics detector. This paper discusses our specific needs and environment, our method selection criteria, and major features and components of the Shlaer-Mellor method

  17. Scintillation characteristics of phosphich-detector for detection of beta- and gamma-radiations

    CERN Document Server

    Ananenko, A A; Gavrilyuk, V

    2002-01-01

    The results of the study on the influence of individual peculiarities of the compound scintillation detector structure on the value and stability of the light yield by the gamma- and beta-radiation combined registration are presented. The phosphich detector is manufactured from the sodium iodide monocrystal, activated by thallium, and the scintillation plastic on the polystyrol basis. The comparison of the experimental results with the mathematical modeling data revealed certain regularities of the process of forming the phosphich detector light signal. The recommendations are worked out by means whereof the following characteristics of the scintillation unit: the light yield and its stability, amplitude resolution and the peak-to-valley ratio by the gamma- and beta-radiation registration were improved

  18. Detection efficiency of the neutron detector BELEN-48 measured at the PTB Braunschweig

    Energy Technology Data Exchange (ETDEWEB)

    Marta, Michele [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); II. Physikalisches Institut, Justus-Liebig Universitaet Giessen (Germany); Agramunt, Jorge; Tain, Jose Luis [IFIC-CSIC University of Valencia, Valencia (Spain); Caballero-Folch, Roger; Cortes, Guillem; Riego, Albert [INTE-DFEN, Universitat Politecnica de Catalunya, Barcelona (Spain); Dillmann, Iris [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); II. Physikalisches Institut, Justus-Liebig Universitaet Giessen (Germany); TRIUMF, Vancouver (Canada); Erhard, Martin; Giesen, Ulrich; Nolte, Ralf; Roettger, Stefan [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany); Fraile, Luis M. [Universidad Complutense de Madrid (Spain)

    2014-07-01

    The BEta-deLayEd Neutron detector BELEN-48 is a highly efficient detector of β-delayed neutrons, for nuclear structure, nuclear astrophysics and reactor studies. It consists of 48 {sup 3}He proportional counters arranged in a polyethylene matrix in a way that the detection efficiency remains constant for neutron energies from thermal up to a few MeV. In order to validate MCNPX simulations, the detection efficiency has been calibrated with well-known (p,n) and (α,n) reactions on {sup 7}Li, {sup 13}C and {sup 51}V producing neutrons with energies between 0.1 and 5 MeV. The experiment has been performed at the neutron metrology facility of PTB, which allowed the measurement of yields and angular distributions with a calibrated monitor. The new results indicate anisotropies, which are not reported in literature and have been taken into account to obtain the experimental efficiencies for BELEN.

  19. Space weathering on near-Earth objects investigated by neutral-particle detection

    Science.gov (United States)

    Plainaki, C.; Milillo, A.; Orsini, S.; Mura, A.; de Angelis, E.; di Lellis, A. M.; Dotto, E.; Livi, S.; Mangano, V.; Palumbo, M. E.

    2009-04-01

    The ion-sputtering (IS) process is active in many planetary environments in the solar system where plasma precipitates directly on the surface (for instance, Mercury, Moon and Europa). In particular, solar wind sputtering is one of the most important agents for the surface erosion of a near-Earth object (NEO), acting together with other surface release processes, such as photon stimulated desorption (PSD), thermal desorption (TD) and micrometeoroid impact vaporization (MIV). The energy distribution of the IS-released neutrals peaks at a few eVs and extends up to hundreds of eVs. Since all other release processes produce particles of lower energies, the presence of neutral atoms in the energy range above 10 eV and below a few keVs (sputtered high-energy atoms (SHEA)) identifies the IS process. SHEA easily escape from the NEO, due to NEO's extremely weak gravity. Detection and analysis of SHEA will give important information on surface-loss processes as well as on surface elemental composition. The investigation of the active release processes, as a function of the external conditions and the NEO surface properties, is crucial for obtaining a clear view of the body's present loss rate as well as for getting clues on its evolution, which depends significantly on space weather. In this work, an attempt to analyze processes that take place on the surface of these small airless bodies, as a result of their exposure to the space environment, has been realized. For this reason, a new space weathering model (space weathering on NEO-SPAWN) is presented. Moreover, an instrument concept of a neutral-particle analyzer specifically designed for the measurement of neutral density and the detection of SHEA from a NEO is proposed.

  20. Imaging, object detection, and change detection with a polarized multistatic GPR array

    Science.gov (United States)

    Beer, N. Reginald; Paglieroni, David W.

    2015-07-21

    A polarized detection system performs imaging, object detection, and change detection factoring in the orientation of an object relative to the orientation of transceivers. The polarized detection system may operate on one of several modes of operation based on whether the imaging, object detection, or change detection is performed separately for each transceiver orientation. In combined change mode, the polarized detection system performs imaging, object detection, and change detection separately for each transceiver orientation, and then combines changes across polarizations. In combined object mode, the polarized detection system performs imaging and object detection separately for each transceiver orientation, and then combines objects across polarizations and performs change detection on the result. In combined image mode, the polarized detection system performs imaging separately for each transceiver orientation, and then combines images across polarizations and performs object detection followed by change detection on the result.

  1. Detecting gravitational waves from inspiraling binaries with a network of detectors: Coherent versus coincident strategies

    International Nuclear Information System (INIS)

    Mukhopadhyay, Himan; Dhurandhar, Sanjeev; Sago, Norichika; Tagoshi, Hideyuki; Takahashi, Hirotaka; Kanda, Nobuyuki

    2006-01-01

    We compare two strategies of multidetector detection of compact binary inspiral signals, namely, the coincidence and the coherent. For simplicity we consider here two identical detectors having the same power spectral density of noise, that of initial LIGO, located in the same place and having the same orientation. We consider the cases of independent noise as well as that of correlated noise. The coincident strategy involves separately making two candidate event lists, one for each detector, and from these choosing those pairs of events from the two lists which lie within a suitable parameter window, which then are called coincidence detections. The coherent strategy on the other hand involves combining the data phase coherently, so as to obtain a single network statistic which is then compared with a single threshold. Here we attempt to shed light on the question as to which strategy is better. We compare the performances of the two methods by plotting the receiver operating characteristics (ROC) for the two strategies. Several of the results are obtained analytically in order to gain insight. Further we perform numerical simulations in order to determine certain parameters in the analytic formulae and thus obtain the final complete results. We consider here several cases from the relatively simple to the astrophysically more relevant in order to establish our results. The bottom line is that the coherent strategy although more computationally expensive in general than the coincidence strategy, is superior to the coincidence strategy--considerably less false dismissal probability for the same false alarm probability in the viable false alarm regime

  2. Measurement of neutron detection efficiencies in NaI using the Crystal Ball detector

    Energy Technology Data Exchange (ETDEWEB)

    Stanislaus, T.D.S.; Koetke, D.D. E-mail: donald.koetke@valpo.edu; Allgower, C.; Bekrenev, V.; Benslama, K.; Berger, E.; Briscoe, W.J.; Clajus, M.; Comfort, J.R.; Craig, K.; Gibson, A.; Grosnick, D.; Huber, G.M.; Isenhower, D.; Kasprzyk, T.; Knecht, N.; Koulbardis, A.; Kozlenko, N.; Kruglov, S.; Kycia, T.; Lolos, G.J.; Lopatin, I.; Manley, D.M.; Manweiler, R.; Marusic, A.; McDonald, S.; Nefkens, B.M.K.; Olmsted, J.; Papandreou, Z.; Peaslee, D.; Peterson, R.J.; Phaisangittisakul, N.; Pulver, M.; Ramirez, A.F.; Sadler, M.; Shafi, A.; Slaus, I.; Spinka, H.; Starostin, A.; Staudenmaier, H.M.; Supek, I.; Thoms, J.; Tippens, W.B

    2001-04-21

    We report on a measurement of the neutron detection efficiency in NaI crystals in the Crystal Ball (CB) detector obtained from a study of {pi}{sup -}p{yields}{pi} degree sign n reactions at the Brookhaven National Laboratory AGS. A companion GEANT-based Monte Carlo study has been done to simulate these reactions in the CB, and a comparison with the data is provided.

  3. Calorimetric low-temperature detectors on semiconductor base for the energy-resolving detection of heavy ions

    International Nuclear Information System (INIS)

    Kienlin, A. von.

    1994-01-01

    In the framework of this thesis for the first time calorimetric low-temperature detectors for the energy-resolving detection of heavy ions were developed and successfully applied. Constructed were two different detector types, which work both with a semiconductor thermistor. The temperature increasement effected by a particle incidence is read out. In the first detector type the thermistor was simutaneously used as absorber. The thickness of the germanium crystals was sufficient in order to stop the studied heavy ions completely. In the second type, a composed calorimeter, a sapphire crystal, which was glued on a germanium thermistor, served as absorber for the incident heavy ions. The working point of the calorimeter lies in the temperature range (1.2-4.2 K), which is reachable with a pumped 4 He cryostat. The temperatur increasement of the calorimeter amounts after the incidence of a single α particle about 20-30 μK and that after a heavy ion incidence up to some mK. An absolute energy resolution of 400-500 keV was reached. In nine beam times the calorimeters were irradiated by heavy ions ( 20 Ne, 40 Ar, 136 Xe, 208 Pb, 209 Bi) of different energies (3.6 MeV/nucleon< E<12.5 MeV/nucleon) elastically scattered from gold foils. In the pulse height spectra of the first detector type relatively broad, complex-structurated line shapes were observed. By systematic measurements dependences of the complex line structures on operational parameters of the detector, the detector temperature, and the position of the incident particle could be detected. Together with the results of further experiments a possible interpretation of these phenomena is presented. Contrarily to the complex line structures of the pure germanium thermistor the line shapes in the pulse height spectra, which were taken up in a composite germanium/sapphire calorimeter, are narrow and Gauss-shaped

  4. Fast Detection of Airports on Remote Sensing Images with Single Shot MultiBox Detector

    Science.gov (United States)

    Xia, Fei; Li, HuiZhou

    2018-01-01

    This paper introduces a method for fast airport detection on remote sensing images (RSIs) using Single Shot MultiBox Detector (SSD). To our knowledge, this could be the first study which introduces an end-to-end detection model into airport detection on RSIs. Based on the common low-level features between natural images and RSIs, a convolution neural network trained on large amounts of natural images was transferred to tackle the airport detection problem with limited annotated data. To deal with the specific characteristics of RSIs, some related parameters in the SSD, such as the scales and layers, were modified for more accurate and rapider detection. The experiments show that the proposed method could achieve 83.5% Average Recall at 8 FPS on RSIs with the size of 1024*1024. In contrast to Faster R-CNN, an improvement on AP and speed could be obtained.

  5. Energy resolution and efficiency of phonon-mediated kinetic inductance detectors for light detection

    International Nuclear Information System (INIS)

    Cardani, L.; Colantoni, I.; Coppolecchia, A.; Cruciani, A.; Vignati, M.; Bellini, F.; Casali, N.; Cosmelli, C.; Di Domizio, S.; Castellano, M. G.; Tomei, C.

    2015-01-01

    The development of sensitive cryogenic light detectors is of primary interest for bolometric experiments searching for rare events like dark matter interactions or neutrino-less double beta decay. Thanks to their good energy resolution and the natural multiplexed read-out, Kinetic Inductance Detectors (KIDs) are particularly suitable for this purpose. To efficiently couple KIDs-based light detectors to the large crystals used by the most advanced bolometric detectors, active surfaces of several cm 2 are needed. For this reason, we are developing phonon-mediated detectors. In this paper, we present the results obtained with a prototype consisting of four 40 nm thick aluminum resonators patterned on a 2 × 2 cm 2 silicon chip, and calibrated with optical pulses and X-rays. The detector features a noise resolution σ E  = 154 ± 7 eV and an (18 ± 2)% efficiency

  6. Energy resolution and efficiency of phonon-mediated kinetic inductance detectors for light detection

    Energy Technology Data Exchange (ETDEWEB)

    Cardani, L., E-mail: laura.cardani@roma1.infn.it [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); Physics Department, Princeton University, Washington Road, 08544, Princeton, New Jersey (United States); Colantoni, I.; Coppolecchia, A. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); Cruciani, A.; Vignati, M.; Bellini, F.; Casali, N.; Cosmelli, C. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); INFN - Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); Di Domizio, S. [Dipartimento di Fisica, Università degli Studi di Genova, Via Dodecaneso 33, 16146 Genova (Italy); INFN - Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Castellano, M. G. [Istituto di Fotonica e Nanotecnologie - CNR, Via Cineto Romano 42, 00156 Roma (Italy); Tomei, C. [INFN - Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy)

    2015-08-31

    The development of sensitive cryogenic light detectors is of primary interest for bolometric experiments searching for rare events like dark matter interactions or neutrino-less double beta decay. Thanks to their good energy resolution and the natural multiplexed read-out, Kinetic Inductance Detectors (KIDs) are particularly suitable for this purpose. To efficiently couple KIDs-based light detectors to the large crystals used by the most advanced bolometric detectors, active surfaces of several cm{sup 2} are needed. For this reason, we are developing phonon-mediated detectors. In this paper, we present the results obtained with a prototype consisting of four 40 nm thick aluminum resonators patterned on a 2 × 2 cm{sup 2} silicon chip, and calibrated with optical pulses and X-rays. The detector features a noise resolution σ{sub E} = 154 ± 7 eV and an (18 ± 2)% efficiency.

  7. Design of remote control alarm system by microwave detection

    Science.gov (United States)

    Wang, Junli

    2018-04-01

    A microwave detection remote control alarm system is designed, which is composed of a Microwave detectors, a radio receiving/transmitting module and a digital encoding/decoding IC. When some objects move into the surveillance area, microwave detectors will generate a control signal to start transmitting system. A radio control signal will be spread by the transmitting module, once the signal can be received, and it will be disposed by some circuits, arousing some voices that awake the watching people. The whole device is a modular configuration, it not only has some advantage of frequency stable, but also reliable and adjustment-free, and it is suitable for many kinds of demands within the distance of 100m.

  8. Detection of a buried object with pulse-compensated wire antennas

    NARCIS (Netherlands)

    Vossen, S.H.J.A.; Tijhuis, A.G.; Lepelaars, E.S.A.M.; Zwamborn, A.P.M.

    2003-01-01

    For the detection of a buried object we consider two straight thin-wire antennas above an interface between two homogeneous dielectric half spaces. One antenna is a transmitting wire and the other is a receiving wire. Our aim is to use this simple antenna set up for the detection of buried objects

  9. Potential of RFID Systems to Detect Object Orientation

    DEFF Research Database (Denmark)

    Krigslund, Rasmus; Popovski, Petar; Pedersen, Gert Frølund

    2011-01-01

    In this paper we present a novel method for estimating the inclination of passive UHF RFID tags, for use in supply chains to monitor the handling of tagged items. Based on observations of the polarization, a Bayesian estimator of the tag inclination is constructed. The Bayesian estimator has been...

  10. Neutron measurements on the JET tokamak by means of bubble detectors

    International Nuclear Information System (INIS)

    Gherendi, M.; Craciunescu, T.; Pantea, A.; Zoita, V.; Edlington, T.; Kiptily, V.; Popovichev, S.; Murari, A.

    2009-01-01

    Full text: The bubble detectors (superheated fluid detectors - SHFDs) are based on suspensions of superheated fluid droplets which vaporise into bubbles when nucleated by radiation interactions. The active detecting medium is in the form of microscopic (20-50 μm) droplets suspended within an elastic polymer. The bubble detectors are of interest for neutron detection in nuclear fusion devices due to some particular characteristics: - High neutron detection efficiency (counts/unit fluence) that ranges from about 4x10 -2 to 4x10 -5 ; - Almost flat, threshold-type energy response over a broad energy range (10's keV to 10's MeV); - The possibility of having any energy threshold within the above-mentioned energy range; - Practically zero sensitivity to gamma-radiation; - Good spatial resolution (sub-centimetre resolution in the image plane). A series of the neutron measurements have been carried out by means of bubble detectors on the JET tokamak, at Culham Science Centre, Abingdon, UK, during the experimental campaigns C17-C26 (2007-2009). The neutron field parameters (yield, fluence, energy distribution) at a specific location outside the JET Torus Hall have been measured using three types of bubble detectors (BD-PND, DEFENDER, and BDS). The bubble detector measurement location is situated at the end of a vertical collimated line of sight, behind the TOFOR neutron time-of-flight spectrometer. The field-of-view is defined by a variable pre-collimator located on top of the JET tokamak. This paper reports only on the neutron fluence measurements. Spatial (radial and toroidal) distributions of the neutron fluence have been obtained with a two-dimensional array having up to 30 bubble detectors. The operation of the bubble detector array as a neutron pinhole camera having a radial resolution at the JET vacuum chamber mid-plane of about 55 mm was demonstrated in measurements using various openings of the pre-collimator. (authors)

  11. Liquid-Xe detector for contraband detection

    Energy Technology Data Exchange (ETDEWEB)

    Vartsky, D., E-mail: david.vartsky@weizmann.ac.il [Weizmann Institute of Science, Rehovot 76100 (Israel); Israelashvili, I. [Weizmann Institute of Science, Rehovot 76100 (Israel); Nuclear Research Center of Negev (NRCN), Beer-Sheva 9001 (Israel); Cortesi, M. [National Superconducting Cyclotron Laboratory, East Lansing 48823, MI (United States); Arazi, L.; Coimbra, A.E.; Moleri, L.; Erdal, E.; Bar, D.; Rappaport, M.; Shchemelinin, S. [Weizmann Institute of Science, Rehovot 76100 (Israel); Caspi, E.N. [Nuclear Research Center of Negev (NRCN), Beer-Sheva 9001 (Israel); Aviv, O. [Soreq NRC, Yavne 81800 (Israel); Breskin, A. [Weizmann Institute of Science, Rehovot 76100 (Israel)

    2016-07-11

    We describe progress made with a liquid-Xe (LXe) detector coupled to a gaseous photomultiplier (GPM), for combined imaging and spectroscopy of fast neutrons and gamma-rays in the MeV range. The purpose of this detector is to enable the detection of hidden explosives and fissile materials in cargo and containers. The expected position resolution is about 2 m and 3.5 mm for fast neutrons and gamma-rays, respectively. Experimental results obtained using an {sup 241}Am source yielded energy and time resolutions of 11% and 1.2 ns RMS, respectively. Initial results obtained with the position-sensitive GPM are presented.

  12. Expanded opportunities of THz passive camera for the detection of concealed objects

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Kuchik, Igor E.

    2013-10-01

    Among the security problems, the detection of object implanted into either the human body or animal body is the urgent problem. At the present time the main tool for the detection of such object is X-raying only. However, X-ray is the ionized radiation and therefore can not be used often. Other way for the problem solving is passive THz imaging using. In our opinion, using of the passive THz camera may help to detect the object implanted into the human body under certain conditions. The physical reason of such possibility arises from temperature trace on the human skin as a result of the difference in temperature between object and parts of human body. Modern passive THz cameras have not enough resolution in temperature to see this difference. That is why, we use computer processing to enhance the passive THz camera resolution for this application. After computer processing of images captured by passive THz camera TS4, developed by ThruVision Systems Ltd., we may see the pronounced temperature trace on the human body skin from the water, which is drunk by person, or other food eaten by person. Nevertheless, there are many difficulties on the way of full soution of this problem. We illustrate also an improvement of quality of the image captured by comercially available passive THz cameras using computer processing. In some cases, one can fully supress a noise on the image without loss of its quality. Using computer processing of the THz image of objects concealed on the human body, one may improve it many times. Consequently, the instrumental resolution of such device may be increased without any additional engineering efforts.

  13. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT

    NARCIS (Netherlands)

    Visser, Ruurd; J., Godart; Wauben, D.J.L.; Langendijk, J.; van 't Veld, A.A.; Korevaar, E.W.

    2016-01-01

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a

  14. Department of Radiation Detectors: Overview

    International Nuclear Information System (INIS)

    Piekoszewski, J.

    1999-01-01

    Full text: Work carried out in 1998 in the Department of Radiation Detectors concentrated on three subjects: (i) Semiconductor Detectors (ii) X-ray Tube Generators (iii) Material Modification Using Ion and Plasma Beams. SEMICONDUCTOR DETECTORS: Semiconductor detectors of ionizing radiation are among the basic tools utilized in such fields of research and industry as nuclear physics, high energy physics, medical (oncology) radiotherapy, radiological protection, environmental monitoring, energy dispersive X-ray fluorescence non-destructive analysis of chemical composition, nuclear power industry. The departmental objectives are: a search for new types of detectors; producing unique detectors tailored for physics experiments; manufacturing standard detectors for radiation measuring instruments; scientific development of the staff. These objectives were accomplished in 1998 particularly by: research on unique thin silicon detectors for identification of particles in E-ΔE telescopes, modernization of technology of manufacturing Ge(Li) detectors capable of detecting broader range of gamma energies, manufacturing detectors developed in previous years, re-generating and servicing customer detectors of various origin. In accomplishment of the above the Department co-operated with groups of physicists from IPJ, PAN Institute of Physics (Warsaw), and with some technology Institutes based in Warsaw (ITME, ITE). Some detectors and services have been delivered to customers on a commercial basis. X-Ray TUBE GENERATORS: The Department conducts research on design and technology of manufacturing X-ray generators as well as on imaging and dosimetry of X-ray beams. Various models of special construction X-ray tubes and their power supplies are under construction. In 1998 work concentrated on: completing laboratory equipment for manufacturing X-ray tubes and their components, developing technology of manufacturing X-ray tubes and their components, completing a laboratory set-up with

  15. Detection of moving objects from a moving platform in urban scenes

    NARCIS (Netherlands)

    Haar, F.B. ter; Hollander, R.J.M. den; Dijk, J.

    2010-01-01

    Moving object detection in urban scenes is important for the guidance of autonomous vehicles, robot navigation, and monitoring. In this paper moving objects are automatically detected using three sequential frames and tracked over a longer period. To this extend we modify the plane+parallax,

  16. Synthetic Aperture Acoustic Imaging for Roadside Detection of Solid Objects

    Science.gov (United States)

    2014-11-20

    Testing I I I I Cinderblock Foam block Isometric and translucent view of the weighted foam block . .-.-; Weighted foam block Figure 2.3... concrete block (CB, Fig. 2.4). Conven- tional methods for identifying targets in a radar or acoustic imaging system (also known as Automatic Target...and curb, or than the grass-covered hill beyond the sidewalk. However, there is a strong acoustic return from a seam in the sidewalk concrete that runs

  17. Novelty detection of foreign objects in food using multi-modal X-ray imaging

    DEFF Research Database (Denmark)

    Einarsdottir, Hildur; Emerson, Monica Jane; Clemmensen, Line Katrine Harder

    2016-01-01

    In this paper we demonstrate a method for novelty detection of foreign objects in food products using grating-based multimodal X-ray imaging. With this imaging technique three modalities are available with pixel correspondence, enhancing organic materials such as wood chips, insects and soft...... plastics not detectable by conventional X-ray absorption radiography. We conduct experiments, where several food products are imaged with common foreign objects typically found in the food processing industry. To evaluate the benefit from using this multi-contrast X-ray technique over conventional X......-ray absorption imaging, a novelty detection scheme based on well known image- and statistical analysis techniques is proposed. The results show that the presented method gives superior recognition results and highlights the advantage of grating-based imaging....

  18. AUTONOMOUS DETECTION AND TRACKING OF AN OBJECT AUTONOMOUSLY USING AR.DRONE QUADCOPTER

    Directory of Open Access Journals (Sweden)

    Futuhal Arifin

    2014-08-01

    Full Text Available Abstract Nowadays, there are many robotic applications being developed to do tasks autonomously without any interactions or commands from human. Therefore, developing a system which enables a robot to do surveillance such as detection and tracking of a moving object will lead us to more advanced tasks carried out by robots in the future. AR.Drone is a flying robot platform that is able to take role as UAV (Unmanned Aerial Vehicle. Usage of computer vision algorithm such as Hough Transform makes it possible for such system to be implemented on AR.Drone. In this research, the developed algorithm is able to detect and track an object with certain shape and color. Then the algorithm is successfully implemented on AR.Drone quadcopter for detection and tracking.

  19. A catheter-based radiation detector for endovascular detection of atheromatous plaques

    International Nuclear Information System (INIS)

    Mukai, Takahiro; Konishi, Junji; Nohara, Ryuji; Ogawa, Mikako; Ishino, Seigo; Saji, Hideo; Kambara, Naoshige; Kataoka, Kazuaki; Kanoi, Toru; Saito, Kazuhiro; Motomura, Hiroshi

    2004-01-01

    Although various radiopharmaceuticals have been developed for the detection of atheromas, external imaging techniques have limitations when it comes to the detection of small plaques. In this study, we developed a charged particle-sensitive detector for the endovascular detection of small plaques. The device consists of a probe, an automatic pullback unit and a controller. The probe, which consists of a plastic scintillator and flexible optical fibres, is 1.0 mm in diameter. The probe was inserted into a catheter placed on 18 F point sources, and then the radioactivity was measured as the probe was pulled out stepwise. The sensitivity for 18 F was 9.3 cps/kBq, and there was a close linear correlation between the peak counts and source dose until at least 0.8 MBq. Furthermore, this device showed low background counts ( 18 F point sources were set on the ball's surface. Even though 298 MBq of 18 F-fluorodeoxyglucose was injected into the ball, the point sources located every 10 mm on the ball's surface were detectable separately. The data gathered suggest that a catheter-based radiation detector in combination with charged particle-emitting radiopharmaceuticals is useful for the endovascular detection of small lesions such as coronary plaques. (orig.)

  20. Ghost Imaging of Space Objects

    International Nuclear Information System (INIS)

    Strekalov, Dmitry V; Erkmen, Baris I; Yu Nan

    2013-01-01

    The term 'ghost imaging' was coined in 1995 when an optical correlation measurement in combination with an entangled photon-pair source was used to image a mask placed in one optical channel by raster-scanning a detector in the other, empty, optical channel. Later, it was shown that the entangled photon source could be replaced with thermal sources of light, which are abundantly available as natural illumination sources. It was also shown that the bucket detector could be replaced with a remote point-like detector, opening the possibility to remote-sensing imaging applications. In this paper, we discuss the application of ghost-imaging-like techniques to astronomy, with the objective of detecting intensity-correlation signatures resulting from space objects of interest, such as exo-planets, gas clouds, and gravitational lenses. An important aspect of being able to utilize ghost imaging in astronomy, is the recognition that in interstellar imaging geometries the object of interest can act as an effective beam splitter, yielding detectable variations in the intensity-correlation signature.

  1. Ship Detection Using Transfer Learned Single Shot Multi Box Detector

    Directory of Open Access Journals (Sweden)

    Nie Gu-Hong

    2017-01-01

    Full Text Available Ship detection in satellite images is a challenging task. In this paper, we introduce a transfer learned Single Shot MultiBox Detector (SSD for ship detection. To this end, a state-of-the-art object detection model pre-trained from a large number of natural images was transfer learned for ship detection with limited labeled satellite images. To the best of our knowledge, this could be one of the first studies which introduce SSD into ship detection on satellite images. Experiments demonstrated that our method could achieve 87.9% AP at 47 FPS using NVIDIA TITAN X. In comparison with Faster R-CNN, 6.7% AP improvement could be achieved. Effects of the observation resolution has also been studied with the changing input sizes among 300 × 300, 600 × 600 and 900 × 900. It has been noted that the detection accuracy declined sharply with the decreasing resolution that is mainly caused by the missing small ships.

  2. Calibration of detector efficiency of neutron detector

    International Nuclear Information System (INIS)

    Guo Hongsheng; He Xijun; Xu Rongkun; Peng Taiping

    2001-01-01

    BF 3 neutron detector has been set up. Detector efficiency is calibrated by associated particle technique. It is about 3.17 x 10 -4 (1 +- 18%). Neutron yield of neutron generator per pulse (10 7 /pulse) is measured by using the detector

  3. Fast neutron detection at near-core location of a research reactor with a SiC detector

    Science.gov (United States)

    Wang, Lei; Jarrell, Josh; Xue, Sha; Tan, Chuting; Blue, Thomas; Cao, Lei R.

    2018-04-01

    The measurable charged-particle produced from the fast neutron interactions with the Si and C nucleuses can make a wide bandgap silicon carbide (SiC) sensor intrinsically sensitive to neutrons. The 4H-SiC Schottky detectors have been fabricated and tested at up to 500 °C, presenting only a slightly degraded energy resolution. The response spectrum of the SiC detectors were also obtained by exposing the detectors to external neutron beam irradiation and at a near-core location where gamma-ray field is intense. The fast neutron flux of these two locations are ∼ 4 . 8 × 104cm-2 ṡs-1 and ∼ 2 . 2 × 107cm-2 ṡs-1, respectively. At the external beam location, a Si detector was irradiated side-by-side with SiC detector to disjoin the neutron response from Si atoms. The contribution of gamma ray, neutron scattering, and charged-particles producing reactions in the SiC was discussed. The fast neutron detection efficiencies were determined to be 6 . 43 × 10-4 for the external fast neutron beam irradiation and 6 . 13 × 10-6 for the near-core fast neutron irradiation.

  4. Fast and objective detection and analysis of structures in downhole images

    Science.gov (United States)

    Wedge, Daniel; Holden, Eun-Jung; Dentith, Mike; Spadaccini, Nick

    2017-09-01

    Downhole acoustic and optical televiewer images, and formation microimager (FMI) logs are important datasets for structural and geotechnical analyses for the mineral and petroleum industries. Within these data, dipping planar structures appear as sinusoids, often in incomplete form and in abundance. Their detection is a labour intensive and hence expensive task and as such is a significant bottleneck in data processing as companies may have hundreds of kilometres of logs to process each year. We present an image analysis system that harnesses the power of automated image analysis and provides an interactive user interface to support the analysis of televiewer images by users with different objectives. Our algorithm rapidly produces repeatable, objective results. We have embedded it in an interactive workflow to complement geologists' intuition and experience in interpreting data to improve efficiency and assist, rather than replace the geologist. The main contributions include a new image quality assessment technique for highlighting image areas most suited to automated structure detection and for detecting boundaries of geological zones, and a novel sinusoid detection algorithm for detecting and selecting sinusoids with given confidence levels. Further tools are provided to perform rapid analysis of and further detection of structures e.g. as limited to specific orientations.

  5. Hexagonal boron nitride neutron detectors with high detection efficiencies

    Science.gov (United States)

    Maity, A.; Grenadier, S. J.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2018-01-01

    Neutron detectors fabricated from 10B enriched hexagonal boron nitride (h-10BN or h-BN) epilayers have demonstrated the highest thermal neutron detection efficiency among solid-state neutron detectors to date at about 53%. In this work, photoconductive-like vertical detectors with a detection area of 1 × 1 mm2 were fabricated from 50 μm thick free-standing h-BN epilayers using Ni/Au and Ti/Al bilayers as ohmic contacts. Leakage currents, mobility-lifetime (μτ) products under UV photoexcitation, and neutron detection efficiencies have been measured for a total of 16 different device configurations. The results have unambiguously identified that detectors incorporating the Ni/Au bilayer on both surfaces as ohmic contacts and using the negatively biased top surface for neutron irradiation are the most desired device configurations. It was noted that high growth temperatures of h-10BN epilayers on sapphire substrates tend to yield a higher concentration of oxygen impurities near the bottom surface, leading to a better device performance by the chosen top surface for irradiation than by the bottom. Preferential scattering of oxygen donors tends to reduce the mobility of holes more than that of electrons, making the biasing scheme with the ability of rapidly extracting holes at the irradiated surface while leaving the electrons to travel a large average distance inside the detector at a preferred choice. When measured against a calibrated 6LiF filled micro-structured semiconductor neutron detector, it was shown that the optimized configuration has pushed the detection efficiency of h-BN neutron detectors to 58%. These detailed studies also provided a better understanding of growth-mediated impurities in h-BN epilayers and their effects on the charge collection and neutron detection efficiencies.

  6. Design of Pixellated CMOS Photon Detector for Secondary Electron Detection in the Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Joon Huang Chuah

    2011-01-01

    Full Text Available This paper presents a novel method of detecting secondary electrons generated in the scanning electron microscope (SEM. The method suggests that the photomultiplier tube (PMT, traditionally used in the Everhart-Thornley (ET detector, is to be replaced with a configurable multipixel solid-state photon detector offering the advantages of smaller dimension, lower supply voltage and power requirements, and potentially cheaper product cost. The design of the proposed detector has been implemented using a standard 0.35 μm CMOS technology with optical enhancement. This microchip comprises main circuit constituents of an array of photodiodes connecting to respective noise-optimised transimpedance amplifiers (TIAs, a selector-combiner (SC circuit, and a postamplifier (PA. The design possesses the capability of detecting photons with low input optical power in the range of 1 nW with 100 μm × 100 μm sized photodiodes and achieves a total amplification of 180 dBΩ at the output.

  7. Positron emission mammography (PEM): Effect of activity concentration, object size, and object contrast on phantom lesion detection

    International Nuclear Information System (INIS)

    MacDonald, Lawrence R.; Wang, Carolyn L.; Eissa, Marna; Haseley, David; Kelly, Mary M.; Liu, Franklin; Parikh, Jay R.; Beatty, J. David; Rogers, James V.

    2012-01-01

    Purpose: To characterize the relationship between lesion detection sensitivity and injected activity as a function of lesion size and contrast on the PEM (positron emission mammography) Flex Solo II scanner using phantom experiments. Methods: Phantom lesions (spheres 4, 8, 12, 16, and 20 mm diameter) were randomly located in uniform background. Sphere activity concentrations were 3 to 21 times the background activity concentration (BGc). BGc was a surrogate for injected activity; BGc ranged from 0.44–4.1 kBq/mL, corresponding to 46–400 MBq injections. Seven radiologists read 108 images containing zero, one, or two spheres. Readers used a 5-point confidence scale to score the presence of spheres. Results: Sensitivity was 100% for lesions ≥12 mm under all conditions except for one 12 mm sphere with the lowest contrast and lowest BGc (60% sensitivity). Sensitivity was 100% for 8 mm spheres when either contrast or BGc was high, and 100% for 4 mm spheres only when both contrast and BGc were highest. Sphere contrast recovery coefficients (CRC) were 49%, 34%, 26%, 14%, and 2.8% for the largest to smallest spheres. Cumulative specificity was 98%. Conclusions: Phantom lesion detection sensitivity depends more on sphere size and contrast than on BGc. Detection sensitivity remained ≥90% for injected activities as low as 100 MBq, for lesions ≥8 mm. Low CRC in 4 mm objects results in moderate detection sensitivity even for 400 MBq injected activity, making it impractical to optimize injected activity for such lesions. Low CRC indicates that when lesions <8 mm are observed on PEM images they are highly tracer avid with greater potential of clinical significance. High specificity (98%) suggests that image statistical noise does not lead to false positive findings. These results apply to the 85 mm thick object used to obtain them; lesion detectability should be better (worse) for thinner (thicker) objects based on the reduced (increased) influence of photon attenuation.

  8. Detection and Imaging of High-Z Materials with a Muon Tomography Station Using GEM Detectors

    CERN Document Server

    Gnanvo, K; Bittner, W; Costa, F; Grasso, L; Hohlmann, M; Locke, J B; Martoiu, S; Muller, H; Staib, M; Tarazona, A; Toledo, J

    2010-01-01

    Muon tomography based on the measurement of multiple scattering of atmospheric cosmic ray muons is a promising technique for detecting and imaging heavily shielded high-Z nuclear materials such as enriched uranium. This technique could complement standard radiation detection portals currently deployed at international borders and ports, which are not very sensitive to heavily shielded nuclear materials. We image small targets in 3D using $2\\times 2 \\times 2$ mm^3 voxels with a minimal muon tomography station prototype that tracks muons with Gas Electron Multiplier (GEM) detectors read out in 2D with x-y microstrips of 400 micron pitch. With preliminary electronics, the GEM detectors achieve a spatial resolution of 130 microns in both dimensions. With the next GEM-based prototype station we plan to probe an active volume of ~27 liters. We present first results on reading out all 1536 microstrips of a $30 \\times 30$ cm^2 GEM detector for the next muon tomography prototype with final frontend electronics and DAQ...

  9. Origin of a signal detected with the LSD detector after the accident at the chernobyl nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Agafonova, N. Yu., E-mail: natagafonova@gmail.com; Malgin, A. S., E-mail: malgin@lngs.infn.it [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation); Fulgione, W. [Istituto Nazionale di Fisica Nucleare, and Osservatorio Astrofisico di Torino, Istituto di Fisica dello Spazio Interplanetario (Italy)

    2013-08-15

    A rare signal was detected at 23:53 Moscow time on April 27, 1986 with the LSD low-background scintillation detector located under Mont Blanc at a distance of 1820 km from Chernobyl. To reveal the origin of this signal, we discuss the results obtained with other instruments operating within a similar program, as well as analyze the characteristics of the pulses of the signal and facts referring to the explosion of the Chernobyl reactor. A hypothesis based on detection with the LSD of gamma-quanta from {beta} decays of {sup 135}I nuclei ejected into atmosphere by the reactor explosion and carried in the underground detector camera with air of positive ventilation is considered. The explosion origin of the LSD signal indicates a new technogenic source of the background in the search for neutrino bursts from cores of collapsing stars.

  10. Setting Performance Objectives for Radiation Detection Systems in Homeland Security Applications - Economic Models

    International Nuclear Information System (INIS)

    Wood, Thomas W.; Bredt, Ofelia P.; Heasler, Patrick G.; Reichmuth, Barbara A.; Milazzo, Matthew D.

    2005-01-01

    This paper develops simple frameworks for cost minimization of detector systems by trading off the costs of failed detection against the social costs of false alarms. A workable system must have a high degree of certainty in detecting real threats and yet impose low social costs. The models developed here use standard measures of detector performance and derive target detection probabilities and false-alarm tolerance specifications as functions of detector performance, threat traffic densities, and estimated costs

  11. Setting Performance Objectives for Radiation Detection Systems in Homeland Security Applications - Economic Models

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Thomas W.; Bredt, Ofelia P.; Heasler, Patrick G.; Reichmuth, Barbara A.; Milazzo, Matthew D.

    2005-04-28

    This paper develops simple frameworks for cost minimization of detector systems by trading off the costs of failed detection against the social costs of false alarms. A workable system must have a high degree of certainty in detecting real threats and yet impose low social costs. The models developed here use standard measures of detector performance and derive target detection probabilities and false-alarm tolerance specifications as functions of detector performance, threat traffic densities, and estimated costs.

  12. Assessment of integrated solar ultraviolet radiation by PM-355 detectors

    International Nuclear Information System (INIS)

    Abu-Jarad, F.; Al-Jarallah, M.I.; Elhadidy, M.A.; Shaahid, S.M.; Fazal-ur-Rehman

    2000-01-01

    The increase in environmental solar UV radiation due to depletion of ozone layer is a recent challenge to human health (skin cancer and eye effects) in countries having clear skies. Therefore, applying integrated, passive and inexpensive techniques to assess solar UV radiation is very much essential. Measurements of environmental solar UV radiation in Dhahran, Saudi Arabia area were carried out for a period of two months in the summer period in 1996 using two techniques in parallel namely: passive nuclear track detectors and active solar UV radiometers. Some of the nuclear track detectors were mounted in different conditions such as: under shadow band, on solar tracking mechanism following the solar rays. Others were mounted on perpendicular, tilted and horizontal surfaces in sunlight. All detectors were attached to a wooden background of the same thickness (0.5 cm) to eliminate interference of the heat effect of various support materials and have uniformity of the support materials. The assessment was carried out for different periods extending from two to nine weeks continuously. The investigated period covered the hottest months in Saudi Arabia (July and August) when the sky was clear of clouds. The results indicate linear correlation between alpha track diameters and the integrated exposure to solar UV as measured by the solar UV radiometer for all nuclear track detector positions and orientations. The highest slope has been observed for the detectors placed on solar tracking mechanism following the solar rays and the lowest from detectors oriented under the shadow band on horizontal position (measuring the diffused UV radiation only). The results show that most of the measured UV radiation (60%) were from the diffused UV radiation. The characteristics of the upper layer of the detectors are changed after chemical etching very quickly, with increase in the exposure time to UV solar radiation at certain orientation. The results encourage the use of nuclear track

  13. Assessment of integrated solar ultraviolet radiation by PM-355 detectors

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F.; Al-Jarallah, M.I.; Elhadidy, M.A.; Shaahid, S.M.; Fazal-ur-Rehman

    2000-06-01

    The increase in environmental solar UV radiation due to depletion of ozone layer is a recent challenge to human health (skin cancer and eye effects) in countries having clear skies. Therefore, applying integrated, passive and inexpensive techniques to assess solar UV radiation is very much essential. Measurements of environmental solar UV radiation in Dhahran, Saudi Arabia area were carried out for a period of two months in the summer period in 1996 using two techniques in parallel namely: passive nuclear track detectors and active solar UV radiometers. Some of the nuclear track detectors were mounted in different conditions such as: under shadow band, on solar tracking mechanism following the solar rays. Others were mounted on perpendicular, tilted and horizontal surfaces in sunlight. All detectors were attached to a wooden background of the same thickness (0.5 cm) to eliminate interference of the heat effect of various support materials and have uniformity of the support materials. The assessment was carried out for different periods extending from two to nine weeks continuously. The investigated period covered the hottest months in Saudi Arabia (July and August) when the sky was clear of clouds. The results indicate linear correlation between alpha track diameters and the integrated exposure to solar UV as measured by the solar UV radiometer for all nuclear track detector positions and orientations. The highest slope has been observed for the detectors placed on solar tracking mechanism following the solar rays and the lowest from detectors oriented under the shadow band on horizontal position (measuring the diffused UV radiation only). The results show that most of the measured UV radiation (60%) were from the diffused UV radiation. The characteristics of the upper layer of the detectors are changed after chemical etching very quickly, with increase in the exposure time to UV solar radiation at certain orientation. The results encourage the use of nuclear track

  14. Penalized likelihood and multi-objective spatial scans for the detection and inference of irregular clusters

    Directory of Open Access Journals (Sweden)

    Fonseca Carlos M

    2010-10-01

    Full Text Available Abstract Background Irregularly shaped spatial clusters are difficult to delineate. A cluster found by an algorithm often spreads through large portions of the map, impacting its geographical meaning. Penalized likelihood methods for Kulldorff's spatial scan statistics have been used to control the excessive freedom of the shape of clusters. Penalty functions based on cluster geometry and non-connectivity have been proposed recently. Another approach involves the use of a multi-objective algorithm to maximize two objectives: the spatial scan statistics and the geometric penalty function. Results & Discussion We present a novel scan statistic algorithm employing a function based on the graph topology to penalize the presence of under-populated disconnection nodes in candidate clusters, the disconnection nodes cohesion function. A disconnection node is defined as a region within a cluster, such that its removal disconnects the cluster. By applying this function, the most geographically meaningful clusters are sifted through the immense set of possible irregularly shaped candidate cluster solutions. To evaluate the statistical significance of solutions for multi-objective scans, a statistical approach based on the concept of attainment function is used. In this paper we compared different penalized likelihoods employing the geometric and non-connectivity regularity functions and the novel disconnection nodes cohesion function. We also build multi-objective scans using those three functions and compare them with the previous penalized likelihood scans. An application is presented using comprehensive state-wide data for Chagas' disease in puerperal women in Minas Gerais state, Brazil. Conclusions We show that, compared to the other single-objective algorithms, multi-objective scans present better performance, regarding power, sensitivity and positive predicted value. The multi-objective non-connectivity scan is faster and better suited for the

  15. Detection of shallow buried objects using an autoregressive model on the ground penetrating radar signal

    Science.gov (United States)

    Nabelek, Daniel P.; Ho, K. C.

    2013-06-01

    The detection of shallow buried low-metal content objects using ground penetrating radar (GPR) is a challenging task. This is because these targets are right underneath the ground and the ground bounce reflection interferes with their detections. They do not create distinctive hyperbolic signatures as required by most existing GPR detection algorithms due to their special geometric shapes and low metal content. This paper proposes the use of the Autoregressive (AR) modeling method for the detection of these targets. We fit an A-scan of the GPR data to an AR model. It is found that the fitting error will be small when such a target is present and large when it is absent. The ratio of the energy in an Ascan before and after AR model fitting is used as the confidence value for detection. We also apply AR model fitting over scans and utilize the fitting residual energies over several scans to form a feature vector for improving the detections. Using the data collected from a government test site, the proposed method can improve the detection of this kind of targets by 30% compared to the pre-screener, at a false alarm rate of 0.002/m2.

  16. Development of Adaptive Tilt Tracker that Utilizes QUAD-cell Detector to Track Extended Objects

    Science.gov (United States)

    2014-03-17

    tracked low Earth orbit (LEO) object and atmospheric seeing govern spot characteristics. Unlike static natural or laser guide stars, a LEO object’s...image spot characteristics .......................................................... 101 56. Response for non-adaptive tilt tracker with α equal to...applications toward natural and laser guide stars. The system was innovative and is a relevant forerunner to the tracker proposed in this research. The

  17. Validation of Am-241 measurement in ion chamber type smoke detector by using gamma spectrometry system

    International Nuclear Information System (INIS)

    Yii Mei Wo; Khairul Nizam Razali

    2005-01-01

    Smoke detectors are useful devices in modern days that able to save many lives. Even though, the use of ion chamber type smoke detector (usually contain Americium-241) was exempted in Malaysia, but the trading of this device was controlled by regulation, under the Atomic Energy Licensing Act (Act 304). The activity of the Am-241 can be measured by using the Gamma Spectrometry System since it was much easier, compared to Alpha Spectrometry System. To do so, the system was first need to be calibrated using the standard reference source to find the efficiency of the germanium detector. The method used for the measurement was first validated for several relevant parameters, which include specificity, precision (repeatability), bias (accuracy), linearity, working range, detection limit, robustness and ruggedness to ensure it was fit for the purpose. The measured Am-241 activity inside the smoke detector will be reported together with a reasonable expanded uncertainty arise from the measurement. (Author)

  18. Foundations of computer vision computational geometry, visual image structures and object shape detection

    CERN Document Server

    Peters, James F

    2017-01-01

    This book introduces the fundamentals of computer vision (CV), with a focus on extracting useful information from digital images and videos. Including a wealth of methods used in detecting and classifying image objects and their shapes, it is the first book to apply a trio of tools (computational geometry, topology and algorithms) in solving CV problems, shape tracking in image object recognition and detecting the repetition of shapes in single images and video frames. Computational geometry provides a visualization of topological structures such as neighborhoods of points embedded in images, while image topology supplies us with structures useful in the analysis and classification of image regions. Algorithms provide a practical, step-by-step means of viewing image structures. The implementations of CV methods in Matlab and Mathematica, classification of chapter problems with the symbols (easily solved) and (challenging) and its extensive glossary of key words, examples and connections with the fabric of C...

  19. Evaluating fuzzy operators of an object-based image analysis for detecting landslides and their changes

    Science.gov (United States)

    Feizizadeh, Bakhtiar; Blaschke, Thomas; Tiede, Dirk; Moghaddam, Mohammad Hossein Rezaei

    2017-09-01

    This article presents a method of object-based image analysis (OBIA) for landslide delineation and landslide-related change detection from multi-temporal satellite images. It uses both spatial and spectral information on landslides, through spectral analysis, shape analysis, textural measurements using a gray-level co-occurrence matrix (GLCM), and fuzzy logic membership functionality. Following an initial segmentation step, particular combinations of various information layers were investigated to generate objects. This was achieved by applying multi-resolution segmentation to IRS-1D, SPOT-5, and ALOS satellite imagery in sequential steps of feature selection and object classification, and using slope and flow direction derivatives from a digital elevation model together with topographically-oriented gray level co-occurrence matrices. Fuzzy membership values were calculated for 11 different membership functions using 20 landslide objects from a landslide training data. Six fuzzy operators were used for the final classification and the accuracies of the resulting landslide maps were compared. A Fuzzy Synthetic Evaluation (FSE) approach was adapted for validation of the results and for an accuracy assessment using the landslide inventory database. The FSE approach revealed that the AND operator performed best with an accuracy of 93.87% for 2005 and 94.74% for 2011, closely followed by the MEAN Arithmetic operator, while the OR and AND (*) operators yielded relatively low accuracies. An object-based change detection was then applied to monitor landslide-related changes that occurred in northern Iran between 2005 and 2011. Knowledge rules to detect possible landslide-related changes were developed by evaluating all possible landslide-related objects for both time steps.

  20. Freezing of Gait Detection in Parkinson's Disease: A Subject-Independent Detector Using Anomaly Scores.

    Science.gov (United States)

    Pham, Thuy T; Moore, Steven T; Lewis, Simon John Geoffrey; Nguyen, Diep N; Dutkiewicz, Eryk; Fuglevand, Andrew J; McEwan, Alistair L; Leong, Philip H W

    2017-11-01

    Freezing of gait (FoG) is common in Parkinsonian gait and strongly relates to falls. Current clinical FoG assessments are patients' self-report diaries and experts' manual video analysis. Both are subjective and yield moderate reliability. Existing detection algorithms have been predominantly designed in subject-dependent settings. In this paper, we aim to develop an automated FoG detector for subject independent. After extracting highly relevant features, we apply anomaly detection techniques to detect FoG events. Specifically, feature selection is performed using correlation and clusterability metrics. From a list of 244 feature candidates, 36 candidates were selected using saliency and robustness criteria. We develop an anomaly score detector with adaptive thresholding to identify FoG events. Then, using accuracy metrics, we reduce the feature list to seven candidates. Our novel multichannel freezing index was the most selective across all window sizes, achieving sensitivity (specificity) of (). On the other hand, freezing index from the vertical axis was the best choice for a single input, achieving sensitivity (specificity) of () for ankle and () for back sensors. Our subject-independent method is not only significantly more accurate than those previously reported, but also uses a much smaller window (e.g., versus ) and/or lower tolerance (e.g., versus ).Freezing of gait (FoG) is common in Parkinsonian gait and strongly relates to falls. Current clinical FoG assessments are patients' self-report diaries and experts' manual video analysis. Both are subjective and yield moderate reliability. Existing detection algorithms have been predominantly designed in subject-dependent settings. In this paper, we aim to develop an automated FoG detector for subject independent. After extracting highly relevant features, we apply anomaly detection techniques to detect FoG events. Specifically, feature selection is performed using correlation and clusterability metrics. From

  1. Recognition and detection of seismic phases by artificial neural network detector; Jinko neural network ni yoru jishinha no ninshiki to kenshutsu

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, K; Wang, W [Tokyo Gakugei University, Tokyo (Japan)

    1997-05-27

    Initial parts of P-waves, medium or high in intensity, are detected using an artificial neural network (ANN). The ANN is the generic name given to information processing systems of the non-Neumann type configured to human brain in point of information processing function, and is packaged into computers in the form of software capable of parallel processing, self-organizing, learning, etc. In this paper, a hierarchical ANN-assisted seismic motion recognition system is constructed on the basis of an error reverse propagation algorithm. It is reported here, with a remark that this study wants much more data from tests for the evaluation of the quality of the recognition, that P-wave recognition has been achieved. When this technique is applied to the S-wave, much more real-time information will become available. For the improvement of the system, a number of problems have to be solved, including the establishment of automatic refurbishment through adaptation-and-learning and configuration that incorporates frequency-related matters. It is found that this system is effective in seismic wave phase recognition but that it is not suitable for precision measurement. 7 refs., 4 figs.

  2. Leak detector of liquid sodium

    International Nuclear Information System (INIS)

    Himeno, Yoshiaki.

    1975-01-01

    Object: To arrange a cable core connected to a leakage current detector on the outer wall of piping for liquid sodium, devices or the like and apply a voltage to said core and outer wall to quickly and securely detect the leakage of liquid sodium. Structure: A cable, which is composed of metal coating formed of metal material (copper, steel, stainless, etc.) which is apt to be corroded by reaction products of liquid sodium with water and oxygen in air, and metal oxide (such as magnesium oxide, beryllium oxide, aluminum oxide) as an electric insulator is arranged on the outer wall of pipes or devices. In the event sodium is leaked from the pipes or devices, said metal coating and the insulator are corroded, and the leakage of sodium is sensed by a leakage current detector through the core in the cable. (Kamimura, M.)

  3. Multi-Frame Convolutional Neural Networks for Object Detection in Temporal Data

    Science.gov (United States)

    2017-03-01

    of low-cost autonomous drones. The on-station time will no longer be dictated by human factors, but instead by the platforms’ capabilities. A...Imagine the task of detecting only moving cars but ignoring stationary cars . An object detector could probably do very well by looking for clues in a...single frame of video: cars in parking spots are usually stationary, moving cars may have a motion blur, and if it had an infrared sensor it could even

  4. Analysis of international intercomparisons results organized by Japan for integrating 222Rn-220Rn detectors

    International Nuclear Information System (INIS)

    Wu Yunyun; Cui Hongxing; Zhang Qingzhao; Shang Bing; Su Xu

    2012-01-01

    Objective: To guarantee the quality of measurements with the radon-thoron discriminative detectors of our laboratory. Methods: LD-P radon-thoron discriminative detector participated in the international intercomparison for integrating radon/thoron detectors organized by National Institute of Radiological Science (NIRS, Japan). Detectors were sent to NIRS for exposure. Radon intercomparison was conducted with radon chamber providing three levels of exposure: low, medium and high levels. Thoron intercomparison was carried out at thoron chamber, which also provided three levels of exposure: low, medium and high levels. Detectors were posted back to our laboratory for etching and analysis after exposure. Then the measured values were submitted to NIRS. Finally the reference values were informed of us. Results: The relative percent difference (RPD) between the measured value and the reference value for radon was -13.8%, -14.4% and -17.1% at low, medium and high levels respectively, and that of thoron were -14.4%, 8.9% and -3.2% at three levels respectively. Conclusions: Both radon and thoron measurement of our detectors rank as 'Category Ⅰ' in the 4th international intercomparisons for integrating radon/thoron detectors with the NIRS radon/thoron chambers. (authors)

  5. Gaschromatographic proof of nitrous oxide concentrations in air by means of radiation ionization detectors

    International Nuclear Information System (INIS)

    Popp, P.; Schoentube, E.; Oppermann, G.

    1985-01-01

    For the analysis of nitrous oxide concentrations at workplaces in operating theatres, gaschromatography is a particularly suitable method if it is possible to measure nitrous oxide concentrations in the ppm to ppb region. For this, most frequently used gaschromatographic detectors (flame ionization detector, thermal conductivity detector) are unsuitable, whereas radiation ionization detectors can be used successfully. The investigations using detectors designed at the Central Institute for Isotopes and Radiation Research of the GDR Academy of Sciences showed that a high-temperature electron-capture detector (ECD), working at a temperatur of 250 0 C, enables the determination of traces of nitrous oxide with a detection limit of about 200 ppb, while the helium detector has a limit of 50 ppb of nitrous oxide in room air. Since the helium detector requires extremely pure carrier gas, the high-temperature ECD appears more suitable for analyzing nitrous oxide. (author)

  6. Visual detection of gas shows from coal core and cuttings using liquid leak detector

    Energy Technology Data Exchange (ETDEWEB)

    Barker, C.E. [United States Geological Survey, Denver, CO (United States)

    2006-09-15

    Coal core descriptions are difficult to obtain, as they must be obtained immediately after the core is retrieved and before the core is closed in a canister. This paper described a method of marking gas shows on a core surface by coating the core with a water-based liquid leak detector and photographing the subsequent foam developed on the core surface while the core is still in the core tray. Coals from a borehole at the Yukon Flats Basin in Alaska and the Maverick Basin in Texas were used to illustrate the method. Drilling mud and debris were removed from the coal samples before the leak detector solution was applied onto the core surfaces. A white froth or dripping foam developed rapidly at gas shows on the sample surfaces. A hand-held lens and a binocular microscope were used to magnify the foaming action. It was noted that foaming was not continuous across the core surface, but was restricted to localized points along the surface. It was suggested that the localized point foaming may have resulted from the coring process. However, the same tendency toward point gas show across the sample surface was found in some hard, well-indurated samples that still had undisturbed bedding and other sedimentary structures. It was concluded that gas shows marked as separate foam centres may indicate a real condition of local permeability paths. Results suggested that the new gas show detection method could be used in core selection studies to reduce the costs of exploration programs. 6 refs., 4 figs.

  7. Long Baseline Stereovision for Automatic Detection and Ranging of Moving Objects in the Night Sky

    Directory of Open Access Journals (Sweden)

    Vlad Turcu

    2012-09-01

    Full Text Available As the number of objects in Earth’s atmosphere and in low Earth orbit is continuously increasing; accurate surveillance of these objects has become important. This paper presents a generic, low cost sky surveillance system based on stereovision. Two cameras are placed 37 km apart and synchronized by a GPS-controlled external signal. The intrinsic camera parameters are calibrated before setup in the observation position, the translation vectors are determined from the GPS coordinates and the rotation matrices are continuously estimated using an original automatic calibration methodology based on following known stars. The moving objects in the sky are recognized as line segments in the long exposure images, using an automatic detection and classification algorithm based on image processing. The stereo correspondence is based on the epipolar geometry and is performed automatically using the image detection results. The resulting experimental system is able to automatically detect moving objects such as planes, meteors and Low Earth Orbit satellites, and measure their 3D position in an Earth-bound coordinate system.

  8. Incrementally Detecting Change Types of Spatial Area Object: A Hierarchical Matching Method Considering Change Process

    Directory of Open Access Journals (Sweden)

    Yanhui Wang

    2018-01-01

    Full Text Available Detecting and extracting the change types of spatial area objects can track area objects’ spatiotemporal change pattern and provide the change backtracking mechanism for incrementally updating spatial datasets. To respond to the problems of high complexity of detection methods, high redundancy rate of detection factors, and the low automation degree during incrementally update process, we take into account the change process of area objects in an integrated way and propose a hierarchical matching method to detect the nine types of changes of area objects, while minimizing the complexity of the algorithm and the redundancy rate of detection factors. We illustrate in details the identification, extraction, and database entry of change types, and how we achieve a close connection and organic coupling of incremental information extraction and object type-of-change detection so as to characterize the whole change process. The experimental results show that this method can successfully detect incremental information about area objects in practical applications, with the overall accuracy reaching above 90%, which is much higher than the existing weighted matching method, making it quite feasible and applicable. It helps establish the corresponding relation between new-version and old-version objects, and facilitate the linked update processing and quality control of spatial data.

  9. Moonshine: Diurnally varying hydration through natural distillation on the Moon, detected by the Lunar Exploration Neutron Detector (LEND).

    Science.gov (United States)

    Livengood, T A; Chin, G; Sagdeev, R Z; Mitrofanov, I G; Boynton, W V; Evans, L G; Litvak, M L; McClanahan, T P; Sanin, A B; Starr, R D; Su, J J

    2015-07-15

    The Lunar Exploration Neutron Detector (LEND), on the polar-orbiting Lunar Reconnaissance Orbiter (LRO) spacecraft, has detected suppression in the Moon's naturally-occurring epithermal neutron leakage flux that is consistent with the presence of diurnally varying quantities of hydrogen in the regolith near the equator. Peak hydrogen concentration (neutron flux suppression) is on the dayside of the dawn terminator and diminishes through the dawn-to-noon sector. The minimum concentration of hydrogen is in the late afternoon and dusk sector. The chemical form of hydrogen is not determinable from these measurements, but other remote sensing methods and anticipated elemental availability suggest water molecules or hydroxyl ions. Signal-to-noise ratio at maximum contrast is 5.6 σ in each of two detector systems. Volatiles are deduced to collect in or on the cold nightside surface and distill out of the regolith after dawn as rotation exposes the surface to sunlight. Liberated volatiles migrate away from the warm subsolar region toward the nearby cold nightside surface beyond the terminator, resulting in maximum concentration at the dawn terminator. The peak concentration within the upper ~1 m of regolith is estimated to be 0.0125 ± 0.0022 weight-percent water-equivalent hydrogen (wt% WEH) at dawn, yielding an accumulation of 190 ± 30 ml recoverable water per square meter of regolith at each dawn. Volatile transport over the lunar surface in opposition to the Moon's rotation exposes molecules to solar ultraviolet radiation. The short lifetime against photolysis and permanent loss of hydrogen from the Moon requires a resupply rate that greatly exceeds anticipated delivery of hydrogen by solar wind implantation or by meteoroid impacts, suggesting that the surface inventory must be continually resupplied by release from a deep volatile inventory in the Moon. The natural distillation of water from the regolith by sunlight and its capture on the cold night surface may

  10. Graphene Field Effect Transistor-Based Detectors for Detection of Ionizing Radiation

    International Nuclear Information System (INIS)

    Jovanovic, Igor; Cazalas, Edward; Childres, I.; Patil, A.; Koybasi, O.; Chen, Y-P.

    2013-06-01

    We present the results of our recent efforts to develop novel ionizing radiation sensors based on the nano-material graphene. Graphene used in the field effect transistor architecture could be employed to detect the radiation-induced charge carriers produced in undoped semiconductor absorber substrates, even without the need for charge collection. The detection principle is based on the high sensitivity of graphene to ionization-induced local electric field perturbations in the electrically biased substrate. We experimentally demonstrated promising performance of graphene field effect transistors for detection of visible light, X-rays, gamma-rays, and alpha particles. We propose improved detector architectures which could result in a significant improvement of speed necessary for pulsed mode operation. (authors)

  11. Biosensor technology for the detection of illegal drugs I: objectives, preparatory work, and drug enrichment

    Science.gov (United States)

    Hilpert, Reinhold; Binder, Florian; Grol, Michael; Hallermayer, Klaus; Josel, Hans-Peter; Klein, Christian; Maier, Josef; Oberpriller, Helmut; Ritter, Josef; Scheller, Frieder W.

    1994-10-01

    In a joint project of Deutsche Aerospace, Boehringer Mannheim and the University of Potsdam portable devices for the detection of illegal drugs, based on biosensor technology, are being developed. The concept enrichment of the drug from the gas phase and detection by immunological means. This publication covers the description of our objectives, preparatory work and results concerning enrichment of drugs from the gas phase. Vapor pressures of cocaine and cannabinoids have been determined. A test gas generator has been constructed which allows for reproducible preparation of cocaine concentrations between 2 ng/l and 2 pg/l. Coupling of a thermodesorption unit with GC/MS has been established for reference analysis. As another analytical tool, an ELISA with a lower detection limit of about 0,5 pg cocaine/assay has been developed. Applying fleece-type adsorbers, enrichment factors for cocaine in the range of 105 have been realized. No significant interference was found with potentially disturbing substances.

  12. Objective evaluation of Tl-201 image efficacy for detection of myocardial infarction

    International Nuclear Information System (INIS)

    Nagai, Teruo; Murata, Kazuhiko; Torizuka, Kanji

    1982-01-01

    As the 3rd report of the objective analysis of radioactive 201 Tl scintigraphy of myocardial infarction, detection of infarction and extent of the lesion was discussed. In 114 cases with relatively definite findings, their images were rereaded and evaluated by 2 physicians. Segmental analysis in each direction was employed for localization of perfusion defects. Comparison between the sites of myocardial infarction on ECG and that of perfusion defects by segmental analysis revealed that, in infarction of the anterior wall, many segments showed defects, and that the lesions of the posterior and lateral wall had a few segments showing defects. This standard of correlation was applied to other cases of myocardial infarction, and the result suggested possible improvement in detection of infarction. As regards the extent of the lesion, no significant correlation between number of segments with defect and ECG and/or the serum enzyme levels were seen. (Ueda, J.)

  13. Algorithms for detection of objects in image sequences captured from an airborne imaging system

    Science.gov (United States)

    Kasturi, Rangachar; Camps, Octavia; Tang, Yuan-Liang; Devadiga, Sadashiva; Gandhi, Tarak

    1995-01-01

    This research was initiated as a part of the effort at the NASA Ames Research Center to design a computer vision based system that can enhance the safety of navigation by aiding the pilots in detecting various obstacles on the runway during critical section of the flight such as a landing maneuver. The primary goal is the development of algorithms for detection of moving objects from a sequence of images obtained from an on-board video camera. Image regions corresponding to the independently moving objects are segmented from the background by applying constraint filtering on the optical flow computed from the initial few frames of the sequence. These detected regions are tracked over subsequent frames using a model based tracking algorithm. Position and velocity of the moving objects in the world coordinate is estimated using an extended Kalman filter. The algorithms are tested using the NASA line image sequence with six static trucks and a simulated moving truck and experimental results are described. Various limitations of the currently implemented version of the above algorithm are identified and possible solutions to build a practical working system are investigated.

  14. Electron ECHO 6: a study by particle detectors of electrons artificially injected into the magnetosphere

    International Nuclear Information System (INIS)

    Malcolm, P.R.

    1986-01-01

    The ECHO-6 sounding rocket was launched from the Poke Flat Research Range, Alaska on 30 March 1983. A Terrier-Black Brant launch vehicle carried the payload on a northward trajectory over an auroral arc and to an apogee of 216 kilometers. The primary objective of the ECHO-6 experiment was to evaluate electric fields, magnetic fields, and plasma processes in the distant magnetosphere by injecting electron beams in the ionosphere and observing conjugate echoes. The experiment succeeded in injection 10-36 keV beams during the existence of a moderate growth-phase aurora, an easterly electrojet system, and a pre-midnight inflation condition of the magnetosphere. The ECHO-6 payload system consisted of an accelerator MAIN payload, a free-flying Plasma Diagnostics Package (PDP), and four rocket-propelled Throw Away Detectors (TADs). The PDP was ejected from the MAIN payload to analyze electric fields, plasma particles, energetic electrons, and photometric effects produced by beam injections. The TADs were ejected from the MAIN payload in a pattern to detect echoes in the conjugate echo region south of the beam-emitting MAIN payload. The TADs reached distances exceeding 3 kilometers from the MAIN payload and made measurements of the ambient electrons by means of solid-state detectors and electrostatic analyzers

  15. Theoretical analysis of the effect of charge-sharing on the Detective Quantum Efficiency of single-photon counting segmented silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Marchal, J [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)], E-mail: julien.marchal@diamond.ac.uk

    2010-01-15

    A detector cascaded model is proposed to describe charge-sharing effect in single-photon counting segmented silicon detectors. Linear system theory is applied to this cascaded model in order to derive detector performance parameters such as large-area gain, presampling Modulation Transfer Function (MTF), Noise Power Spectrum (NPS) and Detective Quantum Efficiency (DQE) as a function of energy detection threshold. This theory is used to model one-dimensional detectors (i.e. strip detectors) where X-ray-generated charge can be shared between two sampling elements, but the concepts developed in this article can be generalized to two-dimensional arrays of detecting elements (i.e. pixels detectors). The zero-frequency DQE derived from this model is consistent with expressions reported in the literature using a different method. The ability of this model to simulate the effect of charge sharing on image quality in the spatial frequency domain is demonstrated by applying it to a hypothetical one-dimensional single-photon counting detector illuminated with a typical mammography spectrum.

  16. Detection of fission fragments and alpha particles using the solid trace detector CR-39

    International Nuclear Information System (INIS)

    Santos, R.C.

    1988-01-01

    The technique of detecting charged particles using the solid track detector CR-39 is employed to establish some characteristics of fission fragments and alpha particles emitted from a Cf-252 source. Results are presented and discussed on the following aspects i) distribution of the track diameters; ii) variations on the track diameters to the chemical attack; iii) variations of the chemical attack velocity with respect to concentration and temperature. iv) activation energy of the developping process; v) induction time; vi) critical angle and efficiency on track developping. (A.C.A.S.) [pt

  17. An object cue is more effective than a word in ERP-based detection of deception.

    Science.gov (United States)

    Cutmore, Tim R H; Djakovic, Tatjana; Kebbell, Mark R; Shum, David H K

    2009-03-01

    Recent studies of deception have used a form of the guilty knowledge test along with the oddball P300 event-related potential (ERP) to uncover hidden memories. These studies typically have used words as the cuing stimuli. In the present study, a mock crime was enacted by participants to prime their episodic memory and different memory cue types (Words, Pictures of Objects and Faces) were created to investigate their relative efficacy in identifying guilt. A peak-to peak (p-p) P300 response was computed for rare known non-guilty item (target), rare guilty knowledge item (probe) and frequently presented unknown items (irrelevant). Difference in this P300 measure between the probe and irrelevant was the key dependent variable. Object cues were found to be the most effective, particularly at the parietal site. A bootstrap procedure commonly used to detect deception in individual participants by comparing their probe and irrelevant P300 p-p showed the object cues to provide the best discrimination. Furthermore, using all three of the cue types together provided high detection accuracy (94%). These results confirm prior findings on the utility of ERPs for detecting deception. More importantly, they provide support for the hypothesis that direct cueing with a picture of the crime object may be more effective than using a word (consistent with the picture superiority effect reported in the literature). Finally, a face cue (e.g., crime victim) may also provide a useful probe for detection of guilty knowledge but this stimulus form needs to be chosen with due caution.

  18. Detection of low-energy antinuclei in space using an active-target particle detector

    Energy Technology Data Exchange (ETDEWEB)

    Poeschl, Thomas; Greenwald, Daniel; Konorov, Igor; Paul, Stephan [Physics Department E18, Technische Universitaet Muenchen (Germany); Losekamm, Martin [Physics Department E18, Technische Universitaet Muenchen (Germany); Institute of Astronautics, Technische Universitaet Muenchen (Germany)

    2015-07-01

    Measuring antimatter in space excellently probes various astrophysical processes. The abundances and energy spectra of antiparticles reveal a lot about the creation and propagation of cosmic-ray particles in the universe. Abnormalities in their spectra can reveal exotic sources or inaccuracies in our understanding of the involved processes. The measurement of antiprotons and the search for antideuterons and antihelium are optimal at low kinetic energies since background from high-energy cosmic-ray collisions is low. For this reason, we are developing an active-target particle detector capable of detecting ions and anti-ions in the energy range of 30-100 MeV per nucleon. The detector consists of 900 scintillating fibers coupled to silicon photomultipliers and is designed to operate on nanosatellites. The primary application of the detector will be the Antiproton Flux in Space (AFIS) mission, whose goal is the measurement of geomagnetically trapped antiprotons inside Earth's inner radiation belt. In this talk, we explain our particle identification technique and present results from first in-beam measurements with a prototype.

  19. Detection of explosive remnants of war by neutron thermalisation

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, F.D., E-mail: frank.brooks@uct.ac.za [Department of Physics, University of Cape Town, Rondebosch 7701 (South Africa); Drosg, M. [Faculty of Physics, University of Vienna, Wien A-1090 (Austria); Smit, F.D.; Wikner, C. [iThemba Laboratory for Accelerator-Based Sciences, Somerset West 7129 (South Africa)

    2012-01-15

    The HYDAD-D landmine detector () has been modified and field-tested for 17 months in a variety of soil conditions. Test objects containing about the same mass of hydrogen (20 g) as small explosive remnants of war, such as antipersonnel landmines, were detected with efficiency 100% when buried at cover depths up to 10 cm. The false alarm rate under the same conditions was 9%. Plots of detection efficiency versus false alarm rate are presented. - Highlights: Black-Right-Pointing-Pointer A new version of the HYDAD-D antipersonnel landmine detector is described. Black-Right-Pointing-Pointer Field tests were carried out for 17 months under different conditions. Black-Right-Pointing-Pointer Dummy antipersonnel mines were detected with 100% efficiency at cover depths up to 10 cm. Black-Right-Pointing-Pointer Results are presented as plots of landmine detection efficiency versus false alarm rate.

  20. Measurement of fission track of uranium particle by solid state nuclear track detector

    International Nuclear Information System (INIS)

    Son, S. C.; Pyo, H. W.; Ji, K. Y.; Kim, W. H.

    2002-01-01

    In this study, we discussed results of the measurement of fission tracks for the uranium containing particles by solid state nuclear track detector. Uranium containing silica and uranium oxide particles were prepared by uranium sorption onto silica powder in weak acidic medium and laser ablation on uranium pellet, respectively. Fission tracks for the uranium containing silica and uranium oxide particles were detected on Lexan plastic detector. It was found that the fission track size and shapes depend on the particle size uranium content in particles. Correlation of uranium particle diameter with fission track radius was also discussed

  1. Radiation detectors based by polymer materials

    International Nuclear Information System (INIS)

    Cherestes, Margareta; Cherestes, Codrut; Constantinescu, Livia

    2004-01-01

    Scintillation counters make use of the property of certain chemical compounds to emit short light pulses after excitation produced by the passage of charged particles or photons of high energy. These flashes of light are detected by a photomultiplier tube that converts the photons into a voltage pulse. The light emitted from the detector also can be collected, focussed and dispersed by a CCD detector. The study of the evolution of the light emission and of the radiation damage under irradiation is a primary topic in the development of radiation hard polymer based scintillator. Polymer scintillator thin films are used in monitoring radiation beam intensities and simultaneous counting of different radiations. Radiation detectors have characteristics which depend on: the type of radiation, the energy of radiation, and the material of the detector. Three types of polymer thin films were studied: a polyvinyltoluene based scintillator, fluorinated polyimide and PMMA. (authors)

  2. Neutron Detection at JET Using Artificial Diamond Detectors

    International Nuclear Information System (INIS)

    Pillon, M.; Angelone, M.; Lattanzi, D.; Milani, E.; Tucciarone, A.; Verona-Rinati, G.; Popovichev, S.; Murari, A.

    2006-01-01

    Three CVD diamond detectors are installed and operated at Joint European Torus, Culham laboratory. Diamond detectors are very promising detectors to be used in fusion environment due to their radiation hardness, gamma discrimination properties, fast response and spectroscopy properties. The aim of this work is to test and qualify artificial diamond detectors as neutron counters and spectrometers on a large fusion device. Two of these detectors are polycrystalline CVD diamond films of thickness 30 mm and 40 mm respectively while the third detector is a monocrystalline CVD of 110 mm thickness. The first polycrystalline diamond is covered with 4 mm of LiF 95 % enriched in 6 Li and enclosed inside a polyethylene moderator cap. This detector is used with a standard electronic chain made with a charge preamplifier, shaping amplifier and threshold discriminator. It is used to measure the time-dependent total neutron yield produced by JET plasma and its signal is compared with JET fission chambers. The second polycrystalline diamond is connected with a fast (1 GHz) preamplifier and a threshold discriminator via a long (about 100 m) double screened cable. This detector is used to detect the 14 MeV neutrons produced by triton burn-up using the reaction 12 C (n, α) 9 Be which occurs in diamond and a proper discriminator threshold. The response of this detector is fast and the electronic is far from the high radiation environment. Its signal is used in comparison with JET silicon diodes. The third monocrystalline diamond is also connected using a standard electronic and is used to demonstrate the feasibility of 14 MeV neutron spectrometry at about 3% peak resolution taking advantage of the spectrometer properties of monocrystalline diamonds. The results obtained are presented in this work. (author)

  3. Detecting potential ship objects from satellite pictures

    International Nuclear Information System (INIS)

    Luo, B.; Yang, C.C.; Chang, S.K.; Yang, M.C.K.

    1984-01-01

    Heuristic techniques are presented to detect potential ship objects from satellite pictures. These techniques utilize some noise structures of the pixel gray levels, and certain inherent features of a ship in a satellite picture. The scheme has been implemented and successfully tested on SEASAT satellite pictures. A general approach for database-oriented object detection is also suggested

  4. Development and simulation of a Ge/Si multi-detector spectrometer for fission products traces detection in the environment

    International Nuclear Information System (INIS)

    Cagniant, Antoine

    2015-01-01

    For the verification of the Comprehensive nuclear Test Ban Treaty (CTBT), the measurement of fission products trace levels in the environment is fundamental. Such measurement is a key indicator of a nuclear explosion. For constant amelioration of these measurements, the CEA/DAM-Ile de France has developed and installed a new dedicated surface spectrometer. Named GAMMA3, it is equipped with three germanium detectors, two silicon detectors (integrated in a dedicated gas cell, the PIPSBox) and includes an optimized shielding.This shielding reduces greatly the interference of environmental photons, muons and neutrons with the detectors. The residual radiological background measured inside the shielding is the community's lowest for a surface laboratory. This set of high energy resolution detectors allows the operator to optimize a measurement according to the sample geometry, activity or nature. More precisely, a radioactive noble gas can be measured by photon/electron coincidence, an active sample can be measured by photon/photon coincidence, and a low-active sample can be measured in a high-efficiency configuration. Combining optimized shielding and optimized measurement, Minimum Detectable Activities required for CTBT certification are obtained quickly. Specifically, MDA is reached in 5 hours for 140-Ba (24 mBq), in 6h30 hours for 131m/133m-Xe (5 mBq) and in 7h15 for 133-Xe (5 mBq), when CTBT requirement is in 6 days. (author) [fr

  5. Detection of corrosion by a radiometric technique

    International Nuclear Information System (INIS)

    Charlton, J.S.; Ross, J.F.

    1975-01-01

    A method is described for the detection and measurement of corrosion in metal tube bundles using a radioisotope technique. The method is stated to be accurate and quick, and dismantling is unnecessary. A radioactive source is inserted into one of the tubes of the bundle and radiation detectors are inserted into the remainder of the tubes, which may be up to six in number with the apparatus described. The radiation absorption by the walls of each pair of tubes is compared with a standard measurement representing a known thickness of the material of the tubes. Simultaneous measurements may be made. Suitable apparatus is described in detail. (U.K.)

  6. Detecting objects in radiographs for homeland security

    Science.gov (United States)

    Prasad, Lakshman; Snyder, Hans

    2005-05-01

    We present a general scheme for segmenting a radiographic image into polygons that correspond to visual features. This decomposition provides a vectorized representation that is a high-level description of the image. The polygons correspond to objects or object parts present in the image. This characterization of radiographs allows the direct application of several shape recognition algorithms to identify objects. In this paper we describe the use of constrained Delaunay triangulations as a uniform foundational tool to achieve multiple visual tasks, namely image segmentation, shape decomposition, and parts-based shape matching. Shape decomposition yields parts that serve as tokens representing local shape characteristics. Parts-based shape matching enables the recognition of objects in the presence of occlusions, which commonly occur in radiographs. The polygonal representation of image features affords the efficient design and application of sophisticated geometric filtering methods to detect large-scale structural properties of objects in images. Finally, the representation of radiographs via polygons results in significant reduction of image file sizes and permits the scalable graphical representation of images, along with annotations of detected objects, in the SVG (scalable vector graphics) format that is proposed by the world wide web consortium (W3C). This is a textual representation that can be compressed and encrypted for efficient and secure transmission of information over wireless channels and on the Internet. In particular, our methods described here provide an algorithmic framework for developing image analysis tools for screening cargo at ports of entry for homeland security.

  7. Polarization of silicon detectors by minimum ionizing particles

    CERN Document Server

    Dezillie, B; Li, Z; Verbitskaya, E

    2000-01-01

    This work presents quantitative predictions of the properties of highly irradiated (e.g. by high-energy particles, up to an equivalent fluence of 1x10 sup 1 sup 4 n cm sup - sup 2) silicon detectors operating at cryogenic temperature. It is shown that the exposure to the Minimum Ionising Particle (MIP) with counting rates of about 10 sup 6 cm sup - sup 2 s sup - sup 1 can influence the electric field distribution in the detector's sensitive volume. This change in the electric field distribution and its effect on the charge collection efficiency are discussed in the frame of a model based on trapping of carriers generated by MIPs. The experiment was performed at 87 K with an infrared (1030 nm) laser to simulate MIPs.

  8. The modulation of inhibition of return by object-internal structure: implications for theories of object-based attentional selection.

    Science.gov (United States)

    Reppa, Irene; Leek, E Charles

    2003-06-01

    Recently, Vecera, Behrmann, and McGoldrick (2000), using a divided-attention task, reported that targets are detected more accurately when they occur on the same structural part of an object, suggesting that attention can be directed toward object-internal features. We present converging evidence using the object-based inhibition of return (IOR) paradigm as an implicit measure of selection. The results show that IOR is attenuated when cues and targets appear on the same part of an object relative to when they are separated by a part boundary. These findings suggest that object-based mechanisms of selection can operate over shape representations that make explicit information about object-internal structure.

  9. Bi-variate statistical attribute filtering : A tool for robust detection of faint objects

    NARCIS (Netherlands)

    Teeninga, Paul; Moschini, Ugo; Trager, Scott C.; Wilkinson, M.H.F.

    2013-01-01

    We present a new method for morphological connected attribute filtering for object detection in astronomical images. In this approach, a threshold is set on one attribute (power), based on its distribution due to noise, as a function of object area. The results show an order of magnitude higher

  10. Objective measures for detecting the auditory brainstem response: comparisons of specificity, sensitivity and detection time

    DEFF Research Database (Denmark)

    Chesnaye, M. A.; Bell, S. L.; Harte, J. M.

    2018-01-01

    of the Hotelling's T-2 test (applied in either time or frequency domain), two versions of the modified q-sample uniform scores test and both the Fsp and Fmp, which were evaluated using both conventional F-distributions with assumed degrees of freedom and a bootstrap approach. Study sample: Data consisted of click......-level when evaluating statistical significance using the bootstrap approach, as opposed to using conventional F-distributions. The FPRs of the remaining methods were slightly higher than expected. Conclusions: In this work, Hotelling's T-2 outperformed the alternative methods for automatically detecting ABRs......-evoked ABRs and recordings of EEG background activity from 12 to 17 normal hearing adults, respectively. Results: An overall advantage in sensitivity and detection time was demonstrated for the Hotelling's T-2 test. The false-positive rates (FPRs) of the Fsp and Fmp were also closer to the nominal alpha...

  11. Psychophysical evaluation of the image quality of a dynamic flat-panel digital x-ray image detector using the threshold contrast detail detectability (TCDD) technique

    Science.gov (United States)

    Davies, Andrew G.; Cowen, Arnold R.; Bruijns, Tom J. C.

    1999-05-01

    We are currently in an era of active development of the digital X-ray imaging detectors that will serve the radiological communities in the new millennium. The rigorous comparative physical evaluations of such devices are therefore becoming increasingly important from both the technical and clinical perspectives. The authors have been actively involved in the evaluation of a clinical demonstration version of a flat-panel dynamic digital X-ray image detector (or FDXD). Results of objective physical evaluation of this device have been presented elsewhere at this conference. The imaging performance of FDXD under radiographic exposure conditions have been previously reported, and in this paper a psychophysical evaluation of the FDXD detector operating under continuous fluoroscopic conditions is presented. The evaluation technique employed was the threshold contrast detail detectability (TCDD) technique, which enables image quality to be measured on devices operating in the clinical environment. This approach addresses image quality in the context of both the image acquisition and display processes, and uses human observers to measure performance. The Leeds test objects TO[10] and TO[10+] were used to obtain comparative measurements of performance on the FDXD and two digital spot fluorography (DSF) systems, one utilizing a Plumbicon camera and the other a state of the art CCD camera. Measurements were taken at a range of detector entrance exposure rates, namely 6, 12, 25 and 50 (mu) R/s. In order to facilitate comparisons between the systems, all fluoroscopic image processing such as noise reduction algorithms, were disabled during the experiments. At the highest dose rate FDXD significantly outperformed the DSF comparison systems in the TCDD comparisons. At 25 and 12 (mu) R/s all three-systems performed in an equivalent manner and at the lowest exposure rate FDXD was inferior to the two DSF systems. At standard fluoroscopic exposures, FDXD performed in an equivalent

  12. The detection of temporally defined objects does not require focused attention.

    NARCIS (Netherlands)

    Pinto, Y.; Olivers, C.N.L.; Theeuwes, J.

    2008-01-01

    Perceptual grouping is crucial to distinguish objects from their background. Recent studies have shown that observers can detect an object that does not have any unique qualities other than unique temporal properties. A crucial question is whether focused attention is needed for this type of

  13. Real-time detection of natural objects using AM-coded spectral matching imager

    Science.gov (United States)

    Kimachi, Akira

    2005-01-01

    This paper describes application of the amplitude-modulation (AM)-coded spectral matching imager (SMI) to real-time detection of natural objects such as human beings, animals, vegetables, or geological objects or phenomena, which are much more liable to change with time than artificial products while often exhibiting characteristic spectral functions associated with some specific activity states. The AM-SMI produces correlation between spectral functions of the object and a reference at each pixel of the correlation image sensor (CIS) in every frame, based on orthogonal amplitude modulation (AM) of each spectral channel and simultaneous demodulation of all channels on the CIS. This principle makes the SMI suitable to monitoring dynamic behavior of natural objects in real-time by looking at a particular spectral reflectance or transmittance function. A twelve-channel multispectral light source was developed with improved spatial uniformity of spectral irradiance compared to a previous one. Experimental results of spectral matching imaging of human skin and vegetable leaves are demonstrated, as well as a preliminary feasibility test of imaging a reflective object using a test color chart.

  14. Object detection based on improved color and scale invariant features

    Science.gov (United States)

    Chen, Mengyang; Men, Aidong; Fan, Peng; Yang, Bo

    2009-10-01

    A novel object detection method which combines color and scale invariant features is presented in this paper. The detection system mainly adopts the widely used framework of SIFT (Scale Invariant Feature Transform), which consists of both a keypoint detector and descriptor. Although SIFT has some impressive advantages, it is not only computationally expensive, but also vulnerable to color images. To overcome these drawbacks, we employ the local color kernel histograms and Haar Wavelet Responses to enhance the descriptor's distinctiveness and computational efficiency. Extensive experimental evaluations show that the method has better robustness and lower computation costs.

  15. Underwater Cylindrical Object Detection Using the Spectral Features of Active Sonar Signals with Logistic Regression Models

    Directory of Open Access Journals (Sweden)

    Yoojeong Seo

    2018-01-01

    Full Text Available The issue of detecting objects bottoming on the sea floor is significant in various fields including civilian and military areas. The objective of this study is to investigate the logistic regression model to discriminate the target from the clutter and to verify the possibility of applying the model trained by the simulated data generated by the mathematical model to the real experimental data because it is not easy to obtain sufficient data in the underwater field. In the first stage of this study, when the clutter signal energy is so strong that the detection of a target is difficult, the logistic regression model is employed to distinguish the strong clutter signal and the target signal. Previous studies have found that if the clutter energy is larger, false detection occurs even for the various existing detection schemes. For this reason, the discrete Fourier transform (DFT magnitude spectrum of acoustic signals received by active sonar is applied to train the model to distinguish whether the received signal contains a target signal or not. The goodness of fit of the model is verified in terms of receiver operation characteristic (ROC, area under ROC curve (AUC, and classification table. The detection performance of the proposed model is evaluated in terms of detection rate according to target to clutter ratio (TCR. Furthermore, the real experimental data are employed to test the proposed approach. When using the experimental data to test the model, the logistic regression model is trained by the simulated data that are generated based on the mathematical model for the backscattering of the cylindrical object. The mathematical model is developed according to the size of the cylinder used in the experiment. Since the information on the experimental environment including the sound speed, the sediment type and such is not available, once simulated data are generated under various conditions, valid simulated data are selected using 70% of the

  16. Detecting neutrons by forward recoil protons at the Energy & Transmutation facility: Detector development and calibration with 14.1-MeV neutrons

    Science.gov (United States)

    Afanasev, S.; Vishnevskiy, A.; Vishnevskiy, D.; Rogachev, A.; Tyutyunnikov, S.

    2017-05-01

    As part of the Energy & Transmutation project, we are developing a detector for neutrons with energies in the 10-100 MeV range emitted from the target irradiated by a charged-particle beam. The neutron is detected by measuring the time-of-flight and total kinetic energy of the forward-going recoil proton [1] knocked out at a small angle from a thin layer of plastic scintillator, which has to be selected against an intense background created by γ quanta, scattered neutrons, and charged particles. On the other hand, neutron energy has to be measured over the full range with no extra tuning of the detector operation regime. Initial measurements with a source of 14.1-MeV neutrons are reported.

  17. Kepler Planet Detection Metrics: Automatic Detection of Background Objects Using the Centroid Robovetter

    Science.gov (United States)

    Mullally, Fergal

    2017-01-01

    We present an automated method of identifying background eclipsing binaries masquerading as planet candidates in the Kepler planet candidate catalogs. We codify the manual vetting process for Kepler Objects of Interest (KOIs) described in Bryson et al. (2013) with a series of measurements and tests that can be performed algorithmically. We compare our automated results with a sample of manually vetted KOIs from the catalog of Burke et al. (2014) and find excellent agreement. We test the performance on a set of simulated transits and find our algorithm correctly identifies simulated false positives approximately 50 of the time, and correctly identifies 99 of simulated planet candidates.

  18. Salient Point Detection in Protrusion Parts of 3D Object Robust to Isometric Variations

    Science.gov (United States)

    Mirloo, Mahsa; Ebrahimnezhad, Hosein

    2018-03-01

    In this paper, a novel method is proposed to detect 3D object salient points robust to isometric variations and stable against scaling and noise. Salient points can be used as the representative points from object protrusion parts in order to improve the object matching and retrieval algorithms. The proposed algorithm is started by determining the first salient point of the model based on the average geodesic distance of several random points. Then, according to the previous salient point, a new point is added to this set of points in each iteration. By adding every salient point, decision function is updated. Hence, a condition is created for selecting the next point in which the iterative point is not extracted from the same protrusion part so that drawing out of a representative point from every protrusion part is guaranteed. This method is stable against model variations with isometric transformations, scaling, and noise with different levels of strength due to using a feature robust to isometric variations and considering the relation between the salient points. In addition, the number of points used in averaging process is decreased in this method, which leads to lower computational complexity in comparison with the other salient point detection algorithms.

  19. GPR Detection of Buried Symmetrically Shaped Mine-like Objects using Selective Independent Component Analysis

    DEFF Research Database (Denmark)

    Karlsen, Brian; Sørensen, Helge Bjarup Dissing; Larsen, Jan

    2003-01-01

    from small-scale anti-personal (AP) mines to large-scale anti-tank (AT) mines were designed. Large-scale SF-GPR measurements on this series of mine-like objects buried in soil were performed. The SF-GPR data was acquired using a wideband monostatic bow-tie antenna operating in the frequency range 750......This paper addresses the detection of mine-like objects in stepped-frequency ground penetrating radar (SF-GPR) data as a function of object size, object content, and burial depth. The detection approach is based on a Selective Independent Component Analysis (SICA). SICA provides an automatic...... ranking of components, which enables the suppression of clutter, hence extraction of components carrying mine information. The goal of the investigation is to evaluate various time and frequency domain ICA approaches based on SICA. Performance comparison is based on a series of mine-like objects ranging...

  20. Analysis of painted arts by energy sensitive radiographic techniques with the Pixel Detector Timepix

    International Nuclear Information System (INIS)

    Zemlicka, J; Jakubek, J; Kroupa, M; Hradil, D; Hradilova, J; Mislerova, H

    2011-01-01

    Non-invasive techniques utilizing X-ray radiation offer a significant advantage in scientific investigations of painted arts and other cultural artefacts such as painted artworks or statues. In addition, there is also great demand for a mobile analytical and real-time imaging device given the fact that many fine arts cannot be transported. The highly sensitive hybrid semiconductor pixel detector, Timepix, is capable of detecting and resolving subtle and low-contrast differences in the inner composition of a wide variety of objects. Moreover, it is able to map the surface distribution of the contained elements. Several transmission and emission techniques are presented which have been proposed and tested for the analysis of painted artworks. This study focuses on the novel techniques of X-ray transmission radiography (conventional and energy sensitive) and X-ray induced fluorescence imaging (XRF) which can be realised at the table-top scale with the state-of-the-art pixel detector Timepix. Transmission radiography analyses the changes in the X-ray beam intensity caused by specific attenuation of different components in the sample. The conventional approach uses all energies from the source spectrum for the creation of the image while the energy sensitive alternative creates images in given energy intervals which enable identification and separation of materials. The XRF setup is based on the detection of characteristic radiation induced by X-ray photons through a pinhole geometry collimator. The XRF method is extremely sensitive to the material composition but it creates only surface maps of the elemental distribution. For the purpose of the analysis several sets of painted layers have been prepared in a restoration laboratory. The composition of these layers corresponds to those of real historical paintings from the 19 th century. An overview of the current status of our methods will be given with respect to the instrumentation and the application in the field of

  1. Analysis of painted arts by energy sensitive radiographic techniques with the Pixel Detector Timepix

    Energy Technology Data Exchange (ETDEWEB)

    Zemlicka, J; Jakubek, J; Kroupa, M [Institute of Experimental and Applied Physics, Czech Technical University Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Hradil, D [Institute of Inorganic Chemistry, AS CR, v.v.i., ALMA, 50 68 Husinec-Oeez (Czech Republic); Hradilova, J; Mislerova, H, E-mail: jan.zemlicka@utef.cvut.cz [Academy of Fine Arts in Prague, ALMA, U Akademie 4, 170 2, Prague 7 (Czech Republic)

    2011-01-15

    Non-invasive techniques utilizing X-ray radiation offer a significant advantage in scientific investigations of painted arts and other cultural artefacts such as painted artworks or statues. In addition, there is also great demand for a mobile analytical and real-time imaging device given the fact that many fine arts cannot be transported. The highly sensitive hybrid semiconductor pixel detector, Timepix, is capable of detecting and resolving subtle and low-contrast differences in the inner composition of a wide variety of objects. Moreover, it is able to map the surface distribution of the contained elements. Several transmission and emission techniques are presented which have been proposed and tested for the analysis of painted artworks. This study focuses on the novel techniques of X-ray transmission radiography (conventional and energy sensitive) and X-ray induced fluorescence imaging (XRF) which can be realised at the table-top scale with the state-of-the-art pixel detector Timepix. Transmission radiography analyses the changes in the X-ray beam intensity caused by specific attenuation of different components in the sample. The conventional approach uses all energies from the source spectrum for the creation of the image while the energy sensitive alternative creates images in given energy intervals which enable identification and separation of materials. The XRF setup is based on the detection of characteristic radiation induced by X-ray photons through a pinhole geometry collimator. The XRF method is extremely sensitive to the material composition but it creates only surface maps of the elemental distribution. For the purpose of the analysis several sets of painted layers have been prepared in a restoration laboratory. The composition of these layers corresponds to those of real historical paintings from the 19{sup th} century. An overview of the current status of our methods will be given with respect to the instrumentation and the application in the field

  2. Object detection and tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Tian J.

    2017-05-30

    Methods and apparatuses for analyzing a sequence of images for an object are disclosed herein. In a general embodiment, the method identifies a region of interest in the sequence of images. The object is likely to move within the region of interest. The method divides the region of interest in the sequence of images into sections and calculates signal-to-noise ratios for a section in the sections. A signal-to-noise ratio for the section is calculated using the section in the image, a prior section in a prior image to the image, and a subsequent section in a subsequent image to the image. The signal-to-noise ratios are for potential velocities of the object in the section. The method also selects a velocity from the potential velocities for the object in the section using a potential velocity in the potential velocities having a highest signal-to-noise ratio in the signal-to-noise ratios.

  3. Neutron spectrometry by means of threshold detectors - Neutron spectrometry by means of activation detectors. Studies of the method of approximation by polygonal function. Application to dose determination

    International Nuclear Information System (INIS)

    Bricka, M.

    1962-03-01

    This report addresses the problem of determination of neutron spectrum by using a set of detectors. The spectrum approximation method based on a polygonal function is more particularly studied. The author shows that the coefficients of the usual mathematical model can be simply formulated and assessed. The study of spectra approximation by a polygonal function shows that dose can be expressed by a linear function of the activity of the different detectors [fr

  4. Asymmetry of characteristic X-ray peaks obtained by a Si(Li) detector

    Energy Technology Data Exchange (ETDEWEB)

    Visnovezky, Claudia [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000, Cordoba (Argentina)], E-mail: cavy3@hotmail.com; Limandri, Silvina [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000, Cordoba (Argentina)], E-mail: silvilimandri@hotmail.com; Canafoglia, Maria Elena [Centro de Investigacion y Desarrollo en Ciencias Aplicadas Dr. Jorge Ronco, Calle 47 No 257, 1900 La Plata, Argentina, Facultad de Ciencias Exactas y Facultad de Ingenieria de la UNLP, La Plata (Argentina); Bonetto, Rita [Centro de Investigacion y Desarrollo en Ciencias Aplicadas Dr. Jorge Ronco, Calle 47 No 257, 1900 La Plata, Argentina, Facultad de Ciencias Exactas y Facultad de Ingenieria de la UNLP, La Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas de la Republica Argentina (Argentina)], E-mail: bonetto@quimica.unlp.edu.ar; Trincavelli, Jorge [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000, Cordoba (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas de la Republica Argentina (Argentina)], E-mail: jorge@quechua.fis.uncor.edu

    2007-05-15

    The asymmetry of the characteristic X-ray peaks obtained using a Si(Li) detector is mainly due to incomplete charge collection. Impurities and defects in the crystalline structure of Si can act as 'traps' for holes and electrons in their trip toward the detector electrodes. Therefore, the collected charge, and consequently the detected energy, is smaller than the expected one. The global effect is that peaks may present a 'tail' toward the low energy side. This phenomenon is more important for low energies (lower than 2.3 keV, in the case of the detector characterized). In this work, the parameters related to peak asymmetry were studied, allowing a better understanding of the trapping process mentioned above. For this purpose, spectra from mono- and multi-element samples were collected for elements with atomic number between 7 and 20. In order to describe the shape of the characteristic K peaks as a function of its energy, an asymmetric correction to a Gaussian function was proposed. Spectra were obtained by electron probe microanalysis for incidence energies between 5 and 25 keV using an energy dispersive spectrometer equipped with an ultra-thin window Si(Li) detector. It was observed that the area corresponding to the asymmetric correction exhibits an energy dependence similar to that of the mass absorption coefficient of the detector material. In addition, other two spectrometers were used to investigate the dependence of tailing on the detection system. When two spectrometers with the same kind of detector and different pulse processors were compared, peaks were more asymmetric for lower peaking time values. When two different detectors were used, differences were even more important.

  5. Quantization and training of object detection networks with low-precision weights and activations

    Science.gov (United States)

    Yang, Bo; Liu, Jian; Zhou, Li; Wang, Yun; Chen, Jie

    2018-01-01

    As convolutional neural networks have demonstrated state-of-the-art performance in object recognition and detection, there is a growing need for deploying these systems on resource-constrained mobile platforms. However, the computational burden and energy consumption of inference for these networks are significantly higher than what most low-power devices can afford. To address these limitations, this paper proposes a method to train object detection networks with low-precision weights and activations. The probability density functions of weights and activations of each layer are first directly estimated using piecewise Gaussian models. Then, the optimal quantization intervals and step sizes for each convolution layer are adaptively determined according to the distribution of weights and activations. As the most computationally expensive convolutions can be replaced by effective fixed point operations, the proposed method can drastically reduce computation complexity and memory footprint. Performing on the tiny you only look once (YOLO) and YOLO architectures, the proposed method achieves comparable accuracy to their 32-bit counterparts. As an illustration, the proposed 4-bit and 8-bit quantized versions of the YOLO model achieve a mean average precision of 62.6% and 63.9%, respectively, on the Pascal visual object classes 2012 test dataset. The mAP of the 32-bit full-precision baseline model is 64.0%.

  6. Modern utilization of accurate methods for gamma-ray spectral analysis detected by high pure germanium (HPGE) detectors through different applications

    International Nuclear Information System (INIS)

    El-Sayed, M.M.

    2005-01-01

    this thesis presents a novel way for application of wavelet trans-from theory in gamma -ray spectroscopy. this technique was applied for searching real and weak peaks, solving problem of multiplets, smoothing and de-noising gamma-ray spectra, and using artificial neural network for identifying peaks. a brief description about gamma-ray spectrum analysis is presented . we discussed the necessary formulas and algorithms of wavelet theory to solve these main problems in gamma ray spectrum analysis. the algorithm of peak search was applied on different types of spectra, IAEA spectra and other sources of gamma spectra. the algorithm of multiplets algorithm was applied successfully on different types of multiplets. the algorithm of denoising was applied successfully on different sources of spectra

  7. Prospecting by radon detector of radioactive minerals in Puyango

    International Nuclear Information System (INIS)

    Fajardo, Marco

    1997-11-01

    The present investigation has used the radon gas detection method. The determinations were made in the Puyango region, Loja province. Our objective was to verify continuity of anomalous radiometric strata, which sprout in Lucy and Agenor ravines. These strata were covered with colluvial material, which fall in los Pericos talus. The results show the continuity from A and B horizons within these tow outcrops

  8. Device for characterization of fissile materials comprising at least a neutron detector embedded inside a scintillator for gamma radiation detection

    International Nuclear Information System (INIS)

    Bernard, P.; Dherbey, J.R.; Bosser, R.; Berne, R.

    1989-01-01

    Fissile materials, for instance in radioactive wastes, are characterized by measurement of prompt and delayed neutrons and gamma radiation from induced fission by a neutron source. Gamma radiation is detected with a scintillation detector associated to a photomultiplier, the scintillation material is at the same time a moderator for thermalization of fast neutrons emitted by the neutron source and also of neutrons from spontaneous fission, (α, n) reactions and neutrons from induced fission in the fissile material. Preferentially the moderator is made of Altustipe (Plexiglas with anthracene as additive) [fr

  9. Effect of the wire geometry and an externally applied magnetic field on the detection efficiency of superconducting nanowire single-photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lusche, Robert; Semenov, Alexey; Huebers, Heinz-Willhelm [DLR, Institut fuer Planetenforschung, Berlin (Germany); Ilin, Konstantin; Siegel, Michael [Karlsruher Institut fuer Technologie (Germany); Korneeva, Yuliya; Trifonov, Andrey; Korneev, Alexander; Goltsman, Gregory [Moscow State Pedagogical University (Russian Federation)

    2013-07-01

    The interest in single-photon detectors in the near-infrared wavelength regime for applications, e.g. in quantum cryptography has immensely increased in the last years. Superconducting nanowire single-photon detectors (SNSPD) already show quite reasonable detection efficiencies in the NIR which can even be further improved. Novel theoretical approaches including vortex-assisted photon counting state that the detection efficiency in the long wavelength region can be enhanced by the detector geometry and an applied magnetic field. We present spectral measurements in the wavelength range from 350-2500 nm of the detection efficiency of meander-type TaN and NbN SNSPD with varying nanowire line width from 80 to 250 nm. Due to the used experimental setup we can accurately normalize the measured spectra and are able to extract the intrinsic detection efficiency (IDE) of our detectors. The results clearly indicate an improvement of the IDE depending on the wire width according to the theoretic models. Furthermore we experimentally found that the smallest detectable photon-flux can be increased by applying a small magnetic field to the detectors.

  10. Low-complexity object detection with deep convolutional neural network for embedded systems

    Science.gov (United States)

    Tripathi, Subarna; Kang, Byeongkeun; Dane, Gokce; Nguyen, Truong

    2017-09-01

    We investigate low-complexity convolutional neural networks (CNNs) for object detection for embedded vision applications. It is well-known that consolidation of an embedded system for CNN-based object detection is more challenging due to computation and memory requirement comparing with problems like image classification. To achieve these requirements, we design and develop an end-to-end TensorFlow (TF)-based fully-convolutional deep neural network for generic object detection task inspired by one of the fastest framework, YOLO.1 The proposed network predicts the localization of every object by regressing the coordinates of the corresponding bounding box as in YOLO. Hence, the network is able to detect any objects without any limitations in the size of the objects. However, unlike YOLO, all the layers in the proposed network is fully-convolutional. Thus, it is able to take input images of any size. We pick face detection as an use case. We evaluate the proposed model for face detection on FDDB dataset and Widerface dataset. As another use case of generic object detection, we evaluate its performance on PASCAL VOC dataset. The experimental results demonstrate that the proposed network can predict object instances of different sizes and poses in a single frame. Moreover, the results show that the proposed method achieves comparative accuracy comparing with the state-of-the-art CNN-based object detection methods while reducing the model size by 3× and memory-BW by 3 - 4× comparing with one of the best real-time CNN-based object detectors, YOLO. Our 8-bit fixed-point TF-model provides additional 4× memory reduction while keeping the accuracy nearly as good as the floating-point model. Moreover, the fixed- point model is capable of achieving 20× faster inference speed comparing with the floating-point model. Thus, the proposed method is promising for embedded implementations.

  11. Detection and classification of pole-like road objects from mobile LiDAR data in motorway environment

    Science.gov (United States)

    Yan, Li; Li, Zan; Liu, Hua; Tan, Junxiang; Zhao, Sainan; Chen, Changjun

    2017-12-01

    Mobile LiDAR Scanning (MLS) can collect 3-dimensional (3D) road and road-related geospatial information accurately and efficiently. Pole-like objects located in road environment are important street furniture and they are necessary information in road inventory and road mapping. The automatic detection and classification of pole-like road objects from mobile LiDAR data can greatly reduce the cost and improve the efficiency. This paper provides a complete workflow for the detection and classification of pole-like road objects from mobile LiDAR data in motorway environment. The major workflow includes three steps: data preprocessing, pole-like road objects detection and pole-like road objects classification. In data preprocessing step, ground points are removed by an automatic ground filtering algorithm, and then off-ground points are clustered into segments and the overlapped segments containing pole-like road objects are further separated through an iterative min-cut based segmentation approach. In detection step, filters utilizing both prior and shape information are used to detect the target objects. In classification step, features of objects are calculated and classified using Random Forest classifier. Our method was tested on two datasets scanned in motorway environment, and the results showed that the Matthews correlation coefficient of the two datasets in detection step was 93.7% and 95.9% respectively and the overall accuracy of the two datasets in classification step was 96.5% and 97.9% respectively.

  12. Distributed dendritic processing facilitates object detection: a computational analysis on the visual system of the fly.

    Science.gov (United States)

    Hennig, Patrick; Möller, Ralf; Egelhaaf, Martin

    2008-08-28

    Detecting objects is an important task when moving through a natural environment. Flies, for example, may land on salient objects or may avoid collisions with them. The neuronal ensemble of Figure Detection cells (FD-cells) in the visual system of the fly is likely to be involved in controlling these behaviours, as these cells are more sensitive to objects than to extended background structures. Until now the computations in the presynaptic neuronal network of FD-cells and, in particular, the functional significance of the experimentally established distributed dendritic processing of excitatory and inhibitory inputs is not understood. We use model simulations to analyse the neuronal computations responsible for the preference of FD-cells for small objects. We employed a new modelling approach which allowed us to account for the spatial spread of electrical signals in the dendrites while avoiding detailed compartmental modelling. The models are based on available physiological and anatomical data. Three models were tested each implementing an inhibitory neural circuit, but differing by the spatial arrangement of the inhibitory interaction. Parameter optimisation with an evolutionary algorithm revealed that only distributed dendritic processing satisfies the constraints arising from electrophysiological experiments. In contrast to a direct dendro-dendritic inhibition of the FD-cell (Direct Distributed Inhibition model), an inhibition of its presynaptic retinotopic elements (Indirect Distributed Inhibition model) requires smaller changes in input resistance in the inhibited neurons during visual stimulation. Distributed dendritic inhibition of retinotopic elements as implemented in our Indirect Distributed Inhibition model is the most plausible wiring scheme for the neuronal circuit of FD-cells. This microcircuit is computationally similar to lateral inhibition between the retinotopic elements. Hence, distributed inhibition might be an alternative explanation of

  13. A comparison of signal detection theory to the objective threshold/strategic model of unconscious perception.

    Science.gov (United States)

    Haase, Steven J; Fisk, Gary D

    2011-08-01

    A key problem in unconscious perception research is ruling out the possibility that weak conscious awareness of stimuli might explain the results. In the present study, signal detection theory was compared with the objective threshold/strategic model as explanations of results for detection and identification sensitivity in a commonly used unconscious perception task. In the task, 64 undergraduate participants detected and identified one of four briefly displayed, visually masked letters. Identification was significantly above baseline (i.e., proportion correct > .25) at the highest detection confidence rating. This result is most consistent with signal detection theory's continuum of sensory states and serves as a possible index of conscious perception. However, there was limited support for the other model in the form of a predicted "looker's inhibition" effect, which produced identification performance that was significantly below baseline. One additional result, an interaction between the target stimulus and type of mask, raised concerns for the generality of unconscious perception effects.

  14. Characterization of a CLYC detector and validation of the Monte Carlo Simulation by measurement experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Suk; Ye, Sung Joon [Seoul National University, Seoul (Korea, Republic of); Smith, Martin B.; Koslowsky, Martin R. [Bubble Technology Industries Inc., Chalk River (Canada); Kwak, Sung Woo [Korea Institute of Nuclear Nonproliferation And Control (KINAC), Daejeon (Korea, Republic of); Kim Gee Hyun [Sejong University, Seoul (Korea, Republic of)

    2017-03-15

    Simultaneous detection of neutrons and gamma rays have become much more practicable, by taking advantage of good gamma-ray discrimination properties using pulse shape discrimination (PSD) technique. Recently, we introduced a commercial CLYC system in Korea, and performed an initial characterization and simulation studies for the CLYC detector system to provide references for the future implementation of the dual-mode scintillator system in various studies and applications. We evaluated a CLYC detector with 95% 6Li enrichment using various gamma-ray sources and a 252Cf neutron source, with validation of our Monte Carlo simulation results via measurement experiments. Absolute full-energy peak efficiency values were calculated for gamma-ray sources and neutron source using MCNP6 and compared with measurement experiments of the calibration sources. In addition, behavioral characteristics of neutrons were validated by comparing simulations and experiments on neutron moderation with various polyethylene (PE) moderator thicknesses. Both results showed good agreements in overall characteristics of the gamma and neutron detection efficiencies, with consistent ⁓20% discrepancy. Furthermore, moderation of neutrons emitted from {sup 252}Cf showed similarities between the simulation and the experiment, in terms of their relative ratios depending on the thickness of the PE moderator. A CLYC detector system was characterized for its energy resolution and detection efficiency, and Monte Carlo simulations on the detector system was validated experimentally. Validation of the simulation results in overall trend of the CLYC detector behavior will provide the fundamental basis and validity of follow-up Monte Carlo simulation studies for the development of our dual-particle imager using a rotational modulation collimator.

  15. Improvement of the detector resolution in X-ray spectrometry by using the maximum entropy method

    International Nuclear Information System (INIS)

    Fernández, Jorge E.; Scot, Viviana; Giulio, Eugenio Di; Sabbatucci, Lorenzo

    2015-01-01

    In every X-ray spectroscopy measurement the influence of the detection system causes loss of information. Different mechanisms contribute to form the so-called detector response function (DRF): the detector efficiency, the escape of photons as a consequence of photoelectric or scattering interactions, the spectrum smearing due to the energy resolution, and, in solid states detectors (SSD), the charge collection artifacts. To recover the original spectrum, it is necessary to remove the detector influence by solving the so-called inverse problem. The maximum entropy unfolding technique solves this problem by imposing a set of constraints, taking advantage of the known a priori information and preserving the positive-defined character of the X-ray spectrum. This method has been included in the tool UMESTRAT (Unfolding Maximum Entropy STRATegy), which adopts a semi-automatic strategy to solve the unfolding problem based on a suitable combination of the codes MAXED and GRAVEL, developed at PTB. In the past UMESTRAT proved the capability to resolve characteristic peaks which were revealed as overlapped by a Si SSD, giving good qualitative results. In order to obtain quantitative results, UMESTRAT has been modified to include the additional constraint of the total number of photons of the spectrum, which can be easily determined by inverting the diagonal efficiency matrix. The features of the improved code are illustrated with some examples of unfolding from three commonly used SSD like Si, Ge, and CdTe. The quantitative unfolding can be considered as a software improvement of the detector resolution. - Highlights: • Radiation detection introduces distortions in X- and Gamma-ray spectrum measurements. • UMESTRAT is a graphical tool to unfold X- and Gamma-ray spectra. • UMESTRAT uses the maximum entropy method. • UMESTRAT’s new version produces unfolded spectra with quantitative meaning. • UMESTRAT is a software tool to improve the detector resolution.

  16. Fundamental study of dynamic ECT by dual detector gammacamera system

    International Nuclear Information System (INIS)

    Kakegawa, M.; Matsui, S.; Maeda, H.; Takeda, K.; Nakagawa, T.

    1982-01-01

    The improvement of image quality of reconstructed image by the simple pre-processing of projections is studied. Using the improved algorithm and dual detector gammacamera system, the possibility of dynamic ECT is studied. As shown in clinical examples, renal flow study using Tc-99m-DTPA, dynamic ECT imaging is possible with measuring time of 1 or 2 minutes. By this method cortex and medulla are separately imaged and each function can be analyzed more precisely. Using high sensitive collimator it will be possible to take ECT images every 30 sec. with little resolution loss quantitative three dimensional time activity analysis is under study

  17. Attentional Capture of Objects Referred to by Spoken Language

    Science.gov (United States)

    Salverda, Anne Pier; Altmann, Gerry T. M.

    2011-01-01

    Participants saw a small number of objects in a visual display and performed a visual detection or visual-discrimination task in the context of task-irrelevant spoken distractors. In each experiment, a visual cue was presented 400 ms after the onset of a spoken word. In experiments 1 and 2, the cue was an isoluminant color change and participants…

  18. Evaluation of various planar gaseous detectors with CsI photocathodes for the detection of primary scintillation light from noble gases

    CERN Document Server

    Periale, L; Carlson, P J; Francke, T; Iacobaeus, C; Pavlopoulos, P; Pietropaolo, F; Sokolova, T

    2003-01-01

    Noble gases and liquids are excellent scintillators and this opens a unique opportunity to directly detect the primary scintillation light produced in these media by photons or particles. This signal can be used for several purposes, for example as a start signal for TPCs or for particles identification. Usually photomultipliers (PMs) are used for the detection of the scintillation light. In our previous work we have demonstrated that costly PMs could be replaced by gaseous detectors with CsI photocathodes . Such detectors have the same quantum efficiency as the best PMs but at the same time are cheap, simple and have high position and time resolutions. The aim of this work is to evaluate various planar type gaseous detectors with CsI photocahodes in order to choose the best one for the detection of the primary scintillation light from noble gases and liquids.

  19. The intensity detection of single-photon detectors based on photon counting probability density statistics

    International Nuclear Information System (INIS)

    Zhang Zijing; Song Jie; Zhao Yuan; Wu Long

    2017-01-01

    Single-photon detectors possess the ultra-high sensitivity, but they cannot directly respond to signal intensity. Conventional methods adopt sampling gates with fixed width and count the triggered number of sampling gates, which is capable of obtaining photon counting probability to estimate the echo signal intensity. In this paper, we not only count the number of triggered sampling gates, but also record the triggered time position of photon counting pulses. The photon counting probability density distribution is obtained through the statistics of a series of the triggered time positions. Then Minimum Variance Unbiased Estimation (MVUE) method is used to estimate the echo signal intensity. Compared with conventional methods, this method can improve the estimation accuracy of echo signal intensity due to the acquisition of more detected information. Finally, a proof-of-principle laboratory system is established. The estimation accuracy of echo signal intensity is discussed and a high accuracy intensity image is acquired under low-light level environments. (paper)

  20. Physics of scintillation detectors

    International Nuclear Information System (INIS)

    Novotny, R.

    1991-01-01

    The general concept of a radiation detector is based on three fundamental principles: sensitivity of the device to the radiation of interest which requires a large cross-section in the detector material, detector response function to the physical properties of the radiation. As an example, a scintillation detector for charged particles should allow to identify the charge of the particle, its kinetic energy and the time of impact combined with optimum resolutions. Optimum conversion of the detector response (like luminescence of a scintillator) into electronical signals for further processing. The following article will concentrate on the various aspects of the first two listed principles as far as they appear to be relevant for photon and charged particle detection using organic and inorganic scintillation detectors. (orig.)

  1. Fabrication of an integrated ΔE-E-silicon detector by wafer bonding using cobalt disilicide

    International Nuclear Information System (INIS)

    Thungstroem, G.; Veldhuizen, E.J. van; Westerberg, L.; Norlin, L.-O.; Petersson, C.S.

    1997-01-01

    The problem concerning mechanical stability of thin self-supporting ΔE detector in a ΔE-E semiconductor detector telescope, has been solved by integrating both detectors into one unit. We show here a low-cost method to integrate the detectors by wafer bonding using cobalt disilicide. The ΔE-detector has a thickness of 6.5 μm and the E detector 290 μm with an area of 24.8 mm 2 . The system was characterized with secondary ion mass spectroscopy (SIMS), scanning electron microscopy (SEM), electrical measurement, particle measurement and two-dimensional electrical simulation. (orig.)

  2. Fabrication of an integrated {Delta}E-E-silicon detector by wafer bonding using cobalt disilicide

    Energy Technology Data Exchange (ETDEWEB)

    Thungstroem, G. [Mid-Sweden Univ., Sundsvall (Sweden). Dept. of Inf. Technol.]|[Royal Institute of Technology, Department of Electronics, Electrum 229, S-164 40 Kista (Sweden); Veldhuizen, E.J. van [Uppsala University, Department of Radiation Science, Box 535, S-751 21 Uppsala (Sweden); Westerberg, L. [Uppsala University, The Svedberg Laboratory, Box 533, S-751 21 Uppsala (Sweden); Norlin, L.-O. [Royal Institute of Technology, Department of Physics, Frescativaegen 24, S-104 05 Stockholm (Sweden); Petersson, C.S. [Royal Institute of Technology, Department of Electronics, Electrum 229, S-164 40 Kista (Sweden)

    1997-06-01

    The problem concerning mechanical stability of thin self-supporting {Delta}E detector in a {Delta}E-E semiconductor detector telescope, has been solved by integrating both detectors into one unit. We show here a low-cost method to integrate the detectors by wafer bonding using cobalt disilicide. The {Delta}E-detector has a thickness of 6.5 {mu}m and the E detector 290 {mu}m with an area of 24.8 mm{sup 2}. The system was characterized with secondary ion mass spectroscopy (SIMS), scanning electron microscopy (SEM), electrical measurement, particle measurement and two-dimensional electrical simulation. (orig.).

  3. Photoluminescence detection of alpha particle using DAM-ADC nuclear detector

    Energy Technology Data Exchange (ETDEWEB)

    Abdalla, Ayman M., E-mail: aymanabdalla62@hotmail.com [Department of Physics, College of Science and Arts, Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box: 1988, Najran 11001 (Saudi Arabia); Harraz, Farid A., E-mail: fharraz68@yahoo.com [Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box: 1988, Najran 11001 (Saudi Arabia); Nanostructured Materials and Nanotechnology Division, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box: 87 Helwan, Cairo 11421 (Egypt); Ali, Atif M. [Department of Physics, Faculty of Science, King Khalid University, Abha (Saudi Arabia); Al-Sayari, S.A. [Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box: 1988, Najran 11001 (Saudi Arabia); College of Science and Arts-Sharoura, Najran University (Saudi Arabia); Al-Hajry, A. [Department of Physics, College of Science and Arts, Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box: 1988, Najran 11001 (Saudi Arabia)

    2016-09-11

    The photoluminescence (PL) and UV–vis spectral analysis of DAM-ADC (diallyl maleate: DAM, polyallyl diglycol carbonate: ADC) nuclear detector are demonstrated for the first time. The DAM-ADC surfaces were exposed to thin {sup 241}Am disk source that emits alpha particles with activity 333 kBq. It is found that the track density of the irradiated samples remarkably influences the PL characteristics of the DAM-ADC detector. The spectral peak heights and the integrated intensities under the peaks exhibit linear correlations with correlation coefficient R{sup 2}=0.9636 and 0.9806, respectively for different alpha particle fluences ranging from 8.16–40.82×10{sup 7} particles/cm{sup 2}. Additionally, a correlation coefficient R{sup 2}=0.9734 was achieved for the UV–vis spectral analysis. The linear fitting functions, along with the corresponding fitting parameters were evaluated in each case. Both the PL and the UV–vis data of the irradiated DAM-ADC samples showed considerable spectral differences, and hence they would be used to offer sensitive approaches for alpha particle detection.

  4. Design of a surface-scanning coil detector for direct bacteria detection on food surfaces using a magnetoelastic biosensor

    Science.gov (United States)

    Chai, Yating; Wikle, Howard C.; Wang, Zhenyu; Horikawa, Shin; Best, Steve; Cheng, Zhongyang; Dyer, Dave F.; Chin, Bryan A.

    2013-09-01

    The real-time, in-situ bacteria detection on food surfaces was achieved by using a magnetoelastic biosensor combined with a surface-scanning coil detector. This paper focuses on the coil design for signal optimization. The coil was used to excite the sensor's vibration and detect its resonant frequency signal. The vibrating sensor creates a magnetic flux change around the coil, which then produces a mutual inductance. In order to enhance the signal amplitude, a theory of the sensor's mutual inductance with the measurement coil is proposed. Both theoretical calculations and experimental data showed that the working length of the coil has a significant effect on the signal amplitude. For a 1 mm-long sensor, a coil with a working length of 1.3 mm showed the best signal amplitude. The real-time detection of Salmonella bacteria on a fresh food surface was demonstrated using this new technology.

  5. Optimisation of elevated radon concentration measurement by using electro-chemical etching of nuclear track detectors

    International Nuclear Information System (INIS)

    Celikovic, I.; Ujic, P.; Fujimoto, K.; Tommasino, L.; Demajo, A.; Zunic, Z.; Celikovic, I.)

    2007-01-01

    In the paper, two methods for adjusting of passive radon-thoron discriminative dosimeters (UFO detector) for enhanced radon concentration measurement are presented. Achieved upper limit of detection is 5.94 MBq m-3 d [sr

  6. Factors that affect the level of detectability of objects of low contrast in diagnostic radiology

    International Nuclear Information System (INIS)

    Zuniga Vargas, F.

    2001-01-01

    The diagnosed imageneologia is every day more used by the medical staff to obtain diagnoses of diverse illnesses. In this branch, the conventional equipments of tubes of X Rays, equipments with fluoroscopic, angiographos, on-line tomographos, ultrasound equipment of magnetic resonance are used. All of them finally produce an image which will be used for the radiologist to evaluate the structures and pathology with in order to give to emit a good and precise diagnosis. From the total of radiation that the man receives annually, the medical irradiations are the main contributors after natural radiations. The applications of the ionized radiations in the medical area have as an objective to provide diagnosis or treatment to the ill patient. To obtain an image of good quality is fundamental, so that the doctor carries out a good diagnosis. The images depend on many physical factors, such as the type of the used equipment, ability of the operator that takes the badge, maintenance of the equipment, badge quality, etc. The images in which the diagnosis is based on are a gathering of gray different tones that draw the anatomy of interest. Therefore, an injury should have different physical characteristics (grosor, density) to stand out from its environment. This notable capacity is known as radiological contrast. Studies which allow the quantification of the radiation levels' effect, the optic badge densities and the observers' physical particularities for the detection of low-contrast objects have not been done in Costa Rica The physician is the one responsible of implementing the quality programs that lead to the gathering of better images. From now on, the asserted diagnosis falls right into the radiologist's experience, who receives the theoretical training and practices of the different diagnosed modalities during his or her residence's years. Besides, the radiologist can collaborate with the improvement of the accuracy of the diagnosis, if he or she recommends the

  7. Measurement of neutron flux distribution by semiconductor detector

    International Nuclear Information System (INIS)

    Obradovic, D.; Bosevski, T.

    1964-01-01

    Application of semiconductor detectors for measuring neutron flux distribution is about 10 times faster than measurements by activation foils and demands significantly lower reactor power. Following corrections are avoided: mass of activation foils which influences the self shielding, nuclear decay during activity measurements; counter dead-time. It is possible to control the measured data during experiment and repeat measurements if needed. Precision of the measurement is higher since it is possible to choose the wanted statistics. The method described in this paper is applied for measurements at the RB reactor. It is concluded that the method is suitable for fast measurements but the activation analysis is still indispensable

  8. Detecting Chloride Contamination of Objects and Buildings – Evaluating a New Testing Process

    Directory of Open Access Journals (Sweden)

    Lynda Skipper

    2018-02-01

    Full Text Available Soluble salts play a key factor in damage to a variety of materials, including stone, ceramics and metals. Particularly, salt contamination can lead to weakening of porous materials through salt crystallisation events, and increases the rate of metal corrosion. Over time, this results in physical damage to affected objects and buildings. It is therefore important to be able to monitor the salt content of materials, in order to understand levels of salt contamination and the potential for damage to occur. This research discusses the further development of the testing method for surface chlorides originally proposed by Piechota and Drake Piechota (2016 in their article “A simple survey kit for chloride detection on cuneiform tablets and other collections”. It introduces new and revised steps into the original protocol in order to make the achieved results semi-quantifiable, as well as identifying the limits of detection of the test kit. A comparison to alternative testing methods showed that comparable results were achievable using this methodology. The revised methodology was tested for efficacy on a range of salt contaminated objects, as well as on samples from buildings.

  9. Role of Computer Aided Diagnosis (CAD) in the detection of pulmonary nodules on 64 row multi detector computed tomography.

    Science.gov (United States)

    Prakashini, K; Babu, Satish; Rajgopal, K V; Kokila, K Raja

    2016-01-01

    To determine the overall performance of an existing CAD algorithm with thin-section computed tomography (CT) in the detection of pulmonary nodules and to evaluate detection sensitivity at a varying range of nodule density, size, and location. A cross-sectional prospective study was conducted on 20 patients with 322 suspected nodules who underwent diagnostic chest imaging using 64-row multi-detector CT. The examinations were evaluated on reconstructed images of 1.4 mm thickness and 0.7 mm interval. Detection of pulmonary nodules, initially by a radiologist of 2 years experience (RAD) and later by CAD lung nodule software was assessed. Then, CAD nodule candidates were accepted or rejected accordingly. Detected nodules were classified based on their size, density, and location. The performance of the RAD and CAD system was compared with the gold standard that is true nodules confirmed by consensus of senior RAD and CAD together. The overall sensitivity and false-positive (FP) rate of CAD software was calculated. Of the 322 suspected nodules, 221 were classified as true nodules on the consensus of senior RAD and CAD together. Of the true nodules, the RAD detected 206 (93.2%) and 202 (91.4%) by the CAD. CAD and RAD together picked up more number of nodules than either CAD or RAD alone. Overall sensitivity for nodule detection with the CAD program was 91.4%, and FP detection per patient was 5.5%. The CAD showed comparatively higher sensitivity for nodules of size 4-10 mm (93.4%) and nodules in hilar (100%) and central (96.5%) location when compared to RAD's performance. CAD performance was high in detecting pulmonary nodules including the small size and low-density nodules. CAD even with relatively high FP rate, assists and improves RAD's performance as a second reader, especially for nodules located in the central and hilar region and for small nodules by saving RADs time.

  10. A Comparative Study of Multiple Object Detection Using Haar-Like Feature Selection and Local Binary Patterns in Several Platforms

    Directory of Open Access Journals (Sweden)

    Souhail Guennouni

    2015-01-01

    Full Text Available Object detection has been attracting much interest due to the wide spectrum of applications that use it. It has been driven by an increasing processing power available in software and hardware platforms. In this work we present a developed application for multiple objects detection based on OpenCV libraries. The complexity-related aspects that were considered in the object detection using cascade classifier are described. Furthermore, we discuss the profiling and porting of the application into an embedded platform and compare the results with those obtained on traditional platforms. The proposed application deals with real-time systems implementation and the results give a metric able to select where the cases of object detection applications may be more complex and where it may be simpler.

  11. Fast neutron detection using solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Vilela, E.C.

    1990-01-01

    CR-39 and Makrofol-E solid state nuclear track detectors were studied aiming their application to fast neutron detection. Optimum etching conditions of those two kinds of materials were determined the followings - the Makrofol-E detector is electrochemically etched in a PEW solution (15% KOH, 40% ethilic alcohol and 45% water) for 2 h., with an applied electric field strength of 30 kV/cm (r/m/s/) and frequency of 2 kHz, at room temperature; - the CR-39 detector is chemically pre-etched during 1 h in a 20% (w/v) NaOH solution at 70 sup(0)C, followed by 13 h electrochemical etch using the same solution at room temperature and an electric field strength of 30 kV/cm (r.m.s.) and frequency of 2 kHz.(E.G.)

  12. OSSOS. VI. Striking Biases in the Detection of Large Semimajor Axis Trans-Neptunian Objects

    Science.gov (United States)

    Shankman, Cory; Kavelaars, J. J.; Bannister, Michele T.; Gladman, Brett J.; Lawler, Samantha M.; Chen, Ying-Tung; Jakubik, Marian; Kaib, Nathan; Alexandersen, Mike; Gwyn, Stephen D. J.; Petit, Jean-Marc; Volk, Kathryn

    2017-08-01

    The accumulating but small set of large semimajor axis trans-Neptunian objects (TNOs) shows an apparent clustering in the orientations of their orbits. This clustering must either be representative of the intrinsic distribution of these TNOs, or else have arisen as a result of observation biases and/or statistically expected variations for such a small set of detected objects. The clustered TNOs were detected across different and independent surveys, which has led to claims that the detections are therefore free of observational bias. This apparent clustering has led to the so-called “Planet 9” hypothesis that a super-Earth currently resides in the distant solar system and causes this clustering. The Outer Solar System Origins Survey (OSSOS) is a large program that ran on the Canada–France–Hawaii Telescope from 2013 to 2017, discovering more than 800 new TNOs. One of the primary design goals of OSSOS was the careful determination of observational biases that would manifest within the detected sample. We demonstrate the striking and non-intuitive biases that exist for the detection of TNOs with large semimajor axes. The eight large semimajor axis OSSOS detections are an independent data set, of comparable size to the conglomerate samples used in previous studies. We conclude that the orbital distribution of the OSSOS sample is consistent with being detected from a uniform underlying angular distribution.

  13. Biases in the OSSOS Detection of Large Semimajor Axis Trans-Neptunian Objects

    Science.gov (United States)

    Gladman, Brett; Shankman, Cory; OSSOS Collaboration

    2017-10-01

    The accumulating but small set of large semimajor axis trans-Neptunian objects (TNOs) shows an apparent clustering in the orientations of their orbits. This clustering must either be representative of the intrinsic distribution of these TNOs, or else have arisen as a result of observation biases and/or statistically expected variations for such a small set of detected objects. The clustered TNOs were detected across different and independent surveys, which has led to claims that the detections are therefore free of observational bias. This apparent clustering has led to the so-called “Planet 9” hypothesis that a super-Earth currently resides in the distant solar system and causes this clustering. The Outer Solar System Origins Survey (OSSOS) is a large program that ran on the Canada-France-Hawaii Telescope from 2013 to 2017, discovering more than 800 new TNOs. One of the primary design goals of OSSOS was the careful determination of observational biases that would manifest within the detected sample. We demonstrate the striking and non-intuitive biases that exist for the detection of TNOs with large semimajor axes. The eight large semimajor axis OSSOS detections are an independent data set, of comparable size to the conglomerate samples used in previous studies. We conclude that the orbital distribution of the OSSOS sample is consistent with being detected from a uniform underlying angular distribution.

  14. Characterisation of the Photon Detection System for the LHCb RICH Detector Upgrade

    CERN Document Server

    AUTHOR|(CDS)2097582; D'Ambrosio, Carmelo; Easo, Sajan

    The LHCb Experiment will be upgraded during Long Shutdown II of the Large Hadron Collider (LHC) in 2019 and 2020. The goal of the upgrade is to efficiently use the increased instantaneous luminosity in LHC Run 3 and to collect data at the proton collision rate of 40 MHz. The Ring Imaging Cherenkov (RICH) particle identification detectors will be upgraded to perform in the new operating conditions with continuing reliability. The photon detection system will be replaced using multi-anode photomultiplier tubes (MaPMTs) and associated read-out electronics. The photon detection chain was studied at CERN using a pulsed laser to test the system under high event rates and high photon intensities. The behaviour of two types of MaPMTs which are foreseen for the upgrade is presented for varying rates and intensities, and different applied bias voltages. A simulation was created to model the photon detection chain using the Geant4 simulation toolkit. The RICH Upgrade test beam using 180 GeV positive hadrons from CERN SP...

  15. Fast photon detection for the COMPASS RICH detector

    CERN Document Server

    Abbon, P; Alekseev, M; Angerer, H; Apollonio, M; Birsa, R; Bordalo, P; Bradamante, Franco; Bressan, A; Busso, L; Chiosso, M; Ciliberti, P; Colantoni, M L; Costa, S; Dalla Torre, S; Dafni, T; Delagnes, E; Deschamps, H; Díaz, V; Dibiase, N; Duic, V; Eyrich, W; Faso, D; Ferrero, A; Finger, M; Finger, M Jr; Fischer, H; Gerassimov, S; Giorgi, M; Gobbo, B; Hagemann, R; Von Harrach, D; Heinsius, F H; Joosten, R; Ketzer, B; Königsmann, K C; Kolosov, V N; Konorov, I; Kramer, Daniel; Kunne, Fabienne; Lehmann, A; Levorato, S; Maggiora, A; Magnon, A; Mann, A; Martin, A; Menon, G; Mutter, A; Nahle, O; Nerling, F; Neyret, D; Pagano, P; Panebianco, S; Panzieri, D; Paul, S; Pesaro, G; Polak, J; Rebourgeard, P; Robinet, F; Rocco, E; Schiavon, Paolo; Schroder, W; Silva, L; Slunecka, M; Sozzi, F; Steiger, L; Sulc, M; Svec, M; Tessarotto, F; Teufel, A; Wollny, H

    2007-01-01

    The COMPASS experiment at the SPS accelerator at CERN uses a large scale Ring Imaging CHerenkov detector (RICH) to identify pions, kaons and protons in a wide momentum range. For the data taking in 2006, the COMPASS RICH has been upgraded in the central photon detection area (25% of the surface) with a new technology to detect Cherenkov photons at very high count rates of several 10^6 per second and channel and a new dead-time free read-out system, which allows trigger rates up to 100 kHz. The Cherenkov photons are detected by an array of 576 visible and ultra-violet sensitive multi-anode photomultipliers with 16 channels each. The upgraded detector showed an excellent performance during the 2006 data taking.

  16. Hough transform methods used for object detection

    International Nuclear Information System (INIS)

    Qussay A Salih; Abdul Rahman Ramli; Md Mahmud Hassan Prakash

    2001-01-01

    The Hough transform (HT) is a robust parameter estimator of multi-dimensional features in images. The HT is an established technique which evidences a shape by mapping image edge points into a parameter space. The HT is technique which is used to isolate curves of a give shape in an image. The classical HT requires that the curve be specified in some parametric from and, hence is most commonly used in the detection of regular curves. The HT has been generalized so that it is capable of detecting arbitrary curved shapes. The main advantage of this transform technique is that it is very tolerant of gaps in the actual object boundaries the classical HT for the detection of line , we will indicate how it can be applied to the detection of arbitrary shapes. Sometimes the straight line HT is efficient enough to detect features such as artificial curves. The HT is an established technique for extracting geometric shapes based on the duality definition of the points on a curve and their parameters. This technique has been developed for extracting simple geometric shapes such as lines, circles and ellipses as well as arbitrary shapes. The HT provides robustness against discontinuous or missing features, points or edges are mapped into a partitioned parameter of Hough space as individual votes where peaks denote the feature of interest represented in a non-analytically tabular form. The main drawback of the HT technique is the computational requirement which has an exponential growth of memory space and processing time as the number of parameters used to represent a primitive increases. For this reason most of the research on the HT has focused on reducing the computational burden for extracting of arbitrary shapes under more general transformations include a overview of describing the methods for the detection image processing programs are frequently required to detect and particle classification in an industrial setting, a standard algorithms for this detection lines

  17. Measurement of neutron flux by semiconductor detector; Merenje raspodele neutronskog fluksa poluprovodnickim detektorom

    Energy Technology Data Exchange (ETDEWEB)

    Obradovic, D; Bosevski, T [The Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-07-01

    Using semiconductor detectors for measuring the neutron flux distribution is considered suitable and faster than using activation foils. Results of radial neutron flux distribution obtained by semiconductor detectors are presented.

  18. Controlled Metal Detector Mounted on Mine Detection Robot

    Directory of Open Access Journals (Sweden)

    Seiji Masunaga

    2007-06-01

    Full Text Available Landmine detection capability of metal detectors is very sensitive to the gap between buried landmines and the sensor heads. Therefore, human deminers manually scan ground surface with the metal detectors in such a manner that the sensor heads follow the ground surface. In case of robots assisted landmine detection, this function can be performed accurately and safely by controlling the gap and attitude of the sensor heads. In this investigation, the effectiveness of the gap and attitude control of the sensor head by some mechanical manipulator on the landmine detection performance has been addressed quantitatively. To this end, the paper describes the development of a Controlled Metal Detector (CMD for controlling the gap and attitude of the sensor head. The CMD generates trajectories of the sensor head from the depth information of the ground surface acquired with 3-D stereovision camera in order to avoid any obstacles and possible impact with the ground, and then tracks the trajectories with a trajectory-tracking controller. The effectiveness and the impact related to the gap and attitude control on the landmine detection performance of the CMD have been demonstrated by experimental studies.

  19. Research on moving object detection based on frog's eyes

    Science.gov (United States)

    Fu, Hongwei; Li, Dongguang; Zhang, Xinyuan

    2008-12-01

    On the basis of object's information processing mechanism with frog's eyes, this paper discussed a bionic detection technology which suitable for object's information processing based on frog's vision. First, the bionics detection theory by imitating frog vision is established, it is an parallel processing mechanism which including pick-up and pretreatment of object's information, parallel separating of digital image, parallel processing, and information synthesis. The computer vision detection system is described to detect moving objects which has special color, special shape, the experiment indicates that it can scheme out the detecting result in the certain interfered background can be detected. A moving objects detection electro-model by imitating biologic vision based on frog's eyes is established, the video simulative signal is digital firstly in this system, then the digital signal is parallel separated by FPGA. IN the parallel processing, the video information can be caught, processed and displayed in the same time, the information fusion is taken by DSP HPI ports, in order to transmit the data which processed by DSP. This system can watch the bigger visual field and get higher image resolution than ordinary monitor systems. In summary, simulative experiments for edge detection of moving object with canny algorithm based on this system indicate that this system can detect the edge of moving objects in real time, the feasibility of bionic model was fully demonstrated in the engineering system, and it laid a solid foundation for the future study of detection technology by imitating biologic vision.

  20. Deep Learning for Detection of Object-Based Forgery in Advanced Video

    Directory of Open Access Journals (Sweden)

    Ye Yao

    2017-12-01

    Full Text Available Passive video forensics has drawn much attention in recent years. However, research on detection of object-based forgery, especially for forged video encoded with advanced codec frameworks, is still a great challenge. In this paper, we propose a deep learning-based approach to detect object-based forgery in the advanced video. The presented deep learning approach utilizes a convolutional neural network (CNN to automatically extract high-dimension features from the input image patches. Different from the traditional CNN models used in computer vision domain, we let video frames go through three preprocessing layers before being fed into our CNN model. They include a frame absolute difference layer to cut down temporal redundancy between video frames, a max pooling layer to reduce computational complexity of image convolution, and a high-pass filter layer to enhance the residual signal left by video forgery. In addition, an asymmetric data augmentation strategy has been established to get a similar number of positive and negative image patches before the training. The experiments have demonstrated that the proposed CNN-based model with the preprocessing layers has achieved excellent results.

  1. Study of light detection and sensitivity for a ton-scale liquid xenon dark matter detector

    International Nuclear Information System (INIS)

    Wei, Y; Lin, Q; Xiao, X; Ni, K

    2013-01-01

    Ton-scale liquid xenon detectors operated in two-phase mode are proposed and being constructed recently to explore the favored parameter space for the Weakly Interacting Massive Particles (WIMPs) dark matter. To achieve a better light collection efficiency while limiting the number of electronics channels compared to the previous generation detectors, large-size photo-multiplier tubes (PMTs) such as the 3-inch-diameter R11410 from Hamamatsu are suggested to replace the 1-inch-square R8520 PMTs. In a two-phase xenon dark matter detector, two PMT arrays on the top and bottom are usually used. In this study, we compare the performance of two different ton-scale liquid xenon detector configurations with the same number of either R11410 (config.1) or R8520 (config.2) for the top PMT array, while both using R11410 PMTs for the bottom array. The self-shielding of liquid xenon suppresses the background from the PMTs and the dominant background is from the pp solar neutrinos in the central fiducial volume. The light collection efficiency for the primary scintillation light is largely affected by the xenon purity and the reflectivity of the reflectors. In the optimistic situation with a 10 m light absorption length and a 95% reflectivity, the light collection efficiency is 43%(34%) for config.1(config.2). In the conservative situation with a 2.5 m light absorption length and a 85% reflectivity, the value is only 18%(13%) for config.1(config.2). The difference between the two configurations is due to the larger PMT coverage on the top for config.1. The slightly different position resolutions for the two configurations have a negligible effect on the sensitivity. Based on the above considerations, we estimate the sensitivity reach of the two detector configurations. Both configurations can reach a sensitivity of 2 ∼ 3 × 10 −47 cm 2 for spin-independent WIMP-nucleon cross section for 100 GeV/c 2 WIMPs after two live-years of operation. The one with R8520 PMTs for the top

  2. Analytical Issues on the Determination of Carotenoids in Microalgae by Liquid Chromatography with Diode Array Detector

    International Nuclear Information System (INIS)

    Garcia, S.; Perez, R. M.

    2012-01-01

    A preliminary study of literature review on the determination of carotenoids in microalgae samples by HPLC with diode array detector is presented. Main objective has been focused to compile data from literature and based on the main aspects of the analytical methodology used in the determination of these compounds. The work is structured as follows and affecting major analytical difficulties: Procurement and commercial availability of standard solutions. Stage of sample treatment. Chromatographic analysis. (Author) 19 refs.

  3. On the background estimation by time slides in a network of gravitational wave detectors

    International Nuclear Information System (INIS)

    Was, Michal; Bizouard, Marie-Anne; Brisson, Violette; Cavalier, Fabien; Davier, Michel; Hello, Patrice; Leroy, Nicolas; Robinet, Florent; Vavoulidis, Miltiadis

    2010-01-01

    Time shifting the outputs of gravitational wave detectors operating in coincidence is a convenient way to estimate the background in a search for short-duration signals. However, this procedure is limited as increasing indefinitely the number of time shifts does not provide better estimates. We show that the false alarm rate estimation error saturates with the number of time shifts. In particular, for detectors with very different trigger rates, this error saturates at a large value. Explicit computations are done for two detectors, and for three detectors where the detection statistic relies on the logical 'OR' of the coincidences of the three couples in the network.

  4. On the background estimation by time slides in a network of gravitational wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Was, Michal; Bizouard, Marie-Anne; Brisson, Violette; Cavalier, Fabien; Davier, Michel; Hello, Patrice; Leroy, Nicolas; Robinet, Florent; Vavoulidis, Miltiadis, E-mail: mwas@lal.in2p3.f [LAL, Univ. Paris-Sud, CNRS/IN2P3, Orsay (France)

    2010-01-07

    Time shifting the outputs of gravitational wave detectors operating in coincidence is a convenient way to estimate the background in a search for short-duration signals. However, this procedure is limited as increasing indefinitely the number of time shifts does not provide better estimates. We show that the false alarm rate estimation error saturates with the number of time shifts. In particular, for detectors with very different trigger rates, this error saturates at a large value. Explicit computations are done for two detectors, and for three detectors where the detection statistic relies on the logical 'OR' of the coincidences of the three couples in the network.

  5. Preparation of bubble damage detectors

    International Nuclear Information System (INIS)

    Tu Caiqing; Guo Shilun; Wang Yulan; Hao Xiuhong; Chen Changmao; Su Jingling

    1997-01-01

    Bubble damage detectors have been prepared by using polyacrylamide as detector solid and freon as detector liquid. Tests show that the prepared detectors are sensitive to fast neutrons and have proportionality between bubble number and neutron fluence within a certain range of neutron fluence. Therefore, it can be used as a fast neutron detector and a dosimeter

  6. Context-based object-of-interest detection for a generic traffic surveillance analysis system

    NARCIS (Netherlands)

    Bao, X.; Javanbakhti, S.; Zinger, S.; Wijnhoven, R.G.J.; With, de P.H.N.

    2014-01-01

    We present a new traffic surveillance video analysis system, focusing on building a framework with robust and generic techniques, based on both scene understanding and moving object-of-interest detection. Since traffic surveillance is widely applied, we want to design a single system that can be

  7. Applications of nuclear track detectors

    International Nuclear Information System (INIS)

    Medveczky, L.

    1980-01-01

    The results of a scientific research-work are summarized. Nuclear track detectors were used for new applications or in unusual ways. Photographic films, nuclear emulsions and dielectric track detectors were investigated. The tracks were detected by optical microscopy. Empirical formulation has been derived for the neutron sensitivity of certain dielectric materials. Methods were developed for leak testing of closed alpha emitting sources. New procedures were found for the application and evaluation of track detector materials. The results were applied in the education, personnel dosimetry, radon dosimetry etc. (R.J.)

  8. A method for detection of muon induced electromagnetic showers with the ANTARES detector

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, J.A. [IFIC-Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC-Universitat de Valencia, Apdo. de Correos 22085, 46071 Valencia (Spain); Al Samarai, I. [CPPM-Centre de Physique des Particules de Marseille, CNRS/IN2P3 et Universite de la Mediterranee, 163 Avenue de Luminy, Case 902, 13288 Marseille Cedex 9 (France); Albert, A. [GRPHE-Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568-68008 Colmar (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposicio, 08800 Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M. [INFN-Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matiere-Institut de recherche sur les lois fondamentales de l' Univers-Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Ardid, M. [Institut d' Investigacio per a la Gestio Integrada de Zones Costaneres (IGIC)-Universitat Politecnica de Valencia. C/ Paranimf 1, 46730 Gandia (Spain); Assis Jesus, A.C.; Astraatmadja, T. [Nikhef, Science Park, Amsterdam (Netherlands); and others

    2012-05-21

    The primary aim of ANTARES is neutrino astronomy with upward going muons created in charged current muon neutrino interactions in the detector and its surroundings. Downward going muons are background for neutrino searches. These muons are the decay products of cosmic-ray collisions in the Earth's atmosphere far above the detector. This paper presents a method to identify and count electromagnetic showers induced along atmospheric muon tracks with the ANTARES detector. The method is applied to both cosmic muon data and simulations and its applicability to the reconstruction of muon event energies is demonstrated.

  9. Modulation of microsaccades by spatial frequency during object categorization.

    Science.gov (United States)

    Craddock, Matt; Oppermann, Frank; Müller, Matthias M; Martinovic, Jasna

    2017-01-01

    The organization of visual processing into a coarse-to-fine information processing based on the spatial frequency properties of the input forms an important facet of the object recognition process. During visual object categorization tasks, microsaccades occur frequently. One potential functional role of these eye movements is to resolve high spatial frequency information. To assess this hypothesis, we examined the rate, amplitude and speed of microsaccades in an object categorization task in which participants viewed object and non-object images and classified them as showing either natural objects, man-made objects or non-objects. Images were presented unfiltered (broadband; BB) or filtered to contain only low (LSF) or high spatial frequency (HSF) information. This allowed us to examine whether microsaccades were modulated independently by the presence of a high-level feature - the presence of an object - and by low-level stimulus characteristics - spatial frequency. We found a bimodal distribution of saccades based on their amplitude, with a split between smaller and larger microsaccades at 0.4° of visual angle. The rate of larger saccades (⩾0.4°) was higher for objects than non-objects, and higher for objects with high spatial frequency content (HSF and BB objects) than for LSF objects. No effects were observed for smaller microsaccades (<0.4°). This is consistent with a role for larger microsaccades in resolving HSF information for object identification, and previous evidence that more microsaccades are directed towards informative image regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Water Detection Based on Object Reflections

    Science.gov (United States)

    Rankin, Arturo L.; Matthies, Larry H.

    2012-01-01

    Water bodies are challenging terrain hazards for terrestrial unmanned ground vehicles (UGVs) for several reasons. Traversing through deep water bodies could cause costly damage to the electronics of UGVs. Additionally, a UGV that is either broken down due to water damage or becomes stuck in a water body during an autonomous operation will require rescue, potentially drawing critical resources away from the primary operation and increasing the operation cost. Thus, robust water detection is a critical perception requirement for UGV autonomous navigation. One of the properties useful for detecting still water bodies is that their surface acts as a horizontal mirror at high incidence angles. Still water bodies in wide-open areas can be detected by geometrically locating the exact pixels in the sky that are reflecting on candidate water pixels on the ground, predicting if ground pixels are water based on color similarity to the sky and local terrain features. But in cluttered areas where reflections of objects in the background dominate the appearance of the surface of still water bodies, detection based on sky reflections is of marginal value. Specifically, this software attempts to solve the problem of detecting still water bodies on cross-country terrain in cluttered areas at low cost.

  11. Information-Aided Smart Schemes for Vehicle Flow Detection Enhancements of Traffic Microwave Radar Detectors

    Directory of Open Access Journals (Sweden)

    Tan-Jan Ho

    2016-07-01

    Full Text Available For satisfactory traffic management of an intelligent transport system, it is vital that traffic microwave radar detectors (TMRDs can provide real-time traffic information with high accuracy. In this study, we develop several information-aided smart schemes for traffic detection improvements of TMRDs in multiple-lane environments. Specifically, we select appropriate thresholds not only for removing noise from fast Fourier transforms (FFTs of regional lane contexts but also for reducing FFT side lobes within each lane. The resulting FFTs of reflected vehicle signals and those of clutter are distinguishable. We exploit FFT and lane-/or time stamp-related information for developing smart schemes, which mitigate adverse effects of lane-crossing FFT side lobes of a vehicle signal. As such, the proposed schemes can enhance the detection accuracy of both lane vehicle flow and directional traffic volume. On-site experimental results demonstrate the advantages and feasibility of the proposed methods, and suggest the best smart scheme.

  12. Monte Carlo evaluation of the neutron detection efficiency of a superheated drop detector

    Energy Technology Data Exchange (ETDEWEB)

    Gualdrini, G F [ENEA, Centro Ricerche ` Ezio Clementel` , Bologna (Italy). Dipt. Ambiente; D` Errico, F; Noccioni, P [Pisa, Univ. (Italy). Dipt. di Costruzioni Meccaniche e Nucleari

    1997-03-01

    Neuron dosimetry has recently gained renewed attention, following concerns on the exposure of crew members on board aircraft, and of workers around the increasing number of high energy accelerators for medical and research purpose. At the same time the new operational qualities for radiation dosimetry introduced by ICRU and the ICRP, aiming at a unified metrological system applicable to all types of radiation exposure, involved the need to update current devices in order to meet new requirements. Superheated Drop (Bubble) Detectors (SDD) offer an alternative approach to neutron radiation protection dosimetry. The SDDs are currently studied within a large collaborative effort involving Yale University. New Haven CT, Pisa (IT) University, the Physikalisch-Technische Bundesanstalt, Braunschweig D, and ENEA (Italian National Agency for new Technologies Energy and the Environment) Centre of Bologna. The detectors were characterised through calibrations with monoenergetic neutron beams and where experimental investigations were inadequate or impossible, such as in the intermediate energy range , parametric Monte Carlo calculations of the response were carried out. This report describes the general characteristic of the SDDs along with the Monte Carlo computations of the energy response and a comparison with the experimental results.

  13. Research on Daily Objects Detection Based on Deep Neural Network

    Science.gov (United States)

    Ding, Sheng; Zhao, Kun

    2018-03-01

    With the rapid development of deep learning, great breakthroughs have been made in the field of object detection. In this article, the deep learning algorithm is applied to the detection of daily objects, and some progress has been made in this direction. Compared with traditional object detection methods, the daily objects detection method based on deep learning is faster and more accurate. The main research work of this article: 1. collect a small data set of daily objects; 2. in the TensorFlow framework to build different models of object detection, and use this data set training model; 3. the training process and effect of the model are improved by fine-tuning the model parameters.

  14. Feasibility study of Self Powered Neutron Detectors in Fast Reactors for detecting local change in neutron flux distribution

    International Nuclear Information System (INIS)

    Jammes, Christian; Filliatre, Philippe; Verma, Vasudha; Hellesen, Carl; Jacobsson Svard, Staffan

    2015-01-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor system. Diverse possibilities of detector systems installation have to be investigated with respect to practicality and feasibility according to the detection parameters. In this paper, we demonstrate the feasibility of using self powered neutron detectors as in-core detectors in fast reactors for detecting local change in neutron flux distribution. We show that the gamma contribution from fission products decay in the fuel and activation of structural materials is very small compared to the fission gammas. Thus, it is possible for the in-core SPND signal to follow changes in local neutron flux as they are proportional to each other. This implies that the signal from an in-core SPND can provide dynamic information on the neutron flux perturbations occurring inside the reactor core. (authors)

  15. Feasibility study of Self Powered Neutron Detectors in Fast Reactors for detecting local change in neutron flux distribution

    Energy Technology Data Exchange (ETDEWEB)

    Jammes, Christian; Filliatre, Philippe [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St Paul-Lez-Durance, (France); Verma, Vasudha; Hellesen, Carl; Jacobsson Svard, Staffan [Division of Applied Nuclear Physics, Uppsala University, SE-75120 Uppsala, (Sweden)

    2015-07-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor system. Diverse possibilities of detector systems installation have to be investigated with respect to practicality and feasibility according to the detection parameters. In this paper, we demonstrate the feasibility of using self powered neutron detectors as in-core detectors in fast reactors for detecting local change in neutron flux distribution. We show that the gamma contribution from fission products decay in the fuel and activation of structural materials is very small compared to the fission gammas. Thus, it is possible for the in-core SPND signal to follow changes in local neutron flux as they are proportional to each other. This implies that the signal from an in-core SPND can provide dynamic information on the neutron flux perturbations occurring inside the reactor core. (authors)

  16. Modulation of the Object/Background Interaction by Spatial Frequency

    Directory of Open Access Journals (Sweden)

    Yanju Ren

    2011-05-01

    Full Text Available With regard to the relationship between object and background perception in the natural scene images, functional isolation hypothesis and interactive hypothesis were proposed. Based on previous studies, the present study investigated the role of spatial frequency in the relationship between object and background perception in the natural scene images. In three experiments, participants reported the object, background, or both after seeing each picture for 500 ms followed by a mask. The authors found that (a backgrounds were identified more accurately when they contained a consistent rather than an inconsistent object, independently of spatial frequency; (b objects were identified more accurately in a consistent than an inconsistent background under the condition of low spatial frequencies but not high spatial frequencies; (c spatial frequency modulation remained when both objects and backgrounds were reported simultaneously. The authors conclude that object/background interaction is partially dependent on spatial frequency.

  17. Analysis of Burst Observations by GLAST's LAT Detector

    International Nuclear Information System (INIS)

    Band, David L.; Digel, Seth W.

    2004-01-01

    Analyzing data from GLAST's Large Area Telescope (LAT) will require sophisticated techniques. The PSF and effective area are functions of both photon energy and the position in the field-of-view. During most of the mission the observatory will survey the sky continuously, and thus, the LAT will detect each count from a source at a different detector orientation; each count requires its own response function! The likelihood as a function of celestial position and photon energy will be the foundation of the standard analysis techniques. However, the 20 MeV-300 GeV emission at the time of the ∼ 100 keV burst emission (timescale of ∼ 10 s) can be isolated and analyzed because essentially no non-burst counts are expected within a PSF radius of the burst location during the burst. Both binned and unbinned (in energy) spectral fitting will be possible. Longer timescale afterglow emission will require the likelihood analysis that will be used for persistent sources

  18. Subpixel Mapping of Hyperspectral Image Based on Linear Subpixel Feature Detection and Object Optimization

    Science.gov (United States)

    Liu, Zhaoxin; Zhao, Liaoying; Li, Xiaorun; Chen, Shuhan

    2018-04-01

    Owing to the limitation of spatial resolution of the imaging sensor and the variability of ground surfaces, mixed pixels are widesperead in hyperspectral imagery. The traditional subpixel mapping algorithms treat all mixed pixels as boundary-mixed pixels while ignoring the existence of linear subpixels. To solve this question, this paper proposed a new subpixel mapping method based on linear subpixel feature detection and object optimization. Firstly, the fraction value of each class is obtained by spectral unmixing. Secondly, the linear subpixel features are pre-determined based on the hyperspectral characteristics and the linear subpixel feature; the remaining mixed pixels are detected based on maximum linearization index analysis. The classes of linear subpixels are determined by using template matching method. Finally, the whole subpixel mapping results are iteratively optimized by binary particle swarm optimization algorithm. The performance of the proposed subpixel mapping method is evaluated via experiments based on simulated and real hyperspectral data sets. The experimental results demonstrate that the proposed method can improve the accuracy of subpixel mapping.

  19. Development of a smartphone application for the objective detection of attentional deficits in delirium.

    Science.gov (United States)

    Tieges, Zoë; Stíobhairt, Antaine; Scott, Katie; Suchorab, Klaudia; Weir, Alexander; Parks, Stuart; Shenkin, Susan; MacLullich, Alasdair

    2015-08-01

    Delirium is an acute, severe deterioration in mental functioning. Inattention is the core feature, yet there are few objective methods for assessing attentional deficits in delirium. We previously developed a novel, graded test for objectively detecting inattention in delirium, implemented on a computerized device (Edinburgh Delirium Test Box (EDTB)). Although the EDTB is effective, tests on universally available devices have potential for greater impact. Here we assessed feasibility and validity of the DelApp, a smartphone application based on the EDTB. This was a preliminary case-control study in hospital inpatients (aged 60-96 years) with delirium (N = 50), dementia (N = 52), or no cognitive impairment (N = 54) who performed the DelApp assessment, which comprises an arousal assessment followed by counting of lights presented serially. Delirium was assessed using the Confusion Assessment Method and Delirium Rating Scale-Revised-98 (DRS-R98), and cognition with conventional tests of attention (e.g. digit span) and the short Orientation-Memory-Concentration Test (OMCT). DelApp scores (maximum score = 10) were lower in delirium (scores (median(IQR)): 6 (4-7)) compared to dementia (10 (9-10)) and control groups (10 (10-10), p-values smartphone test for attentional assessment in hospital inpatients with possible delirium, with potential applications in research and clinical practice.

  20. Salient Object Detection via Structured Matrix Decomposition.

    Science.gov (United States)

    Peng, Houwen; Li, Bing; Ling, Haibin; Hu, Weiming; Xiong, Weihua; Maybank, Stephen J

    2016-05-04

    Low-rank recovery models have shown potential for salient object detection, where a matrix is decomposed into a low-rank matrix representing image background and a sparse matrix identifying salient objects. Two deficiencies, however, still exist. First, previous work typically assumes the elements in the sparse matrix are mutually independent, ignoring the spatial and pattern relations of image regions. Second, when the low-rank and sparse matrices are relatively coherent, e.g., when there are similarities between the salient objects and background or when the background is complicated, it is difficult for previous models to disentangle them. To address these problems, we propose a novel structured matrix decomposition model with two structural regularizations: (1) a tree-structured sparsity-inducing regularization that captures the image structure and enforces patches from the same object to have similar saliency values, and (2) a Laplacian regularization that enlarges the gaps between salient objects and the background in feature space. Furthermore, high-level priors are integrated to guide the matrix decomposition and boost the detection. We evaluate our model for salient object detection on five challenging datasets including single object, multiple objects and complex scene images, and show competitive results as compared with 24 state-of-the-art methods in terms of seven performance metrics.

  1. Multi-detector row CT colonography: effect of collimation, pitch, and orientation on polyp detection in a human colectomy specimen.

    Science.gov (United States)

    Taylor, Stuart A; Halligan, Steve; Bartram, Clive I; Morgan, Paul R; Talbot, Ian C; Fry, Nicola; Saunders, Brian P; Khosraviani, Kirosh; Atkin, Wendy

    2003-10-01

    To investigate the effects of orientation, collimation, pitch, and tube current setting on polyp detection at multi-detector row computed tomographic (CT) colonography and to determine the optimal combination of scanning parameters for screening. A colectomy specimen containing 117 polyps of different sizes was insufflated and imaged with a multi-detector row CT scanner at various collimation (1.25 and 2.5 mm), pitch (3 and 6), and tube current (50, 100, and 150 mA) settings. Two-dimensional multiplanar reformatted images and three-dimensional endoluminal surface renderings from the 12 resultant data sets were examined by one observer for the presence and conspicuity of polyps. The results were analyzed with Poisson regression and logistic regression to determine the effects of scanning parameters and of specimen orientation on polyp detection. The percentage of polyps that were detected significantly increased when collimation (P =.008) and table feed (P =.03) were decreased. Increased tube current resulted in improved detection only of polyps with a diameter of less than 5 mm. Polyps of less than 5 mm were optimally depicted with a collimation of 1.25 mm, a pitch of 3, and a tube current setting of 150 mA; polyps with a diameter greater than 5 mm were adequately depicted with 1.25-mm collimation and with either pitch setting and any of the three tube current settings. Small polyps in the transverse segment (positioned at a 90 degrees angle to the z axis of scanning) were significantly less visible than those in parallel or oblique orientations (P detector row CT is highly dependent on collimation, pitch, and, to a lesser extent, tube current. Collimation of 1.25 mm, combined with pitch of 6 and tube current of 50 mA, provides for reliable detection of polyps 5 mm or larger while limiting the effective radiation dose. Polyps smaller than 5 mm, however, may be poorly depicted with use of these settings in the transverse colon. Copyright RSNA, 2003

  2. Laser methods for detecting explosive residues on surfaces of distant objects

    Energy Technology Data Exchange (ETDEWEB)

    Skvortsov, L A [Institute of Cryptography, Communications and Informatics, Moscow (Russian Federation)

    2012-01-31

    The basic methods of laser spectroscopy that are used for standoff detection and identification of explosive traces in the form of particles on the surfaces of objects tested under real or close-toreal conditions are briefly considered. The advantages and drawbacks of all methods are discussed and their characteristics are compared. Particular attention has been given to the prospects of development and practical implementation of the technologies discussed and justification of their most preferred applications. (review)

  3. Refining Visually Detected Object poses

    DEFF Research Database (Denmark)

    Holm, Preben; Petersen, Henrik Gordon

    2010-01-01

    to the particular object and in order to handle the demand for flexibility, there is an increasing demand for avoiding such dedicated mechanical alignment systems. Rather, it would be desirable to automatically locate and grasp randomly placed objects from tables, conveyor belts or even bins with a high accuracy...

  4. Field tests and commercialization of natural gas leak detectors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, D S; Jeon, J S; Kim, K D; Cho, Y A [R and D Center, Korea Gas Corporation, Ansan (Korea)

    1999-09-01

    Objectives - (1) fields test of industrial gas leak detection monitoring system. (2) commericialization of residential gas leak detector. Contents - (1) five sets of gas leak detection monitoring system were installed at natural gas transmition facilities and tested long term stability and their performance. (2) improved residential gas leak detector was commercialised. Expected benefits and application fields - (1) contribution to the improvement of domestic gas sensor technology. (2) localization of fabrication technology for gas leak detectors. 23 refs., 126 figs., 37 tabs.

  5. Development of electron temperature measuring system by silicon drift detector

    International Nuclear Information System (INIS)

    Song Xianying; Yang Jinwei; Liao Min

    2007-12-01

    Soft X-ray spectroscopy with two channels Silicon Drift Detector (SDD) are adopted for electron temperature measuring on HL-2A tokamak in 2005. The working principle, design and first operation of the SDD soft X-ray spectroscopy are introduced. The measuring results of electron temperature are also presented. The results show that the SDD is very good detector for electron temperature measuring on HL-2A tokamak. These will become a solid basic work to establish SDD array for electron temperature profiling. (authors)

  6. Design of equipment for the detection of nickel-63 source of the gc-2010 electron capture detector

    International Nuclear Information System (INIS)

    Lopez O, A.

    2016-01-01

    It is necessary to design a system that is able to detect the presence of the radioactive source nickel-63, located within the electron capture detector gc- 2010 through the use of Arduino technology, presence sensors and motion This in turn It must be interfaced with a system of tracking and tracing , so collectively be mounted inside the mobile laboratory for research and technological development of systems and equipment for measuring radiation , gases and particles. The program has a structure reading sensors, processing the acquired data and execution of an action if necessary. The system does this by receiving data autonomously, the data is processed and at the end, determines whether the source is in normal operating conditions, if subjected to movements that may cause undesired operation if being handled, or has it has been extracted. (Author)

  7. Non-Linear Optical Phenomena in Detecting Materials as a Possibility for Fast Timing in Detectors of Ionizing Radiation

    CERN Document Server

    Korjik, M. V.; Buganov, O.; Fedorov, A. A.; Emelianchik, I.; Griesmayer, E.; Mechinsky, V.; Nargelas, S.; Sidletskiy, O.; Tamulaitis, G.; Tikhomirov, S. N.; Vaitkevicius, A.

    2016-01-01

    The time resolution of the detectors currently in use is limited by 50-70 ps due to the spontaneous processes involved in the development of the response signal, which forms after the relaxation of carriers generated during the interaction. In this study, we investigate the feasibility of exploiting sub-picosecond phenomena occurring after the interaction of scintillator material with ionizing radiation by probing the material with ultra-short laser pulses. One of the phenomena is the elastic polarization due to the local lattice distortion caused by the displacement of electrons and holes generated by ionization. The key feature of the elastic polarization is its short response time, which makes it prospective for using as an optically detectable time mark. The nonlinear optical absorption of femtosecond light pulses of appropriate wavelength is demonstrated to be a prospective tool to form the mark. This study was aimed at searching for inorganic crystalline media combining scintillation properties and non-...

  8. FLIPPS for the Blind: A New Device for Medium Distance Object Detection by Concerted Fingertip Stimulation

    DEFF Research Database (Denmark)

    Al-Hamdani, Sermed; Bothe, Hans-Heinrich

    2011-01-01

    of this book cover useful areas of general knowledge including Technologies for Adaptive Mobile Learning, Integrated Learning and Educational Environments, Pedagogically exploitable Guiding Principles and Practices for Web-based Learning Environments, Adaptive E-learning and Intelligent Tutoring Systems...

  9. Study on the influence of CR-39 detector size on radon progeny detection in indoor environments

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, L. A.; Hadler, J. C.; Lixandrão F, A. L.; Guedes, S.; Takizawa, R. H. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, UNICAMP, 13083-970 Campinas, SP (Brazil)

    2014-11-11

    It is well known that radon daughters up to {sup 214}Po are the real contaminants to be considered in case of indoor radon contamination. Assemblies consisting of 6 circular bare sheets of CR-39, a nuclear track detector, with radius varying from 0.15 to 1.2 cm were exposed far from any material surface for periods of approximately 6 months in 13 different indoor rooms (7 workplaces and 6 dwellings), where ventilation was moderate or poor. It was observed that track density was as greater as smaller was the detector radius. Track density data were fitted using an equation deduced based on the assumption that the behavior of radon and its progeny in the air was described by Fick's Law, i.e., when the main mechanism of transport of radon progeny in the air is diffusion. As many people spend great part of their time in closed or poorly ventilated environments, the confirmation they present equilibrium between radon and its progeny is an interesting start for dosimetric calculations concerning this contamination.

  10. Development of the MICROMEGAS Detector for Measuring the Energy Spectrum of Alpha Particles by using a 241-Am Source

    CERN Document Server

    Kim, Do Yoon; Shin, Jae Won; Park, Tae-Sun; Hong, Seung-Woo; Andriamonje, Samuel; Kadi, Yacine; Tenreiro, Claudio

    2016-01-01

    We have developed MICROMEGAS (MICRO MEsh GASeous) detectors for detecting {\\alpha} particles emitted from an 241-Am standard source. The voltage applied to the ionization region of the detector is optimized for stable operation at room temperature and atmospheric pressure. The energy of {\\alpha} particles from the 241-Am source can be varied by changing the flight path of the {\\alpha} particle from the 241 Am source. The channel numbers of the experimentally-measured pulse peak positions for different energies of the {\\alpha} particles are associated with the energies deposited by the alpha particles in the ionization region of the detector as calculated by using GEANT4 simulations; thus, the energy calibration of the MICROMEGAS detector for {\\alpha} particles is done. For the energy calibration, the thickness of the ionization region is adjusted so that {\\alpha} particles may completely stop in the ionization region and their kinetic energies are fully deposited in the region. The efficiency of our MICROMEGA...

  11. In-plane object detection : detection algorithms and visibility problems

    NARCIS (Netherlands)

    Jovanovic, N.

    2011-01-01

    A large number of devices today incorporate some form of detection of objects and people in a given environment. Various detection technologies have been developed over the years, as a response to many different demands. The devices such as video surveillance systems, scanners, touch screens and

  12. A laser-based FAIMS detector for detection of ultra-low concentrations of explosives

    Science.gov (United States)

    Akmalov, Artem E.; Chistyakov, Alexander A.; Kotkovskii, Gennadii E.; Sychev, Alexey V.; Tugaenko, Anton V.; Bogdanov, Artem S.; Perederiy, Anatoly N.; Spitsyn, Eugene M.

    2014-06-01

    A non-contact method for analyzing of explosives traces from surfaces was developed. The method is based on the laser desorption of analyzed molecules from the surveyed surfaces followed by the laser ionization of air sample combined with the field asymmetric ion mobility spectrometry (FAIMS). The pulsed radiation of the fourth harmonic of a portable GSGG: Cr3+ :Nd3+ laser (λ = 266 nm) is used. The laser desorption FAIMS analyzer have been developed. The detection limit of the analyzer equals 40 pg for TNT. The results of detection of trinitrotoluene (TNT), cyclotrimethylenetrinitramine (RDX) and cyclotetramethylenetetranitramine (HMX) are presented. It is shown that laser desorption of nitro-compounds from metals is accompanied by their surface decomposition. A method for detecting and analyzing of small concentrations of explosives in air based on the laser ionization and the FAIMS was developed. The method includes a highly efficient multipass optical scheme of the intracavity fourthharmonic generation of pulsed laser radiation (λ = 266 nm) and the field asymmetric ion mobility (FAIM) spectrometer disposed within a resonator. The ions formation and detection proceed inside a resonant cavity. The laser ion source based on the multi-passage of radiation at λ = 266 nm through the ionization region was elaborated. On the basis of the method the laser FAIMS analyzer has been created. The analyzer provides efficient detection of low concentrations of nitro-compounds in air and shows a detection limit of 10-14 - 10-15 g/cm3 both for RDX and TNT.

  13. Determination of detection efficiency for radon and radon daughters with CR 39 track detector - a Monte Carlo study

    International Nuclear Information System (INIS)

    Nikezic, D.

    1994-01-01

    The detection effciency, ρ, (or a calibration coefficient k) for radon measurements with a solid state nuclear track detector CR 39 was determined by many authors. There is a considerable discrepancy among reported values for ρ. This situation was a challenge to develop a software program to calculation ρ. This software is based on Bethe-Bloch's expression for the stopping power for heavy charged particles in a medium, as wll as on the Monte Carlo Method. Track parameters were calculated by using an iterative procedure as given in G. Somogyi et al., Nucl. Instr. and Meth. 109 (1973) 211. Results for an open detector and for the detector in a diffusion chamber were presented in this article. (orig.)

  14. Astronomers Detect Powerful Bursting Radio Source Discovery Points to New Class of Astronomical Objects

    Science.gov (United States)

    2005-03-01

    Astronomers at Sweet Briar College and the Naval Research Laboratory (NRL) have detected a powerful new bursting radio source whose unique properties suggest the discovery of a new class of astronomical objects. The researchers have monitored the center of the Milky Way Galaxy for several years and reveal their findings in the March 3, 2005 edition of the journal, “Nature”. This radio image of the central region of the Milky Way Galaxy holds a new radio source, GCRT J1745-3009. The arrow points to an expanding ring of debris expelled by a supernova. CREDIT: N.E. Kassim et al., Naval Research Laboratory, NRAO/AUI/NSF Principal investigator, Dr. Scott Hyman, professor of physics at Sweet Briar College, said the discovery came after analyzing some additional observations from 2002 provided by researchers at Northwestern University. “"We hit the jackpot!” Hyman said referring to the observations. “An image of the Galactic center, made by collecting radio waves of about 1-meter in wavelength, revealed multiple bursts from the source during a seven-hour period from Sept. 30 to Oct. 1, 2002 — five bursts in fact, and repeating at remarkably constant intervals.” Hyman, four Sweet Briar students, and his NRL collaborators, Drs. Namir Kassim and Joseph Lazio, happened upon transient emission from two radio sources while studying the Galactic center in 1998. This prompted the team to propose an ongoing monitoring program using the National Science Foundation’s Very Large Array (VLA) radio telescope in New Mexico. The National Radio Astronomy Observatory, which operates the VLA, approved the program. The data collected, laid the groundwork for the detection of the new radio source. “Amazingly, even though the sky is known to be full of transient objects emitting at X- and gamma-ray wavelengths,” NRL astronomer Dr. Joseph Lazio pointed out, “very little has been done to look for radio bursts, which are often easier for astronomical objects to produce

  15. A BODIPY-Based Fluorescent Probe to Visually Detect Phosgene: Toward the Development of a Handheld Phosgene Detector.

    Science.gov (United States)

    Sayar, Melike; Karakuş, Erman; Güner, Tuğrul; Yildiz, Busra; Yildiz, Umit Hakan; Emrullahoğlu, Mustafa

    2018-03-02

    A boron-dipyrromethene (BODIPY)-based fluorescent probe with a phosgene-specific reactive motif shows remarkable selectivity toward phosgene, in the presence of which the nonfluorescent dye rapidly transforms into a new structure and induces a fluorescent response clearly observable to the naked eye under ultraviolet light. Given that dynamic, a prototypical handheld phosgene detector with a promising sensing capability that expedites the detection of gaseous phosgene without sophisticated instrumentation was developed. The proposed method using the handheld detector involves a rapid response period suitable for issuing early warnings during emergency situations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Use of water-Cherenkov detectors to detect Gamma Ray Bursts at the Large Aperture GRB Observatory (LAGO)

    International Nuclear Information System (INIS)

    Allard, D.; Allekotte, I.; Alvarez, C.; Asorey, H.; Barros, H.; Bertou, X.; Burgoa, O.; Gomez Berisso, M.; Martinez, O.; Miranda Loza, P.; Murrieta, T.; Perez, G.; Rivera, H.; Rovero, A.; Saavedra, O.; Salazar, H.; Tello, J.C.; Ticona Peralda, R.; Velarde, A.; Villasenor, L.

    2008-01-01

    The Large Aperture GRB Observatory (LAGO) project aims at the detection of high energy photons from Gamma Ray Bursts (GRB) using the single particle technique in ground-based water-Cherenkov detectors (WCD). To reach a reasonable sensitivity, high altitude mountain sites have been selected in Mexico (Sierra Negra, 4550 m a.s.l.), Bolivia (Chacaltaya, 5300 m a.s.l.) and Venezuela (Merida, 4765 m a.s.l.). We report on detector calibration and operation at high altitude, search for bursts in 4 months of preliminary data, as well as search for signal at ground level when satellites report a burst

  17. Use of water-Cherenkov detectors to detect Gamma Ray Bursts at the Large Aperture GRB Observatory (LAGO)

    Energy Technology Data Exchange (ETDEWEB)

    Allard, D. [APC, CNRS et Universite Paris 7 (France); Allekotte, I. [Centro Atomico Bariloche, Instituto Balseiro (Argentina); Alvarez, C. [Facultad de Ciencias Fisico-Matematicas de la BUAP (Mexico); Asorey, H. [Centro Atomico Bariloche, Instituto Balseiro (Argentina); Barros, H. [Laboratorio de Fisica Nuclear, Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of); Bertou, X. [Centro Atomico Bariloche, Instituto Balseiro (Argentina)], E-mail: bertou@cab.cnea.gov.ar; Burgoa, O. [Instituto de Investigaciones Fisicas, UMSA (Bolivia); Gomez Berisso, M. [Centro Atomico Bariloche, Instituto Balseiro (Argentina); Martinez, O. [Facultad de Ciencias Fisico-Matematicas de la BUAP (Mexico); Miranda Loza, P. [Instituto de Investigaciones Fisicas, UMSA (Bolivia); Murrieta, T.; Perez, G. [Facultad de Ciencias Fisico-Matematicas de la BUAP (Mexico); Rivera, H. [Instituto de Investigaciones Fisicas, UMSA (Bolivia); Rovero, A. [Instituto de Astronomia y Fisica del Espacio (Argentina); Saavedra, O. [Dipartimento di Fisica Generale and INFN, Torino (Italy); Salazar, H. [Facultad de Ciencias Fisico-Matematicas de la BUAP (Mexico); Tello, J.C. [Laboratorio de Fisica Nuclear, Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of); Ticona Peralda, R.; Velarde, A. [Instituto de Investigaciones Fisicas, UMSA (Bolivia); Villasenor, L. [Facultad de Ciencias Fisico-Matematicas de la BUAP (Mexico); Instituto de Fisica y Matematicas, Universidad de Michoacan (Mexico)

    2008-09-21

    The Large Aperture GRB Observatory (LAGO) project aims at the detection of high energy photons from Gamma Ray Bursts (GRB) using the single particle technique in ground-based water-Cherenkov detectors (WCD). To reach a reasonable sensitivity, high altitude mountain sites have been selected in Mexico (Sierra Negra, 4550 m a.s.l.), Bolivia (Chacaltaya, 5300 m a.s.l.) and Venezuela (Merida, 4765 m a.s.l.). We report on detector calibration and operation at high altitude, search for bursts in 4 months of preliminary data, as well as search for signal at ground level when satellites report a burst.

  18. The use of helicopter-borne neutron detectors to detect nuclear warheads in the USSR-US Black Sea experiment

    International Nuclear Information System (INIS)

    Belyaev, S.T.; Lebedev, V.I.; Obinyakov, B.A.; Zemlyakov, M.V.; Ryazantsev, V.A.; Armashov, V.M.

    1992-01-01

    This paper reports that the Soviet Navy used a helicopter/ship system called Sovietnik to detect a cruise-missile warhead in the joint USSR-US experiment on the Black Sea, which took place on 5 July 1989. The system consists of a ship-based helicopter, equipped with a neutron detector and processing equipment, associated ship-based equipment. The neutron detector, together with instrumentation for recording preliminary processing, and analysis of initial information, is located on the helicopter, which carries out the measurement while flying slowly past the ship in question

  19. Improved optical properties and detectivity of an uncooled silicon carbide mid-wave infrared optical detector with increased dopant concentration

    International Nuclear Information System (INIS)

    Lim, Geunsik; Kar, Aravinda; Manzur, Tariq

    2012-01-01

    An n-type 4H-SiC substrate is doped with gallium using a laser doping technique and its optical response is investigated at the mid-wave infrared (MWIR) wavelength 4.21 μm as a function of the dopant concentration. The dopant creates a p-type energy level of 0.3 eV, which is the energy of a photon corresponding to the MWIR wavelength 4.21 μm. Therefore, Ga-doped SiC can be used as an uncooled MWIR detector because an optical signal was obtained at this wavelength when the sample was at room temperature. The energy level of the Ga dopant in the substrate was confirmed by optical absorption spectroscopy. Secondary ion mass spectroscopy (SIMS) of the doped samples revealed an enhancement in the solid solubility of Ga in the substrate when doping is carried out by increasing the number of laser scans. A higher dopant concentration increases the number of holes in the dopant energy level, enabling photoexcitation of more electrons from the valence band by the incident MWIR photons. The detector performance improves as the dopant concentration increases from 1.15 × 10 19 to 6.25 × 10 20 cm −3 . The detectivity of the optical photodetector is found to be 1.07 × 10 10 cm Hz 1/2 W −1 for the case of doping with four laser passes. (paper)

  20. Reduction of ring artifacts in CBCT: Detection and correction of pixel gain variations in flat panel detectors

    International Nuclear Information System (INIS)

    Altunbas, Cem; Lai, Chao-Jen; Zhong, Yuncheng; Shaw, Chris C.

    2014-01-01

    Purpose: In using flat panel detectors (FPD) for cone beam computed tomography (CBCT), pixel gain variations may lead to structured nonuniformities in projections and ring artifacts in CBCT images. Such gain variations can be caused by change in detector entrance exposure levels or beam hardening, and they are not accounted by conventional flat field correction methods. In this work, the authors presented a method to identify isolated pixel clusters that exhibit gain variations and proposed a pixel gain correction (PGC) method to suppress both beam hardening and exposure level dependent gain variations. Methods: To modulate both beam spectrum and entrance exposure, flood field FPD projections were acquired using beam filters with varying thicknesses. “Ideal” pixel values were estimated by performing polynomial fits in both raw and flat field corrected projections. Residuals were calculated by taking the difference between measured and ideal pixel values to identify clustered image and FPD artifacts in flat field corrected and raw images, respectively. To correct clustered image artifacts, the ratio of ideal to measured pixel values in filtered images were utilized as pixel-specific gain correction factors, referred as PGC method, and they were tabulated as a function of pixel value in a look-up table. Results: 0.035% of detector pixels lead to clustered image artifacts in flat field corrected projections, where 80% of these pixels were traced back and linked to artifacts in the FPD. The performance of PGC method was tested in variety of imaging conditions and phantoms. The PGC method reduced clustered image artifacts and fixed pattern noise in projections, and ring artifacts in CBCT images. Conclusions: Clustered projection image artifacts that lead to ring artifacts in CBCT can be better identified with our artifact detection approach. When compared to the conventional flat field correction method, the proposed PGC method enables characterization of nonlinear

  1. Effect of energy deposited by cosmic-ray particles on interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    Yamamoto, Kazuhiro; Hayakawa, Hideaki; Okada, Atsushi; Uchiyama, Takashi; Miyoki, Shinji; Ohashi, Masatake; Kuroda, Kazuaki; Kanda, Nobuyuki; Tatsumi, Daisuke; Tsunesada, Yoshiki

    2008-01-01

    We investigated the noise of interferometric gravitational wave detectors due to heat energy deposited by cosmic-ray particles. We derived a general formula that describes the response of a mirror against a cosmic-ray passage. We found that there are differences in the comic-ray responses (the dependence of temperature and cosmic-ray track position) in cases of interferometric and resonant gravitational wave detectors. The power spectral density of vibrations caused by low-energy secondary muons is 100 times smaller than the goal sensitivity of future second-generation interferometer projects, such as LCGT and Advanced LIGO. The arrival frequency of high-energy cosmic-ray muons that generate enough large showers inside mirrors of LCGT and Advanced LIGO is one per a millennium. We also discuss the probability