WorldWideScience

Sample records for detecting robust patterns

  1. Robust Adaptable Video Copy Detection

    DEFF Research Database (Denmark)

    Assent, Ira; Kremer, Hardy

    2009-01-01

    in contrast). Our query processing combines filtering and indexing structures for efficient multistep computation of video copies under this model. We show that our model successfully identifies altered video copies and does so more reliably than existing models.......Video copy detection should be capable of identifying video copies subject to alterations e.g. in video contrast or frame rates. We propose a video copy detection scheme that allows for adaptable detection of videos that are altered temporally (e.g. frame rate change) and/or visually (e.g. change...

  2. Robust pattern decoding in shape-coded structured light

    Science.gov (United States)

    Tang, Suming; Zhang, Xu; Song, Zhan; Song, Lifang; Zeng, Hai

    2017-09-01

    Decoding is a challenging and complex problem in a coded structured light system. In this paper, a robust pattern decoding method is proposed for the shape-coded structured light in which the pattern is designed as grid shape with embedded geometrical shapes. In our decoding method, advancements are made at three steps. First, a multi-template feature detection algorithm is introduced to detect the feature point which is the intersection of each two orthogonal grid-lines. Second, pattern element identification is modelled as a supervised classification problem and the deep neural network technique is applied for the accurate classification of pattern elements. Before that, a training dataset is established, which contains a mass of pattern elements with various blurring and distortions. Third, an error correction mechanism based on epipolar constraint, coplanarity constraint and topological constraint is presented to reduce the false matches. In the experiments, several complex objects including human hand are chosen to test the accuracy and robustness of the proposed method. The experimental results show that our decoding method not only has high decoding accuracy, but also owns strong robustness to surface color and complex textures.

  3. Robust online face tracking-by-detection

    NARCIS (Netherlands)

    Comaschi, F.; Stuijk, S.; Basten, T.; Corporaal, H.

    2016-01-01

    The problem of online face tracking from unconstrained videos is still unresolved. Challenges range from coping with severe online appearance variations to coping with occlusion. We propose RFTD (Robust Face Tracking-by-Detection), a system which combines tracking and detection into a single

  4. Robust glint detection through homography normalization

    DEFF Research Database (Denmark)

    Hansen, Dan Witzner; Roholm, Lars; García Ferreiros, Iván

    2014-01-01

    A novel normalization principle for robust glint detection is presented. The method is based on geometric properties of corneal reflections and allows for simple and effective detection of glints even in the presence of several spurious and identically appearing reflections. The method is tested...

  5. A robust human face detection algorithm

    Science.gov (United States)

    Raviteja, Thaluru; Karanam, Srikrishna; Yeduguru, Dinesh Reddy V.

    2012-01-01

    Human face detection plays a vital role in many applications like video surveillance, managing a face image database, human computer interface among others. This paper proposes a robust algorithm for face detection in still color images that works well even in a crowded environment. The algorithm uses conjunction of skin color histogram, morphological processing and geometrical analysis for detecting human faces. To reinforce the accuracy of face detection, we further identify mouth and eye regions to establish the presence/absence of face in a particular region of interest.

  6. Robust Spacecraft Component Detection in Point Clouds

    Directory of Open Access Journals (Sweden)

    Quanmao Wei

    2018-03-01

    Full Text Available Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.

  7. Robust Spacecraft Component Detection in Point Clouds.

    Science.gov (United States)

    Wei, Quanmao; Jiang, Zhiguo; Zhang, Haopeng

    2018-03-21

    Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D) point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD) models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.

  8. Robust obstacle detection for unmanned surface vehicles

    Science.gov (United States)

    Qin, Yueming; Zhang, Xiuzhi

    2018-03-01

    Obstacle detection is of essential importance for Unmanned Surface Vehicles (USV). Although some obstacles (e.g., ships, islands) can be detected by Radar, there are many other obstacles (e.g., floating pieces of woods, swimmers) which are difficult to be detected via Radar because these obstacles have low radar cross section. Therefore, detecting obstacle from images taken onboard is an effective supplement. In this paper, a robust vision-based obstacle detection method for USVs is developed. The proposed method employs the monocular image sequence captured by the camera on the USVs and detects obstacles on the sea surface from the image sequence. The experiment results show that the proposed scheme is efficient to fulfill the obstacle detection task.

  9. Calibration robust entanglement detection beyond Bell inequalities

    Energy Technology Data Exchange (ETDEWEB)

    Moroder, Tobias [Institut fuer Quantenoptik und Quanteninformation, Oesterreichische Akademie der Wissenschaften, Technikerstrasse 21A, A-6020 Innsbruck (Austria); Gittsovich, Oleg [Department of Physics and Astronomy, Institute for Quantum Computing, University of Waterloo, 200 University Avenue West, N2L 3G1 Waterloo, Ontario (Canada)

    2012-07-01

    In its vast majority entanglement verification is examined either in the complete characterized or totally device independent scenario. The assumptions imposed by these extreme cases are often either too weak or strong for real experiments. Here we investigate this detection task for the intermediate regime where partial knowledge of the measured observables is known, considering cases like orthogonal, sharp or only dimension bounded measurements. We show that for all these assumptions it is not necessary to violate a corresponding Bell inequality in order to detect entanglement. We derive strong detection criteria that can be directly evaluated for experimental data and which are robust against large classes of calibration errors. The conditions are even capable of detecting bound entanglement under the sole assumption of dimension bounded measurements.

  10. Tensor voting for robust color edge detection

    OpenAIRE

    Moreno, Rodrigo; García, Miguel Ángel; Puig, Domenec

    2014-01-01

    The final publication is available at Springer via http://dx.doi.org/10.1007/978-94-007-7584-8_9 This chapter proposes two robust color edge detection methods based on tensor voting. The first method is a direct adaptation of the classical tensor voting to color images where tensors are initialized with either the gradient or the local color structure tensor. The second method is based on an extension of tensor voting in which the encoding and voting processes are specifically tailored to ...

  11. Robust Circle Detection Using Harmony Search

    Directory of Open Access Journals (Sweden)

    Jaco Fourie

    2017-01-01

    Full Text Available Automatic circle detection is an important element of many image processing algorithms. Traditionally the Hough transform has been used to find circular objects in images but more modern approaches that make use of heuristic optimisation techniques have been developed. These are often used in large complex images where the presence of noise or limited computational resources make the Hough transform impractical. Previous research on the use of the Harmony Search (HS in circle detection showed that HS is an attractive alternative to many of the modern circle detectors based on heuristic optimisers like genetic algorithms and simulated annealing. We propose improvements to this work that enables our algorithm to robustly find multiple circles in larger data sets and still work on realistic images that are heavily corrupted by noisy edges.

  12. Application of the robust design concept for fuel loading pattern

    International Nuclear Information System (INIS)

    Endo, Tomohiro; Ohori, Kazuma; Yamamoto, Akio

    2011-01-01

    Application of the robust design concept for fuel loading pattern design is proposed as a new approach to improve the prediction accuracy of core characteristics. The robust design is a design concept that establishes a resistant (robust) system for perturbations or noises, by properly setting design variables. In order to apply the concept of robust design to fuel loading pattern design, we focus on a theoretical approach based on the higher order perturbation method. This approach indicates that the eigenvalue separation is one of the effective indices to measure the robustness of a designed fuel loading pattern. In order to verify the effectiveness of the eigenvalue separation as an index of robustness, numerical analysis is carried out for typical 3-loop PWR cores, and we evaluated the correlation between the eigenvalue separation and the variation of relative assembly power due to the perturbation of the cross section. The numerical results show that the variation of relative power decreases as the eigenvalue separation increases; thus, it is confirmed that the eigenvalue separation is an effective index of robustness. Based on the eigenvalue separation of a fuel loading pattern, we discuss design guidelines of a fuel loading pattern to improve the robustness. For example, if each fuel assembly has independent uncertainty on its cross section, the robustness of the core can be enhanced by increasing the relative power at the center of the core. The proposed guidelines will be useful to design a loading pattern that has robustness for uncertainties due to cross section, calculation method, and so on. (author)

  13. Robust Robot Grasp Detection in Multimodal Fusion

    Directory of Open Access Journals (Sweden)

    Zhang Qiang

    2017-01-01

    Full Text Available Accurate robot grasp detection for model free objects plays an important role in robotics. With the development of RGB-D sensors, object perception technology has made great progress. Reach feature expression by the colour and the depth data is a critical problem that needs to be addressed in order to accomplish the grasping task. To solve the problem of data fusion, this paper proposes a convolutional neural networks (CNN based approach combined with regression and classification. In the CNN model, the colour and the depth modal data are deeply fused together to achieve accurate feature expression. Additionally, Welsch function is introduced into the approach to enhance robustness of the training process. Experiment results demonstrates the superiority of the proposed method.

  14. Perspective: Evolution and detection of genetic robustness

    NARCIS (Netherlands)

    Visser, de J.A.G.M.; Hermisson, J.; Wagner, G.P.; Ancel Meyers, L.; Bagheri-Chaichian, H.; Blanchard, J.L.; Chao, L.; Cheverud, J.M.; Elena, S.F.; Fontana, W.; Gibson, G.; Hansen, T.F.; Krakauer, D.; Lewontin, R.C.; Ofria, C.; Rice, S.H.; Dassow, von G.; Wagner, A.; Whitlock, M.C.

    2003-01-01

    Robustness is the invariance of phenotypes in the face of perturbation. The robustness of phenotypes appears at various levels of biological organization, including gene expression, protein folding, metabolic flux, physiological homeostasis, development, and even organismal fitness. The mechanisms

  15. Optimal Robust Fault Detection for Linear Discrete Time Systems

    Directory of Open Access Journals (Sweden)

    Nike Liu

    2008-01-01

    Full Text Available This paper considers robust fault-detection problems for linear discrete time systems. It is shown that the optimal robust detection filters for several well-recognized robust fault-detection problems, such as ℋ−/ℋ∞, ℋ2/ℋ∞, and ℋ∞/ℋ∞ problems, are the same and can be obtained by solving a standard algebraic Riccati equation. Optimal filters are also derived for many other optimization criteria and it is shown that some well-studied and seeming-sensible optimization criteria for fault-detection filter design could lead to (optimal but useless fault-detection filters.

  16. Unsupervised learning for robust bitcoin fraud detection

    CSIR Research Space (South Africa)

    Monamo, Patrick

    2016-08-01

    Full Text Available The rampant absorption of Bitcoin as a cryptographic currency, along with rising cybercrime activities, warrants utilization of anomaly detection to identify potential fraud. Anomaly detection plays a pivotal role in data mining since most outlying...

  17. Robust Detection of Stepping-Stone Attacks

    National Research Council Canada - National Science Library

    He, Ting; Tong, Lang

    2006-01-01

    The detection of encrypted stepping-stone attack is considered. Besides encryption and padding, the attacker is capable of inserting chaff packets and perturbing packet timing and transmission order...

  18. Robust Bayesian detection of unmodelled bursts

    International Nuclear Information System (INIS)

    Searle, Antony C; Sutton, Patrick J; Tinto, Massimo; Woan, Graham

    2008-01-01

    We develop a Bayesian treatment of the problem of detecting unmodelled gravitational wave bursts using the new global network of interferometric detectors. We also compare this Bayesian treatment with existing coherent methods, and demonstrate that the existing methods make implicit assumptions on the distribution of signals that make them sub-optimal for realistic signal populations

  19. Robust adaptive subspace detection in impulsive noise

    KAUST Repository

    Ben Atitallah, Ismail

    2016-09-13

    This paper addresses the design of the Adaptive Subspace Matched Filter (ASMF) detector in the presence of compound Gaussian clutters and a mismatch in the steering vector. In particular, we consider the case wherein the ASMF uses the regularized Tyler estimator (RTE) to estimate the clutter covariance matrix. Under this setting, a major question that needs to be addressed concerns the setting of the threshold and the regularization parameter. To answer this question, we consider the regime in which the number of observations used to estimate the RTE and their dimensions grow large together. Recent results from random matrix theory are then used in order to approximate the false alarm and detection probabilities by deterministic quantities. The latter are optimized in order to maximize an upper bound on the asymptotic detection probability while keeping the asymptotic false alarm probability at a fixed rate. © 2016 IEEE.

  20. Robust adaptive subspace detection in impulsive noise

    KAUST Repository

    Ben Atitallah, Ismail; Kammoun, Abla; Alouini, Mohamed-Slim; Al-Naffouri, Tareq Y.

    2016-01-01

    This paper addresses the design of the Adaptive Subspace Matched Filter (ASMF) detector in the presence of compound Gaussian clutters and a mismatch in the steering vector. In particular, we consider the case wherein the ASMF uses the regularized Tyler estimator (RTE) to estimate the clutter covariance matrix. Under this setting, a major question that needs to be addressed concerns the setting of the threshold and the regularization parameter. To answer this question, we consider the regime in which the number of observations used to estimate the RTE and their dimensions grow large together. Recent results from random matrix theory are then used in order to approximate the false alarm and detection probabilities by deterministic quantities. The latter are optimized in order to maximize an upper bound on the asymptotic detection probability while keeping the asymptotic false alarm probability at a fixed rate. © 2016 IEEE.

  1. Active Exploration for Robust Object Detection

    OpenAIRE

    Velez, Javier J.; Hemann, Garrett A.; Huang, Albert S.; Posner, Ingmar; Roy, Nicholas

    2011-01-01

    Today, mobile robots are increasingly expected to operate in ever more complex and dynamic environments. In order to carry out many of the higher-level tasks envisioned a semantic understanding of a workspace is pivotal. Here our field has benefited significantly from successes in machine learning and vision: applications in robotics of off-the-shelf object detectors are plentiful. This paper outlines an online, any-time planning framework enabling the active exploration of such detections. O...

  2. Recurrent, Robust and Scalable Patterns Underlie Human Approach and Avoidance

    Science.gov (United States)

    Kennedy, David N.; Lehár, Joseph; Lee, Myung Joo; Blood, Anne J.; Lee, Sang; Perlis, Roy H.; Smoller, Jordan W.; Morris, Robert; Fava, Maurizio

    2010-01-01

    Background Approach and avoidance behavior provide a means for assessing the rewarding or aversive value of stimuli, and can be quantified by a keypress procedure whereby subjects work to increase (approach), decrease (avoid), or do nothing about time of exposure to a rewarding/aversive stimulus. To investigate whether approach/avoidance behavior might be governed by quantitative principles that meet engineering criteria for lawfulness and that encode known features of reward/aversion function, we evaluated whether keypress responses toward pictures with potential motivational value produced any regular patterns, such as a trade-off between approach and avoidance, or recurrent lawful patterns as observed with prospect theory. Methodology/Principal Findings Three sets of experiments employed this task with beautiful face images, a standardized set of affective photographs, and pictures of food during controlled states of hunger and satiety. An iterative modeling approach to data identified multiple law-like patterns, based on variables grounded in the individual. These patterns were consistent across stimulus types, robust to noise, describable by a simple power law, and scalable between individuals and groups. Patterns included: (i) a preference trade-off counterbalancing approach and avoidance, (ii) a value function linking preference intensity to uncertainty about preference, and (iii) a saturation function linking preference intensity to its standard deviation, thereby setting limits to both. Conclusions/Significance These law-like patterns were compatible with critical features of prospect theory, the matching law, and alliesthesia. Furthermore, they appeared consistent with both mean-variance and expected utility approaches to the assessment of risk. Ordering of responses across categories of stimuli demonstrated three properties thought to be relevant for preference-based choice, suggesting these patterns might be grouped together as a relative preference

  3. Recurrent, robust and scalable patterns underlie human approach and avoidance.

    Directory of Open Access Journals (Sweden)

    Byoung Woo Kim

    2010-05-01

    Full Text Available Approach and avoidance behavior provide a means for assessing the rewarding or aversive value of stimuli, and can be quantified by a keypress procedure whereby subjects work to increase (approach, decrease (avoid, or do nothing about time of exposure to a rewarding/aversive stimulus. To investigate whether approach/avoidance behavior might be governed by quantitative principles that meet engineering criteria for lawfulness and that encode known features of reward/aversion function, we evaluated whether keypress responses toward pictures with potential motivational value produced any regular patterns, such as a trade-off between approach and avoidance, or recurrent lawful patterns as observed with prospect theory.Three sets of experiments employed this task with beautiful face images, a standardized set of affective photographs, and pictures of food during controlled states of hunger and satiety. An iterative modeling approach to data identified multiple law-like patterns, based on variables grounded in the individual. These patterns were consistent across stimulus types, robust to noise, describable by a simple power law, and scalable between individuals and groups. Patterns included: (i a preference trade-off counterbalancing approach and avoidance, (ii a value function linking preference intensity to uncertainty about preference, and (iii a saturation function linking preference intensity to its standard deviation, thereby setting limits to both.These law-like patterns were compatible with critical features of prospect theory, the matching law, and alliesthesia. Furthermore, they appeared consistent with both mean-variance and expected utility approaches to the assessment of risk. Ordering of responses across categories of stimuli demonstrated three properties thought to be relevant for preference-based choice, suggesting these patterns might be grouped together as a relative preference theory. Since variables in these patterns have been

  4. Median Robust Extended Local Binary Pattern for Texture Classification.

    Science.gov (United States)

    Liu, Li; Lao, Songyang; Fieguth, Paul W; Guo, Yulan; Wang, Xiaogang; Pietikäinen, Matti

    2016-03-01

    Local binary patterns (LBP) are considered among the most computationally efficient high-performance texture features. However, the LBP method is very sensitive to image noise and is unable to capture macrostructure information. To best address these disadvantages, in this paper, we introduce a novel descriptor for texture classification, the median robust extended LBP (MRELBP). Different from the traditional LBP and many LBP variants, MRELBP compares regional image medians rather than raw image intensities. A multiscale LBP type descriptor is computed by efficiently comparing image medians over a novel sampling scheme, which can capture both microstructure and macrostructure texture information. A comprehensive evaluation on benchmark data sets reveals MRELBP's high performance-robust to gray scale variations, rotation changes and noise-but at a low computational cost. MRELBP produces the best classification scores of 99.82%, 99.38%, and 99.77% on three popular Outex test suites. More importantly, MRELBP is shown to be highly robust to image noise, including Gaussian noise, Gaussian blur, salt-and-pepper noise, and random pixel corruption.

  5. Voice Activity Detection. Fundamentals and Speech Recognition System Robustness

    OpenAIRE

    Ramirez, J.; Gorriz, J. M.; Segura, J. C.

    2007-01-01

    This chapter has shown an overview of the main challenges in robust speech detection and a review of the state of the art and applications. VADs are frequently used in a number of applications including speech coding, speech enhancement and speech recognition. A precise VAD extracts a set of discriminative speech features from the noisy speech and formulates the decision in terms of well defined rule. The chapter has summarized three robust VAD methods that yield high speech/non-speech discri...

  6. Robust real-time pattern matching using bayesian sequential hypothesis testing.

    Science.gov (United States)

    Pele, Ofir; Werman, Michael

    2008-08-01

    This paper describes a method for robust real time pattern matching. We first introduce a family of image distance measures, the "Image Hamming Distance Family". Members of this family are robust to occlusion, small geometrical transforms, light changes and non-rigid deformations. We then present a novel Bayesian framework for sequential hypothesis testing on finite populations. Based on this framework, we design an optimal rejection/acceptance sampling algorithm. This algorithm quickly determines whether two images are similar with respect to a member of the Image Hamming Distance Family. We also present a fast framework that designs a near-optimal sampling algorithm. Extensive experimental results show that the sequential sampling algorithm performance is excellent. Implemented on a Pentium 4 3 GHz processor, detection of a pattern with 2197 pixels, in 640 x 480 pixel frames, where in each frame the pattern rotated and was highly occluded, proceeds at only 0.022 seconds per frame.

  7. Robust simultaneous detection of coronary borders in complex images

    International Nuclear Information System (INIS)

    Sonka, M.; Winniford, M.D.; Collins, S.M.

    1995-01-01

    Visual estimation of coronary obstruction severity from angiograms suffers from poor inter- and intraobserver reproducibility and is often inaccurate. In spite of the widely recognized limitations of visual analysis, automated methods have not found widespread clinical use, in part because they too frequently fail to accurately identify vessel borders. The authors have developed a robust method for simultaneous detection of left and right coronary borders that is suitable for analysis of complex images with poor contrast, nearby or overlapping structures, or branching vessels. The reliability of the simultaneous border detection method and that of their previously reported conventional border detection method were tested in 130 complex images, selected because conventional automated border detection might be expected to fail. Conventional analysis failed to yield acceptable borders in 65/130 or 50% of images. Simultaneous border detection was much more robust (p < .001) and failed in only 15/130 or 12% of complex images. Simultaneous border detection identified stenosis diameters that correlated significantly better with observer-derived stenosis diameters than did diameters obtained with conventional border detection (p < 0.001). Simultaneous detection of left and right coronary borders is highly robust and has substantial promise for enhancing the utility of quantitative coronary angiography in the clinical setting

  8. Robust Fault Detection for Switched Fuzzy Systems With Unknown Input.

    Science.gov (United States)

    Han, Jian; Zhang, Huaguang; Wang, Yingchun; Sun, Xun

    2017-10-03

    This paper investigates the fault detection problem for a class of switched nonlinear systems in the T-S fuzzy framework. The unknown input is considered in the systems. A novel fault detection unknown input observer design method is proposed. Based on the proposed observer, the unknown input can be removed from the fault detection residual. The weighted H∞ performance level is considered to ensure the robustness. In addition, the weighted H₋ performance level is introduced, which can increase the sensibility of the proposed detection method. To verify the proposed scheme, a numerical simulation example and an electromechanical system simulation example are provided at the end of this paper.

  9. A robust and fast generic voltage sag detection technique

    DEFF Research Database (Denmark)

    L. Dantas, Joacillo; Lima, Francisco Kleber A.; Branco, Carlos Gustavo C.

    2015-01-01

    In this paper, a fast and robust voltage sag detection algorithm, named VPS2D, is introduced. Using the DSOGI, the algorithm creates a virtual positive sequence voltage and monitories the fundamental voltage component of each phase. After calculating the aggregate value in the o:;3-reference fram...

  10. Robust fault detection in open loop vs. closed loop

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, J.

    1997-01-01

    The robustness aspects of fault detection and isolation (FDI) for uncertain systems are considered. The FDI problem is considered in a standard problem formulation. The FDI design problem is analyzed both in the case where the control input signal is considered as a known external input signal (o...... (open loop) and when the input signal is generated by a feedback controller...

  11. Robust facial landmark detection based on initializing multiple poses

    Directory of Open Access Journals (Sweden)

    Xin Chai

    2016-10-01

    Full Text Available For robot systems, robust facial landmark detection is the first and critical step for face-based human identification and facial expression recognition. In recent years, the cascaded-regression-based method has achieved excellent performance in facial landmark detection. Nevertheless, it still has certain weakness, such as high sensitivity to the initialization. To address this problem, regression based on multiple initializations is established in a unified model; face shapes are then estimated independently according to these initializations. With a ranking strategy, the best estimate is selected as the final output. Moreover, a face shape model based on restricted Boltzmann machines is built as a constraint to improve the robustness of ranking. Experiments on three challenging datasets demonstrate the effectiveness of the proposed facial landmark detection method against state-of-the-art methods.

  12. Robust dynamical pattern formation from a multifunctional minimal genetic circuit

    Directory of Open Access Journals (Sweden)

    Carrera Javier

    2010-04-01

    Full Text Available Abstract Background A practical problem during the analysis of natural networks is their complexity, thus the use of synthetic circuits would allow to unveil the natural mechanisms of operation. Autocatalytic gene regulatory networks play an important role in shaping the development of multicellular organisms, whereas oscillatory circuits are used to control gene expression under variable environments such as the light-dark cycle. Results We propose a new mechanism to generate developmental patterns and oscillations using a minimal number of genes. For this, we design a synthetic gene circuit with an antagonistic self-regulation to study the spatio-temporal control of protein expression. Here, we show that our minimal system can behave as a biological clock or memory, and it exhibites an inherent robustness due to a quorum sensing mechanism. We analyze this property by accounting for molecular noise in an heterogeneous population. We also show how the period of the oscillations is tunable by environmental signals, and we study the bifurcations of the system by constructing different phase diagrams. Conclusions As this minimal circuit is based on a single transcriptional unit, it provides a new mechanism based on post-translational interactions to generate targeted spatio-temporal behavior.

  13. Arduino-based noise robust online heart-rate detection.

    Science.gov (United States)

    Das, Sangita; Pal, Saurabh; Mitra, Madhuchhanda

    2017-04-01

    This paper introduces a noise robust real time heart rate detection system from electrocardiogram (ECG) data. An online data acquisition system is developed to collect ECG signals from human subjects. Heart rate is detected using window-based autocorrelation peak localisation technique. A low-cost Arduino UNO board is used to implement the complete automated process. The performance of the system is compared with PC-based heart rate detection technique. Accuracy of the system is validated through simulated noisy ECG data with various levels of signal to noise ratio (SNR). The mean percentage error of detected heart rate is found to be 0.72% for the noisy database with five different noise levels.

  14. Cortical activity patterns predict robust speech discrimination ability in noise

    Science.gov (United States)

    Shetake, Jai A.; Wolf, Jordan T.; Cheung, Ryan J.; Engineer, Crystal T.; Ram, Satyananda K.; Kilgard, Michael P.

    2012-01-01

    The neural mechanisms that support speech discrimination in noisy conditions are poorly understood. In quiet conditions, spike timing information appears to be used in the discrimination of speech sounds. In this study, we evaluated the hypothesis that spike timing is also used to distinguish between speech sounds in noisy conditions that significantly degrade neural responses to speech sounds. We tested speech sound discrimination in rats and recorded primary auditory cortex (A1) responses to speech sounds in background noise of different intensities and spectral compositions. Our behavioral results indicate that rats, like humans, are able to accurately discriminate consonant sounds even in the presence of background noise that is as loud as the speech signal. Our neural recordings confirm that speech sounds evoke degraded but detectable responses in noise. Finally, we developed a novel neural classifier that mimics behavioral discrimination. The classifier discriminates between speech sounds by comparing the A1 spatiotemporal activity patterns evoked on single trials with the average spatiotemporal patterns evoked by known sounds. Unlike classifiers in most previous studies, this classifier is not provided with the stimulus onset time. Neural activity analyzed with the use of relative spike timing was well correlated with behavioral speech discrimination in quiet and in noise. Spike timing information integrated over longer intervals was required to accurately predict rat behavioral speech discrimination in noisy conditions. The similarity of neural and behavioral discrimination of speech in noise suggests that humans and rats may employ similar brain mechanisms to solve this problem. PMID:22098331

  15. Automated detection of microaneurysms using robust blob descriptors

    Science.gov (United States)

    Adal, K.; Ali, S.; Sidibé, D.; Karnowski, T.; Chaum, E.; Mériaudeau, F.

    2013-03-01

    Microaneurysms (MAs) are among the first signs of diabetic retinopathy (DR) that can be seen as round dark-red structures in digital color fundus photographs of retina. In recent years, automated computer-aided detection and diagnosis (CAD) of MAs has attracted many researchers due to its low-cost and versatile nature. In this paper, the MA detection problem is modeled as finding interest points from a given image and several interest point descriptors are introduced and integrated with machine learning techniques to detect MAs. The proposed approach starts by applying a novel fundus image contrast enhancement technique using Singular Value Decomposition (SVD) of fundus images. Then, Hessian-based candidate selection algorithm is applied to extract image regions which are more likely to be MAs. For each candidate region, robust low-level blob descriptors such as Speeded Up Robust Features (SURF) and Intensity Normalized Radon Transform are extracted to characterize candidate MA regions. The combined features are then classified using SVM which has been trained using ten manually annotated training images. The performance of the overall system is evaluated on Retinopathy Online Challenge (ROC) competition database. Preliminary results show the competitiveness of the proposed candidate selection techniques against state-of-the art methods as well as the promising future for the proposed descriptors to be used in the localization of MAs from fundus images.

  16. A Robust Shape Reconstruction Method for Facial Feature Point Detection

    Directory of Open Access Journals (Sweden)

    Shuqiu Tan

    2017-01-01

    Full Text Available Facial feature point detection has been receiving great research advances in recent years. Numerous methods have been developed and applied in practical face analysis systems. However, it is still a quite challenging task because of the large variability in expression and gestures and the existence of occlusions in real-world photo shoot. In this paper, we present a robust sparse reconstruction method for the face alignment problems. Instead of a direct regression between the feature space and the shape space, the concept of shape increment reconstruction is introduced. Moreover, a set of coupled overcomplete dictionaries termed the shape increment dictionary and the local appearance dictionary are learned in a regressive manner to select robust features and fit shape increments. Additionally, to make the learned model more generalized, we select the best matched parameter set through extensive validation tests. Experimental results on three public datasets demonstrate that the proposed method achieves a better robustness over the state-of-the-art methods.

  17. A two-step patterning process increases the robustness of periodic patterning in the fly eye.

    Science.gov (United States)

    Gavish, Avishai; Barkai, Naama

    2016-06-01

    to generate a precise and robust pattern in this 'noisy' environment restricts the space of patterning mechanisms that can function in the biological setting. Mathematical modeling is useful in comparing the sensitivity of different mechanisms to such variations, thereby highlighting key aspects of their design.We use mathematical modeling to study the periodic patterning of the fruit fly eye. In this system, a highly ordered lattice of differentiated cells is generated in a two-dimensional cell epithelium. The pattern is first observed by the appearance of evenly spaced clusters of ∼10 cells that express specific genes. Each cluster is subsequently refined into a single cell, which initiates the formation and differentiation of a miniature eye unit, the ommatidium. We formulate a mathematical model based on the known molecular properties of the patterning mechanism, and use a probabilistic approach to calculate the errors in cluster formation and refinement resulting from stochastic cell-to-cell variations ('noise') in different quantitative parameters. This enables us to define the parameters most influencing noise sensitivity. Notably, we find that this error is roughly independent of the desired cluster size, suggesting that large clusters are beneficial for ensuring the overall reproducibility of the periodic cluster arrangement. For the stage of cluster refinement, we find that rapid communication between cells is critical for reducing error. Our work provides new insights into the constraints imposed on mechanisms generating periodic patterning in a realistic, noisy environment, and in particular, discusses the different considerations in achieving optimal design of the patterning network.

  18. Experimental estimation of snare detectability for robust threat monitoring.

    Science.gov (United States)

    O'Kelly, Hannah J; Rowcliffe, J Marcus; Durant, Sarah; Milner-Gulland, E J

    2018-02-01

    Hunting with wire snares is rife within many tropical forest systems, and constitutes one of the severest threats to a wide range of vertebrate taxa. As for all threats, reliable monitoring of snaring levels is critical for assessing the relative effectiveness of management interventions. However, snares pose a particular challenge in terms of tracking spatial or temporal trends in their prevalence because they are extremely difficult to detect, and are typically spread across large, inaccessible areas. As with cryptic animal targets, any approach used to monitor snaring levels must address the issue of imperfect detection, but no standard method exists to do so. We carried out a field experiment in Keo Seima Wildlife Reserve in eastern Cambodia with the following objectives: (1) To estimate the detection probably of wire snares within a tropical forest context, and to investigate how detectability might be affected by habitat type, snare type, or observer. (2) To trial two sets of sampling protocols feasible to implement in a range of challenging field conditions. (3) To conduct a preliminary assessment of two potential analytical approaches to dealing with the resulting snare encounter data. We found that although different observers had no discernible effect on detection probability, detectability did vary between habitat type and snare type. We contend that simple repeated counts carried out at multiple sites and analyzed using binomial mixture models could represent a practical yet robust solution to the problem of monitoring snaring levels both inside and outside of protected areas. This experiment represents an important first step in developing improved methods of threat monitoring, and such methods are greatly needed in southeast Asia, as well as in as many other regions.

  19. Robust vehicle detection in different weather conditions: Using MIPM.

    Science.gov (United States)

    Yaghoobi Ershadi, Nastaran; Menéndez, José Manuel; Jiménez, David

    2018-01-01

    Intelligent Transportation Systems (ITS) allow us to have high quality traffic information to reduce the risk of potentially critical situations. Conventional image-based traffic detection methods have difficulties acquiring good images due to perspective and background noise, poor lighting and weather conditions. In this paper, we propose a new method to accurately segment and track vehicles. After removing perspective using Modified Inverse Perspective Mapping (MIPM), Hough transform is applied to extract road lines and lanes. Then, Gaussian Mixture Models (GMM) are used to segment moving objects and to tackle car shadow effects, we apply a chromacity-based strategy. Finally, performance is evaluated through three different video benchmarks: own recorded videos in Madrid and Tehran (with different weather conditions at urban and interurban areas); and two well-known public datasets (KITTI and DETRAC). Our results indicate that the proposed algorithms are robust, and more accurate compared to others, especially when facing occlusions, lighting variations and weather conditions.

  20. Robust

    DEFF Research Database (Denmark)

    2017-01-01

    Robust – Reflections on Resilient Architecture’, is a scientific publication following the conference of the same name in November of 2017. Researches and PhD-Fellows, associated with the Masters programme: Cultural Heritage, Transformation and Restoration (Transformation), at The Royal Danish...

  1. Structural damage detection robust against time synchronization errors

    International Nuclear Information System (INIS)

    Yan, Guirong; Dyke, Shirley J

    2010-01-01

    Structural damage detection based on wireless sensor networks can be affected significantly by time synchronization errors among sensors. Precise time synchronization of sensor nodes has been viewed as crucial for addressing this issue. However, precise time synchronization over a long period of time is often impractical in large wireless sensor networks due to two inherent challenges. First, time synchronization needs to be performed periodically, requiring frequent wireless communication among sensors at significant energy cost. Second, significant time synchronization errors may result from node failures which are likely to occur during long-term deployment over civil infrastructures. In this paper, a damage detection approach is proposed that is robust against time synchronization errors in wireless sensor networks. The paper first examines the ways in which time synchronization errors distort identified mode shapes, and then proposes a strategy for reducing distortion in the identified mode shapes. Modified values for these identified mode shapes are then used in conjunction with flexibility-based damage detection methods to localize damage. This alternative approach relaxes the need for frequent sensor synchronization and can tolerate significant time synchronization errors caused by node failures. The proposed approach is successfully demonstrated through numerical simulations and experimental tests in a lab

  2. Efficient and robust cell detection: A structured regression approach.

    Science.gov (United States)

    Xie, Yuanpu; Xing, Fuyong; Shi, Xiaoshuang; Kong, Xiangfei; Su, Hai; Yang, Lin

    2018-02-01

    Efficient and robust cell detection serves as a critical prerequisite for many subsequent biomedical image analysis methods and computer-aided diagnosis (CAD). It remains a challenging task due to touching cells, inhomogeneous background noise, and large variations in cell sizes and shapes. In addition, the ever-increasing amount of available datasets and the high resolution of whole-slice scanned images pose a further demand for efficient processing algorithms. In this paper, we present a novel structured regression model based on a proposed fully residual convolutional neural network for efficient cell detection. For each testing image, our model learns to produce a dense proximity map that exhibits higher responses at locations near cell centers. Our method only requires a few training images with weak annotations (just one dot indicating the cell centroids). We have extensively evaluated our method using four different datasets, covering different microscopy staining methods (e.g., H & E or Ki-67 staining) or image acquisition techniques (e.g., bright-filed image or phase contrast). Experimental results demonstrate the superiority of our method over existing state of the art methods in terms of both detection accuracy and running time. Copyright © 2017. Published by Elsevier B.V.

  3. Robust online tracking via adaptive samples selection with saliency detection

    Science.gov (United States)

    Yan, Jia; Chen, Xi; Zhu, QiuPing

    2013-12-01

    Online tracking has shown to be successful in tracking of previously unknown objects. However, there are two important factors which lead to drift problem of online tracking, the one is how to select the exact labeled samples even when the target locations are inaccurate, and the other is how to handle the confusors which have similar features with the target. In this article, we propose a robust online tracking algorithm with adaptive samples selection based on saliency detection to overcome the drift problem. To deal with the problem of degrading the classifiers using mis-aligned samples, we introduce the saliency detection method to our tracking problem. Saliency maps and the strong classifiers are combined to extract the most correct positive samples. Our approach employs a simple yet saliency detection algorithm based on image spectral residual analysis. Furthermore, instead of using the random patches as the negative samples, we propose a reasonable selection criterion, in which both the saliency confidence and similarity are considered with the benefits that confusors in the surrounding background are incorporated into the classifiers update process before the drift occurs. The tracking task is formulated as a binary classification via online boosting framework. Experiment results in several challenging video sequences demonstrate the accuracy and stability of our tracker.

  4. Electrically robust silver nanowire patterns transferrable onto various substrates

    Science.gov (United States)

    Liu, Gui-Shi; Liu, Chuan; Chen, Hui-Jiuan; Cao, Wu; Qiu, Jing-Shen; Shieh, Han-Ping D.; Yang, Bo-Ru

    2016-03-01

    We report a facile technique for patterning and transferring silver nanowires (AgNWs) onto various substrates. By employing only UV/O3 and vapor treatment of hexamethyldisilazane (HMDS), we are able to accurately manipulate the surface energy via alternating the terminal groups of a polydimethylsiloxane (PDMS) substrate, so as to assist selective formation and exfoliation of AgNW films. A simple UV/O3 treatment on PDMS enables uniform, well-defined, and highly conductive patterns of AgNWs after spin-coating. A vapor treatment of HMDS lowers the surface energy of the oxidized PDMS so that the patterned AgNWs embedded in an epoxy resin (EPR) are cleanly transferred from the PDMS to the target substrate. It is found that the AgNW-EPR composite on polyethylene glycol terephthalate (PET) exhibits remarkable durability under the bending test, tape test, ultrasonic treatment in water, and immersion of chemical solvents. In addition, we demonstrate that the AgNW-EPR composite work well as conductive patterns on the oxidized PDMS, polyvinyl alcohol (PVA), paper, and curved glass. The facile technique extends the applicability of AgNWs in the field of electronics, and it is potentially applicable to other nanomaterials.We report a facile technique for patterning and transferring silver nanowires (AgNWs) onto various substrates. By employing only UV/O3 and vapor treatment of hexamethyldisilazane (HMDS), we are able to accurately manipulate the surface energy via alternating the terminal groups of a polydimethylsiloxane (PDMS) substrate, so as to assist selective formation and exfoliation of AgNW films. A simple UV/O3 treatment on PDMS enables uniform, well-defined, and highly conductive patterns of AgNWs after spin-coating. A vapor treatment of HMDS lowers the surface energy of the oxidized PDMS so that the patterned AgNWs embedded in an epoxy resin (EPR) are cleanly transferred from the PDMS to the target substrate. It is found that the AgNW-EPR composite on polyethylene

  5. Step Detection Robust against the Dynamics of Smartphones

    Science.gov (United States)

    Lee, Hwan-hee; Choi, Suji; Lee, Myeong-jin

    2015-01-01

    A novel algorithm is proposed for robust step detection irrespective of step mode and device pose in smartphone usage environments. The dynamics of smartphones are decoupled into a peak-valley relationship with adaptive magnitude and temporal thresholds. For extracted peaks and valleys in the magnitude of acceleration, a step is defined as consisting of a peak and its adjacent valley. Adaptive magnitude thresholds consisting of step average and step deviation are applied to suppress pseudo peaks or valleys that mostly occur during the transition among step modes or device poses. Adaptive temporal thresholds are applied to time intervals between peaks or valleys to consider the time-varying pace of human walking or running for the correct selection of peaks or valleys. From the experimental results, it can be seen that the proposed step detection algorithm shows more than 98.6% average accuracy for any combination of step mode and device pose and outperforms state-of-the-art algorithms. PMID:26516857

  6. Robust Deep Network with Maximum Correntropy Criterion for Seizure Detection

    Directory of Open Access Journals (Sweden)

    Yu Qi

    2014-01-01

    Full Text Available Effective seizure detection from long-term EEG is highly important for seizure diagnosis. Existing methods usually design the feature and classifier individually, while little work has been done for the simultaneous optimization of the two parts. This work proposes a deep network to jointly learn a feature and a classifier so that they could help each other to make the whole system optimal. To deal with the challenge of the impulsive noises and outliers caused by EMG artifacts in EEG signals, we formulate a robust stacked autoencoder (R-SAE as a part of the network to learn an effective feature. In R-SAE, the maximum correntropy criterion (MCC is proposed to reduce the effect of noise/outliers. Unlike the mean square error (MSE, the output of the new kernel MCC increases more slowly than that of MSE when the input goes away from the center. Thus, the effect of those noises/outliers positioned far away from the center can be suppressed. The proposed method is evaluated on six patients of 33.6 hours of scalp EEG data. Our method achieves a sensitivity of 100% and a specificity of 99%, which is promising for clinical applications.

  7. Noise-robust speech recognition through auditory feature detection and spike sequence decoding.

    Science.gov (United States)

    Schafer, Phillip B; Jin, Dezhe Z

    2014-03-01

    Speech recognition in noisy conditions is a major challenge for computer systems, but the human brain performs it routinely and accurately. Automatic speech recognition (ASR) systems that are inspired by neuroscience can potentially bridge the performance gap between humans and machines. We present a system for noise-robust isolated word recognition that works by decoding sequences of spikes from a population of simulated auditory feature-detecting neurons. Each neuron is trained to respond selectively to a brief spectrotemporal pattern, or feature, drawn from the simulated auditory nerve response to speech. The neural population conveys the time-dependent structure of a sound by its sequence of spikes. We compare two methods for decoding the spike sequences--one using a hidden Markov model-based recognizer, the other using a novel template-based recognition scheme. In the latter case, words are recognized by comparing their spike sequences to template sequences obtained from clean training data, using a similarity measure based on the length of the longest common sub-sequence. Using isolated spoken digits from the AURORA-2 database, we show that our combined system outperforms a state-of-the-art robust speech recognizer at low signal-to-noise ratios. Both the spike-based encoding scheme and the template-based decoding offer gains in noise robustness over traditional speech recognition methods. Our system highlights potential advantages of spike-based acoustic coding and provides a biologically motivated framework for robust ASR development.

  8. Robust Curb Detection with Fusion of 3D-Lidar and Camera Data

    Directory of Open Access Journals (Sweden)

    Jun Tan

    2014-05-01

    Full Text Available Curb detection is an essential component of Autonomous Land Vehicles (ALV, especially important for safe driving in urban environments. In this paper, we propose a fusion-based curb detection method through exploiting 3D-Lidar and camera data. More specifically, we first fuse the sparse 3D-Lidar points and high-resolution camera images together to recover a dense depth image of the captured scene. Based on the recovered dense depth image, we propose a filter-based method to estimate the normal direction within the image. Then, by using the multi-scale normal patterns based on the curb’s geometric property, curb point features fitting the patterns are detected in the normal image row by row. After that, we construct a Markov Chain to model the consistency of curb points which utilizes the continuous property of the curb, and thus the optimal curb path which links the curb points together can be efficiently estimated by dynamic programming. Finally, we perform post-processing operations to filter the outliers, parameterize the curbs and give the confidence scores on the detected curbs. Extensive evaluations clearly show that our proposed method can detect curbs with strong robustness at real-time speed for both static and dynamic scenes.

  9. RIDES: Robust Intrusion Detection System for IP-Based Ubiquitous Sensor Networks.

    Science.gov (United States)

    Amin, Syed Obaid; Siddiqui, Muhammad Shoaib; Hong, Choong Seon; Lee, Sungwon

    2009-01-01

    The IP-based Ubiquitous Sensor Network (IP-USN) is an effort to build the "Internet of things". By utilizing IP for low power networks, we can benefit from existing well established tools and technologies of IP networks. Along with many other unresolved issues, securing IP-USN is of great concern for researchers so that future market satisfaction and demands can be met. Without proper security measures, both reactive and proactive, it is hard to envisage an IP-USN realm. In this paper we present a design of an IDS (Intrusion Detection System) called RIDES (Robust Intrusion DEtection System) for IP-USN. RIDES is a hybrid intrusion detection system, which incorporates both Signature and Anomaly based intrusion detection components. For signature based intrusion detection this paper only discusses the implementation of distributed pattern matching algorithm with the help of signature-code, a dynamically created attack-signature identifier. Other aspects, such as creation of rules are not discussed. On the other hand, for anomaly based detection we propose a scoring classifier based on the SPC (Statistical Process Control) technique called CUSUM charts. We also investigate the settings and their effects on the performance of related parameters for both of the components.

  10. RIDES: Robust Intrusion Detection System for IP-Based Ubiquitous Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sungwon Lee

    2009-05-01

    Full Text Available TheIP-based Ubiquitous Sensor Network (IP-USN is an effort to build the “Internet of things”. By utilizing IP for low power networks, we can benefit from existing well established tools and technologies of IP networks. Along with many other unresolved issues, securing IP-USN is of great concern for researchers so that future market satisfaction and demands can be met. Without proper security measures, both reactive and proactive, it is hard to envisage an IP-USN realm. In this paper we present a design of an IDS (Intrusion Detection System called RIDES (Robust Intrusion DEtection System for IP-USN. RIDES is a hybrid intrusion detection system, which incorporates both Signature and Anomaly based intrusion detection components. For signature based intrusion detection this paper only discusses the implementation of distributed pattern matching algorithm with the help of signature-code, a dynamically created attack-signature identifier. Other aspects, such as creation of rules are not discussed. On the other hand, for anomaly based detection we propose a scoring classifier based on the SPC (Statistical Process Control technique called CUSUM charts. We also investigate the settings and their effects on the performance of related parameters for both of the components.

  11. Robust and accurate detection algorithm for multimode polymer optical FBG sensor system

    DEFF Research Database (Denmark)

    Ganziy, Denis; Jespersen, O.; Rose, B.

    2015-01-01

    We propose a novel dynamic gate algorithm (DGA) for robust and fast peak detection. The algorithm uses a threshold determined detection window and center of gravity algorithm with bias compensation. Our experiment demonstrates that the DGA method is fast and robust with better stability and accur...

  12. Improving the Robustness of Electromyogram-Pattern Recognition for Prosthetic Control by a Postprocessing Strategy

    Directory of Open Access Journals (Sweden)

    Xu Zhang

    2017-09-01

    Full Text Available Electromyogram (EMG contains rich information for motion decoding. As one of its major applications, EMG-pattern recognition (PR-based control of prostheses has been proposed and investigated in the field of rehabilitation robotics for decades. These prostheses can offer a higher level of dexterity compared to the commercially available ones. However, limited progress has been made toward clinical application of EMG-PR-based prostheses, due to their unsatisfactory robustness against various interferences during daily use. These interferences may lead to misclassifications of motion intentions, which damage the control performance of EMG-PR-based prostheses. A number of studies have applied methods that undergo a postprocessing stage to determine the current motion outputs, based on previous outputs or other information, which have proved effective in reducing erroneous outputs. In this study, we proposed a postprocessing strategy that locks the outputs during the constant contraction to block out occasional misclassifications, upon detecting the motion onset using a threshold. The strategy was investigated using three different motion onset detectors, namely mean absolute value, Teager–Kaiser energy operator, or mechanomyogram (MMG. Our results indicate that the proposed strategy could suppress erroneous outputs, during rest and constant contractions in particular. In addition, with MMG as the motion onset detector, the strategy was found to produce the most significant improvement in the performance, reducing the total errors up to around 50% (from 22.9 to 11.5% in comparison to the original classification output in the online test, and it is the most robust against threshold value changes. We speculate that motion onset detectors that are both smooth and responsive would further enhance the efficacy of the proposed postprocessing strategy, which would facilitate the clinical application of EMG-PR-based prosthetic control.

  13. Robust Meter Network for Water Distribution Pipe Burst Detection

    OpenAIRE

    Donghwi Jung; Joong Hoon Kim

    2017-01-01

    A meter network is a set of meters installed throughout a water distribution system to measure system variables, such as the pipe flow rate and pressure. In the current hyper-connected world, meter networks are being exposed to meter failure conditions, such as malfunction of the meter’s physical system and communication system failure. Therefore, a meter network’s robustness should be secured for reliable provision of informative meter data. This paper introduces a multi-objective optimal me...

  14. Multiscale Region-Level VHR Image Change Detection via Sparse Change Descriptor and Robust Discriminative Dictionary Learning

    Directory of Open Access Journals (Sweden)

    Yuan Xu

    2015-01-01

    Full Text Available Very high resolution (VHR image change detection is challenging due to the low discriminative ability of change feature and the difficulty of change decision in utilizing the multilevel contextual information. Most change feature extraction techniques put emphasis on the change degree description (i.e., in what degree the changes have happened, while they ignore the change pattern description (i.e., how the changes changed, which is of equal importance in characterizing the change signatures. Moreover, the simultaneous consideration of the classification robust to the registration noise and the multiscale region-consistent fusion is often neglected in change decision. To overcome such drawbacks, in this paper, a novel VHR image change detection method is proposed based on sparse change descriptor and robust discriminative dictionary learning. Sparse change descriptor combines the change degree component and the change pattern component, which are encoded by the sparse representation error and the morphological profile feature, respectively. Robust change decision is conducted by multiscale region-consistent fusion, which is implemented by the superpixel-level cosparse representation with robust discriminative dictionary and the conditional random field model. Experimental results confirm the effectiveness of the proposed change detection technique.

  15. Effects of traffic generation patterns on the robustness of complex networks

    Science.gov (United States)

    Wu, Jiajing; Zeng, Junwen; Chen, Zhenhao; Tse, Chi K.; Chen, Bokui

    2018-02-01

    Cascading failures in communication networks with heterogeneous node functions are studied in this paper. In such networks, the traffic dynamics are highly dependent on the traffic generation patterns which are in turn determined by the locations of the hosts. The data-packet traffic model is applied to Barabási-Albert scale-free networks to study the cascading failures in such networks and to explore the effects of traffic generation patterns on network robustness. It is found that placing the hosts at high-degree nodes in a network can make the network more robust against both intentional attacks and random failures. It is also shown that the traffic generation pattern plays an important role in network design.

  16. Development of a detection system for head movement robust to illumination change at radiotherapy

    International Nuclear Information System (INIS)

    Yamakawa, Takuya; Ogawa, Koichi; Iyatomi, Hitoshi; Kunieda, Etsuo

    2010-01-01

    This study reports the development of a detection system for head movement at stereotactic radio-therapy of head tumors. In the system, the pattern matching algorithm is applied as follows. Regions of interest like the nose and right/ left ears, the objects of movement to be traced, are selected by GUI (graphical user interface) from pictures taken by 3 USB cameras (DC-NCR20U, Hanwha, Japan) set around the head on the supportive arms to make the template of standard position; the frame pictures (5 fps) inputted as the real-time monitor are matched to the template so that the actual movement can be detected by the distance between the template and collation points; and precision is improved by calculating mean square errors. Alarming is set when the movement exceeds the permissible range. At the actual clinical site, as the wrong detection of the movement occurs by illumination change caused by the gantry migration, infrared pictures are taken in place of the ordinary room light condition. This results in reduction of position errors from 16.7, 9.5 and 8.1 mm (the latter light condition) to 0.6, 0.3 and 0.2 mm (infrared), of the nose, right and left ears, respectively. Thus a detection system for head movement robust (error <1 mm) to illumination change at radio-therapy is established. (T.T.)

  17. Robust multi-tissue gene panel for cancer detection

    Directory of Open Access Journals (Sweden)

    Talantov Dmitri

    2010-06-01

    Full Text Available Abstract Background We have identified a set of genes whose relative mRNA expression levels in various solid tumors can be used to robustly distinguish cancer from matching normal tissue. Our current feature set consists of 113 gene probes for 104 unique genes, originally identified as differentially expressed in solid primary tumors in microarray data on Affymetrix HG-U133A platform in five tissue types: breast, colon, lung, prostate and ovary. For each dataset, we first identified a set of genes significantly differentially expressed in tumor vs. normal tissue at p-value = 0.05 using an experimentally derived error model. Our common cancer gene panel is the intersection of these sets of significantly dysregulated genes and can distinguish tumors from normal tissue on all these five tissue types. Methods Frozen tumor specimens were obtained from two commercial vendors Clinomics (Pittsfield, MA and Asterand (Detroit, MI. Biotinylated targets were prepared using published methods (Affymetrix, CA and hybridized to Affymetrix U133A GeneChips (Affymetrix, CA. Expression values for each gene were calculated using Affymetrix GeneChip analysis software MAS 5.0. We then used a software package called Genes@Work for differential expression discovery, and SVM light linear kernel for building classification models. Results We validate the predictability of this gene list on several publicly available data sets generated on the same platform. Of note, when analysing the lung cancer data set of Spira et al, using an SVM linear kernel classifier, our gene panel had 94.7% leave-one-out accuracy compared to 87.8% using the gene panel in the original paper. In addition, we performed high-throughput validation on the Dana Farber Cancer Institute GCOD database and several GEO datasets. Conclusions Our result showed the potential for this panel as a robust classification tool for multiple tumor types on the Affymetrix platform, as well as other whole genome arrays

  18. A Hybrid One-Way ANOVA Approach for the Robust and Efficient Estimation of Differential Gene Expression with Multiple Patterns.

    Directory of Open Access Journals (Sweden)

    Mohammad Manir Hossain Mollah

    Full Text Available Identifying genes that are differentially expressed (DE between two or more conditions with multiple patterns of expression is one of the primary objectives of gene expression data analysis. Several statistical approaches, including one-way analysis of variance (ANOVA, are used to identify DE genes. However, most of these methods provide misleading results for two or more conditions with multiple patterns of expression in the presence of outlying genes. In this paper, an attempt is made to develop a hybrid one-way ANOVA approach that unifies the robustness and efficiency of estimation using the minimum β-divergence method to overcome some problems that arise in the existing robust methods for both small- and large-sample cases with multiple patterns of expression.The proposed method relies on a β-weight function, which produces values between 0 and 1. The β-weight function with β = 0.2 is used as a measure of outlier detection. It assigns smaller weights (≥ 0 to outlying expressions and larger weights (≤ 1 to typical expressions. The distribution of the β-weights is used to calculate the cut-off point, which is compared to the observed β-weight of an expression to determine whether that gene expression is an outlier. This weight function plays a key role in unifying the robustness and efficiency of estimation in one-way ANOVA.Analyses of simulated gene expression profiles revealed that all eight methods (ANOVA, SAM, LIMMA, EBarrays, eLNN, KW, robust BetaEB and proposed perform almost identically for m = 2 conditions in the absence of outliers. However, the robust BetaEB method and the proposed method exhibited considerably better performance than the other six methods in the presence of outliers. In this case, the BetaEB method exhibited slightly better performance than the proposed method for the small-sample cases, but the the proposed method exhibited much better performance than the BetaEB method for both the small- and large

  19. A Robust Vision-based Runway Detection and Tracking Algorithm for Automatic UAV Landing

    KAUST Repository

    Abu Jbara, Khaled F.

    2015-01-01

    and attitude angle estimates to allow a more robust tracking of the runway under turbulence. We illustrate the performance of the proposed lane detection and tracking scheme on various experimental UAV flights conducted by the Saudi Aerospace Research Center

  20. Small Submersible Robust Microflow Cytometer for Quantitative Detection of Phytoplankton, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Translume will develop an extremely robust, inexpensive micro flow cytometer (mFCM) for quantitative detection of phytoplankton. This device will be designed to be...

  1. Robust filtering and fault detection of switched delay systems

    CERN Document Server

    Wang, Dong; Wang, Wei

    2013-01-01

    Switched delay systems appear in a wide field of applications including networked control systems, power systems, memristive systems. Though the large amount of ideas with respect to such systems have generated, until now, it still lacks a framework to focus on filter design and fault detection issues which are relevant to life safety and property loss. Beginning with the comprehensive coverage of the new developments in the analysis and control synthesis for switched delay systems, the monograph not only provides a systematic approach to designing the filter and detecting the fault of switched delay systems, but it also covers the model reduction issues. Specific topics covered include: (1) Arbitrary switching signal where delay-independent and delay-dependent conditions are presented by proposing a linearization technique. (2) Average dwell time where a weighted Lyapunov function is come up with dealing with filter design and fault detection issues beside taking model reduction problems. The monograph is in...

  2. Robustness of movement detection techniques from motor execution

    DEFF Research Database (Denmark)

    Aliakbaryhosseinabadi, Susan; Jiang, Ning; Petrini, Laura

    2015-01-01

    subjects completed a set of movement executions prior to and following the oddball paradigm. The locality preserving projection followed by the linear discriminant analysis (LPP-LDA) and the matched-filter (MF) technique were applied offline for detection of movement. Results show that LPP...

  3. Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns.

    Science.gov (United States)

    Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J

    2016-01-01

    Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10- and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may

  4. Written-in conductive patterns on robust graphene oxide biopaper by electrochemical microstamping.

    Science.gov (United States)

    Hu, Kesong; Tolentino, Lorenzo S; Kulkarni, Dhaval D; Ye, Chunhong; Kumar, Satish; Tsukruk, Vladimir V

    2013-12-16

    The silk road: By employing silk fibroin as a binder between graphene oxide films and aluminum foil for a facile, highly localized reduction process, conductive paper is reinvented. The flexible, robust biographene papers have high toughness and electrical conductivity. This electrochemical written-in approach is readily applicable for the fabrication of conductive patterned papers with complex circuitries. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Audit, Control and Monitoring Design Patterns (ACMDP for Autonomous Robust Systems (ARS

    Directory of Open Access Journals (Sweden)

    C. Trad

    2008-11-01

    Full Text Available This paper proposes the Audit, Control and Monitoring Design Patterns (ACMDP for building Autonomous and Robust Systems (ARS such as Mobile Robot Systems (MRS. These patterns are also applicable to other Mission Critical and Complex Systems (MCCS. This paper presents a proposal which will help ARS project managers and engineers design, build and estimate the probability that an ARS will succeed or fail. Furthermore, this proposal offers the possibility to ARS problems with the help of audit, monitoring and controlling components, adjust the project management pathways, and define the problem sources as well as their possible solutions, in order to deliver an ARS or an MRS.

  6. Long term memory for noise: evidence of robust encoding of very short temporal acoustic patterns.

    Directory of Open Access Journals (Sweden)

    Jayalakshmi Viswanathan

    2016-11-01

    Full Text Available Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs (the two halves of the noise were identical or 1-s plain random noises (Ns. Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin and scrambled (chopping sounds into 10- and 20-ms bits before shuffling versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant’s discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities.

  7. Optimally Robust Redundancy Relations for Failure Detection in Uncertain Systems,

    Science.gov (United States)

    1983-04-01

    particular applications. While the general methods provide the basis for what in principle should be a widely applicable failure detection methodology...modifications to this result which overcome them at no fundmental increase in complexity. 4.1 Scaling A critical problem with the criteria of the preceding...criterion which takes scaling into account L 2 s[ (45) As in (38), we can multiply the C. by positive scalars to take into account unequal weightings on

  8. Experimental estimation of snare detectability for robust threat monitoring

    OpenAIRE

    O Kelly, H. J.; Rowcliffe, M.; Durant, S.; Milner-Gulland, E. J.

    2018-01-01

    Hunting with wire snares is rife within many tropical forest systems, and constitutes one of the severest threats to a wide range of vertebrate taxa. As for all threats, reliable monitoring of snaring levels is critical for assessing the relative effectiveness of management interventions. However, snares pose a particular challenge in terms of tracking spatial or temporal trends in their prevalence because they are extremely difficult to detect, and are typically spread across large, inaccess...

  9. Occlusion detection via structured sparse learning for robust object tracking

    KAUST Repository

    Zhang, Tianzhu

    2014-01-01

    Sparse representation based methods have recently drawn much attention in visual tracking due to good performance against illumination variation and occlusion. They assume the errors caused by image variations can be modeled as pixel-wise sparse. However, in many practical scenarios, these errors are not truly pixel-wise sparse but rather sparsely distributed in a structured way. In fact, pixels in error constitute contiguous regions within the object’s track. This is the case when significant occlusion occurs. To accommodate for nonsparse occlusion in a given frame, we assume that occlusion detected in previous frames can be propagated to the current one. This propagated information determines which pixels will contribute to the sparse representation of the current track. In other words, pixels that were detected as part of an occlusion in the previous frame will be removed from the target representation process. As such, this paper proposes a novel tracking algorithm that models and detects occlusion through structured sparse learning. We test our tracker on challenging benchmark sequences, such as sports videos, which involve heavy occlusion, drastic illumination changes, and large pose variations. Extensive experimental results show that our proposed tracker consistently outperforms the state-of-the-art trackers.

  10. Rapid and robust detection methods for poison and microbial contamination.

    Science.gov (United States)

    Hoehl, Melanie M; Lu, Peter J; Sims, Peter A; Slocum, Alexander H

    2012-06-27

    Real-time on-site monitoring of analytes is currently in high demand for food contamination, water, medicines, and ingestible household products that were never tested appropriately. Here we introduce chemical methods for the rapid quantification of a wide range of chemical and microbial contaminations using a simple instrument. Within the testing procedure, we used a multichannel, multisample, UV-vis spectrophotometer/fluorometer that employs two frequencies of light simultaneously to interrogate the sample. We present new enzyme- and dye-based methods to detect (di)ethylene glycol in consumables above 0.1 wt % without interference and alcohols above 1 ppb. Using DNA intercalating dyes, we can detect a range of pathogens ( E. coli , Salmonella , V. Cholera, and a model for Malaria) in water, foods, and blood without background signal. We achieved universal scaling independent of pathogen size above 10(4) CFU/mL by taking advantage of the simultaneous measurement at multiple wavelengths. We can detect contaminants directly, without separation, purification, concentration, or incubation. Our chemistry is stable to ± 1% for >3 weeks without refrigeration, and measurements require <5 min.

  11. A Self-embedding Robust Digital Watermarking Algorithm with Blind Detection

    Directory of Open Access Journals (Sweden)

    Gong Yunfeng

    2014-08-01

    Full Text Available In order to achieve the perfectly blind detection of robustness watermarking algorithm, a novel self-embedding robust digital watermarking algorithm with blind detection is proposed in this paper. Firstly the original image is divided to not overlap image blocks and then decomposable coefficients are obtained by lifting-based wavelet transform in every image blocks. Secondly the low-frequency coefficients of block images are selected and then approximately represented as a product of a base matrix and a coefficient matrix using NMF. Then the feature vector represent original image is obtained by quantizing coefficient matrix, and finally the adaptive quantization of the robustness watermark is embedded in the low-frequency coefficients of LWT. Experimental results show that the scheme is robust against common signal processing attacks, meanwhile perfect blind detection is achieve.

  12. Probabilistic BPRRC: Robust Change Detection against Illumination Changes and Background Movements

    Science.gov (United States)

    Yokoi, Kentaro

    This paper presents Probabilistic Bi-polar Radial Reach Correlation (PrBPRRC), a change detection method that is robust against illumination changes and background movements. Most of the traditional change detection methods are robust against either illumination changes or background movements; BPRRC is one of the illumination-robust change detection methods. We introduce a probabilistic background texture model into BPRRC and add the robustness against background movements including foreground invasions such as moving cars, walking people, swaying trees, and falling snow. We show the superiority of PrBPRRC in the environment with illumination changes and background movements by using three public datasets and one private dataset: ATON Highway data, Karlsruhe traffic sequence data, PETS 2007 data, and Walking-in-a-room data.

  13. A robust background regression based score estimation algorithm for hyperspectral anomaly detection

    Science.gov (United States)

    Zhao, Rui; Du, Bo; Zhang, Liangpei; Zhang, Lefei

    2016-12-01

    Anomaly detection has become a hot topic in the hyperspectral image analysis and processing fields in recent years. The most important issue for hyperspectral anomaly detection is the background estimation and suppression. Unreasonable or non-robust background estimation usually leads to unsatisfactory anomaly detection results. Furthermore, the inherent nonlinearity of hyperspectral images may cover up the intrinsic data structure in the anomaly detection. In order to implement robust background estimation, as well as to explore the intrinsic data structure of the hyperspectral image, we propose a robust background regression based score estimation algorithm (RBRSE) for hyperspectral anomaly detection. The Robust Background Regression (RBR) is actually a label assignment procedure which segments the hyperspectral data into a robust background dataset and a potential anomaly dataset with an intersection boundary. In the RBR, a kernel expansion technique, which explores the nonlinear structure of the hyperspectral data in a reproducing kernel Hilbert space, is utilized to formulate the data as a density feature representation. A minimum squared loss relationship is constructed between the data density feature and the corresponding assigned labels of the hyperspectral data, to formulate the foundation of the regression. Furthermore, a manifold regularization term which explores the manifold smoothness of the hyperspectral data, and a maximization term of the robust background average density, which suppresses the bias caused by the potential anomalies, are jointly appended in the RBR procedure. After this, a paired-dataset based k-nn score estimation method is undertaken on the robust background and potential anomaly datasets, to implement the detection output. The experimental results show that RBRSE achieves superior ROC curves, AUC values, and background-anomaly separation than some of the other state-of-the-art anomaly detection methods, and is easy to implement

  14. Robust real-time change detection in high jitter.

    Energy Technology Data Exchange (ETDEWEB)

    Simonson, Katherine Mary; Ma, Tian J.

    2009-08-01

    A new method is introduced for real-time detection of transient change in scenes observed by staring sensors that are subject to platform jitter, pixel defects, variable focus, and other real-world challenges. The approach uses flexible statistical models for the scene background and its variability, which are continually updated to track gradual drift in the sensor's performance and the scene under observation. Two separate models represent temporal and spatial variations in pixel intensity. For the temporal model, each new frame is projected into a low-dimensional subspace designed to capture the behavior of the frame data over a recent observation window. Per-pixel temporal standard deviation estimates are based on projection residuals. The second approach employs a simple representation of jitter to generate pixelwise moment estimates from a single frame. These estimates rely on spatial characteristics of the scene, and are used gauge each pixel's susceptibility to jitter. The temporal model handles pixels that are naturally variable due to sensor noise or moving scene elements, along with jitter displacements comparable to those observed in the recent past. The spatial model captures jitter-induced changes that may not have been seen previously. Change is declared in pixels whose current values are inconsistent with both models.

  15. Robust techniques for polarization and detection of nuclear spin ensembles

    Science.gov (United States)

    Scheuer, Jochen; Schwartz, Ilai; Müller, Samuel; Chen, Qiong; Dhand, Ish; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor

    2017-11-01

    Highly sensitive nuclear spin detection is crucial in many scientific areas including nuclear magnetic resonance spectroscopy, magnetic resonance imaging (MRI), and quantum computing. The tiny thermal nuclear spin polarization represents a major obstacle towards this goal which may be overcome by dynamic nuclear spin polarization (DNP) methods. The latter often rely on the transfer of the thermally polarized electron spins to nearby nuclear spins, which is limited by the Boltzmann distribution of the former. Here we utilize microwave dressed states to transfer the high (>92 % ) nonequilibrium electron spin polarization of a single nitrogen-vacancy center (NV) induced by short laser pulses to the surrounding 13C carbon nuclear spins. The NV is repeatedly repolarized optically, thus providing an effectively infinite polarization reservoir. A saturation of the polarization of the nearby nuclear spins is achieved, which is confirmed by the decay of the polarization transfer signal and shows an excellent agreement with theoretical simulations. Hereby we introduce the polarization readout by polarization inversion method as a quantitative magnetization measure of the nuclear spin bath, which allows us to observe by ensemble averaging macroscopically hidden polarization dynamics like Landau-Zener-Stückelberg oscillations. Moreover, we show that using the integrated solid effect both for single- and double-quantum transitions nuclear spin polarization can be achieved even when the static magnetic field is not aligned along the NV's crystal axis. This opens a path for the application of our DNP technique to spins in and outside of nanodiamonds, enabling their application as MRI tracers. Furthermore, the methods reported here can be applied to other solid state systems where a central electron spin is coupled to a nuclear spin bath, e.g., phosphor donors in silicon and color centers in silicon carbide.

  16. Fusion of Color and Depth Camera Data for Robust Fall Detection

    NARCIS (Netherlands)

    Josemans, W.; Englebienne, G.; Kröse, B.; Battiato, S.; Braz, J.

    2013-01-01

    The availability of cheap imaging sensors makes it possible to increase the robustness of vision-based alarm systems. This paper explores the benefit of data fusion in the application of fall detection. Falls are a common source of injury for elderly people and automatic fall detection is,

  17. Detection of heart beats in multimodal data: a robust beat-to-beat interval estimation approach.

    Science.gov (United States)

    Antink, Christoph Hoog; Brüser, Christoph; Leonhardt, Steffen

    2015-08-01

    The heart rate and its variability play a vital role in the continuous monitoring of patients, especially in the critical care unit. They are commonly derived automatically from the electrocardiogram as the interval between consecutive heart beat. While their identification by QRS-complexes is straightforward under ideal conditions, the exact localization can be a challenging task if the signal is severely contaminated with noise and artifacts. At the same time, other signals directly related to cardiac activity are often available. In this multi-sensor scenario, methods of multimodal sensor-fusion allow the exploitation of redundancies to increase the accuracy and robustness of beat detection.In this paper, an algorithm for the robust detection of heart beats in multimodal data is presented. Classic peak-detection is augmented by robust multi-channel, multimodal interval estimation to eliminate false detections and insert missing beats. This approach yielded a score of 90.70 and was thus ranked third place in the PhysioNet/Computing in Cardiology Challenge 2014: Robust Detection of Heart Beats in Muthmodal Data follow-up analysis.In the future, the robust beat-to-beat interval estimator may directly be used for the automated processing of multimodal patient data for applications such as diagnosis support and intelligent alarming.

  18. Meta-algorithmics patterns for robust, low cost, high quality systems

    CERN Document Server

    Simske, Steven J

    2013-01-01

    The confluence of cloud computing, parallelism and advanced machine intelligence approaches has created a world in which the optimum knowledge system will usually be architected from the combination of two or more knowledge-generating systems. There is a need, then, to provide a reusable, broadly-applicable set of design patterns to empower the intelligent system architect to take advantage of this opportunity. This book explains how to design and build intelligent systems that are optimized for changing system requirements (adaptability), optimized for changing system input (robustness), an

  19. Subject independent facial expression recognition with robust face detection using a convolutional neural network.

    Science.gov (United States)

    Matsugu, Masakazu; Mori, Katsuhiko; Mitari, Yusuke; Kaneda, Yuji

    2003-01-01

    Reliable detection of ordinary facial expressions (e.g. smile) despite the variability among individuals as well as face appearance is an important step toward the realization of perceptual user interface with autonomous perception of persons. We describe a rule-based algorithm for robust facial expression recognition combined with robust face detection using a convolutional neural network. In this study, we address the problem of subject independence as well as translation, rotation, and scale invariance in the recognition of facial expression. The result shows reliable detection of smiles with recognition rate of 97.6% for 5600 still images of more than 10 subjects. The proposed algorithm demonstrated the ability to discriminate smiling from talking based on the saliency score obtained from voting visual cues. To the best of our knowledge, it is the first facial expression recognition model with the property of subject independence combined with robustness to variability in facial appearance.

  20. Robust lane detection and tracking using multiple visual cues under stochastic lane shape conditions

    Science.gov (United States)

    Huang, Zhi; Fan, Baozheng; Song, Xiaolin

    2018-03-01

    As one of the essential components of environment perception techniques for an intelligent vehicle, lane detection is confronted with challenges including robustness against the complicated disturbance and illumination, also adaptability to stochastic lane shapes. To overcome these issues, we proposed a robust lane detection method named classification-generation-growth-based (CGG) operator to the detected lines, whereby the linear lane markings are identified by synergizing multiple visual cues with the a priori knowledge and spatial-temporal information. According to the quality of linear lane fitting, the linear and linear-parabolic models are dynamically switched to describe the actual lane. The Kalman filter with adaptive noise covariance and the region of interests (ROI) tracking are applied to improve the robustness and efficiency. Experiments were conducted with images covering various challenging scenarios. The experimental results evaluate the effectiveness of the presented method for complicated disturbances, illumination, and stochastic lane shapes.

  1. Robust Fault Detection for a Class of Uncertain Nonlinear Systems Based on Multiobjective Optimization

    Directory of Open Access Journals (Sweden)

    Bingyong Yan

    2015-01-01

    Full Text Available A robust fault detection scheme for a class of nonlinear systems with uncertainty is proposed. The proposed approach utilizes robust control theory and parameter optimization algorithm to design the gain matrix of fault tracking approximator (FTA for fault detection. The gain matrix of FTA is designed to minimize the effects of system uncertainty on residual signals while maximizing the effects of system faults on residual signals. The design of the gain matrix of FTA takes into account the robustness of residual signals to system uncertainty and sensitivity of residual signals to system faults simultaneously, which leads to a multiobjective optimization problem. Then, the detectability of system faults is rigorously analyzed by investigating the threshold of residual signals. Finally, simulation results are provided to show the validity and applicability of the proposed approach.

  2. Instantaneous, Simple, and Reversible Revealing of Invisible Patterns Encrypted in Robust Hollow Sphere Colloidal Photonic Crystals.

    Science.gov (United States)

    Zhong, Kuo; Li, Jiaqi; Liu, Liwang; Van Cleuvenbergen, Stijn; Song, Kai; Clays, Koen

    2018-05-04

    The colors of photonic crystals are based on their periodic crystalline structure. They show clear advantages over conventional chromophores for many applications, mainly due to their anti-photobleaching and responsiveness to stimuli. More specifically, combining colloidal photonic crystals and invisible patterns is important in steganography and watermarking for anticounterfeiting applications. Here a convenient way to imprint robust invisible patterns in colloidal crystals of hollow silica spheres is presented. While these patterns remain invisible under static environmental humidity, even up to near 100% relative humidity, they are unveiled immediately (≈100 ms) and fully reversibly by dynamic humid flow, e.g., human breath. They reveal themselves due to the extreme wettability of the patterned (etched) regions, as confirmed by contact angle measurements. The liquid surface tension threshold to induce wetting (revealing the imprinted invisible images) is evaluated by thermodynamic predictions and subsequently verified by exposure to various vapors with different surface tension. The color of the patterned regions is furthermore independently tuned by vapors with different refractive indices. Such a system can play a key role in applications such as anticounterfeiting, identification, and vapor sensing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Robust MR spine detection using hierarchical learning and local articulated model.

    Science.gov (United States)

    Zhan, Yiqiang; Maneesh, Dewan; Harder, Martin; Zhou, Xiang Sean

    2012-01-01

    A clinically acceptable auto-spine detection system, i.e., localization and labeling of vertebrae and inter-vertebral discs, is required to have high robustness, in particular to severe diseases (e.g., scoliosis) and imaging artifacts (e.g. metal artifacts in MR). Our method aims to achieve this goal with two novel components. First, instead of treating vertebrae/discs as either repetitive components or completely independent entities, we emulate a radiologist and use a hierarchial strategy to learn detectors dedicated to anchor (distinctive) vertebrae, bundle (non-distinctive) vertebrae and inter-vertebral discs, respectively. At run-time, anchor vertebrae are detected concurrently to provide redundant and distributed appearance cues robust to local imaging artifacts. Bundle vertebrae detectors provide candidates of vertebrae with subtle appearance differences, whose labels are mutually determined by anchor vertebrae to gain additional robustness. Disc locations are derived from a cloud of responses from disc detectors, which is robust to sporadic voxel-level errors. Second, owing to the non-rigidness of spine anatomies, we employ a local articulated model to effectively model the spatial relations across vertebrae and discs. The local articulated model fuses appearance cues from different detectors in a way that is robust to abnormal spine geometry resulting from severe diseases. Our method is validated by 300 MR spine scout scans and exhibits robust performance, especially to cases with severe diseases and imaging artifacts.

  4. Landscape Pattern Detection in Archaeological Remote Sensing

    Directory of Open Access Journals (Sweden)

    Arianna Traviglia

    2017-12-01

    Full Text Available Automated detection of landscape patterns on Remote Sensing imagery has seen virtually little or no development in the archaeological domain, notwithstanding the fact that large portion of cultural landscapes worldwide are characterized by land engineering applications. The current extraordinary availability of remotely sensed images makes it now urgent to envision and develop automatic methods that can simplify their inspection and the extraction of relevant information from them, as the quantity of information is no longer manageable by traditional “human” visual interpretation. This paper expands on the development of automatic methods for the detection of target landscape features—represented by field system patterns—in very high spatial resolution images, within the framework of an archaeological project focused on the landscape engineering embedded in Roman cadasters. The targets of interest consist of a variety of similarly oriented objects of diverse nature (such as roads, drainage channels, etc. concurring to demark the current landscape organization, which reflects the one imposed by Romans over two millennia ago. The proposed workflow exploits the textural and shape properties of real-world elements forming the field patterns using multiscale analysis of dominant oriented response filters. Trials showed that this approach provides accurate localization of target linear objects and alignments signaled by a wide range of physical entities with very different characteristics.

  5. Evolution of networks for body plan patterning; interplay of modularity, robustness and evolvability.

    Directory of Open Access Journals (Sweden)

    Kirsten H Ten Tusscher

    2011-10-01

    Full Text Available A major goal of evolutionary developmental biology (evo-devo is to understand how multicellular body plans of increasing complexity have evolved, and how the corresponding developmental programs are genetically encoded. It has been repeatedly argued that key to the evolution of increased body plan complexity is the modularity of the underlying developmental gene regulatory networks (GRNs. This modularity is considered essential for network robustness and evolvability. In our opinion, these ideas, appealing as they may sound, have not been sufficiently tested. Here we use computer simulations to study the evolution of GRNs' underlying body plan patterning. We select for body plan segmentation and differentiation, as these are considered to be major innovations in metazoan evolution. To allow modular networks to evolve, we independently select for segmentation and differentiation. We study both the occurrence and relation of robustness, evolvability and modularity of evolved networks. Interestingly, we observed two distinct evolutionary strategies to evolve a segmented, differentiated body plan. In the first strategy, first segments and then differentiation domains evolve (SF strategy. In the second scenario segments and domains evolve simultaneously (SS strategy. We demonstrate that under indirect selection for robustness the SF strategy becomes dominant. In addition, as a byproduct of this larger robustness, the SF strategy is also more evolvable. Finally, using a combined functional and architectural approach, we determine network modularity. We find that while SS networks generate segments and domains in an integrated manner, SF networks use largely independent modules to produce segments and domains. Surprisingly, we find that widely used, purely architectural methods for determining network modularity completely fail to establish this higher modularity of SF networks. Finally, we observe that, as a free side effect of evolving segmentation

  6. A novel spatial performance metric for robust pattern optimization of distributed hydrological models

    Science.gov (United States)

    Stisen, S.; Demirel, C.; Koch, J.

    2017-12-01

    Evaluation of performance is an integral part of model development and calibration as well as it is of paramount importance when communicating modelling results to stakeholders and the scientific community. There exists a comprehensive and well tested toolbox of metrics to assess temporal model performance in the hydrological modelling community. On the contrary, the experience to evaluate spatial performance is not corresponding to the grand availability of spatial observations readily available and to the sophisticate model codes simulating the spatial variability of complex hydrological processes. This study aims at making a contribution towards advancing spatial pattern oriented model evaluation for distributed hydrological models. This is achieved by introducing a novel spatial performance metric which provides robust pattern performance during model calibration. The promoted SPAtial EFficiency (spaef) metric reflects three equally weighted components: correlation, coefficient of variation and histogram overlap. This multi-component approach is necessary in order to adequately compare spatial patterns. spaef, its three components individually and two alternative spatial performance metrics, i.e. connectivity analysis and fractions skill score, are tested in a spatial pattern oriented model calibration of a catchment model in Denmark. The calibration is constrained by a remote sensing based spatial pattern of evapotranspiration and discharge timeseries at two stations. Our results stress that stand-alone metrics tend to fail to provide holistic pattern information to the optimizer which underlines the importance of multi-component metrics. The three spaef components are independent which allows them to complement each other in a meaningful way. This study promotes the use of bias insensitive metrics which allow comparing variables which are related but may differ in unit in order to optimally exploit spatial observations made available by remote sensing

  7. Reticular pattern detection in dermoscopy: an approach using Curvelet Transform

    Directory of Open Access Journals (Sweden)

    Marlene Machado

    Full Text Available Abstract Introduction Dermoscopy is a non-invasive in vivo imaging technique, used in dermatology in feature identification, among pigmented melanocytic neoplasms, from suspicious skin lesions. Often, in the skin exam is possible to ascertain markers, whose identification and proper characterization is difficult, even when it is used a magnifying lens and a source of light. Dermoscopic images are thus a challenging source of a wide range of digital features, frequently with clinical correlation. Among these markers, one of particular interest to diagnosis in skin evaluation is the reticular pattern. Methods This paper presents a novel approach (avoiding pre-processing, e.g. segmentation and filtering for reticular pattern detection in dermoscopic images, using texture spectral analysis. The proposed methodology involves a Curvelet Transform procedure to identify features. Results Feature extraction is applied to identify a set of discriminant characteristics in the reticular pattern, and it is also employed in the automatic classification task. The results obtained are encouraging, presenting Sensitivity and Specificity of 82.35% and 76.79%, respectively. Conclusions These results highlight the use of automatic classification, in the context of artificial intelligence, within a computer-aided diagnosis strategy, as a strong tool to help the human decision making task in clinical practice. Moreover, the results were obtained using images from three different sources, without previous lesion segmentation, achieving to a rapid, robust and low complexity methodology. These properties boost the presented approach to be easily used in clinical practice as an aid to the diagnostic process.

  8. Hunter-gatherer postcranial robusticity relative to patterns of mobility, climatic adaptation, and selection for tissue economy.

    Science.gov (United States)

    Stock, J T

    2006-10-01

    Human skeletal robusticity is influenced by a number of factors, including habitual behavior, climate, and physique. Conflicting evidence as to the relative importance of these factors complicates our ability to interpret variation in robusticity in the past. It remains unclear how the pattern of robusticity in the skeleton relates to adaptive constraints on skeletal morphology. This study investigates variation in robusticity in claviculae, humeri, ulnae, femora, and tibiae among human foragers, relative to climate and habitual behavior. Cross-sectional geometric properties of the diaphyses are compared among hunter-gatherers from southern Africa (n = 83), the Andaman Islands (n = 32), Tierra del Fuego (n = 34), and the Great Lakes region (n = 15). The robusticity of both proximal and distal limb segments correlates negatively with climate and positively with patterns of terrestrial and marine mobility among these groups. However, the relative correspondence between robusticity and these factors varies throughout the body. In the lower limb, partial correlations between polar second moment of area (J(0.73)) and climate decrease from proximal to distal section locations, while this relationship increases from proximal to distal in the upper limb. Patterns of correlation between robusticity and mobility, either terrestrial or marine, generally increase from proximal to distal in the lower and upper limbs, respectively. This suggests that there may be a stronger relationship between observed patterns of diaphyseal hypertrophy and behavioral differences between populations in distal elements. Despite this trend, strength circularity indices at the femoral midshaft show the strongest correspondence with terrestrial mobility, particularly among males.

  9. A robust neural network-based approach for microseismic event detection

    KAUST Repository

    Akram, Jubran; Ovcharenko, Oleg; Peter, Daniel

    2017-01-01

    We present an artificial neural network based approach for robust event detection from low S/N waveforms. We use a feed-forward network with a single hidden layer that is tuned on a training dataset and later applied on the entire example dataset

  10. Detecting Beer Intake by Unique Metabolite Patterns.

    Science.gov (United States)

    Gürdeniz, Gözde; Jensen, Morten Georg; Meier, Sebastian; Bech, Lene; Lund, Erik; Dragsted, Lars Ove

    2016-12-02

    Evaluation of the health related effects of beer intake is hampered by the lack of accurate tools for assessing intakes (biomarkers). Therefore, we identified plasma and urine metabolites associated with recent beer intake by untargeted metabolomics and established a characteristic metabolite pattern representing raw materials and beer production as a qualitative biomarker of beer intake. In a randomized, crossover, single-blinded meal study (MSt1), 18 participants were given, one at a time, four different test beverages: strong, regular, and nonalcoholic beers and a soft drink. Four participants were assigned to have two additional beers (MSt2). In addition to plasma and urine samples, test beverages, wort, and hops extract were analyzed by UPLC-QTOF. A unique metabolite pattern reflecting beer metabolome, including metabolites derived from beer raw material (i.e., N-methyl tyramine sulfate and the sum of iso-α-acids and tricyclohumols) and the production process (i.e., pyro-glutamyl proline and 2-ethyl malate), was selected to establish a compliance biomarker model for detection of beer intake based on MSt1. The model predicted the MSt2 samples collected before and up to 12 h after beer intake correctly (AUC = 1). A biomarker model including four metabolites representing both beer raw materials and production steps provided a specific and accurate tool for measurement of beer consumption.

  11. Toward robust phase-locking in Melibe swim central pattern generator models

    Science.gov (United States)

    Jalil, Sajiya; Allen, Dane; Youker, Joseph; Shilnikov, Andrey

    2013-12-01

    Small groups of interneurons, abbreviated by CPG for central pattern generators, are arranged into neural networks to generate a variety of core bursting rhythms with specific phase-locked states, on distinct time scales, which govern vital motor behaviors in invertebrates such as chewing and swimming. These movements in lower level animals mimic motions of organs in higher animals due to evolutionarily conserved mechanisms. Hence, various neurological diseases can be linked to abnormal movement of body parts that are regulated by a malfunctioning CPG. In this paper, we, being inspired by recent experimental studies of neuronal activity patterns recorded from a swimming motion CPG of the sea slug Melibe leonina, examine a mathematical model of a 4-cell network that can plausibly and stably underlie the observed bursting rhythm. We develop a dynamical systems framework for explaining the existence and robustness of phase-locked states in activity patterns produced by the modeled CPGs. The proposed tools can be used for identifying core components for other CPG networks with reliable bursting outcomes and specific phase relationships between the interneurons. Our findings can be employed for identifying or implementing the conditions for normal and pathological functioning of basic CPGs of animals and artificially intelligent prosthetics that can regulate various movements.

  12. Sentence Level Information Patterns for Novelty Detection

    National Research Council Canada - National Science Library

    Li, Xiaoyan

    2006-01-01

    .... Given a user's information need, some information patterns in sentences such as combinations of query words, sentence lengths, named entities and phrases, and other sentence patterns, may contain...

  13. StereoBox: A Robust and Efficient Solution for Automotive Short-Range Obstacle Detection

    Directory of Open Access Journals (Sweden)

    Alberto Broggi

    2007-07-01

    Full Text Available This paper presents a robust method for close-range obstacle detection with arbitrarily aligned stereo cameras. System calibration is performed by means of a dense grid to remove perspective and lens distortion after a direct mapping between image pixels and world points. Obstacle detection is based on the differences between left and right images after transformation phase and with a polar histogram, it is possible to detect vertical structures and to reject noise and small objects. Found objects' world coordinates are transmitted via CAN bus; the driver can also be warned through an audio interface. The proposed algorithm can be useful in different automotive applications, requiring real-time segmentation without any assumption on background. Experimental results proved the system to be robust in several envitonmental conditions. In particular, the system has been tested to investigate presence of obstacles in blind spot areas around heavy goods vehicles (HGVs and has been mounted on three different prototypes at different heights.

  14. StereoBox: A Robust and Efficient Solution for Automotive Short-Range Obstacle Detection

    Directory of Open Access Journals (Sweden)

    Broggi Alberto

    2007-01-01

    Full Text Available This paper presents a robust method for close-range obstacle detection with arbitrarily aligned stereo cameras. System calibration is performed by means of a dense grid to remove perspective and lens distortion after a direct mapping between image pixels and world points. Obstacle detection is based on the differences between left and right images after transformation phase and with a polar histogram, it is possible to detect vertical structures and to reject noise and small objects. Found objects' world coordinates are transmitted via CAN bus; the driver can also be warned through an audio interface. The proposed algorithm can be useful in different automotive applications, requiring real-time segmentation without any assumption on background. Experimental results proved the system to be robust in several envitonmental conditions. In particular, the system has been tested to investigate presence of obstacles in blind spot areas around heavy goods vehicles (HGVs and has been mounted on three different prototypes at different heights.

  15. A robust neural network-based approach for microseismic event detection

    KAUST Repository

    Akram, Jubran

    2017-08-17

    We present an artificial neural network based approach for robust event detection from low S/N waveforms. We use a feed-forward network with a single hidden layer that is tuned on a training dataset and later applied on the entire example dataset for event detection. The input features used include the average of absolute amplitudes, variance, energy-ratio and polarization rectilinearity. These features are calculated in a moving-window of same length for the entire waveform. The output is set as a user-specified relative probability curve, which provides a robust way of distinguishing between weak and strong events. An optimal network is selected by studying the weight-based saliency and effect of number of neurons on the predicted results. Using synthetic data examples, we demonstrate that this approach is effective in detecting weaker events and reduces the number of false positives.

  16. On the robustness of EC-PC spike detection method for online neural recording.

    Science.gov (United States)

    Zhou, Yin; Wu, Tong; Rastegarnia, Amir; Guan, Cuntai; Keefer, Edward; Yang, Zhi

    2014-09-30

    Online spike detection is an important step to compress neural data and perform real-time neural information decoding. An unsupervised, automatic, yet robust signal processing is strongly desired, thus it can support a wide range of applications. We have developed a novel spike detection algorithm called "exponential component-polynomial component" (EC-PC) spike detection. We firstly evaluate the robustness of the EC-PC spike detector under different firing rates and SNRs. Secondly, we show that the detection Precision can be quantitatively derived without requiring additional user input parameters. We have realized the algorithm (including training) into a 0.13 μm CMOS chip, where an unsupervised, nonparametric operation has been demonstrated. Both simulated data and real data are used to evaluate the method under different firing rates (FRs), SNRs. The results show that the EC-PC spike detector is the most robust in comparison with some popular detectors. Moreover, the EC-PC detector can track changes in the background noise due to the ability to re-estimate the neural data distribution. Both real and synthesized data have been used for testing the proposed algorithm in comparison with other methods, including the absolute thresholding detector (AT), median absolute deviation detector (MAD), nonlinear energy operator detector (NEO), and continuous wavelet detector (CWD). Comparative testing results reveals that the EP-PC detection algorithm performs better than the other algorithms regardless of recording conditions. The EC-PC spike detector can be considered as an unsupervised and robust online spike detection. It is also suitable for hardware implementation. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Robust and fast license plate detection based on the fusion of color and edge feature

    Science.gov (United States)

    Cai, De; Shi, Zhonghan; Liu, Jin; Hu, Chuanping; Mei, Lin; Qi, Li

    2014-11-01

    Extracting a license plate is an important stage in automatic vehicle identification. The degradation of images and the computation intense make this task difficult. In this paper, a robust and fast license plate detection based on the fusion of color and edge feature is proposed. Based on the dichromatic reflection model, two new color ratios computed from the RGB color model are introduced and proved to be two color invariants. The global color feature extracted by the new color invariants improves the method's robustness. The local Sobel edge feature guarantees the method's accuracy. In the experiment, the detection performance is good. The detection results show that this paper's method is robust to the illumination, object geometry and the disturbance around the license plates. The method can also detect license plates when the color of the car body is the same as the color of the plates. The processing time for image size of 1000x1000 by pixels is nearly 0.2s. Based on the comparison, the performance of the new ratios is comparable to the common used HSI color model.

  18. Robust QRS peak detection by multimodal information fusion of ECG and blood pressure signals.

    Science.gov (United States)

    Ding, Quan; Bai, Yong; Erol, Yusuf Bugra; Salas-Boni, Rebeca; Zhang, Xiaorong; Hu, Xiao

    2016-11-01

    QRS peak detection is a challenging problem when ECG signal is corrupted. However, additional physiological signals may also provide information about the QRS position. In this study, we focus on a unique benchmark provided by PhysioNet/Computing in Cardiology Challenge 2014 and Physiological Measurement focus issue: robust detection of heart beats in multimodal data, which aimed to explore robust methods for QRS detection in multimodal physiological signals. A dataset of 200 training and 210 testing records are used, where the testing records are hidden for evaluating the performance only. An information fusion framework for robust QRS detection is proposed by leveraging existing ECG and ABP analysis tools and combining heart beats derived from different sources. Results show that our approach achieves an overall accuracy of 90.94% and 88.66% on the training and testing datasets, respectively. Furthermore, we observe expected performance at each step of the proposed approach, as an evidence of the effectiveness of our approach. Discussion on the limitations of our approach is also provided.

  19. Robust and efficient multi-frequency temporal phase unwrapping: optimal fringe frequency and pattern sequence selection.

    Science.gov (United States)

    Zhang, Minliang; Chen, Qian; Tao, Tianyang; Feng, Shijie; Hu, Yan; Li, Hui; Zuo, Chao

    2017-08-21

    Temporal phase unwrapping (TPU) is an essential algorithm in fringe projection profilometry (FPP), especially when measuring complex objects with discontinuities and isolated surfaces. Among others, the multi-frequency TPU has been proven to be the most reliable algorithm in the presence of noise. For a practical FPP system, in order to achieve an accurate, efficient, and reliable measurement, one needs to make wise choices about three key experimental parameters: the highest fringe frequency, the phase-shifting steps, and the fringe pattern sequence. However, there was very little research on how to optimize these parameters quantitatively, especially considering all three aspects from a theoretical and analytical perspective simultaneously. In this work, we propose a new scheme to determine simultaneously the optimal fringe frequency, phase-shifting steps and pattern sequence under multi-frequency TPU, robustly achieving high accuracy measurement by a minimum number of fringe frames. Firstly, noise models regarding phase-shifting algorithms as well as 3-D coordinates are established under a projector defocusing condition, which leads to the optimal highest fringe frequency for a FPP system. Then, a new concept termed frequency-to-frame ratio (FFR) that evaluates the magnitude of the contribution of each frame for TPU is defined, on which an optimal phase-shifting combination scheme is proposed. Finally, a judgment criterion is established, which can be used to judge whether the ratio between adjacent fringe frequencies is conducive to stably and efficiently unwrapping the phase. The proposed method provides a simple and effective theoretical framework to improve the accuracy, efficiency, and robustness of a practical FPP system in actual measurement conditions. The correctness of the derived models as well as the validity of the proposed schemes have been verified through extensive simulations and experiments. Based on a normal monocular 3-D FPP hardware system

  20. Incremental Activation Detection for Real-Time fMRI Series Using Robust Kalman Filter

    Directory of Open Access Journals (Sweden)

    Liang Li

    2014-01-01

    Full Text Available Real-time functional magnetic resonance imaging (rt-fMRI is a technique that enables us to observe human brain activations in real time. However, some unexpected noises that emerged in fMRI data collecting, such as acute swallowing, head moving and human manipulations, will cause much confusion and unrobustness for the activation analysis. In this paper, a new activation detection method for rt-fMRI data is proposed based on robust Kalman filter. The idea is to add a variation to the extended kalman filter to handle the additional sparse measurement noise and a sparse noise term to the measurement update step. Hence, the robust Kalman filter is designed to improve the robustness for the outliers and can be computed separately for each voxel. The algorithm can compute activation maps on each scan within a repetition time, which meets the requirement for real-time analysis. Experimental results show that this new algorithm can bring out high performance in robustness and in real-time activation detection.

  1. Detection of dependence patterns with delay.

    Science.gov (United States)

    Chevallier, Julien; Laloë, Thomas

    2015-11-01

    The Unitary Events (UE) method is a popular and efficient method used this last decade to detect dependence patterns of joint spike activity among simultaneously recorded neurons. The first introduced method is based on binned coincidence count (Grün, 1996) and can be applied on two or more simultaneously recorded neurons. Among the improvements of the methods, a transposition to the continuous framework has recently been proposed by Muiño and Borgelt (2014) and fully investigated by Tuleau-Malot et al. (2014) for two neurons. The goal of the present paper is to extend this study to more than two neurons. The main result is the determination of the limit distribution of the coincidence count. This leads to the construction of an independence test between L≥2 neurons. Finally, we propose a multiple test procedure via a Benjamini and Hochberg approach (Benjamini and Hochberg, 1995). All the theoretical results are illustrated by a simulation study, and compared to the UE method proposed by Grün et al. (2002). Furthermore our method is applied on real data. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A robust and efficient approach to detect 3D rectal tubes from CT colonography

    Energy Technology Data Exchange (ETDEWEB)

    Yang Xiaoyun; Slabaugh, Greg [Medicsight PLC, Kensington Centre, 66 Hammersmith Road, London (United Kingdom)

    2011-11-15

    Purpose: The rectal tube (RT) is a common source of false positives (FPs) in computer-aided detection (CAD) systems for CT colonography. A robust and efficient detection of RT can improve CAD performance by eliminating such ''obvious'' FPs and increase radiologists' confidence in CAD. Methods: In this paper, we present a novel and robust bottom-up approach to detect the RT. Probabilistic models, trained using kernel density estimation on simple low-level features, are employed to rank and select the most likely RT tube candidate on each axial slice. Then, a shape model, robustly estimated using random sample consensus (RANSAC), infers the global RT path from the selected local detections. Subimages around the RT path are projected into a subspace formed from training subimages of the RT. A quadratic discriminant analysis (QDA) provides a classification of a subimage as RT or non-RT based on the projection. Finally, a bottom-top clustering method is proposed to merge the classification predictions together to locate the tip position of the RT. Results: Our method is validated using a diverse database, including data from five hospitals. On a testing data with 21 patients (42 volumes), 99.5% of annotated RT paths have been successfully detected. Evaluated with CAD, 98.4% of FPs caused by the RT have been detected and removed without any loss of sensitivity. Conclusions: The proposed method demonstrates a high detection rate of the RT path, and when tested in a CAD system, reduces FPs caused by the RT without the loss of sensitivity.

  3. A robust and efficient approach to detect 3D rectal tubes from CT colonography

    International Nuclear Information System (INIS)

    Yang Xiaoyun; Slabaugh, Greg

    2011-01-01

    Purpose: The rectal tube (RT) is a common source of false positives (FPs) in computer-aided detection (CAD) systems for CT colonography. A robust and efficient detection of RT can improve CAD performance by eliminating such ''obvious'' FPs and increase radiologists' confidence in CAD. Methods: In this paper, we present a novel and robust bottom-up approach to detect the RT. Probabilistic models, trained using kernel density estimation on simple low-level features, are employed to rank and select the most likely RT tube candidate on each axial slice. Then, a shape model, robustly estimated using random sample consensus (RANSAC), infers the global RT path from the selected local detections. Subimages around the RT path are projected into a subspace formed from training subimages of the RT. A quadratic discriminant analysis (QDA) provides a classification of a subimage as RT or non-RT based on the projection. Finally, a bottom-top clustering method is proposed to merge the classification predictions together to locate the tip position of the RT. Results: Our method is validated using a diverse database, including data from five hospitals. On a testing data with 21 patients (42 volumes), 99.5% of annotated RT paths have been successfully detected. Evaluated with CAD, 98.4% of FPs caused by the RT have been detected and removed without any loss of sensitivity. Conclusions: The proposed method demonstrates a high detection rate of the RT path, and when tested in a CAD system, reduces FPs caused by the RT without the loss of sensitivity.

  4. Auditory Pattern Memory and Group Signal Detection

    National Research Council Canada - National Science Library

    Sorkin, Robert

    1997-01-01

    .... The experiments with temporally-coded auditory patterns showed how listeners' attention is influenced by the position and the amount of information carried by different segments of the pattern...

  5. Robust and Accurate Anomaly Detection in ECG Artifacts Using Time Series Motif Discovery

    Science.gov (United States)

    Sivaraks, Haemwaan

    2015-01-01

    Electrocardiogram (ECG) anomaly detection is an important technique for detecting dissimilar heartbeats which helps identify abnormal ECGs before the diagnosis process. Currently available ECG anomaly detection methods, ranging from academic research to commercial ECG machines, still suffer from a high false alarm rate because these methods are not able to differentiate ECG artifacts from real ECG signal, especially, in ECG artifacts that are similar to ECG signals in terms of shape and/or frequency. The problem leads to high vigilance for physicians and misinterpretation risk for nonspecialists. Therefore, this work proposes a novel anomaly detection technique that is highly robust and accurate in the presence of ECG artifacts which can effectively reduce the false alarm rate. Expert knowledge from cardiologists and motif discovery technique is utilized in our design. In addition, every step of the algorithm conforms to the interpretation of cardiologists. Our method can be utilized to both single-lead ECGs and multilead ECGs. Our experiment results on real ECG datasets are interpreted and evaluated by cardiologists. Our proposed algorithm can mostly achieve 100% of accuracy on detection (AoD), sensitivity, specificity, and positive predictive value with 0% false alarm rate. The results demonstrate that our proposed method is highly accurate and robust to artifacts, compared with competitive anomaly detection methods. PMID:25688284

  6. Robust data reconciliation and outlier detection with swarm intelligence in a thermal reactor power calculation

    Energy Technology Data Exchange (ETDEWEB)

    Valdetaro, Eduardo Damianik, E-mail: valdtar@eletronuclear.gov.br [ELETRONUCLEAR - ELETROBRAS, Angra dos Reis, RJ (Brazil). Angra 2 Operating Dept.; Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear; Schirru, Roberto, E-mail: schirru@lmp.ufrj.br [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear

    2011-07-01

    In Nuclear power plants, Data Reconciliation (DR) and Gross Errors Detection (GED) are techniques of increasing interest and are primarily used to keep mass and energy balance into account, which brings outcomes as a direct and indirect financial benefits. Data reconciliation is formulated by a constrained minimization problem, where the constraints correspond to energy and mass balance model. Statistical methods are used combined with the minimization of quadratic error form. Solving nonlinear optimization problem using conventional methods can be troublesome, because a multimodal function with differentiated solutions introduces some difficulties to search an optimal solution. Many techniques were developed to solve Data Reconciliation and Outlier Detection, some of them use, for example, Quadratic Programming, Lagrange Multipliers, Mixed-Integer Non Linear Programming and others use evolutionary algorithms like Genetic Algorithms (GA) and recently the use of the Particle Swarm Optimization (PSO) showed to be a potential tool as a global optimization algorithm when applied to data reconciliation. Robust Statistics is also increasing in interest and it is being used when measured data are contaminated by random errors and one can not assume the error is normally distributed, situation which reflects real problems situation. The aim of this work is to present a brief comparison between the classical data reconciliation technique and the robust data reconciliation and gross error detection with swarm intelligence procedure in calculating the thermal reactor power for a simplified heat circuit diagram of a steam turbine plant using real data obtained from Angra 2 Nuclear power plant. The main objective is to test the potential of the robust DR and GED method in a integrated framework using swarm intelligence and the three part redescending estimator of Hampel when applied to a real process condition. The results evaluate the potential use of the robust technique in

  7. Robust data reconciliation and outlier detection with swarm intelligence in a thermal reactor power calculation

    International Nuclear Information System (INIS)

    Valdetaro, Eduardo Damianik; Coordenacao dos Programas de Pos-Graduacao de Engenharia; Schirru, Roberto

    2011-01-01

    In Nuclear power plants, Data Reconciliation (DR) and Gross Errors Detection (GED) are techniques of increasing interest and are primarily used to keep mass and energy balance into account, which brings outcomes as a direct and indirect financial benefits. Data reconciliation is formulated by a constrained minimization problem, where the constraints correspond to energy and mass balance model. Statistical methods are used combined with the minimization of quadratic error form. Solving nonlinear optimization problem using conventional methods can be troublesome, because a multimodal function with differentiated solutions introduces some difficulties to search an optimal solution. Many techniques were developed to solve Data Reconciliation and Outlier Detection, some of them use, for example, Quadratic Programming, Lagrange Multipliers, Mixed-Integer Non Linear Programming and others use evolutionary algorithms like Genetic Algorithms (GA) and recently the use of the Particle Swarm Optimization (PSO) showed to be a potential tool as a global optimization algorithm when applied to data reconciliation. Robust Statistics is also increasing in interest and it is being used when measured data are contaminated by random errors and one can not assume the error is normally distributed, situation which reflects real problems situation. The aim of this work is to present a brief comparison between the classical data reconciliation technique and the robust data reconciliation and gross error detection with swarm intelligence procedure in calculating the thermal reactor power for a simplified heat circuit diagram of a steam turbine plant using real data obtained from Angra 2 Nuclear power plant. The main objective is to test the potential of the robust DR and GED method in a integrated framework using swarm intelligence and the three part redescending estimator of Hampel when applied to a real process condition. The results evaluate the potential use of the robust technique in

  8. FAST AND ROBUST SEGMENTATION AND CLASSIFICATION FOR CHANGE DETECTION IN URBAN POINT CLOUDS

    Directory of Open Access Journals (Sweden)

    X. Roynard

    2016-06-01

    Full Text Available Change detection is an important issue in city monitoring to analyse street furniture, road works, car parking, etc. For example, parking surveys are needed but are currently a laborious task involving sending operators in the streets to identify the changes in car locations. In this paper, we propose a method that performs a fast and robust segmentation and classification of urban point clouds, that can be used for change detection. We apply this method to detect the cars, as a particular object class, in order to perform parking surveys automatically. A recently proposed method already addresses the need for fast segmentation and classification of urban point clouds, using elevation images. The interest to work on images is that processing is much faster, proven and robust. However there may be a loss of information in complex 3D cases: for example when objects are one above the other, typically a car under a tree or a pedestrian under a balcony. In this paper we propose a method that retain the three-dimensional information while preserving fast computation times and improving segmentation and classification accuracy. It is based on fast region-growing using an octree, for the segmentation, and specific descriptors with Random-Forest for the classification. Experiments have been performed on large urban point clouds acquired by Mobile Laser Scanning. They show that the method is as fast as the state of the art, and that it gives more robust results in the complex 3D cases.

  9. Robust Non-Local TV-L1 Optical Flow Estimation with Occlusion Detection.

    Science.gov (United States)

    Zhang, Congxuan; Chen, Zhen; Wang, Mingrun; Li, Ming; Jiang, Shaofeng

    2017-06-05

    In this paper, we propose a robust non-local TV-L1 optical flow method with occlusion detection to address the problem of weak robustness of optical flow estimation with motion occlusion. Firstly, a TV-L1 form for flow estimation is defined using a combination of the brightness constancy and gradient constancy assumptions in the data term and by varying the weight under the Charbonnier function in the smoothing term. Secondly, to handle the potential risk of the outlier in the flow field, a general non-local term is added in the TV-L1 optical flow model to engender the typical non-local TV-L1 form. Thirdly, an occlusion detection method based on triangulation is presented to detect the occlusion regions of the sequence. The proposed non-local TV-L1 optical flow model is performed in a linearizing iterative scheme using improved median filtering and a coarse-to-fine computing strategy. The results of the complex experiment indicate that the proposed method can overcome the significant influence of non-rigid motion, motion occlusion, and large displacement motion. Results of experiments comparing the proposed method and existing state-of-the-art methods by respectively using Middlebury and MPI Sintel database test sequences show that the proposed method has higher accuracy and better robustness.

  10. Fast and Robust Segmentation and Classification for Change Detection in Urban Point Clouds

    Science.gov (United States)

    Roynard, X.; Deschaud, J.-E.; Goulette, F.

    2016-06-01

    Change detection is an important issue in city monitoring to analyse street furniture, road works, car parking, etc. For example, parking surveys are needed but are currently a laborious task involving sending operators in the streets to identify the changes in car locations. In this paper, we propose a method that performs a fast and robust segmentation and classification of urban point clouds, that can be used for change detection. We apply this method to detect the cars, as a particular object class, in order to perform parking surveys automatically. A recently proposed method already addresses the need for fast segmentation and classification of urban point clouds, using elevation images. The interest to work on images is that processing is much faster, proven and robust. However there may be a loss of information in complex 3D cases: for example when objects are one above the other, typically a car under a tree or a pedestrian under a balcony. In this paper we propose a method that retain the three-dimensional information while preserving fast computation times and improving segmentation and classification accuracy. It is based on fast region-growing using an octree, for the segmentation, and specific descriptors with Random-Forest for the classification. Experiments have been performed on large urban point clouds acquired by Mobile Laser Scanning. They show that the method is as fast as the state of the art, and that it gives more robust results in the complex 3D cases.

  11. Robust fault detection of linear systems using a computationally efficient set-membership method

    DEFF Research Database (Denmark)

    Tabatabaeipour, Mojtaba; Bak, Thomas

    2014-01-01

    In this paper, a computationally efficient set-membership method for robust fault detection of linear systems is proposed. The method computes an interval outer-approximation of the output of the system that is consistent with the model, the bounds on noise and disturbance, and the past measureme...... is trivially parallelizable. The method is demonstrated for fault detection of a hydraulic pitch actuator of a wind turbine. We show the effectiveness of the proposed method by comparing our results with two zonotope-based set-membership methods....

  12. Data Fusion to Develop a Driver Drowsiness Detection System with Robustness to Signal Loss

    Directory of Open Access Journals (Sweden)

    Sajjad Samiee

    2014-09-01

    Full Text Available This study proposes a drowsiness detection approach based on the combination of several different detection methods, with robustness to the input signal loss. Hence, if one of the methods fails for any reason, the whole system continues to work properly. To choose correct combination of the available methods and to utilize the benefits of methods of different categories, an image processing-based technique as well as a method based on driver-vehicle interaction is used. In order to avoid driving distraction, any use of an intrusive method is prevented. A driving simulator is used to gather real data and then artificial neural networks are used in the structure of the designed system. Several tests were conducted on twelve volunteers while their sleeping situations during one day prior to the tests, were fully under control. Although the impact of the proposed system on the improvement of the detection accuracy is not remarkable, the results indicate the main advantages of the system are the reliability of the detections and robustness to the loss of the input signals. The high reliability of the drowsiness detection systems plays an important role to reduce drowsiness related road accidents and their associated costs.

  13. A robust anomaly based change detection method for time-series remote sensing images

    Science.gov (United States)

    Shoujing, Yin; Qiao, Wang; Chuanqing, Wu; Xiaoling, Chen; Wandong, Ma; Huiqin, Mao

    2014-03-01

    Time-series remote sensing images record changes happening on the earth surface, which include not only abnormal changes like human activities and emergencies (e.g. fire, drought, insect pest etc.), but also changes caused by vegetation phenology and climate changes. Yet, challenges occur in analyzing global environment changes and even the internal forces. This paper proposes a robust Anomaly Based Change Detection method (ABCD) for time-series images analysis by detecting abnormal points in data sets, which do not need to follow a normal distribution. With ABCD we can detect when and where changes occur, which is the prerequisite condition of global change studies. ABCD was tested initially with 10-day SPOT VGT NDVI (Normalized Difference Vegetation Index) times series tracking land cover type changes, seasonality and noise, then validated to real data in a large area in Jiangxi, south of China. Initial results show that ABCD can precisely detect spatial and temporal changes from long time series images rapidly.

  14. Robust detection of heart beats in multimodal records using slope- and peak-sensitive band-pass filters.

    Science.gov (United States)

    Pangerc, Urška; Jager, Franc

    2015-08-01

    In this work, we present the development, architecture and evaluation of a new and robust heart beat detector in multimodal records. The detector uses electrocardiogram (ECG) signals, and/or pulsatile (P) signals, such as: blood pressure, artery blood pressure and pulmonary artery pressure, if present. The base approach behind the architecture of the detector is collecting signal energy (differentiating and low-pass filtering, squaring, integrating). To calculate the detection and noise functions, simple and fast slope- and peak-sensitive band-pass digital filters were designed. By using morphological smoothing, the detection functions were further improved and noise intervals were estimated. The detector looks for possible pacemaker heart rate patterns and repairs the ECG signals and detection functions. Heart beats are detected in each of the ECG and P signals in two steps: a repetitive learning phase and a follow-up detecting phase. The detected heart beat positions from the ECG signals are merged into a single stream of detected ECG heart beat positions. The merged ECG heart beat positions and detected heart beat positions from the P signals are verified for their regularity regarding the expected heart rate. The detected heart beat positions of a P signal with the best match to the merged ECG heart beat positions are selected for mapping into the noise and no-signal intervals of the record. The overall evaluation scores in terms of average sensitivity and positive predictive values obtained on databases that are freely available on the Physionet website were as follows: the MIT-BIH Arrhythmia database (99.91%), the MGH/MF Waveform database (95.14%), the augmented training set of the follow-up phase of the PhysioNet/Computing in Cardiology Challenge 2014 (97.67%), and the Challenge test set (93.64%).

  15. Nonlinear Robust Observer-Based Fault Detection for Networked Suspension Control System of Maglev Train

    Directory of Open Access Journals (Sweden)

    Yun Li

    2013-01-01

    Full Text Available A fault detection approach based on nonlinear robust observer is designed for the networked suspension control system of Maglev train with random induced time delay. First, considering random bounded time-delay and external disturbance, the nonlinear model of the networked suspension control system is established. Then, a nonlinear robust observer is designed using the input of the suspension gap. And the estimate error is proved to be bounded with arbitrary precision by adopting an appropriate parameter. When sensor faults happen, the residual between the real states and the observer outputs indicates which kind of sensor failures occurs. Finally, simulation results using the actual parameters of CMS-04 maglev train indicate that the proposed method is effective for maglev train.

  16. Outlier detection by robust Mahalanobis distance in geological data obtained by INAA to provenance studies

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Jose O. dos, E-mail: osmansantos@ig.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Sergipe (IFS), Lagarto, SE (Brazil); Munita, Casimiro S., E-mail: camunita@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Soares, Emilio A.A., E-mail: easoares@ufan.edu.br [Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil). Dept. de Geociencias

    2013-07-01

    The detection of outlier in geochemical studies is one of the main difficulties in the interpretation of dataset because they can disturb the statistical method. The search for outliers in geochemical studies is usually based in the Mahalanobis distance (MD), since points in multivariate space that are a distance larger the some predetermined values from center of the data are considered outliers. However, the MD is very sensitive to the presence of discrepant samples. Many robust estimators for location and covariance have been introduced in the literature, such as Minimum Covariance Determinant (MCD) estimator. When MCD estimators are used to calculate the MD leads to the so-called Robust Mahalanobis Distance (RD). In this context, in this work RD was used to detect outliers in geological study of samples collected from confluence of Negro and Solimoes rivers. The purpose of this study was to study the contributions of the sediments deposited by the Solimoes and Negro rivers in the filling of the tectonic depressions at Parana do Ariau. For that 113 samples were analyzed by Instrumental Neutron Activation Analysis (INAA) in which were determined the concentration of As, Ba, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Nd, Rb, Sb, Sc, Sm, U, Yb, Ta, Tb, Th and Zn. In the dataset was possible to construct the ellipse corresponding to robust Mahalanobis distance for each group of samples. The samples found outside of the tolerance ellipse were considered an outlier. The results showed that Robust Mahalanobis Distance was more appropriate for the identification of the outliers, once it is a more restrictive method. (author)

  17. Outlier detection by robust Mahalanobis distance in geological data obtained by INAA to provenance studies

    International Nuclear Information System (INIS)

    Santos, Jose O. dos; Munita, Casimiro S.; Soares, Emilio A.A.

    2013-01-01

    The detection of outlier in geochemical studies is one of the main difficulties in the interpretation of dataset because they can disturb the statistical method. The search for outliers in geochemical studies is usually based in the Mahalanobis distance (MD), since points in multivariate space that are a distance larger the some predetermined values from center of the data are considered outliers. However, the MD is very sensitive to the presence of discrepant samples. Many robust estimators for location and covariance have been introduced in the literature, such as Minimum Covariance Determinant (MCD) estimator. When MCD estimators are used to calculate the MD leads to the so-called Robust Mahalanobis Distance (RD). In this context, in this work RD was used to detect outliers in geological study of samples collected from confluence of Negro and Solimoes rivers. The purpose of this study was to study the contributions of the sediments deposited by the Solimoes and Negro rivers in the filling of the tectonic depressions at Parana do Ariau. For that 113 samples were analyzed by Instrumental Neutron Activation Analysis (INAA) in which were determined the concentration of As, Ba, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Nd, Rb, Sb, Sc, Sm, U, Yb, Ta, Tb, Th and Zn. In the dataset was possible to construct the ellipse corresponding to robust Mahalanobis distance for each group of samples. The samples found outside of the tolerance ellipse were considered an outlier. The results showed that Robust Mahalanobis Distance was more appropriate for the identification of the outliers, once it is a more restrictive method. (author)

  18. Lectin binding patterns and immunohistochemical antigen detection ...

    African Journals Online (AJOL)

    Ibrahim Eldaghayes

    2018-02-09

    Feb 9, 2018 ... placenta and lungs of Brucella abortus-bovine infected fetuses. María Andrea ... The present lectin histochemical study revealed a distinctive pattern of oligosaccharide .... tissue was used as a positive control and nonimmune.

  19. A Robust Method for Detecting Parking Areas in Both Indoor and Outdoor Environments

    Directory of Open Access Journals (Sweden)

    Wenhao Zong

    2018-06-01

    Full Text Available Although an automatic parking system has been installed in many vehicles recently, it is still hard for the system to confirm by itself whether a vacant parking area truly exists or not. In this paper, we introduced a robust vision-based vacancy parking area detecting method for both indoor and outdoor environments. The main contribution of this paper is given as follows. First, an automatic image stitching method is proposed. Secondly, the problem of environment illuminating change and line color difference is considered and solved. Thirdly, the proposed algorithm is insensitive to the shadow and scene diversity, which means the detecting result satisfies most of the environment. Finally, a vehicle model is considered for tracking and reconfirming the detecting results to eliminate most of the false positives.

  20. Fusion of an Ensemble of Augmented Image Detectors for Robust Object Detection.

    Science.gov (United States)

    Wei, Pan; Ball, John E; Anderson, Derek T

    2018-03-17

    A significant challenge in object detection is accurate identification of an object's position in image space, whereas one algorithm with one set of parameters is usually not enough, and the fusion of multiple algorithms and/or parameters can lead to more robust results. Herein, a new computational intelligence fusion approach based on the dynamic analysis of agreement among object detection outputs is proposed. Furthermore, we propose an online versus just in training image augmentation strategy. Experiments comparing the results both with and without fusion are presented. We demonstrate that the augmented and fused combination results are the best, with respect to higher accuracy rates and reduction of outlier influences. The approach is demonstrated in the context of cone, pedestrian and box detection for Advanced Driver Assistance Systems (ADAS) applications.

  1. Fusion of an Ensemble of Augmented Image Detectors for Robust Object Detection

    Directory of Open Access Journals (Sweden)

    Pan Wei

    2018-03-01

    Full Text Available A significant challenge in object detection is accurate identification of an object’s position in image space, whereas one algorithm with one set of parameters is usually not enough, and the fusion of multiple algorithms and/or parameters can lead to more robust results. Herein, a new computational intelligence fusion approach based on the dynamic analysis of agreement among object detection outputs is proposed. Furthermore, we propose an online versus just in training image augmentation strategy. Experiments comparing the results both with and without fusion are presented. We demonstrate that the augmented and fused combination results are the best, with respect to higher accuracy rates and reduction of outlier influences. The approach is demonstrated in the context of cone, pedestrian and box detection for Advanced Driver Assistance Systems (ADAS applications.

  2. A Robust Method to Detect Zero Velocity for Improved 3D Personal Navigation Using Inertial Sensors

    Science.gov (United States)

    Xu, Zhengyi; Wei, Jianming; Zhang, Bo; Yang, Weijun

    2015-01-01

    This paper proposes a robust zero velocity (ZV) detector algorithm to accurately calculate stationary periods in a gait cycle. The proposed algorithm adopts an effective gait cycle segmentation method and introduces a Bayesian network (BN) model based on the measurements of inertial sensors and kinesiology knowledge to infer the ZV period. During the detected ZV period, an Extended Kalman Filter (EKF) is used to estimate the error states and calibrate the position error. The experiments reveal that the removal rate of ZV false detections by the proposed method increases 80% compared with traditional method at high walking speed. Furthermore, based on the detected ZV, the Personal Inertial Navigation System (PINS) algorithm aided by EKF performs better, especially in the altitude aspect. PMID:25831086

  3. Robust Detection of Moving Human Target in Foliage-Penetration Environment Based on Hough Transform

    Directory of Open Access Journals (Sweden)

    P. Lei

    2014-04-01

    Full Text Available Attention has been focused on the robust moving human target detection in foliage-penetration environment, which presents a formidable task in a radar system because foliage is a rich scattering environment with complex multipath propagation and time-varying clutter. Generally, multiple-bounce returns and clutter are additionally superposed to direct-scatter echoes. They obscure true target echo and lead to poor visual quality time-range image, making target detection particular difficult. Consequently, an innovative approach is proposed to suppress clutter and mitigate multipath effects. In particular, a clutter suppression technique based on range alignment is firstly applied to suppress the time-varying clutter and the instable antenna coupling. Then entropy weighted coherent integration (EWCI algorithm is adopted to mitigate the multipath effects. In consequence, the proposed method effectively reduces the clutter and ghosting artifacts considerably. Based on the high visual quality image, the target trajectory is detected robustly and the radial velocity is estimated accurately with the Hough transform (HT. Real data used in the experimental results are provided to verify the proposed method.

  4. A Robust Vision-based Runway Detection and Tracking Algorithm for Automatic UAV Landing

    KAUST Repository

    Abu Jbara, Khaled F.

    2015-05-01

    This work presents a novel real-time algorithm for runway detection and tracking applied to the automatic takeoff and landing of Unmanned Aerial Vehicles (UAVs). The algorithm is based on a combination of segmentation based region competition and the minimization of a specific energy function to detect and identify the runway edges from streaming video data. The resulting video-based runway position estimates are updated using a Kalman Filter, which can integrate other sensory information such as position and attitude angle estimates to allow a more robust tracking of the runway under turbulence. We illustrate the performance of the proposed lane detection and tracking scheme on various experimental UAV flights conducted by the Saudi Aerospace Research Center. Results show an accurate tracking of the runway edges during the landing phase under various lighting conditions. Also, it suggests that such positional estimates would greatly improve the positional accuracy of the UAV during takeoff and landing phases. The robustness of the proposed algorithm is further validated using Hardware in the Loop simulations with diverse takeoff and landing videos generated using a commercial flight simulator.

  5. Damage detection using piezoelectric transducers and the Lamb wave approach: II. Robust and quantitative decision making

    International Nuclear Information System (INIS)

    Lu, Y; Wang, X; Tang, J; Ding, Y

    2008-01-01

    The propagation of Lamb waves generated by piezoelectric transducers in a one-dimensional structure has been studied comprehensively in part I of this two-paper series. Using the information embedded in the propagating waveforms, we expect to make a decision on whether damage has occurred; however, environmental and operational variances inevitably complicate the problem. To better detect the damage under these variances, we present in this paper a robust and quantitative decision-making methodology involving advanced signal processing and statistical analysis. In order to statistically evaluate the features in Lamb wave propagation in the presence of noise, we collect multiple time series (baseline signals) from the undamaged beam. A combination of the improved adaptive harmonic wavelet transform (AHWT) and the principal component analysis (PCA) is performed on the baseline signals to highlight the critical features of Lamb wave propagation in the undamaged structure. The detection of damage is facilitated by comparing the features of the test signal collected from the test structure (damaged or undamaged) with the features of the baseline signals. In this process, we employ Hotelling's T 2 statistical analysis to first purify the baseline dataset and then to quantify the deviation of the test data vector from the baseline dataset. Through experimental and numerical studies, we systematically investigate the proposed methodology in terms of the detectability (capability of detecting damage), the sensitivity (with respect to damage severity and excitation frequency) and the robustness against noises. The parametric studies also validate, from the signal processing standpoint, the guidelines of Lamb-wave-based damage detection developed in part I

  6. A Robust and Fast System for CTC Computer-Aided Detection of Colorectal Lesions

    Directory of Open Access Journals (Sweden)

    Gareth Beddoe

    2010-01-01

    Full Text Available We present a complete, end-to-end computer-aided detection (CAD system for identifying lesions in the colon, imaged with computed tomography (CT. This system includes facilities for colon segmentation, candidate generation, feature analysis, and classification. The algorithms have been designed to offer robust performance to variation in image data and patient preparation. By utilizing efficient 2D and 3D processing, software optimizations, multi-threading, feature selection, and an optimized cascade classifier, the CAD system quickly determines a set of detection marks. The colon CAD system has been validated on the largest set of data to date, and demonstrates excellent performance, in terms of its high sensitivity, low false positive rate, and computational efficiency.

  7. Leak detection of complex pipelines based on the filter diagonalization method: robust technique for eigenvalue assessment

    International Nuclear Information System (INIS)

    Lay-Ekuakille, Aimé; Pariset, Carlo; Trotta, Amerigo

    2010-01-01

    The FDM (filter diagonalization method), an interesting technique used in nuclear magnetic resonance data processing for tackling FFT (fast Fourier transform) limitations, can be used by considering pipelines, especially complex configurations, as a vascular apparatus with arteries, veins, capillaries, etc. Thrombosis, which might occur in humans, can be considered as a leakage for the complex pipeline, the human vascular apparatus. The choice of eigenvalues in FDM or in spectra-based techniques is a key issue in recovering the solution of the main equation (for FDM) or frequency domain transformation (for FFT) in order to determine the accuracy in detecting leaks in pipelines. This paper deals with the possibility of improving the leak detection accuracy of the FDM technique thanks to a robust algorithm by assessing the problem of eigenvalues, making it less experimental and more analytical using Tikhonov-based regularization techniques. The paper starts from the results of previous experimental procedures carried out by the authors

  8. Robust recurrent neural network modeling for software fault detection and correction prediction

    International Nuclear Information System (INIS)

    Hu, Q.P.; Xie, M.; Ng, S.H.; Levitin, G.

    2007-01-01

    Software fault detection and correction processes are related although different, and they should be studied together. A practical approach is to apply software reliability growth models to model fault detection, and fault correction process is assumed to be a delayed process. On the other hand, the artificial neural networks model, as a data-driven approach, tries to model these two processes together with no assumptions. Specifically, feedforward backpropagation networks have shown their advantages over analytical models in fault number predictions. In this paper, the following approach is explored. First, recurrent neural networks are applied to model these two processes together. Within this framework, a systematic networks configuration approach is developed with genetic algorithm according to the prediction performance. In order to provide robust predictions, an extra factor characterizing the dispersion of prediction repetitions is incorporated into the performance function. Comparisons with feedforward neural networks and analytical models are developed with respect to a real data set

  9. A Robust Automated Cataract Detection Algorithm Using Diagnostic Opinion Based Parameter Thresholding for Telemedicine Application

    Directory of Open Access Journals (Sweden)

    Shashwat Pathak

    2016-09-01

    Full Text Available This paper proposes and evaluates an algorithm to automatically detect the cataracts from color images in adult human subjects. Currently, methods available for cataract detection are based on the use of either fundus camera or Digital Single-Lens Reflex (DSLR camera; both are very expensive. The main motive behind this work is to develop an inexpensive, robust and convenient algorithm which in conjugation with suitable devices will be able to diagnose the presence of cataract from the true color images of an eye. An algorithm is proposed for cataract screening based on texture features: uniformity, intensity and standard deviation. These features are first computed and mapped with diagnostic opinion by the eye expert to define the basic threshold of screening system and later tested on real subjects in an eye clinic. Finally, a tele-ophthamology model using our proposed system has been suggested, which confirms the telemedicine application of the proposed system.

  10. Autopiquer - a Robust and Reliable Peak Detection Algorithm for Mass Spectrometry.

    Science.gov (United States)

    Kilgour, David P A; Hughes, Sam; Kilgour, Samantha L; Mackay, C Logan; Palmblad, Magnus; Tran, Bao Quoc; Goo, Young Ah; Ernst, Robert K; Clarke, David J; Goodlett, David R

    2017-02-01

    We present a simple algorithm for robust and unsupervised peak detection by determining a noise threshold in isotopically resolved mass spectrometry data. Solving this problem will greatly reduce the subjective and time-consuming manual picking of mass spectral peaks and so will prove beneficial in many research applications. The Autopiquer approach uses autocorrelation to test for the presence of (isotopic) structure in overlapping windows across the spectrum. Within each window, a noise threshold is optimized to remove the most unstructured data, whilst keeping as much of the (isotopic) structure as possible. This algorithm has been successfully demonstrated for both peak detection and spectral compression on data from many different classes of mass spectrometer and for different sample types, and this approach should also be extendible to other types of data that contain regularly spaced discrete peaks. Graphical Abstract ᅟ.

  11. Detecting beer intake by unique metabolite patterns

    DEFF Research Database (Denmark)

    Gürdeniz, Gözde; Jensen, Morten Georg; Meier, Sebastian

    2016-01-01

    Evaluation of health related effects of beer intake is hampered by the lack of accurate tools for assessing intakes (biomarkers). Therefore, we identified plasma and urine metabolites associated with recent beer intake by untargeted metabolomics and established a characteristic metabolite pattern...... representing raw materials and beer production as a qualitative biomarker of beer intake. In a randomized, crossover, single-blinded meal study (MSt1) 18 participants were given one at a time four different test beverages: strong, regular and non-alcoholic beers and a soft drink. Four participants were...... assigned to have two additional beers (MSt2). In addition to plasma and urine samples, test beverages, wort and hops extract were analyzed by UPLC-QTOF. A unique metabolite pattern reflecting beer metabolome, including metabolites derived from beer raw material (i.e. N-methyl tyramine sulfate and the sum...

  12. Testing the robustness of the anthropogenic climate change detection statements using different empirical models

    KAUST Repository

    Imbers, J.; Lopez, A.; Huntingford, C.; Allen, M. R.

    2013-01-01

    This paper aims to test the robustness of the detection and attribution of anthropogenic climate change using four different empirical models that were previously developed to explain the observed global mean temperature changes over the last few decades. These studies postulated that the main drivers of these changes included not only the usual natural forcings, such as solar and volcanic, and anthropogenic forcings, such as greenhouse gases and sulfates, but also other known Earth system oscillations such as El Niño Southern Oscillation (ENSO) or the Atlantic Multidecadal Oscillation (AMO). In this paper, we consider these signals, or forced responses, and test whether or not the anthropogenic signal can be robustly detected under different assumptions for the internal variability of the climate system. We assume that the internal variability of the global mean surface temperature can be described by simple stochastic models that explore a wide range of plausible temporal autocorrelations, ranging from short memory processes exemplified by an AR(1) model to long memory processes, represented by a fractional differenced model. In all instances, we conclude that human-induced changes to atmospheric gas composition is affecting global mean surface temperature changes. ©2013. American Geophysical Union. All Rights Reserved.

  13. Salient Point Detection in Protrusion Parts of 3D Object Robust to Isometric Variations

    Science.gov (United States)

    Mirloo, Mahsa; Ebrahimnezhad, Hosein

    2018-03-01

    In this paper, a novel method is proposed to detect 3D object salient points robust to isometric variations and stable against scaling and noise. Salient points can be used as the representative points from object protrusion parts in order to improve the object matching and retrieval algorithms. The proposed algorithm is started by determining the first salient point of the model based on the average geodesic distance of several random points. Then, according to the previous salient point, a new point is added to this set of points in each iteration. By adding every salient point, decision function is updated. Hence, a condition is created for selecting the next point in which the iterative point is not extracted from the same protrusion part so that drawing out of a representative point from every protrusion part is guaranteed. This method is stable against model variations with isometric transformations, scaling, and noise with different levels of strength due to using a feature robust to isometric variations and considering the relation between the salient points. In addition, the number of points used in averaging process is decreased in this method, which leads to lower computational complexity in comparison with the other salient point detection algorithms.

  14. Secure access control and large scale robust representation for online multimedia event detection.

    Science.gov (United States)

    Liu, Changyu; Lu, Bin; Li, Huiling

    2014-01-01

    We developed an online multimedia event detection (MED) system. However, there are a secure access control issue and a large scale robust representation issue when we want to integrate traditional event detection algorithms into the online environment. For the first issue, we proposed a tree proxy-based and service-oriented access control (TPSAC) model based on the traditional role based access control model. Verification experiments were conducted on the CloudSim simulation platform, and the results showed that the TPSAC model is suitable for the access control of dynamic online environments. For the second issue, inspired by the object-bank scene descriptor, we proposed a 1000-object-bank (1000OBK) event descriptor. Feature vectors of the 1000OBK were extracted from response pyramids of 1000 generic object detectors which were trained on standard annotated image datasets, such as the ImageNet dataset. A spatial bag of words tiling approach was then adopted to encode these feature vectors for bridging the gap between the objects and events. Furthermore, we performed experiments in the context of event classification on the challenging TRECVID MED 2012 dataset, and the results showed that the robust 1000OBK event descriptor outperforms the state-of-the-art approaches.

  15. Secure Access Control and Large Scale Robust Representation for Online Multimedia Event Detection

    Directory of Open Access Journals (Sweden)

    Changyu Liu

    2014-01-01

    Full Text Available We developed an online multimedia event detection (MED system. However, there are a secure access control issue and a large scale robust representation issue when we want to integrate traditional event detection algorithms into the online environment. For the first issue, we proposed a tree proxy-based and service-oriented access control (TPSAC model based on the traditional role based access control model. Verification experiments were conducted on the CloudSim simulation platform, and the results showed that the TPSAC model is suitable for the access control of dynamic online environments. For the second issue, inspired by the object-bank scene descriptor, we proposed a 1000-object-bank (1000OBK event descriptor. Feature vectors of the 1000OBK were extracted from response pyramids of 1000 generic object detectors which were trained on standard annotated image datasets, such as the ImageNet dataset. A spatial bag of words tiling approach was then adopted to encode these feature vectors for bridging the gap between the objects and events. Furthermore, we performed experiments in the context of event classification on the challenging TRECVID MED 2012 dataset, and the results showed that the robust 1000OBK event descriptor outperforms the state-of-the-art approaches.

  16. Testing the robustness of the anthropogenic climate change detection statements using different empirical models

    KAUST Repository

    Imbers, J.

    2013-04-27

    This paper aims to test the robustness of the detection and attribution of anthropogenic climate change using four different empirical models that were previously developed to explain the observed global mean temperature changes over the last few decades. These studies postulated that the main drivers of these changes included not only the usual natural forcings, such as solar and volcanic, and anthropogenic forcings, such as greenhouse gases and sulfates, but also other known Earth system oscillations such as El Niño Southern Oscillation (ENSO) or the Atlantic Multidecadal Oscillation (AMO). In this paper, we consider these signals, or forced responses, and test whether or not the anthropogenic signal can be robustly detected under different assumptions for the internal variability of the climate system. We assume that the internal variability of the global mean surface temperature can be described by simple stochastic models that explore a wide range of plausible temporal autocorrelations, ranging from short memory processes exemplified by an AR(1) model to long memory processes, represented by a fractional differenced model. In all instances, we conclude that human-induced changes to atmospheric gas composition is affecting global mean surface temperature changes. ©2013. American Geophysical Union. All Rights Reserved.

  17. Robust drone detection for day/night counter-UAV with static VIS and SWIR cameras

    Science.gov (United States)

    Müller, Thomas

    2017-05-01

    Recent progress in the development of unmanned aerial vehicles (UAVs) has led to more and more situations in which drones like quadrocopters or octocopters pose a potential serious thread or could be used as a powerful tool for illegal activities. Therefore, counter-UAV systems are required in a lot of applications to detect approaching drones as early as possible. In this paper, an efficient and robust algorithm is presented for UAV detection using static VIS and SWIR cameras. Whereas VIS cameras with a high resolution enable to detect UAVs in the daytime in further distances, surveillance at night can be performed with a SWIR camera. First, a background estimation and structural adaptive change detection process detects movements and other changes in the observed scene. Afterwards, the local density of changes is computed used for background density learning and to build up the foreground model which are compared in order to finally get the UAV alarm result. The density model is used to filter out noise effects, on the one hand. On the other hand, moving scene parts like moving leaves in the wind or driving cars on a street can easily be learned in order to mask such areas out and suppress false alarms there. This scene learning is done automatically simply by processing without UAVs in order to capture the normal situation. The given results document the performance of the presented approach in VIS and SWIR in different situations.

  18. Robust Small Target Co-Detection from Airborne Infrared Image Sequences.

    Science.gov (United States)

    Gao, Jingli; Wen, Chenglin; Liu, Meiqin

    2017-09-29

    In this paper, a novel infrared target co-detection model combining the self-correlation features of backgrounds and the commonality features of targets in the spatio-temporal domain is proposed to detect small targets in a sequence of infrared images with complex backgrounds. Firstly, a dense target extraction model based on nonlinear weights is proposed, which can better suppress background of images and enhance small targets than weights of singular values. Secondly, a sparse target extraction model based on entry-wise weighted robust principal component analysis is proposed. The entry-wise weight adaptively incorporates structural prior in terms of local weighted entropy, thus, it can extract real targets accurately and suppress background clutters efficiently. Finally, the commonality of targets in the spatio-temporal domain are used to construct target refinement model for false alarms suppression and target confirmation. Since real targets could appear in both of the dense and sparse reconstruction maps of a single frame, and form trajectories after tracklet association of consecutive frames, the location correlation of the dense and sparse reconstruction maps for a single frame and tracklet association of the location correlation maps for successive frames have strong ability to discriminate between small targets and background clutters. Experimental results demonstrate that the proposed small target co-detection method can not only suppress background clutters effectively, but also detect targets accurately even if with target-like interference.

  19. Robust fault detection in bond graph framework using interval analysis and Fourier-Motzkin elimination technique

    Science.gov (United States)

    Jha, Mayank Shekhar; Chatti, Nizar; Declerck, Philippe

    2017-09-01

    This paper addresses the fault diagnosis problem of uncertain systems in the context of Bond Graph modelling technique. The main objective is to enhance the fault detection step based on Interval valued Analytical Redundancy Relations (named I-ARR) in order to overcome the problems related to false alarms, missed alarms and robustness issues. These I-ARRs are a set of fault indicators that generate the interval bounds called thresholds. A fault is detected once the nominal residuals (point valued part of I-ARRs) exceed the thresholds. However, the existing fault detection method is limited to parametric faults and it presents various limitations with regards to estimation of measurement signal derivatives, to which I-ARRs are sensitive. The novelties and scientific interest of the proposed methodology are: (1) to improve the accuracy of the measurements derivatives estimation by using a dedicated sliding mode differentiator proposed in this work, (2) to suitably integrate the Fourier-Motzkin Elimination (FME) technique within the I-ARRs based diagnosis so that measurements faults can be detected successfully. The latter provides interval bounds over the derivatives which are included in the thresholds. The proposed methodology is studied under various scenarios (parametric and measurement faults) via simulations over a mechatronic torsion bar system.

  20. Robust Detection and Visualization of Jet-Stream Core Lines in Atmospheric Flow.

    Science.gov (United States)

    Kern, Michael; Hewson, Tim; Sadlo, Filip; Westermann, Rudiger; Rautenhaus, Marc

    2018-01-01

    Jet-streams, their core lines and their role in atmospheric dynamics have been subject to considerable meteorological research since the first half of the twentieth century. Yet, until today no consistent automated feature detection approach has been proposed to identify jet-stream core lines from 3D wind fields. Such 3D core lines can facilitate meteorological analyses previously not possible. Although jet-stream cores can be manually analyzed by meteorologists in 2D as height ridges in the wind speed field, to the best of our knowledge no automated ridge detection approach has been applied to jet-stream core detection. In this work, we -a team of visualization scientists and meteorologists-propose a method that exploits directional information in the wind field to extract core lines in a robust and numerically less involved manner than traditional 3D ridge detection. For the first time, we apply the extracted 3D core lines to meteorological analysis, considering real-world case studies and demonstrating our method's benefits for weather forecasting and meteorological research.

  1. Robust fault detection of wind energy conversion systems based on dynamic neural networks.

    Science.gov (United States)

    Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad

    2014-01-01

    Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate.

  2. Rapid, Sensitive, and Reusable Detection of Glucose by a Robust Radiofrequency Integrated Passive Device Biosensor Chip

    Science.gov (United States)

    Kim, Nam-Young; Adhikari, Kishor Kumar; Dhakal, Rajendra; Chuluunbaatar, Zorigt; Wang, Cong; Kim, Eun-Soo

    2015-01-01

    Tremendous demands for sensitive and reliable label-free biosensors have stimulated intensive research into developing miniaturized radiofrequency resonators for a wide range of biomedical applications. Here, we report the development of a robust, reusable radiofrequency resonator based integrated passive device biosensor chip fabricated on a gallium arsenide substrate for the detection of glucose in water-glucose solutions and sera. As a result of the highly concentrated electromagnetic energy between the two divisions of an intertwined spiral inductor coupled with an interdigital capacitor, the proposed glucose biosensor chip exhibits linear detection ranges with high sensitivity at center frequency. This biosensor, which has a sensitivity of up to 199 MHz/mgmL−1 and a short response time of less than 2 sec, exhibited an ultralow detection limit of 0.033 μM and a reproducibility of 0.61% relative standard deviation. In addition, the quantities derived from the measured S-parameters, such as the propagation constant (γ), impedance (Z), resistance (R), inductance (L), conductance (G) and capacitance (C), enabled the effective multi-dimensional detection of glucose. PMID:25588958

  3. Attack Pattern Analysis Framework for a Multiagent Intrusion Detection System

    Directory of Open Access Journals (Sweden)

    Krzysztof Juszczyszyn

    2008-08-01

    Full Text Available The paper proposes the use of attack pattern ontology and formal framework for network traffic anomalies detection within a distributed multi-agent Intrusion Detection System architecture. Our framework assumes ontology-based attack definition and distributed processing scheme with exchange of communicates between agents. The role of traffic anomalies detection was presented then it has been discussed how some specific values characterizing network communication can be used to detect network anomalies caused by security incidents (worm attack, virus spreading. Finally, it has been defined how to use the proposed techniques in distributed IDS using attack pattern ontology.

  4. Neutral face classification using personalized appearance models for fast and robust emotion detection.

    Science.gov (United States)

    Chiranjeevi, Pojala; Gopalakrishnan, Viswanath; Moogi, Pratibha

    2015-09-01

    Facial expression recognition is one of the open problems in computer vision. Robust neutral face recognition in real time is a major challenge for various supervised learning-based facial expression recognition methods. This is due to the fact that supervised methods cannot accommodate all appearance variability across the faces with respect to race, pose, lighting, facial biases, and so on, in the limited amount of training data. Moreover, processing each and every frame to classify emotions is not required, as user stays neutral for majority of the time in usual applications like video chat or photo album/web browsing. Detecting neutral state at an early stage, thereby bypassing those frames from emotion classification would save the computational power. In this paper, we propose a light-weight neutral versus emotion classification engine, which acts as a pre-processer to the traditional supervised emotion classification approaches. It dynamically learns neutral appearance at key emotion (KE) points using a statistical texture model, constructed by a set of reference neutral frames for each user. The proposed method is made robust to various types of user head motions by accounting for affine distortions based on a statistical texture model. Robustness to dynamic shift of KE points is achieved by evaluating the similarities on a subset of neighborhood patches around each KE point using the prior information regarding the directionality of specific facial action units acting on the respective KE point. The proposed method, as a result, improves emotion recognition (ER) accuracy and simultaneously reduces computational complexity of the ER system, as validated on multiple databases.

  5. Binary pattern analysis for 3D facial action unit detection

    NARCIS (Netherlands)

    Sandbach, Georgia; Zafeiriou, Stefanos; Pantic, Maja

    2012-01-01

    In this paper we propose new binary pattern features for use in the problem of 3D facial action unit (AU) detection. Two representations of 3D facial geometries are employed, the depth map and the Azimuthal Projection Distance Image (APDI). To these the traditional Local Binary Pattern is applied,

  6. Robustness of cosmic neutrino background detection in the cosmic microwave background

    Energy Technology Data Exchange (ETDEWEB)

    Audren, Benjamin [Institut de Théorie des Phénomènes Physiques, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne (Switzerland); Bellini, Emilio; Cuesta, Antonio J.; Verde, Licia [Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E08028 Barcelona (Spain); Gontcho, Satya Gontcho A; Pérez-Ràfols, Ignasi [Dept. d' Astronomia i Meteorologia, Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E08028 Barcelona (Spain); Lesgourgues, Julien [CERN, Theory Division, CH-1211 Geneva 23 (Switzerland); Niro, Viviana [Departamento de Física Teórica, Universidad Autónoma de Madrid and Instituto de Física Teórica UAM/CSIC, Calle Nicolás Cabrera 13-15, Cantoblanco, E-28049 Madrid (Spain); Pellejero-Ibanez, Marcos; Tramonte, Denis [Instituto de Astrofísica de Canarias (IAC), C/Vía Láctea s/n, E-38200, La Laguna, Tenerife (Spain); Poulin, Vivian [LAPTh, Université de Savoie, CNRS, B.P.110, Annecy-le-Vieux F-74941 (France); Tram, Thomas, E-mail: emilio.bellini@icc.ub.edu [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom)

    2015-03-01

    The existence of a cosmic neutrino background can be probed indirectly by CMB experiments, not only by measuring the background density of radiation in the universe, but also by searching for the typical signatures of the fluctuations of free-streaming species in the temperature and polarisation power spectrum. Previous studies have already proposed a rather generic parametrisation of these fluctuations, that could help to discriminate between the signature of ordinary free-streaming neutrinos, or of more exotic dark radiation models. Current data are compatible with standard values of these parameters, which seems to bring further evidence for the existence of a cosmic neutrino background. In this work, we investigate the robustness of this conclusion under various assumptions. We generalise the definition of an effective sound speed and viscosity speed to the case of massive neutrinos or other dark radiation components experiencing a non-relativistic transition. We show that current bounds on these effective parameters do not vary significantly when considering an arbitrary value of the particle mass, or extended cosmological models with a free effective neutrino number, dynamical dark energy or a running of the primordial spectrum tilt. We conclude that it is possible to make a robust statement about the detection of the cosmic neutrino background by CMB experiments.

  7. Robustness and versatility of a nonlinear interdependence method for directional coupling detection from spike trains

    Science.gov (United States)

    Malvestio, Irene; Kreuz, Thomas; Andrzejak, Ralph G.

    2017-08-01

    The detection of directional couplings between dynamics based on measured spike trains is a crucial problem in the understanding of many different systems. In particular, in neuroscience it is important to assess the connectivity between neurons. One of the approaches that can estimate directional coupling from the analysis of point processes is the nonlinear interdependence measure L . Although its efficacy has already been demonstrated, it still needs to be tested under more challenging and realistic conditions prior to an application to real data. Thus, in this paper we use the Hindmarsh-Rose model system to test the method in the presence of noise and for different spiking regimes. We also examine the influence of different parameters and spike train distances. Our results show that the measure L is versatile and robust to various types of noise, and thus suitable for application to experimental data.

  8. Robust and unobtrusive algorithm based on position independence for step detection

    Science.gov (United States)

    Qiu, KeCheng; Li, MengYang; Luo, YiHan

    2018-04-01

    Running is becoming one of the most popular exercises among the people, monitoring steps can help users better understand their running process and improve exercise efficiency. In this paper, we design and implement a robust and unobtrusive algorithm based on position independence for step detection under real environment. It applies Butterworth filter to suppress high frequency interference and then employs the projection based on mathematics to transform system to solve the problem of unknown position of smartphone. Finally, using sliding window to suppress the false peak. The algorithm was tested for eight participants on the Android 7.0 platform. In our experiments, the results show that the proposed algorithm can achieve desired effect in spite of device pose.

  9. A robust indicator based on singular value decomposition for flaw feature detection from noisy ultrasonic signals

    Science.gov (United States)

    Cui, Ximing; Wang, Zhe; Kang, Yihua; Pu, Haiming; Deng, Zhiyang

    2018-05-01

    Singular value decomposition (SVD) has been proven to be an effective de-noising tool for flaw echo signal feature detection in ultrasonic non-destructive evaluation (NDE). However, the uncertainty in the arbitrary manner of the selection of an effective singular value weakens the robustness of this technique. Improper selection of effective singular values will lead to bad performance of SVD de-noising. What is more, the computational complexity of SVD is too large for it to be applied in real-time applications. In this paper, to eliminate the uncertainty in SVD de-noising, a novel flaw indicator, named the maximum singular value indicator (MSI), based on short-time SVD (STSVD), is proposed for flaw feature detection from a measured signal in ultrasonic NDE. In this technique, the measured signal is first truncated into overlapping short-time data segments to put feature information of a transient flaw echo signal in local field, and then the MSI can be obtained from the SVD of each short-time data segment. Research shows that this indicator can clearly indicate the location of ultrasonic flaw signals, and the computational complexity of this STSVD-based indicator is significantly reduced with the algorithm proposed in this paper. Both simulation and experiments show that this technique is very efficient for real-time application in flaw detection from noisy data.

  10. IVS Combination Center at BKG - Robust Outlier Detection and Weighting Strategies

    Science.gov (United States)

    Bachmann, S.; Lösler, M.

    2012-12-01

    Outlier detection plays an important role within the IVS combination. Even if the original data is the same for all contributing Analysis Centers (AC), the analyzed data shows differences due to analysis software characteristics. The treatment of outliers is thus a fine line between keeping data heterogeneity and elimination of real outliers. Robust outlier detection based on the Least Median Square (LMS) is used within the IVS combination. This method allows reliable outlier detection with a small number of input parameters. A similar problem arises for the weighting of the individual solutions within the combination process. The variance component estimation (VCE) is used to control the weighting factor for each AC. The Operator-Software-Impact (OSI) method takes into account that the analyzed data is strongly influenced by the software and the responsible operator. It allows to make the VCE more sensitive to the diverse input data. This method has already been set up within GNSS data analysis as well as the analysis of troposphere data. The benefit of an OSI realization within the VLBI combination and its potential in weighting factor determination has not been investigated before.

  11. Development of a robust chromatographic method for the detection of chlorophenols in cork oak forest soils.

    Science.gov (United States)

    McLellan, Iain; Hursthouse, Andrew; Morrison, Calum; Varela, Adélia; Pereira, Cristina Silva

    2014-02-01

    A major concern for the cork and wine industry is 'cork taint' which is associated with chloroanisoles, the microbial degradation metabolites of chlorophenols. The use of chlorophenolic compounds as pesticides within cork forests was prohibited in 1993 in the European Union (EU) following the introduction of industry guidance. However, cork produced outside the EU is still thought to be affected and simple, robust methods for chlorophenol analysis are required for wider environmental assessment by industry and local environmental regulators. Soil samples were collected from three common-use forests in Tunisia and from one privately owned forest in Sardinia, providing examples of varied management practice and degree of human intervention. These provided challenge samples for the optimisation of a HPLC-UV detection method. It produced recoveries consistently >75% against a soil CRM (ERM-CC008) for pentachlorophenol. The optimised method, with ultraviolet (diode array) detection is able to separate and quantify 16 different chlorophenols at field concentrations greater than the limits of detection ranging from 6.5 to 191.3 μg/kg (dry weight). Application to a range of field samples demonstrated the absence of widespread contamination in forest soils at sites sampled in Sardinia and Tunisia.

  12. Fabrication of Robust Biomolecular Patterns by Reactive Microcontact Printing on NHS Ester Containing Polymer Films

    NARCIS (Netherlands)

    Feng, C.L.; Vancso, Gyula J.; Schönherr, Holger

    2006-01-01

    The fabrication of robust biomolecule microarrays by reactive microcontact printing (CP) on spin-coated thin films of poly(N-hydroxysuccinimidyl methacrylate) (PNHSMA) on oxidized silicon and glass is described. The approach combines the advantages of activated polymer thin films as coupling layers,

  13. DETECTION OF TOPOLOGICAL PATTERNS IN PROTEIN NETWORKS.

    Energy Technology Data Exchange (ETDEWEB)

    MASLOV,S.SNEPPEN,K.

    2003-11-17

    interesting property of many biological networks that was recently brought to attention of the scientific community [3, 4, 5] is an extremely broad distribution of node connectivities defined as the number of immediate neighbors of a given node in the network. While the majority of nodes have just a few edges connecting them to other nodes in the network, there exist some nodes, that we will refer to as ''hubs'', with an unusually large number of neighbors. The connectivity of the most connected hub in such a network is typically several orders of magnitude larger than the average connectivity in the network. Often the distribution of connectivities of individual nodes can be approximated by a scale-free power law form [3] in which case the network is referred to as scale-free. Among biological networks distributions of node connectivities in metabolic [4], protein interaction [5], and brain functional [6] networks can be reasonably approximated by a power law extending for several orders of magnitude. The set of connectivities of individual nodes is an example of a low-level (single-node) topological property of a network. While it answers the question about how many neighbors a given node has, it gives no information about the identity of those neighbors. It is clear that most functional properties of networks are defined at a higher topological level in the exact pattern of connections of nodes to each other. However, such multi-node connectivity patterns are rather difficult to quantify and compare between networks. In this work we concentrate on multi-node topological properties of protein networks. These networks (as any other biological networks) lack the top-down design. Instead, selective forces of biological evolution shape them from raw material provided by random events such as mutations within individual genes, and gene duplications. As a result their connections are characterized by a large degree of randomness. One may wonder which

  14. Low cost, robust and real time system for detecting and tracking moving objects to automate cargo handling in port terminals

    NARCIS (Netherlands)

    Vaquero, V.; Repiso, E.; Sanfeliu, A.; Vissers, J.; Kwakkernaat, M.

    2016-01-01

    The presented paper addresses the problem of detecting and tracking moving objects for autonomous cargo handling in port terminals using a perception system which input data is a single layer laser scanner. A computationally low cost and robust Detection and Tracking Moving Objects (DATMO) algorithm

  15. Connectivity diagnostics in the Mediterranean obtained from Lagrangian Flow Networks; global patterns, sensitivity and robustness

    Science.gov (United States)

    Monroy, Pedro; Rossi, Vincent; Ser-Giacomi, Enrico; López, Cristóbal; Hernández-García, Emilio

    2017-04-01

    Lagrangian Flow Network (LFN) is a modeling framework in which geographical sub-areas of the ocean are represented as nodes in a network and are interconnected by links representing the transport of water, substances or propagules (eggs and larvae) by currents. Here we compute for the surface of the whole Mediterranean basin four connectivity metrics derived from LFN that measure retention and exchange processes, thus providing a systematic characterization of propagule dispersal driven by the ocean circulation. Then we assess the sensitivity and robustness of the results with respect to the most relevant parameters: the density of released particles, the node size (spatial-scales of discretization), the Pelagic Larval Duration (PLD) and the modality of spawning. We find a threshold for the number of particles per node that guarantees reliable values for most of the metrics examined, independently of node size. For our setup, this threshold is 100 particles per node. We also find that the size of network nodes has a non-trivial influence on the spatial variability of both exchange and retention metrics. Although the spatio-temporal fluctuations of the circulation affect larval transport in a complex and unpredictable manner, our analyses evidence how specific biological parametrization impact the robustness of connectivity diagnostics. Connectivity estimates for long PLDs are more robust against biological uncertainties (PLD and spawning date) than for short PLDs. Furthermore, our model suggests that for mass-spawners that release propagules over short periods (≃ 2 to 10 days), daily release must be simulated to properly consider connectivity fluctuations. In contrast, average connectivity estimates for species that spawn repeatedly over longer duration (a few weeks to a few months) remain robust even using longer periodicity (5 to 10 days). Our results give a global view of the surface connectivity of the Mediterranean Sea and have implications for the design of

  16. A Combination of Central Pattern Generator-based and Reflex-based Neural Networks for Dynamic, Adaptive, Robust Bipedal Locomotion

    DEFF Research Database (Denmark)

    Di Canio, Giuliano; Larsen, Jørgen Christian; Wörgötter, Florentin

    2016-01-01

    Robotic systems inspired from humans have always been lightening up the curiosity of engineers and scientists. Of many challenges, human locomotion is a very difficult one where a number of different systems needs to interact in order to generate a correct and balanced pattern. To simulate...... the interaction of these systems, implementations with reflexbased or central pattern generator (CPG)-based controllers have been tested on bipedal robot systems. In this paper we will combine the two controller types, into a controller that works with both reflex and CPG signals. We use a reflex-based neural...... network to generate basic walking patterns of a dynamic bipedal walking robot (DACBOT) and then a CPG-based neural network to ensure robust walking behavior...

  17. Color-SIFT model: a robust and an accurate shot boundary detection algorithm

    Science.gov (United States)

    Sharmila Kumari, M.; Shekar, B. H.

    2010-02-01

    In this paper, a new technique called color-SIFT model is devised for shot boundary detection. Unlike scale invariant feature transform model that uses only grayscale information and misses important visual information regarding color, here we have adopted different color planes to extract keypoints which are subsequently used to detect shot boundaries. The basic SIFT model has four stages namely scale-space peak selection, keypoint localization, orientation assignment and keypoint descriptor and all these four stages were employed to extract key descriptors in each color plane. The proposed model works on three different color planes and a fusion has been made to take a decision on number of keypoint matches for shot boundary identification and hence is different from the color global scale invariant feature transform that works on quantized images. In addition, the proposed algorithm possess invariance to linear transformation and robust to occlusion and noisy environment. Experiments have been conducted on the standard TRECVID video database to reveal the performance of the proposed model.

  18. Outlier Detection in GNSS Pseudo-Range/Doppler Measurements for Robust Localization

    Directory of Open Access Journals (Sweden)

    Salim Zair

    2016-04-01

    Full Text Available In urban areas or space-constrained environments with obstacles, vehicle localization using Global Navigation Satellite System (GNSS data is hindered by Non-Line Of Sight (NLOS and multipath receptions. These phenomena induce faulty data that disrupt the precise localization of the GNSS receiver. In this study, we detect the outliers among the observations, Pseudo-Range (PR and/or Doppler measurements, and we evaluate how discarding them improves the localization. We specify a contrario modeling for GNSS raw data to derive an algorithm that partitions the dataset between inliers and outliers. Then, only the inlier data are considered in the localization process performed either through a classical Particle Filter (PF or a Rao-Blackwellization (RB approach. Both localization algorithms exclusively use GNSS data, but they differ by the way Doppler measurements are processed. An experiment has been performed with a GPS receiver aboard a vehicle. Results show that the proposed algorithms are able to detect the ‘outliers’ in the raw data while being robust to non-Gaussian noise and to intermittent satellite blockage. We compare the performance results achieved either estimating only PR outliers or estimating both PR and Doppler outliers. The best localization is achieved using the RB approach coupled with PR-Doppler outlier estimation.

  19. Robustness of cluster synchronous patterns in small-world networks with inter-cluster co-competition balance

    International Nuclear Information System (INIS)

    Zhang, Jianbao; Ma, Zhongjun; Chen, Guanrong

    2014-01-01

    All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding or deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations

  20. Robustness of cluster synchronous patterns in small-world networks with inter-cluster co-competition balance

    Science.gov (United States)

    Zhang, Jianbao; Ma, Zhongjun; Chen, Guanrong

    2014-06-01

    All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding or deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations.

  1. Robustness of cluster synchronous patterns in small-world networks with inter-cluster co-competition balance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianbao [School of Science, Hangzhou Dianzi University, Hangzhou 310018 (China); Ma, Zhongjun, E-mail: mzj1234402@163.com [School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004 (China); Chen, Guanrong [Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China)

    2014-06-15

    All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding or deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations.

  2. A robust high-throughput fungal biosensor assay for the detection of estrogen activity.

    Science.gov (United States)

    Zutz, Christoph; Wagener, Karen; Yankova, Desislava; Eder, Stefanie; Möstl, Erich; Drillich, Marc; Rychli, Kathrin; Wagner, Martin; Strauss, Joseph

    2017-10-01

    Estrogenic active compounds are present in a variety of sources and may alter biological functions in vertebrates. Therefore, it is crucial to develop innovative analytical systems that allow us to screen a broad spectrum of matrices and deliver fast and reliable results. We present the adaptation and validation of a fungal biosensor for the detection of estrogen activity in cow derived samples and tested the clinical applicability for pregnancy diagnosis in 140 mares and 120 cows. As biosensor we used a previously engineered genetically modified strain of the filamentous fungus Aspergillus nidulans, which contains the human estrogen receptor alpha and a reporter construct, in which β-galactosidase gene expression is controlled by an estrogen-responsive-element. The estrogen response of the fungal biosensor was validated with blood, urine, feces, milk and saliva. All matrices were screened for estrogenic activity prior to and after chemical extraction and the results were compared to an enzyme immunoassay (EIA). The biosensor showed consistent results in milk, urine and feces, which were comparable to those of the EIA. In contrast to the EIA, no sample pre-treatment by chemical extraction was needed. For 17β-estradiol, the biosensor showed a limit of detection of 1ng/L. The validation of the biosensor for pregnancy diagnosis revealed a specificity of 100% and a sensitivity of more than 97%. In conclusion, we developed and validated a highly robust fungal biosensor for detection of estrogen activity, which is highly sensitive and economic as it allows analyzing in high-throughput formats without the necessity for organic solvents. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Using pattern analysis methods to do fast detection of manufacturing pattern failures

    Science.gov (United States)

    Zhao, Evan; Wang, Jessie; Sun, Mason; Wang, Jeff; Zhang, Yifan; Sweis, Jason; Lai, Ya-Chieh; Ding, Hua

    2016-03-01

    At the advanced technology node, logic design has become extremely complex and is getting more challenging as the pattern geometry size decreases. The small sizes of layout patterns are becoming very sensitive to process variations. Meanwhile, the high pressure of yield ramp is always there due to time-to-market competition. The company that achieves patterning maturity earlier than others will have a great advantage and a better chance to realize maximum profit margins. For debugging silicon failures, DFT diagnostics can identify which nets or cells caused the yield loss. But normally, a long time period is needed with many resources to identify which failures are due to one common layout pattern or structure. This paper will present a new yield diagnostic flow, based on preliminary EFA results, to show how pattern analysis can more efficiently detect pattern related systematic defects. Increased visibility on design pattern related failures also allows more precise yield loss estimation.

  4. Evaluation of a New Digital Automated Glycemic Pattern Detection Tool.

    Science.gov (United States)

    Comellas, María José; Albiñana, Emma; Artes, Maite; Corcoy, Rosa; Fernández-García, Diego; García-Alemán, Jorge; García-Cuartero, Beatriz; González, Cintia; Rivero, María Teresa; Casamira, Núria; Weissmann, Jörg

    2017-11-01

    Blood glucose meters are reliable devices for data collection, providing electronic logs of historical data easier to interpret than handwritten logbooks. Automated tools to analyze these data are necessary to facilitate glucose pattern detection and support treatment adjustment. These tools emerge in a broad variety in a more or less nonevaluated manner. The aim of this study was to compare eDetecta, a new automated pattern detection tool, to nonautomated pattern analysis in terms of time investment, data interpretation, and clinical utility, with the overarching goal to identify early in development and implementation of tool areas of improvement and potential safety risks. Multicenter web-based evaluation in which 37 endocrinologists were asked to assess glycemic patterns of 4 real reports (2 continuous subcutaneous insulin infusion [CSII] and 2 multiple daily injection [MDI]). Endocrinologist and eDetecta analyses were compared on time spent to analyze each report and agreement on the presence or absence of defined patterns. eDetecta module markedly reduced the time taken to analyze each case on the basis of the emminens eConecta reports (CSII: 18 min; MDI: 12.5), compared to the automatic eDetecta analysis. Agreement between endocrinologists and eDetecta varied depending on the patterns, with high level of agreement in patterns of glycemic variability. Further analysis of low level of agreement led to identifying areas where algorithms used could be improved to optimize trend pattern identification. eDetecta was a useful tool for glycemic pattern detection, helping clinicians to reduce time required to review emminens eConecta glycemic reports. No safety risks were identified during the study.

  5. Unstable patterns and robust synchronization in a model of motor pathway in birdsong

    International Nuclear Information System (INIS)

    Moukam Kakmeni, F.M.; Bowong, S.; Nana, L.; Kofane, T.C.

    2006-10-01

    This paper investigates the fundamental dynamical mechanism responsible for transition to chaos in periodically modulated Duffing-Van der Pol oscillator. It is shown that a modulationally unstable pattern appears into an initially stable motionless state. A further spatiotemporal transition occurs with a sharp interface from the selected stable pattern to a stabilized pattern or chaotic state. Also, the synchronization of the chaotic state of the model is investigated. The results are discussed in the context of generalized synchronization. The main idea is to construct an augmented dynamical system from the synchronization error system, which is itself uncertain. The advantage of this method over existing results is that the synchronization time is explicitly computed. Numerical simulations are provided to verify the operation of the proposed algorithm. (author)

  6. The effect of the signalling scheme on the robustness of pattern formation in development

    KAUST Repository

    Kang, H.-W.

    2012-03-21

    Pattern formation in development is a complex process which involves spatially distributed signals called morphogens that influence gene expression and thus the phenotypic identity of cells. Usually different cell types are spatially segregated, and the boundary between them may be determined by a threshold value of some state variable. The question arises as to how sensitive the location of such a boundary is to variations in properties, such as parameter values, that characterize the system. Here, we analyse both deterministic and stochastic reaction-diffusion models of pattern formation with a view towards understanding how the signalling scheme used for patterning affects the variability of boundary determination between cell types in a developing tissue.

  7. Robust bivariate error detection in skewed data with application to historical radiosonde winds

    KAUST Repository

    Sun, Ying

    2017-01-18

    The global historical radiosonde archives date back to the 1920s and contain the only directly observed measurements of temperature, wind, and moisture in the upper atmosphere, but they contain many random errors. Most of the focus on cleaning these large datasets has been on temperatures, but winds are important inputs to climate models and in studies of wind climatology. The bivariate distribution of the wind vector does not have elliptical contours but is skewed and heavy-tailed, so we develop two methods for outlier detection based on the bivariate skew-t (BST) distribution, using either distance-based or contour-based approaches to flag observations as potential outliers. We develop a framework to robustly estimate the parameters of the BST and then show how the tuning parameter to get these estimates is chosen. In simulation, we compare our methods with one based on a bivariate normal distribution and a nonparametric approach based on the bagplot. We then apply all four methods to the winds observed for over 35,000 radiosonde launches at a single station and demonstrate differences in the number of observations flagged across eight pressure levels and through time. In this pilot study, the method based on the BST contours performs very well.

  8. Computation of a Reference Model for Robust Fault Detection and Isolation Residual Generation

    Directory of Open Access Journals (Sweden)

    Emmanuel Mazars

    2008-01-01

    Full Text Available This paper considers matrix inequality procedures to address the robust fault detection and isolation (FDI problem for linear time-invariant systems subject to disturbances, faults, and polytopic or norm-bounded uncertainties. We propose a design procedure for an FDI filter that aims to minimize a weighted combination of the sensitivity of the residual signal to disturbances and modeling errors, and the deviation of the faults to residual dynamics from a fault to residual reference model, using the ℋ∞-norm as a measure. A key step in our procedure is the design of an optimal fault reference model. We show that the optimal design requires the solution of a quadratic matrix inequality (QMI optimization problem. Since the solution of the optimal problem is intractable, we propose a linearization technique to derive a numerically tractable suboptimal design procedure that requires the solution of a linear matrix inequality (LMI optimization. A jet engine example is employed to demonstrate the effectiveness of the proposed approach.

  9. Shrinkage covariance matrix approach based on robust trimmed mean in gene sets detection

    Science.gov (United States)

    Karjanto, Suryaefiza; Ramli, Norazan Mohamed; Ghani, Nor Azura Md; Aripin, Rasimah; Yusop, Noorezatty Mohd

    2015-02-01

    Microarray involves of placing an orderly arrangement of thousands of gene sequences in a grid on a suitable surface. The technology has made a novelty discovery since its development and obtained an increasing attention among researchers. The widespread of microarray technology is largely due to its ability to perform simultaneous analysis of thousands of genes in a massively parallel manner in one experiment. Hence, it provides valuable knowledge on gene interaction and function. The microarray data set typically consists of tens of thousands of genes (variables) from just dozens of samples due to various constraints. Therefore, the sample covariance matrix in Hotelling's T2 statistic is not positive definite and become singular, thus it cannot be inverted. In this research, the Hotelling's T2 statistic is combined with a shrinkage approach as an alternative estimation to estimate the covariance matrix to detect significant gene sets. The use of shrinkage covariance matrix overcomes the singularity problem by converting an unbiased to an improved biased estimator of covariance matrix. Robust trimmed mean is integrated into the shrinkage matrix to reduce the influence of outliers and consequently increases its efficiency. The performance of the proposed method is measured using several simulation designs. The results are expected to outperform existing techniques in many tested conditions.

  10. Robust bivariate error detection in skewed data with application to historical radiosonde winds

    KAUST Repository

    Sun, Ying; Hering, Amanda S.; Browning, Joshua M.

    2017-01-01

    The global historical radiosonde archives date back to the 1920s and contain the only directly observed measurements of temperature, wind, and moisture in the upper atmosphere, but they contain many random errors. Most of the focus on cleaning these large datasets has been on temperatures, but winds are important inputs to climate models and in studies of wind climatology. The bivariate distribution of the wind vector does not have elliptical contours but is skewed and heavy-tailed, so we develop two methods for outlier detection based on the bivariate skew-t (BST) distribution, using either distance-based or contour-based approaches to flag observations as potential outliers. We develop a framework to robustly estimate the parameters of the BST and then show how the tuning parameter to get these estimates is chosen. In simulation, we compare our methods with one based on a bivariate normal distribution and a nonparametric approach based on the bagplot. We then apply all four methods to the winds observed for over 35,000 radiosonde launches at a single station and demonstrate differences in the number of observations flagged across eight pressure levels and through time. In this pilot study, the method based on the BST contours performs very well.

  11. A Robust Semi-Parametric Test for Detecting Trait-Dependent Diversification.

    Science.gov (United States)

    Rabosky, Daniel L; Huang, Huateng

    2016-03-01

    Rates of species diversification vary widely across the tree of life and there is considerable interest in identifying organismal traits that correlate with rates of speciation and extinction. However, it has been challenging to develop methodological frameworks for testing hypotheses about trait-dependent diversification that are robust to phylogenetic pseudoreplication and to directionally biased rates of character change. We describe a semi-parametric test for trait-dependent diversification that explicitly requires replicated associations between character states and diversification rates to detect effects. To use the method, diversification rates are reconstructed across a phylogenetic tree with no consideration of character states. A test statistic is then computed to measure the association between species-level traits and the corresponding diversification rate estimates at the tips of the tree. The empirical value of the test statistic is compared to a null distribution that is generated by structured permutations of evolutionary rates across the phylogeny. The test is applicable to binary discrete characters as well as continuous-valued traits and can accommodate extremely sparse sampling of character states at the tips of the tree. We apply the test to several empirical data sets and demonstrate that the method has acceptable Type I error rates. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. A MODIS-Based Robust Satellite Technique (RST for Timely Detection of Oil Spilled Areas

    Directory of Open Access Journals (Sweden)

    Teodosio Lacava

    2017-02-01

    Full Text Available Natural crude-oil seepages, together with the oil released into seawater as a consequence of oil exploration/production/transportation activities, and operational discharges from tankers (i.e., oil dumped during cleaning actions represent the main sources of sea oil pollution. Satellite remote sensing can be a useful tool for the management of such types of marine hazards, namely oil spills, mainly owing to the synoptic view and the good trade-off between spatial and temporal resolution, depending on the specific platform/sensor system used. In this paper, an innovative satellite-based technique for oil spill detection, based on the general robust satellite technique (RST approach, is presented. It exploits the multi-temporal analysis of data acquired in the visible channels of the Moderate Resolution Imaging Spectroradiometer (MODIS on board the Aqua satellite in order to automatically and quickly detect the presence of oil spills on the sea surface, with an attempt to minimize “false detections” caused by spurious effects associated with, for instance, cloud edges, sun/satellite geometries, sea currents, etc. The oil spill event that occurred in June 2007 off the south coast of Cyprus in the Mediterranean Sea has been considered as a test case. The resulting data, the reliability of which has been evaluated by both carrying out a confutation analysis and comparing them with those provided by the application of another independent MODIS-based method, showcase the potential of RST in identifying the presence of oil with a high level of accuracy.

  13. Paradox of pattern separation and adult neurogenesis: A dual role for new neurons balancing memory resolution and robustness.

    Science.gov (United States)

    Johnston, Stephen T; Shtrahman, Matthew; Parylak, Sarah; Gonçalves, J Tiago; Gage, Fred H

    2016-03-01

    Hippocampal adult neurogenesis is thought to subserve pattern separation, the process by which similar patterns of neuronal inputs are transformed into distinct neuronal representations, permitting the discrimination of highly similar stimuli in hippocampus-dependent tasks. However, the mechanism by which immature adult-born dentate granule neurons cells (abDGCs) perform this function remains unknown. Two theories of abDGC function, one by which abDGCs modulate and sparsify activity in the dentate gyrus and one by which abDGCs act as autonomous coding units, are generally suggested to be mutually exclusive. This review suggests that these two mechanisms work in tandem to dynamically regulate memory resolution while avoiding memory interference and maintaining memory robustness. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Developing robust recurrence plot analysis techniques for investigating infant respiratory patterns.

    Science.gov (United States)

    Terrill, Philip I; Wilson, Stephen; Suresh, Sadasivam; Cooper, David M

    2007-01-01

    Recurrence plot analysis is a useful non-linear analysis tool. There are still no well formalised procedures for carrying out this analysis on measured physiological data, and systemising analysis is often difficult. In this paper, the recurrence based embedding is compared to radius based embedding by studying a logistic attractor and measured breathing data collected from sleeping human infants. Recurrence based embedding appears to be a more robust method of carrying out a recurrence analysis when attractor size is likely to be different between datasets. In the infant breathing data, the radius measure calculated at a fixed recurrence, scaled by average respiratory period, allows the accurate discrimination of active sleep from quiet sleep states (AUC=0.975, Sn=098, Sp=0.94).

  15. Changepoint detection in base-resolution methylome data reveals a robust signature of methylated domain landscape.

    Science.gov (United States)

    Yokoyama, Takao; Miura, Fumihito; Araki, Hiromitsu; Okamura, Kohji; Ito, Takashi

    2015-08-12

    Base-resolution methylome data generated by whole-genome bisulfite sequencing (WGBS) is often used to segment the genome into domains with distinct methylation levels. However, most segmentation methods include many parameters to be carefully tuned and/or fail to exploit the unsurpassed resolution of the data. Furthermore, there is no simple method that displays the composition of the domains to grasp global trends in each methylome. We propose to use changepoint detection for domain demarcation based on base-resolution methylome data. While the proposed method segments the methylome in a largely comparable manner to conventional approaches, it has only a single parameter to be tuned. Furthermore, it fully exploits the base-resolution of the data to enable simultaneous detection of methylation changes in even contrasting size ranges, such as focal hypermethylation and global hypomethylation in cancer methylomes. We also propose a simple plot termed methylated domain landscape (MDL) that globally displays the size, the methylation level and the number of the domains thus defined, thereby enabling one to intuitively grasp trends in each methylome. Since the pattern of MDL often reflects cell lineages and is largely unaffected by data size, it can serve as a novel signature of methylome. Changepoint detection in base-resolution methylome data followed by MDL plotting provides a novel method for methylome characterization and will facilitate global comparison among various WGBS data differing in size and even species origin.

  16. Real-time pose invariant logo and pattern detection

    Science.gov (United States)

    Sidla, Oliver; Kottmann, Michal; Benesova, Wanda

    2011-01-01

    The detection of pose invariant planar patterns has many practical applications in computer vision and surveillance systems. The recognition of company logos is used in market studies to examine the visibility and frequency of logos in advertisement. Danger signs on vehicles could be detected to trigger warning systems in tunnels, or brand detection on transport vehicles can be used to count company-specific traffic. We present the results of a study on planar pattern detection which is based on keypoint detection and matching of distortion invariant 2d feature descriptors. Specifically we look at the keypoint detectors of type: i) Lowe's DoG approximation from the SURF algorithm, ii) the Harris Corner Detector, iii) the FAST Corner Detector and iv) Lepetit's keypoint detector. Our study then compares the feature descriptors SURF and compact signatures based on Random Ferns: we use 3 sets of sample images to detect and match 3 logos of different structure to find out which combinations of keypoint detector/feature descriptors work well. A real-world test tries to detect vehicles with a distinctive logo in an outdoor environment under realistic lighting and weather conditions: a camera was mounted on a suitable location for observing the entrance to a parking area so that incoming vehicles could be monitored. In this 2 hour long recording we can successfully detect a specific company logo without false positives.

  17. Robust vehicle detection in aerial images based on salient region selection and superpixel classification

    Science.gov (United States)

    Sahli, Samir; Duval, Pierre-Luc; Sheng, Yunlong; Lavigne, Daniel A.

    2011-05-01

    For detecting vehicles in large scale aerial images we first used a non-parametric method proposed recently by Rosin to define the regions of interest, where the vehicles appear with dense edges. The saliency map is a sum of distance transforms (DT) of a set of edges maps, which are obtained by a threshold decomposition of the gradient image with a set of thresholds. A binary mask for highlighting the regions of interest is then obtained by a moment-preserving thresholding of the normalized saliency map. Secondly, the regions of interest were over-segmented by the SLIC superpixels proposed recently by Achanta et al. to cluster pixels into the color constancy sub-regions. In the aerial images of 11.2 cm/pixel resolution, the vehicles in general do not exceed 20 x 40 pixels. We introduced a size constraint to guarantee no superpixels exceed the size of a vehicle. The superpixels were then classified to vehicle or non-vehicle by the Support Vector Machine (SVM), in which the Scale Invariant Feature Transform (SIFT) features and the Linear Binary Pattern (LBP) texture features were used. Both features were extracted at two scales with two size patches. The small patches capture local structures and the larger patches include the neighborhood information. Preliminary results show a significant gain in the detection. The vehicles were detected with a dense concentration of the vehicle-class superpixels. Even dark color cars were successfully detected. A validation process will follow to reduce the presence of isolated false alarms in the background.

  18. Toward unsupervised outbreak detection through visual perception of new patterns

    Directory of Open Access Journals (Sweden)

    Lévy Pierre P

    2009-06-01

    Full Text Available Abstract Background Statistical algorithms are routinely used to detect outbreaks of well-defined syndromes, such as influenza-like illness. These methods cannot be applied to the detection of emerging diseases for which no preexisting information is available. This paper presents a method aimed at facilitating the detection of outbreaks, when there is no a priori knowledge of the clinical presentation of cases. Methods The method uses a visual representation of the symptoms and diseases coded during a patient consultation according to the International Classification of Primary Care 2nd version (ICPC-2. The surveillance data are transformed into color-coded cells, ranging from white to red, reflecting the increasing frequency of observed signs. They are placed in a graphic reference frame mimicking body anatomy. Simple visual observation of color-change patterns over time, concerning a single code or a combination of codes, enables detection in the setting of interest. Results The method is demonstrated through retrospective analyses of two data sets: description of the patients referred to the hospital by their general practitioners (GPs participating in the French Sentinel Network and description of patients directly consulting at a hospital emergency department (HED. Informative image color-change alert patterns emerged in both cases: the health consequences of the August 2003 heat wave were visualized with GPs' data (but passed unnoticed with conventional surveillance systems, and the flu epidemics, which are routinely detected by standard statistical techniques, were recognized visually with HED data. Conclusion Using human visual pattern-recognition capacities to detect the onset of unexpected health events implies a convenient image representation of epidemiological surveillance and well-trained "epidemiology watchers". Once these two conditions are met, one could imagine that the epidemiology watchers could signal epidemiological alerts

  19. Bilge dump detection from SAR imagery using local binary patterns

    CSIR Research Space (South Africa)

    Mdakane, LW

    2015-07-01

    Full Text Available 2015: Remote Sensing: Understanding the Earth for a Safer World, Milan, Italy, 26-31 July 2015 Bilge dump detection from SAR imagery using local binary patterns yz L.W. Mdakane,yz W. Kleynhans,yz C.P. Schwegmann yDepartment of Electrical...

  20. [Interactive patterns detection in family communication with adolescents].

    Science.gov (United States)

    Gimeno Collado, Adelina; Anguera Argilaga, M Teresa; Berzosa Sanz, Amparo; Ramírez Ramírez, Luis

    2006-11-01

    Interactive patterns detection in family communication with adolescents. Nondistant communication is a relevant indicator for family functionality valuation. The goal of this study is to analyze this communication in order to identify specific kinds of leadership, interaction patterns and the relation between verbal and nonverbal elements in communication. The observational design exposed is an idiographic one, punctual and multidimensional, which uses field format as observation instrument. Participants were seven standardized families made up of both ancestors and an adolescent son or daughter. According to the family models analyzed, results show a predominantly democratic communication style in adults with recurrent support expressions. The sequential analysis incorporates only categories from the emitter point of view, and detects relevant sequences which show symmetric interaction between all three family members. Verbal and nonverbal channels provide complementary information. Depending on adolescents' gender different patterns in behaviour can be identified as well.

  1. Robust sky light polarization detection with an S-wave plate in a light field camera.

    Science.gov (United States)

    Zhang, Wenjing; Zhang, Xuanzhe; Cao, Yu; Liu, Haibo; Liu, Zejin

    2016-05-01

    The sky light polarization navigator has many advantages, such as low cost, no decrease in accuracy with continuous operation, etc. However, current celestial polarization measurement methods often suffer from low performance when the sky is covered by clouds, which reduce the accuracy of navigation. In this paper we introduce a new method and structure based on a handheld light field camera and a radial polarizer, composed of an S-wave plate and a linear polarizer, to detect the sky light polarization pattern across a wide field of view in a single snapshot. Each micro-subimage has a special intensity distribution. After extracting the texture feature of these subimages, stable distribution information of the angle of polarization under a cloudy sky can be obtained. Our experimental results match well with the predicted properties of the theory. Because the polarization pattern is obtained through image processing, rather than traditional methods based on mathematical computation, this method is less sensitive to errors of pixel gray value and thus has better anti-interference performance.

  2. MIDAS robust trend estimator for accurate GPS station velocities without step detection

    Science.gov (United States)

    Blewitt, Geoffrey; Kreemer, Corné; Hammond, William C.; Gazeaux, Julien

    2016-03-01

    Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil-Sen median trend estimator, for which the ordinary version is the median of slopes vij = (xj-xi)/(tj-ti) computed between all data pairs i > j. For normally distributed data, Theil-Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil-Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one-sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root-mean-square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences.

  3. Rapid Land Cover Map Updates Using Change Detection and Robust Random Forest Classifiers

    Directory of Open Access Journals (Sweden)

    Konrad J. Wessels

    2016-10-01

    Full Text Available The paper evaluated the Landsat Automated Land Cover Update Mapping (LALCUM system designed to rapidly update a land cover map to a desired nominal year using a pre-existing reference land cover map. The system uses the Iteratively Reweighted Multivariate Alteration Detection (IRMAD to identify areas of change and no change. The system then automatically generates large amounts of training samples (n > 1 million in the no-change areas as input to an optimized Random Forest classifier. Experiments were conducted in the KwaZulu-Natal Province of South Africa using a reference land cover map from 2008, a change mask between 2008 and 2011 and Landsat ETM+ data for 2011. The entire system took 9.5 h to process. We expected that the use of the change mask would improve classification accuracy by reducing the number of mislabeled training data caused by land cover change between 2008 and 2011. However, this was not the case due to exceptional robustness of Random Forest classifier to mislabeled training samples. The system achieved an overall accuracy of 65%–67% using 22 detailed classes and 72%–74% using 12 aggregated national classes. “Water”, “Plantations”, “Plantations—clearfelled”, “Orchards—trees”, “Sugarcane”, “Built-up/dense settlement”, “Cultivation—Irrigated” and “Forest (indigenous” had user’s accuracies above 70%. Other detailed classes (e.g., “Low density settlements”, “Mines and Quarries”, and “Cultivation, subsistence, drylands” which are required for operational, provincial-scale land use planning and are usually mapped using manual image interpretation, could not be mapped using Landsat spectral data alone. However, the system was able to map the 12 national classes, at a sufficiently high level of accuracy for national scale land cover monitoring. This update approach and the highly automated, scalable LALCUM system can improve the efficiency and update rate of regional land

  4. Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching.

    Science.gov (United States)

    Du, Pan; Kibbe, Warren A; Lin, Simon M

    2006-09-01

    A major problem for current peak detection algorithms is that noise in mass spectrometry (MS) spectra gives rise to a high rate of false positives. The false positive rate is especially problematic in detecting peaks with low amplitudes. Usually, various baseline correction algorithms and smoothing methods are applied before attempting peak detection. This approach is very sensitive to the amount of smoothing and aggressiveness of the baseline correction, which contribute to making peak detection results inconsistent between runs, instrumentation and analysis methods. Most peak detection algorithms simply identify peaks based on amplitude, ignoring the additional information present in the shape of the peaks in a spectrum. In our experience, 'true' peaks have characteristic shapes, and providing a shape-matching function that provides a 'goodness of fit' coefficient should provide a more robust peak identification method. Based on these observations, a continuous wavelet transform (CWT)-based peak detection algorithm has been devised that identifies peaks with different scales and amplitudes. By transforming the spectrum into wavelet space, the pattern-matching problem is simplified and in addition provides a powerful technique for identifying and separating the signal from the spike noise and colored noise. This transformation, with the additional information provided by the 2D CWT coefficients can greatly enhance the effective signal-to-noise ratio. Furthermore, with this technique no baseline removal or peak smoothing preprocessing steps are required before peak detection, and this improves the robustness of peak detection under a variety of conditions. The algorithm was evaluated with SELDI-TOF spectra with known polypeptide positions. Comparisons with two other popular algorithms were performed. The results show the CWT-based algorithm can identify both strong and weak peaks while keeping false positive rate low. The algorithm is implemented in R and will be

  5. A robust and coherent network statistic for detecting gravitational waves from inspiralling compact binaries in non-Gaussian noise

    CERN Document Server

    Bose, S

    2002-01-01

    The robust statistic proposed by Creighton (Creighton J D E 1999 Phys. Rev. D 60 021101) and Allen et al (Allen et al 2001 Preprint gr-gc/010500) for the detection of stationary non-Gaussian noise is briefly reviewed. We compute the robust statistic for generic weak gravitational-wave signals in the mixture-Gaussian noise model to an accuracy higher than in those analyses, and reinterpret its role. Specifically, we obtain the coherent statistic for detecting gravitational-wave signals from inspiralling compact binaries with an arbitrary network of earth-based interferometers. Finally, we show that excess computational costs incurred owing to non-Gaussianity is negligible compared to the cost of detection in Gaussian noise.

  6. Robust Mpc for Actuator–Fault Tolerance Using Set–Based Passive Fault Detection and Active Fault Isolation

    Directory of Open Access Journals (Sweden)

    Xu Feng

    2017-03-01

    Full Text Available In this paper, a fault-tolerant control (FTC scheme is proposed for actuator faults, which is built upon tube-based model predictive control (MPC as well as set-based fault detection and isolation (FDI. In the class of MPC techniques, tubebased MPC can effectively deal with system constraints and uncertainties with relatively low computational complexity compared with other robust MPC techniques such as min-max MPC. Set-based FDI, generally considering the worst case of uncertainties, can robustly detect and isolate actuator faults. In the proposed FTC scheme, fault detection (FD is passive by using invariant sets, while fault isolation (FI is active by means of MPC and tubes. The active FI method proposed in this paper is implemented by making use of the constraint-handling ability of MPC to manipulate the bounds of inputs.

  7. Time-warp invariant pattern detection with bursting neurons

    International Nuclear Information System (INIS)

    Gollisch, Tim

    2008-01-01

    Sound patterns are defined by the temporal relations of their constituents, individual acoustic cues. Auditory systems need to extract these temporal relations to detect or classify sounds. In various cases, ranging from human speech to communication signals of grasshoppers, this pattern detection has been found to display invariance to temporal stretching or compression of the sound signal ('linear time-warp invariance'). In this work, a four-neuron network model is introduced, designed to solve such a detection task for the example of grasshopper courtship songs. As an essential ingredient, the network contains neurons with intrinsic bursting dynamics, which allow them to encode durations between acoustic events in short, rapid sequences of spikes. As shown by analytical calculations and computer simulations, these neuronal dynamics result in a powerful mechanism for temporal integration. Finally, the network reads out the encoded temporal information by detecting equal activity of two such bursting neurons. This leads to the recognition of rhythmic patterns independent of temporal stretching or compression

  8. Fuzzy Pattern Classification Based Detection of Faulty Electronic Fuel Control (EFC Valves Used in Diesel Engines

    Directory of Open Access Journals (Sweden)

    Umut Tugsal

    2014-05-01

    Full Text Available In this paper, we develop mathematical models of a rotary Electronic Fuel Control (EFC valve used in a Diesel engine based on dynamic performance test data and system identification methodology in order to detect the faulty EFC valves. The model takes into account the dynamics of the electrical and mechanical portions of the EFC valves. A recursive least squares (RLS type system identification methodology has been utilized to determine the transfer functions of the different types of EFC valves that were investigated in this study. Both in frequency domain and time domain methods have been utilized for this purpose. Based on the characteristic patterns exhibited by the EFC valves, a fuzzy logic based pattern classification method was utilized to evaluate the residuals and identify faulty EFC valves from good ones. The developed methodology has been shown to provide robust diagnostics for a wide range of EFC valves.

  9. Generation and Detection of Alignments in Gabor Patterns

    Directory of Open Access Journals (Sweden)

    Samy Blusseau

    2016-11-01

    Full Text Available This paper presents a method to be used in psychophysical experiments to compare directly visual perception to an a contrario algorithm, on a straight patterns detection task. The method is composed of two parts. The first part consists in building a stimulus, namely an array of oriented elements, in which an alignment is present with variable salience. The second part focuses on a detection algorithm, based on the a contrario theory, which is designed to predict which alignment will be considered as the most salient in a given stimulus.

  10. Low contrast detectability for color patterns variation of display images

    International Nuclear Information System (INIS)

    Ogura, Akio

    1998-01-01

    In recent years, the radionuclide images are acquired in digital form and displayed with false colors for signal intensity. This color scales for signal intensity have various patterns. In this study, low contrast detectability was compared the performance of gray scale cording with three color scales: the hot color scale, prism color scale and stripe color scale. SPECT images of brain phantom were displayed using four color patterns. These printed images and display images were evaluated with ROC analysis. Display images were indicated higher detectability than printed images. The hot scale and gray scale images indicated better Az of ROC than prism scale images because the prism scale images showed higher false positive rate. (author)

  11. Robust stratification of breast cancer subtypes using differential patterns of transcript isoform expression.

    Directory of Open Access Journals (Sweden)

    Thomas P Stricker

    2017-03-01

    Full Text Available Breast cancer, the second leading cause of cancer death of women worldwide, is a heterogenous disease with multiple different subtypes. These subtypes carry important implications for prognosis and therapy. Interestingly, it is known that these different subtypes not only have different biological behaviors, but also have distinct gene expression profiles. However, it has not been rigorously explored whether particular transcriptional isoforms are also differentially expressed among breast cancer subtypes, or whether transcript isoforms from the same sets of genes can be used to differentiate subtypes. To address these questions, we analyzed the patterns of transcript isoform expression using a small set of RNA-sequencing data for eleven Estrogen Receptor positive (ER+ subtype and fourteen triple negative (TN subtype tumors. We identified specific sets of isoforms that distinguish these tumor subtypes with higher fidelity than standard mRNA expression profiles. We found that alternate promoter usage, alternative splicing, and alternate 3'UTR usage are differentially regulated in breast cancer subtypes. Profiling of isoform expression in a second, independent cohort of 68 tumors confirmed that expression of splice isoforms differentiates breast cancer subtypes. Furthermore, analysis of RNAseq data from 594 cases from the TCGA cohort confirmed the ability of isoform usage to distinguish breast cancer subtypes. Also using our expression data, we identified several RNA processing factors that were differentially expressed between tumor subtypes and/or regulated by estrogen receptor, including YBX1, YBX2, MAGOH, MAGOHB, and PCBP2. RNAi knock-down of these RNA processing factors in MCF7 cells altered isoform expression. These results indicate that global dysregulation of splicing in breast cancer occurs in a subtype-specific and reproducible manner and is driven by specific differentially expressed RNA processing factors.

  12. a Robust Registration Algorithm for Point Clouds from Uav Images for Change Detection

    Science.gov (United States)

    Al-Rawabdeh, A.; Al-Gurrani, H.; Al-Durgham, K.; Detchev, I.; He, F.; El-Sheimy, N.; Habib, A.

    2016-06-01

    Landslides are among the major threats to urban landscape and manmade infrastructure. They often cause economic losses, property damages, and loss of lives. Temporal monitoring data of landslides from different epochs empowers the evaluation of landslide progression. Alignment of overlapping surfaces from two or more epochs is crucial for the proper analysis of landslide dynamics. The traditional methods for point-cloud-based landslide monitoring rely on using a variation of the Iterative Closest Point (ICP) registration procedure to align any reconstructed surfaces from different epochs to a common reference frame. However, sometimes the ICP-based registration can fail or may not provide sufficient accuracy. For example, point clouds from different epochs might fit to local minima due to lack of geometrical variability within the data. Also, manual interaction is required to exclude any non-stable areas from the registration process. In this paper, a robust image-based registration method is introduced for the simultaneous evaluation of all registration parameters. This includes the Interior Orientation Parameters (IOPs) of the camera and the Exterior Orientation Parameters (EOPs) of the involved images from all available observation epochs via a bundle block adjustment with self-calibration. Next, a semi-global dense matching technique is implemented to generate dense 3D point clouds for each epoch using the images captured in a particular epoch separately. The normal distances between any two consecutive point clouds can then be readily computed, because the point clouds are already effectively co-registered. A low-cost DJI Phantom II Unmanned Aerial Vehicle (UAV) was customised and used in this research for temporal data collection over an active soil creep area in Lethbridge, Alberta, Canada. The customisation included adding a GPS logger and a Large-Field-Of-View (LFOV) action camera which facilitated capturing high-resolution geo-tagged images in two epochs

  13. Structural damage detection based on stochastic subspace identification and statistical pattern recognition: I. Theory

    Science.gov (United States)

    Ren, W. X.; Lin, Y. Q.; Fang, S. E.

    2011-11-01

    One of the key issues in vibration-based structural health monitoring is to extract the damage-sensitive but environment-insensitive features from sampled dynamic response measurements and to carry out the statistical analysis of these features for structural damage detection. A new damage feature is proposed in this paper by using the system matrices of the forward innovation model based on the covariance-driven stochastic subspace identification of a vibrating system. To overcome the variations of the system matrices, a non-singularity transposition matrix is introduced so that the system matrices are normalized to their standard forms. For reducing the effects of modeling errors, noise and environmental variations on measured structural responses, a statistical pattern recognition paradigm is incorporated into the proposed method. The Mahalanobis and Euclidean distance decision functions of the damage feature vector are adopted by defining a statistics-based damage index. The proposed structural damage detection method is verified against one numerical signal and two numerical beams. It is demonstrated that the proposed statistics-based damage index is sensitive to damage and shows some robustness to the noise and false estimation of the system ranks. The method is capable of locating damage of the beam structures under different types of excitations. The robustness of the proposed damage detection method to the variations in environmental temperature is further validated in a companion paper by a reinforced concrete beam tested in the laboratory and a full-scale arch bridge tested in the field.

  14. Robust and reliable banknote authentification and print flaw detection with opto-acoustical sensor fusion methods

    Science.gov (United States)

    Lohweg, Volker; Schaede, Johannes; Türke, Thomas

    2006-02-01

    The authenticity checking and inspection of bank notes is a high labour intensive process where traditionally every note on every sheet is inspected manually. However with the advent of more and more sophisticated security features, both visible and invisible, and the requirement of cost reduction in the printing process, it is clear that automation is required. As more and more print techniques and new security features will be established, total quality security, authenticity and bank note printing must be assured. Therefore, this factor necessitates amplification of a sensorial concept in general. We propose a concept for both authenticity checking and inspection methods for pattern recognition and classification for securities and banknotes, which is based on the concept of sensor fusion and fuzzy interpretation of data measures. In the approach different methods of authenticity analysis and print flaw detection are combined, which can be used for vending or sorting machines, as well as for printing machines. Usually only the existence or appearance of colours and their textures are checked by cameras. Our method combines the visible camera images with IR-spectral sensitive sensors, acoustical and other measurements like temperature and pressure of printing machines.

  15. Face Liveness Detection Using Dynamic Local Ternary Pattern (DLTP

    Directory of Open Access Journals (Sweden)

    Sajida Parveen

    2016-05-01

    Full Text Available Face spoofing is considered to be one of the prominent threats to face recognition systems. However, in order to improve the security measures of such biometric systems against deliberate spoof attacks, liveness detection has received significant recent attention from researchers. For this purpose, analysis of facial skin texture properties becomes more popular because of its limited resource requirement and lower processing cost. The traditional method of skin analysis for liveness detection was to use Local Binary Pattern (LBP and its variants. LBP descriptors are effective, but they may exhibit certain limitations in near uniform patterns. Thus, in this paper, we demonstrate the effectiveness of Local Ternary Pattern (LTP as an alternative to LBP. In addition, we adopted Dynamic Local Ternary Pattern (DLTP, which eliminates the manual threshold setting in LTP by using Weber’s law. The proposed method was tested rigorously on four facial spoof databases: three are public domain databases and the other is the Universiti Putra Malaysia (UPM face spoof database, which was compiled through this study. The results obtained from the proposed DLTP texture descriptor attained optimum accuracy and clearly outperformed the reported LBP and LTP texture descriptors.

  16. Change detection for synthetic aperture radar images based on pattern and intensity distinctiveness analysis

    Science.gov (United States)

    Wang, Xiao; Gao, Feng; Dong, Junyu; Qi, Qiang

    2018-04-01

    Synthetic aperture radar (SAR) image is independent on atmospheric conditions, and it is the ideal image source for change detection. Existing methods directly analysis all the regions in the speckle noise contaminated difference image. The performance of these methods is easily affected by small noisy regions. In this paper, we proposed a novel change detection framework for saliency-guided change detection based on pattern and intensity distinctiveness analysis. The saliency analysis step can remove small noisy regions, and therefore makes the proposed method more robust to the speckle noise. In the proposed method, the log-ratio operator is first utilized to obtain a difference image (DI). Then, the saliency detection method based on pattern and intensity distinctiveness analysis is utilized to obtain the changed region candidates. Finally, principal component analysis and k-means clustering are employed to analysis pixels in the changed region candidates. Thus, the final change map can be obtained by classifying these pixels into changed or unchanged class. The experiment results on two real SAR images datasets have demonstrated the effectiveness of the proposed method.

  17. Towards a Video Passive Content Fingerprinting Method for Partial-Copy Detection Robust against Non-Simulated Attacks.

    Directory of Open Access Journals (Sweden)

    Zobeida Jezabel Guzman-Zavaleta

    Full Text Available Passive content fingerprinting is widely used for video content identification and monitoring. However, many challenges remain unsolved especially for partial-copies detection. The main challenge is to find the right balance between the computational cost of fingerprint extraction and fingerprint dimension, without compromising detection performance against various attacks (robustness. Fast video detection performance is desirable in several modern applications, for instance, in those where video detection involves the use of large video databases or in applications requiring real-time video detection of partial copies, a process whose difficulty increases when videos suffer severe transformations. In this context, conventional fingerprinting methods are not fully suitable to cope with the attacks and transformations mentioned before, either because the robustness of these methods is not enough or because their execution time is very high, where the time bottleneck is commonly found in the fingerprint extraction and matching operations. Motivated by these issues, in this work we propose a content fingerprinting method based on the extraction of a set of independent binary global and local fingerprints. Although these features are robust against common video transformations, their combination is more discriminant against severe video transformations such as signal processing attacks, geometric transformations and temporal and spatial desynchronization. Additionally, we use an efficient multilevel filtering system accelerating the processes of fingerprint extraction and matching. This multilevel filtering system helps to rapidly identify potential similar video copies upon which the fingerprint process is carried out only, thus saving computational time. We tested with datasets of real copied videos, and the results show how our method outperforms state-of-the-art methods regarding detection scores. Furthermore, the granularity of our method makes

  18. A computationally simple and robust method to detect determinism in a time series

    DEFF Research Database (Denmark)

    Lu, Sheng; Ju, Ki Hwan; Kanters, Jørgen K.

    2006-01-01

    We present a new, simple, and fast computational technique, termed the incremental slope (IS), that can accurately distinguish between deterministic from stochastic systems even when the variance of noise is as large or greater than the signal, and remains robust for time-varying signals. The IS ......We present a new, simple, and fast computational technique, termed the incremental slope (IS), that can accurately distinguish between deterministic from stochastic systems even when the variance of noise is as large or greater than the signal, and remains robust for time-varying signals...

  19. A robust segmentation approach based on analysis of features for defect detection in X-ray images of aluminium castings

    DEFF Research Database (Denmark)

    Lecomte, G.; Kaftandjian, V.; Cendre, Emmanuelle

    2007-01-01

    A robust image processing algorithm has been developed for detection of small and low contrasted defects, adapted to X-ray images of castings having a non-uniform background. The sensitivity to small defects is obtained at the expense of a high false alarm rate. We present in this paper a feature...... three parameters and taking into account the fact that X-ray grey-levels follow a statistical normal law. Results are shown on a set of 684 images, involving 59 defects, on which we obtained a 100% detection rate without any false alarm....

  20. A ROBUST REGISTRATION ALGORITHM FOR POINT CLOUDS FROM UAV IMAGES FOR CHANGE DETECTION

    Directory of Open Access Journals (Sweden)

    A. Al-Rawabdeh

    2016-06-01

    Full Text Available Landslides are among the major threats to urban landscape and manmade infrastructure. They often cause economic losses, property damages, and loss of lives. Temporal monitoring data of landslides from different epochs empowers the evaluation of landslide progression. Alignment of overlapping surfaces from two or more epochs is crucial for the proper analysis of landslide dynamics. The traditional methods for point-cloud-based landslide monitoring rely on using a variation of the Iterative Closest Point (ICP registration procedure to align any reconstructed surfaces from different epochs to a common reference frame. However, sometimes the ICP-based registration can fail or may not provide sufficient accuracy. For example, point clouds from different epochs might fit to local minima due to lack of geometrical variability within the data. Also, manual interaction is required to exclude any non-stable areas from the registration process. In this paper, a robust image-based registration method is introduced for the simultaneous evaluation of all registration parameters. This includes the Interior Orientation Parameters (IOPs of the camera and the Exterior Orientation Parameters (EOPs of the involved images from all available observation epochs via a bundle block adjustment with self-calibration. Next, a semi-global dense matching technique is implemented to generate dense 3D point clouds for each epoch using the images captured in a particular epoch separately. The normal distances between any two consecutive point clouds can then be readily computed, because the point clouds are already effectively co-registered. A low-cost DJI Phantom II Unmanned Aerial Vehicle (UAV was customised and used in this research for temporal data collection over an active soil creep area in Lethbridge, Alberta, Canada. The customisation included adding a GPS logger and a Large-Field-Of-View (LFOV action camera which facilitated capturing high-resolution geo-tagged images

  1. Robust Vehicle Detection under Various Environmental Conditions Using an Infrared Thermal Camera and Its Application to Road Traffic Flow Monitoring

    Directory of Open Access Journals (Sweden)

    Toshiyuki Nakamiya

    2013-06-01

    Full Text Available We have already proposed a method for detecting vehicle positions and their movements (henceforth referred to as “our previous method” using thermal images taken with an infrared thermal camera. Our experiments have shown that our previous method detects vehicles robustly under four different environmental conditions which involve poor visibility conditions in snow and thick fog. Our previous method uses the windshield and its surroundings as the target of the Viola-Jones detector. Some experiments in winter show that the vehicle detection accuracy decreases because the temperatures of many windshields approximate those of the exterior of the windshields. In this paper, we propose a new vehicle detection method (henceforth referred to as “our new method”. Our new method detects vehicles based on tires’ thermal energy reflection. We have done experiments using three series of thermal images for which the vehicle detection accuracies of our previous method are low. Our new method detects 1,417 vehicles (92.8% out of 1,527 vehicles, and the number of false detection is 52 in total. Therefore, by combining our two methods, high vehicle detection accuracies are maintained under various environmental conditions. Finally, we apply the traffic information obtained by our two methods to traffic flow automatic monitoring, and show the effectiveness of our proposal.

  2. Robust vehicle detection under various environmental conditions using an infrared thermal camera and its application to road traffic flow monitoring.

    Science.gov (United States)

    Iwasaki, Yoichiro; Misumi, Masato; Nakamiya, Toshiyuki

    2013-06-17

    We have already proposed a method for detecting vehicle positions and their movements (henceforth referred to as "our previous method") using thermal images taken with an infrared thermal camera. Our experiments have shown that our previous method detects vehicles robustly under four different environmental conditions which involve poor visibility conditions in snow and thick fog. Our previous method uses the windshield and its surroundings as the target of the Viola-Jones detector. Some experiments in winter show that the vehicle detection accuracy decreases because the temperatures of many windshields approximate those of the exterior of the windshields. In this paper, we propose a new vehicle detection method (henceforth referred to as "our new method"). Our new method detects vehicles based on tires' thermal energy reflection. We have done experiments using three series of thermal images for which the vehicle detection accuracies of our previous method are low. Our new method detects 1,417 vehicles (92.8%) out of 1,527 vehicles, and the number of false detection is 52 in total. Therefore, by combining our two methods, high vehicle detection accuracies are maintained under various environmental conditions. Finally, we apply the traffic information obtained by our two methods to traffic flow automatic monitoring, and show the effectiveness of our proposal.

  3. A robust sub-pixel edge detection method of infrared image based on tremor-based retinal receptive field model

    Science.gov (United States)

    Gao, Kun; Yang, Hu; Chen, Xiaomei; Ni, Guoqiang

    2008-03-01

    Because of complex thermal objects in an infrared image, the prevalent image edge detection operators are often suitable for a certain scene and extract too wide edges sometimes. From a biological point of view, the image edge detection operators work reliably when assuming a convolution-based receptive field architecture. A DoG (Difference-of- Gaussians) model filter based on ON-center retinal ganglion cell receptive field architecture with artificial eye tremors introduced is proposed for the image contour detection. Aiming at the blurred edges of an infrared image, the subsequent orthogonal polynomial interpolation and sub-pixel level edge detection in rough edge pixel neighborhood is adopted to locate the foregoing rough edges in sub-pixel level. Numerical simulations show that this method can locate the target edge accurately and robustly.

  4. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection

    Directory of Open Access Journals (Sweden)

    Sungho Kim

    2016-07-01

    Full Text Available Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR images or infrared (IR images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter and an asymmetric morphological closing filter (AMCF, post-filter into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic

  5. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection

    Science.gov (United States)

    Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun

    2016-01-01

    Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated

  6. Comparison of detection pattern of HCC by ferumoxide-enhanced MRI and intratumoral blood flow pattern

    International Nuclear Information System (INIS)

    Itou, Naoki; Kotake, Fumio; Saitou, Kazuhiro; Abe, Kimihiko

    2000-01-01

    We compared the detection rate and pattern of ferumoxide-enhanced magnetic resonance imaging (Fe-MRI) with the intratumoral blood flow pattern determined by CT angiography (CTA) and CT portography (CTAP) in 124 nodes (34 cases) diagnosed as hepatocellular carcinoma (HCC) or borderline HCC, based on the clinical course. Sequences to obtain a T1-weighted images (T1W), proton density-weighted images (PDW), T2-weighted images (T2W), T2*-weighted images (T2*W) were used in Fe-MRI. In nodes shown to be hypervascular on CTA, the detection rate by Fe-MRI was 69.7%. In nodes shown to be avascular by CTAP, the detection rate by Fe-MRI was 67.3%. These rates were higher than with other flow patterns. In nodes showing high signal intensity (HSI) on any sequences, arterial blood flow was increased and portal blood flow decreased in comparison with nodes without high signal intensity. All nodes showing HSI, both on Fe-MRI T2W and T2*W, were hypervascular on CTA, and portal blood flow was absent on CTAP. Nodes showing HSI on both T2*W and T2W were considered to have greater arterial blood flow and decreased portal blood flow compared with nodes appearing as HSI on T2*W, but only as iso- or low signal intensity on T2W (Mann-Whitney U-test; p<0.05). (author)

  7. Use of Robust z in Detecting Unstable Items in Item Response Theory Models

    Science.gov (United States)

    Huynh, Huynh; Meyer, Patrick

    2010-01-01

    The first part of this paper describes the use of the robust z[subscript R] statistic to link test forms using the Rasch (or one-parameter logistic) model. The procedure is then extended to the two-parameter and three-parameter logistic and two-parameter partial credit (2PPC) models. A real set of data was used to illustrate the extension. The…

  8. A baseband circuit for wake-up receivers with double-mode detection and enhanced sensitivity robustness

    International Nuclear Information System (INIS)

    Zhu Wenrui; Yang Haigang; Gao Tongqiang; Liu Fei; Cheng Xiaoyan; Zhang Dandan

    2013-01-01

    This paper proposes a baseband circuit for wake-up receivers with double-mode detection and enhanced sensitivity robustness for use in the electronic toll collection system. A double-mode detection method, including amplitude detection and frequency detection, is proposed to reject interference and reduce false wake-ups. An improved closed-loop band-pass filter and a DC offset cancellation technique are also newly introduced to enhance the sensitivity robustness. The circuit is fabricated in TSMC 0.18 μm 3.3 V CMOS technology with an area of 0.12 mm 2 . Measurement results show that the sensitivity is −54.5 dBm with only a ±0.95 dBm variation from the 1.8 to 3.3 V power supply, and that the temperature variation of the sensitivity is ±1.4 dBm from −50 to 100°C. The current consumption is 1.4 to 1.7 μA under a 1.8 to 3.3 V power supply. (semiconductor integrated circuits)

  9. Applications of pattern recognition techniques to online fault detection

    International Nuclear Information System (INIS)

    Singer, R.M.; Gross, K.C.; King, R.W.

    1993-01-01

    A common problem to operators of complex industrial systems is the early detection of incipient degradation of sensors and components in order to avoid unplanned outages, to orderly plan for anticipated maintenance activities and to assure continued safe operation. In such systems, there usually are a large number of sensors (upwards of several thousand is not uncommon) serving many functions, ranging from input to control systems, monitoring of safety parameters and component performance limits, system environmental conditions, etc. Although sensors deemed to measure important process conditions are generally alarmed, the alarm set points usually are just high-low limits and the operator's response to such alarms is based on written procedures and his or her experience and training. In many systems this approach has been successful, but in situations where the cost of a forced outage is high an improved method is needed. In such cases it is desirable, if not necessary, to detect disturbances in either sensors or the process prior to any actual failure that could either shut down the process or challenge any safety system that is present. Recent advances in various artificial intelligence techniques have provided the opportunity to perform such functions of early detection and diagnosis. In this paper, the experience gained through the application of several pattern-recognition techniques to the on-line monitoring and incipient disturbance detection of several coolant pumps and numerous sensors at the Experimental Breeder Reactor-II (EBR-II) which is located at the Idaho National Engineering Laboratory is presented

  10. Robust Vehicle Detection in Aerial Images Based on Cascaded Convolutional Neural Networks.

    Science.gov (United States)

    Zhong, Jiandan; Lei, Tao; Yao, Guangle

    2017-11-24

    Vehicle detection in aerial images is an important and challenging task. Traditionally, many target detection models based on sliding-window fashion were developed and achieved acceptable performance, but these models are time-consuming in the detection phase. Recently, with the great success of convolutional neural networks (CNNs) in computer vision, many state-of-the-art detectors have been designed based on deep CNNs. However, these CNN-based detectors are inefficient when applied in aerial image data due to the fact that the existing CNN-based models struggle with small-size object detection and precise localization. To improve the detection accuracy without decreasing speed, we propose a CNN-based detection model combining two independent convolutional neural networks, where the first network is applied to generate a set of vehicle-like regions from multi-feature maps of different hierarchies and scales. Because the multi-feature maps combine the advantage of the deep and shallow convolutional layer, the first network performs well on locating the small targets in aerial image data. Then, the generated candidate regions are fed into the second network for feature extraction and decision making. Comprehensive experiments are conducted on the Vehicle Detection in Aerial Imagery (VEDAI) dataset and Munich vehicle dataset. The proposed cascaded detection model yields high performance, not only in detection accuracy but also in detection speed.

  11. Motion Pattern Extraction and Event Detection for Automatic Visual Surveillance

    Directory of Open Access Journals (Sweden)

    Benabbas Yassine

    2011-01-01

    Full Text Available Efficient analysis of human behavior in video surveillance scenes is a very challenging problem. Most traditional approaches fail when applied in real conditions and contexts like amounts of persons, appearance ambiguity, and occlusion. In this work, we propose to deal with this problem by modeling the global motion information obtained from optical flow vectors. The obtained direction and magnitude models learn the dominant motion orientations and magnitudes at each spatial location of the scene and are used to detect the major motion patterns. The applied region-based segmentation algorithm groups local blocks that share the same motion direction and speed and allows a subregion of the scene to appear in different patterns. The second part of the approach consists in the detection of events related to groups of people which are merge, split, walk, run, local dispersion, and evacuation by analyzing the instantaneous optical flow vectors and comparing the learned models. The approach is validated and experimented on standard datasets of the computer vision community. The qualitative and quantitative results are discussed.

  12. Hierarchical Self Organizing Map for Novelty Detection using Mobile Robot with Robust Sensor

    International Nuclear Information System (INIS)

    Sha'abani, M N A H; Miskon, M F; Sakidin, H

    2013-01-01

    This paper presents a novelty detection method based on Self Organizing Map neural network using a mobile robot. Based on hierarchical neural network, the network is divided into three networks; position, orientation and sensor measurement network. A simulation was done to demonstrate and validate the proposed method using MobileSim. Three cases of abnormal events; new, missing and shifted objects are employed for performance evaluation. The result of detection was then filtered for false positive detection. The result shows that the inspection produced less than 2% false positive detection at high sensitivity settings

  13. Pattern detection in stream networks: Quantifying spatialvariability in fish distribution

    Science.gov (United States)

    Torgersen, Christian E.; Gresswell, Robert E.; Bateman, Douglas S.

    2004-01-01

    Biological and physical properties of rivers and streams are inherently difficult to sample and visualize at the resolution and extent necessary to detect fine-scale distributional patterns over large areas. Satellite imagery and broad-scale fish survey methods are effective for quantifying spatial variability in biological and physical variables over a range of scales in marine environments but are often too coarse in resolution to address conservation needs in inland fisheries management. We present methods for sampling and analyzing multiscale, spatially continuous patterns of stream fishes and physical habitat in small- to medium-size watersheds (500–1000 hectares). Geospatial tools, including geographic information system (GIS) software such as ArcInfo dynamic segmentation and ArcScene 3D analyst modules, were used to display complex biological and physical datasets. These tools also provided spatial referencing information (e.g. Cartesian and route-measure coordinates) necessary for conducting geostatistical analyses of spatial patterns (empirical semivariograms and wavelet analysis) in linear stream networks. Graphical depiction of fish distribution along a one-dimensional longitudinal profile and throughout the stream network (superimposed on a 10-metre digital elevation model) provided the spatial context necessary for describing and interpreting the relationship between landscape pattern and the distribution of coastal cutthroat trout (Oncorhynchus clarki clarki) in western Oregon, U.S.A. The distribution of coastal cutthroat trout was highly autocorrelated and exhibited a spherical semivariogram with a defined nugget, sill, and range. Wavelet analysis of the main-stem longitudinal profile revealed periodicity in trout distribution at three nested spatial scales corresponding ostensibly to landscape disturbances and the spacing of tributary junctions.

  14. Efficient Mining and Detection of Sequential Intrusion Patterns for Network Intrusion Detection Systems

    Science.gov (United States)

    Shyu, Mei-Ling; Huang, Zifang; Luo, Hongli

    In recent years, pervasive computing infrastructures have greatly improved the interaction between human and system. As we put more reliance on these computing infrastructures, we also face threats of network intrusion and/or any new forms of undesirable IT-based activities. Hence, network security has become an extremely important issue, which is closely connected with homeland security, business transactions, and people's daily life. Accurate and efficient intrusion detection technologies are required to safeguard the network systems and the critical information transmitted in the network systems. In this chapter, a novel network intrusion detection framework for mining and detecting sequential intrusion patterns is proposed. The proposed framework consists of a Collateral Representative Subspace Projection Modeling (C-RSPM) component for supervised classification, and an inter-transactional association rule mining method based on Layer Divided Modeling (LDM) for temporal pattern analysis. Experiments on the KDD99 data set and the traffic data set generated by a private LAN testbed show promising results with high detection rates, low processing time, and low false alarm rates in mining and detecting sequential intrusion detections.

  15. The significance and robustness of a plasma free amino acid (PFAA) profile-based multiplex function for detecting lung cancer

    International Nuclear Information System (INIS)

    Shingyoji, Masato; Mitsushima, Toru; Yamakado, Minoru; Kimura, Hideki; Iizasa, Toshihiko; Higashiyama, Masahiko; Imamura, Fumio; Saruki, Nobuhiro; Imaizumi, Akira; Yamamoto, Hiroshi; Daimon, Takashi; Tochikubo, Osamu

    2013-01-01

    We have recently reported on the changes in plasma free amino acid (PFAA) profiles in lung cancer patients and the efficacy of a PFAA-based, multivariate discrimination index for the early detection of lung cancer. In this study, we aimed to verify the usefulness and robustness of PFAA profiling for detecting lung cancer using new test samples. Plasma samples were collected from 171 lung cancer patients and 3849 controls without apparent cancer. PFAA levels were measured by high-performance liquid chromatography (HPLC)–electrospray ionization (ESI)–mass spectrometry (MS). High reproducibility was observed for both the change in the PFAA profiles in the lung cancer patients and the discriminating performance for lung cancer patients compared to previously reported results. Furthermore, multivariate discriminating functions obtained in previous studies clearly distinguished the lung cancer patients from the controls based on the area under the receiver-operator characteristics curve (AUC of ROC = 0.731 ~ 0.806), strongly suggesting the robustness of the methodology for clinical use. Moreover, the results suggested that the combinatorial use of this classifier and tumor markers improves the clinical performance of tumor markers. These findings suggest that PFAA profiling, which involves a relatively simple plasma assay and imposes a low physical burden on subjects, has great potential for improving early detection of lung cancer

  16. Schmitt-Trigger-based Recycling Sensor and Robust and High-Quality PUFs for Counterfeit IC Detection

    OpenAIRE

    Lin, Cheng-Wei; Jang, Jae-Won; Ghosh, Swaroop

    2015-01-01

    We propose Schmitt-Trigger (ST) based recycling sensor that are tailored to amplify the aging mechanisms and detect fine grained recycling (minutes to seconds). We exploit the susceptibility of ST to process variations to realize high-quality arbiter PUF. Conventional SRAM PUF suffer from environmental fluctuation-induced bit flipping. We propose 8T SRAM PUF with a back-to-back PMOS latch to improve robustness by 4X. We also propose a low-power 7T SRAM with embedded Magnetic Tunnel Junction (...

  17. Towards effective and robust list-based packet filter for signature-based network intrusion detection: an engineering approach

    DEFF Research Database (Denmark)

    Meng, Weizhi; Li, Wenjuan; Kwok, Lam For

    2017-01-01

    Network intrusion detection systems (NIDSs) which aim to identify various attacks, have become an essential part of current security infrastructure. In particular, signature-based NIDSs are being widely implemented in industry due to their low rate of false alarms. However, the signature matching...... this problem, packet filtration is a promising solution to reduce unwanted traffic. Motivated by this, in this work, a list-based packet filter was designed and an engineering method of combining both blacklist and whitelist techniques was introduced. To further secure such filters against IP spoofing attacks...... in traffic filtration as well as workload reduction, and is robust against IP spoofing attacks....

  18. Robust and Adaptive OMR System Including Fuzzy Modeling, Fusion of Musical Rules, and Possible Error Detection

    Directory of Open Access Journals (Sweden)

    Bloch Isabelle

    2007-01-01

    Full Text Available This paper describes a system for optical music recognition (OMR in case of monophonic typeset scores. After clarifying the difficulties specific to this domain, we propose appropriate solutions at both image analysis level and high-level interpretation. Thus, a recognition and segmentation method is designed, that allows dealing with common printing defects and numerous symbol interconnections. Then, musical rules are modeled and integrated, in order to make a consistent decision. This high-level interpretation step relies on the fuzzy sets and possibility framework, since it allows dealing with symbol variability, flexibility, and imprecision of music rules, and merging all these heterogeneous pieces of information. Other innovative features are the indication of potential errors and the possibility of applying learning procedures, in order to gain in robustness. Experiments conducted on a large data base show that the proposed method constitutes an interesting contribution to OMR.

  19. Robustness of cosmic neutrino background detection in the cosmic microwave background

    CERN Document Server

    Audren, Benjamin; Cuesta, Antonio J; Gontcho, Satya Gontcho A; Lesgourgues, Julien; Niro, Viviana; Pellejero-Ibanez, Marcos; Pérez-Ràfols, Ignasi; Poulin, Vivian; Tram, Thomas; Tramonte, Denis; Verde, Licia

    2015-01-01

    The existence of a cosmic neutrino background can be probed indirectly by CMB experiments, not only by measuring the background density of radiation in the universe, but also by searching for the typical signatures of the fluctuations of free-streaming species in the temperature and polarisation power spectrum. Previous studies have already proposed a rather generic parametrisation of these fluctuations, that could help to discriminate between the signature of ordinary free-streaming neutrinos, or of more exotic dark radiation models. Current data are compatible with standard values of these parameters, which seems to bring further evidence for the existence of a cosmic neutrino background. In this work, we investigate the robustness of this conclusion under various assumptions. We generalise the definition of an effective sound speed and viscosity speed to the case of massive neutrinos or other dark radiation components experiencing a non-relativistic transition. We show that current bounds on these effectiv...

  20. Detecting Recombination Hotspots from Patterns of Linkage Disequilibrium.

    Science.gov (United States)

    Wall, Jeffrey D; Stevison, Laurie S

    2016-08-09

    With recent advances in DNA sequencing technologies, it has become increasingly easy to use whole-genome sequencing of unrelated individuals to assay patterns of linkage disequilibrium (LD) across the genome. One type of analysis that is commonly performed is to estimate local recombination rates and identify recombination hotspots from patterns of LD. One method for detecting recombination hotspots, LDhot, has been used in a handful of species to further our understanding of the basic biology of recombination. For the most part, the effectiveness of this method (e.g., power and false positive rate) is unknown. In this study, we run extensive simulations to compare the effectiveness of three different implementations of LDhot. We find large differences in the power and false positive rates of these different approaches, as well as a strong sensitivity to the window size used (with smaller window sizes leading to more accurate estimation of hotspot locations). We also compared our LDhot simulation results with comparable simulation results obtained from a Bayesian maximum-likelihood approach for identifying hotspots. Surprisingly, we found that the latter computationally intensive approach had substantially lower power over the parameter values considered in our simulations. Copyright © 2016 Wall and Stevison.

  1. Robust Nucleus/Cell Detection and Segmentation in Digital Pathology and Microscopy Images: A Comprehensive Review.

    Science.gov (United States)

    Xing, Fuyong; Yang, Lin

    2016-01-01

    Digital pathology and microscopy image analysis is widely used for comprehensive studies of cell morphology or tissue structure. Manual assessment is labor intensive and prone to interobserver variations. Computer-aided methods, which can significantly improve the objectivity and reproducibility, have attracted a great deal of interest in recent literature. Among the pipeline of building a computer-aided diagnosis system, nucleus or cell detection and segmentation play a very important role to describe the molecular morphological information. In the past few decades, many efforts have been devoted to automated nucleus/cell detection and segmentation. In this review, we provide a comprehensive summary of the recent state-of-the-art nucleus/cell segmentation approaches on different types of microscopy images including bright-field, phase-contrast, differential interference contrast, fluorescence, and electron microscopies. In addition, we discuss the challenges for the current methods and the potential future work of nucleus/cell detection and segmentation.

  2. Robust and efficient direct multiplex amplification method for large-scale DNA detection of blood samples on FTA cards

    International Nuclear Information System (INIS)

    Jiang Bowei; Xiang Fawei; Zhao Xingchun; Wang Lihua; Fan Chunhai

    2013-01-01

    Deoxyribonucleic acid (DNA) damage arising from radiations widely occurred along with the development of nuclear weapons and clinically wide application of computed tomography (CT) scan and nuclear medicine. All ionizing radiations (X-rays, γ-rays, alpha particles, etc.) and ultraviolet (UV) radiation lead to the DNA damage. Polymerase chain reaction (PCR) is one of the most wildly used techniques for detecting DNA damage as the amplification stops at the site of the damage. Improvements to enhance the efficiency of PCR are always required and remain a great challenge. Here we establish a multiplex PCR assay system (MPAS) that is served as a robust and efficient method for direct detection of target DNA sequences in genomic DNA. The establishment of the system is performed by adding a combination of PCR enhancers to standard PCR buffer, The performance of MPAS was demonstrated by carrying out the direct PCR amplification on l.2 mm human blood punch using commercially available primer sets which include multiple primer pairs. The optimized PCR system resulted in high quality genotyping results without any inhibitory effect indicated and led to a full-profile success rate of 98.13%. Our studies demonstrate that the MPAS provides an efficient and robust method for obtaining sensitive, reliable and reproducible PCR results from human blood samples. (authors)

  3. Robust Vehicle Detection under Various Environments to Realize Road Traffic Flow Surveillance Using an Infrared Thermal Camera

    Science.gov (United States)

    Iwasaki, Yoichiro; Misumi, Masato; Nakamiya, Toshiyuki

    2015-01-01

    To realize road traffic flow surveillance under various environments which contain poor visibility conditions, we have already proposed two vehicle detection methods using thermal images taken with an infrared thermal camera. The first method uses pattern recognition for the windshields and their surroundings to detect vehicles. However, the first method decreases the vehicle detection accuracy in winter season. To maintain high vehicle detection accuracy in all seasons, we developed the second method. The second method uses tires' thermal energy reflection areas on a road as the detection targets. The second method did not achieve high detection accuracy for vehicles on left-hand and right-hand lanes except for two center-lanes. Therefore, we have developed a new method based on the second method to increase the vehicle detection accuracy. This paper proposes the new method and shows that the detection accuracy for vehicles on all lanes is 92.1%. Therefore, by combining the first method and the new method, high vehicle detection accuracies are maintained under various environments, and road traffic flow surveillance can be realized. PMID:25763384

  4. Robust Vehicle Detection under Various Environments to Realize Road Traffic Flow Surveillance Using an Infrared Thermal Camera

    Directory of Open Access Journals (Sweden)

    Yoichiro Iwasaki

    2015-01-01

    Full Text Available To realize road traffic flow surveillance under various environments which contain poor visibility conditions, we have already proposed two vehicle detection methods using thermal images taken with an infrared thermal camera. The first method uses pattern recognition for the windshields and their surroundings to detect vehicles. However, the first method decreases the vehicle detection accuracy in winter season. To maintain high vehicle detection accuracy in all seasons, we developed the second method. The second method uses tires’ thermal energy reflection areas on a road as the detection targets. The second method did not achieve high detection accuracy for vehicles on left-hand and right-hand lanes except for two center-lanes. Therefore, we have developed a new method based on the second method to increase the vehicle detection accuracy. This paper proposes the new method and shows that the detection accuracy for vehicles on all lanes is 92.1%. Therefore, by combining the first method and the new method, high vehicle detection accuracies are maintained under various environments, and road traffic flow surveillance can be realized.

  5. Robust vehicle detection under various environments to realize road traffic flow surveillance using an infrared thermal camera.

    Science.gov (United States)

    Iwasaki, Yoichiro; Misumi, Masato; Nakamiya, Toshiyuki

    2015-01-01

    To realize road traffic flow surveillance under various environments which contain poor visibility conditions, we have already proposed two vehicle detection methods using thermal images taken with an infrared thermal camera. The first method uses pattern recognition for the windshields and their surroundings to detect vehicles. However, the first method decreases the vehicle detection accuracy in winter season. To maintain high vehicle detection accuracy in all seasons, we developed the second method. The second method uses tires' thermal energy reflection areas on a road as the detection targets. The second method did not achieve high detection accuracy for vehicles on left-hand and right-hand lanes except for two center-lanes. Therefore, we have developed a new method based on the second method to increase the vehicle detection accuracy. This paper proposes the new method and shows that the detection accuracy for vehicles on all lanes is 92.1%. Therefore, by combining the first method and the new method, high vehicle detection accuracies are maintained under various environments, and road traffic flow surveillance can be realized.

  6. Robust moving ship detection using context-based motion analysis and occlusion handling

    NARCIS (Netherlands)

    Bao, X.; Zinger, S.; Wijnhoven, R.G.J.; With, de P.H.N.

    2013-01-01

    This paper proposes an original moving ship detection approach in video surveillance systems, especially con- centrating on occlusion problems among ships and vegetation using context information. Firstly, an over- segmentation is performed to divide and classify by SVM (Support Vector Machine)

  7. Self-learning framework with temporal filtering for robust maritime vessel detection

    NARCIS (Netherlands)

    Ghahremani, A.; Bondarau, Y.; de With, P.H.N.

    2017-01-01

    With the recent development in ConvNet-based detectors, a successful solution for vessel detection becomes possible. However, it is essential to access a comprehensive annotated training set from different maritime environments. Creating such a dataset is expensive and time consuming. To automate

  8. Robust statistical methods for significance evaluation and applications in cancer driver detection and biomarker discovery

    DEFF Research Database (Denmark)

    Madsen, Tobias

    2017-01-01

    In the present thesis I develop, implement and apply statistical methods for detecting genomic elements implicated in cancer development and progression. This is done in two separate bodies of work. The first uses the somatic mutation burden to distinguish cancer driver mutations from passenger m...

  9. A new highly specific and robust yeast androgen bioassay for the detection of agonist and antagonists

    NARCIS (Netherlands)

    Bovee, T.F.H.; Helsdingen, J.R.; Hamers, A.R.M.; Duursen, van M.; Nielen, M.W.F.; Hoogenboom, L.A.P.

    2007-01-01

    Public concern about the presence of natural and anthropogenic compounds which affect human health by modulating normal endocrine functions is continuously growing. Fast and simple high-throughput screening methods for the detection of hormone activities are thus indispensable. During the last two

  10. Bi-variate statistical attribute filtering : A tool for robust detection of faint objects

    NARCIS (Netherlands)

    Teeninga, Paul; Moschini, Ugo; Trager, Scott C.; Wilkinson, M.H.F.

    2013-01-01

    We present a new method for morphological connected attribute filtering for object detection in astronomical images. In this approach, a threshold is set on one attribute (power), based on its distribution due to noise, as a function of object area. The results show an order of magnitude higher

  11. ROBUST ESTIMATION OF MEAN AND VARIANCE USING ENVIRONMENTAL DATA SETS WITH BELOW DETECTION LIMIT OBSERVATIONS

    Science.gov (United States)

    Scientists, especially environmental scientists often encounter trace level concentrations that are typically reported as less than a certain limit of detection, L. Type 1, left-censored data arise when certain low values lying below L are ignored or unknown as they cannot be mea...

  12. A Robust Dynamic Heart-Rate Detection Algorithm Framework During Intense Physical Activities Using Photoplethysmographic Signals

    Directory of Open Access Journals (Sweden)

    Jiajia Song

    2017-10-01

    Full Text Available Dynamic accurate heart-rate (HR estimation using a photoplethysmogram (PPG during intense physical activities is always challenging due to corruption by motion artifacts (MAs. It is difficult to reconstruct a clean signal and extract HR from contaminated PPG. This paper proposes a robust HR-estimation algorithm framework that uses one-channel PPG and tri-axis acceleration data to reconstruct the PPG and calculate the HR based on features of the PPG and spectral analysis. Firstly, the signal is judged by the presence of MAs. Then, the spectral peaks corresponding to acceleration data are filtered from the periodogram of the PPG when MAs exist. Different signal-processing methods are applied based on the amount of remaining PPG spectral peaks. The main MA-removal algorithm (NFEEMD includes the repeated single-notch filter and ensemble empirical mode decomposition. Finally, HR calibration is designed to ensure the accuracy of HR tracking. The NFEEMD algorithm was performed on the 23 datasets from the 2015 IEEE Signal Processing Cup Database. The average estimation errors were 1.12 BPM (12 training datasets, 2.63 BPM (10 testing datasets and 1.87 BPM (all 23 datasets, respectively. The Pearson correlation was 0.992. The experiment results illustrate that the proposed algorithm is not only suitable for HR estimation during continuous activities, like slow running (13 training datasets, but also for intense physical activities with acceleration, like arm exercise (10 testing datasets.

  13. Neural communication patterns underlying conflict detection, resolution, and adaptation.

    Science.gov (United States)

    Oehrn, Carina R; Hanslmayr, Simon; Fell, Juergen; Deuker, Lorena; Kremers, Nico A; Do Lam, Anne T; Elger, Christian E; Axmacher, Nikolai

    2014-07-30

    In an ever-changing environment, selecting appropriate responses in conflicting situations is essential for biological survival and social success and requires cognitive control, which is mediated by dorsomedial prefrontal cortex (DMPFC) and dorsolateral prefrontal cortex (DLPFC). How these brain regions communicate during conflict processing (detection, resolution, and adaptation), however, is still unknown. The Stroop task provides a well-established paradigm to investigate the cognitive mechanisms mediating such response conflict. Here, we explore the oscillatory patterns within and between the DMPFC and DLPFC in human epilepsy patients with intracranial EEG electrodes during an auditory Stroop experiment. Data from the DLPFC were obtained from 12 patients. Thereof four patients had additional DMPFC electrodes available for interaction analyses. Our results show that an early θ (4-8 Hz) modulated enhancement of DLPFC γ-band (30-100 Hz) activity constituted a prerequisite for later successful conflict processing. Subsequent conflict detection was reflected in a DMPFC θ power increase that causally entrained DLPFC θ activity (DMPFC to DLPFC). Conflict resolution was thereafter completed by coupling of DLPFC γ power to DMPFC θ oscillations. Finally, conflict adaptation was related to increased postresponse DLPFC γ-band activity and to θ coupling in the reverse direction (DLPFC to DMPFC). These results draw a detailed picture on how two regions in the prefrontal cortex communicate to resolve cognitive conflicts. In conclusion, our data show that conflict detection, control, and adaptation are supported by a sequence of processes that use the interplay of θ and γ oscillations within and between DMPFC and DLPFC. Copyright © 2014 the authors 0270-6474/14/3410438-15$15.00/0.

  14. Development of Robust and Standardized Cantilever Sensors Based on Biotin/Neutravidin Coupling for Antibody Detection

    Directory of Open Access Journals (Sweden)

    Christoph Gerber

    2013-04-01

    Full Text Available A cantilever-based protein biosensor has been developed providing a customizable multilayer platform for the detection of antibodies. It consists of a biotin-terminated PEG layer pre-functionalized on the gold-coated cantilever surface, onto which NeutrAvidin is adsorbed through biotin/NeutrAvidin specific binding. NeutrAvidin is used as a bridge layer between the biotin-coated surface and the biotinylated biomolecules, such as biotinylated bovine serum albumin (biotinylated BSA, forming a multilayer sensor for direct antibody capture. The cantilever biosensor has been successfully applied to the detection of mouse anti-BSA (m-IgG and sheep anti-BSA(s-IgG antibodies. As expected, the average differential surface stress signals of about 5.7 ± 0.8 ´ 10−3 N/m are very similar for BSA/m-IgG and BSA/s-IgG binding, i.e., they are independent of the origin of the antibody. A statistic evaluation of 112 response curves confirms that the multilayer protein cantilever biosensor shows high reproducibility. As a control test, a biotinylated maltose binding protein was used for detecting specificity of IgG, the result shows a signal of bBSA layer in response to antibody is 5.8 ´ 10−3 N/m compared to bMBP. The pre-functionalized biotin/PEG cantilever surface is found to show a long shelf-life of at least 40 days and retains its responsivity of above 70% of the signal when stored in PBS buffer at 4 °C. The protein cantilever biosensor represents a rapid, label-free, sensitive and reliable detection technique for a real-time protein assay.

  15. Robust Nucleus/Cell Detection and Segmentation in Digital Pathology and Microscopy Images: A Comprehensive Review

    Science.gov (United States)

    Xing, Fuyong; Yang, Lin

    2016-01-01

    Digital pathology and microscopy image analysis is widely used for comprehensive studies of cell morphology or tissue structure. Manual assessment is labor intensive and prone to inter-observer variations. Computer-aided methods, which can significantly improve the objectivity and reproducibility, have attracted a great deal of interest in recent literatures. Among the pipeline of building a computer-aided diagnosis system, nucleus or cell detection and segmentation play a very important role to describe the molecular morphological information. In the past few decades, many efforts have been devoted to automated nucleus/cell detection and segmentation. In this review, we provide a comprehensive summary of the recent state-of-the-art nucleus/cell segmentation approaches on different types of microscopy images including bright-field, phase-contrast, differential interference contrast (DIC), fluorescence, and electron microscopies. In addition, we discuss the challenges for the current methods and the potential future work of nucleus/cell detection and segmentation. PMID:26742143

  16. Robust detection and tracking of annotations for outdoor augmented reality browsing

    Science.gov (United States)

    Langlotz, Tobias; Degendorfer, Claus; Mulloni, Alessandro; Schall, Gerhard; Reitmayr, Gerhard; Schmalstieg, Dieter

    2011-01-01

    A common goal of outdoor augmented reality (AR) is the presentation of annotations that are registered to anchor points in the real world. We present an enhanced approach for registering and tracking such anchor points, which is suitable for current generation mobile phones and can also successfully deal with the wide variety of viewing conditions encountered in real life outdoor use. The approach is based on on-the-fly generation of panoramic images by sweeping the camera over the scene. The panoramas are then used for stable orientation tracking, while the user is performing only rotational movements. This basic approach is improved by several new techniques for the re-detection and tracking of anchor points. For the re-detection, specifically after temporal variations, we first compute a panoramic image with extended dynamic range, which can better represent varying illumination conditions. The panorama is then searched for known anchor points, while orientation tracking continues uninterrupted. We then use information from an internal orientation sensor to prime an active search scheme for the anchor points, which improves matching results. Finally, global consistency is enhanced by statistical estimation of a global rotation that minimizes the overall position error of anchor points when transforming them from the source panorama in which they were created, to the current view represented by a new panorama. Once the anchor points are redetected, we track the user's movement using a novel 3-degree-of-freedom orientation tracking approach that combines vision tracking with the absolute orientation from inertial and magnetic sensors. We tested our system using an AR campus guide as an example application and provide detailed results for our approach using an off-the-shelf smartphone. Results show that the re-detection rate is improved by a factor of 2 compared to previous work and reaches almost 90% for a wide variety of test cases while still keeping the ability

  17. Robust detection and tracking of annotations for outdoor augmented reality browsing.

    Science.gov (United States)

    Langlotz, Tobias; Degendorfer, Claus; Mulloni, Alessandro; Schall, Gerhard; Reitmayr, Gerhard; Schmalstieg, Dieter

    2011-08-01

    A common goal of outdoor augmented reality (AR) is the presentation of annotations that are registered to anchor points in the real world. We present an enhanced approach for registering and tracking such anchor points, which is suitable for current generation mobile phones and can also successfully deal with the wide variety of viewing conditions encountered in real life outdoor use. The approach is based on on-the-fly generation of panoramic images by sweeping the camera over the scene. The panoramas are then used for stable orientation tracking, while the user is performing only rotational movements. This basic approach is improved by several new techniques for the re-detection and tracking of anchor points. For the re-detection, specifically after temporal variations, we first compute a panoramic image with extended dynamic range, which can better represent varying illumination conditions. The panorama is then searched for known anchor points, while orientation tracking continues uninterrupted. We then use information from an internal orientation sensor to prime an active search scheme for the anchor points, which improves matching results. Finally, global consistency is enhanced by statistical estimation of a global rotation that minimizes the overall position error of anchor points when transforming them from the source panorama in which they were created, to the current view represented by a new panorama. Once the anchor points are redetected, we track the user's movement using a novel 3-degree-of-freedom orientation tracking approach that combines vision tracking with the absolute orientation from inertial and magnetic sensors. We tested our system using an AR campus guide as an example application and provide detailed results for our approach using an off-the-shelf smartphone. Results show that the re-detection rate is improved by a factor of 2 compared to previous work and reaches almost 90% for a wide variety of test cases while still keeping the ability

  18. Robust boundary detection of left ventricles on ultrasound images using ASM-level set method.

    Science.gov (United States)

    Zhang, Yaonan; Gao, Yuan; Li, Hong; Teng, Yueyang; Kang, Yan

    2015-01-01

    Level set method has been widely used in medical image analysis, but it has difficulties when being used in the segmentation of left ventricular (LV) boundaries on echocardiography images because the boundaries are not very distinguish, and the signal-to-noise ratio of echocardiography images is not very high. In this paper, we introduce the Active Shape Model (ASM) into the traditional level set method to enforce shape constraints. It improves the accuracy of boundary detection and makes the evolution more efficient. The experiments conducted on the real cardiac ultrasound image sequences show a positive and promising result.

  19. Design Margin Elimination Through Robust Timing Error Detection at Ultra-Low Voltage

    OpenAIRE

    Reyserhove, Hans; Dehaene, Wim

    2017-01-01

    This paper discusses a timing error masking-aware ARM Cortex M0 microcontroller system. Through in-path timing error detection, operation at the point-of-first-failure is possi- ble without corrupting the pipeline state, effectively eliminat- ing traditional timing margins. Error events are flagged and gathered to allow dynamic voltage scaling. The error-aware microcontroller was implemented in a 40nm CMOS process and realizes ultra-low voltage operation down to 0.29V at 5MHz consuming 12.90p...

  20. Bridging Computational Genetics and Vectorcardiography: A Robust Platform for the Early Detection of Heart Disease

    Science.gov (United States)

    Sridhar, S.

    2017-12-01

    By 2030, it is predicted that over 14 million people will die of heart disease annually, many of whom will discover their risk when it is too late to seek effective treatment or pursue lifestyle changes. In this research study, I sought to design a robust computational platform to gauge a patient's risk for cardiac diseases (CDs) based on demographics, genotype, and cardiac action potentials through machine learning, statistical analysis, and vectorcardiography. By analyzing previously published data, I discovered that certain polymorphisms in the ACE and MTHFR genes contribute significantly to CD risk. The deletion allele of the ACE insertion/deletion polymorphism increases ACE serum levels, promoting CD phenotypes. A point mutation in the MTHFR gene curbs the metabolism of folic acid, giving rise to CD phenotypes. I analyzed over 9000 British Medical Journal and American Heart Association patients to determine the CD risk associated with each ACE and MTHFR genotype. In the vectorcardiography phase of my study, I investigated trends in the maximal vectors of the QRS loop of the cardiac wave. Using a database with both normal and diseased vectorcardiographic action potentials, I plotted the maximal vectors on a 3D RAS coordinate plane to analyze their magnitude and direction. From the ACE datasets, I discovered that female patients over 45 and of Indian descent with two ACE deletion alleles exhibited the highest CD risk. Using this spectrum, I successfully constructed a neural network with an accuracy score of 0.867 that predicts CD risk based on ACE genotype, gender, region, and age. Investigation of the MTHFR genome showed that those with a homozygous mutated gene had a significantly higher CD risk. In my vectorcardiography study, I found that healthy QRS vectors pointed predominantly to the right-anterior region of the coordinate plane and exhibited short, consistent magnitudes. On the other hand, diseased vectors pointed to the left-posterior region and

  1. Robust Road Condition Detection System Using In-Vehicle Standard Sensors

    Directory of Open Access Journals (Sweden)

    Juan Jesús Castillo Aguilar

    2015-12-01

    Full Text Available The appearance of active safety systems, such as Anti-lock Braking System, Traction Control System, Stability Control System, etc., represents a major evolution in road safety. In the automotive sector, the term vehicle active safety systems refers to those whose goal is to help avoid a crash or to reduce the risk of having an accident. These systems safeguard us, being in continuous evolution and incorporating new capabilities continuously. In order for these systems and vehicles to work adequately, they need to know some fundamental information: the road condition on which the vehicle is circulating. This early road detection is intended to allow vehicle control systems to act faster and more suitably, thus obtaining a substantial advantage. In this work, we try to detect the road condition the vehicle is being driven on, using the standard sensors installed in commercial vehicles. Vehicle models were programmed in on-board systems to perform real-time estimations of the forces of contact between the wheel and road and the speed of the vehicle. Subsequently, a fuzzy logic block is used to obtain an index representing the road condition. Finally, an artificial neural network was used to provide the optimal slip for each surface. Simulations and experiments verified the proposed method.

  2. Robust Road Condition Detection System Using In-Vehicle Standard Sensors.

    Science.gov (United States)

    Castillo Aguilar, Juan Jesús; Cabrera Carrillo, Juan Antonio; Guerra Fernández, Antonio Jesús; Carabias Acosta, Enrique

    2015-12-19

    The appearance of active safety systems, such as Anti-lock Braking System, Traction Control System, Stability Control System, etc., represents a major evolution in road safety. In the automotive sector, the term vehicle active safety systems refers to those whose goal is to help avoid a crash or to reduce the risk of having an accident. These systems safeguard us, being in continuous evolution and incorporating new capabilities continuously. In order for these systems and vehicles to work adequately, they need to know some fundamental information: the road condition on which the vehicle is circulating. This early road detection is intended to allow vehicle control systems to act faster and more suitably, thus obtaining a substantial advantage. In this work, we try to detect the road condition the vehicle is being driven on, using the standard sensors installed in commercial vehicles. Vehicle models were programmed in on-board systems to perform real-time estimations of the forces of contact between the wheel and road and the speed of the vehicle. Subsequently, a fuzzy logic block is used to obtain an index representing the road condition. Finally, an artificial neural network was used to provide the optimal slip for each surface. Simulations and experiments verified the proposed method.

  3. FLUS -innovative and robust humidity measurement for detection of smallest steam leaks

    International Nuclear Information System (INIS)

    Gloth, G.; Knoblach, W.

    2012-01-01

    This presentation will explain, how AREVA's leak detection system FLUS solves the monitoring task and how even a quantitative humidity measurements is achieved under harshest conditions with maintenance-free components in the non-accessible locations. The capabilities of the FLUS technology will be explained on 3 most recent case studies. One application covers the RPV bottom head penetrations of a BWR, a second application was installed at the RPV closure head flange of a PWR. The latest installation monitors a particular RPV bottom head penetration of a PWR. For all applications the results of in-situ leak simulation test (by means of steam injection) will be discussed in respect to sensitivity, response time and leak localization.

  4. [Patterns of detection of mild cognitive impairment in nursing].

    Science.gov (United States)

    Sebastián Hernández, Ana J; Arranz Santamaría, Luís Carlos

    2017-06-01

    Mild cognitive impairment (MCI) is characterized by an acquired cognitive loss that places individuals, mainly older adults, in an intermediate stage between normal cognitive functioning and dementia. This impairment has a high risk of progression to dementia and is suitable for screening, which allows more effective early intervention. Nursing professionals, especially community-based primary care nurses, play an important role in the detection and follow-up of MCI and in interventions for this condition. The first step should be to take a thorough history from both the patient and his or her carers, which should assess the changes occurring in the patient's daily, family and social life through functional patterns. In subsequent assessment of cognitive function, brief screening tests can be used such as the Mini Mental State Examination (MMSE) or other similar tests. Special attention should be paid to the presence of affective or depressive symptoms, sensory deficits, polypharmacy, decompensated cardiovascular risk factors, and rapid functional deterioration, given their particular influence on MCI. Finally, various nurse-led, non-pharmacological interventions that are effective in MCI can be recommended, based on cardiovascular risk factor control, physical exercise, and cognitive and psychosocial interventions. Copyright © 2017 Sociedad Española de Geriatría y Gerontología. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Random Forest ensembles for detection and prediction of Alzheimer's disease with a good between-cohort robustness

    Directory of Open Access Journals (Sweden)

    A.V. Lebedev

    2014-01-01

    In the ADNI set, the best AD/HC sensitivity/specificity (88.6%/92.0% — test set was achieved by combining cortical thickness and volumetric measures. The Random Forest model resulted in significantly higher accuracy compared to the reference classifier (linear Support Vector Machine. The models trained using parcelled and high-dimensional (HD input demonstrated equivalent performance, but the former was more effective in terms of computation/memory and time costs. The sensitivity/specificity for detecting MCI-to-AD conversion (but not AD/HC classification performance was further improved from 79.5%/75%–83.3%/81.3% by a combination of morphometric measurements with ApoE-genotype and demographics (age, sex, education. When applied to the independent AddNeuroMed cohort, the best ADNI models produced equivalent performance without substantial accuracy drop, suggesting good robustness sufficient for future clinical implementation.

  6. Low-Cost, Robust, and Field Portable Smartphone Platform Photometric Sensor for Fluoride Level Detection in Drinking Water.

    Science.gov (United States)

    Hussain, Iftak; Ahamad, Kamal Uddin; Nath, Pabitra

    2017-01-03

    Groundwater is the major source of drinking water for people living in rural areas of India. Pollutants such as fluoride in groundwater may be present in much higher concentration than the permissible limit. Fluoride does not give any visible coloration to water, and hence, no effort is made to remove or reduce the concentration of this chemical present in drinking water. This may lead to a serious health hazard for those people taking groundwater as their primary source of drinking water. Sophisticated laboratory grade tools such as ion selective electrodes (ISE) and portable spectrophotometers are commercially available for in-field detection of fluoride level in drinking water. However, such tools are generally expensive and require expertise to handle. In this paper, we demonstrate the working of a low cost, robust, and field portable smartphone platform fluoride sensor that can detect and analyze fluoride concentration level in drinking water. For development of the proposed sensor, we utilize the ambient light sensor (ALS) of the smartphone as light intensity detector and its LED flash light as an optical source. An android application "FSense" has been developed which can detect and analyze the fluoride concentration level in water samples. The custom developed application can be used for sharing of in-field sensing data from any remote location to the central water quality monitoring station. We envision that the proposed sensing technique could be useful for initiating a fluoride removal program undertaken by governmental and nongovernmental organizations here in India.

  7. SparCLeS: dynamic l₁ sparse classifiers with level sets for robust beard/moustache detection and segmentation.

    Science.gov (United States)

    Le, T Hoang Ngan; Luu, Khoa; Savvides, Marios

    2013-08-01

    Robust facial hair detection and segmentation is a highly valued soft biometric attribute for carrying out forensic facial analysis. In this paper, we propose a novel and fully automatic system, called SparCLeS, for beard/moustache detection and segmentation in challenging facial images. SparCLeS uses the multiscale self-quotient (MSQ) algorithm to preprocess facial images and deal with illumination variation. Histogram of oriented gradients (HOG) features are extracted from the preprocessed images and a dynamic sparse classifier is built using these features to classify a facial region as either containing skin or facial hair. A level set based approach, which makes use of the advantages of both global and local information, is then used to segment the regions of a face containing facial hair. Experimental results demonstrate the effectiveness of our proposed system in detecting and segmenting facial hair regions in images drawn from three databases, i.e., the NIST Multiple Biometric Grand Challenge (MBGC) still face database, the NIST Color Facial Recognition Technology FERET database, and the Labeled Faces in the Wild (LFW) database.

  8. A robust method for detecting nuclear materials when the underlying model is inexact

    International Nuclear Information System (INIS)

    Kump, Paul; Bai, Er-Wei; Chan, Kung-sik; Eichinger, William

    2013-01-01

    This paper is concerned with the detection and identification of nuclides from weak and poorly resolved gamma-ray energy spectra when the underlying model is not known exactly. The algorithm proposed and tested here pairs an exciting and relatively new model selection algorithm with the method of total least squares. Gamma-ray counts are modeled as Poisson processes where the average part is taken to be the model and the difference between the observed gamma-ray counts and the model is considered random noise. Physics provides a template for the model, but we add uncertainty to this template to simulate real life conditions. Unlike most model selection algorithms whose utilities are demonstrated asymptotically, our method emphasizes selection when data is fixed and finite (after all, detector data is undoubtedly finite). Simulation examples provided here demonstrate the proposed algorithm performs well. -- Highlights: • Identification of nuclides in the presence of large noise/uncertainty. • Algorithm is based on a Poisson model. • Key idea is the regularized total least squares. • Algorithms are tested and compared with existing methods

  9. Remote vital parameter monitoring in neonatology - robust, unobtrusive heart rate detection in a realistic clinical scenario.

    Science.gov (United States)

    Blanik, Nikolai; Heimann, Konrad; Pereira, Carina; Paul, Michael; Blazek, Vladimir; Venema, Boudewijn; Orlikowsky, Thorsten; Leonhardt, Steffen

    2016-12-01

    Vital parameter monitoring of term and preterm infants during incubator care with self-adhesive electrodes or sensors directly positioned on the skin [e.g. photoplethysmography (PPG) for oxygen saturation or electrocardiography (ECG)] is an essential part of daily routine care in neonatal intensive care units. For various reasons, this kind of monitoring contains a lot of stress for the infants. Therefore, there is a need to measure vital parameters (for instance respiration, temperature, pulse, oxygen saturation) without mechanical or conductive contact. As a non-contact method of monitoring, we present an adapted version of camera-based photoplethysmography imaging (PPGI) according to neonatal requirements. Similar to classic PPG, the PPGI camera detects small temporal changes in the term and preterm infant's skin brightness due to the cardiovascular rhythm of dermal blood perfusion. We involved 10 preterm infants in a feasibility study [five males and five females; mean gestational age: 26 weeks (24-28 weeks); mean biological age: 35 days (8-41 days); mean weight at the time of investigation: 960 g (670-1290 g)]. The PPGI camera was placed directly above the incubators with the infant inside illuminated by an infrared light emitting diode (LED) array (850 nm). From each preterm infant, 5-min video sequences were recorded and analyzed post hoc. As the measurement scenario was kept as realistic as possible, the infants were not constrained in their movements in front of the camera. Movement intensities were assigned into five classes (1: no visible motion to 5: heavy struggling). PPGI was found to be significantly sensitive to movement artifacts. However, for movement classes 1-4, changes in blood perfusion according to the heart rate (HR) were recovered successfully (Pearson correlation: r=0.9759; r=0.765 if class 5 is included). The study was approved by the Ethics Committee of the Universal Hospital of the RWTH Aachen University, Aachen, Germany (EK 254/13).

  10. Spatiotemporal patterns, triggers and anatomies of seismically detected rockfalls

    Directory of Open Access Journals (Sweden)

    M. Dietze

    2017-11-01

    Full Text Available Rockfalls are a ubiquitous geomorphic process and a natural hazard in steep landscapes across the globe. Seismic monitoring can provide precise information on the timing, location and event anatomy of rockfalls, which are parameters that are otherwise hard to constrain. By pairing data from 49 seismically detected rockfalls in the Lauterbrunnen Valley in the Swiss Alps with auxiliary meteorologic and seismic data of potential triggers during autumn 2014 and spring 2015, we are able to (i analyse the evolution of single rockfalls and their common properties, (ii identify spatial changes in activity hotspots (iii and explore temporal activity patterns on different scales ranging from months to minutes to quantify relevant trigger mechanisms. Seismic data allow for the classification of rockfall activity into two distinct phenomenological types. The signals can be used to discern multiple rock mass releases from the same spot, identify rockfalls that trigger further rockfalls and resolve modes of subsequent talus slope activity. In contrast to findings based on discontinuous methods with integration times of several months, rockfall in the monitored limestone cliff is not spatially uniform but shows a systematic downward shift of a rock mass release zone following an exponential law, most likely driven by a continuously lowering water table. Freeze–thaw transitions, approximated at first order from air temperature time series, account for only 5 out of the 49 rockfalls, whereas 19 rockfalls were triggered by rainfall events with a peak lag time of 1 h. Another 17 rockfalls were triggered by diurnal temperature changes and occurred during the coldest hours of the day and during the highest temperature change rates. This study is thus the first to show direct links between proposed rockfall triggers and the spatiotemporal distribution of rockfalls under natural conditions; it extends existing models by providing seismic observations of the

  11. Multiple strategies to improve sensitivity, speed and robustness of isothermal nucleic acid amplification for rapid pathogen detection

    Directory of Open Access Journals (Sweden)

    Lemieux Bertrand

    2011-05-01

    Full Text Available Abstract Background In the past decades the rapid growth of molecular diagnostics (based on either traditional PCR or isothermal amplification technologies meet the demand for fast and accurate testing. Although isothermal amplification technologies have the advantages of low cost requirements for instruments, the further improvement on sensitivity, speed and robustness is a prerequisite for the applications in rapid pathogen detection, especially at point-of-care diagnostics. Here, we describe and explore several strategies to improve one of the isothermal technologies, helicase-dependent amplification (HDA. Results Multiple strategies were approached to improve the overall performance of the isothermal amplification: the restriction endonuclease-mediated DNA helicase homing, macromolecular crowding agents, and the optimization of reaction enzyme mix. The effect of combing all strategies was compared with that of the individual strategy. With all of above methods, we are able to detect 50 copies of Neisseria gonorrhoeae DNA in just 20 minutes of amplification using a nearly instrument-free detection platform (BESt™ cassette. Conclusions The strategies addressed in this proof-of-concept study are independent of expensive equipments, and are not limited to particular primers, targets or detection format. However, they make a large difference in assay performance. Some of them can be adjusted and applied to other formats of nucleic acid amplification. Furthermore, the strategies to improve the in vitro assays by maximally simulating the nature conditions may be useful in the general field of developing molecular assays. A new fast molecular assay for Neisseria gonorrhoeae has also been developed which has great potential to be used at point-of-care diagnostics.

  12. A Bootstrap Based Measure Robust to the Choice of Normalization Methods for Detecting Rhythmic Features in High Dimensional Data.

    Science.gov (United States)

    Larriba, Yolanda; Rueda, Cristina; Fernández, Miguel A; Peddada, Shyamal D

    2018-01-01

    Motivation: Gene-expression data obtained from high throughput technologies are subject to various sources of noise and accordingly the raw data are pre-processed before formally analyzed. Normalization of the data is a key pre-processing step, since it removes systematic variations across arrays. There are numerous normalization methods available in the literature. Based on our experience, in the context of oscillatory systems, such as cell-cycle, circadian clock, etc., the choice of the normalization method may substantially impact the determination of a gene to be rhythmic. Thus rhythmicity of a gene can purely be an artifact of how the data were normalized. Since the determination of rhythmic genes is an important component of modern toxicological and pharmacological studies, it is important to determine truly rhythmic genes that are robust to the choice of a normalization method. Results: In this paper we introduce a rhythmicity measure and a bootstrap methodology to detect rhythmic genes in an oscillatory system. Although the proposed methodology can be used for any high-throughput gene expression data, in this paper we illustrate the proposed methodology using several publicly available circadian clock microarray gene-expression datasets. We demonstrate that the choice of normalization method has very little effect on the proposed methodology. Specifically, for any pair of normalization methods considered in this paper, the resulting values of the rhythmicity measure are highly correlated. Thus it suggests that the proposed measure is robust to the choice of a normalization method. Consequently, the rhythmicity of a gene is potentially not a mere artifact of the normalization method used. Lastly, as demonstrated in the paper, the proposed bootstrap methodology can also be used for simulating data for genes participating in an oscillatory system using a reference dataset. Availability: A user friendly code implemented in R language can be downloaded from http://www.eio.uva.es/~miguel/robustdetectionprocedure.html.

  13. Modeling seasonal detection patterns for burrowing owl surveys

    Science.gov (United States)

    Quresh S. Latif; Kathleen D. Fleming; Cameron Barrows; John T. Rotenberry

    2012-01-01

    To guide monitoring of burrowing owls (Athene cunicularia) in the Coachella Valley, California, USA, we analyzed survey-method-specific seasonal variation in detectability. Point-based call-broadcast surveys yielded high early season detectability that then declined through time, whereas detectability on driving surveys increased through the season. Point surveys...

  14. Bridge damage detection using spatiotemporal patterns extracted from dense sensor network

    International Nuclear Information System (INIS)

    Liu, Chao; Sarkar, Soumik; Gong, Yongqiang; Laflamme, Simon; Phares, Brent

    2017-01-01

    The alarmingly degrading state of transportation infrastructures combined with their key societal and economic importance calls for automatic condition assessment methods to facilitate smart management of maintenance and repairs. With the advent of ubiquitous sensing and communication capabilities, scalable data-driven approaches is of great interest, as it can utilize large volume of streaming data without requiring detailed physical models that can be inaccurate and computationally expensive to run. Properly designed, a data-driven methodology could enable fast and automatic evaluation of infrastructures, discovery of causal dependencies among various sub-system dynamic responses, and decision making with uncertainties and lack of labeled data. In this work, a spatiotemporal pattern network (STPN) strategy built on symbolic dynamic filtering (SDF) is proposed to explore spatiotemporal behaviors in a bridge network. Data from strain gauges installed on two bridges are generated using finite element simulation for three types of sensor networks from a density perspective (dense, nominal, sparse). Causal relationships among spatially distributed strain data streams are extracted and analyzed for vehicle identification and detection, and for localization of structural degradation in bridges. Multiple case studies show significant capabilities of the proposed approach in: (i) capturing spatiotemporal features to discover causality between bridges (geographically close), (ii) robustness to noise in data for feature extraction, (iii) detecting and localizing damage via comparison of bridge responses to similar vehicle loads, and (iv) implementing real-time health monitoring and decision making work flow for bridge networks. Also, the results demonstrate increased sensitivity in detecting damages and higher reliability in quantifying the damage level with increase in sensor network density. (paper)

  15. Detection and Evaluation of Spatio-Temporal Spike Patterns in Massively Parallel Spike Train Data with SPADE

    Directory of Open Access Journals (Sweden)

    Pietro Quaglio

    2017-05-01

    Full Text Available Repeated, precise sequences of spikes are largely considered a signature of activation of cell assemblies. These repeated sequences are commonly known under the name of spatio-temporal patterns (STPs. STPs are hypothesized to play a role in the communication of information in the computational process operated by the cerebral cortex. A variety of statistical methods for the detection of STPs have been developed and applied to electrophysiological recordings, but such methods scale poorly with the current size of available parallel spike train recordings (more than 100 neurons. In this work, we introduce a novel method capable of overcoming the computational and statistical limits of existing analysis techniques in detecting repeating STPs within massively parallel spike trains (MPST. We employ advanced data mining techniques to efficiently extract repeating sequences of spikes from the data. Then, we introduce and compare two alternative approaches to distinguish statistically significant patterns from chance sequences. The first approach uses a measure known as conceptual stability, of which we investigate a computationally cheap approximation for applications to such large data sets. The second approach is based on the evaluation of pattern statistical significance. In particular, we provide an extension to STPs of a method we recently introduced for the evaluation of statistical significance of synchronous spike patterns. The performance of the two approaches is evaluated in terms of computational load and statistical power on a variety of artificial data sets that replicate specific features of experimental data. Both methods provide an effective and robust procedure for detection of STPs in MPST data. The method based on significance evaluation shows the best overall performance, although at a higher computational cost. We name the novel procedure the spatio-temporal Spike PAttern Detection and Evaluation (SPADE analysis.

  16. Robust fault detection of turbofan engines subject to adaptive controllers via a Total Measurable Fault Information Residual (ToMFIR) technique.

    Science.gov (United States)

    Chen, Wen; Chowdhury, Fahmida N; Djuric, Ana; Yeh, Chih-Ping

    2014-09-01

    This paper provides a new design of robust fault detection for turbofan engines with adaptive controllers. The critical issue is that the adaptive controllers can depress the faulty effects such that the actual system outputs remain the pre-specified values, making it difficult to detect faults/failures. To solve this problem, a Total Measurable Fault Information Residual (ToMFIR) technique with the aid of system transformation is adopted to detect faults in turbofan engines with adaptive controllers. This design is a ToMFIR-redundancy-based robust fault detection. The ToMFIR is first introduced and existing results are also summarized. The Detailed design process of the ToMFIRs is presented and a turbofan engine model is simulated to verify the effectiveness of the proposed ToMFIR-based fault-detection strategy. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Design And Implementation Of Tool For Detecting Anti-Patterns In Relational Database

    Directory of Open Access Journals (Sweden)

    Gaurav Kumar

    2017-07-01

    Full Text Available Anti-patterns are poor solution to design and im-plementation problems. Developers may introduce anti-patterns in their software systems because of time pressure lack of understanding communication and or-skills. Anti-patterns create problems in software maintenance and development. Database anti-patterns lead to complex and time consuming query process-ing and loss of integrity constraints. Detecting anti-patterns could reduce costs efforts and resources. Researchers have proposed approaches to detect anti-patterns in software development. But not much research has been done about database anti-patterns. This report presents two approaches to detect schema design anti-patterns in relational database. Our first approach is based on pattern matchingwe look into potential candidates based on schema patterns. Second approach is a machine learning based approach we generate features of possible anti-patterns and build SVMbased classifier to detect them. Here we look into these four anti-patterns a Multi-valued attribute b Nave tree based c Entity Attribute Value and dPolymorphic Association . We measure precision and recall of each approach and compare the results. SVM-based approach provides more precision and recall with more training dataset.

  18. Efficient and Robust Detection of GFSK Signals under Dispersive Channel, Modulation Index, and Carrier Frequency Offset Conditions

    Directory of Open Access Journals (Sweden)

    Stephan Weiss

    2005-09-01

    Full Text Available Gaussian frequency shift keying is the modulation scheme specified for Bluetooth. Signal adversities typical in Bluetooth networks include AWGN, multipath propagation, carrier frequency, and modulation index offsets. In our effort to realise a robust but efficient Bluetooth receiver, we adopt a high-performance matched-filter-based detector, which is near optimal in AWGN, but requires a prohibitively costly filter bank for processing of K bits worth of the received signal. However, through filtering over a single bit period and performing phase propagation of intermediate results over successive single-bit stages, we eliminate redundancy involved in providing the matched filter outputs and reduce its complexity by up to 90% (for K=9. The constant modulus signal characteristic and the potential for carrier frequency offsets make the constant modulus algorithm (CMA suitable for channel equalisation, and we demonstrate its effectiveness in this paper. We also introduce a stochastic gradient-based algorithm for carrier frequency offset correction, and show that the relative rotation between successive intermediate filter outputs enables us to detect and correct offsets in modulation index.

  19. A novel approach to describing and detecting performance anti-patterns

    Science.gov (United States)

    Sheng, Jinfang; Wang, Yihan; Hu, Peipei; Wang, Bin

    2017-08-01

    Anti-pattern, as an extension to pattern, describes a widely used poor solution which can bring negative influence to application systems. Aiming at the shortcomings of the existing anti-pattern descriptions, an anti-pattern description method based on first order predicate is proposed. This method synthesizes anti-pattern forms and symptoms, which makes the description more accurate and has good scalability and versatility as well. In order to improve the accuracy of anti-pattern detection, a Bayesian classification method is applied in validation for detection results, which can reduce false negatives and false positives of anti-pattern detection. Finally, the proposed approach in this paper is applied to a small e-commerce system, the feasibility and effectiveness of the approach is demonstrated further through experiments.

  20. Detecting epileptic seizure with different feature extracting strategies using robust machine learning classification techniques by applying advance parameter optimization approach.

    Science.gov (United States)

    Hussain, Lal

    2018-06-01

    Epilepsy is a neurological disorder produced due to abnormal excitability of neurons in the brain. The research reveals that brain activity is monitored through electroencephalogram (EEG) of patients suffered from seizure to detect the epileptic seizure. The performance of EEG detection based epilepsy require feature extracting strategies. In this research, we have extracted varying features extracting strategies based on time and frequency domain characteristics, nonlinear, wavelet based entropy and few statistical features. A deeper study was undertaken using novel machine learning classifiers by considering multiple factors. The support vector machine kernels are evaluated based on multiclass kernel and box constraint level. Likewise, for K-nearest neighbors (KNN), we computed the different distance metrics, Neighbor weights and Neighbors. Similarly, the decision trees we tuned the paramours based on maximum splits and split criteria and ensemble classifiers are evaluated based on different ensemble methods and learning rate. For training/testing tenfold Cross validation was employed and performance was evaluated in form of TPR, NPR, PPV, accuracy and AUC. In this research, a deeper analysis approach was performed using diverse features extracting strategies using robust machine learning classifiers with more advanced optimal options. Support Vector Machine linear kernel and KNN with City block distance metric give the overall highest accuracy of 99.5% which was higher than using the default parameters for these classifiers. Moreover, highest separation (AUC = 0.9991, 0.9990) were obtained at different kernel scales using SVM. Additionally, the K-nearest neighbors with inverse squared distance weight give higher performance at different Neighbors. Moreover, to distinguish the postictal heart rate oscillations from epileptic ictal subjects, and highest performance of 100% was obtained using different machine learning classifiers.

  1. Anthropometric geography applied to the analysis of socioeconomic disparities: cohort trends and spatial patterns of height and robustness in 20th-century Spain.

    Science.gov (United States)

    Camara, Antonio D; Roman, Joan Garcia

    2015-11-01

    Anthropometrics have been widely used to study the influence of environmental factors on health and nutritional status. In contrast, anthropometric geography has not often been employed to approximate the dynamics of spatial disparities associated with socioeconomic and demographic changes. Spain exhibited intense disparity and change during the middle decades of the 20 th century, with the result that the life courses of the corresponding cohorts were associated with diverse environmental conditions. This was also true of the Spanish territories. This paper presents insights concerning the relationship between socioeconomic changes and living conditions by combining the analysis of cohort trends and the anthropometric cartography of height and physical build. This analysis is conducted for Spanish male cohorts born 1934-1973 that were recorded in the Spanish military statistics. This information is interpreted in light of region-level data on GDP and infant mortality. Our results show an anthropometric convergence across regions that, nevertheless, did not substantially modify the spatial patterns of robustness, featuring primarily robust northeastern regions and weak Central-Southern regions. These patterns persisted until the 1990s (cohorts born during the 1970s). For the most part, anthropometric disparities were associated with socioeconomic disparities, although the former lessened over time to a greater extent than the latter. Interestingly, the various anthropometric indicators utilized here do not point to the same conclusions. Some discrepancies between height and robustness patterns have been found that moderate the statements from the analysis of cohort height alone regarding the level and evolution of living conditions across Spanish regions.

  2. A Novel Method for Detection of Epilepsy in Short and Noisy EEG Signals Using Ordinal Pattern Analysis

    Directory of Open Access Journals (Sweden)

    Iman Veisi

    2010-03-01

    Full Text Available Introduction: In this paper, a novel complexity measure is proposed to detect dynamical changes in nonlinear systems using ordinal pattern analysis of time series data taken from the system. Epilepsy is considered as a dynamical change in nonlinear and complex brain system. The ability of the proposed measure for characterizing the normal and epileptic EEG signals when the signal is short or is contaminated with noise is investigated and compared with some traditional chaos-based measures. Materials and Methods: In the proposed method, the phase space of the time series is reconstructed and then partitioned using ordinal patterns. The partitions can be labeled using a set of symbols. Therefore, the state trajectory is converted to a symbol sequence. A finite state machine is then constructed to model the sequence. A new complexity measure is proposed to detect dynamical changes using the state transition matrix of the state machine. The proposed complexity measure was applied to detect epilepsy in short and noisy EEG signals and the results were compared with some chaotic measures. Results: The results indicate that this complexity measure can distinguish normal and epileptic EEG signals with an accuracy of more than 97% for clean EEG and more than 75% for highly noised EEG signals. Discussion and Conclusion: The complexity measure can be computed in a very fast and easy way and, unlike traditional chaotic measures, is robust with respect to noise corrupting the data. This measure is also capable of dynamical change detection in short time series data.

  3. First human hNT neurons patterned on parylene-C/silicon dioxide substrates: Combining an accessible cell line and robust patterning technology for the study of the pathological adult human brain.

    Science.gov (United States)

    Unsworth, C P; Graham, E S; Delivopoulos, E; Dragunow, M; Murray, A F

    2010-12-15

    In this communication, we describe a new method which has enabled the first patterning of human neurons (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/silicon dioxide substrates. We reveal the details of the nanofabrication processes, cell differentiation and culturing protocols necessary to successfully pattern hNT neurons which are each key aspects of this new method. The benefits in patterning human neurons on silicon chip using an accessible cell line and robust patterning technology are of widespread value. Thus, using a combined technology such as this will facilitate the detailed study of the pathological human brain at both the single cell and network level. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Pattern of interstitial lung disease detected by high resolution ...

    African Journals Online (AJOL)

    Background: Diffuse lung diseases constitute a major cause of morbidity and mortality worldwide. High Resolution Computed Tomography (HRCT) is the recommended imaging technique in the diagnosis, assessment and followup of these diseases. Objectives: To describe the pattern of HRCT findings in patients with ...

  5. Detecting and Sonifying Temporal Patterns of Body Segments When Batting

    Directory of Open Access Journals (Sweden)

    Akemi Kobayashi

    2018-02-01

    Full Text Available To improve skill in sport activities it is essential to discern the temporal patterns of one’s own movements. Our previous motion capture experiment involving elite female softball players identified key differences in the temporal body movements between the top players and young players against fastballs/change-ups. In this paper, we found that key features could be extracted from the rotation of the pelvis and we developed a sonification feedback system with two nine-axes inertial sensors. Rotation patterns are converted into two synthesized sounds to represent the time at peak trunk rotation speed and impact time. We conducted a pilot experiment with this feedback proposal using expert and novice batters, male and female whether the participants can pace of the rotational motion in batting. As a result, this feedback approach may allow the user to alter the time of peak trunk rotation speed to more closely match the cue provided by the training sound.

  6. The Michelson interferometer-how to detect invisible interference patterns

    International Nuclear Information System (INIS)

    Verovnik, Ivo; Likar, Andrej

    2004-01-01

    In a Michelson interferometer, the contrast of the interference pattern fades away due to incoherence of light when the mirrors are not in equidistant positions. We propose an experiment where the distance between the interference fringes can be determined, even when the difference in length of the interferometer arms is far beyond the coherence length of the light, i.e. when the interference pattern disappears completely for the naked eye. We used a semiconductor laser with two photodiodes as sensors, which enabled us to follow the fluctuations of the light intensity on the screen. The distance between invisible interference fringes was determined from periodic changes of the summed fluctuating signal, obtained by changing the distance between the two sensors

  7. Pattern Discovery and Change Detection of Online Music Query Streams

    Science.gov (United States)

    Li, Hua-Fu

    In this paper, an efficient stream mining algorithm, called FTP-stream (Frequent Temporal Pattern mining of streams), is proposed to find the frequent temporal patterns over melody sequence streams. In the framework of our proposed algorithm, an effective bit-sequence representation is used to reduce the time and memory needed to slide the windows. The FTP-stream algorithm can calculate the support threshold in only a single pass based on the concept of bit-sequence representation. It takes the advantage of "left" and "and" operations of the representation. Experiments show that the proposed algorithm only scans the music query stream once, and runs significant faster and consumes less memory than existing algorithms, such as SWFI-stream and Moment.

  8. A robust physiology-based source separation method for QRS detection in low amplitude fetal ECG recordings

    International Nuclear Information System (INIS)

    Vullings, R; Bergmans, J W M; Peters, C H L; Hermans, M J M; Wijn, P F F; Oei, S G

    2010-01-01

    The use of the non-invasively obtained fetal electrocardiogram (ECG) in fetal monitoring is complicated by the low signal-to-noise ratio (SNR) of ECG signals. Even after removal of the predominant interference (i.e. the maternal ECG), the SNR is generally too low for medical diagnostics, and hence additional signal processing is still required. To this end, several methods for exploiting the spatial correlation of multi-channel fetal ECG recordings from the maternal abdomen have been proposed in the literature, of which principal component analysis (PCA) and independent component analysis (ICA) are the most prominent. Both PCA and ICA, however, suffer from the drawback that they are blind source separation (BSS) techniques and as such suboptimum in that they do not consider a priori knowledge on the abdominal electrode configuration and fetal heart activity. In this paper we propose a source separation technique that is based on the physiology of the fetal heart and on the knowledge of the electrode configuration. This technique operates by calculating the spatial fetal vectorcardiogram (VCG) and approximating the VCG for several overlayed heartbeats by an ellipse. By subsequently projecting the VCG onto the long axis of this ellipse, a source signal of the fetal ECG can be obtained. To evaluate the developed technique, its performance is compared to that of both PCA and ICA and to that of augmented versions of these techniques (aPCA and aICA; PCA and ICA applied on preprocessed signals) in generating a fetal ECG source signal with enhanced SNR that can be used to detect fetal QRS complexes. The evaluation shows that the developed source separation technique performs slightly better than aPCA and aICA and outperforms PCA and ICA and has the main advantage that, with respect to aPCA/PCA and aICA/ICA, it performs more robustly. This advantage renders it favorable for employment in automated, real-time fetal monitoring applications

  9. Complex networks from experimental horizontal oil–water flows: Community structure detection versus flow pattern discrimination

    International Nuclear Information System (INIS)

    Gao, Zhong-Ke; Fang, Peng-Cheng; Ding, Mei-Shuang; Yang, Dan; Jin, Ning-De

    2015-01-01

    We propose a complex network-based method to distinguish complex patterns arising from experimental horizontal oil–water two-phase flow. We first use the adaptive optimal kernel time–frequency representation (AOK TFR) to characterize flow pattern behaviors from the energy and frequency point of view. Then, we infer two-phase flow complex networks from experimental measurements and detect the community structures associated with flow patterns. The results suggest that the community detection in two-phase flow complex network allows objectively discriminating complex horizontal oil–water flow patterns, especially for the segregated and dispersed flow patterns, a task that existing method based on AOK TFR fails to work. - Highlights: • We combine time–frequency analysis and complex network to identify flow patterns. • We explore the transitional flow behaviors in terms of betweenness centrality. • Our analysis provides a novel way for recognizing complex flow patterns. • Broader applicability of our method is demonstrated and articulated

  10. PatternQuery: web application for fast detection of biomacromolecular structural patterns in the entire Protein Data Bank.

    Science.gov (United States)

    Sehnal, David; Pravda, Lukáš; Svobodová Vařeková, Radka; Ionescu, Crina-Maria; Koča, Jaroslav

    2015-07-01

    Well defined biomacromolecular patterns such as binding sites, catalytic sites, specific protein or nucleic acid sequences, etc. precisely modulate many important biological phenomena. We introduce PatternQuery, a web-based application designed for detection and fast extraction of such patterns. The application uses a unique query language with Python-like syntax to define the patterns that will be extracted from datasets provided by the user, or from the entire Protein Data Bank (PDB). Moreover, the database-wide search can be restricted using a variety of criteria, such as PDB ID, resolution, and organism of origin, to provide only relevant data. The extraction generally takes a few seconds for several hundreds of entries, up to approximately one hour for the whole PDB. The detected patterns are made available for download to enable further processing, as well as presented in a clear tabular and graphical form directly in the browser. The unique design of the language and the provided service could pave the way towards novel PDB-wide analyses, which were either difficult or unfeasible in the past. The application is available free of charge at http://ncbr.muni.cz/PatternQuery. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Trainable COSFIRE Filters for Keypoint Detection and Pattern Recognition

    NARCIS (Netherlands)

    Azzopardi, George; Petkov, Nicolai

    Background: Keypoint detection is important for many computer vision applications. Existing methods suffer from insufficient selectivity regarding the shape properties of features and are vulnerable to contrast variations and to the presence of noise or texture. Methods: We propose a trainable

  12. Trainable COSFIRE Filters for Keypoint Detection and Pattern Recognition

    NARCIS (Netherlands)

    Azzopardi, G.; Petkov, N.

    2013-01-01

    Background: Keypoint detection is important for many computer vision applications. Existing methods suffer from insufficient selectivity regarding the shape properties of features and are vulnerable to contrast variations and to the presence of noise or texture. Methods: We propose a trainable

  13. Resistance pattern and detection of metallo‑beta‑lactamase genes ...

    African Journals Online (AJOL)

    Materials and Methods: Two hundred nonduplicate, consecutive isolates of P. aeruginosa from clinical samples submitted to the Medical Microbiology Laboratory of National Hospital, Abuja were screened for carbapenem resistance using imipenem and meropenem. Phenotypic detection of MBL‑producing strains was ...

  14. Dysphonia Detected by Pattern Recognition of Spectral Composition.

    Science.gov (United States)

    Leinonen, Lea; And Others

    1992-01-01

    This study analyzed production of a long vowel sound within Finnish words by normal or dysphonic voices, using the Self-Organizing Map, the artificial neural network algorithm of T. Kohonen which produces two-dimensional representations of speech. The method was found to be both sensitive and specific in the detection of dysphonia. (Author/JDD)

  15. Threat Detection in Tweets with Trigger Patterns and Contextual Cues

    NARCIS (Netherlands)

    Spitters, M.M.; Eendebak, P.T.; Worm, D.T.H.; Bouma, H.

    2014-01-01

    Many threats in the real world can be related to activities in open sources on the internet. Early detection of threats based on internet information could assist in the prevention of incidents. However, the amount of data in social media, blogs and forums rapidly increases and it is time consuming

  16. Searching for Complex Patterns Using Disjunctive Anomaly Detection

    OpenAIRE

    Sabhnani, Maheshkumar; Dubrawski, Artur; Schneider, Jeff

    2013-01-01

    Objective Disjunctive anomaly detection (DAD) algorithm [1] can efficiently search across multidimensional biosurveillance data to find multiple simultaneously occurring (in time) and overlapping (across different data dimensions) anomalous clusters. We introduce extensions of DAD to handle rich cluster interactions and diverse data distributions. Introduction Modern biosurveillance data contains thousands of unique time series defined across various categorical dimensions (zipcode, age group...

  17. Algebraic connectivity of brain networks shows patterns of segregation leading to reduced network robustness in Alzheimer's disease

    Science.gov (United States)

    Daianu, Madelaine; Jahanshad, Neda; Nir, Talia M.; Leonardo, Cassandra D.; Jack, Clifford R.; Weiner, Michael W.; Bernstein, Matthew A.; Thompson, Paul M.

    2015-01-01

    Measures of network topology and connectivity aid the understanding of network breakdown as the brain degenerates in Alzheimer's disease (AD). We analyzed 3-Tesla diffusion-weighted images from 202 patients scanned by the Alzheimer's Disease Neuroimaging Initiative – 50 healthy controls, 72 with early- and 38 with late-stage mild cognitive impairment (eMCI/lMCI) and 42 with AD. Using whole-brain tractography, we reconstructed structural connectivity networks representing connections between pairs of cortical regions. We examined, for the first time in this context, the network's Laplacian matrix and its Fiedler value, describing the network's algebraic connectivity, and the Fiedler vector, used to partition a graph. We assessed algebraic connectivity and four additional supporting metrics, revealing a decrease in network robustness and increasing disarray among nodes as dementia progressed. Network components became more disconnected and segregated, and their modularity increased. These measures are sensitive to diagnostic group differences, and may help understand the complex changes in AD. PMID:26640830

  18. Improving the Robustness of Real-Time Myoelectric Pattern Recognition against Arm Position Changes in Transradial Amputees

    Directory of Open Access Journals (Sweden)

    Yanjuan Geng

    2017-01-01

    Full Text Available Previous studies have showed that arm position variations would significantly degrade the classification performance of myoelectric pattern-recognition-based prosthetic control, and the cascade classifier (CC and multiposition classifier (MPC have been proposed to minimize such degradation in offline scenarios. However, it remains unknown whether these proposed approaches could also perform well in the clinical use of a multifunctional prosthesis control. In this study, the online effect of arm position variation on motion identification was evaluated by using a motion-test environment (MTE developed to mimic the real-time control of myoelectric prostheses. The performance of different classifier configurations in reducing the impact of arm position variation was investigated using four real-time metrics based on dataset obtained from transradial amputees. The results of this study showed that, compared to the commonly used motion classification method, the CC and MPC configurations improved the real-time performance across seven classes of movements in five different arm positions (8.7% and 12.7% increments of motion completion rate, resp.. The results also indicated that high offline classification accuracy might not ensure good real-time performance under variable arm positions, which necessitated the investigation of the real-time control performance to gain proper insight on the clinical implementation of EMG-pattern-recognition-based controllers for limb amputees.

  19. Detecting regularities in soccer dynamics: A T-pattern approach

    Directory of Open Access Journals (Sweden)

    Valentino Zurloni

    2014-01-01

    Full Text Available La dinámica del juego en partidos de fútbol profesional es un fenómeno complejo que no ha estado resuelto de forma óptima a través delas vías tradicionales que han pretendido la cuantificación en deportes de equipo. El objetivo de este estudio es el de detectar la dinámica existente mediante un análisis de patrones temporales. Específicamente, se pretenden revelar las estructuras ocultas pero estables que subyacen a las situaciones interactivas que determinan las acciones de ataque en el fútbol. El planteamiento metodológico se basa en un diseño observacional, y con apoyo de registros digitales y análisis informatizados. Los datos se analizaron mediante el programa Theme 6 beta, el cual permite detectar la estructura temporaly secuencial de las series de datos, poniendo de manifiesto patrones que regular o irregularmente ocurren repetidamente en un período de observación. El Theme ha detectado muchos patrones temporales (T-patterns en los partidos de fútbol analizados. Se hallaron notables diferencias entre los partidos ganados y perdidos. El número de distintos T-patterns detectados fue mayor para los partidos perdidos, y menor para los ganados, mientras que el número de eventos codificados fue similar. El programa Theme y los T-patterns mejoran las posibilidades investigadoras respecto a un análisis de rendimiento basado en la frecuencia, y hacen que esta metodología sea eficaz para la investigación y constituya un apoyo procedimental en el análisis del deporte. Nuestros resultados indican que se requieren posteriores investigaciones relativas a posibles conexiones entre la detección de estas estructuras temporales y las observaciones humanas respecto al rendimiento en el fútbol. Este planteamiento sería un apoyo tanto para los miembros de los equipos como para los entrenadores, permitiendo alcanzar una mejor comprensión de la dinámica del juego y aportando una información que no ofrecen los métodos tradicionales.

  20. Application of DNA Machineries for the Barcode Patterned Detection of Genes or Proteins.

    Science.gov (United States)

    Zhou, Zhixin; Luo, Guofeng; Wulf, Verena; Willner, Itamar

    2018-06-05

    The study introduces an analytical platform for the detection of genes or aptamer-ligand complexes by nucleic acid barcode patterns generated by DNA machineries. The DNA machineries consist of nucleic acid scaffolds that include specific recognition sites for the different genes or aptamer-ligand analytes. The binding of the analytes to the scaffolds initiate, in the presence of the nucleotide mixture, a cyclic polymerization/nicking machinery that yields displaced strands of variable lengths. The electrophoretic separation of the resulting strands provides barcode patterns for the specific detection of the different analytes. Mixtures of DNA machineries that yield, upon sensing of different genes (or aptamer ligands), one-, two-, or three-band barcode patterns are described. The combination of nucleic acid scaffolds acting, in the presence of polymerase/nicking enzyme and nucleotide mixture, as DNA machineries, that generate multiband barcode patterns provide an analytical platform for the detection of an individual gene out of many possible genes. The diversity of genes (or other analytes) that can be analyzed by the DNA machineries and the barcode patterned imaging is given by the Pascal's triangle. As a proof-of-concept, the detection of one of six genes, that is, TP53, Werner syndrome, Tay-Sachs normal gene, BRCA1, Tay-Sachs mutant gene, and cystic fibrosis disorder gene by six two-band barcode patterns is demonstrated. The advantages and limitations of the detection of analytes by polymerase/nicking DNA machineries that yield barcode patterns as imaging readout signals are discussed.

  1. A simple, low-cost and robust capillary zone electrophoresis Method with capacitively coupled contactless conductivity detection for the routine determination of four selected penicillins in Money-constrained laboratories

    NARCIS (Netherlands)

    Paul, Prasanta; Sänger-van de Griend, Cari; Adams, Erwin; Van Schepdael, Ann

    2018-01-01

    A simple and robust capillary zone electrophoresis Method was developed and validated for the determination of amoxicillin and clavulanate, ampicillin, phenoxymethyl penicillin (Pen V) as well as flucloxacillin. Capacitively coupled contactless conductivity detection was employed as detection Mode

  2. Detecting outliers and/or leverage points: a robust two-stage procedure with bootstrap cut-off points

    Directory of Open Access Journals (Sweden)

    Ettore Marubini

    2014-01-01

    Full Text Available This paper presents a robust two-stage procedure for identification of outlying observations in regression analysis. The exploratory stage identifies leverage points and vertical outliers through a robust distance estimator based on Minimum Covariance Determinant (MCD. After deletion of these points, the confirmatory stage carries out an Ordinary Least Squares (OLS analysis on the remaining subset of data and investigates the effect of adding back in the previously deleted observations. Cut-off points pertinent to different diagnostics are generated by bootstrapping and the cases are definitely labelled as good-leverage, bad-leverage, vertical outliers and typical cases. The procedure is applied to four examples.

  3. EEG analysis of seizure patterns using visibility graphs for detection of generalized seizures

    NARCIS (Netherlands)

    Wang, Lei; Long, Xi; Arends, J.B.A.M.; Aarts, R.M.

    2017-01-01

    Background The traditional EEG features in the time and frequency domain show limited seizure detection performance in the epileptic population with intellectual disability (ID). In addition, the influence of EEG seizure patterns on detection performance was less studied. New method A single-channel

  4. Application of pattern recognition techniques to the detection of the Phenix reactor control rods vibrations

    International Nuclear Information System (INIS)

    Zwingelstein, G.; Deat, M.; Le Guillou, G.

    1979-01-01

    The incipient detection of control rods vibrations is very important for the safety of the operating plants. This detection can be achieved by an analysis of the peaks of the power spectrum density of the neutron noise. Pattern Recognition techniques were applied to detect the rod vibrations which occured at the fast breeder Phenix (250MWe). In the first part we give a description of the basic pattern which is used to characterize the behavior of the plant. The pattern is considered as column vector in n dimensional Euclidian space where the components are the samples of the power spectral density of the neutron noise. In the second part, a recursive learning procedure of the normal patterns which provides the mean and the variance of the estimates is described. In the third part the classification problem has been framed in terms of a partitioning procedure in n dimensional space which encloses regions corresponding to normal operations. This pattern recognition scheme was applied to the detection of rod vibrations with neutron data collected at the Phenix site before and after occurence of the vibrations. The analysis was carried out with a 42-dimensional measurement space. The learned pattern was estimated with 150 measurement vectors which correspond to the period without vibrations. The efficiency of the surveillance scheme is then demonstrated by processing separately 119 measurement vectors recorded during the rod vibration period

  5. A Motion-Adaptive Deinterlacer via Hybrid Motion Detection and Edge-Pattern Recognition

    Directory of Open Access Journals (Sweden)

    He-Yuan Lin

    2008-03-01

    Full Text Available A novel motion-adaptive deinterlacing algorithm with edge-pattern recognition and hybrid motion detection is introduced. The great variety of video contents makes the processing of assorted motion, edges, textures, and the combination of them very difficult with a single algorithm. The edge-pattern recognition algorithm introduced in this paper exhibits the flexibility in processing both textures and edges which need to be separately accomplished by line average and edge-based line average before. Moreover, predicting the neighboring pixels for pattern analysis and interpolation further enhances the adaptability of the edge-pattern recognition unit when motion detection is incorporated. Our hybrid motion detection features accurate detection of fast and slow motion in interlaced video and also the motion with edges. Using only three fields for detection also renders higher temporal correlation for interpolation. The better performance of our deinterlacing algorithm with higher content-adaptability and less memory cost than the state-of-the-art 4-field motion detection algorithms can be seen from the subjective and objective experimental results of the CIF and PAL video sequences.

  6. A Motion-Adaptive Deinterlacer via Hybrid Motion Detection and Edge-Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Li Hsin-Te

    2008-01-01

    Full Text Available Abstract A novel motion-adaptive deinterlacing algorithm with edge-pattern recognition and hybrid motion detection is introduced. The great variety of video contents makes the processing of assorted motion, edges, textures, and the combination of them very difficult with a single algorithm. The edge-pattern recognition algorithm introduced in this paper exhibits the flexibility in processing both textures and edges which need to be separately accomplished by line average and edge-based line average before. Moreover, predicting the neighboring pixels for pattern analysis and interpolation further enhances the adaptability of the edge-pattern recognition unit when motion detection is incorporated. Our hybrid motion detection features accurate detection of fast and slow motion in interlaced video and also the motion with edges. Using only three fields for detection also renders higher temporal correlation for interpolation. The better performance of our deinterlacing algorithm with higher content-adaptability and less memory cost than the state-of-the-art 4-field motion detection algorithms can be seen from the subjective and objective experimental results of the CIF and PAL video sequences.

  7. Transient pattern analysis for fault detection and diagnosis of HVAC systems

    International Nuclear Information System (INIS)

    Cho, Sung-Hwan; Yang, Hoon-Cheol; Zaheer-uddin, M.; Ahn, Byung-Cheon

    2005-01-01

    Modern building HVAC systems are complex and consist of a large number of interconnected sub-systems and components. In the event of a fault, it becomes very difficult for the operator to locate and isolate the faulty component in such large systems using conventional fault detection methods. In this study, transient pattern analysis is explored as a tool for fault detection and diagnosis of an HVAC system. Several tests involving different fault replications were conducted in an environmental chamber test facility. The results show that the evolution of fault residuals forms clear and distinct patterns that can be used to isolate faults. It was found that the time needed to reach steady state for a typical building HVAC system is at least 50-60 min. This means incorrect diagnosis of faults can happen during online monitoring if the transient pattern responses are not considered in the fault detection and diagnosis analysis

  8. Major Depression Detection from EEG Signals Using Kernel Eigen-Filter-Bank Common Spatial Patterns.

    Science.gov (United States)

    Liao, Shih-Cheng; Wu, Chien-Te; Huang, Hao-Chuan; Cheng, Wei-Teng; Liu, Yi-Hung

    2017-06-14

    Major depressive disorder (MDD) has become a leading contributor to the global burden of disease; however, there are currently no reliable biological markers or physiological measurements for efficiently and effectively dissecting the heterogeneity of MDD. Here we propose a novel method based on scalp electroencephalography (EEG) signals and a robust spectral-spatial EEG feature extractor called kernel eigen-filter-bank common spatial pattern (KEFB-CSP). The KEFB-CSP first filters the multi-channel raw EEG signals into a set of frequency sub-bands covering the range from theta to gamma bands, then spatially transforms the EEG signals of each sub-band from the original sensor space to a new space where the new signals (i.e., CSPs) are optimal for the classification between MDD and healthy controls, and finally applies the kernel principal component analysis (kernel PCA) to transform the vector containing the CSPs from all frequency sub-bands to a lower-dimensional feature vector called KEFB-CSP. Twelve patients with MDD and twelve healthy controls participated in this study, and from each participant we collected 54 resting-state EEGs of 6 s length (5 min and 24 s in total). Our results show that the proposed KEFB-CSP outperforms other EEG features including the powers of EEG frequency bands, and fractal dimension, which had been widely applied in previous EEG-based depression detection studies. The results also reveal that the 8 electrodes from the temporal areas gave higher accuracies than other scalp areas. The KEFB-CSP was able to achieve an average EEG classification accuracy of 81.23% in single-trial analysis when only the 8-electrode EEGs of the temporal area and a support vector machine (SVM) classifier were used. We also designed a voting-based leave-one-participant-out procedure to test the participant-independent individual classification accuracy. The voting-based results show that the mean classification accuracy of about 80% can be achieved by the KEFP

  9. Major Depression Detection from EEG Signals Using Kernel Eigen-Filter-Bank Common Spatial Patterns

    Directory of Open Access Journals (Sweden)

    Shih-Cheng Liao

    2017-06-01

    Full Text Available Major depressive disorder (MDD has become a leading contributor to the global burden of disease; however, there are currently no reliable biological markers or physiological measurements for efficiently and effectively dissecting the heterogeneity of MDD. Here we propose a novel method based on scalp electroencephalography (EEG signals and a robust spectral-spatial EEG feature extractor called kernel eigen-filter-bank common spatial pattern (KEFB-CSP. The KEFB-CSP first filters the multi-channel raw EEG signals into a set of frequency sub-bands covering the range from theta to gamma bands, then spatially transforms the EEG signals of each sub-band from the original sensor space to a new space where the new signals (i.e., CSPs are optimal for the classification between MDD and healthy controls, and finally applies the kernel principal component analysis (kernel PCA to transform the vector containing the CSPs from all frequency sub-bands to a lower-dimensional feature vector called KEFB-CSP. Twelve patients with MDD and twelve healthy controls participated in this study, and from each participant we collected 54 resting-state EEGs of 6 s length (5 min and 24 s in total. Our results show that the proposed KEFB-CSP outperforms other EEG features including the powers of EEG frequency bands, and fractal dimension, which had been widely applied in previous EEG-based depression detection studies. The results also reveal that the 8 electrodes from the temporal areas gave higher accuracies than other scalp areas. The KEFB-CSP was able to achieve an average EEG classification accuracy of 81.23% in single-trial analysis when only the 8-electrode EEGs of the temporal area and a support vector machine (SVM classifier were used. We also designed a voting-based leave-one-participant-out procedure to test the participant-independent individual classification accuracy. The voting-based results show that the mean classification accuracy of about 80% can be

  10. Application of reflectance spectroscopies (FTIR-ATR & FT-NIR) coupled with multivariate methods for robust in vivo detection of begomovirus infection in papaya leaves

    Science.gov (United States)

    Haq, Quazi M. I.; Mabood, Fazal; Naureen, Zakira; Al-Harrasi, Ahmed; Gilani, Sayed A.; Hussain, Javid; Jabeen, Farah; Khan, Ajmal; Al-Sabari, Ruqaya S. M.; Al-khanbashi, Fatema H. S.; Al-Fahdi, Amira A. M.; Al-Zaabi, Ahoud K. A.; Al-Shuraiqi, Fatma A. M.; Al-Bahaisi, Iman M.

    2018-06-01

    Nucleic acid & serology based methods have revolutionized plant disease detection, however, they are not very reliable at asymptomatic stage, especially in case of pathogen with systemic infection, in addition, they need at least 1-2 days for sample harvesting, processing, and analysis. In this study, two reflectance spectroscopies i.e. Near Infrared reflectance spectroscopy (NIR) and Fourier-Transform-Infrared spectroscopy with Attenuated Total Reflection (FT-IR, ATR) coupled with multivariate exploratory methods like Principle Component Analysis (PCA) and Partial least square discriminant analysis (PLS-DA) have been deployed to detect begomovirus infection in papaya leaves. The application of those techniques demonstrates that they are very useful for robust in vivo detection of plant begomovirus infection. These methods are simple, sensitive, reproducible, precise, and do not require any lengthy samples preparation procedures.

  11. A rapid, naked-eye detection of hypochlorite and bisulfite using a robust and highly-photostable indicator dye Quinaldine Red in aqueous medium

    Science.gov (United States)

    Dutta, Tanoy; Chandra, Falguni; Koner, Apurba L.

    2018-02-01

    A ;naked-eye; detection of health hazardous bisulfite (HSO3-) and hypochlorite (ClO-) using an indicator dye (Quinaldine Red, QR) in a wide range of pH is demonstrated. The molecule contains a quinoline moiety linked to an N,N-dimethylaniline moiety with a conjugated double bond. Treatment of QR with HSO3- and ClO-, in aqueous solution at near-neutral pH, resulted in a colorless product with high selectivity and sensitivity. The detection limit was 47.8 μM and 0.2 μM for HSO3- and ClO- respectively. However, ClO- was 50 times more sensitive and with 2 times faster response compared to HSO3-. The detail characterization and related analysis demonstrate the potential of QR for a rapid, robust and highly efficient colorimetric sensor for the practical applications to detect hypochlorite in water samples.

  12. Application of reflectance spectroscopies (FTIR-ATR & FT-NIR) coupled with multivariate methods for robust in vivo detection of begomovirus infection in papaya leaves.

    Science.gov (United States)

    Haq, Quazi M I; Mabood, Fazal; Naureen, Zakira; Al-Harrasi, Ahmed; Gilani, Sayed A; Hussain, Javid; Jabeen, Farah; Khan, Ajmal; Al-Sabari, Ruqaya S M; Al-Khanbashi, Fatema H S; Al-Fahdi, Amira A M; Al-Zaabi, Ahoud K A; Al-Shuraiqi, Fatma A M; Al-Bahaisi, Iman M

    2018-06-05

    Nucleic acid & serology based methods have revolutionized plant disease detection, however, they are not very reliable at asymptomatic stage, especially in case of pathogen with systemic infection, in addition, they need at least 1-2days for sample harvesting, processing, and analysis. In this study, two reflectance spectroscopies i.e. Near Infrared reflectance spectroscopy (NIR) and Fourier-Transform-Infrared spectroscopy with Attenuated Total Reflection (FT-IR, ATR) coupled with multivariate exploratory methods like Principle Component Analysis (PCA) and Partial least square discriminant analysis (PLS-DA) have been deployed to detect begomovirus infection in papaya leaves. The application of those techniques demonstrates that they are very useful for robust in vivo detection of plant begomovirus infection. These methods are simple, sensitive, reproducible, precise, and do not require any lengthy samples preparation procedures. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Citation-based plagiarism detection detecting disguised and cross-language plagiarism using citation pattern analysis

    CERN Document Server

    Gipp, Bela

    2014-01-01

    Plagiarism is a problem with far-reaching consequences for the sciences. However, even today's best software-based systems can only reliably identify copy & paste plagiarism. Disguised plagiarism forms, including paraphrased text, cross-language plagiarism, as well as structural and idea plagiarism often remain undetected. This weakness of current systems results in a large percentage of scientific plagiarism going undetected. Bela Gipp provides an overview of the state-of-the art in plagiarism detection and an analysis of why these approaches fail to detect disguised plagiarism forms. The aut

  14. Pattern-recognition software detecting the onset of failures in complex systems

    International Nuclear Information System (INIS)

    Mott, J.; King, R.

    1987-01-01

    A very general mathematical framework for embodying learned data from a complex system and combining it with a current observation to estimate the true current state of the system has been implemented using nearly universal pattern-recognition algorithms and applied to surveillance of the EBR-II power plant. In this application the methodology can provide signal validation and replacement of faulty signals on a near-real-time basis for hundreds of plant parameters. The mathematical framework, the pattern-recognition algorithms, examples of the learning and estimating process, and plant operating decisions made using this methodology are discussed. The entire methodology has been reduced to a set of FORTRAN subroutines which are small, fast, robust and executable on a personal computer with a serial link to the system's data acquisition computer, or on the data acquisition computer itself

  15. Using forbidden ordinal patterns to detect determinism in irregularly sampled time series.

    Science.gov (United States)

    Kulp, C W; Chobot, J M; Niskala, B J; Needhammer, C J

    2016-02-01

    It is known that when symbolizing a time series into ordinal patterns using the Bandt-Pompe (BP) methodology, there will be ordinal patterns called forbidden patterns that do not occur in a deterministic series. The existence of forbidden patterns can be used to identify deterministic dynamics. In this paper, the ability to use forbidden patterns to detect determinism in irregularly sampled time series is tested on data generated from a continuous model system. The study is done in three parts. First, the effects of sampling time on the number of forbidden patterns are studied on regularly sampled time series. The next two parts focus on two types of irregular-sampling, missing data and timing jitter. It is shown that forbidden patterns can be used to detect determinism in irregularly sampled time series for low degrees of sampling irregularity (as defined in the paper). In addition, comments are made about the appropriateness of using the BP methodology to symbolize irregularly sampled time series.

  16. Expression-robust 3D face recognition via weighted sparse representation of multi-scale and multi-component local normal patterns

    KAUST Repository

    Li, Huibin

    2014-06-01

    In the theory of differential geometry, surface normal, as a first order surface differential quantity, determines the orientation of a surface at each point and contains informative local surface shape information. To fully exploit this kind of information for 3D face recognition (FR), this paper proposes a novel highly discriminative facial shape descriptor, namely multi-scale and multi-component local normal patterns (MSMC-LNP). Given a normalized facial range image, three components of normal vectors are first estimated, leading to three normal component images. Then, each normal component image is encoded locally to local normal patterns (LNP) on different scales. To utilize spatial information of facial shape, each normal component image is divided into several patches, and their LNP histograms are computed and concatenated according to the facial configuration. Finally, each original facial surface is represented by a set of LNP histograms including both global and local cues. Moreover, to make the proposed solution robust to the variations of facial expressions, we propose to learn the weight of each local patch on a given encoding scale and normal component image. Based on the learned weights and the weighted LNP histograms, we formulate a weighted sparse representation-based classifier (W-SRC). In contrast to the overwhelming majority of 3D FR approaches which were only benchmarked on the FRGC v2.0 database, we carried out extensive experiments on the FRGC v2.0, Bosphorus, BU-3DFE and 3D-TEC databases, thus including 3D face data captured in different scenarios through various sensors and depicting in particular different challenges with respect to facial expressions. The experimental results show that the proposed approach consistently achieves competitive rank-one recognition rates on these databases despite their heterogeneous nature, and thereby demonstrates its effectiveness and its generalizability. © 2014 Elsevier B.V.

  17. A false-alarm aware methodology to develop robust and efficient multi-scale infrared small target detection algorithm

    Science.gov (United States)

    Moradi, Saed; Moallem, Payman; Sabahi, Mohamad Farzan

    2018-03-01

    False alarm rate and detection rate are still two contradictory metrics for infrared small target detection in an infrared search and track system (IRST), despite the development of new detection algorithms. In certain circumstances, not detecting true targets is more tolerable than detecting false items as true targets. Hence, considering background clutter and detector noise as the sources of the false alarm in an IRST system, in this paper, a false alarm aware methodology is presented to reduce false alarm rate while the detection rate remains undegraded. To this end, advantages and disadvantages of each detection algorithm are investigated and the sources of the false alarms are determined. Two target detection algorithms having independent false alarm sources are chosen in a way that the disadvantages of the one algorithm can be compensated by the advantages of the other one. In this work, multi-scale average absolute gray difference (AAGD) and Laplacian of point spread function (LoPSF) are utilized as the cornerstones of the desired algorithm of the proposed methodology. After presenting a conceptual model for the desired algorithm, it is implemented through the most straightforward mechanism. The desired algorithm effectively suppresses background clutter and eliminates detector noise. Also, since the input images are processed through just four different scales, the desired algorithm has good capability for real-time implementation. Simulation results in term of signal to clutter ratio and background suppression factor on real and simulated images prove the effectiveness and the performance of the proposed methodology. Since the desired algorithm was developed based on independent false alarm sources, our proposed methodology is expandable to any pair of detection algorithms which have different false alarm sources.

  18. Hidden pattern discovery on epileptic EEG with 1-D local binary patterns and epileptic seizures detection by grey relational analysis.

    Science.gov (United States)

    Kaya, Yılmaz

    2015-09-01

    This paper proposes a novel approach to detect epilepsy seizures by using Electroencephalography (EEG), which is one of the most common methods for the diagnosis of epilepsy, based on 1-Dimension Local Binary Pattern (1D-LBP) and grey relational analysis (GRA) methods. The main aim of this paper is to evaluate and validate a novel approach, which is a computer-based quantitative EEG analyzing method and based on grey systems, aimed to help decision-maker. In this study, 1D-LBP, which utilizes all data points, was employed for extracting features in raw EEG signals, Fisher score (FS) was employed to select the representative features, which can also be determined as hidden patterns. Additionally, GRA is performed to classify EEG signals through these Fisher scored features. The experimental results of the proposed approach, which was employed in a public dataset for validation, showed that it has a high accuracy in identifying epileptic EEG signals. For various combinations of epileptic EEG, such as A-E, B-E, C-E, D-E, and A-D clusters, 100, 96, 100, 99.00 and 100% were achieved, respectively. Also, this work presents an attempt to develop a new general-purpose hidden pattern determination scheme, which can be utilized for different categories of time-varying signals.

  19. A robust object-based shadow detection method for cloud-free high resolution satellite images over urban areas and water bodies

    Science.gov (United States)

    Tatar, Nurollah; Saadatseresht, Mohammad; Arefi, Hossein; Hadavand, Ahmad

    2018-06-01

    Unwanted contrast in high resolution satellite images such as shadow areas directly affects the result of further processing in urban remote sensing images. Detecting and finding the precise position of shadows is critical in different remote sensing processing chains such as change detection, image classification and digital elevation model generation from stereo images. The spectral similarity between shadow areas, water bodies, and some dark asphalt roads makes the development of robust shadow detection algorithms challenging. In addition, most of the existing methods work on pixel-level and neglect the contextual information contained in neighboring pixels. In this paper, a new object-based shadow detection framework is introduced. In the proposed method a pixel-level shadow mask is built by extending established thresholding methods with a new C4 index which enables to solve the ambiguity of shadow and water bodies. Then the pixel-based results are further processed in an object-based majority analysis to detect the final shadow objects. Four different high resolution satellite images are used to validate this new approach. The result shows the superiority of the proposed method over some state-of-the-art shadow detection method with an average of 96% in F-measure.

  20. Robustness and precision of an automatic marker detection algorithm for online prostate daily targeting using a standard V-EPID.

    Science.gov (United States)

    Aubin, S; Beaulieu, L; Pouliot, S; Pouliot, J; Roy, R; Girouard, L M; Martel-Brisson, N; Vigneault, E; Laverdière, J

    2003-07-01

    An algorithm for the daily localization of the prostate using implanted markers and a standard video-based electronic portal imaging device (V-EPID) has been tested. Prior to planning, three gold markers were implanted in the prostate of seven patients. The clinical images were acquired with a BeamViewPlus 2.1 V-EPID for each field during the normal course radiotherapy treatment and are used off-line to determine the ability of the automatic marker detection algorithm to adequately and consistently detect the markers. Clinical images were obtained with various dose levels from ranging 2.5 to 75 MU. The algorithm is based on marker attenuation characterization in the portal image and spatial distribution. A total of 1182 clinical images were taken. The results show an average efficiency of 93% for the markers detected individually and 85% for the group of markers. This algorithm accomplishes the detection and validation in 0.20-0.40 s. When the center of mass of the group of implanted markers is used, then all displacements can be corrected to within 1.0 mm in 84% of the cases and within 1.5 mm in 97% of cases. The standard video-based EPID tested provides excellent marker detection capability even with low dose levels. The V-EPID can be used successfully with radiopaque markers and the automatic detection algorithm to track and correct the daily setup deviations due to organ motions.

  1. Detecting Aberrant Response Patterns in the Rasch Model. Rapport 87-3.

    Science.gov (United States)

    Kogut, Jan

    In this paper, the detection of response patterns aberrant from the Rasch model is considered. For this purpose, a new person fit index, recently developed by I. W. Molenaar (1987) and an iterative estimation procedure are used in a simulation study of Rasch model data mixed with aberrant data. Three kinds of aberrant response behavior are…

  2. Using Clustering Techniques To Detect Usage Patterns in a Web-based Information System.

    Science.gov (United States)

    Chen, Hui-Min; Cooper, Michael D.

    2001-01-01

    This study developed an analytical approach to detecting groups with homogenous usage patterns in a Web-based information system. Principal component analysis was used for data reduction, cluster analysis for categorizing usage into groups. The methodology was demonstrated and tested using two independent samples of user sessions from the…

  3. Hotspot detection using image pattern recognition based on higher-order local auto-correlation

    Science.gov (United States)

    Maeda, Shimon; Matsunawa, Tetsuaki; Ogawa, Ryuji; Ichikawa, Hirotaka; Takahata, Kazuhiro; Miyairi, Masahiro; Kotani, Toshiya; Nojima, Shigeki; Tanaka, Satoshi; Nakagawa, Kei; Saito, Tamaki; Mimotogi, Shoji; Inoue, Soichi; Nosato, Hirokazu; Sakanashi, Hidenori; Kobayashi, Takumi; Murakawa, Masahiro; Higuchi, Tetsuya; Takahashi, Eiichi; Otsu, Nobuyuki

    2011-04-01

    Below 40nm design node, systematic variation due to lithography must be taken into consideration during the early stage of design. So far, litho-aware design using lithography simulation models has been widely applied to assure that designs are printed on silicon without any error. However, the lithography simulation approach is very time consuming, and under time-to-market pressure, repetitive redesign by this approach may result in the missing of the market window. This paper proposes a fast hotspot detection support method by flexible and intelligent vision system image pattern recognition based on Higher-Order Local Autocorrelation. Our method learns the geometrical properties of the given design data without any defects as normal patterns, and automatically detects the design patterns with hotspots from the test data as abnormal patterns. The Higher-Order Local Autocorrelation method can extract features from the graphic image of design pattern, and computational cost of the extraction is constant regardless of the number of design pattern polygons. This approach can reduce turnaround time (TAT) dramatically only on 1CPU, compared with the conventional simulation-based approach, and by distributed processing, this has proven to deliver linear scalability with each additional CPU.

  4. Robust fault detection for the dynamics of high-speed train with multi-source finite frequency interference.

    Science.gov (United States)

    Bai, Weiqi; Dong, Hairong; Yao, Xiuming; Ning, Bin

    2018-04-01

    This paper proposes a composite fault detection scheme for the dynamics of high-speed train (HST), using an unknown input observer-like (UIO-like) fault detection filter, in the presence of wind gust and operating noises which are modeled as disturbance generated by exogenous system and unknown multi-source disturbance within finite frequency domain. Using system input and system output measurements, the fault detection filter is designed to generate the needed residual signals. In order to decouple disturbance from residual signals without truncating the influence of faults, this paper proposes a method to partition the disturbance into two parts. One subset of the disturbance does not appear in residual dynamics, and the influence of the other subset is constrained by H ∞ performance index in a finite frequency domain. A set of detection subspaces are defined, and every different fault is assigned to its own detection subspace to guarantee the residual signals are diagonally affected promptly by the faults. Simulations are conducted to demonstrate the effectiveness and merits of the proposed method. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Intrusion detection in cloud computing based attack patterns and risk assessment

    Directory of Open Access Journals (Sweden)

    Ben Charhi Youssef

    2017-05-01

    Full Text Available This paper is an extension of work originally presented in SYSCO CONF.We extend our previous work by presenting the initial results of the implementation of intrusion detection based on risk assessment on cloud computing. The idea focuses on a novel approach for detecting cyber-attacks on the cloud environment by analyzing attacks pattern using risk assessment methodologies. The aim of our solution is to combine evidences obtained from Intrusion Detection Systems (IDS deployed in a cloud with risk assessment related to each attack pattern. Our approach presents a new qualitative solution for analyzing each symptom, indicator and vulnerability analyzing impact and likelihood of distributed and multi-steps attacks directed to cloud environments. The implementation of this approach will reduce the number of false alerts and will improve the performance of the IDS.

  6. EEG analysis of seizure patterns using visibility graphs for detection of generalized seizures.

    Science.gov (United States)

    Wang, Lei; Long, Xi; Arends, Johan B A M; Aarts, Ronald M

    2017-10-01

    The traditional EEG features in the time and frequency domain show limited seizure detection performance in the epileptic population with intellectual disability (ID). In addition, the influence of EEG seizure patterns on detection performance was less studied. A single-channel EEG signal can be mapped into visibility graphs (VGS), including basic visibility graph (VG), horizontal VG (HVG), and difference VG (DVG). These graphs were used to characterize different EEG seizure patterns. To demonstrate its effectiveness in identifying EEG seizure patterns and detecting generalized seizures, EEG recordings of 615h on one EEG channel from 29 epileptic patients with ID were analyzed. A novel feature set with discriminative power for seizure detection was obtained by using the VGS method. The degree distributions (DDs) of DVG can clearly distinguish EEG of each seizure pattern. The degree entropy and power-law degree power in DVG were proposed here for the first time, and they show significant difference between seizure and non-seizure EEG. The connecting structure measured by HVG can better distinguish seizure EEG from background than those by VG and DVG. A traditional EEG feature set based on frequency analysis was used here as a benchmark feature set. With a support vector machine (SVM) classifier, the seizure detection performance of the benchmark feature set (sensitivity of 24%, FD t /h of 1.8s) can be improved by combining our proposed VGS features extracted from one EEG channel (sensitivity of 38%, FD t /h of 1.4s). The proposed VGS-based features can help improve seizure detection for ID patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Fall Detection in Individuals With Lower Limb Amputations Using Mobile Phones: Machine Learning Enhances Robustness for Real-World Applications.

    Science.gov (United States)

    Shawen, Nicholas; Lonini, Luca; Mummidisetty, Chaithanya Krishna; Shparii, Ilona; Albert, Mark V; Kording, Konrad; Jayaraman, Arun

    2017-10-11

    Automatically detecting falls with mobile phones provides an opportunity for rapid response to injuries and better knowledge of what precipitated the fall and its consequences. This is beneficial for populations that are prone to falling, such as people with lower limb amputations. Prior studies have focused on fall detection in able-bodied individuals using data from a laboratory setting. Such approaches may provide a limited ability to detect falls in amputees and in real-world scenarios. The aim was to develop a classifier that uses data from able-bodied individuals to detect falls in individuals with a lower limb amputation, while they freely carry the mobile phone in different locations and during free-living. We obtained 861 simulated indoor and outdoor falls from 10 young control (non-amputee) individuals and 6 individuals with a lower limb amputation. In addition, we recorded a broad database of activities of daily living, including data from three participants' free-living routines. Sensor readings (accelerometer and gyroscope) from a mobile phone were recorded as participants freely carried it in three common locations-on the waist, in a pocket, and in the hand. A set of 40 features were computed from the sensors data and four classifiers were trained and combined through stacking to detect falls. We compared the performance of two population-specific models, trained and tested on either able-bodied or amputee participants, with that of a model trained on able-bodied participants and tested on amputees. A simple threshold-based classifier was used to benchmark our machine-learning classifier. The accuracy of fall detection in amputees for a model trained on control individuals (sensitivity: mean 0.989, 1.96*standard error of the mean [SEM] 0.017; specificity: mean 0.968, SEM 0.025) was not statistically different (P=.69) from that of a model trained on the amputee population (sensitivity: mean 0.984, SEM 0.016; specificity: mean 0.965, SEM 0

  8. Characterizing Dynamic Walking Patterns and Detecting Falls with Wearable Sensors Using Gaussian Process Methods

    Directory of Open Access Journals (Sweden)

    Taehwan Kim

    2017-05-01

    Full Text Available By incorporating a growing number of sensors and adopting machine learning technologies, wearable devices have recently become a prominent health care application domain. Among the related research topics in this field, one of the most important issues is detecting falls while walking. Since such falls may lead to serious injuries, automatically and promptly detecting them during daily use of smartphones and/or smart watches is a particular need. In this paper, we investigate the use of Gaussian process (GP methods for characterizing dynamic walking patterns and detecting falls while walking with built-in wearable sensors in smartphones and/or smartwatches. For the task of characterizing dynamic walking patterns in a low-dimensional latent feature space, we propose a novel approach called auto-encoded Gaussian process dynamical model, in which we combine a GP-based state space modeling method with a nonlinear dimensionality reduction method in a unique manner. The Gaussian process methods are fit for this task because one of the most import strengths of the Gaussian process methods is its capability of handling uncertainty in the model parameters. Also for detecting falls while walking, we propose to recycle the latent samples generated in training the auto-encoded Gaussian process dynamical model for GP-based novelty detection, which can lead to an efficient and seamless solution to the detection task. Experimental results show that the combined use of these GP-based methods can yield promising results for characterizing dynamic walking patterns and detecting falls while walking with the wearable sensors.

  9. IDENTIFICATION OF A ROBUST LICHEN INDEX FOR THE DECONVOLUTION OF LICHEN AND ROCK MIXTURES USING PATTERN SEARCH ALGORITHM (CASE STUDY: GREENLAND

    Directory of Open Access Journals (Sweden)

    S. Salehi

    2016-06-01

    Full Text Available Lichens are the dominant autotrophs of polar and subpolar ecosystems commonly encrust the rock outcrops. Spectral mixing of lichens and bare rock can shift diagnostic spectral features of materials of interest thus leading to misinterpretation and false positives if mapping is done based on perfect spectral matching methodologies. Therefore, the ability to distinguish the lichen coverage from rock and decomposing a mixed pixel into a collection of pure reflectance spectra, can improve the applicability of hyperspectral methods for mineral exploration. The objective of this study is to propose a robust lichen index that can be used to estimate lichen coverage, regardless of the mineral composition of the underlying rocks. The performance of three index structures of ratio, normalized ratio and subtraction have been investigated using synthetic linear mixtures of pure rock and lichen spectra with prescribed mixing ratios. Laboratory spectroscopic data are obtained from lichen covered samples collected from Karrat, Liverpool Land, and Sisimiut regions in Greenland. The spectra are then resampled to Hyperspectral Mapper (HyMAP resolution, in order to further investigate the functionality of the indices for the airborne platform. In both resolutions, a Pattern Search (PS algorithm is used to identify the optimal band wavelengths and bandwidths for the lichen index. The results of our band optimization procedure revealed that the ratio between R894-1246 and R1110 explains most of the variability in the hyperspectral data at the original laboratory resolution (R2=0.769. However, the normalized index incorporating R1106-1121 and R904-1251 yields the best results for the HyMAP resolution (R2=0.765.

  10. On-Line Fault Detection in Wind Turbine Transmission System using Adaptive Filter and Robust Statistical Features

    Directory of Open Access Journals (Sweden)

    Mark Frogley

    2013-01-01

    Full Text Available To reduce the maintenance cost, avoid catastrophic failure, and improve the wind transmission system reliability, online condition monitoring system is critical important. In the real applications, many rotating mechanical faults, such as bearing surface defect, gear tooth crack, chipped gear tooth and so on generate impulsive signals. When there are these types of faults developing inside rotating machinery, each time the rotating components pass over the damage point, an impact force could be generated. The impact force will cause a ringing of the support structure at the structural natural frequency. By effectively detecting those periodic impulse signals, one group of rotating machine faults could be detected and diagnosed. However, in real wind turbine operations, impulsive fault signals are usually relatively weak to the background noise and vibration signals generated from other healthy components, such as shaft, blades, gears and so on. Moreover, wind turbine transmission systems work under dynamic operating conditions. This will further increase the difficulties in fault detection and diagnostics. Therefore, developing advanced signal processing methods to enhance the impulsive signals is in great needs.In this paper, an adaptive filtering technique will be applied for enhancing the fault impulse signals-to-noise ratio in wind turbine gear transmission systems. Multiple statistical features designed to quantify the impulsive signals of the processed signal are extracted for bearing fault detection. The multiple dimensional features are then transformed into one dimensional feature. A minimum error rate classifier will be designed based on the compressed feature to identify the gear transmission system with defect. Real wind turbine vibration signals will be used to demonstrate the effectiveness of the presented methodology.

  11. Road Lane Detection Robust to Shadows Based on a Fuzzy System Using a Visible Light Camera Sensor

    Directory of Open Access Journals (Sweden)

    Toan Minh Hoang

    2017-10-01

    Full Text Available Recently, autonomous vehicles, particularly self-driving cars, have received significant attention owing to rapid advancements in sensor and computation technologies. In addition to traffic sign recognition, road lane detection is one of the most important factors used in lane departure warning systems and autonomous vehicles for maintaining the safety of semi-autonomous and fully autonomous systems. Unlike traffic signs, road lanes are easily damaged by both internal and external factors such as road quality, occlusion (traffic on the road, weather conditions, and illumination (shadows from objects such as cars, trees, and buildings. Obtaining clear road lane markings for recognition processing is a difficult challenge. Therefore, we propose a method to overcome various illumination problems, particularly severe shadows, by using fuzzy system and line segment detector algorithms to obtain better results for detecting road lanes by a visible light camera sensor. Experimental results from three open databases, Caltech dataset, Santiago Lanes dataset (SLD, and Road Marking dataset, showed that our method outperformed conventional lane detection methods.

  12. Road Lane Detection Robust to Shadows Based on a Fuzzy System Using a Visible Light Camera Sensor.

    Science.gov (United States)

    Hoang, Toan Minh; Baek, Na Rae; Cho, Se Woon; Kim, Ki Wan; Park, Kang Ryoung

    2017-10-28

    Recently, autonomous vehicles, particularly self-driving cars, have received significant attention owing to rapid advancements in sensor and computation technologies. In addition to traffic sign recognition, road lane detection is one of the most important factors used in lane departure warning systems and autonomous vehicles for maintaining the safety of semi-autonomous and fully autonomous systems. Unlike traffic signs, road lanes are easily damaged by both internal and external factors such as road quality, occlusion (traffic on the road), weather conditions, and illumination (shadows from objects such as cars, trees, and buildings). Obtaining clear road lane markings for recognition processing is a difficult challenge. Therefore, we propose a method to overcome various illumination problems, particularly severe shadows, by using fuzzy system and line segment detector algorithms to obtain better results for detecting road lanes by a visible light camera sensor. Experimental results from three open databases, Caltech dataset, Santiago Lanes dataset (SLD), and Road Marking dataset, showed that our method outperformed conventional lane detection methods.

  13. Robust Scientists

    DEFF Research Database (Denmark)

    Gorm Hansen, Birgitte

    their core i nterests, 2) developing a selfsupply of industry interests by becoming entrepreneurs and thus creating their own compliant industry partner and 3) balancing resources within a larger collective of researchers, thus countering changes in the influx of funding caused by shifts in political...... knowledge", Danish research policy seems to have helped develop politically and economically "robust scientists". Scientific robustness is acquired by way of three strategies: 1) tasting and discriminating between resources so as to avoid funding that erodes academic profiles and push scientists away from...

  14. Multiplex PCR for specific and robust detection of Xanthomonas campestris pv. musacearum in pure culture and infected plant material

    DEFF Research Database (Denmark)

    Adriko, John; Aritua, V.; Mortensen, Carmen Nieves

    2012-01-01

    The present study developed a pathovar-specific PCR for the detection of Xanthomonas campestris pv. musacearum (Xcm), the cause of banana xanthomonas wilt, by amplification of a 265-bp region of the gene encoding the general secretion pathway protein D (GspD). A distinct DNA fragment......-specific PCR was successfully multiplexed with internal control primers targeting 16S rDNA for application on DNA from bacterial cultures and with primers targeting plant mitochondrial 26S rDNA for application on DNA extracted from plant material. Diagnostic discrimination of healthy and infected plants...

  15. Environmentally Robust Rhodamine Reporters for Probe-based Cellular Detection of the Cancer-linked Oxidoreductase hNQO1.

    Science.gov (United States)

    Best, Quinn A; Johnson, Amanda E; Prasai, Bijeta; Rouillere, Alexandra; McCarley, Robin L

    2016-01-15

    We successfully synthesized a fluorescent probe capable of detecting the cancer-associated quinoneoxidoreductase isozyme-1 within human cells, based on results from an investigation of the stability of various rhodamines and seminaphthorhodamines toward the biological reductant NADH, present at ∼100-200 μM within cells. While rhodamines are generally known for their chemical stability, we observe that NADH causes significant and sometimes rapid modification of numerous rhodamine analogues, including those oftentimes used in imaging applications. Results from mechanistic studies lead us to rule out a radical-based reduction pathway, suggesting rhodamine reduction by NADH proceeds by a hydride transfer process to yield the reduced leuco form of the rhodamine and oxidized NAD(+). A relationship between the structural features of the rhodamines and their reactivity with NADH is observed. Rhodamines with increased alkylation on the N3- and N6-nitrogens, as well as the xanthene core, react the least with NADH; whereas, nonalkylated variants or analogues with electron-withdrawing substituents have the fastest rates of reaction. These outcomes allowed us to judiciously construct a seminaphthorhodamine-based, turn-on fluorescent probe that is capable of selectively detecting the cancer-associated, NADH-dependent enzyme quinoneoxidoreductase isozyme-1 in human cancer cells, without the issue of NADH-induced deactivation of the seminaphthorhodamine reporter.

  16. Application of a robust vibration-based non-destructive method for detection of fatigue cracks in structures

    International Nuclear Information System (INIS)

    Razi, Pejman; Esmaeel, Ramadan A; Taheri, Farid

    2011-01-01

    This paper presents the application of a novel vibration-based technique for detecting fatigue cracks in structures. The method utilizes the empirical mode decomposition method (EMD) to establish an effective energy-based damage index. To investigate the feasibility of the method, fatigue cracks of different sizes were introduced in an aluminum beam subjected to a cyclic load under a three-point bending configuration. The vibration signals corresponding to the healthy and the damaged states of the beam were acquired via piezoceramic sensors. The signals were then processed by the proposed methodology to obtain the damage indices. In addition, for the sake of comparison, the frequency and damping analysis were performed on the test specimen. The results of this study concluded with two major observations. Firstly, the method was highly successful in not only predicting the presence of the fatigue crack, but also in quantifying its progression. Secondly, the proposed energy-based damage index was proved to be superior to the frequency-based methods in terms of sensitivity to the damage detection and quantification. As a result, this technique could be regarded as an efficient non-destructive tool, since it is simple, cost-effective and does not rely on analytical modeling of structures. In addition, the capability of the finite element method (FEM) in mimicking the experiments, and hence for consideration as an effective tool for conducting future parametric studies, was also investigated

  17. Multivariate data-driven modelling and pattern recognition for damage detection and identification for acoustic emission and acousto-ultrasonics

    International Nuclear Information System (INIS)

    Torres-Arredondo, M-A; Fritzen, C-P; Tibaduiza, D-A; Mujica, L E; Rodellar, J; McGugan, M; Toftegaard, H; Borum, K-K

    2013-01-01

    Different methods are commonly used for non-destructive testing in structures; among others, acoustic emission and ultrasonic inspections are widely used to assess structures. The research presented in this paper is motivated by the need to improve the inspection capabilities and reliability of structural health monitoring (SHM) systems based on ultrasonic guided waves with focus on the acoustic emission and acousto-ultrasonics techniques. The use of a guided wave based approach is driven by the fact that these waves are able to propagate over relatively long distances, and interact sensitively and uniquely with different types of defect. Special attention is paid here to the development of efficient SHM methodologies. This requires robust signal processing techniques for the correct interpretation of the complex ultrasonic waves. Therefore, a variety of existing algorithms for signal processing and pattern recognition are evaluated and integrated into the different proposed methodologies. As a contribution to solve the problem, this paper presents results in damage detection and classification using a methodology based on hierarchical nonlinear principal component analysis, square prediction measurements and self-organizing maps, which are applied to data from acoustic emission tests and acousto-ultrasonic inspections. At the end, the efficiency of these methodologies is experimentally evaluated in diverse anisotropic composite structures. (paper)

  18. Early Obstacle Detection and Avoidance for All to All Traffic Pattern in Wireless Sensor Networks

    Science.gov (United States)

    Huc, Florian; Jarry, Aubin; Leone, Pierre; Moraru, Luminita; Nikoletseas, Sotiris; Rolim, Jose

    This paper deals with early obstacles recognition in wireless sensor networks under various traffic patterns. In the presence of obstacles, the efficiency of routing algorithms is increased by voluntarily avoiding some regions in the vicinity of obstacles, areas which we call dead-ends. In this paper, we first propose a fast convergent routing algorithm with proactive dead-end detection together with a formal definition and description of dead-ends. Secondly, we present a generalization of this algorithm which improves performances in all to many and all to all traffic patterns. In a third part we prove that this algorithm produces paths that are optimal up to a constant factor of 2π + 1. In a fourth part we consider the reactive version of the algorithm which is an extension of a previously known early obstacle detection algorithm. Finally we give experimental results to illustrate the efficiency of our algorithms in different scenarios.

  19. Maximum-entropy networks pattern detection, network reconstruction and graph combinatorics

    CERN Document Server

    Squartini, Tiziano

    2017-01-01

    This book is an introduction to maximum-entropy models of random graphs with given topological properties and their applications. Its original contribution is the reformulation of many seemingly different problems in the study of both real networks and graph theory within the unified framework of maximum entropy. Particular emphasis is put on the detection of structural patterns in real networks, on the reconstruction of the properties of networks from partial information, and on the enumeration and sampling of graphs with given properties.  After a first introductory chapter explaining the motivation, focus, aim and message of the book, chapter 2 introduces the formal construction of maximum-entropy ensembles of graphs with local topological constraints. Chapter 3 focuses on the problem of pattern detection in real networks and provides a powerful way to disentangle nontrivial higher-order structural features from those that can be traced back to simpler local constraints. Chapter 4 focuses on the problem o...

  20. SELDI-TOF-based serum proteomic pattern diagnostics for early detection of cancer.

    Science.gov (United States)

    Petricoin, Emanuel F; Liotta, Lance A

    2004-02-01

    Proteomics is more than just generating lists of proteins that increase or decrease in expression as a cause or consequence of pathology. The goal should be to characterize the information flow through the intercellular protein circuitry that communicates with the extracellular microenvironment and then ultimately to the serum/plasma macroenvironment. The nature of this information can be a cause, or a consequence, of disease and toxicity-based processes. Serum proteomic pattern diagnostics is a new type of proteomic platform in which patterns of proteomic signatures from high dimensional mass spectrometry data are used as a diagnostic classifier. This approach has recently shown tremendous promise in the detection of early-stage cancers. The biomarkers found by SELDI-TOF-based pattern recognition analysis are mostly low molecular weight fragments produced at the specific tumor microenvironment.

  1. Nuclear emulsions for the detection of micrometric-scale fringe patterns: an application to positron interferometry

    Science.gov (United States)

    Aghion, S.; Ariga, A.; Bollani, M.; Ereditato, A.; Ferragut, R.; Giammarchi, M.; Lodari, M.; Pistillo, C.; Sala, S.; Scampoli, P.; Vladymyrov, M.

    2018-05-01

    Nuclear emulsions are capable of very high position resolution in the detection of ionizing particles. This feature can be exploited to directly resolve the micrometric-scale fringe pattern produced by a matter-wave interferometer for low energy positrons (in the 10–20 keV range). We have tested the performance of emulsion films in this specific scenario. Exploiting silicon nitride diffraction gratings as absorption masks, we produced periodic patterns with features comparable to the expected interferometer signal. Test samples with periodicities of 6, 7 and 20 μ m were exposed to the positron beam, and the patterns clearly reconstructed. Our results support the feasibility of matter-wave interferometry experiments with positrons.

  2. Statistical Methods for Detecting and Modeling General Patterns and Relationships in Lifetime Data

    Energy Technology Data Exchange (ETDEWEB)

    Kvaloey, Jan Terje

    1999-04-01

    In this thesis, the author tries to develop methods of detecting and modeling general patterns and relationships in lifetime data. Tests with power against nonmonotonic trends and nonmonotonic co variate effects are considered, and nonparametric regression methods which allow estimation of fairly general nonlinear relationships are studied. Practical uses of some of the methods are illustrated although in a medical rather than engineering or technological context.

  3. AFM imaging and analysis of local mechanical properties for detection of surface pattern of functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, Petr, E-mail: petr.knotek@upce.cz [University of Pardubice, Faculty of Chemical Technology, Joint Laboratory of Solid State Chemistry of IMC ASCR and University of Pardubice, Studentska 573, 532 10 Pardubice (Czech Republic); Chanova, Eliska; Rypacek, Frantisek [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho sq. 2, 162 06 Prague (Czech Republic)

    2013-05-01

    In this work we evaluate the applicability of different atomic force microscopy (AFM) modes, such as Phase Shift Imaging, Atomic Force Acoustic Microscopy (AFAM) and Force Spectroscopy, for mapping of the distribution pattern of low-molecular-weight biomimetic groups on polymer biomaterial surfaces. Patterns with either random or clustered spatial distribution of bioactive peptide group derived from fibronectin were prepared by surface deposition of functional block copolymer nano-colloids and grafted with RGDS peptide containing the sequence of amino acids arginine–glycine–aspartic acid–serine (conventionally labeled as RGDS) and carrying biotin as a tag. The biotin-tagged peptides were labeled with 40 nm streptavidin-modified Au nanospheres. The peptide molecules were localized through the detection of bound Au nanospheres by AFM, and thus, the surface distribution of peptides was revealed. AFM techniques capable of monitoring local mechanical properties of the surface were proved to be the most efficient for identification of Au nano-markers. The efficiency was successfully demonstrated on two different patterns, i.e. random and clustered distribution of RGDS peptides on structured surface of the polymer biomaterial. Highlights: ► Bioactive peptides for cell adhesion on PLA-b-PEO biomimetic surface were visualized. ► The biotin-tagged RGDS peptides were labeled with streptavidin-Au nanospheres. ► The RGDS pattern was detected using different atomic force microscopy (AFM) modes. ► Phase Shift Image was proved to be suitable method for studying peptide distribution.

  4. Fluid pipeline system leak detection based on neural network and pattern recognition

    International Nuclear Information System (INIS)

    Tang Xiujia

    1998-01-01

    The mechanism of the stress wave propagation along the pipeline system of NPP, caused by turbulent ejection from pipeline leakage, is researched. A series of characteristic index are described in time domain or frequency domain, and compress numerical algorithm is developed for original data compression. A back propagation neural networks (BPNN) with the input matrix composed by stress wave characteristics in time domain or frequency domain is first proposed to classify various situations of the pipeline, in order to detect the leakage in the fluid flow pipelines. The capability of the new method had been demonstrated by experiments and finally used to design a handy instrument for the pipeline leakage detection. Usually a pipeline system has many inner branches and often in adjusting dynamic condition, it is difficult for traditional pipeline diagnosis facilities to identify the difference between inner pipeline operation and pipeline fault. The author first proposed pipeline wave propagation identification by pattern recognition to diagnose pipeline leak. A series of pattern primitives such as peaks, valleys, horizon lines, capstan peaks, dominant relations, slave relations, etc., are used to extract features of the negative pressure wave form. The context-free grammar of symbolic representation of the negative wave form is used, and a negative wave form parsing system with application to structural pattern recognition based on the representation is first proposed to detect and localize leaks of the fluid pipelines

  5. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data.

    Science.gov (United States)

    Shen, Shihao; Park, Juw Won; Lu, Zhi-xiang; Lin, Lan; Henry, Michael D; Wu, Ying Nian; Zhou, Qing; Xing, Yi

    2014-12-23

    Ultra-deep RNA sequencing (RNA-Seq) has become a powerful approach for genome-wide analysis of pre-mRNA alternative splicing. We previously developed multivariate analysis of transcript splicing (MATS), a statistical method for detecting differential alternative splicing between two RNA-Seq samples. Here we describe a new statistical model and computer program, replicate MATS (rMATS), designed for detection of differential alternative splicing from replicate RNA-Seq data. rMATS uses a hierarchical model to simultaneously account for sampling uncertainty in individual replicates and variability among replicates. In addition to the analysis of unpaired replicates, rMATS also includes a model specifically designed for paired replicates between sample groups. The hypothesis-testing framework of rMATS is flexible and can assess the statistical significance over any user-defined magnitude of splicing change. The performance of rMATS is evaluated by the analysis of simulated and real RNA-Seq data. rMATS outperformed two existing methods for replicate RNA-Seq data in all simulation settings, and RT-PCR yielded a high validation rate (94%) in an RNA-Seq dataset of prostate cancer cell lines. Our data also provide guiding principles for designing RNA-Seq studies of alternative splicing. We demonstrate that it is essential to incorporate biological replicates in the study design. Of note, pooling RNAs or merging RNA-Seq data from multiple replicates is not an effective approach to account for variability, and the result is particularly sensitive to outliers. The rMATS source code is freely available at rnaseq-mats.sourceforge.net/. As the popularity of RNA-Seq continues to grow, we expect rMATS will be useful for studies of alternative splicing in diverse RNA-Seq projects.

  6. Robust diagnosis of Ewing sarcoma by immunohistochemical detection of super-enhancer-driven EWSR1-ETS targets

    Science.gov (United States)

    Marchetto, Aruna; Gerke, Julia S.; Rubio, Rebeca Alba; Kiran, Merve M.; Musa, Julian; Knott, Maximilian M. L.; Ohmura, Shunya; Li, Jing; Akpolat, Nusret; Akatli, Ayse N.; Özen, Özlem; Dirksen, Uta; Hartmann, Wolfgang; de Alava, Enrique; Baumhoer, Daniel; Sannino, Giuseppina; Kirchner, Thomas; Grünewald, Thomas G. P.

    2018-01-01

    Ewing sarcoma is an undifferentiated small-round-cell sarcoma. Although molecular detection of pathognomonic EWSR1-ETS fusions such as EWSR1-FLI1 enables definitive diagnosis, substantial confusion can arise if molecular diagnostics are unavailable. Diagnosis based on the conventional immunohistochemical marker CD99 is unreliable due to its abundant expression in morphological mimics. To identify novel diagnostic immunohistochemical markers for Ewing sarcoma, we performed comparative expression analyses in 768 tumors representing 21 entities including Ewing-like sarcomas, which confirmed that CIC-DUX4-, BCOR-CCNB3-, EWSR1-NFATc2-, and EWSR1-ETS-translocated sarcomas are distinct entities, and revealed that ATP1A1, BCL11B, and GLG1 constitute specific markers for Ewing sarcoma. Their high expression was validated by immunohistochemistry and proved to depend on EWSR1-FLI1-binding to highly active proximal super-enhancers. Automated cut-off-finding and combination-testing in a tissue-microarray comprising 174 samples demonstrated that detection of high BCL11B and/or GLG1 expression is sufficient to reach 96% specificity for Ewing sarcoma. While 88% of tested Ewing-like sarcomas displayed strong CD99-immunoreactivity, none displayed combined strong BCL11B- and GLG1-immunoreactivity. Collectively, we show that ATP1A1, BCL11B, and GLG1 are EWSR1-FLI1 targets, of which BCL11B and GLG1 offer a fast, simple, and cost-efficient way to diagnose Ewing sarcoma by immunohistochemistry. These markers may significantly reduce the number of misdiagnosed patients, and thus improve patient care. PMID:29416716

  7. Fast, accurate, and robust automatic marker detection for motion correction based on oblique kV or MV projection image pairs

    International Nuclear Information System (INIS)

    Slagmolen, Pieter; Hermans, Jeroen; Maes, Frederik; Budiharto, Tom; Haustermans, Karin; Heuvel, Frank van den

    2010-01-01

    Purpose: A robust and accurate method that allows the automatic detection of fiducial markers in MV and kV projection image pairs is proposed. The method allows to automatically correct for inter or intrafraction motion. Methods: Intratreatment MV projection images are acquired during each of five treatment beams of prostate cancer patients with four implanted fiducial markers. The projection images are first preprocessed using a series of marker enhancing filters. 2D candidate marker locations are generated for each of the filtered projection images and 3D candidate marker locations are reconstructed by pairing candidates in subsequent projection images. The correct marker positions are retrieved in 3D by the minimization of a cost function that combines 2D image intensity and 3D geometric or shape information for the entire marker configuration simultaneously. This optimization problem is solved using dynamic programming such that the globally optimal configuration for all markers is always found. Translational interfraction and intrafraction prostate motion and the required patient repositioning is assessed from the position of the centroid of the detected markers in different MV image pairs. The method was validated on a phantom using CT as ground-truth and on clinical data sets of 16 patients using manual marker annotations as ground-truth. Results: The entire setup was confirmed to be accurate to around 1 mm by the phantom measurements. The reproducibility of the manual marker selection was less than 3.5 pixels in the MV images. In patient images, markers were correctly identified in at least 99% of the cases for anterior projection images and 96% of the cases for oblique projection images. The average marker detection accuracy was 1.4±1.8 pixels in the projection images. The centroid of all four reconstructed marker positions in 3D was positioned within 2 mm of the ground-truth position in 99.73% of all cases. Detecting four markers in a pair of MV images

  8. A Simple and Robust Method for Semi-Quantitative Detection of Human Papillomavirus Nucleic Acids (HPV Helps Oncological Clinicians to Assess the Severeness of HPV Cellular Changing

    Directory of Open Access Journals (Sweden)

    Florian Heirler

    2011-01-01

    Full Text Available A simple and robust method for the detection of nucleic acids of human papilloma virus (HPV has been developed. The assay exploits the excellent sensitivity and specificity of “nested” polymerase chain reaction (nPCR that is designed in the original single tube configuration to effectively prevent the carry-over contamination. This approach theoretically covers the amplification of all cancer developing genotypes currently known. The nPCR, paired with very simple nucleic acids isolation steps, is a real alternative to the standard method. This manuscript shows its capacity for routine use under clinical conditions. It is shown that the strategy is at least as sensitive as the standard two tube nPCR and the data are acceptably reproducible.

  9. Local community detection as pattern restoration by attractor dynamics of recurrent neural networks.

    Science.gov (United States)

    Okamoto, Hiroshi

    2016-08-01

    Densely connected parts in networks are referred to as "communities". Community structure is a hallmark of a variety of real-world networks. Individual communities in networks form functional modules of complex systems described by networks. Therefore, finding communities in networks is essential to approaching and understanding complex systems described by networks. In fact, network science has made a great deal of effort to develop effective and efficient methods for detecting communities in networks. Here we put forward a type of community detection, which has been little examined so far but will be practically useful. Suppose that we are given a set of source nodes that includes some (but not all) of "true" members of a particular community; suppose also that the set includes some nodes that are not the members of this community (i.e., "false" members of the community). We propose to detect the community from this "imperfect" and "inaccurate" set of source nodes using attractor dynamics of recurrent neural networks. Community detection by the proposed method can be viewed as restoration of the original pattern from a deteriorated pattern, which is analogous to cue-triggered recall of short-term memory in the brain. We demonstrate the effectiveness of the proposed method using synthetic networks and real social networks for which correct communities are known. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Uniform Local Binary Pattern for Fingerprint Liveness Detection in the Gaussian Pyramid

    Directory of Open Access Journals (Sweden)

    Yujia Jiang

    2018-01-01

    Full Text Available Fingerprint recognition schemas are widely used in our daily life, such as Door Security, Identification, and Phone Verification. However, the existing problem is that fingerprint recognition systems are easily tricked by fake fingerprints for collaboration. Therefore, designing a fingerprint liveness detection module in fingerprint recognition systems is necessary. To solve the above problem and discriminate true fingerprint from fake ones, a novel software-based liveness detection approach using uniform local binary pattern (ULBP in spatial pyramid is applied to recognize fingerprint liveness in this paper. Firstly, preprocessing operation for each fingerprint is necessary. Then, to solve image rotation and scale invariance, three-layer spatial pyramids of fingerprints are introduced in this paper. Next, texture information for three layers spatial pyramids is described by using uniform local binary pattern to extract features of given fingerprints. The accuracy of our proposed method has been compared with several state-of-the-art methods in fingerprint liveness detection. Experiments based on standard databases, taken from Liveness Detection Competition 2013 composed of four different fingerprint sensors, have been carried out. Finally, classifier model based on extracted features is trained using SVM classifier. Experimental results present that our proposed method can achieve high recognition accuracy compared with other methods.

  11. Pipeline Structural Damage Detection Using Self-Sensing Technology and PNN-Based Pattern Recognition

    International Nuclear Information System (INIS)

    Lee, Chang Gil; Park, Woong Ki; Park, Seung Hee

    2011-01-01

    In a structure, damage can occur at several scales from micro-cracking to corrosion or loose bolts. This makes the identification of damage difficult with one mode of sensing. Hence, a multi-mode actuated sensing system is proposed based on a self-sensing circuit using a piezoelectric sensor. In the self sensing-based multi-mode actuated sensing, one mode provides a wide frequency-band structural response from the self-sensed impedance measurement and the other mode provides a specific frequency-induced structural wavelet response from the self-sensed guided wave measurement. In this study, an experimental study on the pipeline system is carried out to verify the effectiveness and the robustness of the proposed structural health monitoring approach. Different types of structural damage are artificially inflicted on the pipeline system. To classify the multiple types of structural damage, a supervised learning-based statistical pattern recognition is implemented by composing a two-dimensional space using the damage indices extracted from the impedance and guided wave features. For more systematic damage classification, several control parameters to determine an optimal decision boundary for the supervised learning-based pattern recognition are optimized. Finally, further research issues will be discussed for real-world implementation of the proposed approach

  12. Robust photometric stereo using structural light sources

    Science.gov (United States)

    Han, Tian-Qi; Cheng, Yue; Shen, Hui-Liang; Du, Xin

    2014-05-01

    We propose a robust photometric stereo method by using structural arrangement of light sources. In the arrangement, light sources are positioned on a planar grid and form a set of collinear combinations. The shadow pixels are detected by adaptive thresholding. The specular highlight and diffuse pixels are distinguished according to their intensity deviations of the collinear combinations, thanks to the special arrangement of light sources. The highlight detection problem is cast as a pattern classification problem and is solved using support vector machine classifiers. Considering the possible misclassification of highlight pixels, the ℓ1 regularization is further employed in normal map estimation. Experimental results on both synthetic and real-world scenes verify that the proposed method can robustly recover the surface normal maps in the case of heavy specular reflection and outperforms the state-of-the-art techniques.

  13. Radiometric Normalization of Temporal Images Combining Automatic Detection of Pseudo-Invariant Features from the Distance and Similarity Spectral Measures, Density Scatterplot Analysis, and Robust Regression

    Directory of Open Access Journals (Sweden)

    Ana Paula Ferreira de Carvalho

    2013-05-01

    Full Text Available Radiometric precision is difficult to maintain in orbital images due to several factors (atmospheric conditions, Earth-sun distance, detector calibration, illumination, and viewing angles. These unwanted effects must be removed for radiometric consistency among temporal images, leaving only land-leaving radiances, for optimum change detection. A variety of relative radiometric correction techniques were developed for the correction or rectification of images, of the same area, through use of reference targets whose reflectance do not change significantly with time, i.e., pseudo-invariant features (PIFs. This paper proposes a new technique for radiometric normalization, which uses three sequential methods for an accurate PIFs selection: spectral measures of temporal data (spectral distance and similarity, density scatter plot analysis (ridge method, and robust regression. The spectral measures used are the spectral angle (Spectral Angle Mapper, SAM, spectral correlation (Spectral Correlation Mapper, SCM, and Euclidean distance. The spectral measures between the spectra at times t1 and t2 and are calculated for each pixel. After classification using threshold values, it is possible to define points with the same spectral behavior, including PIFs. The distance and similarity measures are complementary and can be calculated together. The ridge method uses a density plot generated from images acquired on different dates for the selection of PIFs. In a density plot, the invariant pixels, together, form a high-density ridge, while variant pixels (clouds and land cover changes are spread, having low density, facilitating its exclusion. Finally, the selected PIFs are subjected to a robust regression (M-estimate between pairs of temporal bands for the detection and elimination of outliers, and to obtain the optimal linear equation for a given set of target points. The robust regression is insensitive to outliers, i.e., observation that appears to deviate

  14. Trench Parallel Bouguer Anomaly (TPBA): A robust measure for statically detecting asperities along the forearc of subduction zones

    Science.gov (United States)

    Raeesi, M.

    2009-05-01

    generate tsunami earthquakes. It gives a logical dimension to the foreshock and aftershock distributions. Using the TPBA, we can derive the scenarios for the early 20th century great earthquakes for which limited data is available. We present cases from Aleutian and South America subduction zones. The TPBA explains why there should be no great earthquake in the down-dip of Shumagin, but that there should be a major tsunami earthquake for its up-dip. Our evidences suggest that the process has already started. We give numerous examples for South America, Aleutian-Alaska, and Kurile-Kamchatka subduction zones and we also look at Cascadia. Despite the possible various applications of the new measure, here we draw the attention to its most important application - the detection of critical asperities. Supplied with this new measure, in addition to the available seismological data, seismologists should be able to detect the critical asperities and follow the evolving rupture process. This paves the way for revealing systematically the great interplate earthquakes.

  15. [Blood Test Patterns for Blood Donors after Nucleic Acid Detection in the Blood Center].

    Science.gov (United States)

    Men, Shou-Shan; Lv, Lian-Zhi; Chen, Yuan-Feng; Han, Chun-Hua; Liu, Hong-Yu; Yan, Yan

    2017-12-01

    To investigate the blood test patterns for blood donors after nucleic acid detection in blood center. The collected blood samples after voluntary blood donors first were detected by conventional ELISA, then 31981 negative samples were detected via HBV/HCV/HIV combined nucleic acid test of 6 mixed samples(22716 cases) or single samples(9265 cases) by means of Roche cobas s201 instrument. The combined detection method as follows: the blood samples were assayed by conventional nucleic acid test of 6 mixed samples, at same time, 6 mixed samples were treated with polyethylene glycol precipitation method to concentrate the virus, then the nucleic acid test of blood samples was performed; the single detection method as follows: firstly the conventional nucleic acid test of single sample was performed, then the positive reactive samples after re-examination were 6-fold diluted to simulate the nucleic acid test of 6-mixed samples. The positive rate of positive samples detected by combined nucleic acid test, positive samples detected by nucleic acid test of mixed virus concentration and positive samples detected by single nucleic acid test was statistically analyzed. In addition, for HBV + persons the serological test yet should be performed. In 22 716 samples detected by nucleic acid test of 6 mixed samples (MP-6-NAT) , 9 cases were HBV + (0.40‰, 9/22716); at same time, the detection of same samples by nucleic acid test of mixed sample virus concentration showed 29 cases of HBV + (1.28‰, 29/22716). In 9265 samples detected by single nucleic acid test(ID-NAT) 12 cases showed HBV + (1.30‰, 12/9265), meanwhile the detection of these 12 samples with HBV + by 6-fold dilution for virus concentration found only 4 samples with HBV + . In serological qualified samples, ID-NAT unqualified rate was 1.28‰, which was higher than that of MP-6-NAT(0.4‰) (χ 2 =8.11, P0.05). In 41 samples with HBsAg - HBV DNA + detected by ELISA, 36 samples were confirmed to be occult HBV

  16. Patterns of detection and capture are associated with cohabiting predators and prey.

    Directory of Open Access Journals (Sweden)

    Billie T Lazenby

    Full Text Available Avoidance behaviour can play an important role in structuring ecosystems but can be difficult to uncover and quantify. Remote cameras have great but as yet unrealized potential to uncover patterns arising from predatory, competitive or other interactions that structure animal communities by detecting species that are active at the same sites and recording their behaviours and times of activity. Here, we use multi-season, two-species occupancy models to test for evidence of interactions between introduced (feral cat Felis catus and native predator (Tasmanian devil Sarcophilus harrisii and predator and small mammal (swamp rat Rattus lutreolus velutinus combinations at baited camera sites in the cool temperate forests of southern Tasmania. In addition, we investigate the capture rates of swamp rats in traps scented with feral cat and devil faecal odours. We observed that one species could reduce the probability of detecting another at a camera site. In particular, feral cats were detected less frequently at camera sites occupied by devils, whereas patterns of swamp rat detection associated with devils or feral cats varied with study site. Captures of swamp rats were not associated with odours on traps, although fewer captures tended to occur in traps scented with the faecal odour of feral cats. The observation that a native carnivorous marsupial, the Tasmanian devil, can suppress the detectability of an introduced eutherian predator, the feral cat, is consistent with a dominant predator-mesopredator relationship. Such a relationship has important implications for the interaction between feral cats and the lower trophic guilds that form their prey, especially if cat activity increases in places where devil populations are declining. More generally, population estimates derived from devices such as remote cameras need to acknowledge the potential for one species to change the detectability of another, and incorporate this in assessments of numbers

  17. Patterns of Detection and Capture Are Associated with Cohabiting Predators and Prey

    Science.gov (United States)

    Lazenby, Billie T.; Dickman, Christopher R.

    2013-01-01

    Avoidance behaviour can play an important role in structuring ecosystems but can be difficult to uncover and quantify. Remote cameras have great but as yet unrealized potential to uncover patterns arising from predatory, competitive or other interactions that structure animal communities by detecting species that are active at the same sites and recording their behaviours and times of activity. Here, we use multi-season, two-species occupancy models to test for evidence of interactions between introduced (feral cat Felis catus) and native predator (Tasmanian devil Sarcophilus harrisii) and predator and small mammal (swamp rat Rattus lutreolus velutinus) combinations at baited camera sites in the cool temperate forests of southern Tasmania. In addition, we investigate the capture rates of swamp rats in traps scented with feral cat and devil faecal odours. We observed that one species could reduce the probability of detecting another at a camera site. In particular, feral cats were detected less frequently at camera sites occupied by devils, whereas patterns of swamp rat detection associated with devils or feral cats varied with study site. Captures of swamp rats were not associated with odours on traps, although fewer captures tended to occur in traps scented with the faecal odour of feral cats. The observation that a native carnivorous marsupial, the Tasmanian devil, can suppress the detectability of an introduced eutherian predator, the feral cat, is consistent with a dominant predator – mesopredator relationship. Such a relationship has important implications for the interaction between feral cats and the lower trophic guilds that form their prey, especially if cat activity increases in places where devil populations are declining. More generally, population estimates derived from devices such as remote cameras need to acknowledge the potential for one species to change the detectability of another, and incorporate this in assessments of numbers and survival

  18. Detection of Group B Streptococcus in Brazilian pregnant women and antimicrobial susceptibility patterns

    Directory of Open Access Journals (Sweden)

    Didier Silveira Castellano-Filho

    2010-12-01

    Full Text Available Group B Streptococcus (GBS is still not routinely screened during pregnancy in Brazil, being prophylaxis and empirical treatment based on identification of risk groups. This study aimed to investigate GBS prevalence in Brazilian pregnant women by culture or polymerase chain reaction (PCR associated to the enrichment culture, and to determine the antimicrobial susceptibility patterns of isolated bacteria, so as to support public health policies and empirical prophylaxis. After an epidemiological survey, vaginal and anorectal specimens were collected from 221 consenting laboring women. Each sample was submitted to enrichment culture and sheep blood agar was used to isolate suggestive GBS. Alternatively, specific PCR was performed from enrichment cultures. Antimicrobial susceptibility patterns were determined for isolated bacteria by agar diffusion method. No risk groups were identified. Considering the culture-based methodology, GBS was detected in 9.5% of the donors. Twenty five bacterial strains were isolated and identified. Through the culture-PCR methodology, GBS was detected in 32.6% specimens. Bacterial resistance was not detected against ampicillin, cephazolin, vancomycin and ciprofloxacin, whereas 22.7% were resistant to erythromycin and 50% were resistant to clindamycin. GBS detection may be improved by the association of PCR and enrichment culture. Considering that colony selection in agar plates may be laboring and technician-dependent, it may not reflect the real prevalence of streptococci. As in Brazil prevention strategies to reduce the GBS associated diseases have not been adopted, prospective studies are needed to anchor public health policies especially considering the regional GBS antimicrobial susceptibility patterns.

  19. A Robust Motion Artifact Detection Algorithm for Accurate Detection of Heart Rates From Photoplethysmographic Signals Using Time-Frequency Spectral Features.

    Science.gov (United States)

    Dao, Duy; Salehizadeh, S M A; Noh, Yeonsik; Chong, Jo Woon; Cho, Chae Ho; McManus, Dave; Darling, Chad E; Mendelson, Yitzhak; Chon, Ki H

    2017-09-01

    Motion and noise artifacts (MNAs) impose limits on the usability of the photoplethysmogram (PPG), particularly in the context of ambulatory monitoring. MNAs can distort PPG, causing erroneous estimation of physiological parameters such as heart rate (HR) and arterial oxygen saturation (SpO2). In this study, we present a novel approach, "TifMA," based on using the time-frequency spectrum of PPG to first detect the MNA-corrupted data and next discard the nonusable part of the corrupted data. The term "nonusable" refers to segments of PPG data from which the HR signal cannot be recovered accurately. Two sequential classification procedures were included in the TifMA algorithm. The first classifier distinguishes between MNA-corrupted and MNA-free PPG data. Once a segment of data is deemed MNA-corrupted, the next classifier determines whether the HR can be recovered from the corrupted segment or not. A support vector machine (SVM) classifier was used to build a decision boundary for the first classification task using data segments from a training dataset. Features from time-frequency spectra of PPG were extracted to build the detection model. Five datasets were considered for evaluating TifMA performance: (1) and (2) were laboratory-controlled PPG recordings from forehead and finger pulse oximeter sensors with subjects making random movements, (3) and (4) were actual patient PPG recordings from UMass Memorial Medical Center with random free movements and (5) was a laboratory-controlled PPG recording dataset measured at the forehead while the subjects ran on a treadmill. The first dataset was used to analyze the noise sensitivity of the algorithm. Datasets 2-4 were used to evaluate the MNA detection phase of the algorithm. The results from the first phase of the algorithm (MNA detection) were compared to results from three existing MNA detection algorithms: the Hjorth, kurtosis-Shannon entropy, and time-domain variability-SVM approaches. This last is an approach

  20. Toxicoproteomics: serum proteomic pattern diagnostics for early detection of drug induced cardiac toxicities and cardioprotection.

    Science.gov (United States)

    Petricoin, Emanuel F; Rajapaske, Vinodh; Herman, Eugene H; Arekani, Ali M; Ross, Sally; Johann, Donald; Knapton, Alan; Zhang, J; Hitt, Ben A; Conrads, Thomas P; Veenstra, Timothy D; Liotta, Lance A; Sistare, Frank D

    2004-01-01

    Proteomics is more than just generating lists of proteins that increase or decrease in expression as a cause or consequence of pathology. The goal should be to characterize the information flow through the intercellular protein circuitry which communicates with the extracellular microenvironment and then ultimately to the serum/plasma macroenvironment. The nature of this information can be a cause, or a consequence, of disease and toxicity based processes as cascades of reinforcing information percolate through the system and become reflected in changing proteomic information content of the circulation. Serum Proteomic Pattern Diagnostics is a new type of proteomic platform in which patterns of proteomic signatures from high dimensional mass spectrometry data are used as a diagnostic classifier. While this approach has shown tremendous promise in early detection of cancers, detection of drug-induced toxicity may also be possible with this same technology. Analysis of serum from rat models of anthracycline and anthracenedione induced cardiotoxicity indicate the potential clinical utility of diagnostic proteomic patterns where low molecular weight peptides and protein fragments may have higher accuracy than traditional biomarkers of cardiotoxicity such as troponins. These fragments may one day be harvested by circulating nanoparticles designed to absorb, enrich and amplify the diagnostic biomarker repertoire generated even at the critical initial stages of toxicity.

  1. Plasmonic detection and visualization of directed adsorption of charged single nanoparticles to patterned surfaces

    International Nuclear Information System (INIS)

    Scherbahn, Vitali; Nizamov, Shavkat; Mirsky, Vladimir M.

    2016-01-01

    It has recently been shown that surface plasmon microscopy (SPM) allows single nanoparticles (NPs) on sensor surfaces to be detected and analyzed. The authors have applied this technique to study the adsorption of single metallic and plastic NPs. Binding of gold NPs (40, 60 and 100 nm in size) and of 100 nm polystyrene NPs to gold surfaces modified by differently ω-functionalized alkyl thiols was studied first. Self-assembled monolayers (SAM) with varying terminal functions including amino, carboxy, oligo(ethylene glycol), methyl, or trimethylammonium groups were deposited on gold films to form surfaces possessing different charge and hydrophobicity. The affinity of NPs to these surfaces depends strongly on the type of coating. SAMs terminated with trimethylammonium groups and carboxy group display highly different affinity and therefore were preferred when creating patterned charged surfaces. Citrate-stabilized gold NPs and sulfate-terminated polystyrene NPs were used as negatively charged NPs, while branched polyethylenimine-coated silver NPs were used as positively charged NPs. It is shown that the charged patterned areas on the gold films are capable of selectively adsorbing oppositely charged NPs that can be detected and analyzed with an ∼1 ng⋅mL −1 detection limit. (author)

  2. Multisensor analyzer detector (MSAD) for low cost chemical and aerosol detection and pattern fusion

    Science.gov (United States)

    Swanson, David C.; Merdes, Daniel W.; Lysak, Daniel B., Jr.; Curtis, Richard C.; Lang, Derek C.; Mazzara, Andrew F.; Nicholas, Nicholas C.

    2002-08-01

    MSAD is being developed as a low-cost point detection chemical and biological sensor system designed around an information fusion inference engine that also allows additional sensors to be included in the detection process. The MSAD concept is based on probable cause detection of hazardous chemical vapors and aerosols of either chemical or biological composition using a small portable unit containing an embedded computer system and several integrated sensors with complementary capabilities. The configuration currently envisioned includes a Surface-Enhanced Raman Spectroscopy (SERS) sensor of chemical vapors and a detector of respirable aerosols based on Fraunhofer diffraction. Additional sensors employing Ion Mobility Spectrometry (IMS), Surface Acoustic Wave (SAW) detection, Flame Photometric Detection (FPD), and other principles are candidates for integration into the device; also, available commercial detectors implementing IMS, SAW, and FPD will be made accessible to the unit through RS232 ports. Both feature and decision level information fusion is supported using a Continuous Inference Network (CINET) of fuzzy logic. Each class of agents has a unique CINET with information inputs from a number of available sensors. Missing or low confidence sensor information is gracefully blended out of the output confidence for the particular agent. This approach constitutes a plug and play arrangement between the sensors and the information pattern recognition algorithms. We are currently doing simulant testing and developing out CINETs for actual agent testing at Edgewood Chemical and Biological Center (ECBC) later this year.

  3. Mouse V1 population correlates of visual detection rely on heterogeneity within neuronal response patterns

    Science.gov (United States)

    Montijn, Jorrit S; Goltstein, Pieter M; Pennartz, Cyriel MA

    2015-01-01

    Previous studies have demonstrated the importance of the primary sensory cortex for the detection, discrimination, and awareness of visual stimuli, but it is unknown how neuronal populations in this area process detected and undetected stimuli differently. Critical differences may reside in the mean strength of responses to visual stimuli, as reflected in bulk signals detectable in functional magnetic resonance imaging, electro-encephalogram, or magnetoencephalography studies, or may be more subtly composed of differentiated activity of individual sensory neurons. Quantifying single-cell Ca2+ responses to visual stimuli recorded with in vivo two-photon imaging, we found that visual detection correlates more strongly with population response heterogeneity rather than overall response strength. Moreover, neuronal populations showed consistencies in activation patterns across temporally spaced trials in association with hit responses, but not during nondetections. Contrary to models relying on temporally stable networks or bulk signaling, these results suggest that detection depends on transient differentiation in neuronal activity within cortical populations. DOI: http://dx.doi.org/10.7554/eLife.10163.001 PMID:26646184

  4. Artificial immune pattern recognition for damage detection in structural health monitoring sensor networks

    Science.gov (United States)

    Chen, Bo; Zang, Chuanzhi

    2009-03-01

    This paper presents an artificial immune pattern recognition (AIPR) approach for the damage detection and classification in structures. An AIPR-based Structure Damage Classifier (AIPR-SDC) has been developed by mimicking immune recognition and learning mechanisms. The structure damage patterns are represented by feature vectors that are extracted from the structure's dynamic response measurements. The training process is designed based on the clonal selection principle in the immune system. The selective and adaptive features of the clonal selection algorithm allow the classifier to generate recognition feature vectors that are able to match the training data. In addition, the immune learning algorithm can learn and remember various data patterns by generating a set of memory cells that contains representative feature vectors for each class (pattern). The performance of the presented structure damage classifier has been validated using a benchmark structure proposed by the IASC-ASCE (International Association for Structural Control - American Society of Civil Engineers) Structural Health Monitoring Task Group. The validation results show a better classification success rate comparing to some of other classification algorithms.

  5. Control and near-field detection of surface plasmon interference patterns.

    Science.gov (United States)

    Dvořák, Petr; Neuman, Tomáš; Břínek, Lukáš; Šamořil, Tomáš; Kalousek, Radek; Dub, Petr; Varga, Peter; Šikola, Tomáš

    2013-06-12

    The tailoring of electromagnetic near-field properties is the central task in the field of nanophotonics. In addition to 2D optics for optical nanocircuits, confined and enhanced electric fields are utilized in detection and sensing, photovoltaics, spatially localized spectroscopy (nanoimaging), as well as in nanolithography and nanomanipulation. For practical purposes, it is necessary to develop easy-to-use methods for controlling the electromagnetic near-field distribution. By imaging optical near-fields using a scanning near-field optical microscope, we demonstrate that surface plasmon polaritons propagating from slits along the metal-dielectric interface form tunable interference patterns. We present a simple way how to control the resulting interference patterns both by variation of the angle between two slits and, for a fixed slit geometry, by a proper combination of laser beam polarization and inhomogeneous far-field illumination of the structure. Thus the modulation period of interference patterns has become adjustable and new variable patterns consisting of stripelike and dotlike motifs have been achieved, respectively.

  6. Optimization of the HyPer sensor for robust real-time detection of hydrogen peroxide in the rice blast fungus.

    Science.gov (United States)

    Huang, Kun; Caplan, Jeff; Sweigard, James A; Czymmek, Kirk J; Donofrio, Nicole M

    2017-02-01

    Reactive oxygen species (ROS) production and breakdown have been studied in detail in plant-pathogenic fungi, including the rice blast fungus, Magnaporthe oryzae; however, the examination of the dynamic process of ROS production in real time has proven to be challenging. We resynthesized an existing ROS sensor, called HyPer, to exhibit optimized codon bias for fungi, specifically Neurospora crassa, and used a combination of microscopy and plate reader assays to determine whether this construct could detect changes in fungal ROS during the plant infection process. Using confocal microscopy, we were able to visualize fluctuating ROS levels during the formation of an appressorium on an artificial hydrophobic surface, as well as during infection on host leaves. Using the plate reader, we were able to ascertain measurements of hydrogen peroxide (H 2 O 2 ) levels in conidia as detected by the MoHyPer sensor. Overall, by the optimization of codon usage for N. crassa and related fungal genomes, the MoHyPer sensor can be used as a robust, dynamic and powerful tool to both monitor and quantify H 2 O 2 dynamics in real time during important stages of the plant infection process. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  7. Robust nonhomogeneous training samples detection method for space-time adaptive processing radar using sparse-recovery with knowledge-aided

    Science.gov (United States)

    Li, Zhihui; Liu, Hanwei; Zhang, Yongshun; Guo, Yiduo

    2017-10-01

    The performance of space-time adaptive processing (STAP) may degrade significantly when some of the training samples are contaminated by the signal-like components (outliers) in nonhomogeneous clutter environments. To remove the training samples contaminated by outliers in nonhomogeneous clutter environments, a robust nonhomogeneous training samples detection method using the sparse-recovery (SR) with knowledge-aided (KA) is proposed. First, the reduced-dimension (RD) overcomplete spatial-temporal steering dictionary is designed with the prior knowledge of system parameters and the possible target region. Then, the clutter covariance matrix (CCM) of cell under test is efficiently estimated using a modified focal underdetermined system solver (FOCUSS) algorithm, where a RD overcomplete spatial-temporal steering dictionary is applied. Third, the proposed statistics are formed by combining the estimated CCM with the generalized inner products (GIP) method, and the contaminated training samples can be detected and removed. Finally, several simulation results validate the effectiveness of the proposed KA-SR-GIP method.

  8. Robust Automated Image Co-Registration of Optical Multi-Sensor Time Series Data: Database Generation for Multi-Temporal Landslide Detection

    Directory of Open Access Journals (Sweden)

    Robert Behling

    2014-03-01

    Full Text Available Reliable multi-temporal landslide detection over longer periods of time requires multi-sensor time series data characterized by high internal geometric stability, as well as high relative and absolute accuracy. For this purpose, a new methodology for fully automated co-registration has been developed allowing efficient and robust spatial alignment of standard orthorectified data products originating from a multitude of optical satellite remote sensing data of varying spatial resolution. Correlation-based co-registration uses world-wide available terrain corrected Landsat Level 1T time series data as the spatial reference, ensuring global applicability. The developed approach has been applied to a multi-sensor time series of 592 remote sensing datasets covering an approximately 12,000 km2 area in Southern Kyrgyzstan (Central Asia strongly affected by landslides. The database contains images acquired during the last 26 years by Landsat (ETM, ASTER, SPOT and RapidEye sensors. Analysis of the spatial shifts obtained from co-registration has revealed sensor-specific alignments ranging between 5 m and more than 400 m. Overall accuracy assessment of these alignments has resulted in a high relative image-to-image accuracy of 17 m (RMSE and a high absolute accuracy of 23 m (RMSE for the whole co-registered database, making it suitable for multi-temporal landslide detection at a regional scale in Southern Kyrgyzstan.

  9. Colorimetric sensor arrays based on pattern recognition for the detection of nitroaromatic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei; Dong, Xiao [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing, 100081 (China); Qiu, Lili, E-mail: qiulili@bit.edu.cn [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing, 100081 (China); Yan, Zequn [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing, 100081 (China); Meng, Zihui, E-mail: m_zihui@yahoo.com [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing, 100081 (China); Xue, Min [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing, 100081 (China); He, Xuan; Liu, Xueyong [Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621900 (China)

    2017-03-15

    Graphical abstract: A colorimetric sensor array based on four kinds molecularly imprinted photonic crystal (MIPC) was explored for the selective visual detection of TNT, 2,6-DNT, 2,4-DNT and 4-MNT. The color of individual sensor changed with the increasing concentration of the analytes, and a cross-responsive platform was evaluated by a “radar” pattern. With the assistance of principal component analysis (PCA), a separate response region contained 95.25% of significant characteristics for the detection of nitroaromatics was generated, which also promised high potential for the customized visual detection system of other harmful chemicals. - Highlights: • Nitroaromatics were visually detected by molecularly imprinted photonic crystal. • The adsorption capacity was calculated. • The cross responsive platform of sensor array was established and discussed. • The discrimination capability was promoted by principal component analysis. • This system had high potential to be used in other customed visual detection. - Abstract: This research demonstrated that, in a colorimetric sensor array, 2,4,6-trinitrotoluene (TNT), 2,6-dinitrotoluene (2,6-DNT), 2,4-dinitrotoluene (2,4-DNT) and 4-nitrotoluene (4-MNT) were identifiable through a unique pattern in a qualitative and semi-quantitative manner. The adsorption capacity of the molecularly imprinted colloidal particles (MICs) for their corresponding templates was 0.27 mmol TNT/g, 0.22 mmol 2,6-DNT/g, 0.31 mmol 2,4-DNT/g and 0.16 mmol 4-MNT/g, respectively. Every optical sensor utilized in the arrays contained three-dimensional molecularly imprinted photonic crystal (MIPC) sensor with different imprinted templates. The intelligent materials can display different colors from green to red to 20 mM corresponding nitroaromatics with varying diffraction red shifts of 84 nm (TNT), 46 nm (2,6-DNT), 54 nm (2,4-DNT) and 35 nm (4-MNT), respectively. With the assistance of principal component analysis (PCA) and rational design

  10. Colorimetric sensor arrays based on pattern recognition for the detection of nitroaromatic molecules

    International Nuclear Information System (INIS)

    Lu, Wei; Dong, Xiao; Qiu, Lili; Yan, Zequn; Meng, Zihui; Xue, Min; He, Xuan; Liu, Xueyong

    2017-01-01

    Graphical abstract: A colorimetric sensor array based on four kinds molecularly imprinted photonic crystal (MIPC) was explored for the selective visual detection of TNT, 2,6-DNT, 2,4-DNT and 4-MNT. The color of individual sensor changed with the increasing concentration of the analytes, and a cross-responsive platform was evaluated by a “radar” pattern. With the assistance of principal component analysis (PCA), a separate response region contained 95.25% of significant characteristics for the detection of nitroaromatics was generated, which also promised high potential for the customized visual detection system of other harmful chemicals. - Highlights: • Nitroaromatics were visually detected by molecularly imprinted photonic crystal. • The adsorption capacity was calculated. • The cross responsive platform of sensor array was established and discussed. • The discrimination capability was promoted by principal component analysis. • This system had high potential to be used in other customed visual detection. - Abstract: This research demonstrated that, in a colorimetric sensor array, 2,4,6-trinitrotoluene (TNT), 2,6-dinitrotoluene (2,6-DNT), 2,4-dinitrotoluene (2,4-DNT) and 4-nitrotoluene (4-MNT) were identifiable through a unique pattern in a qualitative and semi-quantitative manner. The adsorption capacity of the molecularly imprinted colloidal particles (MICs) for their corresponding templates was 0.27 mmol TNT/g, 0.22 mmol 2,6-DNT/g, 0.31 mmol 2,4-DNT/g and 0.16 mmol 4-MNT/g, respectively. Every optical sensor utilized in the arrays contained three-dimensional molecularly imprinted photonic crystal (MIPC) sensor with different imprinted templates. The intelligent materials can display different colors from green to red to 20 mM corresponding nitroaromatics with varying diffraction red shifts of 84 nm (TNT), 46 nm (2,6-DNT), 54 nm (2,4-DNT) and 35 nm (4-MNT), respectively. With the assistance of principal component analysis (PCA) and rational design

  11. Observation of Communication by Physical Education Teachers: Detecting Patterns in Verbal Behavior.

    Science.gov (United States)

    García-Fariña, Abraham; Jiménez-Jiménez, F; Anguera, M Teresa

    2018-01-01

    The aim of this study was to analyze the verbal behavior of primary school physical education teachers in a natural classroom setting in order to investigate patterns in social constructivist communication strategies before and after participation in a training program designed to familiarize teachers with these strategies. The participants were three experienced physical education teachers interacting separately with 65 students over a series of classes. Written informed consent was obtained from all the students' parents or legal guardians. An indirect observation tool (ADDEF) was designed specifically for the study within the theoretical framework, and consisted of a combined field format, with three dimensions, and category systems. Each dimension formed the basis for building a subsequent system of exhaustive and mutually exclusive categories. Twenty-nine sessions, grouped into two separate modules, were coded using the Atlas.ti 7 program, and a total of 1991 units (messages containing constructivist discursive strategies) were recorded. Analysis of intraobserver reliability showed almost perfect agreement. Lag sequential analysis, which is a powerful statistical technique based on the calculation of conditional and unconditional probabilities in prospective and retrospective lags, was performed in GSEQ5 software to search for verbal behavior patterns before and after the training program. At both time points, we detected a pattern formed by requests for information combined with the incorporation of students' contributions into the teachers' discourse and re-elaborations of answers. In the post-training phase, we detected new and stronger patterns in certain sessions, indicating that programs combining theoretical and practical knowledge can effectively increase teachers' repertoire of discursive strategies and ultimately promote active engagement in learning. This has important implications for the evaluation and development of teacher effectiveness in

  12. Ngram-derived pattern recognition for the detection and prediction of epileptic seizures.

    Directory of Open Access Journals (Sweden)

    Amir Eftekhar

    Full Text Available This work presents a new method that combines symbol dynamics methodologies with an Ngram algorithm for the detection and prediction of epileptic seizures. The presented approach specifically applies Ngram-based pattern recognition, after data pre-processing, with similarity metrics, including the Hamming distance and Needlman-Wunsch algorithm, for identifying unique patterns within epochs of time. Pattern counts within each epoch are used as measures to determine seizure detection and prediction markers. Using 623 hours of intracranial electrocorticogram recordings from 21 patients containing a total of 87 seizures, the sensitivity and false prediction/detection rates of this method are quantified. Results are quantified using individual seizures within each case for training of thresholds and prediction time windows. The statistical significance of the predictive power is further investigated. We show that the method presented herein, has significant predictive power in up to 100% of temporal lobe cases, with sensitivities of up to 70-100% and low false predictions (dependant on training procedure. The cases of highest false predictions are found in the frontal origin with 0.31-0.61 false predictions per hour and with significance in 18 out of 21 cases. On average, a prediction sensitivity of 93.81% and false prediction rate of approximately 0.06 false predictions per hour are achieved in the best case scenario. This compares to previous work utilising the same data set that has shown sensitivities of up to 40-50% for a false prediction rate of less than 0.15/hour.

  13. Breast cancer early detection via tracking of skin back-scattered secondary speckle patterns

    Science.gov (United States)

    Bennett, Aviya; Sirkis, Talia; Beiderman, Yevgeny; Agdarov, Sergey; Beiderman, Yafim; Zalevsky, Zeev

    2018-02-01

    Breast cancer has become a major cause of death among women. The lifetime risk of a woman developing this disease has been established as one in eight. The most useful way to reduce breast cancer death is to treat the disease as early as possible. The existing methods of early diagnostics of breast cancer are mainly based on screening mammography or Magnetic Resonance Imaging (MRI) periodically conducted at medical facilities. In this paper the authors proposing a new approach for simple breast cancer detection. It is based on skin stimulation by sound waves, illuminating it by laser beam and tracking the reflected secondary speckle patterns. As first approach, plastic balls of different sizes were placed under the skin of chicken breast and detected by the proposed method.

  14. Vision-Based Bicycle Detection Using Multiscale Block Local Binary Pattern

    Directory of Open Access Journals (Sweden)

    Hongyu Hu

    2014-01-01

    Full Text Available Bicycle traffic has heavy proportion among all travel modes in some developing countries, which is crucial for urban traffic control and management as well as facility design. This paper proposes a real-time multiple bicycle detection algorithm based on video. At first, an effective feature called multiscale block local binary pattern (MBLBP is extracted for representing the moving object, which is a well-classified feature to distinguish between bicycles and nonbicycles; then, a cascaded bicycle classifier trained by AdaBoost algorithm is proposed, which has a good computation efficiency. Finally, the method is tested with video sequence captured from the real-world traffic scenario. The bicycles in the test scenario are successfully detected.

  15. Multivariate data-driven modelling and pattern recognition for damage detection and identification for acoustic emission and acousto-ultrasonics

    DEFF Research Database (Denmark)

    Torres-Arredondo, M.A.; Tibaduiza, D.-A.; McGugan, Malcolm

    2013-01-01

    and pattern recognition are evaluated and integrated into the different proposed methodologies. As a contribution to solve the problem, this paper presents results in damage detection and classification using a methodology based on hierarchical nonlinear principal component analysis, square prediction...

  16. Web-based GIS for spatial pattern detection: application to malaria incidence in Vietnam.

    Science.gov (United States)

    Bui, Thanh Quang; Pham, Hai Minh

    2016-01-01

    There is a great concern on how to build up an interoperable health information system of public health and health information technology within the development of public information and health surveillance programme. Technically, some major issues remain regarding to health data visualization, spatial processing of health data, health information dissemination, data sharing and the access of local communities to health information. In combination with GIS, we propose a technical framework for web-based health data visualization and spatial analysis. Data was collected from open map-servers and geocoded by open data kit package and data geocoding tools. The Web-based system is designed based on Open-source frameworks and libraries. The system provides Web-based analyst tool for pattern detection through three spatial tests: Nearest neighbour, K function, and Spatial Autocorrelation. The result is a web-based GIS, through which end users can detect disease patterns via selecting area, spatial test parameters and contribute to managers and decision makers. The end users can be health practitioners, educators, local communities, health sector authorities and decision makers. This web-based system allows for the improvement of health related services to public sector users as well as citizens in a secure manner. The combination of spatial statistics and web-based GIS can be a solution that helps empower health practitioners in direct and specific intersectional actions, thus provide for better analysis, control and decision-making.

  17. Strain detection in crystalline heterostructures using bidimensional blocking patterns of channelled particles

    Science.gov (United States)

    Redondo-Cubero, A.; David-Bosne, E.; Wahl, U.; Miranda, P.; da Silva, M. R.; Correia, J. G.; Lorenz, K.

    2018-03-01

    Strain is a critical parameter affecting the growth and the performance of many semiconductor systems but, at the same time, the accurate determination of strain profiles in heterostructures can be challenging, especially at the nanoscale. Ion channelling/blocking is a powerful technique for the detection of the strain state of thin films, normally carried out through angular scans with conventional particle detectors. Here we report the novel application of position sensitive detectors for the evaluation of the strain in a series of AlInN/GaN heterostructures with different compositions and thicknesses. The tetragonal strain is varied from compressive to tensile and analysed through bidimensional blocking patterns. The results demonstrate that strain can be correctly quantified when compared to Monte Carlo channelling simulations, which are essential because of the presence of ion steering effects at the interface between the layer and the substrate. Despite this physical limitation caused by ion steering, our results show that full bidimensional patterns can be applied to detect fingerprints and enhance the accuracy for most critical cases, in which the angular shift associated to the lattice distortion is below the critical angle for channelling.

  18. Detection of viability of micro-algae cells by optofluidic hologram pattern.

    Science.gov (United States)

    Wang, Junsheng; Yu, Xiaomei; Wang, Yanjuan; Pan, Xinxiang; Li, Dongqing

    2018-03-01

    A rapid detection of micro-algae activity is critical for analysis of ship ballast water. A new method for detecting micro-algae activity based on lens-free optofluidic holographic imaging is presented in this paper. A compact lens-free optofluidic holographic imaging device was developed. This device is mainly composed of a light source, a small through-hole, a light propagation module, a microfluidic chip, and an image acquisition and processing module. The excited light from the light source passes through a small hole to reach the surface of the micro-algae cells in the microfluidic chip, and a holographic image is formed by the diffraction light of surface of micro-algae cells. The relation between the characteristics in the hologram pattern and the activity of micro-algae cells was investigated by using this device. The characteristics of the hologram pattern were extracted to represent the activity of micro-algae cells. To demonstrate the accuracy of the presented method and device, four species of micro-algae cells were employed as the test samples and the comparison experiments between the alive and dead cells of four species of micro-algae were conducted. The results show that the developed method and device can determine live/dead microalgae cells accurately.

  19. Improved twin detection via tracking of individual Kikuchi band intensity of EBSD patterns.

    Science.gov (United States)

    Rampton, Travis M; Wright, Stuart I; Miles, Michael P; Homer, Eric R; Wagoner, Robert H; Fullwood, David T

    2018-02-01

    Twin detection via EBSD can be particularly challenging due to the fine scale of certain twin types - for example, compression and double twins in Mg. Even when a grid of sufficient resolution is chosen to ensure scan points within the twins, the interaction volume of the electron beam often encapsulates a region that contains both the parent grain and the twin, confusing the twin identification process. The degradation of the EBSD pattern results in a lower image quality metric, which has long been used to imply potential twins. However, not all bands within the pattern are degraded equally. This paper exploits the fact that parent and twin lattices share common planes that lead to the quality of the associated bands not degrading; i.e. common planes that exist in both grains lead to bands of consistent intensity for scan points adjacent to twin boundaries. Hence, twin boundaries in a microstructure can be recognized, even when they are associated with thin twins. Proof of concept was performed on known twins in Inconel 600, Tantalum, and Magnesium AZ31. This method was then used to search for undetected twins in a Mg AZ31 structure, revealing nearly double the number of twins compared with those initially detected by standard procedures. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Replication Banding Patterns in Human Chromosomes Detected Using 5-ethynyl-2'-deoxyuridine Incorporation

    International Nuclear Information System (INIS)

    Hoshi, Osamu; Ushiki, Tatsuo

    2011-01-01

    A novel technique using the incorporation of 5-ethynyl-2'-deoxyuridine (EdU) into replicating DNA is described for the analysis of replicating banding patterns of human metaphase chromosomes. Human lymphocytes were synchronized with excess thymidine and treated with EdU during the late S phase of the cell cycle. The incorporated EdU was then detected in metaphase chromosomes using Alexa Fluor® 488 azides, through the 1,3-dipolar cycloaddition reaction of organic azides with the terminal acetylene group of EdU. Chromosomes with incorporated EdU showed a banding pattern similar to G-banding of normal human chromosomes. Imaging by atomic force microscopy (AFM) in liquid conditions showed that the structure of the chromosomes was well preserved even after EdU treatment. Comparison between fluorescence microscopy and AFM images of the same chromosome 1 indicated the presence of ridges and grooves in the chromatid arm, features that have been previously reported in relation to G-banding. These results suggest an intimate relationship between EdU-induced replication bands and G- or R-bands in human chromosomes. This technique is thus useful for analyzing the structure of chromosomes in relation to their banding patterns following DNA replication in the S phase

  1. Graffiti for science: Qualitative detection of erosional patterns through bedrock erosion painting

    Science.gov (United States)

    Beer, Alexander R.; Kirchner, James W.; Turowski, Jens M.

    2016-04-01

    Bedrock erosion is a crucial constraint on stream channel incision, and hence whole landscape evolution, in steep mountainous terrain and tectonically active regions. Several interacting processes lead to bedrock erosion in stream channels, with hydraulic shear detachment, plucking, and abrasion due to sediment impacts generally being the most efficient. Bedrock topography, together with the sediment tools and cover effects, regulate the rate and spatial pattern of in situ surface change. Measurements of natural bedrock erosion rates are valuable for understanding the underlying process physics, as well as for modelling landscape evolution and designing engineered structures. However, quantifying spatially distributed bedrock erosion rates in natural settings is challenging and few such measurements exist. We studied spatial bedrock erosion in a 30m-long bedrock gorge in the Gornera, a glacial meltwater stream above Zermatt. This stream is flushed episodically with sediment-laden streamflow due to hydropower operations upstream, with negligible discharge in the gorge in between these flushing events. We coated several bedrock surface patches with environmentally safe, and water-insoluble outdoor paint to document the spatial pattern of surface abrasion, or to be more precise, to document its driving forces. During four consecutive years, the change of the painted areas was recorded repeatedly with photographs before the painting was renewed. These photographs visually documented the spatial patterns of vertical erosion (channel incision), of lateral erosion (channel widening) and of downstream-directed erosion (channel clearance). The observed qualitative patterns were verified through comparison to quantitative change detection analyses based on annual high-resolution terrestrial laser scanning surveys of the bedrock surfaces. Comparison of repeated photographs indicated a temporal cover effect and a general height limit of the tools effect above the streambed

  2. Detecting causality from online psychiatric texts using inter-sentential language patterns

    Directory of Open Access Journals (Sweden)

    Wu Jheng-Long

    2012-07-01

    Full Text Available Abstract Background Online psychiatric texts are natural language texts expressing depressive problems, published by Internet users via community-based web services such as web forums, message boards and blogs. Understanding the cause-effect relations embedded in these psychiatric texts can provide insight into the authors’ problems, thus increasing the effectiveness of online psychiatric services. Methods Previous studies have proposed the use of word pairs extracted from a set of sentence pairs to identify cause-effect relations between sentences. A word pair is made up of two words, with one coming from the cause text span and the other from the effect text span. Analysis of the relationship between these words can be used to capture individual word associations between cause and effect sentences. For instance, (broke up, life and (boyfriend, meaningless are two word pairs extracted from the sentence pair: “I broke up with my boyfriend. Life is now meaningless to me”. The major limitation of word pairs is that individual words in sentences usually cannot reflect the exact meaning of the cause and effect events, and thus may produce semantically incomplete word pairs, as the previous examples show. Therefore, this study proposes the use of inter-sentential language patterns such as ≪broke up, boyfriend>, Results Performance was evaluated on a corpus of texts collected from PsychPark (http://www.psychpark.org, a virtual psychiatric clinic maintained by a group of volunteer professionals from the Taiwan Association of Mental Health Informatics. Experimental results show that the use of inter-sentential language patterns outperformed the use of word pairs proposed in previous studies. Conclusions This study demonstrates the acquisition of inter-sentential language patterns for causality detection from online psychiatric texts. Such semantically more complete and precise features can improve causality detection performance.

  3. Patterns of cross-contamination in a multispecies population genomic project: detection, quantification, impact, and solutions.

    Science.gov (United States)

    Ballenghien, Marion; Faivre, Nicolas; Galtier, Nicolas

    2017-03-29

    Contamination is a well-known but often neglected problem in molecular biology. Here, we investigated the prevalence of cross-contamination among 446 samples from 116 distinct species of animals, which were processed in the same laboratory and subjected to subcontracted transcriptome sequencing. Using cytochrome oxidase 1 as a barcode, we identified a minimum of 782 events of between-species contamination, with approximately 80% of our samples being affected. An analysis of laboratory metadata revealed a strong effect of the sequencing center: nearly all the detected events of between-species contamination involved species that were sent the same day to the same company. We introduce new methods to address the amount of within-species, between-individual contamination, and to correct for this problem when calling genotypes from base read counts. We report evidence for pervasive within-species contamination in this data set, and show that classical population genomic statistics, such as synonymous diversity, the ratio of non-synonymous to synonymous diversity, inbreeding coefficient F IT , and Tajima's D, are sensitive to this problem to various extents. Control analyses suggest that our published results are probably robust to the problem of contamination. Recommendations on how to prevent or avoid contamination in large-scale population genomics/molecular ecology are provided based on this analysis.

  4. Use of Acoustic Emission and Pattern Recognition for Crack Detection of a Large Carbide Anvil.

    Science.gov (United States)

    Chen, Bin; Wang, Yanan; Yan, Zhaoli

    2018-01-29

    Large-volume cubic high-pressure apparatus is commonly used to produce synthetic diamond. Due to the high pressure, high temperature and alternative stresses in practical production, cracks often occur in the carbide anvil, thereby resulting in significant economic losses or even casualties. Conventional methods are unsuitable for crack detection of the carbide anvil. This paper is concerned with acoustic emission-based crack detection of carbide anvils, regarded as a pattern recognition problem; this is achieved using a microphone, with methods including sound pulse detection, feature extraction, feature optimization and classifier design. Through analyzing the characteristics of background noise, the cracked sound pulses are separated accurately from the originally continuous signal. Subsequently, three different kinds of features including a zero-crossing rate, sound pressure levels, and linear prediction cepstrum coefficients are presented for characterizing the cracked sound pulses. The original high-dimensional features are adaptively optimized using principal component analysis. A hybrid framework of a support vector machine with k nearest neighbors is designed to recognize the cracked sound pulses. Finally, experiments are conducted in a practical diamond workshop to validate the feasibility and efficiency of the proposed method.

  5. Pattern Extraction Algorithm for NetFlow-Based Botnet Activities Detection

    Directory of Open Access Journals (Sweden)

    Rafał Kozik

    2017-01-01

    Full Text Available As computer and network technologies evolve, the complexity of cybersecurity has dramatically increased. Advanced cyber threats have led to current approaches to cyber-attack detection becoming ineffective. Many currently used computer systems and applications have never been deeply tested from a cybersecurity point of view and are an easy target for cyber criminals. The paradigm of security by design is still more of a wish than a reality, especially in the context of constantly evolving systems. On the other hand, protection technologies have also improved. Recently, Big Data technologies have given network administrators a wide spectrum of tools to combat cyber threats. In this paper, we present an innovative system for network traffic analysis and anomalies detection to utilise these tools. The systems architecture is based on a Big Data processing framework, data mining, and innovative machine learning techniques. So far, the proposed system implements pattern extraction strategies that leverage batch processing methods. As a use case we consider the problem of botnet detection by means of data in the form of NetFlows. Results are promising and show that the proposed system can be a useful tool to improve cybersecurity.

  6. Study on Analysis and Pattern Recognition of the Manifestation of the Pulse Detection of Cerebrovascular Disease

    Energy Technology Data Exchange (ETDEWEB)

    Jing, J; Wang, Y C; Hong, W X; Zhang, W P [Department of Biomedical Engineering, University of Yanshan, Qinhuangdao, Hebei Province, 066004 (China)

    2006-10-15

    Cerebrovascular Disease (CVD) is also called stroke in Traditional Chinese Medicine (TCM). CVD is a kind of frequent diseases with high incidence, high death rate, high deformity rate and high relapse rate. The pathogenesis of CVD has relation to many factors. In modern medicine, we can make use of various instruments to check many biochemical parameters. However, at present, the early detection of CVD can mostly be done artificially by specialists. In TCM the salted expert can detect the state of a CVD patient by felling his (or her) pulse. It is significant to apply the modern information and engineering techniques to the early discovery of CVD. It is also a challenge to do this in fact. In this paper, the authors presented a detection method of CVD basing on analysis and pattern recognition of Manifestation of the Pulse of TCM using wavelet technology and Neural Networks. Pulse signals from normal health persons and CVD patients were studied comparatively. This research method is flexible to deal with other physiological signals.

  7. Clinical patterns associated with the concurrent detection of anti-HBs and HBV DNA.

    Science.gov (United States)

    Anastasiou, Olympia E; Widera, Marek; Korth, Johannes; Kefalakes, Helenie; Katsounas, Antonios; Hilgard, Gudrun; Gerken, Guido; Canbay, Ali; Ciesek, Sandra; Verheyen, Jens

    2018-02-01

    Simultaneous detection of anti-HBs and HBV DNA is a rare serological combination and has been described in acute and chronic HBV infection. To scrutinize viral and clinical patterns associated with concurrent detection of anti-HBs and HBV DNA. Simultaneous detection of anti-HBs and HBV DNA was observed in 64/1444 (4.4%) patients treated for HBV infection at the University Hospital of Essen from 2006 to 2016 (8 with acute, 20 with reactivated, and 36 chronic HBV infection). Clinical data and laboratory parameters were analyzed. Regions of the small hepatitis B surface antigen (SHB) and the reverse transcriptase (RT) were sequenced using next generation sequencing (NGS). Among the 64 patients with detectable HBV DNA and anti-HBs, 17 were HBsAg negative (HBsAg[-]), and two had acute liver failure. Patients with acute HBV infection had fewer genotype specific amino acid substitutions in the SHB region than patients with reactivated HBV infection (4 [4.5] vs 9 [16.25], P = 0.043). However, we could observe a significantly higher number of mutations in the a-determinant region when comparing chronically infected patients to patients with acute infection (0 [1] vs 1 [1], P = 0.044). The ratio of nonsynonymous to synonymous mutations (Ka/Ks) was on average >1 for the SHB region and 1) in the SHB region indicates that anti-HBs might have exerted selection pressure on the HBsAg. In three cases the diagnosis of acute HBV infection would have been at least delayed by only focusing on HBsAg testing. © 2017 Wiley Periodicals, Inc.

  8. Detecting altered connectivity patterns in HIV associated neurocognitive impairment using mutual connectivity analysis

    Science.gov (United States)

    Abidin, Anas Zainul; D'Souza, Adora M.; Nagarajan, Mahesh B.; Wismüller, Axel

    2016-03-01

    The use of functional Magnetic Resonance Imaging (fMRI) has provided interesting insights into our understanding of the brain. In clinical setups these scans have been used to detect and study changes in the brain network properties in various neurological disorders. A large percentage of subjects infected with HIV present cognitive deficits, which are known as HIV associated neurocognitive disorder (HAND). In this study we propose to use our novel technique named Mutual Connectivity Analysis (MCA) to detect differences in brain networks in subjects with and without HIV infection. Resting state functional MRI scans acquired from 10 subjects (5 HIV+ and 5 HIV-) were subject to standard preprocessing routines. Subsequently, the average time-series for each brain region of the Automated Anatomic Labeling (AAL) atlas are extracted and used with the MCA framework to obtain a graph characterizing the interactions between them. The network graphs obtained for different subjects are then compared using Network-Based Statistics (NBS), which is an approach to detect differences between graphs edges while controlling for the family-wise error rate when mass univariate testing is performed. Applying this approach on the graphs obtained yields a single network encompassing 42 nodes and 65 edges, which is significantly different between the two subject groups. Specifically connections to the regions in and around the basal ganglia are significantly decreased. Also some nodes corresponding to the posterior cingulate cortex are affected. These results are inline with our current understanding of pathophysiological mechanisms of HIV associated neurocognitive disease (HAND) and other HIV based fMRI connectivity studies. Hence, we illustrate the applicability of our novel approach with network-based statistics in a clinical case-control study to detect differences connectivity patterns.

  9. Automatic detection of rhythmic and periodic patterns in critical care EEG based on American Clinical Neurophysiology Society (ACNS) standardized terminology.

    Science.gov (United States)

    Fürbass, F; Hartmann, M M; Halford, J J; Koren, J; Herta, J; Gruber, A; Baumgartner, C; Kluge, T

    2015-09-01

    Continuous EEG from critical care patients needs to be evaluated time efficiently to maximize the treatment effect. A computational method will be presented that detects rhythmic and periodic patterns according to the critical care EEG terminology (CCET) of the American Clinical Neurophysiology Society (ACNS). The aim is to show that these detected patterns support EEG experts in writing neurophysiological reports. First of all, three case reports exemplify the evaluation procedure using graphically presented detections. Second, 187 hours of EEG from 10 critical care patients were used in a comparative trial study. For each patient the result of a review session using the EEG and the visualized pattern detections was compared to the original neurophysiology report. In three out of five patients with reported seizures, all seizures were reported correctly. In two patients, several subtle clinical seizures with unclear EEG correlation were missed. Lateralized periodic patterns (LPD) were correctly found in 2/2 patients and EEG slowing was correctly found in 7/9 patients. In 8/10 patients, additional EEG features were found including LPDs, EEG slowing, and seizures. The use of automatic pattern detection will assist in review of EEG and increase efficiency. The implementation of bedside surveillance devices using our detection algorithm appears to be feasible and remains to be confirmed in further multicenter studies. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. Detection of Upscale-Crop and Partial Manipulation in Surveillance Video Based on Sensor Pattern Noise

    Science.gov (United States)

    Hyun, Dai-Kyung; Ryu, Seung-Jin; Lee, Hae-Yeoun; Lee, Heung-Kyu

    2013-01-01

    In many court cases, surveillance videos are used as significant court evidence. As these surveillance videos can easily be forged, it may cause serious social issues, such as convicting an innocent person. Nevertheless, there is little research being done on forgery of surveillance videos. This paper proposes a forensic technique to detect forgeries of surveillance video based on sensor pattern noise (SPN). We exploit the scaling invariance of the minimum average correlation energy Mellin radial harmonic (MACE-MRH) correlation filter to reliably unveil traces of upscaling in videos. By excluding the high-frequency components of the investigated video and adaptively choosing the size of the local search window, the proposed method effectively localizes partially manipulated regions. Empirical evidence from a large database of test videos, including RGB (Red, Green, Blue)/infrared video, dynamic-/static-scene video and compressed video, indicates the superior performance of the proposed method. PMID:24051524

  11. Video-based depression detection using local Curvelet binary patterns in pairwise orthogonal planes.

    Science.gov (United States)

    Pampouchidou, Anastasia; Marias, Kostas; Tsiknakis, Manolis; Simos, Panagiotis; Fan Yang; Lemaitre, Guillaume; Meriaudeau, Fabrice

    2016-08-01

    Depression is an increasingly prevalent mood disorder. This is the reason why the field of computer-based depression assessment has been gaining the attention of the research community during the past couple of years. The present work proposes two algorithms for depression detection, one Frame-based and the second Video-based, both employing Curvelet transform and Local Binary Patterns. The main advantage of these methods is that they have significantly lower computational requirements, as the extracted features are of very low dimensionality. This is achieved by modifying the previously proposed algorithm which considers Three-Orthogonal-Planes, to only Pairwise-Orthogonal-Planes. Performance of the algorithms was tested on the benchmark dataset provided by the Audio/Visual Emotion Challenge 2014, with the person-specific system achieving 97.6% classification accuracy, and the person-independed one yielding promising preliminary results of 74.5% accuracy. The paper concludes with open issues, proposed solutions, and future plans.

  12. Anomaly Detection and Life Pattern Estimation for the Elderly Based on Categorization of Accumulated Data

    Science.gov (United States)

    Mori, Taketoshi; Ishino, Takahito; Noguchi, Hiroshi; Shimosaka, Masamichi; Sato, Tomomasa

    2011-06-01

    We propose a life pattern estimation method and an anomaly detection method for elderly people living alone. In our observation system for such people, we deploy some pyroelectric sensors into the house and measure the person's activities all the time in order to grasp the person's life pattern. The data are transferred successively to the operation center and displayed to the nurses in the center in a precise way. Then, the nurses decide whether the data is the anomaly or not. In the system, the people whose features in their life resemble each other are categorized as the same group. Anomalies occurred in the past are shared in the group and utilized in the anomaly detection algorithm. This algorithm is based on "anomaly score." The "anomaly score" is figured out by utilizing the activeness of the person. This activeness is approximately proportional to the frequency of the sensor response in a minute. The "anomaly score" is calculated from the difference between the activeness in the present and the past one averaged in the long term. Thus, the score is positive if the activeness in the present is higher than the average in the past, and the score is negative if the value in the present is lower than the average. If the score exceeds a certain threshold, it means that an anomaly event occurs. Moreover, we developed an activity estimation algorithm. This algorithm estimates the residents' basic activities such as uprising, outing, and so on. The estimation is shown to the nurses with the "anomaly score" of the residents. The nurses can understand the residents' health conditions by combining these two information.

  13. Improved detection of congestive heart failure via probabilistic symbolic pattern recognition and heart rate variability metrics.

    Science.gov (United States)

    Mahajan, Ruhi; Viangteeravat, Teeradache; Akbilgic, Oguz

    2017-12-01

    A timely diagnosis of congestive heart failure (CHF) is crucial to evade a life-threatening event. This paper presents a novel probabilistic symbol pattern recognition (PSPR) approach to detect CHF in subjects from their cardiac interbeat (R-R) intervals. PSPR discretizes each continuous R-R interval time series by mapping them onto an eight-symbol alphabet and then models the pattern transition behavior in the symbolic representation of the series. The PSPR-based analysis of the discretized series from 107 subjects (69 normal and 38 CHF subjects) yielded discernible features to distinguish normal subjects and subjects with CHF. In addition to PSPR features, we also extracted features using the time-domain heart rate variability measures such as average and standard deviation of R-R intervals. An ensemble of bagged decision trees was used to classify two groups resulting in a five-fold cross-validation accuracy, specificity, and sensitivity of 98.1%, 100%, and 94.7%, respectively. However, a 20% holdout validation yielded an accuracy, specificity, and sensitivity of 99.5%, 100%, and 98.57%, respectively. Results from this study suggest that features obtained with the combination of PSPR and long-term heart rate variability measures can be used in developing automated CHF diagnosis tools. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Using hyper-spectral indices to detect soil phosphorus concentration for various land use patterns.

    Science.gov (United States)

    Lin, Chen; Ma, Ronghua; Zhu, Qing; Li, Jingtao

    2015-01-01

    The management of nonpoint source pollution requires accurate information regarding soil phosphorus concentrations for different land use patterns. The use of remotely sensed information provides an important opportunity for such studies, and the previous studies showed that soil phosphorus shows no clear spectral response feature, while the phosphorus concentrations can be indirectly detected from the normalised difference vegetation indices (NDVI). Therefore, this study uses an optimised index in the RED and near-infrared (NIR) wavelengths to estimate total phosphorus and Olsen-P concentrations. The prediction accuracy is not entirely satisfactory with respect to a mixed land use dataset in which the determination coefficient was maintained at approximately 0.6, with particularly poor performance obtained for forest land group. However, the prediction accuracy increases markedly with the separation of samples into broad land use categories, even the R(2) was exceeded 0.8 for tea plantation group. The soil phosphorus prediction effect showed obvious variance for different land use patterns, which was related to vegetation growth conditions and critical soil properties including soil organic matter and mechanical composition.

  15. Pattern of Breast Cancer Distribution in Ghana: A Survey to Enhance Early Detection, Diagnosis, and Treatment

    Directory of Open Access Journals (Sweden)

    Frank Naku Ghartey Jnr

    2016-01-01

    Full Text Available Background. Nearly 70% of women diagnosed with breast cancer in Ghana are in advanced stages of the disease due especially to low awareness, resulting in limited treatment success and high death rate. With limited epidemiological studies on breast cancer in Ghana, the aim of this study is to assess and understand the pattern of breast cancer distribution for enhancing early detection and treatment. Methods. We randomly selected and screened 3000 women for clinical palpable breast lumps and used univariate and bivariate analysis for description and exploration of variables, respectively, in relation to incidence of breast cancer. Results. We diagnosed 23 (0.76% breast cancer cases out of 194 (6.46% participants with clinically palpable breast lumps. Seventeen out of these 23 (0.56% were premenopausal (<46.6 years with 7 (0.23% being below 35 years. With an overall breast cancer incidence of 0.76% in this study, our observation that about 30% of these cancer cases were below 35 years may indicate a relative possible shift of cancer burden to women in their early thirties in Ghana, compared to Western countries. Conclusion. These results suggest an age adjustment for breast cancer screening to early twenties for Ghanaian women and the need for a nationwide breast cancer screening to understand completely the pattern of breast cancer distribution in Ghana.

  16. Infrared interference patterns for new capabilities in laser end point detection

    International Nuclear Information System (INIS)

    Heason, D J; Spencer, A G

    2003-01-01

    Standard laser interferometry is used in dry etch fabrication of semiconductor and MEMS devices to measure etch depth, rate and to detect the process end point. However, many wafer materials, such as silicon are absorbing at probing wavelengths in the visible, severely limiting the amount of information that can be obtained using this technique. At infrared (IR) wavelengths around 1500 nm and above, silicon is highly transparent. In this paper we describe an instrument that can be used to monitor etch depth throughout a thru-wafer etch. The provision of this information could eliminate the requirement of an 'etch stop' layer and improve the performance of fabricated devices. We have added a further new capability by using tuneable lasers to scan through wavelengths in the near IR to generate an interference pattern. Fitting a theoretical curve to this interference pattern gives in situ measurement of film thickness. Whereas conventional interferometry would only allow etch depth to be monitored in real time, we can use a pre-etch thickness measurement to terminate the etch on a remaining thickness of film material. This paper discusses the capabilities of, and the opportunities offered by, this new technique and gives examples of applications in MEMS and waveguides

  17. Detecting spatial patterns with the cumulant function – Part 1: The theory

    Directory of Open Access Journals (Sweden)

    P. Naveau

    2008-02-01

    Full Text Available In climate studies, detecting spatial patterns that largely deviate from the sample mean still remains a statistical challenge. Although a Principal Component Analysis (PCA, or equivalently a Empirical Orthogonal Functions (EOF decomposition, is often applied for this purpose, it provides meaningful results only if the underlying multivariate distribution is Gaussian. Indeed, PCA is based on optimizing second order moments, and the covariance matrix captures the full dependence structure of multivariate Gaussian vectors. Whenever the application at hand can not satisfy this normality hypothesis (e.g. precipitation data, alternatives and/or improvements to PCA have to be developed and studied. To go beyond this second order statistics constraint, that limits the applicability of the PCA, we take advantage of the cumulant function that can produce higher order moments information. The cumulant function, well-known in the statistical literature, allows us to propose a new, simple and fast procedure to identify spatial patterns for non-Gaussian data. Our algorithm consists in maximizing the cumulant function. Three families of multivariate random vectors, for which explicit computations are obtained, are implemented to illustrate our approach. In addition, we show that our algorithm corresponds to selecting the directions along which projected data display the largest spread over the marginal probability density tails.

  18. Automated Detection of Selective Logging in Amazon Forests Using Airborne Lidar Data and Pattern Recognition Algorithms

    Science.gov (United States)

    Keller, M. M.; d'Oliveira, M. N.; Takemura, C. M.; Vitoria, D.; Araujo, L. S.; Morton, D. C.

    2012-12-01

    Selective logging, the removal of several valuable timber trees per hectare, is an important land use in the Brazilian Amazon and may degrade forests through long term changes in structure, loss of forest carbon and species diversity. Similar to deforestation, the annual area affected by selected logging has declined significantly in the past decade. Nonetheless, this land use affects several thousand km2 per year in Brazil. We studied a 1000 ha area of the Antimary State Forest (FEA) in the State of Acre, Brazil (9.304 ○S, 68.281 ○W) that has a basal area of 22.5 m2 ha-1 and an above-ground biomass of 231 Mg ha-1. Logging intensity was low, approximately 10 to 15 m3 ha-1. We collected small-footprint airborne lidar data using an Optech ALTM 3100EA over the study area once each in 2010 and 2011. The study area contained both recent and older logging that used both conventional and technologically advanced logging techniques. Lidar return density averaged over 20 m-2 for both collection periods with estimated horizontal and vertical precision of 0.30 and 0.15 m. A relative density model comparing returns from 0 to 1 m elevation to returns in 1-5 m elevation range revealed the pattern of roads and skid trails. These patterns were confirmed by ground-based GPS survey. A GIS model of the road and skid network was built using lidar and ground data. We tested and compared two pattern recognition approaches used to automate logging detection. Both segmentation using commercial eCognition segmentation and a Frangi filter algorithm identified the road and skid trail network compared to the GIS model. We report on the effectiveness of these two techniques.

  19. Antagonism pattern detection between microRNA and target expression in Ewing's sarcoma.

    Directory of Open Access Journals (Sweden)

    Loredana Martignetti

    Full Text Available MicroRNAs (miRNAs have emerged as fundamental regulators that silence gene expression at the post-transcriptional and translational levels. The identification of their targets is a major challenge to elucidate the regulated biological processes. The overall effect of miRNA is reflected on target mRNA expression, suggesting the design of new investigative methods based on high-throughput experimental data such as miRNA and transcriptome profiles. We propose a novel statistical measure of non-linear dependence between miRNA and mRNA expression, in order to infer miRNA-target interactions. This approach, which we name antagonism pattern detection, is based on the statistical recognition of a triangular-shaped pattern in miRNA-target expression profiles. This pattern is observed in miRNA-target expression measurements since their simultaneously elevated expression is statistically under-represented in the case of miRNA silencing effect. The proposed method enables miRNA target prediction to strongly rely on cellular context and physiological conditions reflected by expression data. The procedure has been assessed on synthetic datasets and tested on a set of real positive controls. Then it has been applied to analyze expression data from Ewing's sarcoma patients. The antagonism relationship is evaluated as a good indicator of real miRNA-target biological interaction. The predicted targets are consistently enriched for miRNA binding site motifs in their 3'UTR. Moreover, we reveal sets of predicted targets for each miRNA sharing important biological function. The procedure allows us to infer crucial miRNA regulators and their potential targets in Ewing's sarcoma disease. It can be considered as a valid statistical approach to discover new insights in the miRNA regulatory mechanisms.

  20. Damage detection methodology under variable load conditions based on strain field pattern recognition using FBGs, nonlinear principal component analysis, and clustering techniques

    Science.gov (United States)

    Sierra-Pérez, Julián; Torres-Arredondo, M.-A.; Alvarez-Montoya, Joham

    2018-01-01

    Structural health monitoring consists of using sensors integrated within structures together with algorithms to perform load monitoring, damage detection, damage location, damage size and severity, and prognosis. One possibility is to use strain sensors to infer structural integrity by comparing patterns in the strain field between the pristine and damaged conditions. In previous works, the authors have demonstrated that it is possible to detect small defects based on strain field pattern recognition by using robust machine learning techniques. They have focused on methodologies based on principal component analysis (PCA) and on the development of several unfolding and standardization techniques, which allow dealing with multiple load conditions. However, before a real implementation of this approach in engineering structures, changes in the strain field due to conditions different from damage occurrence need to be isolated. Since load conditions may vary in most engineering structures and promote significant changes in the strain field, it is necessary to implement novel techniques for uncoupling such changes from those produced by damage occurrence. A damage detection methodology based on optimal baseline selection (OBS) by means of clustering techniques is presented. The methodology includes the use of hierarchical nonlinear PCA as a nonlinear modeling technique in conjunction with Q and nonlinear-T 2 damage indices. The methodology is experimentally validated using strain measurements obtained by 32 fiber Bragg grating sensors bonded to an aluminum beam under dynamic bending loads and simultaneously submitted to variations in its pitch angle. The results demonstrated the capability of the methodology for clustering data according to 13 different load conditions (pitch angles), performing the OBS and detecting six different damages induced in a cumulative way. The proposed methodology showed a true positive rate of 100% and a false positive rate of 1.28% for a

  1. A Sensitive and Robust Ultra HPLC Assay with Tandem Mass Spectrometric Detection for the Quantitation of the PARP Inhibitor Olaparib (AZD2281 in Human Plasma for Pharmacokinetic Application

    Directory of Open Access Journals (Sweden)

    Jeffrey Roth

    2014-06-01

    Full Text Available Olaparib (AZD2281 is an orally active PARP-1 inhibitor, primarily effective against cancers with BRCA1/2 mutations. It is currently in Phase III development and has previously been investigated in numerous clinical trials, both as a single agent and in combination with chemotherapy. Despite this widespread testing, there is only one published method that provides assay details and stability studies for olaparib alone. A more sensitive uHPLC-MS/MS method for the quantification of olaparib in human plasma was developed, increasing the range of quantification at both ends (0.5–50,000 ng/mL compared to previously published methods (10–5,000 ng/mL. The wider range encompasses CMAX levels produced by typical olaparib doses and permits better pharmacokinetic modeling of olaparib elimination. This assay also utilizes a shorter analytical runtime, allowing for more rapid quantification and reduced use of reagents. A liquid-liquid extraction was followed by chromatographic separation on a Waters UPLC® BEH C18 column (2.1 × 50 mm, 1.7 µm and mass spectrometric detection. The mass transitions m/z 435.4→281.1 and m/z 443.2→281.1 were used for olaparib and the internal standard [2H8]-olaparib, respectively. The assay proved to be accurate (<9% deviation and precise (CV < 11%. Stability studies showed that olaparib is stable at room temperature for 24 h. in whole blood, at 4 °C for 24 h post-extraction, at −80 °C in plasma for at least 19 months, and through three freeze-thaw cycles. This method proved to be robust for measuring olaparib levels in clinical samples from a Phase I trial.

  2. Robust and distributed hypothesis testing

    CERN Document Server

    Gül, Gökhan

    2017-01-01

    This book generalizes and extends the available theory in robust and decentralized hypothesis testing. In particular, it presents a robust test for modeling errors which is independent from the assumptions that a sufficiently large number of samples is available, and that the distance is the KL-divergence. Here, the distance can be chosen from a much general model, which includes the KL-divergence as a very special case. This is then extended by various means. A minimax robust test that is robust against both outliers as well as modeling errors is presented. Minimax robustness properties of the given tests are also explicitly proven for fixed sample size and sequential probability ratio tests. The theory of robust detection is extended to robust estimation and the theory of robust distributed detection is extended to classes of distributions, which are not necessarily stochastically bounded. It is shown that the quantization functions for the decision rules can also be chosen as non-monotone. Finally, the boo...

  3. Analytical maximum-likelihood method to detect patterns in real networks

    International Nuclear Information System (INIS)

    Squartini, Tiziano; Garlaschelli, Diego

    2011-01-01

    In order to detect patterns in real networks, randomized graph ensembles that preserve only part of the topology of an observed network are systematically used as fundamental null models. However, the generation of them is still problematic. Existing approaches are either computationally demanding and beyond analytic control or analytically accessible but highly approximate. Here, we propose a solution to this long-standing problem by introducing a fast method that allows one to obtain expectation values and standard deviations of any topological property analytically, for any binary, weighted, directed or undirected network. Remarkably, the time required to obtain the expectation value of any property analytically across the entire graph ensemble is as short as that required to compute the same property using the adjacency matrix of the single original network. Our method reveals that the null behavior of various correlation properties is different from what was believed previously, and is highly sensitive to the particular network considered. Moreover, our approach shows that important structural properties (such as the modularity used in community detection problems) are currently based on incorrect expressions, and provides the exact quantities that should replace them.

  4. Shedding and serological patterns of dairy cows following abortions associated with Coxiella burnetii DNA detection.

    Science.gov (United States)

    Guatteo, R; Joly, A; Beaudeau, F

    2012-03-23

    To describe both shedding and serological patterns following abortions detected as being associated with Coxiella burnetii (Cb), 24 cows experiencing an abortion due to Cb were followed over a one month period. Samples taken on the day of abortion (D0) were followed 3-fold by weekly samplings from day 14 (D14) to D28 after the abortion. Milk and vaginal mucus were collected at each weekly sampling and tested using real-time PCR while blood samples were collected 2-fold on D21 and D28 and tested using ELISA. We found a very short duration of C. burnetii shedding in vaginal mucus after abortion, highlighting the need to collect samples as rapidly as possible following an abortion to avoid false negative results. In contrast with previous results, concomitancy of vaginal and mucus shedding was frequent, especially for cows shedding a high bacterial load on DO leading to the hypothesis that the clinical onset of the infection influences the modalities of Cb shedding. Lastly, serological results indicating a lack of sensitivity to detect Cb shedder cows (especially for cows for which Ct values were high) suggest that ELISA is not a useful tool to diagnose abortions at the individual level. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. New Approach for Snow Cover Detection through Spectral Pattern Recognition with MODIS Data

    Directory of Open Access Journals (Sweden)

    Kyeong-Sang Lee

    2017-01-01

    Full Text Available Snow cover plays an important role in climate and hydrology, at both global and regional scales. Most previous studies have used static threshold techniques to detect snow cover, which can lead to errors such as misclassification of snow and clouds, because the reflectance of snow cover exhibits variability and is affected by several factors. Therefore, we present a simple new algorithm for mapping snow cover from Moderate Resolution Imaging Spectroradiometer (MODIS data using dynamic wavelength warping (DWW, which is based on dynamic time warping (DTW. DTW is a pattern recognition technique that is widely used in various fields such as human action recognition, anomaly detection, and clustering. Before performing DWW, we constructed 49 snow reflectance spectral libraries as reference data for various solar zenith angle and digital elevation model conditions using approximately 1.6 million sampled data. To verify the algorithm, we compared our results with the MODIS swath snow cover product (MOD10_L2. Producer’s accuracy, user’s accuracy, and overall accuracy values were 92.92%, 78.41%, and 92.24%, respectively, indicating good overall classification accuracy. The proposed algorithm is more useful for discriminating between snow cover and clouds than threshold techniques in some areas, such as those with a high viewing zenith angle.

  6. PATTERN BASED DETECTION OF POTENTIALLY DRUGGABLE BINDING SITES BY LIGAND SCREENING

    Directory of Open Access Journals (Sweden)

    Uttam Pal

    2018-03-01

    Full Text Available This article describes an innovative way of finding the potentially druggable sites on a target protein, which can be used for orthosteric and allosteric lead detection in a single virtual screening setup. Druggability estimation for an alternate binding site other than the canonical ligand-binding pocket of an enzyme is rewarding for several inherent benefits. Allostery is a direct and efficient way of regulating biomacromolecule function. The allosteric modulators can fine-tune protein mechanics. Besides, allosteric sites are evolutionarily less conserved/more diverse even in very similarly related proteins, thus, provides high degree of specificity in targeting a particular protein. Therefore, targeting of allosteric sites is gaining attention as an emerging strategy in rational drug design. However, the experimental approaches provide a limited degree of characterization of new allosteric sites. Computational approaches are useful to analyze and select potential allosteric sites for drug discovery. Here, the use of molecular docking, which has become an integral part of the drug discovery process, has been discussed to predict the druggability of novel allosteric sites as well as the active site on target proteins by ligand screening. Genetic algorithm was used for docking and the whole protein was placed in the search space. For each ligand in the library of small molecules, the genetic algorithm was run for multiple times to populate all the druggable sites in the target protein, which was then translated into two dimensional density maps or “patterns”. High density clusters were observed for lead like molecules in these pattern diagrams. Each cluster in such a pattern diagram indicated a plausible binding site and the density gave its druggability score in terms of weighted probabilities. The patterns were filtered to find the leads for each of the druggable sites on the target protein. Such a novel pattern based analysis of the

  7. T-Pattern Analysis and Cognitive Load Manipulation to Detect Low-Stake Lies: An Exploratory Study.

    Science.gov (United States)

    Diana, Barbara; Zurloni, Valentino; Elia, Massimiliano; Cavalera, Cesare; Realdon, Olivia; Jonsson, Gudberg K; Anguera, M Teresa

    2018-01-01

    Deception has evolved to become a fundamental aspect of human interaction. Despite the prolonged efforts in many disciplines, there has been no definite finding of a univocally "deceptive" signal. This work proposes an approach to deception detection combining cognitive load manipulation and T-pattern methodology with the objective of: (a) testing the efficacy of dual task-procedure in enhancing differences between truth tellers and liars in a low-stakes situation; (b) exploring the efficacy of T-pattern methodology in discriminating truthful reports from deceitful ones in a low-stakes situation; (c) setting the experimental design and procedure for following research. We manipulated cognitive load to enhance differences between truth tellers and liars, because of the low-stakes lies involved in our experiment. We conducted an experimental study with a convenience sample of 40 students. We carried out a first analysis on the behaviors' frequencies coded through the observation software, using SPSS (22). The aim was to describe shape and characteristics of behavior's distributions and explore differences between groups. Datasets were then analyzed with Theme 6.0 software which detects repeated patterns (T-patterns) of coded events (non-verbal behaviors) that regularly or irregularly occur within a period of observation. A descriptive analysis on T-pattern frequencies was carried out to explore differences between groups. An in-depth analysis on more complex patterns was performed to get qualitative information on the behavior structure expressed by the participants. Results show that the dual-task procedure enhances differences observed between liars and truth tellers with T-pattern methodology; moreover, T-pattern detection reveals a higher variety and complexity of behavior in truth tellers than in liars. These findings support the combination of cognitive load manipulation and T-pattern methodology for deception detection in low-stakes situations, suggesting the

  8. T-Pattern Analysis and Cognitive Load Manipulation to Detect Low-Stake Lies: An Exploratory Study

    Directory of Open Access Journals (Sweden)

    Barbara Diana

    2018-03-01

    Full Text Available Deception has evolved to become a fundamental aspect of human interaction. Despite the prolonged efforts in many disciplines, there has been no definite finding of a univocally “deceptive” signal. This work proposes an approach to deception detection combining cognitive load manipulation and T-pattern methodology with the objective of: (a testing the efficacy of dual task-procedure in enhancing differences between truth tellers and liars in a low-stakes situation; (b exploring the efficacy of T-pattern methodology in discriminating truthful reports from deceitful ones in a low-stakes situation; (c setting the experimental design and procedure for following research. We manipulated cognitive load to enhance differences between truth tellers and liars, because of the low-stakes lies involved in our experiment. We conducted an experimental study with a convenience sample of 40 students. We carried out a first analysis on the behaviors’ frequencies coded through the observation software, using SPSS (22. The aim was to describe shape and characteristics of behavior’s distributions and explore differences between groups. Datasets were then analyzed with Theme 6.0 software which detects repeated patterns (T-patterns of coded events (non-verbal behaviors that regularly or irregularly occur within a period of observation. A descriptive analysis on T-pattern frequencies was carried out to explore differences between groups. An in-depth analysis on more complex patterns was performed to get qualitative information on the behavior structure expressed by the participants. Results show that the dual-task procedure enhances differences observed between liars and truth tellers with T-pattern methodology; moreover, T-pattern detection reveals a higher variety and complexity of behavior in truth tellers than in liars. These findings support the combination of cognitive load manipulation and T-pattern methodology for deception detection in low

  9. Quantifying Forest Spatial Pattern Trends at Multiple Extents: An Approach to Detect Significant Changes at Different Scales

    Directory of Open Access Journals (Sweden)

    Ludovico Frate

    2014-09-01

    Full Text Available We propose a procedure to detect significant changes in forest spatial patterns and relevant scales. Our approach consists of four sequential steps. First, based on a series of multi-temporal forest maps, a set of geographic windows of increasing extents are extracted. Second, for each extent and date, specific stochastic simulations that replicate real-world spatial pattern characteristics are run. Third, by computing pattern metrics on both simulated and real maps, their empirical distributions and confidence intervals are derived. Finally, multi-temporal scalograms are built for each metric. Based on cover maps (1954, 2011 with a resolution of 10 m we analyze forest pattern changes in a central Apennines (Italy reserve at multiple spatial extents (128, 256 and 512 pixels. We identify three types of multi-temporal scalograms, depending on pattern metric behaviors, describing different dynamics of natural reforestation process. The statistical distribution and variability of pattern metrics at multiple extents offers a new and powerful tool to detect forest variations over time. Similar procedures can (i help to identify significant changes in spatial patterns and provide the bases to relate them to landscape processes; (ii minimize the bias when comparing pattern metrics at a single extent and (iii be extended to other landscapes and scales.

  10. Detection and Growth Pattern of Arcuate Fasciculus from Newborn to Adult

    Directory of Open Access Journals (Sweden)

    Molly Wilkinson

    2017-07-01

    Full Text Available Fractional anisotropy (FA threshold is commonly used to perform diffusion MRI tractography. However, FA threshold may be one aspect of tractography that needs additional scrutiny in accurately assessing pathways in immature, developing brains, as well as in adult brains. Using high-angular resolution diffusion MRI (HARDI tractography without an FA threshold, we identified the arcuate fasciculus (AF of 83 healthy subjects ranging in age from 40 gestational weeks (GW (newborns to 28-year-old adults. The AF was identified in both hemispheres in all subjects with high inter-rater reliability. The detected AF included regions with very low FA values. The entire AF was segmented into anterior, posterior, and long tracts. Growth and laterality patterns were investigated using tract count (number of detected streamlines, total volume of imaging voxels (touched by the detected streamlines, mean length, mean FA, and mean apparent diffusion coefficient (ADC. Comparison of subjects under 3 years old, to those that were older, revealed the three AF tracts that took different developmental courses. As expected, the anterior and long tracts showed lower ADC values in subjects over 3 years old, while the posterior tract showed higher ADC in that same age range. The posterior tract did not show age-related effect in terms of FA, tract count, length, and volume. These results suggest that the posterior AF tract shows a matured state, indexed by most of the used measurements in early postnatal developmental ages, and ADC is a measurement that can detect further maturation of the posterior tract. Interestingly, in all tracts, hemispheric asymmetries were found in raw (leftright tract count, as well as in raw volume (left

  11. Accurate means of detecting and characterizing abnormal patterns of ventricular activation by phase image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Botvinick, E.H.; Frais, M.A.; Shosa, D.W.; O' Connell, J.W.; Pacheco-Alvarez, J.A.; Scheinman, M.; Hattner, R.S.; Morady, F.; Faulkner, D.B.

    1982-08-01

    The ability of scintigraphic phase image analysis to characterize patterns of abnormal ventricular activation was investigated. The pattern of phase distribution and sequential phase changes over both right and left ventricular regions of interest were evaluated in 16 patients with normal electrical activation and wall motion and compared with those in 8 patients with an artificial pacemaker and 4 patients with sinus rhythm with the Wolff-Parkinson-White syndrome and delta waves. Normally, the site of earliest phase angle was seen at the base of the interventricular septum, with sequential change affecting the body of the septum and the cardiac apex and then spreading laterally to involve the body of both ventricles. The site of earliest phase angle was located at the apex of the right ventricle in seven patients with a right ventricular endocardial pacemaker and on the lateral left ventricular wall in one patient with a left ventricular epicardial pacemaker. In each case the site corresponded exactly to the position of the pacing electrode as seen on posteroanterior and left lateral chest X-ray films, and sequential phase changes spread from the initial focus to affect both ventricles. In each of the patients with the Wolff-Parkinson-White syndrome, the site of earliest ventricular phase angle was located, and it corresponded exactly to the site of the bypass tract as determined by endocardial mapping. In this way, four bypass pathways, two posterior left paraseptal, one left lateral and one right lateral, were correctly localized scintigraphically. On the basis of the sequence of mechanical contraction, phase image analysis provides an accurate noninvasive method of detecting abnormal foci of ventricular activation.

  12. Accurate means of detecting and characterizing abnormal patterns of ventricular activation by phase image analysis

    International Nuclear Information System (INIS)

    Botvinick, E.H.; Frais, M.A.; Shosa, D.W.; O'Connell, J.W.; Pacheco-Alvarez, J.A.; Scheinman, M.; Hattner, R.S.; Morady, F.; Faulkner, D.B.

    1982-01-01

    The ability of scintigraphic phase image analysis to characterize patterns of abnormal ventricular activation was investigated. The pattern of phase distribution and sequential phase changes over both right and left ventricular regions of interest were evaluated in 16 patients with normal electrical activation and wall motion and compared with those in 8 patients with an artificial pacemaker and 4 patients with sinus rhythm with the Wolff-Parkinson-White syndrome and delta waves. Normally, the site of earliest phase angle was seen at the base of the interventricular septum, with sequential change affecting the body of the septum and the cardiac apex and then spreading laterally to involve the body of both ventricles. The site of earliest phase angle was located at the apex of the right ventricle in seven patients with a right ventricular endocardial pacemaker and on the lateral left ventricular wall in one patient with a left ventricular epicardial pacemaker. In each case the site corresponded exactly to the position of the pacing electrode as seen on posteroanterior and left lateral chest X-ray films, and sequential phase changes spread from the initial focus to affect both ventricles. In each of the patients with the Wolff-Parkinson-White syndrome, the site of earliest ventricular phase angle was located, and it corresponded exactly to the site of the bypass tract as determined by endocardial mapping. In this way, four bypass pathways, two posterior left paraseptal, one left lateral and one right lateral, were correctly localized scintigraphically. On the basis of the sequence of mechanical contraction, phase image analysis provides an accurate noninvasive method of detecting abnormal foci of ventricular activation

  13. DNA methylation patterns in bladder cancer and washing cell sediments: a perspective for tumor recurrence detection

    Directory of Open Access Journals (Sweden)

    Goldberg José

    2008-08-01

    Full Text Available Abstract Background Epigenetic alterations are a hallmark of human cancer. In this study, we aimed to investigate whether aberrant DNA methylation of cancer-associated genes is related to urinary bladder cancer recurrence. Methods A set of 4 genes, including CDH1 (E-cadherin, SFN (stratifin, RARB (retinoic acid receptor, beta and RASSF1A (Ras association (RalGDS/AF-6 domain family 1, had their methylation patterns evaluated by MSP (Methylation-Specific Polymerase Chain Reaction analysis in 49 fresh urinary bladder carcinoma tissues (including 14 cases paired with adjacent normal bladder epithelium, 3 squamous cell carcinomas and 2 adenocarcinomas and 24 cell sediment samples from bladder washings of patients classified as cancer-free by cytological analysis (control group. A third set of samples included 39 archived tumor fragments and 23 matched washouts from 20 urinary bladder cancer patients in post-surgical monitoring. After genomic DNA isolation and sodium bisulfite modification, methylation patterns were determined and correlated with standard clinic-histopathological parameters. Results CDH1 and SFN genes were methylated at high frequencies in bladder cancer as well as in paired normal adjacent tissue and exfoliated cells from cancer-free patients. Although no statistically significant differences were found between RARB and RASSF1A methylation and the clinical and histopathological parameters in bladder cancer, a sensitivity of 95% and a specificity of 71% were observed for RARB methylation (Fisher's Exact test (p RASSF1A gene, respectively, in relation to the control group. Conclusion Indistinct DNA hypermethylation of CDH1 and SFN genes between tumoral and normal urinary bladder samples suggests that these epigenetic features are not suitable biomarkers for urinary bladder cancer. However, RARB and RASSF1A gene methylation appears to be an initial event in urinary bladder carcinogenesis and should be considered as defining a panel of

  14. Defect Localization Capabilities of a Global Detection Scheme: Spatial Pattern Recognition Using Full-field Vibration Test Data in Plates

    Science.gov (United States)

    Saleeb, A. F.; Prabhu, M.; Arnold, S. M. (Technical Monitor)

    2002-01-01

    Recently, a conceptually simple approach, based on the notion of defect energy in material space has been developed and extensively studied (from the theoretical and computational standpoints). The present study focuses on its evaluation from the viewpoint of damage localization capabilities in case of two-dimensional plates; i.e., spatial pattern recognition on surfaces. To this end, two different experimental modal test results are utilized; i.e., (1) conventional modal testing using (white noise) excitation and accelerometer-type sensors and (2) pattern recognition using Electronic speckle pattern interferometry (ESPI), a full field method capable of analyzing the mechanical vibration of complex structures. Unlike the conventional modal testing technique (using contacting accelerometers), these emerging ESPI technologies operate in a non-contacting mode, can be used even under hazardous conditions with minimal or no presence of noise and can simultaneously provide measurements for both translations and rotations. Results obtained have clearly demonstrated the robustness and versatility of the global NDE scheme developed. The vectorial character of the indices used, which enabled the extraction of distinct patterns for localizing damages proved very useful. In the context of the targeted pattern recognition paradigm, two algorithms were developed for the interrogation of test measurements; i.e., intensity contour maps for the damaged index, and the associated defect energy vector field plots.

  15. Epigenetic change detection and pattern recognition via Bayesian hierarchical hidden Markov models.

    Science.gov (United States)

    Wang, Xinlei; Zang, Miao; Xiao, Guanghua

    2013-06-15

    Epigenetics is the study of changes to the genome that can switch genes on or off and determine which proteins are transcribed without altering the DNA sequence. Recently, epigenetic changes have been linked to the development and progression of disease such as psychiatric disorders. High-throughput epigenetic experiments have enabled researchers to measure genome-wide epigenetic profiles and yield data consisting of intensity ratios of immunoprecipitation versus reference samples. The intensity ratios can provide a view of genomic regions where protein binding occur under one experimental condition and further allow us to detect epigenetic alterations through comparison between two different conditions. However, such experiments can be expensive, with only a few replicates available. Moreover, epigenetic data are often spatially correlated with high noise levels. In this paper, we develop a Bayesian hierarchical model, combined with hidden Markov processes with four states for modeling spatial dependence, to detect genomic sites with epigenetic changes from two-sample experiments with paired internal control. One attractive feature of the proposed method is that the four states of the hidden Markov process have well-defined biological meanings and allow us to directly call the change patterns based on the corresponding posterior probabilities. In contrast, none of existing methods can offer this advantage. In addition, the proposed method offers great power in statistical inference by spatial smoothing (via hidden Markov modeling) and information pooling (via hierarchical modeling). Both simulation studies and real data analysis in a cocaine addiction study illustrate the reliability and success of this method. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Detecting consistent patterns of directional adaptation using differential selection codon models.

    Science.gov (United States)

    Parto, Sahar; Lartillot, Nicolas

    2017-06-23

    Phylogenetic codon models are often used to characterize the selective regimes acting on protein-coding sequences. Recent methodological developments have led to models explicitly accounting for the interplay between mutation and selection, by modeling the amino acid fitness landscape along the sequence. However, thus far, most of these models have assumed that the fitness landscape is constant over time. Fluctuations of the fitness landscape may often be random or depend on complex and unknown factors. However, some organisms may be subject to systematic changes in selective pressure, resulting in reproducible molecular adaptations across independent lineages subject to similar conditions. Here, we introduce a codon-based differential selection model, which aims to detect and quantify the fine-grained consistent patterns of adaptation at the protein-coding level, as a function of external conditions experienced by the organism under investigation. The model parameterizes the global mutational pressure, as well as the site- and condition-specific amino acid selective preferences. This phylogenetic model is implemented in a Bayesian MCMC framework. After validation with simulations, we applied our method to a dataset of HIV sequences from patients with known HLA genetic background. Our differential selection model detects and characterizes differentially selected coding positions specifically associated with two different HLA alleles. Our differential selection model is able to identify consistent molecular adaptations as a function of repeated changes in the environment of the organism. These models can be applied to many other problems, ranging from viral adaptation to evolution of life-history strategies in plants or animals.

  17. Detecting robust signals of interannual variability of gross primary productivity in Asia from multiple terrestrial carbon cycle models and long-term satellite-based vegetation data

    Science.gov (United States)

    Ichii, K.; Kondo, M.; Ueyama, M.; Kato, T.; Ito, A.; Sasai, T.; Sato, H.; Kobayashi, H.; Saigusa, N.

    2014-12-01

    Long term record of satellite-based terrestrial vegetation are important to evaluate terrestrial carbon cycle models. In this study, we demonstrate how multiple satellite observation can be used for evaluating past changes in gross primary productivity (GPP) and detecting robust anomalies in terrestrial carbon cycle in Asia through our model-data synthesis analysis, Asia-MIP. We focused on the two different temporal coverages: long-term (30 years; 1982-2011) and decadal (10 years; 2001-2011; data intensive period) scales. We used a NOAA/AVHRR NDVI record for long-term analysis and multiple satellite data and products (e.g. Terra-MODIS, SPOT-VEGETATION) as historical satellite data, and multiple terrestrial carbon cycle models (e.g. BEAMS, Biome-BGC, ORCHIDEE, SEIB-DGVM, and VISIT). As a results of long-term (30 years) trend analysis, satellite-based time-series data showed that approximately 40% of the area has experienced a significant increase in the NDVI, while only a few areas have experienced a significant decreasing trend over the last 30 years. The increases in the NDVI were dominant in the sub-continental regions of Siberia, East Asia, and India. Simulations using the terrestrial biosphere models also showed significant increases in GPP, similar to the results for the NDVI, in boreal and temperate regions. A modeled sensitivity analysis showed that the increases in GPP are explained by increased temperature and precipitation in Siberia. Precipitation, solar radiation, CO2fertilization and land cover changes are important factors in the tropical regions. However, the relative contributions of each factor to GPP changes are different among the models. Year-to-year variations of terrestrial GPP were overall consistently captured by the satellite data and terrestrial carbon cycle models if the anomalies are large (e.g. 2003 summer GPP anomalies in East Asia and 2002 spring GPP anomalies in mid to high latitudes). The behind mechanisms can be consistently

  18. Is countershading camouflage robust to lighting change due to weather?

    Science.gov (United States)

    Penacchio, Olivier; Lovell, P George; Harris, Julie M

    2018-02-01

    Countershading is a pattern of coloration thought to have evolved in order to implement camouflage. By adopting a pattern of coloration that makes the surface facing towards the sun darker and the surface facing away from the sun lighter, the overall amount of light reflected off an animal can be made more uniformly bright. Countershading could hence contribute to visual camouflage by increasing background matching or reducing cues to shape. However, the usefulness of countershading is constrained by a particular pattern delivering 'optimal' camouflage only for very specific lighting conditions. In this study, we test the robustness of countershading camouflage to lighting change due to weather, using human participants as a 'generic' predator. In a simulated three-dimensional environment, we constructed an array of simple leaf-shaped items and a single ellipsoidal target 'prey'. We set these items in two light environments: strongly directional 'sunny' and more diffuse 'cloudy'. The target object was given the optimal pattern of countershading for one of these two environment types or displayed a uniform pattern. By measuring detection time and accuracy, we explored whether and how target detection depended on the match between the pattern of coloration on the target object and scene lighting. Detection times were longest when the countershading was appropriate to the illumination; incorrectly camouflaged targets were detected with a similar pattern of speed and accuracy to uniformly coloured targets. We conclude that structural changes in light environment, such as caused by differences in weather, do change the effectiveness of countershading camouflage.

  19. A Selectivity based approach to Continuous Pattern Detection in Streaming Graphs

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Sutanay; Holder, Larry; Chin, George; Agarwal, Khushbu; Feo, John T.

    2015-05-27

    Cyber security is one of the most significant technical challenges in current times. Detecting adversarial activities, prevention of theft of intellectual properties and customer data is a high priority for corporations and government agencies around the world. Cyber defenders need to analyze massive-scale, high-resolution network flows to identify, categorize, and mitigate attacks involving networks spanning institutional and national boundaries. Many of the cyber attacks can be described as subgraph patterns, with prominent examples being insider infiltrations (path queries), denial of service (parallel paths) and malicious spreads (tree queries). This motivates us to explore subgraph matching on streaming graphs in a continuous setting. The novelty of our work lies in using the subgraph distributional statistics collected from the streaming graph to determine the query processing strategy. We introduce a ``Lazy Search" algorithm where the search strategy is decided on a vertex-to-vertex basis depending on the likelihood of a match in the vertex neighborhood. We also propose a metric named ``Relative Selectivity" that is used to select between different query processing strategies. Our experiments performed on real online news, network traffic stream and a synthetic social network benchmark demonstrate 10-100x speedups over non-incremental, selectivity agnostic approaches.

  20. [Alcohol consumption patterns among patients in primary health care and detection by health professionals].

    Science.gov (United States)

    Taufick, Maíra Lemos de Castro; Evangelista, Lays Aparecida; Silva, Michelle da; Oliveira, Luiz Carlos Marques de

    2014-02-01

    This cross-sectional study investigated patterns of alcohol consumption among patients enrolled in the Family Health Program (FHP) in a city in Southeast Brazil, as well as the detection of such consumption by FHP professionals. A total of 932 adult patients were evaluated from November 2010 to November 2011. Of this total, 17.5% were considered at risk for hazardous drinking (AUDIT ≥ 8); increased risk was associated with male gender, younger age, and chronic illness. The CAGE questionnaire was positive in 98 patients (10.5%), with a higher proportion in men. Health professionals were more likely to ask about alcohol consumption in men, individuals aged ≥ 55 years, those with chronic illnesses, and heavier drinkers (438/932; 47.8%). Positive diagnosis of alcoholism was more frequent in men, individuals aged 35-54 years, and those with serious alcohol abuse (22/175; 12.6%). The study concluded that alcohol consumption is common among patients treated by FHP teams (although insufficiently recognized by professionals) and that a minority of alcoholics is instructed on the risks of drinking.

  1. Kernel-Based Relevance Analysis with Enhanced Interpretability for Detection of Brain Activity Patterns

    Directory of Open Access Journals (Sweden)

    Andres M. Alvarez-Meza

    2017-10-01

    Full Text Available We introduce Enhanced Kernel-based Relevance Analysis (EKRA that aims to support the automatic identification of brain activity patterns using electroencephalographic recordings. EKRA is a data-driven strategy that incorporates two kernel functions to take advantage of the available joint information, associating neural responses to a given stimulus condition. Regarding this, a Centered Kernel Alignment functional is adjusted to learning the linear projection that best discriminates the input feature set, optimizing the required free parameters automatically. Our approach is carried out in two scenarios: (i feature selection by computing a relevance vector from extracted neural features to facilitating the physiological interpretation of a given brain activity task, and (ii enhanced feature selection to perform an additional transformation of relevant features aiming to improve the overall identification accuracy. Accordingly, we provide an alternative feature relevance analysis strategy that allows improving the system performance while favoring the data interpretability. For the validation purpose, EKRA is tested in two well-known tasks of brain activity: motor imagery discrimination and epileptic seizure detection. The obtained results show that the EKRA approach estimates a relevant representation space extracted from the provided supervised information, emphasizing the salient input features. As a result, our proposal outperforms the state-of-the-art methods regarding brain activity discrimination accuracy with the benefit of enhanced physiological interpretation about the task at hand.

  2. Characterization of Antimicrobial Resistance Patterns and Detection of Virulence Genes in Campylobacter Isolates in Italy

    Science.gov (United States)

    Di Giannatale, Elisabetta; Di Serafino, Gabriella; Zilli, Katiuscia; Alessiani, Alessandra; Sacchini, Lorena; Garofolo, Giuliano; Aprea, Giuseppe; Marotta, Francesca

    2014-01-01

    Campylobacter has developed resistance to several antimicrobial agents over the years, including macrolides, quinolones and fluoroquinolones, becoming a significant public health hazard. A total of 145 strains derived from raw milk, chicken faeces, chicken carcasses, cattle faeces and human faeces collected from various Italian regions, were screened for antimicrobial susceptibility, molecular characterization (SmaI pulsed-field gel electrophoresis) and detection of virulence genes (sequencing and DNA microarray analysis). The prevalence of C. jejuni and C. coli was 62.75% and 37.24% respectively. Antimicrobial susceptibility revealed a high level of resistance for ciprofloxacin (62.76%), tetracycline (55.86%) and nalidixic acid (55.17%). Genotyping of Campylobacter isolates using PFGE revealed a total of 86 unique SmaI patterns. Virulence gene profiles were determined using a new microbial diagnostic microarray composed of 70-mer oligonucleotide probes targeting genes implicated in Campylobacter pathogenicity. Correspondence between PFGE and microarray clusters was observed. Comparisons of PFGE and virulence profiles reflected the high genetic diversity of the strains examined, leading us to speculate different degrees of pathogenicity inside Campylobacter populations. PMID:24556669

  3. A new approach for assessing the state of environment using isometric log-ratio transformation and outlier detection for computation of mean PCDD/F patterns in biota.

    Science.gov (United States)

    Lehmann, René

    2015-01-01

    To assess the state of the environment, various compartments are examined as part of monitoring programs. Within monitoring, a special focus is on chemical pollution. One of the most toxic substances ever synthesized is the well-known dioxin 2,3,7,8-TCDD (2,3,7,8-tetra-chlor-dibenzo-dioxin). Other PCDD/F (polychlorinated-dibenzo-dioxin and furan) can act toxic too. They are ubiquitary and persistent in various environmental compartments. Assessing the state of environment requires knowledge of typical local patterns of PCDD/F for as many compartments as possible. For various species of wild animals and plants (so called biota), I present the mean local congenere profiles of ubiquitary PCDD/F contamination reflecting typical patterns and levels of environmental burden for various years. Trends in time series of means can indicate success or failure of a measure of PCDD/F reduction. For short time series of mean patterns, it can be hard to detect trends. A new approach regarding proportions of outliers in the corresponding annual cross-sectional data sets in parallel can help detect decreasing or increasing environmental burden and support analysis of time series. Further, in this article, the true structure of PCDD/F data in biota is revealed, that is, the compositional data structure. It prevents direct application of statistical standard procedures to the data rendering results of statistical analysis meaningless. Results indicate that the compositional data structure of PCDD/F in biota is of great interest and should be taken into account in future studies. Isometric log-ratio (ilr) transformation is used, providing data statistical standard procedures that can be applied too. Focusing on the identification of typical PCDD/F patterns in biota, outliers are removed from annual data since they represent an extraordinary situation in the environment. Identification of outliers yields two advantages. First, typical (mean) profiles and levels of PCDD/F contamination

  4. Detection of tuberculosis patterns in digital photographs of chest X-ray images using Deep Learning: feasibility study.

    Science.gov (United States)

    Becker, A S; Blüthgen, C; Phi van, V D; Sekaggya-Wiltshire, C; Castelnuovo, B; Kambugu, A; Fehr, J; Frauenfelder, T

    2018-03-01

    To evaluate the feasibility of Deep Learning-based detection and classification of pathological patterns in a set of digital photographs of chest X-ray (CXR) images of tuberculosis (TB) patients. In this prospective, observational study, patients with previously diagnosed TB were enrolled. Photographs of their CXRs were taken using a consumer-grade digital still camera. The images were stratified by pathological patterns into classes: cavity, consolidation, effusion, interstitial changes, miliary pattern or normal examination. Image analysis was performed with commercially available Deep Learning software in two steps. Pathological areas were first localised; detected areas were then classified. Detection was assessed using receiver operating characteristics (ROC) analysis, and classification using a confusion matrix. The study cohort was 138 patients with human immunodeficiency virus (HIV) and TB co-infection (median age 34 years, IQR 28-40); 54 patients were female. Localisation of pathological areas was excellent (area under the ROC curve 0.82). The software could perfectly distinguish pleural effusions from intraparenchymal changes. The most frequent misclassifications were consolidations as cavitations, and miliary patterns as interstitial patterns (and vice versa). Deep Learning analysis of CXR photographs is a promising tool. Further efforts are needed to build larger, high-quality data sets to achieve better diagnostic performance.

  5. DNA methylation patterns in bladder cancer and washing cell sediments: a perspective for tumor recurrence detection

    International Nuclear Information System (INIS)

    Negraes, Priscilla D; Favaro, Francine P; Camargo, João Lauro V; Oliveira, Maria Luiza CS; Goldberg, José; Rainho, Cláudia A; Salvadori, Daisy MF

    2008-01-01

    Epigenetic alterations are a hallmark of human cancer. In this study, we aimed to investigate whether aberrant DNA methylation of cancer-associated genes is related to urinary bladder cancer recurrence. A set of 4 genes, including CDH1 (E-cadherin), SFN (stratifin), RARB (retinoic acid receptor, beta) and RASSF1A (Ras association (RalGDS/AF-6) domain family 1), had their methylation patterns evaluated by MSP (Methylation-Specific Polymerase Chain Reaction) analysis in 49 fresh urinary bladder carcinoma tissues (including 14 cases paired with adjacent normal bladder epithelium, 3 squamous cell carcinomas and 2 adenocarcinomas) and 24 cell sediment samples from bladder washings of patients classified as cancer-free by cytological analysis (control group). A third set of samples included 39 archived tumor fragments and 23 matched washouts from 20 urinary bladder cancer patients in post-surgical monitoring. After genomic DNA isolation and sodium bisulfite modification, methylation patterns were determined and correlated with standard clinic-histopathological parameters. CDH1 and SFN genes were methylated at high frequencies in bladder cancer as well as in paired normal adjacent tissue and exfoliated cells from cancer-free patients. Although no statistically significant differences were found between RARB and RASSF1A methylation and the clinical and histopathological parameters in bladder cancer, a sensitivity of 95% and a specificity of 71% were observed for RARB methylation (Fisher's Exact test (p < 0.0001; OR = 48.89) and, 58% and 17% (p < 0.05; OR = 0.29) for RASSF1A gene, respectively, in relation to the control group. Indistinct DNA hypermethylation of CDH1 and SFN genes between tumoral and normal urinary bladder samples suggests that these epigenetic features are not suitable biomarkers for urinary bladder cancer. However, RARB and RASSF1A gene methylation appears to be an initial event in urinary bladder carcinogenesis and should be considered as defining a

  6. Software Tools for Robust Analysis of High-Dimensional Data

    Directory of Open Access Journals (Sweden)

    Valentin Todorov

    2014-06-01

    Full Text Available The present work discusses robust multivariate methods specifically designed for highdimensions. Their implementation in R is presented and their application is illustratedon examples. The first group are algorithms for outlier detection, already introducedelsewhere and implemented in other packages. The value added of the new package isthat all methods follow the same design pattern and thus can use the same graphicaland diagnostic tools. The next topic covered is sparse principal components including anobject oriented interface to the standard method proposed by Zou, Hastie, and Tibshirani(2006 and the robust one proposed by Croux, Filzmoser, and Fritz (2013. Robust partialleast squares (see Hubert and Vanden Branden 2003 as well as partial least squares fordiscriminant analysis conclude the scope of the new package.

  7. Detecting bladder fullness through the ensemble activity patterns of the spinal cord unit population in a somatovisceral convergence environment

    Science.gov (United States)

    Park, Jae Hong; Kim, Chang-Eop; Shin, Jaewoo; Im, Changkyun; Koh, Chin Su; Seo, In Seok; Kim, Sang Jeong; Shin, Hyung-Cheul

    2013-10-01

    Objective. Chronic monitoring of the state of the bladder can be used to notify patients with urinary dysfunction when the bladder should be voided. Given that many spinal neurons respond both to somatic and visceral inputs, it is necessary to extract bladder information selectively from the spinal cord. Here, we hypothesize that sensory information with distinct modalities should be represented by the distinct ensemble activity patterns within the neuronal population and, therefore, analyzing the activity patterns of the neuronal population could distinguish bladder fullness from somatic stimuli. Approach. We simultaneously recorded 26-27 single unit activities in response to bladder distension or tactile stimuli in the dorsal spinal cord of each Sprague-Dawley rat. In order to discriminate between bladder fullness and tactile stimulus inputs, we analyzed the ensemble activity patterns of the entire neuronal population. A support vector machine (SVM) was employed as a classifier, and discrimination performance was measured by k-fold cross-validation tests. Main results. Most of the units responding to bladder fullness also responded to the tactile stimuli (88.9-100%). The SVM classifier precisely distinguished the bladder fullness from the somatic input (100%), indicating that the ensemble activity patterns of the unit population in the spinal cord are distinct enough to identify the current input modality. Moreover, our ensemble activity pattern-based classifier showed high robustness against random losses of signals. Significance. This study is the first to demonstrate that the two main issues of electroneurographic monitoring of bladder fullness, low signals and selectiveness, can be solved by an ensemble activity pattern-based approach, improving the feasibility of chronic monitoring of bladder fullness by neural recording.

  8. A Kinematic Method for Footstrike Pattern Detection in Barefoot and Shod Runners

    OpenAIRE

    Altman, Allison R.; Davis, Irene S.

    2011-01-01

    Footstrike patterns during running can be classified discretely into a rearfoot strike, midfoot strike and forefoot strike by visual observation. However, the footstrike pattern can also be classified on a continuum, ranging from 0–100% (extreme rearfoot to extreme forefoot) using the strike index, a measure requiring force plate data. When force data are not available, an alternative method to quantify the strike pattern must be used. The purpose of this paper was to quantify the continuum o...

  9. Differences in Movement Pattern and Detectability between Males and Females Influence How Common Sampling Methods Estimate Sex Ratio.

    Directory of Open Access Journals (Sweden)

    João Fabrício Mota Rodrigues

    Full Text Available Sampling the biodiversity is an essential step for conservation, and understanding the efficiency of sampling methods allows us to estimate the quality of our biodiversity data. Sex ratio is an important population characteristic, but until now, no study has evaluated how efficient are the sampling methods commonly used in biodiversity surveys in estimating the sex ratio of populations. We used a virtual ecologist approach to investigate whether active and passive capture methods are able to accurately sample a population's sex ratio and whether differences in movement pattern and detectability between males and females produce biased estimates of sex-ratios when using these methods. Our simulation allowed the recognition of individuals, similar to mark-recapture studies. We found that differences in both movement patterns and detectability between males and females produce biased estimates of sex ratios. However, increasing the sampling effort or the number of sampling days improves the ability of passive or active capture methods to properly sample sex ratio. Thus, prior knowledge regarding movement patterns and detectability for species is important information to guide field studies aiming to understand sex ratio related patterns.

  10. Differences in Movement Pattern and Detectability between Males and Females Influence How Common Sampling Methods Estimate Sex Ratio.

    Science.gov (United States)

    Rodrigues, João Fabrício Mota; Coelho, Marco Túlio Pacheco

    2016-01-01

    Sampling the biodiversity is an essential step for conservation, and understanding the efficiency of sampling methods allows us to estimate the quality of our biodiversity data. Sex ratio is an important population characteristic, but until now, no study has evaluated how efficient are the sampling methods commonly used in biodiversity surveys in estimating the sex ratio of populations. We used a virtual ecologist approach to investigate whether active and passive capture methods are able to accurately sample a population's sex ratio and whether differences in movement pattern and detectability between males and females produce biased estimates of sex-ratios when using these methods. Our simulation allowed the recognition of individuals, similar to mark-recapture studies. We found that differences in both movement patterns and detectability between males and females produce biased estimates of sex ratios. However, increasing the sampling effort or the number of sampling days improves the ability of passive or active capture methods to properly sample sex ratio. Thus, prior knowledge regarding movement patterns and detectability for species is important information to guide field studies aiming to understand sex ratio related patterns.

  11. Seizure pattern-specific epileptic epoch detection in patients with intellectual disability

    NARCIS (Netherlands)

    Wang, L.; Arends, J.B.A.M.; Long, X.; Cluitmans, P.J.M.; van Dijk, J.P.

    Electroencephalogram (EEG) features are crucial for the seizure detection performance. Traditional algorithms are designed for a population with normal brain development. However, for patients with an intellectual disability the seizure detection performance is still largely unknown. In addition,

  12. A Bi-centre Study of the Pattern and Evolution of readily detectable ...

    African Journals Online (AJOL)

    The pattern and evolution of obvious post-meningitic sequelae were determined in 187 post-neonatal children followed up at two tertiary centres. The pattern of sequelae was classified using previously described schemes, as well as by the number of deficits per child. One hundred and eighty-seven children were assessed ...

  13. Detection of temporal behaviour patterns of free-ranging cattle by means of diversity spectra

    Directory of Open Access Journals (Sweden)

    de Miguel, J. M.

    1991-06-01

    Full Text Available The aim of this paper is to detect temporal patterns of cattle behaviour. The method, diversity spectra, provides, on the one hand, the number of parts into which a temporary transect should be divided in order to understand the maximum segregation of cattle activities and, on the other, the clarity with which each segregation is defined. In the case under study (a 'dehesa' pasture-land in central Spain the maximum segregation of fundamental activities in cattle behaviour is reached by considering the year as divided into two periods: spring-summer and autumn-winter. Cattle behaviour shows an annual "coarse grain" pattern, which is associated with management activities and with the meteorological seasonality of the Mediterranean climate. However, within each of the two annual periods, maximum segregation is reached considering separately the days of observation. This "fine grain" pattern indicates within each season, a certain capacity for response to a fluctuating environment and determines very different behaviour on close days. During autumn-winter period cattle show seasonal and daily activity segregations which are clearer than during spring-summer. In the former period, the lack of grass, more severe climatic conditions and management would seem to be determining factors of this temporal behaviour pattern.

    [es] El objetivo del trabajo es identificar patrones temporales de comportamiento del ganado. El procedimiento utilizado, espectros de diversidad, permite apreciar, por un lado, el número de partes en que debe dividirse un transecto temporal para detectar la máxima segregación de las actividades del ganado y, por otro, el grado de definición con que se manifiesta dicha segregación. En el caso estudiado (una dehesa del centro de España la máxima segregación de las actividades fundamentales de comportamiento del ganado se produce al considerar el año dividido en dos periodos: primavera-verano y otoño-invierno. El

  14. Use of nonstatistical techniques for pattern recognition to detect risk groups among liquidators of the Chernobyl NPP accident aftereffects

    International Nuclear Information System (INIS)

    Blinov, N.N.; Guslistyj, V.P.; Misyurev, A.V.; Novitskaya, N.N.; Snigireva, G.P.

    1993-01-01

    Attempt of using of the nonstatistical techniques for pattern recognition to detect the risk groups among liquidators of the Chernobyl NPP accident aftereffects was described. 14 hematologic, biochemical and biophysical blood serum parameters of the group of liquidators of the Chernobyl NPP accident impact as well as the group of donors free of any radiation dose (controlled group) were taken as the diagnostic parameters. Modification of the nonstatistical techniques for pattern recognition based on the assessment calculations were used. The patients were divided into risk group at the truth ∼ 80%

  15. Spatio-Temporal Diffusion Pattern and Hotspot Detection of Dengue in Chachoengsao Province, Thailand

    Directory of Open Access Journals (Sweden)

    Phaisarn Jeefoo

    2010-12-01

    Full Text Available In recent years, dengue has become a major international public health concern. In Thailand it is also an important concern as several dengue outbreaks were reported in last decade. This paper presents a GIS approach to analyze the spatial and temporal dynamics of dengue epidemics. The major objective of this study was to examine spatial diffusion patterns and hotspot identification for reported dengue cases. Geospatial diffusion pattern of the 2007 dengue outbreak was investigated. Map of daily cases was generated for the 153 days of the outbreak. Epidemiological data from Chachoengsao province, Thailand (reported dengue cases for the years 1999–2007 was used for this study. To analyze the dynamic space-time pattern of dengue outbreaks, all cases were positioned in space at a village level. After a general statistical analysis (by gender and age group, data was subsequently analyzed for temporal patterns and correlation with climatic data (especially rainfall, spatial patterns and cluster analysis, and spatio-temporal patterns of hotspots during epidemics. The results revealed spatial diffusion patterns during the years 1999–2007 representing spatially clustered patterns with significant differences by village. Villages on the urban fringe reported higher incidences. The space and time of the cases showed outbreak movement and spread patterns that could be related to entomologic and epidemiologic factors. The hotspots showed the spatial trend of dengue diffusion. This study presents useful information related to the dengue outbreak patterns in space and time and may help public health departments to plan strategies to control the spread of disease. The methodology is general for space-time analysis and can be applied for other infectious diseases as well.

  16. Methods for robustness programming

    NARCIS (Netherlands)

    Olieman, N.J.

    2008-01-01

    Robustness of an object is defined as the probability that an object will have properties as required. Robustness Programming (RP) is a mathematical approach for Robustness estimation and Robustness optimisation. An example in the context of designing a food product, is finding the best composition

  17. Robustness in laying hens

    NARCIS (Netherlands)

    Star, L.

    2008-01-01

    The aim of the project ‘The genetics of robustness in laying hens’ was to investigate nature and regulation of robustness in laying hens under sub-optimal conditions and the possibility to increase robustness by using animal breeding without loss of production. At the start of the project, a robust

  18. Detectable elements in a particles pattern of suspended urban matter analysed by neutron activation

    International Nuclear Information System (INIS)

    Herrera, L.; Beltran, C.; Alemon, E.; Ortiz, M.E.

    2001-01-01

    The multielement composition of a Standard Reference Material 1648 pattern certified is reported and it is used for the suspended in air aerosol samples analysis from urban localities of the Valley of Mexico, which was irradiated in the same geometry of the sample. The bottom of laboratory is analysed where was made the gamma spectrometry and it is compared the ratio of country up of bottom photo peaks with pattern photo peaks in nearer interest regions. The bottom natural gamma transmitters were identified and those of the activated pattern in the TRIGA Mark III nuclear reactor. (Author)

  19. Robust efficient video fingerprinting

    Science.gov (United States)

    Puri, Manika; Lubin, Jeffrey

    2009-02-01

    We have developed a video fingerprinting system with robustness and efficiency as the primary and secondary design criteria. In extensive testing, the system has shown robustness to cropping, letter-boxing, sub-titling, blur, drastic compression, frame rate changes, size changes and color changes, as well as to the geometric distortions often associated with camcorder capture in cinema settings. Efficiency is afforded by a novel two-stage detection process in which a fast matching process first computes a number of likely candidates, which are then passed to a second slower process that computes the overall best match with minimal false alarm probability. One key component of the algorithm is a maximally stable volume computation - a three-dimensional generalization of maximally stable extremal regions - that provides a content-centric coordinate system for subsequent hash function computation, independent of any affine transformation or extensive cropping. Other key features include an efficient bin-based polling strategy for initial candidate selection, and a final SIFT feature-based computation for final verification. We describe the algorithm and its performance, and then discuss additional modifications that can provide further improvement to efficiency and accuracy.

  20. Detection of macro-ecological patterns in South American hummingbirds is affected by spatial scale

    DEFF Research Database (Denmark)

    Rahbek, Carsten; Graves, Gary R.

    2000-01-01

    Scale is widely recognized as a fundamental conceptual problem in biology, but the question of whether species-richness patterns vary with scale is often ignored in macro-ecological analyses, despite the increasing application of such data in international conservation programmes. We tested for s...... peaks, decreasing the power of statistical tests to discriminate the causal agents of regional richness gradients. Ideally, the scale of analysis should be varied systematically to provide the optimal resolution of macro-ecological pattern....

  1. PASSion: a pattern growth algorithm-based pipeline for splice junction detection in paired-end RNA-Seq data.

    Science.gov (United States)

    Zhang, Yanju; Lameijer, Eric-Wubbo; 't Hoen, Peter A C; Ning, Zemin; Slagboom, P Eline; Ye, Kai

    2012-02-15

    RNA-seq is a powerful technology for the study of transcriptome profiles that uses deep-sequencing technologies. Moreover, it may be used for cellular phenotyping and help establishing the etiology of diseases characterized by abnormal splicing patterns. In RNA-Seq, the exact nature of splicing events is buried in the reads that span exon-exon boundaries. The accurate and efficient mapping of these reads to the reference genome is a major challenge. We developed PASSion, a pattern growth algorithm-based pipeline for splice site detection in paired-end RNA-Seq reads. Comparing the performance of PASSion to three existing RNA-Seq analysis pipelines, TopHat, MapSplice and HMMSplicer, revealed that PASSion is competitive with these packages. Moreover, the performance of PASSion is not affected by read length and coverage. It performs better than the other three approaches when detecting junctions in highly abundant transcripts. PASSion has the ability to detect junctions that do not have known splicing motifs, which cannot be found by the other tools. Of the two public RNA-Seq datasets, PASSion predicted ≈ 137,000 and 173,000 splicing events, of which on average 82 are known junctions annotated in the Ensembl transcript database and 18% are novel. In addition, our package can discover differential and shared splicing patterns among multiple samples. The code and utilities can be freely downloaded from https://trac.nbic.nl/passion and ftp://ftp.sanger.ac.uk/pub/zn1/passion.

  2. A new texture descriptor based on local micro-pattern for detection of architectural distortion in mammographic images

    Science.gov (United States)

    de Oliveira, Helder C. R.; Moraes, Diego R.; Reche, Gustavo A.; Borges, Lucas R.; Catani, Juliana H.; de Barros, Nestor; Melo, Carlos F. E.; Gonzaga, Adilson; Vieira, Marcelo A. C.

    2017-03-01

    This paper presents a new local micro-pattern texture descriptor for the detection of Architectural Distortion (AD) in digital mammography images. AD is a subtle contraction of breast parenchyma that may represent an early sign of breast cancer. Due to its subtlety and variability, AD is more difficult to detect compared to microcalcifications and masses, and is commonly found in retrospective evaluations of false-negative mammograms. Several computer-based systems have been proposed for automatic detection of AD, but their performance are still unsatisfactory. The proposed descriptor, Local Mapped Pattern (LMP), is a generalization of the Local Binary Pattern (LBP), which is considered one of the most powerful feature descriptor for texture classification in digital images. Compared to LBP, the LMP descriptor captures more effectively the minor differences between the local image pixels. Moreover, LMP is a parametric model which can be optimized for the desired application. In our work, the LMP performance was compared to the LBP and four Haralick's texture descriptors for the classification of 400 regions of interest (ROIs) extracted from clinical mammograms. ROIs were selected and divided into four classes: AD, normal tissue, microcalcifications and masses. Feature vectors were used as input to a multilayer perceptron neural network, with a single hidden layer. Results showed that LMP is a good descriptor to distinguish AD from other anomalies in digital mammography. LMP performance was slightly better than the LBP and comparable to Haralick's descriptors (mean classification accuracy = 83%).

  3. A Low-Power Wireless Image Sensor Node with Noise-Robust Moving Object Detection and a Region-of-Interest Based Rate Controller

    Science.gov (United States)

    2017-03-01

    from both environment and hardware further reduces the transmission energy with negligible computation and memory overhead. The rate controller...detection, Region-of-interest, Rate control Introduction In wireless image sensor nodes for moving object surveillance, energy efficiency can be...noise, reliable moving object detection is required to avoid unnecessary transmission of background scenes [1]. Transmission energy can be further

  4. Fusion of optical flow based motion pattern analysis and silhouette classification for person tracking and detection

    NARCIS (Netherlands)

    Tangelder, J.W.H.; Lebert, E.; Burghouts, G.J.; Zon, K. van; Den Uyl, M.J.

    2014-01-01

    This paper presents a novel approach to detect persons in video by combining optical flow based motion analysis and silhouette based recognition. A new fast optical flow computation method is described, and its application in a motion based analysis framework unifying human tracking and detection is

  5. Detection of cytokine expression patterns in the peripheral blood of patients with acute leukemia by antibody microarray analysis.

    Science.gov (United States)

    Li, Qing; Li, Mei; Wu, Yao-hui; Zhu, Xiao-jian; Zeng, Chen; Zou, Ping; Chen, Zhi-chao

    2014-04-01

    The cytokines of acute leukemia (AL) patients have certain expression patterns, forming a complex network involved in diagnosis, progression, and prognosis. We collected the serum of different AL patients before and after complete remission (CR) for detection of cytokines by using an antibody chip. The expression patterns of cytokines were determined by using bioinformatics computational analysis. The results showed that there were significant differences in the cytokine expression patterns between AL patients and normal controls, as well as between acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). In confirmatory test, ELISA revealed the expression of uPAR in AL. Moreover, the bioinformatic analysis showed that the differentially expressed cytokines among the AL groups were involved in different biological behaviors and were closely related with the development of the disease. It was concluded that the cytokine expression pattern of AL patients is significantly different from that of healthy volunteers. Also, differences of cytokine expression patterns exist between AML and ALL, and between before and after CR in the same subtype of AL, which holds important clinical significance for revealing disease progression.

  6. Transitional Probabilities Are Prioritized over Stimulus/Pattern Probabilities in Auditory Deviance Detection: Memory Basis for Predictive Sound Processing.

    Science.gov (United States)

    Mittag, Maria; Takegata, Rika; Winkler, István

    2016-09-14

    Representations encoding the probabilities of auditory events do not directly support predictive processing. In contrast, information about the probability with which a given sound follows another (transitional probability) allows predictions of upcoming sounds. We tested whether behavioral and cortical auditory deviance detection (the latter indexed by the mismatch negativity event-related potential) relies on probabilities of sound patterns or on transitional probabilities. We presented healthy adult volunteers with three types of rare tone-triplets among frequent standard triplets of high-low-high (H-L-H) or L-H-L pitch structure: proximity deviant (H-H-H/L-L-L), reversal deviant (L-H-L/H-L-H), and first-tone deviant (L-L-H/H-H-L). If deviance detection was based on pattern probability, reversal and first-tone deviants should be detected with similar latency because both differ from the standard at the first pattern position. If deviance detection was based on transitional probabilities, then reversal deviants should be the most difficult to detect because, unlike the other two deviants, they contain no low-probability pitch transitions. The data clearly showed that both behavioral and cortical auditory deviance detection uses transitional probabilities. Thus, the memory traces underlying cortical deviance detection may provide a link between stimulus probability-based change/novelty detectors operating at lower levels of the auditory system and higher auditory cognitive functions that involve predictive processing. Our research presents the first definite evidence for the auditory system prioritizing transitional probabilities over probabilities of individual sensory events. Forming representations for transitional probabilities paves the way for predictions of upcoming sounds. Several recent theories suggest that predictive processing provides the general basis of human perception, including important auditory functions, such as auditory scene analysis. Our

  7. Single-trial detection of visual evoked potentials by common spatial patterns and wavelet filtering for brain-computer interface.

    Science.gov (United States)

    Tu, Yiheng; Huang, Gan; Hung, Yeung Sam; Hu, Li; Hu, Yong; Zhang, Zhiguo

    2013-01-01

    Event-related potentials (ERPs) are widely used in brain-computer interface (BCI) systems as input signals conveying a subject's intention. A fast and reliable single-trial ERP detection method can be used to develop a BCI system with both high speed and high accuracy. However, most of single-trial ERP detection methods are developed for offline EEG analysis and thus have a high computational complexity and need manual operations. Therefore, they are not applicable to practical BCI systems, which require a low-complexity and automatic ERP detection method. This work presents a joint spatial-time-frequency filter that combines common spatial patterns (CSP) and wavelet filtering (WF) for improving the signal-to-noise (SNR) of visual evoked potentials (VEP), which can lead to a single-trial ERP-based BCI.

  8. Robust chemical and chemical-resistant material detection using hyper-spectral imager and a new bend interpolation and local scaling HSI sharpening method

    Science.gov (United States)

    Chen, Hai-Wen; McGurr, Michael; Brickhouse, Mark

    2015-05-01

    We present new results from our ongoing research activity for chemical threat detection using hyper-spectral imager (HSI) detection techniques by detecting nontraditional threat spectral signatures of agent usage, such as protective equipment, coatings, paints, spills, and stains that are worn by human or on trucks or other objects. We have applied several current state-of-the-art HSI target detection methods such as Matched Filter (MF), Adaptive Coherence Estimator (ACE), Constrained Energy Minimization (CEM), and Spectral Angle Mapper (SAM). We are interested in detecting several chemical related materials: (a) Tyvek clothing is chemical resistance and Tyvek coveralls are one-piece garments for protecting human body from harmful chemicals, and (b) ammonium salts from background could be representative of spills from scrubbers or related to other chemical activities. The HSI dataset that we used for detection covers a chemical test field with more than 50 different kinds of chemicals, protective materials, coatings, and paints. Among them, there are four different kinds of Tyvek material, three types of ammonium salts, and one yellow jugs. The imagery cube data were collected by a HSI sensor with a spectral range of 400-2,500nm. Preliminary testing results are promising, and very high probability of detection (Pd) and low probability of false detection are achieved with the usage of full spectral range (400- 2,500nm). In the second part of this paper, we present our newly developed HSI sharpening technique. A new Band Interpolation and Local Scaling (BILS) method has been developed to improve HSI spatial resolution by 4-16 times with a low-cost high-resolution pen-chromatic camera and a RGB camera. Preliminary results indicate that this new technique is promising.

  9. High-throughput droplet analysis and multiplex DNA detection in the microfluidic platform equipped with a robust sample-introduction technique

    International Nuclear Information System (INIS)

    Chen, Jinyang; Ji, Xinghu; He, Zhike

    2015-01-01

    In this work, a simple, flexible and low-cost sample-introduction technique was developed and integrated with droplet platform. The sample-introduction strategy was realized based on connecting the components of positive pressure input device, sample container and microfluidic chip through the tygon tubing with homemade polydimethylsiloxane (PDMS) adaptor, so the sample was delivered into the microchip from the sample container under the driving of positive pressure. This sample-introduction technique is so robust and compatible that could be integrated with T-junction, flow-focus or valve-assisted droplet microchips. By choosing the PDMS adaptor with proper dimension, the microchip could be flexibly equipped with various types of familiar sample containers, makes the sampling more straightforward without trivial sample transfer or loading. And the convenient sample changing was easily achieved by positioning the adaptor from one sample container to another. Benefiting from the proposed technique, the time-dependent concentration gradient was generated and applied for quantum dot (QD)-based fluorescence barcoding within droplet chip. High-throughput droplet screening was preliminarily demonstrated through the investigation of the quenching efficiency of ruthenium complex to the fluorescence of QD. More importantly, multiplex DNA assay was successfully carried out in the integrated system, which shows the practicability and potentials in high-throughput biosensing. - Highlights: • A simple, robust and low-cost sample-introduction technique was developed. • Convenient and flexible sample changing was achieved in microfluidic system. • Novel strategy of concentration gradient generation was presented for barcoding. • High-throughput droplet screening could be realized in the integrated platform. • Multiplex DNA assay was successfully carried out in the droplet platform

  10. High-throughput droplet analysis and multiplex DNA detection in the microfluidic platform equipped with a robust sample-introduction technique

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jinyang; Ji, Xinghu [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); He, Zhike, E-mail: zhkhe@whu.edu.cn [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Suzhou Institute of Wuhan University, Suzhou 215123 (China)

    2015-08-12

    In this work, a simple, flexible and low-cost sample-introduction technique was developed and integrated with droplet platform. The sample-introduction strategy was realized based on connecting the components of positive pressure input device, sample container and microfluidic chip through the tygon tubing with homemade polydimethylsiloxane (PDMS) adaptor, so the sample was delivered into the microchip from the sample container under the driving of positive pressure. This sample-introduction technique is so robust and compatible that could be integrated with T-junction, flow-focus or valve-assisted droplet microchips. By choosing the PDMS adaptor with proper dimension, the microchip could be flexibly equipped with various types of familiar sample containers, makes the sampling more straightforward without trivial sample transfer or loading. And the convenient sample changing was easily achieved by positioning the adaptor from one sample container to another. Benefiting from the proposed technique, the time-dependent concentration gradient was generated and applied for quantum dot (QD)-based fluorescence barcoding within droplet chip. High-throughput droplet screening was preliminarily demonstrated through the investigation of the quenching efficiency of ruthenium complex to the fluorescence of QD. More importantly, multiplex DNA assay was successfully carried out in the integrated system, which shows the practicability and potentials in high-throughput biosensing. - Highlights: • A simple, robust and low-cost sample-introduction technique was developed. • Convenient and flexible sample changing was achieved in microfluidic system. • Novel strategy of concentration gradient generation was presented for barcoding. • High-throughput droplet screening could be realized in the integrated platform. • Multiplex DNA assay was successfully carried out in the droplet platform.

  11. Neural network based pattern matching and spike detection tools and services--in the CARMEN neuroinformatics project.

    Science.gov (United States)

    Fletcher, Martyn; Liang, Bojian; Smith, Leslie; Knowles, Alastair; Jackson, Tom; Jessop, Mark; Austin, Jim

    2008-10-01

    In the study of information flow in the nervous system, component processes can be investigated using a range of electrophysiological and imaging techniques. Although data is difficult and expensive to produce, it is rarely shared and collaboratively exploited. The Code Analysis, Repository and Modelling for e-Neuroscience (CARMEN) project addresses this challenge through the provision of a virtual neuroscience laboratory: an infrastructure for sharing data, tools and services. Central to the CARMEN concept are federated CARMEN nodes, which provide: data and metadata storage, new, thirdparty and legacy services, and tools. In this paper, we describe the CARMEN project as well as the node infrastructure and an associated thick client tool for pattern visualisation and searching, the Signal Data Explorer (SDE). We also discuss new spike detection methods, which are central to the services provided by CARMEN. The SDE is a client application which can be used to explore data in the CARMEN repository, providing data visualization, signal processing and a pattern matching capability. It performs extremely fast pattern matching and can be used to search for complex conditions composed of many different patterns across the large datasets that are typical in neuroinformatics. Searches can also be constrained by specifying text based metadata filters. Spike detection services which use wavelet and morphology techniques are discussed, and have been shown to outperform traditional thresholding and template based systems. A number of different spike detection and sorting techniques will be deployed as services within the CARMEN infrastructure, to allow users to benchmark their performance against a wide range of reference datasets.

  12. On-Line Detection of Distributed Attacks from Space-Time Network Flow Patterns

    National Research Council Canada - National Science Library

    Baras, J. S; Cardenas, A. A; Ramezani, V

    2003-01-01

    .... The directionality of the change in a network flow is assumed to have an objective or target. The particular problem of detecting distributed denial of service attacks from distributed observations is presented as a working framework...

  13. Hardware-software face detection system based on multi-block local binary patterns

    Science.gov (United States)

    Acasandrei, Laurentiu; Barriga, Angel

    2015-03-01

    Face detection is an important aspect for biometrics, video surveillance and human computer interaction. Due to the complexity of the detection algorithms any face detection system requires a huge amount of computational and memory resources. In this communication an accelerated implementation of MB LBP face detection algorithm targeting low frequency, low memory and low power embedded system is presented. The resulted implementation is time deterministic and uses a customizable AMBA IP hardware accelerator. The IP implements the kernel operations of the MB-LBP algorithm and can be used as universal accelerator for MB LBP based applications. The IP employs 8 parallel MB-LBP feature evaluators cores, uses a deterministic bandwidth, has a low area profile and the power consumption is ~95 mW on a Virtex5 XC5VLX50T. The resulted implementation acceleration gain is between 5 to 8 times, while the hardware MB-LBP feature evaluation gain is between 69 and 139 times.

  14. Perceptual Robust Design

    DEFF Research Database (Denmark)

    Pedersen, Søren Nygaard

    The research presented in this PhD thesis has focused on a perceptual approach to robust design. The results of the research and the original contribution to knowledge is a preliminary framework for understanding, positioning, and applying perceptual robust design. Product quality is a topic...... been presented. Therefore, this study set out to contribute to the understanding and application of perceptual robust design. To achieve this, a state-of-the-art and current practice review was performed. From the review two main research problems were identified. Firstly, a lack of tools...... for perceptual robustness was found to overlap with the optimum for functional robustness and at most approximately 2.2% out of the 14.74% could be ascribed solely to the perceptual robustness optimisation. In conclusion, the thesis have offered a new perspective on robust design by merging robust design...

  15. Modifications of center-surround, spot detection and dot-pattern selective operators

    NARCIS (Netherlands)

    Petkov, Nicolai; Visser, Wicher T.

    2005-01-01

    This paper describes modifications of the models of center-surround and dot-pattern selective cells proposed previously. These modifications concern mainly the normalization of the difference of Gaussians (DoG) function used to model center-surround receptive fields, the normalization of

  16. A kinematic method for footstrike pattern detection in barefoot and shod runners.

    Science.gov (United States)

    Altman, Allison R; Davis, Irene S

    2012-02-01

    Footstrike patterns during running can be classified discretely into a rearfoot strike, midfoot strike and forefoot strike by visual observation. However, the footstrike pattern can also be classified on a continuum, ranging from 0% to 100% (extreme rearfoot to extreme forefoot) using the strike index, a measure requiring force plate data. When force data are not available, an alternative method to quantify the strike pattern must be used. The purpose of this paper was to quantify the continuum of foot strike patterns using an easily attainable kinematic measure, and compare it to the strike index measure. Force and kinematic data from twenty subjects were collected as they ran across an embedded force plate. Strike index and the footstrike angle were identified for the four running conditions of rearfoot strike, midfoot strike and forefoot strike, as well as barefoot. The footstrike angle was calculated as the angle of the foot with respect to the ground in the sagittal plane. Results indicated that the footstrike angle was significantly correlated with strike index. The linear regression model suggested that strike index can be accurately estimated, in both barefoot and shod conditions, in the absence of force data. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Analysis of Wave Velocity Patterns in Black Cherry Trees and its Effect on Internal Decay Detection

    Science.gov (United States)

    Guanghui Li; Xiping Wang; Jan Wiedenbeck; Robert J. Ross

    2013-01-01

    In this study, we examined stress wave velocity patterns in the cross sections of black cherry trees, developed analytical models of stress wave velocity in sound healthy trees, and then tested the effectiveness of the models as a tool for tree decay diagnosis. Acoustic tomography data of the tree cross sections were collected from 12 black cherry trees at a production...

  18. Simulation of pattern and defect detection in periodic amplitude and phase structures using photorefractive four-wave mixing

    Science.gov (United States)

    Nehmetallah, Georges; Banerjee, Partha; Khoury, Jed

    2015-03-01

    The nonlinearity inherent in four-wave mixing in photorefractive (PR) materials is used for adaptive filtering. Examples include script enhancement on a periodic pattern, scratch and defect cluster enhancement, periodic pattern dislocation enhancement, etc. through intensity filtering image manipulation. Organic PR materials have large space-bandwidth product, which makes them useful in adaptive filtering techniques in quality control systems. For instance, in the case of edge enhancement, phase conjugation via four-wave mixing suppresses the low spatial frequencies of the Fourier spectrum of an aperiodic image and consequently leads to image edge enhancement. In this work, we model, numerically verify, and simulate the performance of a four wave mixing setup used for edge, defect and pattern detection in periodic amplitude and phase structures. The results show that this technique successfully detects the slightest defects clearly even with no enhancement. This technique should facilitate improvements in applications such as image display sharpness utilizing edge enhancement, production line defect inspection of fabrics, textiles, e-beam lithography masks, surface inspection, and materials characterization.

  19. Implicitly Weighted Methods in Robust Image Analysis

    Czech Academy of Sciences Publication Activity Database

    Kalina, Jan

    2012-01-01

    Roč. 44, č. 3 (2012), s. 449-462 ISSN 0924-9907 R&D Projects: GA MŠk(CZ) 1M06014 Institutional research plan: CEZ:AV0Z10300504 Keywords : robustness * high breakdown point * outlier detection * robust correlation analysis * template matching * face recognition Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.767, year: 2012

  20. Detecting Different Road Infrastructural Elements Based on the Stochastic Characterization of Speed Patterns

    Directory of Open Access Journals (Sweden)

    Mario Muñoz-Organero

    2017-01-01

    Full Text Available The automatic detection of road related information using data from sensors while driving has many potential applications such as traffic congestion detection or automatic routable map generation. This paper focuses on the automatic detection of road elements based on GPS data from on-vehicle systems. A new algorithm is developed that uses the total variation distance instead of the statistical moments to improve the classification accuracy. The algorithm is validated for detecting traffic lights, roundabouts, and street-crossings in a real scenario and the obtained accuracy (0.75 improves the best results using previous approaches based on statistical moments based features (0.71. Each road element to be detected is characterized as a vector of speeds measured when a driver goes through it. We first eliminate the speed samples in congested traffic conditions which are not comparable with clear traffic conditions and would contaminate the dataset. Then, we calculate the probability mass function for the speed (in 1 m/s intervals at each point. The total variation distance is then used to find the similarity among different points of interest (which can contain a similar road element or a different one. Finally, a k-NN approach is used for assigning a class to each unlabelled element.

  1. A system for learning statistical motion patterns.

    Science.gov (United States)

    Hu, Weiming; Xiao, Xuejuan; Fu, Zhouyu; Xie, Dan; Tan, Tieniu; Maybank, Steve

    2006-09-01

    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy K-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction.

  2. Spatial statistics detect clustering patterns of kidney diseases in south-eastern Romania

    Directory of Open Access Journals (Sweden)

    Ruben I.

    2016-02-01

    Full Text Available Medical geography was conceptualized almost ten years ago due to its obvious usefulness in epidemiological research. Still, numerous diseases in many regions were neglected in these aspects of research, and the prevalence of kidney diseases in Eastern Europe is such an example. We evaluated the spatial patterns of main kidney diseases in south-eastern Romania, and highlighted the importance of spatial modeling in medical management in Romania. We found two statistically significant hotspots of kidney diseases prevalence. We also found differences in the spatial patterns between categories of diseases. We propose to speed up the process of creating a national database of records on kidney diseases. Offering the researchers access to a national database will allow further epidemiology studies in Romania and finally lead to a better management of medical services.

  3. Rib Fracture Patterns and Radiologic Detection – A Restraint-Based Comparison

    OpenAIRE

    Crandall, Jeff; Kent, Richard; Patrie, James; Fertile, Jay; Martin, Peter

    2000-01-01

    This paper presents a study of the rib fracture patterns generated in simulated frontal collisions and the visibility of the rib fractures on plain film radiographs. Using 29 cadaver subjects, rib fractures were identified on oblique, lateral, and anteroposterior chest films by five radiologists independently and were compared with fractures found during a detailed necropsy. Physical, geometric, and experimental factors demonstrated an influence on the ability of a radiologist to identify rib...

  4. The patterning of retinal horizontal cells: normalizing the regularity index enhances the detection of genomic linkage

    Directory of Open Access Journals (Sweden)

    Patrick W. Keeley

    2014-10-01

    Full Text Available Retinal neurons are often arranged as non-random distributions called mosaics, as their somata minimize proximity to neighboring cells of the same type. The horizontal cells serve as an example of such a mosaic, but little is known about the developmental mechanisms that underlie their patterning. To identify genes involved in this process, we have used three different spatial statistics to assess the patterning of the horizontal cell mosaic across a panel of genetically distinct recombinant inbred strains. To avoid the confounding effect cell density, which varies two-fold across these different strains, we computed the real/random regularity ratio, expressing the regularity of a mosaic relative to a randomly distributed simulation of similarly sized cells. To test whether this latter statistic better reflects the variation in biological processes that contribute to horizontal cell spacing, we subsequently compared the genetic linkage for each of these two traits, the regularity index and the real/random regularity ratio, each computed from the distribution of nearest neighbor (NN distances and from the Voronoi domain (VD areas. Finally, we compared each of these analyses with another index of patterning, the packing factor. Variation in the regularity indexes, as well as their real/random regularity ratios, and the packing factor, mapped quantitative trait loci (QTL to the distal ends of Chromosomes 1 and 14. For the NN and VD analyses, we found that the degree of linkage was greater when using the real/random regularity ratio rather than the respective regularity index. Using informatic resources, we narrow the list of prospective genes positioned at these two intervals to a small collection of six genes that warrant further investigation to determine their potential role in shaping the patterning of the horizontal cell mosaic.

  5. A new code for automatic detection and analysis of the lineament patterns for geophysical and geological purposes (ADALGEO)

    Science.gov (United States)

    Soto-Pinto, C.; Arellano-Baeza, A.; Sánchez, G.

    2013-08-01

    We present a new numerical method for automatic detection and analysis of changes in lineament patterns caused by seismic and volcanic activities. The method is implemented as a series of modules: (i) normalization of the image contrast, (ii) extraction of small linear features (stripes) through convolution of the part of the image in the vicinity of each pixel with a circular mask or through Canny algorithm, and (iii) posterior detection of main lineaments using the Hough transform. We demonstrate that our code reliably detects changes in the lineament patterns related to the stress evolution in the Earth's crust: specifically, a significant number of new lineaments appear approximately one month before an earthquake, while one month after the earthquake the lineament configuration returns to its initial state. Application of our software to the deformations caused by volcanic activity yields the opposite results: the number of lineaments decreases with the onset of microseismicity. This discrepancy can be explained assuming that the plate tectonic earthquakes are caused by the compression and accumulation of stress in the Earth's crust due to subduction of tectonic plates, whereas in the case of volcanic activity we deal with the inflation of a volcano edifice due to elevation of pressure and magma intrusion and the resulting stretching of the surface.

  6. Biometric feature embedding using robust steganography technique

    Science.gov (United States)

    Rashid, Rasber D.; Sellahewa, Harin; Jassim, Sabah A.

    2013-05-01

    This paper is concerned with robust steganographic techniques to hide and communicate biometric data in mobile media objects like images, over open networks. More specifically, the aim is to embed binarised features extracted using discrete wavelet transforms and local binary patterns of face images as a secret message in an image. The need for such techniques can arise in law enforcement, forensics, counter terrorism, internet/mobile banking and border control. What differentiates this problem from normal information hiding techniques is the added requirement that there should be minimal effect on face recognition accuracy. We propose an LSB-Witness embedding technique in which the secret message is already present in the LSB plane but instead of changing the cover image LSB values, the second LSB plane will be changed to stand as a witness/informer to the receiver during message recovery. Although this approach may affect the stego quality, it is eliminating the weakness of traditional LSB schemes that is exploited by steganalysis techniques for LSB, such as PoV and RS steganalysis, to detect the existence of secrete message. Experimental results show that the proposed method is robust against PoV and RS attacks compared to other variants of LSB. We also discussed variants of this approach and determine capacity requirements for embedding face biometric feature vectors while maintain accuracy of face recognition.

  7. Abnormal network flow detection based on application execution patterns from Web of Things (WoT) platforms.

    Science.gov (United States)

    Yoon, Young; Jung, Hyunwoo; Lee, Hana

    2018-01-01

    In this paper, we present a research work on a novel methodology of identifying abnormal behaviors at the underlying network monitor layer during runtime based on the execution patterns of Web of Things (WoT) applications. An execution pattern of a WoT application is a sequence of profiled time delays between the invocations of involved Web services, and it can be obtained from WoT platforms. We convert the execution pattern to a time sequence of network flows that are generated when the WoT applications are executed. We consider such time sequences as a whitelist. This whitelist reflects the valid application execution patterns. At the network monitor layer, our applied RETE algorithm examines whether any given runtime sequence of network flow instances does not conform to the whitelist. Through this approach, it is possible to interpret a sequence of network flows with regard to application logic. Given such contextual information, we believe that the administrators can detect and reason about any abnormal behaviors more effectively. Our empirical evaluation shows that our RETE-based algorithm outperforms the baseline algorithm in terms of memory usage.

  8. Algorithm for real-time detection of signal patterns using phase synchrony: an application to an electrode array

    Science.gov (United States)

    Sadeghi, Saman; MacKay, William A.; van Dam, R. Michael; Thompson, Michael

    2011-02-01

    Real-time analysis of multi-channel spatio-temporal sensor data presents a considerable technical challenge for a number of applications. For example, in brain-computer interfaces, signal patterns originating on a time-dependent basis from an array of electrodes on the scalp (i.e. electroencephalography) must be analyzed in real time to recognize mental states and translate these to commands which control operations in a machine. In this paper we describe a new technique for recognition of spatio-temporal patterns based on performing online discrimination of time-resolved events through the use of correlation of phase dynamics between various channels in a multi-channel system. The algorithm extracts unique sensor signature patterns associated with each event during a training period and ranks importance of sensor pairs in order to distinguish between time-resolved stimuli to which the system may be exposed during real-time operation. We apply the algorithm to electroencephalographic signals obtained from subjects tested in the neurophysiology laboratories at the University of Toronto. The extension of this algorithm for rapid detection of patterns in other sensing applications, including chemical identification via chemical or bio-chemical sensor arrays, is also discussed.

  9. Metabolic pattern analysis of early detection in Alzheimer's disease from other types of dementias and correlated with cognitive function

    International Nuclear Information System (INIS)

    Ju, R. H.; Lee, C. W.; Jung, Y. A.; Sohn, H. S.; Kim, S. H.; Seo, T. S

    2004-01-01

    PET/CT studies have demonstrated temporoparietal hypometabolism in probable and definite Alzheimer's disease (AD), a pattern that may help differentiate AD from other types of dementias. Seeking to distinguish Dementia with Lewy bodies (DLB) and Alzheimer's disease (AD), we examined brain glucose metabolism of DLB and AD. Identification of individual differences in patterns of regional cerebral glucose metabolism (rCMRglc) interactions may be important for early detection of AD. We elucidate the relationship between reduced cognitive function and cerebral metabolism. Ten patients with the diagnosis of AD, 3 DLB patients underwent 18F-FDG PET CT. We applied statistical mapping procedure to evaluate the diagnostic power of rCMRglc patterns for differentiation and also correlated with Korean-mini mental status exam (K-MMSE) score include orientation time, place, registration, attention, calculation, recaIl, language and visuospatial function. Glucose metabolic pattern analysis confirmed AD and DLB patients showed significant metabolic reductions involving parietotemporal association, posterior cingulate, and frontal association cortex. DLB patients showed significant metabolic reductions in the occipital cortex, particularly in the primary visual cortex. Covariate analysis revealed that occipital metabolic changes in DLB were independent from those in the adjacent parietotemporal cortices. AnaIysis of clinically diagnosed probable AD patients showed a significantly higher frequency of primary visual metabolic reduction among patients who fulfilled clinical criteria for DLB. occipital hypometabolism is a potential discriminate marker to distinguish DLB versus AD

  10. Robust fault detection and isolation technique for single-input/single-output closed-loop control systems that exhibit actuator and sensor faults

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh; Alavi, S. M. Mahdi; Hayes, M. J.

    2008-01-01

    An integrated quantitative feedback design and frequency-based fault detection and isolation (FDI) approach is presented for single-input/single-output systems. A novel design methodology, based on shaping the system frequency response, is proposed to generate an appropriate residual signal...

  11. Fully Automated Robust System to Detect Retinal Edema, Central Serous Chorioretinopathy, and Age Related Macular Degeneration from Optical Coherence Tomography Images

    Directory of Open Access Journals (Sweden)

    Samina Khalid

    2017-01-01

    Full Text Available Maculopathy is the excessive damage to macula that leads to blindness. It mostly occurs due to retinal edema (RE, central serous chorioretinopathy (CSCR, or age related macular degeneration (ARMD. Optical coherence tomography (OCT imaging is the latest eye testing technique that can detect these syndromes in early stages. Many researchers have used OCT images to detect retinal abnormalities. However, to the best of our knowledge, no research that presents a fully automated system to detect all of these macular syndromes is reported. This paper presents the world’s first ever decision support system to automatically detect RE, CSCR, and ARMD retinal pathologies and healthy retina from OCT images. The automated disease diagnosis in our proposed system is based on multilayered support vector machines (SVM classifier trained on 40 labeled OCT scans (10 healthy, 10 RE, 10 CSCR, and 10 ARMD. After training, SVM forms an accurate decision about the type of retinal pathology using 9 extracted features. We have tested our proposed system on 2819 OCT scans (1437 healthy, 640 RE, and 742 CSCR of 502 patients from two different datasets and our proposed system correctly diagnosed 2817/2819 subjects with the accuracy, sensitivity, and specificity ratings of 99.92%, 100%, and 99.86%, respectively.

  12. Robustness of Structural Systems

    DEFF Research Database (Denmark)

    Canisius, T.D.G.; Sørensen, John Dalsgaard; Baker, J.W.

    2007-01-01

    The importance of robustness as a property of structural systems has been recognised following several structural failures, such as that at Ronan Point in 1968,where the consequenceswere deemed unacceptable relative to the initiating damage. A variety of research efforts in the past decades have...... attempted to quantify aspects of robustness such as redundancy and identify design principles that can improve robustness. This paper outlines the progress of recent work by the Joint Committee on Structural Safety (JCSS) to develop comprehensive guidance on assessing and providing robustness in structural...... systems. Guidance is provided regarding the assessment of robustness in a framework that considers potential hazards to the system, vulnerability of system components, and failure consequences. Several proposed methods for quantifying robustness are reviewed, and guidelines for robust design...

  13. Robust multivariate analysis

    CERN Document Server

    J Olive, David

    2017-01-01

    This text presents methods that are robust to the assumption of a multivariate normal distribution or methods that are robust to certain types of outliers. Instead of using exact theory based on the multivariate normal distribution, the simpler and more applicable large sample theory is given.  The text develops among the first practical robust regression and robust multivariate location and dispersion estimators backed by theory.   The robust techniques  are illustrated for methods such as principal component analysis, canonical correlation analysis, and factor analysis.  A simple way to bootstrap confidence regions is also provided. Much of the research on robust multivariate analysis in this book is being published for the first time. The text is suitable for a first course in Multivariate Statistical Analysis or a first course in Robust Statistics. This graduate text is also useful for people who are familiar with the traditional multivariate topics, but want to know more about handling data sets with...

  14. Pattern-based feature extraction for fault detection in quality relevant process control

    NARCIS (Netherlands)

    Peruzzo, S.; Holenderski, M.J.; Lukkien, J.J.

    2017-01-01

    Statistical quality control (SQC) applies multivariate statistics to monitor production processes over time and detect changes in their performance in terms of meeting specification limits on key product quality metrics. These limits are imposed by customers and typically assumed to be a single

  15. Stochastic pattern recognition techniques and artificial intelligence for nuclear power plant surveillance and anomaly detection

    Energy Technology Data Exchange (ETDEWEB)

    Kemeny, L.G

    1998-12-31

    In this paper a theoretical and system conceptual model is outlined for the instrumentation, core assessment and surveillance and anomaly detection of a nuclear power plant. The system specified is based on the statistical on-line analysis of optimally placed instrumentation sensed fluctuating signals in terms of such variates as coherence, correlation function, zero-crossing and spectral density

  16. Stochastic pattern recognition techniques and artificial intelligence for nuclear power plant surveillance and anomaly detection

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    1998-01-01

    In this paper a theoretical and system conceptual model is outlined for the instrumentation, core assessment and surveillance and anomaly detection of a nuclear power plant. The system specified is based on the statistical on-line analysis of optimally placed instrumentation sensed fluctuating signals in terms of such variates as coherence, correlation function, zero-crossing and spectral density

  17. Mass detection, localization and estimation for wind turbine blades based on statistical pattern recognition

    DEFF Research Database (Denmark)

    Colone, L.; Hovgaard, K.; Glavind, Lars

    2018-01-01

    A method for mass change detection on wind turbine blades using natural frequencies is presented. The approach is based on two statistical tests. The first test decides if there is a significant mass change and the second test is a statistical group classification based on Linear Discriminant Ana...

  18. Parametrization of textural patterns in 123I-ioflupane imaging for the automatic detection of Parkinsonism

    International Nuclear Information System (INIS)

    Martinez-Murcia, F. J.; Górriz, J. M.; Ramírez, J.; Moreno-Caballero, M.; Gómez-Río, M.

    2014-01-01

    Purpose: A novel approach to a computer aided diagnosis system for the Parkinson's disease is proposed. This tool is intended as a supporting tool for physicians, based on fully automated methods that lead to the classification of 123 I-ioflupane SPECT images. Methods: 123 I-ioflupane images from three different databases are used to train the system. The images are intensity and spatially normalized, then subimages are extracted and a 3D gray-level co-occurrence matrix is computed over these subimages, allowing the characterization of the texture using Haralick texture features. Finally, different discrimination estimation methods are used to select a feature vector that can be used to train and test the classifier. Results: Using the leave-one-out cross-validation technique over these three databases, the system achieves results up to a 97.4% of accuracy, and 99.1% of sensitivity, with positive likelihood ratios over 27. Conclusions: The system presents a robust feature extraction method that helps physicians in the diagnosis task by providing objective, operator-independent textural information about 123 I-ioflupane images, commonly used in the diagnosis of the Parkinson's disease. Textural features computation has been optimized by using a subimage selection algorithm, and the discrimination estimation methods used here makes the system feature-independent, allowing us to extend it to other databases and diseases

  19. Correlation between theoretical anatomical patterns of lymphatic drainage and lymphoscintigraphy findings during sentinel node detection in head and neck melanomas

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, Monica; Ruiz, Diana Milena [Hospital Clinic de Barcelona, Nuclear Medicine Department, Barcelona (Spain); Vidal-Sicart, Sergi; Paredes, Pilar; Pons, Francesca [Hospital Clinic de Barcelona, Nuclear Medicine Department, Barcelona (Spain); Institut d' Investigacions Biomediques Agusti Pi i Sunyer (IDIBAPS), Barcelona (Spain); Torres, Ferran [Hospital Clinic Barcelona, Statistical of Biostatistics and Data Management Core Facility, IDIBAPS, Barcelona (Spain); Universitat Autonoma de Barcelona, Biostatistics Unit, Faculty of Medicine, Barcelona (Spain)

    2016-04-15

    In the diagnosis of head and neck melanoma, lymphatic drainage is complex and highly variable. As regional lymph node metastasis is one of the most important prognostic factors, lymphoscintigraphy can help map individual drainage patterns. The aim of this study was to compare the results of lymphoscintigraphy and sentinel lymph node (SLN) detection with theoretical anatomical patterns of lymphatic drainage based on the location of the primary tumour lesion in patients with head and neck melanoma. We also determined the percentage of discrepancies between our lymphoscintigraphy and the theoretical location of nodal drainage predicted by a large lymphoscintigraphic database, in order to explain recurrence and false-negative SLN biopsies. In this retrospective study of 152 patients with head and neck melanoma, the locations of the SLNs on lymphoscintigraphy and detected intraoperatively were compared with the lymphatic drainage predicted by on-line software based on a large melanoma database. All patients showed lymphatic drainage and in all patients at least one SLN was identified by lymphoscintigraphy. Of the 152 patients, 4 had a primary lesion in areas that were not described in the Sydney Melanoma Unit database, so agreement could only be evaluated in 148 patients. Agreement between lymphoscintigraphic findings and the theoretical lymphatic drainage predicted by the software was completely concordant in 119 of the 148 patients (80.4 %, 95 % CI 73.3 - 86 %). However, this concordance was partial (some concordant nodes and others not) in 18 patients (12.2 %, 95 % CI 7.8 - 18.4 %). Discordance was complete in 11 patients (7.4 %, 95 % CI 4.2 - 12.8 %). In melanoma of the head and neck there is a high correlation between lymphatic drainage found by lymphoscintigraphy and the predicted drainage pattern and basins provided by a large reference database. Due to unpredictable drainage, preoperative lymphoscintigraphy is essential to accurately detect the SLNs in head and

  20. Demand pattern analysis of taxi trip data for anomalies detection and explanation

    DEFF Research Database (Denmark)

    Markou, Ioulia; Rodrigues, Filipe; Pereira, Francisco Camara

    2017-01-01

    Due to environmental and economic stress, strong investment exists now towards adaptive transport systems that can efficiently utilize capacity, minimizing costs and environmental impacts. The common vision is a system that dynamically changes itself (the supply) to anticipate traveler needs (the...... demand). In some occasions, unexpected and unwanted demand patterns are noticed in the traffic network that lead to system failures and cost implications. Significantly low speeds or excessively low flows at an unforeseeable time are only some of the phenomena that are often noticed and need...

  1. Locating sensors for detecting source-to-target patterns of special nuclear material smuggling: a spatial information theoretic approach.

    Science.gov (United States)

    Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong

    2010-01-01

    In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy.

  2. Locating Sensors for Detecting Source-to-Target Patterns of Special Nuclear Material Smuggling: A Spatial Information Theoretic Approach

    Directory of Open Access Journals (Sweden)

    Xuesong Zhou

    2010-08-01

    Full Text Available In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy.

  3. Windows Based Data Sets for Evaluation of Robustness of Host Based Intrusion Detection Systems (IDS to Zero-Day and Stealth Attacks

    Directory of Open Access Journals (Sweden)

    Waqas Haider

    2016-07-01

    Full Text Available The Windows Operating System (OS is the most popular desktop OS in the world, as it has the majority market share of both servers and personal computing necessities. However, as its default signature-based security measures are ineffectual for detecting zero-day and stealth attacks, it needs an intelligent Host-based Intrusion Detection System (HIDS. Unfortunately, a comprehensive data set that reflects the modern Windows OS’s normal and attack surfaces is not publicly available. To fill this gap, in this paper two open data sets generated by the cyber security department of the Australian Defence Force Academy (ADFA are introduced, namely: Australian Defence Force Academy Windows Data Set (ADFA-WD; and Australian Defence Force Academy Windows Data Set with a Stealth Attacks Addendum (ADFA-WD: SAA. Statistical analysis results based on these data sets show that, due to the low foot prints of modern attacks and high similarity of normal and attacked data, both these data sets are complex, and highly intelligent Host based Anomaly Detection Systems (HADS design will be required.

  4. NEUROIMAGING AND PATTERN RECOGNITION TECHNIQUES FOR AUTOMATIC DETECTION OF ALZHEIMER’S DISEASE: A REVIEW

    Directory of Open Access Journals (Sweden)

    Rupali Kamathe

    2017-08-01

    Full Text Available Alzheimer’s disease (AD is the most common form of dementia with currently unavailable firm treatments that can stop or reverse the disease progression. A combination of brain imaging and clinical tests for checking the signs of memory impairment is used to identify patients with AD. In recent years, Neuroimaging techniques combined with machine learning algorithms have received lot of attention in this field. There is a need for development of automated techniques to detect the disease well before patient suffers from irreversible loss. This paper is about the review of such semi or fully automatic techniques with detail comparison of methods implemented, class labels considered, data base used and the results obtained for related study. This review provides detailed comparison of different Neuroimaging techniques and reveals potential application of machine learning algorithms in medical image analysis; particularly in AD enabling even the early detection of the disease- the class labelled as Multiple Cognitive Impairment.

  5. Detecting spatial patterns with the cumulant function – Part 2: An application to El Niño

    Directory of Open Access Journals (Sweden)

    P. Yiou

    2008-02-01

    Full Text Available The spatial coherence of a measured variable (e.g. temperature or pressure is often studied to determine the regions of high variability or to find teleconnections, i.e. correlations between specific regions. While usual methods to find spatial patterns, such as Principal Components Analysis (PCA, are constrained by linear symmetries, the dependence of variables such as temperature or pressure at different locations is generally nonlinear. In particular, large deviations from the sample mean are expected to be strongly affected by such nonlinearities. Here we apply a newly developed nonlinear technique (Maxima of Cumulant Function, MCF for detection of typical spatial patterns that largely deviate from the mean. In order to test the technique and to introduce the methodology, we focus on the El Niño/Southern Oscillation and its spatial patterns. We find nonsymmetric temperature patterns corresponding to El Niño and La Niña, and we compare the results of MCF with other techniques, such as the symmetric solutions of PCA, and the nonsymmetric solutions of Nonlinear PCA (NLPCA. We found that MCF solutions are more reliable than the NLPCA fits, and can capture mixtures of principal components. Finally, we apply Extreme Value Theory on the temporal variations extracted from our methodology. We find that the tails of the distribution of extreme temperatures during La Niña episodes is bounded, while the tail during El Niños is less likely to be bounded. This implies that the mean spatial patterns of the two phases are asymmetric, as well as the behaviour of their extremes.

  6. Pattern Extraction Algorithm for NetFlow-Based Botnet Activities Detection

    OpenAIRE

    Kozik, Rafał; Choraś, Michał

    2017-01-01

    As computer and network technologies evolve, the complexity of cybersecurity has dramatically increased. Advanced cyber threats have led to current approaches to cyber-attack detection becoming ineffective. Many currently used computer systems and applications have never been deeply tested from a cybersecurity point of view and are an easy target for cyber criminals. The paradigm of security by design is still more of a wish than a reality, especially in the context of constantly evolving sys...

  7. A Malicious Pattern Detection Engine for Embedded Security Systems in the Internet of Things

    Directory of Open Access Journals (Sweden)

    Doohwan Oh

    2014-12-01

    Full Text Available With the emergence of the Internet of Things (IoT, a large number of physical objects in daily life have been aggressively connected to the Internet. As the number of objects connected to networks increases, the security systems face a critical challenge due to the global connectivity and accessibility of the IoT. However, it is difficult to adapt traditional security systems to the objects in the IoT, because of their limited computing power and memory size. In light of this, we present a lightweight security system that uses a novel malicious pattern-matching engine. We limit the memory usage of the proposed system in order to make it work on resource-constrained devices. To mitigate performance degradation due to limitations of computation power and memory, we propose two novel techniques, auxiliary shifting and early decision. Through both techniques, we can efficiently reduce the number of matching operations on resource-constrained systems. Experiments and performance analyses show that our proposed system achieves a maximum speedup of 2.14 with an IoT object and provides scalable performance for a large number of patterns.

  8. A malicious pattern detection engine for embedded security systems in the Internet of Things.

    Science.gov (United States)

    Oh, Doohwan; Kim, Deokho; Ro, Won Woo

    2014-12-16

    With the emergence of the Internet of Things (IoT), a large number of physical objects in daily life have been aggressively connected to the Internet. As the number of objects connected to networks increases, the security systems face a critical challenge due to the global connectivity and accessibility of the IoT. However, it is difficult to adapt traditional security systems to the objects in the IoT, because of their limited computing power and memory size. In light of this, we present a lightweight security system that uses a novel malicious pattern-matching engine. We limit the memory usage of the proposed system in order to make it work on resource-constrained devices. To mitigate performance degradation due to limitations of computation power and memory, we propose two novel techniques, auxiliary shifting and early decision. Through both techniques, we can efficiently reduce the number of matching operations on resource-constrained systems. Experiments and performance analyses show that our proposed system achieves a maximum speedup of 2.14 with an IoT object and provides scalable performance for a large number of patterns.

  9. A Malicious Pattern Detection Engine for Embedded Security Systems in the Internet of Things

    Science.gov (United States)

    Oh, Doohwan; Kim, Deokho; Ro, Won Woo

    2014-01-01

    With the emergence of the Internet of Things (IoT), a large number of physical objects in daily life have been aggressively connected to the Internet. As the number of objects connected to networks increases, the security systems face a critical challenge due to the global connectivity and accessibility of the IoT. However, it is difficult to adapt traditional security systems to the objects in the IoT, because of their limited computing power and memory size. In light of this, we present a lightweight security system that uses a novel malicious pattern-matching engine. We limit the memory usage of the proposed system in order to make it work on resource-constrained devices. To mitigate performance degradation due to limitations of computation power and memory, we propose two novel techniques, auxiliary shifting and early decision. Through both techniques, we can efficiently reduce the number of matching operations on resource-constrained systems. Experiments and performance analyses show that our proposed system achieves a maximum speedup of 2.14 with an IoT object and provides scalable performance for a large number of patterns. PMID:25521382

  10. Marker detection evaluation by phantom and cadaver experiments for C-arm pose estimation pattern

    Science.gov (United States)

    Steger, Teena; Hoßbach, Martin; Wesarg, Stefan

    2013-03-01

    C-arm fluoroscopy is used for guidance during several clinical exams, e.g. in bronchoscopy to locate the bronchoscope inside the airways. Unfortunately, these images provide only 2D information. However, if the C-arm pose is known, it can be used to overlay the intrainterventional fluoroscopy images with 3D visualizations of airways, acquired from preinterventional CT images. Thus, the physician's view is enhanced and localization of the instrument at the correct position inside the bronchial tree is facilitated. We present a novel method for C-arm pose estimation introducing a marker-based pattern, which is placed on the patient table. The steel markers form a pattern, allowing to deduce the C-arm pose by use of the projective invariant cross-ratio. Simulations show that the C-arm pose estimation is reliable and accurate for translations inside an imaging area of 30 cm x 50 cm and rotations up to 30°. Mean error values are 0.33 mm in 3D space and 0.48 px in the 2D imaging plane. First tests on C-arm images resulted in similarly compelling accuracy values and high reliability in an imaging area of 30 cm x 42.5 cm. Even in the presence of interfering structures, tested both with anatomy phantoms and a turkey cadaver, high success rates over 90% and fully satisfying execution times below 4 sec for 1024 px × 1024 px images could be achieved.

  11. The importance of scaling for detecting community patterns: success and failure in assemblages of introduced species

    Science.gov (United States)

    Allen, Craig R.; Angeler, David G.; Moulton, Michael P.; Holling, Crawford S.

    2015-01-01

    Community saturation can help to explain why biological invasions fail. However, previous research has documented inconsistent relationships between failed invasions (i.e., an invasive species colonizes but goes extinct) and the number of species present in the invaded community. We use data from bird communities of the Hawaiian island of Oahu, which supports a community of 38 successfully established introduced birds and where 37 species were introduced but went extinct (failed invasions). We develop a modified approach to evaluate the effects of community saturation on invasion failure. Our method accounts (1) for the number of species present (NSP) when the species goes extinct rather than during its introduction; and (2) scaling patterns in bird body mass distributions that accounts for the hierarchical organization of ecosystems and the fact that interaction strength amongst species varies with scale. We found that when using NSP at the time of extinction, NSP was higher for failed introductions as compared to successful introductions, supporting the idea that increasing species richness and putative community saturation mediate invasion resistance. Accounting for scale-specific patterns in body size distributions further improved the relationship between NSP and introduction failure. Results show that a better understanding of invasion outcomes can be obtained when scale-specific community structure is accounted for in the analysis.

  12. Patterned Array of Poly(ethylene glycol Silane Monolayer for Label-Free Detection of Dengue

    Directory of Open Access Journals (Sweden)

    Nor Zida Rosly

    2016-08-01

    Full Text Available In the present study, the construction of arrays on silicon for naked-eye detection of DNA dengue was demonstrated. The array was created by exposing a polyethylene glycol (PEG silane monolayer to 254 nm ultraviolet (UV light through a photomask. Formation of the PEG silane monolayer and photomodifed surface properties was thoroughly characterized by using atomic force microscopy (AFM, X-ray photoelectron spectroscopy (XPS, and contact angle measurements. The results of XPS confirmed that irradiation of ultraviolet (UV light generates an aldehyde functional group that offers conjugation sites of amino DNA probe for detection of a specific dengue virus target DNA. Employing a gold enhancement process after inducing the electrostatic interaction between positively charged gold nanoparticles and the negatively charged target DNA hybridized to the DNA capture probe allowed to visualize the array with naked eye. The developed arrays demonstrated excellent performance in diagnosis of dengue with a detection limit as low as 10 pM. The selectivity of DNA arrays was also examined using a single base mismatch and noncomplementary target DNA.

  13. The Space-Time Variation of Global Crop Yields, Detecting Simultaneous Outliers and Identifying the Teleconnections with Climatic Patterns

    Science.gov (United States)

    Najafi, E.; Devineni, N.; Pal, I.; Khanbilvardi, R.

    2017-12-01

    An understanding of the climate factors that influence the space-time variability of crop yields is important for food security purposes and can help us predict global food availability. In this study, we address how the crop yield trends of countries globally were related to each other during the last several decades and the main climatic variables that triggered high/low crop yields simultaneously across the world. Robust Principal Component Analysis (rPCA) is used to identify the primary modes of variation in wheat, maize, sorghum, rice, soybeans, and barley yields. Relations between these modes of variability and important climatic variables, especially anomalous sea surface temperature (SSTa), are examined from 1964 to 2010. rPCA is also used to identify simultaneous outliers in each year, i.e. systematic high/low crop yields across the globe. The results demonstrated spatiotemporal patterns of these crop yields and the climate-related events that caused them as well as the connection of outliers with weather extremes. We find that among climatic variables, SST has had the most impact on creating simultaneous crop yields variability and yield outliers in many countries. An understanding of this phenomenon can benefit global crop trade networks.

  14. Metabolic profiling in Maturity-onset diabetes of the young (MODY) and young onset type 2 diabetes fails to detect robust urinary biomarkers.

    Science.gov (United States)

    Gloyn, Anna L; Faber, Johan H; Malmodin, Daniel; Thanabalasingham, Gaya; Lam, Francis; Ueland, Per Magne; McCarthy, Mark I; Owen, Katharine R; Baunsgaard, Dorrit

    2012-01-01

    It is important to identify patients with Maturity-onset diabetes of the young (MODY) as a molecular diagnosis determines both treatment and prognosis. Genetic testing is currently expensive and many patients are therefore not assessed and are misclassified as having either type 1 or type 2 diabetes. Biomarkers could facilitate the prioritisation of patients for genetic testing. We hypothesised that patients with different underlying genetic aetiologies for their diabetes could have distinct metabolic profiles which may uncover novel biomarkers. The aim of this study was to perform metabolic profiling in urine from patients with MODY due to mutations in the genes encoding glucokinase (GCK) or hepatocyte nuclear factor 1 alpha (HNF1A), type 2 diabetes (T2D) and normoglycaemic control subjects. Urinary metabolic profiling by Nuclear Magnetic Resonance (NMR) and ultra performance liquid chromatography hyphenated to Q-TOF mass spectrometry (UPLC-MS) was performed in a Discovery set of subjects with HNF1A-MODY (n = 14), GCK-MODY (n = 17), T2D (n = 14) and normoglycaemic controls (n = 34). Data were used to build a valid partial least squares discriminate analysis (PLS-DA) model where HNF1A-MODY subjects could be separated from the other diabetes subtypes. No single metabolite contributed significantly to the separation of the patient groups. However, betaine, valine, glycine and glucose were elevated in the urine of HNF1A-MODY subjects compared to the other subgroups. Direct measurements of urinary amino acids and betaine in an extended dataset did not support differences between patients groups. Elevated urinary glucose in HNF1A-MODY is consistent with the previously reported low renal threshold for glucose in this genetic subtype. In conclusion, we report the first metabolic profiling study in monogenic diabetes and show that, despite the distinct biochemical pathways affected, there are unlikely to be robust urinary biomarkers which distinguish monogenic subtypes

  15. Metabolic profiling in Maturity-onset diabetes of the young (MODY and young onset type 2 diabetes fails to detect robust urinary biomarkers.

    Directory of Open Access Journals (Sweden)

    Anna L Gloyn

    Full Text Available It is important to identify patients with Maturity-onset diabetes of the young (MODY as a molecular diagnosis determines both treatment and prognosis. Genetic testing is currently expensive and many patients are therefore not assessed and are misclassified as having either type 1 or type 2 diabetes. Biomarkers could facilitate the prioritisation of patients for genetic testing. We hypothesised that patients with different underlying genetic aetiologies for their diabetes could have distinct metabolic profiles which may uncover novel biomarkers. The aim of this study was to perform metabolic profiling in urine from patients with MODY due to mutations in the genes encoding glucokinase (GCK or hepatocyte nuclear factor 1 alpha (HNF1A, type 2 diabetes (T2D and normoglycaemic control subjects. Urinary metabolic profiling by Nuclear Magnetic Resonance (NMR and ultra performance liquid chromatography hyphenated to Q-TOF mass spectrometry (UPLC-MS was performed in a Discovery set of subjects with HNF1A-MODY (n = 14, GCK-MODY (n = 17, T2D (n = 14 and normoglycaemic controls (n = 34. Data were used to build a valid partial least squares discriminate analysis (PLS-DA model where HNF1A-MODY subjects could be separated from the other diabetes subtypes. No single metabolite contributed significantly to the separation of the patient groups. However, betaine, valine, glycine and glucose were elevated in the urine of HNF1A-MODY subjects compared to the other subgroups. Direct measurements of urinary amino acids and betaine in an extended dataset did not support differences between patients groups. Elevated urinary glucose in HNF1A-MODY is consistent with the previously reported low renal threshold for glucose in this genetic subtype. In conclusion, we report the first metabolic profiling study in monogenic diabetes and show that, despite the distinct biochemical pathways affected, there are unlikely to be robust urinary biomarkers which distinguish monogenic

  16. Simulating Visual Pattern Detection and Brightness Perception Based on Implicit Masking

    Directory of Open Access Journals (Sweden)

    Yang Jian

    2007-01-01

    Full Text Available A quantitative model of implicit masking, with a front-end low-pass filter, a retinal local compressive nonlinearity described by a modified Naka-Rushton equation, a cortical representation of the image in the Fourier domain, and a frequency-dependent compressive nonlinearity, was developed to simulate visual image processing. The model algorithm was used to estimate contrast sensitivity functions over 7 mean illuminance levels ranging from 0.0009 to 900 trolands, and fit to the contrast thresholds of 43 spatial patterns in the Modelfest study. The RMS errors between model estimations and experimental data in the literature were about 0.1 log unit. In addition, the same model was used to simulate the effects of simultaneous contrast, assimilation, and crispening. The model results matched the visual percepts qualitatively, showing the value of integrating the three diverse perceptual phenomena under a common theoretical framework.

  17. Plutonium detection in humans using octagonal computer-generated color patterns

    International Nuclear Information System (INIS)

    Phillips, W.G.; Curtis, S.P.

    1985-01-01

    Routine analysis of humans for plutonium lung burdens is accomplished with two phoswich low-energy gamma detectors. The analysis of data from each detector provides the spectroscopist with a total of eight parameters. These parameters are normalized and displayed as an octagonal histogram over laid against the historical analyses of uncontaminated humans similar in body geometry, i.e., weight, height, and chest thickness. Subjects containing lung burdens of plutonium within (one standard deviation) of the historical average yield data which are displayed on a color graphics terminal as a green octagon. Analyses which yield values greater than 1 sigma above the historical average produce a distorted yellow, orange, or red display. Thus, through color and pattern recognition, the analyst may see at a glance if the current data statistically indicate human contamination

  18. Robustness of Structures

    DEFF Research Database (Denmark)

    Faber, Michael Havbro; Vrouwenvelder, A.C.W.M.; Sørensen, John Dalsgaard

    2011-01-01

    In 2005, the Joint Committee on Structural Safety (JCSS) together with Working Commission (WC) 1 of the International Association of Bridge and Structural Engineering (IABSE) organized a workshop on robustness of structures. Two important decisions resulted from this workshop, namely...... ‘COST TU0601: Robustness of Structures’ was initiated in February 2007, aiming to provide a platform for exchanging and promoting research in the area of structural robustness and to provide a basic framework, together with methods, strategies and guidelines enhancing robustness of structures...... the development of a joint European project on structural robustness under the COST (European Cooperation in Science and Technology) programme and the decision to develop a more elaborate document on structural robustness in collaboration between experts from the JCSS and the IABSE. Accordingly, a project titled...

  19. Improving Fishing Pattern Detection from Satellite AIS Using Data Mining and Machine Learning.

    Directory of Open Access Journals (Sweden)

    Erico N de Souza

    Full Text Available A key challenge in contemporary ecology and conservation is the accurate tracking of the spatial distribution of various human impacts, such as fishing. While coastal fisheries in national waters are closely monitored in some countries, existing maps of fishing effort elsewhere are fraught with uncertainty, especially in remote areas and the High Seas. Better understanding of the behavior of the global fishing fleets is required in order to prioritize and enforce fisheries management and conservation measures worldwide. Satellite-based Automatic Information Systems (S-AIS are now commonly installed on most ocean-going vessels and have been proposed as a novel tool to explore the movements of fishing fleets in near real time. Here we present approaches to identify fishing activity from S-AIS data for three dominant fishing gear types: trawl, longline and purse seine. Using a large dataset containing worldwide fishing vessel tracks from 2011-2015, we developed three methods to detect and map fishing activities: for trawlers we produced a Hidden Markov Model (HMM using vessel speed as observation variable. For longliners we have designed a Data Mining (DM approach using an algorithm inspired from studies on animal movement. For purse seiners a multi-layered filtering strategy based on vessel speed and operation time was implemented. Validation against expert-labeled datasets showed average detection accuracies of 83% for trawler and longliner, and 97% for purse seiner. Our study represents the first comprehensive approach to detect and identify potential fishing behavior for three major gear types operating on a global scale. We hope that this work will enable new efforts to assess the spatial and temporal distribution of global fishing effort and make global fisheries activities transparent to ocean scientists, managers and the public.

  20. Human movement onset detection from isometric force and torque measurements: a supervised pattern recognition approach.

    Science.gov (United States)

    Soda, Paolo; Mazzoleni, Stefano; Cavallo, Giuseppe; Guglielmelli, Eugenio; Iannello, Giulio

    2010-09-01

    Recent research has successfully introduced the application of robotics and mechatronics to functional assessment and motor therapy. Measurements of movement initiation in isometric conditions are widely used in clinical rehabilitation and their importance in functional assessment has been demonstrated for specific parts of the human body. The determination of the voluntary movement initiation time, also referred to as onset time, represents a challenging issue since the time window characterizing the movement onset is of particular relevance for the understanding of recovery mechanisms after a neurological damage. Establishing it manually as well as a troublesome task may also introduce oversight errors and loss of information. The most commonly used methods for automatic onset time detection compare the raw signal, or some extracted measures such as its derivatives (i.e., velocity and acceleration) with a chosen threshold. However, they suffer from high variability and systematic errors because of the weakness of the signal, the abnormality of response profiles as well as the variability of movement initiation times among patients. In this paper, we introduce a technique to optimise onset detection according to each input signal. It is based on a classification system that enables us to establish which deterministic method provides the most accurate onset time on the basis of information directly derived from the raw signal. The approach was tested on annotated force and torque datasets. Each dataset is constituted by 768 signals acquired from eight anatomical districts in 96 patients who carried out six tasks related to common daily activities. The results show that the proposed technique improves not only on the performance achieved by each of the deterministic methods, but also on that attained by a group of clinical experts. The paper describes a classification system detecting the voluntary movement initiation time and adaptable to different signals. By

  1. Robust Growth Determinants

    OpenAIRE

    Doppelhofer, Gernot; Weeks, Melvyn

    2011-01-01

    This paper investigates the robustness of determinants of economic growth in the presence of model uncertainty, parameter heterogeneity and outliers. The robust model averaging approach introduced in the paper uses a flexible and parsi- monious mixture modeling that allows for fat-tailed errors compared to the normal benchmark case. Applying robust model averaging to growth determinants, the paper finds that eight out of eighteen variables found to be significantly related to economic growth ...

  2. Robust Programming by Example

    OpenAIRE

    Bishop , Matt; Elliott , Chip

    2011-01-01

    Part 2: WISE 7; International audience; Robust programming lies at the heart of the type of coding called “secure programming”. Yet it is rarely taught in academia. More commonly, the focus is on how to avoid creating well-known vulnerabilities. While important, that misses the point: a well-structured, robust program should anticipate where problems might arise and compensate for them. This paper discusses one view of robust programming and gives an example of how it may be taught.

  3. Using the eServices platform for detecting behavior patterns deviation in the elderly assisted living: a case study.

    Science.gov (United States)

    Marcelino, Isabel; Lopes, David; Reis, Michael; Silva, Fernando; Laza, Rosalía; Pereira, António

    2015-01-01

    World's aging population is rising and the elderly are increasingly isolated socially and geographically. As a consequence, in many situations, they need assistance that is not granted in time. In this paper, we present a solution that follows the CRISP-DM methodology to detect the elderly's behavior pattern deviations that may indicate possible risk situations. To obtain these patterns, many variables are aggregated to ensure the alert system reliability and minimize eventual false positive alert situations. These variables comprehend information provided by body area network (BAN), by environment sensors, and also by the elderly's interaction in a service provider platform, called eServices--Elderly Support Service Platform. eServices is a scalable platform aggregating a service ecosystem developed specially for elderly people. This pattern recognition will further activate the adequate response. With the system evolution, it will learn to predict potential danger situations for a specified user, acting preventively and ensuring the elderly's safety and well-being. As the eServices platform is still in development, synthetic data, based on real data sample and empiric knowledge, is being used to populate the initial dataset. The presented work is a proof of concept of knowledge extraction using the eServices platform information. Regardless of not using real data, this work proves to be an asset, achieving a good performance in preventing alert situations.

  4. Using the eServices Platform for Detecting Behavior Patterns Deviation in the Elderly Assisted Living: A Case Study

    Directory of Open Access Journals (Sweden)

    Isabel Marcelino

    2015-01-01

    Full Text Available World’s aging population is rising and the elderly are increasingly isolated socially and geographically. As a consequence, in many situations, they need assistance that is not granted in time. In this paper, we present a solution that follows the CRISP-DM methodology to detect the elderly’s behavior pattern deviations that may indicate possible risk situations. To obtain these patterns, many variables are aggregated to ensure the alert system reliability and minimize eventual false positive alert situations. These variables comprehend information provided by body area network (BAN, by environment sensors, and also by the elderly’s interaction in a service provider platform, called eServices—Elderly Support Service Platform. eServices is a scalable platform aggregating a service ecosystem developed specially for elderly people. This pattern recognition will further activate the adequate response. With the system evolution, it will learn to predict potential danger situations for a specified user, acting preventively and ensuring the elderly’s safety and well-being. As the eServices platform is still in development, synthetic data, based on real data sample and empiric knowledge, is being used to populate the initial dataset. The presented work is a proof of concept of knowledge extraction using the eServices platform information. Regardless of not using real data, this work proves to be an asset, achieving a good performance in preventing alert situations.

  5. Neural network pattern recognition of lingual-palatal pressure for automated detection of swallow.

    Science.gov (United States)

    Hadley, Aaron J; Krival, Kate R; Ridgel, Angela L; Hahn, Elizabeth C; Tyler, Dustin J

    2015-04-01

    We describe a novel device and method for real-time measurement of lingual-palatal pressure and automatic identification of the oral transfer phase of deglutition. Clinical measurement of the oral transport phase of swallowing is a complicated process requiring either placement of obstructive sensors or sitting within a fluoroscope or articulograph for recording. Existing detection algorithms distinguish oral events with EMG, sound, and pressure signals from the head and neck, but are imprecise and frequently result in false detection. We placed seven pressure sensors on a molded mouthpiece fitting over the upper teeth and hard palate and recorded pressure during a variety of swallow and non-swallow activities. Pressure measures and swallow times from 12 healthy and 7 Parkinson's subjects provided training data for a time-delay artificial neural network to categorize the recordings as swallow or non-swallow events. User-specific neural networks properly categorized 96 % of swallow and non-swallow events, while a generalized population-trained network was able to properly categorize 93 % of swallow and non-swallow events across all recordings. Lingual-palatal pressure signals are sufficient to selectively and specifically recognize the initiation of swallowing in healthy and dysphagic patients.

  6. Detecting brain growth patterns in normal children using tensor-based morphometry.

    Science.gov (United States)

    Hua, Xue; Leow, Alex D; Levitt, Jennifer G; Caplan, Rochelle; Thompson, Paul M; Toga, Arthur W

    2009-01-01

    Previous magnetic resonance imaging (MRI)-based volumetric studies have shown age-related increases in the volume of total white matter and decreases in the volume of total gray matter of normal children. Recent adaptations of image analysis strategies enable the detection of human brain growth with improved spatial resolution. In this article, we further explore the spatio-temporal complexity of adolescent brain maturation with tensor-based morphometry. By utilizing a novel non-linear elastic intensity-based registration algorithm on the serial structural MRI scans of 13 healthy children, individual Jacobian growth maps are generated and then registered to a common anatomical space. Statistical analyses reveal significant tissue growth in cerebral white matter, contrasted with gray matter loss in parietal, temporal, and occipital lobe. In addition, a linear regression with age and gender suggests a slowing down of the growth rate in regions with the greatest white matter growth. We demonstrate that a tensor-based Jacobian map is a sensitive and reliable method to detect regional tissue changes during development. (c) 2007 Wiley-Liss, Inc.

  7. A deviation based assessment methodology for multiple machine health patterns classification and fault detection

    Science.gov (United States)

    Jia, Xiaodong; Jin, Chao; Buzza, Matt; Di, Yuan; Siegel, David; Lee, Jay

    2018-01-01

    Successful applications of Diffusion Map (DM) in machine failure detection and diagnosis have been reported in several recent studies. DM provides an efficient way to visualize the high-dimensional, complex and nonlinear machine data, and thus suggests more knowledge about the machine under monitoring. In this paper, a DM based methodology named as DM-EVD is proposed for machine degradation assessment, abnormality detection and diagnosis in an online fashion. Several limitations and challenges of using DM for machine health monitoring have been analyzed and addressed. Based on the proposed DM-EVD, a deviation based methodology is then proposed to include more dimension reduction methods. In this work, the incorporation of Laplacian Eigen-map and Principal Component Analysis (PCA) are explored, and the latter algorithm is named as PCA-Dev and is validated in the case study. To show the successful application of the proposed methodology, case studies from diverse fields are presented and investigated in this work. Improved results are reported by benchmarking with other machine learning algorithms.

  8. NIR detection of honey adulteration reveals differences in water spectral pattern.

    Science.gov (United States)

    Bázár, György; Romvári, Róbert; Szabó, András; Somogyi, Tamás; Éles, Viktória; Tsenkova, Roumiana

    2016-03-01

    High fructose corn syrup (HFCS) was mixed with four artisanal Robinia honeys at various ratios (0-40%) and near infrared (NIR) spectra were recorded with a fiber optic immersion probe. Levels of HFCS adulteration could be detected accurately using leave-one-honey-out cross-validation (RMSECV=1.48; R(2)CV=0.987), partial least squares regression and the 1300-1800nm spectral interval containing absorption bands related to both water and carbohydrates. Aquaphotomics-based evaluations showed that unifloral honeys contained more highly organized water than the industrial sugar syrup, supposedly because of the greater variety of molecules dissolved in the multi-component honeys. Adulteration with HFCS caused a gradual reduction of water molecular structures, especially water trimers, which facilitate interaction with other molecules. Quick, non-destructive NIR spectroscopy combined with aquaphotomics could be used to describe water molecular structures in honey and to detect a rather common form of adulteration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Microfluidic-integrated patterned ITO immunosensor for rapid detection of prostate-specific membrane antigen biomarker in prostate cancer.

    Science.gov (United States)

    Seenivasan, Rajesh; Singh, Chandra K; Warrick, Jay W; Ahmad, Nihal; Gunasekaran, Sundaram

    2017-09-15

    An optically transparent patterned indium tin oxide (ITO) three-electrode sensor integrated with a microfluidic channel was designed for label-free immunosensing of prostate-specific membrane antigen (PSMA), a prostate cancer (PCa) biomarker, expressed on prostate tissue and circulating tumor cells but also found in serum. The sensor relies on cysteamine capped gold nanoparticles (N-AuNPs) covalently linked with anti-PSMA antibody (Ab) for target specificity. A polydimethylsiloxane (PDMS) microfluidic channel is used to efficiently and reproducibly introduce sample containing soluble proteins/cells to the sensor. The PSMA is detected and quantified by measuring the change in differential pulse voltammetry signal of a redox probe ([Fe(CN) 6 ] 3- /[Fe(CN) 6 ] 4- ) that is altered upon binding of PSMA with PSMA-Ab immobilized on N-AuNPs/ITO. Detection of PSMA expressing cells and soluble PSMA was tested. The limit of detection (LOD) of the sensor for PSMA-based PCa cells is 6/40µL (i.e., 150 cells/mL) (n=3) with a linear range of 15-400 cells/40µL (i.e., 375-10,000 cells/mL), and for the soluble PSMA is 0.499ng/40µL (i.e., 12.5ng/mL) (n=3) with the linear range of 0.75-250ng/40µL (i.e., 19-6250ng/mL), both with an incubation time of 10min. The results indicate that the sensor has a suitable sensitivity and dynamic range for routine detection of PCa circulating tumor cells and can be adapted to detect other biomarkers/cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A Broad-Spectrum Infection Diagnostic that Detects Pathogen-Associated Molecular Patterns (PAMPs) in Whole Blood.

    Science.gov (United States)

    Cartwright, Mark; Rottman, Martin; Shapiro, Nathan I; Seiler, Benjamin; Lombardo, Patrick; Gamini, Nazita; Tomolonis, Julie; Watters, Alexander L; Waterhouse, Anna; Leslie, Dan; Bolgen, Dana; Graveline, Amanda; Kang, Joo H; Didar, Tohid; Dimitrakakis, Nikolaos; Cartwright, David; Super, Michael; Ingber, Donald E

    2016-07-01

    Blood cultures, and molecular diagnostic tests that directly detect pathogen DNA in blood, fail to detect bloodstream infections in most infected patients. Thus, there is a need for a rapid test that can diagnose the presence of infection to triage patients, guide therapy, and decrease the incidence of sepsis. An Enzyme-Linked Lectin-Sorbent Assay (ELLecSA) that uses magnetic microbeads coated with an engineered version of the human opsonin, Mannose Binding Lectin, containing the Fc immunoglobulin domain linked to its carbohydrate recognition domain (FcMBL) was developed to quantify pathogen-associated molecular patterns (PAMPs) in whole blood. This assay was tested in rats and pigs to explore whether it can detect infections and monitor disease progression, and in prospectively enrolled, emergency room patients with suspected sepsis. These results were also compared with data obtained from non-infected patients with or without traumatic injuries. The FcMBL ELLecSA was able to detect PAMPS present on, or released by, 85% of clinical isolates representing 47 of 55 different pathogen species, including the most common causes of sepsis. The PAMP assay rapidly (animals, even when blood cultures were negative and bacteriocidal antibiotics were administered. In patients with suspected sepsis, the FcMBL ELLecSA detected infection in 55 of 67 patients with high sensitivity (>81%), specificity (>89%), and diagnostic accuracy of 0·87. It also distinguished infection from trauma-related inflammation in the same patient cohorts with a higher specificity than the clinical sepsis biomarker, C-reactive Protein. The FcMBL ELLecSA-based PAMP assay offers a rapid, simple, sensitive and specific method for diagnosing infections, even when blood cultures are negative and antibiotic therapy has been initiated. It may help to triage patients with suspected systemic infections, and serve as a companion diagnostic to guide administration of emerging dialysis-like sepsis therapies

  11. Detection of Noise in Composite Step Signal Pattern by Visualizing Signal Waveforms

    Directory of Open Access Journals (Sweden)

    Chaman Verma

    2018-03-01

    Full Text Available The Step Composite Signals is the combination of vital informative signals that are compressed and coded to produce a predefined test image on a display device. It carries the desired sequence of information from source to destination. This information may be transmitted as digital signal, video information or data signal required as an input for the destination module. For testing of display panels, Composite Test Signals are the most important attribute of test signal transmission system. In the current research paper we present an approach for the noise detection in Composite Step Signal by analysing Composite Step Signal waveforms. The analysis of the signal waveforms reveals that the noise affected components of the signal and subsequently noise reduction process is initiated which targets noisy signal component only. Thus the quality of signal is not compromised during noise reduction process.

  12. Using soft-hard fusion for misinformation detection and pattern of life analysis in OSINT

    Science.gov (United States)

    Levchuk, Georgiy; Shabarekh, Charlotte

    2017-05-01

    Today's battlefields are shifting to "denied areas", where the use of U.S. Military air and ground assets is limited. To succeed, the U.S. intelligence analysts increasingly rely on available open-source intelligence (OSINT) which is fraught with inconsistencies, biased reporting and fake news. Analysts need automated tools for retrieval of information from OSINT sources, and these solutions must identify and resolve conflicting and deceptive information. In this paper, we present a misinformation detection model (MDM) which converts text to attributed knowledge graphs and runs graph-based analytics to identify misinformation. At the core of our solution is identification of knowledge conflicts in the fused multi-source knowledge graph, and semi-supervised learning to compute locally consistent reliability and credibility scores for the documents and sources, respectively. We present validation of proposed method using an open source dataset constructed from the online investigations of MH17 downing in Eastern Ukraine.

  13. Usual normalization strategies for gene expression studies impair the detection and analysis of circadian patterns.

    Science.gov (United States)

    Figueredo, Diego de Siqueira; Barbosa, Mayara Rodrigues; Coimbra, Daniel Gomes; Dos Santos, José Luiz Araújo; Costa, Ellyda Fernanda Lopes; Koike, Bruna Del Vechio; Alexandre Moreira, Magna Suzana; de Andrade, Tiago Gomes

    2018-03-01

    Recent studies have shown that transc