WorldWideScience

Sample records for detecting robust patterns

  1. Robust pattern decoding in shape-coded structured light

    Science.gov (United States)

    Tang, Suming; Zhang, Xu; Song, Zhan; Song, Lifang; Zeng, Hai

    2017-09-01

    Decoding is a challenging and complex problem in a coded structured light system. In this paper, a robust pattern decoding method is proposed for the shape-coded structured light in which the pattern is designed as grid shape with embedded geometrical shapes. In our decoding method, advancements are made at three steps. First, a multi-template feature detection algorithm is introduced to detect the feature point which is the intersection of each two orthogonal grid-lines. Second, pattern element identification is modelled as a supervised classification problem and the deep neural network technique is applied for the accurate classification of pattern elements. Before that, a training dataset is established, which contains a mass of pattern elements with various blurring and distortions. Third, an error correction mechanism based on epipolar constraint, coplanarity constraint and topological constraint is presented to reduce the false matches. In the experiments, several complex objects including human hand are chosen to test the accuracy and robustness of the proposed method. The experimental results show that our decoding method not only has high decoding accuracy, but also owns strong robustness to surface color and complex textures.

  2. Robust real-time pattern matching using bayesian sequential hypothesis testing.

    Science.gov (United States)

    Pele, Ofir; Werman, Michael

    2008-08-01

    This paper describes a method for robust real time pattern matching. We first introduce a family of image distance measures, the "Image Hamming Distance Family". Members of this family are robust to occlusion, small geometrical transforms, light changes and non-rigid deformations. We then present a novel Bayesian framework for sequential hypothesis testing on finite populations. Based on this framework, we design an optimal rejection/acceptance sampling algorithm. This algorithm quickly determines whether two images are similar with respect to a member of the Image Hamming Distance Family. We also present a fast framework that designs a near-optimal sampling algorithm. Extensive experimental results show that the sequential sampling algorithm performance is excellent. Implemented on a Pentium 4 3 GHz processor, detection of a pattern with 2197 pixels, in 640 x 480 pixel frames, where in each frame the pattern rotated and was highly occluded, proceeds at only 0.022 seconds per frame.

  3. Application of the robust design concept for fuel loading pattern

    International Nuclear Information System (INIS)

    Endo, Tomohiro; Ohori, Kazuma; Yamamoto, Akio

    2011-01-01

    Application of the robust design concept for fuel loading pattern design is proposed as a new approach to improve the prediction accuracy of core characteristics. The robust design is a design concept that establishes a resistant (robust) system for perturbations or noises, by properly setting design variables. In order to apply the concept of robust design to fuel loading pattern design, we focus on a theoretical approach based on the higher order perturbation method. This approach indicates that the eigenvalue separation is one of the effective indices to measure the robustness of a designed fuel loading pattern. In order to verify the effectiveness of the eigenvalue separation as an index of robustness, numerical analysis is carried out for typical 3-loop PWR cores, and we evaluated the correlation between the eigenvalue separation and the variation of relative assembly power due to the perturbation of the cross section. The numerical results show that the variation of relative power decreases as the eigenvalue separation increases; thus, it is confirmed that the eigenvalue separation is an effective index of robustness. Based on the eigenvalue separation of a fuel loading pattern, we discuss design guidelines of a fuel loading pattern to improve the robustness. For example, if each fuel assembly has independent uncertainty on its cross section, the robustness of the core can be enhanced by increasing the relative power at the center of the core. The proposed guidelines will be useful to design a loading pattern that has robustness for uncertainties due to cross section, calculation method, and so on. (author)

  4. Multiscale Region-Level VHR Image Change Detection via Sparse Change Descriptor and Robust Discriminative Dictionary Learning

    Directory of Open Access Journals (Sweden)

    Yuan Xu

    2015-01-01

    Full Text Available Very high resolution (VHR image change detection is challenging due to the low discriminative ability of change feature and the difficulty of change decision in utilizing the multilevel contextual information. Most change feature extraction techniques put emphasis on the change degree description (i.e., in what degree the changes have happened, while they ignore the change pattern description (i.e., how the changes changed, which is of equal importance in characterizing the change signatures. Moreover, the simultaneous consideration of the classification robust to the registration noise and the multiscale region-consistent fusion is often neglected in change decision. To overcome such drawbacks, in this paper, a novel VHR image change detection method is proposed based on sparse change descriptor and robust discriminative dictionary learning. Sparse change descriptor combines the change degree component and the change pattern component, which are encoded by the sparse representation error and the morphological profile feature, respectively. Robust change decision is conducted by multiscale region-consistent fusion, which is implemented by the superpixel-level cosparse representation with robust discriminative dictionary and the conditional random field model. Experimental results confirm the effectiveness of the proposed change detection technique.

  5. Optimal Robust Fault Detection for Linear Discrete Time Systems

    Directory of Open Access Journals (Sweden)

    Nike Liu

    2008-01-01

    Full Text Available This paper considers robust fault-detection problems for linear discrete time systems. It is shown that the optimal robust detection filters for several well-recognized robust fault-detection problems, such as ℋ−/ℋ∞, ℋ2/ℋ∞, and ℋ∞/ℋ∞ problems, are the same and can be obtained by solving a standard algebraic Riccati equation. Optimal filters are also derived for many other optimization criteria and it is shown that some well-studied and seeming-sensible optimization criteria for fault-detection filter design could lead to (optimal but useless fault-detection filters.

  6. Robust online face tracking-by-detection

    NARCIS (Netherlands)

    Comaschi, F.; Stuijk, S.; Basten, T.; Corporaal, H.

    2016-01-01

    The problem of online face tracking from unconstrained videos is still unresolved. Challenges range from coping with severe online appearance variations to coping with occlusion. We propose RFTD (Robust Face Tracking-by-Detection), a system which combines tracking and detection into a single

  7. Robust glint detection through homography normalization

    DEFF Research Database (Denmark)

    Hansen, Dan Witzner; Roholm, Lars; García Ferreiros, Iván

    2014-01-01

    A novel normalization principle for robust glint detection is presented. The method is based on geometric properties of corneal reflections and allows for simple and effective detection of glints even in the presence of several spurious and identically appearing reflections. The method is tested...

  8. Robust Spacecraft Component Detection in Point Clouds

    Directory of Open Access Journals (Sweden)

    Quanmao Wei

    2018-03-01

    Full Text Available Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.

  9. Robust Spacecraft Component Detection in Point Clouds.

    Science.gov (United States)

    Wei, Quanmao; Jiang, Zhiguo; Zhang, Haopeng

    2018-03-21

    Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D) point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD) models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.

  10. A robust human face detection algorithm

    Science.gov (United States)

    Raviteja, Thaluru; Karanam, Srikrishna; Yeduguru, Dinesh Reddy V.

    2012-01-01

    Human face detection plays a vital role in many applications like video surveillance, managing a face image database, human computer interface among others. This paper proposes a robust algorithm for face detection in still color images that works well even in a crowded environment. The algorithm uses conjunction of skin color histogram, morphological processing and geometrical analysis for detecting human faces. To reinforce the accuracy of face detection, we further identify mouth and eye regions to establish the presence/absence of face in a particular region of interest.

  11. Robust Curb Detection with Fusion of 3D-Lidar and Camera Data

    Directory of Open Access Journals (Sweden)

    Jun Tan

    2014-05-01

    Full Text Available Curb detection is an essential component of Autonomous Land Vehicles (ALV, especially important for safe driving in urban environments. In this paper, we propose a fusion-based curb detection method through exploiting 3D-Lidar and camera data. More specifically, we first fuse the sparse 3D-Lidar points and high-resolution camera images together to recover a dense depth image of the captured scene. Based on the recovered dense depth image, we propose a filter-based method to estimate the normal direction within the image. Then, by using the multi-scale normal patterns based on the curb’s geometric property, curb point features fitting the patterns are detected in the normal image row by row. After that, we construct a Markov Chain to model the consistency of curb points which utilizes the continuous property of the curb, and thus the optimal curb path which links the curb points together can be efficiently estimated by dynamic programming. Finally, we perform post-processing operations to filter the outliers, parameterize the curbs and give the confidence scores on the detected curbs. Extensive evaluations clearly show that our proposed method can detect curbs with strong robustness at real-time speed for both static and dynamic scenes.

  12. A Self-embedding Robust Digital Watermarking Algorithm with Blind Detection

    Directory of Open Access Journals (Sweden)

    Gong Yunfeng

    2014-08-01

    Full Text Available In order to achieve the perfectly blind detection of robustness watermarking algorithm, a novel self-embedding robust digital watermarking algorithm with blind detection is proposed in this paper. Firstly the original image is divided to not overlap image blocks and then decomposable coefficients are obtained by lifting-based wavelet transform in every image blocks. Secondly the low-frequency coefficients of block images are selected and then approximately represented as a product of a base matrix and a coefficient matrix using NMF. Then the feature vector represent original image is obtained by quantizing coefficient matrix, and finally the adaptive quantization of the robustness watermark is embedded in the low-frequency coefficients of LWT. Experimental results show that the scheme is robust against common signal processing attacks, meanwhile perfect blind detection is achieve.

  13. Robust simultaneous detection of coronary borders in complex images

    International Nuclear Information System (INIS)

    Sonka, M.; Winniford, M.D.; Collins, S.M.

    1995-01-01

    Visual estimation of coronary obstruction severity from angiograms suffers from poor inter- and intraobserver reproducibility and is often inaccurate. In spite of the widely recognized limitations of visual analysis, automated methods have not found widespread clinical use, in part because they too frequently fail to accurately identify vessel borders. The authors have developed a robust method for simultaneous detection of left and right coronary borders that is suitable for analysis of complex images with poor contrast, nearby or overlapping structures, or branching vessels. The reliability of the simultaneous border detection method and that of their previously reported conventional border detection method were tested in 130 complex images, selected because conventional automated border detection might be expected to fail. Conventional analysis failed to yield acceptable borders in 65/130 or 50% of images. Simultaneous border detection was much more robust (p < .001) and failed in only 15/130 or 12% of complex images. Simultaneous border detection identified stenosis diameters that correlated significantly better with observer-derived stenosis diameters than did diameters obtained with conventional border detection (p < 0.001). Simultaneous detection of left and right coronary borders is highly robust and has substantial promise for enhancing the utility of quantitative coronary angiography in the clinical setting

  14. Effects of traffic generation patterns on the robustness of complex networks

    Science.gov (United States)

    Wu, Jiajing; Zeng, Junwen; Chen, Zhenhao; Tse, Chi K.; Chen, Bokui

    2018-02-01

    Cascading failures in communication networks with heterogeneous node functions are studied in this paper. In such networks, the traffic dynamics are highly dependent on the traffic generation patterns which are in turn determined by the locations of the hosts. The data-packet traffic model is applied to Barabási-Albert scale-free networks to study the cascading failures in such networks and to explore the effects of traffic generation patterns on network robustness. It is found that placing the hosts at high-degree nodes in a network can make the network more robust against both intentional attacks and random failures. It is also shown that the traffic generation pattern plays an important role in network design.

  15. RIDES: Robust Intrusion Detection System for IP-Based Ubiquitous Sensor Networks.

    Science.gov (United States)

    Amin, Syed Obaid; Siddiqui, Muhammad Shoaib; Hong, Choong Seon; Lee, Sungwon

    2009-01-01

    The IP-based Ubiquitous Sensor Network (IP-USN) is an effort to build the "Internet of things". By utilizing IP for low power networks, we can benefit from existing well established tools and technologies of IP networks. Along with many other unresolved issues, securing IP-USN is of great concern for researchers so that future market satisfaction and demands can be met. Without proper security measures, both reactive and proactive, it is hard to envisage an IP-USN realm. In this paper we present a design of an IDS (Intrusion Detection System) called RIDES (Robust Intrusion DEtection System) for IP-USN. RIDES is a hybrid intrusion detection system, which incorporates both Signature and Anomaly based intrusion detection components. For signature based intrusion detection this paper only discusses the implementation of distributed pattern matching algorithm with the help of signature-code, a dynamically created attack-signature identifier. Other aspects, such as creation of rules are not discussed. On the other hand, for anomaly based detection we propose a scoring classifier based on the SPC (Statistical Process Control) technique called CUSUM charts. We also investigate the settings and their effects on the performance of related parameters for both of the components.

  16. Probabilistic BPRRC: Robust Change Detection against Illumination Changes and Background Movements

    Science.gov (United States)

    Yokoi, Kentaro

    This paper presents Probabilistic Bi-polar Radial Reach Correlation (PrBPRRC), a change detection method that is robust against illumination changes and background movements. Most of the traditional change detection methods are robust against either illumination changes or background movements; BPRRC is one of the illumination-robust change detection methods. We introduce a probabilistic background texture model into BPRRC and add the robustness against background movements including foreground invasions such as moving cars, walking people, swaying trees, and falling snow. We show the superiority of PrBPRRC in the environment with illumination changes and background movements by using three public datasets and one private dataset: ATON Highway data, Karlsruhe traffic sequence data, PETS 2007 data, and Walking-in-a-room data.

  17. Robust obstacle detection for unmanned surface vehicles

    Science.gov (United States)

    Qin, Yueming; Zhang, Xiuzhi

    2018-03-01

    Obstacle detection is of essential importance for Unmanned Surface Vehicles (USV). Although some obstacles (e.g., ships, islands) can be detected by Radar, there are many other obstacles (e.g., floating pieces of woods, swimmers) which are difficult to be detected via Radar because these obstacles have low radar cross section. Therefore, detecting obstacle from images taken onboard is an effective supplement. In this paper, a robust vision-based obstacle detection method for USVs is developed. The proposed method employs the monocular image sequence captured by the camera on the USVs and detects obstacles on the sea surface from the image sequence. The experiment results show that the proposed scheme is efficient to fulfill the obstacle detection task.

  18. A robust background regression based score estimation algorithm for hyperspectral anomaly detection

    Science.gov (United States)

    Zhao, Rui; Du, Bo; Zhang, Liangpei; Zhang, Lefei

    2016-12-01

    Anomaly detection has become a hot topic in the hyperspectral image analysis and processing fields in recent years. The most important issue for hyperspectral anomaly detection is the background estimation and suppression. Unreasonable or non-robust background estimation usually leads to unsatisfactory anomaly detection results. Furthermore, the inherent nonlinearity of hyperspectral images may cover up the intrinsic data structure in the anomaly detection. In order to implement robust background estimation, as well as to explore the intrinsic data structure of the hyperspectral image, we propose a robust background regression based score estimation algorithm (RBRSE) for hyperspectral anomaly detection. The Robust Background Regression (RBR) is actually a label assignment procedure which segments the hyperspectral data into a robust background dataset and a potential anomaly dataset with an intersection boundary. In the RBR, a kernel expansion technique, which explores the nonlinear structure of the hyperspectral data in a reproducing kernel Hilbert space, is utilized to formulate the data as a density feature representation. A minimum squared loss relationship is constructed between the data density feature and the corresponding assigned labels of the hyperspectral data, to formulate the foundation of the regression. Furthermore, a manifold regularization term which explores the manifold smoothness of the hyperspectral data, and a maximization term of the robust background average density, which suppresses the bias caused by the potential anomalies, are jointly appended in the RBR procedure. After this, a paired-dataset based k-nn score estimation method is undertaken on the robust background and potential anomaly datasets, to implement the detection output. The experimental results show that RBRSE achieves superior ROC curves, AUC values, and background-anomaly separation than some of the other state-of-the-art anomaly detection methods, and is easy to implement

  19. RIDES: Robust Intrusion Detection System for IP-Based Ubiquitous Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sungwon Lee

    2009-05-01

    Full Text Available TheIP-based Ubiquitous Sensor Network (IP-USN is an effort to build the “Internet of things”. By utilizing IP for low power networks, we can benefit from existing well established tools and technologies of IP networks. Along with many other unresolved issues, securing IP-USN is of great concern for researchers so that future market satisfaction and demands can be met. Without proper security measures, both reactive and proactive, it is hard to envisage an IP-USN realm. In this paper we present a design of an IDS (Intrusion Detection System called RIDES (Robust Intrusion DEtection System for IP-USN. RIDES is a hybrid intrusion detection system, which incorporates both Signature and Anomaly based intrusion detection components. For signature based intrusion detection this paper only discusses the implementation of distributed pattern matching algorithm with the help of signature-code, a dynamically created attack-signature identifier. Other aspects, such as creation of rules are not discussed. On the other hand, for anomaly based detection we propose a scoring classifier based on the SPC (Statistical Process Control technique called CUSUM charts. We also investigate the settings and their effects on the performance of related parameters for both of the components.

  20. Robust and accurate detection algorithm for multimode polymer optical FBG sensor system

    DEFF Research Database (Denmark)

    Ganziy, Denis; Jespersen, O.; Rose, B.

    2015-01-01

    We propose a novel dynamic gate algorithm (DGA) for robust and fast peak detection. The algorithm uses a threshold determined detection window and center of gravity algorithm with bias compensation. Our experiment demonstrates that the DGA method is fast and robust with better stability and accur...

  1. Robust facial landmark detection based on initializing multiple poses

    Directory of Open Access Journals (Sweden)

    Xin Chai

    2016-10-01

    Full Text Available For robot systems, robust facial landmark detection is the first and critical step for face-based human identification and facial expression recognition. In recent years, the cascaded-regression-based method has achieved excellent performance in facial landmark detection. Nevertheless, it still has certain weakness, such as high sensitivity to the initialization. To address this problem, regression based on multiple initializations is established in a unified model; face shapes are then estimated independently according to these initializations. With a ranking strategy, the best estimate is selected as the final output. Moreover, a face shape model based on restricted Boltzmann machines is built as a constraint to improve the robustness of ranking. Experiments on three challenging datasets demonstrate the effectiveness of the proposed facial landmark detection method against state-of-the-art methods.

  2. Noise-robust speech recognition through auditory feature detection and spike sequence decoding.

    Science.gov (United States)

    Schafer, Phillip B; Jin, Dezhe Z

    2014-03-01

    Speech recognition in noisy conditions is a major challenge for computer systems, but the human brain performs it routinely and accurately. Automatic speech recognition (ASR) systems that are inspired by neuroscience can potentially bridge the performance gap between humans and machines. We present a system for noise-robust isolated word recognition that works by decoding sequences of spikes from a population of simulated auditory feature-detecting neurons. Each neuron is trained to respond selectively to a brief spectrotemporal pattern, or feature, drawn from the simulated auditory nerve response to speech. The neural population conveys the time-dependent structure of a sound by its sequence of spikes. We compare two methods for decoding the spike sequences--one using a hidden Markov model-based recognizer, the other using a novel template-based recognition scheme. In the latter case, words are recognized by comparing their spike sequences to template sequences obtained from clean training data, using a similarity measure based on the length of the longest common sub-sequence. Using isolated spoken digits from the AURORA-2 database, we show that our combined system outperforms a state-of-the-art robust speech recognizer at low signal-to-noise ratios. Both the spike-based encoding scheme and the template-based decoding offer gains in noise robustness over traditional speech recognition methods. Our system highlights potential advantages of spike-based acoustic coding and provides a biologically motivated framework for robust ASR development.

  3. Calibration robust entanglement detection beyond Bell inequalities

    Energy Technology Data Exchange (ETDEWEB)

    Moroder, Tobias [Institut fuer Quantenoptik und Quanteninformation, Oesterreichische Akademie der Wissenschaften, Technikerstrasse 21A, A-6020 Innsbruck (Austria); Gittsovich, Oleg [Department of Physics and Astronomy, Institute for Quantum Computing, University of Waterloo, 200 University Avenue West, N2L 3G1 Waterloo, Ontario (Canada)

    2012-07-01

    In its vast majority entanglement verification is examined either in the complete characterized or totally device independent scenario. The assumptions imposed by these extreme cases are often either too weak or strong for real experiments. Here we investigate this detection task for the intermediate regime where partial knowledge of the measured observables is known, considering cases like orthogonal, sharp or only dimension bounded measurements. We show that for all these assumptions it is not necessary to violate a corresponding Bell inequality in order to detect entanglement. We derive strong detection criteria that can be directly evaluated for experimental data and which are robust against large classes of calibration errors. The conditions are even capable of detecting bound entanglement under the sole assumption of dimension bounded measurements.

  4. Hunter-gatherer postcranial robusticity relative to patterns of mobility, climatic adaptation, and selection for tissue economy.

    Science.gov (United States)

    Stock, J T

    2006-10-01

    Human skeletal robusticity is influenced by a number of factors, including habitual behavior, climate, and physique. Conflicting evidence as to the relative importance of these factors complicates our ability to interpret variation in robusticity in the past. It remains unclear how the pattern of robusticity in the skeleton relates to adaptive constraints on skeletal morphology. This study investigates variation in robusticity in claviculae, humeri, ulnae, femora, and tibiae among human foragers, relative to climate and habitual behavior. Cross-sectional geometric properties of the diaphyses are compared among hunter-gatherers from southern Africa (n = 83), the Andaman Islands (n = 32), Tierra del Fuego (n = 34), and the Great Lakes region (n = 15). The robusticity of both proximal and distal limb segments correlates negatively with climate and positively with patterns of terrestrial and marine mobility among these groups. However, the relative correspondence between robusticity and these factors varies throughout the body. In the lower limb, partial correlations between polar second moment of area (J(0.73)) and climate decrease from proximal to distal section locations, while this relationship increases from proximal to distal in the upper limb. Patterns of correlation between robusticity and mobility, either terrestrial or marine, generally increase from proximal to distal in the lower and upper limbs, respectively. This suggests that there may be a stronger relationship between observed patterns of diaphyseal hypertrophy and behavioral differences between populations in distal elements. Despite this trend, strength circularity indices at the femoral midshaft show the strongest correspondence with terrestrial mobility, particularly among males.

  5. Median Robust Extended Local Binary Pattern for Texture Classification.

    Science.gov (United States)

    Liu, Li; Lao, Songyang; Fieguth, Paul W; Guo, Yulan; Wang, Xiaogang; Pietikäinen, Matti

    2016-03-01

    Local binary patterns (LBP) are considered among the most computationally efficient high-performance texture features. However, the LBP method is very sensitive to image noise and is unable to capture macrostructure information. To best address these disadvantages, in this paper, we introduce a novel descriptor for texture classification, the median robust extended LBP (MRELBP). Different from the traditional LBP and many LBP variants, MRELBP compares regional image medians rather than raw image intensities. A multiscale LBP type descriptor is computed by efficiently comparing image medians over a novel sampling scheme, which can capture both microstructure and macrostructure texture information. A comprehensive evaluation on benchmark data sets reveals MRELBP's high performance-robust to gray scale variations, rotation changes and noise-but at a low computational cost. MRELBP produces the best classification scores of 99.82%, 99.38%, and 99.77% on three popular Outex test suites. More importantly, MRELBP is shown to be highly robust to image noise, including Gaussian noise, Gaussian blur, salt-and-pepper noise, and random pixel corruption.

  6. Voice Activity Detection. Fundamentals and Speech Recognition System Robustness

    OpenAIRE

    Ramirez, J.; Gorriz, J. M.; Segura, J. C.

    2007-01-01

    This chapter has shown an overview of the main challenges in robust speech detection and a review of the state of the art and applications. VADs are frequently used in a number of applications including speech coding, speech enhancement and speech recognition. A precise VAD extracts a set of discriminative speech features from the noisy speech and formulates the decision in terms of well defined rule. The chapter has summarized three robust VAD methods that yield high speech/non-speech discri...

  7. Arduino-based noise robust online heart-rate detection.

    Science.gov (United States)

    Das, Sangita; Pal, Saurabh; Mitra, Madhuchhanda

    2017-04-01

    This paper introduces a noise robust real time heart rate detection system from electrocardiogram (ECG) data. An online data acquisition system is developed to collect ECG signals from human subjects. Heart rate is detected using window-based autocorrelation peak localisation technique. A low-cost Arduino UNO board is used to implement the complete automated process. The performance of the system is compared with PC-based heart rate detection technique. Accuracy of the system is validated through simulated noisy ECG data with various levels of signal to noise ratio (SNR). The mean percentage error of detected heart rate is found to be 0.72% for the noisy database with five different noise levels.

  8. Robust Circle Detection Using Harmony Search

    Directory of Open Access Journals (Sweden)

    Jaco Fourie

    2017-01-01

    Full Text Available Automatic circle detection is an important element of many image processing algorithms. Traditionally the Hough transform has been used to find circular objects in images but more modern approaches that make use of heuristic optimisation techniques have been developed. These are often used in large complex images where the presence of noise or limited computational resources make the Hough transform impractical. Previous research on the use of the Harmony Search (HS in circle detection showed that HS is an attractive alternative to many of the modern circle detectors based on heuristic optimisers like genetic algorithms and simulated annealing. We propose improvements to this work that enables our algorithm to robustly find multiple circles in larger data sets and still work on realistic images that are heavily corrupted by noisy edges.

  9. A robust neural network-based approach for microseismic event detection

    KAUST Repository

    Akram, Jubran

    2017-08-17

    We present an artificial neural network based approach for robust event detection from low S/N waveforms. We use a feed-forward network with a single hidden layer that is tuned on a training dataset and later applied on the entire example dataset for event detection. The input features used include the average of absolute amplitudes, variance, energy-ratio and polarization rectilinearity. These features are calculated in a moving-window of same length for the entire waveform. The output is set as a user-specified relative probability curve, which provides a robust way of distinguishing between weak and strong events. An optimal network is selected by studying the weight-based saliency and effect of number of neurons on the predicted results. Using synthetic data examples, we demonstrate that this approach is effective in detecting weaker events and reduces the number of false positives.

  10. Robust MR spine detection using hierarchical learning and local articulated model.

    Science.gov (United States)

    Zhan, Yiqiang; Maneesh, Dewan; Harder, Martin; Zhou, Xiang Sean

    2012-01-01

    A clinically acceptable auto-spine detection system, i.e., localization and labeling of vertebrae and inter-vertebral discs, is required to have high robustness, in particular to severe diseases (e.g., scoliosis) and imaging artifacts (e.g. metal artifacts in MR). Our method aims to achieve this goal with two novel components. First, instead of treating vertebrae/discs as either repetitive components or completely independent entities, we emulate a radiologist and use a hierarchial strategy to learn detectors dedicated to anchor (distinctive) vertebrae, bundle (non-distinctive) vertebrae and inter-vertebral discs, respectively. At run-time, anchor vertebrae are detected concurrently to provide redundant and distributed appearance cues robust to local imaging artifacts. Bundle vertebrae detectors provide candidates of vertebrae with subtle appearance differences, whose labels are mutually determined by anchor vertebrae to gain additional robustness. Disc locations are derived from a cloud of responses from disc detectors, which is robust to sporadic voxel-level errors. Second, owing to the non-rigidness of spine anatomies, we employ a local articulated model to effectively model the spatial relations across vertebrae and discs. The local articulated model fuses appearance cues from different detectors in a way that is robust to abnormal spine geometry resulting from severe diseases. Our method is validated by 300 MR spine scout scans and exhibits robust performance, especially to cases with severe diseases and imaging artifacts.

  11. A Hybrid One-Way ANOVA Approach for the Robust and Efficient Estimation of Differential Gene Expression with Multiple Patterns.

    Directory of Open Access Journals (Sweden)

    Mohammad Manir Hossain Mollah

    Full Text Available Identifying genes that are differentially expressed (DE between two or more conditions with multiple patterns of expression is one of the primary objectives of gene expression data analysis. Several statistical approaches, including one-way analysis of variance (ANOVA, are used to identify DE genes. However, most of these methods provide misleading results for two or more conditions with multiple patterns of expression in the presence of outlying genes. In this paper, an attempt is made to develop a hybrid one-way ANOVA approach that unifies the robustness and efficiency of estimation using the minimum β-divergence method to overcome some problems that arise in the existing robust methods for both small- and large-sample cases with multiple patterns of expression.The proposed method relies on a β-weight function, which produces values between 0 and 1. The β-weight function with β = 0.2 is used as a measure of outlier detection. It assigns smaller weights (≥ 0 to outlying expressions and larger weights (≤ 1 to typical expressions. The distribution of the β-weights is used to calculate the cut-off point, which is compared to the observed β-weight of an expression to determine whether that gene expression is an outlier. This weight function plays a key role in unifying the robustness and efficiency of estimation in one-way ANOVA.Analyses of simulated gene expression profiles revealed that all eight methods (ANOVA, SAM, LIMMA, EBarrays, eLNN, KW, robust BetaEB and proposed perform almost identically for m = 2 conditions in the absence of outliers. However, the robust BetaEB method and the proposed method exhibited considerably better performance than the other six methods in the presence of outliers. In this case, the BetaEB method exhibited slightly better performance than the proposed method for the small-sample cases, but the the proposed method exhibited much better performance than the BetaEB method for both the small- and large

  12. Automated detection of microaneurysms using robust blob descriptors

    Science.gov (United States)

    Adal, K.; Ali, S.; Sidibé, D.; Karnowski, T.; Chaum, E.; Mériaudeau, F.

    2013-03-01

    Microaneurysms (MAs) are among the first signs of diabetic retinopathy (DR) that can be seen as round dark-red structures in digital color fundus photographs of retina. In recent years, automated computer-aided detection and diagnosis (CAD) of MAs has attracted many researchers due to its low-cost and versatile nature. In this paper, the MA detection problem is modeled as finding interest points from a given image and several interest point descriptors are introduced and integrated with machine learning techniques to detect MAs. The proposed approach starts by applying a novel fundus image contrast enhancement technique using Singular Value Decomposition (SVD) of fundus images. Then, Hessian-based candidate selection algorithm is applied to extract image regions which are more likely to be MAs. For each candidate region, robust low-level blob descriptors such as Speeded Up Robust Features (SURF) and Intensity Normalized Radon Transform are extracted to characterize candidate MA regions. The combined features are then classified using SVM which has been trained using ten manually annotated training images. The performance of the overall system is evaluated on Retinopathy Online Challenge (ROC) competition database. Preliminary results show the competitiveness of the proposed candidate selection techniques against state-of-the art methods as well as the promising future for the proposed descriptors to be used in the localization of MAs from fundus images.

  13. Fusion of Color and Depth Camera Data for Robust Fall Detection

    NARCIS (Netherlands)

    Josemans, W.; Englebienne, G.; Kröse, B.; Battiato, S.; Braz, J.

    2013-01-01

    The availability of cheap imaging sensors makes it possible to increase the robustness of vision-based alarm systems. This paper explores the benefit of data fusion in the application of fall detection. Falls are a common source of injury for elderly people and automatic fall detection is,

  14. A robust and fast generic voltage sag detection technique

    DEFF Research Database (Denmark)

    L. Dantas, Joacillo; Lima, Francisco Kleber A.; Branco, Carlos Gustavo C.

    2015-01-01

    In this paper, a fast and robust voltage sag detection algorithm, named VPS2D, is introduced. Using the DSOGI, the algorithm creates a virtual positive sequence voltage and monitories the fundamental voltage component of each phase. After calculating the aggregate value in the o:;3-reference fram...

  15. Detection of heart beats in multimodal data: a robust beat-to-beat interval estimation approach.

    Science.gov (United States)

    Antink, Christoph Hoog; Brüser, Christoph; Leonhardt, Steffen

    2015-08-01

    The heart rate and its variability play a vital role in the continuous monitoring of patients, especially in the critical care unit. They are commonly derived automatically from the electrocardiogram as the interval between consecutive heart beat. While their identification by QRS-complexes is straightforward under ideal conditions, the exact localization can be a challenging task if the signal is severely contaminated with noise and artifacts. At the same time, other signals directly related to cardiac activity are often available. In this multi-sensor scenario, methods of multimodal sensor-fusion allow the exploitation of redundancies to increase the accuracy and robustness of beat detection.In this paper, an algorithm for the robust detection of heart beats in multimodal data is presented. Classic peak-detection is augmented by robust multi-channel, multimodal interval estimation to eliminate false detections and insert missing beats. This approach yielded a score of 90.70 and was thus ranked third place in the PhysioNet/Computing in Cardiology Challenge 2014: Robust Detection of Heart Beats in Muthmodal Data follow-up analysis.In the future, the robust beat-to-beat interval estimator may directly be used for the automated processing of multimodal patient data for applications such as diagnosis support and intelligent alarming.

  16. On the robustness of EC-PC spike detection method for online neural recording.

    Science.gov (United States)

    Zhou, Yin; Wu, Tong; Rastegarnia, Amir; Guan, Cuntai; Keefer, Edward; Yang, Zhi

    2014-09-30

    Online spike detection is an important step to compress neural data and perform real-time neural information decoding. An unsupervised, automatic, yet robust signal processing is strongly desired, thus it can support a wide range of applications. We have developed a novel spike detection algorithm called "exponential component-polynomial component" (EC-PC) spike detection. We firstly evaluate the robustness of the EC-PC spike detector under different firing rates and SNRs. Secondly, we show that the detection Precision can be quantitatively derived without requiring additional user input parameters. We have realized the algorithm (including training) into a 0.13 μm CMOS chip, where an unsupervised, nonparametric operation has been demonstrated. Both simulated data and real data are used to evaluate the method under different firing rates (FRs), SNRs. The results show that the EC-PC spike detector is the most robust in comparison with some popular detectors. Moreover, the EC-PC detector can track changes in the background noise due to the ability to re-estimate the neural data distribution. Both real and synthesized data have been used for testing the proposed algorithm in comparison with other methods, including the absolute thresholding detector (AT), median absolute deviation detector (MAD), nonlinear energy operator detector (NEO), and continuous wavelet detector (CWD). Comparative testing results reveals that the EP-PC detection algorithm performs better than the other algorithms regardless of recording conditions. The EC-PC spike detector can be considered as an unsupervised and robust online spike detection. It is also suitable for hardware implementation. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Tensor voting for robust color edge detection

    OpenAIRE

    Moreno, Rodrigo; García, Miguel Ángel; Puig, Domenec

    2014-01-01

    The final publication is available at Springer via http://dx.doi.org/10.1007/978-94-007-7584-8_9 This chapter proposes two robust color edge detection methods based on tensor voting. The first method is a direct adaptation of the classical tensor voting to color images where tensors are initialized with either the gradient or the local color structure tensor. The second method is based on an extension of tensor voting in which the encoding and voting processes are specifically tailored to ...

  18. Change detection for synthetic aperture radar images based on pattern and intensity distinctiveness analysis

    Science.gov (United States)

    Wang, Xiao; Gao, Feng; Dong, Junyu; Qi, Qiang

    2018-04-01

    Synthetic aperture radar (SAR) image is independent on atmospheric conditions, and it is the ideal image source for change detection. Existing methods directly analysis all the regions in the speckle noise contaminated difference image. The performance of these methods is easily affected by small noisy regions. In this paper, we proposed a novel change detection framework for saliency-guided change detection based on pattern and intensity distinctiveness analysis. The saliency analysis step can remove small noisy regions, and therefore makes the proposed method more robust to the speckle noise. In the proposed method, the log-ratio operator is first utilized to obtain a difference image (DI). Then, the saliency detection method based on pattern and intensity distinctiveness analysis is utilized to obtain the changed region candidates. Finally, principal component analysis and k-means clustering are employed to analysis pixels in the changed region candidates. Thus, the final change map can be obtained by classifying these pixels into changed or unchanged class. The experiment results on two real SAR images datasets have demonstrated the effectiveness of the proposed method.

  19. Robust Fault Detection for a Class of Uncertain Nonlinear Systems Based on Multiobjective Optimization

    Directory of Open Access Journals (Sweden)

    Bingyong Yan

    2015-01-01

    Full Text Available A robust fault detection scheme for a class of nonlinear systems with uncertainty is proposed. The proposed approach utilizes robust control theory and parameter optimization algorithm to design the gain matrix of fault tracking approximator (FTA for fault detection. The gain matrix of FTA is designed to minimize the effects of system uncertainty on residual signals while maximizing the effects of system faults on residual signals. The design of the gain matrix of FTA takes into account the robustness of residual signals to system uncertainty and sensitivity of residual signals to system faults simultaneously, which leads to a multiobjective optimization problem. Then, the detectability of system faults is rigorously analyzed by investigating the threshold of residual signals. Finally, simulation results are provided to show the validity and applicability of the proposed approach.

  20. A robust neural network-based approach for microseismic event detection

    KAUST Repository

    Akram, Jubran; Ovcharenko, Oleg; Peter, Daniel

    2017-01-01

    We present an artificial neural network based approach for robust event detection from low S/N waveforms. We use a feed-forward network with a single hidden layer that is tuned on a training dataset and later applied on the entire example dataset

  1. Robust Fault Detection for Switched Fuzzy Systems With Unknown Input.

    Science.gov (United States)

    Han, Jian; Zhang, Huaguang; Wang, Yingchun; Sun, Xun

    2017-10-03

    This paper investigates the fault detection problem for a class of switched nonlinear systems in the T-S fuzzy framework. The unknown input is considered in the systems. A novel fault detection unknown input observer design method is proposed. Based on the proposed observer, the unknown input can be removed from the fault detection residual. The weighted H∞ performance level is considered to ensure the robustness. In addition, the weighted H₋ performance level is introduced, which can increase the sensibility of the proposed detection method. To verify the proposed scheme, a numerical simulation example and an electromechanical system simulation example are provided at the end of this paper.

  2. Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns.

    Science.gov (United States)

    Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J

    2016-01-01

    Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10- and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may

  3. Robust fault detection in open loop vs. closed loop

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, J.

    1997-01-01

    The robustness aspects of fault detection and isolation (FDI) for uncertain systems are considered. The FDI problem is considered in a standard problem formulation. The FDI design problem is analyzed both in the case where the control input signal is considered as a known external input signal (o...... (open loop) and when the input signal is generated by a feedback controller...

  4. Meta-algorithmics patterns for robust, low cost, high quality systems

    CERN Document Server

    Simske, Steven J

    2013-01-01

    The confluence of cloud computing, parallelism and advanced machine intelligence approaches has created a world in which the optimum knowledge system will usually be architected from the combination of two or more knowledge-generating systems. There is a need, then, to provide a reusable, broadly-applicable set of design patterns to empower the intelligent system architect to take advantage of this opportunity. This book explains how to design and build intelligent systems that are optimized for changing system requirements (adaptability), optimized for changing system input (robustness), an

  5. Robust lane detection and tracking using multiple visual cues under stochastic lane shape conditions

    Science.gov (United States)

    Huang, Zhi; Fan, Baozheng; Song, Xiaolin

    2018-03-01

    As one of the essential components of environment perception techniques for an intelligent vehicle, lane detection is confronted with challenges including robustness against the complicated disturbance and illumination, also adaptability to stochastic lane shapes. To overcome these issues, we proposed a robust lane detection method named classification-generation-growth-based (CGG) operator to the detected lines, whereby the linear lane markings are identified by synergizing multiple visual cues with the a priori knowledge and spatial-temporal information. According to the quality of linear lane fitting, the linear and linear-parabolic models are dynamically switched to describe the actual lane. The Kalman filter with adaptive noise covariance and the region of interests (ROI) tracking are applied to improve the robustness and efficiency. Experiments were conducted with images covering various challenging scenarios. The experimental results evaluate the effectiveness of the presented method for complicated disturbances, illumination, and stochastic lane shapes.

  6. Subject independent facial expression recognition with robust face detection using a convolutional neural network.

    Science.gov (United States)

    Matsugu, Masakazu; Mori, Katsuhiko; Mitari, Yusuke; Kaneda, Yuji

    2003-01-01

    Reliable detection of ordinary facial expressions (e.g. smile) despite the variability among individuals as well as face appearance is an important step toward the realization of perceptual user interface with autonomous perception of persons. We describe a rule-based algorithm for robust facial expression recognition combined with robust face detection using a convolutional neural network. In this study, we address the problem of subject independence as well as translation, rotation, and scale invariance in the recognition of facial expression. The result shows reliable detection of smiles with recognition rate of 97.6% for 5600 still images of more than 10 subjects. The proposed algorithm demonstrated the ability to discriminate smiling from talking based on the saliency score obtained from voting visual cues. To the best of our knowledge, it is the first facial expression recognition model with the property of subject independence combined with robustness to variability in facial appearance.

  7. Robust QRS peak detection by multimodal information fusion of ECG and blood pressure signals.

    Science.gov (United States)

    Ding, Quan; Bai, Yong; Erol, Yusuf Bugra; Salas-Boni, Rebeca; Zhang, Xiaorong; Hu, Xiao

    2016-11-01

    QRS peak detection is a challenging problem when ECG signal is corrupted. However, additional physiological signals may also provide information about the QRS position. In this study, we focus on a unique benchmark provided by PhysioNet/Computing in Cardiology Challenge 2014 and Physiological Measurement focus issue: robust detection of heart beats in multimodal data, which aimed to explore robust methods for QRS detection in multimodal physiological signals. A dataset of 200 training and 210 testing records are used, where the testing records are hidden for evaluating the performance only. An information fusion framework for robust QRS detection is proposed by leveraging existing ECG and ABP analysis tools and combining heart beats derived from different sources. Results show that our approach achieves an overall accuracy of 90.94% and 88.66% on the training and testing datasets, respectively. Furthermore, we observe expected performance at each step of the proposed approach, as an evidence of the effectiveness of our approach. Discussion on the limitations of our approach is also provided.

  8. Incremental Activation Detection for Real-Time fMRI Series Using Robust Kalman Filter

    Directory of Open Access Journals (Sweden)

    Liang Li

    2014-01-01

    Full Text Available Real-time functional magnetic resonance imaging (rt-fMRI is a technique that enables us to observe human brain activations in real time. However, some unexpected noises that emerged in fMRI data collecting, such as acute swallowing, head moving and human manipulations, will cause much confusion and unrobustness for the activation analysis. In this paper, a new activation detection method for rt-fMRI data is proposed based on robust Kalman filter. The idea is to add a variation to the extended kalman filter to handle the additional sparse measurement noise and a sparse noise term to the measurement update step. Hence, the robust Kalman filter is designed to improve the robustness for the outliers and can be computed separately for each voxel. The algorithm can compute activation maps on each scan within a repetition time, which meets the requirement for real-time analysis. Experimental results show that this new algorithm can bring out high performance in robustness and in real-time activation detection.

  9. Small Submersible Robust Microflow Cytometer for Quantitative Detection of Phytoplankton, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Translume will develop an extremely robust, inexpensive micro flow cytometer (mFCM) for quantitative detection of phytoplankton. This device will be designed to be...

  10. A Robust Shape Reconstruction Method for Facial Feature Point Detection

    Directory of Open Access Journals (Sweden)

    Shuqiu Tan

    2017-01-01

    Full Text Available Facial feature point detection has been receiving great research advances in recent years. Numerous methods have been developed and applied in practical face analysis systems. However, it is still a quite challenging task because of the large variability in expression and gestures and the existence of occlusions in real-world photo shoot. In this paper, we present a robust sparse reconstruction method for the face alignment problems. Instead of a direct regression between the feature space and the shape space, the concept of shape increment reconstruction is introduced. Moreover, a set of coupled overcomplete dictionaries termed the shape increment dictionary and the local appearance dictionary are learned in a regressive manner to select robust features and fit shape increments. Additionally, to make the learned model more generalized, we select the best matched parameter set through extensive validation tests. Experimental results on three public datasets demonstrate that the proposed method achieves a better robustness over the state-of-the-art methods.

  11. Audit, Control and Monitoring Design Patterns (ACMDP for Autonomous Robust Systems (ARS

    Directory of Open Access Journals (Sweden)

    C. Trad

    2008-11-01

    Full Text Available This paper proposes the Audit, Control and Monitoring Design Patterns (ACMDP for building Autonomous and Robust Systems (ARS such as Mobile Robot Systems (MRS. These patterns are also applicable to other Mission Critical and Complex Systems (MCCS. This paper presents a proposal which will help ARS project managers and engineers design, build and estimate the probability that an ARS will succeed or fail. Furthermore, this proposal offers the possibility to ARS problems with the help of audit, monitoring and controlling components, adjust the project management pathways, and define the problem sources as well as their possible solutions, in order to deliver an ARS or an MRS.

  12. Development of a detection system for head movement robust to illumination change at radiotherapy

    International Nuclear Information System (INIS)

    Yamakawa, Takuya; Ogawa, Koichi; Iyatomi, Hitoshi; Kunieda, Etsuo

    2010-01-01

    This study reports the development of a detection system for head movement at stereotactic radio-therapy of head tumors. In the system, the pattern matching algorithm is applied as follows. Regions of interest like the nose and right/ left ears, the objects of movement to be traced, are selected by GUI (graphical user interface) from pictures taken by 3 USB cameras (DC-NCR20U, Hanwha, Japan) set around the head on the supportive arms to make the template of standard position; the frame pictures (5 fps) inputted as the real-time monitor are matched to the template so that the actual movement can be detected by the distance between the template and collation points; and precision is improved by calculating mean square errors. Alarming is set when the movement exceeds the permissible range. At the actual clinical site, as the wrong detection of the movement occurs by illumination change caused by the gantry migration, infrared pictures are taken in place of the ordinary room light condition. This results in reduction of position errors from 16.7, 9.5 and 8.1 mm (the latter light condition) to 0.6, 0.3 and 0.2 mm (infrared), of the nose, right and left ears, respectively. Thus a detection system for head movement robust (error <1 mm) to illumination change at radio-therapy is established. (T.T.)

  13. A system for learning statistical motion patterns.

    Science.gov (United States)

    Hu, Weiming; Xiao, Xuejuan; Fu, Zhouyu; Xie, Dan; Tan, Tieniu; Maybank, Steve

    2006-09-01

    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy K-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction.

  14. Robust Non-Local TV-L1 Optical Flow Estimation with Occlusion Detection.

    Science.gov (United States)

    Zhang, Congxuan; Chen, Zhen; Wang, Mingrun; Li, Ming; Jiang, Shaofeng

    2017-06-05

    In this paper, we propose a robust non-local TV-L1 optical flow method with occlusion detection to address the problem of weak robustness of optical flow estimation with motion occlusion. Firstly, a TV-L1 form for flow estimation is defined using a combination of the brightness constancy and gradient constancy assumptions in the data term and by varying the weight under the Charbonnier function in the smoothing term. Secondly, to handle the potential risk of the outlier in the flow field, a general non-local term is added in the TV-L1 optical flow model to engender the typical non-local TV-L1 form. Thirdly, an occlusion detection method based on triangulation is presented to detect the occlusion regions of the sequence. The proposed non-local TV-L1 optical flow model is performed in a linearizing iterative scheme using improved median filtering and a coarse-to-fine computing strategy. The results of the complex experiment indicate that the proposed method can overcome the significant influence of non-rigid motion, motion occlusion, and large displacement motion. Results of experiments comparing the proposed method and existing state-of-the-art methods by respectively using Middlebury and MPI Sintel database test sequences show that the proposed method has higher accuracy and better robustness.

  15. Recurrent, robust and scalable patterns underlie human approach and avoidance.

    Directory of Open Access Journals (Sweden)

    Byoung Woo Kim

    2010-05-01

    Full Text Available Approach and avoidance behavior provide a means for assessing the rewarding or aversive value of stimuli, and can be quantified by a keypress procedure whereby subjects work to increase (approach, decrease (avoid, or do nothing about time of exposure to a rewarding/aversive stimulus. To investigate whether approach/avoidance behavior might be governed by quantitative principles that meet engineering criteria for lawfulness and that encode known features of reward/aversion function, we evaluated whether keypress responses toward pictures with potential motivational value produced any regular patterns, such as a trade-off between approach and avoidance, or recurrent lawful patterns as observed with prospect theory.Three sets of experiments employed this task with beautiful face images, a standardized set of affective photographs, and pictures of food during controlled states of hunger and satiety. An iterative modeling approach to data identified multiple law-like patterns, based on variables grounded in the individual. These patterns were consistent across stimulus types, robust to noise, describable by a simple power law, and scalable between individuals and groups. Patterns included: (i a preference trade-off counterbalancing approach and avoidance, (ii a value function linking preference intensity to uncertainty about preference, and (iii a saturation function linking preference intensity to its standard deviation, thereby setting limits to both.These law-like patterns were compatible with critical features of prospect theory, the matching law, and alliesthesia. Furthermore, they appeared consistent with both mean-variance and expected utility approaches to the assessment of risk. Ordering of responses across categories of stimuli demonstrated three properties thought to be relevant for preference-based choice, suggesting these patterns might be grouped together as a relative preference theory. Since variables in these patterns have been

  16. Written-in conductive patterns on robust graphene oxide biopaper by electrochemical microstamping.

    Science.gov (United States)

    Hu, Kesong; Tolentino, Lorenzo S; Kulkarni, Dhaval D; Ye, Chunhong; Kumar, Satish; Tsukruk, Vladimir V

    2013-12-16

    The silk road: By employing silk fibroin as a binder between graphene oxide films and aluminum foil for a facile, highly localized reduction process, conductive paper is reinvented. The flexible, robust biographene papers have high toughness and electrical conductivity. This electrochemical written-in approach is readily applicable for the fabrication of conductive patterned papers with complex circuitries. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Robust and fast license plate detection based on the fusion of color and edge feature

    Science.gov (United States)

    Cai, De; Shi, Zhonghan; Liu, Jin; Hu, Chuanping; Mei, Lin; Qi, Li

    2014-11-01

    Extracting a license plate is an important stage in automatic vehicle identification. The degradation of images and the computation intense make this task difficult. In this paper, a robust and fast license plate detection based on the fusion of color and edge feature is proposed. Based on the dichromatic reflection model, two new color ratios computed from the RGB color model are introduced and proved to be two color invariants. The global color feature extracted by the new color invariants improves the method's robustness. The local Sobel edge feature guarantees the method's accuracy. In the experiment, the detection performance is good. The detection results show that this paper's method is robust to the illumination, object geometry and the disturbance around the license plates. The method can also detect license plates when the color of the car body is the same as the color of the plates. The processing time for image size of 1000x1000 by pixels is nearly 0.2s. Based on the comparison, the performance of the new ratios is comparable to the common used HSI color model.

  18. Long term memory for noise: evidence of robust encoding of very short temporal acoustic patterns.

    Directory of Open Access Journals (Sweden)

    Jayalakshmi Viswanathan

    2016-11-01

    Full Text Available Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs (the two halves of the noise were identical or 1-s plain random noises (Ns. Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin and scrambled (chopping sounds into 10- and 20-ms bits before shuffling versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant’s discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities.

  19. A robust and efficient approach to detect 3D rectal tubes from CT colonography

    Energy Technology Data Exchange (ETDEWEB)

    Yang Xiaoyun; Slabaugh, Greg [Medicsight PLC, Kensington Centre, 66 Hammersmith Road, London (United Kingdom)

    2011-11-15

    Purpose: The rectal tube (RT) is a common source of false positives (FPs) in computer-aided detection (CAD) systems for CT colonography. A robust and efficient detection of RT can improve CAD performance by eliminating such ''obvious'' FPs and increase radiologists' confidence in CAD. Methods: In this paper, we present a novel and robust bottom-up approach to detect the RT. Probabilistic models, trained using kernel density estimation on simple low-level features, are employed to rank and select the most likely RT tube candidate on each axial slice. Then, a shape model, robustly estimated using random sample consensus (RANSAC), infers the global RT path from the selected local detections. Subimages around the RT path are projected into a subspace formed from training subimages of the RT. A quadratic discriminant analysis (QDA) provides a classification of a subimage as RT or non-RT based on the projection. Finally, a bottom-top clustering method is proposed to merge the classification predictions together to locate the tip position of the RT. Results: Our method is validated using a diverse database, including data from five hospitals. On a testing data with 21 patients (42 volumes), 99.5% of annotated RT paths have been successfully detected. Evaluated with CAD, 98.4% of FPs caused by the RT have been detected and removed without any loss of sensitivity. Conclusions: The proposed method demonstrates a high detection rate of the RT path, and when tested in a CAD system, reduces FPs caused by the RT without the loss of sensitivity.

  20. A robust and efficient approach to detect 3D rectal tubes from CT colonography

    International Nuclear Information System (INIS)

    Yang Xiaoyun; Slabaugh, Greg

    2011-01-01

    Purpose: The rectal tube (RT) is a common source of false positives (FPs) in computer-aided detection (CAD) systems for CT colonography. A robust and efficient detection of RT can improve CAD performance by eliminating such ''obvious'' FPs and increase radiologists' confidence in CAD. Methods: In this paper, we present a novel and robust bottom-up approach to detect the RT. Probabilistic models, trained using kernel density estimation on simple low-level features, are employed to rank and select the most likely RT tube candidate on each axial slice. Then, a shape model, robustly estimated using random sample consensus (RANSAC), infers the global RT path from the selected local detections. Subimages around the RT path are projected into a subspace formed from training subimages of the RT. A quadratic discriminant analysis (QDA) provides a classification of a subimage as RT or non-RT based on the projection. Finally, a bottom-top clustering method is proposed to merge the classification predictions together to locate the tip position of the RT. Results: Our method is validated using a diverse database, including data from five hospitals. On a testing data with 21 patients (42 volumes), 99.5% of annotated RT paths have been successfully detected. Evaluated with CAD, 98.4% of FPs caused by the RT have been detected and removed without any loss of sensitivity. Conclusions: The proposed method demonstrates a high detection rate of the RT path, and when tested in a CAD system, reduces FPs caused by the RT without the loss of sensitivity.

  1. Robust photometric stereo using structural light sources

    Science.gov (United States)

    Han, Tian-Qi; Cheng, Yue; Shen, Hui-Liang; Du, Xin

    2014-05-01

    We propose a robust photometric stereo method by using structural arrangement of light sources. In the arrangement, light sources are positioned on a planar grid and form a set of collinear combinations. The shadow pixels are detected by adaptive thresholding. The specular highlight and diffuse pixels are distinguished according to their intensity deviations of the collinear combinations, thanks to the special arrangement of light sources. The highlight detection problem is cast as a pattern classification problem and is solved using support vector machine classifiers. Considering the possible misclassification of highlight pixels, the ℓ1 regularization is further employed in normal map estimation. Experimental results on both synthetic and real-world scenes verify that the proposed method can robustly recover the surface normal maps in the case of heavy specular reflection and outperforms the state-of-the-art techniques.

  2. Robust and Accurate Anomaly Detection in ECG Artifacts Using Time Series Motif Discovery

    Science.gov (United States)

    Sivaraks, Haemwaan

    2015-01-01

    Electrocardiogram (ECG) anomaly detection is an important technique for detecting dissimilar heartbeats which helps identify abnormal ECGs before the diagnosis process. Currently available ECG anomaly detection methods, ranging from academic research to commercial ECG machines, still suffer from a high false alarm rate because these methods are not able to differentiate ECG artifacts from real ECG signal, especially, in ECG artifacts that are similar to ECG signals in terms of shape and/or frequency. The problem leads to high vigilance for physicians and misinterpretation risk for nonspecialists. Therefore, this work proposes a novel anomaly detection technique that is highly robust and accurate in the presence of ECG artifacts which can effectively reduce the false alarm rate. Expert knowledge from cardiologists and motif discovery technique is utilized in our design. In addition, every step of the algorithm conforms to the interpretation of cardiologists. Our method can be utilized to both single-lead ECGs and multilead ECGs. Our experiment results on real ECG datasets are interpreted and evaluated by cardiologists. Our proposed algorithm can mostly achieve 100% of accuracy on detection (AoD), sensitivity, specificity, and positive predictive value with 0% false alarm rate. The results demonstrate that our proposed method is highly accurate and robust to artifacts, compared with competitive anomaly detection methods. PMID:25688284

  3. Robust Robot Grasp Detection in Multimodal Fusion

    Directory of Open Access Journals (Sweden)

    Zhang Qiang

    2017-01-01

    Full Text Available Accurate robot grasp detection for model free objects plays an important role in robotics. With the development of RGB-D sensors, object perception technology has made great progress. Reach feature expression by the colour and the depth data is a critical problem that needs to be addressed in order to accomplish the grasping task. To solve the problem of data fusion, this paper proposes a convolutional neural networks (CNN based approach combined with regression and classification. In the CNN model, the colour and the depth modal data are deeply fused together to achieve accurate feature expression. Additionally, Welsch function is introduced into the approach to enhance robustness of the training process. Experiment results demonstrates the superiority of the proposed method.

  4. Recurrent, Robust and Scalable Patterns Underlie Human Approach and Avoidance

    Science.gov (United States)

    Kennedy, David N.; Lehár, Joseph; Lee, Myung Joo; Blood, Anne J.; Lee, Sang; Perlis, Roy H.; Smoller, Jordan W.; Morris, Robert; Fava, Maurizio

    2010-01-01

    Background Approach and avoidance behavior provide a means for assessing the rewarding or aversive value of stimuli, and can be quantified by a keypress procedure whereby subjects work to increase (approach), decrease (avoid), or do nothing about time of exposure to a rewarding/aversive stimulus. To investigate whether approach/avoidance behavior might be governed by quantitative principles that meet engineering criteria for lawfulness and that encode known features of reward/aversion function, we evaluated whether keypress responses toward pictures with potential motivational value produced any regular patterns, such as a trade-off between approach and avoidance, or recurrent lawful patterns as observed with prospect theory. Methodology/Principal Findings Three sets of experiments employed this task with beautiful face images, a standardized set of affective photographs, and pictures of food during controlled states of hunger and satiety. An iterative modeling approach to data identified multiple law-like patterns, based on variables grounded in the individual. These patterns were consistent across stimulus types, robust to noise, describable by a simple power law, and scalable between individuals and groups. Patterns included: (i) a preference trade-off counterbalancing approach and avoidance, (ii) a value function linking preference intensity to uncertainty about preference, and (iii) a saturation function linking preference intensity to its standard deviation, thereby setting limits to both. Conclusions/Significance These law-like patterns were compatible with critical features of prospect theory, the matching law, and alliesthesia. Furthermore, they appeared consistent with both mean-variance and expected utility approaches to the assessment of risk. Ordering of responses across categories of stimuli demonstrated three properties thought to be relevant for preference-based choice, suggesting these patterns might be grouped together as a relative preference

  5. Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching.

    Science.gov (United States)

    Du, Pan; Kibbe, Warren A; Lin, Simon M

    2006-09-01

    A major problem for current peak detection algorithms is that noise in mass spectrometry (MS) spectra gives rise to a high rate of false positives. The false positive rate is especially problematic in detecting peaks with low amplitudes. Usually, various baseline correction algorithms and smoothing methods are applied before attempting peak detection. This approach is very sensitive to the amount of smoothing and aggressiveness of the baseline correction, which contribute to making peak detection results inconsistent between runs, instrumentation and analysis methods. Most peak detection algorithms simply identify peaks based on amplitude, ignoring the additional information present in the shape of the peaks in a spectrum. In our experience, 'true' peaks have characteristic shapes, and providing a shape-matching function that provides a 'goodness of fit' coefficient should provide a more robust peak identification method. Based on these observations, a continuous wavelet transform (CWT)-based peak detection algorithm has been devised that identifies peaks with different scales and amplitudes. By transforming the spectrum into wavelet space, the pattern-matching problem is simplified and in addition provides a powerful technique for identifying and separating the signal from the spike noise and colored noise. This transformation, with the additional information provided by the 2D CWT coefficients can greatly enhance the effective signal-to-noise ratio. Furthermore, with this technique no baseline removal or peak smoothing preprocessing steps are required before peak detection, and this improves the robustness of peak detection under a variety of conditions. The algorithm was evaluated with SELDI-TOF spectra with known polypeptide positions. Comparisons with two other popular algorithms were performed. The results show the CWT-based algorithm can identify both strong and weak peaks while keeping false positive rate low. The algorithm is implemented in R and will be

  6. StereoBox: A Robust and Efficient Solution for Automotive Short-Range Obstacle Detection

    Directory of Open Access Journals (Sweden)

    Alberto Broggi

    2007-07-01

    Full Text Available This paper presents a robust method for close-range obstacle detection with arbitrarily aligned stereo cameras. System calibration is performed by means of a dense grid to remove perspective and lens distortion after a direct mapping between image pixels and world points. Obstacle detection is based on the differences between left and right images after transformation phase and with a polar histogram, it is possible to detect vertical structures and to reject noise and small objects. Found objects' world coordinates are transmitted via CAN bus; the driver can also be warned through an audio interface. The proposed algorithm can be useful in different automotive applications, requiring real-time segmentation without any assumption on background. Experimental results proved the system to be robust in several envitonmental conditions. In particular, the system has been tested to investigate presence of obstacles in blind spot areas around heavy goods vehicles (HGVs and has been mounted on three different prototypes at different heights.

  7. StereoBox: A Robust and Efficient Solution for Automotive Short-Range Obstacle Detection

    Directory of Open Access Journals (Sweden)

    Broggi Alberto

    2007-01-01

    Full Text Available This paper presents a robust method for close-range obstacle detection with arbitrarily aligned stereo cameras. System calibration is performed by means of a dense grid to remove perspective and lens distortion after a direct mapping between image pixels and world points. Obstacle detection is based on the differences between left and right images after transformation phase and with a polar histogram, it is possible to detect vertical structures and to reject noise and small objects. Found objects' world coordinates are transmitted via CAN bus; the driver can also be warned through an audio interface. The proposed algorithm can be useful in different automotive applications, requiring real-time segmentation without any assumption on background. Experimental results proved the system to be robust in several envitonmental conditions. In particular, the system has been tested to investigate presence of obstacles in blind spot areas around heavy goods vehicles (HGVs and has been mounted on three different prototypes at different heights.

  8. Step Detection Robust against the Dynamics of Smartphones

    Science.gov (United States)

    Lee, Hwan-hee; Choi, Suji; Lee, Myeong-jin

    2015-01-01

    A novel algorithm is proposed for robust step detection irrespective of step mode and device pose in smartphone usage environments. The dynamics of smartphones are decoupled into a peak-valley relationship with adaptive magnitude and temporal thresholds. For extracted peaks and valleys in the magnitude of acceleration, a step is defined as consisting of a peak and its adjacent valley. Adaptive magnitude thresholds consisting of step average and step deviation are applied to suppress pseudo peaks or valleys that mostly occur during the transition among step modes or device poses. Adaptive temporal thresholds are applied to time intervals between peaks or valleys to consider the time-varying pace of human walking or running for the correct selection of peaks or valleys. From the experimental results, it can be seen that the proposed step detection algorithm shows more than 98.6% average accuracy for any combination of step mode and device pose and outperforms state-of-the-art algorithms. PMID:26516857

  9. Fast and Robust Segmentation and Classification for Change Detection in Urban Point Clouds

    Science.gov (United States)

    Roynard, X.; Deschaud, J.-E.; Goulette, F.

    2016-06-01

    Change detection is an important issue in city monitoring to analyse street furniture, road works, car parking, etc. For example, parking surveys are needed but are currently a laborious task involving sending operators in the streets to identify the changes in car locations. In this paper, we propose a method that performs a fast and robust segmentation and classification of urban point clouds, that can be used for change detection. We apply this method to detect the cars, as a particular object class, in order to perform parking surveys automatically. A recently proposed method already addresses the need for fast segmentation and classification of urban point clouds, using elevation images. The interest to work on images is that processing is much faster, proven and robust. However there may be a loss of information in complex 3D cases: for example when objects are one above the other, typically a car under a tree or a pedestrian under a balcony. In this paper we propose a method that retain the three-dimensional information while preserving fast computation times and improving segmentation and classification accuracy. It is based on fast region-growing using an octree, for the segmentation, and specific descriptors with Random-Forest for the classification. Experiments have been performed on large urban point clouds acquired by Mobile Laser Scanning. They show that the method is as fast as the state of the art, and that it gives more robust results in the complex 3D cases.

  10. A Robust Vision-based Runway Detection and Tracking Algorithm for Automatic UAV Landing

    KAUST Repository

    Abu Jbara, Khaled F.

    2015-05-01

    This work presents a novel real-time algorithm for runway detection and tracking applied to the automatic takeoff and landing of Unmanned Aerial Vehicles (UAVs). The algorithm is based on a combination of segmentation based region competition and the minimization of a specific energy function to detect and identify the runway edges from streaming video data. The resulting video-based runway position estimates are updated using a Kalman Filter, which can integrate other sensory information such as position and attitude angle estimates to allow a more robust tracking of the runway under turbulence. We illustrate the performance of the proposed lane detection and tracking scheme on various experimental UAV flights conducted by the Saudi Aerospace Research Center. Results show an accurate tracking of the runway edges during the landing phase under various lighting conditions. Also, it suggests that such positional estimates would greatly improve the positional accuracy of the UAV during takeoff and landing phases. The robustness of the proposed algorithm is further validated using Hardware in the Loop simulations with diverse takeoff and landing videos generated using a commercial flight simulator.

  11. Detection and Evaluation of Spatio-Temporal Spike Patterns in Massively Parallel Spike Train Data with SPADE

    Directory of Open Access Journals (Sweden)

    Pietro Quaglio

    2017-05-01

    Full Text Available Repeated, precise sequences of spikes are largely considered a signature of activation of cell assemblies. These repeated sequences are commonly known under the name of spatio-temporal patterns (STPs. STPs are hypothesized to play a role in the communication of information in the computational process operated by the cerebral cortex. A variety of statistical methods for the detection of STPs have been developed and applied to electrophysiological recordings, but such methods scale poorly with the current size of available parallel spike train recordings (more than 100 neurons. In this work, we introduce a novel method capable of overcoming the computational and statistical limits of existing analysis techniques in detecting repeating STPs within massively parallel spike trains (MPST. We employ advanced data mining techniques to efficiently extract repeating sequences of spikes from the data. Then, we introduce and compare two alternative approaches to distinguish statistically significant patterns from chance sequences. The first approach uses a measure known as conceptual stability, of which we investigate a computationally cheap approximation for applications to such large data sets. The second approach is based on the evaluation of pattern statistical significance. In particular, we provide an extension to STPs of a method we recently introduced for the evaluation of statistical significance of synchronous spike patterns. The performance of the two approaches is evaluated in terms of computational load and statistical power on a variety of artificial data sets that replicate specific features of experimental data. Both methods provide an effective and robust procedure for detection of STPs in MPST data. The method based on significance evaluation shows the best overall performance, although at a higher computational cost. We name the novel procedure the spatio-temporal Spike PAttern Detection and Evaluation (SPADE analysis.

  12. A Robust Vision-based Runway Detection and Tracking Algorithm for Automatic UAV Landing

    KAUST Repository

    Abu Jbara, Khaled F.

    2015-01-01

    and attitude angle estimates to allow a more robust tracking of the runway under turbulence. We illustrate the performance of the proposed lane detection and tracking scheme on various experimental UAV flights conducted by the Saudi Aerospace Research Center

  13. Structural damage detection robust against time synchronization errors

    International Nuclear Information System (INIS)

    Yan, Guirong; Dyke, Shirley J

    2010-01-01

    Structural damage detection based on wireless sensor networks can be affected significantly by time synchronization errors among sensors. Precise time synchronization of sensor nodes has been viewed as crucial for addressing this issue. However, precise time synchronization over a long period of time is often impractical in large wireless sensor networks due to two inherent challenges. First, time synchronization needs to be performed periodically, requiring frequent wireless communication among sensors at significant energy cost. Second, significant time synchronization errors may result from node failures which are likely to occur during long-term deployment over civil infrastructures. In this paper, a damage detection approach is proposed that is robust against time synchronization errors in wireless sensor networks. The paper first examines the ways in which time synchronization errors distort identified mode shapes, and then proposes a strategy for reducing distortion in the identified mode shapes. Modified values for these identified mode shapes are then used in conjunction with flexibility-based damage detection methods to localize damage. This alternative approach relaxes the need for frequent sensor synchronization and can tolerate significant time synchronization errors caused by node failures. The proposed approach is successfully demonstrated through numerical simulations and experimental tests in a lab

  14. Structural damage detection based on stochastic subspace identification and statistical pattern recognition: I. Theory

    Science.gov (United States)

    Ren, W. X.; Lin, Y. Q.; Fang, S. E.

    2011-11-01

    One of the key issues in vibration-based structural health monitoring is to extract the damage-sensitive but environment-insensitive features from sampled dynamic response measurements and to carry out the statistical analysis of these features for structural damage detection. A new damage feature is proposed in this paper by using the system matrices of the forward innovation model based on the covariance-driven stochastic subspace identification of a vibrating system. To overcome the variations of the system matrices, a non-singularity transposition matrix is introduced so that the system matrices are normalized to their standard forms. For reducing the effects of modeling errors, noise and environmental variations on measured structural responses, a statistical pattern recognition paradigm is incorporated into the proposed method. The Mahalanobis and Euclidean distance decision functions of the damage feature vector are adopted by defining a statistics-based damage index. The proposed structural damage detection method is verified against one numerical signal and two numerical beams. It is demonstrated that the proposed statistics-based damage index is sensitive to damage and shows some robustness to the noise and false estimation of the system ranks. The method is capable of locating damage of the beam structures under different types of excitations. The robustness of the proposed damage detection method to the variations in environmental temperature is further validated in a companion paper by a reinforced concrete beam tested in the laboratory and a full-scale arch bridge tested in the field.

  15. Software Tools for Robust Analysis of High-Dimensional Data

    Directory of Open Access Journals (Sweden)

    Valentin Todorov

    2014-06-01

    Full Text Available The present work discusses robust multivariate methods specifically designed for highdimensions. Their implementation in R is presented and their application is illustratedon examples. The first group are algorithms for outlier detection, already introducedelsewhere and implemented in other packages. The value added of the new package isthat all methods follow the same design pattern and thus can use the same graphicaland diagnostic tools. The next topic covered is sparse principal components including anobject oriented interface to the standard method proposed by Zou, Hastie, and Tibshirani(2006 and the robust one proposed by Croux, Filzmoser, and Fritz (2013. Robust partialleast squares (see Hubert and Vanden Branden 2003 as well as partial least squares fordiscriminant analysis conclude the scope of the new package.

  16. Toward robust phase-locking in Melibe swim central pattern generator models

    Science.gov (United States)

    Jalil, Sajiya; Allen, Dane; Youker, Joseph; Shilnikov, Andrey

    2013-12-01

    Small groups of interneurons, abbreviated by CPG for central pattern generators, are arranged into neural networks to generate a variety of core bursting rhythms with specific phase-locked states, on distinct time scales, which govern vital motor behaviors in invertebrates such as chewing and swimming. These movements in lower level animals mimic motions of organs in higher animals due to evolutionarily conserved mechanisms. Hence, various neurological diseases can be linked to abnormal movement of body parts that are regulated by a malfunctioning CPG. In this paper, we, being inspired by recent experimental studies of neuronal activity patterns recorded from a swimming motion CPG of the sea slug Melibe leonina, examine a mathematical model of a 4-cell network that can plausibly and stably underlie the observed bursting rhythm. We develop a dynamical systems framework for explaining the existence and robustness of phase-locked states in activity patterns produced by the modeled CPGs. The proposed tools can be used for identifying core components for other CPG networks with reliable bursting outcomes and specific phase relationships between the interneurons. Our findings can be employed for identifying or implementing the conditions for normal and pathological functioning of basic CPGs of animals and artificially intelligent prosthetics that can regulate various movements.

  17. FAST AND ROBUST SEGMENTATION AND CLASSIFICATION FOR CHANGE DETECTION IN URBAN POINT CLOUDS

    Directory of Open Access Journals (Sweden)

    X. Roynard

    2016-06-01

    Full Text Available Change detection is an important issue in city monitoring to analyse street furniture, road works, car parking, etc. For example, parking surveys are needed but are currently a laborious task involving sending operators in the streets to identify the changes in car locations. In this paper, we propose a method that performs a fast and robust segmentation and classification of urban point clouds, that can be used for change detection. We apply this method to detect the cars, as a particular object class, in order to perform parking surveys automatically. A recently proposed method already addresses the need for fast segmentation and classification of urban point clouds, using elevation images. The interest to work on images is that processing is much faster, proven and robust. However there may be a loss of information in complex 3D cases: for example when objects are one above the other, typically a car under a tree or a pedestrian under a balcony. In this paper we propose a method that retain the three-dimensional information while preserving fast computation times and improving segmentation and classification accuracy. It is based on fast region-growing using an octree, for the segmentation, and specific descriptors with Random-Forest for the classification. Experiments have been performed on large urban point clouds acquired by Mobile Laser Scanning. They show that the method is as fast as the state of the art, and that it gives more robust results in the complex 3D cases.

  18. Robust data reconciliation and outlier detection with swarm intelligence in a thermal reactor power calculation

    Energy Technology Data Exchange (ETDEWEB)

    Valdetaro, Eduardo Damianik, E-mail: valdtar@eletronuclear.gov.br [ELETRONUCLEAR - ELETROBRAS, Angra dos Reis, RJ (Brazil). Angra 2 Operating Dept.; Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear; Schirru, Roberto, E-mail: schirru@lmp.ufrj.br [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear

    2011-07-01

    In Nuclear power plants, Data Reconciliation (DR) and Gross Errors Detection (GED) are techniques of increasing interest and are primarily used to keep mass and energy balance into account, which brings outcomes as a direct and indirect financial benefits. Data reconciliation is formulated by a constrained minimization problem, where the constraints correspond to energy and mass balance model. Statistical methods are used combined with the minimization of quadratic error form. Solving nonlinear optimization problem using conventional methods can be troublesome, because a multimodal function with differentiated solutions introduces some difficulties to search an optimal solution. Many techniques were developed to solve Data Reconciliation and Outlier Detection, some of them use, for example, Quadratic Programming, Lagrange Multipliers, Mixed-Integer Non Linear Programming and others use evolutionary algorithms like Genetic Algorithms (GA) and recently the use of the Particle Swarm Optimization (PSO) showed to be a potential tool as a global optimization algorithm when applied to data reconciliation. Robust Statistics is also increasing in interest and it is being used when measured data are contaminated by random errors and one can not assume the error is normally distributed, situation which reflects real problems situation. The aim of this work is to present a brief comparison between the classical data reconciliation technique and the robust data reconciliation and gross error detection with swarm intelligence procedure in calculating the thermal reactor power for a simplified heat circuit diagram of a steam turbine plant using real data obtained from Angra 2 Nuclear power plant. The main objective is to test the potential of the robust DR and GED method in a integrated framework using swarm intelligence and the three part redescending estimator of Hampel when applied to a real process condition. The results evaluate the potential use of the robust technique in

  19. Robust data reconciliation and outlier detection with swarm intelligence in a thermal reactor power calculation

    International Nuclear Information System (INIS)

    Valdetaro, Eduardo Damianik; Coordenacao dos Programas de Pos-Graduacao de Engenharia; Schirru, Roberto

    2011-01-01

    In Nuclear power plants, Data Reconciliation (DR) and Gross Errors Detection (GED) are techniques of increasing interest and are primarily used to keep mass and energy balance into account, which brings outcomes as a direct and indirect financial benefits. Data reconciliation is formulated by a constrained minimization problem, where the constraints correspond to energy and mass balance model. Statistical methods are used combined with the minimization of quadratic error form. Solving nonlinear optimization problem using conventional methods can be troublesome, because a multimodal function with differentiated solutions introduces some difficulties to search an optimal solution. Many techniques were developed to solve Data Reconciliation and Outlier Detection, some of them use, for example, Quadratic Programming, Lagrange Multipliers, Mixed-Integer Non Linear Programming and others use evolutionary algorithms like Genetic Algorithms (GA) and recently the use of the Particle Swarm Optimization (PSO) showed to be a potential tool as a global optimization algorithm when applied to data reconciliation. Robust Statistics is also increasing in interest and it is being used when measured data are contaminated by random errors and one can not assume the error is normally distributed, situation which reflects real problems situation. The aim of this work is to present a brief comparison between the classical data reconciliation technique and the robust data reconciliation and gross error detection with swarm intelligence procedure in calculating the thermal reactor power for a simplified heat circuit diagram of a steam turbine plant using real data obtained from Angra 2 Nuclear power plant. The main objective is to test the potential of the robust DR and GED method in a integrated framework using swarm intelligence and the three part redescending estimator of Hampel when applied to a real process condition. The results evaluate the potential use of the robust technique in

  20. Data Fusion to Develop a Driver Drowsiness Detection System with Robustness to Signal Loss

    Directory of Open Access Journals (Sweden)

    Sajjad Samiee

    2014-09-01

    Full Text Available This study proposes a drowsiness detection approach based on the combination of several different detection methods, with robustness to the input signal loss. Hence, if one of the methods fails for any reason, the whole system continues to work properly. To choose correct combination of the available methods and to utilize the benefits of methods of different categories, an image processing-based technique as well as a method based on driver-vehicle interaction is used. In order to avoid driving distraction, any use of an intrusive method is prevented. A driving simulator is used to gather real data and then artificial neural networks are used in the structure of the designed system. Several tests were conducted on twelve volunteers while their sleeping situations during one day prior to the tests, were fully under control. Although the impact of the proposed system on the improvement of the detection accuracy is not remarkable, the results indicate the main advantages of the system are the reliability of the detections and robustness to the loss of the input signals. The high reliability of the drowsiness detection systems plays an important role to reduce drowsiness related road accidents and their associated costs.

  1. Robust detection of heart beats in multimodal records using slope- and peak-sensitive band-pass filters.

    Science.gov (United States)

    Pangerc, Urška; Jager, Franc

    2015-08-01

    In this work, we present the development, architecture and evaluation of a new and robust heart beat detector in multimodal records. The detector uses electrocardiogram (ECG) signals, and/or pulsatile (P) signals, such as: blood pressure, artery blood pressure and pulmonary artery pressure, if present. The base approach behind the architecture of the detector is collecting signal energy (differentiating and low-pass filtering, squaring, integrating). To calculate the detection and noise functions, simple and fast slope- and peak-sensitive band-pass digital filters were designed. By using morphological smoothing, the detection functions were further improved and noise intervals were estimated. The detector looks for possible pacemaker heart rate patterns and repairs the ECG signals and detection functions. Heart beats are detected in each of the ECG and P signals in two steps: a repetitive learning phase and a follow-up detecting phase. The detected heart beat positions from the ECG signals are merged into a single stream of detected ECG heart beat positions. The merged ECG heart beat positions and detected heart beat positions from the P signals are verified for their regularity regarding the expected heart rate. The detected heart beat positions of a P signal with the best match to the merged ECG heart beat positions are selected for mapping into the noise and no-signal intervals of the record. The overall evaluation scores in terms of average sensitivity and positive predictive values obtained on databases that are freely available on the Physionet website were as follows: the MIT-BIH Arrhythmia database (99.91%), the MGH/MF Waveform database (95.14%), the augmented training set of the follow-up phase of the PhysioNet/Computing in Cardiology Challenge 2014 (97.67%), and the Challenge test set (93.64%).

  2. A two-step patterning process increases the robustness of periodic patterning in the fly eye.

    Science.gov (United States)

    Gavish, Avishai; Barkai, Naama

    2016-06-01

    to generate a precise and robust pattern in this 'noisy' environment restricts the space of patterning mechanisms that can function in the biological setting. Mathematical modeling is useful in comparing the sensitivity of different mechanisms to such variations, thereby highlighting key aspects of their design.We use mathematical modeling to study the periodic patterning of the fruit fly eye. In this system, a highly ordered lattice of differentiated cells is generated in a two-dimensional cell epithelium. The pattern is first observed by the appearance of evenly spaced clusters of ∼10 cells that express specific genes. Each cluster is subsequently refined into a single cell, which initiates the formation and differentiation of a miniature eye unit, the ommatidium. We formulate a mathematical model based on the known molecular properties of the patterning mechanism, and use a probabilistic approach to calculate the errors in cluster formation and refinement resulting from stochastic cell-to-cell variations ('noise') in different quantitative parameters. This enables us to define the parameters most influencing noise sensitivity. Notably, we find that this error is roughly independent of the desired cluster size, suggesting that large clusters are beneficial for ensuring the overall reproducibility of the periodic cluster arrangement. For the stage of cluster refinement, we find that rapid communication between cells is critical for reducing error. Our work provides new insights into the constraints imposed on mechanisms generating periodic patterning in a realistic, noisy environment, and in particular, discusses the different considerations in achieving optimal design of the patterning network.

  3. Perspective: Evolution and detection of genetic robustness

    NARCIS (Netherlands)

    Visser, de J.A.G.M.; Hermisson, J.; Wagner, G.P.; Ancel Meyers, L.; Bagheri-Chaichian, H.; Blanchard, J.L.; Chao, L.; Cheverud, J.M.; Elena, S.F.; Fontana, W.; Gibson, G.; Hansen, T.F.; Krakauer, D.; Lewontin, R.C.; Ofria, C.; Rice, S.H.; Dassow, von G.; Wagner, A.; Whitlock, M.C.

    2003-01-01

    Robustness is the invariance of phenotypes in the face of perturbation. The robustness of phenotypes appears at various levels of biological organization, including gene expression, protein folding, metabolic flux, physiological homeostasis, development, and even organismal fitness. The mechanisms

  4. Efficient and robust cell detection: A structured regression approach.

    Science.gov (United States)

    Xie, Yuanpu; Xing, Fuyong; Shi, Xiaoshuang; Kong, Xiangfei; Su, Hai; Yang, Lin

    2018-02-01

    Efficient and robust cell detection serves as a critical prerequisite for many subsequent biomedical image analysis methods and computer-aided diagnosis (CAD). It remains a challenging task due to touching cells, inhomogeneous background noise, and large variations in cell sizes and shapes. In addition, the ever-increasing amount of available datasets and the high resolution of whole-slice scanned images pose a further demand for efficient processing algorithms. In this paper, we present a novel structured regression model based on a proposed fully residual convolutional neural network for efficient cell detection. For each testing image, our model learns to produce a dense proximity map that exhibits higher responses at locations near cell centers. Our method only requires a few training images with weak annotations (just one dot indicating the cell centroids). We have extensively evaluated our method using four different datasets, covering different microscopy staining methods (e.g., H & E or Ki-67 staining) or image acquisition techniques (e.g., bright-filed image or phase contrast). Experimental results demonstrate the superiority of our method over existing state of the art methods in terms of both detection accuracy and running time. Copyright © 2017. Published by Elsevier B.V.

  5. A novel approach to describing and detecting performance anti-patterns

    Science.gov (United States)

    Sheng, Jinfang; Wang, Yihan; Hu, Peipei; Wang, Bin

    2017-08-01

    Anti-pattern, as an extension to pattern, describes a widely used poor solution which can bring negative influence to application systems. Aiming at the shortcomings of the existing anti-pattern descriptions, an anti-pattern description method based on first order predicate is proposed. This method synthesizes anti-pattern forms and symptoms, which makes the description more accurate and has good scalability and versatility as well. In order to improve the accuracy of anti-pattern detection, a Bayesian classification method is applied in validation for detection results, which can reduce false negatives and false positives of anti-pattern detection. Finally, the proposed approach in this paper is applied to a small e-commerce system, the feasibility and effectiveness of the approach is demonstrated further through experiments.

  6. Improving the Robustness of Electromyogram-Pattern Recognition for Prosthetic Control by a Postprocessing Strategy

    Directory of Open Access Journals (Sweden)

    Xu Zhang

    2017-09-01

    Full Text Available Electromyogram (EMG contains rich information for motion decoding. As one of its major applications, EMG-pattern recognition (PR-based control of prostheses has been proposed and investigated in the field of rehabilitation robotics for decades. These prostheses can offer a higher level of dexterity compared to the commercially available ones. However, limited progress has been made toward clinical application of EMG-PR-based prostheses, due to their unsatisfactory robustness against various interferences during daily use. These interferences may lead to misclassifications of motion intentions, which damage the control performance of EMG-PR-based prostheses. A number of studies have applied methods that undergo a postprocessing stage to determine the current motion outputs, based on previous outputs or other information, which have proved effective in reducing erroneous outputs. In this study, we proposed a postprocessing strategy that locks the outputs during the constant contraction to block out occasional misclassifications, upon detecting the motion onset using a threshold. The strategy was investigated using three different motion onset detectors, namely mean absolute value, Teager–Kaiser energy operator, or mechanomyogram (MMG. Our results indicate that the proposed strategy could suppress erroneous outputs, during rest and constant contractions in particular. In addition, with MMG as the motion onset detector, the strategy was found to produce the most significant improvement in the performance, reducing the total errors up to around 50% (from 22.9 to 11.5% in comparison to the original classification output in the online test, and it is the most robust against threshold value changes. We speculate that motion onset detectors that are both smooth and responsive would further enhance the efficacy of the proposed postprocessing strategy, which would facilitate the clinical application of EMG-PR-based prosthetic control.

  7. A baseband circuit for wake-up receivers with double-mode detection and enhanced sensitivity robustness

    International Nuclear Information System (INIS)

    Zhu Wenrui; Yang Haigang; Gao Tongqiang; Liu Fei; Cheng Xiaoyan; Zhang Dandan

    2013-01-01

    This paper proposes a baseband circuit for wake-up receivers with double-mode detection and enhanced sensitivity robustness for use in the electronic toll collection system. A double-mode detection method, including amplitude detection and frequency detection, is proposed to reject interference and reduce false wake-ups. An improved closed-loop band-pass filter and a DC offset cancellation technique are also newly introduced to enhance the sensitivity robustness. The circuit is fabricated in TSMC 0.18 μm 3.3 V CMOS technology with an area of 0.12 mm 2 . Measurement results show that the sensitivity is −54.5 dBm with only a ±0.95 dBm variation from the 1.8 to 3.3 V power supply, and that the temperature variation of the sensitivity is ±1.4 dBm from −50 to 100°C. The current consumption is 1.4 to 1.7 μA under a 1.8 to 3.3 V power supply. (semiconductor integrated circuits)

  8. Robust Detection of Moving Human Target in Foliage-Penetration Environment Based on Hough Transform

    Directory of Open Access Journals (Sweden)

    P. Lei

    2014-04-01

    Full Text Available Attention has been focused on the robust moving human target detection in foliage-penetration environment, which presents a formidable task in a radar system because foliage is a rich scattering environment with complex multipath propagation and time-varying clutter. Generally, multiple-bounce returns and clutter are additionally superposed to direct-scatter echoes. They obscure true target echo and lead to poor visual quality time-range image, making target detection particular difficult. Consequently, an innovative approach is proposed to suppress clutter and mitigate multipath effects. In particular, a clutter suppression technique based on range alignment is firstly applied to suppress the time-varying clutter and the instable antenna coupling. Then entropy weighted coherent integration (EWCI algorithm is adopted to mitigate the multipath effects. In consequence, the proposed method effectively reduces the clutter and ghosting artifacts considerably. Based on the high visual quality image, the target trajectory is detected robustly and the radial velocity is estimated accurately with the Hough transform (HT. Real data used in the experimental results are provided to verify the proposed method.

  9. A new method for robust video watermarking resistant against key estimation attacks

    Science.gov (United States)

    Mitekin, Vitaly

    2015-12-01

    This paper presents a new method for high-capacity robust digital video watermarking and algorithms of embedding and extraction of watermark based on this method. Proposed method uses password-based two-dimensional pseudonoise arrays for watermark embedding, making brute-force attacks aimed at steganographic key retrieval mostly impractical. Proposed algorithm for 2-dimensional "noise-like" watermarking patterns generation also allows to significantly decrease watermark collision probability ( i.e. probability of correct watermark detection and extraction using incorrect steganographic key or password).. Experimental research provided in this work also shows that simple correlation-based watermark detection procedure can be used, providing watermark robustness against lossy compression and watermark estimation attacks. At the same time, without decreasing robustness of embedded watermark, average complexity of the brute-force key retrieval attack can be increased to 1014 watermark extraction attempts (compared to 104-106 for a known robust watermarking schemes). Experimental results also shows that for lowest embedding intensity watermark preserves it's robustness against lossy compression of host video and at the same time preserves higher video quality (PSNR up to 51dB) compared to known wavelet-based and DCT-based watermarking algorithms.

  10. Time-warp invariant pattern detection with bursting neurons

    International Nuclear Information System (INIS)

    Gollisch, Tim

    2008-01-01

    Sound patterns are defined by the temporal relations of their constituents, individual acoustic cues. Auditory systems need to extract these temporal relations to detect or classify sounds. In various cases, ranging from human speech to communication signals of grasshoppers, this pattern detection has been found to display invariance to temporal stretching or compression of the sound signal ('linear time-warp invariance'). In this work, a four-neuron network model is introduced, designed to solve such a detection task for the example of grasshopper courtship songs. As an essential ingredient, the network contains neurons with intrinsic bursting dynamics, which allow them to encode durations between acoustic events in short, rapid sequences of spikes. As shown by analytical calculations and computer simulations, these neuronal dynamics result in a powerful mechanism for temporal integration. Finally, the network reads out the encoded temporal information by detecting equal activity of two such bursting neurons. This leads to the recognition of rhythmic patterns independent of temporal stretching or compression

  11. Robust Mpc for Actuator–Fault Tolerance Using Set–Based Passive Fault Detection and Active Fault Isolation

    Directory of Open Access Journals (Sweden)

    Xu Feng

    2017-03-01

    Full Text Available In this paper, a fault-tolerant control (FTC scheme is proposed for actuator faults, which is built upon tube-based model predictive control (MPC as well as set-based fault detection and isolation (FDI. In the class of MPC techniques, tubebased MPC can effectively deal with system constraints and uncertainties with relatively low computational complexity compared with other robust MPC techniques such as min-max MPC. Set-based FDI, generally considering the worst case of uncertainties, can robustly detect and isolate actuator faults. In the proposed FTC scheme, fault detection (FD is passive by using invariant sets, while fault isolation (FI is active by means of MPC and tubes. The active FI method proposed in this paper is implemented by making use of the constraint-handling ability of MPC to manipulate the bounds of inputs.

  12. Robust fault detection of linear systems using a computationally efficient set-membership method

    DEFF Research Database (Denmark)

    Tabatabaeipour, Mojtaba; Bak, Thomas

    2014-01-01

    In this paper, a computationally efficient set-membership method for robust fault detection of linear systems is proposed. The method computes an interval outer-approximation of the output of the system that is consistent with the model, the bounds on noise and disturbance, and the past measureme...... is trivially parallelizable. The method is demonstrated for fault detection of a hydraulic pitch actuator of a wind turbine. We show the effectiveness of the proposed method by comparing our results with two zonotope-based set-membership methods....

  13. Experimental estimation of snare detectability for robust threat monitoring.

    Science.gov (United States)

    O'Kelly, Hannah J; Rowcliffe, J Marcus; Durant, Sarah; Milner-Gulland, E J

    2018-02-01

    Hunting with wire snares is rife within many tropical forest systems, and constitutes one of the severest threats to a wide range of vertebrate taxa. As for all threats, reliable monitoring of snaring levels is critical for assessing the relative effectiveness of management interventions. However, snares pose a particular challenge in terms of tracking spatial or temporal trends in their prevalence because they are extremely difficult to detect, and are typically spread across large, inaccessible areas. As with cryptic animal targets, any approach used to monitor snaring levels must address the issue of imperfect detection, but no standard method exists to do so. We carried out a field experiment in Keo Seima Wildlife Reserve in eastern Cambodia with the following objectives: (1) To estimate the detection probably of wire snares within a tropical forest context, and to investigate how detectability might be affected by habitat type, snare type, or observer. (2) To trial two sets of sampling protocols feasible to implement in a range of challenging field conditions. (3) To conduct a preliminary assessment of two potential analytical approaches to dealing with the resulting snare encounter data. We found that although different observers had no discernible effect on detection probability, detectability did vary between habitat type and snare type. We contend that simple repeated counts carried out at multiple sites and analyzed using binomial mixture models could represent a practical yet robust solution to the problem of monitoring snaring levels both inside and outside of protected areas. This experiment represents an important first step in developing improved methods of threat monitoring, and such methods are greatly needed in southeast Asia, as well as in as many other regions.

  14. Towards a Video Passive Content Fingerprinting Method for Partial-Copy Detection Robust against Non-Simulated Attacks.

    Directory of Open Access Journals (Sweden)

    Zobeida Jezabel Guzman-Zavaleta

    Full Text Available Passive content fingerprinting is widely used for video content identification and monitoring. However, many challenges remain unsolved especially for partial-copies detection. The main challenge is to find the right balance between the computational cost of fingerprint extraction and fingerprint dimension, without compromising detection performance against various attacks (robustness. Fast video detection performance is desirable in several modern applications, for instance, in those where video detection involves the use of large video databases or in applications requiring real-time video detection of partial copies, a process whose difficulty increases when videos suffer severe transformations. In this context, conventional fingerprinting methods are not fully suitable to cope with the attacks and transformations mentioned before, either because the robustness of these methods is not enough or because their execution time is very high, where the time bottleneck is commonly found in the fingerprint extraction and matching operations. Motivated by these issues, in this work we propose a content fingerprinting method based on the extraction of a set of independent binary global and local fingerprints. Although these features are robust against common video transformations, their combination is more discriminant against severe video transformations such as signal processing attacks, geometric transformations and temporal and spatial desynchronization. Additionally, we use an efficient multilevel filtering system accelerating the processes of fingerprint extraction and matching. This multilevel filtering system helps to rapidly identify potential similar video copies upon which the fingerprint process is carried out only, thus saving computational time. We tested with datasets of real copied videos, and the results show how our method outperforms state-of-the-art methods regarding detection scores. Furthermore, the granularity of our method makes

  15. Reticular pattern detection in dermoscopy: an approach using Curvelet Transform

    Directory of Open Access Journals (Sweden)

    Marlene Machado

    Full Text Available Abstract Introduction Dermoscopy is a non-invasive in vivo imaging technique, used in dermatology in feature identification, among pigmented melanocytic neoplasms, from suspicious skin lesions. Often, in the skin exam is possible to ascertain markers, whose identification and proper characterization is difficult, even when it is used a magnifying lens and a source of light. Dermoscopic images are thus a challenging source of a wide range of digital features, frequently with clinical correlation. Among these markers, one of particular interest to diagnosis in skin evaluation is the reticular pattern. Methods This paper presents a novel approach (avoiding pre-processing, e.g. segmentation and filtering for reticular pattern detection in dermoscopic images, using texture spectral analysis. The proposed methodology involves a Curvelet Transform procedure to identify features. Results Feature extraction is applied to identify a set of discriminant characteristics in the reticular pattern, and it is also employed in the automatic classification task. The results obtained are encouraging, presenting Sensitivity and Specificity of 82.35% and 76.79%, respectively. Conclusions These results highlight the use of automatic classification, in the context of artificial intelligence, within a computer-aided diagnosis strategy, as a strong tool to help the human decision making task in clinical practice. Moreover, the results were obtained using images from three different sources, without previous lesion segmentation, achieving to a rapid, robust and low complexity methodology. These properties boost the presented approach to be easily used in clinical practice as an aid to the diagnostic process.

  16. Fusion of an Ensemble of Augmented Image Detectors for Robust Object Detection.

    Science.gov (United States)

    Wei, Pan; Ball, John E; Anderson, Derek T

    2018-03-17

    A significant challenge in object detection is accurate identification of an object's position in image space, whereas one algorithm with one set of parameters is usually not enough, and the fusion of multiple algorithms and/or parameters can lead to more robust results. Herein, a new computational intelligence fusion approach based on the dynamic analysis of agreement among object detection outputs is proposed. Furthermore, we propose an online versus just in training image augmentation strategy. Experiments comparing the results both with and without fusion are presented. We demonstrate that the augmented and fused combination results are the best, with respect to higher accuracy rates and reduction of outlier influences. The approach is demonstrated in the context of cone, pedestrian and box detection for Advanced Driver Assistance Systems (ADAS) applications.

  17. Fusion of an Ensemble of Augmented Image Detectors for Robust Object Detection

    Directory of Open Access Journals (Sweden)

    Pan Wei

    2018-03-01

    Full Text Available A significant challenge in object detection is accurate identification of an object’s position in image space, whereas one algorithm with one set of parameters is usually not enough, and the fusion of multiple algorithms and/or parameters can lead to more robust results. Herein, a new computational intelligence fusion approach based on the dynamic analysis of agreement among object detection outputs is proposed. Furthermore, we propose an online versus just in training image augmentation strategy. Experiments comparing the results both with and without fusion are presented. We demonstrate that the augmented and fused combination results are the best, with respect to higher accuracy rates and reduction of outlier influences. The approach is demonstrated in the context of cone, pedestrian and box detection for Advanced Driver Assistance Systems (ADAS applications.

  18. A robust and coherent network statistic for detecting gravitational waves from inspiralling compact binaries in non-Gaussian noise

    CERN Document Server

    Bose, S

    2002-01-01

    The robust statistic proposed by Creighton (Creighton J D E 1999 Phys. Rev. D 60 021101) and Allen et al (Allen et al 2001 Preprint gr-gc/010500) for the detection of stationary non-Gaussian noise is briefly reviewed. We compute the robust statistic for generic weak gravitational-wave signals in the mixture-Gaussian noise model to an accuracy higher than in those analyses, and reinterpret its role. Specifically, we obtain the coherent statistic for detecting gravitational-wave signals from inspiralling compact binaries with an arbitrary network of earth-based interferometers. Finally, we show that excess computational costs incurred owing to non-Gaussianity is negligible compared to the cost of detection in Gaussian noise.

  19. Robust and distributed hypothesis testing

    CERN Document Server

    Gül, Gökhan

    2017-01-01

    This book generalizes and extends the available theory in robust and decentralized hypothesis testing. In particular, it presents a robust test for modeling errors which is independent from the assumptions that a sufficiently large number of samples is available, and that the distance is the KL-divergence. Here, the distance can be chosen from a much general model, which includes the KL-divergence as a very special case. This is then extended by various means. A minimax robust test that is robust against both outliers as well as modeling errors is presented. Minimax robustness properties of the given tests are also explicitly proven for fixed sample size and sequential probability ratio tests. The theory of robust detection is extended to robust estimation and the theory of robust distributed detection is extended to classes of distributions, which are not necessarily stochastically bounded. It is shown that the quantization functions for the decision rules can also be chosen as non-monotone. Finally, the boo...

  20. Is countershading camouflage robust to lighting change due to weather?

    Science.gov (United States)

    Penacchio, Olivier; Lovell, P George; Harris, Julie M

    2018-02-01

    Countershading is a pattern of coloration thought to have evolved in order to implement camouflage. By adopting a pattern of coloration that makes the surface facing towards the sun darker and the surface facing away from the sun lighter, the overall amount of light reflected off an animal can be made more uniformly bright. Countershading could hence contribute to visual camouflage by increasing background matching or reducing cues to shape. However, the usefulness of countershading is constrained by a particular pattern delivering 'optimal' camouflage only for very specific lighting conditions. In this study, we test the robustness of countershading camouflage to lighting change due to weather, using human participants as a 'generic' predator. In a simulated three-dimensional environment, we constructed an array of simple leaf-shaped items and a single ellipsoidal target 'prey'. We set these items in two light environments: strongly directional 'sunny' and more diffuse 'cloudy'. The target object was given the optimal pattern of countershading for one of these two environment types or displayed a uniform pattern. By measuring detection time and accuracy, we explored whether and how target detection depended on the match between the pattern of coloration on the target object and scene lighting. Detection times were longest when the countershading was appropriate to the illumination; incorrectly camouflaged targets were detected with a similar pattern of speed and accuracy to uniformly coloured targets. We conclude that structural changes in light environment, such as caused by differences in weather, do change the effectiveness of countershading camouflage.

  1. Evolution of networks for body plan patterning; interplay of modularity, robustness and evolvability.

    Directory of Open Access Journals (Sweden)

    Kirsten H Ten Tusscher

    2011-10-01

    Full Text Available A major goal of evolutionary developmental biology (evo-devo is to understand how multicellular body plans of increasing complexity have evolved, and how the corresponding developmental programs are genetically encoded. It has been repeatedly argued that key to the evolution of increased body plan complexity is the modularity of the underlying developmental gene regulatory networks (GRNs. This modularity is considered essential for network robustness and evolvability. In our opinion, these ideas, appealing as they may sound, have not been sufficiently tested. Here we use computer simulations to study the evolution of GRNs' underlying body plan patterning. We select for body plan segmentation and differentiation, as these are considered to be major innovations in metazoan evolution. To allow modular networks to evolve, we independently select for segmentation and differentiation. We study both the occurrence and relation of robustness, evolvability and modularity of evolved networks. Interestingly, we observed two distinct evolutionary strategies to evolve a segmented, differentiated body plan. In the first strategy, first segments and then differentiation domains evolve (SF strategy. In the second scenario segments and domains evolve simultaneously (SS strategy. We demonstrate that under indirect selection for robustness the SF strategy becomes dominant. In addition, as a byproduct of this larger robustness, the SF strategy is also more evolvable. Finally, using a combined functional and architectural approach, we determine network modularity. We find that while SS networks generate segments and domains in an integrated manner, SF networks use largely independent modules to produce segments and domains. Surprisingly, we find that widely used, purely architectural methods for determining network modularity completely fail to establish this higher modularity of SF networks. Finally, we observe that, as a free side effect of evolving segmentation

  2. Fuzzy Pattern Classification Based Detection of Faulty Electronic Fuel Control (EFC Valves Used in Diesel Engines

    Directory of Open Access Journals (Sweden)

    Umut Tugsal

    2014-05-01

    Full Text Available In this paper, we develop mathematical models of a rotary Electronic Fuel Control (EFC valve used in a Diesel engine based on dynamic performance test data and system identification methodology in order to detect the faulty EFC valves. The model takes into account the dynamics of the electrical and mechanical portions of the EFC valves. A recursive least squares (RLS type system identification methodology has been utilized to determine the transfer functions of the different types of EFC valves that were investigated in this study. Both in frequency domain and time domain methods have been utilized for this purpose. Based on the characteristic patterns exhibited by the EFC valves, a fuzzy logic based pattern classification method was utilized to evaluate the residuals and identify faulty EFC valves from good ones. The developed methodology has been shown to provide robust diagnostics for a wide range of EFC valves.

  3. Robustness of cluster synchronous patterns in small-world networks with inter-cluster co-competition balance

    International Nuclear Information System (INIS)

    Zhang, Jianbao; Ma, Zhongjun; Chen, Guanrong

    2014-01-01

    All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding or deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations

  4. Robustness of cluster synchronous patterns in small-world networks with inter-cluster co-competition balance

    Science.gov (United States)

    Zhang, Jianbao; Ma, Zhongjun; Chen, Guanrong

    2014-06-01

    All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding or deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations.

  5. Robustness of cluster synchronous patterns in small-world networks with inter-cluster co-competition balance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianbao [School of Science, Hangzhou Dianzi University, Hangzhou 310018 (China); Ma, Zhongjun, E-mail: mzj1234402@163.com [School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004 (China); Chen, Guanrong [Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China)

    2014-06-15

    All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding or deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations.

  6. Robust Small Target Co-Detection from Airborne Infrared Image Sequences.

    Science.gov (United States)

    Gao, Jingli; Wen, Chenglin; Liu, Meiqin

    2017-09-29

    In this paper, a novel infrared target co-detection model combining the self-correlation features of backgrounds and the commonality features of targets in the spatio-temporal domain is proposed to detect small targets in a sequence of infrared images with complex backgrounds. Firstly, a dense target extraction model based on nonlinear weights is proposed, which can better suppress background of images and enhance small targets than weights of singular values. Secondly, a sparse target extraction model based on entry-wise weighted robust principal component analysis is proposed. The entry-wise weight adaptively incorporates structural prior in terms of local weighted entropy, thus, it can extract real targets accurately and suppress background clutters efficiently. Finally, the commonality of targets in the spatio-temporal domain are used to construct target refinement model for false alarms suppression and target confirmation. Since real targets could appear in both of the dense and sparse reconstruction maps of a single frame, and form trajectories after tracklet association of consecutive frames, the location correlation of the dense and sparse reconstruction maps for a single frame and tracklet association of the location correlation maps for successive frames have strong ability to discriminate between small targets and background clutters. Experimental results demonstrate that the proposed small target co-detection method can not only suppress background clutters effectively, but also detect targets accurately even if with target-like interference.

  7. Autopiquer - a Robust and Reliable Peak Detection Algorithm for Mass Spectrometry.

    Science.gov (United States)

    Kilgour, David P A; Hughes, Sam; Kilgour, Samantha L; Mackay, C Logan; Palmblad, Magnus; Tran, Bao Quoc; Goo, Young Ah; Ernst, Robert K; Clarke, David J; Goodlett, David R

    2017-02-01

    We present a simple algorithm for robust and unsupervised peak detection by determining a noise threshold in isotopically resolved mass spectrometry data. Solving this problem will greatly reduce the subjective and time-consuming manual picking of mass spectral peaks and so will prove beneficial in many research applications. The Autopiquer approach uses autocorrelation to test for the presence of (isotopic) structure in overlapping windows across the spectrum. Within each window, a noise threshold is optimized to remove the most unstructured data, whilst keeping as much of the (isotopic) structure as possible. This algorithm has been successfully demonstrated for both peak detection and spectral compression on data from many different classes of mass spectrometer and for different sample types, and this approach should also be extendible to other types of data that contain regularly spaced discrete peaks. Graphical Abstract ᅟ.

  8. Design And Implementation Of Tool For Detecting Anti-Patterns In Relational Database

    Directory of Open Access Journals (Sweden)

    Gaurav Kumar

    2017-07-01

    Full Text Available Anti-patterns are poor solution to design and im-plementation problems. Developers may introduce anti-patterns in their software systems because of time pressure lack of understanding communication and or-skills. Anti-patterns create problems in software maintenance and development. Database anti-patterns lead to complex and time consuming query process-ing and loss of integrity constraints. Detecting anti-patterns could reduce costs efforts and resources. Researchers have proposed approaches to detect anti-patterns in software development. But not much research has been done about database anti-patterns. This report presents two approaches to detect schema design anti-patterns in relational database. Our first approach is based on pattern matchingwe look into potential candidates based on schema patterns. Second approach is a machine learning based approach we generate features of possible anti-patterns and build SVMbased classifier to detect them. Here we look into these four anti-patterns a Multi-valued attribute b Nave tree based c Entity Attribute Value and dPolymorphic Association . We measure precision and recall of each approach and compare the results. SVM-based approach provides more precision and recall with more training dataset.

  9. Efficient Mining and Detection of Sequential Intrusion Patterns for Network Intrusion Detection Systems

    Science.gov (United States)

    Shyu, Mei-Ling; Huang, Zifang; Luo, Hongli

    In recent years, pervasive computing infrastructures have greatly improved the interaction between human and system. As we put more reliance on these computing infrastructures, we also face threats of network intrusion and/or any new forms of undesirable IT-based activities. Hence, network security has become an extremely important issue, which is closely connected with homeland security, business transactions, and people's daily life. Accurate and efficient intrusion detection technologies are required to safeguard the network systems and the critical information transmitted in the network systems. In this chapter, a novel network intrusion detection framework for mining and detecting sequential intrusion patterns is proposed. The proposed framework consists of a Collateral Representative Subspace Projection Modeling (C-RSPM) component for supervised classification, and an inter-transactional association rule mining method based on Layer Divided Modeling (LDM) for temporal pattern analysis. Experiments on the KDD99 data set and the traffic data set generated by a private LAN testbed show promising results with high detection rates, low processing time, and low false alarm rates in mining and detecting sequential intrusion detections.

  10. Robust Detection and Visualization of Jet-Stream Core Lines in Atmospheric Flow.

    Science.gov (United States)

    Kern, Michael; Hewson, Tim; Sadlo, Filip; Westermann, Rudiger; Rautenhaus, Marc

    2018-01-01

    Jet-streams, their core lines and their role in atmospheric dynamics have been subject to considerable meteorological research since the first half of the twentieth century. Yet, until today no consistent automated feature detection approach has been proposed to identify jet-stream core lines from 3D wind fields. Such 3D core lines can facilitate meteorological analyses previously not possible. Although jet-stream cores can be manually analyzed by meteorologists in 2D as height ridges in the wind speed field, to the best of our knowledge no automated ridge detection approach has been applied to jet-stream core detection. In this work, we -a team of visualization scientists and meteorologists-propose a method that exploits directional information in the wind field to extract core lines in a robust and numerically less involved manner than traditional 3D ridge detection. For the first time, we apply the extracted 3D core lines to meteorological analysis, considering real-world case studies and demonstrating our method's benefits for weather forecasting and meteorological research.

  11. A Robust Method for Detecting Parking Areas in Both Indoor and Outdoor Environments

    Directory of Open Access Journals (Sweden)

    Wenhao Zong

    2018-06-01

    Full Text Available Although an automatic parking system has been installed in many vehicles recently, it is still hard for the system to confirm by itself whether a vacant parking area truly exists or not. In this paper, we introduced a robust vision-based vacancy parking area detecting method for both indoor and outdoor environments. The main contribution of this paper is given as follows. First, an automatic image stitching method is proposed. Secondly, the problem of environment illuminating change and line color difference is considered and solved. Thirdly, the proposed algorithm is insensitive to the shadow and scene diversity, which means the detecting result satisfies most of the environment. Finally, a vehicle model is considered for tracking and reconfirming the detecting results to eliminate most of the false positives.

  12. Robust online tracking via adaptive samples selection with saliency detection

    Science.gov (United States)

    Yan, Jia; Chen, Xi; Zhu, QiuPing

    2013-12-01

    Online tracking has shown to be successful in tracking of previously unknown objects. However, there are two important factors which lead to drift problem of online tracking, the one is how to select the exact labeled samples even when the target locations are inaccurate, and the other is how to handle the confusors which have similar features with the target. In this article, we propose a robust online tracking algorithm with adaptive samples selection based on saliency detection to overcome the drift problem. To deal with the problem of degrading the classifiers using mis-aligned samples, we introduce the saliency detection method to our tracking problem. Saliency maps and the strong classifiers are combined to extract the most correct positive samples. Our approach employs a simple yet saliency detection algorithm based on image spectral residual analysis. Furthermore, instead of using the random patches as the negative samples, we propose a reasonable selection criterion, in which both the saliency confidence and similarity are considered with the benefits that confusors in the surrounding background are incorporated into the classifiers update process before the drift occurs. The tracking task is formulated as a binary classification via online boosting framework. Experiment results in several challenging video sequences demonstrate the accuracy and stability of our tracker.

  13. Using pattern analysis methods to do fast detection of manufacturing pattern failures

    Science.gov (United States)

    Zhao, Evan; Wang, Jessie; Sun, Mason; Wang, Jeff; Zhang, Yifan; Sweis, Jason; Lai, Ya-Chieh; Ding, Hua

    2016-03-01

    At the advanced technology node, logic design has become extremely complex and is getting more challenging as the pattern geometry size decreases. The small sizes of layout patterns are becoming very sensitive to process variations. Meanwhile, the high pressure of yield ramp is always there due to time-to-market competition. The company that achieves patterning maturity earlier than others will have a great advantage and a better chance to realize maximum profit margins. For debugging silicon failures, DFT diagnostics can identify which nets or cells caused the yield loss. But normally, a long time period is needed with many resources to identify which failures are due to one common layout pattern or structure. This paper will present a new yield diagnostic flow, based on preliminary EFA results, to show how pattern analysis can more efficiently detect pattern related systematic defects. Increased visibility on design pattern related failures also allows more precise yield loss estimation.

  14. A novel spatial performance metric for robust pattern optimization of distributed hydrological models

    Science.gov (United States)

    Stisen, S.; Demirel, C.; Koch, J.

    2017-12-01

    Evaluation of performance is an integral part of model development and calibration as well as it is of paramount importance when communicating modelling results to stakeholders and the scientific community. There exists a comprehensive and well tested toolbox of metrics to assess temporal model performance in the hydrological modelling community. On the contrary, the experience to evaluate spatial performance is not corresponding to the grand availability of spatial observations readily available and to the sophisticate model codes simulating the spatial variability of complex hydrological processes. This study aims at making a contribution towards advancing spatial pattern oriented model evaluation for distributed hydrological models. This is achieved by introducing a novel spatial performance metric which provides robust pattern performance during model calibration. The promoted SPAtial EFficiency (spaef) metric reflects three equally weighted components: correlation, coefficient of variation and histogram overlap. This multi-component approach is necessary in order to adequately compare spatial patterns. spaef, its three components individually and two alternative spatial performance metrics, i.e. connectivity analysis and fractions skill score, are tested in a spatial pattern oriented model calibration of a catchment model in Denmark. The calibration is constrained by a remote sensing based spatial pattern of evapotranspiration and discharge timeseries at two stations. Our results stress that stand-alone metrics tend to fail to provide holistic pattern information to the optimizer which underlines the importance of multi-component metrics. The three spaef components are independent which allows them to complement each other in a meaningful way. This study promotes the use of bias insensitive metrics which allow comparing variables which are related but may differ in unit in order to optimally exploit spatial observations made available by remote sensing

  15. Outlier detection by robust Mahalanobis distance in geological data obtained by INAA to provenance studies

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Jose O. dos, E-mail: osmansantos@ig.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Sergipe (IFS), Lagarto, SE (Brazil); Munita, Casimiro S., E-mail: camunita@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Soares, Emilio A.A., E-mail: easoares@ufan.edu.br [Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil). Dept. de Geociencias

    2013-07-01

    The detection of outlier in geochemical studies is one of the main difficulties in the interpretation of dataset because they can disturb the statistical method. The search for outliers in geochemical studies is usually based in the Mahalanobis distance (MD), since points in multivariate space that are a distance larger the some predetermined values from center of the data are considered outliers. However, the MD is very sensitive to the presence of discrepant samples. Many robust estimators for location and covariance have been introduced in the literature, such as Minimum Covariance Determinant (MCD) estimator. When MCD estimators are used to calculate the MD leads to the so-called Robust Mahalanobis Distance (RD). In this context, in this work RD was used to detect outliers in geological study of samples collected from confluence of Negro and Solimoes rivers. The purpose of this study was to study the contributions of the sediments deposited by the Solimoes and Negro rivers in the filling of the tectonic depressions at Parana do Ariau. For that 113 samples were analyzed by Instrumental Neutron Activation Analysis (INAA) in which were determined the concentration of As, Ba, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Nd, Rb, Sb, Sc, Sm, U, Yb, Ta, Tb, Th and Zn. In the dataset was possible to construct the ellipse corresponding to robust Mahalanobis distance for each group of samples. The samples found outside of the tolerance ellipse were considered an outlier. The results showed that Robust Mahalanobis Distance was more appropriate for the identification of the outliers, once it is a more restrictive method. (author)

  16. Outlier detection by robust Mahalanobis distance in geological data obtained by INAA to provenance studies

    International Nuclear Information System (INIS)

    Santos, Jose O. dos; Munita, Casimiro S.; Soares, Emilio A.A.

    2013-01-01

    The detection of outlier in geochemical studies is one of the main difficulties in the interpretation of dataset because they can disturb the statistical method. The search for outliers in geochemical studies is usually based in the Mahalanobis distance (MD), since points in multivariate space that are a distance larger the some predetermined values from center of the data are considered outliers. However, the MD is very sensitive to the presence of discrepant samples. Many robust estimators for location and covariance have been introduced in the literature, such as Minimum Covariance Determinant (MCD) estimator. When MCD estimators are used to calculate the MD leads to the so-called Robust Mahalanobis Distance (RD). In this context, in this work RD was used to detect outliers in geological study of samples collected from confluence of Negro and Solimoes rivers. The purpose of this study was to study the contributions of the sediments deposited by the Solimoes and Negro rivers in the filling of the tectonic depressions at Parana do Ariau. For that 113 samples were analyzed by Instrumental Neutron Activation Analysis (INAA) in which were determined the concentration of As, Ba, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Nd, Rb, Sb, Sc, Sm, U, Yb, Ta, Tb, Th and Zn. In the dataset was possible to construct the ellipse corresponding to robust Mahalanobis distance for each group of samples. The samples found outside of the tolerance ellipse were considered an outlier. The results showed that Robust Mahalanobis Distance was more appropriate for the identification of the outliers, once it is a more restrictive method. (author)

  17. Robust fault detection of turbofan engines subject to adaptive controllers via a Total Measurable Fault Information Residual (ToMFIR) technique.

    Science.gov (United States)

    Chen, Wen; Chowdhury, Fahmida N; Djuric, Ana; Yeh, Chih-Ping

    2014-09-01

    This paper provides a new design of robust fault detection for turbofan engines with adaptive controllers. The critical issue is that the adaptive controllers can depress the faulty effects such that the actual system outputs remain the pre-specified values, making it difficult to detect faults/failures. To solve this problem, a Total Measurable Fault Information Residual (ToMFIR) technique with the aid of system transformation is adopted to detect faults in turbofan engines with adaptive controllers. This design is a ToMFIR-redundancy-based robust fault detection. The ToMFIR is first introduced and existing results are also summarized. The Detailed design process of the ToMFIRs is presented and a turbofan engine model is simulated to verify the effectiveness of the proposed ToMFIR-based fault-detection strategy. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Secure access control and large scale robust representation for online multimedia event detection.

    Science.gov (United States)

    Liu, Changyu; Lu, Bin; Li, Huiling

    2014-01-01

    We developed an online multimedia event detection (MED) system. However, there are a secure access control issue and a large scale robust representation issue when we want to integrate traditional event detection algorithms into the online environment. For the first issue, we proposed a tree proxy-based and service-oriented access control (TPSAC) model based on the traditional role based access control model. Verification experiments were conducted on the CloudSim simulation platform, and the results showed that the TPSAC model is suitable for the access control of dynamic online environments. For the second issue, inspired by the object-bank scene descriptor, we proposed a 1000-object-bank (1000OBK) event descriptor. Feature vectors of the 1000OBK were extracted from response pyramids of 1000 generic object detectors which were trained on standard annotated image datasets, such as the ImageNet dataset. A spatial bag of words tiling approach was then adopted to encode these feature vectors for bridging the gap between the objects and events. Furthermore, we performed experiments in the context of event classification on the challenging TRECVID MED 2012 dataset, and the results showed that the robust 1000OBK event descriptor outperforms the state-of-the-art approaches.

  19. Secure Access Control and Large Scale Robust Representation for Online Multimedia Event Detection

    Directory of Open Access Journals (Sweden)

    Changyu Liu

    2014-01-01

    Full Text Available We developed an online multimedia event detection (MED system. However, there are a secure access control issue and a large scale robust representation issue when we want to integrate traditional event detection algorithms into the online environment. For the first issue, we proposed a tree proxy-based and service-oriented access control (TPSAC model based on the traditional role based access control model. Verification experiments were conducted on the CloudSim simulation platform, and the results showed that the TPSAC model is suitable for the access control of dynamic online environments. For the second issue, inspired by the object-bank scene descriptor, we proposed a 1000-object-bank (1000OBK event descriptor. Feature vectors of the 1000OBK were extracted from response pyramids of 1000 generic object detectors which were trained on standard annotated image datasets, such as the ImageNet dataset. A spatial bag of words tiling approach was then adopted to encode these feature vectors for bridging the gap between the objects and events. Furthermore, we performed experiments in the context of event classification on the challenging TRECVID MED 2012 dataset, and the results showed that the robust 1000OBK event descriptor outperforms the state-of-the-art approaches.

  20. A robust anomaly based change detection method for time-series remote sensing images

    Science.gov (United States)

    Shoujing, Yin; Qiao, Wang; Chuanqing, Wu; Xiaoling, Chen; Wandong, Ma; Huiqin, Mao

    2014-03-01

    Time-series remote sensing images record changes happening on the earth surface, which include not only abnormal changes like human activities and emergencies (e.g. fire, drought, insect pest etc.), but also changes caused by vegetation phenology and climate changes. Yet, challenges occur in analyzing global environment changes and even the internal forces. This paper proposes a robust Anomaly Based Change Detection method (ABCD) for time-series images analysis by detecting abnormal points in data sets, which do not need to follow a normal distribution. With ABCD we can detect when and where changes occur, which is the prerequisite condition of global change studies. ABCD was tested initially with 10-day SPOT VGT NDVI (Normalized Difference Vegetation Index) times series tracking land cover type changes, seasonality and noise, then validated to real data in a large area in Jiangxi, south of China. Initial results show that ABCD can precisely detect spatial and temporal changes from long time series images rapidly.

  1. Instantaneous, Simple, and Reversible Revealing of Invisible Patterns Encrypted in Robust Hollow Sphere Colloidal Photonic Crystals.

    Science.gov (United States)

    Zhong, Kuo; Li, Jiaqi; Liu, Liwang; Van Cleuvenbergen, Stijn; Song, Kai; Clays, Koen

    2018-05-04

    The colors of photonic crystals are based on their periodic crystalline structure. They show clear advantages over conventional chromophores for many applications, mainly due to their anti-photobleaching and responsiveness to stimuli. More specifically, combining colloidal photonic crystals and invisible patterns is important in steganography and watermarking for anticounterfeiting applications. Here a convenient way to imprint robust invisible patterns in colloidal crystals of hollow silica spheres is presented. While these patterns remain invisible under static environmental humidity, even up to near 100% relative humidity, they are unveiled immediately (≈100 ms) and fully reversibly by dynamic humid flow, e.g., human breath. They reveal themselves due to the extreme wettability of the patterned (etched) regions, as confirmed by contact angle measurements. The liquid surface tension threshold to induce wetting (revealing the imprinted invisible images) is evaluated by thermodynamic predictions and subsequently verified by exposure to various vapors with different surface tension. The color of the patterned regions is furthermore independently tuned by vapors with different refractive indices. Such a system can play a key role in applications such as anticounterfeiting, identification, and vapor sensing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Nonlinear Robust Observer-Based Fault Detection for Networked Suspension Control System of Maglev Train

    Directory of Open Access Journals (Sweden)

    Yun Li

    2013-01-01

    Full Text Available A fault detection approach based on nonlinear robust observer is designed for the networked suspension control system of Maglev train with random induced time delay. First, considering random bounded time-delay and external disturbance, the nonlinear model of the networked suspension control system is established. Then, a nonlinear robust observer is designed using the input of the suspension gap. And the estimate error is proved to be bounded with arbitrary precision by adopting an appropriate parameter. When sensor faults happen, the residual between the real states and the observer outputs indicates which kind of sensor failures occurs. Finally, simulation results using the actual parameters of CMS-04 maglev train indicate that the proposed method is effective for maglev train.

  3. Attack Pattern Analysis Framework for a Multiagent Intrusion Detection System

    Directory of Open Access Journals (Sweden)

    Krzysztof Juszczyszyn

    2008-08-01

    Full Text Available The paper proposes the use of attack pattern ontology and formal framework for network traffic anomalies detection within a distributed multi-agent Intrusion Detection System architecture. Our framework assumes ontology-based attack definition and distributed processing scheme with exchange of communicates between agents. The role of traffic anomalies detection was presented then it has been discussed how some specific values characterizing network communication can be used to detect network anomalies caused by security incidents (worm attack, virus spreading. Finally, it has been defined how to use the proposed techniques in distributed IDS using attack pattern ontology.

  4. A Robust and Fast System for CTC Computer-Aided Detection of Colorectal Lesions

    Directory of Open Access Journals (Sweden)

    Gareth Beddoe

    2010-01-01

    Full Text Available We present a complete, end-to-end computer-aided detection (CAD system for identifying lesions in the colon, imaged with computed tomography (CT. This system includes facilities for colon segmentation, candidate generation, feature analysis, and classification. The algorithms have been designed to offer robust performance to variation in image data and patient preparation. By utilizing efficient 2D and 3D processing, software optimizations, multi-threading, feature selection, and an optimized cascade classifier, the CAD system quickly determines a set of detection marks. The colon CAD system has been validated on the largest set of data to date, and demonstrates excellent performance, in terms of its high sensitivity, low false positive rate, and computational efficiency.

  5. Real-time pose invariant logo and pattern detection

    Science.gov (United States)

    Sidla, Oliver; Kottmann, Michal; Benesova, Wanda

    2011-01-01

    The detection of pose invariant planar patterns has many practical applications in computer vision and surveillance systems. The recognition of company logos is used in market studies to examine the visibility and frequency of logos in advertisement. Danger signs on vehicles could be detected to trigger warning systems in tunnels, or brand detection on transport vehicles can be used to count company-specific traffic. We present the results of a study on planar pattern detection which is based on keypoint detection and matching of distortion invariant 2d feature descriptors. Specifically we look at the keypoint detectors of type: i) Lowe's DoG approximation from the SURF algorithm, ii) the Harris Corner Detector, iii) the FAST Corner Detector and iv) Lepetit's keypoint detector. Our study then compares the feature descriptors SURF and compact signatures based on Random Ferns: we use 3 sets of sample images to detect and match 3 logos of different structure to find out which combinations of keypoint detector/feature descriptors work well. A real-world test tries to detect vehicles with a distinctive logo in an outdoor environment under realistic lighting and weather conditions: a camera was mounted on a suitable location for observing the entrance to a parking area so that incoming vehicles could be monitored. In this 2 hour long recording we can successfully detect a specific company logo without false positives.

  6. IVS Combination Center at BKG - Robust Outlier Detection and Weighting Strategies

    Science.gov (United States)

    Bachmann, S.; Lösler, M.

    2012-12-01

    Outlier detection plays an important role within the IVS combination. Even if the original data is the same for all contributing Analysis Centers (AC), the analyzed data shows differences due to analysis software characteristics. The treatment of outliers is thus a fine line between keeping data heterogeneity and elimination of real outliers. Robust outlier detection based on the Least Median Square (LMS) is used within the IVS combination. This method allows reliable outlier detection with a small number of input parameters. A similar problem arises for the weighting of the individual solutions within the combination process. The variance component estimation (VCE) is used to control the weighting factor for each AC. The Operator-Software-Impact (OSI) method takes into account that the analyzed data is strongly influenced by the software and the responsible operator. It allows to make the VCE more sensitive to the diverse input data. This method has already been set up within GNSS data analysis as well as the analysis of troposphere data. The benefit of an OSI realization within the VLBI combination and its potential in weighting factor determination has not been investigated before.

  7. A Combination of Central Pattern Generator-based and Reflex-based Neural Networks for Dynamic, Adaptive, Robust Bipedal Locomotion

    DEFF Research Database (Denmark)

    Di Canio, Giuliano; Larsen, Jørgen Christian; Wörgötter, Florentin

    2016-01-01

    Robotic systems inspired from humans have always been lightening up the curiosity of engineers and scientists. Of many challenges, human locomotion is a very difficult one where a number of different systems needs to interact in order to generate a correct and balanced pattern. To simulate...... the interaction of these systems, implementations with reflexbased or central pattern generator (CPG)-based controllers have been tested on bipedal robot systems. In this paper we will combine the two controller types, into a controller that works with both reflex and CPG signals. We use a reflex-based neural...... network to generate basic walking patterns of a dynamic bipedal walking robot (DACBOT) and then a CPG-based neural network to ensure robust walking behavior...

  8. [Interactive patterns detection in family communication with adolescents].

    Science.gov (United States)

    Gimeno Collado, Adelina; Anguera Argilaga, M Teresa; Berzosa Sanz, Amparo; Ramírez Ramírez, Luis

    2006-11-01

    Interactive patterns detection in family communication with adolescents. Nondistant communication is a relevant indicator for family functionality valuation. The goal of this study is to analyze this communication in order to identify specific kinds of leadership, interaction patterns and the relation between verbal and nonverbal elements in communication. The observational design exposed is an idiographic one, punctual and multidimensional, which uses field format as observation instrument. Participants were seven standardized families made up of both ancestors and an adolescent son or daughter. According to the family models analyzed, results show a predominantly democratic communication style in adults with recurrent support expressions. The sequential analysis incorporates only categories from the emitter point of view, and detects relevant sequences which show symmetric interaction between all three family members. Verbal and nonverbal channels provide complementary information. Depending on adolescents' gender different patterns in behaviour can be identified as well.

  9. A Novel Method for Detection of Epilepsy in Short and Noisy EEG Signals Using Ordinal Pattern Analysis

    Directory of Open Access Journals (Sweden)

    Iman Veisi

    2010-03-01

    Full Text Available Introduction: In this paper, a novel complexity measure is proposed to detect dynamical changes in nonlinear systems using ordinal pattern analysis of time series data taken from the system. Epilepsy is considered as a dynamical change in nonlinear and complex brain system. The ability of the proposed measure for characterizing the normal and epileptic EEG signals when the signal is short or is contaminated with noise is investigated and compared with some traditional chaos-based measures. Materials and Methods: In the proposed method, the phase space of the time series is reconstructed and then partitioned using ordinal patterns. The partitions can be labeled using a set of symbols. Therefore, the state trajectory is converted to a symbol sequence. A finite state machine is then constructed to model the sequence. A new complexity measure is proposed to detect dynamical changes using the state transition matrix of the state machine. The proposed complexity measure was applied to detect epilepsy in short and noisy EEG signals and the results were compared with some chaotic measures. Results: The results indicate that this complexity measure can distinguish normal and epileptic EEG signals with an accuracy of more than 97% for clean EEG and more than 75% for highly noised EEG signals. Discussion and Conclusion: The complexity measure can be computed in a very fast and easy way and, unlike traditional chaotic measures, is robust with respect to noise corrupting the data. This measure is also capable of dynamical change detection in short time series data.

  10. A Motion-Adaptive Deinterlacer via Hybrid Motion Detection and Edge-Pattern Recognition

    Directory of Open Access Journals (Sweden)

    He-Yuan Lin

    2008-03-01

    Full Text Available A novel motion-adaptive deinterlacing algorithm with edge-pattern recognition and hybrid motion detection is introduced. The great variety of video contents makes the processing of assorted motion, edges, textures, and the combination of them very difficult with a single algorithm. The edge-pattern recognition algorithm introduced in this paper exhibits the flexibility in processing both textures and edges which need to be separately accomplished by line average and edge-based line average before. Moreover, predicting the neighboring pixels for pattern analysis and interpolation further enhances the adaptability of the edge-pattern recognition unit when motion detection is incorporated. Our hybrid motion detection features accurate detection of fast and slow motion in interlaced video and also the motion with edges. Using only three fields for detection also renders higher temporal correlation for interpolation. The better performance of our deinterlacing algorithm with higher content-adaptability and less memory cost than the state-of-the-art 4-field motion detection algorithms can be seen from the subjective and objective experimental results of the CIF and PAL video sequences.

  11. A Motion-Adaptive Deinterlacer via Hybrid Motion Detection and Edge-Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Li Hsin-Te

    2008-01-01

    Full Text Available Abstract A novel motion-adaptive deinterlacing algorithm with edge-pattern recognition and hybrid motion detection is introduced. The great variety of video contents makes the processing of assorted motion, edges, textures, and the combination of them very difficult with a single algorithm. The edge-pattern recognition algorithm introduced in this paper exhibits the flexibility in processing both textures and edges which need to be separately accomplished by line average and edge-based line average before. Moreover, predicting the neighboring pixels for pattern analysis and interpolation further enhances the adaptability of the edge-pattern recognition unit when motion detection is incorporated. Our hybrid motion detection features accurate detection of fast and slow motion in interlaced video and also the motion with edges. Using only three fields for detection also renders higher temporal correlation for interpolation. The better performance of our deinterlacing algorithm with higher content-adaptability and less memory cost than the state-of-the-art 4-field motion detection algorithms can be seen from the subjective and objective experimental results of the CIF and PAL video sequences.

  12. Robust vehicle detection in different weather conditions: Using MIPM.

    Science.gov (United States)

    Yaghoobi Ershadi, Nastaran; Menéndez, José Manuel; Jiménez, David

    2018-01-01

    Intelligent Transportation Systems (ITS) allow us to have high quality traffic information to reduce the risk of potentially critical situations. Conventional image-based traffic detection methods have difficulties acquiring good images due to perspective and background noise, poor lighting and weather conditions. In this paper, we propose a new method to accurately segment and track vehicles. After removing perspective using Modified Inverse Perspective Mapping (MIPM), Hough transform is applied to extract road lines and lanes. Then, Gaussian Mixture Models (GMM) are used to segment moving objects and to tackle car shadow effects, we apply a chromacity-based strategy. Finally, performance is evaluated through three different video benchmarks: own recorded videos in Madrid and Tehran (with different weather conditions at urban and interurban areas); and two well-known public datasets (KITTI and DETRAC). Our results indicate that the proposed algorithms are robust, and more accurate compared to others, especially when facing occlusions, lighting variations and weather conditions.

  13. Robustness of cosmic neutrino background detection in the cosmic microwave background

    Energy Technology Data Exchange (ETDEWEB)

    Audren, Benjamin [Institut de Théorie des Phénomènes Physiques, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne (Switzerland); Bellini, Emilio; Cuesta, Antonio J.; Verde, Licia [Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E08028 Barcelona (Spain); Gontcho, Satya Gontcho A; Pérez-Ràfols, Ignasi [Dept. d' Astronomia i Meteorologia, Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E08028 Barcelona (Spain); Lesgourgues, Julien [CERN, Theory Division, CH-1211 Geneva 23 (Switzerland); Niro, Viviana [Departamento de Física Teórica, Universidad Autónoma de Madrid and Instituto de Física Teórica UAM/CSIC, Calle Nicolás Cabrera 13-15, Cantoblanco, E-28049 Madrid (Spain); Pellejero-Ibanez, Marcos; Tramonte, Denis [Instituto de Astrofísica de Canarias (IAC), C/Vía Láctea s/n, E-38200, La Laguna, Tenerife (Spain); Poulin, Vivian [LAPTh, Université de Savoie, CNRS, B.P.110, Annecy-le-Vieux F-74941 (France); Tram, Thomas, E-mail: emilio.bellini@icc.ub.edu [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom)

    2015-03-01

    The existence of a cosmic neutrino background can be probed indirectly by CMB experiments, not only by measuring the background density of radiation in the universe, but also by searching for the typical signatures of the fluctuations of free-streaming species in the temperature and polarisation power spectrum. Previous studies have already proposed a rather generic parametrisation of these fluctuations, that could help to discriminate between the signature of ordinary free-streaming neutrinos, or of more exotic dark radiation models. Current data are compatible with standard values of these parameters, which seems to bring further evidence for the existence of a cosmic neutrino background. In this work, we investigate the robustness of this conclusion under various assumptions. We generalise the definition of an effective sound speed and viscosity speed to the case of massive neutrinos or other dark radiation components experiencing a non-relativistic transition. We show that current bounds on these effective parameters do not vary significantly when considering an arbitrary value of the particle mass, or extended cosmological models with a free effective neutrino number, dynamical dark energy or a running of the primordial spectrum tilt. We conclude that it is possible to make a robust statement about the detection of the cosmic neutrino background by CMB experiments.

  14. Evaluation of a New Digital Automated Glycemic Pattern Detection Tool.

    Science.gov (United States)

    Comellas, María José; Albiñana, Emma; Artes, Maite; Corcoy, Rosa; Fernández-García, Diego; García-Alemán, Jorge; García-Cuartero, Beatriz; González, Cintia; Rivero, María Teresa; Casamira, Núria; Weissmann, Jörg

    2017-11-01

    Blood glucose meters are reliable devices for data collection, providing electronic logs of historical data easier to interpret than handwritten logbooks. Automated tools to analyze these data are necessary to facilitate glucose pattern detection and support treatment adjustment. These tools emerge in a broad variety in a more or less nonevaluated manner. The aim of this study was to compare eDetecta, a new automated pattern detection tool, to nonautomated pattern analysis in terms of time investment, data interpretation, and clinical utility, with the overarching goal to identify early in development and implementation of tool areas of improvement and potential safety risks. Multicenter web-based evaluation in which 37 endocrinologists were asked to assess glycemic patterns of 4 real reports (2 continuous subcutaneous insulin infusion [CSII] and 2 multiple daily injection [MDI]). Endocrinologist and eDetecta analyses were compared on time spent to analyze each report and agreement on the presence or absence of defined patterns. eDetecta module markedly reduced the time taken to analyze each case on the basis of the emminens eConecta reports (CSII: 18 min; MDI: 12.5), compared to the automatic eDetecta analysis. Agreement between endocrinologists and eDetecta varied depending on the patterns, with high level of agreement in patterns of glycemic variability. Further analysis of low level of agreement led to identifying areas where algorithms used could be improved to optimize trend pattern identification. eDetecta was a useful tool for glycemic pattern detection, helping clinicians to reduce time required to review emminens eConecta glycemic reports. No safety risks were identified during the study.

  15. Bridge damage detection using spatiotemporal patterns extracted from dense sensor network

    International Nuclear Information System (INIS)

    Liu, Chao; Sarkar, Soumik; Gong, Yongqiang; Laflamme, Simon; Phares, Brent

    2017-01-01

    The alarmingly degrading state of transportation infrastructures combined with their key societal and economic importance calls for automatic condition assessment methods to facilitate smart management of maintenance and repairs. With the advent of ubiquitous sensing and communication capabilities, scalable data-driven approaches is of great interest, as it can utilize large volume of streaming data without requiring detailed physical models that can be inaccurate and computationally expensive to run. Properly designed, a data-driven methodology could enable fast and automatic evaluation of infrastructures, discovery of causal dependencies among various sub-system dynamic responses, and decision making with uncertainties and lack of labeled data. In this work, a spatiotemporal pattern network (STPN) strategy built on symbolic dynamic filtering (SDF) is proposed to explore spatiotemporal behaviors in a bridge network. Data from strain gauges installed on two bridges are generated using finite element simulation for three types of sensor networks from a density perspective (dense, nominal, sparse). Causal relationships among spatially distributed strain data streams are extracted and analyzed for vehicle identification and detection, and for localization of structural degradation in bridges. Multiple case studies show significant capabilities of the proposed approach in: (i) capturing spatiotemporal features to discover causality between bridges (geographically close), (ii) robustness to noise in data for feature extraction, (iii) detecting and localizing damage via comparison of bridge responses to similar vehicle loads, and (iv) implementing real-time health monitoring and decision making work flow for bridge networks. Also, the results demonstrate increased sensitivity in detecting damages and higher reliability in quantifying the damage level with increase in sensor network density. (paper)

  16. Robust and unobtrusive algorithm based on position independence for step detection

    Science.gov (United States)

    Qiu, KeCheng; Li, MengYang; Luo, YiHan

    2018-04-01

    Running is becoming one of the most popular exercises among the people, monitoring steps can help users better understand their running process and improve exercise efficiency. In this paper, we design and implement a robust and unobtrusive algorithm based on position independence for step detection under real environment. It applies Butterworth filter to suppress high frequency interference and then employs the projection based on mathematics to transform system to solve the problem of unknown position of smartphone. Finally, using sliding window to suppress the false peak. The algorithm was tested for eight participants on the Android 7.0 platform. In our experiments, the results show that the proposed algorithm can achieve desired effect in spite of device pose.

  17. First human hNT neurons patterned on parylene-C/silicon dioxide substrates: Combining an accessible cell line and robust patterning technology for the study of the pathological adult human brain.

    Science.gov (United States)

    Unsworth, C P; Graham, E S; Delivopoulos, E; Dragunow, M; Murray, A F

    2010-12-15

    In this communication, we describe a new method which has enabled the first patterning of human neurons (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/silicon dioxide substrates. We reveal the details of the nanofabrication processes, cell differentiation and culturing protocols necessary to successfully pattern hNT neurons which are each key aspects of this new method. The benefits in patterning human neurons on silicon chip using an accessible cell line and robust patterning technology are of widespread value. Thus, using a combined technology such as this will facilitate the detailed study of the pathological human brain at both the single cell and network level. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Testing the robustness of the anthropogenic climate change detection statements using different empirical models

    KAUST Repository

    Imbers, J.; Lopez, A.; Huntingford, C.; Allen, M. R.

    2013-01-01

    This paper aims to test the robustness of the detection and attribution of anthropogenic climate change using four different empirical models that were previously developed to explain the observed global mean temperature changes over the last few decades. These studies postulated that the main drivers of these changes included not only the usual natural forcings, such as solar and volcanic, and anthropogenic forcings, such as greenhouse gases and sulfates, but also other known Earth system oscillations such as El Niño Southern Oscillation (ENSO) or the Atlantic Multidecadal Oscillation (AMO). In this paper, we consider these signals, or forced responses, and test whether or not the anthropogenic signal can be robustly detected under different assumptions for the internal variability of the climate system. We assume that the internal variability of the global mean surface temperature can be described by simple stochastic models that explore a wide range of plausible temporal autocorrelations, ranging from short memory processes exemplified by an AR(1) model to long memory processes, represented by a fractional differenced model. In all instances, we conclude that human-induced changes to atmospheric gas composition is affecting global mean surface temperature changes. ©2013. American Geophysical Union. All Rights Reserved.

  19. Salient Point Detection in Protrusion Parts of 3D Object Robust to Isometric Variations

    Science.gov (United States)

    Mirloo, Mahsa; Ebrahimnezhad, Hosein

    2018-03-01

    In this paper, a novel method is proposed to detect 3D object salient points robust to isometric variations and stable against scaling and noise. Salient points can be used as the representative points from object protrusion parts in order to improve the object matching and retrieval algorithms. The proposed algorithm is started by determining the first salient point of the model based on the average geodesic distance of several random points. Then, according to the previous salient point, a new point is added to this set of points in each iteration. By adding every salient point, decision function is updated. Hence, a condition is created for selecting the next point in which the iterative point is not extracted from the same protrusion part so that drawing out of a representative point from every protrusion part is guaranteed. This method is stable against model variations with isometric transformations, scaling, and noise with different levels of strength due to using a feature robust to isometric variations and considering the relation between the salient points. In addition, the number of points used in averaging process is decreased in this method, which leads to lower computational complexity in comparison with the other salient point detection algorithms.

  20. Testing the robustness of the anthropogenic climate change detection statements using different empirical models

    KAUST Repository

    Imbers, J.

    2013-04-27

    This paper aims to test the robustness of the detection and attribution of anthropogenic climate change using four different empirical models that were previously developed to explain the observed global mean temperature changes over the last few decades. These studies postulated that the main drivers of these changes included not only the usual natural forcings, such as solar and volcanic, and anthropogenic forcings, such as greenhouse gases and sulfates, but also other known Earth system oscillations such as El Niño Southern Oscillation (ENSO) or the Atlantic Multidecadal Oscillation (AMO). In this paper, we consider these signals, or forced responses, and test whether or not the anthropogenic signal can be robustly detected under different assumptions for the internal variability of the climate system. We assume that the internal variability of the global mean surface temperature can be described by simple stochastic models that explore a wide range of plausible temporal autocorrelations, ranging from short memory processes exemplified by an AR(1) model to long memory processes, represented by a fractional differenced model. In all instances, we conclude that human-induced changes to atmospheric gas composition is affecting global mean surface temperature changes. ©2013. American Geophysical Union. All Rights Reserved.

  1. Low cost, robust and real time system for detecting and tracking moving objects to automate cargo handling in port terminals

    NARCIS (Netherlands)

    Vaquero, V.; Repiso, E.; Sanfeliu, A.; Vissers, J.; Kwakkernaat, M.

    2016-01-01

    The presented paper addresses the problem of detecting and tracking moving objects for autonomous cargo handling in port terminals using a perception system which input data is a single layer laser scanner. A computationally low cost and robust Detection and Tracking Moving Objects (DATMO) algorithm

  2. Robust and efficient multi-frequency temporal phase unwrapping: optimal fringe frequency and pattern sequence selection.

    Science.gov (United States)

    Zhang, Minliang; Chen, Qian; Tao, Tianyang; Feng, Shijie; Hu, Yan; Li, Hui; Zuo, Chao

    2017-08-21

    Temporal phase unwrapping (TPU) is an essential algorithm in fringe projection profilometry (FPP), especially when measuring complex objects with discontinuities and isolated surfaces. Among others, the multi-frequency TPU has been proven to be the most reliable algorithm in the presence of noise. For a practical FPP system, in order to achieve an accurate, efficient, and reliable measurement, one needs to make wise choices about three key experimental parameters: the highest fringe frequency, the phase-shifting steps, and the fringe pattern sequence. However, there was very little research on how to optimize these parameters quantitatively, especially considering all three aspects from a theoretical and analytical perspective simultaneously. In this work, we propose a new scheme to determine simultaneously the optimal fringe frequency, phase-shifting steps and pattern sequence under multi-frequency TPU, robustly achieving high accuracy measurement by a minimum number of fringe frames. Firstly, noise models regarding phase-shifting algorithms as well as 3-D coordinates are established under a projector defocusing condition, which leads to the optimal highest fringe frequency for a FPP system. Then, a new concept termed frequency-to-frame ratio (FFR) that evaluates the magnitude of the contribution of each frame for TPU is defined, on which an optimal phase-shifting combination scheme is proposed. Finally, a judgment criterion is established, which can be used to judge whether the ratio between adjacent fringe frequencies is conducive to stably and efficiently unwrapping the phase. The proposed method provides a simple and effective theoretical framework to improve the accuracy, efficiency, and robustness of a practical FPP system in actual measurement conditions. The correctness of the derived models as well as the validity of the proposed schemes have been verified through extensive simulations and experiments. Based on a normal monocular 3-D FPP hardware system

  3. Damage detection using piezoelectric transducers and the Lamb wave approach: II. Robust and quantitative decision making

    International Nuclear Information System (INIS)

    Lu, Y; Wang, X; Tang, J; Ding, Y

    2008-01-01

    The propagation of Lamb waves generated by piezoelectric transducers in a one-dimensional structure has been studied comprehensively in part I of this two-paper series. Using the information embedded in the propagating waveforms, we expect to make a decision on whether damage has occurred; however, environmental and operational variances inevitably complicate the problem. To better detect the damage under these variances, we present in this paper a robust and quantitative decision-making methodology involving advanced signal processing and statistical analysis. In order to statistically evaluate the features in Lamb wave propagation in the presence of noise, we collect multiple time series (baseline signals) from the undamaged beam. A combination of the improved adaptive harmonic wavelet transform (AHWT) and the principal component analysis (PCA) is performed on the baseline signals to highlight the critical features of Lamb wave propagation in the undamaged structure. The detection of damage is facilitated by comparing the features of the test signal collected from the test structure (damaged or undamaged) with the features of the baseline signals. In this process, we employ Hotelling's T 2 statistical analysis to first purify the baseline dataset and then to quantify the deviation of the test data vector from the baseline dataset. Through experimental and numerical studies, we systematically investigate the proposed methodology in terms of the detectability (capability of detecting damage), the sensitivity (with respect to damage severity and excitation frequency) and the robustness against noises. The parametric studies also validate, from the signal processing standpoint, the guidelines of Lamb-wave-based damage detection developed in part I

  4. Color-SIFT model: a robust and an accurate shot boundary detection algorithm

    Science.gov (United States)

    Sharmila Kumari, M.; Shekar, B. H.

    2010-02-01

    In this paper, a new technique called color-SIFT model is devised for shot boundary detection. Unlike scale invariant feature transform model that uses only grayscale information and misses important visual information regarding color, here we have adopted different color planes to extract keypoints which are subsequently used to detect shot boundaries. The basic SIFT model has four stages namely scale-space peak selection, keypoint localization, orientation assignment and keypoint descriptor and all these four stages were employed to extract key descriptors in each color plane. The proposed model works on three different color planes and a fusion has been made to take a decision on number of keypoint matches for shot boundary identification and hence is different from the color global scale invariant feature transform that works on quantized images. In addition, the proposed algorithm possess invariance to linear transformation and robust to occlusion and noisy environment. Experiments have been conducted on the standard TRECVID video database to reveal the performance of the proposed model.

  5. Robust recurrent neural network modeling for software fault detection and correction prediction

    International Nuclear Information System (INIS)

    Hu, Q.P.; Xie, M.; Ng, S.H.; Levitin, G.

    2007-01-01

    Software fault detection and correction processes are related although different, and they should be studied together. A practical approach is to apply software reliability growth models to model fault detection, and fault correction process is assumed to be a delayed process. On the other hand, the artificial neural networks model, as a data-driven approach, tries to model these two processes together with no assumptions. Specifically, feedforward backpropagation networks have shown their advantages over analytical models in fault number predictions. In this paper, the following approach is explored. First, recurrent neural networks are applied to model these two processes together. Within this framework, a systematic networks configuration approach is developed with genetic algorithm according to the prediction performance. In order to provide robust predictions, an extra factor characterizing the dispersion of prediction repetitions is incorporated into the performance function. Comparisons with feedforward neural networks and analytical models are developed with respect to a real data set

  6. Robust fault detection of wind energy conversion systems based on dynamic neural networks.

    Science.gov (United States)

    Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad

    2014-01-01

    Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate.

  7. Robust dynamical pattern formation from a multifunctional minimal genetic circuit

    Directory of Open Access Journals (Sweden)

    Carrera Javier

    2010-04-01

    Full Text Available Abstract Background A practical problem during the analysis of natural networks is their complexity, thus the use of synthetic circuits would allow to unveil the natural mechanisms of operation. Autocatalytic gene regulatory networks play an important role in shaping the development of multicellular organisms, whereas oscillatory circuits are used to control gene expression under variable environments such as the light-dark cycle. Results We propose a new mechanism to generate developmental patterns and oscillations using a minimal number of genes. For this, we design a synthetic gene circuit with an antagonistic self-regulation to study the spatio-temporal control of protein expression. Here, we show that our minimal system can behave as a biological clock or memory, and it exhibites an inherent robustness due to a quorum sensing mechanism. We analyze this property by accounting for molecular noise in an heterogeneous population. We also show how the period of the oscillations is tunable by environmental signals, and we study the bifurcations of the system by constructing different phase diagrams. Conclusions As this minimal circuit is based on a single transcriptional unit, it provides a new mechanism based on post-translational interactions to generate targeted spatio-temporal behavior.

  8. Toward unsupervised outbreak detection through visual perception of new patterns

    Directory of Open Access Journals (Sweden)

    Lévy Pierre P

    2009-06-01

    Full Text Available Abstract Background Statistical algorithms are routinely used to detect outbreaks of well-defined syndromes, such as influenza-like illness. These methods cannot be applied to the detection of emerging diseases for which no preexisting information is available. This paper presents a method aimed at facilitating the detection of outbreaks, when there is no a priori knowledge of the clinical presentation of cases. Methods The method uses a visual representation of the symptoms and diseases coded during a patient consultation according to the International Classification of Primary Care 2nd version (ICPC-2. The surveillance data are transformed into color-coded cells, ranging from white to red, reflecting the increasing frequency of observed signs. They are placed in a graphic reference frame mimicking body anatomy. Simple visual observation of color-change patterns over time, concerning a single code or a combination of codes, enables detection in the setting of interest. Results The method is demonstrated through retrospective analyses of two data sets: description of the patients referred to the hospital by their general practitioners (GPs participating in the French Sentinel Network and description of patients directly consulting at a hospital emergency department (HED. Informative image color-change alert patterns emerged in both cases: the health consequences of the August 2003 heat wave were visualized with GPs' data (but passed unnoticed with conventional surveillance systems, and the flu epidemics, which are routinely detected by standard statistical techniques, were recognized visually with HED data. Conclusion Using human visual pattern-recognition capacities to detect the onset of unexpected health events implies a convenient image representation of epidemiological surveillance and well-trained "epidemiology watchers". Once these two conditions are met, one could imagine that the epidemiology watchers could signal epidemiological alerts

  9. Application of DNA Machineries for the Barcode Patterned Detection of Genes or Proteins.

    Science.gov (United States)

    Zhou, Zhixin; Luo, Guofeng; Wulf, Verena; Willner, Itamar

    2018-06-05

    The study introduces an analytical platform for the detection of genes or aptamer-ligand complexes by nucleic acid barcode patterns generated by DNA machineries. The DNA machineries consist of nucleic acid scaffolds that include specific recognition sites for the different genes or aptamer-ligand analytes. The binding of the analytes to the scaffolds initiate, in the presence of the nucleotide mixture, a cyclic polymerization/nicking machinery that yields displaced strands of variable lengths. The electrophoretic separation of the resulting strands provides barcode patterns for the specific detection of the different analytes. Mixtures of DNA machineries that yield, upon sensing of different genes (or aptamer ligands), one-, two-, or three-band barcode patterns are described. The combination of nucleic acid scaffolds acting, in the presence of polymerase/nicking enzyme and nucleotide mixture, as DNA machineries, that generate multiband barcode patterns provide an analytical platform for the detection of an individual gene out of many possible genes. The diversity of genes (or other analytes) that can be analyzed by the DNA machineries and the barcode patterned imaging is given by the Pascal's triangle. As a proof-of-concept, the detection of one of six genes, that is, TP53, Werner syndrome, Tay-Sachs normal gene, BRCA1, Tay-Sachs mutant gene, and cystic fibrosis disorder gene by six two-band barcode patterns is demonstrated. The advantages and limitations of the detection of analytes by polymerase/nicking DNA machineries that yield barcode patterns as imaging readout signals are discussed.

  10. Occupant behaviour and robustness of building design

    DEFF Research Database (Denmark)

    Buso, Tiziana; Fabi, Valentina; Andersen, Rune Korsholm

    2015-01-01

    in a dynamic building energy simulation tool (IDA ICE). The analysis was carried out by simulating 15 building envelope designs in different thermal zones of an Office Reference Building in 3 climates: Stockholm, Frankfurt and Athens.In general, robustness towards changes in occupants' behaviour increased......Occupant behaviour can cause major discrepancies between the designed and the real total energy use in buildings. A possible solution to reduce the differences between predictions and actual performances is designing robust buildings, i.e. buildings whose performances show little variations...... with alternating occupant behaviour patterns. The aim of this work was to investigate how alternating occupant behaviour patterns impact the performance of different envelope design solutions in terms of building robustness. Probabilistic models of occupants' window opening and use of shading were implemented...

  11. Face Liveness Detection Using Dynamic Local Ternary Pattern (DLTP

    Directory of Open Access Journals (Sweden)

    Sajida Parveen

    2016-05-01

    Full Text Available Face spoofing is considered to be one of the prominent threats to face recognition systems. However, in order to improve the security measures of such biometric systems against deliberate spoof attacks, liveness detection has received significant recent attention from researchers. For this purpose, analysis of facial skin texture properties becomes more popular because of its limited resource requirement and lower processing cost. The traditional method of skin analysis for liveness detection was to use Local Binary Pattern (LBP and its variants. LBP descriptors are effective, but they may exhibit certain limitations in near uniform patterns. Thus, in this paper, we demonstrate the effectiveness of Local Ternary Pattern (LTP as an alternative to LBP. In addition, we adopted Dynamic Local Ternary Pattern (DLTP, which eliminates the manual threshold setting in LTP by using Weber’s law. The proposed method was tested rigorously on four facial spoof databases: three are public domain databases and the other is the Universiti Putra Malaysia (UPM face spoof database, which was compiled through this study. The results obtained from the proposed DLTP texture descriptor attained optimum accuracy and clearly outperformed the reported LBP and LTP texture descriptors.

  12. Paradox of pattern separation and adult neurogenesis: A dual role for new neurons balancing memory resolution and robustness.

    Science.gov (United States)

    Johnston, Stephen T; Shtrahman, Matthew; Parylak, Sarah; Gonçalves, J Tiago; Gage, Fred H

    2016-03-01

    Hippocampal adult neurogenesis is thought to subserve pattern separation, the process by which similar patterns of neuronal inputs are transformed into distinct neuronal representations, permitting the discrimination of highly similar stimuli in hippocampus-dependent tasks. However, the mechanism by which immature adult-born dentate granule neurons cells (abDGCs) perform this function remains unknown. Two theories of abDGC function, one by which abDGCs modulate and sparsify activity in the dentate gyrus and one by which abDGCs act as autonomous coding units, are generally suggested to be mutually exclusive. This review suggests that these two mechanisms work in tandem to dynamically regulate memory resolution while avoiding memory interference and maintaining memory robustness. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Diversification patterns in the growth of firms : evidence from Italian manufacturing

    NARCIS (Netherlands)

    Castaldi, C.; Milakovic, M.; Secchi, A.

    2003-01-01

    We present empirical evidence on diversification patterns in Italian manufacturing firms and detect a robust relationship between firm size and diversification levels, with an elasticity of diversification that does not depend on firm size and is well below unity. Diversification does not lead to

  14. A Robust Method to Detect Zero Velocity for Improved 3D Personal Navigation Using Inertial Sensors

    Science.gov (United States)

    Xu, Zhengyi; Wei, Jianming; Zhang, Bo; Yang, Weijun

    2015-01-01

    This paper proposes a robust zero velocity (ZV) detector algorithm to accurately calculate stationary periods in a gait cycle. The proposed algorithm adopts an effective gait cycle segmentation method and introduces a Bayesian network (BN) model based on the measurements of inertial sensors and kinesiology knowledge to infer the ZV period. During the detected ZV period, an Extended Kalman Filter (EKF) is used to estimate the error states and calibrate the position error. The experiments reveal that the removal rate of ZV false detections by the proposed method increases 80% compared with traditional method at high walking speed. Furthermore, based on the detected ZV, the Personal Inertial Navigation System (PINS) algorithm aided by EKF performs better, especially in the altitude aspect. PMID:25831086

  15. Binary pattern analysis for 3D facial action unit detection

    NARCIS (Netherlands)

    Sandbach, Georgia; Zafeiriou, Stefanos; Pantic, Maja

    2012-01-01

    In this paper we propose new binary pattern features for use in the problem of 3D facial action unit (AU) detection. Two representations of 3D facial geometries are employed, the depth map and the Azimuthal Projection Distance Image (APDI). To these the traditional Local Binary Pattern is applied,

  16. Transient pattern analysis for fault detection and diagnosis of HVAC systems

    International Nuclear Information System (INIS)

    Cho, Sung-Hwan; Yang, Hoon-Cheol; Zaheer-uddin, M.; Ahn, Byung-Cheon

    2005-01-01

    Modern building HVAC systems are complex and consist of a large number of interconnected sub-systems and components. In the event of a fault, it becomes very difficult for the operator to locate and isolate the faulty component in such large systems using conventional fault detection methods. In this study, transient pattern analysis is explored as a tool for fault detection and diagnosis of an HVAC system. Several tests involving different fault replications were conducted in an environmental chamber test facility. The results show that the evolution of fault residuals forms clear and distinct patterns that can be used to isolate faults. It was found that the time needed to reach steady state for a typical building HVAC system is at least 50-60 min. This means incorrect diagnosis of faults can happen during online monitoring if the transient pattern responses are not considered in the fault detection and diagnosis analysis

  17. Neutral face classification using personalized appearance models for fast and robust emotion detection.

    Science.gov (United States)

    Chiranjeevi, Pojala; Gopalakrishnan, Viswanath; Moogi, Pratibha

    2015-09-01

    Facial expression recognition is one of the open problems in computer vision. Robust neutral face recognition in real time is a major challenge for various supervised learning-based facial expression recognition methods. This is due to the fact that supervised methods cannot accommodate all appearance variability across the faces with respect to race, pose, lighting, facial biases, and so on, in the limited amount of training data. Moreover, processing each and every frame to classify emotions is not required, as user stays neutral for majority of the time in usual applications like video chat or photo album/web browsing. Detecting neutral state at an early stage, thereby bypassing those frames from emotion classification would save the computational power. In this paper, we propose a light-weight neutral versus emotion classification engine, which acts as a pre-processer to the traditional supervised emotion classification approaches. It dynamically learns neutral appearance at key emotion (KE) points using a statistical texture model, constructed by a set of reference neutral frames for each user. The proposed method is made robust to various types of user head motions by accounting for affine distortions based on a statistical texture model. Robustness to dynamic shift of KE points is achieved by evaluating the similarities on a subset of neighborhood patches around each KE point using the prior information regarding the directionality of specific facial action units acting on the respective KE point. The proposed method, as a result, improves emotion recognition (ER) accuracy and simultaneously reduces computational complexity of the ER system, as validated on multiple databases.

  18. Topology and robustness in the Drosophila segment polarity network.

    Directory of Open Access Journals (Sweden)

    Nicholas T Ingolia

    2004-06-01

    Full Text Available A complex hierarchy of genetic interactions converts a single-celled Drosophila melanogaster egg into a multicellular embryo with 14 segments. Previously, von Dassow et al. reported that a mathematical model of the genetic interactions that defined the polarity of segments (the segment polarity network was robust (von Dassow et al. 2000. As quantitative information about the system was unavailable, parameters were sampled randomly. A surprisingly large fraction of these parameter sets allowed the model to maintain and elaborate on the segment polarity pattern. This robustness is due to the positive feedback of gene products on their own expression, which induces individual cells in a model segment to adopt different stable expression states (bistability corresponding to different cell types in the segment polarity pattern. A positive feedback loop will only yield multiple stable states when the parameters that describe it satisfy a particular inequality. By testing which random parameter sets satisfy these inequalities, I show that bistability is necessary to form the segment polarity pattern and serves as a strong predictor of which parameter sets will succeed in forming the pattern. Although the original model was robust to parameter variation, it could not reproduce the observed effects of cell division on the pattern of gene expression. I present a modified version that incorporates recent experimental evidence and does successfully mimic the consequences of cell division. The behavior of this modified model can also be understood in terms of bistability in positive feedback of gene expression. I discuss how this topological property of networks provides robust pattern formation and how large changes in parameters can change the specific pattern produced by a network.

  19. Using forbidden ordinal patterns to detect determinism in irregularly sampled time series.

    Science.gov (United States)

    Kulp, C W; Chobot, J M; Niskala, B J; Needhammer, C J

    2016-02-01

    It is known that when symbolizing a time series into ordinal patterns using the Bandt-Pompe (BP) methodology, there will be ordinal patterns called forbidden patterns that do not occur in a deterministic series. The existence of forbidden patterns can be used to identify deterministic dynamics. In this paper, the ability to use forbidden patterns to detect determinism in irregularly sampled time series is tested on data generated from a continuous model system. The study is done in three parts. First, the effects of sampling time on the number of forbidden patterns are studied on regularly sampled time series. The next two parts focus on two types of irregular-sampling, missing data and timing jitter. It is shown that forbidden patterns can be used to detect determinism in irregularly sampled time series for low degrees of sampling irregularity (as defined in the paper). In addition, comments are made about the appropriateness of using the BP methodology to symbolize irregularly sampled time series.

  20. Anthropometric geography applied to the analysis of socioeconomic disparities: cohort trends and spatial patterns of height and robustness in 20th-century Spain.

    Science.gov (United States)

    Camara, Antonio D; Roman, Joan Garcia

    2015-11-01

    Anthropometrics have been widely used to study the influence of environmental factors on health and nutritional status. In contrast, anthropometric geography has not often been employed to approximate the dynamics of spatial disparities associated with socioeconomic and demographic changes. Spain exhibited intense disparity and change during the middle decades of the 20 th century, with the result that the life courses of the corresponding cohorts were associated with diverse environmental conditions. This was also true of the Spanish territories. This paper presents insights concerning the relationship between socioeconomic changes and living conditions by combining the analysis of cohort trends and the anthropometric cartography of height and physical build. This analysis is conducted for Spanish male cohorts born 1934-1973 that were recorded in the Spanish military statistics. This information is interpreted in light of region-level data on GDP and infant mortality. Our results show an anthropometric convergence across regions that, nevertheless, did not substantially modify the spatial patterns of robustness, featuring primarily robust northeastern regions and weak Central-Southern regions. These patterns persisted until the 1990s (cohorts born during the 1970s). For the most part, anthropometric disparities were associated with socioeconomic disparities, although the former lessened over time to a greater extent than the latter. Interestingly, the various anthropometric indicators utilized here do not point to the same conclusions. Some discrepancies between height and robustness patterns have been found that moderate the statements from the analysis of cohort height alone regarding the level and evolution of living conditions across Spanish regions.

  1. Robust Indoor Human Activity Recognition Using Wireless Signals.

    Science.gov (United States)

    Wang, Yi; Jiang, Xinli; Cao, Rongyu; Wang, Xiyang

    2015-07-15

    Wireless signals-based activity detection and recognition technology may be complementary to the existing vision-based methods, especially under the circumstance of occlusions, viewpoint change, complex background, lighting condition change, and so on. This paper explores the properties of the channel state information (CSI) of Wi-Fi signals, and presents a robust indoor daily human activity recognition framework with only one pair of transmission points (TP) and access points (AP). First of all, some indoor human actions are selected as primitive actions forming a training set. Then, an online filtering method is designed to make actions' CSI curves smooth and allow them to contain enough pattern information. Each primitive action pattern can be segmented from the outliers of its multi-input multi-output (MIMO) signals by a proposed segmentation method. Lastly, in online activities recognition, by selecting proper features and Support Vector Machine (SVM) based multi-classification, activities constituted by primitive actions can be recognized insensitive to the locations, orientations, and speeds.

  2. Robust Indoor Human Activity Recognition Using Wireless Signals

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2015-07-01

    Full Text Available Wireless signals–based activity detection and recognition technology may be complementary to the existing vision-based methods, especially under the circumstance of occlusions, viewpoint change, complex background, lighting condition change, and so on. This paper explores the properties of the channel state information (CSI of Wi-Fi signals, and presents a robust indoor daily human activity recognition framework with only one pair of transmission points (TP and access points (AP. First of all, some indoor human actions are selected as primitive actions forming a training set. Then, an online filtering method is designed to make actions’ CSI curves smooth and allow them to contain enough pattern information. Each primitive action pattern can be segmented from the outliers of its multi-input multi-output (MIMO signals by a proposed segmentation method. Lastly, in online activities recognition, by selecting proper features and Support Vector Machine (SVM based multi-classification, activities constituted by primitive actions can be recognized insensitive to the locations, orientations, and speeds.

  3. Fast Traffic Sign Recognition with a Rotation Invariant Binary Pattern Based Feature

    Directory of Open Access Journals (Sweden)

    Shouyi Yin

    2015-01-01

    Full Text Available Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed.

  4. Robust Adaptable Video Copy Detection

    DEFF Research Database (Denmark)

    Assent, Ira; Kremer, Hardy

    2009-01-01

    in contrast). Our query processing combines filtering and indexing structures for efficient multistep computation of video copies under this model. We show that our model successfully identifies altered video copies and does so more reliably than existing models.......Video copy detection should be capable of identifying video copies subject to alterations e.g. in video contrast or frame rates. We propose a video copy detection scheme that allows for adaptable detection of videos that are altered temporally (e.g. frame rate change) and/or visually (e.g. change...

  5. PatternQuery: web application for fast detection of biomacromolecular structural patterns in the entire Protein Data Bank.

    Science.gov (United States)

    Sehnal, David; Pravda, Lukáš; Svobodová Vařeková, Radka; Ionescu, Crina-Maria; Koča, Jaroslav

    2015-07-01

    Well defined biomacromolecular patterns such as binding sites, catalytic sites, specific protein or nucleic acid sequences, etc. precisely modulate many important biological phenomena. We introduce PatternQuery, a web-based application designed for detection and fast extraction of such patterns. The application uses a unique query language with Python-like syntax to define the patterns that will be extracted from datasets provided by the user, or from the entire Protein Data Bank (PDB). Moreover, the database-wide search can be restricted using a variety of criteria, such as PDB ID, resolution, and organism of origin, to provide only relevant data. The extraction generally takes a few seconds for several hundreds of entries, up to approximately one hour for the whole PDB. The detected patterns are made available for download to enable further processing, as well as presented in a clear tabular and graphical form directly in the browser. The unique design of the language and the provided service could pave the way towards novel PDB-wide analyses, which were either difficult or unfeasible in the past. The application is available free of charge at http://ncbr.muni.cz/PatternQuery. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Outlier Detection in GNSS Pseudo-Range/Doppler Measurements for Robust Localization

    Directory of Open Access Journals (Sweden)

    Salim Zair

    2016-04-01

    Full Text Available In urban areas or space-constrained environments with obstacles, vehicle localization using Global Navigation Satellite System (GNSS data is hindered by Non-Line Of Sight (NLOS and multipath receptions. These phenomena induce faulty data that disrupt the precise localization of the GNSS receiver. In this study, we detect the outliers among the observations, Pseudo-Range (PR and/or Doppler measurements, and we evaluate how discarding them improves the localization. We specify a contrario modeling for GNSS raw data to derive an algorithm that partitions the dataset between inliers and outliers. Then, only the inlier data are considered in the localization process performed either through a classical Particle Filter (PF or a Rao-Blackwellization (RB approach. Both localization algorithms exclusively use GNSS data, but they differ by the way Doppler measurements are processed. An experiment has been performed with a GPS receiver aboard a vehicle. Results show that the proposed algorithms are able to detect the ‘outliers’ in the raw data while being robust to non-Gaussian noise and to intermittent satellite blockage. We compare the performance results achieved either estimating only PR outliers or estimating both PR and Doppler outliers. The best localization is achieved using the RB approach coupled with PR-Doppler outlier estimation.

  7. Schmitt-Trigger-based Recycling Sensor and Robust and High-Quality PUFs for Counterfeit IC Detection

    OpenAIRE

    Lin, Cheng-Wei; Jang, Jae-Won; Ghosh, Swaroop

    2015-01-01

    We propose Schmitt-Trigger (ST) based recycling sensor that are tailored to amplify the aging mechanisms and detect fine grained recycling (minutes to seconds). We exploit the susceptibility of ST to process variations to realize high-quality arbiter PUF. Conventional SRAM PUF suffer from environmental fluctuation-induced bit flipping. We propose 8T SRAM PUF with a back-to-back PMOS latch to improve robustness by 4X. We also propose a low-power 7T SRAM with embedded Magnetic Tunnel Junction (...

  8. Generation and Detection of Alignments in Gabor Patterns

    Directory of Open Access Journals (Sweden)

    Samy Blusseau

    2016-11-01

    Full Text Available This paper presents a method to be used in psychophysical experiments to compare directly visual perception to an a contrario algorithm, on a straight patterns detection task. The method is composed of two parts. The first part consists in building a stimulus, namely an array of oriented elements, in which an alignment is present with variable salience. The second part focuses on a detection algorithm, based on the a contrario theory, which is designed to predict which alignment will be considered as the most salient in a given stimulus.

  9. Comparison of detection pattern of HCC by ferumoxide-enhanced MRI and intratumoral blood flow pattern

    International Nuclear Information System (INIS)

    Itou, Naoki; Kotake, Fumio; Saitou, Kazuhiro; Abe, Kimihiko

    2000-01-01

    We compared the detection rate and pattern of ferumoxide-enhanced magnetic resonance imaging (Fe-MRI) with the intratumoral blood flow pattern determined by CT angiography (CTA) and CT portography (CTAP) in 124 nodes (34 cases) diagnosed as hepatocellular carcinoma (HCC) or borderline HCC, based on the clinical course. Sequences to obtain a T1-weighted images (T1W), proton density-weighted images (PDW), T2-weighted images (T2W), T2*-weighted images (T2*W) were used in Fe-MRI. In nodes shown to be hypervascular on CTA, the detection rate by Fe-MRI was 69.7%. In nodes shown to be avascular by CTAP, the detection rate by Fe-MRI was 67.3%. These rates were higher than with other flow patterns. In nodes showing high signal intensity (HSI) on any sequences, arterial blood flow was increased and portal blood flow decreased in comparison with nodes without high signal intensity. All nodes showing HSI, both on Fe-MRI T2W and T2*W, were hypervascular on CTA, and portal blood flow was absent on CTAP. Nodes showing HSI on both T2*W and T2W were considered to have greater arterial blood flow and decreased portal blood flow compared with nodes appearing as HSI on T2*W, but only as iso- or low signal intensity on T2W (Mann-Whitney U-test; p<0.05). (author)

  10. Low contrast detectability for color patterns variation of display images

    International Nuclear Information System (INIS)

    Ogura, Akio

    1998-01-01

    In recent years, the radionuclide images are acquired in digital form and displayed with false colors for signal intensity. This color scales for signal intensity have various patterns. In this study, low contrast detectability was compared the performance of gray scale cording with three color scales: the hot color scale, prism color scale and stripe color scale. SPECT images of brain phantom were displayed using four color patterns. These printed images and display images were evaluated with ROC analysis. Display images were indicated higher detectability than printed images. The hot scale and gray scale images indicated better Az of ROC than prism scale images because the prism scale images showed higher false positive rate. (author)

  11. Pattern-recognition software detecting the onset of failures in complex systems

    International Nuclear Information System (INIS)

    Mott, J.; King, R.

    1987-01-01

    A very general mathematical framework for embodying learned data from a complex system and combining it with a current observation to estimate the true current state of the system has been implemented using nearly universal pattern-recognition algorithms and applied to surveillance of the EBR-II power plant. In this application the methodology can provide signal validation and replacement of faulty signals on a near-real-time basis for hundreds of plant parameters. The mathematical framework, the pattern-recognition algorithms, examples of the learning and estimating process, and plant operating decisions made using this methodology are discussed. The entire methodology has been reduced to a set of FORTRAN subroutines which are small, fast, robust and executable on a personal computer with a serial link to the system's data acquisition computer, or on the data acquisition computer itself

  12. A robust sub-pixel edge detection method of infrared image based on tremor-based retinal receptive field model

    Science.gov (United States)

    Gao, Kun; Yang, Hu; Chen, Xiaomei; Ni, Guoqiang

    2008-03-01

    Because of complex thermal objects in an infrared image, the prevalent image edge detection operators are often suitable for a certain scene and extract too wide edges sometimes. From a biological point of view, the image edge detection operators work reliably when assuming a convolution-based receptive field architecture. A DoG (Difference-of- Gaussians) model filter based on ON-center retinal ganglion cell receptive field architecture with artificial eye tremors introduced is proposed for the image contour detection. Aiming at the blurred edges of an infrared image, the subsequent orthogonal polynomial interpolation and sub-pixel level edge detection in rough edge pixel neighborhood is adopted to locate the foregoing rough edges in sub-pixel level. Numerical simulations show that this method can locate the target edge accurately and robustly.

  13. Robust drone detection for day/night counter-UAV with static VIS and SWIR cameras

    Science.gov (United States)

    Müller, Thomas

    2017-05-01

    Recent progress in the development of unmanned aerial vehicles (UAVs) has led to more and more situations in which drones like quadrocopters or octocopters pose a potential serious thread or could be used as a powerful tool for illegal activities. Therefore, counter-UAV systems are required in a lot of applications to detect approaching drones as early as possible. In this paper, an efficient and robust algorithm is presented for UAV detection using static VIS and SWIR cameras. Whereas VIS cameras with a high resolution enable to detect UAVs in the daytime in further distances, surveillance at night can be performed with a SWIR camera. First, a background estimation and structural adaptive change detection process detects movements and other changes in the observed scene. Afterwards, the local density of changes is computed used for background density learning and to build up the foreground model which are compared in order to finally get the UAV alarm result. The density model is used to filter out noise effects, on the one hand. On the other hand, moving scene parts like moving leaves in the wind or driving cars on a street can easily be learned in order to mask such areas out and suppress false alarms there. This scene learning is done automatically simply by processing without UAVs in order to capture the normal situation. The given results document the performance of the presented approach in VIS and SWIR in different situations.

  14. Effect of robust torus on the dynamical transport

    International Nuclear Information System (INIS)

    Martins, C G L; Carvalho, R Egydio de; Caldas, I L; Roberto, M

    2010-01-01

    In the present work, we quantify the fraction of trajectories that reach a specific region of the phase space when we vary a control parameter using two symplectic maps: one non-twist and another one twist. The two maps were studied with and without a robust torus. We compare the obtained patterns and we identify the effect of the robust torus on the dynamical transport. We show that the effect of meandering-like barriers loses importance in blocking the radial transport when the robust torus is present.

  15. Rapid, Sensitive, and Reusable Detection of Glucose by a Robust Radiofrequency Integrated Passive Device Biosensor Chip

    Science.gov (United States)

    Kim, Nam-Young; Adhikari, Kishor Kumar; Dhakal, Rajendra; Chuluunbaatar, Zorigt; Wang, Cong; Kim, Eun-Soo

    2015-01-01

    Tremendous demands for sensitive and reliable label-free biosensors have stimulated intensive research into developing miniaturized radiofrequency resonators for a wide range of biomedical applications. Here, we report the development of a robust, reusable radiofrequency resonator based integrated passive device biosensor chip fabricated on a gallium arsenide substrate for the detection of glucose in water-glucose solutions and sera. As a result of the highly concentrated electromagnetic energy between the two divisions of an intertwined spiral inductor coupled with an interdigital capacitor, the proposed glucose biosensor chip exhibits linear detection ranges with high sensitivity at center frequency. This biosensor, which has a sensitivity of up to 199 MHz/mgmL−1 and a short response time of less than 2 sec, exhibited an ultralow detection limit of 0.033 μM and a reproducibility of 0.61% relative standard deviation. In addition, the quantities derived from the measured S-parameters, such as the propagation constant (γ), impedance (Z), resistance (R), inductance (L), conductance (G) and capacitance (C), enabled the effective multi-dimensional detection of glucose. PMID:25588958

  16. Hierarchical classification of dynamically varying radar pulse repetition interval modulation patterns.

    Science.gov (United States)

    Kauppi, Jukka-Pekka; Martikainen, Kalle; Ruotsalainen, Ulla

    2010-12-01

    The central purpose of passive signal intercept receivers is to perform automatic categorization of unknown radar signals. Currently, there is an urgent need to develop intelligent classification algorithms for these devices due to emerging complexity of radar waveforms. Especially multifunction radars (MFRs) capable of performing several simultaneous tasks by utilizing complex, dynamically varying scheduled waveforms are a major challenge for automatic pattern classification systems. To assist recognition of complex radar emissions in modern intercept receivers, we have developed a novel method to recognize dynamically varying pulse repetition interval (PRI) modulation patterns emitted by MFRs. We use robust feature extraction and classifier design techniques to assist recognition in unpredictable real-world signal environments. We classify received pulse trains hierarchically which allows unambiguous detection of the subpatterns using a sliding window. Accuracy, robustness and reliability of the technique are demonstrated with extensive simulations using both static and dynamically varying PRI modulation patterns. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Intrusion detection in cloud computing based attack patterns and risk assessment

    Directory of Open Access Journals (Sweden)

    Ben Charhi Youssef

    2017-05-01

    Full Text Available This paper is an extension of work originally presented in SYSCO CONF.We extend our previous work by presenting the initial results of the implementation of intrusion detection based on risk assessment on cloud computing. The idea focuses on a novel approach for detecting cyber-attacks on the cloud environment by analyzing attacks pattern using risk assessment methodologies. The aim of our solution is to combine evidences obtained from Intrusion Detection Systems (IDS deployed in a cloud with risk assessment related to each attack pattern. Our approach presents a new qualitative solution for analyzing each symptom, indicator and vulnerability analyzing impact and likelihood of distributed and multi-steps attacks directed to cloud environments. The implementation of this approach will reduce the number of false alerts and will improve the performance of the IDS.

  18. Landscape Pattern Detection in Archaeological Remote Sensing

    Directory of Open Access Journals (Sweden)

    Arianna Traviglia

    2017-12-01

    Full Text Available Automated detection of landscape patterns on Remote Sensing imagery has seen virtually little or no development in the archaeological domain, notwithstanding the fact that large portion of cultural landscapes worldwide are characterized by land engineering applications. The current extraordinary availability of remotely sensed images makes it now urgent to envision and develop automatic methods that can simplify their inspection and the extraction of relevant information from them, as the quantity of information is no longer manageable by traditional “human” visual interpretation. This paper expands on the development of automatic methods for the detection of target landscape features—represented by field system patterns—in very high spatial resolution images, within the framework of an archaeological project focused on the landscape engineering embedded in Roman cadasters. The targets of interest consist of a variety of similarly oriented objects of diverse nature (such as roads, drainage channels, etc. concurring to demark the current landscape organization, which reflects the one imposed by Romans over two millennia ago. The proposed workflow exploits the textural and shape properties of real-world elements forming the field patterns using multiscale analysis of dominant oriented response filters. Trials showed that this approach provides accurate localization of target linear objects and alignments signaled by a wide range of physical entities with very different characteristics.

  19. Robust Deep Network with Maximum Correntropy Criterion for Seizure Detection

    Directory of Open Access Journals (Sweden)

    Yu Qi

    2014-01-01

    Full Text Available Effective seizure detection from long-term EEG is highly important for seizure diagnosis. Existing methods usually design the feature and classifier individually, while little work has been done for the simultaneous optimization of the two parts. This work proposes a deep network to jointly learn a feature and a classifier so that they could help each other to make the whole system optimal. To deal with the challenge of the impulsive noises and outliers caused by EMG artifacts in EEG signals, we formulate a robust stacked autoencoder (R-SAE as a part of the network to learn an effective feature. In R-SAE, the maximum correntropy criterion (MCC is proposed to reduce the effect of noise/outliers. Unlike the mean square error (MSE, the output of the new kernel MCC increases more slowly than that of MSE when the input goes away from the center. Thus, the effect of those noises/outliers positioned far away from the center can be suppressed. The proposed method is evaluated on six patients of 33.6 hours of scalp EEG data. Our method achieves a sensitivity of 100% and a specificity of 99%, which is promising for clinical applications.

  20. A robust segmentation approach based on analysis of features for defect detection in X-ray images of aluminium castings

    DEFF Research Database (Denmark)

    Lecomte, G.; Kaftandjian, V.; Cendre, Emmanuelle

    2007-01-01

    A robust image processing algorithm has been developed for detection of small and low contrasted defects, adapted to X-ray images of castings having a non-uniform background. The sensitivity to small defects is obtained at the expense of a high false alarm rate. We present in this paper a feature...... three parameters and taking into account the fact that X-ray grey-levels follow a statistical normal law. Results are shown on a set of 684 images, involving 59 defects, on which we obtained a 100% detection rate without any false alarm....

  1. Cortical activity patterns predict robust speech discrimination ability in noise

    Science.gov (United States)

    Shetake, Jai A.; Wolf, Jordan T.; Cheung, Ryan J.; Engineer, Crystal T.; Ram, Satyananda K.; Kilgard, Michael P.

    2012-01-01

    The neural mechanisms that support speech discrimination in noisy conditions are poorly understood. In quiet conditions, spike timing information appears to be used in the discrimination of speech sounds. In this study, we evaluated the hypothesis that spike timing is also used to distinguish between speech sounds in noisy conditions that significantly degrade neural responses to speech sounds. We tested speech sound discrimination in rats and recorded primary auditory cortex (A1) responses to speech sounds in background noise of different intensities and spectral compositions. Our behavioral results indicate that rats, like humans, are able to accurately discriminate consonant sounds even in the presence of background noise that is as loud as the speech signal. Our neural recordings confirm that speech sounds evoke degraded but detectable responses in noise. Finally, we developed a novel neural classifier that mimics behavioral discrimination. The classifier discriminates between speech sounds by comparing the A1 spatiotemporal activity patterns evoked on single trials with the average spatiotemporal patterns evoked by known sounds. Unlike classifiers in most previous studies, this classifier is not provided with the stimulus onset time. Neural activity analyzed with the use of relative spike timing was well correlated with behavioral speech discrimination in quiet and in noise. Spike timing information integrated over longer intervals was required to accurately predict rat behavioral speech discrimination in noisy conditions. The similarity of neural and behavioral discrimination of speech in noise suggests that humans and rats may employ similar brain mechanisms to solve this problem. PMID:22098331

  2. Robust fault detection in bond graph framework using interval analysis and Fourier-Motzkin elimination technique

    Science.gov (United States)

    Jha, Mayank Shekhar; Chatti, Nizar; Declerck, Philippe

    2017-09-01

    This paper addresses the fault diagnosis problem of uncertain systems in the context of Bond Graph modelling technique. The main objective is to enhance the fault detection step based on Interval valued Analytical Redundancy Relations (named I-ARR) in order to overcome the problems related to false alarms, missed alarms and robustness issues. These I-ARRs are a set of fault indicators that generate the interval bounds called thresholds. A fault is detected once the nominal residuals (point valued part of I-ARRs) exceed the thresholds. However, the existing fault detection method is limited to parametric faults and it presents various limitations with regards to estimation of measurement signal derivatives, to which I-ARRs are sensitive. The novelties and scientific interest of the proposed methodology are: (1) to improve the accuracy of the measurements derivatives estimation by using a dedicated sliding mode differentiator proposed in this work, (2) to suitably integrate the Fourier-Motzkin Elimination (FME) technique within the I-ARRs based diagnosis so that measurements faults can be detected successfully. The latter provides interval bounds over the derivatives which are included in the thresholds. The proposed methodology is studied under various scenarios (parametric and measurement faults) via simulations over a mechatronic torsion bar system.

  3. EEG analysis of seizure patterns using visibility graphs for detection of generalized seizures.

    Science.gov (United States)

    Wang, Lei; Long, Xi; Arends, Johan B A M; Aarts, Ronald M

    2017-10-01

    The traditional EEG features in the time and frequency domain show limited seizure detection performance in the epileptic population with intellectual disability (ID). In addition, the influence of EEG seizure patterns on detection performance was less studied. A single-channel EEG signal can be mapped into visibility graphs (VGS), including basic visibility graph (VG), horizontal VG (HVG), and difference VG (DVG). These graphs were used to characterize different EEG seizure patterns. To demonstrate its effectiveness in identifying EEG seizure patterns and detecting generalized seizures, EEG recordings of 615h on one EEG channel from 29 epileptic patients with ID were analyzed. A novel feature set with discriminative power for seizure detection was obtained by using the VGS method. The degree distributions (DDs) of DVG can clearly distinguish EEG of each seizure pattern. The degree entropy and power-law degree power in DVG were proposed here for the first time, and they show significant difference between seizure and non-seizure EEG. The connecting structure measured by HVG can better distinguish seizure EEG from background than those by VG and DVG. A traditional EEG feature set based on frequency analysis was used here as a benchmark feature set. With a support vector machine (SVM) classifier, the seizure detection performance of the benchmark feature set (sensitivity of 24%, FD t /h of 1.8s) can be improved by combining our proposed VGS features extracted from one EEG channel (sensitivity of 38%, FD t /h of 1.4s). The proposed VGS-based features can help improve seizure detection for ID patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Implicitly Weighted Methods in Robust Image Analysis

    Czech Academy of Sciences Publication Activity Database

    Kalina, Jan

    2012-01-01

    Roč. 44, č. 3 (2012), s. 449-462 ISSN 0924-9907 R&D Projects: GA MŠk(CZ) 1M06014 Institutional research plan: CEZ:AV0Z10300504 Keywords : robustness * high breakdown point * outlier detection * robust correlation analysis * template matching * face recognition Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.767, year: 2012

  5. Design principles for robust oscillatory behavior.

    Science.gov (United States)

    Castillo-Hair, Sebastian M; Villota, Elizabeth R; Coronado, Alberto M

    2015-09-01

    Oscillatory responses are ubiquitous in regulatory networks of living organisms, a fact that has led to extensive efforts to study and replicate the circuits involved. However, to date, design principles that underlie the robustness of natural oscillators are not completely known. Here we study a three-component enzymatic network model in order to determine the topological requirements for robust oscillation. First, by simulating every possible topological arrangement and varying their parameter values, we demonstrate that robust oscillators can be obtained by augmenting the number of both negative feedback loops and positive autoregulations while maintaining an appropriate balance of positive and negative interactions. We then identify network motifs, whose presence in more complex topologies is a necessary condition for obtaining oscillatory responses. Finally, we pinpoint a series of simple architectural patterns that progressively render more robust oscillators. Together, these findings can help in the design of more reliable synthetic biomolecular networks and may also have implications in the understanding of other oscillatory systems.

  6. The significance and robustness of a plasma free amino acid (PFAA) profile-based multiplex function for detecting lung cancer

    International Nuclear Information System (INIS)

    Shingyoji, Masato; Mitsushima, Toru; Yamakado, Minoru; Kimura, Hideki; Iizasa, Toshihiko; Higashiyama, Masahiko; Imamura, Fumio; Saruki, Nobuhiro; Imaizumi, Akira; Yamamoto, Hiroshi; Daimon, Takashi; Tochikubo, Osamu

    2013-01-01

    We have recently reported on the changes in plasma free amino acid (PFAA) profiles in lung cancer patients and the efficacy of a PFAA-based, multivariate discrimination index for the early detection of lung cancer. In this study, we aimed to verify the usefulness and robustness of PFAA profiling for detecting lung cancer using new test samples. Plasma samples were collected from 171 lung cancer patients and 3849 controls without apparent cancer. PFAA levels were measured by high-performance liquid chromatography (HPLC)–electrospray ionization (ESI)–mass spectrometry (MS). High reproducibility was observed for both the change in the PFAA profiles in the lung cancer patients and the discriminating performance for lung cancer patients compared to previously reported results. Furthermore, multivariate discriminating functions obtained in previous studies clearly distinguished the lung cancer patients from the controls based on the area under the receiver-operator characteristics curve (AUC of ROC = 0.731 ~ 0.806), strongly suggesting the robustness of the methodology for clinical use. Moreover, the results suggested that the combinatorial use of this classifier and tumor markers improves the clinical performance of tumor markers. These findings suggest that PFAA profiling, which involves a relatively simple plasma assay and imposes a low physical burden on subjects, has great potential for improving early detection of lung cancer

  7. Application of pattern recognition techniques to the detection of the Phenix reactor control rods vibrations

    International Nuclear Information System (INIS)

    Zwingelstein, G.; Deat, M.; Le Guillou, G.

    1979-01-01

    The incipient detection of control rods vibrations is very important for the safety of the operating plants. This detection can be achieved by an analysis of the peaks of the power spectrum density of the neutron noise. Pattern Recognition techniques were applied to detect the rod vibrations which occured at the fast breeder Phenix (250MWe). In the first part we give a description of the basic pattern which is used to characterize the behavior of the plant. The pattern is considered as column vector in n dimensional Euclidian space where the components are the samples of the power spectral density of the neutron noise. In the second part, a recursive learning procedure of the normal patterns which provides the mean and the variance of the estimates is described. In the third part the classification problem has been framed in terms of a partitioning procedure in n dimensional space which encloses regions corresponding to normal operations. This pattern recognition scheme was applied to the detection of rod vibrations with neutron data collected at the Phenix site before and after occurence of the vibrations. The analysis was carried out with a 42-dimensional measurement space. The learned pattern was estimated with 150 measurement vectors which correspond to the period without vibrations. The efficiency of the surveillance scheme is then demonstrated by processing separately 119 measurement vectors recorded during the rod vibration period

  8. A Robust Automated Cataract Detection Algorithm Using Diagnostic Opinion Based Parameter Thresholding for Telemedicine Application

    Directory of Open Access Journals (Sweden)

    Shashwat Pathak

    2016-09-01

    Full Text Available This paper proposes and evaluates an algorithm to automatically detect the cataracts from color images in adult human subjects. Currently, methods available for cataract detection are based on the use of either fundus camera or Digital Single-Lens Reflex (DSLR camera; both are very expensive. The main motive behind this work is to develop an inexpensive, robust and convenient algorithm which in conjugation with suitable devices will be able to diagnose the presence of cataract from the true color images of an eye. An algorithm is proposed for cataract screening based on texture features: uniformity, intensity and standard deviation. These features are first computed and mapped with diagnostic opinion by the eye expert to define the basic threshold of screening system and later tested on real subjects in an eye clinic. Finally, a tele-ophthamology model using our proposed system has been suggested, which confirms the telemedicine application of the proposed system.

  9. Sleep Spindles as an Electrographic Element: Description and Automatic Detection Methods

    Directory of Open Access Journals (Sweden)

    Dorothée Coppieters ’t Wallant

    2016-01-01

    Full Text Available Sleep spindle is a peculiar oscillatory brain pattern which has been associated with a number of sleep (isolation from exteroceptive stimuli, memory consolidation and individual characteristics (intellectual quotient. Oddly enough, the definition of a spindle is both incomplete and restrictive. In consequence, there is no consensus about how to detect spindles. Visual scoring is cumbersome and user dependent. To analyze spindle activity in a more robust way, automatic sleep spindle detection methods are essential. Various algorithms were developed, depending on individual research interest, which hampers direct comparisons and meta-analyses. In this review, sleep spindle is first defined physically and topographically. From this general description, we tentatively extract the main characteristics to be detected and analyzed. A nonexhaustive list of automatic spindle detection methods is provided along with a description of their main processing principles. Finally, we propose a technique to assess the detection methods in a robust and comparable way.

  10. Robust and efficient direct multiplex amplification method for large-scale DNA detection of blood samples on FTA cards

    International Nuclear Information System (INIS)

    Jiang Bowei; Xiang Fawei; Zhao Xingchun; Wang Lihua; Fan Chunhai

    2013-01-01

    Deoxyribonucleic acid (DNA) damage arising from radiations widely occurred along with the development of nuclear weapons and clinically wide application of computed tomography (CT) scan and nuclear medicine. All ionizing radiations (X-rays, γ-rays, alpha particles, etc.) and ultraviolet (UV) radiation lead to the DNA damage. Polymerase chain reaction (PCR) is one of the most wildly used techniques for detecting DNA damage as the amplification stops at the site of the damage. Improvements to enhance the efficiency of PCR are always required and remain a great challenge. Here we establish a multiplex PCR assay system (MPAS) that is served as a robust and efficient method for direct detection of target DNA sequences in genomic DNA. The establishment of the system is performed by adding a combination of PCR enhancers to standard PCR buffer, The performance of MPAS was demonstrated by carrying out the direct PCR amplification on l.2 mm human blood punch using commercially available primer sets which include multiple primer pairs. The optimized PCR system resulted in high quality genotyping results without any inhibitory effect indicated and led to a full-profile success rate of 98.13%. Our studies demonstrate that the MPAS provides an efficient and robust method for obtaining sensitive, reliable and reproducible PCR results from human blood samples. (authors)

  11. Biometric feature embedding using robust steganography technique

    Science.gov (United States)

    Rashid, Rasber D.; Sellahewa, Harin; Jassim, Sabah A.

    2013-05-01

    This paper is concerned with robust steganographic techniques to hide and communicate biometric data in mobile media objects like images, over open networks. More specifically, the aim is to embed binarised features extracted using discrete wavelet transforms and local binary patterns of face images as a secret message in an image. The need for such techniques can arise in law enforcement, forensics, counter terrorism, internet/mobile banking and border control. What differentiates this problem from normal information hiding techniques is the added requirement that there should be minimal effect on face recognition accuracy. We propose an LSB-Witness embedding technique in which the secret message is already present in the LSB plane but instead of changing the cover image LSB values, the second LSB plane will be changed to stand as a witness/informer to the receiver during message recovery. Although this approach may affect the stego quality, it is eliminating the weakness of traditional LSB schemes that is exploited by steganalysis techniques for LSB, such as PoV and RS steganalysis, to detect the existence of secrete message. Experimental results show that the proposed method is robust against PoV and RS attacks compared to other variants of LSB. We also discussed variants of this approach and determine capacity requirements for embedding face biometric feature vectors while maintain accuracy of face recognition.

  12. Bilge dump detection from SAR imagery using local binary patterns

    CSIR Research Space (South Africa)

    Mdakane, LW

    2015-07-01

    Full Text Available 2015: Remote Sensing: Understanding the Earth for a Safer World, Milan, Italy, 26-31 July 2015 Bilge dump detection from SAR imagery using local binary patterns yz L.W. Mdakane,yz W. Kleynhans,yz C.P. Schwegmann yDepartment of Electrical...

  13. Hotspot detection using image pattern recognition based on higher-order local auto-correlation

    Science.gov (United States)

    Maeda, Shimon; Matsunawa, Tetsuaki; Ogawa, Ryuji; Ichikawa, Hirotaka; Takahata, Kazuhiro; Miyairi, Masahiro; Kotani, Toshiya; Nojima, Shigeki; Tanaka, Satoshi; Nakagawa, Kei; Saito, Tamaki; Mimotogi, Shoji; Inoue, Soichi; Nosato, Hirokazu; Sakanashi, Hidenori; Kobayashi, Takumi; Murakawa, Masahiro; Higuchi, Tetsuya; Takahashi, Eiichi; Otsu, Nobuyuki

    2011-04-01

    Below 40nm design node, systematic variation due to lithography must be taken into consideration during the early stage of design. So far, litho-aware design using lithography simulation models has been widely applied to assure that designs are printed on silicon without any error. However, the lithography simulation approach is very time consuming, and under time-to-market pressure, repetitive redesign by this approach may result in the missing of the market window. This paper proposes a fast hotspot detection support method by flexible and intelligent vision system image pattern recognition based on Higher-Order Local Autocorrelation. Our method learns the geometrical properties of the given design data without any defects as normal patterns, and automatically detects the design patterns with hotspots from the test data as abnormal patterns. The Higher-Order Local Autocorrelation method can extract features from the graphic image of design pattern, and computational cost of the extraction is constant regardless of the number of design pattern polygons. This approach can reduce turnaround time (TAT) dramatically only on 1CPU, compared with the conventional simulation-based approach, and by distributed processing, this has proven to deliver linear scalability with each additional CPU.

  14. T-Pattern Analysis and Cognitive Load Manipulation to Detect Low-Stake Lies: An Exploratory Study.

    Science.gov (United States)

    Diana, Barbara; Zurloni, Valentino; Elia, Massimiliano; Cavalera, Cesare; Realdon, Olivia; Jonsson, Gudberg K; Anguera, M Teresa

    2018-01-01

    Deception has evolved to become a fundamental aspect of human interaction. Despite the prolonged efforts in many disciplines, there has been no definite finding of a univocally "deceptive" signal. This work proposes an approach to deception detection combining cognitive load manipulation and T-pattern methodology with the objective of: (a) testing the efficacy of dual task-procedure in enhancing differences between truth tellers and liars in a low-stakes situation; (b) exploring the efficacy of T-pattern methodology in discriminating truthful reports from deceitful ones in a low-stakes situation; (c) setting the experimental design and procedure for following research. We manipulated cognitive load to enhance differences between truth tellers and liars, because of the low-stakes lies involved in our experiment. We conducted an experimental study with a convenience sample of 40 students. We carried out a first analysis on the behaviors' frequencies coded through the observation software, using SPSS (22). The aim was to describe shape and characteristics of behavior's distributions and explore differences between groups. Datasets were then analyzed with Theme 6.0 software which detects repeated patterns (T-patterns) of coded events (non-verbal behaviors) that regularly or irregularly occur within a period of observation. A descriptive analysis on T-pattern frequencies was carried out to explore differences between groups. An in-depth analysis on more complex patterns was performed to get qualitative information on the behavior structure expressed by the participants. Results show that the dual-task procedure enhances differences observed between liars and truth tellers with T-pattern methodology; moreover, T-pattern detection reveals a higher variety and complexity of behavior in truth tellers than in liars. These findings support the combination of cognitive load manipulation and T-pattern methodology for deception detection in low-stakes situations, suggesting the

  15. T-Pattern Analysis and Cognitive Load Manipulation to Detect Low-Stake Lies: An Exploratory Study

    Directory of Open Access Journals (Sweden)

    Barbara Diana

    2018-03-01

    Full Text Available Deception has evolved to become a fundamental aspect of human interaction. Despite the prolonged efforts in many disciplines, there has been no definite finding of a univocally “deceptive” signal. This work proposes an approach to deception detection combining cognitive load manipulation and T-pattern methodology with the objective of: (a testing the efficacy of dual task-procedure in enhancing differences between truth tellers and liars in a low-stakes situation; (b exploring the efficacy of T-pattern methodology in discriminating truthful reports from deceitful ones in a low-stakes situation; (c setting the experimental design and procedure for following research. We manipulated cognitive load to enhance differences between truth tellers and liars, because of the low-stakes lies involved in our experiment. We conducted an experimental study with a convenience sample of 40 students. We carried out a first analysis on the behaviors’ frequencies coded through the observation software, using SPSS (22. The aim was to describe shape and characteristics of behavior’s distributions and explore differences between groups. Datasets were then analyzed with Theme 6.0 software which detects repeated patterns (T-patterns of coded events (non-verbal behaviors that regularly or irregularly occur within a period of observation. A descriptive analysis on T-pattern frequencies was carried out to explore differences between groups. An in-depth analysis on more complex patterns was performed to get qualitative information on the behavior structure expressed by the participants. Results show that the dual-task procedure enhances differences observed between liars and truth tellers with T-pattern methodology; moreover, T-pattern detection reveals a higher variety and complexity of behavior in truth tellers than in liars. These findings support the combination of cognitive load manipulation and T-pattern methodology for deception detection in low

  16. Bio-Inspired Microsystem for Robust Genetic Assay Recognition

    Directory of Open Access Journals (Sweden)

    Jaw-Chyng Lue

    2008-01-01

    Full Text Available A compact integrated system-on-chip (SoC architecture solution for robust, real-time, and on-site genetic analysis has been proposed. This microsystem solution is noise-tolerable and suitable for analyzing the weak fluorescence patterns from a PCR prepared dual-labeled DNA microchip assay. In the architecture, a preceding VLSI differential logarithm microchip is designed for effectively computing the logarithm of the normalized input fluorescence signals. A posterior VLSI artificial neural network (ANN processor chip is used for analyzing the processed signals from the differential logarithm stage. A single-channel logarithmic circuit was fabricated and characterized. A prototype ANN chip with unsupervised winner-take-all (WTA function was designed, fabricated, and tested. An ANN learning algorithm using a novel sigmoid-logarithmic transfer function based on the supervised backpropagation (BP algorithm is proposed for robustly recognizing low-intensity patterns. Our results show that the trained new ANN can recognize low-fluorescence patterns better than an ANN using the conventional sigmoid function.

  17. Common spatial pattern combined with kernel linear discriminate and generalized radial basis function for motor imagery-based brain computer interface applications

    Science.gov (United States)

    Hekmatmanesh, Amin; Jamaloo, Fatemeh; Wu, Huapeng; Handroos, Heikki; Kilpeläinen, Asko

    2018-04-01

    Brain Computer Interface (BCI) can be a challenge for developing of robotic, prosthesis and human-controlled systems. This work focuses on the implementation of a common spatial pattern (CSP) base algorithm to detect event related desynchronization patterns. Utilizing famous previous work in this area, features are extracted by filter bank with common spatial pattern (FBCSP) method, and then weighted by a sensitive learning vector quantization (SLVQ) algorithm. In the current work, application of the radial basis function (RBF) as a mapping kernel of linear discriminant analysis (KLDA) method on the weighted features, allows the transfer of data into a higher dimension for more discriminated data scattering by RBF kernel. Afterwards, support vector machine (SVM) with generalized radial basis function (GRBF) kernel is employed to improve the efficiency and robustness of the classification. Averagely, 89.60% accuracy and 74.19% robustness are achieved. BCI Competition III, Iva data set is used to evaluate the algorithm for detecting right hand and foot imagery movement patterns. Results show that combination of KLDA with SVM-GRBF classifier makes 8.9% and 14.19% improvements in accuracy and robustness, respectively. For all the subjects, it is concluded that mapping the CSP features into a higher dimension by RBF and utilization GRBF as a kernel of SVM, improve the accuracy and reliability of the proposed method.

  18. Maximum-entropy networks pattern detection, network reconstruction and graph combinatorics

    CERN Document Server

    Squartini, Tiziano

    2017-01-01

    This book is an introduction to maximum-entropy models of random graphs with given topological properties and their applications. Its original contribution is the reformulation of many seemingly different problems in the study of both real networks and graph theory within the unified framework of maximum entropy. Particular emphasis is put on the detection of structural patterns in real networks, on the reconstruction of the properties of networks from partial information, and on the enumeration and sampling of graphs with given properties.  After a first introductory chapter explaining the motivation, focus, aim and message of the book, chapter 2 introduces the formal construction of maximum-entropy ensembles of graphs with local topological constraints. Chapter 3 focuses on the problem of pattern detection in real networks and provides a powerful way to disentangle nontrivial higher-order structural features from those that can be traced back to simpler local constraints. Chapter 4 focuses on the problem o...

  19. Robust Vehicle and Traffic Information Extraction for Highway Surveillance

    Directory of Open Access Journals (Sweden)

    Yeh Chia-Hung

    2005-01-01

    Full Text Available A robust vision-based traffic monitoring system for vehicle and traffic information extraction is developed in this research. It is challenging to maintain detection robustness at all time for a highway surveillance system. There are three major problems in detecting and tracking a vehicle: (1 the moving cast shadow effect, (2 the occlusion effect, and (3 nighttime detection. For moving cast shadow elimination, a 2D joint vehicle-shadow model is employed. For occlusion detection, a multiple-camera system is used to detect occlusion so as to extract the exact location of each vehicle. For vehicle nighttime detection, a rear-view monitoring technique is proposed to maintain tracking and detection accuracy. Furthermore, we propose a method to improve the accuracy of background extraction, which usually serves as the first step in any vehicle detection processing. Experimental results are given to demonstrate that the proposed techniques are effective and efficient for vision-based highway surveillance.

  20. Robust-yet-fragile nature of interdependent networks

    Science.gov (United States)

    Tan, Fei; Xia, Yongxiang; Wei, Zhi

    2015-05-01

    Interdependent networks have been shown to be extremely vulnerable based on the percolation model. Parshani et al. [Europhys. Lett. 92, 68002 (2010), 10.1209/0295-5075/92/68002] further indicated that the more intersimilar networks are, the more robust they are to random failures. When traffic load is considered, how do the coupling patterns impact cascading failures in interdependent networks? This question has been largely unexplored until now. In this paper, we address this question by investigating the robustness of interdependent Erdös-Rényi random graphs and Barabási-Albert scale-free networks under either random failures or intentional attacks. It is found that interdependent Erdös-Rényi random graphs are robust yet fragile under either random failures or intentional attacks. Interdependent Barabási-Albert scale-free networks, however, are only robust yet fragile under random failures but fragile under intentional attacks. We further analyze the interdependent communication network and power grid and achieve similar results. These results advance our understanding of how interdependency shapes network robustness.

  1. EEG analysis of seizure patterns using visibility graphs for detection of generalized seizures

    NARCIS (Netherlands)

    Wang, Lei; Long, Xi; Arends, J.B.A.M.; Aarts, R.M.

    2017-01-01

    Background The traditional EEG features in the time and frequency domain show limited seizure detection performance in the epileptic population with intellectual disability (ID). In addition, the influence of EEG seizure patterns on detection performance was less studied. New method A single-channel

  2. Complex networks from experimental horizontal oil–water flows: Community structure detection versus flow pattern discrimination

    International Nuclear Information System (INIS)

    Gao, Zhong-Ke; Fang, Peng-Cheng; Ding, Mei-Shuang; Yang, Dan; Jin, Ning-De

    2015-01-01

    We propose a complex network-based method to distinguish complex patterns arising from experimental horizontal oil–water two-phase flow. We first use the adaptive optimal kernel time–frequency representation (AOK TFR) to characterize flow pattern behaviors from the energy and frequency point of view. Then, we infer two-phase flow complex networks from experimental measurements and detect the community structures associated with flow patterns. The results suggest that the community detection in two-phase flow complex network allows objectively discriminating complex horizontal oil–water flow patterns, especially for the segregated and dispersed flow patterns, a task that existing method based on AOK TFR fails to work. - Highlights: • We combine time–frequency analysis and complex network to identify flow patterns. • We explore the transitional flow behaviors in terms of betweenness centrality. • Our analysis provides a novel way for recognizing complex flow patterns. • Broader applicability of our method is demonstrated and articulated

  3. Control and near-field detection of surface plasmon interference patterns.

    Science.gov (United States)

    Dvořák, Petr; Neuman, Tomáš; Břínek, Lukáš; Šamořil, Tomáš; Kalousek, Radek; Dub, Petr; Varga, Peter; Šikola, Tomáš

    2013-06-12

    The tailoring of electromagnetic near-field properties is the central task in the field of nanophotonics. In addition to 2D optics for optical nanocircuits, confined and enhanced electric fields are utilized in detection and sensing, photovoltaics, spatially localized spectroscopy (nanoimaging), as well as in nanolithography and nanomanipulation. For practical purposes, it is necessary to develop easy-to-use methods for controlling the electromagnetic near-field distribution. By imaging optical near-fields using a scanning near-field optical microscope, we demonstrate that surface plasmon polaritons propagating from slits along the metal-dielectric interface form tunable interference patterns. We present a simple way how to control the resulting interference patterns both by variation of the angle between two slits and, for a fixed slit geometry, by a proper combination of laser beam polarization and inhomogeneous far-field illumination of the structure. Thus the modulation period of interference patterns has become adjustable and new variable patterns consisting of stripelike and dotlike motifs have been achieved, respectively.

  4. Damage detection methodology under variable load conditions based on strain field pattern recognition using FBGs, nonlinear principal component analysis, and clustering techniques

    Science.gov (United States)

    Sierra-Pérez, Julián; Torres-Arredondo, M.-A.; Alvarez-Montoya, Joham

    2018-01-01

    Structural health monitoring consists of using sensors integrated within structures together with algorithms to perform load monitoring, damage detection, damage location, damage size and severity, and prognosis. One possibility is to use strain sensors to infer structural integrity by comparing patterns in the strain field between the pristine and damaged conditions. In previous works, the authors have demonstrated that it is possible to detect small defects based on strain field pattern recognition by using robust machine learning techniques. They have focused on methodologies based on principal component analysis (PCA) and on the development of several unfolding and standardization techniques, which allow dealing with multiple load conditions. However, before a real implementation of this approach in engineering structures, changes in the strain field due to conditions different from damage occurrence need to be isolated. Since load conditions may vary in most engineering structures and promote significant changes in the strain field, it is necessary to implement novel techniques for uncoupling such changes from those produced by damage occurrence. A damage detection methodology based on optimal baseline selection (OBS) by means of clustering techniques is presented. The methodology includes the use of hierarchical nonlinear PCA as a nonlinear modeling technique in conjunction with Q and nonlinear-T 2 damage indices. The methodology is experimentally validated using strain measurements obtained by 32 fiber Bragg grating sensors bonded to an aluminum beam under dynamic bending loads and simultaneously submitted to variations in its pitch angle. The results demonstrated the capability of the methodology for clustering data according to 13 different load conditions (pitch angles), performing the OBS and detecting six different damages induced in a cumulative way. The proposed methodology showed a true positive rate of 100% and a false positive rate of 1.28% for a

  5. Electrically robust silver nanowire patterns transferrable onto various substrates

    Science.gov (United States)

    Liu, Gui-Shi; Liu, Chuan; Chen, Hui-Jiuan; Cao, Wu; Qiu, Jing-Shen; Shieh, Han-Ping D.; Yang, Bo-Ru

    2016-03-01

    We report a facile technique for patterning and transferring silver nanowires (AgNWs) onto various substrates. By employing only UV/O3 and vapor treatment of hexamethyldisilazane (HMDS), we are able to accurately manipulate the surface energy via alternating the terminal groups of a polydimethylsiloxane (PDMS) substrate, so as to assist selective formation and exfoliation of AgNW films. A simple UV/O3 treatment on PDMS enables uniform, well-defined, and highly conductive patterns of AgNWs after spin-coating. A vapor treatment of HMDS lowers the surface energy of the oxidized PDMS so that the patterned AgNWs embedded in an epoxy resin (EPR) are cleanly transferred from the PDMS to the target substrate. It is found that the AgNW-EPR composite on polyethylene glycol terephthalate (PET) exhibits remarkable durability under the bending test, tape test, ultrasonic treatment in water, and immersion of chemical solvents. In addition, we demonstrate that the AgNW-EPR composite work well as conductive patterns on the oxidized PDMS, polyvinyl alcohol (PVA), paper, and curved glass. The facile technique extends the applicability of AgNWs in the field of electronics, and it is potentially applicable to other nanomaterials.We report a facile technique for patterning and transferring silver nanowires (AgNWs) onto various substrates. By employing only UV/O3 and vapor treatment of hexamethyldisilazane (HMDS), we are able to accurately manipulate the surface energy via alternating the terminal groups of a polydimethylsiloxane (PDMS) substrate, so as to assist selective formation and exfoliation of AgNW films. A simple UV/O3 treatment on PDMS enables uniform, well-defined, and highly conductive patterns of AgNWs after spin-coating. A vapor treatment of HMDS lowers the surface energy of the oxidized PDMS so that the patterned AgNWs embedded in an epoxy resin (EPR) are cleanly transferred from the PDMS to the target substrate. It is found that the AgNW-EPR composite on polyethylene

  6. A Robust Semi-Parametric Test for Detecting Trait-Dependent Diversification.

    Science.gov (United States)

    Rabosky, Daniel L; Huang, Huateng

    2016-03-01

    Rates of species diversification vary widely across the tree of life and there is considerable interest in identifying organismal traits that correlate with rates of speciation and extinction. However, it has been challenging to develop methodological frameworks for testing hypotheses about trait-dependent diversification that are robust to phylogenetic pseudoreplication and to directionally biased rates of character change. We describe a semi-parametric test for trait-dependent diversification that explicitly requires replicated associations between character states and diversification rates to detect effects. To use the method, diversification rates are reconstructed across a phylogenetic tree with no consideration of character states. A test statistic is then computed to measure the association between species-level traits and the corresponding diversification rate estimates at the tips of the tree. The empirical value of the test statistic is compared to a null distribution that is generated by structured permutations of evolutionary rates across the phylogeny. The test is applicable to binary discrete characters as well as continuous-valued traits and can accommodate extremely sparse sampling of character states at the tips of the tree. We apply the test to several empirical data sets and demonstrate that the method has acceptable Type I error rates. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Criteria for robustness of heteroclinic cycles in neural microcircuits

    Science.gov (United States)

    2011-01-01

    We introduce a test for robustness of heteroclinic cycles that appear in neural microcircuits modeled as coupled dynamical cells. Robust heteroclinic cycles (RHCs) can appear as robust attractors in Lotka-Volterra-type winnerless competition (WLC) models as well as in more general coupled and/or symmetric systems. It has been previously suggested that RHCs may be relevant to a range of neural activities, from encoding and binding to spatio-temporal sequence generation. The robustness or otherwise of such cycles depends both on the coupling structure and the internal structure of the neurons. We verify that robust heteroclinic cycles can appear in systems of three identical cells, but only if we require perturbations to preserve some invariant subspaces for the individual cells. On the other hand, heteroclinic attractors can appear robustly in systems of four or more identical cells for some symmetric coupling patterns, without restriction on the internal dynamics of the cells. PMID:22656192

  8. Statistical analyses of scatterplots to identify important factors in large-scale simulations, 2: robustness of techniques

    International Nuclear Information System (INIS)

    Kleijnen, J.P.C.; Helton, J.C.

    1999-01-01

    The robustness of procedures for identifying patterns in scatterplots generated in Monte Carlo sensitivity analyses is investigated. These procedures are based on attempts to detect increasingly complex patterns in the scatterplots under consideration and involve the identification of (i) linear relationships with correlation coefficients, (ii) monotonic relationships with rank correlation coefficients, (iii) trends in central tendency as defined by means, medians and the Kruskal-Wallis statistic, (iv) trends in variability as defined by variances and interquartile ranges, and (v) deviations from randomness as defined by the chi-square statistic. The following two topics related to the robustness of these procedures are considered for a sequence of example analyses with a large model for two-phase fluid flow: the presence of Type I and Type II errors, and the stability of results obtained with independent Latin hypercube samples. Observations from analysis include: (i) Type I errors are unavoidable, (ii) Type II errors can occur when inappropriate analysis procedures are used, (iii) physical explanations should always be sought for why statistical procedures identify variables as being important, and (iv) the identification of important variables tends to be stable for independent Latin hypercube samples

  9. Development of a robust chromatographic method for the detection of chlorophenols in cork oak forest soils.

    Science.gov (United States)

    McLellan, Iain; Hursthouse, Andrew; Morrison, Calum; Varela, Adélia; Pereira, Cristina Silva

    2014-02-01

    A major concern for the cork and wine industry is 'cork taint' which is associated with chloroanisoles, the microbial degradation metabolites of chlorophenols. The use of chlorophenolic compounds as pesticides within cork forests was prohibited in 1993 in the European Union (EU) following the introduction of industry guidance. However, cork produced outside the EU is still thought to be affected and simple, robust methods for chlorophenol analysis are required for wider environmental assessment by industry and local environmental regulators. Soil samples were collected from three common-use forests in Tunisia and from one privately owned forest in Sardinia, providing examples of varied management practice and degree of human intervention. These provided challenge samples for the optimisation of a HPLC-UV detection method. It produced recoveries consistently >75% against a soil CRM (ERM-CC008) for pentachlorophenol. The optimised method, with ultraviolet (diode array) detection is able to separate and quantify 16 different chlorophenols at field concentrations greater than the limits of detection ranging from 6.5 to 191.3 μg/kg (dry weight). Application to a range of field samples demonstrated the absence of widespread contamination in forest soils at sites sampled in Sardinia and Tunisia.

  10. Leak detection of complex pipelines based on the filter diagonalization method: robust technique for eigenvalue assessment

    International Nuclear Information System (INIS)

    Lay-Ekuakille, Aimé; Pariset, Carlo; Trotta, Amerigo

    2010-01-01

    The FDM (filter diagonalization method), an interesting technique used in nuclear magnetic resonance data processing for tackling FFT (fast Fourier transform) limitations, can be used by considering pipelines, especially complex configurations, as a vascular apparatus with arteries, veins, capillaries, etc. Thrombosis, which might occur in humans, can be considered as a leakage for the complex pipeline, the human vascular apparatus. The choice of eigenvalues in FDM or in spectra-based techniques is a key issue in recovering the solution of the main equation (for FDM) or frequency domain transformation (for FFT) in order to determine the accuracy in detecting leaks in pipelines. This paper deals with the possibility of improving the leak detection accuracy of the FDM technique thanks to a robust algorithm by assessing the problem of eigenvalues, making it less experimental and more analytical using Tikhonov-based regularization techniques. The paper starts from the results of previous experimental procedures carried out by the authors

  11. Robustness of Ensemble Climate Projections Analyzed with Climate Signal Maps: Seasonal and Extreme Precipitation for Germany

    Directory of Open Access Journals (Sweden)

    Susanne Pfeifer

    2015-05-01

    Full Text Available Climate signal maps can be used to identify regions where robust climate changes can be derived from an ensemble of climate change simulations. Here, robustness is defined as a combination of model agreement and the significance of the individual model projections. Climate signal maps do not show all information available from the model ensemble, but give a condensed view in order to be useful for non-climate scientists who have to assess climate change impact during the course of their work. Three different ensembles of regional climate projections have been analyzed regarding changes of seasonal mean and extreme precipitation (defined as the number of days exceeding the 95th percentile threshold of daily precipitation for Germany, using climate signal maps. Although the models used and the scenario assumptions differ for the three ensembles (representative concentration pathway (RCP 4.5 vs. RCP8.5 vs. A1B, some similarities in the projections of future seasonal and extreme precipitation can be seen. For the winter season, both mean and extreme precipitation are projected to increase. The strength, robustness and regional pattern of this increase, however, depends on the ensemble. For summer, a robust decrease of mean precipitation can be detected only for small regions in southwestern Germany and only from two of the three ensembles, whereas none of them projects a robust increase of summer extreme precipitation.

  12. Characterizing Dynamic Walking Patterns and Detecting Falls with Wearable Sensors Using Gaussian Process Methods

    Directory of Open Access Journals (Sweden)

    Taehwan Kim

    2017-05-01

    Full Text Available By incorporating a growing number of sensors and adopting machine learning technologies, wearable devices have recently become a prominent health care application domain. Among the related research topics in this field, one of the most important issues is detecting falls while walking. Since such falls may lead to serious injuries, automatically and promptly detecting them during daily use of smartphones and/or smart watches is a particular need. In this paper, we investigate the use of Gaussian process (GP methods for characterizing dynamic walking patterns and detecting falls while walking with built-in wearable sensors in smartphones and/or smartwatches. For the task of characterizing dynamic walking patterns in a low-dimensional latent feature space, we propose a novel approach called auto-encoded Gaussian process dynamical model, in which we combine a GP-based state space modeling method with a nonlinear dimensionality reduction method in a unique manner. The Gaussian process methods are fit for this task because one of the most import strengths of the Gaussian process methods is its capability of handling uncertainty in the model parameters. Also for detecting falls while walking, we propose to recycle the latent samples generated in training the auto-encoded Gaussian process dynamical model for GP-based novelty detection, which can lead to an efficient and seamless solution to the detection task. Experimental results show that the combined use of these GP-based methods can yield promising results for characterizing dynamic walking patterns and detecting falls while walking with the wearable sensors.

  13. SparCLeS: dynamic l₁ sparse classifiers with level sets for robust beard/moustache detection and segmentation.

    Science.gov (United States)

    Le, T Hoang Ngan; Luu, Khoa; Savvides, Marios

    2013-08-01

    Robust facial hair detection and segmentation is a highly valued soft biometric attribute for carrying out forensic facial analysis. In this paper, we propose a novel and fully automatic system, called SparCLeS, for beard/moustache detection and segmentation in challenging facial images. SparCLeS uses the multiscale self-quotient (MSQ) algorithm to preprocess facial images and deal with illumination variation. Histogram of oriented gradients (HOG) features are extracted from the preprocessed images and a dynamic sparse classifier is built using these features to classify a facial region as either containing skin or facial hair. A level set based approach, which makes use of the advantages of both global and local information, is then used to segment the regions of a face containing facial hair. Experimental results demonstrate the effectiveness of our proposed system in detecting and segmenting facial hair regions in images drawn from three databases, i.e., the NIST Multiple Biometric Grand Challenge (MBGC) still face database, the NIST Color Facial Recognition Technology FERET database, and the Labeled Faces in the Wild (LFW) database.

  14. Motion Pattern Extraction and Event Detection for Automatic Visual Surveillance

    Directory of Open Access Journals (Sweden)

    Benabbas Yassine

    2011-01-01

    Full Text Available Efficient analysis of human behavior in video surveillance scenes is a very challenging problem. Most traditional approaches fail when applied in real conditions and contexts like amounts of persons, appearance ambiguity, and occlusion. In this work, we propose to deal with this problem by modeling the global motion information obtained from optical flow vectors. The obtained direction and magnitude models learn the dominant motion orientations and magnitudes at each spatial location of the scene and are used to detect the major motion patterns. The applied region-based segmentation algorithm groups local blocks that share the same motion direction and speed and allows a subregion of the scene to appear in different patterns. The second part of the approach consists in the detection of events related to groups of people which are merge, split, walk, run, local dispersion, and evacuation by analyzing the instantaneous optical flow vectors and comparing the learned models. The approach is validated and experimented on standard datasets of the computer vision community. The qualitative and quantitative results are discussed.

  15. Second order statistics of bilinear forms of robust scatter estimators

    KAUST Repository

    Kammoun, Abla; Couillet, Romain; Pascal, Fré dé ric

    2015-01-01

    . In particular, we analyze the fluctuations of bilinear forms of the robust shrinkage estimator of covariance matrix. We show that this result can be leveraged in order to improve the design of robust detection methods. As an example, we provide an improved

  16. Emergence of robustness in networks of networks

    Science.gov (United States)

    Roth, Kevin; Morone, Flaviano; Min, Byungjoon; Makse, Hernán A.

    2017-06-01

    A model of interdependent networks of networks (NONs) was introduced recently [Proc. Natl. Acad. Sci. (USA) 114, 3849 (2017), 10.1073/pnas.1620808114] in the context of brain activation to identify the neural collective influencers in the brain NON. Here we investigate the emergence of robustness in such a model, and we develop an approach to derive an exact expression for the random percolation transition in Erdös-Rényi NONs of this kind. Analytical calculations are in agreement with numerical simulations, and highlight the robustness of the NON against random node failures, which thus presents a new robust universality class of NONs. The key aspect of this robust NON model is that a node can be activated even if it does not belong to the giant mutually connected component, thus allowing the NON to be built from below the percolation threshold, which is not possible in previous models of interdependent networks. Interestingly, the phase diagram of the model unveils particular patterns of interconnectivity for which the NON is most vulnerable, thereby marking the boundary above which the robustness of the system improves with increasing dependency connections.

  17. A robust high-throughput fungal biosensor assay for the detection of estrogen activity.

    Science.gov (United States)

    Zutz, Christoph; Wagener, Karen; Yankova, Desislava; Eder, Stefanie; Möstl, Erich; Drillich, Marc; Rychli, Kathrin; Wagner, Martin; Strauss, Joseph

    2017-10-01

    Estrogenic active compounds are present in a variety of sources and may alter biological functions in vertebrates. Therefore, it is crucial to develop innovative analytical systems that allow us to screen a broad spectrum of matrices and deliver fast and reliable results. We present the adaptation and validation of a fungal biosensor for the detection of estrogen activity in cow derived samples and tested the clinical applicability for pregnancy diagnosis in 140 mares and 120 cows. As biosensor we used a previously engineered genetically modified strain of the filamentous fungus Aspergillus nidulans, which contains the human estrogen receptor alpha and a reporter construct, in which β-galactosidase gene expression is controlled by an estrogen-responsive-element. The estrogen response of the fungal biosensor was validated with blood, urine, feces, milk and saliva. All matrices were screened for estrogenic activity prior to and after chemical extraction and the results were compared to an enzyme immunoassay (EIA). The biosensor showed consistent results in milk, urine and feces, which were comparable to those of the EIA. In contrast to the EIA, no sample pre-treatment by chemical extraction was needed. For 17β-estradiol, the biosensor showed a limit of detection of 1ng/L. The validation of the biosensor for pregnancy diagnosis revealed a specificity of 100% and a sensitivity of more than 97%. In conclusion, we developed and validated a highly robust fungal biosensor for detection of estrogen activity, which is highly sensitive and economic as it allows analyzing in high-throughput formats without the necessity for organic solvents. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Robust multi-tissue gene panel for cancer detection

    Directory of Open Access Journals (Sweden)

    Talantov Dmitri

    2010-06-01

    Full Text Available Abstract Background We have identified a set of genes whose relative mRNA expression levels in various solid tumors can be used to robustly distinguish cancer from matching normal tissue. Our current feature set consists of 113 gene probes for 104 unique genes, originally identified as differentially expressed in solid primary tumors in microarray data on Affymetrix HG-U133A platform in five tissue types: breast, colon, lung, prostate and ovary. For each dataset, we first identified a set of genes significantly differentially expressed in tumor vs. normal tissue at p-value = 0.05 using an experimentally derived error model. Our common cancer gene panel is the intersection of these sets of significantly dysregulated genes and can distinguish tumors from normal tissue on all these five tissue types. Methods Frozen tumor specimens were obtained from two commercial vendors Clinomics (Pittsfield, MA and Asterand (Detroit, MI. Biotinylated targets were prepared using published methods (Affymetrix, CA and hybridized to Affymetrix U133A GeneChips (Affymetrix, CA. Expression values for each gene were calculated using Affymetrix GeneChip analysis software MAS 5.0. We then used a software package called Genes@Work for differential expression discovery, and SVM light linear kernel for building classification models. Results We validate the predictability of this gene list on several publicly available data sets generated on the same platform. Of note, when analysing the lung cancer data set of Spira et al, using an SVM linear kernel classifier, our gene panel had 94.7% leave-one-out accuracy compared to 87.8% using the gene panel in the original paper. In addition, we performed high-throughput validation on the Dana Farber Cancer Institute GCOD database and several GEO datasets. Conclusions Our result showed the potential for this panel as a robust classification tool for multiple tumor types on the Affymetrix platform, as well as other whole genome arrays

  19. Computation of a Reference Model for Robust Fault Detection and Isolation Residual Generation

    Directory of Open Access Journals (Sweden)

    Emmanuel Mazars

    2008-01-01

    Full Text Available This paper considers matrix inequality procedures to address the robust fault detection and isolation (FDI problem for linear time-invariant systems subject to disturbances, faults, and polytopic or norm-bounded uncertainties. We propose a design procedure for an FDI filter that aims to minimize a weighted combination of the sensitivity of the residual signal to disturbances and modeling errors, and the deviation of the faults to residual dynamics from a fault to residual reference model, using the ℋ∞-norm as a measure. A key step in our procedure is the design of an optimal fault reference model. We show that the optimal design requires the solution of a quadratic matrix inequality (QMI optimization problem. Since the solution of the optimal problem is intractable, we propose a linearization technique to derive a numerically tractable suboptimal design procedure that requires the solution of a linear matrix inequality (LMI optimization. A jet engine example is employed to demonstrate the effectiveness of the proposed approach.

  20. Fluid pipeline system leak detection based on neural network and pattern recognition

    International Nuclear Information System (INIS)

    Tang Xiujia

    1998-01-01

    The mechanism of the stress wave propagation along the pipeline system of NPP, caused by turbulent ejection from pipeline leakage, is researched. A series of characteristic index are described in time domain or frequency domain, and compress numerical algorithm is developed for original data compression. A back propagation neural networks (BPNN) with the input matrix composed by stress wave characteristics in time domain or frequency domain is first proposed to classify various situations of the pipeline, in order to detect the leakage in the fluid flow pipelines. The capability of the new method had been demonstrated by experiments and finally used to design a handy instrument for the pipeline leakage detection. Usually a pipeline system has many inner branches and often in adjusting dynamic condition, it is difficult for traditional pipeline diagnosis facilities to identify the difference between inner pipeline operation and pipeline fault. The author first proposed pipeline wave propagation identification by pattern recognition to diagnose pipeline leak. A series of pattern primitives such as peaks, valleys, horizon lines, capstan peaks, dominant relations, slave relations, etc., are used to extract features of the negative pressure wave form. The context-free grammar of symbolic representation of the negative wave form is used, and a negative wave form parsing system with application to structural pattern recognition based on the representation is first proposed to detect and localize leaks of the fluid pipelines

  1. Dynamic robustness of knowledge collaboration network of open source product development community

    Science.gov (United States)

    Zhou, Hong-Li; Zhang, Xiao-Dong

    2018-01-01

    As an emergent innovative design style, open source product development communities are characterized by a self-organizing, mass collaborative, networked structure. The robustness of the community is critical to its performance. Using the complex network modeling method, the knowledge collaboration network of the community is formulated, and the robustness of the network is systematically and dynamically studied. The characteristics of the network along the development period determine that its robustness should be studied from three time stages: the start-up, development and mature stages of the network. Five kinds of user-loss pattern are designed, to assess the network's robustness under different situations in each of these three time stages. Two indexes - the largest connected component and the network efficiency - are used to evaluate the robustness of the community. The proposed approach is applied in an existing open source car design community. The results indicate that the knowledge collaboration networks show different levels of robustness in different stages and different user loss patterns. Such analysis can be applied to provide protection strategies for the key users involved in knowledge dissemination and knowledge contribution at different stages of the network, thereby promoting the sustainable and stable development of the open source community.

  2. A simple, low-cost and robust capillary zone electrophoresis Method with capacitively coupled contactless conductivity detection for the routine determination of four selected penicillins in Money-constrained laboratories

    NARCIS (Netherlands)

    Paul, Prasanta; Sänger-van de Griend, Cari; Adams, Erwin; Van Schepdael, Ann

    2018-01-01

    A simple and robust capillary zone electrophoresis Method was developed and validated for the determination of amoxicillin and clavulanate, ampicillin, phenoxymethyl penicillin (Pen V) as well as flucloxacillin. Capacitively coupled contactless conductivity detection was employed as detection Mode

  3. Unsupervised learning for robust bitcoin fraud detection

    CSIR Research Space (South Africa)

    Monamo, Patrick

    2016-08-01

    Full Text Available The rampant absorption of Bitcoin as a cryptographic currency, along with rising cybercrime activities, warrants utilization of anomaly detection to identify potential fraud. Anomaly detection plays a pivotal role in data mining since most outlying...

  4. Robust nanopatterning by laser-induced dewetting of metal nanofilms

    International Nuclear Information System (INIS)

    Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna

    2006-01-01

    We have observed nanopattern formation with robust and controllable spatial ordering by laser-induced dewetting in nanoscopic metal films. Pattern evolution in Co film of thickness 1≤h≤8 nm on SiO 2 was achieved under multiple pulse irradiation using a 9 ns pulse laser. Dewetting leads to the formation of cellular patterns which evolve into polygons that eventually break up into nanoparticles with unimodal size distribution and short range ordering in nearest neighbour spacing R. Spatial ordering was attributed to a hydrodynamic thin film instability and resulted in a predictable variation of R and particle diameter D with h. The length scales R and D were found to be independent of the laser energy. These results suggest that spatially ordered metal nanoparticles can be robustly assembled by laser-induced dewetting

  5. Robust nanopatterning by laser-induced dewetting of metal nanofilms

    Energy Technology Data Exchange (ETDEWEB)

    Favazza, Christopher [Department of Physics, Washington University in St Louis, MO 63130 (United States); Kalyanaraman, Ramki [Department of Physics, Washington University in St Louis, MO 63130 (United States); Sureshkumar, Radhakrishna [Center for Materials Innovation, Washington University in St Louis, MO 63130 (United States)

    2006-08-28

    We have observed nanopattern formation with robust and controllable spatial ordering by laser-induced dewetting in nanoscopic metal films. Pattern evolution in Co film of thickness 1{<=}h{<=}8 nm on SiO{sub 2} was achieved under multiple pulse irradiation using a 9 ns pulse laser. Dewetting leads to the formation of cellular patterns which evolve into polygons that eventually break up into nanoparticles with unimodal size distribution and short range ordering in nearest neighbour spacing R. Spatial ordering was attributed to a hydrodynamic thin film instability and resulted in a predictable variation of R and particle diameter D with h. The length scales R and D were found to be independent of the laser energy. These results suggest that spatially ordered metal nanoparticles can be robustly assembled by laser-induced dewetting.

  6. Robust nanopatterning by laser-induced dewetting of metal nanofilms.

    Science.gov (United States)

    Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna

    2006-08-28

    We have observed nanopattern formation with robust and controllable spatial ordering by laser-induced dewetting in nanoscopic metal films. Pattern evolution in Co film of thickness 1≤h≤8 nm on SiO(2) was achieved under multiple pulse irradiation using a 9 ns pulse laser. Dewetting leads to the formation of cellular patterns which evolve into polygons that eventually break up into nanoparticles with unimodal size distribution and short range ordering in nearest neighbour spacing R. Spatial ordering was attributed to a hydrodynamic thin film instability and resulted in a predictable variation of R and particle diameter D with h. The length scales R and D were found to be independent of the laser energy. These results suggest that spatially ordered metal nanoparticles can be robustly assembled by laser-induced dewetting.

  7. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures

    Science.gov (United States)

    Yuk, Hyunwoo; Zhang, Teng; Parada, German Alberto; Liu, Xinyue; Zhao, Xuanhe

    2016-06-01

    Inspired by mammalian skins, soft hybrids integrating the merits of elastomers and hydrogels have potential applications in diverse areas including stretchable and bio-integrated electronics, microfluidics, tissue engineering, soft robotics and biomedical devices. However, existing hydrogel-elastomer hybrids have limitations such as weak interfacial bonding, low robustness and difficulties in patterning microstructures. Here, we report a simple yet versatile method to assemble hydrogels and elastomers into hybrids with extremely robust interfaces (interfacial toughness over 1,000 Jm-2) and functional microstructures such as microfluidic channels and electrical circuits. The proposed method is generally applicable to various types of tough hydrogels and diverse commonly used elastomers including polydimethylsiloxane Sylgard 184, polyurethane, latex, VHB and Ecoflex. We further demonstrate applications enabled by the robust and microstructured hydrogel-elastomer hybrids including anti-dehydration hydrogel-elastomer hybrids, stretchable and reactive hydrogel-elastomer microfluidics, and stretchable hydrogel circuit boards patterned on elastomer.

  8. Robust Vehicle Detection under Various Environmental Conditions Using an Infrared Thermal Camera and Its Application to Road Traffic Flow Monitoring

    Directory of Open Access Journals (Sweden)

    Toshiyuki Nakamiya

    2013-06-01

    Full Text Available We have already proposed a method for detecting vehicle positions and their movements (henceforth referred to as “our previous method” using thermal images taken with an infrared thermal camera. Our experiments have shown that our previous method detects vehicles robustly under four different environmental conditions which involve poor visibility conditions in snow and thick fog. Our previous method uses the windshield and its surroundings as the target of the Viola-Jones detector. Some experiments in winter show that the vehicle detection accuracy decreases because the temperatures of many windshields approximate those of the exterior of the windshields. In this paper, we propose a new vehicle detection method (henceforth referred to as “our new method”. Our new method detects vehicles based on tires’ thermal energy reflection. We have done experiments using three series of thermal images for which the vehicle detection accuracies of our previous method are low. Our new method detects 1,417 vehicles (92.8% out of 1,527 vehicles, and the number of false detection is 52 in total. Therefore, by combining our two methods, high vehicle detection accuracies are maintained under various environmental conditions. Finally, we apply the traffic information obtained by our two methods to traffic flow automatic monitoring, and show the effectiveness of our proposal.

  9. Robust vehicle detection under various environmental conditions using an infrared thermal camera and its application to road traffic flow monitoring.

    Science.gov (United States)

    Iwasaki, Yoichiro; Misumi, Masato; Nakamiya, Toshiyuki

    2013-06-17

    We have already proposed a method for detecting vehicle positions and their movements (henceforth referred to as "our previous method") using thermal images taken with an infrared thermal camera. Our experiments have shown that our previous method detects vehicles robustly under four different environmental conditions which involve poor visibility conditions in snow and thick fog. Our previous method uses the windshield and its surroundings as the target of the Viola-Jones detector. Some experiments in winter show that the vehicle detection accuracy decreases because the temperatures of many windshields approximate those of the exterior of the windshields. In this paper, we propose a new vehicle detection method (henceforth referred to as "our new method"). Our new method detects vehicles based on tires' thermal energy reflection. We have done experiments using three series of thermal images for which the vehicle detection accuracies of our previous method are low. Our new method detects 1,417 vehicles (92.8%) out of 1,527 vehicles, and the number of false detection is 52 in total. Therefore, by combining our two methods, high vehicle detection accuracies are maintained under various environmental conditions. Finally, we apply the traffic information obtained by our two methods to traffic flow automatic monitoring, and show the effectiveness of our proposal.

  10. Robust Vehicle Detection under Various Environments to Realize Road Traffic Flow Surveillance Using an Infrared Thermal Camera

    Directory of Open Access Journals (Sweden)

    Yoichiro Iwasaki

    2015-01-01

    Full Text Available To realize road traffic flow surveillance under various environments which contain poor visibility conditions, we have already proposed two vehicle detection methods using thermal images taken with an infrared thermal camera. The first method uses pattern recognition for the windshields and their surroundings to detect vehicles. However, the first method decreases the vehicle detection accuracy in winter season. To maintain high vehicle detection accuracy in all seasons, we developed the second method. The second method uses tires’ thermal energy reflection areas on a road as the detection targets. The second method did not achieve high detection accuracy for vehicles on left-hand and right-hand lanes except for two center-lanes. Therefore, we have developed a new method based on the second method to increase the vehicle detection accuracy. This paper proposes the new method and shows that the detection accuracy for vehicles on all lanes is 92.1%. Therefore, by combining the first method and the new method, high vehicle detection accuracies are maintained under various environments, and road traffic flow surveillance can be realized.

  11. Robust vehicle detection under various environments to realize road traffic flow surveillance using an infrared thermal camera.

    Science.gov (United States)

    Iwasaki, Yoichiro; Misumi, Masato; Nakamiya, Toshiyuki

    2015-01-01

    To realize road traffic flow surveillance under various environments which contain poor visibility conditions, we have already proposed two vehicle detection methods using thermal images taken with an infrared thermal camera. The first method uses pattern recognition for the windshields and their surroundings to detect vehicles. However, the first method decreases the vehicle detection accuracy in winter season. To maintain high vehicle detection accuracy in all seasons, we developed the second method. The second method uses tires' thermal energy reflection areas on a road as the detection targets. The second method did not achieve high detection accuracy for vehicles on left-hand and right-hand lanes except for two center-lanes. Therefore, we have developed a new method based on the second method to increase the vehicle detection accuracy. This paper proposes the new method and shows that the detection accuracy for vehicles on all lanes is 92.1%. Therefore, by combining the first method and the new method, high vehicle detection accuracies are maintained under various environments, and road traffic flow surveillance can be realized.

  12. Robust Vehicle Detection under Various Environments to Realize Road Traffic Flow Surveillance Using an Infrared Thermal Camera

    Science.gov (United States)

    Iwasaki, Yoichiro; Misumi, Masato; Nakamiya, Toshiyuki

    2015-01-01

    To realize road traffic flow surveillance under various environments which contain poor visibility conditions, we have already proposed two vehicle detection methods using thermal images taken with an infrared thermal camera. The first method uses pattern recognition for the windshields and their surroundings to detect vehicles. However, the first method decreases the vehicle detection accuracy in winter season. To maintain high vehicle detection accuracy in all seasons, we developed the second method. The second method uses tires' thermal energy reflection areas on a road as the detection targets. The second method did not achieve high detection accuracy for vehicles on left-hand and right-hand lanes except for two center-lanes. Therefore, we have developed a new method based on the second method to increase the vehicle detection accuracy. This paper proposes the new method and shows that the detection accuracy for vehicles on all lanes is 92.1%. Therefore, by combining the first method and the new method, high vehicle detection accuracies are maintained under various environments, and road traffic flow surveillance can be realized. PMID:25763384

  13. Uniform Local Binary Pattern for Fingerprint Liveness Detection in the Gaussian Pyramid

    Directory of Open Access Journals (Sweden)

    Yujia Jiang

    2018-01-01

    Full Text Available Fingerprint recognition schemas are widely used in our daily life, such as Door Security, Identification, and Phone Verification. However, the existing problem is that fingerprint recognition systems are easily tricked by fake fingerprints for collaboration. Therefore, designing a fingerprint liveness detection module in fingerprint recognition systems is necessary. To solve the above problem and discriminate true fingerprint from fake ones, a novel software-based liveness detection approach using uniform local binary pattern (ULBP in spatial pyramid is applied to recognize fingerprint liveness in this paper. Firstly, preprocessing operation for each fingerprint is necessary. Then, to solve image rotation and scale invariance, three-layer spatial pyramids of fingerprints are introduced in this paper. Next, texture information for three layers spatial pyramids is described by using uniform local binary pattern to extract features of given fingerprints. The accuracy of our proposed method has been compared with several state-of-the-art methods in fingerprint liveness detection. Experiments based on standard databases, taken from Liveness Detection Competition 2013 composed of four different fingerprint sensors, have been carried out. Finally, classifier model based on extracted features is trained using SVM classifier. Experimental results present that our proposed method can achieve high recognition accuracy compared with other methods.

  14. Oscillation-Driven Spike-Timing Dependent Plasticity Allows Multiple Overlapping Pattern Recognition in Inhibitory Interneuron Networks

    DEFF Research Database (Denmark)

    Garrido, Jesús A.; Luque, Niceto R.; Tolu, Silvia

    2016-01-01

    The majority of operations carried out by the brain require learning complex signal patterns for future recognition, retrieval and reuse. Although learning is thought to depend on multiple forms of long-term synaptic plasticity, the way this latter contributes to pattern recognition is still poorly...... and at the inhibitory interneuron-interneuron synapses, the interneurons rapidly learned complex input patterns. Interestingly, induction of plasticity required that the network be entrained into theta-frequency band oscillations, setting the internal phase-reference required to drive STDP. Inhibitory plasticity...... effectively distributed multiple patterns among available interneurons, thus allowing the simultaneous detection of multiple overlapping patterns. The addition of plasticity in intrinsic excitability made the system more robust allowing self-adjustment and rescaling in response to a broad range of input...

  15. Robust Detection of Stepping-Stone Attacks

    National Research Council Canada - National Science Library

    He, Ting; Tong, Lang

    2006-01-01

    The detection of encrypted stepping-stone attack is considered. Besides encryption and padding, the attacker is capable of inserting chaff packets and perturbing packet timing and transmission order...

  16. Towards effective and robust list-based packet filter for signature-based network intrusion detection: an engineering approach

    DEFF Research Database (Denmark)

    Meng, Weizhi; Li, Wenjuan; Kwok, Lam For

    2017-01-01

    Network intrusion detection systems (NIDSs) which aim to identify various attacks, have become an essential part of current security infrastructure. In particular, signature-based NIDSs are being widely implemented in industry due to their low rate of false alarms. However, the signature matching...... this problem, packet filtration is a promising solution to reduce unwanted traffic. Motivated by this, in this work, a list-based packet filter was designed and an engineering method of combining both blacklist and whitelist techniques was introduced. To further secure such filters against IP spoofing attacks...... in traffic filtration as well as workload reduction, and is robust against IP spoofing attacks....

  17. A robust object-based shadow detection method for cloud-free high resolution satellite images over urban areas and water bodies

    Science.gov (United States)

    Tatar, Nurollah; Saadatseresht, Mohammad; Arefi, Hossein; Hadavand, Ahmad

    2018-06-01

    Unwanted contrast in high resolution satellite images such as shadow areas directly affects the result of further processing in urban remote sensing images. Detecting and finding the precise position of shadows is critical in different remote sensing processing chains such as change detection, image classification and digital elevation model generation from stereo images. The spectral similarity between shadow areas, water bodies, and some dark asphalt roads makes the development of robust shadow detection algorithms challenging. In addition, most of the existing methods work on pixel-level and neglect the contextual information contained in neighboring pixels. In this paper, a new object-based shadow detection framework is introduced. In the proposed method a pixel-level shadow mask is built by extending established thresholding methods with a new C4 index which enables to solve the ambiguity of shadow and water bodies. Then the pixel-based results are further processed in an object-based majority analysis to detect the final shadow objects. Four different high resolution satellite images are used to validate this new approach. The result shows the superiority of the proposed method over some state-of-the-art shadow detection method with an average of 96% in F-measure.

  18. Information theory perspective on network robustness

    International Nuclear Information System (INIS)

    Schieber, Tiago A.; Carpi, Laura; Frery, Alejandro C.; Rosso, Osvaldo A.; Pardalos, Panos M.; Ravetti, Martín G.

    2016-01-01

    A crucial challenge in network theory is the study of the robustness of a network when facing a sequence of failures. In this work, we propose a dynamical definition of network robustness based on Information Theory, that considers measurements of the structural changes caused by failures of the network's components. Failures are defined here as a temporal process defined in a sequence. Robustness is then evaluated by measuring dissimilarities between topologies after each time step of the sequence, providing a dynamical information about the topological damage. We thoroughly analyze the efficiency of the method in capturing small perturbations by considering different probability distributions on networks. In particular, we find that distributions based on distances are more consistent in capturing network structural deviations, as better reflect the consequences of the failures. Theoretical examples and real networks are used to study the performance of this methodology. - Highlights: • A novel methodology to measure the robustness of a network to component failure or targeted attacks is proposed. • The use of the network's distance PDF allows a precise analysis. • The method provides a dynamic robustness profile showing the response of the topology to each failure event. • The measure is capable to detect network's critical elements.

  19. Detection of Group B Streptococcus in Brazilian pregnant women and antimicrobial susceptibility patterns

    Directory of Open Access Journals (Sweden)

    Didier Silveira Castellano-Filho

    2010-12-01

    Full Text Available Group B Streptococcus (GBS is still not routinely screened during pregnancy in Brazil, being prophylaxis and empirical treatment based on identification of risk groups. This study aimed to investigate GBS prevalence in Brazilian pregnant women by culture or polymerase chain reaction (PCR associated to the enrichment culture, and to determine the antimicrobial susceptibility patterns of isolated bacteria, so as to support public health policies and empirical prophylaxis. After an epidemiological survey, vaginal and anorectal specimens were collected from 221 consenting laboring women. Each sample was submitted to enrichment culture and sheep blood agar was used to isolate suggestive GBS. Alternatively, specific PCR was performed from enrichment cultures. Antimicrobial susceptibility patterns were determined for isolated bacteria by agar diffusion method. No risk groups were identified. Considering the culture-based methodology, GBS was detected in 9.5% of the donors. Twenty five bacterial strains were isolated and identified. Through the culture-PCR methodology, GBS was detected in 32.6% specimens. Bacterial resistance was not detected against ampicillin, cephazolin, vancomycin and ciprofloxacin, whereas 22.7% were resistant to erythromycin and 50% were resistant to clindamycin. GBS detection may be improved by the association of PCR and enrichment culture. Considering that colony selection in agar plates may be laboring and technician-dependent, it may not reflect the real prevalence of streptococci. As in Brazil prevention strategies to reduce the GBS associated diseases have not been adopted, prospective studies are needed to anchor public health policies especially considering the regional GBS antimicrobial susceptibility patterns.

  20. Robustness Metrics: Consolidating the multiple approaches to quantify Robustness

    DEFF Research Database (Denmark)

    Göhler, Simon Moritz; Eifler, Tobias; Howard, Thomas J.

    2016-01-01

    robustness metrics; 3) Functional expectancy and dispersion robustness metrics; and 4) Probability of conformance robustness metrics. The goal was to give a comprehensive overview of robustness metrics and guidance to scholars and practitioners to understand the different types of robustness metrics...

  1. VCD Robustness of the Amide-I and Amide-II Vibrational Modes of Small Peptide Models.

    Science.gov (United States)

    Góbi, Sándor; Magyarfalvi, Gábor; Tarczay, György

    2015-09-01

    The rotational strengths and the robustness values of amide-I and amide-II vibrational modes of For(AA)n NHMe (where AA is Val, Asn, Asp, or Cys, n = 1-5 for Val and Asn; n = 1 for Asp and Cys) model peptides with α-helix and β-sheet backbone conformations were computed by density functional methods. The robustness results verify empirical rules drawn from experiments and from computed rotational strengths linking amide-I and amide-II patterns in the vibrational circular dichroism (VCD) spectra of peptides with their backbone structures. For peptides with at least three residues (n ≥ 3) these characteristic patterns from coupled amide vibrational modes have robust signatures. For shorter peptide models many vibrational modes are nonrobust, and the robust modes can be dependent on the residues or on their side chain conformations in addition to backbone conformations. These robust VCD bands, however, provide information for the detailed structural analysis of these smaller systems. © 2015 Wiley Periodicals, Inc.

  2. Vision-Based Bicycle Detection Using Multiscale Block Local Binary Pattern

    Directory of Open Access Journals (Sweden)

    Hongyu Hu

    2014-01-01

    Full Text Available Bicycle traffic has heavy proportion among all travel modes in some developing countries, which is crucial for urban traffic control and management as well as facility design. This paper proposes a real-time multiple bicycle detection algorithm based on video. At first, an effective feature called multiscale block local binary pattern (MBLBP is extracted for representing the moving object, which is a well-classified feature to distinguish between bicycles and nonbicycles; then, a cascaded bicycle classifier trained by AdaBoost algorithm is proposed, which has a good computation efficiency. Finally, the method is tested with video sequence captured from the real-world traffic scenario. The bicycles in the test scenario are successfully detected.

  3. Robust Meter Network for Water Distribution Pipe Burst Detection

    OpenAIRE

    Donghwi Jung; Joong Hoon Kim

    2017-01-01

    A meter network is a set of meters installed throughout a water distribution system to measure system variables, such as the pipe flow rate and pressure. In the current hyper-connected world, meter networks are being exposed to meter failure conditions, such as malfunction of the meter’s physical system and communication system failure. Therefore, a meter network’s robustness should be secured for reliable provision of informative meter data. This paper introduces a multi-objective optimal me...

  4. Ngram-derived pattern recognition for the detection and prediction of epileptic seizures.

    Directory of Open Access Journals (Sweden)

    Amir Eftekhar

    Full Text Available This work presents a new method that combines symbol dynamics methodologies with an Ngram algorithm for the detection and prediction of epileptic seizures. The presented approach specifically applies Ngram-based pattern recognition, after data pre-processing, with similarity metrics, including the Hamming distance and Needlman-Wunsch algorithm, for identifying unique patterns within epochs of time. Pattern counts within each epoch are used as measures to determine seizure detection and prediction markers. Using 623 hours of intracranial electrocorticogram recordings from 21 patients containing a total of 87 seizures, the sensitivity and false prediction/detection rates of this method are quantified. Results are quantified using individual seizures within each case for training of thresholds and prediction time windows. The statistical significance of the predictive power is further investigated. We show that the method presented herein, has significant predictive power in up to 100% of temporal lobe cases, with sensitivities of up to 70-100% and low false predictions (dependant on training procedure. The cases of highest false predictions are found in the frontal origin with 0.31-0.61 false predictions per hour and with significance in 18 out of 21 cases. On average, a prediction sensitivity of 93.81% and false prediction rate of approximately 0.06 false predictions per hour are achieved in the best case scenario. This compares to previous work utilising the same data set that has shown sensitivities of up to 40-50% for a false prediction rate of less than 0.15/hour.

  5. Robust Identification of Developmentally Active Endothelial Enhancers in Zebrafish Using FANS-Assisted ATAC-Seq.

    Science.gov (United States)

    Quillien, Aurelie; Abdalla, Mary; Yu, Jun; Ou, Jianhong; Zhu, Lihua Julie; Lawson, Nathan D

    2017-07-18

    Identification of tissue-specific and developmentally active enhancers provides insights into mechanisms that control gene expression during embryogenesis. However, robust detection of these regulatory elements remains challenging, especially in vertebrate genomes. Here, we apply fluorescent-activated nuclei sorting (FANS) followed by Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) to identify developmentally active endothelial enhancers in the zebrafish genome. ATAC-seq of nuclei from Tg(fli1a:egfp) y1 transgenic embryos revealed expected patterns of nucleosomal positioning at transcriptional start sites throughout the genome and association with active histone modifications. Comparison of ATAC-seq from GFP-positive and -negative nuclei identified more than 5,000 open elements specific to endothelial cells. These elements flanked genes functionally important for vascular development and that displayed endothelial-specific gene expression. Importantly, a majority of tested elements drove endothelial gene expression in zebrafish embryos. Thus, FANS-assisted ATAC-seq using transgenic zebrafish embryos provides a robust approach for genome-wide identification of active tissue-specific enhancer elements. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Detecting Aberrant Response Patterns in the Rasch Model. Rapport 87-3.

    Science.gov (United States)

    Kogut, Jan

    In this paper, the detection of response patterns aberrant from the Rasch model is considered. For this purpose, a new person fit index, recently developed by I. W. Molenaar (1987) and an iterative estimation procedure are used in a simulation study of Rasch model data mixed with aberrant data. Three kinds of aberrant response behavior are…

  7. Second order statistics of bilinear forms of robust scatter estimators

    KAUST Repository

    Kammoun, Abla

    2015-08-12

    This paper lies in the lineage of recent works studying the asymptotic behaviour of robust-scatter estimators in the case where the number of observations and the dimension of the population covariance matrix grow at infinity with the same pace. In particular, we analyze the fluctuations of bilinear forms of the robust shrinkage estimator of covariance matrix. We show that this result can be leveraged in order to improve the design of robust detection methods. As an example, we provide an improved generalized likelihood ratio based detector which combines robustness to impulsive observations and optimality across the shrinkage parameter, the optimality being considered for the false alarm regulation.

  8. A robust indicator based on singular value decomposition for flaw feature detection from noisy ultrasonic signals

    Science.gov (United States)

    Cui, Ximing; Wang, Zhe; Kang, Yihua; Pu, Haiming; Deng, Zhiyang

    2018-05-01

    Singular value decomposition (SVD) has been proven to be an effective de-noising tool for flaw echo signal feature detection in ultrasonic non-destructive evaluation (NDE). However, the uncertainty in the arbitrary manner of the selection of an effective singular value weakens the robustness of this technique. Improper selection of effective singular values will lead to bad performance of SVD de-noising. What is more, the computational complexity of SVD is too large for it to be applied in real-time applications. In this paper, to eliminate the uncertainty in SVD de-noising, a novel flaw indicator, named the maximum singular value indicator (MSI), based on short-time SVD (STSVD), is proposed for flaw feature detection from a measured signal in ultrasonic NDE. In this technique, the measured signal is first truncated into overlapping short-time data segments to put feature information of a transient flaw echo signal in local field, and then the MSI can be obtained from the SVD of each short-time data segment. Research shows that this indicator can clearly indicate the location of ultrasonic flaw signals, and the computational complexity of this STSVD-based indicator is significantly reduced with the algorithm proposed in this paper. Both simulation and experiments show that this technique is very efficient for real-time application in flaw detection from noisy data.

  9. Centrality Robustness and Link Prediction in Complex Social Networks

    DEFF Research Database (Denmark)

    Davidsen, Søren Atmakuri; Ortiz-Arroyo, Daniel

    2012-01-01

    . Secondly, we present a method to predict edges in dynamic social networks. Our experimental results indicate that the robustness of the centrality measures applied to more realistic social networks follows a predictable pattern and that the use of temporal statistics could improve the accuracy achieved......This chapter addresses two important issues in social network analysis that involve uncertainty. Firstly, we present am analysis on the robustness of centrality measures that extend the work presented in Borgati et al. using three types of complex network structures and one real social network...

  10. Automatic multiresolution age-related macular degeneration detection from fundus images

    Science.gov (United States)

    Garnier, Mickaël.; Hurtut, Thomas; Ben Tahar, Houssem; Cheriet, Farida

    2014-03-01

    Age-related Macular Degeneration (AMD) is a leading cause of legal blindness. As the disease progress, visual loss occurs rapidly, therefore early diagnosis is required for timely treatment. Automatic, fast and robust screening of this widespread disease should allow an early detection. Most of the automatic diagnosis methods in the literature are based on a complex segmentation of the drusen, targeting a specific symptom of the disease. In this paper, we present a preliminary study for AMD detection from color fundus photographs using a multiresolution texture analysis. We analyze the texture at several scales by using a wavelet decomposition in order to identify all the relevant texture patterns. Textural information is captured using both the sign and magnitude components of the completed model of Local Binary Patterns. An image is finally described with the textural pattern distributions of the wavelet coefficient images obtained at each level of decomposition. We use a Linear Discriminant Analysis for feature dimension reduction, to avoid the curse of dimensionality problem, and image classification. Experiments were conducted on a dataset containing 45 images (23 healthy and 22 diseased) of variable quality and captured by different cameras. Our method achieved a recognition rate of 93:3%, with a specificity of 95:5% and a sensitivity of 91:3%. This approach shows promising results at low costs that in agreement with medical experts as well as robustness to both image quality and fundus camera model.

  11. Detecting Beer Intake by Unique Metabolite Patterns.

    Science.gov (United States)

    Gürdeniz, Gözde; Jensen, Morten Georg; Meier, Sebastian; Bech, Lene; Lund, Erik; Dragsted, Lars Ove

    2016-12-02

    Evaluation of the health related effects of beer intake is hampered by the lack of accurate tools for assessing intakes (biomarkers). Therefore, we identified plasma and urine metabolites associated with recent beer intake by untargeted metabolomics and established a characteristic metabolite pattern representing raw materials and beer production as a qualitative biomarker of beer intake. In a randomized, crossover, single-blinded meal study (MSt1), 18 participants were given, one at a time, four different test beverages: strong, regular, and nonalcoholic beers and a soft drink. Four participants were assigned to have two additional beers (MSt2). In addition to plasma and urine samples, test beverages, wort, and hops extract were analyzed by UPLC-QTOF. A unique metabolite pattern reflecting beer metabolome, including metabolites derived from beer raw material (i.e., N-methyl tyramine sulfate and the sum of iso-α-acids and tricyclohumols) and the production process (i.e., pyro-glutamyl proline and 2-ethyl malate), was selected to establish a compliance biomarker model for detection of beer intake based on MSt1. The model predicted the MSt2 samples collected before and up to 12 h after beer intake correctly (AUC = 1). A biomarker model including four metabolites representing both beer raw materials and production steps provided a specific and accurate tool for measurement of beer consumption.

  12. Detecting Recombination Hotspots from Patterns of Linkage Disequilibrium.

    Science.gov (United States)

    Wall, Jeffrey D; Stevison, Laurie S

    2016-08-09

    With recent advances in DNA sequencing technologies, it has become increasingly easy to use whole-genome sequencing of unrelated individuals to assay patterns of linkage disequilibrium (LD) across the genome. One type of analysis that is commonly performed is to estimate local recombination rates and identify recombination hotspots from patterns of LD. One method for detecting recombination hotspots, LDhot, has been used in a handful of species to further our understanding of the basic biology of recombination. For the most part, the effectiveness of this method (e.g., power and false positive rate) is unknown. In this study, we run extensive simulations to compare the effectiveness of three different implementations of LDhot. We find large differences in the power and false positive rates of these different approaches, as well as a strong sensitivity to the window size used (with smaller window sizes leading to more accurate estimation of hotspot locations). We also compared our LDhot simulation results with comparable simulation results obtained from a Bayesian maximum-likelihood approach for identifying hotspots. Surprisingly, we found that the latter computationally intensive approach had substantially lower power over the parameter values considered in our simulations. Copyright © 2016 Wall and Stevison.

  13. Patterns of detection and capture are associated with cohabiting predators and prey.

    Directory of Open Access Journals (Sweden)

    Billie T Lazenby

    Full Text Available Avoidance behaviour can play an important role in structuring ecosystems but can be difficult to uncover and quantify. Remote cameras have great but as yet unrealized potential to uncover patterns arising from predatory, competitive or other interactions that structure animal communities by detecting species that are active at the same sites and recording their behaviours and times of activity. Here, we use multi-season, two-species occupancy models to test for evidence of interactions between introduced (feral cat Felis catus and native predator (Tasmanian devil Sarcophilus harrisii and predator and small mammal (swamp rat Rattus lutreolus velutinus combinations at baited camera sites in the cool temperate forests of southern Tasmania. In addition, we investigate the capture rates of swamp rats in traps scented with feral cat and devil faecal odours. We observed that one species could reduce the probability of detecting another at a camera site. In particular, feral cats were detected less frequently at camera sites occupied by devils, whereas patterns of swamp rat detection associated with devils or feral cats varied with study site. Captures of swamp rats were not associated with odours on traps, although fewer captures tended to occur in traps scented with the faecal odour of feral cats. The observation that a native carnivorous marsupial, the Tasmanian devil, can suppress the detectability of an introduced eutherian predator, the feral cat, is consistent with a dominant predator-mesopredator relationship. Such a relationship has important implications for the interaction between feral cats and the lower trophic guilds that form their prey, especially if cat activity increases in places where devil populations are declining. More generally, population estimates derived from devices such as remote cameras need to acknowledge the potential for one species to change the detectability of another, and incorporate this in assessments of numbers

  14. Patterns of Detection and Capture Are Associated with Cohabiting Predators and Prey

    Science.gov (United States)

    Lazenby, Billie T.; Dickman, Christopher R.

    2013-01-01

    Avoidance behaviour can play an important role in structuring ecosystems but can be difficult to uncover and quantify. Remote cameras have great but as yet unrealized potential to uncover patterns arising from predatory, competitive or other interactions that structure animal communities by detecting species that are active at the same sites and recording their behaviours and times of activity. Here, we use multi-season, two-species occupancy models to test for evidence of interactions between introduced (feral cat Felis catus) and native predator (Tasmanian devil Sarcophilus harrisii) and predator and small mammal (swamp rat Rattus lutreolus velutinus) combinations at baited camera sites in the cool temperate forests of southern Tasmania. In addition, we investigate the capture rates of swamp rats in traps scented with feral cat and devil faecal odours. We observed that one species could reduce the probability of detecting another at a camera site. In particular, feral cats were detected less frequently at camera sites occupied by devils, whereas patterns of swamp rat detection associated with devils or feral cats varied with study site. Captures of swamp rats were not associated with odours on traps, although fewer captures tended to occur in traps scented with the faecal odour of feral cats. The observation that a native carnivorous marsupial, the Tasmanian devil, can suppress the detectability of an introduced eutherian predator, the feral cat, is consistent with a dominant predator – mesopredator relationship. Such a relationship has important implications for the interaction between feral cats and the lower trophic guilds that form their prey, especially if cat activity increases in places where devil populations are declining. More generally, population estimates derived from devices such as remote cameras need to acknowledge the potential for one species to change the detectability of another, and incorporate this in assessments of numbers and survival

  15. Large-Scale Constraint-Based Pattern Mining

    Science.gov (United States)

    Zhu, Feida

    2009-01-01

    We studied the problem of constraint-based pattern mining for three different data formats, item-set, sequence and graph, and focused on mining patterns of large sizes. Colossal patterns in each data formats are studied to discover pruning properties that are useful for direct mining of these patterns. For item-set data, we observed robustness of…

  16. A robust sound perception model suitable for neuromorphic implementation.

    Science.gov (United States)

    Coath, Martin; Sheik, Sadique; Chicca, Elisabetta; Indiveri, Giacomo; Denham, Susan L; Wennekers, Thomas

    2013-01-01

    We have recently demonstrated the emergence of dynamic feature sensitivity through exposure to formative stimuli in a real-time neuromorphic system implementing a hybrid analog/digital network of spiking neurons. This network, inspired by models of auditory processing in mammals, includes several mutually connected layers with distance-dependent transmission delays and learning in the form of spike timing dependent plasticity, which effects stimulus-driven changes in the network connectivity. Here we present results that demonstrate that the network is robust to a range of variations in the stimulus pattern, such as are found in naturalistic stimuli and neural responses. This robustness is a property critical to the development of realistic, electronic neuromorphic systems. We analyze the variability of the response of the network to "noisy" stimuli which allows us to characterize the acuity in information-theoretic terms. This provides an objective basis for the quantitative comparison of networks, their connectivity patterns, and learning strategies, which can inform future design decisions. We also show, using stimuli derived from speech samples, that the principles are robust to other challenges, such as variable presentation rate, that would have to be met by systems deployed in the real world. Finally we demonstrate the potential applicability of the approach to real sounds.

  17. A Robust Sound Perception Model Suitable for Neuromorphic Implementation

    Directory of Open Access Journals (Sweden)

    Martin eCoath

    2014-01-01

    Full Text Available We have recently demonstrated the emergence of dynamic feature sensitivity through exposure to formative stimuli in a real-time neuromorphic system implementing a hybrid analogue/digital network of spiking neurons. This network, inspired by models of auditory processing in mammals, includes several mutually connected layers with distance-dependent transmission delays and learning in the form of spike timing dependent plasticity, which effects stimulus-driven changes in the network connectivity.Here we present results that demonstrate that the network is robust to a range of variations in the stimulus pattern, such as are found in naturalistic stimuli and neural responses. This robustness is a property critical to the development of realistic, electronic neuromorphic systems.We analyse the variability of the response of the network to `noisy' stimuli which allows us to characterize the acuity in information-theoretic terms. This provides an objective basis for the quantitative comparison of networks, their connectivity patterns, and learning strategies, which can inform future design decisions. We also show, using stimuli derived from speech samples, that the principles are robust to other challenges, such as variable presentation rate, that would have to be met by systems deployed in the real world. Finally we demonstrate the potential applicability of the approach to real sounds.

  18. Robust nonhomogeneous training samples detection method for space-time adaptive processing radar using sparse-recovery with knowledge-aided

    Science.gov (United States)

    Li, Zhihui; Liu, Hanwei; Zhang, Yongshun; Guo, Yiduo

    2017-10-01

    The performance of space-time adaptive processing (STAP) may degrade significantly when some of the training samples are contaminated by the signal-like components (outliers) in nonhomogeneous clutter environments. To remove the training samples contaminated by outliers in nonhomogeneous clutter environments, a robust nonhomogeneous training samples detection method using the sparse-recovery (SR) with knowledge-aided (KA) is proposed. First, the reduced-dimension (RD) overcomplete spatial-temporal steering dictionary is designed with the prior knowledge of system parameters and the possible target region. Then, the clutter covariance matrix (CCM) of cell under test is efficiently estimated using a modified focal underdetermined system solver (FOCUSS) algorithm, where a RD overcomplete spatial-temporal steering dictionary is applied. Third, the proposed statistics are formed by combining the estimated CCM with the generalized inner products (GIP) method, and the contaminated training samples can be detected and removed. Finally, several simulation results validate the effectiveness of the proposed KA-SR-GIP method.

  19. Robustness and versatility of a nonlinear interdependence method for directional coupling detection from spike trains

    Science.gov (United States)

    Malvestio, Irene; Kreuz, Thomas; Andrzejak, Ralph G.

    2017-08-01

    The detection of directional couplings between dynamics based on measured spike trains is a crucial problem in the understanding of many different systems. In particular, in neuroscience it is important to assess the connectivity between neurons. One of the approaches that can estimate directional coupling from the analysis of point processes is the nonlinear interdependence measure L . Although its efficacy has already been demonstrated, it still needs to be tested under more challenging and realistic conditions prior to an application to real data. Thus, in this paper we use the Hindmarsh-Rose model system to test the method in the presence of noise and for different spiking regimes. We also examine the influence of different parameters and spike train distances. Our results show that the measure L is versatile and robust to various types of noise, and thus suitable for application to experimental data.

  20. SELDI-TOF-based serum proteomic pattern diagnostics for early detection of cancer.

    Science.gov (United States)

    Petricoin, Emanuel F; Liotta, Lance A

    2004-02-01

    Proteomics is more than just generating lists of proteins that increase or decrease in expression as a cause or consequence of pathology. The goal should be to characterize the information flow through the intercellular protein circuitry that communicates with the extracellular microenvironment and then ultimately to the serum/plasma macroenvironment. The nature of this information can be a cause, or a consequence, of disease and toxicity-based processes. Serum proteomic pattern diagnostics is a new type of proteomic platform in which patterns of proteomic signatures from high dimensional mass spectrometry data are used as a diagnostic classifier. This approach has recently shown tremendous promise in the detection of early-stage cancers. The biomarkers found by SELDI-TOF-based pattern recognition analysis are mostly low molecular weight fragments produced at the specific tumor microenvironment.

  1. Robust Fringe Projection Profilometry via Sparse Representation.

    Science.gov (United States)

    Budianto; Lun, Daniel P K

    2016-04-01

    In this paper, a robust fringe projection profilometry (FPP) algorithm using the sparse dictionary learning and sparse coding techniques is proposed. When reconstructing the 3D model of objects, traditional FPP systems often fail to perform if the captured fringe images have a complex scene, such as having multiple and occluded objects. It introduces great difficulty to the phase unwrapping process of an FPP system that can result in serious distortion in the final reconstructed 3D model. For the proposed algorithm, it encodes the period order information, which is essential to phase unwrapping, into some texture patterns and embeds them to the projected fringe patterns. When the encoded fringe image is captured, a modified morphological component analysis and a sparse classification procedure are performed to decode and identify the embedded period order information. It is then used to assist the phase unwrapping process to deal with the different artifacts in the fringe images. Experimental results show that the proposed algorithm can significantly improve the robustness of an FPP system. It performs equally well no matter the fringe images have a simple or complex scene, or are affected due to the ambient lighting of the working environment.

  2. Development of Robust Behaviour Recognition for an at-Home Biomonitoring Robot with Assistance of Subject Localization and Enhanced Visual Tracking

    Science.gov (United States)

    Imamoglu, Nevrez; Dorronzoro, Enrique; Wei, Zhixuan; Shi, Huangjun; González, José; Gu, Dongyun; Yu, Wenwei

    2014-01-01

    Our research is focused on the development of an at-home health care biomonitoring mobile robot for the people in demand. Main task of the robot is to detect and track a designated subject while recognizing his/her activity for analysis and to provide warning in an emergency. In order to push forward the system towards its real application, in this study, we tested the robustness of the robot system with several major environment changes, control parameter changes, and subject variation. First, an improved color tracker was analyzed to find out the limitations and constraints of the robot visual tracking considering the suitable illumination values and tracking distance intervals. Then, regarding subject safety and continuous robot based subject tracking, various control parameters were tested on different layouts in a room. Finally, the main objective of the system is to find out walking activities for different patterns for further analysis. Therefore, we proposed a fast, simple, and person specific new activity recognition model by making full use of localization information, which is robust to partial occlusion. The proposed activity recognition algorithm was tested on different walking patterns with different subjects, and the results showed high recognition accuracy. PMID:25587560

  3. Development of Robust Behaviour Recognition for an at-Home Biomonitoring Robot with Assistance of Subject Localization and Enhanced Visual Tracking

    Directory of Open Access Journals (Sweden)

    Nevrez Imamoglu

    2014-01-01

    Full Text Available Our research is focused on the development of an at-home health care biomonitoring mobile robot for the people in demand. Main task of the robot is to detect and track a designated subject while recognizing his/her activity for analysis and to provide warning in an emergency. In order to push forward the system towards its real application, in this study, we tested the robustness of the robot system with several major environment changes, control parameter changes, and subject variation. First, an improved color tracker was analyzed to find out the limitations and constraints of the robot visual tracking considering the suitable illumination values and tracking distance intervals. Then, regarding subject safety and continuous robot based subject tracking, various control parameters were tested on different layouts in a room. Finally, the main objective of the system is to find out walking activities for different patterns for further analysis. Therefore, we proposed a fast, simple, and person specific new activity recognition model by making full use of localization information, which is robust to partial occlusion. The proposed activity recognition algorithm was tested on different walking patterns with different subjects, and the results showed high recognition accuracy.

  4. Development of robust behaviour recognition for an at-home biomonitoring robot with assistance of subject localization and enhanced visual tracking.

    Science.gov (United States)

    Imamoglu, Nevrez; Dorronzoro, Enrique; Wei, Zhixuan; Shi, Huangjun; Sekine, Masashi; González, José; Gu, Dongyun; Chen, Weidong; Yu, Wenwei

    2014-01-01

    Our research is focused on the development of an at-home health care biomonitoring mobile robot for the people in demand. Main task of the robot is to detect and track a designated subject while recognizing his/her activity for analysis and to provide warning in an emergency. In order to push forward the system towards its real application, in this study, we tested the robustness of the robot system with several major environment changes, control parameter changes, and subject variation. First, an improved color tracker was analyzed to find out the limitations and constraints of the robot visual tracking considering the suitable illumination values and tracking distance intervals. Then, regarding subject safety and continuous robot based subject tracking, various control parameters were tested on different layouts in a room. Finally, the main objective of the system is to find out walking activities for different patterns for further analysis. Therefore, we proposed a fast, simple, and person specific new activity recognition model by making full use of localization information, which is robust to partial occlusion. The proposed activity recognition algorithm was tested on different walking patterns with different subjects, and the results showed high recognition accuracy.

  5. Detection of tuberculosis patterns in digital photographs of chest X-ray images using Deep Learning: feasibility study.

    Science.gov (United States)

    Becker, A S; Blüthgen, C; Phi van, V D; Sekaggya-Wiltshire, C; Castelnuovo, B; Kambugu, A; Fehr, J; Frauenfelder, T

    2018-03-01

    To evaluate the feasibility of Deep Learning-based detection and classification of pathological patterns in a set of digital photographs of chest X-ray (CXR) images of tuberculosis (TB) patients. In this prospective, observational study, patients with previously diagnosed TB were enrolled. Photographs of their CXRs were taken using a consumer-grade digital still camera. The images were stratified by pathological patterns into classes: cavity, consolidation, effusion, interstitial changes, miliary pattern or normal examination. Image analysis was performed with commercially available Deep Learning software in two steps. Pathological areas were first localised; detected areas were then classified. Detection was assessed using receiver operating characteristics (ROC) analysis, and classification using a confusion matrix. The study cohort was 138 patients with human immunodeficiency virus (HIV) and TB co-infection (median age 34 years, IQR 28-40); 54 patients were female. Localisation of pathological areas was excellent (area under the ROC curve 0.82). The software could perfectly distinguish pleural effusions from intraparenchymal changes. The most frequent misclassifications were consolidations as cavitations, and miliary patterns as interstitial patterns (and vice versa). Deep Learning analysis of CXR photographs is a promising tool. Further efforts are needed to build larger, high-quality data sets to achieve better diagnostic performance.

  6. Signaling mechanisms underlying the robustness and tunability of the plant immune network

    Science.gov (United States)

    Kim, Yungil; Tsuda, Kenichi; Igarashi, Daisuke; Hillmer, Rachel A.; Sakakibara, Hitoshi; Myers, Chad L.; Katagiri, Fumiaki

    2014-01-01

    Summary How does robust and tunable behavior emerge in a complex biological network? We sought to understand this for the signaling network controlling pattern-triggered immunity (PTI) in Arabidopsis. A dynamic network model containing four major signaling sectors, the jasmonate, ethylene, PAD4, and salicylate sectors, which together explain up to 80% of the PTI level, was built using data for dynamic sector activities and PTI levels under exhaustive combinatorial sector perturbations. Our regularized multiple regression model had a high level of predictive power and captured known and unexpected signal flows in the network. The sole inhibitory sector in the model, the ethylene sector, was central to the network robustness via its inhibition of the jasmonate sector. The model's multiple input sites linked specific signal input patterns varying in strength and timing to different network response patterns, indicating a mechanism enabling tunability. PMID:24439900

  7. Robust Bayesian detection of unmodelled bursts

    International Nuclear Information System (INIS)

    Searle, Antony C; Sutton, Patrick J; Tinto, Massimo; Woan, Graham

    2008-01-01

    We develop a Bayesian treatment of the problem of detecting unmodelled gravitational wave bursts using the new global network of interferometric detectors. We also compare this Bayesian treatment with existing coherent methods, and demonstrate that the existing methods make implicit assumptions on the distribution of signals that make them sub-optimal for realistic signal populations

  8. Automatic detection of rhythmic and periodic patterns in critical care EEG based on American Clinical Neurophysiology Society (ACNS) standardized terminology.

    Science.gov (United States)

    Fürbass, F; Hartmann, M M; Halford, J J; Koren, J; Herta, J; Gruber, A; Baumgartner, C; Kluge, T

    2015-09-01

    Continuous EEG from critical care patients needs to be evaluated time efficiently to maximize the treatment effect. A computational method will be presented that detects rhythmic and periodic patterns according to the critical care EEG terminology (CCET) of the American Clinical Neurophysiology Society (ACNS). The aim is to show that these detected patterns support EEG experts in writing neurophysiological reports. First of all, three case reports exemplify the evaluation procedure using graphically presented detections. Second, 187 hours of EEG from 10 critical care patients were used in a comparative trial study. For each patient the result of a review session using the EEG and the visualized pattern detections was compared to the original neurophysiology report. In three out of five patients with reported seizures, all seizures were reported correctly. In two patients, several subtle clinical seizures with unclear EEG correlation were missed. Lateralized periodic patterns (LPD) were correctly found in 2/2 patients and EEG slowing was correctly found in 7/9 patients. In 8/10 patients, additional EEG features were found including LPDs, EEG slowing, and seizures. The use of automatic pattern detection will assist in review of EEG and increase efficiency. The implementation of bedside surveillance devices using our detection algorithm appears to be feasible and remains to be confirmed in further multicenter studies. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. The effectiveness of robust RMCD control chart as outliers’ detector

    Science.gov (United States)

    Darmanto; Astutik, Suci

    2017-12-01

    A well-known control chart to monitor a multivariate process is Hotelling’s T 2 which its parameters are estimated classically, very sensitive and also marred by masking and swamping of outliers data effect. To overcome these situation, robust estimators are strongly recommended. One of robust estimators is re-weighted minimum covariance determinant (RMCD) which has robust characteristics as same as MCD. In this paper, the effectiveness term is accuracy of the RMCD control chart in detecting outliers as real outliers. In other word, how effectively this control chart can identify and remove masking and swamping effects of outliers. We assessed the effectiveness the robust control chart based on simulation by considering different scenarios: n sample sizes, proportion of outliers, number of p quality characteristics. We found that in some scenarios, this RMCD robust control chart works effectively.

  10. A robust trust establishment scheme for wireless sensor networks.

    Science.gov (United States)

    Ishmanov, Farruh; Kim, Sung Won; Nam, Seung Yeob

    2015-03-23

    Security techniques like cryptography and authentication can fail to protect a network once a node is compromised. Hence, trust establishment continuously monitors and evaluates node behavior to detect malicious and compromised nodes. However, just like other security schemes, trust establishment is also vulnerable to attack. Moreover, malicious nodes might misbehave intelligently to trick trust establishment schemes. Unfortunately, attack-resistance and robustness issues with trust establishment schemes have not received much attention from the research community. Considering the vulnerability of trust establishment to different attacks and the unique features of sensor nodes in wireless sensor networks, we propose a lightweight and robust trust establishment scheme. The proposed trust scheme is lightweight thanks to a simple trust estimation method. The comprehensiveness and flexibility of the proposed trust estimation scheme make it robust against different types of attack and misbehavior. Performance evaluation under different types of misbehavior and on-off attacks shows that the detection rate of the proposed trust mechanism is higher and more stable compared to other trust mechanisms.

  11. A Robust Trust Establishment Scheme for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Farruh Ishmanov

    2015-03-01

    Full Text Available Security techniques like cryptography and authentication can fail to protect a network once a node is compromised. Hence, trust establishment continuously monitors and evaluates node behavior to detect malicious and compromised nodes. However, just like other security schemes, trust establishment is also vulnerable to attack. Moreover, malicious nodes might misbehave intelligently to trick trust establishment schemes. Unfortunately, attack-resistance and robustness issues with trust establishment schemes have not received much attention from the research community. Considering the vulnerability of trust establishment to different attacks and the unique features of sensor nodes in wireless sensor networks, we propose a lightweight and robust trust establishment scheme. The proposed trust scheme is lightweight thanks to a simple trust estimation method. The comprehensiveness and flexibility of the proposed trust estimation scheme make it robust against different types of attack and misbehavior. Performance evaluation under different types of misbehavior and on-off attacks shows that the detection rate of the proposed trust mechanism is higher and more stable compared to other trust mechanisms.

  12. WaveSeq: a novel data-driven method of detecting histone modification enrichments using wavelets.

    Directory of Open Access Journals (Sweden)

    Apratim Mitra

    Full Text Available BACKGROUND: Chromatin immunoprecipitation followed by next-generation sequencing is a genome-wide analysis technique that can be used to detect various epigenetic phenomena such as, transcription factor binding sites and histone modifications. Histone modification profiles can be either punctate or diffuse which makes it difficult to distinguish regions of enrichment from background noise. With the discovery of histone marks having a wide variety of enrichment patterns, there is an urgent need for analysis methods that are robust to various data characteristics and capable of detecting a broad range of enrichment patterns. RESULTS: To address these challenges we propose WaveSeq, a novel data-driven method of detecting regions of significant enrichment in ChIP-Seq data. Our approach utilizes the wavelet transform, is free of distributional assumptions and is robust to diverse data characteristics such as low signal-to-noise ratios and broad enrichment patterns. Using publicly available datasets we showed that WaveSeq compares favorably with other published methods, exhibiting high sensitivity and precision for both punctate and diffuse enrichment regions even in the absence of a control data set. The application of our algorithm to a complex histone modification data set helped make novel functional discoveries which further underlined its utility in such an experimental setup. CONCLUSIONS: WaveSeq is a highly sensitive method capable of accurate identification of enriched regions in a broad range of data sets. WaveSeq can detect both narrow and broad peaks with a high degree of accuracy even in low signal-to-noise ratio data sets. WaveSeq is also suited for application in complex experimental scenarios, helping make biologically relevant functional discoveries.

  13. Robust Bioinformatics Recognition with VLSI Biochip Microsystem

    Science.gov (United States)

    Lue, Jaw-Chyng L.; Fang, Wai-Chi

    2006-01-01

    A microsystem architecture for real-time, on-site, robust bioinformatic patterns recognition and analysis has been proposed. This system is compatible with on-chip DNA analysis means such as polymerase chain reaction (PCR)amplification. A corresponding novel artificial neural network (ANN) learning algorithm using new sigmoid-logarithmic transfer function based on error backpropagation (EBP) algorithm is invented. Our results show the trained new ANN can recognize low fluorescence patterns better than the conventional sigmoidal ANN does. A differential logarithmic imaging chip is designed for calculating logarithm of relative intensities of fluorescence signals. The single-rail logarithmic circuit and a prototype ANN chip are designed, fabricated and characterized.

  14. A computationally simple and robust method to detect determinism in a time series

    DEFF Research Database (Denmark)

    Lu, Sheng; Ju, Ki Hwan; Kanters, Jørgen K.

    2006-01-01

    We present a new, simple, and fast computational technique, termed the incremental slope (IS), that can accurately distinguish between deterministic from stochastic systems even when the variance of noise is as large or greater than the signal, and remains robust for time-varying signals. The IS ......We present a new, simple, and fast computational technique, termed the incremental slope (IS), that can accurately distinguish between deterministic from stochastic systems even when the variance of noise is as large or greater than the signal, and remains robust for time-varying signals...

  15. Statistical Pattern Recognition

    CERN Document Server

    Webb, Andrew R

    2011-01-01

    Statistical pattern recognition relates to the use of statistical techniques for analysing data measurements in order to extract information and make justified decisions.  It is a very active area of study and research, which has seen many advances in recent years. Applications such as data mining, web searching, multimedia data retrieval, face recognition, and cursive handwriting recognition, all require robust and efficient pattern recognition techniques. This third edition provides an introduction to statistical pattern theory and techniques, with material drawn from a wide range of fields,

  16. Unsupervised classification of neocortical activity patterns in neonatal and pre-juvenile rodents

    Directory of Open Access Journals (Sweden)

    Nicole eCichon

    2014-05-01

    Full Text Available Flexible communication within the brain, which relies on oscillatory activity, is not confined to adult neuronal networks. Experimental evidence has documented the presence of discontinuous patterns of oscillatory activity already during early development. Their highly variable spatial and time-frequency organization has been related to region specificity. However, it might be equally due to the absence of unitary criteria for classifying the early activity patterns, since they have been mainly characterized by visual inspection. Therefore, robust and unbiased methods for categorizing these discontinuous oscillations are needed for increasingly complex data sets from different labs. Here, we introduce an unsupervised detection and classification algorithm for the discontinuous activity patterns of rodents during early development. For this, firstly time windows with discontinuous oscillations vs. epochs of network silence were identified. In a second step, the major features of detected events were identified and processed by principal component analysis for deciding on their contribution to the classification of different oscillatory patterns. Finally, these patterns were categorized using an unsupervised cluster algorithm. The results were validated on manually characterized neonatal spindle bursts, which ubiquitously entrain neocortical areas of rats and mice, and prelimbic nested gamma spindle bursts. Moreover, the algorithm led to satisfactory results for oscillatory events that, due to increased similarity of their features, were more difficult to classify, e.g. during the pre-juvenile developmental period. Based on a linear classification, the optimal number of features to consider increased with the difficulty of detection. This algorithm allows the comparison of neonatal and pre-juvenile oscillatory patterns in their spatial and temporal organization. It might represent a first step for the unbiased elucidation of activity patterns

  17. Local community detection as pattern restoration by attractor dynamics of recurrent neural networks.

    Science.gov (United States)

    Okamoto, Hiroshi

    2016-08-01

    Densely connected parts in networks are referred to as "communities". Community structure is a hallmark of a variety of real-world networks. Individual communities in networks form functional modules of complex systems described by networks. Therefore, finding communities in networks is essential to approaching and understanding complex systems described by networks. In fact, network science has made a great deal of effort to develop effective and efficient methods for detecting communities in networks. Here we put forward a type of community detection, which has been little examined so far but will be practically useful. Suppose that we are given a set of source nodes that includes some (but not all) of "true" members of a particular community; suppose also that the set includes some nodes that are not the members of this community (i.e., "false" members of the community). We propose to detect the community from this "imperfect" and "inaccurate" set of source nodes using attractor dynamics of recurrent neural networks. Community detection by the proposed method can be viewed as restoration of the original pattern from a deteriorated pattern, which is analogous to cue-triggered recall of short-term memory in the brain. We demonstrate the effectiveness of the proposed method using synthetic networks and real social networks for which correct communities are known. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Quantifying Forest Spatial Pattern Trends at Multiple Extents: An Approach to Detect Significant Changes at Different Scales

    Directory of Open Access Journals (Sweden)

    Ludovico Frate

    2014-09-01

    Full Text Available We propose a procedure to detect significant changes in forest spatial patterns and relevant scales. Our approach consists of four sequential steps. First, based on a series of multi-temporal forest maps, a set of geographic windows of increasing extents are extracted. Second, for each extent and date, specific stochastic simulations that replicate real-world spatial pattern characteristics are run. Third, by computing pattern metrics on both simulated and real maps, their empirical distributions and confidence intervals are derived. Finally, multi-temporal scalograms are built for each metric. Based on cover maps (1954, 2011 with a resolution of 10 m we analyze forest pattern changes in a central Apennines (Italy reserve at multiple spatial extents (128, 256 and 512 pixels. We identify three types of multi-temporal scalograms, depending on pattern metric behaviors, describing different dynamics of natural reforestation process. The statistical distribution and variability of pattern metrics at multiple extents offers a new and powerful tool to detect forest variations over time. Similar procedures can (i help to identify significant changes in spatial patterns and provide the bases to relate them to landscape processes; (ii minimize the bias when comparing pattern metrics at a single extent and (iii be extended to other landscapes and scales.

  19. Robust design optimization using the price of robustness, robust least squares and regularization methods

    Science.gov (United States)

    Bukhari, Hassan J.

    2017-12-01

    In this paper a framework for robust optimization of mechanical design problems and process systems that have parametric uncertainty is presented using three different approaches. Robust optimization problems are formulated so that the optimal solution is robust which means it is minimally sensitive to any perturbations in parameters. The first method uses the price of robustness approach which assumes the uncertain parameters to be symmetric and bounded. The robustness for the design can be controlled by limiting the parameters that can perturb.The second method uses the robust least squares method to determine the optimal parameters when data itself is subjected to perturbations instead of the parameters. The last method manages uncertainty by restricting the perturbation on parameters to improve sensitivity similar to Tikhonov regularization. The methods are implemented on two sets of problems; one linear and the other non-linear. This methodology will be compared with a prior method using multiple Monte Carlo simulation runs which shows that the approach being presented in this paper results in better performance.

  20. A rapid, naked-eye detection of hypochlorite and bisulfite using a robust and highly-photostable indicator dye Quinaldine Red in aqueous medium

    Science.gov (United States)

    Dutta, Tanoy; Chandra, Falguni; Koner, Apurba L.

    2018-02-01

    A ;naked-eye; detection of health hazardous bisulfite (HSO3-) and hypochlorite (ClO-) using an indicator dye (Quinaldine Red, QR) in a wide range of pH is demonstrated. The molecule contains a quinoline moiety linked to an N,N-dimethylaniline moiety with a conjugated double bond. Treatment of QR with HSO3- and ClO-, in aqueous solution at near-neutral pH, resulted in a colorless product with high selectivity and sensitivity. The detection limit was 47.8 μM and 0.2 μM for HSO3- and ClO- respectively. However, ClO- was 50 times more sensitive and with 2 times faster response compared to HSO3-. The detail characterization and related analysis demonstrate the potential of QR for a rapid, robust and highly efficient colorimetric sensor for the practical applications to detect hypochlorite in water samples.

  1. Random Forest ensembles for detection and prediction of Alzheimer's disease with a good between-cohort robustness

    Directory of Open Access Journals (Sweden)

    A.V. Lebedev

    2014-01-01

    In the ADNI set, the best AD/HC sensitivity/specificity (88.6%/92.0% — test set was achieved by combining cortical thickness and volumetric measures. The Random Forest model resulted in significantly higher accuracy compared to the reference classifier (linear Support Vector Machine. The models trained using parcelled and high-dimensional (HD input demonstrated equivalent performance, but the former was more effective in terms of computation/memory and time costs. The sensitivity/specificity for detecting MCI-to-AD conversion (but not AD/HC classification performance was further improved from 79.5%/75%–83.3%/81.3% by a combination of morphometric measurements with ApoE-genotype and demographics (age, sex, education. When applied to the independent AddNeuroMed cohort, the best ADNI models produced equivalent performance without substantial accuracy drop, suggesting good robustness sufficient for future clinical implementation.

  2. Robust stability analysis of adaptation algorithms for single perceptron.

    Science.gov (United States)

    Hui, S; Zak, S H

    1991-01-01

    The problem of robust stability and convergence of learning parameters of adaptation algorithms in a noisy environment for the single preceptron is addressed. The case in which the same input pattern is presented in the adaptation cycle is analyzed. The algorithm proposed is of the Widrow-Hoff type. It is concluded that this algorithm is robust. However, the weight vectors do not necessarily converge in the presence of measurement noise. A modified version of this algorithm in which the reduction factors are allowed to vary with time is proposed, and it is shown that this algorithm is robust and that the weight vectors converge in the presence of bounded noise. Only deterministic-type arguments are used in the analysis. An ultimate bound on the error in terms of a convex combination of the initial error and the bound on the noise is obtained.

  3. Feature-Learning-Based Printed Circuit Board Inspection via Speeded-Up Robust Features and Random Forest

    Directory of Open Access Journals (Sweden)

    Eun Hye Yuk

    2018-06-01

    Full Text Available With the coming of the 4th industrial revolution era, manufacturers produce high-tech products. As the production process is refined, inspection technologies become more important. Specifically, the inspection of a printed circuit board (PCB, which is an indispensable part of electronic products, is an essential step to improve the quality of the process and yield. Image processing techniques are utilized for inspection, but there are limitations because the backgrounds of images are different and the kinds of defects increase. In order to overcome these limitations, methods based on machine learning have been used recently. These methods can inspect without a normal image by learning fault patterns. Therefore, this paper proposes a method can detect various types of defects using machine learning. The proposed method first extracts features through speeded-up robust features (SURF, then learns the fault pattern and calculates probabilities. After that, we generate a weighted kernel density estimation (WKDE map weighted by the probabilities to consider the density of the features. Because the probability of the WKDE map can detect an area where the defects are concentrated, it improves the performance of the inspection. To verify the proposed method, we apply the method to PCB images and confirm the performance of the method.

  4. The analysis of image feature robustness using cometcloud

    Directory of Open Access Journals (Sweden)

    Xin Qi

    2012-01-01

    Full Text Available The robustness of image features is a very important consideration in quantitative image analysis. The objective of this paper is to investigate the robustness of a range of image texture features using hematoxylin stained breast tissue microarray slides which are assessed while simulating different imaging challenges including out of focus, changes in magnification and variations in illumination, noise, compression, distortion, and rotation. We employed five texture analysis methods and tested them while introducing all of the challenges listed above. The texture features that were evaluated include co-occurrence matrix, center-symmetric auto-correlation, texture feature coding method, local binary pattern, and texton. Due to the independence of each transformation and texture descriptor, a network structured combination was proposed and deployed on the Rutgers private cloud. The experiments utilized 20 randomly selected tissue microarray cores. All the combinations of the image transformations and deformations are calculated, and the whole feature extraction procedure was completed in 70 minutes using a cloud equipped with 20 nodes. Center-symmetric auto-correlation outperforms all the other four texture descriptors but also requires the longest computational time. It is roughly 10 times slower than local binary pattern and texton. From a speed perspective, both the local binary pattern and texton features provided excellent performance for classification and content-based image retrieval.

  5. Multiple strategies to improve sensitivity, speed and robustness of isothermal nucleic acid amplification for rapid pathogen detection

    Directory of Open Access Journals (Sweden)

    Lemieux Bertrand

    2011-05-01

    Full Text Available Abstract Background In the past decades the rapid growth of molecular diagnostics (based on either traditional PCR or isothermal amplification technologies meet the demand for fast and accurate testing. Although isothermal amplification technologies have the advantages of low cost requirements for instruments, the further improvement on sensitivity, speed and robustness is a prerequisite for the applications in rapid pathogen detection, especially at point-of-care diagnostics. Here, we describe and explore several strategies to improve one of the isothermal technologies, helicase-dependent amplification (HDA. Results Multiple strategies were approached to improve the overall performance of the isothermal amplification: the restriction endonuclease-mediated DNA helicase homing, macromolecular crowding agents, and the optimization of reaction enzyme mix. The effect of combing all strategies was compared with that of the individual strategy. With all of above methods, we are able to detect 50 copies of Neisseria gonorrhoeae DNA in just 20 minutes of amplification using a nearly instrument-free detection platform (BESt™ cassette. Conclusions The strategies addressed in this proof-of-concept study are independent of expensive equipments, and are not limited to particular primers, targets or detection format. However, they make a large difference in assay performance. Some of them can be adjusted and applied to other formats of nucleic acid amplification. Furthermore, the strategies to improve the in vitro assays by maximally simulating the nature conditions may be useful in the general field of developing molecular assays. A new fast molecular assay for Neisseria gonorrhoeae has also been developed which has great potential to be used at point-of-care diagnostics.

  6. Neutrality and robustness in evo-devo: emergence of lateral inhibition.

    Directory of Open Access Journals (Sweden)

    Andreea Munteanu

    2008-11-01

    Full Text Available Embryonic development is defined by the hierarchical dynamical process that translates genetic information (genotype into a spatial gene expression pattern (phenotype providing the positional information for the correct unfolding of the organism. The nature and evolutionary implications of genotype-phenotype mapping still remain key topics in evolutionary developmental biology (evo-devo. We have explored here issues of neutrality, robustness, and diversity in evo-devo by means of a simple model of gene regulatory networks. The small size of the system allowed an exhaustive analysis of the entire fitness landscape and the extent of its neutrality. This analysis shows that evolution leads to a class of robust genetic networks with an expression pattern characteristic of lateral inhibition. This class is a repertoire of distinct implementations of this key developmental process, the diversity of which provides valuable clues about its underlying causal principles.

  7. Lab-on-a-disc platform for screening of genetically modified E. coli cells via cell-free electrochemical detection of p-Coumaric acid

    DEFF Research Database (Denmark)

    Sanger, Kuldeep; Zor, Kinga; Jendresen, Christian Bille

    2017-01-01

    filtration and electrochemical detection units, the sample filtration was performed by rotating the disc using a programmable closed-loop stepper motor. The electrodes, patterned on plastic substrate, were connected through a printed circuit board to the slip ring using a robust magnetic clamping system...

  8. Application of reflectance spectroscopies (FTIR-ATR & FT-NIR) coupled with multivariate methods for robust in vivo detection of begomovirus infection in papaya leaves

    Science.gov (United States)

    Haq, Quazi M. I.; Mabood, Fazal; Naureen, Zakira; Al-Harrasi, Ahmed; Gilani, Sayed A.; Hussain, Javid; Jabeen, Farah; Khan, Ajmal; Al-Sabari, Ruqaya S. M.; Al-khanbashi, Fatema H. S.; Al-Fahdi, Amira A. M.; Al-Zaabi, Ahoud K. A.; Al-Shuraiqi, Fatma A. M.; Al-Bahaisi, Iman M.

    2018-06-01

    Nucleic acid & serology based methods have revolutionized plant disease detection, however, they are not very reliable at asymptomatic stage, especially in case of pathogen with systemic infection, in addition, they need at least 1-2 days for sample harvesting, processing, and analysis. In this study, two reflectance spectroscopies i.e. Near Infrared reflectance spectroscopy (NIR) and Fourier-Transform-Infrared spectroscopy with Attenuated Total Reflection (FT-IR, ATR) coupled with multivariate exploratory methods like Principle Component Analysis (PCA) and Partial least square discriminant analysis (PLS-DA) have been deployed to detect begomovirus infection in papaya leaves. The application of those techniques demonstrates that they are very useful for robust in vivo detection of plant begomovirus infection. These methods are simple, sensitive, reproducible, precise, and do not require any lengthy samples preparation procedures.

  9. Detection of viability of micro-algae cells by optofluidic hologram pattern.

    Science.gov (United States)

    Wang, Junsheng; Yu, Xiaomei; Wang, Yanjuan; Pan, Xinxiang; Li, Dongqing

    2018-03-01

    A rapid detection of micro-algae activity is critical for analysis of ship ballast water. A new method for detecting micro-algae activity based on lens-free optofluidic holographic imaging is presented in this paper. A compact lens-free optofluidic holographic imaging device was developed. This device is mainly composed of a light source, a small through-hole, a light propagation module, a microfluidic chip, and an image acquisition and processing module. The excited light from the light source passes through a small hole to reach the surface of the micro-algae cells in the microfluidic chip, and a holographic image is formed by the diffraction light of surface of micro-algae cells. The relation between the characteristics in the hologram pattern and the activity of micro-algae cells was investigated by using this device. The characteristics of the hologram pattern were extracted to represent the activity of micro-algae cells. To demonstrate the accuracy of the presented method and device, four species of micro-algae cells were employed as the test samples and the comparison experiments between the alive and dead cells of four species of micro-algae were conducted. The results show that the developed method and device can determine live/dead microalgae cells accurately.

  10. A Unifying Mathematical Framework for Genetic Robustness, Environmental Robustness, Network Robustness and their Trade-offs on Phenotype Robustness in Biological Networks. Part III: Synthetic Gene Networks in Synthetic Biology

    Science.gov (United States)

    Chen, Bor-Sen; Lin, Ying-Po

    2013-01-01

    Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties that are observed in biological systems at many different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be large enough to confer: intrinsic robustness for tolerating intrinsic parameter fluctuations; genetic robustness for buffering genetic variations; and environmental robustness for resisting environmental disturbances. Network robustness is needed so phenotype stability of biological network can be maintained, guaranteeing phenotype robustness. Synthetic biology is foreseen to have important applications in biotechnology and medicine; it is expected to contribute significantly to a better understanding of functioning of complex biological systems. This paper presents a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation for synthetic gene networks in synthetic biology. Further, from the unifying mathematical framework, we found that the phenotype robustness criterion for synthetic gene networks is the following: if intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness, then the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in synthetic biology can also be investigated through corresponding phenotype robustness criteria from the systematic point of view. Finally, a robust synthetic design that involves network evolution algorithms with desired behavior under intrinsic parameter fluctuations, genetic variations, and environmental

  11. A MODIS-Based Robust Satellite Technique (RST for Timely Detection of Oil Spilled Areas

    Directory of Open Access Journals (Sweden)

    Teodosio Lacava

    2017-02-01

    Full Text Available Natural crude-oil seepages, together with the oil released into seawater as a consequence of oil exploration/production/transportation activities, and operational discharges from tankers (i.e., oil dumped during cleaning actions represent the main sources of sea oil pollution. Satellite remote sensing can be a useful tool for the management of such types of marine hazards, namely oil spills, mainly owing to the synoptic view and the good trade-off between spatial and temporal resolution, depending on the specific platform/sensor system used. In this paper, an innovative satellite-based technique for oil spill detection, based on the general robust satellite technique (RST approach, is presented. It exploits the multi-temporal analysis of data acquired in the visible channels of the Moderate Resolution Imaging Spectroradiometer (MODIS on board the Aqua satellite in order to automatically and quickly detect the presence of oil spills on the sea surface, with an attempt to minimize “false detections” caused by spurious effects associated with, for instance, cloud edges, sun/satellite geometries, sea currents, etc. The oil spill event that occurred in June 2007 off the south coast of Cyprus in the Mediterranean Sea has been considered as a test case. The resulting data, the reliability of which has been evaluated by both carrying out a confutation analysis and comparing them with those provided by the application of another independent MODIS-based method, showcase the potential of RST in identifying the presence of oil with a high level of accuracy.

  12. Robustness of muscle synergies during visuomotor adaptation

    Directory of Open Access Journals (Sweden)

    Reinhard eGentner

    2013-09-01

    Full Text Available During visuomotor adaptation a novel mapping between visual targets and motor commands is gradually acquired. How muscle activation patterns are affected by this process is an open question. We tested whether the structure of muscle synergies is preserved during adaptation to a visuomotor rotation. Eight subjects applied targeted isometric forces on a handle instrumented with a force transducer while electromyographic (EMG activity was recorded from 13 shoulder and elbow muscles. The recorded forces were mapped into horizontal displacements of a virtual sphere with simulated mass, elasticity, and damping. The task consisted of moving the sphere to a target at one of eight equally spaced directions. Subjects performed three baseline blocks of 32 trials, followed by six blocks with a 45° CW rotation applied to the planar force, and finally three wash-out blocks without the perturbation. The sphere position at 100 ms after movement onset revealed significant directional error at the beginning of the rotation, a gradual learning in subsequent blocks, and aftereffects at the beginning of the wash-out. The change in initial force direction was closely related to the change in directional tuning of the initial EMG activity of most muscles. Throughout the experiment muscle synergies extracted using a non-negative matrix factorization algorithm from the muscle patterns recorded during the baseline blocks could reconstruct the muscle patterns of all other blocks with an accuracy significantly higher than chance indicating structural robustness. In addition, the synergies extracted from individual blocks remained similar to the baseline synergies throughout the experiment. Thus synergy structure is robust during visuomotor adaptation suggesting that changes in muscle patterns are obtained by rotating the directional tuning of the synergy recruitment.

  13. Medical Imaging Lesion Detection Based on Unified Gravitational Fuzzy Clustering

    Directory of Open Access Journals (Sweden)

    Jean Marie Vianney Kinani

    2017-01-01

    Full Text Available We develop a swift, robust, and practical tool for detecting brain lesions with minimal user intervention to assist clinicians and researchers in the diagnosis process, radiosurgery planning, and assessment of the patient’s response to the therapy. We propose a unified gravitational fuzzy clustering-based segmentation algorithm, which integrates the Newtonian concept of gravity into fuzzy clustering. We first perform fuzzy rule-based image enhancement on our database which is comprised of T1/T2 weighted magnetic resonance (MR and fluid-attenuated inversion recovery (FLAIR images to facilitate a smoother segmentation. The scalar output obtained is fed into a gravitational fuzzy clustering algorithm, which separates healthy structures from the unhealthy. Finally, the lesion contour is automatically outlined through the initialization-free level set evolution method. An advantage of this lesion detection algorithm is its precision and its simultaneous use of features computed from the intensity properties of the MR scan in a cascading pattern, which makes the computation fast, robust, and self-contained. Furthermore, we validate our algorithm with large-scale experiments using clinical and synthetic brain lesion datasets. As a result, an 84%–93% overlap performance is obtained, with an emphasis on robustness with respect to different and heterogeneous types of lesion and a swift computation time.

  14. [Blood Test Patterns for Blood Donors after Nucleic Acid Detection in the Blood Center].

    Science.gov (United States)

    Men, Shou-Shan; Lv, Lian-Zhi; Chen, Yuan-Feng; Han, Chun-Hua; Liu, Hong-Yu; Yan, Yan

    2017-12-01

    To investigate the blood test patterns for blood donors after nucleic acid detection in blood center. The collected blood samples after voluntary blood donors first were detected by conventional ELISA, then 31981 negative samples were detected via HBV/HCV/HIV combined nucleic acid test of 6 mixed samples(22716 cases) or single samples(9265 cases) by means of Roche cobas s201 instrument. The combined detection method as follows: the blood samples were assayed by conventional nucleic acid test of 6 mixed samples, at same time, 6 mixed samples were treated with polyethylene glycol precipitation method to concentrate the virus, then the nucleic acid test of blood samples was performed; the single detection method as follows: firstly the conventional nucleic acid test of single sample was performed, then the positive reactive samples after re-examination were 6-fold diluted to simulate the nucleic acid test of 6-mixed samples. The positive rate of positive samples detected by combined nucleic acid test, positive samples detected by nucleic acid test of mixed virus concentration and positive samples detected by single nucleic acid test was statistically analyzed. In addition, for HBV + persons the serological test yet should be performed. In 22 716 samples detected by nucleic acid test of 6 mixed samples (MP-6-NAT) , 9 cases were HBV + (0.40‰, 9/22716); at same time, the detection of same samples by nucleic acid test of mixed sample virus concentration showed 29 cases of HBV + (1.28‰, 29/22716). In 9265 samples detected by single nucleic acid test(ID-NAT) 12 cases showed HBV + (1.30‰, 12/9265), meanwhile the detection of these 12 samples with HBV + by 6-fold dilution for virus concentration found only 4 samples with HBV + . In serological qualified samples, ID-NAT unqualified rate was 1.28‰, which was higher than that of MP-6-NAT(0.4‰) (χ 2 =8.11, P0.05). In 41 samples with HBsAg - HBV DNA + detected by ELISA, 36 samples were confirmed to be occult HBV

  15. Detection of dependence patterns with delay.

    Science.gov (United States)

    Chevallier, Julien; Laloë, Thomas

    2015-11-01

    The Unitary Events (UE) method is a popular and efficient method used this last decade to detect dependence patterns of joint spike activity among simultaneously recorded neurons. The first introduced method is based on binned coincidence count (Grün, 1996) and can be applied on two or more simultaneously recorded neurons. Among the improvements of the methods, a transposition to the continuous framework has recently been proposed by Muiño and Borgelt (2014) and fully investigated by Tuleau-Malot et al. (2014) for two neurons. The goal of the present paper is to extend this study to more than two neurons. The main result is the determination of the limit distribution of the coincidence count. This leads to the construction of an independence test between L≥2 neurons. Finally, we propose a multiple test procedure via a Benjamini and Hochberg approach (Benjamini and Hochberg, 1995). All the theoretical results are illustrated by a simulation study, and compared to the UE method proposed by Grün et al. (2002). Furthermore our method is applied on real data. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Robust vehicle detection in aerial images based on salient region selection and superpixel classification

    Science.gov (United States)

    Sahli, Samir; Duval, Pierre-Luc; Sheng, Yunlong; Lavigne, Daniel A.

    2011-05-01

    For detecting vehicles in large scale aerial images we first used a non-parametric method proposed recently by Rosin to define the regions of interest, where the vehicles appear with dense edges. The saliency map is a sum of distance transforms (DT) of a set of edges maps, which are obtained by a threshold decomposition of the gradient image with a set of thresholds. A binary mask for highlighting the regions of interest is then obtained by a moment-preserving thresholding of the normalized saliency map. Secondly, the regions of interest were over-segmented by the SLIC superpixels proposed recently by Achanta et al. to cluster pixels into the color constancy sub-regions. In the aerial images of 11.2 cm/pixel resolution, the vehicles in general do not exceed 20 x 40 pixels. We introduced a size constraint to guarantee no superpixels exceed the size of a vehicle. The superpixels were then classified to vehicle or non-vehicle by the Support Vector Machine (SVM), in which the Scale Invariant Feature Transform (SIFT) features and the Linear Binary Pattern (LBP) texture features were used. Both features were extracted at two scales with two size patches. The small patches capture local structures and the larger patches include the neighborhood information. Preliminary results show a significant gain in the detection. The vehicles were detected with a dense concentration of the vehicle-class superpixels. Even dark color cars were successfully detected. A validation process will follow to reduce the presence of isolated false alarms in the background.

  17. Colorimetric sensor arrays based on pattern recognition for the detection of nitroaromatic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei; Dong, Xiao [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing, 100081 (China); Qiu, Lili, E-mail: qiulili@bit.edu.cn [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing, 100081 (China); Yan, Zequn [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing, 100081 (China); Meng, Zihui, E-mail: m_zihui@yahoo.com [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing, 100081 (China); Xue, Min [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing, 100081 (China); He, Xuan; Liu, Xueyong [Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621900 (China)

    2017-03-15

    Graphical abstract: A colorimetric sensor array based on four kinds molecularly imprinted photonic crystal (MIPC) was explored for the selective visual detection of TNT, 2,6-DNT, 2,4-DNT and 4-MNT. The color of individual sensor changed with the increasing concentration of the analytes, and a cross-responsive platform was evaluated by a “radar” pattern. With the assistance of principal component analysis (PCA), a separate response region contained 95.25% of significant characteristics for the detection of nitroaromatics was generated, which also promised high potential for the customized visual detection system of other harmful chemicals. - Highlights: • Nitroaromatics were visually detected by molecularly imprinted photonic crystal. • The adsorption capacity was calculated. • The cross responsive platform of sensor array was established and discussed. • The discrimination capability was promoted by principal component analysis. • This system had high potential to be used in other customed visual detection. - Abstract: This research demonstrated that, in a colorimetric sensor array, 2,4,6-trinitrotoluene (TNT), 2,6-dinitrotoluene (2,6-DNT), 2,4-dinitrotoluene (2,4-DNT) and 4-nitrotoluene (4-MNT) were identifiable through a unique pattern in a qualitative and semi-quantitative manner. The adsorption capacity of the molecularly imprinted colloidal particles (MICs) for their corresponding templates was 0.27 mmol TNT/g, 0.22 mmol 2,6-DNT/g, 0.31 mmol 2,4-DNT/g and 0.16 mmol 4-MNT/g, respectively. Every optical sensor utilized in the arrays contained three-dimensional molecularly imprinted photonic crystal (MIPC) sensor with different imprinted templates. The intelligent materials can display different colors from green to red to 20 mM corresponding nitroaromatics with varying diffraction red shifts of 84 nm (TNT), 46 nm (2,6-DNT), 54 nm (2,4-DNT) and 35 nm (4-MNT), respectively. With the assistance of principal component analysis (PCA) and rational design

  18. Colorimetric sensor arrays based on pattern recognition for the detection of nitroaromatic molecules

    International Nuclear Information System (INIS)

    Lu, Wei; Dong, Xiao; Qiu, Lili; Yan, Zequn; Meng, Zihui; Xue, Min; He, Xuan; Liu, Xueyong

    2017-01-01

    Graphical abstract: A colorimetric sensor array based on four kinds molecularly imprinted photonic crystal (MIPC) was explored for the selective visual detection of TNT, 2,6-DNT, 2,4-DNT and 4-MNT. The color of individual sensor changed with the increasing concentration of the analytes, and a cross-responsive platform was evaluated by a “radar” pattern. With the assistance of principal component analysis (PCA), a separate response region contained 95.25% of significant characteristics for the detection of nitroaromatics was generated, which also promised high potential for the customized visual detection system of other harmful chemicals. - Highlights: • Nitroaromatics were visually detected by molecularly imprinted photonic crystal. • The adsorption capacity was calculated. • The cross responsive platform of sensor array was established and discussed. • The discrimination capability was promoted by principal component analysis. • This system had high potential to be used in other customed visual detection. - Abstract: This research demonstrated that, in a colorimetric sensor array, 2,4,6-trinitrotoluene (TNT), 2,6-dinitrotoluene (2,6-DNT), 2,4-dinitrotoluene (2,4-DNT) and 4-nitrotoluene (4-MNT) were identifiable through a unique pattern in a qualitative and semi-quantitative manner. The adsorption capacity of the molecularly imprinted colloidal particles (MICs) for their corresponding templates was 0.27 mmol TNT/g, 0.22 mmol 2,6-DNT/g, 0.31 mmol 2,4-DNT/g and 0.16 mmol 4-MNT/g, respectively. Every optical sensor utilized in the arrays contained three-dimensional molecularly imprinted photonic crystal (MIPC) sensor with different imprinted templates. The intelligent materials can display different colors from green to red to 20 mM corresponding nitroaromatics with varying diffraction red shifts of 84 nm (TNT), 46 nm (2,6-DNT), 54 nm (2,4-DNT) and 35 nm (4-MNT), respectively. With the assistance of principal component analysis (PCA) and rational design

  19. Capillarity Guided Patterning of Microliquids.

    Science.gov (United States)

    Kang, Myeongwoo; Park, Woohyun; Na, Sangcheol; Paik, Sang-Min; Lee, Hyunjae; Park, Jae Woo; Kim, Ho-Young; Jeon, Noo Li

    2015-06-01

    Soft lithography and other techniques have been developed to investigate biological and chemical phenomena as an alternative to photolithography-based patterning methods that have compatibility problems. Here, a simple approach for nonlithographic patterning of liquids and gels inside microchannels is described. Using a design that incorporates strategically placed microstructures inside the channel, microliquids or gels can be spontaneously trapped and patterned when the channel is drained. The ability to form microscale patterns inside microfluidic channels using simple fluid drain motion offers many advantages. This method is geometrically analyzed based on hydrodynamics and verified with simulation and experiments. Various materials (i.e., water, hydrogels, and other liquids) are successfully patterned with complex shapes that are isolated from each other. Multiple cell types are patterned within the gels. Capillarity guided patterning (CGP) is fast, simple, and robust. It is not limited by pattern shape, size, cell type, and material. In a simple three-step process, a 3D cancer model that mimics cell-cell and cell-extracellular matrix interactions is engineered. The simplicity and robustness of the CGP will be attractive for developing novel in vitro models of organ-on-a-chip and other biological experimental platforms amenable to long-term observation of dynamic events using advanced imaging and analytical techniques. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Using Clustering Techniques To Detect Usage Patterns in a Web-based Information System.

    Science.gov (United States)

    Chen, Hui-Min; Cooper, Michael D.

    2001-01-01

    This study developed an analytical approach to detecting groups with homogenous usage patterns in a Web-based information system. Principal component analysis was used for data reduction, cluster analysis for categorizing usage into groups. The methodology was demonstrated and tested using two independent samples of user sessions from the…

  1. Applications of pattern recognition techniques to online fault detection

    International Nuclear Information System (INIS)

    Singer, R.M.; Gross, K.C.; King, R.W.

    1993-01-01

    A common problem to operators of complex industrial systems is the early detection of incipient degradation of sensors and components in order to avoid unplanned outages, to orderly plan for anticipated maintenance activities and to assure continued safe operation. In such systems, there usually are a large number of sensors (upwards of several thousand is not uncommon) serving many functions, ranging from input to control systems, monitoring of safety parameters and component performance limits, system environmental conditions, etc. Although sensors deemed to measure important process conditions are generally alarmed, the alarm set points usually are just high-low limits and the operator's response to such alarms is based on written procedures and his or her experience and training. In many systems this approach has been successful, but in situations where the cost of a forced outage is high an improved method is needed. In such cases it is desirable, if not necessary, to detect disturbances in either sensors or the process prior to any actual failure that could either shut down the process or challenge any safety system that is present. Recent advances in various artificial intelligence techniques have provided the opportunity to perform such functions of early detection and diagnosis. In this paper, the experience gained through the application of several pattern-recognition techniques to the on-line monitoring and incipient disturbance detection of several coolant pumps and numerous sensors at the Experimental Breeder Reactor-II (EBR-II) which is located at the Idaho National Engineering Laboratory is presented

  2. Observation of Communication by Physical Education Teachers: Detecting Patterns in Verbal Behavior.

    Science.gov (United States)

    García-Fariña, Abraham; Jiménez-Jiménez, F; Anguera, M Teresa

    2018-01-01

    The aim of this study was to analyze the verbal behavior of primary school physical education teachers in a natural classroom setting in order to investigate patterns in social constructivist communication strategies before and after participation in a training program designed to familiarize teachers with these strategies. The participants were three experienced physical education teachers interacting separately with 65 students over a series of classes. Written informed consent was obtained from all the students' parents or legal guardians. An indirect observation tool (ADDEF) was designed specifically for the study within the theoretical framework, and consisted of a combined field format, with three dimensions, and category systems. Each dimension formed the basis for building a subsequent system of exhaustive and mutually exclusive categories. Twenty-nine sessions, grouped into two separate modules, were coded using the Atlas.ti 7 program, and a total of 1991 units (messages containing constructivist discursive strategies) were recorded. Analysis of intraobserver reliability showed almost perfect agreement. Lag sequential analysis, which is a powerful statistical technique based on the calculation of conditional and unconditional probabilities in prospective and retrospective lags, was performed in GSEQ5 software to search for verbal behavior patterns before and after the training program. At both time points, we detected a pattern formed by requests for information combined with the incorporation of students' contributions into the teachers' discourse and re-elaborations of answers. In the post-training phase, we detected new and stronger patterns in certain sessions, indicating that programs combining theoretical and practical knowledge can effectively increase teachers' repertoire of discursive strategies and ultimately promote active engagement in learning. This has important implications for the evaluation and development of teacher effectiveness in

  3. Multivariate data-driven modelling and pattern recognition for damage detection and identification for acoustic emission and acousto-ultrasonics

    International Nuclear Information System (INIS)

    Torres-Arredondo, M-A; Fritzen, C-P; Tibaduiza, D-A; Mujica, L E; Rodellar, J; McGugan, M; Toftegaard, H; Borum, K-K

    2013-01-01

    Different methods are commonly used for non-destructive testing in structures; among others, acoustic emission and ultrasonic inspections are widely used to assess structures. The research presented in this paper is motivated by the need to improve the inspection capabilities and reliability of structural health monitoring (SHM) systems based on ultrasonic guided waves with focus on the acoustic emission and acousto-ultrasonics techniques. The use of a guided wave based approach is driven by the fact that these waves are able to propagate over relatively long distances, and interact sensitively and uniquely with different types of defect. Special attention is paid here to the development of efficient SHM methodologies. This requires robust signal processing techniques for the correct interpretation of the complex ultrasonic waves. Therefore, a variety of existing algorithms for signal processing and pattern recognition are evaluated and integrated into the different proposed methodologies. As a contribution to solve the problem, this paper presents results in damage detection and classification using a methodology based on hierarchical nonlinear principal component analysis, square prediction measurements and self-organizing maps, which are applied to data from acoustic emission tests and acousto-ultrasonic inspections. At the end, the efficiency of these methodologies is experimentally evaluated in diverse anisotropic composite structures. (paper)

  4. Self-organization principles result in robust control of flexible manufacturing systems

    DEFF Research Database (Denmark)

    Nature shows us in our daily life how robust, flexible and optimal self-organized modular constructions work in complex physical, chemical and biological systems, which successfully adapt to new and unexpected situations. A promising strategy is therefore to use such self-organization and pattern...... problems with several autonomous robots and several targets are considered as model of flexible manufacturing systems. Each manufacturing target has to be served in a given time interval by one and only one robot and the total working costs have to be minimized (or total winnings maximized). A specifically...... constructed dynamical system approach (coupled selection equations) is used which is based on pattern formation principles and results in fault resistant and robust behaviour. An important feature is that this type of control also guarantees feasiblitiy of the assignment solutions. In previous work...

  5. Sparse alignment for robust tensor learning.

    Science.gov (United States)

    Lai, Zhihui; Wong, Wai Keung; Xu, Yong; Zhao, Cairong; Sun, Mingming

    2014-10-01

    Multilinear/tensor extensions of manifold learning based algorithms have been widely used in computer vision and pattern recognition. This paper first provides a systematic analysis of the multilinear extensions for the most popular methods by using alignment techniques, thereby obtaining a general tensor alignment framework. From this framework, it is easy to show that the manifold learning based tensor learning methods are intrinsically different from the alignment techniques. Based on the alignment framework, a robust tensor learning method called sparse tensor alignment (STA) is then proposed for unsupervised tensor feature extraction. Different from the existing tensor learning methods, L1- and L2-norms are introduced to enhance the robustness in the alignment step of the STA. The advantage of the proposed technique is that the difficulty in selecting the size of the local neighborhood can be avoided in the manifold learning based tensor feature extraction algorithms. Although STA is an unsupervised learning method, the sparsity encodes the discriminative information in the alignment step and provides the robustness of STA. Extensive experiments on the well-known image databases as well as action and hand gesture databases by encoding object images as tensors demonstrate that the proposed STA algorithm gives the most competitive performance when compared with the tensor-based unsupervised learning methods.

  6. Shrinkage covariance matrix approach based on robust trimmed mean in gene sets detection

    Science.gov (United States)

    Karjanto, Suryaefiza; Ramli, Norazan Mohamed; Ghani, Nor Azura Md; Aripin, Rasimah; Yusop, Noorezatty Mohd

    2015-02-01

    Microarray involves of placing an orderly arrangement of thousands of gene sequences in a grid on a suitable surface. The technology has made a novelty discovery since its development and obtained an increasing attention among researchers. The widespread of microarray technology is largely due to its ability to perform simultaneous analysis of thousands of genes in a massively parallel manner in one experiment. Hence, it provides valuable knowledge on gene interaction and function. The microarray data set typically consists of tens of thousands of genes (variables) from just dozens of samples due to various constraints. Therefore, the sample covariance matrix in Hotelling's T2 statistic is not positive definite and become singular, thus it cannot be inverted. In this research, the Hotelling's T2 statistic is combined with a shrinkage approach as an alternative estimation to estimate the covariance matrix to detect significant gene sets. The use of shrinkage covariance matrix overcomes the singularity problem by converting an unbiased to an improved biased estimator of covariance matrix. Robust trimmed mean is integrated into the shrinkage matrix to reduce the influence of outliers and consequently increases its efficiency. The performance of the proposed method is measured using several simulation designs. The results are expected to outperform existing techniques in many tested conditions.

  7. Robust bivariate error detection in skewed data with application to historical radiosonde winds

    KAUST Repository

    Sun, Ying

    2017-01-18

    The global historical radiosonde archives date back to the 1920s and contain the only directly observed measurements of temperature, wind, and moisture in the upper atmosphere, but they contain many random errors. Most of the focus on cleaning these large datasets has been on temperatures, but winds are important inputs to climate models and in studies of wind climatology. The bivariate distribution of the wind vector does not have elliptical contours but is skewed and heavy-tailed, so we develop two methods for outlier detection based on the bivariate skew-t (BST) distribution, using either distance-based or contour-based approaches to flag observations as potential outliers. We develop a framework to robustly estimate the parameters of the BST and then show how the tuning parameter to get these estimates is chosen. In simulation, we compare our methods with one based on a bivariate normal distribution and a nonparametric approach based on the bagplot. We then apply all four methods to the winds observed for over 35,000 radiosonde launches at a single station and demonstrate differences in the number of observations flagged across eight pressure levels and through time. In this pilot study, the method based on the BST contours performs very well.

  8. Robust bivariate error detection in skewed data with application to historical radiosonde winds

    KAUST Repository

    Sun, Ying; Hering, Amanda S.; Browning, Joshua M.

    2017-01-01

    The global historical radiosonde archives date back to the 1920s and contain the only directly observed measurements of temperature, wind, and moisture in the upper atmosphere, but they contain many random errors. Most of the focus on cleaning these large datasets has been on temperatures, but winds are important inputs to climate models and in studies of wind climatology. The bivariate distribution of the wind vector does not have elliptical contours but is skewed and heavy-tailed, so we develop two methods for outlier detection based on the bivariate skew-t (BST) distribution, using either distance-based or contour-based approaches to flag observations as potential outliers. We develop a framework to robustly estimate the parameters of the BST and then show how the tuning parameter to get these estimates is chosen. In simulation, we compare our methods with one based on a bivariate normal distribution and a nonparametric approach based on the bagplot. We then apply all four methods to the winds observed for over 35,000 radiosonde launches at a single station and demonstrate differences in the number of observations flagged across eight pressure levels and through time. In this pilot study, the method based on the BST contours performs very well.

  9. Detection of bursts in neuronal spike trains by the mean inter-spike interval method

    Institute of Scientific and Technical Information of China (English)

    Lin Chen; Yong Deng; Weihua Luo; Zhen Wang; Shaoqun Zeng

    2009-01-01

    Bursts are electrical spikes firing with a high frequency, which are the most important property in synaptic plasticity and information processing in the central nervous system. However, bursts are difficult to identify because bursting activities or patterns vary with phys-iological conditions or external stimuli. In this paper, a simple method automatically to detect bursts in spike trains is described. This method auto-adaptively sets a parameter (mean inter-spike interval) according to intrinsic properties of the detected burst spike trains, without any arbitrary choices or any operator judgrnent. When the mean value of several successive inter-spike intervals is not larger than the parameter, a burst is identified. By this method, bursts can be automatically extracted from different bursting patterns of cultured neurons on multi-electrode arrays, as accurately as by visual inspection. Furthermore, significant changes of burst variables caused by electrical stimulus have been found in spontaneous activity of neuronal network. These suggest that the mean inter-spike interval method is robust for detecting changes in burst patterns and characteristics induced by environmental alterations.

  10. Fast, accurate, and robust automatic marker detection for motion correction based on oblique kV or MV projection image pairs

    International Nuclear Information System (INIS)

    Slagmolen, Pieter; Hermans, Jeroen; Maes, Frederik; Budiharto, Tom; Haustermans, Karin; Heuvel, Frank van den

    2010-01-01

    Purpose: A robust and accurate method that allows the automatic detection of fiducial markers in MV and kV projection image pairs is proposed. The method allows to automatically correct for inter or intrafraction motion. Methods: Intratreatment MV projection images are acquired during each of five treatment beams of prostate cancer patients with four implanted fiducial markers. The projection images are first preprocessed using a series of marker enhancing filters. 2D candidate marker locations are generated for each of the filtered projection images and 3D candidate marker locations are reconstructed by pairing candidates in subsequent projection images. The correct marker positions are retrieved in 3D by the minimization of a cost function that combines 2D image intensity and 3D geometric or shape information for the entire marker configuration simultaneously. This optimization problem is solved using dynamic programming such that the globally optimal configuration for all markers is always found. Translational interfraction and intrafraction prostate motion and the required patient repositioning is assessed from the position of the centroid of the detected markers in different MV image pairs. The method was validated on a phantom using CT as ground-truth and on clinical data sets of 16 patients using manual marker annotations as ground-truth. Results: The entire setup was confirmed to be accurate to around 1 mm by the phantom measurements. The reproducibility of the manual marker selection was less than 3.5 pixels in the MV images. In patient images, markers were correctly identified in at least 99% of the cases for anterior projection images and 96% of the cases for oblique projection images. The average marker detection accuracy was 1.4±1.8 pixels in the projection images. The centroid of all four reconstructed marker positions in 3D was positioned within 2 mm of the ground-truth position in 99.73% of all cases. Detecting four markers in a pair of MV images

  11. Adaptive local thresholding for robust nucleus segmentation utilizing shape priors

    Science.gov (United States)

    Wang, Xiuzhong; Srinivas, Chukka

    2016-03-01

    This paper describes a novel local thresholding method for foreground detection. First, a Canny edge detection method is used for initial edge detection. Then, tensor voting is applied on the initial edge pixels, using a nonsymmetric tensor field tailored to encode prior information about nucleus size, shape, and intensity spatial distribution. Tensor analysis is then performed to generate the saliency image and, based on that, the refined edge. Next, the image domain is divided into blocks. In each block, at least one foreground and one background pixel are sampled for each refined edge pixel. The saliency weighted foreground histogram and background histogram are then created. These two histograms are used to calculate a threshold by minimizing the background and foreground pixel classification error. The block-wise thresholds are then used to generate the threshold for each pixel via interpolation. Finally, the foreground is obtained by comparing the original image with the threshold image. The effective use of prior information, combined with robust techniques, results in far more reliable foreground detection, which leads to robust nucleus segmentation.

  12. Pattern Extraction Algorithm for NetFlow-Based Botnet Activities Detection

    Directory of Open Access Journals (Sweden)

    Rafał Kozik

    2017-01-01

    Full Text Available As computer and network technologies evolve, the complexity of cybersecurity has dramatically increased. Advanced cyber threats have led to current approaches to cyber-attack detection becoming ineffective. Many currently used computer systems and applications have never been deeply tested from a cybersecurity point of view and are an easy target for cyber criminals. The paradigm of security by design is still more of a wish than a reality, especially in the context of constantly evolving systems. On the other hand, protection technologies have also improved. Recently, Big Data technologies have given network administrators a wide spectrum of tools to combat cyber threats. In this paper, we present an innovative system for network traffic analysis and anomalies detection to utilise these tools. The systems architecture is based on a Big Data processing framework, data mining, and innovative machine learning techniques. So far, the proposed system implements pattern extraction strategies that leverage batch processing methods. As a use case we consider the problem of botnet detection by means of data in the form of NetFlows. Results are promising and show that the proposed system can be a useful tool to improve cybersecurity.

  13. Active Exploration for Robust Object Detection

    OpenAIRE

    Velez, Javier J.; Hemann, Garrett A.; Huang, Albert S.; Posner, Ingmar; Roy, Nicholas

    2011-01-01

    Today, mobile robots are increasingly expected to operate in ever more complex and dynamic environments. In order to carry out many of the higher-level tasks envisioned a semantic understanding of a workspace is pivotal. Here our field has benefited significantly from successes in machine learning and vision: applications in robotics of off-the-shelf object detectors are plentiful. This paper outlines an online, any-time planning framework enabling the active exploration of such detections. O...

  14. Perceptual Robust Design

    DEFF Research Database (Denmark)

    Pedersen, Søren Nygaard

    The research presented in this PhD thesis has focused on a perceptual approach to robust design. The results of the research and the original contribution to knowledge is a preliminary framework for understanding, positioning, and applying perceptual robust design. Product quality is a topic...... been presented. Therefore, this study set out to contribute to the understanding and application of perceptual robust design. To achieve this, a state-of-the-art and current practice review was performed. From the review two main research problems were identified. Firstly, a lack of tools...... for perceptual robustness was found to overlap with the optimum for functional robustness and at most approximately 2.2% out of the 14.74% could be ascribed solely to the perceptual robustness optimisation. In conclusion, the thesis have offered a new perspective on robust design by merging robust design...

  15. RECOVERY ACT - Robust Optimization for Connectivity and Flows in Dynamic Complex Networks

    Energy Technology Data Exchange (ETDEWEB)

    Balasundaram, Balabhaskar [Oklahoma State Univ., Stillwater, OK (United States); Butenko, Sergiy [Texas A & M Univ., College Station, TX (United States); Boginski, Vladimir [Univ. of Florida, Gainesville, FL (United States); Uryasev, Stan [Univ. of Florida, Gainesville, FL (United States)

    2013-12-25

    The goal of this project was to study robust connectivity and flow patterns of complex multi-scale systems modeled as networks. Networks provide effective ways to study global, system level properties, as well as local, multi-scale interactions at a component level. Numerous applications from power systems, telecommunication, transportation, biology, social science, and other areas have benefited from novel network-based models and their analysis. Modeling and optimization techniques that employ appropriate measures of risk for identifying robust clusters and resilient network designs in networks subject to uncertain failures were investigated in this collaborative multi-university project. In many practical situations one has to deal with uncertainties associated with possible failures of network components, thereby affecting the overall efficiency and performance of the system (e.g., every node/connection has a probability of partial or complete failure). Some extreme examples include power grid component failures, airline hub failures due to weather, or freeway closures due to emergencies. These are also situations in which people, materials, or other resources need to be managed efficiently. Important practical examples include rerouting flow through power grids, adjusting flight plans, and identifying routes for emergency services and supplies, in the event network elements fail unexpectedly. Solutions that are robust under uncertainty, in addition to being economically efficient, are needed. This project has led to the development of novel models and methodologies that can tackle the optimization problems arising in such situations. A number of new concepts, which have not been previously applied in this setting, were investigated in the framework of the project. The results can potentially help decision-makers to better control and identify robust or risk-averse decisions in such situations. Formulations and optimal solutions of the considered problems need

  16. Strain detection in crystalline heterostructures using bidimensional blocking patterns of channelled particles

    Science.gov (United States)

    Redondo-Cubero, A.; David-Bosne, E.; Wahl, U.; Miranda, P.; da Silva, M. R.; Correia, J. G.; Lorenz, K.

    2018-03-01

    Strain is a critical parameter affecting the growth and the performance of many semiconductor systems but, at the same time, the accurate determination of strain profiles in heterostructures can be challenging, especially at the nanoscale. Ion channelling/blocking is a powerful technique for the detection of the strain state of thin films, normally carried out through angular scans with conventional particle detectors. Here we report the novel application of position sensitive detectors for the evaluation of the strain in a series of AlInN/GaN heterostructures with different compositions and thicknesses. The tetragonal strain is varied from compressive to tensile and analysed through bidimensional blocking patterns. The results demonstrate that strain can be correctly quantified when compared to Monte Carlo channelling simulations, which are essential because of the presence of ion steering effects at the interface between the layer and the substrate. Despite this physical limitation caused by ion steering, our results show that full bidimensional patterns can be applied to detect fingerprints and enhance the accuracy for most critical cases, in which the angular shift associated to the lattice distortion is below the critical angle for channelling.

  17. Low-Cost, Robust, and Field Portable Smartphone Platform Photometric Sensor for Fluoride Level Detection in Drinking Water.

    Science.gov (United States)

    Hussain, Iftak; Ahamad, Kamal Uddin; Nath, Pabitra

    2017-01-03

    Groundwater is the major source of drinking water for people living in rural areas of India. Pollutants such as fluoride in groundwater may be present in much higher concentration than the permissible limit. Fluoride does not give any visible coloration to water, and hence, no effort is made to remove or reduce the concentration of this chemical present in drinking water. This may lead to a serious health hazard for those people taking groundwater as their primary source of drinking water. Sophisticated laboratory grade tools such as ion selective electrodes (ISE) and portable spectrophotometers are commercially available for in-field detection of fluoride level in drinking water. However, such tools are generally expensive and require expertise to handle. In this paper, we demonstrate the working of a low cost, robust, and field portable smartphone platform fluoride sensor that can detect and analyze fluoride concentration level in drinking water. For development of the proposed sensor, we utilize the ambient light sensor (ALS) of the smartphone as light intensity detector and its LED flash light as an optical source. An android application "FSense" has been developed which can detect and analyze the fluoride concentration level in water samples. The custom developed application can be used for sharing of in-field sensing data from any remote location to the central water quality monitoring station. We envision that the proposed sensing technique could be useful for initiating a fluoride removal program undertaken by governmental and nongovernmental organizations here in India.

  18. Application of reflectance spectroscopies (FTIR-ATR & FT-NIR) coupled with multivariate methods for robust in vivo detection of begomovirus infection in papaya leaves.

    Science.gov (United States)

    Haq, Quazi M I; Mabood, Fazal; Naureen, Zakira; Al-Harrasi, Ahmed; Gilani, Sayed A; Hussain, Javid; Jabeen, Farah; Khan, Ajmal; Al-Sabari, Ruqaya S M; Al-Khanbashi, Fatema H S; Al-Fahdi, Amira A M; Al-Zaabi, Ahoud K A; Al-Shuraiqi, Fatma A M; Al-Bahaisi, Iman M

    2018-06-05

    Nucleic acid & serology based methods have revolutionized plant disease detection, however, they are not very reliable at asymptomatic stage, especially in case of pathogen with systemic infection, in addition, they need at least 1-2days for sample harvesting, processing, and analysis. In this study, two reflectance spectroscopies i.e. Near Infrared reflectance spectroscopy (NIR) and Fourier-Transform-Infrared spectroscopy with Attenuated Total Reflection (FT-IR, ATR) coupled with multivariate exploratory methods like Principle Component Analysis (PCA) and Partial least square discriminant analysis (PLS-DA) have been deployed to detect begomovirus infection in papaya leaves. The application of those techniques demonstrates that they are very useful for robust in vivo detection of plant begomovirus infection. These methods are simple, sensitive, reproducible, precise, and do not require any lengthy samples preparation procedures. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Robust surface roughness indices and morphological interpretation

    Science.gov (United States)

    Trevisani, Sebastiano; Rocca, Michele

    2016-04-01

    Geostatistical-based image/surface texture indices based on variogram (Atkison and Lewis, 2000; Herzfeld and Higginson, 1996; Trevisani et al., 2012) and on its robust variant MAD (median absolute differences, Trevisani and Rocca, 2015) offer powerful tools for the analysis and interpretation of surface morphology (potentially not limited to solid earth). In particular, the proposed robust index (Trevisani and Rocca, 2015) with its implementation based on local kernels permits the derivation of a wide set of robust and customizable geomorphometric indices capable to outline specific aspects of surface texture. The stability of MAD in presence of signal noise and abrupt changes in spatial variability is well suited for the analysis of high-resolution digital terrain models. Moreover, the implementation of MAD by means of a pixel-centered perspective based on local kernels, with some analogies to the local binary pattern approach (Lucieer and Stein, 2005; Ojala et al., 2002), permits to create custom roughness indices capable to outline different aspects of surface roughness (Grohmann et al., 2011; Smith, 2015). In the proposed poster, some potentialities of the new indices in the context of geomorphometry and landscape analysis will be presented. At same time, challenges and future developments related to the proposed indices will be outlined. Atkinson, P.M., Lewis, P., 2000. Geostatistical classification for remote sensing: an introduction. Computers & Geosciences 26, 361-371. Grohmann, C.H., Smith, M.J., Riccomini, C., 2011. Multiscale Analysis of Topographic Surface Roughness in the Midland Valley, Scotland. IEEE Transactions on Geoscience and Remote Sensing 49, 1220-1213. Herzfeld, U.C., Higginson, C.A., 1996. Automated geostatistical seafloor classification - Principles, parameters, feature vectors, and discrimination criteria. Computers and Geosciences, 22 (1), pp. 35-52. Lucieer, A., Stein, A., 2005. Texture-based landform segmentation of LiDAR imagery

  20. A Robust Level-Set Algorithm for Centerline Extraction

    NARCIS (Netherlands)

    Telea, Alexandru; Vilanova, Anna

    2003-01-01

    We present a robust method for extracting 3D centerlines from volumetric datasets. We start from a 2D skeletonization method to locate voxels centered with respect to three orthogonal slicing directions. Next, we introduce a new detection criterion to extract the centerline voxels from the above

  1. Robust non-local effects of ocean heat uptake on radiative feedback and subtropical cloud cover

    Science.gov (United States)

    Rose, B. E. J.

    2016-02-01

    Much recent work has pointed to the limitations of the global mean planetary energy budget as a useful diagnostic tool for understanding transient climate response, because the climate sensitivity (or radiative feedback) governing the relationships between ocean heat content, surface temperature and top-of-atmosphere energy imbalance depends sensitively on timescale, spatial pattern and nature of the climate forcing. Progress has been made by treating the slowly-evolving (and spatially complex) pattern of ocean heat uptake as a quasi-equilibrium forcing on the "fast" components of the climate system: the atmospheric radiative-dynamical processes that link air-sea heat exchange to the top-of-atmosphere energy budget. Differences between these feedbacks and those on CO2 radiative forcing can be expressed as an "efficacy" of ocean heat uptake. We use idealized slab ocean GCMs forced by prescribed steady energy sinks limited to specific latitude bands (representing heat exchange with the deep ocean) to quantify how (and why) the efficacy depends on the spatial pattern of ocean heat uptake. By repeating the experiment across several independent GCMs we identify robust and non-robust aspects of the response. We find that the efficacy of sub-polar heat uptake is 3 to 4 times larger than the efficacy of tropical heat uptake. Radiative kernel analysis allows an accurate partition into feedbacks due to temperature, water vapor and clouds. We find large and robust differences in clear-sky lapse rate feedbacks, associated with robust differences in large-scale atmospheric circulation and stratification driven by ocean heat uptake. A more novel and surprising result is the robustness across several independent GCMs of the differences in subtropical low cloud feedback (positive under high-latitude uptake, strongly negative under tropical uptake). We trace these robust differences to thermodynamic constraints associated with lower-tropospheric stability and boundary layer

  2. A sewing-enabled stitch-and-transfer method for robust, ultra-stretchable, conductive interconnects

    International Nuclear Information System (INIS)

    Rahimi, Rahim; Ochoa, Manuel; Yu, Wuyang; Ziaie, Babak

    2014-01-01

    Fabricating highly stretchable and robust electrical interconnects at low-cost remains an unmet challenge in stretchable electronics. Previously reported stretchable interconnects require complicated fabrication processes with resulting devices exhibiting limited stretchability, poor reliability, and large gauge factors. Here, we demonstrate a novel sew-and-transfer method for rapid fabrication of low-cost, highly stretchable interconnects. Using a commercial sewing machine and double-thread stitch with one of the threads being water soluble polyvinyl alcohol (PVA), thin zigzag-pattern metallic wires are sewn into a polymeric film and are subsequently transferred onto a stretchable elastomeric substrate by dissolving PVA in warm water. The resulting structures exhibit extreme stretchability (exceeding 500% strain for a zigzag angle of 18 °) and robustness (capable of withstanding repeated stretch-and-release cycles of 15000 at 110% strain, 50000 at 55% strain, and  > 120000 at 30% strain without any noticeable change in resistance even at maximum strain levels). Using this technique, we demonstrate a stretchable inductive strain sensor for monitoring balloon expansion in a Foley urinary catheter capable of detecting the balloon diameter change from 9 mm to 38 mm with an average sensitivity of 4 nH/mm. (paper)

  3. Differences in Movement Pattern and Detectability between Males and Females Influence How Common Sampling Methods Estimate Sex Ratio.

    Directory of Open Access Journals (Sweden)

    João Fabrício Mota Rodrigues

    Full Text Available Sampling the biodiversity is an essential step for conservation, and understanding the efficiency of sampling methods allows us to estimate the quality of our biodiversity data. Sex ratio is an important population characteristic, but until now, no study has evaluated how efficient are the sampling methods commonly used in biodiversity surveys in estimating the sex ratio of populations. We used a virtual ecologist approach to investigate whether active and passive capture methods are able to accurately sample a population's sex ratio and whether differences in movement pattern and detectability between males and females produce biased estimates of sex-ratios when using these methods. Our simulation allowed the recognition of individuals, similar to mark-recapture studies. We found that differences in both movement patterns and detectability between males and females produce biased estimates of sex ratios. However, increasing the sampling effort or the number of sampling days improves the ability of passive or active capture methods to properly sample sex ratio. Thus, prior knowledge regarding movement patterns and detectability for species is important information to guide field studies aiming to understand sex ratio related patterns.

  4. Differences in Movement Pattern and Detectability between Males and Females Influence How Common Sampling Methods Estimate Sex Ratio.

    Science.gov (United States)

    Rodrigues, João Fabrício Mota; Coelho, Marco Túlio Pacheco

    2016-01-01

    Sampling the biodiversity is an essential step for conservation, and understanding the efficiency of sampling methods allows us to estimate the quality of our biodiversity data. Sex ratio is an important population characteristic, but until now, no study has evaluated how efficient are the sampling methods commonly used in biodiversity surveys in estimating the sex ratio of populations. We used a virtual ecologist approach to investigate whether active and passive capture methods are able to accurately sample a population's sex ratio and whether differences in movement pattern and detectability between males and females produce biased estimates of sex-ratios when using these methods. Our simulation allowed the recognition of individuals, similar to mark-recapture studies. We found that differences in both movement patterns and detectability between males and females produce biased estimates of sex ratios. However, increasing the sampling effort or the number of sampling days improves the ability of passive or active capture methods to properly sample sex ratio. Thus, prior knowledge regarding movement patterns and detectability for species is important information to guide field studies aiming to understand sex ratio related patterns.

  5. Detecting causality from online psychiatric texts using inter-sentential language patterns

    Directory of Open Access Journals (Sweden)

    Wu Jheng-Long

    2012-07-01

    Full Text Available Abstract Background Online psychiatric texts are natural language texts expressing depressive problems, published by Internet users via community-based web services such as web forums, message boards and blogs. Understanding the cause-effect relations embedded in these psychiatric texts can provide insight into the authors’ problems, thus increasing the effectiveness of online psychiatric services. Methods Previous studies have proposed the use of word pairs extracted from a set of sentence pairs to identify cause-effect relations between sentences. A word pair is made up of two words, with one coming from the cause text span and the other from the effect text span. Analysis of the relationship between these words can be used to capture individual word associations between cause and effect sentences. For instance, (broke up, life and (boyfriend, meaningless are two word pairs extracted from the sentence pair: “I broke up with my boyfriend. Life is now meaningless to me”. The major limitation of word pairs is that individual words in sentences usually cannot reflect the exact meaning of the cause and effect events, and thus may produce semantically incomplete word pairs, as the previous examples show. Therefore, this study proposes the use of inter-sentential language patterns such as ≪broke up, boyfriend>, Results Performance was evaluated on a corpus of texts collected from PsychPark (http://www.psychpark.org, a virtual psychiatric clinic maintained by a group of volunteer professionals from the Taiwan Association of Mental Health Informatics. Experimental results show that the use of inter-sentential language patterns outperformed the use of word pairs proposed in previous studies. Conclusions This study demonstrates the acquisition of inter-sentential language patterns for causality detection from online psychiatric texts. Such semantically more complete and precise features can improve causality detection performance.

  6. Plasmonic detection and visualization of directed adsorption of charged single nanoparticles to patterned surfaces

    International Nuclear Information System (INIS)

    Scherbahn, Vitali; Nizamov, Shavkat; Mirsky, Vladimir M.

    2016-01-01

    It has recently been shown that surface plasmon microscopy (SPM) allows single nanoparticles (NPs) on sensor surfaces to be detected and analyzed. The authors have applied this technique to study the adsorption of single metallic and plastic NPs. Binding of gold NPs (40, 60 and 100 nm in size) and of 100 nm polystyrene NPs to gold surfaces modified by differently ω-functionalized alkyl thiols was studied first. Self-assembled monolayers (SAM) with varying terminal functions including amino, carboxy, oligo(ethylene glycol), methyl, or trimethylammonium groups were deposited on gold films to form surfaces possessing different charge and hydrophobicity. The affinity of NPs to these surfaces depends strongly on the type of coating. SAMs terminated with trimethylammonium groups and carboxy group display highly different affinity and therefore were preferred when creating patterned charged surfaces. Citrate-stabilized gold NPs and sulfate-terminated polystyrene NPs were used as negatively charged NPs, while branched polyethylenimine-coated silver NPs were used as positively charged NPs. It is shown that the charged patterned areas on the gold films are capable of selectively adsorbing oppositely charged NPs that can be detected and analyzed with an ∼1 ng⋅mL −1 detection limit. (author)

  7. A hybrid robust fault tolerant control based on adaptive joint unscented Kalman filter.

    Science.gov (United States)

    Shabbouei Hagh, Yashar; Mohammadi Asl, Reza; Cocquempot, Vincent

    2017-01-01

    In this paper, a new hybrid robust fault tolerant control scheme is proposed. A robust H ∞ control law is used in non-faulty situation, while a Non-Singular Terminal Sliding Mode (NTSM) controller is activated as soon as an actuator fault is detected. Since a linear robust controller is designed, the system is first linearized through the feedback linearization method. To switch from one controller to the other, a fuzzy based switching system is used. An Adaptive Joint Unscented Kalman Filter (AJUKF) is used for fault detection and diagnosis. The proposed method is based on the simultaneous estimation of the system states and parameters. In order to show the efficiency of the proposed scheme, a simulated 3-DOF robotic manipulator is used. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Pipeline Structural Damage Detection Using Self-Sensing Technology and PNN-Based Pattern Recognition

    International Nuclear Information System (INIS)

    Lee, Chang Gil; Park, Woong Ki; Park, Seung Hee

    2011-01-01

    In a structure, damage can occur at several scales from micro-cracking to corrosion or loose bolts. This makes the identification of damage difficult with one mode of sensing. Hence, a multi-mode actuated sensing system is proposed based on a self-sensing circuit using a piezoelectric sensor. In the self sensing-based multi-mode actuated sensing, one mode provides a wide frequency-band structural response from the self-sensed impedance measurement and the other mode provides a specific frequency-induced structural wavelet response from the self-sensed guided wave measurement. In this study, an experimental study on the pipeline system is carried out to verify the effectiveness and the robustness of the proposed structural health monitoring approach. Different types of structural damage are artificially inflicted on the pipeline system. To classify the multiple types of structural damage, a supervised learning-based statistical pattern recognition is implemented by composing a two-dimensional space using the damage indices extracted from the impedance and guided wave features. For more systematic damage classification, several control parameters to determine an optimal decision boundary for the supervised learning-based pattern recognition are optimized. Finally, further research issues will be discussed for real-world implementation of the proposed approach

  9. Robust sky light polarization detection with an S-wave plate in a light field camera.

    Science.gov (United States)

    Zhang, Wenjing; Zhang, Xuanzhe; Cao, Yu; Liu, Haibo; Liu, Zejin

    2016-05-01

    The sky light polarization navigator has many advantages, such as low cost, no decrease in accuracy with continuous operation, etc. However, current celestial polarization measurement methods often suffer from low performance when the sky is covered by clouds, which reduce the accuracy of navigation. In this paper we introduce a new method and structure based on a handheld light field camera and a radial polarizer, composed of an S-wave plate and a linear polarizer, to detect the sky light polarization pattern across a wide field of view in a single snapshot. Each micro-subimage has a special intensity distribution. After extracting the texture feature of these subimages, stable distribution information of the angle of polarization under a cloudy sky can be obtained. Our experimental results match well with the predicted properties of the theory. Because the polarization pattern is obtained through image processing, rather than traditional methods based on mathematical computation, this method is less sensitive to errors of pixel gray value and thus has better anti-interference performance.

  10. Effective Waterline Detection of Unmanned Surface Vehicles Based on Optical Images

    Directory of Open Access Journals (Sweden)

    Yangjie Wei

    2016-09-01

    Full Text Available Real-time and accurate detection of the sailing or water area will help realize unmanned surface vehicle (USV systems. Although there are some methods for using optical images in USV-oriented environmental modeling, both the robustness and precision of these published waterline detection methods are comparatively low for a real USV system moving in a complicated environment. This paper proposes an efficient waterline detection method based on structure extraction and texture analysis with respect to optical images and presents a practical application to a USV system for validation. First, the basic principles of local binary patterns (LBPs and gray level co-occurrence matrix (GLCM were analyzed, and their advantages were integrated to calculate the texture information of river images. Then, structure extraction was introduced to preprocess the original river images so that the textures resulting from USV motion, wind, and illumination are removed. In the practical application, the waterlines of many images captured by the USV system moving along an inland river were detected with the proposed method, and the results were compared with those of edge detection and super pixel segmentation. The experimental results showed that the proposed algorithm is effective and robust. The average error of the proposed method was 1.84 pixels, and the mean square deviation was 4.57 pixels.

  11. Topological patterns in street networks of self-organized urban settlements

    Science.gov (United States)

    Buhl, J.; Gautrais, J.; Reeves, N.; Solé, R. V.; Valverde, S.; Kuntz, P.; Theraulaz, G.

    2006-02-01

    Many urban settlements result from a spatially distributed, decentralized building process. Here we analyze the topological patterns of organization of a large collection of such settlements using the approach of complex networks. The global efficiency (based on the inverse of shortest-path lengths), robustness to disconnections and cost (in terms of length) of these graphs is studied and their possible origins analyzed. A wide range of patterns is found, from tree-like settlements (highly vulnerable to random failures) to meshed urban patterns. The latter are shown to be more robust and efficient.

  12. Robust linear discriminant models to solve financial crisis in banking sectors

    Science.gov (United States)

    Lim, Yai-Fung; Yahaya, Sharipah Soaad Syed; Idris, Faoziah; Ali, Hazlina; Omar, Zurni

    2014-12-01

    Linear discriminant analysis (LDA) is a widely-used technique in patterns classification via an equation which will minimize the probability of misclassifying cases into their respective categories. However, the performance of classical estimators in LDA highly depends on the assumptions of normality and homoscedasticity. Several robust estimators in LDA such as Minimum Covariance Determinant (MCD), S-estimators and Minimum Volume Ellipsoid (MVE) are addressed by many authors to alleviate the problem of non-robustness of the classical estimates. In this paper, we investigate on the financial crisis of the Malaysian banking institutions using robust LDA and classical LDA methods. Our objective is to distinguish the "distress" and "non-distress" banks in Malaysia by using the LDA models. Hit ratio is used to validate the accuracy predictive of LDA models. The performance of LDA is evaluated by estimating the misclassification rate via apparent error rate. The results and comparisons show that the robust estimators provide a better performance than the classical estimators for LDA.

  13. Robust adaptive subspace detection in impulsive noise

    KAUST Repository

    Ben Atitallah, Ismail

    2016-09-13

    This paper addresses the design of the Adaptive Subspace Matched Filter (ASMF) detector in the presence of compound Gaussian clutters and a mismatch in the steering vector. In particular, we consider the case wherein the ASMF uses the regularized Tyler estimator (RTE) to estimate the clutter covariance matrix. Under this setting, a major question that needs to be addressed concerns the setting of the threshold and the regularization parameter. To answer this question, we consider the regime in which the number of observations used to estimate the RTE and their dimensions grow large together. Recent results from random matrix theory are then used in order to approximate the false alarm and detection probabilities by deterministic quantities. The latter are optimized in order to maximize an upper bound on the asymptotic detection probability while keeping the asymptotic false alarm probability at a fixed rate. © 2016 IEEE.

  14. Robust adaptive subspace detection in impulsive noise

    KAUST Repository

    Ben Atitallah, Ismail; Kammoun, Abla; Alouini, Mohamed-Slim; Al-Naffouri, Tareq Y.

    2016-01-01

    This paper addresses the design of the Adaptive Subspace Matched Filter (ASMF) detector in the presence of compound Gaussian clutters and a mismatch in the steering vector. In particular, we consider the case wherein the ASMF uses the regularized Tyler estimator (RTE) to estimate the clutter covariance matrix. Under this setting, a major question that needs to be addressed concerns the setting of the threshold and the regularization parameter. To answer this question, we consider the regime in which the number of observations used to estimate the RTE and their dimensions grow large together. Recent results from random matrix theory are then used in order to approximate the false alarm and detection probabilities by deterministic quantities. The latter are optimized in order to maximize an upper bound on the asymptotic detection probability while keeping the asymptotic false alarm probability at a fixed rate. © 2016 IEEE.

  15. Robust, directed assembly of fluorescent nanodiamonds.

    Science.gov (United States)

    Kianinia, Mehran; Shimoni, Olga; Bendavid, Avi; Schell, Andreas W; Randolph, Steven J; Toth, Milos; Aharonovich, Igor; Lobo, Charlene J

    2016-10-27

    Arrays of fluorescent nanoparticles are highly sought after for applications in sensing, nanophotonics and quantum communications. Here we present a simple and robust method of assembling fluorescent nanodiamonds into macroscopic arrays. Remarkably, the yield of this directed assembly process is greater than 90% and the assembled patterns withstand ultra-sonication for more than three hours. The assembly process is based on covalent bonding of carboxyl to amine functional carbon seeds and is applicable to any material, and to non-planar surfaces. Our results pave the way to directed assembly of sensors and nanophotonics devices.

  16. Optimal robustness of supervised learning from a noniterative point of view

    Science.gov (United States)

    Hu, Chia-Lun J.

    1995-08-01

    In most artificial neural network applications, (e.g. pattern recognition) if the dimension of the input vectors is much larger than the number of patterns to be recognized, generally, a one- layered, hard-limited perceptron is sufficient to do the recognition job. As long as the training input-output mapping set is numerically given, and as long as this given set satisfies a special linear-independency relation, the connection matrix to meet the supervised learning requirements can be solved by a noniterative, one-step, algebra method. The learning of this noniterative scheme is very fast (close to real-time learning) because the learning is one-step and noniterative. The recognition of the untrained patterns is very robust because a universal geometrical optimization process of selecting the solution can be applied to the learning process. This paper reports the theoretical foundation of this noniterative learning scheme and focuses the result at the optimal robustness analysis. A real-time character recognition scheme is then designed along this line. This character recognition scheme will be used (in a movie presentation) to demonstrate the experimental results of some theoretical parts reported in this paper.

  17. Development of an ellipse fitting method with which to analyse selected area electron diffraction patterns

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, D.R.G., E-mail: dmitchel@uow.edu.au [Electron Microscopy Centre, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong, NSW 2500 (Australia); Van den Berg, J.A. [Electron Microscopy Centre, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong, NSW 2500 (Australia); Catalyst Fundamentals, Fischer-Tropsch and Syngas Conversion Research, Sasol Technology R & D, Sasolburg 1947 (South Africa)

    2016-01-15

    A software method has been developed which uses ellipse fitting to analyse electron diffraction patterns from polycrystalline materials. The method, which requires minimal user input, can determine the pattern centre and the diameter of diffraction rings with sub-pixel precision. This enables accurate crystallographic information to be obtained in a rapid and consistent manner. Since the method fits ellipses, it can detect, quantify and correct any elliptical distortion introduced by the imaging system. Distortion information derived from polycrystalline patterns as a function of camera length can be subsequently recalled and applied to single crystal patterns, resulting in improved precision and accuracy. The method has been implemented as a plugin for the DigitalMicrograph software by Gatan, and is a freely available via the internet. - Highlights: • A robust ellipse fitting method is developed. • Freely available software for automated diffraction pattern analysis is demonstrated. • Measurement and correction of elliptical distortion is routinely achieved.

  18. Artificial immune pattern recognition for damage detection in structural health monitoring sensor networks

    Science.gov (United States)

    Chen, Bo; Zang, Chuanzhi

    2009-03-01

    This paper presents an artificial immune pattern recognition (AIPR) approach for the damage detection and classification in structures. An AIPR-based Structure Damage Classifier (AIPR-SDC) has been developed by mimicking immune recognition and learning mechanisms. The structure damage patterns are represented by feature vectors that are extracted from the structure's dynamic response measurements. The training process is designed based on the clonal selection principle in the immune system. The selective and adaptive features of the clonal selection algorithm allow the classifier to generate recognition feature vectors that are able to match the training data. In addition, the immune learning algorithm can learn and remember various data patterns by generating a set of memory cells that contains representative feature vectors for each class (pattern). The performance of the presented structure damage classifier has been validated using a benchmark structure proposed by the IASC-ASCE (International Association for Structural Control - American Society of Civil Engineers) Structural Health Monitoring Task Group. The validation results show a better classification success rate comparing to some of other classification algorithms.

  19. Pattern detection in stream networks: Quantifying spatialvariability in fish distribution

    Science.gov (United States)

    Torgersen, Christian E.; Gresswell, Robert E.; Bateman, Douglas S.

    2004-01-01

    Biological and physical properties of rivers and streams are inherently difficult to sample and visualize at the resolution and extent necessary to detect fine-scale distributional patterns over large areas. Satellite imagery and broad-scale fish survey methods are effective for quantifying spatial variability in biological and physical variables over a range of scales in marine environments but are often too coarse in resolution to address conservation needs in inland fisheries management. We present methods for sampling and analyzing multiscale, spatially continuous patterns of stream fishes and physical habitat in small- to medium-size watersheds (500–1000 hectares). Geospatial tools, including geographic information system (GIS) software such as ArcInfo dynamic segmentation and ArcScene 3D analyst modules, were used to display complex biological and physical datasets. These tools also provided spatial referencing information (e.g. Cartesian and route-measure coordinates) necessary for conducting geostatistical analyses of spatial patterns (empirical semivariograms and wavelet analysis) in linear stream networks. Graphical depiction of fish distribution along a one-dimensional longitudinal profile and throughout the stream network (superimposed on a 10-metre digital elevation model) provided the spatial context necessary for describing and interpreting the relationship between landscape pattern and the distribution of coastal cutthroat trout (Oncorhynchus clarki clarki) in western Oregon, U.S.A. The distribution of coastal cutthroat trout was highly autocorrelated and exhibited a spherical semivariogram with a defined nugget, sill, and range. Wavelet analysis of the main-stem longitudinal profile revealed periodicity in trout distribution at three nested spatial scales corresponding ostensibly to landscape disturbances and the spacing of tributary junctions.

  20. Making Activity Recognition Robust against Deceptive Behavior.

    Directory of Open Access Journals (Sweden)

    Sohrab Saeb

    Full Text Available Healthcare services increasingly use the activity recognition technology to track the daily activities of individuals. In some cases, this is used to provide incentives. For example, some health insurance companies offer discount to customers who are physically active, based on the data collected from their activity tracking devices. Therefore, there is an increasing motivation for individuals to cheat, by making activity trackers detect activities that increase their benefits rather than the ones they actually do. In this study, we used a novel method to make activity recognition robust against deceptive behavior. We asked 14 subjects to attempt to trick our smartphone-based activity classifier by making it detect an activity other than the one they actually performed, for example by shaking the phone while seated to make the classifier detect walking. If they succeeded, we used their motion data to retrain the classifier, and asked them to try to trick it again. The experiment ended when subjects could no longer cheat. We found that some subjects were not able to trick the classifier at all, while others required five rounds of retraining. While classifiers trained on normal activity data predicted true activity with ~38% accuracy, training on the data gathered during the deceptive behavior increased their accuracy to ~84%. We conclude that learning the deceptive behavior of one individual helps to detect the deceptive behavior of others. Thus, we can make current activity recognition robust to deception by including deceptive activity data from a few individuals.

  1. A blind reversible robust watermarking scheme for relational databases.

    Science.gov (United States)

    Chang, Chin-Chen; Nguyen, Thai-Son; Lin, Chia-Chen

    2013-01-01

    Protecting the ownership and controlling the copies of digital data have become very important issues in Internet-based applications. Reversible watermark technology allows the distortion-free recovery of relational databases after the embedded watermark data are detected or verified. In this paper, we propose a new, blind, reversible, robust watermarking scheme that can be used to provide proof of ownership for the owner of a relational database. In the proposed scheme, a reversible data-embedding algorithm, which is referred to as "histogram shifting of adjacent pixel difference" (APD), is used to obtain reversibility. The proposed scheme can detect successfully 100% of the embedded watermark data, even if as much as 80% of the watermarked relational database is altered. Our extensive analysis and experimental results show that the proposed scheme is robust against a variety of data attacks, for example, alteration attacks, deletion attacks, mix-match attacks, and sorting attacks.

  2. Neural network based pattern matching and spike detection tools and services--in the CARMEN neuroinformatics project.

    Science.gov (United States)

    Fletcher, Martyn; Liang, Bojian; Smith, Leslie; Knowles, Alastair; Jackson, Tom; Jessop, Mark; Austin, Jim

    2008-10-01

    In the study of information flow in the nervous system, component processes can be investigated using a range of electrophysiological and imaging techniques. Although data is difficult and expensive to produce, it is rarely shared and collaboratively exploited. The Code Analysis, Repository and Modelling for e-Neuroscience (CARMEN) project addresses this challenge through the provision of a virtual neuroscience laboratory: an infrastructure for sharing data, tools and services. Central to the CARMEN concept are federated CARMEN nodes, which provide: data and metadata storage, new, thirdparty and legacy services, and tools. In this paper, we describe the CARMEN project as well as the node infrastructure and an associated thick client tool for pattern visualisation and searching, the Signal Data Explorer (SDE). We also discuss new spike detection methods, which are central to the services provided by CARMEN. The SDE is a client application which can be used to explore data in the CARMEN repository, providing data visualization, signal processing and a pattern matching capability. It performs extremely fast pattern matching and can be used to search for complex conditions composed of many different patterns across the large datasets that are typical in neuroinformatics. Searches can also be constrained by specifying text based metadata filters. Spike detection services which use wavelet and morphology techniques are discussed, and have been shown to outperform traditional thresholding and template based systems. A number of different spike detection and sorting techniques will be deployed as services within the CARMEN infrastructure, to allow users to benchmark their performance against a wide range of reference datasets.

  3. Robust, Causal, and Incremental Approaches to Investigating Linguistic Adaptation

    Science.gov (United States)

    Roberts, Seán G.

    2018-01-01

    This paper discusses the maximum robustness approach for studying cases of adaptation in language. We live in an age where we have more data on more languages than ever before, and more data to link it with from other domains. This should make it easier to test hypotheses involving adaptation, and also to spot new patterns that might be explained by adaptation. However, there is not much discussion of the overall approach to research in this area. There are outstanding questions about how to formalize theories, what the criteria are for directing research and how to integrate results from different methods into a clear assessment of a hypothesis. This paper addresses some of those issues by suggesting an approach which is causal, incremental and robust. It illustrates the approach with reference to a recent claim that dry environments select against the use of precise contrasts in pitch. Study 1 replicates a previous analysis of the link between humidity and lexical tone with an alternative dataset and finds that it is not robust. Study 2 performs an analysis with a continuous measure of tone and finds no significant correlation. Study 3 addresses a more recent analysis of the link between humidity and vowel use and finds that it is robust, though the effect size is small and the robustness of the measurement of vowel use is low. Methodological robustness of the general theory is addressed by suggesting additional approaches including iterated learning, a historical case study, corpus studies, and studying individual speech. PMID:29515487

  4. Robust multivariate analysis

    CERN Document Server

    J Olive, David

    2017-01-01

    This text presents methods that are robust to the assumption of a multivariate normal distribution or methods that are robust to certain types of outliers. Instead of using exact theory based on the multivariate normal distribution, the simpler and more applicable large sample theory is given.  The text develops among the first practical robust regression and robust multivariate location and dispersion estimators backed by theory.   The robust techniques  are illustrated for methods such as principal component analysis, canonical correlation analysis, and factor analysis.  A simple way to bootstrap confidence regions is also provided. Much of the research on robust multivariate analysis in this book is being published for the first time. The text is suitable for a first course in Multivariate Statistical Analysis or a first course in Robust Statistics. This graduate text is also useful for people who are familiar with the traditional multivariate topics, but want to know more about handling data sets with...

  5. A new approach for assessing the state of environment using isometric log-ratio transformation and outlier detection for computation of mean PCDD/F patterns in biota.

    Science.gov (United States)

    Lehmann, René

    2015-01-01

    To assess the state of the environment, various compartments are examined as part of monitoring programs. Within monitoring, a special focus is on chemical pollution. One of the most toxic substances ever synthesized is the well-known dioxin 2,3,7,8-TCDD (2,3,7,8-tetra-chlor-dibenzo-dioxin). Other PCDD/F (polychlorinated-dibenzo-dioxin and furan) can act toxic too. They are ubiquitary and persistent in various environmental compartments. Assessing the state of environment requires knowledge of typical local patterns of PCDD/F for as many compartments as possible. For various species of wild animals and plants (so called biota), I present the mean local congenere profiles of ubiquitary PCDD/F contamination reflecting typical patterns and levels of environmental burden for various years. Trends in time series of means can indicate success or failure of a measure of PCDD/F reduction. For short time series of mean patterns, it can be hard to detect trends. A new approach regarding proportions of outliers in the corresponding annual cross-sectional data sets in parallel can help detect decreasing or increasing environmental burden and support analysis of time series. Further, in this article, the true structure of PCDD/F data in biota is revealed, that is, the compositional data structure. It prevents direct application of statistical standard procedures to the data rendering results of statistical analysis meaningless. Results indicate that the compositional data structure of PCDD/F in biota is of great interest and should be taken into account in future studies. Isometric log-ratio (ilr) transformation is used, providing data statistical standard procedures that can be applied too. Focusing on the identification of typical PCDD/F patterns in biota, outliers are removed from annual data since they represent an extraordinary situation in the environment. Identification of outliers yields two advantages. First, typical (mean) profiles and levels of PCDD/F contamination

  6. Comparison of the performance of five different immunoassays to detect specific antibodies against emerging atypical bovine pestivirus

    DEFF Research Database (Denmark)

    Larska, Magdalena; Polak, Mirosław P.; Liu, Lihong

    2013-01-01

    Bovine pestiviruses represent a considerably variable group. In addition to the two accepted species BVDV-1 and BVDV-2, a number of atypical bovine pestiviruses have been detected both in foetal calf sera and in field samples. The sera collected during the initial six weeks of experimental...... infection of calves with atypical pestivirus, BVDV-1 and a combination of both viruses have been examined by routine and new diagnostic tests to validate their robustness and sensitivity. As expected, virus neutralization tests using homologous virus were able to differentiate the two groups infected...... by BVDV-1 or atypical pestivirus, whereas the animals inoculated with a mixture of these two viruses had a reaction pattern very similar to the homologous virus alone. It was found that immunoassays using whole virus and polyclonal antibodies are the most robust, but all tests examined were able to detect...

  7. Robustness of Structures

    DEFF Research Database (Denmark)

    Faber, Michael Havbro; Vrouwenvelder, A.C.W.M.; Sørensen, John Dalsgaard

    2011-01-01

    In 2005, the Joint Committee on Structural Safety (JCSS) together with Working Commission (WC) 1 of the International Association of Bridge and Structural Engineering (IABSE) organized a workshop on robustness of structures. Two important decisions resulted from this workshop, namely...... ‘COST TU0601: Robustness of Structures’ was initiated in February 2007, aiming to provide a platform for exchanging and promoting research in the area of structural robustness and to provide a basic framework, together with methods, strategies and guidelines enhancing robustness of structures...... the development of a joint European project on structural robustness under the COST (European Cooperation in Science and Technology) programme and the decision to develop a more elaborate document on structural robustness in collaboration between experts from the JCSS and the IABSE. Accordingly, a project titled...

  8. A robust and powerful two-step testing procedure for local ancestry adjusted allelic association analysis in admixed populations.

    Science.gov (United States)

    Duan, Qing; Xu, Zheng; Raffield, Laura M; Chang, Suhua; Wu, Di; Lange, Ethan M; Reiner, Alex P; Li, Yun

    2018-04-01

    Genetic association studies in admixed populations allow us to gain deeper understanding of the genetic architecture of human diseases and traits. However, population stratification, complicated linkage disequilibrium (LD) patterns, and the complex interplay of allelic and ancestry effects on phenotypic traits pose challenges in such analyses. These issues may lead to detecting spurious associations and/or result in reduced statistical power. Fortunately, if handled appropriately, these same challenges provide unique opportunities for gene mapping. To address these challenges and to take these opportunities, we propose a robust and powerful two-step testing procedure Local Ancestry Adjusted Allelic (LAAA) association. In the first step, LAAA robustly captures associations due to allelic effect, ancestry effect, and interaction effect, allowing detection of effect heterogeneity across ancestral populations. In the second step, LAAA identifies the source of association, namely allelic, ancestry, or the combination. By jointly modeling allele, local ancestry, and ancestry-specific allelic effects, LAAA is highly powerful in capturing the presence of interaction between ancestry and allele effect. We evaluated the validity and statistical power of LAAA through simulations over a broad spectrum of scenarios. We further illustrated its usefulness by application to the Candidate Gene Association Resource (CARe) African American participants for association with hemoglobin levels. We were able to replicate independent groups' previously identified loci that would have been missed in CARe without joint testing. Moreover, the loci, for which LAAA detected potential effect heterogeneity, were replicated among African Americans from the Women's Health Initiative study. LAAA is freely available at https://yunliweb.its.unc.edu/LAAA. © 2017 WILEY PERIODICALS, INC.

  9. Robust efficient video fingerprinting

    Science.gov (United States)

    Puri, Manika; Lubin, Jeffrey

    2009-02-01

    We have developed a video fingerprinting system with robustness and efficiency as the primary and secondary design criteria. In extensive testing, the system has shown robustness to cropping, letter-boxing, sub-titling, blur, drastic compression, frame rate changes, size changes and color changes, as well as to the geometric distortions often associated with camcorder capture in cinema settings. Efficiency is afforded by a novel two-stage detection process in which a fast matching process first computes a number of likely candidates, which are then passed to a second slower process that computes the overall best match with minimal false alarm probability. One key component of the algorithm is a maximally stable volume computation - a three-dimensional generalization of maximally stable extremal regions - that provides a content-centric coordinate system for subsequent hash function computation, independent of any affine transformation or extensive cropping. Other key features include an efficient bin-based polling strategy for initial candidate selection, and a final SIFT feature-based computation for final verification. We describe the algorithm and its performance, and then discuss additional modifications that can provide further improvement to efficiency and accuracy.

  10. ADSL Transceivers Applying DSM and Their Nonstationary Noise Robustness

    Directory of Open Access Journals (Sweden)

    Bostoen Tom

    2006-01-01

    Full Text Available Dynamic spectrum management (DSM comprises a new set of techniques for multiuser power allocation and/or detection in digital subscriber line (DSL networks. At the Alcatel Research and Innovation Labs, we have recently developed a DSM test bed, which allows the performance of DSM algorithms to be evaluated in practice. With this test bed, we have evaluated the performance of a DSM level-1 algorithm known as iterative water-filling in an ADSL scenario. This paper describes the results of, on the one hand, the performance gains achieved with iterative water-filling, and, on the other hand, the nonstationary noise robustness of DSM-enabled ADSL modems. It will be shown that DSM trades off nonstationary noise robustness for performance improvements. A new bit swap procedure is then introduced to increase the noise robustness when applying DSM.

  11. Nuclear emulsions for the detection of micrometric-scale fringe patterns: an application to positron interferometry

    Science.gov (United States)

    Aghion, S.; Ariga, A.; Bollani, M.; Ereditato, A.; Ferragut, R.; Giammarchi, M.; Lodari, M.; Pistillo, C.; Sala, S.; Scampoli, P.; Vladymyrov, M.

    2018-05-01

    Nuclear emulsions are capable of very high position resolution in the detection of ionizing particles. This feature can be exploited to directly resolve the micrometric-scale fringe pattern produced by a matter-wave interferometer for low energy positrons (in the 10–20 keV range). We have tested the performance of emulsion films in this specific scenario. Exploiting silicon nitride diffraction gratings as absorption masks, we produced periodic patterns with features comparable to the expected interferometer signal. Test samples with periodicities of 6, 7 and 20 μ m were exposed to the positron beam, and the patterns clearly reconstructed. Our results support the feasibility of matter-wave interferometry experiments with positrons.

  12. Optimization of Scat Detection Methods for a Social Ungulate, the Wild Pig, and Experimental Evaluation of Factors Affecting Detection of Scat.

    Directory of Open Access Journals (Sweden)

    David A Keiter

    Full Text Available Collection of scat samples is common in wildlife research, particularly for genetic capture-mark-recapture applications. Due to high degradation rates of genetic material in scat, large numbers of samples must be collected to generate robust estimates. Optimization of sampling approaches to account for taxa-specific patterns of scat deposition is, therefore, necessary to ensure sufficient sample collection. While scat collection methods have been widely studied in carnivores, research to maximize scat collection and noninvasive sampling efficiency for social ungulates is lacking. Further, environmental factors or scat morphology may influence detection of scat by observers. We contrasted performance of novel radial search protocols with existing adaptive cluster sampling protocols to quantify differences in observed amounts of wild pig (Sus scrofa scat. We also evaluated the effects of environmental (percentage of vegetative ground cover and occurrence of rain immediately prior to sampling and scat characteristics (fecal pellet size and number on the detectability of scat by observers. We found that 15- and 20-m radial search protocols resulted in greater numbers of scats encountered than the previously used adaptive cluster sampling approach across habitat types, and that fecal pellet size, number of fecal pellets, percent vegetative ground cover, and recent rain events were significant predictors of scat detection. Our results suggest that use of a fixed-width radial search protocol may increase the number of scats detected for wild pigs, or other social ungulates, allowing more robust estimation of population metrics using noninvasive genetic sampling methods. Further, as fecal pellet size affected scat detection, juvenile or smaller-sized animals may be less detectable than adult or large animals, which could introduce bias into abundance estimates. Knowledge of relationships between environmental variables and scat detection may allow

  13. Robust Frequency Invariant Beamforming with Low Sidelobe for Speech Enhancement

    Science.gov (United States)

    Zhu, Yiting; Pan, Xiang

    2018-01-01

    Frequency invariant beamformers (FIBs) are widely used in speech enhancement and source localization. There are two traditional optimization methods for FIB design. The first one is convex optimization, which is simple but the frequency invariant characteristic of the beam pattern is poor with respect to frequency band of five octaves. The least squares (LS) approach using spatial response variation (SRV) constraint is another optimization method. Although, it can provide good frequency invariant property, it usually couldn’t be used in speech enhancement for its lack of weight norm constraint which is related to the robustness of a beamformer. In this paper, a robust wideband beamforming method with a constant beamwidth is proposed. The frequency invariant beam pattern is achieved by resolving an optimization problem of the SRV constraint to cover speech frequency band. With the control of sidelobe level, it is available for the frequency invariant beamformer (FIB) to prevent distortion of interference from the undesirable direction. The approach is completed in time-domain by placing tapped delay lines(TDL) and finite impulse response (FIR) filter at the output of each sensor which is more convenient than the Frost processor. By invoking the weight norm constraint, the robustness of the beamformer is further improved against random errors. Experiment results show that the proposed method has a constant beamwidth and almost the same white noise gain as traditional delay-and-sum (DAS) beamformer.

  14. Robust indexing for automatic data collection

    International Nuclear Information System (INIS)

    Sauter, Nicholas K.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.

    2003-01-01

    We present improved methods for indexing diffraction patterns from macromolecular crystals. The novel procedures include a more robust way to verify the position of the incident X-ray beam on the detector, an algorithm to verify that the deduced lattice basis is consistent with the observations, and an alternative approach to identify the metric symmetry of the lattice. These methods help to correct failures commonly experienced during indexing, and increase the overall success rate of the process. Rapid indexing, without the need for visual inspection, will play an important role as beamlines at synchrotron sources prepare for high-throughput automation

  15. Robust, Efficient Depth Reconstruction With Hierarchical Confidence-Based Matching.

    Science.gov (United States)

    Sun, Li; Chen, Ke; Song, Mingli; Tao, Dacheng; Chen, Gang; Chen, Chun

    2017-07-01

    In recent years, taking photos and capturing videos with mobile devices have become increasingly popular. Emerging applications based on the depth reconstruction technique have been developed, such as Google lens blur. However, depth reconstruction is difficult due to occlusions, non-diffuse surfaces, repetitive patterns, and textureless surfaces, and it has become more difficult due to the unstable image quality and uncontrolled scene condition in the mobile setting. In this paper, we present a novel hierarchical framework with multi-view confidence-based matching for robust, efficient depth reconstruction in uncontrolled scenes. Particularly, the proposed framework combines local cost aggregation with global cost optimization in a complementary manner that increases efficiency and accuracy. A depth map is efficiently obtained in a coarse-to-fine manner by using an image pyramid. Moreover, confidence maps are computed to robustly fuse multi-view matching cues, and to constrain the stereo matching on a finer scale. The proposed framework has been evaluated with challenging indoor and outdoor scenes, and has achieved robust and efficient depth reconstruction.

  16. Statistical Methods for Detecting and Modeling General Patterns and Relationships in Lifetime Data

    Energy Technology Data Exchange (ETDEWEB)

    Kvaloey, Jan Terje

    1999-04-01

    In this thesis, the author tries to develop methods of detecting and modeling general patterns and relationships in lifetime data. Tests with power against nonmonotonic trends and nonmonotonic co variate effects are considered, and nonparametric regression methods which allow estimation of fairly general nonlinear relationships are studied. Practical uses of some of the methods are illustrated although in a medical rather than engineering or technological context.

  17. Connectivity diagnostics in the Mediterranean obtained from Lagrangian Flow Networks; global patterns, sensitivity and robustness

    Science.gov (United States)

    Monroy, Pedro; Rossi, Vincent; Ser-Giacomi, Enrico; López, Cristóbal; Hernández-García, Emilio

    2017-04-01

    Lagrangian Flow Network (LFN) is a modeling framework in which geographical sub-areas of the ocean are represented as nodes in a network and are interconnected by links representing the transport of water, substances or propagules (eggs and larvae) by currents. Here we compute for the surface of the whole Mediterranean basin four connectivity metrics derived from LFN that measure retention and exchange processes, thus providing a systematic characterization of propagule dispersal driven by the ocean circulation. Then we assess the sensitivity and robustness of the results with respect to the most relevant parameters: the density of released particles, the node size (spatial-scales of discretization), the Pelagic Larval Duration (PLD) and the modality of spawning. We find a threshold for the number of particles per node that guarantees reliable values for most of the metrics examined, independently of node size. For our setup, this threshold is 100 particles per node. We also find that the size of network nodes has a non-trivial influence on the spatial variability of both exchange and retention metrics. Although the spatio-temporal fluctuations of the circulation affect larval transport in a complex and unpredictable manner, our analyses evidence how specific biological parametrization impact the robustness of connectivity diagnostics. Connectivity estimates for long PLDs are more robust against biological uncertainties (PLD and spawning date) than for short PLDs. Furthermore, our model suggests that for mass-spawners that release propagules over short periods (≃ 2 to 10 days), daily release must be simulated to properly consider connectivity fluctuations. In contrast, average connectivity estimates for species that spawn repeatedly over longer duration (a few weeks to a few months) remain robust even using longer periodicity (5 to 10 days). Our results give a global view of the surface connectivity of the Mediterranean Sea and have implications for the design of

  18. Real-time people and vehicle detection from UAV imagery

    Science.gov (United States)

    Gaszczak, Anna; Breckon, Toby P.; Han, Jiwan

    2011-01-01

    A generic and robust approach for the real-time detection of people and vehicles from an Unmanned Aerial Vehicle (UAV) is an important goal within the framework of fully autonomous UAV deployment for aerial reconnaissance and surveillance. Here we present an approach for the automatic detection of vehicles based on using multiple trained cascaded Haar classifiers with secondary confirmation in thermal imagery. Additionally we present a related approach for people detection in thermal imagery based on a similar cascaded classification technique combining additional multivariate Gaussian shape matching. The results presented show the successful detection of vehicle and people under varying conditions in both isolated rural and cluttered urban environments with minimal false positive detection. Performance of the detector is optimized to reduce the overall false positive rate by aiming at the detection of each object of interest (vehicle/person) at least once in the environment (i.e. per search patter flight path) rather than every object in each image frame. Currently the detection rate for people is ~70% and cars ~80% although the overall episodic object detection rate for each flight pattern exceeds 90%.

  19. Defining robustness protocols: a method to include and evaluate robustness in clinical plans

    International Nuclear Information System (INIS)

    McGowan, S E; Albertini, F; Lomax, A J; Thomas, S J

    2015-01-01

    We aim to define a site-specific robustness protocol to be used during the clinical plan evaluation process. Plan robustness of 16 skull base IMPT plans to systematic range and random set-up errors have been retrospectively and systematically analysed. This was determined by calculating the error-bar dose distribution (ebDD) for all the plans and by defining some metrics used to define protocols aiding the plan assessment. Additionally, an example of how to clinically use the defined robustness database is given whereby a plan with sub-optimal brainstem robustness was identified. The advantage of using different beam arrangements to improve the plan robustness was analysed. Using the ebDD it was found range errors had a smaller effect on dose distribution than the corresponding set-up error in a single fraction, and that organs at risk were most robust to the range errors, whereas the target was more robust to set-up errors. A database was created to aid planners in terms of plan robustness aims in these volumes. This resulted in the definition of site-specific robustness protocols. The use of robustness constraints allowed for the identification of a specific patient that may have benefited from a treatment of greater individuality. A new beam arrangement showed to be preferential when balancing conformality and robustness for this case. The ebDD and error-bar volume histogram proved effective in analysing plan robustness. The process of retrospective analysis could be used to establish site-specific robustness planning protocols in proton therapy. These protocols allow the planner to determine plans that, although delivering a dosimetrically adequate dose distribution, have resulted in sub-optimal robustness to these uncertainties. For these cases the use of different beam start conditions may improve the plan robustness to set-up and range uncertainties. (paper)

  20. Defining robustness protocols: a method to include and evaluate robustness in clinical plans

    Science.gov (United States)

    McGowan, S. E.; Albertini, F.; Thomas, S. J.; Lomax, A. J.

    2015-04-01

    We aim to define a site-specific robustness protocol to be used during the clinical plan evaluation process. Plan robustness of 16 skull base IMPT plans to systematic range and random set-up errors have been retrospectively and systematically analysed. This was determined by calculating the error-bar dose distribution (ebDD) for all the plans and by defining some metrics used to define protocols aiding the plan assessment. Additionally, an example of how to clinically use the defined robustness database is given whereby a plan with sub-optimal brainstem robustness was identified. The advantage of using different beam arrangements to improve the plan robustness was analysed. Using the ebDD it was found range errors had a smaller effect on dose distribution than the corresponding set-up error in a single fraction, and that organs at risk were most robust to the range errors, whereas the target was more robust to set-up errors. A database was created to aid planners in terms of plan robustness aims in these volumes. This resulted in the definition of site-specific robustness protocols. The use of robustness constraints allowed for the identification of a specific patient that may have benefited from a treatment of greater individuality. A new beam arrangement showed to be preferential when balancing conformality and robustness for this case. The ebDD and error-bar volume histogram proved effective in analysing plan robustness. The process of retrospective analysis could be used to establish site-specific robustness planning protocols in proton therapy. These protocols allow the planner to determine plans that, although delivering a dosimetrically adequate dose distribution, have resulted in sub-optimal robustness to these uncertainties. For these cases the use of different beam start conditions may improve the plan robustness to set-up and range uncertainties.

  1. Developing robust recurrence plot analysis techniques for investigating infant respiratory patterns.

    Science.gov (United States)

    Terrill, Philip I; Wilson, Stephen; Suresh, Sadasivam; Cooper, David M

    2007-01-01

    Recurrence plot analysis is a useful non-linear analysis tool. There are still no well formalised procedures for carrying out this analysis on measured physiological data, and systemising analysis is often difficult. In this paper, the recurrence based embedding is compared to radius based embedding by studying a logistic attractor and measured breathing data collected from sleeping human infants. Recurrence based embedding appears to be a more robust method of carrying out a recurrence analysis when attractor size is likely to be different between datasets. In the infant breathing data, the radius measure calculated at a fixed recurrence, scaled by average respiratory period, allows the accurate discrimination of active sleep from quiet sleep states (AUC=0.975, Sn=098, Sp=0.94).

  2. MIDAS robust trend estimator for accurate GPS station velocities without step detection

    Science.gov (United States)

    Blewitt, Geoffrey; Kreemer, Corné; Hammond, William C.; Gazeaux, Julien

    2016-03-01

    Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil-Sen median trend estimator, for which the ordinary version is the median of slopes vij = (xj-xi)/(tj-ti) computed between all data pairs i > j. For normally distributed data, Theil-Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil-Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one-sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root-mean-square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences.

  3. Statistical methods for change-point detection in surface temperature records

    Science.gov (United States)

    Pintar, A. L.; Possolo, A.; Zhang, N. F.

    2013-09-01

    We describe several statistical methods to detect possible change-points in a time series of values of surface temperature measured at a meteorological station, and to assess the statistical significance of such changes, taking into account the natural variability of the measured values, and the autocorrelations between them. These methods serve to determine whether the record may suffer from biases unrelated to the climate signal, hence whether there may be a need for adjustments as considered by M. J. Menne and C. N. Williams (2009) "Homogenization of Temperature Series via Pairwise Comparisons", Journal of Climate 22 (7), 1700-1717. We also review methods to characterize patterns of seasonality (seasonal decomposition using monthly medians or robust local regression), and explain the role they play in the imputation of missing values, and in enabling robust decompositions of the measured values into a seasonal component, a possible climate signal, and a station-specific remainder. The methods for change-point detection that we describe include statistical process control, wavelet multi-resolution analysis, adaptive weights smoothing, and a Bayesian procedure, all of which are applicable to single station records.

  4. Toxicoproteomics: serum proteomic pattern diagnostics for early detection of drug induced cardiac toxicities and cardioprotection.

    Science.gov (United States)

    Petricoin, Emanuel F; Rajapaske, Vinodh; Herman, Eugene H; Arekani, Ali M; Ross, Sally; Johann, Donald; Knapton, Alan; Zhang, J; Hitt, Ben A; Conrads, Thomas P; Veenstra, Timothy D; Liotta, Lance A; Sistare, Frank D

    2004-01-01

    Proteomics is more than just generating lists of proteins that increase or decrease in expression as a cause or consequence of pathology. The goal should be to characterize the information flow through the intercellular protein circuitry which communicates with the extracellular microenvironment and then ultimately to the serum/plasma macroenvironment. The nature of this information can be a cause, or a consequence, of disease and toxicity based processes as cascades of reinforcing information percolate through the system and become reflected in changing proteomic information content of the circulation. Serum Proteomic Pattern Diagnostics is a new type of proteomic platform in which patterns of proteomic signatures from high dimensional mass spectrometry data are used as a diagnostic classifier. While this approach has shown tremendous promise in early detection of cancers, detection of drug-induced toxicity may also be possible with this same technology. Analysis of serum from rat models of anthracycline and anthracenedione induced cardiotoxicity indicate the potential clinical utility of diagnostic proteomic patterns where low molecular weight peptides and protein fragments may have higher accuracy than traditional biomarkers of cardiotoxicity such as troponins. These fragments may one day be harvested by circulating nanoparticles designed to absorb, enrich and amplify the diagnostic biomarker repertoire generated even at the critical initial stages of toxicity.

  5. Core regulatory network motif underlies the ocellar complex patterning in Drosophila melanogaster

    Science.gov (United States)

    Aguilar-Hidalgo, D.; Lemos, M. C.; Córdoba, A.

    2015-03-01

    During organogenesis, developmental programs governed by Gene Regulatory Networks (GRN) define the functionality, size and shape of the different constituents of living organisms. Robustness, thus, is an essential characteristic that GRNs need to fulfill in order to maintain viability and reproducibility in a species. In the present work we analyze the robustness of the patterning for the ocellar complex formation in Drosophila melanogaster fly. We have systematically pruned the GRN that drives the development of this visual system to obtain the minimum pathway able to satisfy this pattern. We found that the mechanism underlying the patterning obeys to the dynamics of a 3-nodes network motif with a double negative feedback loop fed by a morphogenetic gradient that triggers the inhibition in a French flag problem fashion. A Boolean modeling of the GRN confirms robustness in the patterning mechanism showing the same result for different network complexity levels. Interestingly, the network provides a steady state solution in the interocellar part of the patterning and an oscillatory regime in the ocelli. This theoretical result predicts that the ocellar pattern may underlie oscillatory dynamics in its genetic regulation.

  6. Development of patterned carbon nanotubes on a 3D polymer substrate for the flexible tactile sensor application

    International Nuclear Information System (INIS)

    Hu, Chih-Fan; Fang, Weileun; Su, Wang-Shen

    2011-01-01

    This study reports an improved approach to implement a carbon nanotube (CNT)-based flexible tactile sensor, which is integrated with a flexible print circuit (FPC) connector and is capable of detecting normal and shear forces. The merits of the presented tactile sensor by the integration process are as follows: (1) 3D polymer tactile bump structures are naturally formed by the use of an anisotropically etched silicon mold; (2) planar and 3D distributed CNTs are adopted as piezoresistive sensing elements to enable the detection of shear and normal forces; (3) the processes of patterning CNTs and metal routing can be easily batch fabricated on rigid silicon instead of flexible polymer; (4) robust electrical routing is realized using parylene encapsulation to avoid delamination; (5) patterned CNTs, electrical routing and FPC connector are integrated and transferred to a polydimethylsiloxane (PDMS) substrate by a molding process. In application, the CNT-based flexible tactile sensor and its integration with the FPC connector are implemented. Preliminary tests show the feasibility of detecting both normal and shear forces using the presented flexible sensor.

  7. Methods for robustness programming

    NARCIS (Netherlands)

    Olieman, N.J.

    2008-01-01

    Robustness of an object is defined as the probability that an object will have properties as required. Robustness Programming (RP) is a mathematical approach for Robustness estimation and Robustness optimisation. An example in the context of designing a food product, is finding the best composition

  8. Changepoint detection in base-resolution methylome data reveals a robust signature of methylated domain landscape.

    Science.gov (United States)

    Yokoyama, Takao; Miura, Fumihito; Araki, Hiromitsu; Okamura, Kohji; Ito, Takashi

    2015-08-12

    Base-resolution methylome data generated by whole-genome bisulfite sequencing (WGBS) is often used to segment the genome into domains with distinct methylation levels. However, most segmentation methods include many parameters to be carefully tuned and/or fail to exploit the unsurpassed resolution of the data. Furthermore, there is no simple method that displays the composition of the domains to grasp global trends in each methylome. We propose to use changepoint detection for domain demarcation based on base-resolution methylome data. While the proposed method segments the methylome in a largely comparable manner to conventional approaches, it has only a single parameter to be tuned. Furthermore, it fully exploits the base-resolution of the data to enable simultaneous detection of methylation changes in even contrasting size ranges, such as focal hypermethylation and global hypomethylation in cancer methylomes. We also propose a simple plot termed methylated domain landscape (MDL) that globally displays the size, the methylation level and the number of the domains thus defined, thereby enabling one to intuitively grasp trends in each methylome. Since the pattern of MDL often reflects cell lineages and is largely unaffected by data size, it can serve as a novel signature of methylome. Changepoint detection in base-resolution methylome data followed by MDL plotting provides a novel method for methylome characterization and will facilitate global comparison among various WGBS data differing in size and even species origin.

  9. Early Obstacle Detection and Avoidance for All to All Traffic Pattern in Wireless Sensor Networks

    Science.gov (United States)

    Huc, Florian; Jarry, Aubin; Leone, Pierre; Moraru, Luminita; Nikoletseas, Sotiris; Rolim, Jose

    This paper deals with early obstacles recognition in wireless sensor networks under various traffic patterns. In the presence of obstacles, the efficiency of routing algorithms is increased by voluntarily avoiding some regions in the vicinity of obstacles, areas which we call dead-ends. In this paper, we first propose a fast convergent routing algorithm with proactive dead-end detection together with a formal definition and description of dead-ends. Secondly, we present a generalization of this algorithm which improves performances in all to many and all to all traffic patterns. In a third part we prove that this algorithm produces paths that are optimal up to a constant factor of 2π + 1. In a fourth part we consider the reactive version of the algorithm which is an extension of a previously known early obstacle detection algorithm. Finally we give experimental results to illustrate the efficiency of our algorithms in different scenarios.

  10. Neural communication patterns underlying conflict detection, resolution, and adaptation.

    Science.gov (United States)

    Oehrn, Carina R; Hanslmayr, Simon; Fell, Juergen; Deuker, Lorena; Kremers, Nico A; Do Lam, Anne T; Elger, Christian E; Axmacher, Nikolai

    2014-07-30

    In an ever-changing environment, selecting appropriate responses in conflicting situations is essential for biological survival and social success and requires cognitive control, which is mediated by dorsomedial prefrontal cortex (DMPFC) and dorsolateral prefrontal cortex (DLPFC). How these brain regions communicate during conflict processing (detection, resolution, and adaptation), however, is still unknown. The Stroop task provides a well-established paradigm to investigate the cognitive mechanisms mediating such response conflict. Here, we explore the oscillatory patterns within and between the DMPFC and DLPFC in human epilepsy patients with intracranial EEG electrodes during an auditory Stroop experiment. Data from the DLPFC were obtained from 12 patients. Thereof four patients had additional DMPFC electrodes available for interaction analyses. Our results show that an early θ (4-8 Hz) modulated enhancement of DLPFC γ-band (30-100 Hz) activity constituted a prerequisite for later successful conflict processing. Subsequent conflict detection was reflected in a DMPFC θ power increase that causally entrained DLPFC θ activity (DMPFC to DLPFC). Conflict resolution was thereafter completed by coupling of DLPFC γ power to DMPFC θ oscillations. Finally, conflict adaptation was related to increased postresponse DLPFC γ-band activity and to θ coupling in the reverse direction (DLPFC to DMPFC). These results draw a detailed picture on how two regions in the prefrontal cortex communicate to resolve cognitive conflicts. In conclusion, our data show that conflict detection, control, and adaptation are supported by a sequence of processes that use the interplay of θ and γ oscillations within and between DMPFC and DLPFC. Copyright © 2014 the authors 0270-6474/14/3410438-15$15.00/0.

  11. Robust Image Analysis of Faces for Genetic Applications

    Czech Academy of Sciences Publication Activity Database

    Kalina, Jan

    2010-01-01

    Roč. 6, č. 2 (2010), s. 95-102 ISSN 1801-5603 R&D Projects: GA MŠk(CZ) 1M06014 Institutional research plan: CEZ:AV0Z10300504 Keywords : object localization * template matching * eye or mouth detection * robust correlation analysis * image denoising Subject RIV: BB - Applied Statistics, Operational Research http://www.ejbi.cz/articles/201012/47/1.html

  12. PolyaPeak: Detecting Transcription Factor Binding Sites from ChIP-seq Using Peak Shape Information

    Science.gov (United States)

    Wu, Hao; Ji, Hongkai

    2014-01-01

    ChIP-seq is a powerful technology for detecting genomic regions where a protein of interest interacts with DNA. ChIP-seq data for mapping transcription factor binding sites (TFBSs) have a characteristic pattern: around each binding site, sequence reads aligned to the forward and reverse strands of the reference genome form two separate peaks shifted away from each other, and the true binding site is located in between these two peaks. While it has been shown previously that the accuracy and resolution of binding site detection can be improved by modeling the pattern, efficient methods are unavailable to fully utilize that information in TFBS detection procedure. We present PolyaPeak, a new method to improve TFBS detection by incorporating the peak shape information. PolyaPeak describes peak shapes using a flexible Pólya model. The shapes are automatically learnt from the data using Minorization-Maximization (MM) algorithm, then integrated with the read count information via a hierarchical model to distinguish true binding sites from background noises. Extensive real data analyses show that PolyaPeak is capable of robustly improving TFBS detection compared with existing methods. An R package is freely available. PMID:24608116

  13. Transitional Probabilities Are Prioritized over Stimulus/Pattern Probabilities in Auditory Deviance Detection: Memory Basis for Predictive Sound Processing.

    Science.gov (United States)

    Mittag, Maria; Takegata, Rika; Winkler, István

    2016-09-14

    Representations encoding the probabilities of auditory events do not directly support predictive processing. In contrast, information about the probability with which a given sound follows another (transitional probability) allows predictions of upcoming sounds. We tested whether behavioral and cortical auditory deviance detection (the latter indexed by the mismatch negativity event-related potential) relies on probabilities of sound patterns or on transitional probabilities. We presented healthy adult volunteers with three types of rare tone-triplets among frequent standard triplets of high-low-high (H-L-H) or L-H-L pitch structure: proximity deviant (H-H-H/L-L-L), reversal deviant (L-H-L/H-L-H), and first-tone deviant (L-L-H/H-H-L). If deviance detection was based on pattern probability, reversal and first-tone deviants should be detected with similar latency because both differ from the standard at the first pattern position. If deviance detection was based on transitional probabilities, then reversal deviants should be the most difficult to detect because, unlike the other two deviants, they contain no low-probability pitch transitions. The data clearly showed that both behavioral and cortical auditory deviance detection uses transitional probabilities. Thus, the memory traces underlying cortical deviance detection may provide a link between stimulus probability-based change/novelty detectors operating at lower levels of the auditory system and higher auditory cognitive functions that involve predictive processing. Our research presents the first definite evidence for the auditory system prioritizing transitional probabilities over probabilities of individual sensory events. Forming representations for transitional probabilities paves the way for predictions of upcoming sounds. Several recent theories suggest that predictive processing provides the general basis of human perception, including important auditory functions, such as auditory scene analysis. Our

  14. Robustness of Structural Systems

    DEFF Research Database (Denmark)

    Canisius, T.D.G.; Sørensen, John Dalsgaard; Baker, J.W.

    2007-01-01

    The importance of robustness as a property of structural systems has been recognised following several structural failures, such as that at Ronan Point in 1968,where the consequenceswere deemed unacceptable relative to the initiating damage. A variety of research efforts in the past decades have...... attempted to quantify aspects of robustness such as redundancy and identify design principles that can improve robustness. This paper outlines the progress of recent work by the Joint Committee on Structural Safety (JCSS) to develop comprehensive guidance on assessing and providing robustness in structural...... systems. Guidance is provided regarding the assessment of robustness in a framework that considers potential hazards to the system, vulnerability of system components, and failure consequences. Several proposed methods for quantifying robustness are reviewed, and guidelines for robust design...

  15. Defect Localization Capabilities of a Global Detection Scheme: Spatial Pattern Recognition Using Full-field Vibration Test Data in Plates

    Science.gov (United States)

    Saleeb, A. F.; Prabhu, M.; Arnold, S. M. (Technical Monitor)

    2002-01-01

    Recently, a conceptually simple approach, based on the notion of defect energy in material space has been developed and extensively studied (from the theoretical and computational standpoints). The present study focuses on its evaluation from the viewpoint of damage localization capabilities in case of two-dimensional plates; i.e., spatial pattern recognition on surfaces. To this end, two different experimental modal test results are utilized; i.e., (1) conventional modal testing using (white noise) excitation and accelerometer-type sensors and (2) pattern recognition using Electronic speckle pattern interferometry (ESPI), a full field method capable of analyzing the mechanical vibration of complex structures. Unlike the conventional modal testing technique (using contacting accelerometers), these emerging ESPI technologies operate in a non-contacting mode, can be used even under hazardous conditions with minimal or no presence of noise and can simultaneously provide measurements for both translations and rotations. Results obtained have clearly demonstrated the robustness and versatility of the global NDE scheme developed. The vectorial character of the indices used, which enabled the extraction of distinct patterns for localizing damages proved very useful. In the context of the targeted pattern recognition paradigm, two algorithms were developed for the interrogation of test measurements; i.e., intensity contour maps for the damaged index, and the associated defect energy vector field plots.

  16. Robustness in laying hens

    NARCIS (Netherlands)

    Star, L.

    2008-01-01

    The aim of the project ‘The genetics of robustness in laying hens’ was to investigate nature and regulation of robustness in laying hens under sub-optimal conditions and the possibility to increase robustness by using animal breeding without loss of production. At the start of the project, a robust

  17. Auditory Pattern Memory and Group Signal Detection

    National Research Council Canada - National Science Library

    Sorkin, Robert

    1997-01-01

    .... The experiments with temporally-coded auditory patterns showed how listeners' attention is influenced by the position and the amount of information carried by different segments of the pattern...

  18. Sentence Level Information Patterns for Novelty Detection

    National Research Council Canada - National Science Library

    Li, Xiaoyan

    2006-01-01

    .... Given a user's information need, some information patterns in sentences such as combinations of query words, sentence lengths, named entities and phrases, and other sentence patterns, may contain...

  19. External skeletal robusticity of children and adolescents - European references from birth to adulthood and international comparisons.

    Science.gov (United States)

    Mumm, Rebekka; Godina, Elena; Koziel, Slawomir; Musalek, Martin; Sedlak, Petr; Wittwer-Backofen, Ursula; Hesse, Volker; Dasgupta, Parasmani; Henneberg, Maciej; Scheffler, Christiane

    2018-02-20

    Background: In our modern world, the way of life in nutritional and activity behaviour has changed. As a consequence, parallel trends of an epidemic of overweight and a decline in external skeletal robusticity are observed in children and adolescents. Aim: We aim to develop reference centiles for external skeletal robusticity of European girls and boys aged 0 to 18 years using the Frame Index as an indicator and identify population specific age-related patterns. Methods: We analysed cross-sectional & longitudinal data on body height and elbow breadth of boys and girls from Europe (0-18 years, n = 41.679), India (7-18 years, n = 3.297) and South Africa (3-18 years, n = 4.346). As an indicator of external skeletal robusticity Frame Index after Frisancho (1990) was used. We developed centiles for boys and girls using the LMS-method and its extension. Results: Boys have greater external skeletal robusticity than girls. Whereas in girls Frame Index decreases continuously during growth, an increase of Frame Index from 12 to 16 years in European boys can be observed. Indian and South African boys are almost similar in Frame Index to European boys. In girls, the pattern is slightly different. Whereas South African girls are similar to European girls, Indian girls show a lesser external skeletal robusticity. Conclusion: Accurate references for external skeletal robusticity are needed to evaluate if skeletal development is adequate per age. They should be used to monitor effects of changes in way of life and physical activity levels in children and adolescents to avoid negative health outcomes like osteoporosis and arthrosis.

  20. Robust non-wetting PTFE surfaces by femtosecond laser machining.

    Science.gov (United States)

    Liang, Fang; Lehr, Jorge; Danielczak, Lisa; Leask, Richard; Kietzig, Anne-Marie

    2014-08-08

    Nature shows many examples of surfaces with extraordinary wettability,which can often be associated with particular air-trapping surface patterns. Here,robust non-wetting surfaces have been created by femtosecond laser ablation of polytetrafluoroethylene (PTFE). The laser-created surface structure resembles a forest of entangled fibers, which support structural superhydrophobicity even when the surface chemistry is changed by gold coating. SEM analysis showed that the degree of entanglement of hairs and the depth of the forest pattern correlates positively with accumulated laser fluence and can thus be influenced by altering various laser process parameters. The resulting fibrous surfaces exhibit a tremendous decrease in wettability compared to smooth PTFE surfaces; droplets impacting the virgin or gold coated PTFE forest do not wet the surface but bounce off. Exploratory bioadhesion experiments showed that the surfaces are truly air-trapping and do not support cell adhesion. Therewith, the created surfaces successfully mimic biological surfaces such as insect wings with robust anti-wetting behavior and potential for antiadhesive applications. In addition, the fabrication can be carried out in one process step, and our results clearly show the insensitivity of the resulting non-wetting behavior to variations in the process parameters,both of which make it a strong candidate for industrial applications.

  1. Robust Non-Wetting PTFE Surfaces by Femtosecond Laser Machining

    Directory of Open Access Journals (Sweden)

    Fang Liang

    2014-08-01

    Full Text Available Nature shows many examples of surfaces with extraordinary wettability, which can often be associated with particular air-trapping surface patterns. Here, robust non-wetting surfaces have been created by femtosecond laser ablation of polytetrafluoroethylene (PTFE. The laser-created surface structure resembles a forest of entangled fibers, which support structural superhydrophobicity even when the surface chemistry is changed by gold coating. SEM analysis showed that the degree of entanglement of hairs and the depth of the forest pattern correlates positively with accumulated laser fluence and can thus be influenced by altering various laser process parameters. The resulting fibrous surfaces exhibit a tremendous decrease in wettability compared to smooth PTFE surfaces; droplets impacting the virgin or gold coated PTFE forest do not wet the surface but bounce off. Exploratory bioadhesion experiments showed that the surfaces are truly air-trapping and do not support cell adhesion. Therewith, the created surfaces successfully mimic biological surfaces such as insect wings with robust anti-wetting behavior and potential for antiadhesive applications. In addition, the fabrication can be carried out in one process step, and our results clearly show the insensitivity of the resulting non-wetting behavior to variations in the process parameters, both of which make it a strong candidate for industrial applications.

  2. Unsupervised EEG analysis for automated epileptic seizure detection

    Science.gov (United States)

    Birjandtalab, Javad; Pouyan, Maziyar Baran; Nourani, Mehrdad

    2016-07-01

    Epilepsy is a neurological disorder which can, if not controlled, potentially cause unexpected death. It is extremely crucial to have accurate automatic pattern recognition and data mining techniques to detect the onset of seizures and inform care-givers to help the patients. EEG signals are the preferred biosignals for diagnosis of epileptic patients. Most of the existing pattern recognition techniques used in EEG analysis leverage the notion of supervised machine learning algorithms. Since seizure data are heavily under-represented, such techniques are not always practical particularly when the labeled data is not sufficiently available or when disease progression is rapid and the corresponding EEG footprint pattern will not be robust. Furthermore, EEG pattern change is highly individual dependent and requires experienced specialists to annotate the seizure and non-seizure events. In this work, we present an unsupervised technique to discriminate seizures and non-seizures events. We employ power spectral density of EEG signals in different frequency bands that are informative features to accurately cluster seizure and non-seizure events. The experimental results tried so far indicate achieving more than 90% accuracy in clustering seizure and non-seizure events without having any prior knowledge on patient's history.

  3. Analytical maximum-likelihood method to detect patterns in real networks

    International Nuclear Information System (INIS)

    Squartini, Tiziano; Garlaschelli, Diego

    2011-01-01

    In order to detect patterns in real networks, randomized graph ensembles that preserve only part of the topology of an observed network are systematically used as fundamental null models. However, the generation of them is still problematic. Existing approaches are either computationally demanding and beyond analytic control or analytically accessible but highly approximate. Here, we propose a solution to this long-standing problem by introducing a fast method that allows one to obtain expectation values and standard deviations of any topological property analytically, for any binary, weighted, directed or undirected network. Remarkably, the time required to obtain the expectation value of any property analytically across the entire graph ensemble is as short as that required to compute the same property using the adjacency matrix of the single original network. Our method reveals that the null behavior of various correlation properties is different from what was believed previously, and is highly sensitive to the particular network considered. Moreover, our approach shows that important structural properties (such as the modularity used in community detection problems) are currently based on incorrect expressions, and provides the exact quantities that should replace them.

  4. Towards robust optimal design of storm water systems

    Science.gov (United States)

    Marquez Calvo, Oscar; Solomatine, Dimitri

    2015-04-01

    In this study the focus is on the design of a storm water or a combined sewer system. Such a system should be capable to handle properly most of the storm to minimize the damages caused by flooding due to the lack of capacity of the system to cope with rain water at peak times. This problem is a multi-objective optimization problem: we have to take into account the minimization of the construction costs, the minimization of damage costs due to flooding, and possibly other criteria. One of the most important factors influencing the design of storm water systems is the expected amount of water to deal with. It is common that this infrastructure is developed with the capacity to cope with events that occur once in, say 10 or 20 years - so-called design rainfall events. However, rainfall is a random variable and such uncertainty typically is not taken explicitly into account in optimization. Rainfall design data is based on historical information of rainfalls, but many times this data is based on unreliable measures; or in not enough historical information; or as we know, the patterns of rainfall are changing regardless of historical information. There are also other sources of uncertainty influencing design, for example, leakages in the pipes and accumulation of sediments in pipes. In the context of storm water or combined sewer systems design or rehabilitation, robust optimization technique should be able to find the best design (or rehabilitation plan) within the available budget but taking into account uncertainty in those variables that were used to design the system. In this work we consider various approaches to robust optimization proposed by various authors (Gabrel, Murat, Thiele 2013; Beyer, Sendhoff 2007) and test a novel method ROPAR (Solomatine 2012) to analyze robustness. References Beyer, H.G., & Sendhoff, B. (2007). Robust optimization - A comprehensive survey. Comput. Methods Appl. Mech. Engrg., 3190-3218. Gabrel, V.; Murat, C., Thiele, A. (2014

  5. An Improved Generalized Predictive Control in a Robust Dynamic Partial Least Square Framework

    Directory of Open Access Journals (Sweden)

    Jin Xin

    2015-01-01

    Full Text Available To tackle the sensitivity to outliers in system identification, a new robust dynamic partial least squares (PLS model based on an outliers detection method is proposed in this paper. An improved radial basis function network (RBFN is adopted to construct the predictive model from inputs and outputs dataset, and a hidden Markov model (HMM is applied to detect the outliers. After outliers are removed away, a more robust dynamic PLS model is obtained. In addition, an improved generalized predictive control (GPC with the tuning weights under dynamic PLS framework is proposed to deal with the interaction which is caused by the model mismatch. The results of two simulations demonstrate the effectiveness of proposed method.

  6. A bio-inspired spatial patterning circuit.

    Science.gov (United States)

    Chen, Kai-Yuan; Joe, Danial J; Shealy, James B; Land, Bruce R; Shen, Xiling

    2014-01-01

    Lateral Inhibition (LI) is a widely conserved patterning mechanism in biological systems across species. Distinct from better-known Turing patterns, LI depend on cell-cell contact rather than diffusion. We built an in silico genetic circuit model to analyze the dynamic properties of LI. The model revealed that LI amplifies differences between neighboring cells to push them into opposite states, hence forming stable 2-D patterns. Inspired by this insight, we designed and implemented an electronic circuit that recapitulates LI patterning dynamics. This biomimetic system serve as a physical model to elucidate the design principle of generating robust patterning through spatial feedback, regardless of the underlying devices being biological or electrical.

  7. Fabrication of Robust Biomolecular Patterns by Reactive Microcontact Printing on NHS Ester Containing Polymer Films

    NARCIS (Netherlands)

    Feng, C.L.; Vancso, Gyula J.; Schönherr, Holger

    2006-01-01

    The fabrication of robust biomolecule microarrays by reactive microcontact printing (CP) on spin-coated thin films of poly(N-hydroxysuccinimidyl methacrylate) (PNHSMA) on oxidized silicon and glass is described. The approach combines the advantages of activated polymer thin films as coupling layers,

  8. Breast cancer early detection via tracking of skin back-scattered secondary speckle patterns

    Science.gov (United States)

    Bennett, Aviya; Sirkis, Talia; Beiderman, Yevgeny; Agdarov, Sergey; Beiderman, Yafim; Zalevsky, Zeev

    2018-02-01

    Breast cancer has become a major cause of death among women. The lifetime risk of a woman developing this disease has been established as one in eight. The most useful way to reduce breast cancer death is to treat the disease as early as possible. The existing methods of early diagnostics of breast cancer are mainly based on screening mammography or Magnetic Resonance Imaging (MRI) periodically conducted at medical facilities. In this paper the authors proposing a new approach for simple breast cancer detection. It is based on skin stimulation by sound waves, illuminating it by laser beam and tracking the reflected secondary speckle patterns. As first approach, plastic balls of different sizes were placed under the skin of chicken breast and detected by the proposed method.

  9. Simulation of pattern and defect detection in periodic amplitude and phase structures using photorefractive four-wave mixing

    Science.gov (United States)

    Nehmetallah, Georges; Banerjee, Partha; Khoury, Jed

    2015-03-01

    The nonlinearity inherent in four-wave mixing in photorefractive (PR) materials is used for adaptive filtering. Examples include script enhancement on a periodic pattern, scratch and defect cluster enhancement, periodic pattern dislocation enhancement, etc. through intensity filtering image manipulation. Organic PR materials have large space-bandwidth product, which makes them useful in adaptive filtering techniques in quality control systems. For instance, in the case of edge enhancement, phase conjugation via four-wave mixing suppresses the low spatial frequencies of the Fourier spectrum of an aperiodic image and consequently leads to image edge enhancement. In this work, we model, numerically verify, and simulate the performance of a four wave mixing setup used for edge, defect and pattern detection in periodic amplitude and phase structures. The results show that this technique successfully detects the slightest defects clearly even with no enhancement. This technique should facilitate improvements in applications such as image display sharpness utilizing edge enhancement, production line defect inspection of fabrics, textiles, e-beam lithography masks, surface inspection, and materials characterization.

  10. Graffiti for science: Qualitative detection of erosional patterns through bedrock erosion painting

    Science.gov (United States)

    Beer, Alexander R.; Kirchner, James W.; Turowski, Jens M.

    2016-04-01

    Bedrock erosion is a crucial constraint on stream channel incision, and hence whole landscape evolution, in steep mountainous terrain and tectonically active regions. Several interacting processes lead to bedrock erosion in stream channels, with hydraulic shear detachment, plucking, and abrasion due to sediment impacts generally being the most efficient. Bedrock topography, together with the sediment tools and cover effects, regulate the rate and spatial pattern of in situ surface change. Measurements of natural bedrock erosion rates are valuable for understanding the underlying process physics, as well as for modelling landscape evolution and designing engineered structures. However, quantifying spatially distributed bedrock erosion rates in natural settings is challenging and few such measurements exist. We studied spatial bedrock erosion in a 30m-long bedrock gorge in the Gornera, a glacial meltwater stream above Zermatt. This stream is flushed episodically with sediment-laden streamflow due to hydropower operations upstream, with negligible discharge in the gorge in between these flushing events. We coated several bedrock surface patches with environmentally safe, and water-insoluble outdoor paint to document the spatial pattern of surface abrasion, or to be more precise, to document its driving forces. During four consecutive years, the change of the painted areas was recorded repeatedly with photographs before the painting was renewed. These photographs visually documented the spatial patterns of vertical erosion (channel incision), of lateral erosion (channel widening) and of downstream-directed erosion (channel clearance). The observed qualitative patterns were verified through comparison to quantitative change detection analyses based on annual high-resolution terrestrial laser scanning surveys of the bedrock surfaces. Comparison of repeated photographs indicated a temporal cover effect and a general height limit of the tools effect above the streambed

  11. Robust and Effective Component-based Banknote Recognition for the Blind.

    Science.gov (United States)

    Hasanuzzaman, Faiz M; Yang, Xiaodong; Tian, Yingli

    2012-11-01

    We develop a novel camera-based computer vision technology to automatically recognize banknotes for assisting visually impaired people. Our banknote recognition system is robust and effective with the following features: 1) high accuracy: high true recognition rate and low false recognition rate, 2) robustness: handles a variety of currency designs and bills in various conditions, 3) high efficiency: recognizes banknotes quickly, and 4) ease of use: helps blind users to aim the target for image capture. To make the system robust to a variety of conditions including occlusion, rotation, scaling, cluttered background, illumination change, viewpoint variation, and worn or wrinkled bills, we propose a component-based framework by using Speeded Up Robust Features (SURF). Furthermore, we employ the spatial relationship of matched SURF features to detect if there is a bill in the camera view. This process largely alleviates false recognition and can guide the user to correctly aim at the bill to be recognized. The robustness and generalizability of the proposed system is evaluated on a dataset including both positive images (with U.S. banknotes) and negative images (no U.S. banknotes) collected under a variety of conditions. The proposed algorithm, achieves 100% true recognition rate and 0% false recognition rate. Our banknote recognition system is also tested by blind users.

  12. Robust path planning for flexible needle insertion using Markov decision processes.

    Science.gov (United States)

    Tan, Xiaoyu; Yu, Pengqian; Lim, Kah-Bin; Chui, Chee-Kong

    2018-05-11

    Flexible needle has the potential to accurately navigate to a treatment region in the least invasive manner. We propose a new planning method using Markov decision processes (MDPs) for flexible needle navigation that can perform robust path planning and steering under the circumstance of complex tissue-needle interactions. This method enhances the robustness of flexible needle steering from three different perspectives. First, the method considers the problem caused by soft tissue deformation. The method then resolves the common needle penetration failure caused by patterns of targets, while the last solution addresses the uncertainty issues in flexible needle motion due to complex and unpredictable tissue-needle interaction. Computer simulation and phantom experimental results show that the proposed method can perform robust planning and generate a secure control policy for flexible needle steering. Compared with a traditional method using MDPs, the proposed method achieves higher accuracy and probability of success in avoiding obstacles under complicated and uncertain tissue-needle interactions. Future work will involve experiment with biological tissue in vivo. The proposed robust path planning method can securely steer flexible needle within soft phantom tissues and achieve high adaptability in computer simulation.

  13. Robust matching for voice recognition

    Science.gov (United States)

    Higgins, Alan; Bahler, L.; Porter, J.; Blais, P.

    1994-10-01

    This paper describes an automated method of comparing a voice sample of an unknown individual with samples from known speakers in order to establish or verify the individual's identity. The method is based on a statistical pattern matching approach that employs a simple training procedure, requires no human intervention (transcription, work or phonetic marketing, etc.), and makes no assumptions regarding the expected form of the statistical distributions of the observations. The content of the speech material (vocabulary, grammar, etc.) is not assumed to be constrained in any way. An algorithm is described which incorporates frame pruning and channel equalization processes designed to achieve robust performance with reasonable computational resources. An experimental implementation demonstrating the feasibility of the concept is described.

  14. Assessment And Testing of Industrial Devices Robustness Against Cyber Security Attacks

    CERN Document Server

    Tilaro, F

    2011-01-01

    CERN (European Organization for Nuclear Research),like any organization, needs to achieve the conflicting objectives of connecting its operational network to Internet while at the same time keeping its industrial control systems secure from external and internal cyber attacks. With this in mind, the ISA-99[0F1] international cyber security standard has been adopted at CERN as a reference model to define a set of guidelines and security robustness criteria applicable to any network device. Devices robustness represents a key link in the defense-in-depth concept as some attacks will inevitably penetrate security boundaries and thus require further protection measures. When assessing the cyber security robustness of devices we have singled out control system-relevant attack patterns derived from the well-known CAPEC[1F2] classification. Once a vulnerability is identified, it needs to be documented, prioritized and reproduced at will in a dedicated test environment for debugging purposes. CERN - in collaboration ...

  15. Robust Design Optimization of an Aerospace Vehicle Prolusion System

    Directory of Open Access Journals (Sweden)

    Muhammad Aamir Raza

    2011-01-01

    Full Text Available This paper proposes a robust design optimization methodology under design uncertainties of an aerospace vehicle propulsion system. The approach consists of 3D geometric design coupled with complex internal ballistics, hybrid optimization, worst-case deviation, and efficient statistical approach. The uncertainties are propagated through worst-case deviation using first-order orthogonal design matrices. The robustness assessment is measured using the framework of mean-variance and percentile difference approach. A parametric sensitivity analysis is carried out to analyze the effects of design variables variation on performance parameters. A hybrid simulated annealing and pattern search approach is used as an optimizer. The results show the objective function of optimizing the mean performance and minimizing the variation of performance parameters in terms of thrust ratio and total impulse could be achieved while adhering to the system constraints.

  16. Robustness of movement detection techniques from motor execution

    DEFF Research Database (Denmark)

    Aliakbaryhosseinabadi, Susan; Jiang, Ning; Petrini, Laura

    2015-01-01

    subjects completed a set of movement executions prior to and following the oddball paradigm. The locality preserving projection followed by the linear discriminant analysis (LPP-LDA) and the matched-filter (MF) technique were applied offline for detection of movement. Results show that LPP...

  17. Robustness of high-fidelity Rydberg gates with single-site addressability

    Science.gov (United States)

    Goerz, Michael H.; Halperin, Eli J.; Aytac, Jon M.; Koch, Christiane P.; Whaley, K. Birgitta

    2014-09-01

    Controlled-phase (cphase) gates can be realized with trapped neutral atoms by making use of the Rydberg blockade. Achieving the ultrahigh fidelities required for quantum computation with such Rydberg gates, however, is compromised by experimental inaccuracies in pulse amplitudes and timings, as well as by stray fields that cause fluctuations of the Rydberg levels. We report here a comparative study of analytic and numerical pulse sequences for the Rydberg cphase gate that specifically examines the robustness of the gate fidelity with respect to such experimental perturbations. Analytical pulse sequences of both simultaneous and stimulated Raman adiabatic passage (STIRAP) are found to be at best moderately robust under these perturbations. In contrast, optimal control theory is seen to allow generation of numerical pulses that are inherently robust within a predefined tolerance window. The resulting numerical pulse shapes display simple modulation patterns and can be rationalized in terms of an interference between distinct two-photon Rydberg excitation pathways. Pulses of such low complexity should be experimentally feasible, allowing gate fidelities of order 99.90-99.99% to be achievable under realistic experimental conditions.

  18. Robust filtering and fault detection of switched delay systems

    CERN Document Server

    Wang, Dong; Wang, Wei

    2013-01-01

    Switched delay systems appear in a wide field of applications including networked control systems, power systems, memristive systems. Though the large amount of ideas with respect to such systems have generated, until now, it still lacks a framework to focus on filter design and fault detection issues which are relevant to life safety and property loss. Beginning with the comprehensive coverage of the new developments in the analysis and control synthesis for switched delay systems, the monograph not only provides a systematic approach to designing the filter and detecting the fault of switched delay systems, but it also covers the model reduction issues. Specific topics covered include: (1) Arbitrary switching signal where delay-independent and delay-dependent conditions are presented by proposing a linearization technique. (2) Average dwell time where a weighted Lyapunov function is come up with dealing with filter design and fault detection issues beside taking model reduction problems. The monograph is in...

  19. AFM imaging and analysis of local mechanical properties for detection of surface pattern of functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, Petr, E-mail: petr.knotek@upce.cz [University of Pardubice, Faculty of Chemical Technology, Joint Laboratory of Solid State Chemistry of IMC ASCR and University of Pardubice, Studentska 573, 532 10 Pardubice (Czech Republic); Chanova, Eliska; Rypacek, Frantisek [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho sq. 2, 162 06 Prague (Czech Republic)

    2013-05-01

    In this work we evaluate the applicability of different atomic force microscopy (AFM) modes, such as Phase Shift Imaging, Atomic Force Acoustic Microscopy (AFAM) and Force Spectroscopy, for mapping of the distribution pattern of low-molecular-weight biomimetic groups on polymer biomaterial surfaces. Patterns with either random or clustered spatial distribution of bioactive peptide group derived from fibronectin were prepared by surface deposition of functional block copolymer nano-colloids and grafted with RGDS peptide containing the sequence of amino acids arginine–glycine–aspartic acid–serine (conventionally labeled as RGDS) and carrying biotin as a tag. The biotin-tagged peptides were labeled with 40 nm streptavidin-modified Au nanospheres. The peptide molecules were localized through the detection of bound Au nanospheres by AFM, and thus, the surface distribution of peptides was revealed. AFM techniques capable of monitoring local mechanical properties of the surface were proved to be the most efficient for identification of Au nano-markers. The efficiency was successfully demonstrated on two different patterns, i.e. random and clustered distribution of RGDS peptides on structured surface of the polymer biomaterial. Highlights: ► Bioactive peptides for cell adhesion on PLA-b-PEO biomimetic surface were visualized. ► The biotin-tagged RGDS peptides were labeled with streptavidin-Au nanospheres. ► The RGDS pattern was detected using different atomic force microscopy (AFM) modes. ► Phase Shift Image was proved to be suitable method for studying peptide distribution.

  20. Robust optimization methods for cardiac sparing in tangential breast IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoudzadeh, Houra, E-mail: houra@mie.utoronto.ca [Mechanical and Industrial Engineering Department, University of Toronto, Toronto, Ontario M5S 3G8 (Canada); Lee, Jenny [Radiation Medicine Program, UHN Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9 (Canada); Chan, Timothy C. Y. [Mechanical and Industrial Engineering Department, University of Toronto, Toronto, Ontario M5S 3G8, Canada and Techna Institute for the Advancement of Technology for Health, Toronto, Ontario M5G 1P5 (Canada); Purdie, Thomas G. [Radiation Medicine Program, UHN Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9 (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 3S2 (Canada); Techna Institute for the Advancement of Technology for Health, Toronto, Ontario M5G 1P5 (Canada)

    2015-05-15

    Purpose: In left-sided tangential breast intensity modulated radiation therapy (IMRT), the heart may enter the radiation field and receive excessive radiation while the patient is breathing. The patient’s breathing pattern is often irregular and unpredictable. We verify the clinical applicability of a heart-sparing robust optimization approach for breast IMRT. We compare robust optimized plans with clinical plans at free-breathing and clinical plans at deep inspiration breath-hold (DIBH) using active breathing control (ABC). Methods: Eight patients were included in the study with each patient simulated using 4D-CT. The 4D-CT image acquisition generated ten breathing phase datasets. An average scan was constructed using all the phase datasets. Two of the eight patients were also imaged at breath-hold using ABC. The 4D-CT datasets were used to calculate the accumulated dose for robust optimized and clinical plans based on deformable registration. We generated a set of simulated breathing probability mass functions, which represent the fraction of time patients spend in different breathing phases. The robust optimization method was applied to each patient using a set of dose-influence matrices extracted from the 4D-CT data and a model of the breathing motion uncertainty. The goal of the optimization models was to minimize the dose to the heart while ensuring dose constraints on the target were achieved under breathing motion uncertainty. Results: Robust optimized plans were improved or equivalent to the clinical plans in terms of heart sparing for all patients studied. The robust method reduced the accumulated heart dose (D10cc) by up to 801 cGy compared to the clinical method while also improving the coverage of the accumulated whole breast target volume. On average, the robust method reduced the heart dose (D10cc) by 364 cGy and improved the optBreast dose (D99%) by 477 cGy. In addition, the robust method had smaller deviations from the planned dose to the

  1. Early fault detection and diagnosis for nuclear power plants

    International Nuclear Information System (INIS)

    Berg, O.; Grini, R.; Masao Yokobayashi

    1988-01-01

    Fault detection based on a number of reference models is demonstrated. This approach is characterized by the possibility of detecting faults before a traditional alarm system is triggered, even in dynamic situations. Further, by a proper decomposition scheme and use of available process measurements, the problem area can be confined to the faulty process parts. A diagnosis system using knowledge engineering techniques is described. Typical faults are classified and described by rules involving alarm patterns and variations of important parameters. By structuring the fault hypotheses in a hierarchy the search space is limited which is important for real time diagnosis. Introduction of certainty factors improve the flexibility and robustness of diagnosis by exploring parallel problems even when some data are missing. A new display proposal should facilitate the operator interface and the integration of fault detection and diagnosis tasks in disturbance handling. The techniques of early fault detection and diagnosis are presently being implemented and tested in the experimental control room of a full-scope PWR simulator in Halden

  2. Robust emergence of small-world structure in networks of spiking neurons.

    Science.gov (United States)

    Kwok, Hoi Fei; Jurica, Peter; Raffone, Antonino; van Leeuwen, Cees

    2007-03-01

    Spontaneous activity in biological neural networks shows patterns of dynamic synchronization. We propose that these patterns support the formation of a small-world structure-network connectivity optimal for distributed information processing. We present numerical simulations with connected Hindmarsh-Rose neurons in which, starting from random connection distributions, small-world networks evolve as a result of applying an adaptive rewiring rule. The rule connects pairs of neurons that tend fire in synchrony, and disconnects ones that fail to synchronize. Repeated application of the rule leads to small-world structures. This mechanism is robustly observed for bursting and irregular firing regimes.

  3. Robust Pseudo-Hierarchical Support Vector Clustering

    DEFF Research Database (Denmark)

    Hansen, Michael Sass; Sjöstrand, Karl; Olafsdóttir, Hildur

    2007-01-01

    Support vector clustering (SVC) has proven an efficient algorithm for clustering of noisy and high-dimensional data sets, with applications within many fields of research. An inherent problem, however, has been setting the parameters of the SVC algorithm. Using the recent emergence of a method...... for calculating the entire regularization path of the support vector domain description, we propose a fast method for robust pseudo-hierarchical support vector clustering (HSVC). The method is demonstrated to work well on generated data, as well as for detecting ischemic segments from multidimensional myocardial...

  4. A novel approach for fault detection and classification of the thermocouple sensor in Nuclear Power Plant using Singular Value Decomposition and Symbolic Dynamic Filter

    International Nuclear Information System (INIS)

    Mandal, Shyamapada; Santhi, B.; Sridhar, S.; Vinolia, K.; Swaminathan, P.

    2017-01-01

    Highlights: • A novel approach to classify the fault pattern using data-driven methods. • Application of robust reconstruction method (SVD) to identify the faulty sensor. • Analysing fault pattern for plenty of sensors using SDF with less time complexity. • An efficient data-driven model is designed to the false and missed alarms. - Abstract: A mathematical model with two layers is developed using data-driven methods for thermocouple sensor fault detection and classification in Nuclear Power Plants (NPP). The Singular Value Decomposition (SVD) based method is applied to detect the faulty sensor from a data set of all sensors, at the first layer. In the second layer, the Symbolic Dynamic Filter (SDF) is employed to classify the fault pattern. If SVD detects any false fault, it is also re-evaluated by the SDF, i.e., the model has two layers of checking to balance the false alarms. The proposed fault detection and classification method is compared with the Principal Component Analysis. Two case studies are taken from Fast Breeder Test Reactor (FBTR) to prove the efficiency of the proposed method.

  5. Robust Growth Determinants

    OpenAIRE

    Doppelhofer, Gernot; Weeks, Melvyn

    2011-01-01

    This paper investigates the robustness of determinants of economic growth in the presence of model uncertainty, parameter heterogeneity and outliers. The robust model averaging approach introduced in the paper uses a flexible and parsi- monious mixture modeling that allows for fat-tailed errors compared to the normal benchmark case. Applying robust model averaging to growth determinants, the paper finds that eight out of eighteen variables found to be significantly related to economic growth ...

  6. Optimization of the HyPer sensor for robust real-time detection of hydrogen peroxide in the rice blast fungus.

    Science.gov (United States)

    Huang, Kun; Caplan, Jeff; Sweigard, James A; Czymmek, Kirk J; Donofrio, Nicole M

    2017-02-01

    Reactive oxygen species (ROS) production and breakdown have been studied in detail in plant-pathogenic fungi, including the rice blast fungus, Magnaporthe oryzae; however, the examination of the dynamic process of ROS production in real time has proven to be challenging. We resynthesized an existing ROS sensor, called HyPer, to exhibit optimized codon bias for fungi, specifically Neurospora crassa, and used a combination of microscopy and plate reader assays to determine whether this construct could detect changes in fungal ROS during the plant infection process. Using confocal microscopy, we were able to visualize fluctuating ROS levels during the formation of an appressorium on an artificial hydrophobic surface, as well as during infection on host leaves. Using the plate reader, we were able to ascertain measurements of hydrogen peroxide (H 2 O 2 ) levels in conidia as detected by the MoHyPer sensor. Overall, by the optimization of codon usage for N. crassa and related fungal genomes, the MoHyPer sensor can be used as a robust, dynamic and powerful tool to both monitor and quantify H 2 O 2 dynamics in real time during important stages of the plant infection process. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  7. Invertible chaotic fragile watermarking for robust image authentication

    International Nuclear Information System (INIS)

    Sidiropoulos, Panagiotis; Nikolaidis, Nikos; Pitas, Ioannis

    2009-01-01

    Fragile watermarking is a popular method for image authentication. In such schemes, a fragile signal that is sensitive to manipulations is embedded in the image, so that it becomes undetectable after any modification of the original work. Most algorithms focus either on the ability to retrieve the original work after watermark detection (invertibility) or on detecting which image parts have been altered (localization). Furthermore, the majority of fragile watermarking schemes suffer from robustness flaws. We propose a new technique that combines localization and invertibility. Moreover, watermark dependency on the original image and the non-linear watermark embedding procedure guarantees that no malicious attacks will manage to create information leaks.

  8. Efficient and Robust Detection of GFSK Signals under Dispersive Channel, Modulation Index, and Carrier Frequency Offset Conditions

    Directory of Open Access Journals (Sweden)

    Stephan Weiss

    2005-09-01

    Full Text Available Gaussian frequency shift keying is the modulation scheme specified for Bluetooth. Signal adversities typical in Bluetooth networks include AWGN, multipath propagation, carrier frequency, and modulation index offsets. In our effort to realise a robust but efficient Bluetooth receiver, we adopt a high-performance matched-filter-based detector, which is near optimal in AWGN, but requires a prohibitively costly filter bank for processing of K bits worth of the received signal. However, through filtering over a single bit period and performing phase propagation of intermediate results over successive single-bit stages, we eliminate redundancy involved in providing the matched filter outputs and reduce its complexity by up to 90% (for K=9. The constant modulus signal characteristic and the potential for carrier frequency offsets make the constant modulus algorithm (CMA suitable for channel equalisation, and we demonstrate its effectiveness in this paper. We also introduce a stochastic gradient-based algorithm for carrier frequency offset correction, and show that the relative rotation between successive intermediate filter outputs enables us to detect and correct offsets in modulation index.

  9. Container Materials, Fabrication And Robustness

    International Nuclear Information System (INIS)

    Dunn, K.; Louthan, M.; Rawls, G.; Sindelar, R.; Zapp, P.; Mcclard, J.

    2009-01-01

    The multi-barrier 3013 container used to package plutonium-bearing materials is robust and thereby highly resistant to identified degradation modes that might cause failure. The only viable degradation mechanisms identified by a panel of technical experts were pressurization within and corrosion of the containers. Evaluations of the container materials and the fabrication processes and resulting residual stresses suggest that the multi-layered containers will mitigate the potential for degradation of the outer container and prevent the release of the container contents to the environment. Additionally, the ongoing surveillance programs and laboratory studies should detect any incipient degradation of containers in the 3013 storage inventory before an outer container is compromised.

  10. Improved twin detection via tracking of individual Kikuchi band intensity of EBSD patterns.

    Science.gov (United States)

    Rampton, Travis M; Wright, Stuart I; Miles, Michael P; Homer, Eric R; Wagoner, Robert H; Fullwood, David T

    2018-02-01

    Twin detection via EBSD can be particularly challenging due to the fine scale of certain twin types - for example, compression and double twins in Mg. Even when a grid of sufficient resolution is chosen to ensure scan points within the twins, the interaction volume of the electron beam often encapsulates a region that contains both the parent grain and the twin, confusing the twin identification process. The degradation of the EBSD pattern results in a lower image quality metric, which has long been used to imply potential twins. However, not all bands within the pattern are degraded equally. This paper exploits the fact that parent and twin lattices share common planes that lead to the quality of the associated bands not degrading; i.e. common planes that exist in both grains lead to bands of consistent intensity for scan points adjacent to twin boundaries. Hence, twin boundaries in a microstructure can be recognized, even when they are associated with thin twins. Proof of concept was performed on known twins in Inconel 600, Tantalum, and Magnesium AZ31. This method was then used to search for undetected twins in a Mg AZ31 structure, revealing nearly double the number of twins compared with those initially detected by standard procedures. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. PASSion: a pattern growth algorithm-based pipeline for splice junction detection in paired-end RNA-Seq data.

    Science.gov (United States)

    Zhang, Yanju; Lameijer, Eric-Wubbo; 't Hoen, Peter A C; Ning, Zemin; Slagboom, P Eline; Ye, Kai

    2012-02-15

    RNA-seq is a powerful technology for the study of transcriptome profiles that uses deep-sequencing technologies. Moreover, it may be used for cellular phenotyping and help establishing the etiology of diseases characterized by abnormal splicing patterns. In RNA-Seq, the exact nature of splicing events is buried in the reads that span exon-exon boundaries. The accurate and efficient mapping of these reads to the reference genome is a major challenge. We developed PASSion, a pattern growth algorithm-based pipeline for splice site detection in paired-end RNA-Seq reads. Comparing the performance of PASSion to three existing RNA-Seq analysis pipelines, TopHat, MapSplice and HMMSplicer, revealed that PASSion is competitive with these packages. Moreover, the performance of PASSion is not affected by read length and coverage. It performs better than the other three approaches when detecting junctions in highly abundant transcripts. PASSion has the ability to detect junctions that do not have known splicing motifs, which cannot be found by the other tools. Of the two public RNA-Seq datasets, PASSion predicted ≈ 137,000 and 173,000 splicing events, of which on average 82 are known junctions annotated in the Ensembl transcript database and 18% are novel. In addition, our package can discover differential and shared splicing patterns among multiple samples. The code and utilities can be freely downloaded from https://trac.nbic.nl/passion and ftp://ftp.sanger.ac.uk/pub/zn1/passion.

  12. A new texture descriptor based on local micro-pattern for detection of architectural distortion in mammographic images

    Science.gov (United States)

    de Oliveira, Helder C. R.; Moraes, Diego R.; Reche, Gustavo A.; Borges, Lucas R.; Catani, Juliana H.; de Barros, Nestor; Melo, Carlos F. E.; Gonzaga, Adilson; Vieira, Marcelo A. C.

    2017-03-01

    This paper presents a new local micro-pattern texture descriptor for the detection of Architectural Distortion (AD) in digital mammography images. AD is a subtle contraction of breast parenchyma that may represent an early sign of breast cancer. Due to its subtlety and variability, AD is more difficult to detect compared to microcalcifications and masses, and is commonly found in retrospective evaluations of false-negative mammograms. Several computer-based systems have been proposed for automatic detection of AD, but their performance are still unsatisfactory. The proposed descriptor, Local Mapped Pattern (LMP), is a generalization of the Local Binary Pattern (LBP), which is considered one of the most powerful feature descriptor for texture classification in digital images. Compared to LBP, the LMP descriptor captures more effectively the minor differences between the local image pixels. Moreover, LMP is a parametric model which can be optimized for the desired application. In our work, the LMP performance was compared to the LBP and four Haralick's texture descriptors for the classification of 400 regions of interest (ROIs) extracted from clinical mammograms. ROIs were selected and divided into four classes: AD, normal tissue, microcalcifications and masses. Feature vectors were used as input to a multilayer perceptron neural network, with a single hidden layer. Results showed that LMP is a good descriptor to distinguish AD from other anomalies in digital mammography. LMP performance was slightly better than the LBP and comparable to Haralick's descriptors (mean classification accuracy = 83%).

  13. Hidden pattern discovery on epileptic EEG with 1-D local binary patterns and epileptic seizures detection by grey relational analysis.

    Science.gov (United States)

    Kaya, Yılmaz

    2015-09-01

    This paper proposes a novel approach to detect epilepsy seizures by using Electroencephalography (EEG), which is one of the most common methods for the diagnosis of epilepsy, based on 1-Dimension Local Binary Pattern (1D-LBP) and grey relational analysis (GRA) methods. The main aim of this paper is to evaluate and validate a novel approach, which is a computer-based quantitative EEG analyzing method and based on grey systems, aimed to help decision-maker. In this study, 1D-LBP, which utilizes all data points, was employed for extracting features in raw EEG signals, Fisher score (FS) was employed to select the representative features, which can also be determined as hidden patterns. Additionally, GRA is performed to classify EEG signals through these Fisher scored features. The experimental results of the proposed approach, which was employed in a public dataset for validation, showed that it has a high accuracy in identifying epileptic EEG signals. For various combinations of epileptic EEG, such as A-E, B-E, C-E, D-E, and A-D clusters, 100, 96, 100, 99.00 and 100% were achieved, respectively. Also, this work presents an attempt to develop a new general-purpose hidden pattern determination scheme, which can be utilized for different categories of time-varying signals.

  14. Robust FDI for a Class of Nonlinear Networked Systems with ROQs

    Directory of Open Access Journals (Sweden)

    An-quan Sun

    2014-01-01

    Full Text Available This paper considers the robust fault detection and isolation (FDI problem for a class of nonlinear networked systems (NSs with randomly occurring quantisations (ROQs. After vector augmentation, Lyapunov function is introduced to ensure the asymptotically mean-square stability of fault detection system. By transforming the quantisation effects into sector-bounded parameter uncertainties, sufficient conditions ensuring the existence of fault detection filter are proposed, which can reduce the difference between output residuals and fault signals as small as possible under H∞ framework. Finally, an example linearized from a vehicle system is introduced to show the efficiency of the proposed fault detection filter.

  15. Detection of heavy-metal ions using liquid crystal droplet patterns modulated by interaction between negatively charged carboxylate and heavy-metal cations.

    Science.gov (United States)

    Han, Gyeo-Re; Jang, Chang-Hyun

    2014-10-01

    Herein, we demonstrated a simple, sensitive, and rapid label-free detection method for heavy-metal (HM) ions using liquid crystal (LC) droplet patterns on a solid surface. Stearic-acid-doped LC droplet patterns were spontaneously generated on an n-octyltrichlorosilane (OTS)-treated glass substrate by evaporating a solution of the nematic LC, 4-cyano-4'-pentylbiphenyl (5CB), dissolved in heptane. The optical appearance of the droplet patterns was a dark crossed texture when in contact with air, which represents the homeotropic orientation of the LC. This was caused by the steric interaction between the LC molecules and the alkyl chains of the OTS-treated surface. The dark crossed appearance of the acid-doped LC patterns was maintained after the addition of phosphate buffered saline (PBS) solution (pH 8.1 at 25°C). The deprotonated stearic-acid molecules self-assembled through the LC/aqueous interface, thereby supporting the homeotropic anchoring of 5CB. However, the optical image of the acid-doped LC droplet patterns incubated with PBS containing HM ions appeared bright, indicating a planar orientation of 5CB at the aqueous/LC droplet interface. This dark to bright transition of the LC patterns was caused by HM ions attached to the deprotonated carboxylate moiety, followed by the sequential interruption of the self-assembly of the stearic acid at the LC/aqueous interface. The results showed that the acid-doped LC pattern system not only enabled the highly sensitive detection of HM ions at a sub-nanomolar concentration but it also facilitated rapid detection (<10 min) with simple procedures. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. A robust color image watermarking algorithm against rotation attacks

    Science.gov (United States)

    Han, Shao-cheng; Yang, Jin-feng; Wang, Rui; Jia, Gui-min

    2018-01-01

    A robust digital watermarking algorithm is proposed based on quaternion wavelet transform (QWT) and discrete cosine transform (DCT) for copyright protection of color images. The luminance component Y of a host color image in YIQ space is decomposed by QWT, and then the coefficients of four low-frequency subbands are transformed by DCT. An original binary watermark scrambled by Arnold map and iterated sine chaotic system is embedded into the mid-frequency DCT coefficients of the subbands. In order to improve the performance of the proposed algorithm against rotation attacks, a rotation detection scheme is implemented before watermark extracting. The experimental results demonstrate that the proposed watermarking scheme shows strong robustness not only against common image processing attacks but also against arbitrary rotation attacks.

  17. Detection of Oestrus and Lameness in Dairy Cows

    DEFF Research Database (Denmark)

    Jónsson, Ragnar Ingi

    population of animals in order to isolate patterns of behaviours outside the norm for individuals, while being robust to common disturbance factors. The research is based on methods from change detection and fault diagnosis. Fault diagnosis techniques are employed to reduce the false alarm ratio......, and attempts are made to isolate events and artefacts in signals that otherwise can give rise to false alarms. For the model based diagnosis the diagnosis is generally done evaluating an estimated probability distribution against hypotheses about causes of change behaviour, e.g. oestrus or lameness. The models....... The development of these methods and algorithms is an interdisciplinary activity including methods from fault diagnosis, information technology and statistics....

  18. Expression-robust 3D face recognition via weighted sparse representation of multi-scale and multi-component local normal patterns

    KAUST Repository

    Li, Huibin

    2014-06-01

    In the theory of differential geometry, surface normal, as a first order surface differential quantity, determines the orientation of a surface at each point and contains informative local surface shape information. To fully exploit this kind of information for 3D face recognition (FR), this paper proposes a novel highly discriminative facial shape descriptor, namely multi-scale and multi-component local normal patterns (MSMC-LNP). Given a normalized facial range image, three components of normal vectors are first estimated, leading to three normal component images. Then, each normal component image is encoded locally to local normal patterns (LNP) on different scales. To utilize spatial information of facial shape, each normal component image is divided into several patches, and their LNP histograms are computed and concatenated according to the facial configuration. Finally, each original facial surface is represented by a set of LNP histograms including both global and local cues. Moreover, to make the proposed solution robust to the variations of facial expressions, we propose to learn the weight of each local patch on a given encoding scale and normal component image. Based on the learned weights and the weighted LNP histograms, we formulate a weighted sparse representation-based classifier (W-SRC). In contrast to the overwhelming majority of 3D FR approaches which were only benchmarked on the FRGC v2.0 database, we carried out extensive experiments on the FRGC v2.0, Bosphorus, BU-3DFE and 3D-TEC databases, thus including 3D face data captured in different scenarios through various sensors and depicting in particular different challenges with respect to facial expressions. The experimental results show that the proposed approach consistently achieves competitive rank-one recognition rates on these databases despite their heterogeneous nature, and thereby demonstrates its effectiveness and its generalizability. © 2014 Elsevier B.V.

  19. Fault Detection and Isolation using Eigenstructure Assignment

    DEFF Research Database (Denmark)

    Jørgensen, R. B.; Patton, R.; Chen, J.

    1994-01-01

    The purpose of this article is to investigate the robustness to model uncertainties of observer based fault detection and isolation. The approach is designed with a straight forward dynamic nad the observer.......The purpose of this article is to investigate the robustness to model uncertainties of observer based fault detection and isolation. The approach is designed with a straight forward dynamic nad the observer....

  20. Far-infrared pedestrian detection for advanced driver assistance systems using scene context

    Science.gov (United States)

    Wang, Guohua; Liu, Qiong; Wu, Qingyao

    2016-04-01

    Pedestrian detection is one of the most critical but challenging components in advanced driver assistance systems. Far-infrared (FIR) images are well-suited for pedestrian detection even in a dark environment. However, most current detection approaches just focus on pedestrian patterns themselves, where robust and real-time detection cannot be well achieved. We propose a fast FIR pedestrian detection approach, called MAP-HOGLBP-T, to explicitly exploit the scene context for the driver assistance system. In MAP-HOGLBP-T, three algorithms are developed to exploit the scene contextual information from roads, vehicles, and background objects of high homogeneity, and we employ the Bayesian approach to build a classifier learner which respects the scene contextual information. We also develop a multiframe approval scheme to enhance the detection performance based on spatiotemporal continuity of pedestrians. Our empirical study on real-world datasets has demonstrated the efficiency and effectiveness of the proposed method. The performance is shown to be better than that of state-of-the-art low-level feature-based approaches.

  1. Line-robust statistics for continuous gravitational waves: safety in the case of unequal detector sensitivities

    International Nuclear Information System (INIS)

    Keitel, David; Prix, Reinhard

    2015-01-01

    The multi-detector F-statistic is close to optimal for detecting continuous gravitational waves (CWs) in Gaussian noise. However, it is susceptible to false alarms from instrumental artefacts, for example quasi-monochromatic disturbances (‘lines’), which resemble a CW signal more than Gaussian noise. In a recent paper (Keitel et al 2014 Phys. Rev. D 89 064023), a Bayesian model selection approach was used to derive line-robust detection statistics for CW signals, generalizing both the F-statistic and the F-statistic consistency veto technique and yielding improved performance in line-affected data. Here we investigate a generalization of the assumptions made in that paper: if a CW analysis uses data from two or more detectors with very different sensitivities, the line-robust statistics could be less effective. We investigate the boundaries within which they are still safe to use, in comparison with the F-statistic. Tests using synthetic draws show that the optimally-tuned version of the original line-robust statistic remains safe in most cases of practical interest. We also explore a simple idea on further improving the detection power and safety of these statistics, which we, however, find to be of limited practical use. (paper)

  2. Use of Robust z in Detecting Unstable Items in Item Response Theory Models

    Science.gov (United States)

    Huynh, Huynh; Meyer, Patrick

    2010-01-01

    The first part of this paper describes the use of the robust z[subscript R] statistic to link test forms using the Rasch (or one-parameter logistic) model. The procedure is then extended to the two-parameter and three-parameter logistic and two-parameter partial credit (2PPC) models. A real set of data was used to illustrate the extension. The…

  3. Robust linearized image reconstruction for multifrequency EIT of the breast.

    Science.gov (United States)

    Boverman, Gregory; Kao, Tzu-Jen; Kulkarni, Rujuta; Kim, Bong Seok; Isaacson, David; Saulnier, Gary J; Newell, Jonathan C

    2008-10-01

    Electrical impedance tomography (EIT) is a developing imaging modality that is beginning to show promise for detecting and characterizing tumors in the breast. At Rensselaer Polytechnic Institute, we have developed a combined EIT-tomosynthesis system that allows for the coregistered and simultaneous analysis of the breast using EIT and X-ray imaging. A significant challenge in EIT is the design of computationally efficient image reconstruction algorithms which are robust to various forms of model mismatch. Specifically, we have implemented a scaling procedure that is robust to the presence of a thin highly-resistive layer of skin at the boundary of the breast and we have developed an algorithm to detect and exclude from the image reconstruction electrodes that are in poor contact with the breast. In our initial clinical studies, it has been difficult to ensure that all electrodes make adequate contact with the breast, and thus procedures for the use of data sets containing poorly contacting electrodes are particularly important. We also present a novel, efficient method to compute the Jacobian matrix for our linearized image reconstruction algorithm by reducing the computation of the sensitivity for each voxel to a quadratic form. Initial clinical results are presented, showing the potential of our algorithms to detect and localize breast tumors.

  4. Robustness of structures

    DEFF Research Database (Denmark)

    Vrouwenvelder, T.; Sørensen, John Dalsgaard

    2009-01-01

    After the collapse of the World Trade Centre towers in 2001 and a number of collapses of structural systems in the beginning of the century, robustness of structural systems has gained renewed interest. Despite many significant theoretical, methodical and technological advances, structural...... of robustness for structural design such requirements are not substantiated in more detail, nor have the engineering profession been able to agree on an interpretation of robustness which facilitates for its uantification. A European COST action TU 601 on ‘Robustness of structures' has started in 2007...... by a group of members of the CSS. This paper describes the ongoing work in this action, with emphasis on the development of a theoretical and risk based quantification and optimization procedure on the one side and a practical pre-normative guideline on the other....

  5. Mouse V1 population correlates of visual detection rely on heterogeneity within neuronal response patterns

    Science.gov (United States)

    Montijn, Jorrit S; Goltstein, Pieter M; Pennartz, Cyriel MA

    2015-01-01

    Previous studies have demonstrated the importance of the primary sensory cortex for the detection, discrimination, and awareness of visual stimuli, but it is unknown how neuronal populations in this area process detected and undetected stimuli differently. Critical differences may reside in the mean strength of responses to visual stimuli, as reflected in bulk signals detectable in functional magnetic resonance imaging, electro-encephalogram, or magnetoencephalography studies, or may be more subtly composed of differentiated activity of individual sensory neurons. Quantifying single-cell Ca2+ responses to visual stimuli recorded with in vivo two-photon imaging, we found that visual detection correlates more strongly with population response heterogeneity rather than overall response strength. Moreover, neuronal populations showed consistencies in activation patterns across temporally spaced trials in association with hit responses, but not during nondetections. Contrary to models relying on temporally stable networks or bulk signaling, these results suggest that detection depends on transient differentiation in neuronal activity within cortical populations. DOI: http://dx.doi.org/10.7554/eLife.10163.001 PMID:26646184

  6. A robust image watermarking in contourlet transform domain

    Science.gov (United States)

    Sharma, Rajat; Gupta, Abhishek Kumar; Singh, Deepak; Verma, Vivek Singh; Bhardwaj, Anuj

    2017-10-01

    A lot of work has been done in the field of image watermarking to overcome the problems of rightful ownership, copyright protection etc. In order to provide a robust solution of such issues, the authors propose a hybrid approach that involves contourlet, lifting wavelet, and discrete cosine transform. The first level coefficients of the original image which are obtained using contourlet transform are further decomposed using one level lifting wavelet transform. After that, these coefficients are modified using discrete cosine transform. Whereas, second level subband of contourlet transform coefficients are used to obtain block wise modification parameter based on edge detection and entropy calculations. Watermark bits are embedded by quantizing the discrete cosine transform coefficient blocks obtained using HL sub-band of first level lifting wavelet transform coefficients. The experimental results reveal that the proposed scheme has high robustness and imperceptibility.

  7. Unstable patterns and robust synchronization in a model of motor pathway in birdsong

    International Nuclear Information System (INIS)

    Moukam Kakmeni, F.M.; Bowong, S.; Nana, L.; Kofane, T.C.

    2006-10-01

    This paper investigates the fundamental dynamical mechanism responsible for transition to chaos in periodically modulated Duffing-Van der Pol oscillator. It is shown that a modulationally unstable pattern appears into an initially stable motionless state. A further spatiotemporal transition occurs with a sharp interface from the selected stable pattern to a stabilized pattern or chaotic state. Also, the synchronization of the chaotic state of the model is investigated. The results are discussed in the context of generalized synchronization. The main idea is to construct an augmented dynamical system from the synchronization error system, which is itself uncertain. The advantage of this method over existing results is that the synchronization time is explicitly computed. Numerical simulations are provided to verify the operation of the proposed algorithm. (author)

  8. Radiometric Normalization of Temporal Images Combining Automatic Detection of Pseudo-Invariant Features from the Distance and Similarity Spectral Measures, Density Scatterplot Analysis, and Robust Regression

    Directory of Open Access Journals (Sweden)

    Ana Paula Ferreira de Carvalho

    2013-05-01

    Full Text Available Radiometric precision is difficult to maintain in orbital images due to several factors (atmospheric conditions, Earth-sun distance, detector calibration, illumination, and viewing angles. These unwanted effects must be removed for radiometric consistency among temporal images, leaving only land-leaving radiances, for optimum change detection. A variety of relative radiometric correction techniques were developed for the correction or rectification of images, of the same area, through use of reference targets whose reflectance do not change significantly with time, i.e., pseudo-invariant features (PIFs. This paper proposes a new technique for radiometric normalization, which uses three sequential methods for an accurate PIFs selection: spectral measures of temporal data (spectral distance and similarity, density scatter plot analysis (ridge method, and robust regression. The spectral measures used are the spectral angle (Spectral Angle Mapper, SAM, spectral correlation (Spectral Correlation Mapper, SCM, and Euclidean distance. The spectral measures between the spectra at times t1 and t2 and are calculated for each pixel. After classification using threshold values, it is possible to define points with the same spectral behavior, including PIFs. The distance and similarity measures are complementary and can be calculated together. The ridge method uses a density plot generated from images acquired on different dates for the selection of PIFs. In a density plot, the invariant pixels, together, form a high-density ridge, while variant pixels (clouds and land cover changes are spread, having low density, facilitating its exclusion. Finally, the selected PIFs are subjected to a robust regression (M-estimate between pairs of temporal bands for the detection and elimination of outliers, and to obtain the optimal linear equation for a given set of target points. The robust regression is insensitive to outliers, i.e., observation that appears to deviate

  9. Considerations for pattern placement error correction toward 5nm node

    Science.gov (United States)

    Yaegashi, Hidetami; Oyama, Kenichi; Hara, Arisa; Natori, Sakurako; Yamauchi, Shohei; Yamato, Masatoshi; Koike, Kyohei; Maslow, Mark John; Timoshkov, Vadim; Kiers, Ton; Di Lorenzo, Paolo; Fonseca, Carlos

    2017-03-01

    Multi-patterning has been adopted widely in high volume manufacturing as 193 immersion extension, and it becomes realistic solution of nano-order scaling. In fact, it must be key technology on single directional (1D) layout design [1] for logic devise and it becomes a major option for further scaling technique in SAQP. The requirement for patterning fidelity control is getting savior more and more, stochastic fluctuation as well as LER (Line edge roughness) has to be micro-scopic observation aria. In our previous work, such atomic order controllability was viable in complemented technique with etching and deposition [2]. Overlay issue form major potion in yield management, therefore, entire solution is needed keenly including alignment accuracy on scanner and detectability on overlay measurement instruments. As EPE (Edge placement error) was defined as the gap between design pattern and contouring of actual pattern edge, pattern registration in single process level must be considerable. The complementary patterning to fabricate 1D layout actually mitigates any process restrictions, however, multiple process step, symbolized as LELE with 193-i, is burden to yield management and affordability. Recent progress of EUV technology is remarkable, and it is major potential solution for such complicated technical issues. EUV has robust resolution limit and it must be definitely strong scaling driver for process simplification. On the other hand, its stochastic variation such like shot noise due to light source power must be resolved with any additional complemented technique. In this work, we examined the nano-order CD and profile control on EUV resist pattern and would introduce excellent accomplishments.

  10. Robustness of Structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2008-01-01

    This paper describes the background of the robustness requirements implemented in the Danish Code of Practice for Safety of Structures and in the Danish National Annex to the Eurocode 0, see (DS-INF 146, 2003), (DS 409, 2006), (EN 1990 DK NA, 2007) and (Sørensen and Christensen, 2006). More...... frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure combined with increased requirements to efficiency in design and execution followed by increased risk of human errors has made the need of requirements to robustness of new structures essential....... According to Danish design rules robustness shall be documented for all structures in high consequence class. The design procedure to document sufficient robustness consists of: 1) Review of loads and possible failure modes / scenarios and determination of acceptable collapse extent; 2) Review...

  11. Detecting bladder fullness through the ensemble activity patterns of the spinal cord unit population in a somatovisceral convergence environment

    Science.gov (United States)

    Park, Jae Hong; Kim, Chang-Eop; Shin, Jaewoo; Im, Changkyun; Koh, Chin Su; Seo, In Seok; Kim, Sang Jeong; Shin, Hyung-Cheul

    2013-10-01

    Objective. Chronic monitoring of the state of the bladder can be used to notify patients with urinary dysfunction when the bladder should be voided. Given that many spinal neurons respond both to somatic and visceral inputs, it is necessary to extract bladder information selectively from the spinal cord. Here, we hypothesize that sensory information with distinct modalities should be represented by the distinct ensemble activity patterns within the neuronal population and, therefore, analyzing the activity patterns of the neuronal population could distinguish bladder fullness from somatic stimuli. Approach. We simultaneously recorded 26-27 single unit activities in response to bladder distension or tactile stimuli in the dorsal spinal cord of each Sprague-Dawley rat. In order to discriminate between bladder fullness and tactile stimulus inputs, we analyzed the ensemble activity patterns of the entire neuronal population. A support vector machine (SVM) was employed as a classifier, and discrimination performance was measured by k-fold cross-validation tests. Main results. Most of the units responding to bladder fullness also responded to the tactile stimuli (88.9-100%). The SVM classifier precisely distinguished the bladder fullness from the somatic input (100%), indicating that the ensemble activity patterns of the unit population in the spinal cord are distinct enough to identify the current input modality. Moreover, our ensemble activity pattern-based classifier showed high robustness against random losses of signals. Significance. This study is the first to demonstrate that the two main issues of electroneurographic monitoring of bladder fullness, low signals and selectiveness, can be solved by an ensemble activity pattern-based approach, improving the feasibility of chronic monitoring of bladder fullness by neural recording.

  12. Dynamics robustness of cascading systems.

    Directory of Open Access Journals (Sweden)

    Jonathan T Young

    2017-03-01

    Full Text Available A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade's kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1 Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2 Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it

  13. A robust method for processing scanning probe microscopy images and determining nanoobject position and dimensions

    NARCIS (Netherlands)

    Silly, F.

    2009-01-01

    P>Processing of scanning probe microscopy (SPM) images is essential to explore nanoscale phenomena. Image processing and pattern recognition techniques are developed to improve the accuracy and consistency of nanoobject and surface characterization. We present a robust and versatile method to

  14. Robustness Property of Robust-BD Wald-Type Test for Varying-Dimensional General Linear Models

    Directory of Open Access Journals (Sweden)

    Xiao Guo

    2018-03-01

    Full Text Available An important issue for robust inference is to examine the stability of the asymptotic level and power of the test statistic in the presence of contaminated data. Most existing results are derived in finite-dimensional settings with some particular choices of loss functions. This paper re-examines this issue by allowing for a diverging number of parameters combined with a broader array of robust error measures, called “robust- BD ”, for the class of “general linear models”. Under regularity conditions, we derive the influence function of the robust- BD parameter estimator and demonstrate that the robust- BD Wald-type test enjoys the robustness of validity and efficiency asymptotically. Specifically, the asymptotic level of the test is stable under a small amount of contamination of the null hypothesis, whereas the asymptotic power is large enough under a contaminated distribution in a neighborhood of the contiguous alternatives, thus lending supports to the utility of the proposed robust- BD Wald-type test.

  15. Web-based GIS for spatial pattern detection: application to malaria incidence in Vietnam.

    Science.gov (United States)

    Bui, Thanh Quang; Pham, Hai Minh

    2016-01-01

    There is a great concern on how to build up an interoperable health information system of public health and health information technology within the development of public information and health surveillance programme. Technically, some major issues remain regarding to health data visualization, spatial processing of health data, health information dissemination, data sharing and the access of local communities to health information. In combination with GIS, we propose a technical framework for web-based health data visualization and spatial analysis. Data was collected from open map-servers and geocoded by open data kit package and data geocoding tools. The Web-based system is designed based on Open-source frameworks and libraries. The system provides Web-based analyst tool for pattern detection through three spatial tests: Nearest neighbour, K function, and Spatial Autocorrelation. The result is a web-based GIS, through which end users can detect disease patterns via selecting area, spatial test parameters and contribute to managers and decision makers. The end users can be health practitioners, educators, local communities, health sector authorities and decision makers. This web-based system allows for the improvement of health related services to public sector users as well as citizens in a secure manner. The combination of spatial statistics and web-based GIS can be a solution that helps empower health practitioners in direct and specific intersectional actions, thus provide for better analysis, control and decision-making.

  16. "Contrasting patterns of selection at Pinus pinaster Ait. Drought stress candidate genes as revealed by genetic differentiation analyses".

    Science.gov (United States)

    Eveno, Emmanuelle; Collada, Carmen; Guevara, M Angeles; Léger, Valérie; Soto, Alvaro; Díaz, Luis; Léger, Patrick; González-Martínez, Santiago C; Cervera, M Teresa; Plomion, Christophe; Garnier-Géré, Pauline H

    2008-02-01

    The importance of natural selection for shaping adaptive trait differentiation among natural populations of allogamous tree species has long been recognized. Determining the molecular basis of local adaptation remains largely unresolved, and the respective roles of selection and demography in shaping population structure are actively debated. Using a multilocus scan that aims to detect outliers from simulated neutral expectations, we analyzed patterns of nucleotide diversity and genetic differentiation at 11 polymorphic candidate genes for drought stress tolerance in phenotypically contrasted Pinus pinaster Ait. populations across its geographical range. We compared 3 coalescent-based methods: 2 frequentist-like, including 1 approach specifically developed for biallelic single nucleotide polymorphisms (SNPs) here and 1 Bayesian. Five genes showed outlier patterns that were robust across methods at the haplotype level for 2 of them. Two genes presented higher F(ST) values than expected (PR-AGP4 and erd3), suggesting that they could have been affected by the action of diversifying selection among populations. In contrast, 3 genes presented lower F(ST) values than expected (dhn-1, dhn2, and lp3-1), which could represent signatures of homogenizing selection among populations. A smaller proportion of outliers were detected at the SNP level suggesting the potential functional significance of particular combinations of sites in drought-response candidate genes. The Bayesian method appeared robust to low sample sizes, flexible to assumptions regarding migration rates, and powerful for detecting selection at the haplotype level, but the frequentist-like method adapted to SNPs was more efficient for the identification of outlier SNPs showing low differentiation. Population-specific effects estimated in the Bayesian method also revealed populations with lower immigration rates, which could have led to favorable situations for local adaptation. Outlier patterns are discussed

  17. Robust Automated Image Co-Registration of Optical Multi-Sensor Time Series Data: Database Generation for Multi-Temporal Landslide Detection

    Directory of Open Access Journals (Sweden)

    Robert Behling

    2014-03-01

    Full Text Available Reliable multi-temporal landslide detection over longer periods of time requires multi-sensor time series data characterized by high internal geometric stability, as well as high relative and absolute accuracy. For this purpose, a new methodology for fully automated co-registration has been developed allowing efficient and robust spatial alignment of standard orthorectified data products originating from a multitude of optical satellite remote sensing data of varying spatial resolution. Correlation-based co-registration uses world-wide available terrain corrected Landsat Level 1T time series data as the spatial reference, ensuring global applicability. The developed approach has been applied to a multi-sensor time series of 592 remote sensing datasets covering an approximately 12,000 km2 area in Southern Kyrgyzstan (Central Asia strongly affected by landslides. The database contains images acquired during the last 26 years by Landsat (ETM, ASTER, SPOT and RapidEye sensors. Analysis of the spatial shifts obtained from co-registration has revealed sensor-specific alignments ranging between 5 m and more than 400 m. Overall accuracy assessment of these alignments has resulted in a high relative image-to-image accuracy of 17 m (RMSE and a high absolute accuracy of 23 m (RMSE for the whole co-registered database, making it suitable for multi-temporal landslide detection at a regional scale in Southern Kyrgyzstan.

  18. Set-membership fault detection under noisy environment with application to the detection of abnormal aircraft control surface positions

    Science.gov (United States)

    El Houda Thabet, Rihab; Combastel, Christophe; Raïssi, Tarek; Zolghadri, Ali

    2015-09-01

    The paper develops a set membership detection methodology which is applied to the detection of abnormal positions of aircraft control surfaces. Robust and early detection of such abnormal positions is an important issue for early system reconfiguration and overall optimisation of aircraft design. In order to improve fault sensitivity while ensuring a high level of robustness, the method combines a data-driven characterisation of noise and a model-driven approach based on interval prediction. The efficiency of the proposed methodology is illustrated through simulation results obtained based on data recorded in several flight scenarios of a highly representative aircraft benchmark.

  19. Robustness Beamforming Algorithms

    Directory of Open Access Journals (Sweden)

    Sajad Dehghani

    2014-04-01

    Full Text Available Adaptive beamforming methods are known to degrade in the presence of steering vector and covariance matrix uncertinity. In this paper, a new approach is presented to robust adaptive minimum variance distortionless response beamforming make robust against both uncertainties in steering vector and covariance matrix. This method minimize a optimization problem that contains a quadratic objective function and a quadratic constraint. The optimization problem is nonconvex but is converted to a convex optimization problem in this paper. It is solved by the interior-point method and optimum weight vector to robust beamforming is achieved.

  20. Detecting outliers and/or leverage points: a robust two-stage procedure with bootstrap cut-off points

    Directory of Open Access Journals (Sweden)

    Ettore Marubini

    2014-01-01

    Full Text Available This paper presents a robust two-stage procedure for identification of outlying observations in regression analysis. The exploratory stage identifies leverage points and vertical outliers through a robust distance estimator based on Minimum Covariance Determinant (MCD. After deletion of these points, the confirmatory stage carries out an Ordinary Least Squares (OLS analysis on the remaining subset of data and investigates the effect of adding back in the previously deleted observations. Cut-off points pertinent to different diagnostics are generated by bootstrapping and the cases are definitely labelled as good-leverage, bad-leverage, vertical outliers and typical cases. The procedure is applied to four examples.

  1. Infrared interference patterns for new capabilities in laser end point detection

    International Nuclear Information System (INIS)

    Heason, D J; Spencer, A G

    2003-01-01

    Standard laser interferometry is used in dry etch fabrication of semiconductor and MEMS devices to measure etch depth, rate and to detect the process end point. However, many wafer materials, such as silicon are absorbing at probing wavelengths in the visible, severely limiting the amount of information that can be obtained using this technique. At infrared (IR) wavelengths around 1500 nm and above, silicon is highly transparent. In this paper we describe an instrument that can be used to monitor etch depth throughout a thru-wafer etch. The provision of this information could eliminate the requirement of an 'etch stop' layer and improve the performance of fabricated devices. We have added a further new capability by using tuneable lasers to scan through wavelengths in the near IR to generate an interference pattern. Fitting a theoretical curve to this interference pattern gives in situ measurement of film thickness. Whereas conventional interferometry would only allow etch depth to be monitored in real time, we can use a pre-etch thickness measurement to terminate the etch on a remaining thickness of film material. This paper discusses the capabilities of, and the opportunities offered by, this new technique and gives examples of applications in MEMS and waveguides

  2. Development of infant mismatch responses to auditory pattern changes between 2 and 4 months old.

    Science.gov (United States)

    He, Chao; Hotson, Lisa; Trainor, Laurel J

    2009-02-01

    In order to process speech and music, the auditory cortex must learn to process patterns of sounds. Our previous studies showed that with a stream consisting of a repeating (standard) sound, younger infants show an increase in the amplitude of a positive slow wave in response to occasional changes (deviants) in pitch or duration, whereas older infants show a faster negative response that resembles mismatch negativity (MMN) in adults (Trainor et al., 2001, 2003; He et al., 2007). MMN reflects an automatic change-detection process that does not require attention, conscious awareness or behavioural response for its elicitation (Picton et al., 2000; Näätänen et al., 2007). It is an important tool for understanding auditory perception because MMN reflects a change-detection mechanism, and not simply that repetition of a stimulus results in a refractory state of sensory neural circuits while occasional changes to a new sound activate new non-refractory neural circuits (Näätänen et al., 2005). For example, MMN is elicited by a change in the pattern of a repeating note sequence, even when no new notes are introduced that could activate new sensory circuits (Alain et al., 1994, 1999;Schröger et al., 1996). In the present study, we show that in response to a change in the pattern of two repeating tones, MMN in 4-month-olds remains robust whereas the 2-month-old response does not. This indicates that the MMN response to a change in pattern at 4 months reflects the activation of a change-detection mechanism similarly as in adults.

  3. An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors.

    Science.gov (United States)

    Luo, Liyan; Xu, Luping; Zhang, Hua

    2015-07-07

    In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms.

  4. Wide area surveillance real-time motion detection systems

    CERN Document Server

    2014-01-01

    The book describes a system for visual surveillance using intelligent cameras. The camera uses robust techniques for detecting and tracking moving objects. The real time capture of the objects is then stored int he database. The tracking data stored in the database is analysed to study the camera view, detect and track objects, and study object behavior. These set of models provide a robust framework for coordinating the tracking of objects between overlapping and non-overlapping cameras, and recording the activity of objects detected by the system.

  5. Robustness Analyses of Timber Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Hald, Frederik

    2013-01-01

    The robustness of structural systems has obtained a renewed interest arising from a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure. In order to minimise the likelihood of such disproportionate structural failures, many mo...... with respect to robustness of timber structures and will discuss the consequences of such robustness issues related to the future development of timber structures.......The robustness of structural systems has obtained a renewed interest arising from a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure. In order to minimise the likelihood of such disproportionate structural failures, many...... modern building codes consider the need for the robustness of structures and provide strategies and methods to obtain robustness. Therefore, a structural engineer may take necessary steps to design robust structures that are insensitive to accidental circumstances. The present paper summaries issues...

  6. Robust Vehicle Detection in Aerial Images Based on Cascaded Convolutional Neural Networks.

    Science.gov (United States)

    Zhong, Jiandan; Lei, Tao; Yao, Guangle

    2017-11-24

    Vehicle detection in aerial images is an important and challenging task. Traditionally, many target detection models based on sliding-window fashion were developed and achieved acceptable performance, but these models are time-consuming in the detection phase. Recently, with the great success of convolutional neural networks (CNNs) in computer vision, many state-of-the-art detectors have been designed based on deep CNNs. However, these CNN-based detectors are inefficient when applied in aerial image data due to the fact that the existing CNN-based models struggle with small-size object detection and precise localization. To improve the detection accuracy without decreasing speed, we propose a CNN-based detection model combining two independent convolutional neural networks, where the first network is applied to generate a set of vehicle-like regions from multi-feature maps of different hierarchies and scales. Because the multi-feature maps combine the advantage of the deep and shallow convolutional layer, the first network performs well on locating the small targets in aerial image data. Then, the generated candidate regions are fed into the second network for feature extraction and decision making. Comprehensive experiments are conducted on the Vehicle Detection in Aerial Imagery (VEDAI) dataset and Munich vehicle dataset. The proposed cascaded detection model yields high performance, not only in detection accuracy but also in detection speed.

  7. A preferential design approach for energy-efficient and robust implantable neural signal processing hardware.

    Science.gov (United States)

    Narasimhan, Seetharam; Chiel, Hillel J; Bhunia, Swarup

    2009-01-01

    For implantable neural interface applications, it is important to compress data and analyze spike patterns across multiple channels in real time. Such a computational task for online neural data processing requires an innovative circuit-architecture level design approach for low-power, robust and area-efficient hardware implementation. Conventional microprocessor or Digital Signal Processing (DSP) chips would dissipate too much power and are too large in size for an implantable system. In this paper, we propose a novel hardware design approach, referred to as "Preferential Design" that exploits the nature of the neural signal processing algorithm to achieve a low-voltage, robust and area-efficient implementation using nanoscale process technology. The basic idea is to isolate the critical components with respect to system performance and design them more conservatively compared to the noncritical ones. This allows aggressive voltage scaling for low power operation while ensuring robustness and area efficiency. We have applied the proposed approach to a neural signal processing algorithm using the Discrete Wavelet Transform (DWT) and observed significant improvement in power and robustness over conventional design.

  8. Environmental Noise, Genetic Diversity and the Evolution of Evolvability and Robustness in Model Gene Networks

    Science.gov (United States)

    Steiner, Christopher F.

    2012-01-01

    The ability of organisms to adapt and persist in the face of environmental change is accepted as a fundamental feature of natural systems. More contentious is whether the capacity of organisms to adapt (or “evolvability”) can itself evolve and the mechanisms underlying such responses. Using model gene networks, I provide evidence that evolvability emerges more readily when populations experience positively autocorrelated environmental noise (red noise) compared to populations in stable or randomly varying (white noise) environments. Evolvability was correlated with increasing genetic robustness to effects on network viability and decreasing robustness to effects on phenotypic expression; populations whose networks displayed greater viability robustness and lower phenotypic robustness produced more additive genetic variation and adapted more rapidly in novel environments. Patterns of selection for robustness varied antagonistically with epistatic effects of mutations on viability and phenotypic expression, suggesting that trade-offs between these properties may constrain their evolutionary responses. Evolution of evolvability and robustness was stronger in sexual populations compared to asexual populations indicating that enhanced genetic variation under fluctuating selection combined with recombination load is a primary driver of the emergence of evolvability. These results provide insight into the mechanisms potentially underlying rapid adaptation as well as the environmental conditions that drive the evolution of genetic interactions. PMID:23284934

  9. Fault diagnosis of locomotive electro-pneumatic brake through uncertain bond graph modeling and robust online monitoring

    Science.gov (United States)

    Niu, Gang; Zhao, Yajun; Defoort, Michael; Pecht, Michael

    2015-01-01

    To improve reliability, safety and efficiency, advanced methods of fault detection and diagnosis become increasingly important for many technical fields, especially for safety related complex systems like aircraft, trains, automobiles, power plants and chemical plants. This paper presents a robust fault detection and diagnostic scheme for a multi-energy domain system that integrates a model-based strategy for system fault modeling and a data-driven approach for online anomaly monitoring. The developed scheme uses LFT (linear fractional transformations)-based bond graph for physical parameter uncertainty modeling and fault simulation, and employs AAKR (auto-associative kernel regression)-based empirical estimation followed by SPRT (sequential probability ratio test)-based threshold monitoring to improve the accuracy of fault detection. Moreover, pre- and post-denoising processes are applied to eliminate the cumulative influence of parameter uncertainty and measurement uncertainty. The scheme is demonstrated on the main unit of a locomotive electro-pneumatic brake in a simulated experiment. The results show robust fault detection and diagnostic performance.

  10. Multivariate data-driven modelling and pattern recognition for damage detection and identification for acoustic emission and acousto-ultrasonics

    DEFF Research Database (Denmark)

    Torres-Arredondo, M.A.; Tibaduiza, D.-A.; McGugan, Malcolm

    2013-01-01

    and pattern recognition are evaluated and integrated into the different proposed methodologies. As a contribution to solve the problem, this paper presents results in damage detection and classification using a methodology based on hierarchical nonlinear principal component analysis, square prediction...

  11. Robustness and accuracy in sea urchin developmental gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Smadar eBen-Tabou De-Leon

    2016-02-01

    Full Text Available Developmental gene regulatory networks robustly control the timely activation of regulatory and differentiation genes. The structure of these networks underlies their capacity to buffer intrinsic and extrinsic noise and maintain embryonic morphology. Here I illustrate how the use of specific architectures by the sea urchin developmental regulatory networks enables the robust control of cell fate decisions. The Wnt-βcatenin signaling pathway patterns the primary embryonic axis while the BMP signaling pathway patterns the secondary embryonic axis in the sea urchin embryo and across bilateria. Interestingly, in the sea urchin in both cases, the signaling pathway that defines the axis controls directly the expression of a set of downstream regulatory genes. I propose that this direct activation of a set of regulatory genes enables a uniform regulatory response and a clear cut cell fate decision in the endoderm and in the dorsal ectoderm. The specification of the mesodermal pigment cell lineage is activated by Delta signaling that initiates a triple positive feedback loop that locks down the pigment specification state. I propose that the use of compound positive feedback circuitry provides the endodermal cells enough time to turn off mesodermal genes and ensures correct mesoderm vs. endoderm fate decision. Thus, I argue that understanding the control properties of repeatedly used regulatory architectures illuminates their role in embryogenesis and provides possible explanations to their resistance to evolutionary change.

  12. A Robust Image Watermarking in the Joint Time-Frequency Domain

    Directory of Open Access Journals (Sweden)

    Yalçın Çekiç

    2010-01-01

    Full Text Available With the rapid development of computers and internet applications, copyright protection of multimedia data has become an important problem. Watermarking techniques are proposed as a solution to copyright protection of digital media files. In this paper, a new, robust, and high-capacity watermarking method that is based on spatiofrequency (SF representation is presented. We use the discrete evolutionary transform (DET calculated by the Gabor expansion to represent an image in the joint SF domain. The watermark is embedded onto selected coefficients in the joint SF domain. Hence, by combining the advantages of spatial and spectral domain watermarking methods, a robust, invisible, secure, and high-capacity watermarking method is presented. A correlation-based detector is also proposed to detect and extract any possible watermarks on an image. The proposed watermarking method was tested on some commonly used test images under different signal processing attacks like additive noise, Wiener and Median filtering, JPEG compression, rotation, and cropping. Simulation results show that our method is robust against all of the attacks.

  13. Robust and sparse correlation matrix estimation for the analysis of high-dimensional genomics data.

    Science.gov (United States)

    Serra, Angela; Coretto, Pietro; Fratello, Michele; Tagliaferri, Roberto; Stegle, Oliver

    2018-02-15

    Microarray technology can be used to study the expression of thousands of genes across a number of different experimental conditions, usually hundreds. The underlying principle is that genes sharing similar expression patterns, across different samples, can be part of the same co-expression system, or they may share the same biological functions. Groups of genes are usually identified based on cluster analysis. Clustering methods rely on the similarity matrix between genes. A common choice to measure similarity is to compute the sample correlation matrix. Dimensionality reduction is another popular data analysis task which is also based on covariance/correlation matrix estimates. Unfortunately, covariance/correlation matrix estimation suffers from the intrinsic noise present in high-dimensional data. Sources of noise are: sampling variations, presents of outlying sample units, and the fact that in most cases the number of units is much larger than the number of genes. In this paper, we propose a robust correlation matrix estimator that is regularized based on adaptive thresholding. The resulting method jointly tames the effects of the high-dimensionality, and data contamination. Computations are easy to implement and do not require hand tunings. Both simulated and real data are analyzed. A Monte Carlo experiment shows that the proposed method is capable of remarkable performances. Our correlation metric is more robust to outliers compared with the existing alternatives in two gene expression datasets. It is also shown how the regularization allows to automatically detect and filter spurious correlations. The same regularization is also extended to other less robust correlation measures. Finally, we apply the ARACNE algorithm on the SyNTreN gene expression data. Sensitivity and specificity of the reconstructed network is compared with the gold standard. We show that ARACNE performs better when it takes the proposed correlation matrix estimator as input. The R

  14. V3 spinal neurons establish a robust and balanced locomotor rhythm during walking.

    Science.gov (United States)

    Zhang, Ying; Narayan, Sujatha; Geiman, Eric; Lanuza, Guillermo M; Velasquez, Tomoko; Shanks, Bayle; Akay, Turgay; Dyck, Jason; Pearson, Keir; Gosgnach, Simon; Fan, Chen-Ming; Goulding, Martyn

    2008-10-09

    A robust and well-organized rhythm is a key feature of many neuronal networks, including those that regulate essential behaviors such as circadian rhythmogenesis, breathing, and locomotion. Here we show that excitatory V3-derived neurons are necessary for a robust and organized locomotor rhythm during walking. When V3-mediated neurotransmission is selectively blocked by the expression of the tetanus toxin light chain subunit (TeNT), the regularity and robustness of the locomotor rhythm is severely perturbed. A similar degeneration in the locomotor rhythm occurs when the excitability of V3-derived neurons is reduced acutely by ligand-induced activation of the allatostatin receptor. The V3-derived neurons additionally function to balance the locomotor output between both halves of the spinal cord, thereby ensuring a symmetrical pattern of locomotor activity during walking. We propose that the V3 neurons establish a regular and balanced motor rhythm by distributing excitatory drive between both halves of the spinal cord.

  15. Robust Image Hashing Using Radon Transform and Invariant Features

    Directory of Open Access Journals (Sweden)

    Y.L. Liu

    2016-09-01

    Full Text Available A robust image hashing method based on radon transform and invariant features is proposed for image authentication, image retrieval, and image detection. Specifically, an input image is firstly converted into a counterpart with a normalized size. Then the invariant centroid algorithm is applied to obtain the invariant feature point and the surrounding circular area, and the radon transform is employed to acquire the mapping coefficient matrix of the area. Finally, the hashing sequence is generated by combining the feature vectors and the invariant moments calculated from the coefficient matrix. Experimental results show that this method not only can resist against the normal image processing operations, but also some geometric distortions. Comparisons of receiver operating characteristic (ROC curve indicate that the proposed method outperforms some existing methods in classification between perceptual robustness and discrimination.

  16. Dietary patterns and colorectal adenomas in Lynch syndrome: the GEOLynch cohort study.

    Science.gov (United States)

    Botma, Akke; Vasen, Hans F A; van Duijnhoven, Fränzel J B; Kleibeuker, Jan H; Nagengast, Fokko M; Kampman, Ellen

    2013-02-01

    Patients with Lynch syndrome (LS) have a high risk of developing colorectal cancer due to mutations in mismatch repair genes. Because dietary factors, alone and in combination, influence sporadic colorectal carcinogenesis, the association of dietary patterns with colorectal adenomas in LS patients was assessed. In the GEOLynch cohort of 486 persons with LS, dietary information was collected, using a food frequency questionnaire. Dietary pattern scores were obtained by principal components analysis. Hazard ratios (HR) between dietary patterns and colorectal adenomas were calculated using Cox regression models. Robust sandwich variance estimates were used to control for dependency within families. Final models were adjusted for age, sex, smoking habits, colorectal adenoma history, and extent of colon resection. During a median follow-up of 20 months, colorectal adenomas were detected in 58 persons. Four dietary patterns were identified: a "Prudent," "Meat," "Snack," and "Cosmopolitan" pattern. Individuals within the highest tertile of the "Prudent" pattern had a HR of 0.73 (95% confidence interval [CI], 0.32-1.66) for colorectal adenomas, compared with the lowest tertile. Those with high "Meat" pattern scores had a HR of 1.70 (95% CI, 0.83-3.52). A high "Snack" pattern was associated with an increased risk of colorectal adenomas (HR, 2.16; 95% CI, 1.03-4.49). A HR of 1.25 (95% CI, 0.61-2.55) was observed for persons in the highest tertile of the "Cosmopolitan" pattern. These findings suggest that dietary patterns may be associated with development of colorectal adenoma in patients with Lynch syndrome. The directions of these findings are corroborative with those observed in studies investigating sporadic colorectal cancer. Copyright © 2012 American Cancer Society.

  17. Robust Concurrent Remote Entanglement Between Two Superconducting Qubits

    Directory of Open Access Journals (Sweden)

    A. Narla

    2016-09-01

    Full Text Available Entangling two remote quantum systems that never interact directly is an essential primitive in quantum information science and forms the basis for the modular architecture of quantum computing. When protocols to generate these remote entangled pairs rely on using traveling single-photon states as carriers of quantum information, they can be made robust to photon losses, unlike schemes that rely on continuous variable states. However, efficiently detecting single photons is challenging in the domain of superconducting quantum circuits because of the low energy of microwave quanta. Here, we report the realization of a robust form of concurrent remote entanglement based on a novel microwave photon detector implemented in the superconducting circuit quantum electrodynamics platform of quantum information. Remote entangled pairs with a fidelity of 0.57±0.01 are generated at 200 Hz. Our experiment opens the way for the implementation of the modular architecture of quantum computation with superconducting qubits.

  18. Vision-based vehicle detection and tracking algorithm design

    Science.gov (United States)

    Hwang, Junyeon; Huh, Kunsoo; Lee, Donghwi

    2009-12-01

    The vision-based vehicle detection in front of an ego-vehicle is regarded as promising for driver assistance as well as for autonomous vehicle guidance. The feasibility of vehicle detection in a passenger car requires accurate and robust sensing performance. A multivehicle detection system based on stereo vision has been developed for better accuracy and robustness. This system utilizes morphological filter, feature detector, template matching, and epipolar constraint techniques in order to detect the corresponding pairs of vehicles. After the initial detection, the system executes the tracking algorithm for the vehicles. The proposed system can detect front vehicles such as the leading vehicle and side-lane vehicles. The position parameters of the vehicles located in front are obtained based on the detection information. The proposed vehicle detection system is implemented on a passenger car, and its performance is verified experimentally.

  19. International Conference on Robust Statistics

    CERN Document Server

    Filzmoser, Peter; Gather, Ursula; Rousseeuw, Peter

    2003-01-01

    Aspects of Robust Statistics are important in many areas. Based on the International Conference on Robust Statistics 2001 (ICORS 2001) in Vorau, Austria, this volume discusses future directions of the discipline, bringing together leading scientists, experienced researchers and practitioners, as well as younger researchers. The papers cover a multitude of different aspects of Robust Statistics. For instance, the fundamental problem of data summary (weights of evidence) is considered and its robustness properties are studied. Further theoretical subjects include e.g.: robust methods for skewness, time series, longitudinal data, multivariate methods, and tests. Some papers deal with computational aspects and algorithms. Finally, the aspects of application and programming tools complete the volume.

  20. Intelligent Security IT System for Detecting Intruders Based on Received Signal Strength Indicators

    Directory of Open Access Journals (Sweden)

    Yunsick Sung

    2016-10-01

    Full Text Available Given that entropy-based IT technology has been applied in homes, office buildings and elsewhere for IT security systems, diverse kinds of intelligent services are currently provided. In particular, IT security systems have become more robust and varied. However, access control systems still depend on tags held by building entrants. Since tags can be obtained by intruders, an approach to counter the disadvantages of tags is required. For example, it is possible to track the movement of tags in intelligent buildings in order to detect intruders. Therefore, each tag owner can be judged by analyzing the movements of their tags. This paper proposes a security approach based on the received signal strength indicators (RSSIs of beacon-based tags to detect intruders. The normal RSSI patterns of moving entrants are obtained and analyzed. Intruders can be detected when abnormal RSSIs are measured in comparison to normal RSSI patterns. In the experiments, one normal and one abnormal scenario are defined for collecting the RSSIs of a Bluetooth-based beacon in order to validate the proposed method. When the RSSIs of both scenarios are compared to pre-collected RSSIs, the RSSIs of the abnormal scenario are about 61% more different compared to the RSSIs of the normal scenario. Therefore, intruders in buildings can be detected by considering RSSI differences.

  1. Compressed multi-block local binary pattern for object tracking

    Science.gov (United States)

    Li, Tianwen; Gao, Yun; Zhao, Lei; Zhou, Hao

    2018-04-01

    Both robustness and real-time are very important for the application of object tracking under a real environment. The focused trackers based on deep learning are difficult to satisfy with the real-time of tracking. Compressive sensing provided a technical support for real-time tracking. In this paper, an object can be tracked via a multi-block local binary pattern feature. The feature vector was extracted based on the multi-block local binary pattern feature, which was compressed via a sparse random Gaussian matrix as the measurement matrix. The experiments showed that the proposed tracker ran in real-time and outperformed the existed compressive trackers based on Haar-like feature on many challenging video sequences in terms of accuracy and robustness.

  2. Robust Scientists

    DEFF Research Database (Denmark)

    Gorm Hansen, Birgitte

    their core i nterests, 2) developing a selfsupply of industry interests by becoming entrepreneurs and thus creating their own compliant industry partner and 3) balancing resources within a larger collective of researchers, thus countering changes in the influx of funding caused by shifts in political...... knowledge", Danish research policy seems to have helped develop politically and economically "robust scientists". Scientific robustness is acquired by way of three strategies: 1) tasting and discriminating between resources so as to avoid funding that erodes academic profiles and push scientists away from...

  3. Essential gene disruptions reveal complex relationships between phenotypic robustness, pleiotropy, and fitness

    Science.gov (United States)

    Bauer, Christopher R; Li, Shuang; Siegal, Mark L

    2015-01-01

    The concept of robustness in biology has gained much attention recently, but a mechanistic understanding of how genetic networks regulate phenotypic variation has remained elusive. One approach to understand the genetic architecture of variability has been to analyze dispensable gene deletions in model organisms; however, the most important genes cannot be deleted. Here, we have utilized two systems in yeast whereby essential genes have been altered to reduce expression. Using high-throughput microscopy and image analysis, we have characterized a large number of morphological phenotypes, and their associated variation, for the majority of essential genes in yeast. Our results indicate that phenotypic robustness is more highly dependent upon the expression of essential genes than on the presence of dispensable genes. Morphological robustness appears to be a general property of a genotype that is closely related to pleiotropy. While the fitness profile across a range of expression levels is idiosyncratic to each gene, the global pattern indicates that there is a window in which phenotypic variation can be released before fitness effects are observable. PMID:25609648

  4. The effect of the signalling scheme on the robustness of pattern formation in development

    KAUST Repository

    Kang, H.-W.

    2012-03-21

    Pattern formation in development is a complex process which involves spatially distributed signals called morphogens that influence gene expression and thus the phenotypic identity of cells. Usually different cell types are spatially segregated, and the boundary between them may be determined by a threshold value of some state variable. The question arises as to how sensitive the location of such a boundary is to variations in properties, such as parameter values, that characterize the system. Here, we analyse both deterministic and stochastic reaction-diffusion models of pattern formation with a view towards understanding how the signalling scheme used for patterning affects the variability of boundary determination between cell types in a developing tissue.

  5. Canine scent detection in the diagnosis of lung cancer: revisiting a puzzling phenomenon.

    Science.gov (United States)

    Ehmann, R; Boedeker, E; Friedrich, U; Sagert, J; Dippon, J; Friedel, G; Walles, T

    2012-03-01

    Patient prognosis in lung cancer largely depends on early diagnosis. The exhaled breath of patients may represent the ideal specimen for future lung cancer screening. However, the clinical applicability of current diagnostic sensor technologies based on signal pattern analysis remains incalculable due to their inability to identify a clear target. To test the robustness of the presence of a so far unknown volatile organic compound in the breath of patients with lung cancer, sniffer dogs were applied. Exhalation samples of 220 volunteers (healthy individuals, confirmed lung cancer or chronic obstructive pulmonary disease (COPD)) were presented to sniffer dogs following a rigid scientific protocol. Patient history, drug administration and clinicopathological data were analysed to identify potential bias or confounders. Lung cancer was identified with an overall sensitivity of 71% and a specificity of 93%. Lung cancer detection was independent from COPD and the presence of tobacco smoke and food odours. Logistic regression identified two drugs as potential confounders. It must be assumed that a robust and specific volatile organic compound (or pattern) is present in the breath of patients with lung cancer. Additional research efforts are required to overcome the current technical limitations of electronic sensor technologies to engineer a clinically applicable screening tool.

  6. Detecting corner points from digital curves

    International Nuclear Information System (INIS)

    Sarfraz, M.

    2011-01-01

    Corners in digital images give important clues for shape representation, recognition, and analysis. Since dominant information regarding shape is usually available at the corners, they provide important features for various real life applications in the disciplines like computer vision, pattern recognition, computer graphics. Corners are the robust features in the sense that they provide important information regarding objects under translation, rotation and scale change. They are also important from the view point of understanding human perception of objects. They play crucial role in decomposing or describing the digital curves. They are also used in scale space theory, image representation, stereo vision, motion tracking, image matching, building mosaics and font designing systems. If the corner points are identified properly, a shape can be represented in an efficient and compact way with sufficient accuracy. Corner detection schemes, based on their applications, can be broadly divided into two categories: binary (suitable for binary images) and gray level (suitable for gray level images). Corner detection approaches for binary images usually involve segmenting the image into regions and extracting boundaries from those regions that contain them. The techniques for gray level images can be categorized into two classes: (a) Template based and (b) gradient based. The template based techniques utilize correlation between a sub-image and a template of a given angle. A corner point is selected by finding the maximum of the correlation output. Gradient based techniques require computing curvature of an edge that passes through a neighborhood in a gray level image. Many corner detection algorithms have been proposed in the literature which can be broadly divided into two parts. One is to detect corner points from grayscale images and other relates to boundary based corner detection. This contribution mainly deals with techniques adopted for later approach

  7. A Bootstrap Based Measure Robust to the Choice of Normalization Methods for Detecting Rhythmic Features in High Dimensional Data.

    Science.gov (United States)

    Larriba, Yolanda; Rueda, Cristina; Fernández, Miguel A; Peddada, Shyamal D

    2018-01-01

    Motivation: Gene-expression data obtained from high throughput technologies are subject to various sources of noise and accordingly the raw data are pre-processed before formally analyzed. Normalization of the data is a key pre-processing step, since it removes systematic variations across arrays. There are numerous normalization methods available in the literature. Based on our experience, in the context of oscillatory systems, such as cell-cycle, circadian clock, etc., the choice of the normalization method may substantially impact the determination of a gene to be rhythmic. Thus rhythmicity of a gene can purely be an artifact of how the data were normalized. Since the determination of rhythmic genes is an important component of modern toxicological and pharmacological studies, it is important to determine truly rhythmic genes that are robust to the choice of a normalization method. Results: In this paper we introduce a rhythmicity measure and a bootstrap methodology to detect rhythmic genes in an oscillatory system. Although the proposed methodology can be used for any high-throughput gene expression data, in this paper we illustrate the proposed methodology using several publicly available circadian clock microarray gene-expression datasets. We demonstrate that the choice of normalization method has very little effect on the proposed methodology. Specifically, for any pair of normalization methods considered in this paper, the resulting values of the rhythmicity measure are highly correlated. Thus it suggests that the proposed measure is robust to the choice of a normalization method. Consequently, the rhythmicity of a gene is potentially not a mere artifact of the normalization method used. Lastly, as demonstrated in the paper, the proposed bootstrap methodology can also be used for simulating data for genes participating in an oscillatory system using a reference dataset. Availability: A user friendly code implemented in R language can be downloaded from http://www.eio.uva.es/~miguel/robustdetectionprocedure.html.

  8. Robust Trust in Expert Testimony

    Directory of Open Access Journals (Sweden)

    Christian Dahlman

    2015-05-01

    Full Text Available The standard of proof in criminal trials should require that the evidence presented by the prosecution is robust. This requirement of robustness says that it must be unlikely that additional information would change the probability that the defendant is guilty. Robustness is difficult for a judge to estimate, as it requires the judge to assess the possible effect of information that the he or she does not have. This article is concerned with expert witnesses and proposes a method for reviewing the robustness of expert testimony. According to the proposed method, the robustness of expert testimony is estimated with regard to competence, motivation, external strength, internal strength and relevance. The danger of trusting non-robust expert testimony is illustrated with an analysis of the Thomas Quick Case, a Swedish legal scandal where a patient at a mental institution was wrongfully convicted for eight murders.

  9. Robustness Analysis of Timber Truss Structure

    DEFF Research Database (Denmark)

    Rajčić, Vlatka; Čizmar, Dean; Kirkegaard, Poul Henning

    2010-01-01

    The present paper discusses robustness of structures in general and the robustness requirements given in the codes. Robustness of timber structures is also an issues as this is closely related to Working group 3 (Robustness of systems) of the COST E55 project. Finally, an example of a robustness...... evaluation of a widespan timber truss structure is presented. This structure was built few years ago near Zagreb and has a span of 45m. Reliability analysis of the main members and the system is conducted and based on this a robustness analysis is preformed....

  10. Robust Video Stabilization Using Particle Keypoint Update and l1-Optimized Camera Path

    Directory of Open Access Journals (Sweden)

    Semi Jeon

    2017-02-01

    Full Text Available Acquisition of stabilized video is an important issue for various type of digital cameras. This paper presents an adaptive camera path estimation method using robust feature detection to remove shaky artifacts in a video. The proposed algorithm consists of three steps: (i robust feature detection using particle keypoints between adjacent frames; (ii camera path estimation and smoothing; and (iii rendering to reconstruct a stabilized video. As a result, the proposed algorithm can estimate the optimal homography by redefining important feature points in the flat region using particle keypoints. In addition, stabilized frames with less holes can be generated from the optimal, adaptive camera path that minimizes a temporal total variation (TV. The proposed video stabilization method is suitable for enhancing the visual quality for various portable cameras and can be applied to robot vision, driving assistant systems, and visual surveillance systems.

  11. Rapid and robust detection methods for poison and microbial contamination.

    Science.gov (United States)

    Hoehl, Melanie M; Lu, Peter J; Sims, Peter A; Slocum, Alexander H

    2012-06-27

    Real-time on-site monitoring of analytes is currently in high demand for food contamination, water, medicines, and ingestible household products that were never tested appropriately. Here we introduce chemical methods for the rapid quantification of a wide range of chemical and microbial contaminations using a simple instrument. Within the testing procedure, we used a multichannel, multisample, UV-vis spectrophotometer/fluorometer that employs two frequencies of light simultaneously to interrogate the sample. We present new enzyme- and dye-based methods to detect (di)ethylene glycol in consumables above 0.1 wt % without interference and alcohols above 1 ppb. Using DNA intercalating dyes, we can detect a range of pathogens ( E. coli , Salmonella , V. Cholera, and a model for Malaria) in water, foods, and blood without background signal. We achieved universal scaling independent of pathogen size above 10(4) CFU/mL by taking advantage of the simultaneous measurement at multiple wavelengths. We can detect contaminants directly, without separation, purification, concentration, or incubation. Our chemistry is stable to ± 1% for >3 weeks without refrigeration, and measurements require <5 min.

  12. Qualitative Robustness in Estimation

    Directory of Open Access Journals (Sweden)

    Mohammed Nasser

    2012-07-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Times New Roman","serif";} Qualitative robustness, influence function, and breakdown point are three main concepts to judge an estimator from the viewpoint of robust estimation. It is important as well as interesting to study relation among them. This article attempts to present the concept of qualitative robustness as forwarded by first proponents and its later development. It illustrates intricacies of qualitative robustness and its relation with consistency, and also tries to remove commonly believed misunderstandings about relation between influence function and qualitative robustness citing some examples from literature and providing a new counter-example. At the end it places a useful finite and a simulated version of   qualitative robustness index (QRI. In order to assess the performance of the proposed measures, we have compared fifteen estimators of correlation coefficient using simulated as well as real data sets.

  13. An analysis of dinosaurian biogeography: evidence for the existence of vicariance and dispersal patterns caused by geological events.

    Science.gov (United States)

    Upchurch, Paul; Hunn, Craig A; Norman, David B

    2002-03-22

    As the supercontinent Pangaea fragmented during the Mesozoic era, dinosaur faunas were divided into isolated populations living on separate continents. It has been predicted, therefore, that dinosaur distributions should display a branching ('vicariance') pattern that corresponds with the sequence and timing of continental break-up. Several recent studies, however, minimize the importance of plate tectonics and instead suggest that dispersal and regional extinction were the main controls on dinosaur biogeography. Here, in order to test the vicariance hypothesis, we apply a cladistic biogeographical method to a large dataset on dinosaur relationships and distributions. We also introduce a methodological refinement termed 'time-slicing', which is shown to be a key step in the detection of ancient biogeographical patterns. These analyses reveal biogeographical patterns that closely correlate with palaeogeography. The results provide the first statistically robust evidence that, from Middle Jurassic to mid-Cretaceous times, tectonic events had a major role in determining where and when particular dinosaur groups flourished. The fact that evolutionary trees for extinct organisms preserve such distribution patterns opens up a new and fruitful direction for palaeobiogeographical research.

  14. PATTERN BASED DETECTION OF POTENTIALLY DRUGGABLE BINDING SITES BY LIGAND SCREENING

    Directory of Open Access Journals (Sweden)

    Uttam Pal

    2018-03-01

    Full Text Available This article describes an innovative way of finding the potentially druggable sites on a target protein, which can be used for orthosteric and allosteric lead detection in a single virtual screening setup. Druggability estimation for an alternate binding site other than the canonical ligand-binding pocket of an enzyme is rewarding for several inherent benefits. Allostery is a direct and efficient way of regulating biomacromolecule function. The allosteric modulators can fine-tune protein mechanics. Besides, allosteric sites are evolutionarily less conserved/more diverse even in very similarly related proteins, thus, provides high degree of specificity in targeting a particular protein. Therefore, targeting of allosteric sites is gaining attention as an emerging strategy in rational drug design. However, the experimental approaches provide a limited degree of characterization of new allosteric sites. Computational approaches are useful to analyze and select potential allosteric sites for drug discovery. Here, the use of molecular docking, which has become an integral part of the drug discovery process, has been discussed to predict the druggability of novel allosteric sites as well as the active site on target proteins by ligand screening. Genetic algorithm was used for docking and the whole protein was placed in the search space. For each ligand in the library of small molecules, the genetic algorithm was run for multiple times to populate all the druggable sites in the target protein, which was then translated into two dimensional density maps or “patterns”. High density clusters were observed for lead like molecules in these pattern diagrams. Each cluster in such a pattern diagram indicated a plausible binding site and the density gave its druggability score in terms of weighted probabilities. The patterns were filtered to find the leads for each of the druggable sites on the target protein. Such a novel pattern based analysis of the

  15. Ecological feedbacks. Termite mounds can increase the robustness of dryland ecosystems to climatic change.

    Science.gov (United States)

    Bonachela, Juan A; Pringle, Robert M; Sheffer, Efrat; Coverdale, Tyler C; Guyton, Jennifer A; Caylor, Kelly K; Levin, Simon A; Tarnita, Corina E

    2015-02-06

    Self-organized spatial vegetation patterning is widespread and has been described using models of scale-dependent feedback between plants and water on homogeneous substrates. As rainfall decreases, these models yield a characteristic sequence of patterns with increasingly sparse vegetation, followed by sudden collapse to desert. Thus, the final, spot-like pattern may provide early warning for such catastrophic shifts. In many arid ecosystems, however, termite nests impart substrate heterogeneity by altering soil properties, thereby enhancing plant growth. We show that termite-induced heterogeneity interacts with scale-dependent feedbacks to produce vegetation patterns at different spatial grains. Although the coarse-grained patterning resembles that created by scale-dependent feedback alone, it does not indicate imminent desertification. Rather, mound-field landscapes are more robust to aridity, suggesting that termites may help stabilize ecosystems under global change. Copyright © 2015, American Association for the Advancement of Science.

  16. Robustness in econometrics

    CERN Document Server

    Sriboonchitta, Songsak; Huynh, Van-Nam

    2017-01-01

    This book presents recent research on robustness in econometrics. Robust data processing techniques – i.e., techniques that yield results minimally affected by outliers – and their applications to real-life economic and financial situations are the main focus of this book. The book also discusses applications of more traditional statistical techniques to econometric problems. Econometrics is a branch of economics that uses mathematical (especially statistical) methods to analyze economic systems, to forecast economic and financial dynamics, and to develop strategies for achieving desirable economic performance. In day-by-day data, we often encounter outliers that do not reflect the long-term economic trends, e.g., unexpected and abrupt fluctuations. As such, it is important to develop robust data processing techniques that can accommodate these fluctuations.

  17. Trend patterns in global sea surface temperature

    DEFF Research Database (Denmark)

    Barbosa, S.M.; Andersen, Ole Baltazar

    2009-01-01

    Isolating long-term trend in sea surface temperature (SST) from El Nino southern oscillation (ENSO) variability is fundamental for climate studies. In the present study, trend-empirical orthogonal function (EOF) analysis, a robust space-time method for extracting trend patterns, is applied to iso...

  18. A Robust Solution of the Spherical Burmester Problem

    DEFF Research Database (Denmark)

    Angeles, Jorge; Bai, Shaoping

    2010-01-01

    The problem of spherical four-bar linkage synthesis is revisited in this paper. The work is aimed at developing a robust synthesis method by taking into account both the formulation and the solution method. In addition, the synthesis of linkages with spherical prismatic joints is considered...... by treating them as a special case of the linkages under study. A two-step synthesis method is developed, which sequentially deals with equation-solving by a semigraphical approach and branching-detection. Examples are included to demonstrate the proposed method....

  19. Robust Programming by Example

    OpenAIRE

    Bishop , Matt; Elliott , Chip

    2011-01-01

    Part 2: WISE 7; International audience; Robust programming lies at the heart of the type of coding called “secure programming”. Yet it is rarely taught in academia. More commonly, the focus is on how to avoid creating well-known vulnerabilities. While important, that misses the point: a well-structured, robust program should anticipate where problems might arise and compensate for them. This paper discusses one view of robust programming and gives an example of how it may be taught.

  20. Abnormal network flow detection based on application execution patterns from Web of Things (WoT) platforms.

    Science.gov (United States)

    Yoon, Young; Jung, Hyunwoo; Lee, Hana

    2018-01-01

    In this paper, we present a research work on a novel methodology of identifying abnormal behaviors at the underlying network monitor layer during runtime based on the execution patterns of Web of Things (WoT) applications. An execution pattern of a WoT application is a sequence of profiled time delays between the invocations of involved Web services, and it can be obtained from WoT platforms. We convert the execution pattern to a time sequence of network flows that are generated when the WoT applications are executed. We consider such time sequences as a whitelist. This whitelist reflects the valid application execution patterns. At the network monitor layer, our applied RETE algorithm examines whether any given runtime sequence of network flow instances does not conform to the whitelist. Through this approach, it is possible to interpret a sequence of network flows with regard to application logic. Given such contextual information, we believe that the administrators can detect and reason about any abnormal behaviors more effectively. Our empirical evaluation shows that our RETE-based algorithm outperforms the baseline algorithm in terms of memory usage.

  1. Robust Reliability or reliable robustness? - Integrated consideration of robustness and reliability aspects

    DEFF Research Database (Denmark)

    Kemmler, S.; Eifler, Tobias; Bertsche, B.

    2015-01-01

    products are and vice versa. For a comprehensive understanding and to use existing synergies between both domains, this paper discusses the basic principles of Reliability- and Robust Design theory. The development of a comprehensive model will enable an integrated consideration of both domains...

  2. Template for robust soft-body crawling with reflex-triggered gripping

    International Nuclear Information System (INIS)

    Schuldt, Dieter W; Rife, Jason; Trimmer, Barry

    2015-01-01

    Caterpillars show a remarkable ability to get around in complex environments (e.g. tree branches). Part of this is attributable to crochets which allow the animal to firmly attach to a wide range of substrates. This introduces an additional challenge to locomotion, however, as the caterpillar needs a way to coordinate the release of the crochets and the activation of muscles to adjust body posture. Typical control models have focused on global coordination through a central pattern generator (CPG). This paper develops an alternative to the CPG, which accomplishes the same task and is robust to a wide range of body properties and control parameter variation. A one-dimensional model is proposed which consists of lumped masses connected by a network of springs, dampers and muscles. Computer simulations of the controller/model system are performed to verify its robustness and to permit comparison between the generated gaits and those observed in real caterpillars (specifically Manduca sexta.). (paper)

  3. Multisensor analyzer detector (MSAD) for low cost chemical and aerosol detection and pattern fusion

    Science.gov (United States)

    Swanson, David C.; Merdes, Daniel W.; Lysak, Daniel B., Jr.; Curtis, Richard C.; Lang, Derek C.; Mazzara, Andrew F.; Nicholas, Nicholas C.

    2002-08-01

    MSAD is being developed as a low-cost point detection chemical and biological sensor system designed around an information fusion inference engine that also allows additional sensors to be included in the detection process. The MSAD concept is based on probable cause detection of hazardous chemical vapors and aerosols of either chemical or biological composition using a small portable unit containing an embedded computer system and several integrated sensors with complementary capabilities. The configuration currently envisioned includes a Surface-Enhanced Raman Spectroscopy (SERS) sensor of chemical vapors and a detector of respirable aerosols based on Fraunhofer diffraction. Additional sensors employing Ion Mobility Spectrometry (IMS), Surface Acoustic Wave (SAW) detection, Flame Photometric Detection (FPD), and other principles are candidates for integration into the device; also, available commercial detectors implementing IMS, SAW, and FPD will be made accessible to the unit through RS232 ports. Both feature and decision level information fusion is supported using a Continuous Inference Network (CINET) of fuzzy logic. Each class of agents has a unique CINET with information inputs from a number of available sensors. Missing or low confidence sensor information is gracefully blended out of the output confidence for the particular agent. This approach constitutes a plug and play arrangement between the sensors and the information pattern recognition algorithms. We are currently doing simulant testing and developing out CINETs for actual agent testing at Edgewood Chemical and Biological Center (ECBC) later this year.

  4. A robust methodology for modal parameters estimation applied to SHM

    Science.gov (United States)

    Cardoso, Rharã; Cury, Alexandre; Barbosa, Flávio

    2017-10-01

    The subject of structural health monitoring is drawing more and more attention over the last years. Many vibration-based techniques aiming at detecting small structural changes or even damage have been developed or enhanced through successive researches. Lately, several studies have focused on the use of raw dynamic data to assess information about structural condition. Despite this trend and much skepticism, many methods still rely on the use of modal parameters as fundamental data for damage detection. Therefore, it is of utmost importance that modal identification procedures are performed with a sufficient level of precision and automation. To fulfill these requirements, this paper presents a novel automated time-domain methodology to identify modal parameters based on a two-step clustering analysis. The first step consists in clustering modes estimates from parametric models of different orders, usually presented in stabilization diagrams. In an automated manner, the first clustering analysis indicates which estimates correspond to physical modes. To circumvent the detection of spurious modes or the loss of physical ones, a second clustering step is then performed. The second step consists in the data mining of information gathered from the first step. To attest the robustness and efficiency of the proposed methodology, numerically generated signals as well as experimental data obtained from a simply supported beam tested in laboratory and from a railway bridge are utilized. The results appeared to be more robust and accurate comparing to those obtained from methods based on one-step clustering analysis.

  5. Improving robustness and computational efficiency using modern C++

    International Nuclear Information System (INIS)

    Paterno, M; Kowalkowski, J; Green, C

    2014-01-01

    For nearly two decades, the C++ programming language has been the dominant programming language for experimental HEP. The publication of ISO/IEC 14882:2011, the current version of the international standard for the C++ programming language, makes available a variety of language and library facilities for improving the robustness, expressiveness, and computational efficiency of C++ code. However, much of the C++ written by the experimental HEP community does not take advantage of the features of the language to obtain these benefits, either due to lack of familiarity with these features or concern that these features must somehow be computationally inefficient. In this paper, we address some of the features of modern C+-+, and show how they can be used to make programs that are both robust and computationally efficient. We compare and contrast simple yet realistic examples of some common implementation patterns in C, currently-typical C++, and modern C++, and show (when necessary, down to the level of generated assembly language code) the quality of the executable code produced by recent C++ compilers, with the aim of allowing the HEP community to make informed decisions on the costs and benefits of the use of modern C++.

  6. Post-decomposition optimizations using pattern matching and rule-based clustering for multi-patterning technology

    Science.gov (United States)

    Wang, Lynn T.-N.; Madhavan, Sriram

    2018-03-01

    A pattern matching and rule-based polygon clustering methodology with DFM scoring is proposed to detect decomposition-induced manufacturability detractors and fix the layout designs prior to manufacturing. A pattern matcher scans the layout for pre-characterized patterns from a library. If a pattern were detected, rule-based clustering identifies the neighboring polygons that interact with those captured by the pattern. Then, DFM scores are computed for the possible layout fixes: the fix with the best score is applied. The proposed methodology was applied to two 20nm products with a chip area of 11 mm2 on the metal 2 layer. All the hotspots were resolved. The number of DFM spacing violations decreased by 7-15%.

  7. Rapid detection of drug resistance and mutational patterns of extensively drug-resistant strains by a novel GenoType® MTBDRsl assay

    Directory of Open Access Journals (Sweden)

    A K Singh

    2013-01-01

    Full Text Available Background: The emergence of extensively drug-resistant tuberculosis (XDR-TB is a major concern in the India. The burden of XDR-TB is increasing due to inadequate monitoring, lack of proper diagnosis, and treatment. The GenoType ® Mycobacterium tuberculosis drug resistance second line (MTBDRsl assay is a novel line probe assay used for the rapid detection of mutational patterns conferring resistance to XDR-TB. Aim: The aim of this study was to study the rapid detection of drug resistance and mutational patterns of the XDR-TB by a novel GenoType ® MTBDRsl assay. Materials and Methods: We evaluated 98 multidrug-resistant (MDR M. tuberculosis isolates for second line drugs susceptibility testing by 1% proportion method (BacT/ALERT 3D system and GenoType ® MTBDRsl assay for rapid detection of conferring drug resistance to XDR-TB. Results: A total of seven (17.4% were identified as XDR-TB by using standard phenotypic method. The concordance between phenotypic and GenoType ® MTBDRsl assay was 91.7-100% for different antibiotics. The sensitivity and specificity of the MTBDRsl assay were 100% and 100% for aminoglycosides; 100% and 100% for fluoroquinolones; 91.7% and 100% for ethambutol. The most frequent mutations and patterns were gyrA MUT1 (A90V in seven (41.2% and gyrA + WT1-3 + MUT1 in four (23.5%; rrs MUT1 (A1401G in 11 (64.7%, and rrs WT1-2 + MUT1 in eight (47.1%; and embB MUT1B (M306V in 11 (64.7% strains. Conclusions: These data suggest that the GenoType ® MTBDRsl assay is rapid, novel test for detection of resistance to second line anti-tubercular drugs. This assay provides additional information about the frequency and mutational patterns responsible for XDR-TB resistance.

  8. Cascade-robustness optimization of coupling preference in interconnected networks

    International Nuclear Information System (INIS)

    Zhang, Xue-Jun; Xu, Guo-Qiang; Zhu, Yan-Bo; Xia, Yong-Xiang

    2016-01-01

    Highlights: • A specific memetic algorithm was proposed to optimize coupling links. • A small toy model was investigated to examine the underlying mechanism. • The MA optimized strategy exhibits a moderate assortative pattern. • A novel coupling coefficient index was proposed to quantify coupling preference. - Abstract: Recently, the robustness of interconnected networks has attracted extensive attentions, one of which is to investigate the influence of coupling preference. In this paper, the memetic algorithm (MA) is employed to optimize the coupling links of interconnected networks. Afterwards, a comparison is made between MA optimized coupling strategy and traditional assortative, disassortative and random coupling preferences. It is found that the MA optimized coupling strategy with a moderate assortative value shows an outstanding performance against cascading failures on both synthetic scale-free interconnected networks and real-world networks. We then provide an explanation for this phenomenon from a micro-scope point of view and propose a coupling coefficient index to quantify the coupling preference. Our work is helpful for the design of robust interconnected networks.

  9. Detection of cytokine expression patterns in the peripheral blood of patients with acute leukemia by antibody microarray analysis.

    Science.gov (United States)

    Li, Qing; Li, Mei; Wu, Yao-hui; Zhu, Xiao-jian; Zeng, Chen; Zou, Ping; Chen, Zhi-chao

    2014-04-01

    The cytokines of acute leukemia (AL) patients have certain expression patterns, forming a complex network involved in diagnosis, progression, and prognosis. We collected the serum of different AL patients before and after complete remission (CR) for detection of cytokines by using an antibody chip. The expression patterns of cytokines were determined by using bioinformatics computational analysis. The results showed that there were significant differences in the cytokine expression patterns between AL patients and normal controls, as well as between acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). In confirmatory test, ELISA revealed the expression of uPAR in AL. Moreover, the bioinformatic analysis showed that the differentially expressed cytokines among the AL groups were involved in different biological behaviors and were closely related with the development of the disease. It was concluded that the cytokine expression pattern of AL patients is significantly different from that of healthy volunteers. Also, differences of cytokine expression patterns exist between AML and ALL, and between before and after CR in the same subtype of AL, which holds important clinical significance for revealing disease progression.

  10. Replication Banding Patterns in Human Chromosomes Detected Using 5-ethynyl-2'-deoxyuridine Incorporation

    International Nuclear Information System (INIS)

    Hoshi, Osamu; Ushiki, Tatsuo

    2011-01-01

    A novel technique using the incorporation of 5-ethynyl-2'-deoxyuridine (EdU) into replicating DNA is described for the analysis of replicating banding patterns of human metaphase chromosomes. Human lymphocytes were synchronized with excess thymidine and treated with EdU during the late S phase of the cell cycle. The incorporated EdU was then detected in metaphase chromosomes using Alexa Fluor® 488 azides, through the 1,3-dipolar cycloaddition reaction of organic azides with the terminal acetylene group of EdU. Chromosomes with incorporated EdU showed a banding pattern similar to G-banding of normal human chromosomes. Imaging by atomic force microscopy (AFM) in liquid conditions showed that the structure of the chromosomes was well preserved even after EdU treatment. Comparison between fluorescence microscopy and AFM images of the same chromosome 1 indicated the presence of ridges and grooves in the chromatid arm, features that have been previously reported in relation to G-banding. These results suggest an intimate relationship between EdU-induced replication bands and G- or R-bands in human chromosomes. This technique is thus useful for analyzing the structure of chromosomes in relation to their banding patterns following DNA replication in the S phase

  11. Robust and efficient modulation transfer function measurement with CMOS color sensors

    Science.gov (United States)

    Farsani, Raziyeh A.; Sure, Thomas; Apel, Uwe

    2017-06-01

    Increasing challenges of the industry to improve camera performance with control and test of the alignment process will be discussed in this paper. The major difficulties, such as special CFAs that have white/clear pixels instead of a Bayer pattern and non-homogeneous back light illumination of the targets, used for such tests, will be outlined and strategies on how to handle them will be presented. The proposed algorithms are applied to synthetically generated edges, as well as to experimental images taken from ADAS cameras in standard illumination conditions, to validate the approach. In addition, to consider the influence of the chromatic aberration of the lens and the CFA's influence on the total system MTF, the on-axis focus behavior of the camera module will be presented for each pixel class separately. It will be shown that the repeatability of the measurement results of the system MTF is improved, as a result of a more accurate and robust edge angle detection, elimination of systematic errors, using an improved lateral shift of the pixels and analytical modeling of the edge transition. Results also show the necessity to have separated measurements of contrast in the different pixel classes to ensure a precise focus position.

  12. A change detection method for remote sensing image based on LBP and SURF feature

    Science.gov (United States)

    Hu, Lei; Yang, Hao; Li, Jin; Zhang, Yun

    2018-04-01

    Finding the change in multi-temporal remote sensing image is important in many the image application. Because of the infection of climate and illumination, the texture of the ground object is more stable relative to the gray in high-resolution remote sensing image. And the texture features of Local Binary Patterns (LBP) and Speeded Up Robust Features (SURF) are outstanding in extracting speed and illumination invariance. A method of change detection for matched remote sensing image pair is present, which compares the similarity by LBP and SURF to detect the change and unchanged of the block after blocking the image. And region growing is adopted to process the block edge zone. The experiment results show that the method can endure some illumination change and slight texture change of the ground object.

  13. Occlusion detection via structured sparse learning for robust object tracking

    KAUST Repository

    Zhang, Tianzhu

    2014-01-01

    Sparse representation based methods have recently drawn much attention in visual tracking due to good performance against illumination variation and occlusion. They assume the errors caused by image variations can be modeled as pixel-wise sparse. However, in many practical scenarios, these errors are not truly pixel-wise sparse but rather sparsely distributed in a structured way. In fact, pixels in error constitute contiguous regions within the object’s track. This is the case when significant occlusion occurs. To accommodate for nonsparse occlusion in a given frame, we assume that occlusion detected in previous frames can be propagated to the current one. This propagated information determines which pixels will contribute to the sparse representation of the current track. In other words, pixels that were detected as part of an occlusion in the previous frame will be removed from the target representation process. As such, this paper proposes a novel tracking algorithm that models and detects occlusion through structured sparse learning. We test our tracker on challenging benchmark sequences, such as sports videos, which involve heavy occlusion, drastic illumination changes, and large pose variations. Extensive experimental results show that our proposed tracker consistently outperforms the state-of-the-art trackers.

  14. Detection and Quantification of Vascular Endothelial Growth Factor Receptor Tyrosine Kinases in Primary Human Endothelial Cells.

    Science.gov (United States)

    Fearnley, Gareth W; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2015-01-01

    Proteins differ widely in their pattern of expression depending on organism, tissue, and regulation in response to changing conditions. In the mammalian vasculature, the endothelium responds to vascular endothelial growth factors (VEGFs) via membrane-bound receptor tyrosine kinases (VEGFRs) to modulate many aspects of vascular physiology including vasculogenesis, angiogenesis, and blood pressure. Studies on VEGFR biology are thus dependent on detecting expression levels in different cell types and evaluating how changes in protein levels correlate with changing conditions including circulating VEGF levels. Here, we present a robust immunoblot-based protocol for detecting and quantifying VEGFRs in human endothelial cells. Using internal and external standards, we can rapidly evaluate receptor copy number and assess how this is altered in response to the cellular environment.

  15. Robust

    DEFF Research Database (Denmark)

    2017-01-01

    Robust – Reflections on Resilient Architecture’, is a scientific publication following the conference of the same name in November of 2017. Researches and PhD-Fellows, associated with the Masters programme: Cultural Heritage, Transformation and Restoration (Transformation), at The Royal Danish...

  16. S-CNN-BASED SHIP DETECTION FROM HIGH-RESOLUTION REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    R. Zhang

    2016-06-01

    Full Text Available Reliable ship detection plays an important role in both military and civil fields. However, it makes the task difficult with high-resolution remote sensing images with complex background and various types of ships with different poses, shapes and scales. Related works mostly used gray and shape features to detect ships, which obtain results with poor robustness and efficiency. To detect ships more automatically and robustly, we propose a novel ship detection method based on the convolutional neural networks (CNNs, called SCNN, fed with specifically designed proposals extracted from the ship model combined with an improved saliency detection method. Firstly we creatively propose two ship models, the “V” ship head model and the “||” ship body one, to localize the ship proposals from the line segments extracted from a test image. Next, for offshore ships with relatively small sizes, which cannot be efficiently picked out by the ship models due to the lack of reliable line segments, we propose an improved saliency detection method to find these proposals. Therefore, these two kinds of ship proposals are fed to the trained CNN for robust and efficient detection. Experimental results on a large amount of representative remote sensing images with different kinds of ships with varied poses, shapes and scales demonstrate the efficiency and robustness of our proposed S-CNN-Based ship detector.

  17. Low-Power Photoplethysmogram Acquisition Integrated Circuit with Robust Light Interference Compensation.

    Science.gov (United States)

    Kim, Jongpal; Kim, Jihoon; Ko, Hyoungho

    2015-12-31

    To overcome light interference, including a large DC offset and ambient light variation, a robust photoplethysmogram (PPG) readout chip is fabricated using a 0.13-μm complementary metal-oxide-semiconductor (CMOS) process. Against the large DC offset, a saturation detection and current feedback circuit is proposed to compensate for an offset current of up to 30 μA. For robustness against optical path variation, an automatic emitted light compensation method is adopted. To prevent ambient light interference, an alternating sampling and charge redistribution technique is also proposed. In the proposed technique, no additional power is consumed, and only three differential switches and one capacitor are required. The PPG readout channel consumes 26.4 μW and has an input referred current noise of 260 pArms.

  18. Detecting spatial patterns with the cumulant function – Part 1: The theory

    Directory of Open Access Journals (Sweden)

    P. Naveau

    2008-02-01

    Full Text Available In climate studies, detecting spatial patterns that largely deviate from the sample mean still remains a statistical challenge. Although a Principal Component Analysis (PCA, or equivalently a Empirical Orthogonal Functions (EOF decomposition, is often applied for this purpose, it provides meaningful results only if the underlying multivariate distribution is Gaussian. Indeed, PCA is based on optimizing second order moments, and the covariance matrix captures the full dependence structure of multivariate Gaussian vectors. Whenever the application at hand can not satisfy this normality hypothesis (e.g. precipitation data, alternatives and/or improvements to PCA have to be developed and studied. To go beyond this second order statistics constraint, that limits the applicability of the PCA, we take advantage of the cumulant function that can produce higher order moments information. The cumulant function, well-known in the statistical literature, allows us to propose a new, simple and fast procedure to identify spatial patterns for non-Gaussian data. Our algorithm consists in maximizing the cumulant function. Three families of multivariate random vectors, for which explicit computations are obtained, are implemented to illustrate our approach. In addition, we show that our algorithm corresponds to selecting the directions along which projected data display the largest spread over the marginal probability density tails.

  19. A new code for automatic detection and analysis of the lineament patterns for geophysical and geological purposes (ADALGEO)

    Science.gov (United States)

    Soto-Pinto, C.; Arellano-Baeza, A.; Sánchez, G.

    2013-08-01

    We present a new numerical method for automatic detection and analysis of changes in lineament patterns caused by seismic and volcanic activities. The method is implemented as a series of modules: (i) normalization of the image contrast, (ii) extraction of small linear features (stripes) through convolution of the part of the image in the vicinity of each pixel with a circular mask or through Canny algorithm, and (iii) posterior detection of main lineaments using the Hough transform. We demonstrate that our code reliably detects changes in the lineament patterns related to the stress evolution in the Earth's crust: specifically, a significant number of new lineaments appear approximately one month before an earthquake, while one month after the earthquake the lineament configuration returns to its initial state. Application of our software to the deformations caused by volcanic activity yields the opposite results: the number of lineaments decreases with the onset of microseismicity. This discrepancy can be explained assuming that the plate tectonic earthquakes are caused by the compression and accumulation of stress in the Earth's crust due to subduction of tectonic plates, whereas in the case of volcanic activity we deal with the inflation of a volcano edifice due to elevation of pressure and magma intrusion and the resulting stretching of the surface.

  20. Robust GPS autonomous signal quality monitoring

    Science.gov (United States)

    Ndili, Awele Nnaemeka

    The Global Positioning System (GPS), introduced by the U.S. Department of Defense in 1973, provides unprecedented world-wide navigation capabilities through a constellation of 24 satellites in global orbit, each emitting a low-power radio-frequency signal for ranging. GPS receivers track these transmitted signals, computing position to within 30 meters from range measurements made to four satellites. GPS has a wide range of applications, including aircraft, marine and land vehicle navigation. Each application places demands on GPS for various levels of accuracy, integrity, system availability and continuity of service. Radio frequency interference (RFI), which results from natural sources such as TV/FM harmonics, radar or Mobile Satellite Systems (MSS), presents a challenge in the use of GPS, by posing a threat to the accuracy, integrity and availability of the GPS navigation solution. In order to use GPS for integrity-sensitive applications, it is therefore necessary to monitor the quality of the received signal, with the objective of promptly detecting the presence of RFI, and thus provide a timely warning of degradation of system accuracy. This presents a challenge, since the myriad kinds of RFI affect the GPS receiver in different ways. What is required then, is a robust method of detecting GPS accuracy degradation, which is effective regardless of the origin of the threat. This dissertation presents a new method of robust signal quality monitoring for GPS. Algorithms for receiver autonomous interference detection and integrity monitoring are demonstrated. Candidate test statistics are derived from fundamental receiver measurements of in-phase and quadrature correlation outputs, and the gain of the Active Gain Controller (AGC). Performance of selected test statistics are evaluated in the presence of RFI: broadband interference, pulsed and non-pulsed interference, coherent CW at different frequencies; and non-RFI: GPS signal fading due to physical blockage and