WorldWideScience

Sample records for detecting progressive axonal

  1. Greater loss of axons in primary progressive multiple sclerosis plaques compared to secondary progressive disease.

    Science.gov (United States)

    Tallantyre, E C; Bø, L; Al-Rawashdeh, O; Owens, T; Polman, C H; Lowe, J; Evangelou, N

    2009-05-01

    The pathological substrate of progressive disability in multiple sclerosis is hypothesized to be axonal loss. Differences in the demographic, pathological and radiological features of patients with primary progressive compared with secondary progressive multiple sclerosis raise the question as to whether they actually represent separate clinical entities. So far, large pathological studies comparing axonal damage between primary progressive and secondary progressive multiple sclerosis have not been reported. In this clinico-pathological study we examined the cervical spinal cord in patients with primary and secondary progressive multiple sclerosis. Human cervical spinal cord was derived at autopsy from 54 patients (17 primary progressive, 30 secondary progressive and 7 controls). Tissue was stained immunohistochemically and examined to determine: (i) the number of surviving corticospinal tract axons; (ii) the extent of grey and white matter demyelination; (iii) the degree of inflammation inside and outside of lesions; and (iv) the relationship between demyelination and axonal loss. Associated clinical data was used to calculate expanded disability status scale for each patient preceding death. Motor disability in the primary progressive and secondary progressive groups was similar preceding death. Secondary progressive multiple sclerosis patients showed considerably more extensive demyelination of both the white and grey matter of the cervical spinal cord. The total number of corticospinal axons was equally low in primary progressive and secondary progressive multiple sclerosis groups versus controls. The reduction of axonal density in demyelinated regions compared to normal appearing white matter was significantly more extensive in primary progressive versus secondary progressive patients (33% reduction versus 16% reduction, P progressive multiple sclerosis with a common plaque-centred mechanism. More extensive axonal loss within areas of demyelination in primary

  2. CSF inflammation and axonal damage are increased and correlate in progressive multiple sclerosis

    DEFF Research Database (Denmark)

    Romme Christensen, Jeppe; Börnsen, Lars; Khademi, Mohsen

    2013-01-01

    was increased in RRMS and SPMS patients. Biomarkers of axonal damage (NFL) and demyelination (MBP) were increased in all MS patients. In progressive MS patients CSF levels of osteopontin and CXCL13 correlated with NFL while osteopontin and MMP9 correlated with MBP. MBP8298 treatment did not affect the levels...

  3. Axonal loss and neurofilament phosphorylation changes accompany lesion development and clinical progression in multiple sclerosis.

    Science.gov (United States)

    Schirmer, Lucas; Antel, Jack P; Brück, Wolfgang; Stadelmann, Christine

    2011-07-01

    Neuroaxonal damage and loss are increasingly recognized as disability determining features in multiple sclerosis (MS) pathology. However, little is known about the long-term sequelae of inflammatory demyelination on neurons and axons. Spinal cord tissue of 31 MS patients was compared to three amyotrophic lateral sclerosis (ALS) and 10 control subjects. MS lesions were staged according to the density of KiM-1P positive macrophages and microglia and the presence of myelin basic protein (MBP) positive phagocytes. T cells were quantified in the parenchyma and meninges. Neuroaxonal changes were studied by immunoreactivity (IR) for amyloid precursor protein (APP) and variably phosphorylated neurofilaments (SMI312, SMI31, SMI32). Little T cell infiltration was still evident in chronic inactive lesions. The loss of SMI32 IR in ventral horn neurons correlated with MS lesion development and disease progression. Similarly, axonal loss in white matter (WM) lesions correlated with disease duration. A selective reduction of axonal phosphorylated neurofilaments (SMI31) was observed in WM lesions. In ALS, the loss of neuronal SMI32 IR was even more pronounced, whereas the relative axonal reduction resembled that found in MS. Progressive neuroaxonal neurofilament alterations in the context of chronic inflammatory demyelination may reflect changes in neuroaxonal metabolism and result in chronic neuroaxonal dysfunction as a putative substrate of clinical progression.

  4. Retinal axonal loss begins early in the course of multiple sclerosis and is similar between progressive phenotypes.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Gelfand

    Full Text Available BACKGROUND: To determine whether retinal axonal loss is detectable in patients with a clinically isolated syndrome (CIS, a first clinical demyelinating attack suggestive of multiple sclerosis (MS, and examine patterns of retinal axonal loss across MS disease subtypes. METHODOLOGY/PRINCIPAL FINDINGS: Spectral-domain Optical Coherence Tomography was performed in 541 patients with MS, including 45 with high-risk CIS, 403 with relapsing-remitting (RRMS, 60 with secondary-progressive (SPMS and 33 with primary-progressive (PPMS, and 53 unaffected controls. Differences in retinal nerve fiber layer (RNFL thickness and macular volume were analyzed using multiple linear regression and associations with age and disease duration were examined in a cross-sectional analysis. In eyes without a clinical history of optic neuritis (designated as "eyes without optic neuritis", the total and temporal peripapillary RNFL was thinner in CIS patients compared to controls (temporal RNFL by -5.4 µm [95% CI -0.9 to--9.9 µm, p = 0.02] adjusting for age and sex. The total (p = 0.01 and temporal (p = 0.03 RNFL was also thinner in CIS patients with clinical disease for less than 1 year compared to controls. In eyes without optic neuritis, total and temporal RNFL thickness was nearly identical between primary and secondary progressive MS, but total macular volume was slightly lower in the primary progressive group (pRRMS>CIS--with proportionally greater thinning in eyes previously affected by clinically evident optic neuritis. Retinal axonal loss begins early in the course of MS. In the absence of clinically evident optic neuritis, RNFL thinning is nearly identical between progressive MS subtypes.

  5. Intermediate Progenitors Facilitate Intracortical Progression of Thalamocortical Axons and Interneurons through CXCL12 Chemokine Signaling.

    Science.gov (United States)

    Abe, Philipp; Molnár, Zoltán; Tzeng, Yi-Shiuan; Lai, Dar-Ming; Arnold, Sebastian J; Stumm, Ralf

    2015-09-23

    Glutamatergic principal neurons, GABAergic interneurons and thalamocortical axons (TCAs) are essential elements of the cerebrocortical network. Principal neurons originate locally from radial glia and intermediate progenitors (IPCs), whereas interneurons and TCAs are of extrinsic origin. Little is known how the assembly of these elements is coordinated. C-X-C motif chemokine 12 (CXCL12), which is known to guide axons outside the neural tube and interneurons in the cortex, is expressed in the meninges and IPCs. Using mouse genetics, we dissected the influence of IPC-derived CXCL12 on TCAs and interneurons by showing that Cxcl12 ablation in IPCs, leaving meningeal Cxcl12 intact, attenuates intracortical TCA growth and disrupts tangential interneuron migration in the subventricular zone. In accordance with strong CXCR4 expression in the forming thalamus and TCAs, we identified a CXCR4-dependent growth-promoting effect of CXCL12 on TCAs in thalamus explants. Together, our findings indicate a cell-autonomous role of CXCR4 in promoting TCA growth. We propose that CXCL12 signals from IPCs link cortical neurogenesis to the progression of TCAs and interneurons spatially and temporally. Significance statement: The cerebral cortex exerts higher brain functions including perceptual and emotional processing. Evolutionary expansion of the mammalian cortex is mediated by intermediate progenitors, transient amplifying cells generating cortical excitatory neurons. During the peak period of cortical neurogenesis, migrating precursors of inhibitory interneurons originating in subcortical areas and thalamic axons invade the cortex. Although defects in the assembly of cortical network elements cause neurological and mental disorders, little is known how neurogenesis, interneuron recruitment, and axonal ingrowth are coordinated. We demonstrate that intermediate progenitors release the chemotactic cytokine CXCL12 to promote intracortical interneuron migration and growth of thalamic axons

  6. New Treatment for Alzheimer’s Disease, Kamikihito, Reverses Amyloid-β-Induced Progression of Tau Phosphorylation and Axonal Atrophy

    Directory of Open Access Journals (Sweden)

    Hidetoshi Watari

    2014-01-01

    Full Text Available Aims. We previously reported that kamikihito (KKT, a traditional Japanese medicine, improved memory impairment and reversed the degeneration of axons in the 5XFAD mouse model of Alzheimer’s disease (AD. However, the mechanism underlying the effects of KKT remained unknown. The aim of the present study was to investigate the mechanism by which KKT reverses the progression of axonal degeneration. Methods. Primary cultured cortical neurons were treated with amyloid beta (Aβ fragment comprising amino acid residues (25–35 (10 μM in an in vitro AD model. KKT (10 μg/mL was administered to the cells before or after Aβ treatment. The effects of KKT on Aβ-induced tau phosphorylation, axonal atrophy, and protein phosphatase 2A (PP2A activity were investigated. We also performed an in vivo assay in which KKT (500 mg/kg/day was administered to 5XFAD mice once a day for 15 days. Cerebral cortex homogenates were used to measure PP2A activity. Results. KKT improved Aβ-induced tau phosphorylation and axonal atrophy after they had already progressed. In addition, KKT increased PP2A activity in vitro and in vivo. Conclusions. KKT reversed the progression of Aβ-induced axonal degeneration. KKT reversed axonal degeneration at least in part through its role as an exogenous PP2A stimulator.

  7. New Treatment for Alzheimer's Disease, Kamikihito, Reverses Amyloid-β-Induced Progression of Tau Phosphorylation and Axonal Atrophy.

    Science.gov (United States)

    Watari, Hidetoshi; Shimada, Yutaka; Tohda, Chihiro

    2014-01-01

    Aims. We previously reported that kamikihito (KKT), a traditional Japanese medicine, improved memory impairment and reversed the degeneration of axons in the 5XFAD mouse model of Alzheimer's disease (AD). However, the mechanism underlying the effects of KKT remained unknown. The aim of the present study was to investigate the mechanism by which KKT reverses the progression of axonal degeneration. Methods. Primary cultured cortical neurons were treated with amyloid beta (A β ) fragment comprising amino acid residues (25-35) (10  μ M) in an in vitro AD model. KKT (10  μ g/mL) was administered to the cells before or after A β treatment. The effects of KKT on A β -induced tau phosphorylation, axonal atrophy, and protein phosphatase 2A (PP2A) activity were investigated. We also performed an in vivo assay in which KKT (500 mg/kg/day) was administered to 5XFAD mice once a day for 15 days. Cerebral cortex homogenates were used to measure PP2A activity. Results. KKT improved A β -induced tau phosphorylation and axonal atrophy after they had already progressed. In addition, KKT increased PP2A activity in vitro and in vivo. Conclusions. KKT reversed the progression of A β -induced axonal degeneration. KKT reversed axonal degeneration at least in part through its role as an exogenous PP2A stimulator.

  8. Progressive multiple sclerosis cerebrospinal fluid induces inflammatory demyelination, axonal loss, and astrogliosis in mice.

    Science.gov (United States)

    Cristofanilli, Massimiliano; Rosenthal, Hannah; Cymring, Barbara; Gratch, Daniel; Pagano, Benjamin; Xie, Boxun; Sadiq, Saud A

    2014-11-01

    Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory demyelination and neurodegeneration throughout the CNS, which lead over time to a condition of irreversible functional decline known as progressive MS. Currently, there are no satisfactory treatments for this condition because the mechanisms that underlie disease progression are not well understood. This is partly due to the lack of a specific animal model that represents progressive MS. We investigated the effects of intracerebroventricular injections of cerebrospinal fluid (CSF) derived from untreated primary progressive (PPMS), secondary progressive (SPMS), and relapsing/remitting (RRMS) MS patients into mice. We found discrete inflammatory demyelinating lesions containing macrophages, B cell and T cell infiltrates in the brains of animals injected with CSF from patients with progressive MS. These lesions were rarely found in animals injected with RRMS-CSF and never in those treated with control-CSF. Animals that developed brain lesions also presented extensive inflammation in their spinal cord. However, discrete spinal cord lesions were rare and only seen in animals injected with PPMS-CSF. Axonal loss and astrogliosis were seen within the lesions following the initial demyelination. In addition, Th17 cell activity was enhanced in the CNS and in lymph nodes of progressive MS-CSF injected animals compared to controls. Furthermore, CSF derived from MS patients who were clinically stable following therapy had greatly diminished capacity to induce CNS lesions in mice. Finally, we provided evidence suggesting that differential expression of pro-inflammatory cytokines present in the progressive MS CSF might be involved in the observed mouse pathology. Our data suggests that the agent(s) responsible for the demyelination and neurodegeneration characteristic of progressive MS is present in patient CSF and is amenable to further characterization in experimental models of the disease.

  9. Detection of functional homotopy in traumatic axonal injury

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian; Gao, Lei; Xie, Kai; Zhan, Jie; Luo, Xiaoping; Wang, Huifang; Zhang, Huifang; Zhao, Jing; Zhou, Fuqing; Zeng, Xianjun; He, Laichang; He, Yulin; Gong, Honghan [Nanchang University, Department of Radiology, The First Affiliated Hospital, Nanchang City, Jiangxi (China)

    2017-01-15

    This study aimed to explore the interhemispheric intrinsic connectivity in traumatic axonal injury (TAI) patients. Twenty-one patients with TAI (14 males, seven females; mean age, 38.71 ± 15.25 years) and 22 well-matched healthy controls (16 males, six females; mean age, 38.50 ± 13.82 years) were recruited, and from them we obtained resting-state fMRI data. Interhemispheric coordination was examined using voxel-mirrored homotopic connectivity (VMHC) and seed-based functional connectivity analysis was performed. We observed significantly decreased VMHC in a number of regions in TAI patients, including the prefrontal, temporal, occipital, parietal, and posterior cingulate cortices, thalami and cerebellar posterior lobes. Subsequent seed-based functional connectivity analysis revealed widely disrupted functional connectivity between the regions of local homotopic connectivity deficits and other areas of the brain, particularly the areas subserving the default, salience, integrative, and executive systems. The lower VMHC of the inferior frontal gyrus and basal ganglia, thalamus, and caudate were significant correlated with the Beck Depression Inventory score, Clinical Dementia Rating score, and Mini-Mental State Examination score, respectively. TAI is associated with regionally decreased interhemispheric interactions and extensively disrupted seed-based functional connectivity, generating further evidence of diffuse disconnection being associated with clinical symptoms in TAI patients. (orig.)

  10. Sensory neuropathy in progressive motor neuronopathy (pmn) mice is associated with defects in microtubule polymerization and axonal transport.

    Science.gov (United States)

    Schäfer, Michael K; Bellouze, Sarah; Jacquier, Arnaud; Schaller, Sébastien; Richard, Laurence; Mathis, Stéphane; Vallat, Jean-Michel; Haase, Georg

    2016-08-04

    Motor neuron diseases such as amyotrophic lateral sclerosis (ALS) are now recognized as multi-system disorders also involving various non-motor neuronal cell types. The precise extent and mechanistic basis of non-motor neuron damage in human ALS and ALS animal models remain however unclear. To address this, we here studied progressive motor neuronopathy (pmn) mice carrying a missense loss-of-function mutation in tubulin binding cofactor E (TBCE). These mice manifest a particularly aggressive form of motor axon dying back and display a microtubule loss, similar to that induced by human ALS-linked TUBA4A mutations. Using whole nerve confocal imaging of pmn × thy1.2-YFP16 fluorescent reporter mice and electron microscopy, we demonstrate axonal discontinuities, bead-like spheroids and ovoids in pmn suralis nerves indicating prominent sensory neuropathy. The axonal alterations qualitatively resemble those in phrenic motor nerves but do not culminate in the loss of myelinated fibers. We further show that the pmn mutation decreases the level of TBCE, impedes microtubule polymerization in dorsal root ganglion (DRG) neurons and causes progressive loss of microtubules in large and small caliber suralis axons. Live imaging of axonal transport using GFP-tagged tetanus toxin C-fragment (GFP-TTC) demonstrates defects in microtubule-based transport in pmn DRG neurons, providing a potential explanation for the axonal alterations in sensory nerves. This study unravels sensory neuropathy as a pathological feature of mouse pmn, and discusses the potential contribution of cytoskeletal defects to sensory neuropathy in human motor neuron disease.

  11. An automated detection for axonal boutons in vivo two-photon imaging of mouse

    Science.gov (United States)

    Li, Weifu; Zhang, Dandan; Xie, Qiwei; Chen, Xi; Han, Hua

    2017-02-01

    Activity-dependent changes in the synaptic connections of the brain are tightly related to learning and memory. Previous studies have shown that essentially all new synaptic contacts were made by adding new partners to existing synaptic elements. To further explore synaptic dynamics in specific pathways, concurrent imaging of pre and postsynaptic structures in identified connections is required. Consequently, considerable attention has been paid for the automated detection of axonal boutons. Different from most previous methods proposed in vitro data, this paper considers a more practical case in vivo neuron images which can provide real time information and direct observation of the dynamics of a disease process in mouse. Additionally, we present an automated approach for detecting axonal boutons by starting with deconvolving the original images, then thresholding the enhanced images, and reserving the regions fulfilling a series of criteria. Experimental result in vivo two-photon imaging of mouse demonstrates the effectiveness of our proposed method.

  12. Noninvasive Detection and Differentiation of Axonal Injury/Loss, Demyelination, and Inflammation

    Science.gov (United States)

    2015-10-01

    spectrum imaging, diffusion tensor imaging, EAE, inflammation, axonal injury, curizone, demyelination, optic neuritis, axonal loss 16. SECURITY...Multiple sclerosis, diffusion basis spectrum imaging, diffusion tensor imaging, EAE, inflammation, axonal injury, demyelination, axonal loss, optic...biomarkers have recently been evaluated in MS [12-14]. Diffusion tensor imaging (DTI), in particular, is one of the commonest tools for evaluating white

  13. Progressive Motor Deficit is Mediated by the Denervation of Neuromuscular Junctions and Axonal Degeneration in Transgenic Mice Expressing Mutant (P301S) Tau Protein.

    Science.gov (United States)

    Yin, Zhuoran; Valkenburg, Femke; Hornix, Betty E; Mantingh-Otter, Ietje; Zhou, Xingdong; Mari, Muriel; Reggiori, Fulvio; Van Dam, Debby; Eggen, Bart J L; De Deyn, Peter P; Boddeke, Erik

    2017-02-10

    Tauopathies include a variety of neurodegenerative diseases associated with the pathological aggregation of hyperphosphorylated tau, resulting in progressive cognitive decline and motor impairment. The underlying mechanism for motor deficits related to tauopathy is not yet fully understood. Here, we use a novel transgenic tau mouse line, Tau 58/4, with enhanced neuron-specific expression of P301S mutant tau to investigate the motor abnormalities in association with the peripheral nervous system. Using stationary beam, gait, and rotarod tests, motor deficits were found in Tau 58/4 mice already 3 months after birth, which deteriorated during aging. Hyperphosphorylated tau was detected in the cell bodies and axons of motor neurons. At the age of 9 and 12 months, significant denervation of the neuromuscular junction in the extensor digitorum longus muscle was observed in Tau 58/4 mice, compared to wild-type mice. Muscle hypotrophy was observed in Tau 58/4 mice at 9 and 12 months. Using electron microscopy, we observed ultrastructural changes in the sciatic nerve of 12-month-old Tau 58/4 mice indicative of the loss of large axonal fibers and hypomyelination (assessed by g-ratio). We conclude that the accumulated hyperphosphorylated tau in the axon terminals may induce dying-back axonal degeneration, myelin abnormalities, neuromuscular junction denervation, and muscular atrophy, which may be the mechanisms responsible for the deterioration of the motor function in Tau 58/4 mice. Tau 58/4 mice represent an interesting neuromuscular degeneration model, and the pathological mechanisms might be responsible for motor signs observed in some human tauopathies.

  14. Disruption of the MAP1B-related Protein FUTSCH Leads to Changes in the Neuronal Cytoskeleton, Axonal Transport Defects, and Progressive Neurodegeneration in DrosophilaD⃞V⃞

    Science.gov (United States)

    da Cruz, Alexandre Bettencourt; Schwärzel, Martin; Schulze, Sabine; Niyyati, Mahtab; Heisenberg, Martin; Kretzschmar, Doris

    2005-01-01

    The elaboration of neuronal axons and dendrites is dependent on a functional cytoskeleton. Cytoskeletal components have been shown to play a major role in the maintenance of the nervous system through adulthood, and changes in neurofilaments and microtubule-associated proteins (MAPs) have been linked to a variety of neurodegenerative diseases. Here we show that Futsch, the fly homolog of MAP1B, is involved in progressive neurodegeneration. Although Futsch is widely expressed throughout the CNS, degeneration in futscholk primarily occurs in the olfactory system and mushroom bodies. Consistent with the predicted function of Futsch, we find abnormalities in the microtubule network and defects in axonal transport. Degeneration in the adult brain is preceded by learning deficits, revealing a neuronal dysfunction before detectable levels of cell death. Futsch is negatively regulated by the Drosophila Fragile X mental retardation gene, and a mutation in this gene delays the onset of neurodegeneration in futscholk. A similar effect is obtained by expression of either fly or bovine tau, suggesting a certain degree of functional redundancy of MAPs. The futscholk mutants exhibit several characteristics of human neurodegenerative diseases, providing an opportunity to study the role of MAPs in progressive neurodegeneration within an experimentally accessible, in vivo model system. PMID:15772149

  15. Disruption of the MAP1B-related protein FUTSCH leads to changes in the neuronal cytoskeleton, axonal transport defects, and progressive neurodegeneration in Drosophila.

    Science.gov (United States)

    Bettencourt da Cruz, Alexandre; Schwärzel, Martin; Schulze, Sabine; Niyyati, Mahtab; Heisenberg, Martin; Kretzschmar, Doris

    2005-05-01

    The elaboration of neuronal axons and dendrites is dependent on a functional cytoskeleton. Cytoskeletal components have been shown to play a major role in the maintenance of the nervous system through adulthood, and changes in neurofilaments and microtubule-associated proteins (MAPs) have been linked to a variety of neurodegenerative diseases. Here we show that Futsch, the fly homolog of MAP1B, is involved in progressive neurodegeneration. Although Futsch is widely expressed throughout the CNS, degeneration in futsch(olk) primarily occurs in the olfactory system and mushroom bodies. Consistent with the predicted function of Futsch, we find abnormalities in the microtubule network and defects in axonal transport. Degeneration in the adult brain is preceded by learning deficits, revealing a neuronal dysfunction before detectable levels of cell death. Futsch is negatively regulated by the Drosophila Fragile X mental retardation gene, and a mutation in this gene delays the onset of neurodegeneration in futsch(olk). A similar effect is obtained by expression of either fly or bovine tau, suggesting a certain degree of functional redundancy of MAPs. The futsch(olk) mutants exhibit several characteristics of human neurodegenerative diseases, providing an opportunity to study the role of MAPs in progressive neurodegeneration within an experimentally accessible, in vivo model system.

  16. [Current progress in functions of axon guidance molecule Robo and underlying molecular mechanism].

    Science.gov (United States)

    Li, Xiao-Tong; Zhou, Qi-Sheng; Yu, Qi; Zhao, Xiao; Liu, Qing-Xin

    2014-06-25

    The axon guidance molecule Robo is a transmembrane protein which is conserved during evolution. Robo and its ligand, Slit, have been implicated in regulating many developmental processes, such as axon guidance, neuronal migration, tumor metastasis, angiogenesis, lung morphogenesis, kidney morphogenesis, heart morphogenesis, ovary development and gonad development. Robo function mainly depends on the binding of its Ig1 domain to the LRR-2 domain of Slit ligand. Meanwhile, Robo function is also mediated by binding to some signaling molecules, including the heparan sulfate proteoglycans (HSPGs), GTPase-activating proteins (GAPs) and tyrosine kinase Abelson. Several transcription factors, including Hox, Midline and Nkx2.9, were shown to regulate robo expression. In addition, alternative splicing and transport regulation also affect Robo function. In this review, we summarized the studies on the molecular structure, functions and molecular mechanism of Robo, which would propose a novel strategy for the research of neural development, as well as prevention and treatment of nervous system diseases and cancers.

  17. Time-Dependent Progression of Demyelination and Axonal Pathology in MP4-Induced Experimental Autoimmune Encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Johanna Prinz

    Full Text Available Multiple sclerosis (MS is an autoimmune disease of the central nervous system (CNS characterized by inflammation, demyelination and axonal pathology. Myelin basic protein/proteolipid protein (MBP-PLP fusion protein MP4 is capable of inducing chronic experimental autoimmune encephalomyelitis (EAE in susceptible mouse strains mirroring diverse histopathological and immunological hallmarks of MS. Lack of human tissue underscores the importance of animal models to study the pathology of MS.Twenty-two female C57BL/6 (B6 mice were immunized with MP4 and the clinical development of experimental autoimmune encephalomyelitis (EAE was observed. Methylene blue-stained semi-thin and ultra-thin sections of the lumbar spinal cord were assessed at the peak of acute EAE, three months (chronic EAE and six months after onset of EAE (long-term EAE. The extent of lesional area and inflammation were analyzed in semi-thin sections on a light microscopic level. The magnitude of demyelination and axonal damage were determined using electron microscopy. Emphasis was put on the ventrolateral tract (VLT of the spinal cord.B6 mice demonstrated increasing demyelination and severe axonal pathology in the course of MP4-induced EAE. Additionally, mitochondrial swelling and a decrease in the nearest neighbor neurofilament distance (NNND as early signs of axonal damage were evident with the onset of EAE. In semi-thin sections we observed the maximum of lesional area in the chronic state of EAE while inflammation was found to a similar extent in acute and chronic EAE. In contrast to the well-established myelin oligodendrocyte glycoprotein (MOG model, disease stages of MP4-induced EAE could not be distinguished by assessing the extent of parenchymal edema or the grade of inflammation.Our results complement our previous ultrastructural studies of B6 EAE models and suggest that B6 mice immunized with different antigens constitute useful instruments to study the diverse

  18. White matter involvement after TBI: Clues to axon and myelin repair capacity.

    Science.gov (United States)

    Armstrong, Regina C; Mierzwa, Amanda J; Marion, Christina M; Sullivan, Genevieve M

    2016-01-01

    Impact-acceleration forces to the head cause traumatic brain injury (TBI) with damage in white matter tracts comprised of long axons traversing the brain. White matter injury after TBI involves both traumatic axonal injury (TAI) and myelin pathology that evolves throughout the post-injury time course. The axon response to initial mechanical forces and secondary insults follows the process of Wallerian degeneration, which initiates as a potentially reversible phase of intra-axonal damage and proceeds to an irreversible phase of axon fragmentation. Distal to sites of axon disconnection, myelin sheaths remain for prolonged periods, which may activate neuroinflammation and inhibit axon regeneration. In addition to TAI, TBI can cause demyelination of intact axons. These evolving features of axon and myelin pathology also represent opportunities for repair. In experimental TBI, demyelinated axons exhibit remyelination, which can serve to both protect axons and facilitate recovery of function. Myelin remodeling may also contribute to neuroplasticity. Efficient clearance of myelin debris is a potential target to attenuate the progression of chronic pathology. During the early phase of Wallerian degeneration, interventions that prevent the transition from reversible damage to axon disconnection warrant the highest priority, based on the poor regenerative capacity of axons in the CNS. Clinical evaluation of TBI will need to address the challenge of accurately detecting the extent and stage of axon damage. Distinguishing the complex white matter changes associated with axons and myelin is necessary for interpreting advanced neuroimaging approaches and for identifying a broader range of therapeutic opportunities to improve outcome after TBI.

  19. The usefulness of diffusion tensor imaging in detection of diffuse axonal injury in a patient with head trauma

    Institute of Scientific and Technical Information of China (English)

    Hyeok Gyu Kwon; Sung Ho Jang

    2012-01-01

    Diffuse axonal injury is the predominant mechanism of injuries in patients with traumatic brain injury. Neither conventional brain computed tomography nor magnetic resonance imaging has shown sufficient sensitivity in the diagnosis of diffuse axonal injury. In the current study, we attempted to demonstrate the usefulness of diffusion tensor imaging in the detection of lesion sites of diffuse axonal injury in a patient with head trauma who had been misdiagnosed as having a stroke. A 44-year-old man fell from a height of about 2 m. Brain magnetic resonance imaging (32 months after onset) showed leukomalactic lesions in the isthmus of the corpus callosum and the left temporal lobe. He presented with mild quadriparesis, intentional tremor of both hands, and trunkal ataxia. From diffusion tensor imaging results of 33 months after traumatic brain injury onset, we found diffuse axonal injury in the right corticospinal tract (centrum semiovale, pons), both fornices (columns and crus), and both inferior cerebellar peduncles (cerebellar portions). We think that diffusion tensor imaging could be a useful tool in the detection of lesion sites of diffuse axonal injuryin patients with head trauma.

  20. Early detection of emphysema progression

    DEFF Research Database (Denmark)

    Gorbunova, Vladlena; Jacobs, Sander S A M; Lo, Pechin;

    2010-01-01

    more sensitive estimates of emphysema progression. The standard CT densitometric score of emphysema is the relative area of voxels below a threshold (RA). The RA score is a global measurement and reflects the overall emphysema progression. In this work, we propose a framework for estimation of local...... emphysema progression from longitudinal chest CT scans. First, images are registered to a common system of coordinates and then local image dissimilarities are computed in corresponding anatomical locations. Finally, the obtained dissimilarity representation is converted into a single emphysema progression...... score. We applied the proposed algorithm on 27 patients with severe emphysema with CT scans acquired five time points, at baseline, after 3, after 12, after 21 and after 24 or 30 months. The results showed consistent emphysema progression with time and the overall progression score correlates...

  1. Early detection of emphysema progression

    DEFF Research Database (Denmark)

    Gorbunova, Vladlena; Jacobs, Sander S A M; Lo, Pechin;

    2010-01-01

    Emphysema is one of the most widespread diseases in subjects with smoking history. The gold standard method for estimating the severity of emphysema is a lung function test, such as forced expiratory volume in first second (FEV1). However, several clinical studies showed that chest CT scans offer...... emphysema progression from longitudinal chest CT scans. First, images are registered to a common system of coordinates and then local image dissimilarities are computed in corresponding anatomical locations. Finally, the obtained dissimilarity representation is converted into a single emphysema progression...

  2. Early Detection of Emphysema Progression

    DEFF Research Database (Denmark)

    Gorbunova, V.; Jacobs, S.S.A.M.; Lo, Pechin Chien Pau;

    2010-01-01

    Emphysema is one of the most widespread diseases in subjects with smoking history. The gold standard method for estimating the severity of emphysema is a lung function test, such as forced expiratory volume in first second (FEV1). However, several clinical studies showed that chest CT scans offer...... emphysema progression from longitudinal chest CT scans. First, images are registered to a common system of coordinates and then local image dissimilarities are computed in corresponding anatomical locations. Finally, the obtained dissimilarity representation is converted into a single emphysema progression...

  3. Detection Progress of Selected Drugs in TLC

    Science.gov (United States)

    Pyka, Alina

    2014-01-01

    This entry describes applications of known indicators and dyes as new visualizing reagents and various visualizing systems as well as photocatalytic reactions and bioautography method for the detection of bioactive compounds including drugs and compounds isolated from herbal extracts. Broadening index, detection index, characteristics of densitometric band, modified contrast index, limit of detection, densitometric visualizing index, and linearity range of detected compounds were used for the evaluation of visualizing effects of applied visualizing reagents. It was shown that visualizing effect depends on the chemical structure of the visualizing reagent, the structure of the substance detected, and the chromatographic adsorbent applied. The usefulness of densitometry to direct detection of some drugs was also shown. Quoted papers indicate the detection progress of selected drugs investigated by thin-layer chromatography (TLC). PMID:24551853

  4. Brain-wide mapping of axonal connections: workflow for automated detection and spatial analysis of labeling in microscopic sections

    Directory of Open Access Journals (Sweden)

    Eszter Agnes ePapp

    2016-04-01

    Full Text Available Axonal tracing techniques are powerful tools for exploring the structural organization of neuronal connections. Tracers such as biotinylated dextran amine (BDA and Phaseolus vulgaris leucoagglutinin (Pha-L allow brain-wide mapping of connections through analysis of large series of histological section images. We present a workflow for efficient collection and analysis of tract-tracing datasets with a focus on newly developed modules for image processing and assignment of anatomical location to tracing data. New functionality includes automatic detection of neuronal labeling in large image series, alignment of images to a volumetric brain atlas, and analytical tools for measuring the position and extent of labeling. To evaluate the workflow, we used high-resolution microscopic images from axonal tracing experiments in which different parts of the rat primary somatosensory cortex had been injected with BDA or Pha-L. Parameters from a set of representative images were used to automate detection of labeling in image series covering the entire brain, resulting in binary maps of the distribution of labeling. For high to medium labeling densities, automatic detection was found to provide reliable results when compared to manual analysis, whereas weak labeling required manual curation for optimal detection. To identify brain regions corresponding to labeled areas, section images were aligned to the Waxholm Space (WHS atlas of the Sprague Dawley rat brain (v2 by custom-angle slicing of the MRI template to match individual sections. Based on the alignment, WHS coordinates were obtained for labeled elements and transformed to stereotaxic coordinates. The new workflow modules increase the efficiency and reliability of labeling detection in large series of images from histological sections, and enable anchoring to anatomical atlases for further spatial analysis and comparison with other data.

  5. Research progress of acute motor axonal neuropathy%急性运动轴索性神经病的研究进展

    Institute of Scientific and Technical Information of China (English)

    张刚; 秦新月

    2014-01-01

    急性运动轴索性神经病(AMAN)是吉兰-巴雷综合征(GBS)的主要亚型之一,与GBS主要亚型急性炎症性脱髓鞘性多发性神经病(AIDP)在临床表现、免疫病理生理机制、神经电生理检查、血清学抗体等方面均有不同。本文就AMAN相关研究进展做一综述。%Acute motor axonal neuropathy (AMAN) is one of the main subtypes of Guillain-Barré syndrome (GBS), which presents with acute ascending flaccid paralysis like acute inflammatory demyelinating polyneuropathy (AIDP). But AMAN can be different with AIDP in clinical manifestation, immunopathogenesis, electrophysiology, serum antibody, prognosis, et al. This review focused on the research progress of AMAN.

  6. Optic nerve atrophy and retinal nerve fibre layer thinning following optic neuritis: evidence that axonal loss is a substrate of MRI-detected atrophy.

    Science.gov (United States)

    Trip, S Anand; Schlottmann, Patricio G; Jones, Stephen J; Li, Wai-Yung; Garway-Heath, David F; Thompson, Alan J; Plant, Gordon T; Miller, David H

    2006-05-15

    Magnetic resonance imaging (MRI) measures of brain atrophy are often considered to be a marker of axonal loss in multiple sclerosis (MS) but evidence is limited. Optic neuritis is a common manifestation of MS and results in optic nerve atrophy. Retinal nerve fibre layer (RNFL) imaging is a non-invasive way of detecting axonal loss following optic neuritis. We hypothesise that if the optic nerve atrophy that develops following optic neuritis is contributed to by axonal loss, it will correlate with thinning of the RNFL. Twenty-five patients were studied at least 1 year after a single unilateral attack of optic neuritis without recurrence, with a selection bias towards incomplete recovery. They had MR quantification of optic nerve cross-sectional area and optic nerve lesion length, as well as optical coherence tomography (OCT) measurement of mean RNFL thickness and macular volume, quantitative visual testing, and visual evoked potentials (VEPs). Fifteen controls were also studied. Significant optic nerve atrophy (mean decrease 30% versus controls), RNFL thinning (mean decrease 33% versus controls), and macular volume loss occurred in patients' affected eyes when compared with patients' unaffected eyes and healthy controls. The optic nerve atrophy was correlated with the RNFL thinning, macular volume loss, visual acuity, visual field mean deviation, and whole field VEP amplitude but not latency. These findings suggest that axonal loss contributes to optic nerve atrophy following a single attack of optic neuritis. By inference, axonal loss due to other post-inflammatory brain lesions is likely to contribute to the global MRI measure of brain atrophy in multiple sclerosis.

  7. Detection of early glaucomatous progression with octopus cluster trend analysis.

    Science.gov (United States)

    Naghizadeh, Farzaneh; Holló, Gábor

    2014-01-01

    To compare the ability of Corrected Cluster Trend Analysis (CCTA) and Cluster Trend Analysis (CTA) with event analysis of Octopus visual field series to detect early glaucomatous progression. One eye of 15 healthy, 19 ocular hypertensive, 20 preperimetric, and 51 perimetric glaucoma (PG) patients were investigated with Octopus normal G2 test at 6-month intervals for 1.5 to 3 years. Progression was defined with significant worsening in any of the 10 Octopus clusters with CCTA, and event analysis criteria, respectively. With event analysis, 9 PG eyes showed localized progression and 1 diffuse mean defect (MD) worsening. With CCTA, progression was indicated in 1 normal, 1 ocular hypertensive, and 1 preperimetric glaucoma eyes due to vitreous floaters, and 28 PG eyes including all 9 eyes with localized progression with event analysis. The locations of CCTA progression matched those found with event analysis in all 9 cases. In 17 of the remaining 19 eyes, progressing clusters matched the locations that were suspicious but not definitive for progression with event analysis. In the eye with diffuse MD worsening, CTA found significant progression for 7 clusters. For global MD progression rate, eyes worsened with CCTA only did not differ from the stable eyes but had significantly smaller progression rates than the eyes progressed with event analysis (P=0.0002). In PG, Octopus CCTA and CTA are clinically useful to identify early progression and areas suspicious for early progression. However, in some eyes with no glaucomatous visual field damage, vitreous floaters may cause progression artifacts.

  8. Recent Progress in Technology of Leak detection

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H. K.; Kim, S. H.; Cho, J. W.; Joo, Y. S.; Yang, D. J

    2005-07-15

    It is very important to check for leakage points of fluids and gases on primary pressure boundary of nuclear power plants in order to maintain and manage various structures safely. Even though much investigation has been performed by a number of researchers, there are a lot of problems to detect the leakage under some areas to which people can not approach. In particular, it is certainly necessary to find the leakage point in order to repair and replace the pressure boundaries. In this report, the basic principle and application situations for the development of the leak detection system which can detect micro-leaks are introduced. As the technologies and performances of recent sensors have been improving, the application range of leak detection has been increasing steadily. Therefore the sensor technologies written in this report will be able to contribute to nuclear safety to detect the leakage rate and the leakage point with an on-line monitoring system in the near future.

  9. Calpain Inhibition Reduces Axolemmal Leakage in Traumatic Axonal Injury

    Directory of Open Access Journals (Sweden)

    János Sándor

    2009-12-01

    Full Text Available Calcium-induced, calpain-mediated proteolysis (CMSP has recently been implicated to the pathogenesis of diffuse (traumatic axonal injury (TAI. Some studies suggested that subaxolemmal CMSP may contribute to axolemmal permeability (AP alterations observed in TAI. Seeking direct evidence for this premise we investigated whether subaxolemmal CMSP may contribute to axolemmal permeability alterations (APA and pre-injury calpain-inhibition could reduce AP in a rat model of TAI. Horseradish peroxidase (HRP, a tracer that accumulates in axons with APA was administered one hour prior to injury into the lateral ventricle; 30 min preinjury a single tail vein bolus injection of 30 mg/kg MDL-28170 (a calpain inhibitor or its vehicle was applied in Wistar rats exposed to impact acceleration brain injury. Histological detection of traumatically injured axonal segments accumulating HRP and statistical analysis revealed that pre-injury administration of the calpain inhibitor MDL-28170 significantly reduced the average length of HRP-labeled axonal segments. The axono-protective effect of pre-injury calpain inhibition recently demonstrated with classical immunohistochemical markers of TAI was further corroborated in this experiment; significant reduction of the length of labeled axons in the drug-treated rats implicate CMSP in the progression of altered AP in TAI.

  10. Novel MEA Platform with PDMS Microtunnels Enables Detection of Action Potential Propagation from Isolated Axons in Culture

    Science.gov (United States)

    Dworak, Bradley J.; Wheeler, Bruce C.

    2008-01-01

    This study investigated a novel multi-electrode-array (MEA) design capable of long-term and highly selective recordings of axonal signals using PDMS microtunnels. We successfully grew neurons in culture so that only axons extended through narrow (10 µm wide by 3 µm high) and long (750 µm) microtunnels under which multiple electrodes were integrated. This permitted the recording of relatively large (up to 200 µV) electrical signals, including the propagation speed and direction of these travelling action potentials. To further demonstrate the operation of the device as a diagnostic tool for drug screening assays, the drug mepivacaine was applied in washout experiments. Here, we identified significant changes in mean spiking rate and conduction velocity. PMID:19156289

  11. Human Genetic Disorders of Axon Guidance

    Science.gov (United States)

    Engle, Elizabeth C.

    2010-01-01

    This article reviews symptoms and signs of aberrant axon connectivity in humans, and summarizes major human genetic disorders that result, or have been proposed to result, from defective axon guidance. These include corpus callosum agenesis, L1 syndrome, Joubert syndrome and related disorders, horizontal gaze palsy with progressive scoliosis, Kallmann syndrome, albinism, congenital fibrosis of the extraocular muscles type 1, Duane retraction syndrome, and pontine tegmental cap dysplasia. Genes mutated in these disorders can encode axon growth cone ligands and receptors, downstream signaling molecules, and axon transport motors, as well as proteins without currently recognized roles in axon guidance. Advances in neuroimaging and genetic techniques have the potential to rapidly expand this field, and it is feasible that axon guidance disorders will soon be recognized as a new and significant category of human neurodevelopmental disorders. PMID:20300212

  12. Progress in LIBS for Land Mine Detection

    Science.gov (United States)

    2010-04-01

    a century ago. A handheld metal detector is used to identify a subsurface anomaly that may be a buried land mine. In humanitarian demining, meter...wide lanes are searched for anomalies by swinging a metal detector back and forth just above the ground surface. When the metal detector receives a...postoperational land mine clearance, although the new AN/PSS14 handheld mine detection system that combines a metal detector with a ground- penetrating

  13. Uncovering sensory axonal dysfunction in asymptomatic type 2 diabetic neuropathy

    Science.gov (United States)

    Sung, Jia-Ying; Tani, Jowy; Chang, Tsui-San; Lin, Cindy Shin-Yi

    2017-01-01

    This study investigated sensory and motor nerve excitability properties to elucidate the development of diabetic neuropathy. A total of 109 type 2 diabetes patients were recruited, and 106 were analyzed. According to neuropathy severity, patients were categorized into G0, G1, and G2+3 groups using the total neuropathy score-reduced (TNSr). Patients in the G0 group were asymptomatic and had a TNSr score of 0. Sensory and motor nerve excitability data from diabetic patients were compared with data from 33 healthy controls. Clinical assessment, nerve conduction studies, and sensory and motor nerve excitability testing data were analyzed to determine axonal dysfunction in diabetic neuropathy. In the G0 group, sensory excitability testing revealed increased stimulus for the 50% sensory nerve action potential (P<0.05), shortened strength-duration time constant (P<0.01), increased superexcitability (P<0.01), decreased subexcitability (P<0.05), decreased accommodation to depolarizing current (P<0.01), and a trend of decreased accommodation to hyperpolarizing current in threshold electrotonus. All the changes progressed into G1 (TNSr 1–8) and G2+3 (TNSr 9–24) groups. In contrast, motor excitability only had significantly increased stimulus for the 50% compound motor nerve action potential (P<0.01) in the G0 group. This study revealed that the development of axonal dysfunction in sensory axons occurred prior to and in a different fashion from motor axons. Additionally, sensory nerve excitability tests can detect axonal dysfunction even in asymptomatic patients. These insights further our understanding of diabetic neuropathy and enable the early detection of sensory axonal abnormalities, which may provide a basis for neuroprotective therapeutic approaches. PMID:28182728

  14. Glaucoma progression detection using nonlocal Markov random field prior.

    Science.gov (United States)

    Belghith, Akram; Bowd, Christopher; Medeiros, Felipe A; Balasubramanian, Madhusudhanan; Weinreb, Robert N; Zangwill, Linda M

    2014-10-01

    Glaucoma is neurodegenerative disease characterized by distinctive changes in the optic nerve head and visual field. Without treatment, glaucoma can lead to permanent blindness. Therefore, monitoring glaucoma progression is important to detect uncontrolled disease and the possible need for therapy advancement. In this context, three-dimensional (3-D) spectral domain optical coherence tomography (SD-OCT) has been commonly used in the diagnosis and management of glaucoma patients. We present a new framework for detection of glaucoma progression using 3-D SD-OCT images. In contrast to previous works that use the retinal nerve fiber layer thickness measurement provided by commercially available instruments, we consider the whole 3-D volume for change detection. To account for the spatial voxel dependency, we propose the use of the Markov random field (MRF) model as a prior for the change detection map. In order to improve the robustness of the proposed approach, a nonlocal strategy was adopted to define the MRF energy function. To accommodate the presence of false-positive detection, we used a fuzzy logic approach to classify a 3-D SD-OCT image into a "non-progressing" or "progressing" glaucoma class. We compared the diagnostic performance of the proposed framework to the existing methods of progression detection.

  15. Is traumatic axonal injury (AI) associated with an early microglial activation? Application of a double-labeling technique for simultaneous detection of microglia and AI.

    Science.gov (United States)

    Oehmichen, M; Theuerkauf, I; Meissner, C

    1999-05-01

    The aim of the present study was to determine whether axonal injury (AI) induces a microglial reaction within 15 days after brain trauma. In 40 selected cases of confirmed AI, the topographical relation of AI and microglial reaction was assessed using an immunohistochemical double-labeling technique for simultaneous demonstration of AI using beta-amyloid precursor protein (beta-APP) antibody and of microglia using CD68 antibody. Although traumatic injury was usually followed by a moderate early diffuse rise in the number of CD68-reactive cells in the white matter, increases in macrophages in areas of AI accumulation were only sporadic and did not occur until after 4 days. At survival intervals of 5-15 days a moderate microglial reaction in regions of beta-APP-positive injured axons was detected, at maximum, in half of the case material. During this interval AI-associated satellitosis-like clusters or stars described by other authors after a survival time of more than 7 weeks were an isolated phenomenon. The prolonged microglial reaction as well as the reduction of beta-APP-positive AI during longer survival periods supports the hypothesis that AI is not primarily chemotactically attractive and that the damage to a portion of beta-APPstained axons may be partly reversible. Most cases clearly require a prolonged interval of more than 15 days before initiation of the final scavenger reaction. For forensic purposes the increase in the number of microglial cells within the region of AI accumulation after a survival time of more than 5 days and the multiple and distinct demonstration of star-like microglial reactions within the white matter after survival times exceeding 7 weeks may provide valuable postmortem information on the timing of a traumatic event.

  16. Mechanisms of axon degeneration: from development to disease.

    Science.gov (United States)

    Saxena, Smita; Caroni, Pico

    2007-10-01

    Axon degeneration is an active, tightly controlled and versatile process of axon segment self-destruction. Although not involving cell death, it resembles apoptosis in its logics. It involves three distinct steps: induction of competence in specific neurons, triggering of degeneration at defined axon segments of competent neurons, and rapid fragmentation and removal of the segments. The mechanisms that initiate degeneration are specific to individual settings, but the final pathway of pruning is shared; it involves microtubule disassembly, axon swellings, axon fragmentation, and removal of the remnants by locally recruited phagocytes. The tight regulatory properties of axon degeneration distinguish it from passive loss phenomena, and confer significance to processes that involve it. Axon degeneration has prominent roles in development, upon lesions and in disease. In development, it couples the progressive specification of neurons and circuits to the removal of defined axon branches. Competence might involve transcriptional switches, and local triggering can involve axon guidance molecules and synaptic activity patterns. Lesion-induced Wallerian degeneration is inhibited in the presence of Wld(S) fusion protein in neurons; it involves early local, and later, distal degeneration. It has recently become clear that like in other settings, axon degeneration in disease is a rapid and specific process, which should not be confused with a variety of disease-related pathologies. Elucidating the specific mechanisms that initiate axon degeneration should open up new avenues to investigate principles of circuit assembly and plasticity, to uncover mechanisms of disease progression, and to identify ways of protecting synapses and axons in disease.

  17. Remote sensing and vegetation stress detection - Problems and progress

    Science.gov (United States)

    Duggin, M. J.; Whitehead, V.

    1983-01-01

    Although considerable progress has been made in applying remote sensing technology to vegetation monitoring, considerable problems still exist in the improvement of techniques for crop type discrimination, stress detection on a large scale, and stress quantification. In this paper, some of the problems remaining in the operational use of remote sensing technology for vegetation stress detection are discussed, and directions in which some of these problems might be solved are proposed.

  18. Progressive Loss of Retinal Ganglion Cells and Axons in Nonoptic Neuritis Eyes in Multiple Sclerosis: A Longitudinal Optical Coherence Tomography Study.

    Science.gov (United States)

    Graham, Elizabeth C; You, Yuyi; Yiannikas, Con; Garrick, Raymond; Parratt, John; Barnett, Michael H; Klistorner, Alexander

    2016-04-01

    To examine the rate of retinal ganglion cell (RGC) layer and retinal nerve fiber layer (RNFL) changes in nonoptic neuritis (NON) eyes of relapsing remitting multiple sclerosis (RRMS) patients, and to find a specific imaging parameter useful for identifying disease progression. Forty-five consecutive RRMS patients and 20 age- and sex-matched healthy subjects were enrolled. All patients were followed up for 3 years with annual optical coherence tomography (OCT) scans, which included a peripapillary ring scan protocol for RNFL analysis and a macular radial star-like scan to obtain RGC/inner plexiform layer (IPL) thickness measures. Healthy controls were scanned twice, 3 years apart. Retinal ganglion cell/inner plexiform layer and temporal RNFL (tRNFL) demonstrated highly significant thinning (P < 0.01), but all nasal segments and global RNFL (gRNFL) were not significantly different from normal controls. While receiver operating characteristics (ROC) analysis showed no advantage of RGC/IPL over tRNFL in cross-sectional detection of thinning, cut-off point based of fifth percentile in healthy controls demonstrated higher rate of abnormality for RGC/IPL. There was a significant progressive loss of RGC/IPL and tRNFL during the follow-up period. The largest thickness reduction was observed in tRNFL. ROC analysis demonstrated that tRNFL provided better sensitivity/specificity for detecting change over time than RGC/IPL (area under the curve [AUC] 0.78 vs. 0.52), which was confirmed by higher detection rate when 95th percentile of progression in healthy controls was used as a cut-off. This study confirmed significant thinning of RGC/IPL and tRNFL in NON eyes of RRMS patients. Progressive losses were more apparent on tRNFL, while RGC/IPL showed less change over the follow-up period.

  19. Computing along the axon

    Institute of Scientific and Technical Information of China (English)

    Chen Haiming; Tseren-Onolt Ishdorj; Gheorghe Pǎun

    2007-01-01

    A special form of spiking neural P systems, called axon P systems, corresponding to the activity of Ranvier nodes of neuron axon, is considered and a class of SN-like P systems where the computation is done along the axon is introduced and their language generative power is investigated.

  20. Multiuser detection and independent component analysis-Progress and perspective

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The latest progress in the multiuser detection and independent component analysis (ICA) is reviewed systematically. Then two novel classes of multiuser detection methods based on ICA algorithms and feedforward neural networks are proposed. Theoretical analysis and computer simulation show that ICA algorithms are effective to detect multiuser signals in code-division multiple-access (CDMA) system. The performances of these methods are not identical entirely in various channels, but all of them are robust, efficient, fast and suitable for real-time implementations.

  1. Human Genetic Disorders of Axon Guidance

    OpenAIRE

    Engle, Elizabeth C

    2010-01-01

    This article reviews symptoms and signs of aberrant axon connectivity in humans, and summarizes major human genetic disorders that result, or have been proposed to result, from defective axon guidance. These include corpus callosum agenesis, L1 syndrome, Joubert syndrome and related disorders, horizontal gaze palsy with progressive scoliosis, Kallmann syndrome, albinism, congenital fibrosis of the extraocular muscles type 1, Duane retraction syndrome, and pontine tegmental cap dysplasia. Gene...

  2. Event-based progression detection strategies using scanning laser polarimetry images of the human retina

    NARCIS (Netherlands)

    Vermeer, K.A.; Lo, B.; Zhou, Q.; Vos, F.M.; Vossepoel, A.M.; Lemij, H.G.

    2011-01-01

    Monitoring glaucoma patients and ensuring optimal treatment requires accurate and precise detection of progression. Many glaucomatous progression detection strategies may be formulated for Scanning Laser Polarimetry (SLP) data of the local nerve fiber thickness. In this paper, several strategies, al

  3. Event-based progression detection strategies using scanning laser polarimetry images of the human retina

    NARCIS (Netherlands)

    Vermeer, K.A.; Lo, B.; Zhou, Q.; Vos, F.M.; Vossepoel, A.M.; Lemij, H.G.

    2011-01-01

    Monitoring glaucoma patients and ensuring optimal treatment requires accurate and precise detection of progression. Many glaucomatous progression detection strategies may be formulated for Scanning Laser Polarimetry (SLP) data of the local nerve fiber thickness. In this paper, several strategies, al

  4. A unified cell biological perspective on axon-myelin injury.

    Science.gov (United States)

    Simons, Mikael; Misgeld, Thomas; Kerschensteiner, Martin

    2014-08-04

    Demyelination and axon loss are pathological hallmarks of the neuroinflammatory disorder multiple sclerosis (MS). Although we have an increasingly detailed understanding of how immune cells can damage axons and myelin individually, we lack a unified view of how the axon-myelin unit as a whole is affected by immune-mediated attack. In this review, we propose that as a result of the tight cell biological interconnection of axons and myelin, damage to either can spread, which might convert a local inflammatory disease process early in MS into the global progressive disorder seen during later stages. This mode of spreading could also apply to other neurological disorders.

  5. Axonal GABAA receptors.

    Science.gov (United States)

    Trigo, Federico F; Marty, Alain; Stell, Brandon M

    2008-09-01

    Type A GABA receptors (GABA(A)Rs) are well established as the main inhibitory receptors in the mature mammalian forebrain. In recent years, evidence has accumulated showing that GABA(A)Rs are prevalent not only in the somatodendritic compartment of CNS neurons, but also in their axonal compartment. Evidence for axonal GABA(A)Rs includes new immunohistochemical and immunogold data: direct recording from single axonal terminals; and effects of local applications of GABA(A)R modulators on action potential generation, on axonal calcium signalling, and on neurotransmitter release. Strikingly, whereas presynaptic GABA(A)Rs have long been considered inhibitory, the new studies in the mammalian brain mostly indicate an excitatory action. Depending on the neuron that is under study, axonal GABA(A)Rs can be activated by ambient GABA, by GABA spillover, or by an autocrine action, to increase either action potential firing and/or transmitter release. In certain neurons, the excitatory effects of axonal GABA(A)Rs persist into adulthood. Altogether, axonal GABA(A)Rs appear as potent neuronal modulators of the mammalian CNS.

  6. Elastomeric fluorescent POF for partial discharge detection: recent progress

    Science.gov (United States)

    Siebler, Daniel; Hohberg, Michaela; Rohwetter, Philipp; Brusenbach, Roy; Plath, Ronald

    2015-09-01

    We present recent progress in our development of fibre-optic sensors for the detection of partial discharge (PD) in silicone cable accessories, based on detecting related low-level optical emission. We experimentally show that the sensitive optical detection of PD can dramatically enhance the performance of conventional electrical PD measurement in electromagnetically noisy environments, and that it can yield high sensitivity and specificity even when no synchronous electrical PD measurement is conducted. This is demonstrated using a real-scale model of a high voltage cable accessory with a surface-attached conventional thermoplastic fluorescent polymer optical fibre (F-POF) sensor. In order to increase light collection efficiency, as a prerequisite for a commercially competitive implementation using cost-efficient detectors, sensing fibres will have to be integrated into the silicone rubber insulation, close to the potential origin of PD-induced damage. This is the rationale for our efforts to develop elastomeric fluorescent sensing fibres, tailored to the requirements of the application. We discuss specific challenges to be tackled and report on the successful implementation of all-silicone rubber fluorescent POF, to our best knowledge for the first time.

  7. Axons take a dive

    Science.gov (United States)

    Tong, Cheuk Ka; Cebrián-Silla, Arantxa; Paredes, Mercedes F; Huang, Eric J; García-Verdugo, Jose Manuel; Alvarez-Buylla, Arturo

    2015-01-01

    In the walls of the lateral ventricles of the adult mammalian brain, neural stem cells (NSCs) and ependymal (E1) cells share the apical surface of the ventricular–subventricular zone (V–SVZ). In a recent article, we show that supraependymal serotonergic (5HT) axons originating from the raphe nuclei in mice form an extensive plexus on the walls of the lateral ventricles where they contact E1 cells and NSCs. Here we further characterize the contacts between 5HT supraependymal axons and E1 cells in mice, and show that suprependymal axons tightly associated to E1 cells are also present in the walls of the human lateral ventricles. These observations raise interesting questions about the function of supraependymal axons in the regulation of E1 cells. PMID:26413556

  8. Axonal bleb recording

    Institute of Scientific and Technical Information of China (English)

    Wenqin Hu; Yousheng Shu

    2012-01-01

    Patch-clamp recording requires direct accessibility of the cell membrane to patch pipettes and allows the investigation of ion channel properties and functions in specific cellular compartments.The cell body and relatively thick dendrites are the most accessible compartments of a neuron,due to their large diameters and therefore great membrane surface areas.However,axons are normally inaccessible to patch pipettes because of their thin structure; thus studies of axon physiology have long been hampered by the lack of axon recording methods.Recently,a new method of patchclamp recording has been developed,enabling direct and tight-seal recording from cortical axons.These recordings are performed at the enlarged structure (axonal bleb) formed at the cut end of an axon after slicing procedures.This method has facilitated studies of the mechanisms underlying the generation and propagation of the main output signal,the action potential,and led to the finding that cortical neurons communicate not only in action potential-mediated digital mode but also in membrane potential-dependent analog mode.

  9. Progressive motor deficit is mediated by the denervation of neuromuscular junctions and axonal degeneration in transgenic mice expressing mutant (P301S) tau protein

    NARCIS (Netherlands)

    Yin, Zhuoran; Valkenburg, Femke; Hornix, Betty E; Mantingh-Otter, Ietje; Zhou, Xingdong; Mari, Muriel; Reggiori, Fulvio; Van Dam, Debby; Eggen, Bart J L; De Deyn, Peter P; Boddeke, Erik

    2017-01-01

    Tauopathies include a variety of neurodegenerative diseases associated with the pathological aggregation of hyperphosphorylated tau, resulting in progressive cognitive decline and motor impairment. The underlying mechanism for motor deficits related to tauopathy is not yet fully understood. Here, we

  10. Progressive motor deficit is mediated by the denervation of neuromuscular junctions and axonal degeneration in transgenic mice expressing mutant (P301S) tau protein

    NARCIS (Netherlands)

    Yin, Zhuoran; Valkenburg, Femke; Hornix, Betty E; Mantingh-Otter, Ietje; Zhou, Xingdong; Mari, Muriel; Reggiori, Fulvio; Van Dam, Debby; Eggen, Bart J L; De Deyn, Peter P; Boddeke, Erik

    2017-01-01

    Tauopathies include a variety of neurodegenerative diseases associated with the pathological aggregation of hyperphosphorylated tau, resulting in progressive cognitive decline and motor impairment. The underlying mechanism for motor deficits related to tauopathy is not yet fully understood. Here, we

  11. The recombination activation gene 1 (Rag1 is expressed in a subset of zebrafish olfactory neurons but is not essential for axon targeting or amino acid detection

    Directory of Open Access Journals (Sweden)

    Friedrich Rainer W

    2005-07-01

    Full Text Available Abstract Background Rag1 (Recombination activation gene-1 mediates genomic rearrangement and is essential for adaptive immunity in vertebrates. This gene is also expressed in the olfactory epithelium, but its function there is unknown. Results Using a transgenic zebrafish line and immunofluorescence, we show that Rag1 is expressed and translated in a subset of olfactory sensory neurons (OSNs. Neurons expressing GFP under the Rag1 promoter project their axons to the lateral region of the olfactory bulb only, and axons with the highest levels of GFP terminate in a single glomerular structure. A subset of GFP-expressing neurons contain Gαo, a marker for microvillous neurons. None of the GFP-positive neurons express Gαolf, Gαq or the olfactory marker protein OMP. Depletion of RAG1, by morpholino-mediated knockdown or mutation, did not affect axon targeting. Calcium imaging indicates that amino acids evoke chemotopically organized glomerular activity patterns in a Rag1 mutant. Conclusion Rag1 expression is restricted to a subpopulation of zebrafish olfactory neurons projecting to the lateral olfactory bulb. RAG1 catalytic activity is not essential for axon targeting, nor is it likely to be required for regulation of odorant receptor expression or the response of OSNs to amino acids.

  12. Present status of studies on diffuse axonal injury

    Institute of Scientific and Technical Information of China (English)

    Jie Ma; Chonggong Zhang; Yi Li

    2006-01-01

    OBJECTIVE: To explain the present status of study on diffuse axonal injury,investigate its pathogenesis and pathophysiological changes ,and suggest principles for the diagnosis and treatment.DATA SOURCES: Articles about diffuse axonal injury published in English from January 1994 to October 2006 were searched in Pubmed database using the keywords of "diffuse axonal injury,pathogenesis,therapy".STUDY SELECTION: The collected articles were primarily screened to select those associated with diffuse axonal injury,the obviously irrelated articles were excluded,and the rest ones were retrieved manually,and the full-texes were searched.DATA EXTRACTION: Totally 98 articles were collected,41 of them were involved.and the other 57 were excluded.DATA SYNTHESIS: Diffuse axonal injury is mainly caused by acceleratory or deceleratory injury,and its pathophysiological change is a progressive duration,local axonal injury finally develops to axonal breakage,mainly includes inactivation of natrium channel,intracellular Ca2+ overloading,activation of calcium protease,caspase etc.,and mitochondrial injury.At present,there is still lack of effective therapeutic methods for diffuse axonal injury,so we should actively explore more effective methods to relieve the pain of patients and improve their prognosis.CONCLUSION: At present,diffuse axonal injury has not attracted enough attentions in China,the mechanisms for its diagnosis and attack are still unclear,and the treatments are mainly aiming at the symptoms.

  13. How Schwann Cells Sort Axons: New Concepts.

    Science.gov (United States)

    Feltri, M Laura; Poitelon, Yannick; Previtali, Stefano Carlo

    2016-06-01

    Peripheral nerves contain large myelinated and small unmyelinated (Remak) fibers that perform different functions. The choice to myelinate or not is dictated to Schwann cells by the axon itself, based on the amount of neuregulin I-type III exposed on its membrane. Peripheral axons are more important in determining the final myelination fate than central axons, and the implications for this difference in Schwann cells and oligodendrocytes are discussed. Interestingly, this choice is reversible during pathology, accounting for the remarkable plasticity of Schwann cells, and contributing to the regenerative potential of the peripheral nervous system. Radial sorting is the process by which Schwann cells choose larger axons to myelinate during development. This crucial morphogenetic step is a prerequisite for myelination and for differentiation of Remak fibers, and is arrested in human diseases due to mutations in genes coding for extracellular matrix and linkage molecules. In this review we will summarize progresses made in the last years by a flurry of reverse genetic experiments in mice and fish. This work revealed novel molecules that control radial sorting, and contributed unexpected ideas to our understanding of the cellular and molecular mechanisms that control radial sorting of axons.

  14. Atomic Force Microscopy Reveals Important Differences in Axonal Resistance to Injury

    Science.gov (United States)

    Magdesian, Margaret H.; Sanchez, Fernando S.; Lopez, Monserratt; Thostrup, Peter; Durisic, Nela; Belkaid, Wiam; Liazoghli, Dalinda; Grütter, Peter; Colman, David R.

    2012-01-01

    Axonal degeneration after traumatic brain injury and nerve compression is considered a common underlying cause of temporary as well as permanent disability. Because a proper functioning of neural network requires phase coherence of all components, even subtle changes in circuitry may lead to network failure. However, it is still not possible to determine which axons will recover or degenerate after injury. Several groups have studied the pressure threshold for axonal injury within a nerve, but difficulty accessing the injured region; insufficient imaging methods and the extremely small dimensions involved have prevented the evaluation of the response of individual axons to injury. We combined microfluidics with atomic force microscopy and in vivo imaging to estimate the threshold force required to 1), uncouple axonal transport without impairing axonal survival, and 2), compromise axonal survival in both individual and bundled axons. We found that rat hippocampal axons completely recover axonal transport with no detectable axonal loss when compressed with pressures up to 65 ± 30 Pa for 10 min, while dorsal root ganglia axons can resist to pressures up to 540 ± 220 Pa. We investigated the reasons for the differential susceptibility of hippocampal and DRG axons to mechanical injury and estimated the elasticity of live axons. We found that dorsal root ganglia axons have a 20% lower elastic modulus than hippocampal axons. Our results emphasize the importance of the integrity of the axonal cytoskeleton in deciding the axonal fate after damage and open up new avenues to improve injury diagnosis and to identify ways to protect axons. PMID:22947856

  15. The Progression and Early detection of Subclinical Atherosclerosis (PESA) study

    DEFF Research Database (Denmark)

    Fernández-Ortiz, Antonio; Jiménez-Borreguero, L Jesús; Peñalvo, José L

    2013-01-01

    The presence of subclinical atherosclerosis is a likely predictor of cardiovascular events; however, factors associated with the early stages and progression of atherosclerosis are poorly defined.......The presence of subclinical atherosclerosis is a likely predictor of cardiovascular events; however, factors associated with the early stages and progression of atherosclerosis are poorly defined....

  16. Fast axonal transport in early experimental disc edema.

    Science.gov (United States)

    Radius, R L; Anderson, D R

    1980-02-01

    Previous work has documented impairment of slow axonal transport in papilledema, but the abnormalities in rapid transport were less certain. Therefore fast axonal transport was studied in 19 primate eyes subjected to ocular hypotony for 6 to 72 hr following surgical fistulization of the anterior chamber. Mild, irregular alterations in fast axonal transport were detected only after nerve head swelling was apparent. These changes in fast transport mechanisms in cases of nerve head edema occur after, and may be secondary to, impaired slow axoplasmic flow and the resultant axonal swelling. Furthermore, since prolonged complete interruption of axonal transport is theoretically inconsistent with the continued normal neuron function characteristic of papilledema and, moreover, since previous data shows a "slowdown" rather than complete blockade of axonal transport in papilledema, it is likely that in eyes with papilledema there does not exist a complete flock of axonal transport. Therefore we hypothesize that the swelling results when slow axoplasmic flow is locally slowed down but not totally stopped, with the axon distention producing secondary mild, irregular changes in fast axonal transport.

  17. White-matter astrocytes, axonal energy metabolism, and axonal degeneration in multiple sclerosis

    NARCIS (Netherlands)

    Cambron, Melissa; D'haeseleer, Miguel; Laureys, Guy; Clinckers, Ralph; Debruyne, Jan; De Keyser, Jacques

    2012-01-01

    In patients with multiple sclerosis (MS), a diffuse axonal degeneration occurring throughout the white matter of the central nervous system causes progressive neurologic disability. The underlying mechanism is unclear. This review describes a number of pathways by which dysfunctional astrocytes in M

  18. Glia to axon RNA transfer.

    Science.gov (United States)

    Sotelo, José Roberto; Canclini, Lucía; Kun, Alejandra; Sotelo-Silveira, José Roberto; Calliari, Aldo; Cal, Karina; Bresque, Mariana; Dipaolo, Andrés; Farias, Joaquina; Mercer, John A

    2014-03-01

    The existence of RNA in axons has been a matter of dispute for decades. Evidence for RNA and ribosomes has now accumulated to a point at which it is difficult to question, much of the disputes turned to the origin of these axonal RNAs. In this review, we focus on studies addressing the origin of axonal RNAs and ribosomes. The neuronal soma as the source of most axonal RNAs has been demonstrated and is indisputable. However, the surrounding glial cells may be a supplemental source of axonal RNAs, a matter scarcely investigated in the literature. Here, we review the few papers that have demonstrated that glial-to-axon RNA transfer is not only feasible, but likely. We describe this process in both invertebrate axons and vertebrate axons. Schwann cell to axon ribosomes transfer was conclusively demonstrated (Court et al. [2008]: J. Neurosci 28:11024-11029; Court et al. [2011]: Glia 59:1529-1539). However, mRNA transfer still remains to be demonstrated in a conclusive way. The intercellular transport of mRNA has interesting implications, particularly with respect to the integration of glial and axonal function. This evolving field is likely to impact our understanding of the cell biology of the axon in both normal and pathological conditions. Most importantly, if the synthesis of proteins in the axon can be controlled by interacting glia, the possibilities for clinical interventions in injury and neurodegeneration are greatly increased.

  19. Axonal autophagy during regeneration of the rat sciatic nerve

    Institute of Scientific and Technical Information of China (English)

    Kangrong Lu; Zhongxian Piao; Zhenxi Liu; Weiwang Gu; Wanshan Wang; Nngjie Piao

    2008-01-01

    BACKGROUND: The removal of degenerated axonal debris during Wallerian degeneration is very important for nerve regeneration. However, the mechanism by which debris is removed is not been completely understood. Considerable controversy remains as to the clearance pathway and cells that are involved. OBJECTIVE: To investigate axonal autophagy during removal of degenerated axonal debris by transecting the sciatic nerve in a rat Wallerian degeneration model.DESIGN, TIME AND SETTING: Experimental neuropathological analysis. The experiment was conducted at the Laboratory Animal Service Center of the Southern Medical University between January and June 2005. MATERIALS: Fifty-four adult, Wistar rats of either sex, weighing 180-250 g, were obtained from the Laboratory Animal Service Center of the Southern Medical University. Animals were randomly divided into nine groups of six rats. METHODS: Wallerian degeneration was induced by transecting the rat sciatic nerve, and tissue samples from the distal stump were obtained 0.2, 0.4, 1, 2, 3, 4, 7, 10, and 15 days post-transection. Ultrathin sections were prepared for electron microscopy to study ultrastructure and enzyme cytochemistry staining. MAIN OUTCOME MEASURES: Ultrastructure (axon body, autophagic body, and cystoskeleton) of axons and myelin sheaths observed with electron microscopy; acidic phosphatase activity detected by Gomori staining using electron microscopy. RESULTS: The major changes of degenerating axons after transection were axoplasm swelling and separation of axons from their myelin sheath between five hours and two days post-transection. At four days post-transection, the axoplasm condensed and axons were completely separated from the myelin sheath, forming dissociative axon bodies. Vacuoles of different sizes formed in axons during the early phase after lesion. Larger dissociative axon bodies were formed when the axons were completely separated from the myelin sheath during a late phase. The axolemma

  20. Axon guidance and neuronal migration research in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Proper migration of neuronal somas and axonal growth cones to designated locations in the developing brain is essential for the assembly of functional neuronal circuits.Rapid progress in research of axon guidance and neuronal migration has been made in the last twenty years.Chinese researchers began their exploration in this field ten years ago and have made significant contributions in clarifying the signal transduction of axon guidance and neuronal migration.Several unique experimental approaches,including the migration assay of single isolated neurons in response to locally delivered guidance cues,have been developed by Chinese neuroscientists to investigate the molecular machinery underlying these guidance events.

  1. Learning from data: recognizing glaucomatous defect patterns and detecting progression from visual field measurements.

    Science.gov (United States)

    Yousefi, Siamak; Goldbaum, Michael H; Balasubramanian, Madhusudhanan; Medeiros, Felipe A; Zangwill, Linda M; Liebmann, Jeffrey M; Girkin, Christopher A; Weinreb, Robert N; Bowd, Christopher

    2014-07-01

    A hierarchical approach to learn from visual field data was adopted to identify glaucomatous visual field defect patterns and to detect glaucomatous progression. The analysis pipeline included three stages, namely, clustering, glaucoma boundary limit detection, and glaucoma progression detection testing. First, cross-sectional visual field tests collected from each subject were clustered using a mixture of Gaussians and model parameters were estimated using expectation maximization. The visual field clusters were further estimated to recognize glaucomatous visual field defect patterns by decomposing each cluster into several axes. The glaucoma visual field defect patterns along each axis then were identified. To derive a definition of progression, the longitudinal visual fields of stable glaucoma eyes on the abnormal cluster axes were projected and the slope was approximated using linear regression (LR) to determine the confidence limit of each axis. For glaucoma progression detection, the longitudinal visual fields of each eye on the abnormal cluster axes were projected and the slope was approximated by LR. Progression was assigned if the progression rate was greater than the boundary limit of the stable eyes; otherwise, stability was assumed. The proposed method was compared to a recently developed progression detection method and to clinically available glaucoma progression detection software. The clinical accuracy of the proposed pipeline was as good as or better than the currently available methods.

  2. The corpus callosum in primates: processing speed of axons and the evolution of hemispheric asymmetry

    Science.gov (United States)

    Phillips, Kimberley A.; Stimpson, Cheryl D.; Smaers, Jeroen B.; Raghanti, Mary Ann; Jacobs, Bob; Popratiloff, Anastas; Hof, Patrick R.; Sherwood, Chet C.

    2015-01-01

    Interhemispheric communication may be constrained as brain size increases because of transmission delays in action potentials over the length of axons. Although one might expect larger brains to have progressively thicker axons to compensate, spatial packing is a limiting factor. Axon size distributions within the primate corpus callosum (CC) may provide insights into how these demands affect conduction velocity. We used electron microscopy to explore phylogenetic variation in myelinated axon density and diameter of the CC from 14 different anthropoid primate species, including humans. The majority of axons were less than 1 µm in diameter across all species, indicating that conduction velocity for most interhemispheric communication is relatively constant regardless of brain size. The largest axons within the upper 95th percentile scaled with a progressively higher exponent than the median axons towards the posterior region of the CC. While brain mass among the primates in our analysis varied by 97-fold, estimates of the fastest cross-brain conduction times, as conveyed by axons at the 95th percentile, varied within a relatively narrow range between 3 and 9 ms across species, whereas cross-brain conduction times for the median axon diameters differed more substantially between 11 and 38 ms. Nonetheless, for both size classes of axons, an increase in diameter does not entirely compensate for the delay in interhemispheric transmission time that accompanies larger brain size. Such biophysical constraints on the processing speed of axons conveyed by the CC may play an important role in the evolution of hemispheric asymmetry. PMID:26511047

  3. [Progress on detection and analysis method of endocrine disrupting compounds].

    Science.gov (United States)

    Du, Hui-Fang; Yan, Hui-Fang

    2005-07-01

    EDCs are new generation of environmental pollutions which are globally concerned. They may cause adverse effect mainly to the endocrine system and nervous system, etc. To assess the EDCs' hazard to the health exactly, we should know about the distribution and level of EDCs in the environment. In this paper, the technique of pretreatment in different matrices, the method of detection and analysis about EDCs were reviewed, and the future's prospect on the study of detection and analysis method were talked about also.

  4. Axonal diameter and density estimated with 7-Tesla hybrid diffusion imaging in transgenic Alzheimer rats

    Science.gov (United States)

    Daianu, Madelaine; Jacobs, Russell E.; Town, Terrence; Thompson, Paul M.

    2016-03-01

    Diffusion-weighted MR imaging (DWI) is a powerful tool to study brain tissue microstructure. DWI is sensitive to subtle changes in the white matter (WM), and can provide insight into abnormal brain changes in diseases such as Alzheimer's disease (AD). In this study, we used 7-Tesla hybrid diffusion imaging (HYDI) to scan 3 transgenic rats (line TgF344-AD; that model the full clinico-pathological spectrum of the human disease) ex vivo at 10, 15 and 24 months. We acquired 300 DWI volumes across 5 q-sampling shells (b=1000, 3000, 4000, 8000, 12000 s/mm2). From the top three b-value shells with highest signal-to-noise ratios, we reconstructed markers of WM disease, including indices of axon density and diameter in the corpus callosum (CC) - directly quantifying processes that occur in AD. As expected, apparent anisotropy progressively decreased with age; there were also decreases in the intra- and extra-axonal MR signal along axons. Axonal diameters were larger in segments of the CC (splenium and body, but not genu), possibly indicating neuritic dystrophy - characterized by enlarged axons and dendrites as previously observed at the ultrastructural level (see Cohen et al., J. Neurosci. 2013). This was further supported by increases in MR signals trapped in glial cells, CSF and possibly other small compartments in WM structures. Finally, tractography detected fewer fibers in the CC at 10 versus 24 months of age. These novel findings offer great potential to provide technical and scientific insight into the biology of brain disease.

  5. Microfluidic control of axonal guidance

    Science.gov (United States)

    Gu, Ling; Black, Bryan; Ordonez, Simon; Mondal, Argha; Jain, Ankur; Mohanty, Samarendra

    2014-10-01

    The precision of axonal pathfinding and the accurate formation of functional neural circuitry are crucial for an organism during development as well as during adult central and peripheral nerve regeneration. While chemical cues are believed to be primarily responsible for axonal pathfinding, we hypothesize that forces due to localized fluid flow may directly affect neuronal guidance during early organ development. Here, we report direct evidence of fluid flow influencing axonal migration, producing turning angles of up to 90°. Microfluidic flow simulations indicate that an axon may experience significant bending force due to cross-flow, which may contribute to the observed axonal turning. This method of flow-based guidance was successfully used to fasciculate one advancing axon onto another, showcasing the potential of this technique to be used for the formation of in vitro neuronal circuits.

  6. Can GPS Be Used to Detect Deleterious Progression in Training Volume Among Runners?

    NARCIS (Netherlands)

    Nielsen, Rasmus O.; Cederholm, Peter; Buist, Ida; Sorensen, Henrik; Lind, Martin; Rasmussen, Sten

    2013-01-01

    Nielsen, RO, Cederholm, P, Buist, I, SOrensen, H, Lind, M, and Rasmussen, S. Can GPS be used to detect deleterious progression in training volume among runners? J Strength Cond Res 27(6): 1471-1478, 2013There is a need to ascertain if an association exists between excessive progression in weekly vol

  7. Can GPS Be Used to Detect Deleterious Progression in Training Volume Among Runners?

    NARCIS (Netherlands)

    Nielsen, Rasmus O.; Cederholm, Peter; Buist, Ida; Sorensen, Henrik; Lind, Martin; Rasmussen, Sten

    2013-01-01

    Nielsen, RO, Cederholm, P, Buist, I, SOrensen, H, Lind, M, and Rasmussen, S. Can GPS be used to detect deleterious progression in training volume among runners? J Strength Cond Res 27(6): 1471-1478, 2013There is a need to ascertain if an association exists between excessive progression in weekly vol

  8. [Application of lysosomal detection in marine pollution monitoring: research progress].

    Science.gov (United States)

    Weng, You-Zhu; Fang, Yong-Qiang; Zhang, Yu-Sheng

    2013-11-01

    Lysosome is an important organelle existing in eukaryotic cells. With the development of the study on the structure and function of lysosome in recent years, lysosome is considered as a target of toxic substances on subcellular level, and has been widely applied abroad in marine pollution monitoring. This paper summarized the biological characteristics of lysosomal marker enzyme, lysosome-autophagy system, and lysosomal membrane, and introduced the principles and methods of applying lysosomal detection in marine pollution monitoring. Bivalve shellfish digestive gland and fish liver are the most sensitive organs for lysosomal detection. By adopting the lysosomal detection techniques such as lysosomal membrane stability (LMS) test, neutral red retention time (NRRT) assay, morphological measurement (MM) of lysosome, immunohistochemical (Ih) assay of lysosomal marker enzyme, and electron microscopy (EM), the status of marine pollution can be evaluated. It was suggested that the lysosome could be used as a biomarker for monitoring marine environmental pollution. The advantages and disadvantages of lysosomal detection and some problems worthy of attention were analyzed, and the application prospects of lysosomal detection were discussed.

  9. Neuroinflammation by cytotoxic T-lymphocytes impairs retrograde axonal transport in an oligodendrocyte mutant mouse.

    Directory of Open Access Journals (Sweden)

    Chi Wang Ip

    Full Text Available Mice overexpressing proteolipid protein (PLP develop a leukodystrophy-like disease involving cytotoxic, CD8+ T-lymphocytes. Here we show that these cytotoxic T-lymphocytes perturb retrograde axonal transport. Using fluorogold stereotactically injected into the colliculus superior, we found that PLP overexpression in oligodendrocytes led to significantly reduced retrograde axonal transport in retina ganglion cell axons. We also observed an accumulation of mitochondria in the juxtaparanodal axonal swellings, indicative for a disturbed axonal transport. PLP overexpression in the absence of T-lymphocytes rescued retrograde axonal transport defects and abolished axonal swellings. Bone marrow transfer from wildtype mice, but not from perforin- or granzyme B-deficient mutants, into lymphocyte-deficient PLP mutant mice led again to impaired axonal transport and the formation of axonal swellings, which are predominantly located at the juxtaparanodal region. This demonstrates that the adaptive immune system, including cytotoxic T-lymphocytes which release perforin and granzyme B, are necessary to perturb axonal integrity in the PLP-transgenic disease model. Based on our observations, so far not attended molecular and cellular players belonging to the immune system should be considered to understand pathogenesis in inherited myelin disorders with progressive axonal damage.

  10. Atom Interferometry for Detection of Gravitational Waves: Progress and Prospects

    Science.gov (United States)

    Hogan, Jason

    2015-04-01

    Gravitational wave astronomy promises to provide a new window into the universe, collecting information about astrophysical systems and cosmology that is difficult or impossible to acquire by other methods. Detector designs based on atom interferometry offer a number of advantages over traditional approaches, including access to conventionally inaccessible frequency ranges and substantially reduced antenna baselines. Atomic physics techniques also make it possible to build a gravitational wave detector with a single linear baseline, potentially offering advantages in cost and design flexibility. In support of these proposals, recent progress in long baseline atom interferometry has enabled observation of matter wave interference with atomic wavepacket separations exceeding 10 cm and interferometer durations of more than 2 seconds. These results are obtained in a 10-meter drop tower incorporating large momentum transfer atom optics. This approach can provide ground-based proof-of-concept demonstrations of many of the technical requirements of both terrestrial and satellite gravitational wave detectors.

  11. A progress report on UNICOS misuse detection at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, J.L.; Jackson, K.A.; Stallings, C.A.; Simmonds, D.D.; Siciliano, C.L.B.; Pedicini, G.A. [Los Alamos National Lab., NM (United States). Computing, Information and Communications Div.

    1995-10-01

    An effective method for detecting computer misuse is the automatic monitoring and analysis of on-line user activity. During the past year, Los Alamos enhanced its Network Anomaly Detection and Intrusion Reporter (NADIR) to include analysis of user activity on Los Alamos` UNICOS Crays. In near real-time, NADIR compares user activity to historical profiles and tests activity against expert rules. The expert rules express Los Alamos` security policy and define improper or suspicious behavior. NADIR reports suspicious behavior to security auditors and provides tools to aid in follow-up investigations. This paper describes the implementation to date of the UNICOS component of NADIR, along with the operational experiences and future plans for the system.

  12. The central role of mitochondria in axonal degeneration in multiple sclerosis.

    Science.gov (United States)

    Campbell, Graham R; Worrall, Joseph T; Mahad, Don J

    2014-12-01

    Neurodegeneration in multiple sclerosis (MS) is related to inflammation and demyelination. In acute MS lesions and experimental autoimmune encephalomyelitis focal immune attacks damage axons by injuring axonal mitochondria. In progressive MS, however, axonal damage occurs in chronically demyelinated regions, myelinated regions and also at the active edge of slowly expanding chronic lesions. How axonal energy failure occurs in progressive MS is incompletely understood. Recent studies show that oligodendrocytes supply lactate to myelinated axons as a metabolic substrate for mitochondria to generate ATP, a process which will be altered upon demyelination. In addition, a number of studies have identified mitochondrial abnormalities within neuronal cell bodies in progressive MS, leading to a deficiency of mitochondrial respiratory chain complexes or enzymes. Here, we summarise the mitochondrial abnormalities evident within neurons and discuss how these grey matter mitochondrial abnormalities may increase the vulnerability of axons to degeneration in progressive MS. Although neuronal mitochondrial abnormalities will culminate in axonal degeneration, understanding the different contributions of mitochondria to the degeneration of myelinated and demyelinated axons is an important step towards identifying potential therapeutic targets for progressive MS.

  13. MRI of the diffuse axonal injury

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Yang Gu; Woo, Young Hoon; Suh, Soo Jhi [Keimyung University School of Medicine, Daegu (Korea, Republic of)

    1992-01-15

    CT has facilitated early recognition and treatment of focal brain injuries in patients with head trauma. However, CT shows relatively low sensitivity in identifying non hemorrhage contusion and injuries of white matter. MR is known to be superior to CT in detection of white matter injuries, such as diffuse axonal injury. MR imaging in 14 cases of diffuse axonal injury on 2.0T was studied. The corpus callosum, especially the body portion, was the most commonly involved site. The lesions ranged from 5 to 20mm in size with ovoid to elliptical shape. T2WI was the most sensitive pulse sequence in detecting lesions such as white matter degeneration, hemorrhagic and non hemorrhagic contusion. The lesions were nonspecific as high and low signal intensities on T2WI and T1WI respectively. CT showed white matter abnormality in only 1 case of 14 cases. We propose MR imaging as the primary imaging procedure for the detection of diffuse axonal injury because of its multiplanar capabilities and higher sensitivity.

  14. Detecting cognitive impairment after concussion: sensitivity of change from baseline and normative data methods using the CogSport/Axon cognitive test battery.

    Science.gov (United States)

    Louey, Andrea G; Cromer, Jason A; Schembri, Adrian J; Darby, David G; Maruff, Paul; Makdissi, Michael; Mccrory, Paul

    2014-08-01

    Concussion-related cognitive impairments are typically evaluated with repeated neuropsychological assessments where post-injury performances are compared with pre-injury baseline data (baseline method). Many cases of concussions, however, are evaluated in the absence of baseline data by comparing post-injury performances with normative data (normative method). This study aimed to compare the sensitivity and specificity of these two methods using the CogSport/Axon test battery. Normative data and reliable change indices were computed from a non-injured athlete sample (n = 235). Test-retest data from non-injured (n = 260) and recently concussed (n = 29) athlete samples were then used to compare the two methods. The baseline method was found to be more sensitive than the normative method, and both methods had high specificity and overall correct classification rates. This suggests that while the normative method identifies most cases of recent concussions, the baseline method remains a more precise approach to assessing concussion-related cognitive impairments.

  15. Progress in Air Shower Radio Measurements: Detection of Distant Events

    CERN Document Server

    Apel, W D; Badea, A F; Bähren, L; Bekk, K; Bercuci, A; Bertaina, M; Biermann, P L; Blumer, J; Bozdog, H; Brancus, I M; Buitink, S; Bruggemann, M; Buchholz, P; Butcher, H; Chiavassa, A; Cossavella, F; Daumiller, K; Di Pierro, F; Doll, P; Engel, R; Falcke, H; Gemmeke, H; Ghia, P L; Glasstetter, R; Grupen, C; Haungs, A; Heck, D; Hörandel, J R; Horneffer, A; Huege, T; Kampert, K H; Kolotaev, Yu; Krömer, O; Kuijpers, J; Lafebre, S; Mathes, H J; Mayer, H J; Meurer, C; Milke, J; Mitrica, B; Morello, C; Navarra, G; Nehls, S; Nigl, A; Obenland, R; Oehlschläger, J; Ostapchenko, S; Over, S; Petcu, M; Petrovic, J; Pierog, T; Plewnia, S; Rebel, H; Risse, A; Roth, M; Schieler, H; Sima, O; Singh, K; Stumpert, M; Toma, G; Trinchero, G C; Ulrich, H; Van Buren, J; Walkowiak, W; Weindl, A; Wochele, J; Zabierowski, J; Zensus, J A; Zimmermann, D

    2006-01-01

    Data taken during half a year of operation of 10 LOPES antennas (LOPES-10), triggered by EAS observed with KASCADE-Grande have been analysed. We report about the analysis of correlations of radio signals measured by LOPES-10 with extensive air shower events reconstructed by KASCADE-Grande, including shower cores at large distances. The efficiency of detecting radio signals induced by air showers up to distances of 700 m from the shower axis has been investigated. The results are discussed with special emphasis on the effects of the reconstruction accuracy for shower core and arrival direction on the coherence of the measured radio signal. In addition, the correlations of the radio pulse amplitude with the primary cosmic ray energy and with the lateral distance from the shower core are studied.

  16. Progress in the detection of human genome structural variations

    Institute of Scientific and Technical Information of China (English)

    WU XueMei; XIAO HuaSheng

    2009-01-01

    The emerging of high.throughput and high-resolution genomic technologies led to the detection of submicroscopic variants ranging from 1 kb to 3 Mb in the human genome. These variants include copy number variations (CNVs), inversions, insertions, deletions and other complex rearrangements of DNA sequences. This paper briefly reviews the commonly used technologies to discover both genomic structural variants and their potential influences. Particularly, we highlight the array-based, PCR-based and sequencing-based assays, including array-based comparative genomic hybridization (aCGH),representational oligonucleotide microarray analysis (ROMA), multiplex amplifiable probe hybridization (MAPH), multiplex ligation-dependent probe amplification (MLPA), paired-end mapping (PEM), and next-generation DNA sequencing technologies. Furthermore, we discuss the limitations and challenges of current assays and give advices on how to make the database of genomic variations more reliable.

  17. Progress in the detection of human genome structural variations

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The emerging of high-throughput and high-resolution genomic technologies led to the detection of submicroscopic variants ranging from 1 kb to 3 Mb in the human genome.These variants include copy number variations(CNVs),inversions,insertions,deletions and other complex rearrangements of DNA sequences.This paper briefly reviews the commonly used technologies to discover both genomic structural variants and their potential influences.Particularly,we highlight the array-based,PCR-based and sequencing-based assays,including array-based comparative genomic hybridization(aCGH),representational oligonucleotide microarray analysis(ROMA),multiplex amplifiable probe hybridization(MAPH),multiplex ligation-dependent probe amplification(MLPA),paired-end mapping(PEM),and next-generation DNA sequencing technologies.Furthermore,we discuss the limitations and challenges of current assays and give advices on how to make the database of genomic variations more reliable.

  18. Axonal disruption in white matter underlying cortical sulcus tau pathology in chronic traumatic encephalopathy.

    Science.gov (United States)

    Holleran, Laurena; Kim, Joong Hee; Gangolli, Mihika; Stein, Thor; Alvarez, Victor; McKee, Ann; Brody, David L

    2017-03-01

    Chronic traumatic encephalopathy (CTE) is a progressive degenerative disorder associated with repetitive traumatic brain injury. One of the primary defining neuropathological lesions in CTE, based on the first consensus conference, is the accumulation of hyperphosphorylated tau in gray matter sulcal depths. Post-mortem CTE studies have also reported myelin loss, axonal injury and white matter degeneration. Currently, the diagnosis of CTE is restricted to post-mortem neuropathological analysis. We hypothesized that high spatial resolution advanced diffusion MRI might be useful for detecting white matter microstructural changes directly adjacent to gray matter tau pathology. To test this hypothesis, formalin-fixed post-mortem tissue blocks from the superior frontal cortex of ten individuals with an established diagnosis of CTE were obtained from the Veterans Affairs-Boston University-Concussion Legacy Foundation brain bank. Advanced diffusion MRI data was acquired using an 11.74 T MRI scanner at Washington University with 250 × 250 × 500 µm(3) spatial resolution. Diffusion tensor imaging, diffusion kurtosis imaging and generalized q-sampling imaging analyses were performed in a blinded fashion. Following MRI acquisition, tissue sections were tested for phosphorylated tau immunoreactivity in gray matter sulcal depths. Axonal disruption in underlying white matter was assessed using two-dimensional Fourier transform analysis of myelin black gold staining. A robust image co-registration method was applied to accurately quantify the relationship between diffusion MRI parameters and histopathology. We found that white matter underlying sulci with high levels of tau pathology had substantially impaired myelin black gold Fourier transform power coherence, indicating axonal microstructural disruption (r = -0.55, p = 0.0015). Using diffusion tensor MRI, we found that fractional anisotropy (FA) was modestly (r = 0.53) but significantly (p = 0.0012) correlated

  19. The genetics of axonal transport and axonal transport disorders.

    Directory of Open Access Journals (Sweden)

    Jason E Duncan

    2006-09-01

    Full Text Available Neurons are specialized cells with a complex architecture that includes elaborate dendritic branches and a long, narrow axon that extends from the cell body to the synaptic terminal. The organized transport of essential biological materials throughout the neuron is required to support its growth, function, and viability. In this review, we focus on insights that have emerged from the genetic analysis of long-distance axonal transport between the cell body and the synaptic terminal. We also discuss recent genetic evidence that supports the hypothesis that disruptions in axonal transport may cause or dramatically contribute to neurodegenerative diseases.

  20. Uncovering sensory axonal dysfunction in asymptomatic type 2 diabetic neuropathy.

    Science.gov (United States)

    Sung, Jia-Ying; Tani, Jowy; Chang, Tsui-San; Lin, Cindy Shin-Yi

    2017-01-01

    This study investigated sensory and motor nerve excitability properties to elucidate the development of diabetic neuropathy. A total of 109 type 2 diabetes patients were recruited, and 106 were analyzed. According to neuropathy severity, patients were categorized into G0, G1, and G2+3 groups using the total neuropathy score-reduced (TNSr). Patients in the G0 group were asymptomatic and had a TNSr score of 0. Sensory and motor nerve excitability data from diabetic patients were compared with data from 33 healthy controls. Clinical assessment, nerve conduction studies, and sensory and motor nerve excitability testing data were analyzed to determine axonal dysfunction in diabetic neuropathy. In the G0 group, sensory excitability testing revealed increased stimulus for the 50% sensory nerve action potential (Pmotor excitability only had significantly increased stimulus for the 50% compound motor nerve action potential (Pdevelopment of axonal dysfunction in sensory axons occurred prior to and in a different fashion from motor axons. Additionally, sensory nerve excitability tests can detect axonal dysfunction even in asymptomatic patients. These insights further our understanding of diabetic neuropathy and enable the early detection of sensory axonal abnormalities, which may provide a basis for neuroprotective therapeutic approaches.

  1. Adult onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) and Nasu-Hakola disease: lesion staging and dynamic changes of axons and microglial subsets.

    Science.gov (United States)

    Oyanagi, Kiyomitsu; Kinoshita, Michiaki; Suzuki-Kouyama, Emi; Inoue, Teruhiko; Nakahara, Asa; Tokiwai, Mika; Arai, Nobutaka; Satoh, Jun-Ichi; Aoki, Naoya; Jinnai, Kenji; Yazawa, Ikuru; Arai, Kimihito; Ishihara, Kenji; Kawamura, Mitsuru; Ishizawa, Keisuke; Hasegawa, Kazuko; Yagisita, Saburo; Amano, Naoji; Yoshida, Kunihiro; Terada, Seishi; Yoshida, Mari; Akiyama, Haruhiko; Mitsuyama, Yoshio; Ikeda, Shu-Ichi

    2016-09-08

    The brains of 10 Japanese patients with adult onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) encompassing hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS) and pigmentary orthochromatic leukodystrophy (POLD) and eight Japanese patients with Nasu-Hakola disease (N-HD) and five age-matched Japanese controls were examined neuropathologically with special reference to lesion staging and dynamic changes of microglial subsets. In both diseases, the pathognomonic neuropathological features included spherically swollen axons (spheroids and globules), axon loss and changes of microglia in the white matter. In ALSP, four lesion stages based on the degree of axon loss were discernible: Stage I, patchy axon loss in the cerebral white matter without atrophy; Stage II, large patchy areas of axon loss with slight atrophy of the cerebral white matter and slight dilatation of the lateral ventricles; Stage III, extensive axon loss in the cerebral white matter and dilatation of the lateral and third ventricles without remarkable axon loss in the brainstem and cerebellum; Stage IV, devastated cerebral white matter with marked dilatation of the ventricles and axon loss in the brainstem and/or cerebellum. Internal capsule and pontine base were relatively well preserved in the N-HD, even at Stage IV, and the swollen axons were larger with a higher density in the ALSP. Microglial cells immunopositive for CD68, CD163 or CD204 were far more obvious in ALSP, than in N-HD, and the shape and density of the cells changed in each stage. With progression of the stage, clinical symptoms became worse to apathetic state, and epilepsy was frequently observed in patients at Stages III and IV in both diseases. From these findings, it is concluded that (i) shape, density and subsets of microglia change dynamically along the passage of stages and (ii) increase of IBA-1-, CD68-, CD163- and CD204-immunopositive cells precedes loss of axons in ALSP. © 2016

  2. Neurotoxicity of the Cyanotoxin BMAA Through Axonal Degeneration and Intercellular Spreading.

    Science.gov (United States)

    Tan, Vanessa X; Lassus, Benjamin; Lim, Chai K; Tixador, Philippe; Courte, Josquin; Bessede, Alban; Guillemin, Gilles J; Peyrin, Jean-Michel

    2017-08-25

    β-Methylamino-L-alanine (BMAA) is implicated in neurodegeneration and neurotoxicity, particularly in ALS-Parkinson Dementia Complex. Neurotoxic properties of BMAA have been partly elucidated, while its transcellular spreading capacity has not been examined. Using reconstructed neuronal networks in microfluidic chips, separating neuronal cells into two subcompartments-(1) the proximal, containing first-order neuronal soma and dendrites, and (2) a distal compartment, containing either only axons originating from first-order neurons or second-order striatal neurons-creates a cortico-striatal network. Using this system, we investigated the toxicity and spreading of BMAA in murine primary neurons. We used a newly developed antibody to detect BMAA in cells. After treatment with 10 μM BMAA, the cyanotoxin was incorporated in first-degree neurons. We also observed a rapid trans-neuronal spread of BMAA to unexposed second-degree neurons in 48 h, followed by axonal degeneration, with limited somatic death. This in vitro study demonstrates BMAA axonal toxicity at sublethal concentrations and, for the first time, the transcellular spreading abilities of BMAA. This neuronal dying forward spread that could possibly be associated with progression of some neurodegenerative diseases especially amyotrophic lateral sclerosis.

  3. Live Imaging of Nicotine Induced Calcium Signaling and Neurotransmitter Release Along Ventral Hippocampal Axons.

    Science.gov (United States)

    Zhong, Chongbo; Talmage, David A; Role, Lorna W

    2015-06-24

    Sustained enhancement of axonal signaling and increased neurotransmitter release by the activation of pre-synaptic nicotinic acetylcholine receptors (nAChRs) is an important mechanism for neuromodulation by acetylcholine (ACh). The difficulty with access to probing the signaling mechanisms within intact axons and at nerve terminals both in vitro and in vivo has limited progress in the study of the pre-synaptic components of synaptic plasticity. Here we introduce a gene-chimeric preparation of ventral hippocampal (vHipp)-accumbens (nAcc) circuit in vitro that allows direct live imaging to analyze both the pre- and post-synaptic components of transmission while selectively varying the genetic profile of the pre- vs post-synaptic neurons. We demonstrate that projections from vHipp microslices, as pre-synaptic axonal input, form multiple, reliable glutamatergic synapses with post-synaptic targets, the dispersed neurons from nAcc. The pre-synaptic localization of various subtypes of nAChRs are detected and the pre-synaptic nicotinic signaling mediated synaptic transmission are monitored by concurrent electrophysiological recording and live cell imaging. This preparation also provides an informative approach to study the pre- and post-synaptic mechanisms of glutamatergic synaptic plasticity in vitro.

  4. Enlarging the nosological spectrum of hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS).

    Science.gov (United States)

    Hoffmann, Sarah; Murrell, Jill; Harms, Lutz; Miller, Kelly; Meisel, Andreas; Brosch, Thomas; Scheel, Michael; Ghetti, Bernardino; Goebel, Hans-Hilmar; Stenzel, Werner

    2014-09-01

    Hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS) is an autosomal dominant disease clinically characterized by cognitive decline, personality changes, motor impairment, parkinsonism and seizures. Recently, mutations in the colony-stimulating factor-1 receptor (CSF1R) gene have been shown to be associated with HDLS. We report clinical, neuropathological and molecular genetic findings of patients from a new family with a mutation in the CSF1R gene. Disease onset was earlier and disease progression was more rapid compared with previously reported patients. Psychiatric symptoms including personality changes, alcohol abuse and severe depression were the first symptoms in male patients. In the index, female patient, the initial symptom was cognitive decline. Magnetic resonance imaging (MRI) showed bilateral, confluent white matter lesions in the cerebrum. Stereotactic biopsy revealed loss of myelin and microglial activation as well as macrophage infiltration of the parenchyma. Numerous axonal swellings and spheroids were present. Ultrastructural analysis revealed pigment-containing macrophages. Axonal swellings were detected by electron microscopy not only in the central nervous system (CNS) but also in skin nerves. We identified a heterozygous mutation (c.2330G>A, p.R777Q) in the CSF1R gene. Through this report, we aim to enlarge the nosological spectrum of HDLS, providing new clinical descriptions as well as novel neuropathological findings from the peripheral nervous system. © 2014 International Society of Neuropathology.

  5. Unravelling the incidence and etiology of chronic idiopathic axonal polyneuropathy

    NARCIS (Netherlands)

    Visser, N.A.

    2016-01-01

    Chronic idiopathic axonal polyneuropathy (CIAP) is a sensory or sensorimotor polyneuropathy that has a slowly progressive course without severe disability. CIAP is diagnosed in a significant proportion of patients with polyneuropathy, but precise figures on the incidence of polyneuropathy and CIAP

  6. Unravelling the incidence and etiology of chronic idiopathic axonal polyneuropathy

    NARCIS (Netherlands)

    Visser, N.A.

    2016-01-01

    Chronic idiopathic axonal polyneuropathy (CIAP) is a sensory or sensorimotor polyneuropathy that has a slowly progressive course without severe disability. CIAP is diagnosed in a significant proportion of patients with polyneuropathy, but precise figures on the incidence of polyneuropathy and CIAP w

  7. Squid Giant Axon Contains Neurofilament Protein mRNA but does not Synthesize Neurofilament Proteins.

    Science.gov (United States)

    Gainer, Harold; House, Shirley; Kim, Dong Sun; Chin, Hemin; Pant, Harish C

    2017-04-01

    When isolated squid giant axons are incubated in radioactive amino acids, abundant newly synthesized proteins are found in the axoplasm. These proteins are translated in the adaxonal Schwann cells and subsequently transferred into the giant axon. The question as to whether any de novo protein synthesis occurs in the giant axon itself is difficult to resolve because the small contribution of the proteins possibly synthesized intra-axonally is not easily distinguished from the large amounts of the proteins being supplied from the Schwann cells. In this paper, we reexamine this issue by studying the synthesis of endogenous neurofilament (NF) proteins in the axon. Our laboratory previously showed that NF mRNA and protein are present in the squid giant axon, but not in the surrounding adaxonal glia. Therefore, if the isolated squid axon could be shown to contain newly synthesized NF protein de novo, it could not arise from the adaxonal glia. The results of experiments in this paper show that abundant 3H-labeled NF protein is synthesized in the squid giant fiber lobe containing the giant axon's neuronal cell bodies, but despite the presence of NF mRNA in the giant axon no labeled NF protein is detected in the giant axon. This lends support to the glia-axon protein transfer hypothesis which posits that the squid giant axon obtains newly synthesized protein by Schwann cell transfer and not through intra-axonal protein synthesis, and further suggests that the NF mRNA in the axon is in a translationally repressed state.

  8. Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF.

    Science.gov (United States)

    Pun, San; Santos, Alexandre Ferrão; Saxena, Smita; Xu, Lan; Caroni, Pico

    2006-03-01

    Neurodegenerative diseases can have long preclinical phases and insidious progression patterns, but the mechanisms of disease progression are poorly understood. Because quantitative accounts of neuronal circuitry affected by disease have been lacking, it has remained unclear whether disease progression reflects processes of stochastic loss or temporally defined selective vulnerabilities of distinct synapses or axons. Here we derive a quantitative topographic map of muscle innervation in the hindlimb. We show that in two mouse models of motoneuron disease (G93A SOD1 and G85R SOD1), axons of fast-fatiguable motoneurons are affected synchronously, long before symptoms appear. Fast-fatigue-resistant motoneuron axons are affected at symptom-onset, whereas axons of slow motoneurons are resistant. Axonal vulnerability leads to synaptic vesicle stalling and accumulation of BC12a1-a, an anti-apoptotic protein. It is alleviated by ciliary neurotrophic factor and triggers proteasome-dependent pruning of peripheral axon branches. Thus, motoneuron disease involves predictable, selective vulnerability patterns by physiological subtypes of axons, episodes of abrupt pruning in the target region and compensation by resistant axons.

  9. Where does slow axonal transport go?

    Science.gov (United States)

    Terada, Sumio

    2003-12-01

    Axonal transport is the specialized and well-developed intracellular transport system for regulated and/or long-distance transport based on generalized cellular machineries. Among them, slow axonal transport conveys cytoplasmic proteins. The motor molecule, the nature of transporting complex and the transport regulation mechanism for slow transport are still unclarified. There has been a dispute regarding the nature of transporting complex of cytoskeletal proteins, polymer-sliding hypothesis versus subunit-transport theory. Recent data supporting the hypothesis of polymer sliding in cultured neurons only reconfirm the previously reported structure and this inference suffers from the lack of ultrastructural evidence and the direct relevance to the physiological slow transport phenomenon in vivo. Observation of the moving cytoskeletal proteins in vivo using transgenic mice or squid giant axons revealed that subunits do move in a microtubule-dependent manner, strongly indicating the involvement of microtubule-based motor kinesin. If the slow transport rate reflects the intermittent fast transport dependent on kinesin motor, we have to investigate the molecular constituents of the transporting complex in more detail and evaluate why the motor and cargo interaction is so unstable. This kind of weak and fluctuating interaction between various molecular pairs could not be detected by conventional techniques, thus necessitating the establishment of a new experimental system before approaching the molecular regulation problem.

  10. Improving power to detect disease progression in multiple sclerosis through alternative analysis strategies.

    Science.gov (United States)

    Healy, Brian; Chitnis, Tanuja; Engler, David

    2011-10-01

    In patients with multiple sclerosis, investigation of a treatment effect on disease progression in clinical trials and observational studies often uses sustained progression on the expanded disability status scale (EDSS) as an outcome. It is not clear whether this outcome is the most powerful to detect a treatment effect on clinical disease progression. Assessment of EDSS modeling choice on the detection of treatment effect was of interest. This assessment was separately conducted under three potential treatment effects: treatment reducing the chance of higher future EDSS, treatment increasing the chance of lower future EDSS, and treatment leading to both effects. To assess the effect of modeling choice, nine modeling strategies were applied to the data to determine the most powerful approach. EDSS measurements were simulated at 6 month intervals for 24 months. Each patient's initial EDSS value ranged between 0 and 3, and probabilities of transitioning from one EDSS state to another were based on the empirical probabilities of transition obtained from available clinical data. Modeling approaches based on sustained progression had less power than approaches which modeled the EDSS score directly, regardless of treatment effect. This difference was especially pronounced when the treatment effect corresponded to an increase in the probability of improvement. Sustained progression on the EDSS is a less powerful outcome measure for clinical progression than approaches based on the actual EDSS values.

  11. The planar cell polarity protein Vangl2 is required for retinal axon guidance.

    Science.gov (United States)

    Leung, Vicki; Iliescu, Alexandra; Jolicoeur, Christine; Gravel, Michel; Apuzzo, Sergio; Torban, Elena; Cayouette, Michel; Gros, Philippe

    2016-02-01

    Vangl2 plays a critical role in the establishment of planar cell polarity (PCP). Previously, we detected expression of Vangl2 in the developing retina during late embryogenesis, which led us to investigate the possible role of Vangl2-mediated PCP signaling in eye development. We have generated a Vangl2(BGeo) knock-in mouse allowing us to evaluate Vangl2 mRNA expression during retinal development, and used an isoform-specific antibody to examine Vangl2 protein expression in cryosections. To investigate the role of Vangl2 in retinal development, we examined eyes taken from embryos homozygous for independent alleles of Looptail (Lp, Lp(m1jus) ) mutant mice. We found that Vangl2 mRNA and protein are dynamically expressed in the developing embryonic and postnatal retina, with Vangl2 expression becoming progressively restricted to the ganglion cell layer and optic nerve as the retina matures. The expression pattern of Vangl2 transcript and protein is most prominent in retinal ganglion cells (RGC), and their axons. Additionally, we show that Vangl2 is required for retinal and optic nerve development as Vangl2 (Lp/Lp) mutant embryos display a significantly reduced eye size, marked thickening of the retina, and striking abnormalities in the morphology of the optic nerve (significant hypoplasia, and aberrant exit trajectory). Notably, we identified a salient intraretinal axon guidance defect in Vangl2 (Lp/Lp) mutant embryos through which axon bundles traverse the entire thickness of the retina and become trapped within the subretinal space. Our observations identify a new and essential role for Vangl2-dependent PCP signaling in the intraretinal path-finding of RGC axons.

  12. Dendrosomatic Sonic Hedgehog Signaling in Hippocampal Neurons Regulates Axon Elongation

    Science.gov (United States)

    Petralia, Ronald S.; Ott, Carolyn; Wang, Ya-Xian; Lippincott-Schwartz, Jennifer; Mattson, Mark P.

    2015-01-01

    The presence of Sonic Hedgehog (Shh) and its signaling components in the neurons of the hippocampus raises a question about what role the Shh signaling pathway may play in these neurons. We show here that activation of the Shh signaling pathway stimulates axon elongation in rat hippocampal neurons. This Shh-induced effect depends on the pathway transducer Smoothened (Smo) and the transcription factor Gli1. The axon itself does not respond directly to Shh; instead, the Shh signal transduction originates from the somatodendritic region of the neurons and occurs in neurons with and without detectable primary cilia. Upon Shh stimulation, Smo localization to dendrites increases significantly. Shh pathway activation results in increased levels of profilin1 (Pfn1), an actin-binding protein. Mutations in Pfn1's actin-binding sites or reduction of Pfn1 eliminate the Shh-induced axon elongation. These findings indicate that Shh can regulate axon growth, which may be critical for development of hippocampal neurons. SIGNIFICANCE STATEMENT Although numerous signaling mechanisms have been identified that act directly on axons to regulate their outgrowth, it is not known whether signals transduced in dendrites may also affect axon outgrowth. We describe here a transcellular signaling pathway in embryonic hippocampal neurons in which activation of Sonic Hedgehog (Shh) receptors in dendrites stimulates axon growth. The pathway involves the dendritic-membrane-associated Shh signal transducer Smoothened (Smo) and the transcription factor Gli, which induces the expression of the gene encoding the actin-binding protein profilin 1. Our findings suggest scenarios in which stimulation of Shh in dendrites results in accelerated outgrowth of the axon, which therefore reaches its presumptive postsynaptic target cell more quickly. By this mechanism, Shh may play critical roles in the development of hippocampal neuronal circuits. PMID:26658865

  13. Kinesin KIF4A transports integrin β1 in developing axons of cortical neurons.

    Science.gov (United States)

    Heintz, Tristan G; Heller, Janosch P; Zhao, Rongrong; Caceres, Alfredo; Eva, Richard; Fawcett, James W

    2014-11-01

    CNS axons have poor regenerative ability compared to PNS axons, and mature axons regenerate less well than immature embryonic axons. The loss of regenerative ability with maturity is accompanied by the setting up of a selective transport filter in axons, restricting the types of molecule that are present. We confirm that integrins (represented by subunits β1 and α5) are present in early cortical axons in vitro but are excluded from mature axons. Ribosomal protein and L1 show selective axonal transport through association with kinesin kif4A; we have therefore examined the hypothesis that integrin transport might also be in association with kif4A. Kif4A is present in all processes of immature cortical neurons cultured at E18, then downregulated by 14days in vitro, coinciding with the exclusion of integrin from axons. Kif4a co-localises with β1 integrin in vesicles in neurons and non-neuronal cells, and the two molecules co-immunoprecipitate. Knockdown of KIF4A expression with shRNA reduced the level of integrin β1 in axons of developing neurons and reduced neurite elongation on laminin, an integrin-dependent substrate. Overexpression of kif4A triggered apoptosis in neuronal and non-neuronal cells. In mature neurons expression of kif4A-GFP at a modest level did not kill the cells, and the kif4A was detectable in their axons. However this was not accompanied by an increase in integrin β1 axonal transport, suggesting that kif4A is not the only integrin transporter, and that integrin exclusion from axons is controlled by factors other than the kif4A level. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. The corpus callosum in primates: processing speed of axons and the evolution of hemispheric asymmetry.

    Science.gov (United States)

    Phillips, Kimberley A; Stimpson, Cheryl D; Smaers, Jeroen B; Raghanti, Mary Ann; Jacobs, Bob; Popratiloff, Anastas; Hof, Patrick R; Sherwood, Chet C

    2015-11-07

    Interhemispheric communication may be constrained as brain size increases because of transmission delays in action potentials over the length of axons. Although one might expect larger brains to have progressively thicker axons to compensate, spatial packing is a limiting factor. Axon size distributions within the primate corpus callosum (CC) may provide insights into how these demands affect conduction velocity. We used electron microscopy to explore phylogenetic variation in myelinated axon density and diameter of the CC from 14 different anthropoid primate species, including humans. The majority of axons were less than 1 µm in diameter across all species, indicating that conduction velocity for most interhemispheric communication is relatively constant regardless of brain size. The largest axons within the upper 95th percentile scaled with a progressively higher exponent than the median axons towards the posterior region of the CC. While brain mass among the primates in our analysis varied by 97-fold, estimates of the fastest cross-brain conduction times, as conveyed by axons at the 95th percentile, varied within a relatively narrow range between 3 and 9 ms across species, whereas cross-brain conduction times for the median axon diameters differed more substantially between 11 and 38 ms. Nonetheless, for both size classes of axons, an increase in diameter does not entirely compensate for the delay in interhemispheric transmission time that accompanies larger brain size. Such biophysical constraints on the processing speed of axons conveyed by the CC may play an important role in the evolution of hemispheric asymmetry. © 2015 The Author(s).

  15. Two different immunostaining patterns of beta-amyloid precursor protein (APP) may distinguish traumatic from nontraumatic axonal injury.

    Science.gov (United States)

    Hayashi, Takahito; Ago, Kazutoshi; Nakamae, Takuma; Higo, Eri; Ogata, Mamoru

    2015-09-01

    Immunostaining for beta-amyloid precursor protein (APP) is recognized as an effective tool for detecting traumatic axonal injury, but it also detects axonal injury due to ischemic or other metabolic causes. Previously, we reported two different patterns of APP staining: labeled axons oriented along with white matter bundles (pattern 1) and labeled axons scattered irregularly (pattern 2) (Hayashi et al. (Leg Med (Tokyo) 11:S171-173, 2009). In this study, we investigated whether these two patterns are consistent with patterns of trauma and hypoxic brain damage, respectively. Sections of the corpus callosum from 44 cases of blunt head injury and equivalent control tissue were immunostained for APP. APP was detected in injured axons such as axonal bulbs and varicose axons in 24 of the 44 cases of head injuries that also survived for three or more hours after injury. In 21 of the 24 APP-positive cases, pattern 1 alone was observed in 14 cases, pattern 2 alone was not observed in any cases, and both patterns 1 and 2 were detected in 7 cases. APP-labeled injured axons were detected in 3 of the 44 control cases, all of which were pattern 2. These results suggest that pattern 1 indicates traumatic axonal injury, while pattern 2 results from hypoxic insult. These patterns may be useful to differentiate between traumatic and nontraumatic axonal injuries.

  16. The Segmented Pupil Experiment for Exoplanet Detection: 2. design advances and progress overview

    Science.gov (United States)

    Martinez, P.; Beaulieu, M.; Janin-Potiron, P.; Preis, O.; Gouvret, C.; Dejonghe, J.; Abe, L.; Spang, A.; Fantéï-Caujolle, Y.; Martinache, F.; Belzanne, P.; Marcotto, A.; Carbillet, M.

    2016-07-01

    The SPEED project - the Segmented Pupil Experiment for Exoplanet Detection - in development at the Lagrange laboratory, aims at gearing up strategies and technologies for high-contrast instrumentation with segmented telescopes. This new instrumental platform offers an ideal environment in which to make progress in the domain of ELTs and/or space-based missions with complex apertures. It combines all the required recipes (phasing optics, wavefront control/shaping, and advanced coronagraphy) to get to very close angular separation imaging. In this paper, we report on the optical design and subsystems advances and we provide a progress overview.

  17. Transcellular degradation of axonal mitochondria.

    Science.gov (United States)

    Davis, Chung-ha O; Kim, Keun-Young; Bushong, Eric A; Mills, Elizabeth A; Boassa, Daniela; Shih, Tiffany; Kinebuchi, Mira; Phan, Sebastien; Zhou, Yi; Bihlmeyer, Nathan A; Nguyen, Judy V; Jin, Yunju; Ellisman, Mark H; Marsh-Armstrong, Nicholas

    2014-07-01

    It is generally accepted that healthy cells degrade their own mitochondria. Here, we report that retinal ganglion cell axons of WT mice shed mitochondria at the optic nerve head (ONH), and that these mitochondria are internalized and degraded by adjacent astrocytes. EM demonstrates that mitochondria are shed through formation of large protrusions that originate from otherwise healthy axons. A virally introduced tandem fluorophore protein reporter of acidified mitochondria reveals that acidified axonal mitochondria originating from the retinal ganglion cell are associated with lysosomes within columns of astrocytes in the ONH. According to this reporter, a greater proportion of retinal ganglion cell mitochondria are degraded at the ONH than in the ganglion cell soma. Consistently, analyses of degrading DNA reveal extensive mtDNA degradation within the optic nerve astrocytes, some of which comes from retinal ganglion cell axons. Together, these results demonstrate that surprisingly large proportions of retinal ganglion cell axonal mitochondria are normally degraded by the astrocytes of the ONH. This transcellular degradation of mitochondria, or transmitophagy, likely occurs elsewhere in the CNS, because structurally similar accumulations of degrading mitochondria are also found along neurites in superficial layers of the cerebral cortex. Thus, the general assumption that neurons or other cells necessarily degrade their own mitochondria should be reconsidered.

  18. Progression detection in glaucoma can be made more efficient by using a variable interval between successive visual field tests

    NARCIS (Netherlands)

    Jansonius, Nomdo M.

    2007-01-01

    This study aimed to gain insight into the optimal spacing in time for visual field tests for progression detection in glaucoma. Three perimetric strategies for progression detection were compared by means of simulation experiments in a theoretical cohort. In strategies 1 and 2, visual field testing

  19. Interleukin (IL)-8 immunoreactivity of injured axons and surrounding oligodendrocytes in traumatic head injury.

    Science.gov (United States)

    Hayashi, Takahito; Ago, Kazutoshi; Nakamae, Takuma; Higo, Eri; Ogata, Mamoru

    2016-06-01

    Interleukin (IL)-8 has been suggested to be a positive regulator of myelination in the central nervous system, in addition to its principal role as a chemokine for neutrophils. Immunostaining for beta-amyloid precursor protein (AβPP) is an effective tool for detecting traumatic axonal injury, although AβPP immunoreactivity can also indicate axonal injury due to hypoxic causes. In this study, we examined IL-8 and AβPP immunoreactivity in sections of corpus callosum obtained from deceased patients with blunt head injury and from equivalent control tissue. AβPP immunoreactivity was detected in injured axons, such as axonal bulbs and varicose axons, in 24 of 44 head injury cases. These AβPP immunoreactive cases had survived for more than 3h. The AβPP immunostaining pattern can be classified into two types: traumatic (Pattern 1) and non-traumatic (Pattern 2) axonal injuries, which we described previously [Hayashi et al. Int. J. Legal Med. 129 (2015) 1085-1090]. Three of 44 control cases also showed AβPP immunoreactive injured axons as Pattern 2. In contrast, IL-8 immunoreactivity was detected in 7 AβPP immunoreactive and in 2 non-AβPP immunoreactive head injury cases, but was not detected in any of the 44 control cases, including the 3 AβPP immunoreactive control cases. The IL-8 immunoreactive cases had survived from 3 to 24 days, whereas those cases who survived less than 3 days (n=29) and who survived 90 days (n=1) were not IL-8 immunoreactive. Moreover, IL-8 was detected as Pattern 1 axons only. In addition, double immunofluorescence analysis showed that IL-8 is expressed by oligodendrocytes surrounding injured axons. In conclusion, our results suggest that immunohistochemical detection of IL-8 may be useful as a complementary diagnostic marker of traumatic axonal injury.

  20. Can GPS Be Used to Detect Deleterious Progression in Training Volume Among Runners?

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Østergaard; Cederholm, Jens Peter; Buist, Ida;

    2013-01-01

    There is a need to ascertain if an association exists between excessive progression in weekly volume and development of running-related injuries (RRI). The purpose of this study was to investigate if GPS can be used to detect deleterious progression in weekly training volume among 60 novice runners...... included in a 10-week prospective study. All participants used GPS to quantify training volume while running. In case of injury, participants attended a clinical examination. The 13 runners who sustained injuries during follow-up had a significantly higher weekly progression in total training volume...... in the week before the injury origin (86% [95% confidence interval: 12.9-159.9], p = 0.026) compared with other weeks. Although not significant, participants with injuries had an increase in weekly training volume of 31.6% compared with a 22.1% increase among the healthy participants. The error of the GPS...

  1. Characteristic detected on computed tomography angiography predict coronary artery plaque progression in non-culprit lesions

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Ya Hang; Zhou, Jia Zhou; Zhou, Ying; Yang, Xiaobo; Yang, Jun Jie; Chen, Yun Dai [Dept. of Cardiology, Chinese PLA General Hospital, Beijing (China)

    2017-06-15

    This study sought to determine whether variables detected on coronary computed tomography angiography (CCTA) would predict plaque progression in non-culprit lesions (NCL). In this single-center trial, we analyzed 103 consecutive patients who were undergoing CCTA and percutaneous coronary intervention (PCI) for culprit lesions. Follow-up CCTA was scheduled 12 months after the PCI, and all patients were followed for 3 years after their second CCTA examination. High-risk plaque features and epicardial adipose tissue (EAT) volume were assessed by CCTA. Each NCL stenosis grade was compared visually between two CCTA scans to detect plaque progression, and patients were stratified into two groups based on this. Logistic regression analysis was used to evaluate the factors that were independently associated with plaque progression in NCLs. Time-to-event curves were compared using the log-rank statistic. Overall, 34 of 103 patients exhibited NCL plaque progression (33%). Logistic regression analyses showed that the NCL progression was associated with a history of ST-elevated myocardial infarction (odds ratio [OR] = 5.855, 95% confidence interval [CI] = 1.391–24.635, p = 0.016), follow-up low-density lipoprotein cholesterol level (OR = 6.832, 95% CI = 2.103–22.200, p = 0.001), baseline low-attenuation plaque (OR = 7.311, 95% CI = 1.242–43.028, p = 0.028) and EAT (OR = 1.015, 95% CI = 1.000–1.029, p = 0.044). Following the second CCTA examination, major adverse cardiac events (MACEs) were observed in 12 patients, and NCL plaque progression was significantly associated with future MACEs (log rank p = 0.006). Noninvasive assessment of NCLs by CCTA has potential prognostic value.

  2. Molecular mechanisms of retinal ganglion cell degeneration in glaucoma and future prospects for cell body and axonal protection

    Science.gov (United States)

    Munemasa, Yasunari; Kitaoka, Yasushi

    2013-01-01

    Glaucoma, which affects more than 70 million people worldwide, is a heterogeneous group of disorders with a resultant common denominator; optic neuropathy, eventually leading to irreversible blindness. The clinical manifestations of primary open-angle glaucoma (POAG), the most common subtype of glaucoma, include excavation of the optic disc and progressive loss of visual field. Axonal degeneration of retinal ganglion cells (RGCs) and apoptotic death of their cell bodies are observed in glaucoma, in which the reduction of intraocular pressure (IOP) is known to slow progression of the disease. A pattern of localized retinal nerve fiber layer (RNFL) defects in glaucoma patients indicates that axonal degeneration may precede RGC body death in this condition. The mechanisms of degeneration of neuronal cell bodies and their axons may differ. In this review, we addressed the molecular mechanisms of cell body death and axonal degeneration in glaucoma and proposed axonal protection in addition to cell body protection. The concept of axonal protection may become a new therapeutic strategy to prevent further axonal degeneration or revive dying axons in patients with preperimetric glaucoma. Further study will be needed to clarify whether the combination therapy of axonal protection and cell body protection will have greater protective effects in early or progressive glaucomatous optic neuropathy (GON). PMID:23316132

  3. Molecular mechanisms of retinal ganglion cell degeneration in glaucoma and future prospects for cell body and axonal protection

    Directory of Open Access Journals (Sweden)

    Yasunari eMunemasa

    2013-01-01

    Full Text Available Glaucoma, which affects more than 70 million people worldwide, is a heterogeneous group of disorders with a resultant common denominator; optic neuropathy, eventually leading to irreversible blindness. The clinical manifestations of primary open-angle glaucoma (POAG, the most common subtype of glaucoma, include excavation of the optic disc and progressive loss of visual field. Axonal degeneration of retinal ganglion cells (RGCs and apoptotic death of their cell bodies are observed in glaucoma, in which the reduction of intraocular pressure is known to slow progression of the disease. A pattern of localized retinal nerve fiber layer defects in glaucoma patients indicates that axonal degeneration may precede RGC body death in this condition. The mechanisms of degeneration of neuronal cell bodies and their axons may differ. In this review, we addressed the molecular mechanisms of cell body death and axonal degeneration in glaucoma and proposed axonal protection in addition to cell body protection. The concept of axonal protection may become a new therapeutic strategy to prevent further axonal degeneration or revive dying axons in patients with preperimetric glaucoma. Further study will be needed to clarify whether the combination therapy of axonal protection and cell body protection will have greater protective effects in early or progressive glaucomatous optic neuropathy.

  4. Axon density and axon orientation dispersion in children born preterm

    NARCIS (Netherlands)

    Kelly, Claire E.; Thompson, Deanne K.; Chen, Jian; Leemans, Alexander; Adamson, Christopher L.; Inder, Terrie E.; Cheong, Jeanie L Y; Doyle, Lex W.; Anderson, Peter J.

    2016-01-01

    Background Very preterm birth (VPT, <32 weeks' gestation) is associated with altered white matter fractional anisotropy (FA), the biological basis of which is uncertain but may relate to changes in axon density and/or dispersion, which can be measured using Neurite Orientation Dispersion and Density

  5. Event-based progression detection strategies using scanning laser polarimetry images of the human retina.

    Science.gov (United States)

    Vermeer, K A; Lo, B; Zhou, Q; Vos, F M; Vossepoel, A M; Lemij, H G

    2011-09-01

    Monitoring glaucoma patients and ensuring optimal treatment requires accurate and precise detection of progression. Many glaucomatous progression detection strategies may be formulated for Scanning Laser Polarimetry (SLP) data of the local nerve fiber thickness. In this paper, several strategies, all based on repeated GDx VCC SLP measurements, are tested to identify the optimal one for clinical use. The parameters of the methods were adapted to yield a set specificity of 97.5% on real image series. For a fixed sensitivity of 90%, the minimally detectable loss was subsequently determined for both localized and diffuse loss. Due to the large size of the required data set, a previously described simulation method was used for assessing the minimally detectable loss. The optimal strategy was identified and was based on two baseline visits and two follow-up visits, requiring two-out-of-four positive tests. Its associated minimally detectable loss was 5-12 μm, depending on the reproducibility of the measurements.

  6. Differentiation and quantification of inflammation, demyelination and axon injury or loss in multiple sclerosis.

    Science.gov (United States)

    Wang, Yong; Sun, Peng; Wang, Qing; Trinkaus, Kathryn; Schmidt, Robert E; Naismith, Robert T; Cross, Anne H; Song, Sheng-Kwei

    2015-05-01

    Axon injury/loss, demyelination and inflammation are the primary pathologies in multiple sclerosis lesions. Despite the prevailing notion that axon/neuron loss is the substrate of clinical progression of multiple sclerosis, the roles that these individual pathological processes play in multiple sclerosis progression remain to be defined. An imaging modality capable to effectively detect, differentiate and individually quantify axon injury/loss, demyelination and inflammation, would not only facilitate the understanding of the pathophysiology underlying multiple sclerosis progression, but also the assessment of treatments at the clinical trial and individual patient levels. In this report, the newly developed diffusion basis spectrum imaging was used to discriminate and quantify the underlying pathological components in multiple sclerosis white matter. Through the multiple-tensor modelling of diffusion weighted magnetic resonance imaging signals, diffusion basis spectrum imaging resolves inflammation-associated cellularity and vasogenic oedema in addition to accounting for partial volume effects resulting from cerebrospinal fluid contamination, and crossing fibres. Quantitative histological analysis of autopsied multiple sclerosis spinal cord specimens supported that diffusion basis spectrum imaging-determined cellularity, axon and myelin injury metrics closely correlated with those pathologies identified and quantified by conventional histological staining. We demonstrated in healthy control subjects that diffusion basis spectrum imaging rectified inaccurate assessments of diffusion properties of white matter tracts by diffusion tensor imaging in the presence of cerebrospinal fluid contamination and/or crossing fibres. In multiple sclerosis patients, we report that diffusion basis spectrum imaging quantitatively characterized the distinct pathologies underlying gadolinium-enhanced lesions, persistent black holes, non-enhanced lesions and non-black hole lesions, a

  7. Differentiation and quantification of inflammation, demyelination and axon injury or loss in multiple sclerosis

    Science.gov (United States)

    Wang, Yong; Sun, Peng; Wang, Qing; Trinkaus, Kathryn; Schmidt, Robert E.; Naismith, Robert T.; Song, Sheng-Kwei

    2015-01-01

    Axon injury/loss, demyelination and inflammation are the primary pathologies in multiple sclerosis lesions. Despite the prevailing notion that axon/neuron loss is the substrate of clinical progression of multiple sclerosis, the roles that these individual pathological processes play in multiple sclerosis progression remain to be defined. An imaging modality capable to effectively detect, differentiate and individually quantify axon injury/loss, demyelination and inflammation, would not only facilitate the understanding of the pathophysiology underlying multiple sclerosis progression, but also the assessment of treatments at the clinical trial and individual patient levels. In this report, the newly developed diffusion basis spectrum imaging was used to discriminate and quantify the underlying pathological components in multiple sclerosis white matter. Through the multiple-tensor modelling of diffusion weighted magnetic resonance imaging signals, diffusion basis spectrum imaging resolves inflammation-associated cellularity and vasogenic oedema in addition to accounting for partial volume effects resulting from cerebrospinal fluid contamination, and crossing fibres. Quantitative histological analysis of autopsied multiple sclerosis spinal cord specimens supported that diffusion basis spectrum imaging-determined cellularity, axon and myelin injury metrics closely correlated with those pathologies identified and quantified by conventional histological staining. We demonstrated in healthy control subjects that diffusion basis spectrum imaging rectified inaccurate assessments of diffusion properties of white matter tracts by diffusion tensor imaging in the presence of cerebrospinal fluid contamination and/or crossing fibres. In multiple sclerosis patients, we report that diffusion basis spectrum imaging quantitatively characterized the distinct pathologies underlying gadolinium-enhanced lesions, persistent black holes, non-enhanced lesions and non-black hole lesions, a

  8. Action-potential modulation during axonal conduction.

    Science.gov (United States)

    Sasaki, Takuya; Matsuki, Norio; Ikegaya, Yuji

    2011-02-04

    Once initiated near the soma, an action potential (AP) is thought to propagate autoregeneratively and distribute uniformly over axonal arbors. We challenge this classic view by showing that APs are subject to waveform modulation while they travel down axons. Using fluorescent patch-clamp pipettes, we recorded APs from axon branches of hippocampal CA3 pyramidal neurons ex vivo. The waveforms of axonal APs increased in width in response to the local application of glutamate and an adenosine A(1) receptor antagonist to the axon shafts, but not to other unrelated axon branches. Uncaging of calcium in periaxonal astrocytes caused AP broadening through ionotropic glutamate receptor activation. The broadened APs triggered larger calcium elevations in presynaptic boutons and facilitated synaptic transmission to postsynaptic neurons. This local AP modification may enable axonal computation through the geometry of axon wiring.

  9. ALS5/SPG11/KIAA1840 mutations cause autosomal recessive axonal Charcot-Marie-Tooth disease.

    Science.gov (United States)

    Montecchiani, Celeste; Pedace, Lucia; Lo Giudice, Temistocle; Casella, Antonella; Mearini, Marzia; Gaudiello, Fabrizio; Pedroso, José L; Terracciano, Chiara; Caltagirone, Carlo; Massa, Roberto; St George-Hyslop, Peter H; Barsottini, Orlando G P; Kawarai, Toshitaka; Orlacchio, Antonio

    2016-01-01

    Charcot-Marie-Tooth disease is a group of hereditary peripheral neuropathies that share clinical characteristics of progressive distal muscle weakness and atrophy, foot deformities, distal sensory loss, as well as diminished tendon reflexes. Hundreds of causative DNA changes have been found, but much of the genetic basis of the disease is still unexplained. Mutations in the ALS5/SPG11/KIAA1840 gene are a frequent cause of autosomal recessive hereditary spastic paraplegia with thin corpus callosum and peripheral axonal neuropathy, and account for ∼ 40% of autosomal recessive juvenile amyotrophic lateral sclerosis. The overlap of axonal Charcot-Marie-Tooth disease with both diseases, as well as the common autosomal recessive inheritance pattern of thin corpus callosum and axonal Charcot-Marie-Tooth disease in three related patients, prompted us to analyse the ALS5/SPG11/KIAA1840 gene in affected individuals with autosomal recessive axonal Charcot-Marie-Tooth disease. We investigated 28 unrelated families with autosomal recessive axonal Charcot-Marie-Tooth disease defined by clinical, electrophysiological, as well as pathological evaluation. Besides, we screened for all the known genes related to axonal autosomal recessive Charcot-Marie-Tooth disease (CMT2A2/HMSN2A2/MFN2, CMT2B1/LMNA, CMT2B2/MED25, CMT2B5/NEFL, ARCMT2F/dHMN2B/HSPB1, CMT2K/GDAP1, CMT2P/LRSAM1, CMT2R/TRIM2, CMT2S/IGHMBP2, CMT2T/HSJ1, CMTRID/COX6A1, ARAN-NM/HINT and GAN/GAN), for the genes related to autosomal recessive hereditary spastic paraplegia with thin corpus callosum and axonal peripheral neuropathy (SPG7/PGN, SPG15/ZFYVE26, SPG21/ACP33, SPG35/FA2H, SPG46/GBA2, SPG55/C12orf65 and SPG56/CYP2U1), as well as for the causative gene of peripheral neuropathy with or without agenesis of the corpus callosum (SLC12A6). Mitochondrial disorders related to Charcot-Marie-Tooth disease type 2 were also excluded by sequencing POLG and TYMP genes. An additional locus for autosomal recessive Charcot

  10. Optofluidic control of axonal guidance

    Science.gov (United States)

    Gu, Ling; Ordonez, Simon; Black, Bryan; Mohanty, Samarendra K.

    2013-03-01

    Significant efforts are being made for control on axonal guidance due to its importance in nerve regeneration and in the formation of functional neuronal circuitry in-vitro. These include several physical (topographic modification, optical force, and electric field), chemical (surface functionalization cues) and hybrid (electro-chemical, photochemical etc) methods. Here, we report comparison of the effect of linear flow versus microfluidic flow produced by an opticallydriven micromotor in guiding retinal ganglion axons. A circularly polarized laser tweezers was used to hold, position and spin birefringent calcite particle near growth cone, which in turn resulted in microfluidic flow. The flow rate and resulting shear-force on axons could be controlled by a varying the power of the laser tweezers beam. The calcite particles were placed separately in one chamber and single particle was transported through microfluidic channel to another chamber containing the retina explant. In presence of flow, the turning of axons was found to strongly correlate with the direction of flow. Turning angle as high as 90° was achieved. Optofluidic-manipulation can be applied to other types of mammalian neurons and also can be extended to stimulate mechano-sensing neurons.

  11. Mutations in the MORC2 gene cause axonal Charcot-Marie-Tooth disease.

    Science.gov (United States)

    Sevilla, Teresa; Lupo, Vincenzo; Martínez-Rubio, Dolores; Sancho, Paula; Sivera, Rafael; Chumillas, María J; García-Romero, Mar; Pascual-Pascual, Samuel I; Muelas, Nuria; Dopazo, Joaquín; Vílchez, Juan J; Palau, Francesc; Espinós, Carmen

    2016-01-01

    Charcot-Marie-Tooth disease (CMT) is a complex disorder with wide genetic heterogeneity. Here we present a new axonal Charcot-Marie-Tooth disease form, associated with the gene microrchidia family CW-type zinc finger 2 (MORC2). Whole-exome sequencing in a family with autosomal dominant segregation identified the novel MORC2 p.R190W change in four patients. Further mutational screening in our axonal Charcot-Marie-Tooth disease clinical series detected two additional sporadic cases, one patient who also carried the same MORC2 p.R190W mutation and another patient that harboured a MORC2 p.S25L mutation. Genetic and in silico studies strongly supported the pathogenicity of these sequence variants. The phenotype was variable and included patients with congenital or infantile onset, as well as others whose symptoms started in the second decade. The patients with early onset developed a spinal muscular atrophy-like picture, whereas in the later onset cases, the initial symptoms were cramps, distal weakness and sensory impairment. Weakness and atrophy progressed in a random and asymmetric fashion and involved limb girdle muscles, leading to a severe incapacity in adulthood. Sensory loss was always prominent and proportional to disease severity. Electrophysiological studies were consistent with an asymmetric axonal motor and sensory neuropathy, while fasciculations and myokymia were recorded rather frequently by needle electromyography. Sural nerve biopsy revealed pronounced multifocal depletion of myelinated fibres with some regenerative clusters and occasional small onion bulbs. Morc2 is expressed in both axons and Schwann cells of mouse peripheral nerve. Different roles in biological processes have been described for MORC2. As the silencing of Charcot-Marie-Tooth disease genes have been associated with DNA damage response, it is tempting to speculate that a deregulation of this pathway may be linked to the axonal degeneration observed in MORC2 neuropathy, thus adding a

  12. Serial cardiac MRIs in adult Fontan patients detect progressive hepatic enlargement and congestion.

    Science.gov (United States)

    Lewis, Matthew J; Hecht, Elizabeth; Ginns, Jonathan; Benton, Joshua; Prince, Martin; Rosenbaum, Marlon S

    2017-03-01

    The progression of hepatic disease in adult Fontan patients is not well understood. They reviewed the experience with serial cardiac MRIs (CMR) in adult Fontan patients to determine if hepatic anatomic markers of prolonged Fontan exposure were present and if clinical predictors of progressive hepatic congestion could be identified. A retrospective cohort study of all adult Fontan patients who had undergone at least two CMRs was performed. Hepatic dimensions, inferior vena cava (IVC) size, right hepatic vein (RHV) size and spleen diameter were determined from images acquired at the time of clinically guided CMR. Two radiologists with expertise in hepatic imaging graded congestion and liver size independently using post-gadolinium contrast sequences. Twenty-seven patients met inclusion criteria. Over a mean time of 5.1 years between CMRs, there was a significant increase in mean lateral-medial hepatic dimension (P = .005), mean RHV diameter (P = .004), and mean splenic diameter (P = .001). Serial post-gadolinium imaging was available in 25/27 (93%) patients of which 15/27 (55%) showed evidence of progressive hepatic congestion across serial studies. Progressive hepatic congestion was associated with single ventricle ejection fraction (SVEF) less than 50% (P = .008), and larger indexed end-diastolic (EDVI) and end-systolic volume (ESVI). RHV diameter was the only anatomic variable significantly correlated with time from Fontan completion (P = .004). Serial CMRs detected progressive liver and hepatic vein enlargement in our cohort of adult Fontan patients over a mean time of 5.2 years. Progressive hepatic congestion occurs in a significant number of adult Fontan patients and may be associated with ventricular enlargement and decreased ventricular function by CMR. © 2016 Wiley Periodicals, Inc.

  13. Recent research progress on unstart mechanism, detection and control of hypersonic inlet

    Science.gov (United States)

    Chang, Juntao; Li, Nan; Xu, Kejing; Bao, Wen; Yu, Daren

    2017-02-01

    The present paper aims to provide a summary report on recent research progress about unstart mechanism, detection and control of hypersonic inlet to help the researchers working on hypersonic inlet to further their work. It covers unstart patterns with their mechanisms, monitoring methods for start/unstart classification and detection, characterization methods for unstart margin, and methods for unstart suppression and control. At first, the inner mechanisms of various unstart patterns have been surveyed and classified, which are respectively caused by contraction ratio (CR)/internal contraction ratio (ICR), backpressure, Mach number and heat release. Followed, monitoring methods (one is for start/unstart classification and the other is for unstart detection) have been introduced respectively. Thirdly, three types of techniques for margin characterization of unstart are listed, which are respectively based on backpressure, the location of shock train leading edge and pressure distribution. At last, unstart suppression and control have been discussed, which are based on flow control or feedback control.

  14. Voxel-based morphometry to detect brain atrophy in progressive mild cognitive impairment.

    Science.gov (United States)

    Hämäläinen, Anne; Tervo, Susanna; Grau-Olivares, Marta; Niskanen, Eini; Pennanen, Corina; Huuskonen, Jari; Kivipelto, Miia; Hänninen, Tuomo; Tapiola, Mia; Vanhanen, Matti; Hallikainen, Merja; Helkala, Eeva-Liisa; Nissinen, Aulikki; Vanninen, Ritva; Soininen, Hilkka

    2007-10-01

    Recent research has shown an increased rate of conversion to dementia in subjects with mild cognitive impairment (MCI) compared to controls. However, there are no specific methods to predict who will later develop dementia. In the present study, 22 controls and 56 MCI subjects were followed on average for 37 months (max. 60 months) and studied with magnetic resonance imaging (MRI) at baseline to assess changes in brain structure associated to later progression to dementia. Voxel-based morphometry (VBM) was used to investigate gray matter atrophy. During the follow-up, 13 subjects progressed to dementia. At baseline, no differences were detected in age or education between the control and MCI subjects, but they differed by several neuropsychological tests. The stable and progressive MCI subjects differed only by CDR sum of boxes scores and delayed verbal recall, which were also significant predictors of conversion to dementia. At the baseline imaging, the MCI subjects showed reduced gray matter density in medial temporal, temporoparietal as well as in frontal cortical areas compared to controls. Interestingly, the progressive MCI subjects showed atrophy in the left temporoparietal and posterior cingulate cortices and in the precuneus bilaterally, and a trend for hippocampal atrophy when compared to the stable MCI subjects. We conclude that widespread cortical atrophy is present already two and a half years before a clinical diagnosis of dementia can be set.

  15. Real-time progressive hyperspectral image processing endmember finding and anomaly detection

    CERN Document Server

    Chang, Chein-I

    2016-01-01

    The book covers the most crucial parts of real-time hyperspectral image processing: causality and real-time capability. Recently, two new concepts of real time hyperspectral image processing, Progressive Hyperspectral Imaging (PHSI) and Recursive Hyperspectral Imaging (RHSI). Both of these can be used to design algorithms and also form an integral part of real time hyperpsectral image processing. This book focuses on progressive nature in algorithms on their real-time and causal processing implementation in two major applications, endmember finding and anomaly detection, both of which are fundamental tasks in hyperspectral imaging but generally not encountered in multispectral imaging. This book is written to particularly address PHSI in real time processing, while a book, Recursive Hyperspectral Sample and Band Processing: Algorithm Architecture and Implementation (Springer 2016) can be considered as its companion book. Includes preliminary background which is essential to those who work in hyperspectral ima...

  16. Phase-Sensitive Inversion-Recovery MRI Improves Longitudinal Cortical Lesion Detection in Progressive MS.

    Directory of Open Access Journals (Sweden)

    Asaff Harel

    Full Text Available Previous studies comparing phase sensitive inversion recovery (PSIR to double inversion recovery (DIR have demonstrated that use of PSIR improves cross-sectional in vivo detection of cortical lesions (CL in multiple sclerosis. We studied the utility of PSIR in detection/characterization of accrual of CL over time in a 1-year longitudinal study in primary progressive multiple sclerosis (PPMS compared to DIR. PSIR and DIR images were acquired with 3T magnetic resonance imaging (MRI in 25 patients with PPMS and 19 healthy controls at baseline, and after 1 year in 20 patients with PPMS. CL were classified as intracortical, leucocortical or juxtacortical. Lesion counts and volumes were calculated for both time points from both sequences and compared. Correlations with measures of physical and cognitive disability were determined as well as new CL counts and volumes. Compared to DIR, PSIR led to detection of a higher number of CL involving a larger proportion of patients with PPMS both cross-sectionally (p = 0.006, 88% and longitudinally (p = 0.007, 95%, and led to the reclassification of a third of CL seen on DIR at each time point. Interestingly, PSIR was more sensitive to new CL accumulation over time compared to DIR. PSIR is a promising technique to monitor cortical damage and disease progression in patients with PPMS over a short-term follow-up.

  17. Real-time progressive hyperspectral remote sensing detection methods for crop pest and diseases

    Science.gov (United States)

    Wu, Taixia; Zhang, Lifu; Peng, Bo; Zhang, Hongming; Chen, Zhengfu; Gao, Min

    2016-05-01

    Crop pests and diseases is one of major agricultural disasters, which have caused heavy losses in agricultural production each year. Hyperspectral remote sensing technology is one of the most advanced and effective method for monitoring crop pests and diseases. However, Hyperspectral facing serial problems such as low degree of automation of data processing and poor timeliness of information extraction. It resulting we cannot respond quickly to crop pests and diseases in a critical period, and missed the best time for quantitative spraying control on a fixed point. In this study, we take the crop pests and diseases as research point and breakthrough, using a self-development line scanning VNIR field imaging spectrometer. Take the advantage of the progressive obtain image characteristics of the push-broom hyperspectral remote sensor, a synchronous real-time progressive hyperspectral algorithms and models will development. Namely, the object's information will get row by row just after the data obtained. It will greatly improve operating time and efficiency under the same detection accuracy. This may solve the poor timeliness problem when we using hyperspectral remote sensing for crop pests and diseases detection. Furthermore, this method will provide a common way for time-sensitive industrial applications, such as environment, disaster. It may providing methods and technical reserves for the development of real-time detection satellite technology.

  18. Detection of Weak Radiation Involving Generation and Progress of Water Tree

    Science.gov (United States)

    Kumazawa, Takao; Taniguchi, Ryouichi

    It is well known that generation and progress of water tree in XLPE cable are remarkably influenced by inorganic impurities. We have investigated the behavior of them in water tree and reported the experimental results as follows: i) the anomalous increase or decrease in several kinds of inorganic elements was observed in water treed XLPE samples, ii) a distinctive relationship was found for the mass numbers for the elements, iii) the isotopic content of the elements such as Zn deviated over 6% from the natural abundance. These results suggest that water tree is concerned with unknown phenomena e.g., cold fusion or nuclear transmutation in condensed matter. In order to study the relationship between water tree and these phenomena, we attempted to detect neutron, γ-ray or X-ray involving generation and progress of water tree in XLPE samples. For the experiments weak and burst-like radiation seemed to be low energy γ-ray or X-ray was often detected by BF3 and/or CdZnTe counter. The radiation tended to be detected from the samples in which a lot of water trees were generated by supplying inorganic cations abundantly.

  19. Progressive reduction in central blood volume is not detected by sublingual capnography.

    Science.gov (United States)

    Chung, Kevin K; Ryan, Kathy L; Rickards, Caroline A; Hinojosa-Laborde, Carmen; Pamplin, Jeremy C; Patel, Shimul S; Herold, Thomas S; Convertino, Victor A

    2012-06-01

    Early detection and management of shock are important in optimizing clinical outcomes. One regional marker, sublingual capnography (SLCO2), is particularly appealing as redistribution of blood flow away from the sublingual mucosa can happen very early in the compensatory phase of hypovolemic shock. Our objective was to test the hypothesis that SLCO2 would detect early hypovolemia in a human laboratory model of hemorrhage: progressive lower body negative pressure until onset of cardiovascular collapse. Eighteen healthy nonsmoking subjects (10 males, 8 females) with mean age of 28 (SD, 8) years, body weight of 72 (SD, 13) kg, and height of 172 (SD, 9) cm were recruited to participate, of whom 17 completed the experiment. Average time to presyncope was 1,579 ± 72 s (mean ± SE). At the time of cardiovascular collapse, lower body negative pressure altered (P < 0.001) systolic blood pressure (mean ± SE: 130 ± 3 vs. 98 ± 2 mm Hg), pulse pressure (mean ± SE: 58 ± 2 vs. 33 ± 2 mm Hg), and heart rate (mean ± SE: 63 ± 3 vs. 102 ± 6 beats/min) when compared with baseline, whereas SLCO2 did not change (49.1 ± 1.0 vs. 48.6 ± 1.5 mm Hg, P = 0.624). In a model of progressive central hypovolemia in humans, we did not detect metabolic derangements in the sublingual mucosa as measured by SLCO2.

  20. New form of autosomal-recessive axonal hereditary sensory motor neuropathy.

    Science.gov (United States)

    Eckhardt, S M; Hicks, E M; Herron, B; Morrison, P J; Aicardi, J

    1998-09-01

    Two siblings, a male and a female, had severe axonal neuropathy and sideroblastic anemia. Despite a distinct clinical picture with areflexia, ataxia, hypotonia, optic atrophy, and progressive sensory neural hearing loss, no definite diagnosis could be reached and the older sibling died at 6 years of age of respiratory failure. It is proposed that the two affected siblings have a new form of autosomal-recessive axonal hereditary sensory motor neuropathy.

  1. Human intraretinal myelination: Axon diameters and axon/myelin thickness ratios

    Directory of Open Access Journals (Sweden)

    Thomas FitzGibbon

    2013-01-01

    Full Text Available Purpose: Human intraretinal myelination of ganglion cell axons occurs in about 1% of the population. We examined myelin thickness and axon diameter in human retinal specimens containing myelinated retinal ganglion cell axons. Materials and Methods: Two eyes containing myelinated patches were prepared for electron microscopy. Two areas were examined in one retina and five in the second retina. Measurements were compared to normal retinal and optic nerve samples and the rabbit retina, which normally contains myelinated axons. Measurements were made using a graphics tablet. Results: Mean axon diameter of myelinated axons at all locations were significantly larger than unmyelinated axons (P ≤ 0.01. Myelinated axons within the patches were significantly larger than axons within the optic nerve (P < 0.01. The relationship between axon diameter/fiber diameter (the G-ratio seen in the retinal sites differed from that in the nerve. G-ratios were higher and myelin thickness was positively correlated to axon diameter (P < 0.01 in the retina but negatively correlated to axon diameter in the nerve (P < 0.001. Conclusion: Intraretinally myelinated axons are larger than non-myelinated axons from the same population and suggests that glial cells can induce diameter changes in retinal axons that are not normally myelinated. This effect is more dramatic on intraretinal axons compared with the normal transition zone as axons enter the optic nerve and these changes are abnormal. Whether intraretinal myelin alters axonal conduction velocity or blocks axonal conduction remains to be clarified and these issues may have different clinical outcomes.

  2. Current progress in functions of axon guidance molecule Slit and underlying molecular mechanism%神经轴突导向分子Slit的功能及其分子作用机制研究进展

    Institute of Scientific and Technical Information of China (English)

    于奇; 周启升; 赵晓; 刘庆信

    2012-01-01

    神经轴突导向分子Slit是一种在进化上高度保守的分泌型糖蛋白,Slit对神经轴突导向、神经细胞迁移、神经细胞形态分化、肿瘤转移、血管生成、心脏形态发生等多种生命活动具有调节作用.Slit功能的实现主要是通过其LRR-2结构域与受体Roundabout (Robo)的Igl结构域相结合而实现的,另外硫酸肝素蛋白多糖(heparan sulfate proteoglycans,HSPGs)、GTP酶激活蛋白(GTPase-activating proteins,GAPs)、酪氨酸激酶Abelson、Ca2+、MicroRNA-218和其它轴突导向分子等多种信号分子也参与了Slit功能的实现.slit基因受到Single-minded、Irx4和Midline等转录因子的调控,另外,转录后水平的选择性剪接使slit基因存在多种亚型.Slit导向机制的研究有助于揭示生物神经发育和再生过程中神经网络形成的内在分子基础,同时,也将为预防和治疗人类神经疾病、抑制癌细胞转移等提供理论参考.%The axon guidance molecule Slit is a secreted glucoprotein which is conserved during evolution. Slit has been implicated in regulating a variety of life activities, such as axon guidance, neuronal migration, neuronal morphological differentiation, tumor metastasis, angiogenesis and heart morphogenesis. Slit function mainly depends on the binding of its LRR-2 domain to the Ig1 domain of Roundabout (Robo) receptor, meanwhile Slit function is also mediated by a range of signaling molecules, including the heparan sul-fate proteoglycans (HSPGs), GTPase-activating proteins (GAPs), tyrosine kinase Abelson, calcium ions, MicroRNA-218 and other axon guidance molecules. Several transcription factors, including Single-minded, Irx and Midline, were shown to regulate slit expression. In addition, multiple Slit isoforms exist as a consequence of alternative spliced transcripts. The research on guidance mechanism of Slit will facilitate the understanding of molecular mechanism underlying neural networks formation in the process of

  3. PTEN inhibition and axon regeneration and neural repair

    Institute of Scientific and Technical Information of China (English)

    Yosuke Ohtake; Umar Hayat; Shuxin Li

    2015-01-01

    The intrinsic growth ability of all the neurons declines during development although some may grow better than others. Numerous intracellular signaling proteins and transcription factors have been shown to regulate the intrinsic growth capacity in mature neurons. Among them, PI3 kinase/Akt pathway is important for controlling axon elongation. As a negative regulator of this pathway, the tumor suppressor phosphatase and tensin homolog (PTEN) appears critical to con-trol the regenerative ability of young and adult neurons. This review will focus on recent research progress in axon regeneration and neural repair by PTEN inhibition and therapeutic potential of blocking this phosphatase for neurological disorders. Inhibition of PTEN by deletion in con-ditional knockout mice, knockdown by short-hairpin RNA, or blockade by pharmacological approaches, including administration of selective PTEN antagonist peptides, stimulates various degrees of axon regrowth in juvenile or adult rodents with central nervous system injuries. Im-portantly, post-injury PTEN suppression could enhance axonal growth and functional recovery in adult central nervous system after injury.

  4. Cocaine Detection in Blood Serum Using Aptamer Biosensor on Gold Nanoparticles and Progressive Dilution

    Institute of Scientific and Technical Information of China (English)

    葛静; 刘肇芳; 赵新生

    2012-01-01

    To fight against the illegal usage of cocaine it is necessary to develop various analytical methodologies. We report here an aptamer-based biosensor for the determination of cocaine using gold nanoparticles as the fluorescence quencher. By employing the progressive dilution (PD) strategy, simultaneous qualitative and quantitative analysis of cocaine in blood serum was achieved without pretreatment of the sample. The method described in this paper of- fers significant improvement in the detection accuracy and can be used to quantify cocaine levels in complex bio- logical samples such as serum with a simple procedure.

  5. Capillary electrokinetic separations with optical detection. Technical progress report, February 1, 1993--January 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Sepaniak, M.J.

    1993-10-01

    This program seeks the development of capillary electrokinetic separation techniques and associated optical methods of detection. Fundamental studies of pertinent separation and band broadening mechanisms are being conducted, with the emphasis on understanding systems that include highly-ordered assemblies as running buffer additives. The additives include cyclodextrins, affinity reagents, and soluble (entangled) polymers and are employed with capillary electrophoresis, CE and/or micellar electrokinetic capillary chromatography, MECC modes of separation. The utility of molecular modeling techniques for predicting the effects of highly ordered assemblies on the retention behavior of isomeric compounds is under investigation. The feasibility of performing separations using a non-aqueous solvent/fullerene electrochromatographic system is being explored. The analytical methodologies associated with these capillary separation techniques are being advanced through the development of retention programming instumentation/techniques and new strategies for performing optical detection. The advantages of laser fluorimetry are extended through the inclusion of fluorogenic, reagents in the running buffer. These reagents include oligonucleotide intercalation reagents for detecting DNA fragments. Chemiluminescence detection using post-capillary reactors/flow cells is also in progress. Successful development of these separation and detection systems will fill current voids in the capabilities of capillary separation techniques.

  6. Fast and reliable identification of axons, axon initial segments and dendrites with local field potential recording

    DEFF Research Database (Denmark)

    Petersen, Anders V.; Johansen, Emil O.; Perrier, Jean-Francois

    2015-01-01

    The axon initial segment (AIS) is an essential neuronal compartment. It is usually where action potentials are initiated. Recent studies demonstrated that the AIS is a plastic structure that can be regulated by neuronal activity and by the activation of metabotropic receptors. Studying the AIS...... of neurons, we can detect sinks caused by inward currents flowing across the membrane. We determine the location of the AIS by comparing the timing of these events with the action potential. We demonstrate that this method allows the unequivocal identification of the AIS of different types of neurons from...

  7. Notch Signaling Inhibits Axon Regeneration

    OpenAIRE

    Bejjani, Rachid El; Hammarlund, Marc

    2012-01-01

    Many neurons have limited capacity to regenerate their axons after injury. Neurons in the mammalian CNS do not regenerate, and even neurons in the PNS often fail to regenerate to their former targets. This failure is likely due in part to pathways that actively restrict regeneration; however, only a few factors that limit regeneration are known. Here, using single-neuron analysis of regeneration in vivo, we show that Notch/lin-12 signaling inhibits the regeneration of mature C. elegans neuron...

  8. A patient with progressive weakness and cramping of right arm and both legs. Diagnosis: persistent, multifocal, partial conduction blocks (CB) of motor axons outside the common sites of nerve entrapment.

    Science.gov (United States)

    Burakgazi, Ahmet Z; Kelly, John J

    2010-01-01

    A 44-year-old man presented with a 1-year history of progressive muscle weakness and cramping. Neurophysiology study, along with clinical presentation, was diagnostic. The differential diagnosis, diagnostic testing, treatment, and prognosis of this rare disease are discussed.

  9. Research Progress of MicroRNA in Early Detection of Ovarian Cancer

    Institute of Scientific and Technical Information of China (English)

    Ze-Hua Wang; Cong-Jian Xu

    2015-01-01

    Objective: This review aimed to update the progress ofmicroRNA (miRNA) in early detection of ovarian cancer.We discussed the current clinical diagnosis methods and biomarkers of ovarian cancer, especially the methods of miRNA in early detection of ovarian cancer.Data Sources: We collected all relevant studies about miRNA and ovarian cancer in PubMed and CNKI from 1995 to 2015.Study Selection: We included all relevant studies concerning miRNA in early detection of ovarian cancer, and excluded the duplicated articles.Results: miRNAs play a key role in various biological processes of ovarian cancer, such as development, proliferation, differentiation, apoptosis and metastasis, and these phenomena appear in the early-stage.Therefore, miRNA can be used as a new biomarker for early diagnosis of ovarian cancer, intervention on miRNA expression of known target genes, and potential target genes can achieve the effect of early prevention.With the development ofnanoscience and technology, analysis methods ofmiRNA are also quickly developed, which may provide better characterization of early detection of ovarian cancer.Conclusions: In the near future, miRNA therapy could be a powerful tool for ovarian cancer prevention and treatment, and combining with the new analysis technology and new nanomaterials, point-of-care tests for miRNA with high throughput, high sensitivity, and strong specificity are developed to achieve the application of diagnostic kits in screening of early ovarian cancer.

  10. Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits

    Science.gov (United States)

    Yu, Panpan; Lin, Mei-Yao; Chen, Yanmin

    2016-01-01

    Although neuronal regeneration is a highly energy-demanding process, axonal mitochondrial transport progressively declines with maturation. Mature neurons typically fail to regenerate after injury, thus raising a fundamental question as to whether mitochondrial transport is necessary to meet enhanced metabolic requirements during regeneration. Here, we reveal that reduced mitochondrial motility and energy deficits in injured axons are intrinsic mechanisms controlling regrowth in mature neurons. Axotomy induces acute mitochondrial depolarization and ATP depletion in injured axons. Thus, mature neuron-associated increases in mitochondria-anchoring protein syntaphilin (SNPH) and decreases in mitochondrial transport cause local energy deficits. Strikingly, enhancing mitochondrial transport via genetic manipulation facilitates regenerative capacity by replenishing healthy mitochondria in injured axons, thereby rescuing energy deficits. An in vivo sciatic nerve crush study further shows that enhanced mitochondrial transport in snph knockout mice accelerates axon regeneration. Understanding deficits in mitochondrial trafficking and energy supply in injured axons of mature neurons benefits development of new strategies to stimulate axon regeneration. PMID:27268498

  11. Bergmann glia and the recognition molecule CHL1 organize GABAergic axons and direct innervation of Purkinje cell dendrites.

    Directory of Open Access Journals (Sweden)

    Fabrice Ango

    2008-04-01

    Full Text Available The geometric and subcellular organization of axon arbors distributes and regulates electrical signaling in neurons and networks, but the underlying mechanisms have remained elusive. In rodent cerebellar cortex, stellate interneurons elaborate characteristic axon arbors that selectively innervate Purkinje cell dendrites and likely regulate dendritic integration. We used GFP BAC transgenic reporter mice to examine the cellular processes and molecular mechanisms underlying the development of stellate cell axons and their innervation pattern. We show that stellate axons are organized and guided towards Purkinje cell dendrites by an intermediate scaffold of Bergmann glial (BG fibers. The L1 family immunoglobulin protein Close Homologue of L1 (CHL1 is localized to apical BG fibers and stellate cells during the development of stellate axon arbors. In the absence of CHL1, stellate axons deviate from BG fibers and show aberrant branching and orientation. Furthermore, synapse formation between aberrant stellate axons and Purkinje dendrites is reduced and cannot be maintained, leading to progressive atrophy of axon terminals. These results establish BG fibers as a guiding scaffold and CHL1 a molecular signal in the organization of stellate axon arbors and in directing their dendritic innervation.

  12. A joint estimation detection of Glaucoma progression in 3D spectral domain optical coherence tomography optic nerve head images.

    Science.gov (United States)

    Belghith, Akram; Bowd, Christopher; Weinreb, Robert N; Zangwill, Linda M

    2014-03-18

    Glaucoma is an ocular disease characterized by distinctive changes in the optic nerve head (ONH) and visual field. Glaucoma can strike without symptoms and causes blindness if it remains without treatment. Therefore, early disease detection is important so that treatment can be initiated and blindness prevented. In this context, important advances in technology for non-invasive imaging of the eye have been made providing quantitative tools to measure structural changes in ONH topography, an essential element for glaucoma detection and monitoring. 3D spectral domain optical coherence tomography (SD-OCT), an optical imaging technique, has been commonly used to discriminate glaucomatous from healthy subjects. In this paper, we present a new framework for detection of glaucoma progression using 3D SD-OCT images. In contrast to previous works that the retinal nerve fiber layer (RNFL) thickness measurement provided by commercially available spectral-domain optical coherence tomograph, we consider the whole 3D volume for change detection. To integrate a priori knowledge and in particular the spatial voxel dependency in the change detection map, we propose the use of the Markov Random Field to handle a such dependency. To accommodate the presence of false positive detection, the estimated change detection map is then used to classify a 3D SDOCT image into the "non-progressing" and "progressing" glaucoma classes, based on a fuzzy logic classifier. We compared the diagnostic performance of the proposed framework to existing methods of progression detection.

  13. A joint estimation detection of Glaucoma progression in 3D spectral domain optical coherence tomography optic nerve head images

    Science.gov (United States)

    Belghith, Akram; Bowd, Christopher; Weinreb, Robert N.; Zangwill, Linda M.

    2014-03-01

    Glaucoma is an ocular disease characterized by distinctive changes in the optic nerve head (ONH) and visual field. Glaucoma can strike without symptoms and causes blindness if it remains without treatment. Therefore, early disease detection is important so that treatment can be initiated and blindness prevented. In this context, important advances in technology for non-invasive imaging of the eye have been made providing quantitative tools to measure structural changes in ONH topography, an essential element for glaucoma detection and monitoring. 3D spectral domain optical coherence tomography (SD-OCT), an optical imaging technique, has been commonly used to discriminate glaucomatous from healthy subjects. In this paper, we present a new framework for detection of glaucoma progression using 3D SD-OCT images. In contrast to previous works that the retinal nerve fiber layer (RNFL) thickness measurement provided by commercially available spectral-domain optical coherence tomograph, we consider the whole 3D volume for change detection. To integrate a priori knowledge and in particular the spatial voxel dependency in the change detection map, we propose the use of the Markov Random Field to handle a such dependency. To accommodate the presence of false positive detection, the estimated change detection map is then used to classify a 3D SDOCT image into the "non-progressing" and "progressing" glaucoma classes, based on a fuzzy logic classifier. We compared the diagnostic performance of the proposed framework to existing methods of progression detection.

  14. Effects of αTAT1 and HDAC5 on axonal regeneration in adult neurons.

    Science.gov (United States)

    Lin, Shen; Sterling, Noelle A; Junker, Ian P; Helm, Courtney T; Smith, George M

    2017-01-01

    The role of posttranslational modifications in axonal injury and regeneration has been widely studied but there has been little consensus over the mechanism by which each modification affects adult axonal growth. Acetylation is known to play an important role in a variety of neuronal functions and its homeostasis is controlled by two enzyme families: the Histone Deacetylases (HDACs) and Histone Acetyl Transferases (HATs). Recent studies show that HDAC5 deacetylates microtubules in the axonal cytoplasm as part of an injury-induced regeneration response, but little is known about how acetylation of microtubules plays a role. Alpha-tubulin acetyl transferase (αTAT1) is a microtubule specific acetyl transferase that binds to microtubules and directly affects microtubule stability in cells. We hypothesize that increasing tubulin acetylation may play an important role in increasing the rate of axonal growth. In this study, we infected cultured adult DRG neurons with αTAT1 and αTAT1-D157N, a catalytically inactive mutant, and HDAC5, using lentiviruses. We found that αTAT1 significantly increases tubulin acetylation in 293T cells and DRG neurons but αTAT1-D157N does not. Furthermore, in neurons infected with αTAT1, a significant increase in acetylated tubulin was detected towards the distal portion of the axon but this increase was not detected in neurons infected with αTAT1-D157N. However, we found a significant increase in axon lengths of DRG neurons after αTAT1 and αTAT1-D157N infection, but no effect on axon lengths after infection with HDAC5. Our results suggest that while αTAT1 may play a role in axon growth in vitro, the increase is not directly due to acetylation of axonal microtubules. Our results also show that HDAC5 overexpression in the axonal cytoplasm does not play a crucial role in axonal regeneration of cultured DRG neurons. We expressed these genes in DRG neurons in adult rats and performed a sciatic nerve crush. We found that axons did not

  15. A progressive processing method for breast cancer detection via UWB based on an MRI-derived model

    Science.gov (United States)

    Xiao, Xia; Song, Hang; Wang, Zong-Jie; Wang, Liang

    2014-07-01

    Ultra-wideband (UWB) microwave imaging is a promising method for breast cancer detection based on the large contrast of electric parameters between the malignant tumor and its surrounded normal breast organisms. In the case of multiple tumors being present, the conventional imaging approaches may be ineffective to detect all the tumors clearly. In this paper, a progressive processing method is proposed for detecting more than one tumor. The method is divided into three stages: primary detection, refocusing and image optimization. To test the feasibility of the approach, a numerical breast model is developed based on the realistic magnetic resonance image (MRI). Two tumors are assumed embedded in different positions. Successful detection of a 3.6 mm-diameter tumor at a depth of 42 mm is achieved. The correct information of both tumors is shown in the reconstructed image, suggesting that the progressive processing method is promising for multi-tumor detection.

  16. AxonSeg: Open Source Software for Axon and Myelin Segmentation and Morphometric Analysis.

    Science.gov (United States)

    Zaimi, Aldo; Duval, Tanguy; Gasecka, Alicja; Côté, Daniel; Stikov, Nikola; Cohen-Adad, Julien

    2016-01-01

    Segmenting axon and myelin from microscopic images is relevant for studying the peripheral and central nervous system and for validating new MRI techniques that aim at quantifying tissue microstructure. While several software packages have been proposed, their interface is sometimes limited and/or they are designed to work with a specific modality (e.g., scanning electron microscopy (SEM) only). Here we introduce AxonSeg, which allows to perform automatic axon and myelin segmentation on histology images, and to extract relevant morphometric information, such as axon diameter distribution, axon density and the myelin g-ratio. AxonSeg includes a simple and intuitive MATLAB-based graphical user interface (GUI) and can easily be adapted to a variety of imaging modalities. The main steps of AxonSeg consist of: (i) image pre-processing; (ii) pre-segmentation of axons over a cropped image and discriminant analysis (DA) to select the best parameters based on axon shape and intensity information; (iii) automatic axon and myelin segmentation over the full image; and (iv) atlas-based statistics to extract morphometric information. Segmentation results from standard optical microscopy (OM), SEM and coherent anti-Stokes Raman scattering (CARS) microscopy are presented, along with validation against manual segmentations. Being fully-automatic after a quick manual intervention on a cropped image, we believe AxonSeg will be useful to researchers interested in large throughput histology. AxonSeg is open source and freely available at: https://github.com/neuropoly/axonseg.

  17. AxonSeg: open source software for axon and myelin segmentation and morphometric analysis

    Directory of Open Access Journals (Sweden)

    Aldo Zaimi

    2016-08-01

    Full Text Available Segmenting axon and myelin from microscopic images is relevant for studying the peripheral and central nervous system and for validating new MRI techniques that aim at quantifying tissue microstructure. While several software packages have been proposed, their interface is sometimes limited and/or they are designed to work with a specific modality (e.g., scanning electron microscopy only. Here we introduce AxonSeg, which allows to perform automatic axon and myelin segmentation on histology images, and to extract relevant morphometric information, such as axon diameter distribution, axon density and the myelin g-ratio. AxonSeg includes a simple and intuitive MATLAB-based graphical user interface and can easily be adapted to a variety of imaging modalities. The main steps of AxonSeg consist of: (i image pre-processing, (ii pre-segmentation of axons over a cropped image and discriminant analysis to select the best parameters based on axon shape and intensity information, (iii automatic axon and myelin segmentation over the full image and (iv atlas-based statistics to extract morphometric information. Segmentation results from standard optical microscopy (OM, scanning electron microscopy (SEM and coherent anti-Stokes Raman scattering (CARS microscopy are presented, along with validation against manual segmentations. Being fully-automatic after a quick manual intervention on a cropped image, we believe AxonSeg will be useful to researchers interested in large throughput histology. AxonSeg is open source and freely available at: https://github.com/neuropoly/axonseg.

  18. The Microtubule Regulatory Protein Stathmin Is Required to Maintain the Integrity of Axonal Microtubules in Drosophila.

    Directory of Open Access Journals (Sweden)

    Jason E Duncan

    Full Text Available Axonal transport, a form of long-distance, bi-directional intracellular transport that occurs between the cell body and synaptic terminal, is critical in maintaining the function and viability of neurons. We have identified a requirement for the stathmin (stai gene in the maintenance of axonal microtubules and regulation of axonal transport in Drosophila. The stai gene encodes a cytosolic phosphoprotein that regulates microtubule dynamics by partitioning tubulin dimers between pools of soluble tubulin and polymerized microtubules, and by directly binding to microtubules and promoting depolymerization. Analysis of stai function in Drosophila, which has a single stai gene, circumvents potential complications with studies performed in vertebrate systems in which mutant phenotypes may be compensated by genetic redundancy of other members of the stai gene family. This has allowed us to identify an essential function for stai in the maintenance of the integrity of axonal microtubules. In addition to the severe disruption in the abundance and architecture of microtubules in the axons of stai mutant Drosophila, we also observe additional neurological phenotypes associated with loss of stai function including a posterior paralysis and tail-flip phenotype in third instar larvae, aberrant accumulation of transported membranous organelles in stai deficient axons, a progressive bang-sensitive response to mechanical stimulation reminiscent of the class of Drosophila mutants used to model human epileptic seizures, and a reduced adult lifespan. Reductions in the levels of Kinesin-1, the primary anterograde motor in axonal transport, enhance these phenotypes. Collectively, our results indicate that stai has an important role in neuronal function, likely through the maintenance of microtubule integrity in the axons of nerves of the peripheral nervous system necessary to support and sustain long-distance axonal transport.

  19. Relationship between chronic demyelination of the optic nerve and short term axonal loss.

    Science.gov (United States)

    Klistorner, A; Garrick, R; Paine, M; Graham, S L; Arvind, H; Van Der Walt, A; Tsonis, S; Yiannikas, C

    2012-03-01

    Axonal loss is a major determinant of disability in multiple sclerosis (MS). While acute inflammatory demyelination is a principal cause of axonal transection and subsequent axonal degeneration in acute disease, the nature of chronic axonal loss is less well understood. In the current study, the relationship between degree of chronic demyelination and axonal degeneration was investigated using optic neuritis (ON) as a model. 25 patients with a first episode of unilateral ON, good recovery of visual function and concurrent brain or spinal cord MRI lesions were enrolled. Axonal loss was assessed using change in retinal nerve fibre layer (RNFL) thickness between 1 and 3 years after ON. Optic nerve conduction was evaluated using latency of multifocal visual evoked potentials (mfVEP). The level of mfVEP latency delay at 12 and 36 months was considered indicative of the degree of permanent demyelination. Data from 25 age and gender matched normal controls were used for comparison. RNFL thickness was significantly reduced in ON eyes at 12 months compared with controls but remained unchanged in fellow eyes. Average RNFL thickness demonstrated a small but significant reduction between 12 and 36 months for both ON and fellow eyes. Change in RNFL thickness between 12 and 36 months, however, did not correlate with the degree of mfVEP latency delay. The results, therefore, show no association between the degree of permanent optic nerve demyelination (as measured by latency delay) and progressive axonal degeneration, at least in the early stages of the disease. The fact that fellow eyes demonstrated a similar degree of progressive axonal loss supports this suggestion.

  20. Progress towards early detection services for infants with hearing loss in developing countries

    Directory of Open Access Journals (Sweden)

    Martinez Norberto V

    2007-01-01

    Full Text Available Abstract Background Early detection of infants with permanent hearing loss through infant hearing screening is recognised and routinely offered as a vital component of early childhood care in developed countries. This article investigates the initiatives and progress towards early detection of infants with hearing loss in developing countries against the backdrop of the dearth of epidemiological data from this region. Methods A cross-sectional, descriptive study based on responses to a structured questionnaire eliciting information on the nature and scope of early hearing detection services; strategies for financing services; parental and professional attitudes towards screening; and the performance of screening programmes. Responses were complemented with relevant data from the internet and PubMed/Medline. Results Pilot projects using objective screening tests are on-going in a growing number of countries. Screening services are provided at public/private hospitals and/or community health centres and at no charge only in a few countries. Attitudes amongst parents and health care workers are typically positive towards such programmes. Screening efficiency, as measured by referral rate at discharge, was generally found to be lower than desired but several programmes achieved other international benchmarks. Coverage is generally above 90% but poor follow-up rates remain a challenge in some countries. The mean age of diagnosis is usually less than six months, even for community-based programmes. Conclusion Lack of adequate resources by many governments may limit rapid nationwide introduction of services for early hearing detection and intervention, but may not deter such services altogether. Parents may be required to pay for services in some settings in line with the existing practice where healthcare services are predominantly financed by out-of-pocket spending rather than public funding. However, governments and their international development

  1. Axonal interferon responses and alphaherpesvirus neuroinvasion

    Science.gov (United States)

    Song, Ren

    Infection by alphaherpesviruses, including herpes simplex virus (HSV) and pseudorabies virus (PRV), typically begins at a peripheral epithelial surface and continues into the peripheral nervous system (PNS) that innervates this tissue. Inflammatory responses are induced at the infected peripheral site prior to viral invasion of the PNS. PNS neurons are highly polarized cells with long axonal processes that connect to distant targets. When the peripheral tissue is first infected, only the innervating axons are exposed to this inflammatory milieu, which include type I interferon (e.g. IFNbeta) and type II interferon (i.e. IFNgamma). IFNbeta can be produced by all types of cells, while IFNgamma is secreted by some specific types of immune cells. And both types of IFN induce antiviral responses in surrounding cells that express the IFN receptors. The fundamental question is how do PNS neurons respond to the inflammatory milieu experienced only by their axons. Axons must act as potential front-line barriers to prevent PNS infection and damage. Using compartmented cultures that physically separate neuron axons from cell bodies, I found that pretreating isolated axons with IFNbeta or IFNgamma significantly diminished the number of HSV-1 and PRV particles moving from axons to the cell bodies in an IFN receptor-dependent manner. Furthermore, I found the responses in axons are activated differentially by the two types of IFNs. The response to IFNbeta is a rapid, axon-only response, while the response to IFNgamma involves long distance signaling to the PNS cell body. For example, exposing axons to IFNbeta induced STAT1 phosphorylation (p-STAT1) only in axons, while exposure of axons to IFNgamma induced p-STAT1 accumulation in distant cell body nuclei. Blocking transcription in cell bodies eliminated IFNgamma-, but not IFNbeta-mediated antiviral effects. Proteomic analysis of IFNbeta- or IFNgamma-treated axons identified several differentially regulated proteins. Therefore

  2. Progress on detection of liquid explosives using ultra-low field MRI

    Energy Technology Data Exchange (ETDEWEB)

    Espy, Michelle A [Los Alamos National Laboratory; Matlashov, Andrei N [Los Alamos National Laboratory; Volegov, Petr L [Los Alamos National Laboratory; Schuttz, Larry M [Los Alamos National Laboratory; Baguisa, Shermiyah [Los Alamos National Laboratory; Dunkerley, David [Los Alamos National Laboratory; Magnelind, Per [Los Alamos National Laboratory; Owens, Tuba [Los Alamos National Laboratory; Sandin, Henrik [Los Alamos National Laboratory; Urbaitis, Algis [Los Alamos National Laboratory

    2010-01-01

    Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) methods are widely used in medicine, chemistry and industry. Over the past several years there has been increasing interest in performing NMR and MRI in the ultra-low field (ULF) regime, with measurement field strengths of 10-100 microTesla and pre-polarization fields of 30-50 mTesla. The real-time signal-to-noise ratio for such measurements is about 100. Our group at LANL has built and demonstrated the performance of SQUID-based ULF NMR/MRI instrumentation for classification of materials and detection of liquid explosives via their relaxation properties measured at ULF, using T{sub 1}, and T{sub 2}, and T{sub 1} frequency dispersion. We are also beginning to investigate the performance of induction coils as sensors. Here we present recent progress on the applications of ULF MR to the detection of liquid explosives, in imaging and relaxometry.

  3. Outlier Detection Method in Linear Regression Based on Sum of Arithmetic Progression

    Science.gov (United States)

    Adikaram, K. K. L. B.; Hussein, M. A.; Effenberger, M.; Becker, T.

    2014-01-01

    We introduce a new nonparametric outlier detection method for linear series, which requires no missing or removed data imputation. For an arithmetic progression (a series without outliers) with n elements, the ratio (R) of the sum of the minimum and the maximum elements and the sum of all elements is always 2/n : (0,1]. R ≠ 2/n always implies the existence of outliers. Usually, R outlier, and R > 2/n implies that the maximum is an outlier. Based upon this, we derived a new method for identifying significant and nonsignificant outliers, separately. Two different techniques were used to manage missing data and removed outliers: (1) recalculate the terms after (or before) the removed or missing element while maintaining the initial angle in relation to a certain point or (2) transform data into a constant value, which is not affected by missing or removed elements. With a reference element, which was not an outlier, the method detected all outliers from data sets with 6 to 1000 elements containing 50% outliers which deviated by a factor of ±1.0e − 2 to ±1.0e + 2 from the correct value. PMID:25121139

  4. [Progress in the early detection of cervix cancer from the viewpoint of the Saarland cancer register].

    Science.gov (United States)

    Brenner, H; Wiebelt, H; Ziegler, H

    1990-04-01

    The efficacy of the nationwide screening programme for cervical cancer in the Federal Republic of Germany, which has been in effect since 1971, has never been checked by means of controlled epidemiological studies. Therefore routinely collected mortality and morbidity data are up to now the only indicators of potential progress in early detection. Mortality statistics of cervical cancer are of restricted value due to lack of specificity regarding the cause of death on death certificates. Data of the population based cancer registry of Saarland are used to investigate trends in terms of age, stage and birth cohort-specific detection rates of cervical cancer and its preinvasive precursors. There was a substantial decrease in incidence rates of invasive cervical cancer, which was most pronounced for advanced tumour stages and young and middle-age groups and which is consistent with comparable results in other countries following the introduction of screening programmes. However, a selection effect of the screening programme suggested by a decrease in survival rates of women with invasive cervical cancer in the 1980ies, must also be taken into account.

  5. Motor axon excitability during Wallerian degeneration

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Alvarez, Susana; Krarup, Christian

    2008-01-01

    , action potential propagation and structural integrity of the distal segment are maintained. The aim of this study was to investigate in vivo the changes in membrane function of motor axons during the 'latent' phase of Wallerian degeneration. Multiple indices of axonal excitability of the tibial nerve...

  6. Cable energy function of cortical axons.

    Science.gov (United States)

    Ju, Huiwen; Hines, Michael L; Yu, Yuguo

    2016-01-01

    Accurate estimation of action potential (AP)-related metabolic cost is essential for understanding energetic constraints on brain connections and signaling processes. Most previous energy estimates of the AP were obtained using the Na(+)-counting method, which seriously limits accurate assessment of metabolic cost of ionic currents that underlie AP conduction along the axon. Here, we first derive a full cable energy function for cortical axons based on classic Hodgkin-Huxley (HH) neuronal equations and then apply the cable energy function to precisely estimate the energy consumption of AP conduction along axons with different geometric shapes. Our analytical approach predicts an inhomogeneous distribution of metabolic cost along an axon with either uniformly or nonuniformly distributed ion channels. The results show that the Na(+)-counting method severely underestimates energy cost in the cable model by 20-70%. AP propagation along axons that differ in length may require over 15% more energy per unit of axon area than that required by a point model. However, actual energy cost can vary greatly depending on axonal branching complexity, ion channel density distributions, and AP conduction states. We also infer that the metabolic rate (i.e. energy consumption rate) of cortical axonal branches as a function of spatial volume exhibits a 3/4 power law relationship.

  7. Commissural axons of the mouse cochlear nucleus.

    Science.gov (United States)

    Brown, M Christian; Drottar, Marie; Benson, Thane E; Darrow, Keith

    2013-05-01

    The axons of commissural neurons that project from one cochlear nucleus to the other were studied after labeling with anterograde tracer. Injections were made into the dorsal subdivision of the cochlear nucleus in order to restrict labeling only to the group of commissural neurons that gave off collaterals to, or were located in, this subdivision. The number of labeled commissural axons in each injection was correlated with the number of labeled radiate multipolar neurons, suggesting radiate neurons as the predominant origin of the axons. The radiate commissural axons are thick and myelinated, and they exit the dorsal acoustic stria of the injected cochlear nucleus to cross the brainstem in the dorsal half, near the crossing position of the olivocochlear bundle. They enter the opposite cochlear nucleus via the dorsal and ventral acoustic stria and at its medial border. Reconstructions of single axons demonstrate that terminations are mostly in the core and typically within a single subdivision of the cochlear nucleus. Extents of termination range from narrow to broad along both the dorsoventral (i.e., tonotopic) and the rostrocaudal dimensions. In the electron microscope, labeled swellings form synapses that are symmetric (in that there is little postsynaptic density), a characteristic of inhibitory synapses. Our labeled axons do not appear to include excitatory commissural axons that end in edge regions of the nucleus. Radiate commissural axons could mediate the broadband inhibition observed in responses to contralateral sound, and they may balance input from the two ears with a quick time course.

  8. Axon reflexes in human cold exposed fingers

    NARCIS (Netherlands)

    Daanen, H.A.M.; Ducharme, M.B.

    2000-01-01

    Exposure of fingers to severe cold induces cold induced vasodilation (CIVD). The mechanism of CIVD is still debated. The original theory states that an axon reflex causes CIVD. To test this hypothesis, axon reflexes were evoked by electrical stimulation of the middle fingers of hands immersed in

  9. Axon reflexes in human cold exposed fingers

    NARCIS (Netherlands)

    Daanen, H.A.M.; Ducharme, M.B.

    2000-01-01

    Exposure of fingers to severe cold induces cold induced vasodilation (CIVD). The mechanism of CIVD is still debated. The original theory states that an axon reflex causes CIVD. To test this hypothesis, axon reflexes were evoked by electrical stimulation of the middle fingers of hands immersed in wat

  10. Ascending Midbrain Dopaminergic Axons Require Descending GAD65 Axon Fascicles for Normal Pathfinding

    Directory of Open Access Journals (Sweden)

    Claudia Marcela Garcia-Peña

    2014-06-01

    Full Text Available The Nigrostriatal pathway (NSP is formed by dopaminergic axons that project from the ventral midbrain to the dorsolateral striatum as part of the medial forebrain bundle. Previous studies have implicated chemotropic proteins in the formation of the NSP during development but little is known of the role of substrate-anchored signals in this process. We observed in mouse and rat embryos that midbrain dopaminergic axons ascend in close apposition to descending GAD65-positive axon bundles throughout their trajectory to the striatum. To test whether such interaction is important for dopaminergic axon pathfinding, we analyzed transgenic mouse embryos in which the GAD65 axon bundle was reduced by the conditional expression of the diphtheria toxin. In these embryos we observed dopaminergic misprojection into the hypothalamic region and abnormal projection in the striatum. In addition, analysis of Robo1/2 and Slit1/2 knockout embryos revealed that the previously described dopaminergic misprojection in these embryos is accompanied by severe alterations in the GAD65 axon scaffold. Additional studies with cultured dopaminergic neurons and whole embryos suggest that NCAM and Robo proteins are involved in the interaction of GAD65 and dopaminergic axons. These results indicate that the fasciculation between descending GAD65 axon bundles and ascending dopaminergic axons is required for the stereotypical NSP formation during brain development and that known guidance cues may determine this projection indirectly by instructing the pathfinding of the axons that are part of the GAD65 axon scaffold.

  11. Glaucoma progression detection by retinal nerve fiber layer measurement using scanning laser polarimetry: event and trend analysis.

    Science.gov (United States)

    Moon, Byung Gil; Sung, Kyung Rim; Cho, Jung Woo; Kang, Sung Yong; Yun, Sung-Cheol; Na, Jung Hwa; Lee, Youngrok; Kook, Michael S

    2012-06-01

    To evaluate the use of scanning laser polarimetry (SLP, GDx VCC) to measure the retinal nerve fiber layer (RNFL) thickness in order to evaluate the progression of glaucoma. Test-retest measurement variability was determined in 47 glaucomatous eyes. One eye each from 152 glaucomatous patients with at least 4 years of follow-up was enrolled. Visual field (VF) loss progression was determined by both event analysis (EA, Humphrey guided progression analysis) and trend analysis (TA, linear regression analysis of the visual field index). SLP progression was defined as a reduction of RNFL exceeding the predetermined repeatability coefficient in three consecutive exams, as compared to the baseline measure (EA). The slope of RNFL thickness change over time was determined by linear regression analysis (TA). Twenty-two eyes (14.5%) progressed according to the VF EA, 16 (10.5%) by VF TA, 37 (24.3%) by SLP EA and 19 (12.5%) by SLP TA. Agreement between VF and SLP progression was poor in both EA and TA (VF EA vs. SLP EA, k = 0.110; VF TA vs. SLP TA, k = 0.129). The mean (±standard deviation) progression rate of RNFL thickness as measured by SLP TA did not significantly differ between VF EA progressors and non-progressors (-0.224 ± 0.148 µm/yr vs. -0.218 ± 0.151 µm/yr, p = 0.874). SLP TA and EA showed similar levels of sensitivity when VF progression was considered as the reference standard. RNFL thickness as measurement by SLP was shown to be capable of detecting glaucoma progression. Both EA and TA of SLP showed poor agreement with VF outcomes in detecting glaucoma progression.

  12. Current Progresses of Midass: Microbial Detection in Air System for Space

    Science.gov (United States)

    Abaibou, Hafid; Lasseur, Christophe; Mabilat, Claude; Storrs-Mabilat, Michele; Guy, Michel; Raffestin, Stephanie; Sole Bosquet, Jaume

    For the long term manned missions, microbial contamination is a major risk for crew members and hardware. This risk has first been documented by Russian scientists then by other organizations as a consequence of the contamination of metabolic consumables (water, air), and also the hardware degradation. Rapid molecular biology techniques offer an attractive alternative to traditional culture-based methods. They allow fast time to results for contamination detection and quick implementation of appropriate corrective action when required. However, to date, there are no such available system due to the technical challenges required to meet the sensitivity and specificity needs of the test and the requirement for full automation, from sampling to results interpretation. In response to this, over the last decade, the European Space Agency (ESA) and bioMérieux initiated a co-development of MIDASS, the world’s first fully automated system for the monitoring of the environmental microbial load in confined spaces, including clean rooms and hospital wards. The system is based on molecular technologies (sample preparation/amplification/detection) and enables rapid and simple determination of the microbiological contamination level in less than 3 hours. It relies on NASBA-amplification for the detection of selected micro-organisms (indicators or pathogens) at determined risk-levels (200 and 1 CFU /m3 air, respectively). Successful progresses were recently made for the space-application workpackage of this project: a lab-on-a-card design for air-testing in a first scope was endorsed by a successful ESA Preliminary Design Review, paving the way to spatialization steps (phases C and D). Data will be presented with regards to system design and biological performances.

  13. Dynamics of mitochondrial transport in axons

    Directory of Open Access Journals (Sweden)

    Robert Francis Niescier

    2016-05-01

    Full Text Available The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons.

  14. Early events in axon/dendrite polarization.

    Science.gov (United States)

    Cheng, Pei-lin; Poo, Mu-ming

    2012-01-01

    Differentiation of axons and dendrites is a critical step in neuronal development. Here we review the evidence that axon/dendrite formation during neuronal polarization depends on the intrinsic cytoplasmic asymmetry inherited by the postmitotic neuron, the exposure of the neuron to extracellular chemical factors, and the action of anisotropic mechanical forces imposed by the environment. To better delineate the functions of early signals among a myriad of cellular components that were shown to influence axon/dendrite formation, we discuss their functions by distinguishing their roles as determinants, mediators, or modulators and consider selective degradation of these components as a potential mechanism for axon/dendrite polarization. Finally, we examine whether these early events of axon/dendrite formation involve local autocatalytic activation and long-range inhibition, as postulated by Alan Turing for the morphogenesis of patterned biological structure.

  15. Molecular and metabolic pattern classification for detection of brain glioma progression

    Energy Technology Data Exchange (ETDEWEB)

    Imani, Farzin, E-mail: imanif@upmc.edu [Department of Radiology, University of Pittsburgh Medical Center, PA (United States); Boada, Fernando E. [Department of Radiology, University of Pittsburgh Medical Center, PA (United States); Lieberman, Frank S. [Department of Neurology, University of Pittsburgh Medical Center, PA (United States); Davis, Denise K.; Mountz, James M. [Department of Radiology, University of Pittsburgh Medical Center, PA (United States)

    2014-02-15

    %. Conclusion: This study suggests that SVM models may improve detection of glioma progression more accurately than single parametric imaging methods. Research support: National Cancer Institute, Cancer Center Support Grant Supplement Award, Imaging Response Assessment Teams.

  16. Diffuse axonal injury in brain trauma: insights from alterations in neurofilaments

    Directory of Open Access Journals (Sweden)

    Declan Guenter Siedler

    2014-12-01

    Full Text Available Traumatic brain injury from penetrating or closed forces to the cranium can result in a range of forms of neural damage, which culminate in mortality or impart mild to significant neurological disability. In this regard, diffuse axonal injury is a major neuronal pathophenotype of traumatic brain injury and is associated with a complex set of cytoskeletal changes. The neurofilament triplet proteins are key structural cytoskeletal elements, which may also be important contributors to the tensile strength of axons. This has significant implications with respect to how axons may respond to traumatic brain injury. It is not known, however, whether neurofilament compaction and the cytoskeletal changes that evolve following axonal injury represent a component of a protective mechanism following damage, or whether they serve to augment degeneration and progression to secondary axotomy. Here we review the structure and role of neurofilament proteins in normal neuronal function. We also discuss the processes that characterize diffuse axonal injury and the resultant alterations in neurofilaments, highlighting potential clues to a possible protective or degenerative influence of specific neurofilament alterations within injured neurons. The potential utility of neurofilament assays as biomarkers for axonal injury is also discussed. Insights into the complex alterations in neurofilaments will contribute to future efforts in developing therapeutic strategies to prevent, ameliorate or reverse neuronal degeneration in the CNS following traumatic injury.

  17. Coevolution of axon guidance molecule Slit and its receptor Robo.

    Directory of Open Access Journals (Sweden)

    Qi Yu

    Full Text Available Coevolution is important for the maintenance of the interaction between a ligand and its receptor during evolution. The interaction between axon guidance molecule Slit and its receptor Robo is critical for the axon repulsion in neural tissues, which is evolutionarily conserved from planarians to humans. However, the mechanism of coevolution between Slit and Robo remains unclear. In this study, we found that coordinated amino acid changes took place at interacting sites of Slit and Robo by comparing the amino acids at these sites among different organisms. In addition, the high level correlation between evolutionary rate of Slit and Robo was identified in vertebrates. Furthermore, the sites under positive selection of slit and robo were detected in the same lineage such as mosquito and teleost. Overall, our results provide evidence for the coevolution between Slit and Robo.

  18. Coevolution of axon guidance molecule Slit and its receptor Robo.

    Science.gov (United States)

    Yu, Qi; Li, Xiao-Tong; Zhao, Xiao; Liu, Xun-Li; Ikeo, Kazuho; Gojobori, Takashi; Liu, Qing-Xin

    2014-01-01

    Coevolution is important for the maintenance of the interaction between a ligand and its receptor during evolution. The interaction between axon guidance molecule Slit and its receptor Robo is critical for the axon repulsion in neural tissues, which is evolutionarily conserved from planarians to humans. However, the mechanism of coevolution between Slit and Robo remains unclear. In this study, we found that coordinated amino acid changes took place at interacting sites of Slit and Robo by comparing the amino acids at these sites among different organisms. In addition, the high level correlation between evolutionary rate of Slit and Robo was identified in vertebrates. Furthermore, the sites under positive selection of slit and robo were detected in the same lineage such as mosquito and teleost. Overall, our results provide evidence for the coevolution between Slit and Robo.

  19. Developmental downregulation of LIS1 expression limits axonal extension and allows axon pruning

    Directory of Open Access Journals (Sweden)

    Kanako Kumamoto

    2017-07-01

    Full Text Available The robust axonal growth and regenerative capacities of young neurons decrease substantially with age. This developmental downregulation of axonal growth may facilitate axonal pruning and neural circuit formation but limits functional recovery following nerve damage. While external factors influencing axonal growth have been extensively investigated, relatively little is known about the intrinsic molecular changes underlying the age-dependent reduction in regeneration capacity. We report that developmental downregulation of LIS1 is responsible for the decreased axonal extension capacity of mature dorsal root ganglion (DRG neurons. In contrast, exogenous LIS1 expression or endogenous LIS1 augmentation by calpain inhibition restored axonal extension capacity in mature DRG neurons and facilitated regeneration of the damaged sciatic nerve. The insulator protein CTCF suppressed LIS1 expression in mature DRG neurons, and this reduction resulted in excessive accumulation of phosphoactivated GSK-3β at the axon tip, causing failure of the axonal extension. Conversely, sustained LIS1 expression inhibited developmental axon pruning in the mammillary body. Thus, LIS1 regulation may coordinate the balance between axonal growth and pruning during maturation of neuronal circuits.

  20. Laser-based single-axon transection for high-content axon injury and regeneration studies.

    Directory of Open Access Journals (Sweden)

    Darío Kunik

    Full Text Available The investigation of the regenerative response of the neurons to axonal injury is essential to the development of new axoprotective therapies. Here we study the retinal neuronal RGC-5 cell line after laser transection, demonstrating that the ability of these cells to initiate a regenerative response correlates with axon length and cell motility after injury. We show that low energy picosecond laser pulses can achieve transection of unlabeled single axons in vitro and precisely induce damage with micron precision. We established the conditions to achieve axon transection, and characterized RGC-5 axon regeneration and cell body response using time-lapse microscopy. We developed an algorithm to analyze cell trajectories and established correlations between cell motility after injury, axon length, and the initiation of the regeneration response. The characterization of the motile response of axotomized RGC-5 cells showed that cells that were capable of repair or regrowth of damaged axons migrated more slowly than cells that could not. Moreover, we established that RGC-5 cells with long axons could not recover their injured axons, and such cells were much more motile. The platform we describe allows highly controlled axonal damage with subcellular resolution and the performance of high-content screening in cell cultures.

  1. Axon Death Pathways Converge on Axundead to Promote Functional and Structural Axon Disassembly.

    Science.gov (United States)

    Neukomm, Lukas J; Burdett, Thomas C; Seeds, Andrew M; Hampel, Stefanie; Coutinho-Budd, Jaeda C; Farley, Jonathan E; Wong, Jack; Karadeniz, Yonca B; Osterloh, Jeannette M; Sheehan, Amy E; Freeman, Marc R

    2017-07-05

    Axon degeneration is a hallmark of neurodegenerative disease and neural injury. Axotomy activates an intrinsic pro-degenerative axon death signaling cascade involving loss of the NAD(+) biosynthetic enzyme Nmnat/Nmnat2 in axons, activation of dSarm/Sarm1, and subsequent Sarm-dependent depletion of NAD(+). Here we identify Axundead (Axed) as a mediator of axon death. axed mutants suppress axon death in several types of axons for the lifespan of the fly and block the pro-degenerative effects of activated dSarm in vivo. Neurodegeneration induced by loss of the sole fly Nmnat ortholog is also fully blocked by axed, but not dsarm, mutants. Thus, pro-degenerative pathways activated by dSarm signaling or Nmnat elimination ultimately converge on Axed. Remarkably, severed axons morphologically preserved by axon death pathway mutations remain integrated in circuits and able to elicit complex behaviors after stimulation, indicating that blockade of axon death signaling results in long-term functional preservation of axons. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The Use of Microperimetry to Detect Functional Progression in Non-Neovascular Age-Related Macular Degeneration: A Systematic Review.

    Science.gov (United States)

    Wong, Evan N; Chew, Avenell L; Morgan, William H; Patel, Praveen J; Chen, Fred K

    2017-01-01

    We reviewed the current literature on the ability of microperimetry to detect non-neovascular age-related macular degeneration (AMD) disease progression. The index test was retinal sensitivity measurement assessed by microperimetry and comparators were other functional measures (best-corrected and low-luminance visual acuities, and fixation stability) and structural parameters [retinal thickness, choroidal thickness, and area of geographic atrophy (GA) determined by color fundus photographs, short-wave or near-infrared fundus autofluorescence]. The reference standard was area of GA. The literature search was conducted in January 2016 and included MEDLINE, EMBASE, the Cochrane Library, Biosis, Science Citation Index, ProQuest Health and Medicine, CINAHL, and Highwire Press. We included 6 studies that enrolled 41 eyes with intermediate AMD (from a single study) and 80 eyes with GA secondary to AMD. Retinal sensitivity measured by microperimetry was the only functional measure that consistently detected progression in each cohort. Insufficient reported data precluded meta-analysis. Various microperimetry parameters were used to assess cohort-level change in retinal sensitivity, but the methods of analysis have yet to mature in complexity in comparison with established glaucoma field progression analysis. Microperimetry-assessed retinal sensitivity measurement may be more sensitive in detecting progression than other functional measures in non-neovascular AMD. However, the lack of standardized testing protocol and methods of progression analysis hindered comparison. Harmonization of testing protocol and development of more robust methods of analyzing raw microperimetric data will facilitate clinical implementation of this valuable retinal assessment tool.

  3. Extra-neurohypophyseal axonal projections from individual vasopressin-containing magnocellular neurons in rat hypothalamus

    Directory of Open Access Journals (Sweden)

    Vito Salvador Hernandez

    2015-10-01

    Full Text Available Conventional neuroanatomical, immunohistochemical techniques and electrophysiological recording, as well as in vitro labeling methods may fail to detect long range extra-neurohypophyseal-projecting axons from vasopressin (AVP-containing magnocellular neurons (magnocells in the hypothalamic paraventricular nucleus (PVN. Here, we used in vivo extracellular recording, juxtacellular labeling, post hoc anatomo-immunohistochemical analysis and camera lucida reconstruction to address this question. We demonstrate that all well-labeled AVP immunopositive neurons inside the PVN possess main axons joining the tract of Greving and multi-axon-like processes, as well as axonal collaterals branching very near to the somata, which project to extra-neurohypophyseal regions. The detected regions in this study include the medial and lateral preoptical area, suprachiasmatic nucleus, lateral habenula, medial and central amygdala and the conducting systems, such as stria medullaris, the fornix and the internal capsule. Expression of vesicular glutamate transporter 2 was observed in axon-collaterals. These results, in congruency with several previous reports in the literature, provided unequivocal evidence that AVP magnocells have an uncommon feature of possessing multiple axon-like processes emanating from somata or proximal dendrites. Furthermore, the long-range non-neurohypophyseal projections are more common than an occasional phenomenon as previously thought.

  4. Analysis and PCR detection of antigen compositions of ovine progressive pneumonia virus

    Institute of Scientific and Technical Information of China (English)

    丁恩雨

    1995-01-01

    Ovine progressive pneumonia virus (OPPV) was proliferated utilizing sheep foetal lung cells, and the cytopathic effect (CPE) of the virus was investigated. OPPV was purified with a 10%-sucrose cushion and then with 20%-55% discontinuous sucrose density gradient centrifugation. The structural proteins and antigen compositions of OPPV were analysed by SDS-PAGE and Western blotting. Besides, the OPP proviral cDNAs of the virus-infected cell cultures and the peripheral blood monocytes from sheep infected by the virus were detected using polymerase chain reaction (PCR). The results show that the CPE of sheep foetal lung cells infected by OPPV is typical of the disease. The purified virions are intact and of high purity when observed with an electron microscope. OPPV proteins consist of 18 polypeptide bands and the molecular weights range from 18 to 120kd. Among these, 3 were glycoproteins (designated by gp120, gp50 and gp47). The appearance and peak time of the p28 antibody from sheep inoculated with OPPV ar

  5. Fast and reliable identification of axons, axon initial segments and dendrites with local field potential recording

    Directory of Open Access Journals (Sweden)

    Anders Victor ePetersen

    2015-10-01

    Full Text Available The axon initial segment (AIS is an essential neuronal compartment. It is usually where action potentials are initiated. Recent studies demonstrated that the AIS is a plastic structure that can be regulated by neuronal activity and by the activation of metabotropic receptors. Studying the AIS in live tissue can be difficult because its identification is not always reliable. Here we provide a new technique allowing a fast and reliable identification of the AIS in live brain slice preparations. By simultaneous recoding of extracellular local field potentials and whole-cell patch-clamp recording of neurons, we can detect sinks caused by inward currents flowing across the membrane. We determine the location of the AIS by comparing the timing of these events with the action potential. We demonstrate that this method allows the unequivocal identification of the AIS of different types of neurons from the brain.

  6. Emphysema progression is visually detectable in low-dose CT in continuous but not in former smokers

    DEFF Research Database (Denmark)

    Wille, Mathilde Marie Winkler; Thomsen, Laura H.; Dirksen, Asger

    2014-01-01

    OBJECTIVES: To evaluate interobserver agreement and time-trend in chest CT assessment of emphysema, airways, and interstitial abnormalities in a lung cancer screening cohort. METHODS: Visual assessment of baseline and fifth-year examination of 1990 participants was performed independently by two...... time-trends for emphysema presence and grading. • For continuous smokers, progression of emphysema was seen in all lung zones. • For former smokers, progression of emphysema was undetectable by visual assessment. • Onset and progression of interstitial abnormalities are visually detectable....... prevalence and grade of emphysema in late CT examinations). Significant progression in emphysema was seen in continuous smokers, but not in former smokers. Agreement on centrilobular emphysema subtype was substantial; agreement on paraseptal subtype, moderate. Agreement on panlobular and mixed subtypes...

  7. Detection of Progressive Retinal Nerve Fiber Layer Loss in Glaucoma Using Scanning Laser Polarimetry with Variable Corneal Compensation

    Science.gov (United States)

    Medeiros, Felipe A.; Alencar, Luciana M.; Zangwill, Linda M.; Bowd, Christopher; Vizzeri, Gianmarco; Sample, Pamela A.; Weinreb, Robert N.

    2010-01-01

    Purpose To evaluate the ability of scanning laser polarimetry with variable corneal compensation to detect progressive retinal nerve fiber layer (RNFL) loss in glaucoma patients and patients suspected of having the disease. Methods This was an observational cohort study that included 335 eyes of 195 patients. Images were obtained annually with the GDx VCC scanning laser polarimeter, along with optic disc stereophotographs and standard automated perimetry (SAP) visual fields. The median follow-up time was 3.94 years. Progression was determined using commercial software for SAP and by masked assessment of optic disc stereophotographs performed by expert graders. Random coefficient models were used to evaluate the relationship between RNFL thickness measurements over time and progression as determined by SAP and/or stereophotographs. Results From the 335 eyes, 34 (10%) showed progression over time by stereophotographs and/or SAP. Average GDx VCC measurements decreased significantly over time for both progressors as well as non-progressors. However, the rate of decline was significantly higher in the progressing group (−0.70 μm/year) compared to the non-progressing group (−0.14 μm/year; P = 0.001). Black race and male sex were significantly associated with higher rates of RNFL loss during follow-up. Conclusions The GDx VCC scanning laser polarimeter was able to identify longitudinal RNFL loss in eyes that showed progression in optic disc stereophotographs and/or visual fields. These findings suggest that this technology could be useful to detect and monitor progressive disease in patients with established diagnosis of glaucoma or suspected of having the disease. PMID:19029038

  8. Imaging axonal degeneration and repair in pre-clinical animal models of multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Soumya S Yandamuri

    2016-05-01

    Full Text Available Multiple sclerosis (MS is a central nervous system (CNS disease characterized by chronic neuroinflammation, demyelination, and axonal damage. Infiltration of activated lymphocytes and myeloid cells are thought to be primarily responsible for white matter damage and axonopathy. Over time, this neurologic damage manifests clinically as debilitating motor and cognitive symptoms. Existing MS therapies focus on symptom relief and delay of disease progression through reduction of neuroinflammation. However, long-term strategies to remyelinate, protect, or regenerate axons have remained elusive, posing a challenge to treating progressive forms of MS. Preclinical mouse models and techniques such as immunohistochemistry, flow cytometry, and genomic and proteomic analysis have provided advances in our understanding of discrete time-points of pathology following disease induction. More recently, in vivo and in situ two-photon microscopy (2P has made it possible to visualize continuous real-time cellular behavior and structural changes occurring within the CNS during neuropathology. Research utilizing 2P imaging to study axonopathy in neuroinflammatory demyelinating disease has focused on five areas: (1 axonal morphologic changes (2 organelle transport and health, (3 relationship to inflammation, (4 neuronal excitotoxicity, and (5 regenerative therapies. 2P imaging may also be used to identify novel therapeutic targets via identification and clarification of dynamic cellular and molecular mechanisms of axonal regeneration and remyelination. Here, we review tools that have made 2P accessible for imaging neuropathologies and advances in our understanding of axonal degeneration and repair in preclinical models of demyelinating diseases.

  9. Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy.

    Science.gov (United States)

    Kole, Maarten H P; Letzkus, Johannes J; Stuart, Greg J

    2007-08-16

    Action potentials are binary signals that transmit information via their rate and temporal pattern. In this context, the axon is thought of as a transmission line, devoid of a role in neuronal computation. Here, we show a highly localized role of axonal Kv1 potassium channels in shaping the action potential waveform in the axon initial segment (AIS) of layer 5 pyramidal neurons independent of the soma. Cell-attached recordings revealed a 10-fold increase in Kv1 channel density over the first 50 microm of the AIS. Inactivation of AIS and proximal axonal Kv1 channels, as occurs during slow subthreshold somatodendritic depolarizations, led to a distance-dependent broadening of axonal action potentials, as well as an increase in synaptic strength at proximal axonal terminals. Thus, Kv1 channels are strategically positioned to integrate slow subthreshold signals, providing control of the presynaptic action potential waveform and synaptic coupling in local cortical circuits.

  10. Pure motor axonal neuropathy triggered by antituberculous therapy in an undiagnosed case of acute intermittent porphyria.

    Science.gov (United States)

    Babar, Masood Uz Zaman; Hakeem, Haris; Khan, Sara

    2017-03-27

    A man aged 22 years misdiagnosed as suffering from recurrent abdominal tuberculosis, in view of recurrent abdominal pain was treated for abdominal tuberculosis in the past. The patient was prescribed antituberculous therapy. 2 months after starting treatment, he developed progressive weakness of all 4 limbs. Electrodiagnostic examination revealed an acute severe motor axonal neuropathy. Further workup revealed elevated porphyrin precursors in urine.

  11. Abnormally phosphorylated tau is associated with neuronal and axonal loss in experimental autoimmune encephalomyelitis and multiple sclerosis.

    Science.gov (United States)

    Anderson, J M; Hampton, D W; Patani, R; Pryce, G; Crowther, R A; Reynolds, R; Franklin, R J M; Giovannoni, G; Compston, D A S; Baker, D; Spillantini, M G; Chandran, S

    2008-07-01

    The pathological correlate of clinical disability and progression in multiple sclerosis is neuronal and axonal loss; however, the underlying mechanisms are unknown. Abnormal phosphorylation of tau is a common feature of some neurodegenerative disorders, such as Alzheimer's disease. We investigated the presence of tau hyperphosphorylation and its relationship with neuronal and axonal loss in chronic experimental autoimmune encephalomyelitis (CEAE) and in brain samples from patients with secondary progressive multiple sclerosis. We report the novel finding of abnormal tau phosphorylation in CEAE. We further show that accumulation of insoluble tau is associated with both neuronal and axonal loss that correlates with progression from relapsing-remitting to chronic stages of EAE. Significantly, analysis of secondary progressive multiple sclerosis brain tissue also revealed abnormally phosphorylated tau and the formation of insoluble tau. Together, these observations provide the first evidence implicating abnormal tau in the neurodegenerative phase of tissue injury in experimental and human demyelinating disease.

  12. Effect of neurotrophic factor and stem cell therapy on axonal regeneration after spinal cord injury: Overseas progress in basic and clinical researches%脊髓损伤后神经营养因子及干细胞治疗对轴突再生的影响:国外基础和临床研究新进展

    Institute of Scientific and Technical Information of China (English)

    臧大维; 刘娟; Surindar Cheema

    2007-01-01

    BACKGROUND: Now, progress has been made in understanding the pathomechanisms, protection of injured neurons,regeneration of oligodendrocytes and transplantation of neural stem cells. This paper is aimed to introduce the decade progression, latest research and novel therapies in the area of spinal cord injury internationally.DATA SOURCES: Related articles published from January 1987 to October 2006 were chosen from the America Medline Database, and the language was limited to English, with the search keywords of "spinal cord injury; neural stem cells;axon; neurotrophic factor and animal model".STUDY SELECTION: After the primary trial, the full versions of the articles related to neural stem cell and neurotrophic factor were reviewed according to the following criterias: ① experiments investigating the mechanisms and novel therapies of spinal cord injury. ②papers revealing the axon regeneration, function of growth cone, targets for inducting the regeneration direction as well as synapse and function rebuild. ③ papers reporting neurotrophic factor and endogenous stem cell therapies. Excluded criteria: ①papers with lower impact factor in SCl or studies with similar results.②papers without English abstract.DATA EXTRACTION: A total of 1 166 papers were found in Medline, 101 papers accord with the above criteria, 61 papers were cited in this review, including 12 papers for the mechanism of spinal cord injury, 14 papers for axon regeneration, 8 papers for the function of growth cone, 8 papers for the oligodendrocytes, 7 papers for neural stem cells and the left 12 papers for neurotrophic factor. Other articles were deleted.DATA SYNTHESIS: ①Base of functional recovery after spinal cord injury: The regeneration and elongation of damaged axons; The capacity of axons to penetrate the scar; Re-growth in the direction of appropriate target .regions; Cessation of axonal growth, formation of terminal arbors and formation of synaptic contacts with target neurons; The

  13. Glaucoma progression detection: agreement, sensitivity, and specificity of expert visual field evaluation, event analysis, and trend analysis.

    Science.gov (United States)

    Antón, Alfonso; Pazos, Marta; Martín, Belén; Navero, José Manuel; Ayala, Miriam Eleonora; Castany, Marta; Martínez, Patricia; Bardavío, Javier

    2013-01-01

    To assess sensitivity, specificity, and agreement among automated event analysis, automated trend analysis, and expert evaluation to detect glaucoma progression. This was a prospective study that included 37 eyes with a follow-up of 36 months. All had glaucomatous disks and fields and performed reliable visual fields every 6 months. Each series of fields was assessed with 3 different methods: subjective assessment by 2 independent teams of glaucoma experts, glaucoma/guided progression analysis (GPA) event analysis, and GPA (visual field index-based) trend analysis. Kappa agreement coefficient between methods and sensitivity and specificity for each method using expert opinion as gold standard were calculated. The incidence of glaucoma progression was 16% to 18% in 3 years but only 3 cases showed progression with all 3 methods. Kappa agreement coefficient was high (k=0.82) between subjective expert assessment and GPA event analysis, and only moderate between these two and GPA trend analysis (k=0.57). Sensitivity and specificity for GPA event and GPA trend analysis were 71% and 96%, and 57% and 93%, respectively. The 3 methods detected similar numbers of progressing cases. The GPA event analysis and expert subjective assessment showed high agreement between them and moderate agreement with GPA trend analysis. In a period of 3 years, both methods of GPA analysis offered high specificity, event analysis showed 83% sensitivity, and trend analysis had a 66% sensitivity.

  14. Axon tension regulates fasciculation/defasciculation through the control of axon shaft zippering

    Science.gov (United States)

    Šmít, Daniel; Fouquet, Coralie; Pincet, Frédéric; Zapotocky, Martin; Trembleau, Alain

    2017-01-01

    While axon fasciculation plays a key role in the development of neural networks, very little is known about its dynamics and the underlying biophysical mechanisms. In a model system composed of neurons grown ex vivo from explants of embryonic mouse olfactory epithelia, we observed that axons dynamically interact with each other through their shafts, leading to zippering and unzippering behavior that regulates their fasciculation. Taking advantage of this new preparation suitable for studying such interactions, we carried out a detailed biophysical analysis of zippering, occurring either spontaneously or induced by micromanipulations and pharmacological treatments. We show that zippering arises from the competition of axon-axon adhesion and mechanical tension in the axons, and provide the first quantification of the force of axon-axon adhesion. Furthermore, we introduce a biophysical model of the zippering dynamics, and we quantitatively relate the individual zipper properties to global characteristics of the developing axon network. Our study uncovers a new role of mechanical tension in neural development: the regulation of axon fasciculation. DOI: http://dx.doi.org/10.7554/eLife.19907.001 PMID:28422009

  15. Genetic dissection of myelinated axons in zebrafish

    OpenAIRE

    2009-01-01

    In the vertebrate nervous system, the myelin sheath allows for rapid and efficient conduction of action potentials along axons. Despite the essential function of myelin, many questions remain unanswered about the mechanisms that govern the development of myelinated axons. The fundamental properties of myelin are widely shared among vertebrates, and the zebrafish has emerged as a powerful system to study myelination in vivo. This review will highlight recent advances from genetic screens in ze...

  16. Crossing axons in the third nerve nucleus.

    Science.gov (United States)

    Bienfang, D C

    1975-12-01

    The research presented in this paper studied the pathway taken by the crossed fibers of the third nerve nucleus in an animal whose nucleus has been well mapped and found to correlate well with higher mammals and man. Autoradiography using tritiated amino acid labeled the cell bodies an axons of the left side of the oculomotor nucleus of the cat. Axons so labeled could be seen emerging from the ventral portion of the left nucleus through the median longitudinal fasciculus (mlf) to join the left oculomotor nerve. Labeled axons were also seen to emerge from the medial border of the caudal left nucleus, cross the midline, and pass through the right nucleus and the right mlf to join the right oculomotor nerve. These latter axons must be the crossed axons of the superior rectus and levator palpebrae subnuclei. Since the path of these crossed axons is through the caudal portion of the nucleus of the opposite side, the destruction of one lateral half of the oculomotor nucleus would result in a bilateral palsy of the crossed subnuclei. Bilateral palsy of the superior rectus and bilateral assymetrical palsy of the levator palpebrae muscles would result.

  17. Delayed feedback model of axonal length sensing.

    Science.gov (United States)

    Karamched, Bhargav R; Bressloff, Paul C

    2015-05-05

    A fundamental question in cell biology is how the sizes of cells and organelles are regulated at various stages of development. Size homeostasis is particularly challenging for neurons, whose axons can extend from hundreds of microns to meters (in humans). Recently, a molecular-motor-based mechanism for axonal length sensing has been proposed, in which axonal length is encoded by the frequency of an oscillating retrograde signal. In this article, we develop a mathematical model of this length-sensing mechanism in which advection-diffusion equations for bidirectional motor transport are coupled to a chemical signaling network. We show that chemical oscillations emerge due to delayed negative feedback via a Hopf bifurcation, resulting in a frequency that is a monotonically decreasing function of axonal length. Knockdown of either kinesin or dynein causes an increase in the oscillation frequency, suggesting that the length-sensing mechanism would produce longer axons, which is consistent with experimental findings. One major prediction of the model is that fluctuations in the transport of molecular motors lead to a reduction in the reliability of the frequency-encoding mechanism for long axons. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. SARM1 activation triggers axon degeneration locally via NAD+ destruction

    OpenAIRE

    Gerdts, Josiah; Brace, E. J.; Sasaki, Yo; DiAntonio, Aaron; Milbrandt, Jeffrey

    2015-01-01

    Axon degeneration is an intrinsic self-destruction program that underlies axon loss during injury and disease. Sterile alpha and TIR motif containing 1 (SARM1) protein is an essential mediator of axon degeneration. We report that SARM1 initiates a local destruction program involving rapid breakdown of NAD+ after injury. We used an engineered protease-sensitized SARM1 to demonstrate that SARM1 activity is required after axon injury to induce axon degeneration. Dimerization of the Toll-Interleu...

  19. Sensory-motor axonal polyneuropathy involving cranial nerves: An uncommon manifestation of disulfiram toxicity.

    Science.gov (United States)

    Santos, Telma; Martins Campos, António; Morais, Hugo

    2017-01-01

    Disulfiram (tetraethylthiuram disulfide) has been used for the treatment of alcohol dependence. An axonal sensory-motor polyneuropathy with involvement of cranial pairs due to disulfiram is exceedingly rare. The authors report a unique case of an extremely severe axonal polyneuropathy involving cranial nerves that developed within weeks after a regular dosage of 500mg/day disulfiram. To the authors best knowledge, such a severe and rapidly-progressive course has never been described with disulfiram dosages of only 500mg/day.

  20. Mitochondrial Dynamics Decrease Prior to Axon Degeneration Induced by Vincristine and are Partially Rescued by Overexpressed cytNmnat1.

    Directory of Open Access Journals (Sweden)

    Gregory Berbusse

    2016-07-01

    Full Text Available Axon degeneration is a prominent feature of various neurodegenerative diseases, such as Parkinson’s and Alzheimer’s, and is often characterized by aberrant mitochondrial dynamics. Mitochondrial fission, fusion, and motility have been shown to be particularly important in progressive neurodegeneration. Thus we investigated these imperative dynamics, as well as mitochondrial fragmentation in vincristine induced axon degradation in cultured DRG neurons. CytNmnat1 inhibits axon degeneration in various paradigms including vincristine toxicity. The mechanism of its protection is not yet fully understood; therefore, we also investigated the effect of cytNmnat1 on mitochondrial dynamics in vincristine treated neurons. We observed that vincristine treatment decreases the rate of mitochondrial fission, fusion and motility and induces mitochondrial fragmentation. These mitochondrial events precede visible axon degeneration. Overexpression of cytNmnat1 inhibits axon degeneration and preserves the normal mitochondrial dynamics and motility in vincristine treated neurons. We suggest the alterations in mitochondrial structure and dynamics are early events which lead to axon degeneration and cytNmnat1 blocks axon degeneration by halting the vincristine induced changes to mitochondrial structure and dynamics.

  1. The face of an imposter: computer vision for deception detection research in progress

    NARCIS (Netherlands)

    Elkins, Aaron C.; Sun, Yijia; Zafeiriou, Stefanos; Pantic, Maja

    2013-01-01

    Using video analyzed from a novel deception experiment, this paper introduces computer vision research in progress that addresses two critical components to computational modeling of deceptive behavior: 1) individual nonverbal behavior differences, and 2) deceptive ground truth. Video interviews ana

  2. Axon injury triggers EFA-6 mediated destabilization of axonal microtubules via TACC and doublecortin like kinase.

    Science.gov (United States)

    Chen, Lizhen; Chuang, Marian; Koorman, Thijs; Boxem, Mike; Jin, Yishi; Chisholm, Andrew D

    2015-09-04

    Axon injury triggers a series of changes in the axonal cytoskeleton that are prerequisites for effective axon regeneration. In Caenorhabditis elegans the signaling protein Exchange Factor for ARF-6 (EFA-6) is a potent intrinsic inhibitor of axon regrowth. Here we show that axon injury triggers rapid EFA-6-dependent inhibition of axonal microtubule (MT) dynamics, concomitant with relocalization of EFA-6. EFA-6 relocalization and axon regrowth inhibition require a conserved 18-aa motif in its otherwise intrinsically disordered N-terminal domain. The EFA-6 N-terminus binds the MT-associated proteins TAC-1/Transforming-Acidic-Coiled-Coil, and ZYG-8/Doublecortin-Like-Kinase, both of which are required for regenerative growth cone formation, and which act downstream of EFA-6. After injury TAC-1 and EFA-6 transiently relocalize to sites marked by the MT minus end binding protein PTRN-1/Patronin. We propose that EFA-6 acts as a bifunctional injury-responsive regulator of axonal MT dynamics, acting at the cell cortex in the steady state and at MT minus ends after injury.

  3. Video Object Tracking in Neural Axons with Fluorescence Microscopy Images

    Directory of Open Access Journals (Sweden)

    Liang Yuan

    2014-01-01

    tracking. In this paper, we describe two automated tracking methods for analyzing neurofilament movement based on two different techniques: constrained particle filtering and tracking-by-detection. First, we introduce the constrained particle filtering approach. In this approach, the orientation and position of a particle are constrained by the axon’s shape such that fewer particles are necessary for tracking neurofilament movement than object tracking techniques based on generic particle filtering. Secondly, a tracking-by-detection approach to neurofilament tracking is presented. For this approach, the axon is decomposed into blocks, and the blocks encompassing the moving neurofilaments are detected by graph labeling using Markov random field. Finally, we compare two tracking methods by performing tracking experiments on real time-lapse image sequences of neurofilament movement, and the experimental results show that both methods demonstrate good performance in comparison with the existing approaches, and the tracking accuracy of the tracing-by-detection approach is slightly better between the two.

  4. Na(v)1.8 channelopathy in mutant mice deficient for myelin protein zero is detrimental to motor axons

    DEFF Research Database (Denmark)

    Alvarez Herrero, Susana; Pinchenko, Volodymyr; Klein, Dennis

    2011-01-01

    by pharmacologic block using the subtype-selective Na(V)1.8 blocker A-803467 and chronically in Na(V)1.8 knock-outs. We found that in the context of dysmyelination, abnormal potassium ion currents and membrane depolarization, the ectopic Na(V)1.8 channels further impair the motor axon excitability in protein zero...... and progressive dysmyelinating neuropathy from birth with compromised myelin compaction, hypomyelination and distal axonal degeneration. A previous study using immunofluorescence showed that motor nerves deficient of myelin protein zero upregulate the Na(V)1.8 voltage gated sodium channel isoform, which...... is normally present only in restricted populations of sensory axons. The aim of this study was to investigate the function of motor axons in protein zero-deficient mice with particular emphasis on ectopic Na(V)1.8 voltage gated sodium channel. We combined 'threshold tracking' excitability studies...

  5. Epigenetic regulation of axon and dendrite growth

    Directory of Open Access Journals (Sweden)

    Ephraim F Trakhtenberg

    2012-03-01

    Full Text Available Neuroregenerative therapies for central nervous system (CNS injury, neurodegenerative disease, or stroke require axons of damaged neurons to grow and reinnervate their targets. However, mature mammalian CNS neurons do not regenerate their axons, limiting recovery in these diseases (Yiu and He, 2006. CNS’ regenerative failure may be attributable to the development of an inhibitory CNS environment by glial-associated inhibitory molecules (Yiu and He, 2006, and by various cell-autonomous factors (Sun and He, 2010. Intrinsic axon growth ability also declines developmentally (Li et al., 1995; Goldberg et al., 2002; Bouslama-Oueghlani et al., 2003; Blackmore and Letourneau, 2006 and is dependent on transcription (Moore et al., 2009. Although neurons’ intrinsic capacity for axon growth may depend in part on the panoply of expressed transcription factors (Moore and Goldberg, 2011, epigenetic factors such as the accessibility of DNA and organization of chromatin are required for downstream genes to be transcribed. Thus a potential approach to overcoming regenerative failure focuses on the epigenetic mechanisms regulating regenerative gene expression in the CNS. Here we review molecular mechanisms regulating the epigenetic state of DNA through chromatin modifications, their implications for regulating axon and dendrite growth, and important new directions for this field of study.

  6. Protein phosphorylation: Localization in regenerating optic axons

    Energy Technology Data Exchange (ETDEWEB)

    Larrivee, D. (Cornell Univ. Medical College, New York, NY (USA))

    1990-09-01

    A number of axonal proteins display changes in phosphorylation during goldfish optic nerve regeneration. (1) To determine whether the phosphorylation of these proteins was closely linked to their synthesis in the retinal ganglion cell body, cycloheximide was injected intraocularly into goldfish whose optic nerves had been regenerating for 3 weeks. Cycloheximide reduced the incorporation of (3H)proline and 32P orthophosphate into total nerve protein by 84% and 46%, respectively. Of the 20 individual proteins examined, 17 contained less than 15% of the (3H)proline label measured in corresponding controls, whereas 18 proteins contained 50% or more of the 32P label, suggesting that phosphorylation was largely independent of synthesis. (2) To determine whether the proteins were phosphorylated in the ganglion cell axons, axonal transport of proteins was blocked by intraocular injection of vincristine. Vincristine reduced (3H)proline labeling of total protein by 88% and 32P labeling by 49%. Among the individual proteins (3H)proline labeling was reduced by 90% or more in 18 cases but 32P labeling was reduced only by 50% or less. (3) When 32P was injected into the cranial cavity near the ends of the optic axons, all of the phosphoproteins were labeled more intensely in the optic tract than in the optic nerve. These results suggest that most of the major phosphoproteins that undergo changes in phosphorylation in the course of regeneration are phosphorylated in the optic axons.

  7. Multiple etiologies of axonal sensory motor polyneuropathy in a renal transplant recipient: a case report

    Directory of Open Access Journals (Sweden)

    Etemadi Jalal

    2011-10-01

    Full Text Available Abstract Introduction Neurological complications leading to morbidity and mortality are not frequent in renal transplant recipients. Here, we report a renal transplant recipient who presented with diminished strength in his limbs probably due to multiple etiologies of axonal sensorimotor polyneuropathy, which resolved with intravenous immunoglobulin. Case presentation A 49-year-old Iranian male renal transplant recipient with previous history of autosomal dominant polycystic kidney disease presented with diminished strength in his limbs one month after surgery. Our patient was on cyclosporine A, mycophenolate mofetil and prednisone. Although a detected hypophosphatemia was corrected with supplemental phosphate, the loss of strength was still slowly progressive and diffuse muscular atrophy was remarkable in his trunk, upper limb and pelvic girdle. Meanwhile, his cranial nerves were intact. Post-transplant diabetes mellitus was diagnosed and insulin therapy was initiated. In addition, as a high serum cyclosporine level was detected, the dose of cyclosporine was reduced. Our patient was also put on intravenous ganciclovir due to positive serum cytomegalovirus immunoglobulin M antibody. Despite the reduction of oral cyclosporine dose along with medical therapy for the cytomegalovirus infection and diabetes mellitus, his muscular weakness and atrophy did not improve. One week after administration of intravenous immunoglobulin, a significant improvement was noted in his muscular weakness. Conclusion A remarkable response to intravenous immunoglobulin is compatible with an immunological basis for the present condition (post-transplant polyneuropathy. In cases of post-transplant polyneuropathy with a high clinical suspicion of immunological origin, administration of intravenous immunoglobulin may be recommended.

  8. Corneal Confocal Microscopy: An Imaging Endpoint for Axonal Degeneration in Multiple Sclerosis.

    Science.gov (United States)

    Petropoulos, Ioannis N; Kamran, Saadat; Li, Yi; Khan, Adnan; Ponirakis, Georgios; Akhtar, Naveed; Deleu, Dirk; Shuaib, Ashfaq; Malik, Rayaz A

    2017-07-01

    To evaluate whether corneal confocal microscopy (CCM) detects axonal degeneration and whether this is associated with retinal nerve fiber degeneration and clinical disability in patients with multiple sclerosis (MS). Twenty-five patients with MS and 25 healthy control subjects underwent CCM, optical coherence tomography (OCT), and assessment of neurological disability using the expanded disability status scale (EDSS) and MS severity score (MSSS). In patients with MS compared with controls, there was a significant reduction in corneal nerve fiber density (CNFD), branch density (CNBD), and length (CNFL). There was no significant difference in CCM parameters between patients with optic neuritis (MS-ON) and without (MS-NON), or between relapsing-remitting (RRMS) and secondary-progressive MS (SPMS). There was significant thinning of the retinal nerve fiber layer (RNFL) in the global, temporal, temporal superior, and temporal inferior quadrants, with no difference between MS-ON and MS-NON. Patients with SPMS compared with RRMS had a significantly lower global, temporal superior, temporal inferior, nasal, and nasal superior RNFL. The EDSS and MSSS correlated significantly with CNBD, nasal, nasal superior, and nasal inferior RNFL and with CNBD and nasal inferior RNFL, respectively. CCM and OCT detect significant corneal and retinal nerve degeneration which relates to the severity of neurological deficits in patients with mild MS.

  9. Tryptophan PET predicts spatial and temporal patterns of post-treatment glioblastoma progression detected by contrast-enhanced MRI.

    Science.gov (United States)

    Bosnyák, Edit; Kamson, David O; Robinette, Natasha L; Barger, Geoffrey R; Mittal, Sandeep; Juhász, Csaba

    2016-01-01

    Amino acid PET is increasingly utilized for the detection of recurrent gliomas. Increased amino acid uptake is often observed outside the contrast-enhancing brain tumor mass. In this study, we evaluated if non-enhancing PET+ regions could predict spatial and temporal patterns of subsequent MRI progression in previously treated glioblastomas. Twelve patients with a contrast-enhancing area suspicious for glioblastoma recurrence on MRI underwent PET scanning with the amino acid radiotracer alpha-[(11)C]-methyl-L-tryptophan (AMT). Brain regions showing increased AMT uptake in and outside the contrast-enhancing volume were objectively delineated to include high uptake consistent with glioma (as defined by previous studies). Volume and tracer uptake of such non-enhancing PET+ regions were compared to spatial patterns and timing of subsequent progression of the contrast-enhancing lesion, as defined by serial surveillance MRI. Non-enhancing PET+ volumes varied widely across patients and extended up to 24 mm from the edge of MRI contrast enhancement. In ten patients with clear progression of the contrast-enhancing lesion, the non-enhancing PET+ volumes predicted the location of new enhancement, which extended beyond the PET+ brain tissue in six. In two patients, with no PET+ area beyond the initial contrast enhancement, MRI remained stable. There was a negative correlation between AMT uptake in non-enhancing brain and time to subsequent progression (r = -0.77, p = 0.003). Amino acid PET imaging could complement MRI not only for detecting glioma recurrence but also predicting the location and timing of subsequent tumor progression. This could support decisions for surgical intervention or other targeted therapies for recurrent gliomas.

  10. Detection and measurement of clinically meaningful visual field progression in clinical trials for glaucoma.

    Science.gov (United States)

    De Moraes, C Gustavo; Liebmann, Jeffrey M; Levin, Leonard A

    2017-01-01

    Glaucomatous visual field progression has both personal and societal costs and therefore has a serious impact on quality of life. At the present time, intraocular pressure (IOP) is considered to be the most important modifiable risk factor for glaucoma onset and progression. Reduction of IOP has been repeatedly demonstrated to be an effective intervention across the spectrum of glaucoma, regardless of subtype or disease stage. In the setting of approval of IOP-lowering therapies, it is expected that effects on IOP will translate into benefits in long-term patient-reported outcomes. Nonetheless, the effect of these medications on IOP and their associated risks can be consistently and objectively measured. This helps to explain why regulatory approval of new therapies in glaucoma has historically used IOP as the outcome variable. Although all approved treatments for glaucoma involve IOP reduction, patients frequently continue to progress despite treatment. It would therefore be beneficial to develop treatments that preserve visual function through mechanisms other than lowering IOP. The United States Food and Drug Administration (FDA) has stated that they will accept a clinically meaningful definition of visual field progression using Glaucoma Change Probability criteria. Nonetheless, these criteria do not take into account the time (and hence, the speed) needed to reach significant change. In this paper we provide an analysis based on the existing literature to support the hypothesis that decreasing the rate of visual field progression by 30% in a trial lasting 12-18 months is clinically meaningful. We demonstrate that a 30% decrease in rate of visual field progression can be reliably projected to have a significant effect on health-related quality of life, as defined by validated instruments designed to measure that endpoint.

  11. Computerized epileptiform transient detection in the scalp electroencephalogram: obstacles to progress and the example of computerized ECG interpretation.

    Science.gov (United States)

    Halford, Jonathan J

    2009-11-01

    Computerized detection of epileptiform transients (ETs), also called spikes and sharp waves, in the electroencephalogram (EEG) has been a research goal for the last 40years. A reliable method for detecting ETs could improve efficiency in reviewing long EEG recordings and assist physicians in interpreting routine EEGs. Computer algorithms developed so far for detecting ETs are not as reliable as human expert interpreters, mostly due to the large number of false positive detections. Typical methods for ET detection include measuring waveform morphology, detecting signal non-stationarity, and power spectrum analysis. Some progress has been made by using more advanced algorithmic approaches including wavelet analysis, artificial neural networks, and dipole analysis. Comparing the performance of different algorithms is difficult since each study uses its own EEG test dataset. In order to overcome this problem, European researchers in the field of computerized electrocardiogram interpretation organized a large multi-center research workgroup to create a standardized dataset of ECG recordings which were interpreted by a large group of cardiologists. EEG researchers need to follow this as a model and seek funding for the creation of a standardized EEG research dataset to develop ET detection algorithms and certify commercial software.

  12. Bayes' theorem applied to perimetric progression detection in glaucoma : from specificity to positive predictive value

    NARCIS (Netherlands)

    Jansonius, NM

    2005-01-01

    Purpose: To estimate the specificity of a clinical evaluation of a series of visual fields and to calculate the positive predictive value of progression. Methods: The specificity of a clinical evaluation of a series of visual fields was estimated using nonparametric ranking and probability calculus.

  13. Automated Axon Counting in Rodent Optic Nerve Sections with AxonJ

    Science.gov (United States)

    Zarei, Kasra; Scheetz, Todd E.; Christopher, Mark; Miller, Kathy; Hedberg-Buenz, Adam; Tandon, Anamika; Anderson, Michael G.; Fingert, John H.; Abràmoff, Michael David

    2016-05-01

    We have developed a publicly available tool, AxonJ, which quantifies the axons in optic nerve sections of rodents stained with paraphenylenediamine (PPD). In this study, we compare AxonJ’s performance to human experts on 100x and 40x images of optic nerve sections obtained from multiple strains of mice, including mice with defects relevant to glaucoma. AxonJ produced reliable axon counts with high sensitivity of 0.959 and high precision of 0.907, high repeatability of 0.95 when compared to a gold-standard of manual assessments and high correlation of 0.882 to the glaucoma damage staging of a previously published dataset. AxonJ allows analyses that are quantitative, consistent, fully-automated, parameter-free, and rapid on whole optic nerve sections at 40x. As a freely available ImageJ plugin that requires no highly specialized equipment to utilize, AxonJ represents a powerful new community resource augmenting studies of the optic nerve using mice.

  14. Single atom detection in ultracold quantum gases: a review of current progress.

    Science.gov (United States)

    Ott, Herwig

    2016-05-01

    The recent advances in single atom detection and manipulation in experiments with ultracold quantum gases are reviewed. The discussion starts with the basic principles of trapping, cooling and detecting single ions and atoms. The realization of single atom detection in ultracold quantum gases is presented in detail and the employed methods, which are based on light scattering, electron scattering, field ionization and direct neutral particle detection are discussed. The microscopic coherent manipulation of single atoms in a quantum gas is also covered. Various examples are given in order to highlight the power of these approaches to study many-body quantum systems.

  15. Diverse modes of axon elaboration in the developing neocortex.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available The development of axonal arbors is a critical step in the establishment of precise neural circuits, but relatively little is known about the mechanisms of axonal elaboration in the neocortex. We used in vivo two-photon time-lapse microscopy to image axons in the neocortex of green fluorescent protein-transgenic mice over the first 3 wk of postnatal development. This period spans the elaboration of thalamocortical (TC and Cajal-Retzius (CR axons and cortical synaptogenesis. Layer 1 collaterals of TC and CR axons were imaged repeatedly over time scales ranging from minutes up to days, and their growth and pruning were analyzed. The structure and dynamics of TC and CR axons differed profoundly. Branches of TC axons terminated in small, bulbous growth cones, while CR axon branch tips had large growth cones with numerous long filopodia. TC axons grew rapidly in straight paths, with frequent interstitial branch additions, while CR axons grew more slowly along tortuous paths. For both types of axon, new branches appeared at interstitial sites along the axon shaft and did not involve growth cone splitting. Pruning occurred via retraction of small axon branches (tens of microns, at both CR and TC axons or degeneration of large portions of the arbor (hundreds of microns, for TC axons only. The balance between growth and retraction favored overall growth, but only by a slight margin. Given the identical layer 1 territory upon which CR and TC axons grow, the differences in their structure and dynamics likely reflect distinct intrinsic growth programs for axons of long projection neurons versus local interneurons.

  16. Differences in excitability between median and superficial radial sensory axons.

    Science.gov (United States)

    Fujimaki, Yumi; Kanai, Kazuaki; Misawa, Sonoko; Shibuya, Kazumoto; Isose, Sagiri; Nasu, Saiko; Sekiguchi, Yukari; Ohmori, Shigeki; Noto, Yu-ichi; Kugio, Yumiko; Shimizu, Toshio; Matsubara, Shiro; Lin, Cindy S Y; Kuwabara, Satoshi

    2012-07-01

    The aim of this study was to investigate differences in excitability properties of human median and superficial radial sensory axons (e.g., axons innervating the glabrous and hairy skin in the hand). Previous studies have shown that excitability properties differ between motor and sensory axons, and even among sensory axons between median and sural sensory axons. In 21 healthy subjects, threshold tracking was used to examine excitability indices such as strength-duration time constant, threshold electrotonus, supernormality, and threshold change at the 0.2 ms inter-stimulus interval in latent addition. In addition, threshold changes induced by ischemia for 10 min were compared between median and superficial radial sensory axons. Compared with radial sensory axons, median axons showed shorter strength-duration time constant, greater threshold changes in threshold electrotonus (fanning-out), greater supernormality, and smaller threshold changes in latent addition. Threshold changes in both during and after ischemia were greater for median axons. These findings suggest that membrane potential in human median sensory axons is more negative than in superficial radial axons, possibly due to greater activity of electrogenic Na(+)/K(+) pump. These results may reflect adaptation to impulses load carried by median axons that would be far greater with a higher frequency. Biophysical properties are not identical in different human sensory axons, and therefore their responses to disease may differ. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Neural Progenitor Cells Promote Axonal Growth and Alter Axonal mRNA Localization in Adult Neurons

    Science.gov (United States)

    Merianda, Tanuja T.; Jin, Ying

    2017-01-01

    Abstract The inhibitory environment of the spinal cord and the intrinsic properties of neurons prevent regeneration of axons following CNS injury. However, both ascending and descending axons of the injured spinal cord have been shown to regenerate into grafts of embryonic neural progenitor cells (NPCs). Previous studies have shown that grafts composed of glial-restricted progenitors (GRPs) and neural-restricted progenitors (NRPs) can provide a permissive microenvironment for axon growth. We have used cocultures of adult rat dorsal root ganglion (DRG) neurons together with NPCs, which have shown significant enhancement of axon growth by embryonic rat GRP and GRPs/NRPs, both in coculture conditions and when DRGs are exposed to conditioned medium from the NPC cultures. This growth-promoting effect of NPC-conditioned medium was also seen in injury-conditioned neurons. DRGs cocultured with GRPs/NRPs showed altered expression of regeneration-associated genes at transcriptional and post-transcriptional levels. We found that levels of GAP-43 mRNA increased in DRG cell bodies and axons. However, hepcidin antimicrobial peptide (HAMP) mRNA decreased in the cell bodies of DRGs cocultured with GRPs/NRPs, which is distinct from the increase in cell body HAMP mRNA levels seen in DRGs after injury conditioning. Endogenous GAP-43 and β-actin mRNAs as well as reporter RNAs carrying axonally localizing 3'UTRs of these transcripts showed significantly increased levels in distal axons in the DRGs cocultured with GRPs/NRPs. These results indicate that axon growth promoted by NPCs is associated not only with enhanced transcription of growth-associated genes but also can increase localization of some mRNAs into growing axons. PMID:28197547

  18. Neural Progenitor Cells Promote Axonal Growth and Alter Axonal mRNA Localization in Adult Neurons.

    Science.gov (United States)

    Merianda, Tanuja T; Jin, Ying; Kalinski, Ashley L; Sahoo, Pabitra K; Fischer, Itzhak; Twiss, Jeffery L

    2017-01-01

    The inhibitory environment of the spinal cord and the intrinsic properties of neurons prevent regeneration of axons following CNS injury. However, both ascending and descending axons of the injured spinal cord have been shown to regenerate into grafts of embryonic neural progenitor cells (NPCs). Previous studies have shown that grafts composed of glial-restricted progenitors (GRPs) and neural-restricted progenitors (NRPs) can provide a permissive microenvironment for axon growth. We have used cocultures of adult rat dorsal root ganglion (DRG) neurons together with NPCs, which have shown significant enhancement of axon growth by embryonic rat GRP and GRPs/NRPs, both in coculture conditions and when DRGs are exposed to conditioned medium from the NPC cultures. This growth-promoting effect of NPC-conditioned medium was also seen in injury-conditioned neurons. DRGs cocultured with GRPs/NRPs showed altered expression of regeneration-associated genes at transcriptional and post-transcriptional levels. We found that levels of GAP-43 mRNA increased in DRG cell bodies and axons. However, hepcidin antimicrobial peptide (HAMP) mRNA decreased in the cell bodies of DRGs cocultured with GRPs/NRPs, which is distinct from the increase in cell body HAMP mRNA levels seen in DRGs after injury conditioning. Endogenous GAP-43 and β-actin mRNAs as well as reporter RNAs carrying axonally localizing 3'UTRs of these transcripts showed significantly increased levels in distal axons in the DRGs cocultured with GRPs/NRPs. These results indicate that axon growth promoted by NPCs is associated not only with enhanced transcription of growth-associated genes but also can increase localization of some mRNAs into growing axons.

  19. Detection of ATRX and IDH1-R132H immunohistochemistry in the progression of 211 paired gliomas.

    Science.gov (United States)

    Cai, Jinquan; Zhu, Ping; Zhang, Chuanbao; Li, Qingbin; Wang, Zhiliang; Li, Guanzhang; Wang, Guangzhi; Yang, Pei; Li, Jianlong; Han, Bo; Jiang, Chuanlu; Sun, Ying; Jiang, Tao

    2016-03-29

    Recurrence and progression to higher grade lesions are key biological events and characteristic behaviors in the evolution process of glioma. A small residual population of cells always escapes surgery and chemoradiation, resulting in a typically fatal tumor recurrence or progression. IDH mutation (isocitrate dehydrogenase) and ATRX (alpha-thalassemia/mental retardation, X-linked) loss/mutation occur in association and may represent early genetic alterations in the development of gliomas. However, their prognostic value in the evolution of gliomas still needs further investigation.Two hundreds and eleven serial sampling of gliomas were included in our study. We used immunohistochemistry (IHC) to detect IDH1-R132H mutation and ATRX status and showed that the IDH1-R132H and (or) ATRX status could be necessary to provide the basic molecular information for the "integrated diagnosis" of gliomas. We illustrated an evaluation formula for the evolution of gliomas by IDH1-R132H combined with ATRX immunohistochemistry and identified the association of IDH1-R132H/ATRX loss accompanied by longer progression time interval of patients with gliomas. Furthermore, we observed that most recurrences had a consistent IDH1 and ATRX status with their matched primary tumors and demonstrated the progressive pattern of grade II astrocytoma/oligodendroglial tumors and anaplastic oligoastrocytoma with or without IDH1-R132H. Identification of IDH1-R132H and ATRX loss status in the primary-recurrent gliomas may aid in treatment strategy selection, therapeutic trial design, and clinical prognosis evaluation.

  20. Primary neuron culture for nerve growth and axon guidance studies in zebrafish (Danio rerio.

    Directory of Open Access Journals (Sweden)

    Zheyan Chen

    Full Text Available Zebrafish (Danio rerio is a widely used model organism in genetics and developmental biology research. Genetic screens have proven useful for studying embryonic development of the nervous system in vivo, but in vitro studies utilizing zebrafish have been limited. Here, we introduce a robust zebrafish primary neuron culture system for functional nerve growth and guidance assays. Distinct classes of central nervous system neurons from the spinal cord, hindbrain, forebrain, and retina from wild type zebrafish, and fluorescent motor neurons from transgenic reporter zebrafish lines, were dissociated and plated onto various biological and synthetic substrates to optimize conditions for axon outgrowth. Time-lapse microscopy revealed dynamically moving growth cones at the tips of extending axons. The mean rate of axon extension in vitro was 21.4±1.2 µm hr(-1 s.e.m. for spinal cord neurons, which corresponds to the typical ∼0.5 mm day(-1 growth rate of nerves in vivo. Fluorescence labeling and confocal microscopy demonstrated that bundled microtubules project along axons to the growth cone central domain, with filamentous actin enriched in the growth cone peripheral domain. Importantly, the growth cone surface membrane expresses receptors for chemotropic factors, as detected by immunofluorescence microscopy. Live-cell functional assays of axon extension and directional guidance demonstrated mammalian brain-derived neurotrophic factor (BDNF-dependent stimulation of outgrowth and growth cone chemoattraction, whereas mammalian myelin-associated glycoprotein inhibited outgrowth. High-resolution live-cell Ca(2+-imaging revealed local elevation of cytoplasmic Ca(2+ concentration in the growth cone induced by BDNF application. Moreover, BDNF-induced axon outgrowth, but not basal outgrowth, was blocked by treatments to suppress cytoplasmic Ca(2+ signals. Thus, this primary neuron culture model system may be useful for studies of neuronal development

  1. The C-terminal binding protein (CTBP-1) regulates dorsal SMD axonal morphology in Caenorhabditis elegans.

    Science.gov (United States)

    Reid, A; Sherry, T J; Yücel, D; Llamosas, E; Nicholas, H R

    2015-12-17

    C-terminal binding proteins (CtBPs) are transcriptional co-repressors which cooperate with a variety of transcription factors to repress gene expression. Caenorhabditis elegans CTBP-1 expression has been observed in the nervous system and hypodermis. In C. elegans, CTBP-1 regulates several processes including Acute Functional Tolerance to ethanol and functions in the nervous system to modulate both lifespan and expression of a lipase gene called lips-7. Incorrect structure and/or function of the nervous system can lead to behavioral changes. Here, we demonstrate reduced exploration behavior in ctbp-1 mutants. Our examination of a subset of neurons involved in regulating locomotion revealed that the axonal morphology of dorsal SMD (SMDD) neurons is altered in ctbp-1 mutants at the fourth larval (L4) stage. Expressing CTBP-1 under the control of the endogenous ctbp-1 promoter rescued both the exploration behavior phenotype and defective SMDD axon structure in ctbp-1 mutants at the L4 stage. Interestingly, the pre-synaptic marker RAB-3 was found to localize to the mispositioned portion of SMDD axons in a ctbp-1 mutant. Further analysis of SMDD axonal morphology at days 1, 3 and 5 of adulthood revealed that the number of ctbp-1 mutants showing an SMDD axonal morphology defect increases in early adulthood and the observed defect appears to be qualitatively more severe. CTBP-1 is prominently expressed in the nervous system with weak expression detected in the hypodermis. Surprisingly, solely expressing CTBP-1a in the nervous system or hypodermis did not restore correct SMDD axonal structure in a ctbp-1 mutant. Our results demonstrate a role for CTBP-1 in exploration behavior and the regulation of SMDD axonal morphology in C. elegans.

  2. A multi-component model of the developing retinocollicular pathway incorporating axonal and synaptic growth.

    Directory of Open Access Journals (Sweden)

    Keith B Godfrey

    2009-12-01

    Full Text Available During development, neurons extend axons to different brain areas and produce stereotypical patterns of connections. The mechanisms underlying this process have been intensively studied in the visual system, where retinal neurons form retinotopic maps in the thalamus and superior colliculus. The mechanisms active in map formation include molecular guidance cues, trophic factor release, spontaneous neural activity, spike-timing dependent plasticity (STDP, synapse creation and retraction, and axon growth, branching and retraction. To investigate how these mechanisms interact, a multi-component model of the developing retinocollicular pathway was produced based on phenomenological approximations of each of these mechanisms. Core assumptions of the model were that the probabilities of axonal branching and synaptic growth are highest where the combined influences of chemoaffinity and trophic factor cues are highest, and that activity-dependent release of trophic factors acts to stabilize synapses. Based on these behaviors, model axons produced morphologically realistic growth patterns and projected to retinotopically correct locations in the colliculus. Findings of the model include that STDP, gradient detection by axonal growth cones and lateral connectivity among collicular neurons were not necessary for refinement, and that the instructive cues for axonal growth appear to be mediated first by molecular guidance and then by neural activity. Although complex, the model appears to be insensitive to variations in how the component developmental mechanisms are implemented. Activity, molecular guidance and the growth and retraction of axons and synapses are common features of neural development, and the findings of this study may have relevance beyond organization in the retinocollicular pathway.

  3. Research Progress of Space-Time Adaptive Detection for Airborne Radar

    Directory of Open Access Journals (Sweden)

    Wang Yong-liang

    2014-04-01

    Full Text Available Compared with Space-Time Adaptive Processing (STAP, Space-Time Adaptive Detection (STAD employs the data in the cell under test and those in the training to form reasonable detection statistics and consequently decides whether the target exists or not. The STAD has concise processing procedure and flexible design. Furthermore, the detection statistics usually possess the Constant False Alarm Rate (CFAR property, and hence it needs no additional CFAR processing. More importantly, the STAD usually exhibits improved detection performance than that of the conventional processing, which first suppresses the clutter then adopts other detection strategy. In this paper, we first summarize the key strongpoint of the STAD, then make a classification for the STAD, and finally give some future research tracks.

  4. Latest Progress of Fault Detection and Localization in Complex Electrical Engineering

    Science.gov (United States)

    Zhao, Zheng; Wang, Can; Zhang, Yagang; Sun, Yi

    2014-01-01

    In the researches of complex electrical engineering, efficient fault detection and localization schemes are essential to quickly detect and locate faults so that appropriate and timely corrective mitigating and maintenance actions can be taken. In this paper, under the current measurement precision of PMU, we will put forward a new type of fault detection and localization technology based on fault factor feature extraction. Lots of simulating experiments indicate that, although there are disturbances of white Gaussian stochastic noise, based on fault factor feature extraction principal, the fault detection and localization results are still accurate and reliable, which also identifies that the fault detection and localization technology has strong anti-interference ability and great redundancy.

  5. The NAV2 homolog Sickie regulates F-actin-mediated axonal growth in Drosophila mushroom body neurons via the non-canonical Rac-Cofilin pathway.

    Science.gov (United States)

    Abe, Takashi; Yamazaki, Daisuke; Murakami, Satoshi; Hiroi, Makoto; Nitta, Yohei; Maeyama, Yuko; Tabata, Tetsuya

    2014-12-01

    The Rac-Cofilin pathway is essential for cytoskeletal remodeling to control axonal development. Rac signals through the canonical Rac-Pak-LIMK pathway to suppress Cofilin-dependent axonal growth and through a Pak-independent non-canonical pathway to promote outgrowth. Whether this non-canonical pathway converges to promote Cofilin-dependent F-actin reorganization in axonal growth remains elusive. We demonstrate that Sickie, a homolog of the human microtubule-associated protein neuron navigator 2, cell-autonomously regulates axonal growth of Drosophila mushroom body (MB) neurons via the non-canonical pathway. Sickie was prominently expressed in the newborn F-actin-rich axons of MB neurons. A sickie mutant exhibited axonal growth defects, and its phenotypes were rescued by exogenous expression of Sickie. We observed phenotypic similarities and genetic interactions among sickie and Rac-Cofilin signaling components. Using the MARCM technique, distinct F-actin and phospho-Cofilin patterns were detected in developing axons mutant for sickie and Rac-Cofilin signaling regulators. The upregulation of Cofilin function alleviated the axonal defect of the sickie mutant. Epistasis analyses revealed that Sickie suppresses the LIMK overexpression phenotype and is required for Pak-independent Rac1 and Slingshot phosphatase to counteract LIMK. We propose that Sickie regulates F-actin-mediated axonal growth via the non-canonical Rac-Cofilin pathway in a Slingshot-dependent manner.

  6. Myelin-associated glycoprotein and its axonal receptors.

    Science.gov (United States)

    Schnaar, Ronald L; Lopez, Pablo H H

    2009-11-15

    Myelin-associated glycoprotein (MAG) is expressed on the innermost myelin membrane wrap, directly apposed to the axon surface. Although it is not required for myelination, MAG enhances long-term axon-myelin stability, helps to structure nodes of Ranvier, and regulates the axon cytoskeleton. In addition to its role in axon-myelin stabilization, MAG inhibits axon regeneration after injury; MAG and a discrete set of other molecules on residual myelin membranes at injury sites actively signal axons to halt elongation. Both the stabilizing and the axon outgrowth inhibitory effects of MAG are mediated by complementary MAG receptors on the axon surface. Two MAG receptor families have been described, sialoglycans (specifically gangliosides GD1a and GT1b) and Nogo receptors (NgRs). Controversies remain about which receptor(s) mediates which of MAG's biological effects. Here we review the findings and challenges in associating MAG's biological effects with specific receptors.

  7. The pathophysiology of axonal transport in alzheimer’s disease

    OpenAIRE

    Vicario Orri, Elena; Opazo, Carlos; Muñoz López, Francisco José, 1964-

    2015-01-01

    Neurons communicate in the nervous system by carrying out information along the length of their axons to finally transmit it at the synapse. Proper function of axons and axon terminals relies on the transport of proteins, organelles, vesicles, and other elements from the site of synthesis in the cell body. Conversely, neurotrophins secreted from axonal targets and other components at nerve terminals need to travel toward the cell body for clearance. Molecular motors, namely kinesins and dynei...

  8. Internodal function in normal and regenerated mammalian axons

    DEFF Research Database (Denmark)

    Moldovan, M; Krarup, C

    2007-01-01

    AIM: Following Wallerian degeneration, peripheral myelinated axons have the ability to regenerate and, given a proper pathway, establish functional connections with targets. In spite of this capacity, the clinical outcome of nerve regeneration remains unsatisfactory. Early studies have found...... that internodes play an active role in axonal function. RESULTS: By investigating internodal contribution to axonal excitability we have found evidence that axonal function may be permanently compromised in regenerated nerves. Furthermore, we illustrate that internodal function is also abnormal in regenerated...

  9. Single molecule detection using charge-coupled device array technology. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Denton, M.B.

    1992-07-29

    A technique for the detection of single fluorescent chromophores in a flowing stream is under development. This capability is an integral facet of a rapid DNA sequencing scheme currently being developed by Los Alamos National Laboratory. In previous investigations, the detection sensitivity was limited by the background Raman emission from the water solvent. A detection scheme based on a novel mode of operating a Charge-Coupled Device (CCD) is being developed which should greatly enhance the discrimination between fluorescence from a single molecule and the background Raman scattering from the solvent. Register shifts between rows in the CCD are synchronized with the sample flow velocity so that fluorescence from a single molecule is collected in a single moving charge packet occupying an area approaching that of a single pixel while the background is spread evenly among a large number of pixels. Feasibility calculations indicate that single molecule detection should be achieved with an excellent signal-to-noise ratio.

  10. Electro-stimulation of cerebellar fastigial nucleus (FNS) improves axonal regeneration.

    Science.gov (United States)

    Zhang, Shuyan; Zhang, Qinli; Zhang, John H; Qin, Xinyue

    2008-05-01

    This study focused on the effect of electro-stimulation of fastigial nucleus on the expression of NgR and on axonal regeneration after focal cerebral ischemia-reperfusion in rats. Cerebral ischemia and reperfusion was induced by nylon monofilament. Ninety-six male SD rats were randomly divided into sham group and ischemic insult groups at 12 hours, 24 hours, and 1 to 3 weeks after cerebral ischemia-reperfusion. Reverse transcription-polymerase chain reaction (RT-PCR) was used to determine the changes of NgR mRNA expression. Immunohistochemistry was used to detect the expression of NgR protein and the state of axonal regeneration. Fastigial nucleus stimulation was applied at 2 hours after ischemia for one hour. The results demonstrated that NgR mRNA and protein in the infarcted cortex and hippocampus were significantly increased (p<0.01). The axons were grossly damaged at 24 h after cerebral ischemia-reperfusion when compared to the sham group. Fastigial nucleus stimulation decreased NgR mRNA and protein levels in the infarcted cortex and hippocampus (p<0.01) and improved axonal growth at 24 hours and 2 weeks after ischemia-reperfusion (p<0.05). These results suggest that electrostimulation of fastigial nucleus might provide a new strategy to promote CNS axonal regeneration.

  11. Modeling molecular mechanisms in the axon

    Science.gov (United States)

    de Rooij, R.; Miller, K. E.; Kuhl, E.

    2017-03-01

    Axons are living systems that display highly dynamic changes in stiffness, viscosity, and internal stress. However, the mechanistic origin of these phenomenological properties remains elusive. Here we establish a computational mechanics model that interprets cellular-level characteristics as emergent properties from molecular-level events. We create an axon model of discrete microtubules, which are connected to neighboring microtubules via discrete crosslinking mechanisms that obey a set of simple rules. We explore two types of mechanisms: passive and active crosslinking. Our passive and active simulations suggest that the stiffness and viscosity of the axon increase linearly with the crosslink density, and that both are highly sensitive to the crosslink detachment and reattachment times. Our model explains how active crosslinking with dynein motors generates internal stresses and actively drives axon elongation. We anticipate that our model will allow us to probe a wide variety of molecular phenomena—both in isolation and in interaction—to explore emergent cellular-level features under physiological and pathological conditions.

  12. A Microfluidics Approach to Investigate Axon Guidance

    Science.gov (United States)

    2007-03-26

    coat the substrate with PLL. The cells of one dissociated embryonic spinal cord was re-suspended in 3 µl of freshly-prepared Modified Frog Ringer’s...Surround repulsion of spinal sensory axons in higher vertebrate embryos . Neuron 18, 889-897 (1997). 8. Colamarino, S. & Tessier-Lavigne, M. The

  13. Peroxisome deficiency but not the defect in ether lipid synthesis causes activation of the innate immune system and axonal loss in the central nervous system

    Directory of Open Access Journals (Sweden)

    Bottelbergs Astrid

    2012-03-01

    Full Text Available Abstract Background Mice with peroxisome deficiency in neural cells (Nestin-Pex5−/− develop a neurodegenerative phenotype leading to motor and cognitive disabilities and early death. Major pathologies at the end stage of disease include severe demyelination, axonal degeneration and neuroinflammation. We now investigated the onset and progression of these pathological processes, and their potential interrelationship. In addition, the putative role of oxidative stress, the impact of plasmalogen depletion on the neurodegenerative phenotype, and the consequences of peroxisome elimination in the postnatal period were studied. Methods Immunohistochemistry in association with gene expression analysis was performed on Nestin-Pex5−/− mice to document demyelination, axonal damage and neuroinflammation. Also Gnpat−/− mice, with selective plasmalogen deficiency and CMV-Tx-Pex5−/− mice, with tamoxifen induced generalized loss of peroxisomes were analysed. Results Activation of the innate immune system is a very early event in the pathological process in Nestin-Pex5−/− mice which evolves in chronic neuroinflammation. The complement factor C1q, one of the earliest up regulated transcripts, was expressed on neurons and oligodendrocytes but not on microglia. Transcripts of other pro- and anti-inflammatory genes and markers of phagocytotic activity were already significantly induced before detecting pathologies with immunofluorescent staining. Demyelination, macrophage activity and axonal loss co-occurred throughout the brain. As in patients with mild peroxisome biogenesis disorders who develop regressive changes, demyelination in cerebellum and brain stem preceded major myelin loss in corpus callosum of both Nestin-Pex5−/− and CMV-Tx-Pex5−/− mice. These lesions were not accompanied by generalized oxidative stress throughout the brain. Although Gnpat−/− mice displayed dysmyelination and Purkinje cell axon damage in cerebellum

  14. Peripheral Neuropathy in the Twitcher Mouse Involves the Activation of Axonal Caspase 3

    Directory of Open Access Journals (Sweden)

    Benjamin Smith

    2011-09-01

    Full Text Available Infantile Krabbe disease results in the accumulation of lipid-raft-associated galactosylsphingosine (psychosine, demyelination, neurodegeneration and premature death. Recently, axonopathy has been depicted as a contributing factor in the progression of neurodegeneration in the Twitcher mouse, a bona fide mouse model of Krabbe disease. Analysis of the temporal-expression profile of MBP (myelin basic protein isoforms showed unexpected increases of the 14, 17 and 18.5 kDa isoforms in the sciatic nerve of 1-week-old Twitcher mice, suggesting an abnormal regulation of the myelination process during early postnatal life in this mutant. Our studies showed an elevated activation of the pro-apoptotic protease caspase 3 in sciatic nerves of 15- and 30-day-old Twitcher mice, in parallel with increasing demyelination. Interestingly, while active caspase 3 was clearly contained in peripheral axons at all ages, we found no evidence of caspase accumulation in the soma of corresponding mutant spinal cord motor neurons. Furthermore, active caspase 3 was found not only in unmyelinated axons, but also in myelinated axons of the mutant sciatic nerve. These results suggest that axonal caspase activation occurs before demyelination and following a dying-back pattern. Finally, we showed that psychosine was sufficient to activate caspase 3 in motor neuronal cells in vitro in the absence of myelinating glia. Taken together, these findings indicate that degenerating mechanisms actively and specifically mediate axonal dysfunction in Krabbe disease and support the idea that psychosine is a pathogenic sphingolipid sufficient to cause axonal defects independently of demyelination.

  15. Peripheral neuropathy in the Twitcher mouse involves the activation of axonal caspase 3

    Directory of Open Access Journals (Sweden)

    Ernesto R Bongarzone

    2011-10-01

    Full Text Available Infantile Krabbe disease results in the accumulation of lipid-raft-associated galactosylsphingosine (psychosine, demyelination, neurodegeneration and premature death. Recently, axonopathy has been depicted as a contributing factor in the progression of neurodegeneration in the Twitcher mouse, a bona fide mouse model of Krabbe disease. Analysis of the temporal-expression profile of MBP (myelin basic protein isoforms showed unexpected increases of the 14, 17 and 18.5 kDa isoforms in the sciatic nerve of 1-week-old Twitcher mice, suggesting an abnormal regulation of the myelination process during early postnatal life in this mutant. Our studies showed an elevated activation of the pro-apoptotic protease caspase 3 in sciatic nerves of 15- and 30-day-old Twitcher mice, in parallel with increasing demyelination. Interestingly, while active caspase 3 was clearly contained in peripheral axons at all ages, we found no evidence of caspase accumulation in the soma of corresponding mutant spinal cord motor neurons. Furthermore, active caspase 3 was found not only in unmyelinated axons, but also in myelinated axons of the mutant sciatic nerve. These results suggest that axonal caspase activation occurs before demyelination and following a dying-back pattern. Finally, we showed that psychosine was sufficient to activate caspase 3 in motor neuronal cells in vitro in the absence of myelinating glia. Taken together, these findings indicate that degenerating mechanisms actively and specifically mediate axonal dysfunction in Krabbe disease and support the idea that psychosine is a pathogenic sphingolipid sufficient to cause axonal defects independently of demyelination.

  16. Tri-partite complex for axonal transport drug delivery achieves pharmacological effect

    Directory of Open Access Journals (Sweden)

    Frederickson Martyn

    2010-01-01

    Full Text Available Abstract Background Targeted delivery of pharmaceutical agents into selected populations of CNS (Central Nervous System neurons is an extremely compelling goal. Currently, systemic methods are generally used for delivery of pain medications, anti-virals for treatment of dermatomal infections, anti-spasmodics, and neuroprotectants. Systemic side effects or undesirable effects on parts of the CNS that are not involved in the pathology limit efficacy and limit clinical utility for many classes of pharmaceuticals. Axonal transport from the periphery offers a possible selective route, but there has been little progress towards design of agents that can accomplish targeted delivery via this intraneural route. To achieve this goal, we developed a tripartite molecular construction concept involving an axonal transport facilitator molecule, a polymer linker, and a large number of drug molecules conjugated to the linker, then sought to evaluate its neurobiology and pharmacological behavior. Results We developed chemical synthesis methodologies for assembling these tripartite complexes using a variety of axonal transport facilitators including nerve growth factor, wheat germ agglutinin, and synthetic facilitators derived from phage display work. Loading of up to 100 drug molecules per complex was achieved. Conjugation methods were used that allowed the drugs to be released in active form inside the cell body after transport. Intramuscular and intradermal injection proved effective for introducing pharmacologically effective doses into selected populations of CNS neurons. Pharmacological efficacy with gabapentin in a paw withdrawal latency model revealed a ten fold increase in half life and a 300 fold decrease in necessary dose relative to systemic administration for gabapentin when the drug was delivered by axonal transport using the tripartite vehicle. Conclusion Specific targeting of selected subpopulations of CNS neurons for drug delivery by axonal

  17. The tumor suppressor HHEX inhibits axon growth when prematurely expressed in developing central nervous system neurons.

    Science.gov (United States)

    Simpson, Matthew T; Venkatesh, Ishwariya; Callif, Ben L; Thiel, Laura K; Coley, Denise M; Winsor, Kristen N; Wang, Zimei; Kramer, Audra A; Lerch, Jessica K; Blackmore, Murray G

    2015-09-01

    Neurons in the embryonic and peripheral nervous system respond to injury by activating transcriptional programs supportive of axon growth, ultimately resulting in functional recovery. In contrast, neurons in the adult central nervous system (CNS) possess a limited capacity to regenerate axons after injury, fundamentally constraining repair. Activating pro-regenerative gene expression in CNS neurons is a promising therapeutic approach, but progress is hampered by incomplete knowledge of the relevant transcription factors. An emerging hypothesis is that factors implicated in cellular growth and motility outside the nervous system may also control axon growth in neurons. We therefore tested sixty-nine transcription factors, previously identified as possessing tumor suppressive or oncogenic properties in non-neuronal cells, in assays of neurite outgrowth. This screen identified YAP1 and E2F1 as enhancers of neurite outgrowth, and PITX1, RBM14, ZBTB16, and HHEX as inhibitors. Follow-up experiments are focused on the tumor suppressor HHEX, one of the strongest growth inhibitors. HHEX is widely expressed in adult CNS neurons, including corticospinal tract neurons after spinal injury, but is present only in trace amounts in immature cortical neurons and adult peripheral neurons. HHEX overexpression in early postnatal cortical neurons reduced both initial axonogenesis and the rate of axon elongation, and domain deletion analysis strongly implicated transcriptional repression as the underlying mechanism. These findings suggest a role for HHEX in restricting axon growth in the developing CNS, and substantiate the hypothesis that previously identified oncogenes and tumor suppressors can play conserved roles in axon extension. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Morphometry of Axons in Optic Nerves of Siamese's Twins

    Institute of Scientific and Technical Information of China (English)

    Xinzu Gu; Zhenping Zhang; Qi Lin; Jiongji Liang; Wenyu Lu; Xiulan Ye; A A Sadun

    2002-01-01

    Purpose: To observe the development of optic nerve, we examined four optic nerves from Siameses Twins by absolute counts of axons.Methods: Mean axon diameter, mean axon density, totally axonal population and optic nerve area were noted for each optic nerve. The mean axon diameter and the mean axon density were compared between paraxial (inner sectors)and cortical (outer sectors)areas of the nerves.Results: More myelinated axons were seen in the inner sectors as compared to the outer sectors(average 11 axons/1 000 μm2 in inner sectors and 34 axons/l 000 μm2 in outer sectors( P=0. 036) . The myelinated fibers were also smaller(63 microns) in the outer sectors as compared to the inner sectors(72 microns) ( P = 0. 001 ). The average cross sectors area for the four 40 week stage optical nerves of Siamese Twins was 3.32 × 103 as compared to 1 million axons for 32-week-old normals.Conclusion: Our finding of fewer axonal number and small myelinated fibers in the Siamese Twins suggests hypoplasia. Myelination was more abnormal in the paraxial optic nerve than that in the peripheral sectors, suggesting anomalous development of optic nerve peripherally and delayed developnent centrally. Axonal density is higher in inner sectors than that in outer sectors, suggesting delayed development of the outer nerve sector.

  19. Detection of HIV drug resistance during antiretroviral treatment and clinical progression in a large European cohort study

    DEFF Research Database (Denmark)

    Cozzi-Lepri, Alessandro; Phillips, Andrew N; Clotet, Bonaventura;

    2008-01-01

    OBJECTIVE(S): To investigate the relationship between detection of HIV drug resistance by 2 years from starting antiretroviral therapy and the subsequent risk of progression to AIDS and death. DESIGN: Virological failure was defined as experiencing two consecutive viral loads of more than 400......-up. We observed 829 AIDS events and 571 deaths during 38,814 person-years of follow-up resulting in an overall incidence of new AIDS and death of 3.6 per 100 person-years of follow-up [95% confidence interval (CI):3.4-3.8]. By 96 months from baseline, the proportion of patients with a new AIDS diagnosis...

  20. Research progress of depth detection in vision measurement: a novel project of bifocal imaging system for 3D measurement

    Science.gov (United States)

    Li, Anhu; Ding, Ye; Wang, Wei; Zhu, Yongjian; Li, Zhizhong

    2013-09-01

    The paper reviews the recent research progresses of vision measurement. The general methods of the depth detection used in the monocular stereo vision are compared with each other. As a result, a novel bifocal imaging measurement system based on the zoom method is proposed to solve the problem of the online 3D measurement. This system consists of a primary lens and a secondary one with the different focal length matching to meet the large-range and high-resolution imaging requirements without time delay and imaging errors, which has an important significance for the industry application.

  1. Axon growth and guidance: receptor regulation and signal transduction.

    Science.gov (United States)

    O'Donnell, Michael; Chance, Rebecca K; Bashaw, Greg J

    2009-01-01

    The development of precise connectivity patterns during the establishment of the nervous system depends on the regulated action of diverse, conserved families of guidance cues and their neuronal receptors. Determining how these signaling pathways function to regulate axon growth and guidance is fundamentally important to understanding wiring specificity in the nervous system and will undoubtedly shed light on many neural developmental disorders. Considerable progress has been made in defining the mechanisms that regulate the correct spatial and temporal distribution of guidance receptors and how these receptors in turn signal to the growth cone cytoskeleton to control steering decisions. This review focuses on recent advances in our understanding of the mechanisms mediating growth cone guidance with a particular emphasis on the control of guidance receptor regulation and signaling.

  2. Value of two noninvasive methods to detect progression of fibrosis among HCV carriers with normal aminotransferases.

    Science.gov (United States)

    Colletta, Cosimo; Smirne, Carlo; Fabris, Carlo; Toniutto, Pierluigi; Rapetti, Rachele; Minisini, Rosalba; Pirisi, Mario

    2005-10-01

    The course of hepatitis C virus (HCV) infection carriers with normal/near-normal aminotransferases (NALT) is usually mild; however, in a few, fibrosis progression occurs. We aimed to verify whether monitoring by liver biopsy might be replaced by noninvasive methods and to identify factors associated with fibrosis progression in patients with persistently normal alanine aminotransferases. We studied 40 untreated HCV-RNA-positive subjects (22 male; median age, 44 years), who underwent two liver biopsies, with a median interval of 78.5 months, during which alanine aminotransferase concentrations (median number of determinations: 12) never exceeded 1.2 times the upper normal limit. Within 9 months from the second biopsy, they were tested by the shear elasticity probe (Fibroscan) and the artificial intelligence algorithm FibroTest. METAVIR fibrosis scores were analyzed in relationship to demographic, clinical, and viral parameters. Weighted kappa analysis was used to verify whether the results of noninvasive methods agreed with histology. Significant fibrosis (> or = F2), present at the first biopsy in only one patient (2.5%), was observed at the second biopsy in 14 patients (35%). At multivariate analysis, excess alcohol consumption in the past (>20 g/d; P = .017) and viral load (>8.0 x 10(6) copies/mL; P = .021) were independent predictors of progression. In identifying patients with significant fibrosis, inter-rater agreement was excellent for Fibroscan (weighted kappa = 1.0), and poor for FibroTest (weighted kappa = -0.041). In conclusion, among HCV carriers with NALT, Fibroscan is superior to the FibroTest in the noninvasive identification of fibrosis, for which excess alcohol consumption in the past and high viral load represent risk factors.

  3. Analysis of ovine colostrum to detect antibody against progressive pneumonia virus.

    OpenAIRE

    Taylor, T B; Banowetz, G M; Schipper, I A; Gabrielson, D A

    1982-01-01

    Immunoglobulins were isolated and purified from the colostrum and serum of progressive pneumonia virus infected sheep and also from non-infected control sheep. Four classes of immunoglobulins were isolated from sheep colostrum (IgG1, IgG2, IgA and Ig10s). Three classes of immunoglobulins were isolated from sheep serum (IgG1, IgG2 and IgM). Low levels of virus neutralizing activity were demonstrated only in the whole serum and purified serum IgG1 preparations. No complement fixing activity was...

  4. Progress in alternative neutron detection to address the helium-3 shortage

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T., E-mail: rkouzes@pnl.gov; Lintereur, Azaree T.; Siciliano, Edward R.

    2015-06-01

    One of the main uses for {sup 3}He is in gas proportional counters for neutron detection. Such detectors are used at neutron scattering science facilities and in radiation portal monitors deployed for homeland security and non-proliferation applications. Other uses of {sup 3}He are for research detectors, commercial instruments, well logging detectors, dilution refrigerators, lung imaging, for targets in nuclear research, and for basic research in condensed matter physics. The supply of {sup 3}He comes entirely from the decay of tritium produced for nuclear weapons in the U.S. and Russia. Due to the large increase in use of {sup 3}He for science and homeland security (since 2002), the supply could no longer meet the demand. This has led to the development of a number of alternative neutron detection schemes. - Highlights: • There is a shortage of {sup 3}He for gas proportional counters for neutron detection. • This has led to the development of alternative neutron detection schemes. • Both thermal and fast neutron detection approaches have been developed. • Thermal neutron solutions are mostly boron-based or lithium-based. • Fast neutron solutions include liquid/plastic scintillators, bubble chambers or {sup 4}He.

  5. MAPK signaling promotes axonal degeneration by speeding the turnover of the axonal maintenance factor NMNAT2

    Science.gov (United States)

    Walker, Lauren J; Summers, Daniel W; Sasaki, Yo; Brace, EJ; Milbrandt, Jeffrey; DiAntonio, Aaron

    2017-01-01

    Injury-induced (Wallerian) axonal degeneration is regulated via the opposing actions of pro-degenerative factors such as SARM1 and a MAPK signal and pro-survival factors, the most important of which is the NAD+ biosynthetic enzyme NMNAT2 that inhibits activation of the SARM1 pathway. Here we investigate the mechanism by which MAPK signaling facilitates axonal degeneration. We show that MAPK signaling promotes the turnover of the axonal survival factor NMNAT2 in cultured mammalian neurons as well as the Drosophila ortholog dNMNAT in motoneurons. The increased levels of NMNAT2 are required for the axonal protection caused by loss of MAPK signaling. Regulation of NMNAT2 by MAPK signaling does not require SARM1, and so cannot be downstream of SARM1. Hence, pro-degenerative MAPK signaling functions upstream of SARM1 by limiting the levels of the essential axonal survival factor NMNAT2 to promote injury-dependent SARM1 activation. These findings are consistent with a linear molecular pathway for the axonal degeneration program. DOI: http://dx.doi.org/10.7554/eLife.22540.001 PMID:28095293

  6. Progress in Life Marker Chip Technology for Detection of Life on Mars

    Science.gov (United States)

    Sims, M. R.; Cullen, D. C.; Laan, E.; Borst, G.; Prak, A.; Richter, L.; Gaubert, F.; Steele, A.; Parnell, J.; Sephton, M.

    2007-12-01

    Detection of Life on Mars will rely on detection of biomarkers, physical or chemical structures that can be associated with Life. As a possible payload for the ESA ExoMars rover mission planned in 2013 and other future missions a Life Marker Chip instrument is being developed. This instrument uses immuno-assay techniques to detect the relevant biomarkers. This paper describes the typical targets it will search for, its operating principle and the status of development. 63 biomarker targets have been identified and assays have been developed for a limited subset. Assay development includes use of recombinant DNA techniques to generate the molecular receptors (antibodies). This type of instrument has applications in terrestrial research e.g. sub-glacial lakes as well as planetary exploration. Breadboard demonstrators have been built of the assay system and key components of the micro-fluidics. Results from these breadboards will be presented, along with plans for future development.

  7. [Review of progress in application visible/near-infrared spectroscopy in liquid food detection].

    Science.gov (United States)

    Lin, Tao; Yu, Hai-Yan; Ying, Yi-Bin

    2008-02-01

    As a rapid, non-destructive new testing technology, Vis/near-infrared spectroscopy is increasingly widely used in agriculture products and food quality evaluation research The United States, Japan and many European countries have made a great deal of progress in the Vis/near-infrared spectroscopy for agriculture products and food quality evaluation. Although our country has got some fruits in this area, in comparison with foreign countries, there is still a lot of work to strengthen. In the present paper, from aspects of alcohol, dairy products, fruit juices and edible oil, the authors reviewed the latest research progress in Vis/ near-infrared spectroscopy in the quality evaluation of liquid food with the emphasis on the recent 5 years, analyzed the advantages of this technique's application to the quality evaluation of liquid foods. Finally, problems existing in the applications were analyzed and solutions to them were proposed. Based on a study of the issue, this article outlined the further study and made a number of recommendations.

  8. Comparação entre o polarímetro de varredura a laser, a tomografia de coerência óptica 1 e o Stratus-oct na detecção da perda axonal da atrofia em banda do nervo óptico Comparison of scanning laser polarimetry, optical coherence tomography 1 and Stratus optical coherence tomography for the detection of axonal loss in band atrophy of the optic nerve

    Directory of Open Access Journals (Sweden)

    Bruno Campelo Leal

    2006-08-01

    corresponding to the global average as well as each of the four quadrant retinal nerve fiber layer thickness in eyes with band atrophy were significantly smaller (p<0.05, than in normal eyes, with the exception of GDx's temporal thickness parameter. Comparison of the areas under ROC curves (AUCs of the parameters from the three equipments revealed significantly greater values for the Stratus-OCT when compared to the OCT-1 in the global average and in the temporal quadrant thickness measurement. Stratus-OCT was significantly more sensitive than GDx in the global average as well as in the temporal, nasal and inferior quadrant. OCT-1 was superior to GDx only in the temporal quadrant. All three equipments revealed a similar ability to identify retinal nerve fiber layer reduction in the superior quadrant. CONCLUSIONS: The Stratus OCT showed the best ability to discriminate between eyes with band atrophy of the optic nerve and healthy eyes although all three equipments were able do identify most of the abnormal eyes. OCT-1 was inferior to Stratus-OCT and superior do GDx in the temporal quadrant. Although GDx was able identify some abnormality in most studied eyes, the equipment showed poor sensitivity in the detection of axonal loss in the nasal and temporal aspect of the optic disc and should be used with caution in neuro-ophthalmic diseases that cause retinal nerve fiber layer loss in those areas of the optic disc.

  9. [Research progress of real-time quantitative PCR method for group A rotavirus detection].

    Science.gov (United States)

    Guo, Yan-Qing; Li, Dan-Di; Duan, Zhao-Jun

    2013-11-01

    Group A rotavirus is one of the most significant etiological agents which causes acute gastroenteritis among infants and young children worldwide. So far, several method which includes electron microscopy (EM), enzyme immunoassay (EIA), reverse transcription-polymerase chain reaction (RT-PCR)and Real-time Quantitative PCR has been established for the detection of rotavirus. Compared with other methods, Real-time quantitative PCR have advantages in specificity, sensitivity, genotyping and quantitative accuracy. This article shows a overview of the application of real-time quantitative PCR technique to detecte group A rotavirus.

  10. AxonQuant: A Microfluidic Chamber Culture-Coupled Algorithm That Allows High-Throughput Quantification of Axonal Damage

    Directory of Open Access Journals (Sweden)

    Yang Li

    2014-02-01

    Full Text Available Published methods for imaging and quantitatively analyzing morphological changes in neuronal axons have serious limitations because of their small sample sizes, and their time-consuming and nonobjective nature. Here we present an improved microfluidic chamber design suitable for fast and high-throughput imaging of neuronal axons. We developed the AxonQuant algorithm, which is suitable for automatic processing of axonal imaging data. This microfluidic chamber-coupled algorithm allows calculation of an ‘axonal continuity index' that quantitatively measures axonal health status in a manner independent of neuronal or axonal density. This method allows quantitative analysis of axonal morphology in an automatic and nonbiased manner. Our method will facilitate large-scale high-throughput screening for genes or therapeutic compounds for neurodegenerative diseases involving axonal damage. When combined with imaging technologies utilizing different gene markers, this method will provide new insights into the mechanistic basis for axon degeneration. Our microfluidic chamber culture-coupled AxonQuant algorithm will be widely useful for studying axonal biology and neurodegenerative disorders. © 2014 S. Karger AG, Basel

  11. Engineering Research on Quality Detection of Pickling Cucumbers: 2009 Progress Report

    Science.gov (United States)

    This report briefly summarizes the three studies performed in 2009 on cucumber defect detection. Hyperspectral imaging transmittance mode has demonstrated great potential for online sorting and grading of cucumbers and pickles. However, the technique is still limited by its speed in acquiring and pr...

  12. How does early detection by screening affect disease progression?: Modeling estimated benefits in prostate cancer screening

    NARCIS (Netherlands)

    E.M. Wever (Elisabeth); G. Draisma (Gerrit); E.A.M. Heijnsdijk (Eveline); H.J. de Koning (Harry)

    2011-01-01

    textabstractBackground. Simulation models are essential tools for estimating benefits of cancer screening programs. Such models include a screening-effect model that represents how early detection by screening followed by treatment affects disease-specific survival. Two commonly used screening-effec

  13. Progress towards design elements for a Great Lakes-wide aquatic invasive species early detection network

    Science.gov (United States)

    Great Lakes coastal systems are vulnerable to introduction of a wide variety of non-indigenous species (NIS), and the desire to effectively respond to future invaders is prompting efforts towards establishing a broad early-detection network. Such a network requires statistically...

  14. Early detection, early symptom progression and symptomatic remission after ten years in a first episode of psychosis study.

    Science.gov (United States)

    Ten Velden Hegelstad, Wenche; Haahr, Ulrik; Larsen, Tor K; Auestad, Bjørn; Barder, Helene; Evensen, Julie; Joa, Inge; Johannessen, Jan O; Langeveld, Johannes; Melle, Ingrid; Opjordsmoen, Stein; Rossberg, Jan Ivar; Rund, Bjørn Rishovd; Simonsen, Erik; Vaglum, Per; McGlashan, Thomas; Friis, Svein

    2013-02-01

    Poor symptom outcome remains a challenge in psychosis: At least 50% of first-episode patients continue to have positive and/or negative symptoms after ten years. To investigate rates, early predictors and early symptom progression of long-term non-remitted psychosis in an early detection study. Symptomatic remission according to new international criteria was assessed in 174 patients at ten-year follow-up. Remitted and non-remitted patients were compared on early symptom progression, and logistic regression was applied to predict non-remission. At ten years, 50% of patients were in symptomatic remission. Non-remission was predicted by positive symptoms at inclusion and during the first year of treatment. Of individual symptoms only hallucinations were significantly predictive of ten-year non-remission. Early symptom differences were not reflected by differences in treatment. Long-term symptomatic non-remission is associated with early positive symptoms. More assertive intervention may be needed in patients who do not respond robustly in the first year of treatment, whether or not they have been detected "early". Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Glaucoma progression detection with frequency doubling technology (FDT) compared to standard automated perimetry (SAP) in the Groningen Longitudinal Glaucoma Study.

    Science.gov (United States)

    Wesselink, Christiaan; Jansonius, Nomdo M

    2017-09-01

    To determine the usefulness of frequency doubling perimetry (FDT) for progression detection in glaucoma, compared to standard automated perimetry (SAP). Data were used from 150 eyes of 150 glaucoma patients from the Groningen Longitudinal Glaucoma Study. After baseline, SAP was performed approximately yearly; FDT every other year. First and last visit had to contain both tests. Using linear regression, progression velocities were calculated for SAP (Humphrey Field Analyzer) mean deviation (MD) and FDT MD and the number of test locations with a total deviation probability below p SAP and FDT classifications were made using a Mantel Haenszel chi-square test. Longitudinal signal-to-noise ratios (LSNRs) were calculated, per patient and per technique, defined as progression velocity divided by the standard deviation of the residuals. Mean (SD) follow-up was 6.4 (1.7) years; median (interquartile range [IQR]) baseline SAP MD -6.6 (-14.2 to -3.6) dB. On average 8.2 and 4.5 tests were performed for SAP and FDT, respectively. Median (IQR) MD slope was -0.16 (-0.46 to +0.02) dB/year for SAP and -0.05 (-0.39 to +0.17) dB/year for FDT. Mantel Haenszel chi-squares of SAP MD vs FDT MD and TD were 12.5 (p SAP MD (median -0.17 yr(-1) ) were better than those for FDT MD (-0.04 yr(-1) ; p = 0.010). FDT may be a useful technique for monitoring glaucoma progression in patients who cannot perform SAP reliably. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  16. Detecting cervical cancer progression through extracted intrinsic fluorescence and principal component analysis

    Science.gov (United States)

    Devi, Seema; Panigrahi, Prasanta K.; Pradhan, Asima

    2014-12-01

    Intrinsic fluorescence spectra of the human normal, cervical intraepithelial neoplasia 1 (CIN1), CIN2, and cervical cancer tissue have been extracted by effectively combining the measured polarized fluorescence and polarized elastic scattering spectra. The efficacy of principal component analysis (PCA) to disentangle the collective behavior from smaller correlated clusters in a dimensionally reduced space in conjunction with the intrinsic fluorescence is examined. This combination unambiguously reveals the biochemical changes occurring with the progression of the disease. The differing activities of the dominant fluorophores, collagen, nicotinamide adenine dinucleotide, flavins, and porphyrin of different grades of precancers are clearly identified through a careful examination of the sectorial behavior of the dominant eigenvectors of PCA. To further classify the different grades, the Mahalanobis distance has been calculated using the scores of selected principal components.

  17. Research progress of THz wave detection%太赫兹波探测器技术研究进展

    Institute of Scientific and Technical Information of China (English)

    冯德军; 宋磊; 季伟; 黄庆捷; 朱亦鸣

    2014-01-01

    In this paper, several main existing THz detection technologies are summarized. The coherent de-tection of THz pulse signal including THz-TDS , heterodyne detection technology and direct detection tech-nology based on heat absorption is described. Then, the advantages of plasma wave detectors is analyzed, compared with the traditional electron and photon detectors. Finally, the research progress of a novel terahertz detector based on graphene materials has been introduced.%对现有的几种常见太赫兹探测技术进行了总结,介绍了探测太赫兹脉冲信号的THz-TDS技术、外差探测的相干探测技术以及基于热吸收的直接探测技术。分析了等离子波探测器相对于传统电子和光子探测器的优势,并重点介绍了以石墨烯为材料的新型太赫兹探测器的研究进展。

  18. Transplantation of human oligodendrocyte progenitor cells in an animal model of diffuse traumatic axonal injury: survival and differentiation.

    Science.gov (United States)

    Xu, Leyan; Ryu, Jiwon; Hiel, Hakim; Menon, Adarsh; Aggarwal, Ayushi; Rha, Elizabeth; Mahairaki, Vasiliki; Cummings, Brian J; Koliatsos, Vassilis E

    2015-05-14

    Diffuse axonal injury is an extremely common type of traumatic brain injury encountered in motor vehicle crashes, sports injuries, and in combat. Although many cases of diffuse axonal injury result in chronic disability, there are no current treatments for this condition. Its basic lesion, traumatic axonal injury, has been aggressively modeled in primate and rodent animal models. The inexorable axonal and perikaryal degeneration and dysmyelination often encountered in traumatic axonal injury calls for regenerative therapies, including therapies based on stem cells and precursors. Here we explore the proof of concept that treatments based on transplants of human oligodendrocyte progenitor cells can replace or remodel myelin and, eventually, contribute to axonal regeneration in traumatic axonal injury. We derived human oligodendrocyte progenitor cells from the human embryonic stem cell line H9, purified and characterized them. We then transplanted these human oligodendrocyte progenitor cells into the deep sensorimotor cortex next to the corpus callosum of nude rats subjected to traumatic axonal injury based on the impact acceleration model of Marmarou. We explored the time course and spatial distribution of differentiation and structural integration of these cells in rat forebrain. At the time of transplantation, over 90 % of human oligodendrocyte progenitor cells expressed A2B5, PDGFR, NG2, O4, Olig2 and Sox10, a profile consistent with their progenitor or early oligodendrocyte status. After transplantation, these cells survived well and migrated massively via the corpus callosum in both injured and uninjured brains. Human oligodendrocyte progenitor cells displayed a striking preference for white matter tracts and were contained almost exclusively in the corpus callosum and external capsule, the striatopallidal striae, and cortical layer 6. Over 3 months, human oligodendrocyte progenitor cells progressively matured into myelin basic protein(+) and adenomatous

  19. The insulin-like growth factor 1 receptor is essential for axonal regeneration in adult central nervous system neurons.

    Directory of Open Access Journals (Sweden)

    Sebastián Dupraz

    Full Text Available Axonal regeneration is an essential condition to re-establish functional neuronal connections in the injured adult central nervous system (CNS, but efficient regrowth of severed axons has proven to be very difficult to achieve. Although significant progress has been made in identifying the intrinsic and extrinsic mechanisms involved, many aspects remain unresolved. Axonal development in embryonic CNS (hippocampus requires the obligate activation of the insulin-like growth factor 1 receptor (IGF-1R. Based on known similarities between axonal growth in fetal compared to mature CNS, we decided to examine the expression of the IGF-1R, using an antibody to the βgc subunit or a polyclonal anti-peptide antibody directed to the IGF-R (C20, in an in vitro model of adult CNS axonal regeneration, namely retinal ganglion cells (RGC derived from adult rat retinas. Expression of both βgc and the β subunit recognized by C20 antibody were low in freshly isolated adult RGC, but increased significantly after 4 days in vitro. As in embryonic axons, βgc was localised to distal regions and leading growth cones in RGC. IGF-1R-βgc co-localised with activated p85 involved in the phosphatidylinositol-3 kinase (PI3K signaling pathway, upon stimulation with IGF-1. Blocking experiments using either an antibody which neutralises IGF-1R activation, shRNA designed against the IGF-1R sequence, or the PI3K pathway inhibitor LY294002, all significantly reduced axon regeneration from adult RGC in vitro (∼40% RGC possessed axons in controls vs 2-8% in the different blocking studies. Finally, co-transfection of RGC with shRNA to silence IGF-1R together with a vector containing a constitutively active form of downstream PI3K (p110, fully restored axonal outgrowth in vitro. Hence these data demonstrate that axonal regeneration in adult CNS neurons requires re-expression and activation of IGF-1R, and targeting this system may offer new therapeutic approaches to enhancing axonal

  20. Two Modes of the Axonal Interferon Response Limit Alphaherpesvirus Neuroinvasion

    Directory of Open Access Journals (Sweden)

    Ren Song

    2016-02-01

    Full Text Available Infection by alphaherpesviruses, including herpes simplex virus (HSV and pseudorabies virus (PRV, typically begins at epithelial surfaces and continues into the peripheral nervous system (PNS. Inflammatory responses are induced at the infected peripheral site prior to invasion of the PNS. When the peripheral tissue is first infected, only the innervating axons are exposed to this inflammatory milieu, which includes the interferons (IFNs. The fundamental question is how do PNS cell bodies respond to these distant, potentially damaging events experienced by axons. Using compartmented cultures that physically separate neuron axons from cell bodies, we found that pretreating isolated axons with beta interferon (IFN-β or gamma interferon (IFN-γ significantly diminished the number of herpes simplex virus 1 (HSV-1 and PRV particles moving in axons toward the cell bodies in a receptor-dependent manner. Exposing axons to IFN-β induced STAT1 phosphorylation (p-STAT1 only in axons, while exposure of axons to IFN-γ induced p-STAT1 accumulation in distant cell body nuclei. Blocking transcription in cell bodies eliminated antiviral effects induced by IFN-γ, but not those induced by IFN-β. Proteomic analysis of IFN-β- or IFN-γ-treated axons identified several differentially regulated proteins. Therefore, unlike treatment with IFN-γ, IFN-β induces a noncanonical, local antiviral response in axons. The activation of a local IFN response in axons represents a new paradigm for cytokine control of neuroinvasion.

  1. Mitochondria Localize to Injured Axons to Support Regeneration.

    Science.gov (United States)

    Han, Sung Min; Baig, Huma S; Hammarlund, Marc

    2016-12-21

    Axon regeneration is essential to restore the nervous system after axon injury. However, the neuronal cell biology that underlies axon regeneration is incompletely understood. Here we use in vivo, single-neuron analysis to investigate the relationship between nerve injury, mitochondrial localization, and axon regeneration. Mitochondria translocate into injured axons so that average mitochondria density increases after injury. Moreover, single-neuron analysis reveals that axons that fail to increase mitochondria have poor regeneration. Experimental alterations to axonal mitochondrial distribution or mitochondrial respiratory chain function result in corresponding changes to regeneration outcomes. Axonal mitochondria are specifically required for growth-cone migration, identifying a key energy challenge for injured neurons. Finally, mitochondrial localization to the axon after injury is regulated in part by dual-leucine zipper kinase 1 (DLK-1), a conserved regulator of axon regeneration. These data identify regulation of axonal mitochondria as a new cell-biological mechanism that helps determine the regenerative response of injured neurons. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Motor and dorsal root ganglion axons serve as choice points for the ipsilateral turning of dI3 axons.

    Science.gov (United States)

    Avraham, Oshri; Hadas, Yoav; Vald, Lilach; Hong, Seulgi; Song, Mi-Ryoung; Klar, Avihu

    2010-11-17

    The axons of the spinal intersegmental interneurons are projected longitudinally along various funiculi arrayed along the dorsal-ventral axis of the spinal cord. The roof plate and the floor plate have a profound role in patterning their initial axonal trajectory. However, other positional cues may guide the final architecture of interneuron tracks in the spinal cord. To gain more insight into the organization of specific axonal tracks in the spinal cord, we focused on the trajectory pattern of a genetically defined neuronal population, dI3 neurons, in the chick spinal cord. Exploitation of newly characterized enhancer elements allowed specific labeling of dI3 neurons and axons. dI3 axons are projected ipsilaterally along two longitudinal fascicules at the ventral lateral funiculus (VLF) and the dorsal funiculus (DF). dI3 axons change their trajectory plane from the transverse to the longitudinal axis at two novel checkpoints. The axons that elongate at the DF turn at the dorsal root entry zone, along the axons of the dorsal root ganglion (DRG) neurons, and the axons that elongate at the VLF turn along the axons of motor neurons. Loss and gain of function of the Lim-HD protein Isl1 demonstrate that Isl1 is not required for dI3 cell fate. However, Isl1 is sufficient to impose ipsilateral turning along the motor axons when expressed ectopically in the commissural dI1 neurons. The axonal patterning of dI3 neurons, revealed in this study, highlights the role of established axonal cues-the DRG and motor axons-as intermediate guidepost cues for dI3 axons.

  3. Capillary electrokinetic separations with optical detection. Technical progress report, February 1, 1994--January 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Sepaniak, M.J.

    1995-05-01

    This multifarious research program is dedicated to the development of capillary electrokinetic separation techniques and associated optical methods of detection. Currently, research is directed at three general objectives. First, fundamental studies of pertinent separation and band broadening mechanisms are being conducted, with the emphasis on achieving rapid separations and understanding separation systems that include highly-ordered assemblies as running buffer additives. Second, instrumentation and methodologies associated with these capillary separation techniques are being advanced. Third, applications of these separation and detection systems should fill current voids in the capabilities of capillary separation techniques. In particular, it should be possible to perform rapid, highly efficient, and selective separations of hydrophobic compounds (e.g., higher MW polycyclic aromatic hydrocarbons (PAHs) and fullerenes), certain optical isomers, DNA fragments, and various pollutants including certain heavy metals.

  4. Progress in alternative neutron detection to address the helium-3 shortage

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lintereur, Azaree T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Siciliano, Edward R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-01

    One of the main uses for 3He is in gas proportional counters for neutron detection. Such detectors are used at neutron scattering science facilities and in radiation portal monitors deployed for homeland security and non-proliferation applications. Other uses of 3He are for research detectors, commercial instruments, well logging detectors, dilution refrigerators, lung imaging, for targets in nuclear research, and for basic research in condensed matter physics. The supply of 3He comes entirely from the decay of tritium produced for nuclear weapons in the U.S. and Russia. Due to the large increase in use of 3He for science and homeland security (since 2002), the supply has dwindled, and can no longer meet the demand. This has led to the development of a number of alternative neutron detection schemes.

  5. Axon Membrane Skeleton Structure is Optimized for Coordinated Sodium Propagation

    CERN Document Server

    Zhang, Yihao; Li, He; Tzingounis, Anastasios V; Lykotrafitis, George

    2016-01-01

    Axons transmit action potentials with high fidelity and minimal jitter. This unique capability is likely the result of the spatiotemporal arrangement of sodium channels along the axon. Super-resolution microscopy recently revealed that the axon membrane skeleton is structured as a series of actin rings connected by spectrin filaments that are held under entropic tension. Sodium channels also exhibit a periodic distribution pattern, as they bind to ankyrin G, which associates with spectrin. Here, we elucidate the relationship between the axon membrane skeleton structure and the function of the axon. By combining cytoskeletal dynamics and continuum diffusion modeling, we show that spectrin filaments under tension minimize the thermal fluctuations of sodium channels and prevent overlap of neighboring channel trajectories. Importantly, this axon skeletal arrangement allows for a highly reproducible band-like activation of sodium channels leading to coordinated sodium propagation along the axon.

  6. Guangzhou Chemical Industry%Research Progress on Detection Method for Methyl Testosterone

    Institute of Scientific and Technical Information of China (English)

    赵冬艳; 王彩萍; 丁超梦

    2016-01-01

    甲基睾酮作为激素类药物由于可以促进水产品种的性别转变及口服稳定有效的特点在养殖业广泛使用。但在我国农业部235号公告规定甲基睾酮为禁止使用兽药,在所有食用动物的所有可食组织中不得检出。本文对甲基睾酮现有的检测方法进行详细介绍,分析其优缺点,进一步介绍甲基睾酮检测方法的新动态,为加强进出口农产品中违禁药物残留的检测提供一定的思路。%Methyl testosterone,as hormone drugs of the promotion of aquatic species change sex and oral stable and effective features, is widely used in the aquaculture industry. But in China the Ministry of Agriculture Bulletin No. 235 stipulates that methyl testosterone is prohibited in the use of veterinary drugs, can’t be detected inall edible tissues inall food animals. Methyl testosterone existing detection methods was described in detail. Its strengths and weaknesses wereanalyzed,and new dynamic detection methods of methyl testosterone were further introduced, to provide some ideasabout the import and export of agricultural products to detect illegal drug residues.

  7. Progress of computer-aided detection/diagnosis (CAD in dentistryCAD in dentistry

    Directory of Open Access Journals (Sweden)

    Akitoshi Katsumata

    2014-08-01

    CAD is also useful in the detection and evaluation of dental and maxillofacial lesions. Identifying alveolar bone resorption due to periodontitis and radiolucent jaw lesions (such as radicular and dentigerous cysts are important goals for CAD. CAD can be applied not only to panoramic radiography but also to dental cone-beam computed tomography (CBCT images. Linking of CAD and teleradiology will be an important issue.

  8. E-SMART system for in-situ detection of environmental contaminants. Quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    Environmental Systems Management, Analysis and Reporting neTwork (E-SMART) is a comprehensive, fully-integrated approach to in-situ, real-time detection and monitoring of environmental contaminants. E-SMART will provide new class of smart, highly sensitive, chemically-specific, in-situ, multichannel microsensors utilizing integrated optical interferometry technology, large, commercially viable set of E-SMART-compatible sensors, samplers, and network management components, and user-friendly graphical user interface for data evaluation and visualization.

  9. Initiators and promoters for the occurrence of screen-detected breast cancer and the progression to clinically-detected interval breast cancer.

    Science.gov (United States)

    Yen, Amy Ming-Fang; Wu, Wendy Yi-Ying; Tabar, Laszlo; Duffy, Stephen W; Smith, Robert A; Chen, Hsiu-Hsi

    2017-03-01

    The risk factors responsible for breast cancer have been well documented, but the roles of risk factors as initiators, causing the occurrence of screen-detected breast cancer, or promoters, responsible for the progression of the screen-detected to the clinically-detected breast cancer, have been scarcely evaluated. We used data from women in a cohort in Kopparberg (Dalarna), Sweden between 1977 and 2010. Conventional risk factors, breast density, and tumor-specific biomarkers are superimposed to the temporal course of the natural history of the disease. The results show that older age at first full-term pregnancy, dense breast, and a family history of breast cancer increased the risk of entering the preclinical screen-detectable phase of breast cancer by 23%, 41%, and 89%, respectively. Overweight/obesity (body mass index ≥25 kg/m(2)) was a significant initiator (adjusted relative risk [aRR] 1.15; 95% confidence interval [CI], 0.99-1.33), but was inversely associated with the role of promoter (aRR 0.65; 95% CI, 0.51-0.82). Dense breast (aRR 1.46; 95% CI, 1.12-1.91), triple-negative (aRR 2.07; 95% CI, 1.37-3.15), and Ki-67 positivity (aRR 1.66; 95% CI, 1.19-2.30) were statistically significant promoters. When the molecular biomarkers were considered collectively as one classification, the basal-like subtype was the most influential subtype on promoters (aRR 4.24; 95% CI, 2.56-7.02) compared with the Luminal A subtype. We ascertained state-dependent covariates of initiators and promoters to classify the risk of the two-step progression of breast cancer. The results of the current study are useful for individually-tailored screening and personalized clinical surveillance of patients with breast cancer that was detected at an early stage. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  10. KV1 channels identified in rodent myelinated axons, linked to Cx29 in innermost myelin: support for electrically active myelin in mammalian saltatory conduction.

    Science.gov (United States)

    Rash, John E; Vanderpool, Kimberly G; Yasumura, Thomas; Hickman, Jordan; Beatty, Jonathan T; Nagy, James I

    2016-04-01

    Saltatory conduction in mammalian myelinated axons was thought to be well understood before recent discoveries revealed unexpected subcellular distributions and molecular identities of the K(+)-conductance pathways that provide for rapid axonal repolarization. In this study, we visualize, identify, localize, quantify, and ultrastructurally characterize axonal KV1.1/KV1.2 channels in sciatic nerves of rodents. With the use of light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling electron microscopy, KV1.1/KV1.2 channels are localized to three anatomically and compositionally distinct domains in the internodal axolemmas of large myelinated axons, where they form densely packed "rosettes" of 9-nm intramembrane particles. These axolemmal KV1.1/KV1.2 rosettes are precisely aligned with and ultrastructurally coupled to connexin29 (Cx29) channels, also in matching rosettes, in the surrounding juxtaparanodal myelin collars and along the inner mesaxon. As >98% of transmembrane proteins large enough to represent ion channels in these specialized domains, ∼500,000 KV1.1/KV1.2 channels define the paired juxtaparanodal regions as exclusive membrane domains for the voltage-gated K(+)conductance that underlies rapid axonal repolarization in mammals. The 1:1 molecular linkage of KV1 channels to Cx29 channels in the apposed juxtaparanodal collars, plus their linkage to an additional 250,000-400,000 Cx29 channels along each inner mesaxon in every large-diameter myelinated axon examined, supports previously proposed K(+)conductance directly from juxtaparanodal axoplasm into juxtaparanodal myeloplasm in mammalian axons. With neither Cx29 protein nor myelin rosettes detectable in frog myelinated axons, these data showing axon-to-myelin linkage by abundant KV1/Cx29 channels in rodent axons support renewed consideration of an electrically active role for myelin in increasing both saltatory conduction velocity and maximum propagation frequency in

  11. Axon degeneration: make the Schwann cell great again

    Directory of Open Access Journals (Sweden)

    Keit Men Wong

    2017-01-01

    Full Text Available Axonal degeneration is a pivotal feature of many neurodegenerative conditions and substantially accounts for neurological morbidity. A widely used experimental model to study the mechanisms of axonal degeneration is Wallerian degeneration (WD, which occurs after acute axonal injury. In the peripheral nervous system (PNS, WD is characterized by swift dismantling and clearance of injured axons with their myelin sheaths. This is a prerequisite for successful axonal regeneration. In the central nervous system (CNS, WD is much slower, which significantly contributes to failed axonal regeneration. Although it is well-documented that Schwann cells (SCs have a critical role in the regenerative potential of the PNS, to date we have only scarce knowledge as to how SCs 'sense' axonal injury and immediately respond to it. In this regard, it remains unknown as to whether SCs play the role of a passive bystander or an active director during the execution of the highly orchestrated disintegration program of axons. Older reports, together with more recent studies, suggest that SCs mount dynamic injury responses minutes after axonal injury, long before axonal breakdown occurs. The swift SC response to axonal injury could play either a pro-degenerative role, or alternatively a supportive role, to the integrity of distressed axons that have not yet committed to degenerate. Indeed, supporting the latter concept, recent findings in a chronic PNS neurodegeneration model indicate that deactivation of a key molecule promoting SC injury responses exacerbates axonal loss. If this holds true in a broader spectrum of conditions, it may provide the grounds for the development of new glia-centric therapeutic approaches to counteract axonal loss.

  12. Geniposide Alleviates Amyloid-Induced Synaptic Injury by Protecting Axonal Mitochondrial Trafficking

    Science.gov (United States)

    Zhang, Haijing; Zhao, Chunhui; Lv, Cui; Liu, Xiaoli; Du, Shijing; Li, Zhi; Wang, Yongyan; Zhang, Wensheng

    2017-01-01

    Synaptic and mitochondrial pathologies are early events in the progression of Alzheimer's disease (AD). Normal axonal mitochondrial function and transport play crucial roles in maintaining synaptic function by producing high levels of adenosine triphosphate and buffering calcium. However, there can be abnormal axonal mitochondrial trafficking, distribution, and fragmentation, which are strongly correlated with amyloid-β (Aβ)-induced synaptic loss and dysfunction. The present study examined the neuroprotective effect of geniposide, a compound extracted from gardenia fruit in Aβ-treated neurons and an AD mouse model. Geniposide alleviated Aβ-induced axonal mitochondrial abnormalities by increasing axonal mitochondrial density and length and improving mitochondrial motility and trafficking in cultured hippocampal neurons, consequently ameliorating synaptic damage by reversing synaptic loss, addressing spine density and morphology abnormalities, and ameliorating the decreases in synapse-related proteins in neurons and APPswe/PS1dE9 mice. These findings provide new insights into the effects of geniposide administration on neuronal and synaptic functions under conditions of Aβ enrichment. PMID:28179878

  13. Defective axonal transport: A common pathological mechanism in inherited and acquired peripheral neuropathies.

    Science.gov (United States)

    Prior, Robert; Van Helleputte, Lawrence; Benoy, Veronick; Van Den Bosch, Ludo

    2017-09-01

    Peripheral neuropathies are characterized by a progressive and length-dependent loss of peripheral nerve function. This can be caused either by genetic defects, classified as 'inherited peripheral neuropathies', or they can be acquired throughout life. In that case, the disease is caused by various insults such as toxins and mechanical injuries, or it can arise secondary to medical conditions such as metabolic disorders, nutritional deficiencies, inflammation and infections. Peripheral neuropathies are not only very heterogeneous in etiology, but also in their pathology and clinical presentation. A commonality amongst all peripheral neuropathies is that no pharmacological disease-modifying therapies currently exist that can reverse or cure these diseases. Moreover, the length-dependent nature of the disease, affecting the longest nerves at the most distal sites, suggests an important role for disturbances in axonal transport, directly or indirectly linked to alterations in the cytoskeleton. In this review, we will give a systematic overview of the main arguments for the involvement of axonal transport defects in both inherited and acquired peripheral neuropathies. In addition, we will discuss the possible therapeutic strategies that can potentially counteract these disturbances, as this particular pathway might be a promising strategy to find a cure. Since counteracting axonal transport defects could limit the axonal degeneration and could be a driving force for neuronal regeneration, the benefits might be twofold. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. The Actin-Binding Protein α-Adducin Is Required for Maintaining Axon Diameter

    Directory of Open Access Journals (Sweden)

    Sérgio Carvalho Leite

    2016-04-01

    Full Text Available The actin-binding protein adducin was recently identified as a component of the neuronal subcortical cytoskeleton. Here, we analyzed mice lacking adducin to uncover the function of this protein in actin rings. α-adducin knockout mice presented progressive axon enlargement in the spinal cord and optic and sciatic nerves, followed by axon degeneration and loss. Using stimulated emission depletion super-resolution microscopy, we show that a periodic subcortical actin cytoskeleton is assembled in every neuron type inspected including retinal ganglion cells and dorsal root ganglia neurons. In neurons devoid of adducin, the actin ring diameter increased, although the inter-ring periodicity was maintained. In vitro, the actin ring diameter adjusted as axons grew, suggesting the lattice is dynamic. Our data support a model in which adducin activity is not essential for actin ring assembly and periodicity but is necessary to control the diameter of both actin rings and axons and actin filament growth within rings.

  15. Schwann cells-axon interaction in myelination.

    Science.gov (United States)

    Taveggia, Carla

    2016-08-01

    The remarkable interaction between glial cells and axons is crucial for nervous system development and homeostasis. Alterations in this continuous communication can cause severe pathologies that can compromise the integrity of the nervous system. The most dramatic consequence of this interaction is the generation of the myelin sheath, made by myelinating glial cells: Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system. In this review I will focus on signals coming from axons in the first part and then on those from Schwann cells that promote the formation and the maintenance of peripheral myelin. I will discuss their inter-relationship together with seminal and important advances recently made.

  16. Progress in rapid detection and identification of unknown human and agricultural pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, T; Holzrichter, J F; Milanovich, F P

    1999-08-13

    The medical industry is driving pathogen detection technology from its present characteristics of $50/sample, 100 sample capability systems, with several day time responses, having several percent error rates in reported outcomes. The systems described above are capable of providing samples at < $5/test, managing several million samples, < 1-hour cycle times, (or just minutes in some cases) and < 0.1% error rates. Because of their importance to the medical and agricultural communities, all ''important'' pathogens will have detection kits available (within air transport times, anywhere in the world) by 2020, and the most well known pathogens will have kits available within a few years. Many are available now. Because of the importance of the food supply to modern nations, these technologies will be employed everywhere in this industry. For example, the United States imports 30 B tons of food a year, but inspects < 1%. Portable inspection systems will make it possible to test for dangerous pathogens in feed lots, food processing plants, markets, and points of use. Outbreaks of animal or plant disease will be immediately detectable using field instrumentation, and more complex samples can be sent to central testing laboratories where more sophisticated test systems will be available. Unusual pathogens either naturally or purposefully selected or developed, will require special attention because there is not a commercial economic driver for the development of detection systems and curative agents. Their development, and production for sufficient availability, will require significant investments by the world community. The strategy and costs for developing vaccines or curative drugs will be very expensive and will need special attention. However it is important that attention be directed to these problems because such attention has a strong deterrent effect on potential developers or users. The capacity to use the full information content contained

  17. Multifunctional Silk Nerve Guides for Axon Outgrowth

    Science.gov (United States)

    Tupaj, Marie C.

    Peripheral nerve regeneration is a critical issue as 2.8% of trauma patients present with this type of injury, estimating a total of 200,000 nerve repair procedures yearly in the United States. While the peripheral nervous system exhibits slow regeneration, at a rate of 0.5 mm -- 9 mm/day following trauma, this regenerative ability is only possible under certain conditions. Clinical repairs have changed slightly in the last 30 years and standard methods of treatment include suturing damaged nerve ends, allografting, and autografting, with the autograft the gold standard of these approaches. Unfortunately, the use of autografts requires a second surgery and there is a shortage of nerves available for grafting. Allografts are a second option however allografts have lower success rates and are accompanied by the need of immunosuppressant drugs. Recently there has been a focus on developing nerve guides as an "off the shelf" approach. Although some natural and synthetic guidance channels have been approved by the FDA, these nerve guides are unfunctionalized and repair only short gaps, less than 3 cm in length. The goal of this project was to identify strategies for functionalizing peripheral nerve conduits for the outgrowth of neuron axons in vitro . To accomplish this, two strategies (bioelectrical and biophysical) were indentified for increasing axon outgrowth and promoting axon guidance. Bioelectrical strategies exploited electrical stimulation for increasing neurite outgrowth. Biophysical strategies tested a range of surface topographies for axon guidance. Novel methods were developed for integrating electrical and biophysical strategies into silk films in 2D. Finally, a functionalized nerve conduit system was developed that integrated all strategies for the purpose of attaching, elongating, and guiding nervous tissue in vitro. Future directions of this work include silk conduit translation into a rat sciatic nerve model in vivo for the purpose of repairing long

  18. Interspecies variation in axon-myelin relationships.

    Science.gov (United States)

    Fraher, J P; O'Sullivan, A W

    2000-01-01

    The primary objective of this paper was to determine the extent and nature of interspecies differences in axon calibre and myelin sheath thickness and in the various relationships between these. Morphometric analysis of the axon perimeter-myelin sheath thickness relationship was performed on an equivalent nerve fibre population in a mammal, the rat, a bird, the chicken, an amphibian, the frog, a bony fish, the trout, and a cartilaginous fish, the dogfish. The abducent nerve was studied. It is especially suitable for this purpose because its fibres are closely similar in type and in peripheral distribution across the species studied. The relationship differed substantially between species. Differences were present in its setting, as described by the positions of the scatterplots, in the g ratio and in the regression and correlation data relating the parameters. Both parameters were markedly larger in the fish species than in all of the others. In addition, in rat, chicken, frog and trout, where large and small fibre classes could be differentiated clearly, the setting of the relationship between the two parameters was different for the two classes. In the main, variation in each of the parameters was greater between than within species. The larger fibres in the fish species were closely similar in axon perimeter and sheath thickness despite their long evolutionary separation. From this study and from others in the series, it may be concluded that there is no fixed or constant relationship between axon calibre and the thickness of the surrounding myelin sheath. Each nerve tends to have its own particular relationship and this differs between species.

  19. Dimethyl Fumarate Ameliorates Lewis Rat Experimental Autoimmune Neuritis and Mediates Axonal Protection.

    Directory of Open Access Journals (Sweden)

    Kalliopi Pitarokoili

    Full Text Available Dimethyl fumarate is an immunomodulatory and neuroprotective drug, approved recently for the treatment of relapsing-remitting multiple sclerosis. In view of the limited therapeutic options for human acute and chronic polyneuritis, we used the animal model of experimental autoimmune neuritis in the Lewis rat to study the effects of dimethyl fumarate on autoimmune inflammation and neuroprotection in the peripheral nervous system.Experimental autoimmune neuritis was induced by immunization with the neuritogenic peptide (amino acids 53-78 of P2 myelin protein. Preventive treatment with dimethyl fumarate given at 45 mg/kg twice daily by oral gavage significantly ameliorated clinical neuritis by reducing demyelination and axonal degeneration in the nerve conduction studies. Histology revealed a significantly lower degree of inflammatory infiltrates in the sciatic nerves. In addition, we detected a reduction of early signs of axonal degeneration through a reduction of amyloid precursor protein expressed in axons of the peripheral nerves. This reduction correlated with an increase of nuclear factor (erythroid derived 2-related factor 2 positive axons, supporting the neuroprotective potential of dimethyl fumarate. Furthermore, nuclear factor (erythroid derived 2-related factor 2 expression in Schwann cells was only rarely detected and there was no increase of Schwann cells death during EAN.We conclude that immunomodulatory and neuroprotective dimethyl fumarate may represent an innovative therapeutic option in human autoimmune neuropathies.

  20. Nondestructive Examination (NDE) Detection and Characterization of Degradation Precursors, Technical Progress Report for FY 2012

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, P.; Meyer, R.M.; Fricke, J.M.; Prowant, M.S.; Coble, J.B.; Griffin, J.W.; Pitman, S.G.; Dahl, M.E.; Kafentzis, T.A.; Roosendaal, T.J.

    2012-09-01

    The overall objective of this project was to investigate the effectiveness of nondestructive examination (NDE) technology in detecting material degradation precursors by initiating and growing cracks in selected materials and using NDE methods to measure crack precursors prior to the onset of cracking. Nuclear reactor components are subject to stresses over time that are not precisely known and that make the life expectancy of components difficult to determine. To prevent future issues with the operation of these plants because of unforeseen failure of components, NDE technology is needed that can be used to identify and quantify precursors to macroscopic degradation of materials. Some of the NDE methods being researched as possible solutions to the precursor detection problem are magnetic Barkhausen noise, nonlinear ultrasonics, acoustic emission, eddy current measurements, and guided wave technology. In FY12, the objective was to complete preliminary assessment of advanced NDE techniques for sensitivity to degradation precursors, using prototypical degradation mechanisms in laboratory-scale measurements. This present document reports on the deliverable that meets the following milestone: M3LW-12OR0402143 – Report detailing an initial demonstration on samples from the crack-initiation tests will be provided (demonstrating acceleration of the work).

  1. Progress in low light-level InAs detectors- towards Geiger-mode detection

    Science.gov (United States)

    Tan, Chee Hing; Ng, Jo Shien; Zhou, Xinxin; David, John; Zhang, Shiyong; Krysa, Andrey

    2017-05-01

    InAs avalanche photodiodes (APDs) can be designed such that only electrons are allowed to initiate impact ionization, leading to the lowest possible excess noise factor. Optimization of wet chemical etching and surface passivation produced mesa APDs with bulk dominated dark current and responsivity that are comparable and higher, respectively, than a commercial InAs detector. Our InAs electron-APDs also show high stability with fluctuation of 0.1% when operated at a gain of 11.2 over 60 s. These InAs APDs can detect very weak signal down to 35 photons per pulse. Fabrication of planar InAs by Be implantation produced planar APDs with bulk dominated dark current. Annealing at 550 °C was necessary to remove implantation damage and to activate Be dopants. Due to minimal diffusion of Be, thick depletion of 8 μm was achieved. Since the avalanche gain increases exponentially with the thickness of avalanche region, our planar APD achieved high gain > 300 at 200 K. Our work suggest that both mesa and planar InAs APDs can exhibit high gain. When combined with a suitable preamplifier, single photon detection using InAs electron-APDs could be achieved.

  2. Detection of greenhouse-gas-induced climatic change. Progress report, July 1, 1994--July 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Jones, P.D.; Wigley, T.M.L.

    1995-07-21

    The objective of this research is to assembly and analyze instrumental climate data and to develop and apply climate models as a basis for detecting greenhouse-gas-induced climatic change, and validation of General Circulation Models. In addition to changes due to variations in anthropogenic forcing, including greenhouse gas and aerosol concentration changes, the global climate system exhibits a high degree of internally-generated and externally-forced natural variability. To detect the anthropogenic effect, its signal must be isolated from the ``noise`` of this natural climatic variability. A high quality, spatially extensive data base is required to define the noise and its spatial characteristics. To facilitate this, available land and marine data bases will be updated and expanded. The data will be analyzed to determine the potential effects on climate of greenhouse gas and aerosol concentration changes and other factors. Analyses will be guided by a variety of models, from simple energy balance climate models to coupled atmosphere ocean General Circulation Models. These analyses are oriented towards obtaining early evidence of anthropogenic climatic change that would lead either to confirmation, rejection or modification of model projections, and towards the statistical validation of General Circulation Model control runs and perturbation experiments.

  3. Electromagnetic material changes for remote detection and monitoring: a feasibility study: Progress report

    Energy Technology Data Exchange (ETDEWEB)

    McCloy, John S.; Jordan, David V.; Kelly, James F.; McMakin, Douglas L.; Johnson, Bradley R.; Campbell, Luke W.

    2009-09-01

    A new concept for radiation detection is proposed, allowing a decoupling of the sensing medium and the readout. An electromagnetic material, such as a magnetic ceramic ferrite, is placed near a source to be tracked such as a shipping container. The electromagnetic material changes its properties, in this case its magnetic permeability, as a function of radiation. This change is evident as a change in reflection frequency and magnitude when probed using a microwave/millimeter-wave source. This brief report discusses modeling of radiation interaction of various candidate materials using a radiation detector modeling code Geant4, system design considerations for the remote readout, and some theory of the material interaction physics. The theory of radiation change in doped magnetic insulator ferrites such as yttrium iron garnet (YIG) seems well founded based on literature documentation of the photomagnetic effect. The literature also suggests sensitivity of permittivity to neutrons in some ferroelectrics. Research to date indicates that experimental demonstration of these effects in the context of radiation detection is warranted.

  4. Automated detection of extended sources in radio maps: progress from the SCORPIO survey

    Science.gov (United States)

    Riggi, S.; Ingallinera, A.; Leto, P.; Cavallaro, F.; Bufano, F.; Schillirò, F.; Trigilio, C.; Umana, G.; Buemi, C. S.; Norris, R. P.

    2016-08-01

    Automated source extraction and parametrization represents a crucial challenge for the next-generation radio interferometer surveys, such as those performed with the Square Kilometre Array (SKA) and its precursors. In this paper, we present a new algorithm, called CAESAR (Compact And Extended Source Automated Recognition), to detect and parametrize extended sources in radio interferometric maps. It is based on a pre-filtering stage, allowing image denoising, compact source suppression and enhancement of diffuse emission, followed by an adaptive superpixel clustering stage for final source segmentation. A parametrization stage provides source flux information and a wide range of morphology estimators for post-processing analysis. We developed CAESAR in a modular software library, also including different methods for local background estimation and image filtering, along with alternative algorithms for both compact and diffuse source extraction. The method was applied to real radio continuum data collected at the Australian Telescope Compact Array (ATCA) within the SCORPIO project, a pathfinder of the Evolutionary Map of the Universe (EMU) survey at the Australian Square Kilometre Array Pathfinder (ASKAP). The source reconstruction capabilities were studied over different test fields in the presence of compact sources, imaging artefacts and diffuse emission from the Galactic plane and compared with existing algorithms. When compared to a human-driven analysis, the designed algorithm was found capable of detecting known target sources and regions of diffuse emission, outperforming alternative approaches over the considered fields.

  5. Retinoic acid signaling in axonal regeneration

    Directory of Open Access Journals (Sweden)

    Radhika ePuttagunta

    2012-01-01

    Full Text Available Following an acute central nervous system injury, axonal regeneration and functional recovery are extremely limited. This is due to an extrinsic inhibitory growth environment and the lack of intrinsic growth competence. Retinoic acid (RA signaling, essential in developmental dorsoventral patterning and specification of spinal motor neurons, has been shown through its receptor, the transcription factor RA receptor β2 (RARß2, to induce axonal regeneration following spinal cord injury (SCI. Recently, it has been shown that in dorsal root ganglia neurons, cAMP levels were greatly increased by lentiviral RARβ2 expression and contributed to neurite outgrowth. Moreover, RARβ agonists, in cerebellar granule neurons and in the brain in vivo, induced phosphoinositide 3-kinase dependent phosphorylation of AKT that was involved in RARβ-dependent neurite outgrowth. More recently, RA-RARß pathways were shown to directly transcriptionally repress a member of the inhibitory Nogo receptor complex, Lingo-1, under an axonal growth inhibitory environment in vitro as well as following spinal injury in vivo. This perspective focuses on these newly discovered molecular mechanisms and future directions in the field.

  6. Shh goes multidirectional in axon guidance

    Institute of Scientific and Technical Information of China (English)

    Paola Bovolenta; Luisa Sanchez-Arrones

    2012-01-01

    Shh and Wnts,secreted by the floor and roof plate of the spinal cord,direct longitudinal growth of the axons from the adjacent ventral funiculus and cortico-spinal tract.Whether these midline cues influencethe directionality of axons elongating in more lateral positions of the spinal cord is unexplored.Song and colleagues investigate this possibility and demonstrate that the location of descending raphe-spinal tract in the ventrolateral spinal cord is dictated by the simultaneous repellent activity of Shh gradients in both the anteriorto-posterior (A-P) and medial-tolateral (M-L) axis. The spinal cord is the main pathway for exchange of information between the brain and the rest of the body.Sensory information collected in the body periphery is conveyed to the brain by axonal tracts that ascend along the spinal cord whereas motor information travels from the brain to the periphery in descending tracts.Precise spatial organization of these fiber tracts is thus essential for animal behavior and survival.

  7. Synaptic Democracy and Vesicular Transport in Axons

    Science.gov (United States)

    Bressloff, Paul C.; Levien, Ethan

    2015-04-01

    Synaptic democracy concerns the general problem of how regions of an axon or dendrite far from the cell body (soma) of a neuron can play an effective role in neuronal function. For example, stimulated synapses far from the soma are unlikely to influence the firing of a neuron unless some sort of active dendritic processing occurs. Analogously, the motor-driven transport of newly synthesized proteins from the soma to presynaptic targets along the axon tends to favor the delivery of resources to proximal synapses. Both of these phenomena reflect fundamental limitations of transport processes based on a localized source. In this Letter, we show that a more democratic distribution of proteins along an axon can be achieved by making the transport process less efficient. This involves two components: bidirectional or "stop-and-go" motor transport (which can be modeled in terms of advection-diffusion), and reversible interactions between motor-cargo complexes and synaptic targets. Both of these features have recently been observed experimentally. Our model suggests that, just as in human societies, there needs to be a balance between "efficiency" and "equality".

  8. Efferent axons in the avian auditory nerve.

    Science.gov (United States)

    Köppl, C

    2001-05-01

    The sensory hair cells of the inner ear receive both afferent and efferent innervation. The efferent supply to the auditory organ has evolved in birds and mammals into a separate complex system, with several types of neurons of largely unknown function. In this study, the efferent axons in four different species of birds (chicken, starling, barn owl and emu) were examined anatomically. Total numbers of efferents supplying the cochlear duct (auditory basilar papilla and the vestibular lagenar macula) were determined; separate estimates of the efferents to the lagenar macula only were also derived and subtracted. The numbers for auditory efferents thus varied between 120 (chicken) and 1068 (barn owl). Considering the much larger numbers of hair cells in the basilar papilla, each efferent is predicted to branch extensively. However, pronounced species-specific differences as well as regional differences along the tonotopic gradient of the basilar papilla were documented. Myelinated and unmyelinated axons were found, with mean diameters of about 1 microm and about 0.5 microm, respectively. This suggests two basic populations of efferents, however, they did not appear to be distinguished sharply. Evidence is presented that some efferents lose their myelination at the transition from central oligodendrocyte to peripheral Schwann cell myelin. Finally, a comparison of the four bird species evaluated suggests that the efferent population with smaller, unmyelinated axons is the phylogenetically more primitive one. A new population probably arose in parallel with the evolution and differentiation of the specialized hair-cell type it innervates, the short hair cell.

  9. Axon-glial relations during regeneration of axons in the adult rat anterior medullary velum.

    Science.gov (United States)

    Berry, M; Hunter, A S; Duncan, A; Lordan, J; Kirvell, S; Tsang, W L; Butt, A M

    1998-12-01

    The anterior medullary velum (AMV) of adult Wistar rats was lesioned in the midsagittal plane, transecting all decussating axons including those of the central projection of the IVth nerve. At selected times up to 200 days after transection, the degenerative and regenerative responses of axons and glia were analyzed using transmission and scanning electron microscopy and immunohistochemistry. In particular, both the capacity of oligodendrocytes to remyelinate regenerated fibers and the stability of the CNS/PNS junctional zone of the IVth nerve rootlet were documented. Transected central AMV axons exhibited four patterns of fiber regeneration in which fibers grew: rostrocaudally in the reactive paralesion neuropil (Group 1); randomly within the AMV (Group 2); into the ipsilateral IVth nerve rootlet, after turning at the lesion edge and growing recurrently through the old degenerated contralateral central trochlear nerve trajectory (Group 3); and ectopically through paralesion tears in the ependyma onto the surface of the IVth ventricle (Group 4). Group 1-3 axons regenerated unperturbed through degenerating central myelin, reactive astrocytes, oligodendrocytes, microglia, and large accumulations of hematogenous macrophages. Only Group 3 axons survived long term in significant numbers, and all became myelinated by oligodendrocytes, ultimately establishing thin sheaths with relatively normal nodal gaps and intersegmental myelin sheath lengths. Schwann cells at the CNS/PNS junction of the IVth nerve rootlet did not invade the CNS, but astrocyte processes grew across the junction into the PNS portion of the IVth nerve. The basal lamina of the junctional glia limitans remained stable throughout the experimental period.

  10. 登革病毒检测技术研究进展%Progress of Dengue Virus Detection Technology

    Institute of Scientific and Technical Information of China (English)

    吴忠华; 罗鹏; 徐琦; 何蕾; 吕沁风

    2013-01-01

    登革病毒可导致登革热、登革出血热和登革休克综合征,准确快速的早期诊断对其预后非常关键,因此登革病毒检测技术的发展势在必行。在此,我们简要综述目前的登革病毒分离、血清学检测、分子生物学检测技术进展。%Dengue virus caused diseases including dengue fever, dengue hemorrhagic fever and dengue shock syn-drome which threatened to human health. Rapid and accurate diagnosis was crucial to the prognosis, so the devel-opment of dengue virus detection technology would be imperative. Virus separation, serology detection and molecu-lar biological detection technology have been further developed, progress of these technologies were reviewed herein.

  11. T-cell- and macrophage-mediated axon damage in the absence of a CNS-specific immune response: involvement of metalloproteinases.

    Science.gov (United States)

    Newman, T A; Woolley, S T; Hughes, P M; Sibson, N R; Anthony, D C; Perry, V H

    2001-11-01

    Recent evidence has highlighted the fact that axon injury is an important component of multiple sclerosis pathology. The issue of whether a CNS antigen-specific immune response is required to produce axon injury remains unresolved. We investigated the extent and time course of axon injury in a rodent model of a delayed-type hypersensitivity (DTH) reaction directed against the mycobacterium bacille Calmette-Guérin (BCG). Using MRI, we determined whether the ongoing axon injury is restricted to the period during which the blood-brain barrier is compromised. DTH lesions were initiated in adult rats by intracerebral injection of heat-killed BCG followed by a peripheral challenge with BCG. Our findings demonstrate that a DTH reaction to a non-CNS antigen within a CNS white matter tract leads to axon injury. Ongoing axon injury persisted throughout the 3-month period studied and was not restricted to the period of blood-brain barrier breakdown, as detected by MRI enhancing lesions. We have previously demonstrated that matrix metalloproteinases (MMPs) are upregulated in multiple sclerosis plaques and DTH lesions. In this study we demonstrated that microinjection of activated MMPs into the cortical white matter results in axon injury. Our results show that axon injury, possibly mediated by MMPs, is immunologically non-specific and may continue behind an intact blood-brain barrier.

  12. 4-Hydroxy-2-nonenal induces mitochondrial dysfunction and aberrant axonal outgrowth in adult sensory neurons that mimics features of diabetic neuropathy.

    Science.gov (United States)

    Akude, Eli; Zherebitskaya, Elena; Roy Chowdhury, Subir K; Girling, Kimberly; Fernyhough, Paul

    2010-01-01

    Modification of proteins by 4-hydroxy-2-nonenal (4-HNE) has been proposed to cause neurotoxicity in a number of neurodegenerative diseases, including distal axonopathy in diabetic sensory neuropathy. We tested the hypothesis that exposure of cultured adult rat sensory neurons to 4-HNE would result in the formation of amino acid adducts on mitochondrial proteins and that this process would be associated with impaired mitochondrial function and axonal regeneration. In addition, we compared 4-HNE-induced axon pathology with that exhibited by neurons isolated from diabetic rats. Cultured adult rat dorsal root ganglion (DRG) sensory neurons were incubated with varying concentrations of 4-HNE. Cell survival, axonal morphology, and level of axon outgrowth were assessed. In addition, video microscopy of live cells, western blot, and immunofluorescent staining were utilized to detect protein adduct formation by 4-HNE and to localize actively respiring mitochondria. 4-HNE induced formation of protein adducts on cytoskeletal and mitochondrial proteins, and impaired axon regeneration by approximately 50% at 3 microM while having no effect on neuronal survival. 4-HNE initiated formation of aberrant axonal structures and caused the accumulation of mitochondria in these dystrophic structures. Neurons treated with 4-HNE exhibited a distal loss of active mitochondria. Finally, the distal axonopathy and the associated aberrant axonal structures generated by 4-HNE treatment mimicked axon pathology observed in DRG sensory neurons isolated from diabetic rats and replicated aspects of neurodegeneration observed in human diabetic sensory neuropathy.

  13. Robo-2 controls the segregation of a portion of basal vomeronasal sensory neuron axons to the posterior region of the accessory olfactory bulb.

    Science.gov (United States)

    Prince, Janet E A; Cho, Jin Hyung; Dumontier, Emilie; Andrews, William; Cutforth, Tyler; Tessier-Lavigne, Marc; Parnavelas, John; Cloutier, Jean-François

    2009-11-11

    The ability of sensory systems to detect and process information from the environment relies on the elaboration of precise connections between sensory neurons in the periphery and second order neurons in the CNS. In mice, the accessory olfactory system is thought to regulate a wide variety of social and sexual behaviors. The expression of the Slit receptors Robo-1 and Robo-2 in vomeronasal sensory neurons (VSNs) suggests they may direct the stereotypic targeting of their axons to the accessory olfactory bulb (AOB). Here, we have examined the roles of Robo-1 and Robo-2 in the formation of connections by VSN axons within the AOB. While Robo-1 is not necessary for the segregation of VSN axons within the anterior and posterior regions of the AOB, Robo-2 is required for the targeting of some basal VSN axons to the posterior region of the AOB but is dispensable for the fasciculation of VSN axons. Furthermore, the specific ablation of Robo-2 expression in VSNs leads to mistargeting of a portion of basal VSN axons to the anterior region of the AOB, indicating that Robo-2 expression is required on projecting VSN axons. Together, these results identify Robo-2 as a receptor that controls the targeting of basal VSN axons to the posterior AOB.

  14. Automated detection of extended sources in radio maps: progress from the SCORPIO survey

    CERN Document Server

    Riggi, S; Leto, P; Cavallaro, F; Bufano, F; Schillirò, F; Trigilio, C; Umana, G; Buemi, C S; Norris, R P

    2016-01-01

    Automated source extraction and parameterization represents a crucial challenge for the next-generation radio interferometer surveys, such as those performed with the Square Kilometre Array (SKA) and its precursors. In this paper we present a new algorithm, dubbed CAESAR (Compact And Extended Source Automated Recognition), to detect and parametrize extended sources in radio interferometric maps. It is based on a pre-filtering stage, allowing image denoising, compact source suppression and enhancement of diffuse emission, followed by an adaptive superpixel clustering stage for final source segmentation. A parameterization stage provides source flux information and a wide range of morphology estimators for post-processing analysis. We developed CAESAR in a modular software library, including also different methods for local background estimation and image filtering, along with alternative algorithms for both compact and diffuse source extraction. The method was applied to real radio continuum data collected at ...

  15. Fibrin glue repair leads to enhanced axonal elongation during early peripheral nerve regeneration in an in vivo mouse model

    Institute of Scientific and Technical Information of China (English)

    Georgios Koulaxouzidis; Gernot Reim; Christian Witzel

    2015-01-01

    Microsurgical suturing is the gold standard of nerve coaptation. Although literature on the usefulness of ifbrin glue as an alternative is becoming increasingly available, it remains contradic-tory. Furthermore, no data exist on how both repair methods might inlfuence the morphological aspects (arborization; branching) of early peripheral nerve regeneration. We used the sciatic nerve transplantation model in thy-1 yellow lfuorescent protein mice (YFP;n = 10). Pieces of nerve (1cm) were grafted from YFP-negative mice (n = 10) into those expressing YFP. We per-formed microsuture coaptations on one side and used ifbrin glue for repair on the contralateral side. Seven days after grafting, the regeneration distance, the percentage of regenerating and ar-borizing axons, the number of branches per axon, the coaptation failure rate, the gap size at the repair site and the time needed for surgical repair were all investigated. Fibrin glue repair resulted in regenerating axons travelling further into the distal nerve. It also increased the percentage of arborizing axons. No coaptation failure was detected. Gap sizes were comparable in both groups. Fibrin glue signiifcantly reduced surgical repair time. The increase in regeneration distance, even after the short period of time, is in line with the results of others that showed faster axonal regen-eration after ifbrin glue repair. The increase in arborizing axons could be another explanation for better functional and electrophysiological results after ifbrin glue repair. Fibrin glue nerve coap-tation seems to be a promising alternative to microsuture repair.

  16. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis.

    Science.gov (United States)

    Serafini, Barbara; Rosicarelli, Barbara; Magliozzi, Roberta; Stigliano, Egidio; Aloisi, Francesca

    2004-04-01

    Multiple sclerosis (MS) is characterized by synthesis of oligoclonal immunoglobulins and the presence of B-cell clonal expansions in the central nervous system (CNS). Because ectopic lymphoid tissue generated at sites of chronic inflammation is thought to be important in sustaining immunopathological processes, we have investigated whether structures resembling lymphoid follicles could be identified in the CNS of MS patients. Sections from post-mortem MS brains and spinal cords were screened using immunohistochemistry for the presence of CD20+ B-cells, CD3+ T-cells, CD138+ plasma cells and CD21+, CD35+ follicular dendritic cells, and for the expression of lymphoid chemokines (CXCL 13, CCL21) and peripheral node addressin (PNAd). Lymphoid follicle-like structures containing B-cells, T-cells and plasma cells, and a network of follicular dendritic cells producing CXCL13 were observed in the cerebral meninges of 2 out of 3 patients with secondary progressive MS, but not in relapsing remitting and primary progressive MS. We also show that proliferating B-cells are present in intrameningeal follicles, a finding which is suggestive of germinal center formation. No follicle-like structures were detected in parenchymal lesions. The formation of ectopic lymphoid follicies in the meninges of patients with MS could represent a critical step in maintaining humoral autoimmunity and in disease exacerbation.

  17. Multichannel activity propagation across an engineered axon network

    Science.gov (United States)

    Chen, H. Isaac; Wolf, John A.; Smith, Douglas H.

    2017-04-01

    Objective. Although substantial progress has been made in mapping the connections of the brain, less is known about how this organization translates into brain function. In particular, the massive interconnectivity of the brain has made it difficult to specifically examine data transmission between two nodes of the connectome, a central component of the ‘neural code.’ Here, we investigated the propagation of multiple streams of asynchronous neuronal activity across an isolated in vitro ‘connectome unit.’ Approach. We used the novel technique of axon stretch growth to create a model of a long-range cortico-cortical network, a modular system consisting of paired nodes of cortical neurons connected by axon tracts. Using optical stimulation and multi-electrode array recording techniques, we explored how input patterns are represented by cortical networks, how these representations shift as they are transmitted between cortical nodes and perturbed by external conditions, and how well the downstream node distinguishes different patterns. Main results. Stimulus representations included direct, synaptic, and multiplexed responses that grew in complexity as the distance between the stimulation source and recorded neuron increased. These representations collapsed into patterns with lower information content at higher stimulation frequencies. With internodal activity propagation, a hierarchy of network pathways, including latent circuits, was revealed using glutamatergic blockade. As stimulus channels were added, divergent, non-linear effects were observed in local versus distant network layers. Pairwise difference analysis of neuronal responses suggested that neuronal ensembles generally outperformed individual cells in discriminating input patterns. Significance. Our data illuminate the complexity of spiking activity propagation in cortical networks in vitro, which is characterized by the transformation of an input into myriad outputs over several network layers

  18. Improved automatic centerline tracing for dendritic and axonal structures.

    Science.gov (United States)

    Jiménez, David; Labate, Demetrio; Kakadiaris, Ioannis A; Papadakis, Manos

    2015-04-01

    Centerline tracing in dendritic structures acquired from confocal images of neurons is an essential tool for the construction of geometrical representations of a neuronal network from its coarse scale up to its fine scale structures. In this paper, we propose an algorithm for centerline extraction that is both highly accurate and computationally efficient. The main novelties of the proposed method are (1) the use of a small set of Multiscale Isotropic Laplacian filters, acting as self-steerable filters, for a quick and efficient binary segmentation of dendritic arbors and axons; (2) an automated centerline seed points detection method based on the application of a simple 3D finite-length filter. The performance of this algorithm, which is validated on data from the DIADEM set appears to be very competitive when compared with other state-of-the-art algorithms.

  19. [Progress in Application of Two-Dimensional Correlation Spectroscopy for Detection of Food Quality].

    Science.gov (United States)

    Yang, Ren-jie; Yang, Yan-rong; Liu, Hai-xue; Dong, Gui-mei; Du, Yan-hong; Shan, Hui-yong; Zhang, Wei-yu

    2015-08-01

    In recent years, the food safety and quality has always been a serious issue. Therefore, it is urgent to develop a rapid and widely available method to determine the quality of food. Due to high spectral resolution, good spectral selectivity and good ability of spectrogram analysis, the technology of two-dimensional (2D) correlation spectroscopy is an effective method for solving three major problems encountered by the conventional one-dimensional (1D) spectrum: low selectivity of the spectra, difficulty in extracting the information of the spectral feature and difficulty in spectrogram analysis. Therefore, 2D correlation spectroscopy, which is suited to distinguish similar samples hardly distinguished by the conventional 1D spectroscopy, has been successfully applied in many complex biological systems. The developmental process, the experimental way to obtain spectrum, the fundamental mathematical principle and the properties of 2D correlation spectroscopy were introduced in this paper. At the same time, it is pointed out that the origin of weak characteristic bands of substance can be verified in terms of the positive or negative corss peaks in synchronous 2D correlation spectrum combined with the existence or inexistence of corss peaks in asynchronous 2D correlation spectrum. The application of 2D near-infrared, mid-infrared, fluorescence, and raman correlation spectroscopy in the detection of food quality and adulteration, concentrated specifically on diary product, wine, oil, meat, honey, and rice were reviewed. Finally, the limitations and future development prospects were pointed out.

  20. Antioxidants Halt Axonal Degeneration in a Mouse Model of X-Adrenoleukodystrophy

    Science.gov (United States)

    López-Erauskin, Jone; Fourcade, Stéphane; Galino, Jorge; Ruiz, Montserrat; Schlüter, Agatha; Naudi, Alba; Jove, Mariona; Portero-Otin, Manuel; Pamplona, Reinald; Ferrer, Isidre; Pujol, Aurora

    2011-01-01

    Objective Axonal degeneration is a main contributor to disability in progressive neurodegenerative diseases in which oxidative stress is often identified as a pathogenic factor. We aim to demonstrate that antioxidants are able to improve axonal degeneration and locomotor deficits in a mouse model of X-adrenoleukodystrophy (X-ALD). Methods X-ALD is a lethal disease caused by loss of function of the ABCD1 peroxisomal transporter of very long chain fatty acids (VLCFA). The mouse model for X-ALD exhibits a late onset neurological phenotype with locomotor disability and axonal degeneration in spinal cord resembling the most common phenotype of the disease, adrenomyeloneuropathy (X-AMN). Recently, we identified oxidative damage as an early event in life, and the excess of VLCFA as a generator of radical oxygen species (ROS) and oxidative damage to proteins in X-ALD. Results Here, we prove the capability of the antioxidants N-acetyl-cysteine, α-lipoic acid, and α-tocopherol to scavenge VLCFA-dependent ROS generation in vitro. Furthermore, in a preclinical setting, the cocktail of the 3 compounds reversed: (1) oxidative stress and lesions to proteins, (2) immunohistological signs of axonal degeneration, and (3) locomotor impairment in bar cross and treadmill tests. Interpretation We have established a direct link between oxidative stress and axonal damage in a mouse model of neurodegenerative disease. This conceptual proof of oxidative stress as a major disease-driving factor in X-AMN warrants translation into clinical trials for X-AMN, and invites assessment of antioxidant strategies in axonopathies in which oxidative damage might be a contributing factor. Ann Neurol 2011; PMID:21786300

  1. Cutaneous collateral axonal sprouting re-innervates the skin component and restores sensation of denervated Swine osteomyocutaneous alloflaps.

    Directory of Open Access Journals (Sweden)

    Zuhaib Ibrahim

    Full Text Available Reconstructive transplantation such as extremity and face transplantation is a viable treatment option for select patients with devastating tissue loss. Sensorimotor recovery is a critical determinant of overall success of such transplants. Although motor function recovery has been extensively studied, mechanisms of sensory re-innervation are not well established. Recent clinical reports of face transplants confirm progressive sensory improvement even in cases where optimal repair of sensory nerves was not achieved. Two forms of sensory nerve regeneration are known. In regenerative sprouting, axonal outgrowth occurs from the transected nerve stump while in collateral sprouting, reinnervation of denervated tissue occurs through growth of uninjured axons into the denervated tissue. The latter mechanism may be more important in settings where transected sensory nerves cannot be re-apposed. In this study, denervated osteomyocutaneous alloflaps (hind- limb transplants from Major Histocompatibility Complex (MHC-defined MGH miniature swine were performed to specifically evaluate collateral axonal sprouting for cutaneous sensory re-innervation. The skin component of the flap was externalized and serial skin sections extending from native skin to the grafted flap were biopsied. In order to visualize regenerating axonal structures in the dermis and epidermis, 50 um frozen sections were immunostained against axonal and Schwann cell markers. In all alloflaps, collateral axonal sprouts from adjacent recipient skin extended into the denervated skin component along the dermal-epidermal junction from the periphery towards the center. On day 100 post-transplant, regenerating sprouts reached 0.5 cm into the flap centripetally. Eight months following transplant, epidermal fibers were visualized 1.5 cm from the margin (rate of regeneration 0.06 mm per day. All animals had pinprick sensation in the periphery of the transplanted skin within 3 months post

  2. Dynamics of axon fasciculation in the presence of neuronal turnover

    CERN Document Server

    Chaudhuri, Debasish; Mohanty, P K; Zapotocky, Martin

    2008-01-01

    We formulate and characterize a model aiming to describe the formation of fascicles of axons mediated by contact axon-axon interactions. The growing axons are represented as interacting directed random walks in two spatial dimensions. To mimic axonal turnover in the mammalian olfactory system, the random walkers are injected and removed at specified rates. In the dynamical steady state, the position-dependent distribution of fascicle sizes obeys a scaling law. We identify several distinct time scales that emerge from the dynamics, are sensitive functions of the microscopic parameters of the model, and can exceed the average axonal lifetime by orders of magnitude. We discuss our findings in terms of an analytically tractable, effective model of fascicle dynamics.

  3. Critical role of JSAP1 and JLP in axonal transport in the cerebellar Purkinje cells of mice.

    Science.gov (United States)

    Sato, Tokiharu; Ishikawa, Momoe; Yoshihara, Toru; Nakazato, Ryota; Higashida, Haruhiro; Asano, Masahide; Yoshioka, Katsuji

    2015-09-14

    JNK/stress-activated protein kinase-associated protein 1 (JSAP1) and JNK-associated leucine zipper protein (JLP) are structurally related scaffolding proteins that are highly expressed in the brain. Here, we found that JSAP1 and JLP play functionally redundant and essential roles in mouse cerebellar Purkinje cell (PC) survival. Mice containing PCs with deletions in both JSAP1 and JLP exhibited PC axonal dystrophy, followed by gradual, progressive neuronal loss. Kinesin-1 cargoes accumulated selectively in the swollen axons of Jsap1/Jlp-deficient PCs. In addition, autophagy inactivation in these mice markedly accelerated PC degeneration. These findings suggest that JSAP1 and JLP play critical roles in kinesin-1-dependent axonal transport, which prevents brain neuronal degeneration. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. Motor axon synapses on renshaw cells contain higher levels of aspartate than glutamate.

    Directory of Open Access Journals (Sweden)

    Dannette S Richards

    Full Text Available Motoneuron synapses on spinal cord interneurons known as Renshaw cells activate nicotinic, AMPA and NMDA receptors consistent with co-release of acetylcholine and excitatory amino acids (EAA. However, whether these synapses express vesicular glutamate transporters (VGLUTs capable of accumulating glutamate into synaptic vesicles is controversial. An alternative possibility is that these synapses release other EAAs, like aspartate, not dependent on VGLUTs. To clarify the exact EAA concentrated at motor axon synapses we performed a quantitative postembedding colloidal gold immunoelectron analysis for aspartate and glutamate on motor axon synapses (identified by immunoreactivity to the vesicular acetylcholine transporter; VAChT contacting calbindin-immunoreactive (-IR Renshaw cell dendrites. The results show that 71% to 80% of motor axon synaptic boutons on Renshaw cells contained aspartate immunolabeling two standard deviations above average neuropil labeling. Moreover, VAChT-IR synapses on Renshaw cells contained, on average, aspartate immunolabeling at 2.5 to 2.8 times above the average neuropil level. In contrast, glutamate enrichment was lower; 21% to 44% of VAChT-IR synapses showed glutamate-IR two standard deviations above average neuropil labeling and average glutamate immunogold density was 1.7 to 2.0 times the neuropil level. The results were not influenced by antibody affinities because glutamate antibodies detected glutamate-enriched brain homogenates more efficiently than aspartate antibodies detecting aspartate-enriched brain homogenates. Furthermore, synaptic boutons with ultrastructural features of Type I excitatory synapses were always labeled by glutamate antibodies at higher density than motor axon synapses. We conclude that motor axon synapses co-express aspartate and glutamate, but aspartate is concentrated at higher levels than glutamate.

  5. Disruption of mitochondrial DNA replication in Drosophila increases mitochondrial fast axonal transport in vivo.

    Directory of Open Access Journals (Sweden)

    Rehan M Baqri

    Full Text Available Mutations in mitochondrial DNA polymerase (pol gamma cause several progressive human diseases including Parkinson's disease, Alper's syndrome, and progressive external ophthalmoplegia. At the cellular level, disruption of pol gamma leads to depletion of mtDNA, disrupts the mitochondrial respiratory chain, and increases susceptibility to oxidative stress. Although recent studies have intensified focus on the role of mtDNA in neuronal diseases, the changes that take place in mitochondrial biogenesis and mitochondrial axonal transport when mtDNA replication is disrupted are unknown. Using high-speed confocal microscopy, electron microscopy and biochemical approaches, we report that mutations in pol gamma deplete mtDNA levels and lead to an increase in mitochondrial density in Drosophila proximal nerves and muscles, without a noticeable increase in mitochondrial fragmentation. Furthermore, there is a rise in flux of bidirectional mitochondrial axonal transport, albeit with slower kinesin-based anterograde transport. In contrast, flux of synaptic vesicle precursors was modestly decreased in pol gamma-alpha mutants. Our data indicate that disruption of mtDNA replication does not hinder mitochondrial biogenesis, increases mitochondrial axonal transport, and raises the question of whether high levels of circulating mtDNA-deficient mitochondria are beneficial or deleterious in mtDNA diseases.

  6. Brain-Specific Cytoskeletal Damage Markers in Cerebrospinal Fluid: Is There a Common Pattern between Amyotrophic Lateral Sclerosis and Primary Progressive Multiple Sclerosis?

    Directory of Open Access Journals (Sweden)

    Ahmed Abdelhak

    2015-07-01

    Full Text Available Many neurodegenerative disorders share a common pathophysiological pathway involving axonal degeneration despite different etiological triggers. Analysis of cytoskeletal markers such as neurofilaments, protein tau and tubulin in cerebrospinal fluid (CSF may be a useful approach to detect the process of axonal damage and its severity during disease course. In this article, we review the published literature regarding brain-specific CSF markers for cytoskeletal damage in primary progressive multiple sclerosis and amyotrophic lateral sclerosis in order to evaluate their utility as a biomarker for disease progression in conjunction with imaging and histological markers which might also be useful in other neurodegenerative diseases associated with affection of the upper motor neurons. A long-term benefit of such an approach could be facilitating early diagnostic and prognostic tools and assessment of treatment efficacy of disease modifying drugs.

  7. Brain-Specific Cytoskeletal Damage Markers in Cerebrospinal Fluid: Is There a Common Pattern between Amyotrophic Lateral Sclerosis and Primary Progressive Multiple Sclerosis?

    Science.gov (United States)

    Abdelhak, Ahmed; Junker, Andreas; Brettschneider, Johannes; Kassubek, Jan; Ludolph, Albert C; Otto, Markus; Tumani, Hayrettin

    2015-07-31

    Many neurodegenerative disorders share a common pathophysiological pathway involving axonal degeneration despite different etiological triggers. Analysis of cytoskeletal markers such as neurofilaments, protein tau and tubulin in cerebrospinal fluid (CSF) may be a useful approach to detect the process of axonal damage and its severity during disease course. In this article, we review the published literature regarding brain-specific CSF markers for cytoskeletal damage in primary progressive multiple sclerosis and amyotrophic lateral sclerosis in order to evaluate their utility as a biomarker for disease progression in conjunction with imaging and histological markers which might also be useful in other neurodegenerative diseases associated with affection of the upper motor neurons. A long-term benefit of such an approach could be facilitating early diagnostic and prognostic tools and assessment of treatment efficacy of disease modifying drugs.

  8. 蜂蜜的真实性检测方法%Progress in Detection Methods for the Authenticity of Honey

    Institute of Scientific and Technical Information of China (English)

    张金连; 张翠平; 胡福良

    2012-01-01

    The authenticity of honey includes honey quality, variety, origin and adulteration. Driven by economic interests, there is a serious adulteration phenomenon in China's honey market, which has seriously impacted on the development of honey industry and the rights of consumer. This article reviewed the progress in detection methods for the authenticity of honey, including sensory detection method~ stable carbon isotope ratio analysis, enzyme activity assay method, chromatography, spectrometry, differential magnetic resonance method, scanning calorimetry, nuclear and so on.%蜂蜜的真实性包括蜂蜜的品质、品种、产地来源的真实性及是否掺假等。受经济利益的驱使,目前我国蜂蜜市场存在严重的掺杂使假现象,对蜂蜜产业的健康发展和消费者的权益造成了严重的影响。本文综述了蜂蜜真实性的检测方法,包括:感官检测方法、稳定性碳同位素比值分析法、酶活性测定法、色谱分析法、光谱分析法、差示扫描量热法和核磁共振法等。

  9. Axon-glia interaction and membrane traffic in myelin formation

    OpenAIRE

    2014-01-01

    In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialized glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarization followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is...

  10. Chlorpyrifos-Oxon Disrupts Zebrafish Axonal Growth and Motor Behavior

    OpenAIRE

    Yang, Dongren; Lauridsen, Holly; Buels, Kalmia; Chi, Lai-Har; La Du, Jane; Bruun, Donald A.; Olson, James R.; Tanguay, Robert L.; Lein, Pamela J.

    2011-01-01

    Axonal morphology is a critical determinant of neuronal connectivity, and perturbation of the rate or extent of axonal growth during development has been linked to neurobehavioral deficits in animal models and humans. We previously demonstrated that the organophosphorus pesticide (OP) chlorpyrifos (CPF) inhibits axonal growth in cultured neurons. In this study, we used a zebrafish model to determine whether CPF, its oxon metabolite (CPFO), or the excreted metabolite trichloro-2-pyridinol (TCP...

  11. A unified cell biological perspective on axon-myelin injury

    OpenAIRE

    Simons, Mikael; Misgeld, Thomas; Kerschensteiner, Martin

    2014-01-01

    Demyelination and axon loss are pathological hallmarks of the neuroinflammatory disorder multiple sclerosis (MS). Although we have an increasingly detailed understanding of how immune cells can damage axons and myelin individually, we lack a unified view of how the axon–myelin unit as a whole is affected by immune-mediated attack. In this review, we propose that as a result of the tight cell biological interconnection of axons and myelin, damage to either can spread, which might convert a loc...

  12. Detection,Causes and Projection of Climate Change over China:An Overview of Recent Progress

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This article summarizes the main results and findings of studies conducted by Chinese scientists in the past five years.It is shown that observed climate change in China bears a strong similarity with the global average.The country-averaged annual mean surface air temperature has increased by 1.1℃over the past 50 years and 0.5-0.8℃ over the past 100 years.slightly higher than the global temperature increase for the same periods.Northern China and winter have experienced the greatest increases in surface air temperature.Although no significant trend has been found in country-averaged annual precipitation,interdecadal variability and obvious trends on regional scales are detectable,with northwestern China and the mid and lower Yangtze River basin having undergone an obvious increase,and North China a severe drought.Some analyses show that frequency and magnitude of extreme weather and climate events have also undergone significant changes in the past 50 years or so.Studies of the causes of regional climate change through the use of climate models and consideration of various forcings,show that the warming of the last 50 years could possibly be attributed to an increased atmospheric concentration of greenhouse gases,while the temperature change of the first half of the 20th century may be due to solar activity,volcanic eruptions and sea surface temperature change.A significant decline in sunshine duration and solar radiation at the surface in eastern China has been attributed to the increased emission of pollutants.Projections of future climate by models of the NCC(National Climate Center,China Meteorological Administration)and the IAP(Institute of Atmospheric Physics,Chinese Academy of Sciences),as well as 40 modeis developed overseas,indicate a potential significant warming in China in the 21st century,with the largest warming set to occur in winter months and in northern China.Under varied emission scenarios,the country-averaged annual mean temperature is

  13. Antipsychotic drugs alter neuronal development including ALM neuroblast migration and PLM axonal outgrowth in Caenorhabditis elegans.

    Science.gov (United States)

    Donohoe, Dallas R; Weeks, Kathrine; Aamodt, Eric J; Dwyer, Donard S

    2008-01-01

    Antipsychotic drugs are increasingly being prescribed for children and adolescents, and are used in pregnant women without a clear demonstration of safety in these populations. Global effects of these drugs on neurodevelopment (e.g., decreased brain size) have been reported in rats, but detailed knowledge about neuronal effects and mechanisms of action are lacking. Here we report on the evaluation of a comprehensive panel of antipsychotic drugs in a model organism (Caenorhabditis elegans) that is widely used to study neuronal development. Specifically, we examined the effects of the drugs on neuronal migration and axonal outgrowth in mechanosensory neurons visualized with green fluorescent protein expressed from the mec-3 promoter. Clozapine, fluphenazine, and haloperidol produced deficits in the development and migration of ALM neurons and axonal outgrowth in PLM neurons. The defects included failure of neuroblasts to migrate to the proper location, and excessive growth of axons past their normal termination point, together with abnormal morphological features of the processes. Although the antipsychotic drugs are potent antagonists of dopamine and serotonin receptors, the neurodevelopmental deficits were not rescued by co-incubation with serotonin or the dopaminergic agonist, quinpirole. Other antipsychotic drugs, risperidone, aripiprazole, quetiapine, trifluoperazine and olanzapine, also produced modest, but detectable, effects on neuronal development. This is the first report that antipsychotic drugs interfere with neuronal migration and axonal outgrowth in a developing nervous system.

  14. Expression of the Wnt signaling system in central nervous system axon guidance and regeneration

    Directory of Open Access Journals (Sweden)

    Edmund eHollis

    2012-02-01

    Full Text Available Wnt signaling is essential for axon wiring throughout the development of the nervous system in vertebrates and invertebrates. In vertebrates, Wnts are expressed in gradients that span the entire anterior-posterior axis in the spinal cord and the medial-lateral axis in the superior colliculus. In the brainstem, Wnts are expressed in more complex gradients along the anterior-posterior axis. These gradients provide directional information for axon pathfinding and positional information for topographic mapping and are detected by cell polarity signaling pathways. The gradient expression of Wnts and the coordinated expression of Wnt signaling systems are regulated by mechanisms which are currently unknown. Injury to the adult spinal cord results in the re-induction of Wnts in multiple cell types around the lesion site and their signaling system in injured axons. Reinduced Wnts form gradients around the lesion site, with the lesion site being the peak. The reinduced Wnts may be responsible for the well-known retraction of descending motor axons through the atypical kinase receptor Ryk. Wnt signaling is an appealing therapeutic target for CNS repair. The mechanisms regulating the reinduction will be informative for therapeutic design.

  15. Molecular analysis of axon repulsion by the notochord.

    Science.gov (United States)

    Anderson, Christopher N G; Ohta, Kunimasa; Quick, Marie M; Fleming, Angeleen; Keynes, Roger; Tannahill, David

    2003-03-01

    During development of the amniote peripheral nervous system, the initial trajectory of primary sensory axons is determined largely by the action of axon repellents. We have shown previously that tissues flanking dorsal root ganglia, the notochord lying medially and the dermamyotomes lying laterally, are sources of secreted molecules that prevent axons from entering inappropriate territories. Although there is evidence suggesting that SEMA3A contributes to the repellent activity of the dermamyotome, the nature of the activity secreted by the notochord remains undetermined. We have employed an expression cloning strategy to search for axon repellents secreted by the notochord, and have identified SEMA3A as a candidate repellent. Moreover, using a spectrum of different axon populations to assay the notochord activity, together with neuropilin/Fc receptor reagents to block semaphorin activity in collagen gel assays, we show that SEMA3A probably contributes to notochord-mediated repulsion. Sympathetic axons that normally avoid the midline in vivo are also repelled, in part, by a semaphorin-based notochord activity. Although our results implicate semaphorin signalling in mediating repulsion by the notochord, repulsion of early dorsal root ganglion axons is only partially blocked when using neuropilin/Fc reagents. Moreover, retinal axons, which are insensitive to SEMA3A, are also repelled by the notochord. We conclude that multiple factors act in concert to guide axons in this system, and that further notochord repellents remain to be identified.

  16. Crossing the Border: Molecular Control of Motor Axon Exit

    Directory of Open Access Journals (Sweden)

    Arlene Bravo-Ambrosio

    2011-11-01

    Full Text Available Living organisms heavily rely on the function of motor circuits for their survival and for adapting to ever-changing environments. Unique among central nervous system (CNS neurons, motor neurons (MNs project their axons out of the CNS. Once in the periphery, motor axons navigate along highly stereotyped trajectories, often at considerable distances from their cell bodies, to innervate appropriate muscle targets. A key decision made by pathfinding motor axons is whether to exit the CNS through dorsal or ventral motor exit points (MEPs. In contrast to the major advances made in understanding the mechanisms that regulate the specification of MN subtypes and the innervation of limb muscles, remarkably little is known about how MN axons project out of the CNS. Nevertheless, a limited number of studies, mainly in Drosophila, have identified transcription factors, and in some cases candidate downstream effector molecules, that are required for motor axons to exit the spinal cord. Notably, specialized neural crest cell derivatives, referred to as Boundary Cap (BC cells, pre-figure and demarcate MEPs in vertebrates. Surprisingly, however, BC cells are not required for MN axon exit, but rather restrict MN cell bodies from ectopically migrating along their axons out of the CNS. Here, we describe the small set of studies that have addressed motor axon exit in Drosophila and vertebrates, and discuss our fragmentary knowledge of the mechanisms, which guide motor axons out of the CNS.

  17. Corticostriatal combinatorics: the implications of corticostriatal axonal arborizations.

    Science.gov (United States)

    Zheng, T; Wilson, C J

    2002-02-01

    The complete striatal axonal arborizations of 16 juxtacellularly stained cortical pyramidal cells were analyzed. Corticostriatal neurons were located in the medial agranular or anterior cingulate cortex of rats. All axons were of the extended type and formed synaptic contacts in both the striosomal and matrix compartments as determined by counterstaining for the mu-opiate receptor. Six axonal arborizations were from collaterals of brain stem-projecting cells and the other 10 from bilaterally projecting cells with no brain stem projections. The distribution of synaptic boutons along the axons were convolved with the average dendritic tree volume of spiny projection neurons to obtain an axonal innervation volume and innervation density map for each axon. Innervation volumes varied widely, with single axons occupying between 0.4 and 14.2% of the striatum (average = 4%). The total number of boutons formed by individual axons ranged from 25 to 2,900 (average = 879). Within the innervation volume, the density of innervation was extremely sparse but inhomogeneous. The pattern of innervation resembled matrisomes, as defined by bulk labeling and functional mapping experiments, superimposed on a low background innervation. Using this sample as representative of all corticostriatal axons, the total number of corticostriatal neurons was estimated to be 17 million, about 10 times the number of striatal projection neurons.

  18. Differences in excitability properties of FDI and ADM motor axons.

    Science.gov (United States)

    Bae, Jong Seok; Sawai, Setsu; Misawa, Sonoko; Kanai, Kazuaki; Isose, Sagiri; Kuwabara, Satoshi

    2009-03-01

    The first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles are innervated by the same ulnar nerve, but studies have shown that the former is much more severely affected in amyotrophic lateral sclerosis. In this study, threshold tracking was used to investigate whether membrane properties differ between FDI and ADM motor axons. In 12 normal subjects, compound muscle action potentials were recorded from FDI and ADM after ulnar nerve stimulation at the wrist. The strength-duration time constant was significantly longer in the FDI axons than in the ADM axons, and latent addition studies showed greater threshold changes at the conditioning-test stimulus of 0.2 ms in FDI than in ADM axons. These findings suggest that nodal persistent sodium conductances are more prominent in FDI axons than in ADM axons, and therefore excitability is physiologically higher in FDI axons. Even in the same nerve at the same sites, membrane properties of FDI and ADM motor axons differ significantly, and thus their axonal/neuronal responses to disease may also differ.

  19. Histone Acetylation Inhibitors Promote Axon Growth in Adult DRG neurons

    Science.gov (United States)

    Lin, Shen; Nazif, Kutaiba; Smith, Alexander; Baas, Peter W; Smith, George M

    2015-01-01

    Intrinsic mechanisms that guide damaged axons to regenerate following spinal cord injury remain poorly understood. Manipulation of posttranslational modifications of key proteins in mature neurons could re-invigorate growth machinery after injury. One such modification is acetylation, a reversible process controlled by two enzyme families acting in opposition, the Histone Deacetylases (HDACs) and the Histone Acetyl Transferases (HATs). While acetylated histones in the nucleus is associated with upregulation of growth promoting genes, de-acetylated tubulin in the axoplasm is associated with more labile microtubules, conducive to axon growth. In this study we investigated the effects of HAT inhibitors and HDAC inhibitors on cultured adult dorsal root ganglia (DRG) neurons. We found that inhibition of HATs, using Anacardic Acid or CPTH2, improved axon outgrowth, while inhibition of HDACs using TSA or Tubacin, inhibited axon growth. Furthermore, Anacardic Acid increased the number of axons able to cross an inhibitory chondroitin sulfate proteoglycan (CSPG) border. Histone acetylation, but not tubulin acetylation levels, was affected by HAT inhibitors, whereas tubulin acetylation levels were increased in the presence of HDAC inhibitor Tubacin. Although microtubule stabilizing drug taxol did not have an effect on the lengths of DRG axons, nocodazole decreased axon lengths. While the mechanistic basis will require future studies, our data show that inhibitors of HAT can augment axon growth in adult DRG neurons, with the potential of aiding axon growth over inhibitory substrates produced by the glial scar. PMID:25702820

  20. Asymmetric Acute Motor Axonal Neuropathy With Unilateral Tongue Swelling Mimicking Stroke.

    Science.gov (United States)

    Chi, Man Sum; Ng, Shi Hon; Chan, Lok Yiu

    2016-11-01

    A 60-year-old man presented with acute onset of left hemiparesis and left hypoglossal nerve palsy with ipsilateral tongue swelling. He then progressed to tetraparesis in a few days. Cerebrospinal fluid showed cell protein dissociation. A nerve conduction study showed motor axonal neuropathy with sensory sparing. A subsequent blood test revealed anti-GD1b IgG antibody positivity. He was diagnosed to have acute motor axonal neuropathy (AMAN) and treated with a course of intravenous immunoglobulin with slow improvement. This is probably the first AMAN with asymmetrical presentation mimicking stroke reported in the literature in detail. The anti-GD1b IgG antibody is also not commonly associated with AMAN.

  1. Dopaminergic axon guidance: which makes what?

    Directory of Open Access Journals (Sweden)

    Laetitia ePrestoz

    2012-07-01

    Full Text Available Mesotelencephalic pathways in the adult central nervous system have been studied in great detail because of their implication in major physiological functions as well as in psychiatric, neurological and neurodegenerative diseases. However, the ontogeny of these pathways and the molecular mechanisms that guide dopaminergic axons during embryogenesis have been only recently studied. This line of research is of crucial interest for the repair of lesioned circuits in adulthood following neurodegenerative diseases or common traumatic injuries. For instance, in the adult, the anatomic and functional repair of the nigrostriatal pathway following dopaminergic embryonic neuron transplantation suggests that specific guidance cues exist which govern embryonic fibers outgrowth, and suggests that axons from transplanted embryonic cells are able to respond to theses cues, which then guide them to their final targets. In this review, we first synthesize the work that has been performed in the last few years on developing mesotelencephalic pathways, and summarize the current knowledge on the identity of cellular and molecular signals thought to be involved in establishing mesotelencephalic dopaminergic neuronal connectivity during embryogenesis in the central nervous system of rodents. Then, we review the modulation of expression of these molecular signals in the lesioned adult brain and discuss their potential role in remodeling the mesotelencephalic dopaminergic circuitry, with a particular focus on Parkinson’s disease. Identifying guidance molecules involved in the connection of grafted cells may be useful for cellular therapy in Parkinsonian patients, as these molecules may help direct axons from grafted cells along the long distance they have to travel from the substantia nigra to the striatum.

  2. Axonal regeneration and development of de novo axons from distal dendrites of adult feline commissural interneurons after a proximal axotomy

    DEFF Research Database (Denmark)

    Fenrich, Keith K; Skelton, Nicole; MacDermid, Victoria E

    2007-01-01

    at 4-5 weeks post injury. The somata of axotomized CINs were identified by the presence of immunoreactivity for the axonal growth-associated protein-43 (GAP-43). Nearly half of the CINs had de novo axons that emerged from distal dendrites. These axons lacked immunoreactivity for the dendritic protein......Following proximal axotomy, several types of neurons sprout de novo axons from distal dendrites. These processes may represent a means of forming new circuits following spinal cord injury. However, it is not know whether mammalian spinal interneurons, axotomized as a result of a spinal cord injury......, develop de novo axons. Our goal was to determine whether spinal commissural interneurons (CINs), axotomized by 3-4-mm midsagittal transection at C3, form de novo axons from distal dendrites. All experiments were performed on adult cats. CINs in C3 were stained with extracellular injections of Neurobiotin...

  3. Why Are Sensory Axons More Vulnerable for Ischemia than Motor Axons?

    NARCIS (Netherlands)

    Hofmeijer, Jeannette; Franssen, H.; van Schelven, L.J.; van Putten, Michel Johannes Antonius Maria

    2013-01-01

    Objective:In common peripheral neuropathies, sensory symptoms usually prevail over motor symptoms. This predominance of sensory symptoms may result from higher sensitivity of sensory axons to ischemia.Methods:We measured median nerve compound sensory action potentials (CSAPs), compound muscle action

  4. IMP2 axonal localization, RNA interactome, and function in the development of axon trajectories

    DEFF Research Database (Denmark)

    Preitner, Nicolas; Quan, Jie; Li, Xinmin

    2016-01-01

    RNA-based regulatory mechanisms play important roles in the development and plasticity of neural circuits and neurological disease. Developing axons provide a model well suited to the study of RNA-based regulation, and contain specific subsets of mRNAs that are locally translated and have roles i...

  5. AxonPacking: An Open-Source Software to Simulate Arrangements of Axons in White Matter

    Science.gov (United States)

    Mingasson, Tom; Duval, Tanguy; Stikov, Nikola; Cohen-Adad, Julien

    2017-01-01

    HIGHLIGHTS AxonPacking: Open-source software for simulating white matter microstructure.Validation on a theoretical disk packing problem.Reproducible and stable for various densities and diameter distributions.Can be used to study interplay between myelin/fiber density and restricted fraction. Quantitative Magnetic Resonance Imaging (MRI) can provide parameters that describe white matter microstructure, such as the fiber volume fraction (FVF), the myelin volume fraction (MVF) or the axon volume fraction (AVF) via the fraction of restricted water (fr). While already being used for clinical application, the complex interplay between these parameters requires thorough validation via simulations. These simulations required a realistic, controlled and adaptable model of the white matter axons with the surrounding myelin sheath. While there already exist useful algorithms to perform this task, none of them combine optimisation of axon packing, presence of myelin sheath and availability as free and open source software. Here, we introduce a novel disk packing algorithm that addresses these issues. The performance of the algorithm is tested in term of reproducibility over 50 runs, resulting density, and stability over iterations. This tool was then used to derive multiple values of FVF and to study the impact of this parameter on fr and MVF in light of the known microstructure based on histology sample. The standard deviation of the axon density over runs was lower than 10−3 and the expected hexagonal packing for monodisperse disks was obtained with a density close to the optimal density (obtained: 0.892, theoretical: 0.907). Using an FVF ranging within [0.58, 0.82] and a mean inter-axon gap ranging within [0.1, 1.1] μm, MVF ranged within [0.32, 0.44] and fr ranged within [0.39, 0.71], which is consistent with the histology. The proposed algorithm is implemented in the open-source software AxonPacking (https://github.com/neuropoly/axonpacking) and can be useful for

  6. AxonPacking: An Open-Source Software to Simulate Arrangements of Axons in White Matter.

    Science.gov (United States)

    Mingasson, Tom; Duval, Tanguy; Stikov, Nikola; Cohen-Adad, Julien

    2017-01-01

    HIGHLIGHTS AxonPacking: Open-source software for simulating white matter microstructure.Validation on a theoretical disk packing problem.Reproducible and stable for various densities and diameter distributions.Can be used to study interplay between myelin/fiber density and restricted fraction. Quantitative Magnetic Resonance Imaging (MRI) can provide parameters that describe white matter microstructure, such as the fiber volume fraction (FVF), the myelin volume fraction (MVF) or the axon volume fraction (AVF) via the fraction of restricted water (fr). While already being used for clinical application, the complex interplay between these parameters requires thorough validation via simulations. These simulations required a realistic, controlled and adaptable model of the white matter axons with the surrounding myelin sheath. While there already exist useful algorithms to perform this task, none of them combine optimisation of axon packing, presence of myelin sheath and availability as free and open source software. Here, we introduce a novel disk packing algorithm that addresses these issues. The performance of the algorithm is tested in term of reproducibility over 50 runs, resulting density, and stability over iterations. This tool was then used to derive multiple values of FVF and to study the impact of this parameter on fr and MVF in light of the known microstructure based on histology sample. The standard deviation of the axon density over runs was lower than 10(-3) and the expected hexagonal packing for monodisperse disks was obtained with a density close to the optimal density (obtained: 0.892, theoretical: 0.907). Using an FVF ranging within [0.58, 0.82] and a mean inter-axon gap ranging within [0.1, 1.1] μm, MVF ranged within [0.32, 0.44] and fr ranged within [0.39, 0.71], which is consistent with the histology. The proposed algorithm is implemented in the open-source software AxonPacking (https://github.com/neuropoly/axonpacking) and can be useful for

  7. Detection of atherosclerotic plaque progression in the abdominal aorta of rabbits with 3T magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    MA Xiao-hai; ZHAO Lei; ZHAO Quan-ming; FENG Ting-ting; SHANG Jian-feng; ZHANG Zhao-qi

    2012-01-01

    Background With features of high tissue contrast,MRI can be used for the qualitative and quantitative evaluation of atherosclerosis plaques.In this study we investigated the development of atherosclerosis plaque with high resolution 3T MRI in a rabbit model and compared the findings with the histopathological results.Method Twenty male New Zealand white rabbits were randomly allocated into an experimental group (n=16) and a control group (n=4).Atherosclerotic lesions were induced in the abdominal aorta by balloon injury and cholesterol feeding.Multiple sequences MRI examination (ToF,T1WI,T2WI,and CE T1WI) were performed at the 2nd,3rd,and 4th months after aortic denudation.Vessel wall thickness,total vessel area,lumen area,and vessel wall area were recorded.Plaque components were analyzed using histological results as a standard reference.Results Seventeen rabbits (14 in the experimental group and 3 in the control group) received all three MR examinations.Gradually,from 2 months to 4 months,vessel wall thickness and area in the experimental group increased significantly compared with the control group (P <0.01).In the lumen area progressive stenosis was not found,even a slight dilation had developed in the experimental group.Lipid,fibretic and calcified plaques can be differentiated by MR image.According to histological results,MRI had good performance in detection of lipid plaque.Conclusion MRI can be used to monitor progression of atherosclerosis and differentiate plaque components.

  8. Molecular disruptions of the panglial syncytium block potassium siphoning and axonal saltatory conduction: pertinence to neuromyelitis optica and other demyelinating diseases of the central nervous system.

    Science.gov (United States)

    Rash, J E

    2010-07-28

    The panglial syncytium maintains ionic conditions required for normal neuronal electrical activity in the central nervous system (CNS). Vital among these homeostatic functions is "potassium siphoning," a process originally proposed to explain astrocytic sequestration and long-distance disposal of K(+) released from unmyelinated axons during each action potential. Fundamentally different, more efficient processes are required in myelinated axons, where axonal K(+) efflux occurs exclusively beneath and enclosed within the myelin sheath, precluding direct sequestration of K(+) by nearby astrocytes. Molecular mechanisms for entry of excess K(+) and obligatorily-associated osmotic water from axons into innermost myelin are not well characterized, whereas at the output end, axonally-derived K(+) and associated osmotic water are known to be expelled by Kir4.1 and aquaporin-4 channels concentrated in astrocyte endfeet that surround capillaries and that form the glia limitans. Between myelin (input end) and astrocyte endfeet (output end) is a vast network of astrocyte "intermediaries" that are strongly inter-linked, including with myelin, by abundant gap junctions that disperse excess K(+) and water throughout the panglial syncytium, thereby greatly reducing K(+)-induced osmotic swelling of myelin. Here, I review original reports that established the concept of potassium siphoning in unmyelinated CNS axons, summarize recent revolutions in our understanding of K(+) efflux during axonal saltatory conduction, then describe additional components required by myelinated axons for a newly-described process of voltage-augmented "dynamic" potassium siphoning. If any of several molecular components of the panglial syncytium are compromised, K(+) siphoning is blocked, myelin is destroyed, and axonal saltatory conduction ceases. Thus, a common thread linking several CNS demyelinating diseases is the disruption of potassium siphoning/water transport within the panglial syncytium

  9. Preliminary study on diffuse axonal injury by Fourier transform infrared spectroscopy histopathology imaging.

    Science.gov (United States)

    Yang, Tiantong; He, Guanglong; Zhang, Xiang; Chang, Lin; Zhang, Haidong; Ripple, Mary G; Fowler, David R; Li, Ling

    2014-01-01

    The objective of this study was to evaluate the application of Fourier transform infrared (FTIR) spectroscopy for detecting diffuse axonal injury (DAI) in a mouse model. Brain tissues from DAI mouse model were prepared with H&E, silver, and β-amyloid precursor protein (β-APP) immunohistochemistry stains and were also studied with FTIR. The infrared spectrum images showed high absorption of amide II in the subcortical white matter of the experimental mouse brain, while there was no obvious expression of amide II in the control mouse brain. The areas with high absorption of amide II were in the same distribution as the DAI region confirmed by the silver and β-APP studies. The result suggests that high absorption of amide II correlates with axonal injury. The use of FTIR imaging allows the biochemical changes associated with DAI pathologies to be detected in the tissues, thus providing an important adjunct method to the current conventional pathological diagnostic techniques.

  10. Deficits in axonal transport in hippocampal-based circuitry and the visual pathway in APP knock-out animals witnessed by manganese enhanced MRI

    Science.gov (United States)

    Gallagher, Joseph J.; Zhang, Xiaowei; Ziomek, Greg; Jacobs, Russell E.; Bearer, Elaine L.

    2012-01-01

    Mounting evidence implicates axonal transport defects, typified by the presence of axonal varicosities with aberrant accumulations of cargo, as an early event in Alzheimer’s disease (AD) pathogenesis. Work identifying amyloid precursor protein (APP) as a vesicular motor receptor for anterograde axonal transport further implicates axonal transport in AD. Manganese-enhanced MRI (MEMRI) detects axonal transport dynamics in preclinical studies. Here we pursue an understanding of the role of APP in axonal transport in the central nervous system by applying MEMRI to hippocampal circuitry and to the visual pathway in living mice homozygous for either wild type or a deletion in the APP gene (n = 12 for each genotype). Following intra-ocular or stereotaxic hippocampal injection, we performed time-lapse MRI to detect Mn2+ transport. Three dimensional whole brain datasets were compared on a voxel-wise basis using within-group pair-wise analysis. Quantification of transport to structures connected to injection sites via axonal fiber tracts was also performed. Histology confirmed consistent placement of hippocampal injections and no observable difference in glial-response to the injections. APP −/− mice had significantly reduced transport from the hippocampus to the septal nuclei and amygdala after 7 hours and reduced transport to the contralateral hippocampus after 25 hours; axonal transport deficits in the APP −/− animals were also identified in the visual pathway. These data support a system-wide role for APP in axonal transport within the central nervous system and demonstrate the power of MEMRI for assessing neuronal circuitry involved in memory and learning. PMID:22500926

  11. Differential extraction of axonally transported proteoglycans

    Energy Technology Data Exchange (ETDEWEB)

    Elam, J.S. (Florida State Univ., Tallahassee (USA))

    1990-10-01

    Axonally transported proteoglycans were differentially solubilized by a sequence of extractions designed to infer their relationship to nerve terminal membranes. Groups of goldfish were injected unilaterally with 35SO4 and contralateral optic tecta containing axonally transported molecules were removed 16 h later. Tecta were homogenized in isotonic buffer and centrifuged at 100,000 g for 60 min to create a total supernatant fraction. Subsequent homogenizations followed by recentrifugation were with hypotonic buffer (lysis extract), 1 M NaCl, Triton X-100 or alternatively Triton-1 M NaCl. Populations of proteoglycans in each extract were isolated on DEAE ion exchange columns and evaluated for content of glycosaminoglycans (GAGs). Results show the distribution of transported proteoglycans to be 26.3% total soluble, 13.7% lysis extract, 13.8% NaCl extract, 12.2% Triton extract, and 46.2% Triton-NaCl extract. Proteoglycans from all fractions contained heparan sulfate as the predominant GAG, with lesser amounts of chondroitin (4 or 6) sulfate. The possible localizations of transported proteoglycans suggested by the extraction results are discussed.

  12. Regulation of layer-specific axon targeting in the developing visual system of Drosophila

    OpenAIRE

    Timofeev, K.

    2012-01-01

    The ability of a nervous system to correctly process sensory information depends on the precise wiring of axonal and dendritic projections. The visual system of vertebrates and invertebrates consists of many neuron subtypes, whose neurites are organized into columns and layers. Layered pathways are pivotal to enable parallel processing of several visual features within a network, such as motion and color detection. Despite their functional relevance, the molecular mechanisms controlling their...

  13. Quantitative immunohistochemical co-localization of TRPV1 and CGRP in varicose axons of the murine oesophagus, stomach and colorectum.

    Science.gov (United States)

    Sharrad, D F; Hibberd, T J; Kyloh, M A; Brookes, S J H; Spencer, N J

    2015-07-10

    In the gastrointestinal (GI) tract of mammals, endings of spinal afferent neurons with cell bodies in dorsal root ganglia (DRG) detect many stimuli, including those that give rise to pain. Many of these sensory neurons express calcitonin gene-related peptide (CGRP) and TRPV1 in their cell bodies and axons. Indeed, CGRP and TRPV1 have been widely used as immunohistochemical markers of nociceptive spinal afferent axons. Although CGRP and TRPV1 often coexist in the same axons in the GI tract, their degree of coexistence along its length has yet to be quantified. In this study, we used double-labeling immunohistochemistry to quantify the coexistence of CGRP and TRPV1 in varicose axons of the murine oesophagus, stomach and colorectum. The great majority of CGRP-immunoreactive (IR) varicosities in myenteric ganglia of the lower esophagus (97±1%) and stomach (95±1%) were also TRPV1-immunoreactive. Similarly, the majority of TRPV1-IR varicosities in myenteric ganglia of the lower esophagus (95±1%) and stomach (91±1%) were also CGRP-IR. In the colorectum similar observations were made for an intensely immunoreactive population of CGRP-IR axons, of which most (91±1%) were also TRPV1-IR. Of the TRPV1-IR axons in the colorectum, most (96±1%) contained intense CGRP-IR. Another population of axons in myenteric ganglia of the colorectum had low intensity CGRP immunoreactivity; these showed negligible co-existence with TRPV1. Our observations reveal that in the myenteric plexus of murine oesophagus, stomach and colorectum, CGRP and TRPV1 are largely expressed together. Copyright © 2015. Published by Elsevier Ireland Ltd.

  14. Pαx6 expression in postmitotic neurons mediates the growth of axons in response to SFRP1.

    Directory of Open Access Journals (Sweden)

    Alvaro Sebastián-Serrano

    Full Text Available During development, the mechanisms that specify neuronal subclasses are coupled to those that determine their axonal response to guidance cues. Pax6 is a homedomain transcription factor required for the specification of a variety of neural precursors. After cell cycle exit, Pax6 expression is often shut down in the precursor progeny and most postmitotic neurons no longer express detectable levels of the protein. There are however exceptions and high Pax6 protein levels are found, for example, in postmitotic retinal ganglion cells (RGCs, dopaminergic neurons of the olfactory bulb and the limbic system in the telencephalon. The function of Pax6 in these differentiating neurons remains mostly elusive. Here, we demonstrate that Pax6 mediates the response of growing axons to SFRP1, a secreted molecule expressed in several Pax6-positive forebrain territories. Forced expression of Pax6 in cultured postmitotic cortical neurons, which do not normally express Pax6, was sufficient to increment axonal length. Growth was blocked by the addition of anti-SFRP1 antibodies, whereas exogenously added SFRP1 increased axonal growth of Pax6-transfected neurons but not that of control or untransfected cortical neurons. In the reverse scenario, shRNA-mediated knock-down of Pax6 in mouse retinal explants specifically abolished RGCs axonal growth induced by SFRP1, but had no effect on RGCs differentiation and it did not modify the effect of Shh or Netrin on axon growth. Taken together these results demonstrate that expression of Pax6 is necessary and sufficient to render postmitotic neurons competent to respond to SFRP1. These results reveal a novel and unexpected function of Pax6 in postmitotic neurons and situate Pax6 and SFRP1 as pair regulators of axonal connectivity.

  15. Pαx6 Expression in Postmitotic Neurons Mediates the Growth of Axons in Response to SFRP1

    Science.gov (United States)

    Sebastián-Serrano, Alvaro; Sandonis, Africa; Cardozo, Marcos; Rodríguez-Tornos, Fernanda M.; Bovolenta, Paola; Nieto, Marta

    2012-01-01

    During development, the mechanisms that specify neuronal subclasses are coupled to those that determine their axonal response to guidance cues. Pax6 is a homedomain transcription factor required for the specification of a variety of neural precursors. After cell cycle exit, Pax6 expression is often shut down in the precursor progeny and most postmitotic neurons no longer express detectable levels of the protein. There are however exceptions and high Pax6 protein levels are found, for example, in postmitotic retinal ganglion cells (RGCs), dopaminergic neurons of the olfactory bulb and the limbic system in the telencephalon. The function of Pax6 in these differentiating neurons remains mostly elusive. Here, we demonstrate that Pax6 mediates the response of growing axons to SFRP1, a secreted molecule expressed in several Pax6-positive forebrain territories. Forced expression of Pax6 in cultured postmitotic cortical neurons, which do not normally express Pax6, was sufficient to increment axonal length. Growth was blocked by the addition of anti-SFRP1 antibodies, whereas exogenously added SFRP1 increased axonal growth of Pax6-transfected neurons but not that of control or untransfected cortical neurons. In the reverse scenario, shRNA-mediated knock-down of Pax6 in mouse retinal explants specifically abolished RGCs axonal growth induced by SFRP1, but had no effect on RGCs differentiation and it did not modify the effect of Shh or Netrin on axon growth. Taken together these results demonstrate that expression of Pax6 is necessary and sufficient to render postmitotic neurons competent to respond to SFRP1. These results reveal a novel and unexpected function of Pax6 in postmitotic neurons and situate Pax6 and SFRP1 as pair regulators of axonal connectivity. PMID:22359602

  16. Progressive damage detection using the reusable electromechanical impedance method for metal structures with a possibility of weight loss identification

    Science.gov (United States)

    Na, Wongi S.

    2016-05-01

    Damage accumulation in structures may result in a structural failure which is a serious problem when ensuring public safety. Although various non-destructive techniques are available to seek for the existence of damage at an early stage, most of these techniques rely on the experience of the experts. To date, automated structural health monitoring systems have been extensively researched and one of the methods, known as the electromechanical impedance (EMI) method, has shown promising results. However, the EMI method is a local method requiring a large number of sensors for covering large areas such as in bridges and buildings. In addition, attaching these sensors onto a surface can be time consuming since adhesives are used for attaching the sensors where its curing time increases the setting up time even further. In this study, the performance of the reusable piezoelectric (PZT) device for metal structures is examined against two different types of progressive damage scenarios. Overall, the reusable PZT device shown in this study has successfully identified damage with a possibility of weight loss detection.

  17. Progress on technology for detection classical swine fever%猪瘟诊断技术研究进展

    Institute of Scientific and Technical Information of China (English)

    陈江莲

    2012-01-01

    Classical swine fever (CSF) caused by the CSF virus, is an acute, febrile, highly contagious disease in Pigs. Currently, for the complexity of epidemic features, CSF is still a threat to the healthy development of Chinese pig industry. This article summarized the progress on the technology for detection CSF, including etiology methods, serological methods and molecular biological methods, to provide reference for the diagnosis of CSF for farmers.%猪瘟是由猪瘟病毒引起的一种急性、热性、接触性传染病,近年来在我国的流行趋势与发病特点十分复杂,仍是我国养猪业的一大威胁.概述了猪瘟诊断技术的病原学方法、血清学方法和分子生物学方法等的研究进展,为相关养殖人员对猪瘟的诊断提供参考.

  18. Molecular Determinants Fundamental to Axon Regeneration after SCI

    Science.gov (United States)

    2014-09-01

    TITLE: Molecular Determinants Fundamental to Axon Regeneration after SCI PRINCIPAL INVESTIGATOR: Jeffrey Alan Plunkett, Ph.D. Martin...TYPE FINAL 3. DATES COVERED (From - To) 1 Sept 2011 - 1 Sept 2014 4. TITLE AND SUBTITLE Molecular Determinants Fundamental to Axon Regeneration...available that restore motor impairments resulting fromspinal cord injury (SCI). Soldiers with SCI are permanently paralyzed and in needof lifelong care

  19. Inhibiting poly(ADP-ribosylation) improves axon regeneration

    Science.gov (United States)

    Byrne, Alexandra B; McWhirter, Rebecca D; Sekine, Yuichi; Strittmatter, Stephen M; Miller, David M; Hammarlund, Marc

    2016-01-01

    The ability of a neuron to regenerate its axon after injury depends in part on its intrinsic regenerative potential. Here, we identify novel intrinsic regulators of axon regeneration: poly(ADP-ribose) glycohodrolases (PARGs) and poly(ADP-ribose) polymerases (PARPs). PARGs, which remove poly(ADP-ribose) from proteins, act in injured C. elegans GABA motor neurons to enhance axon regeneration. PARG expression is regulated by DLK signaling, and PARGs mediate DLK function in enhancing axon regeneration. Conversely, PARPs, which add poly(ADP-ribose) to proteins, inhibit axon regeneration of both C. elegans GABA neurons and mammalian cortical neurons. Furthermore, chemical PARP inhibitors improve axon regeneration when administered after injury. Our results indicate that regulation of poly(ADP-ribose) levels is a critical function of the DLK regeneration pathway, that poly-(ADP ribosylation) inhibits axon regeneration across species, and that chemical inhibition of PARPs can elicit axon regeneration. DOI: http://dx.doi.org/10.7554/eLife.12734.001

  20. Spontaneous axonal regeneration in rodent spinal cord after ischemic injury

    DEFF Research Database (Denmark)

    von Euler, Mia; Janson, A M; Larsen, Jytte Overgaard

    2002-01-01

    Here we present evidence for spontaneous and long-lasting regeneration of CNS axons after spinal cord lesions in adult rats. The length of 200 kD neurofilament (NF)-immunolabeled axons was estimated after photochemically induced ischemic spinal cord lesions using a stereological tool. The total l...

  1. Neuronal Logistics : Axonal Transport in Development and Disease

    NARCIS (Netherlands)

    R. van den Berg (Robert)

    2016-01-01

    markdownabstractBrain cells are uniquely shaped among the many cell types of the body. While most cells are more or less rounded or square-shaped, neurons grow one or more long axons that can reach lengths of a meter or more. To keep these axons alive and functional, neurons are dependent on an intr

  2. Axon guidance of rat cortical neurons by microcontact printed gradients.

    Science.gov (United States)

    Fricke, Rita; Zentis, Peter D; Rajappa, Lionel T; Hofmann, Boris; Banzet, Marko; Offenhäusser, Andreas; Meffert, Simone H

    2011-03-01

    Substrate-bound gradients expressed in numerous spatio-temporal patterns play a crucial role during the development of complex neural circuits. A deeper understanding of the axon guidance mechanism is provided by studying the effect of a defined substrate-bound cue on a confined neural network. In this study, we constructed a discontinuous substrate-bound gradient to control neuronal cell position, the path of neurite growth, and axon directionality. A variety of gradient patterns, with slight changes in slope, width, and length were designed and fabricated by microcontact printing using laminin/poly-l-lysine (PLL) or PLL alone. The gradients were tested for neurite growth and their impact on axon guidance of embryonic rat cortical neurons. The neurite length was determined and the axon was evaluated by Tau-1 immunostaining. We found that the microgradients of laminin/PLL and PLL directed neurons' adhesion, differentially controlled the neurite growth, and guided up to 84% of the axons. The effect of the protein micropattern on axon guidance and neurite growth depended on the protein and geometric parameters used. Our approach proved to be very successful in guiding axons of single multipolar neurons with very high efficiency. It could thereby be useful to engineer defined neural networks for analyzing signal processing of functional circuits, as well as to unravel fundamental questions of the axon guidance mechanism.

  3. Increased Human Wildtype Tau Attenuates Axonal Transport Deficits Caused by Loss of APP in Mouse Models

    OpenAIRE

    Smith, Karen D.B.; Erica Peethumnongsin; Han Lin; Hui Zheng; Pautler, Robia G.

    2010-01-01

    Amyloid precursor protein (APP) is implicated in axonal elongation, synaptic plasticity, and axonal transport. However, the role of APP on axonal transport in conjunction with the microtubule associated protein tau continues to be debated. Here we measured in vivo axonal transport in APP knockout mice with Manganese Enhanced MRI (MEMRI) to determine whether APP is necessary for maintaining normal axonal transport. We also tested how overexpression and mutations of tau affect axonal transport ...

  4. SnoN facilitates axonal regeneration after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Jiun L Do

    Full Text Available Adult CNS neurons exhibit a reduced capacity for growth compared to developing neurons, due in part to downregulation of growth-associated genes as development is completed. We tested the hypothesis that SnoN, an embryonically regulated transcription factor that specifies growth of the axonal compartment, can enhance growth in injured adult neurons. In vitro, SnoN overexpression in dissociated adult DRG neuronal cultures significantly enhanced neurite outgrowth. Moreover, TGF-β1, a negative regulator of SnoN, inhibited neurite outgrowth, and SnoN over-expression overcame this inhibition. We then examined whether SnoN influenced axonal regeneration in vivo: indeed, expression of a mutant form of SnoN resistant to degradation significantly enhanced axonal regeneration following cervical spinal cord injury, despite peri-lesional upregulation of TGF-β1. Thus, a developmental mechanism that specifies extension of the axonal compartment also promotes axonal regeneration after adult CNS injury.

  5. Reversible acute axonal polyneuropathy associated with Wernicke-Korsakoff syndrome: impaired physiological nerve conduction due to thiamine deficiency?

    Science.gov (United States)

    Ishibashi, S; Yokota, T; Shiojiri, T; Matunaga, T; Tanaka, H; Nishina, K; Hirota, H; Inaba, A; Yamada, M; Kanda, T; Mizusawa, H

    2003-05-01

    Acute axonal polyneuropathy and Wernicke-Korsakoff encephalopathy developed simultaneously in three patients. Nerve conduction studies (NCS) detected markedly decreased compound muscle action potentials (CMAPs) and sensory nerve action potentials (SNAPs) with minimal conduction slowing; sympathetic skin responses (SSRs) were also notably decreased. Sural nerve biopsies showed only mild axonal degeneration with scattered myelin ovoid formation. The symptoms of neuropathy lessened within two weeks after an intravenous thiamine infusion. CMAPs, SNAPs, and SSRs also increased considerably. We suggest that this is a new type of peripheral nerve impairment: physiological conduction failure with minimal conduction delay due to thiamine deficiency.

  6. Signaling mechanisms in cortical axon growth, guidance and branching

    Directory of Open Access Journals (Sweden)

    Katherine eKalil

    2011-09-01

    Full Text Available Precise wiring of cortical circuits during development depends upon axon extension, guidance and branching to appropriate targets. Motile growth cones at axon tips navigate through the nervous system by responding to molecular cues, which modulate signaling pathways within axonal growth cones. Intracellular calcium signaling has emerged as a major transducer of guidance cues but exactly how calcium signaling pathways modify the actin and microtubule cytoskeleton to evoke growth cone behaviors and axon branching is still mysterious. Axons must often pause in their outgrowth while their branches extend into targets. Some evidence suggests a competition between growth of axons and branches but the mechanisms are poorly understood. Since it is difficult to study growing axons deep within the mammalian brain, much of what we know about signaling pathways and cytoskeletal dynamics has come from studies of axonal growth cones, in many cases from non-mammalian species, growing in tissue culture. Consequently it is not well understood how guidance cues relevant to mammalian neural development in vivo signal to the growth cone cytoskeleton during axon outgrowth and guidance. In this review we describe our recent work in dissociated cultures of developing rodent sensorimotor cortex in the context of the current literature on molecular guidance cues, calcium signaling pathways and cytoskeletal dynamics that regulate growth cone behaviors. A major challenge is to relate findings in tissue culture to mechanisms of cortical development in vivo. Toward this goal, we describe our recent work in cortical slices, which preserve the complex cellular and molecular environment of the mammalian brain but allow direct visualization of growth cone behaviors and calcium signaling. Findings from this work suggest that mechanisms regulating axon growth and guidance in dissociated culture neurons also underlie development of cortical connectivity in vivo.

  7. Drosophila as a genetic and cellular model for studies on axonal growth

    Directory of Open Access Journals (Sweden)

    Whitington Paul

    2007-05-01

    Full Text Available Abstract One of the most fascinating processes during nervous system development is the establishment of stereotypic neuronal networks. An essential step in this process is the outgrowth and precise navigation (pathfinding of axons and dendrites towards their synaptic partner cells. This phenomenon was first described more than a century ago and, over the past decades, increasing insights have been gained into the cellular and molecular mechanisms regulating neuronal growth and navigation. Progress in this area has been greatly assisted by the use of simple and genetically tractable invertebrate model systems, such as the fruit fly Drosophila melanogaster. This review is dedicated to Drosophila as a genetic and cellular model to study axonal growth and demonstrates how it can and has been used for this research. We describe the various cellular systems of Drosophila used for such studies, insights into axonal growth cones and their cytoskeletal dynamics, and summarise identified molecular signalling pathways required for growth cone navigation, with particular focus on pathfinding decisions in the ventral nerve cord of Drosophila embryos. These Drosophila-specific aspects are viewed in the general context of our current knowledge about neuronal growth.

  8. GDAP1 mutations in Italian axonal Charcot-Marie-Tooth patients: Phenotypic features and clinical course.

    Science.gov (United States)

    Pezzini, I; Geroldi, A; Capponi, S; Gulli, R; Schenone, A; Grandis, M; Doria-Lamba, L; La Piana, C; Cremonte, M; Pisciotta, C; Nolano, M; Manganelli, F; Santoro, L; Mandich, P; Bellone, E

    2016-01-01

    Mutations in the ganglioside-induced differentiation associated-protein 1 (GDAP1) gene have been associated with both autosomal recessive (AR) and dominant (AD) Charcot-Marie-Tooth (CMT) axonal neuropathy. The relative frequency of heterozygous, dominant mutations in Italian CMT is unknown. We investigated the frequency of dominant mutations in GDAP1 in a cohort of 109 axonal Italian patients by sequencing genomic DNA and search for copy number variations. We also explored correlations with clinical features. All cases had already been tested for variants in common axonal AD genes. Eight patients (7.3%) harbored five already reported heterozygous mutations in GDAP1 (p.Arg120Gly, p.Arg120Trp, p.His123Arg, p.Gln218Glu, p.Arg226Ser). Mutations had different penetrances in the families; the onset of symptoms is in the first decade and progression is slower than usually seen in GDAP1-related AR-CMT. We show that the relative frequency of mutations in GDAP was slightly higher than those observed in MFN2 and MPZ (7.3% vs 6.3% and 5.0%). The relatively milder clinical features and the quite indolent course observed are relevant for prognostic assessment. On the basis of our experience and the data reported here, we suggest GDAP1 as the first gene that should be analysed in Italian patients affected by CMT2.

  9. A divergent pattern of sensory axonal projections is rendered convergent by second-order neurons in the accessory olfactory bulb.

    Science.gov (United States)

    Del Punta, Karina; Puche, Adam; Adams, Niels C; Rodriguez, Ivan; Mombaerts, Peter

    2002-09-12

    The mammalian vomeronasal system is specialized in pheromone detection. The neural circuitry of the accessory olfactory bulb (AOB) provides an anatomical substrate for the coding of pheromone information. Here, we describe the axonal projection pattern of vomeronasal sensory neurons to the AOB and the dendritic connectivity pattern of second-order neurons. Genetically traced sensory neurons expressing a given gene of the V2R class of vomeronasal receptors project their axons to six to ten glomeruli distributed in globally conserved areas of the AOB, a theme similar to V1R-expressing neurons. Surprisingly, second-order neurons tend to project their dendrites to glomeruli innervated by axons of sensory neurons expressing the same V1R or the same V2R gene. Convergence of receptor type information in the olfactory bulb may represent a common design in olfactory systems.

  10. Plasticity of the Axon Initial Segment

    DEFF Research Database (Denmark)

    Petersen, Anders Victor; Cotel, Florence; Perrier, Jean François

    2017-01-01

    of metabotropic receptors modulates the properties of ion channels expressed at the AIS within seconds and consequently produces fast adjustments of neuronal excitability. Recent results suggest that this plasticity plays important roles in physiological functions as diverse as memory formation, hearing......The axon initial segment (AIS) is a key neuronal compartment because it is responsible for action potential initiation. The local density of Na+ channels, the biophysical properties of K+ channels, as well as the length and diameter of the AIS determine the spiking of neurons. These parameters...... undergo important modifications during development. The development of the AIS is governed by intrinsic mechanisms. In addition, surrounding neuronal networks modify its maturation. As a result, neurons get tuned to particular physiological functions. Neuronal activity also influences the morphology...

  11. Clinical features of diffuse axonal injury

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To analyze the mechanism of diffuse axonal injury (DAI) and study the relationship between DAI and brain concussion, brain contusion, and primary brain stem injury.Methods: The clinical data and iconographic characteristics of 56 patients with DAI were analyzed retrospectively.Results: Traffic accidents were the main cause of DAI. Among the 56 cases, 34 were injured for at least twice, and 71.43% of the patients were complicated with contusion.Conclusions: It is considered that DAI is a common pattern of primary brain injury, which is often underestimated. And DAI includes cerebral concussion and primary brain injury, and is often complicated by cerebral cortex contusion. Therefore, it is very simple and practical to divide primary brain injuries into local and diffuse injuries.

  12. Cobalt inhibits motility of axonal mitochondria and induces axonal degeneration in cultured dorsal root ganglion cells of rat.

    Science.gov (United States)

    Kikuchi, Shin; Ninomiya, Takafumi; Kohno, Takayuki; Kojima, Takashi; Tatsumi, Haruyuki

    2017-06-27

    Cobalt is a trace element that localizes in the human body as cobalamin, also known as vitamin B12. Excessive cobalt exposure induces a peripheral neuropathy, the mechanisms of which are yet to be elucidated. We investigated how cobalt may affect mitochondrial motility in primary cultures of rat dorsal root ganglion (DRG). We observed mitochondrial motility by time-lapse imaging after DsRed2 tagging via lentivirus, mitochondrial structure using transmission electron microscopy (TEM), and axonal swelling using immunocytochemical staining. The concentration of cobaltous ion (Co(2+)) required to significantly suppress mitochondrial motility is lower than that required to induce axonal swelling following a 24-h treatment. Exposure to relatively low concentrations of Co(2+) for 48 h suppressed mitochondrial motility without leading to axonal swelling. TEM images indicated that Co(2+) induces mitochondrial destruction. Our results show that destruction of the axonal mitochondria precedes the axonal degeneration induced by Co(2+) exposure.

  13. Neuronal activity in the hub of extrasynaptic Schwann cell-axon interactions

    Directory of Open Access Journals (Sweden)

    Chrysanthi eSamara

    2013-11-01

    Full Text Available The integrity and function of neurons depend on their continuous interactions with glial cells. In the peripheral nervous system glial functions are exerted by Schwann cells (SCs. SCs sense synaptic and extrasynaptic manifestations of action potential propagation and adapt their physiology to support neuronal activity. We review here existing literature data on extrasynaptic bidirectional axon-SC communication, focusing particularly on neuronal activity implications. To shed light on underlying mechanisms, we conduct a thorough analysis of microarray data from SC-rich mouse sciatic nerve at different developmental stages and in neuropathic models. We identify molecules that are potentially involved in SC detection of neuronal activity signals inducing subsequent glial responses. We further suggest that alterations in the activity-dependent axon-SC crosstalk impact on peripheral neuropathies. Together with previously reported data, these observations open new perspectives for deciphering glial mechanisms of neuronal function support.

  14. Immunocytochemical demonstration of axonal and perikaryal acetylcholinesterase in human cerebral cortex.

    Science.gov (United States)

    Mesulam, M M; Geula, C; Cosgrove, R; Mash, D; Brimijoin, S

    1991-01-25

    The adult human neocortex contains a dense net of axons and perikarya which yield an acetylcholinesterase-rich enzymatic reaction pattern in histochemical experiments. We employed a monoclonal antibody to human acetylcholinesterase and a method for the concurrent visualization of histochemical and immunohistochemical reaction-products to explore the relationship between immunological and enzymatic markers of acetylcholinesterase. We observed that the cortical axons and perikarya with a histochemically determined acetylcholinesterase-rich enzymatic activity also contain acetylcholinesterase-like immunoreactivity. This was especially informative for the intracortical acetylcholinesterase-rich perikarya of layers III and V since these neurons require prolonged incubations for histochemical detection and since they are not conspicuous in other animal species. The availability of a reliable immunohistochemical method makes it possible to investigate the distribution of the acetylcholinesterase enzyme molecule independent of its enzymatic activity.

  15. A genomic pathway approach to a complex disease: axon guidance and Parkinson disease.

    Science.gov (United States)

    Lesnick, Timothy G; Papapetropoulos, Spiridon; Mash, Deborah C; Ffrench-Mullen, Jarlath; Shehadeh, Lina; de Andrade, Mariza; Henley, John R; Rocca, Walter A; Ahlskog, J Eric; Maraganore, Demetrius M

    2007-06-01

    While major inroads have been made in identifying the genetic causes of rare Mendelian disorders, little progress has been made in the discovery of common gene variations that predispose to complex diseases. The single gene variants that have been shown to associate reproducibly with complex diseases typically have small effect sizes or attributable risks. However, the joint actions of common gene variants within pathways may play a major role in predisposing to complex diseases (the paradigm of complex genetics). The goal of this study was to determine whether polymorphism in a candidate pathway (axon guidance) predisposed to a complex disease (Parkinson disease [PD]). We mined a whole-genome association dataset and identified single nucleotide polymorphisms (SNPs) that were within axon-guidance pathway genes. We then constructed models of axon-guidance pathway SNPs that predicted three outcomes: PD susceptibility (odds ratio = 90.8, p = 4.64 x 10(-38)), survival free of PD (hazards ratio = 19.0, p = 5.43 x 10(-48)), and PD age at onset (R(2) = 0.68, p = 1.68 x 10(-51)). By contrast, models constructed from thousands of random selections of genomic SNPs predicted the three PD outcomes poorly. Mining of a second whole-genome association dataset and mining of an expression profiling dataset also supported a role for many axon-guidance pathway genes in PD. These findings could have important implications regarding the pathogenesis of PD. This genomic pathway approach may also offer insights into other complex diseases such as Alzheimer disease, diabetes mellitus, nicotine and alcohol dependence, and several cancers.

  16. A genomic pathway approach to a complex disease: axon guidance and Parkinson disease.

    Directory of Open Access Journals (Sweden)

    Timothy G Lesnick

    2007-06-01

    Full Text Available While major inroads have been made in identifying the genetic causes of rare Mendelian disorders, little progress has been made in the discovery of common gene variations that predispose to complex diseases. The single gene variants that have been shown to associate reproducibly with complex diseases typically have small effect sizes or attributable risks. However, the joint actions of common gene variants within pathways may play a major role in predisposing to complex diseases (the paradigm of complex genetics. The goal of this study was to determine whether polymorphism in a candidate pathway (axon guidance predisposed to a complex disease (Parkinson disease [PD]. We mined a whole-genome association dataset and identified single nucleotide polymorphisms (SNPs that were within axon-guidance pathway genes. We then constructed models of axon-guidance pathway SNPs that predicted three outcomes: PD susceptibility (odds ratio = 90.8, p = 4.64 x 10(-38, survival free of PD (hazards ratio = 19.0, p = 5.43 x 10(-48, and PD age at onset (R(2 = 0.68, p = 1.68 x 10(-51. By contrast, models constructed from thousands of random selections of genomic SNPs predicted the three PD outcomes poorly. Mining of a second whole-genome association dataset and mining of an expression profiling dataset also supported a role for many axon-guidance pathway genes in PD. These findings could have important implications regarding the pathogenesis of PD. This genomic pathway approach may also offer insights into other complex diseases such as Alzheimer disease, diabetes mellitus, nicotine and alcohol dependence, and several cancers.

  17. Local erythropoietin signaling enhances regeneration in peripheral axons.

    Science.gov (United States)

    Toth, C; Martinez, J A; Liu, W Q; Diggle, J; Guo, G F; Ramji, N; Mi, R; Hoke, A; Zochodne, D W

    2008-06-23

    Erythropoietin (EPO) and its receptor (EPO-R), mediate neuroprotection from axonopathy and apoptosis in the peripheral nervous system (PNS). We examined the impact and potential mechanisms of local EPO signaling on regenerating PNS axons in vivo and in vitro. As a consequence of injury, peripheral nerve axons and DRG neurons have a marked increase in the expression of EPO and EPO-R. Local delivery of EPO via conduit over 2 weeks to rat sciatic nerve following crush injury increased the density and maturity of regenerating myelinated axons growing distally from the crush site. In addition, EPO also rescued retrograde degeneration and atrophy of axons. EPO substantially increased the density and intensity of calcitonin gene-related peptide (CGRP) expression within outgrowing axons. Behavioral improvements in sensorimotor function also occurred in rats exposed to near nerve EPO delivery. EPO delivery led to decreased nuclear factor kappaB (NFkB) activation but increased phosphorylation of Akt and STAT3 within nerve and dorsal root ganglia neurons indicating rescue from an injury phenotype. Spinal cord explant studies also demonstrated a similar dose-dependent effect of EPO upon motor axonal outgrowth. Local EPO signaling enhances regenerating peripheral nervous system axons in addition to its known neuroprotection. Exogenous EPO may have a therapeutic role in a large number of peripheral nerve diseases through its impact on regeneration.

  18. Calpains mediate axonal cytoskeleton disintegration during Wallerian degeneration.

    Science.gov (United States)

    Ma, Marek; Ferguson, Toby A; Schoch, Kathleen M; Li, Jian; Qian, Yaping; Shofer, Frances S; Saatman, Kathryn E; Neumar, Robert W

    2013-08-01

    In both the central nervous system (CNS) and peripheral nervous system (PNS), transected axons undergo Wallerian degeneration. Even though Augustus Waller first described this process after transection of axons in 1850, the molecular mechanisms may be shared, at least in part, by many human diseases. Early pathology includes failure of synaptic transmission, target denervation, and granular disintegration of the axonal cytoskeleton (GDC). The Ca(2+)-dependent protease calpains have been implicated in GDC but causality has not been established. To test the hypothesis that calpains play a causal role in axonal and synaptic degeneration in vivo, we studied transgenic mice that express human calpastatin (hCAST), the endogenous calpain inhibitor, in optic and sciatic nerve axons. Five days after optic nerve transection and 48 h after sciatic nerve transection, robust neurofilament proteolysis observed in wild-type controls was reduced in hCAST transgenic mice. Protection of the axonal cytoskeleton in sciatic nerves of hCAST mice was nearly complete 48 h post-transection. In addition, hCAST expression preserved the morphological integrity of neuromuscular junctions. However, compound muscle action potential amplitudes after nerve transection were similar in wild-type and hCAST mice. These results, in total, provide direct evidence that calpains are responsible for the morphological degeneration of the axon and synapse during Wallerian degeneration.

  19. Ndel1 promotes axon regeneration via intermediate filaments.

    Directory of Open Access Journals (Sweden)

    Cory Toth

    Full Text Available Failure of axons to regenerate following acute or chronic neuronal injury is attributed to both the inhibitory glial environment and deficient intrinsic ability to re-grow. However, the underlying mechanisms of the latter remain unclear. In this study, we have investigated the role of the mammalian homologue of aspergillus nidulans NudE, Ndel1, emergently viewed as an integrator of the cytoskeleton, in axon regeneration. Ndel1 was synthesized de novo and upregulated in crushed and transected sciatic nerve axons, and, upon injury, was strongly associated with neuronal form of the intermediate filament (IF Vimentin while dissociating from the mature neuronal IF (Neurofilament light chain NF-L. Consistent with a role for Ndel1 in the conditioning lesion-induced neurite outgrowth of Dorsal Root Ganglion (DRG neurons, the long lasting in vivo formation of the neuronal Ndel1/Vimentin complex was associated with robust axon regeneration. Furthermore, local silencing of Ndel1 in transected axons by siRNA severely reduced the extent of regeneration in vivo. Thus, Ndel1 promotes axonal regeneration; activating this endogenous repair mechanism may enhance neuroregeneration during acute and chronic axonal degeneration.

  20. Investigating the usefulness of a cluster-based trend analysis to detect visual field progression in patients with open-angle glaucoma.

    Science.gov (United States)

    Aoki, Shuichiro; Murata, Hiroshi; Fujino, Yuri; Matsuura, Masato; Miki, Atsuya; Tanito, Masaki; Mizoue, Shiro; Mori, Kazuhiko; Suzuki, Katsuyoshi; Yamashita, Takehiro; Kashiwagi, Kenji; Hirasawa, Kazunori; Shoji, Nobuyuki; Asaoka, Ryo

    2017-04-27

    To investigate the usefulness of the Octopus (Haag-Streit) EyeSuite's cluster trend analysis in glaucoma. Ten visual fields (VFs) with the Humphrey Field Analyzer (Carl Zeiss Meditec), spanning 7.7 years on average were obtained from 728 eyes of 475 primary open angle glaucoma patients. Mean total deviation (mTD) trend analysis and EyeSuite's cluster trend analysis were performed on various series of VFs (from 1st to 10th: VF1-10 to 6th to 10th: VF6-10). The results of the cluster-based trend analysis, based on different lengths of VF series, were compared against mTD trend analysis. Cluster-based trend analysis and mTD trend analysis results were significantly associated in all clusters and with all lengths of VF series. Between 21.2% and 45.9% (depending on VF series length and location) of clusters were deemed to progress when the mTD trend analysis suggested no progression. On the other hand, 4.8% of eyes were observed to progress using the mTD trend analysis when cluster trend analysis suggested no progression in any two (or more) clusters. Whole field trend analysis can miss local VF progression. Cluster trend analysis appears as robust as mTD trend analysis and useful to assess both sectorial and whole field progression. Cluster-based trend analyses, in particular the definition of two or more progressing cluster, may help clinicians to detect glaucomatous progression in a timelier manner than using a whole field trend analysis, without significantly compromising specificity. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. In vivo two-photon imaging of axonal dieback, blood flow, and calcium influx with methylprednisolone therapy after spinal cord injury.

    Science.gov (United States)

    Tang, Peifu; Zhang, Yiling; Chen, Chao; Ji, Xinran; Ju, Furong; Liu, Xingyu; Gan, Wen-Biao; He, Zhigang; Zhang, Shengxiang; Li, Wei; Zhang, Lihai

    2015-05-19

    Severe spinal cord injury (SCI) can cause neurological dysfunction and paralysis. However, the early dynamic changes of neurons and their surrounding environment after SCI are poorly understood. Although methylprednisolone (MP) is currently the standard therapeutic agent for treating SCI, its efficacy remains controversial. The purpose of this project was to investigate the early dynamic changes and MP's efficacy on axonal damage, blood flow, and calcium influx into axons in a mouse SCI model. YFP H-line and Thy1-GCaMP transgenic mice were used in this study. Two-photon microscopy was used for imaging of axonal dieback, blood flow, and calcium influx post-injury. We found that MP treatment attenuated progressive damage of axons, increased blood flow, and reduced calcium influx post-injury. Furthermore, microglia/macrophages accumulated in the lesion site after SCI and expressed the proinflammatory mediators iNOS, MCP-1 and IL-1β. MP treatment markedly inhibited the accumulation of microglia/macrophages and reduced the expression of the proinflammatory mediators. MP treatment also improved the recovery of behavioral function post-injury. These findings suggest that MP exerts a neuroprotective effect on SCI treatment by attenuating progressive damage of axons, increasing blood flow, reducing calcium influx, and inhibiting the accumulation of microglia/macrophages after SCI.

  2. Action potentials initiate in the axon initial segment and propagate through axon collaterals reliably in cerebellar Purkinje neurons.

    Science.gov (United States)

    Foust, Amanda; Popovic, Marko; Zecevic, Dejan; McCormick, David A

    2010-05-19

    Purkinje neurons are the output cells of the cerebellar cortex and generate spikes in two distinct modes, known as simple and complex spikes. Revealing the point of origin of these action potentials, and how they conduct into local axon collaterals, is important for understanding local and distal neuronal processing and communication. By using a recent improvement in voltage-sensitive dye imaging technique that provided exceptional spatial and temporal resolution, we were able to resolve the region of spike initiation as well as follow spike propagation into axon collaterals for each action potential initiated on single trials. All fast action potentials, for both simple and complex spikes, whether occurring spontaneously or in response to a somatic current pulse or synaptic input, initiated in the axon initial segment. At discharge frequencies of less than approximately 250 Hz, spikes propagated faithfully through the axon and axon collaterals, in a saltatory manner. Propagation failures were only observed for very high frequencies or for the spikelets associated with complex spikes. These results demonstrate that the axon initial segment is a critical decision point in Purkinje cell processing and that the properties of axon branch points are adjusted to maintain faithful transmission.

  3. Visual field changes as an early indicator of glioblastoma multiforme progression: two cases of functional vision changes before MRI detection

    Directory of Open Access Journals (Sweden)

    Xie K

    2015-06-01

    Full Text Available Kate Xie,1,* Catherine Y Liu,1,* Anton N Hasso,2 Robert Wade Crow1 1Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, USA, 2Department of Radiological Sciences, University of California Irvine Medical Center, Orange, CA, USA *These authors contributed equally to this work Abstract: Glioblastoma multiforme is an aggressive tumor associated with a high rate of recurrence even after maximal therapy. In a disease with poor prognosis and rapid deterioration, early detection of tumor progression is necessary to make timely treatment decisions or to initiate end of life care. We identify two cases where Humphrey visual field testing predated magnetic resonance imaging and positron emission tomography findings of tumor progression by months in glioblastoma multiforme. New or worsening visual field defects may indicate signs of tumor progression in glioblastoma multiforme and should prompt further investigation. Keywords: glioblastoma multiforme, optic pathway, visual field defects

  4. Npn-1 contributes to axon-axon interactions that differentially control sensory and motor innervation of the limb.

    Directory of Open Access Journals (Sweden)

    Rosa-Eva Huettl

    2011-02-01

    Full Text Available The initiation, execution, and completion of complex locomotor behaviors are depending on precisely integrated neural circuitries consisting of motor pathways that activate muscles in the extremities and sensory afferents that deliver feedback to motoneurons. These projections form in tight temporal and spatial vicinities during development, yet the molecular mechanisms and cues coordinating these processes are not well understood. Using cell-type specific ablation of the axon guidance receptor Neuropilin-1 (Npn-1 in spinal motoneurons or in sensory neurons in the dorsal root ganglia (DRG, we have explored the contribution of this signaling pathway to correct innervation of the limb. We show that Npn-1 controls the fasciculation of both projections and mediates inter-axonal communication. Removal of Npn-1 from sensory neurons results in defasciculation of sensory axons and, surprisingly, also of motor axons. In addition, the tight coupling between these two heterotypic axonal populations is lifted with sensory fibers now leading the spinal nerve projection. These findings are corroborated by partial genetic elimination of sensory neurons, which causes defasciculation of motor projections to the limb. Deletion of Npn-1 from motoneurons leads to severe defasciculation of motor axons in the distal limb and dorsal-ventral pathfinding errors, while outgrowth and fasciculation of sensory trajectories into the limb remain unaffected. Genetic elimination of motoneurons, however, revealed that sensory axons need only minimal scaffolding by motor axons to establish their projections in the distal limb. Thus, motor and sensory axons are mutually dependent on each other for the generation of their trajectories and interact in part through Npn-1-mediated fasciculation before and within the plexus region of the limbs.

  5. Npn-1 contributes to axon-axon interactions that differentially control sensory and motor innervation of the limb.

    Science.gov (United States)

    Huettl, Rosa-Eva; Soellner, Heidi; Bianchi, Elisa; Novitch, Bennett G; Huber, Andrea B

    2011-02-01

    The initiation, execution, and completion of complex locomotor behaviors are depending on precisely integrated neural circuitries consisting of motor pathways that activate muscles in the extremities and sensory afferents that deliver feedback to motoneurons. These projections form in tight temporal and spatial vicinities during development, yet the molecular mechanisms and cues coordinating these processes are not well understood. Using cell-type specific ablation of the axon guidance receptor Neuropilin-1 (Npn-1) in spinal motoneurons or in sensory neurons in the dorsal root ganglia (DRG), we have explored the contribution of this signaling pathway to correct innervation of the limb. We show that Npn-1 controls the fasciculation of both projections and mediates inter-axonal communication. Removal of Npn-1 from sensory neurons results in defasciculation of sensory axons and, surprisingly, also of motor axons. In addition, the tight coupling between these two heterotypic axonal populations is lifted with sensory fibers now leading the spinal nerve projection. These findings are corroborated by partial genetic elimination of sensory neurons, which causes defasciculation of motor projections to the limb. Deletion of Npn-1 from motoneurons leads to severe defasciculation of motor axons in the distal limb and dorsal-ventral pathfinding errors, while outgrowth and fasciculation of sensory trajectories into the limb remain unaffected. Genetic elimination of motoneurons, however, revealed that sensory axons need only minimal scaffolding by motor axons to establish their projections in the distal limb. Thus, motor and sensory axons are mutually dependent on each other for the generation of their trajectories and interact in part through Npn-1-mediated fasciculation before and within the plexus region of the limbs.

  6. Axonal Membranes and Their Domains: Assembly and Function of the Axon Initial Segment and Node of Ranvier

    Directory of Open Access Journals (Sweden)

    Andrew D. Nelson

    2017-05-01

    Full Text Available Neurons are highly specialized cells of the nervous system that receive, process and transmit electrical signals critical for normal brain function. Here, we review the intricate organization of axonal membrane domains that facilitate rapid action potential conduction underlying communication between complex neuronal circuits. Two critical excitable domains of vertebrate axons are the axon initial segment (AIS and the nodes of Ranvier, which are characterized by the high concentrations of voltage-gated ion channels, cell adhesion molecules and specialized cytoskeletal networks. The AIS is located at the proximal region of the axon and serves as the site of action potential initiation, while nodes of Ranvier, gaps between adjacent myelin sheaths, allow rapid propagation of the action potential through saltatory conduction. The AIS and nodes of Ranvier are assembled by ankyrins, spectrins and their associated binding partners through the clustering of membrane proteins and connection to the underlying cytoskeleton network. Although the AIS and nodes of Ranvier share similar protein composition, their mechanisms of assembly are strikingly different. Here we will cover the mechanisms of formation and maintenance of these axonal excitable membrane domains, specifically highlighting the similarities and differences between them. We will also discuss recent advances in super resolution fluorescence imaging which have elucidated the arrangement of the submembranous axonal cytoskeleton revealing a surprising structural organization necessary to maintain axonal organization and function. Finally, human mutations in axonal domain components have been associated with a growing number of neurological disorders including severe cognitive dysfunction, epilepsy, autism, neurodegenerative diseases and psychiatric disorders. Overall, this review highlights the assembly, maintenance and function of axonal excitable domains, particularly the AIS and nodes of

  7. DGAT2 Mutation in a Family with Autosomal-Dominant Early-Onset Axonal Charcot-Marie-Tooth Disease.

    Science.gov (United States)

    Hong, Young Bin; Kang, Junghee; Kim, Ji Hyun; Lee, Jinho; Kwak, Geon; Hyun, Young Se; Nam, Soo Hyun; Hong, Hyun Dae; Choi, Yu-Ri; Jung, Sung-Chul; Koo, Heasoo; Lee, Ji Eun; Choi, Byung-Ok; Chung, Ki Wha

    2016-05-01

    Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral neuropathy and is a genetically and clinically heterogeneous disorder. We examined a Korean family in which two individuals had an autosomal-dominant axonal CMT with early-onset, sensory ataxia, tremor, and slow disease progression. Pedigree analysis and exome sequencing identified a de novo missense mutation (p.Y223H) in the diacylglycerol O-acyltransferase 2 (DGAT2) gene. DGAT2 encodes an endoplasmic reticulum-mitochondrial-associated membrane protein, acyl-CoA:diacylglycerol acyltransferase, which catalyzes the final step of the triglyceride (TG) biosynthesis pathway. The patient showed consistently decreased serum TG levels, and overexpression of the mutant DGAT2 significantly inhibited the proliferation of mouse motor neuron cells. Moreover, the variant form of human DGAT2 inhibited the axonal branching in the peripheral nervous system of zebrafish. We suggest that mutation of DGAT2 is the novel underlying cause of an autosomal-dominant axonal CMT2 neuropathy. This study will help provide a better understanding of the pathophysiology of axonal CMT and contribute to the molecular diagnostics of peripheral neuropathies. © 2016 WILEY PERIODICALS, INC.

  8. Mdivi-1 inhibits astrocyte activation and astroglial scar formation and enhances axonal regeneration after spinal cord injury in rats

    Directory of Open Access Journals (Sweden)

    gang li

    2016-10-01

    Full Text Available After spinal cord injury (SCI, astrocytes become hypertrophic and proliferative, forming a dense network of astroglial processes at the site of the lesion. This constitutes a physical and biochemical barrier to axonal regeneration. Mitochondrial fission regulates cell cycle progression; inhibiting the cell cycle of astrocytes can reduce expression levels of axon growth-inhibitory molecules as well as astroglial scar formation after SCI. We therefore investigated how an inhibitor of mitochondrial fission, Mdivi-1, would affect astrocyte proliferation, astroglial scar formation, and axonal regeneration following SCI in rats. Western blot and immunofluorescent double-labeling showed that Mdivi-1 markedly reduced the expression of the astrocyte marker glial fibrillary acidic protein (GFAP, and a cell proliferation marker, proliferating cell nuclear antigen, in astrocytes 3 days after SCI. Moreover, Mdivi-1 decreased the expression of GFAP and neurocan, a chondroitin sulfate proteoglycan. Notably, immunofluorescent labeling and Nissl staining showed that Mdivi-1 elevated the production of growth-associated protein-43 and increased neuronal survival at 4 weeks after SCI. Finally, hematoxylin-eosin staining and behavioral evaluation of motor function indicated that Mdivi-1 also reduced cavity formation and improved motor function 4 weeks after SCI. Our results confirm that Mdivi-1 promotes motor function after SCI, and indicate that inhibiting mitochondrial fission using Mdivi-1 can inhibit astrocyte activation and astroglial scar formation and contribute to axonal regeneration after SCI in rats.

  9. Label-free detection of tumor markers in a colon carcinoma tumor progression model by confocal Raman microspectroscopy

    Science.gov (United States)

    Scalfi-Happ, Claudia; Rück, Angelika; Udart, Martin; Hauser, Carmen; Dürr, Christine; Kriebel, Martin

    2013-06-01

    Living colon carcinoma cells were investigated by confocal Raman microspectroscopy. An in vitro model of tumor progression was established. Evaluation of data sets by cluster analysis reveals that lipid bodies might be a valuable diagnostic parameter for early carcinogenesis.

  10. Enabling the Direct Detection of Earth-Sized Exoplanets with the LBTI HOSTS Project: A Progress Report

    Science.gov (United States)

    Danchi, W.; Bailey, V.; Bryden, G.; Defrere, D.; Ertel, S.; Haniff, C.; Hinz, P.; Kennedy, G.; Mennesson, B.; Millan-Gabet, R.; hide

    2016-01-01

    NASA has funded a project called the Hunt for Observable Signatures of Terrestrial Systems (HOSTS) to survey nearby solar type stars to determine the amount of warm zodiacal dust in their habitable zones. The goal is not only to determine the luminosity distribution function but also to know which individual stars have the least amount of zodiacal dust. It is important to have this information for future missions that directly image exoplanets as this dust is the main source of astrophysical noise for them. The HOSTS project utilizes the Large Binocular Telescope Interferometer (LBTI), which consists of two 8.4-m apertures separated by a 14.4-m baseline on Mt. Graham, Arizona. The LBTI operates in a nulling mode in the mid-infrared spectral window (8-13 micrometers), in which light from the two telescopes is coherently combined with a 180 degree phase shift between them, producing a dark fringe at the location of the target star. In doing so the starlight is greatly reduced, increasing the contrast, analogous to a coronagraph operating at shorter wavelengths. The LBTI is a unique instrument, having only three warm reflections before the starlight reaches cold mirrors, giving it the best photometric sensitivity of any interferometer operating in the mid-infrared. It also has a superb Adaptive Optics (AO) system giving it Strehl ratios greater than 98% at 10 micrometers. In 2014 into early 2015 LBTI was undergoing commissioning. The HOSTS. project team passed its Operational Readiness Review (ORR) in April 2015. The team recently published papers on the target sample, modeling of the nulled disk images, and initial results such as the detection of warm dust around eta Corvi. Recently a paper was published on the data pipeline and on-sky performance. An additional paper is in preparation on Beta Leo. We will discuss the scientific and programmatic context for the LBTI project, and we will report recent progress, new results, and plans for the science verification

  11. Enabling the direct detection of earth-sized exoplanets with the LBTI HOSTS project: a progress report

    Science.gov (United States)

    Danchi, W.; Bailey, V.; Bryden, G.; Defrère, D.; Ertel, S.; Haniff, C.; Hinz, P.; Kennedy, G.; Mennesson, B.; Millan-Gabet, R.; Rieke, G.; Roberge, A.; Serabyn, E.; Skemer, A.; Stapelfeldt, K.; Weinberger, A.; Wyatt, M.; Vaz, A.

    2016-08-01

    NASA has funded a project called the Hunt for Observable Signatures of Terrestrial Systems (HOSTS) to survey nearby solar type stars to determine the amount of warm zodiacal dust in their habitable zones. The goal is not only to determine the luminosity distribution function but also to know which individual stars have the least amount of zodiacal dust. It is important to have this information for future missions that directly image exoplanets as this dust is the main source of astrophysical noise for them. The HOSTS project utilizes the Large Binocular Telescope Interferometer (LBTI), which consists of two 8.4-m apertures separated by a 14.4-m baseline on Mt. Graham, Arizona. The LBTI operates in a nulling mode in the mid-infrared spectral window (8-13 μm), in which light from the two telescopes is coherently combined with a 180 degree phase shift between them, producing a dark fringe at the location of the target star. In doing so the starlight is greatly reduced, increasing the contrast, analogous to a coronagraph operating at shorter wavelengths. The LBTI is a unique instrument, having only three warm reflections before the starlight reaches cold mirrors, giving it the best photometric sensitivity of any interferometer operating in the mid-infrared. It also has a superb Adaptive Optics (AO) system giving it Strehl ratios greater than 98% at 10 μm. In 2014 into early 2015 LBTI was undergoing commissioning. The HOSTS project team passed its Operational Readiness Review (ORR) in April 2015. The team recently published papers on the target sample, modeling of the nulled disk images, and initial results such as the detection of warm dust around η Corvi. Recently a paper was published on the data pipeline and on-sky performance. An additional paper is in preparation on β Leo. We will discuss the scientific and programmatic context for the LBTI project, and we will report recent progress, new results, and plans for the science verification phase that started in

  12. Bio-Photonic Detection and Quantitative Evaluation Method for the Progression of Dental Caries Using Optical Frequency-Domain Imaging Method

    Science.gov (United States)

    Wijesinghe, Ruchire Eranga; Cho, Nam Hyun; Park, Kibeom; Jeon, Mansik; Kim, Jeehyun

    2016-01-01

    The initial detection of dental caries is an essential biomedical requirement to barricade the progression of caries and tooth demineralization. The objective of this study is to introduce an optical frequency-domain imaging technique based quantitative evaluation method to calculate the volume and thickness of enamel residual, and a quantification method was developed to evaluate the total intensity fluctuation in depth direction owing to carious lesions, which can be favorable to identify the progression of dental caries in advance. The cross-sectional images of the ex vivo tooth samples were acquired using 1.3 μm spectral domain optical coherence tomography system (SD-OCT). Moreover, the advantages of the proposed method over the conventional dental inspection methods were compared to highlight the potential capability of OCT. As a consequence, the threshold parameters obtained through the developed method can be used as an efficient investigating technique for the initial detection of demineralization. PMID:27929440

  13. Simultaneous Sodium and Calcium Imaging from Dendrites and Axons.

    Science.gov (United States)

    Miyazaki, Kenichi; Ross, William N

    2015-01-01

    Dynamic calcium imaging is a major technique of neuroscientists. It can reveal information about the location of various calcium channels and calcium permeable receptors, the time course, magnitude, and location of intracellular calcium concentration ([Ca(2+)]i) changes, and indirectly, the occurrence of action potentials. Dynamic sodium imaging, a less exploited technique, can reveal analogous information related to sodium signaling. In some cases, like the examination of AMPA and NMDA receptor signaling, measurements of both [Ca(2+)]i and [Na(+)]i changes in the same preparation may provide more information than separate measurements. To this end, we developed a technique to simultaneously measure both signals at high speed and sufficient sensitivity to detect localized physiologic events. This approach has advantages over sequential imaging because the preparation may not respond identically in different trials. We designed custom dichroic and emission filters to allow the separate detection of the fluorescence of sodium and calcium indicators loaded together into a single neuron in a brain slice from the hippocampus of Sprague-Dawley rats. We then used high-intensity light emitting diodes (LEDs) to alternately excite the two indicators at the appropriate wavelengths. These pulses were synchronized with the frames of a CCD camera running at 500 Hz. Software then separated the data streams to provide independent sodium and calcium signals. With this system we could detect [Ca(2+)]i and [Na(+)]i changes from single action potentials in axons and synaptically evoked signals in dendrites, both with submicron resolution and a good signal-to-noise ratio (S/N).

  14. Axon diameter mapping in crossing fibers with diffusion MRI

    DEFF Research Database (Denmark)

    Zhang, Hui; Dyrby, Tim B; Alexander, Daniel C

    2011-01-01

    tissue than measures derived from diffusion tensor imaging. Most existing techniques for axon diameter mapping assume a single axon orientation in the tissue model, which limits their application to only the most coherently oriented brain white matter, such as the corpus callosum, where the single...... orientation assumption is a reasonable one. However, fiber crossings and other complex configurations are widespread in the brain. In such areas, the existing techniques will fail to provide useful axon diameter indices for any of the individual fiber populations. We propose a novel crossing fiber tissue...... of the technique by establishing reasonable axon diameter indices in the crossing region at the interface of the cingulum and the corpus callosum....

  15. Sodium Channels, Mitochondria, and Axonal Degeneration in Peripheral Neuropathy.

    Science.gov (United States)

    Persson, Anna-Karin; Hoeijmakers, Janneke G J; Estacion, Mark; Black, Joel A; Waxman, Stephen G

    2016-05-01

    Peripheral neuropathy results from damage to peripheral nerves and is often accompanied by pain in affected limbs. Treatment represents an unmet medical need and a thorough understanding of the mechanisms underlying axonal injury is needed. Longer nerve fibers tend to degenerate first (length-dependence), and patients carrying pathogenic mutations throughout life usually become symptomatic in mid- or late-life (time-dependence). The activity of voltage-gated sodium channels can contribute to axonal injury and sodium channel gain-of-function mutations have been linked to peripheral neuropathy. Recent studies have implicated sodium channel activity, mitochondrial compromise, and reverse-mode Na(+)/Ca(2+) exchange in time- and length-dependent axonal injury. Elucidation of molecular mechanisms underlying axonal injury in peripheral neuropathy may provide new therapeutic strategies for this painful and debilitating condition.

  16. Structural plasticity of axon terminals in the adult.

    Science.gov (United States)

    Gogolla, Nadine; Galimberti, Ivan; Caroni, Pico

    2007-10-01

    There is now conclusive evidence for widespread ongoing structural plasticity of presynaptic boutons and axon side-branches in the adult brain. The plasticity complements that of postsynaptic spines, but axonal plasticity samples larger volumes of neuropil, and has a larger impact on circuit remodeling. Axons from distinct neurons exhibit unique ratios of stable (t1/2>9 months) and dynamic (t1/2 5-20 days) boutons, which persist as spatially intermingled subgroups along terminal arbors. In addition, phases of side-branch dynamics mediate larger scale remodeling guided by synaptogenesis. The plasticity is most pronounced during critical periods; its patterns and outcome are controlled by Hebbian mechanisms and intrinsic neuronal factors. Novel experience, skill learning, life-style, and age can persistently modify local circuit structure through axonal structural plasticity.

  17. Network state-dependent inhibition of identified hippocampal CA3 axo-axonic cells in vivo.

    Science.gov (United States)

    Viney, Tim J; Lasztoczi, Balint; Katona, Linda; Crump, Michael G; Tukker, John J; Klausberger, Thomas; Somogyi, Peter

    2013-12-01

    Hippocampal sharp waves are population discharges initiated by an unknown mechanism in pyramidal cell networks of CA3. Axo-axonic cells (AACs) regulate action potential generation through GABAergic synapses on the axon initial segment. We found that CA3 AACs in anesthetized rats and AACs in freely moving rats stopped firing during sharp waves, when pyramidal cells fire most. AACs fired strongly and rhythmically around the peak of theta oscillations, when pyramidal cells fire at low probability. Distinguishing AACs from other parvalbumin-expressing interneurons by their lack of detectable SATB1 transcription factor immunoreactivity, we discovered a somatic GABAergic input originating from the medial septum that preferentially targets AACs. We recorded septo-hippocampal GABAergic cells that were activated during hippocampal sharp waves and projected to CA3. We hypothesize that inhibition of AACs, and the resulting subcellular redistribution of inhibition from the axon initial segment to other pyramidal cell domains, is a necessary condition for the emergence of sharp waves promoting memory consolidation.

  18. Modality-Specific Axonal Regeneration: Towards selective regenerative neural interfaces

    Directory of Open Access Journals (Sweden)

    Parisa eLotfi

    2011-10-01

    Full Text Available Regenerative peripheral nerve interfaces have been proposed as viable alternatives for the natural control of robotic prosthetic devices. However, sensory and motor axons at the neural interface are of mixed submodality types, which difficult the specific recording from motor axons and the eliciting of precise sensory modalities through selective stimulation. Here we evaluated the possibility of using type-specific neurotrophins to preferentially entice the regeneration of defined axonal populations from transected peripheral nerves into separate compartments. Segregation of mixed sensory fibers from dorsal root ganglion neurons was evaluated in vitro by compartmentalized diffusion delivery of nerve growth factor (NGF and neurotrophin-3 (NT-3, to preferentially entice the growth of TrkA+ nociceptive and TrkC+ proprioceptive subsets of sensory neurons, respectively. The average axon length in the NGF channel increased 2.5 fold compared to that in saline or NT-3, whereas the number of branches increased 3 fold in the NT-3 channels. These results were confirmed using a 3-D Y-shaped in vitro assay showing that the arm containing NGF was able to entice a 5-fold increase in axonal length of unbranched fibers. To address if such segregation can be enticed in vivo, a Y-shaped tubing was used to allow regeneration of the transected adult rat sciatic nerve into separate compartments filled with either NFG or NT-3. A significant increase in the number of CGRP+ pain fibers were attracted towards the sural nerve, while N-52+ large diameter axons were observed in the tibial and NT-3 compartments. This study demonstrates the guided enrichment of sensory axons in specific regenerative chambers, and supports the notion that neurotrophic factors can be used to segregate sensory and perhaps motor axons in separate peripheral interfaces.

  19. Electrophysiology of a nonmyelinated glutamatergic axon in rat hippocampus

    OpenAIRE

    Alle, Henrik

    2012-01-01

    The common theme of the presented work on the nonmyelinated hippocampal mossy fiber (the axon of the granule cell in the dentate gyrus) is the generation of subthreshold and suprathreshold electrical signals. Subthreshold depolarizations in the axon can occur due to passive propagation of excitatory postsynaptic potentials, which are generated in the somato-dendritic domain. The remote passive propagation of these comparatively slow but transient signals is due to a space constant...

  20. Axonal noise as a source of synaptic variability.

    Directory of Open Access Journals (Sweden)

    Ali Neishabouri

    2014-05-01

    Full Text Available Post-synaptic potential (PSP variability is typically attributed to mechanisms inside synapses, yet recent advances in experimental methods and biophysical understanding have led us to reconsider the role of axons as highly reliable transmission channels. We show that in many thin axons of our brain, the action potential (AP waveform and thus the Ca++ signal controlling vesicle release at synapses will be significantly affected by the inherent variability of ion channel gating. We investigate how and to what extent fluctuations in the AP waveform explain observed PSP variability. Using both biophysical theory and stochastic simulations of central and peripheral nervous system axons from vertebrates and invertebrates, we show that channel noise in thin axons (<1 µm diameter causes random fluctuations in AP waveforms. AP height and width, both experimentally characterised parameters of post-synaptic response amplitude, vary e.g. by up to 20 mV and 0.5 ms while a single AP propagates in C-fibre axons. We show how AP height and width variabilities increase with a ¾ power-law as diameter decreases and translate these fluctuations into post-synaptic response variability using biophysical data and models of synaptic transmission. We find for example that for mammalian unmyelinated axons with 0.2 µm diameter (matching cerebellar parallel fibres axonal noise alone can explain half of the PSP variability in cerebellar synapses. We conclude that axonal variability may have considerable impact on synaptic response variability. Thus, in many experimental frameworks investigating synaptic transmission through paired-cell recordings or extracellular stimulation of presynaptic neurons, causes of variability may have been confounded. We thereby show how bottom-up aggregation of molecular noise sources contributes to our understanding of variability observed at higher levels of biological organisation.

  1. Morphology of axonal transport abnormalities in primate eyes.

    Science.gov (United States)

    Radius, R L; Anderson, D R

    1981-11-01

    The ultrastructure of the retina and optic nerve head was studied in primate eyes after central retinal artery occlusion. Within 2 hours of the vascular occlusion the inner retinal layers undergo watery (isosmotic) swelling. This watery swelling of axons and astroglia extends into the nerve head as far back as the anterior boundary of the scleral lamina cribrosa. The swelling is increased 4 hours after the occlusion, and by 24 hours disintegration has occurred. At the optic nerve head mitochondria and vesicles of smooth endoplasmic reticulum begin to accumulate within 2 hours. The accumulation increases at 4 hours and persists to 24 hours. The watery swelling seems characteristic of ischaemic axons. Membranous organelles accumulate at the boundary of an ischaemic zone when material carried by axonal transport is brought via the healthy axon segment to the boundary, but they cannot proceed further into the ischaemic zone. Such accumulation is typical of locations where rapid orthograde axonal transport or retrograde axonal transport is blocked. In contrast, when slow axonal flow is impaired, the swelling is characterised by an excess of cytoplasmic gel without a marked accumulation of organelles. Rapid orthograde transport and retrograde transport seem to be closely related to one another, while slow axoplasmic flow seems fundamentally different. From morphological findings we suspect that, in experimental glaucoma, intraocular pressure first affects the intracellular physiological process of rapid orthograde and retrograde axonal transport. Watery swelling may not occur unless the ischaemic injury to cell metabolism is more advanced. In contrast, in experimental papilloedema, the swelling results predominantly from impaired slow axoplasmic flow.

  2. Fcγ receptor-mediated inflammation inhibits axon regeneration.

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    Full Text Available Anti-glycan/ganglioside antibodies are the most common immune effectors found in patients with Guillain-Barré Syndrome, which is a peripheral autoimmune neuropathy. We previously reported that disease-relevant anti-glycan autoantibodies inhibited axon regeneration, which echo the clinical association of these antibodies and poor recovery in Guillain-Barré Syndrome. However, the specific molecular and cellular elements involved in this antibody-mediated inhibition of axon regeneration are not previously defined. This study examined the role of Fcγ receptors and macrophages in the antibody-mediated inhibition of axon regeneration. A well characterized antibody passive transfer sciatic nerve crush and transplant models were used to study the anti-ganglioside antibody-mediated inhibition of axon regeneration in wild type and various mutant and transgenic mice with altered expression of specific Fcγ receptors and macrophage/microglia populations. Outcome measures included behavior, electrophysiology, morphometry, immunocytochemistry, quantitative real-time PCR, and western blotting. We demonstrate that the presence of autoantibodies, directed against neuronal/axonal cell surface gangliosides, in the injured mammalian peripheral nerves switch the proregenerative inflammatory environment to growth inhibitory milieu by engaging specific activating Fcγ receptors on recruited monocyte-derived macrophages to cause severe inhibition of axon regeneration. Our data demonstrate that the antibody orchestrated Fcγ receptor-mediated switch in inflammation is one mechanism underlying inhibition of axon regeneration. These findings have clinical implications for nerve repair and recovery in antibody-mediated immune neuropathies. Our results add to the complexity of axon regeneration in injured peripheral and central nervous systems as adverse effects of B cells and autoantibodies on neural injury and repair are increasingly recognized.

  3. Early Commissural Diencephalic Neurons Control Habenular Axon Extension and Targeting.

    Science.gov (United States)

    Beretta, Carlo A; Dross, Nicolas; Guglielmi, Luca; Bankhead, Peter; Soulika, Marina; Gutierrez-Triana, Jose A; Paolini, Alessio; Poggi, Lucia; Falk, Julien; Ryu, Soojin; Kapsimali, Marika; Engel, Ulrike; Carl, Matthias

    2017-01-23

    Most neuronal populations form on both the left and right sides of the brain. Their efferent axons appear to grow synchronously along similar pathways on each side, although the neurons or their environment often differ between the two hemispheres [1-4]. How this coordination is controlled has received little attention. Frequently, neurons establish interhemispheric connections, which can function to integrate information between brain hemispheres (e.g., [5]). Such commissures form very early, suggesting their potential developmental role in coordinating ipsilateral axon navigation during embryonic development [4]. To address the temporal-spatial control of bilateral axon growth, we applied long-term time-lapse imaging to visualize the formation of the conserved left-right asymmetric habenular neural circuit in the developing zebrafish embryo [6]. Although habenular neurons are born at different times across brain hemispheres [7], we found that elongation of habenular axons occurs synchronously. The initiation of axon extension is not controlled within the habenular network itself but through an early developing proximal diencephalic network. The commissural neurons of this network influence habenular axons both ipsilaterally and contralaterally. Their unilateral absence impairs commissure formation and coordinated habenular axon elongation and causes their subsequent arrest on both sides of the brain. Thus, habenular neural circuit formation depends on a second intersecting commissural network, which facilitates the exchange of information between hemispheres required for ipsilaterally projecting habenular axons. This mechanism of network formation may well apply to other circuits, and has only remained undiscovered due to technical limitations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. 6-Sulphated chondroitins have a positive influence on axonal regeneration.

    Directory of Open Access Journals (Sweden)

    Rachel Lin

    Full Text Available Chondroitin sulphate proteoglycans (CSPGs upregulated in the glial scar inhibit axon regeneration via their sulphated glycosaminoglycans (GAGs. Chondroitin 6-sulphotransferase-1 (C6ST-1 is upregulated after injury leading to an increase in 6-sulphated GAG. In this study, we ask if this increase in 6-sulphated GAG is responsible for the increased inhibition within the glial scar, or whether it represents a partial reversion to the permissive embryonic state dominated by 6-sulphated glycosaminoglycans (GAGs. Using C6ST-1 knockout mice (KO, we studied post-injury changes in chondroitin sulphotransferase (CSST expression and the effect of chondroitin 6-sulphates on both central and peripheral axon regeneration. After CNS injury, wild-type animals (WT showed an increase in mRNA for C6ST-1, C6ST-2 and C4ST-1, but KO did not upregulate any CSSTs. After PNS injury, while WT upregulated C6ST-1, KO showed an upregulation of C6ST-2. We examined regeneration of nigrostriatal axons, which demonstrate mild spontaneous axon regeneration in the WT. KO showed many fewer regenerating axons and more axonal retraction than WT. However, in the PNS, repair of the median and ulnar nerves led to similar and normal levels of axon regeneration in both WT and KO. Functional tests on plasticity after the repair also showed no evidence of enhanced plasticity in the KO. Our results suggest that the upregulation of 6-sulphated GAG after injury makes the extracellular matrix more permissive for axon regeneration, and that the balance of different CSs in the microenvironment around the lesion site is an important factor in determining the outcome of nervous system injury.

  5. ECEL1 mutation implicates impaired axonal arborization of motor nerves in the pathogenesis of distal arthrogryposis.

    Science.gov (United States)

    Nagata, Kenichi; Kiryu-Seo, Sumiko; Tamada, Hiromi; Okuyama-Uchimura, Fumi; Kiyama, Hiroshi; Saido, Takaomi C

    2016-07-01

    The membrane-bound metalloprotease endothelin-converting enzyme-like 1 (ECEL1) has been newly identified as a causal gene of a specific type of distal arthrogryposis (DA). In contrast to most causal genes of DA, ECEL1 is predominantly expressed in neuronal cells, suggesting a unique neurogenic pathogenesis in a subset of DA patients with ECEL1 mutation. The present study analyzed developmental motor innervation and neuromuscular junction formation in limbs of the rodent homologue damage-induced neuronal endopeptidase (DINE)-deficient mouse. Whole-mount immunostaining was performed in DINE-deficient limbs expressing motoneuron-specific GFP to visualize motor innervation throughout the limb. Although DINE-deficient motor nerves displayed normal trajectory patterns from the spinal cord to skeletal muscles, they indicated impaired axonal arborization in skeletal muscles in the forelimbs and hindlimbs. Systematic examination of motor innervation in over 10 different hindlimb muscles provided evidence that DINE gene disruption leads to insufficient arborization of motor nerves after arriving at the skeletal muscle. Interestingly, the axonal arborization defect in foot muscles appeared more severe than in other hindlimb muscles, which was partially consistent with the proximal-distal phenotypic discordance observed in DA patients. Additionally, the number of innervated neuromuscular junction was significantly reduced in the severely affected DINE-deficient muscle. Furthermore, we generated a DINE knock-in (KI) mouse model with a pathogenic mutation, which was recently identified in DA patients. Axonal arborization defects were clearly detected in motor nerves of the DINE KI limb, which was identical to the DINE-deficient limb. Given that the encoded sequences, as well as ECEL1 and DINE expression profiles, are highly conserved between mouse and human, abnormal arborization of motor axons and subsequent failure of NMJ formation could be a primary cause of DA with ECEL1

  6. Parametric Probability Distribution Functions for Axon Diameters of Corpus Callosum

    Directory of Open Access Journals (Sweden)

    Farshid eSepehrband

    2016-05-01

    Full Text Available Axon diameter is an important neuroanatomical characteristic of the nervous system that alters in the course of neurological disorders such as multiple sclerosis. Axon diameters vary, even within a fiber bundle, and are not normally distributed. An accurate distribution function is therefore beneficial, either to describe axon diameters that are obtained from a direct measurement technique (e.g., microscopy, or to infer them indirectly (e.g., using diffusion-weighted MRI. The gamma distribution is a common choice for this purpose (particularly for the inferential approach because it resembles the distribution profile of measured axon diameters which has been consistently shown to be non-negative and right-skewed. In this study we compared a wide range of parametric probability distribution functions against empirical data obtained from electron microscopy images. We observed that the gamma distribution fails to accurately describe the main characteristics of the axon diameter distribution, such as location and scale of the mode and the profile of distribution tails. We also found that the generalized extreme value distribution consistently fitted the measured distribution better than other distribution functions. This suggests that there may be distinct subpopulations of axons in the corpus callosum, each with their own distribution profiles. In addition, we observed that several other distributions outperformed the gamma distribution, yet had the same number of unknown parameters; these were the inverse Gaussian, log normal, log logistic and Birnbaum-Saunders distributions.

  7. Axon-glia interaction and membrane traffic in myelin formation.

    Science.gov (United States)

    White, Robin; Krämer-Albers, Eva-Maria

    2014-01-06

    In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialized glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarization followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is established. Continuous communication between neurons and glial cells is essential for myelin maintenance and axonal integrity. A diverse group of diseases, from multiple sclerosis to schizophrenia, have been linked to malfunction of myelinating cells reflecting the physiological importance of the axon-glial unit. This review describes the mechanisms of axonal signal integration by oligodendrocytes emphasizing the central role of the Src-family kinase Fyn during central nervous system (CNS) myelination. Furthermore, we discuss myelin membrane trafficking with particular focus on endocytic recycling and the control of proteolipid protein (PLP) transport by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Finally, PLP mistrafficking is considered in the context of myelin diseases.

  8. Axon morphology at the lamina cribrosa in monkey eyes.

    Science.gov (United States)

    Radius, R L; Klewin, K M

    1986-01-01

    The eyes of 8 monkeys (Aotus trivirgatus) were studied. The mean cross-section area and the least diameter of axon cylinders were calculated from measurements made by computer assisted planimetry of electron photomicrographs of sections through the optic nerve head at the level of the lamina cribrosa. The density of intrabundle connective tissue and glial cell elements in nerve fiber bundles was also calculated. The mean cross-section area and minimum diameter of axons in the temporal part were less than in the nasal part of the nerve. The values for axons in the superior and inferior parts of the nerve were intermediate. A similar pattern of increasing dimensions was seen in axons from the more axial nerve compared to neurons in the more circumferential nerve sectors. The density of the intrabundle, nonaxonal tissue elements did not differ significantly across the nerve. Although axon dimensions may play some role in defining the vulnerability of neuronal tissue to a pressure insult, the results of this anatomic investigation do not support the hypothesis that differences in axonal distribution by size across the nerve section define the regional vulnerability of the nerve head to elevated intraocular pressure.

  9. Determinants of action potential propagation in cerebellar Purkinje cell axons.

    Science.gov (United States)

    Monsivais, Pablo; Clark, Beverley A; Roth, Arnd; Häusser, Michael

    2005-01-12

    Axons have traditionally been viewed as highly faithful transmitters of action potentials. Recently, however, experimental evidence has accumulated to support the idea that under some circumstances axonal propagation may fail. Cerebellar Purkinje neurons fire highfrequency simple spikes, as well as bursts of spikes in response to climbing fiber activation (the "complex spike"). Here we have visualized the axon of individual Purkinje cells to directly investigate the relationship between somatic spikes and axonal spikes using simultaneous somatic whole-cell and cell-attached axonal patch-clamp recordings at 200-800 microm from the soma. We demonstrate that sodium action potentials propagate at frequencies up to approximately 260 Hz, higher than simple spike rates normally observed in vivo. Complex spikes, however, did not propagate reliably, with usually only the first and last spikes in the complex spike waveform being propagated. On average, only 1.7 +/- 0.2 spikes in the complex spike were propagated during resting firing, with propagation limited to interspike intervals above approximately 4 msec. Hyperpolarization improved propagation efficacy without affecting total axonal spike number, whereas strong depolarization could abolish propagation of the complex spike. These findings indicate that the complex spike waveform is not faithfully transmitted to downstream synapses and that propagation of the climbing fiber response may be modulated by background activity.

  10. Axon-glia interaction and membrane traffic in myelin formation

    Directory of Open Access Journals (Sweden)

    Robin eWhite

    2014-01-01

    Full Text Available In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialised glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarisation followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is established. Continuous communication between neurons and glial cells is essential for myelin maintenance and axonal integrity. A diverse group of diseases, from multiple sclerosis to schizophrenia, have been linked to malfunction of myelinating cells reflecting the physiological importance of the axon-glial unit. This review describes the mechanisms of axonal signal integration by oligodendrocytes emphasising the central role of the Src-family kinase Fyn during CNS myelination. Furthermore, we discuss myelin membrane trafficking with particular focus on endocytic recycling and the control of PLP (proteolipid protein transport by SNARE proteins. Finally, PLP mistrafficking is considered in the context of myelin diseases.

  11. Use of pHluorin to assess the dynamics of axon guidance receptors in cell culture and in the chick embryo.

    Science.gov (United States)

    Delloye-Bourgeois, Céline; Jacquier, Arnaud; Falk, Julien; Castellani, Valérie

    2014-01-12

    During development, axon guidance receptors play a crucial role in regulating axons sensitivity to both attractive and repulsive cues. Indeed, activation of the guidance receptors is the first step of the signaling mechanisms allowing axon tips, the growth cones, to respond to the ligands. As such, the modulation of their availability at the cell surface is one of the mechanisms that participate in setting the growth cone sensitivity. We describe here a method to precisely visualize the spatio-temporal cell surface dynamics of an axon guidance receptor both in vitro and in vivo in the developing chick spinal cord. We took advantage of the pH-dependent fluorescence property of a green fluorescent protein (GFP) variant to specifically detect the fraction of the axon guidance receptor that is addressed to the plasma membrane. We first describe the in vitro validation of such pH-dependent constructs and we further detail their use in vivo, in the chick spinal chord, to assess the spatio-temporal dynamics of the axon guidance receptor of interest.

  12. Ultrastructural observation of effect of moderate hypothermia on axonal damage in an animal model of diffuse axonal injury

    Institute of Scientific and Technical Information of China (English)

    孙晓川; 唐文渊; 郑履平

    2002-01-01

    Objective: To investigate the effect of moderate hypothermia on responses of axonal cytoskeleton to axonal injury in the acute stage of injury. Methods: Of fifteen adult guinea pigs, twelve animals were subjected to stretch injury to the right optic nerves and divided into the normothermic group (n=6) in which the animal's core temperature was maintained at 36.0-37.5℃ and the hypothermia group (n=6) in which the core temperature was reduced to 32.0-32.5℃ after stretch injury. Remaining three animals sustained no injury to the right optic nerves and served as control group. Half of injured animals (n=3) of either normothermic group or hypothermic group were killed at either 2 hours or 4 hours after injury. The ultrastructural changes of axonal cytoskeleton of the right optic nerve fibers from the animals were examined under a transmission electron microscope and analyzed by quantitative analysis with a computer image analysis system. Results: At 2 hours after stretch injury, there was a significant reduction in the mean number of microtubules (P<0.001), and a significant increase in the mean intermicrotubule spacing (P<0.05 or P<0.01) in axons of all sizes in normothermic animals. The mean number of neurofilaments also decreased statistically (P<0.01) in large and medium subgroups of axons in the same experimental group at 2 hours. By 4 hours, the large subgroup of axons in normothermic animals still demonstrated a significant decline in the mean number of microtubules (P<0.01) and an increase in the mean intermicrotubule spacing (P<0.05), while the medium and small subgroups of axons displayed a significant increase in the mean number of neurofilaments (P<0.05) and reduction in the mean interneurofilament spacing (P<0.05). On the contrary, either the mean number of microtubules and the mean intermicrotubule spacing, or the mean number of neurofilaments and interneurofilament spacing in axons of all sizes in hypothermic stretch-injured animals was not

  13. Ischemic optic neuropathy as a model of neurodegenerative disorder: A review of pathogenic mechanism of axonal degeneration and the role of neuroprotection.

    Science.gov (United States)

    Khalilpour, Saba; Latifi, Shahrzad; Behnammanesh, Ghazaleh; Majid, Amin Malik Shah Abdul; Majid, Aman Shah Abdul; Tamayol, Ali

    2017-04-15

    Optic neuropathy is a neurodegenerative disease which involves optic nerve injury. It is caused by acute or intermittent insults leading to visual dysfunction. There are number of factors, responsible for optic neuropathy, and the optic nerve axon is affected in all type which causes the loss of retinal ganglion cells. In this review we will highlight various mechanisms involved in the cell loss cascades during axonal degeneration as well as ischemic optic neuropathy. These mechanisms include oxidative stress, excitotoxicity, angiogenesis, neuroinflammation and apoptosis following retinal ischemia. We will also discuss the effect of neuroprotective agents in attenuation of the negative effect of factors involve in the disease occurrence and progression.

  14. Simultaneous detection of human papillomavirus integration and c-MYC gene amplification in cervical lesions: an emerging marker for the risk to progression.

    Science.gov (United States)

    Gimenes, Fabrícia; Souza, Raquel Pantarotto; de Abreu, André Luelsdorf Pimenta; Pereira, Monalisa Wolski; Consolaro, Marcia Edilaine Lopes; da Silva, Vânia Ramos Sela

    2016-04-01

    The persistence of high-risk oncogenic human papillomavirus (HR-HPV) infection and its integration into the host genome are key steps in the induction of malignant alterations. c-MYC chromosome region is a frequent localization for HPV insertion that has been observed in chromosome band 8q24 by fluorescence in situ hybridization (FISH). We report the HPV viral integration and amplification patterns of the c-MYC gene in cytological smears with FISH as a potential biomarker for the progression of squamous intraepithelial lesions (SIL). HPV detection and genotyping by polymerase chain reaction (PCR) and FISH analysis by "Vysis Cervical FISH Probe" kit (ABBOTT Molecular Inc.) were performed in 37 cervical samples including 8 NILM, 7 ASC-US, 7 LSIL, 3 ASC-H, 7 HSIL and 5 SCC. The results show concordance between FISH and PCR techniques for HPV detection. The majority of the samples contained HR-HPV, the majority being -16 and -18 genotypes. HPV integration as determined by FISH was most frequent in high-risk lesions. The c-MYC gene amplification was found only in HPV-positive samples and was detected primarily in high-risk lesions and in cells with an integrated form of HPV. HPV integration and c-MYC gene amplification detected by FISH could be an important biomarker for use in clinical practice to determine SIL with a risk of progression.

  15. An order in Lewy body disorders: Retrograde degeneration in hyperbranching axons as a fundamental structural template accounting for focal/multifocal Lewy body disease.

    Science.gov (United States)

    Uchihara, Toshiki

    2017-04-01

    Initial clinical recognition of "paralysis agitans" by James Parkinson was expanded by Jean-Martin Charcot, who recognized additional clinical findings of his own, such as slowness (distinct from paralysis), rigidity (distinct from spasticity) and characteristic countenance. Charcot assembled these findings under the umbrella of "Parkinson disease (PD)". This purely clinical concept was so prescient and penetrating that subsequent neuropathological and biochemical evidences were ordered along this axis to establish the nigra-central trinity of PD (dopamine depletion, nigral lesion with Lewy bodies: LBs). Although dramatic efficacy of levodopa boosted an enthusiasm for this nigra-centralism, extranigral lesions were identified, especially after identification of alpha-synuclein (αS) as a major constituent of LBs. Frequent αS lesions in the lower brainstem with their presumed upward spread were coupled with the self-propagating property of αS molecule, as a molecular template, to constitute the prion-Braak hypothesis. This hybrid concept might expectedly explain clinical, structural and biochemical features of PD/dementia with Lewy bodies (DLB) as if they were stereotypic. In spite of this ordered explanation, recent studies have demonstrated unexpectedly that αS lesions in the human brain, as well as their corresponding clinical manifestations, are much more disordered. Even with such a chaos of LB disorders, affected neuronal groups are uniformly characterized by hyperbranching axons, which may facilitate distal-dominant degeneration and retrograde progression of LB-related degeneration along axons as a fundamental structural order to template LB disorders. This "structural template" hypothesis may explain why: (i) some selective groups are prone to develop Lewy pathology; (ii) their clinical manifestations (especially non-motor components) are vague and generalized without somatotopic accentuation; (iii) distal axons and terminals are preferentially affected

  16. Early detection, early symptom progression and symptomatic remission after ten years in a first episode of psychosis study

    DEFF Research Database (Denmark)

    Simonsen, Erik; ten Velden Hegelstad, Wenche; Haahr, Ulrik Helt

    2013-01-01

    Background: Poor symptom outcome remains a challenge in psychosis: At least 50% of first-episode patients continue to have positive and/or negative symptoms after ten years. Objective: To investigate rates, early predictors and early symptom progression of long-term non-remitted psychosis in an e...

  17. Research Progress in Application of Nanomaterial for Deoxyribonucleic Acid Detection%纳米材料应用于DNA检测领域的研究进展

    Institute of Scientific and Technical Information of China (English)

    洪敏; 朱进; 尹汉东

    2011-01-01

    Recent progress in application of nanomaterial for DNA detection except for PCR systems is reviewed. Nanomaterial-(nanoparticles and nanowires/tubes) or nanofabrication-based DNA detection methods are introduced. Studies reveal that nanomaterial-based DNA detection methods offer several advantages over the traditional PCR systems in the orientation, visualization and multiplexing. Especially, in the research of nanomaterial-based detection, methods with nanoparticle are studied, including colorimetrical detection, fluorescent detection, resonance light scattering detection, scanometric detection, surface-enhanced Raman scattering detection, bio-bar-code detection, electrochemical detection, MALDI-TOF MS detection, and elemental analysis detection. For the nanofabricationbased DNA detection, four methods are presented: nanopatterning, nanoelectromechnical devices,nanopore, and microarray detection methods.%本文主要评述了近年来纳米材料在除了PCR领域以外的DNA检测方面的研究进展.对以纳米材料(纳米粒子、纳米纤维、纳米线、纳米管)为单元,或以纳米器件的制备为实验方法而开展的DNA检测方面的工作进行了介绍.研究表明,基于纳米材料的DNA检测法,无论是在定位、可视化还是多重检测等方面都比传统PCR技术的检测方法表现出其自身的优越性.在以纳米材料为单元的研究中,基于纳米粒子标记的DNA检测方法研究的最多.本文分别进行了例证说明,具体内容包括:比色法、荧光检测法、共振光散射法、表面增强拉曼光谱法、电化学法、MALDI-TOF质谱分析法、元素分析法.而围绕纳米器件制备方法开展的DNA检测研究中,从4个方面进行了介绍:纳米排列图案法、纳米电机械设备法、纳米孔检测法和微排列检测法.

  18. Axonal synapses utilize multiple synaptic ribbons in the mammalian retina.

    Directory of Open Access Journals (Sweden)

    Hong-Lim Kim

    Full Text Available In the mammalian retina, bipolar cells and ganglion cells which stratify in sublamina a of the inner plexiform layer (IPL show OFF responses to light stimuli while those that stratify in sublamina b show ON responses. This functional relationship between anatomy and physiology is a key principle of retinal organization. However, there are at least three types of retinal neurons, including intrinsically photosensitive retinal ganglion cells (ipRGCs and dopaminergic amacrine cells, which violate this principle. These cell types have light-driven ON responses, but their dendrites mainly stratify in sublamina a of the IPL, the OFF sublayer. Recent anatomical studies suggested that certain ON cone bipolar cells make axonal or ectopic synapses as they descend through sublamina a, thus providing ON input to cells which stratify in the OFF sublayer. Using immunoelectron microscopy with 3-dimensional reconstruction, we have identified axonal synapses of ON cone bipolar cells in the rabbit retina. Ten calbindin ON cone bipolar axons made en passant ribbon synapses onto amacrine or ganglion dendrites in sublamina a of the IPL. Compared to the ribbon synapses made by bipolar terminals, these axonal ribbon synapses were characterized by a broad postsynaptic element that appeared as a monad and by the presence of multiple short synaptic ribbons. These findings confirm that certain ON cone bipolar cells can provide ON input to amacrine and ganglion cells whose dendrites stratify in the OFF sublayer via axonal synapses. The monadic synapse with multiple ribbons may be a diagnostic feature of the ON cone bipolar axonal synapse in sublamina a. The presence of multiple ribbons and a broad postsynaptic density suggest these structures may be very efficient synapses. We also identified axonal inputs to ipRGCs with the architecture described above.

  19. Adult-Onset Leukoencephalopathy with Axonal Spheroids and Pigmented Glia Caused by a Novel R782G Mutation in CSF1R.

    Science.gov (United States)

    Foulds, Nicola; Pengelly, Reuben J; Hammans, Simon R; Nicoll, James A R; Ellison, David W; Ditchfield, Adam; Beck, Sarah; Ennis, Sarah

    2015-05-15

    We report a new family with autosomal dominant inheritance of a late onset rapidly progressive leukodystrophy in which exome sequencing has revealed a novel mutation p.R782G in the Colony-Stimulating Factor 1 Receptor gene (CSF1R). Neuropathology of two affected family members showed cerebral white matter degeneration with axonal swellings and pigmented macrophages. The few recently reported families with CSF1R mutations had been previously labelled "hereditary diffuse leukencephalopathy with axonal spheroids" (HDLS) and "pigmentary orthochromatic leukodystrophy" (POLD), disorders which now appear to form a disease continuum. The term "adult-onset leukoencephalopathy with axonal spheroids and pigmented glia" (ALSP) has been proposed to encompass this spectrum. As CSF1R regulates microglia this mutation implies that dysregulation of microglia is the primary cause of the disease.

  20. Detection of long-term progression of myocardial fibrosis in Duchenne muscular dystrophy in an affected family: A cardiovascular magnetic resonance study

    Energy Technology Data Exchange (ETDEWEB)

    Walcher, Thomas [Department of Internal Medicine II, University of Ulm, Ulm (Germany); Steinbach, Peter [Institute of Human Genetics, University of Ulm, Ulm (Germany); Spiess, Jochen; Kunze, Markus; Gradinger, Robert; Walcher, Daniel [Department of Internal Medicine II, University of Ulm, Ulm (Germany); Bernhardt, Peter, E-mail: peter.bernhardt@uniklinik-ulm.de [Department of Internal Medicine II, University of Ulm, Ulm (Germany)

    2011-10-15

    Background: Detection of myocardial fibrosis and left ventricular dysfunction in Duchenne muscular dystrophy (DMD) is the corner stone for further therapeutic studies. Little is known about the ability of cardiac magnetic resonance imaging (CMR) to evaluate progression of myocardial fibrosis. Aim of our study was to provide CMR data in a previously genotyped DMD family and to evaluate whether progression of myocardial fibrosis could be visualized. Methods and results: DMD genotypes were available in 14 family members. CMR was performed in 4/5 carrier females, in 2/2 affected males and in one healthy family member with normal genotype. Functional images and late gadolinium enhanced (LGE) images in contiguous short-axis orientation were acquired at baseline and follow-up of 1231 days CMR examination could be repeated in three carrier females, in one affected male and in the healthy subject previously scanned. Mean decrease of left ventricular ejection fraction during the follow-up period was 10.5 {+-} 11.0%, mean progression of LGE volume 11.7 {+-} 9.5%. Conclusions: Myocardial fibrosis seems to occur prior to global left ventricular dysfunction in DMD diseased males and carrier females. CMR could be used to evaluate progression of myocardial fibrosis and left ventricular function and may thus serve as an important diagnostic tool in the evaluation of therapeutical options in DMD.

  1. Progressive cerebral atrophy in neuromyelitis optica.

    Science.gov (United States)

    Warabi, Yoko; Takahashi, Toshiyuki; Isozaki, Eiji

    2015-12-01

    We report two cases of neuromyelitis optica patients with progressive cerebral atrophy. The patients exhibited characteristic clinical features, including elderly onset, secondary progressive tetraparesis and cognitive impairment, abnormally elevated CSF protein and myelin basic protein levels, and extremely highly elevated serum anti-AQP-4 antibody titer. Because neuromyelitis optica pathology cannot switch from an inflammatory phase to the degenerative phase until the terminal phase, neuromyelitis optica rarely appears as a secondary progressive clinical course caused by axonal degeneration. However, severe intrathecal inflammation and massive destruction of neuroglia could cause a secondary progressive clinical course associated with cerebral atrophy in neuromyelitis optica patients.

  2. Transgenic inhibition of astroglial NF-κB leads to increased axonal sparing and sprouting following spinal cord injury

    Science.gov (United States)

    Brambilla, Roberta; Hurtado, Andres; Persaud, Trikaldarshi; Esham, Kim; Pearse, Damien D.; Oudega, Martin; Bethea, John R.

    2014-01-01

    We previously showed that NF-κB inactivation in astrocytes leads to improved functional recovery following spinal cord injury (SCI). This correlated with reduced expression of pro-inflammatory mediators and chondroitin sulphate proteoglycans, and increased white matter preservation. Hence we hypothesized that inactivation of astrocytic NF-κB would create a more permissive environment for axonal sprouting and regeneration. We induced both contusive and complete transection SCI in GFAP-IκBα-dn and WT mice and performed retrograde (fluorogold) and anterograde (biotinylated dextran amine) tracing eight weeks after injury. Following contusive SCI, more fluorogold-labeled cells were found in motor cortex, reticular formation, and raphe nuclei of transgenic mice. Spared and sprouting biotinylated dextran amine-positive corticospinal axons were found caudal to the lesion in GFAP-IκBα-dn mice. Higher numbers of fluorogold-labeled neurons were detected immediately rostral to the lesion in GFAP-IκBα-dn mice, accompanied by increased expression of synaptic and axonal growth-associated molecules. After transection, however, no fluorogold-labeled neurons or biotinylated dextran amine-filled axons were found rostral and caudal to the lesion, respectively, in either genotype. These data demonstrated that inhibiting astroglial NF-κB resulted in a growth-supporting terrain promoting sparing and sprouting, rather than regeneration, of supraspinal and propriospinal circuitries essential for locomotion, hence contributing to the improved functional recovery observed after SCI in GFAP-IκBα-dn mice. PMID:19522780

  3. TRPV2 enhances axon outgrowth through its activation by membrane stretch in developing sensory and motor neurons.

    Science.gov (United States)

    Shibasaki, Koji; Murayama, Namie; Ono, Katsuhiko; Ishizaki, Yasuki; Tominaga, Makoto

    2010-03-31

    Thermosensitive TRP (thermo TRP) channels are well recognized for their contributions to sensory transduction, responding to a wide variety of stimuli including temperature, nociceptive stimuli, touch, and osmolarity. However, the precise roles for the thermo TRP channels during development have not been determined. To explore the functional importance of thermo TRP channels during neural development, the temporal expression was determined in embryonic mice. Interestingly, TRPV2 expression was detected in spinal motor neurons in addition to the dorsal root ganglia from embryonic day 10.5 and was localized in axon shafts and growth cones, suggesting that the channel is important for axon outgrowth regulation. We revealed that endogenous TRPV2 was activated in a membrane stretch-dependent manner in developing neurons by knocking down the TRPV2 function with dominant-negative TRPV2 and TRPV2-specific shRNA and significantly promoted axon outgrowth. Thus, for the first time we revealed that TRPV2 is an important regulator for axon outgrowth through its activation by membrane stretch during development.

  4. Using perimetric data to estimate ganglion cell loss for detecting progression of glaucoma: a comparison of models.

    Science.gov (United States)

    Price, Derek A; Swanson, William H; Horner, Douglas G

    2017-07-01

    Models relating perimetric sensitivities to ganglion cell numbers have been proposed for combining structural and functional measures from patients with glaucoma. Here we compared seven models for ability to differentiate progressing and stable patients, testing the hypothesis that the model incorporating local spatial scale would have the best performance. The models were compared for the United Kingdom Glaucoma Treatment Study (UKGTS) data for the right eyes of 489 patients recently diagnosed with glaucoma. The SITA 24-2 program was utilised for perimetry and Stratus OCT fast scanning protocol for thickness of circumpapillary retinal nerve fibre layer (RNFL). The first analysis defined progression in terms of decline in RNFL thickness. The highest and lowest quintiles (22 subjects per group) were identified for change in thickness of inferior temporal (IT), superior temporal (ST), and global RNFL (μm year(-1) ); a two-way anova was used to look for differences between the models in ability to discriminate the two quintiles. The second analysis defined a 'progression group' as those who were flagged by the UKGTS criteria as having progressive loss in perimetric sensitivity, and a 'no progression' group as those with rate of change in Mean Deviation (MD) closest to 0 dB year(-1) (87 subjects per group). The third analysis characterised variability of retinal ganglion cell (RGC) models for the two groups in the second analysis, using the standard deviation of residuals from linear regression of ganglion cell number over time to compute Coefficient of Variation (CoV). The first analysis produced a negative result because the three anovas found no effect of model or interaction of model and group (F6,294 0.08). There was an effect of group only for the anova with the ST sector (F6,294 = 12.2, p models. The third analysis found that even when variability in MD was low, the CoV was so large that test-retest variation could include 100% loss of ganglion cells. Two very

  5. Myelinated sensory and alpha motor axon regeneration in peripheral nerve neuromas

    Science.gov (United States)

    Macias, M. Y.; Lehman, C. T.; Sanger, J. R.; Riley, D. A.

    1998-01-01

    Histochemical staining for carbonic anhydrase and cholinesterase (CE) activities was used to analyze sensory and motor axon regeneration, respectively, during neuroma formation in transected and tube-encapsulated peripheral nerves. Median-ulnar and sciatic nerves in the rodent model permitted testing whether a 4 cm greater distance of the motor neuron soma from axotomy site or intrinsic differences between motor and sensory neurons influenced regeneration and neuroma formation 10, 30, and 90 days later. Ventral root radiculotomy confirmed that CE-stained axons were 97% alpha motor axons. Distance significantly delayed axon regeneration. When distance was negligible, sensory axons grew out sooner than motor axons, but motor axons regenerated to a greater quantity. These results indicate regeneration differences between axon subtypes and suggest more extensive branching of motor axons within the neuroma. Thus, both distance from injury site to soma and inherent motor and sensory differences should be considered in peripheral nerve repair strategies.

  6. Myelinated sensory and alpha motor axon regeneration in peripheral nerve neuromas

    Science.gov (United States)

    Macias, M. Y.; Lehman, C. T.; Sanger, J. R.; Riley, D. A.

    1998-01-01

    Histochemical staining for carbonic anhydrase and cholinesterase (CE) activities was used to analyze sensory and motor axon regeneration, respectively, during neuroma formation in transected and tube-encapsulated peripheral nerves. Median-ulnar and sciatic nerves in the rodent model permitted testing whether a 4 cm greater distance of the motor neuron soma from axotomy site or intrinsic differences between motor and sensory neurons influenced regeneration and neuroma formation 10, 30, and 90 days later. Ventral root radiculotomy confirmed that CE-stained axons were 97% alpha motor axons. Distance significantly delayed axon regeneration. When distance was negligible, sensory axons grew out sooner than motor axons, but motor axons regenerated to a greater quantity. These results indicate regeneration differences between axon subtypes and suggest more extensive branching of motor axons within the neuroma. Thus, both distance from injury site to soma and inherent motor and sensory differences should be considered in peripheral nerve repair strategies.

  7. Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system.

    Science.gov (United States)

    Lopez-Verrilli, María Alejandra; Picou, Frederic; Court, Felipe A

    2013-11-01

    Axonal regeneration in the peripheral nervous system is greatly supported by Schwann cells (SCs). After nerve injury, SCs dedifferentiate to a progenitor-like state and efficiently guide axons to their original target tissues. Contact and soluble factors participate in the crosstalk between SCs and axons during axonal regeneration. Here we show that dedifferentiated SCs secrete nano-vesicles known as exosomes which are specifically internalized by axons. Surprisingly, SC-derived exosomes markedly increase axonal regeneration in vitro and enhance regeneration after sciatic nerve injury in vivo. Exosomes shift the growth cone morphology to a pro-regenerating phenotype and decrease the activity of the GTPase RhoA, involved in growth cone collapse and axon retraction. Altogether, our work identifies a novel mechanism by which SCs communicate with neighboring axons during regenerative processes. We propose that SC exosomes represent an important mechanism by which these cells locally support axonal maintenance and regeneration after nerve damage.

  8. Na(v)1.8 channelopathy in mutant mice deficient for myelin protein zero is detrimental to motor axons.

    Science.gov (United States)

    Moldovan, Mihai; Alvarez, Susana; Pinchenko, Volodymyr; Klein, Dennis; Nielsen, Finn Cilius; Wood, John N; Martini, Rudolf; Krarup, Christian

    2011-02-01

    Myelin protein zero mutations were found to produce Charcot-Marie-Tooth disease phenotypes with various degrees of myelin impairment and axonal loss, ranging from the mild 'demyelinating' adult form to severe and early onset forms. Protein zero deficient homozygous mice ( ) show a severe and progressive dysmyelinating neuropathy from birth with compromised myelin compaction, hypomyelination and distal axonal degeneration. A previous study using immunofluorescence showed that motor nerves deficient of myelin protein zero upregulate the Na(V)1.8 voltage gated sodium channel isoform, which is normally present only in restricted populations of sensory axons. The aim of this study was to investigate the function of motor axons in protein zero-deficient mice with particular emphasis on ectopic Na(V)1.8 voltage gated sodium channel. We combined 'threshold tracking' excitability studies with conventional nerve conduction studies, behavioural studies using rotor-rod measurements, and histological measures to assess membrane dysfunction and its progression in protein zero deficient homozygous mutants as compared with age-matched wild-type controls. The involvement of Na(V)1.8 was investigated by pharmacologic block using the subtype-selective Na(V)1.8 blocker A-803467 and chronically in Na(V)1.8 knock-outs. We found that in the context of dysmyelination, abnormal potassium ion currents and membrane depolarization, the ectopic Na(V)1.8 channels further impair the motor axon excitability in protein zero deficient homozygous mutants to an extent that precipitates conduction failure in severely affected axons. Our data suggest that a Na(V)1.8 channelopathy contributed to the poor motor function of protein zero deficient homozygous mutants, and that the conduction failure was associated with partially reversible reduction of the electrically evoked muscle response and of the clinical function as indicated by the partial recovery of function at rotor-rod measurements. As a

  9. The voltage dependence of Ih in human myelinated axons

    Science.gov (United States)

    Howells, James; Trevillion, Louise; Bostock, Hugh; Burke, David

    2012-01-01

    HCN channels are responsible for Ih, a voltage-gated inwardly rectifying current activated by hyperpolarization. This current appears to be more active in human sensory axons than motor and may play a role in the determination of threshold. Differences in Ih are likely to be responsible for the high variability in accommodation to hyperpolarization seen in different subjects. The aim of this study was to characterise this current in human axons, both motor and sensory. Recordings of multiple axonal excitability properties were performed in 10 subjects, with a focus on the changes in threshold evoked by longer and stronger hyperpolarizing currents than normally studied. The findings confirm that accommodation to hyperpolarization is greater in sensory than motor axons in all subjects, but the variability between subjects was greater than the modality difference. An existing model of motor axons was modified to take into account the behaviour seen with longer and stronger hyperpolarization, and a mathematical model of human sensory axons was developed based on the data collected. The differences in behaviour of sensory and motor axons and the differences between different subjects are best explained by modulation of the voltage dependence, along with a modest increase of expression of the underlying conductance of Ih. Accommodation to hyperpolarization for the mean sensory data is fitted well with a value of −94.2 mV for the mid-point of activation (V0.5) of Ih as compared to −107.3 mV for the mean motor data. The variation in response to hyperpolarization between subjects is accounted for by varying this parameter for each modality (sensory: −89.2 to −104.2 mV; motor −87.3 to −127.3 mV). These voltage differences are within the range that has been described for physiological modulation of Ih function. The presence of slowly activated Ih isoforms on both motor and sensory axons was suggested by modelling a large internodal leak current and a masking of

  10. Emphysema progression is visually detectable in low-dose CT in continuous but not in former smokers

    Energy Technology Data Exchange (ETDEWEB)

    Winkler Wille, Mathilde Marie; Thomsen, Laura H.; Dirksen, Asger; Shaker, Saher B. [Gentofte Hospital, Department of Respiratory Medicine, Hellerup (Denmark); Petersen, Jens [Copenhagen University, Department of Computer Science, Copenhagen (Denmark); Pedersen, Jesper Holst [Copenhagen University Hospital, Department of Thoracic Surgery, Rigshospitalet, Copenhagen (Denmark)

    2014-11-15

    To evaluate interobserver agreement and time-trend in chest CT assessment of emphysema, airways, and interstitial abnormalities in a lung cancer screening cohort. Visual assessment of baseline and fifth-year examination of 1990 participants was performed independently by two observers. Results were standardised by means of an electronic score sheet; kappa and time-trend analyses were performed. Interobserver agreement was substantial in early emphysema diagnosis; highly significant (p < 0.001) time-trends in both emphysema presence and grading were found (higher prevalence and grade of emphysema in late CT examinations). Significant progression in emphysema was seen in continuous smokers, but not in former smokers. Agreement on centrilobular emphysema subtype was substantial; agreement on paraseptal subtype, moderate. Agreement on panlobular and mixed subtypes was only fair. Agreement was fair regarding airway analysis. Interstitial abnormalities were infrequent in the cohort, and agreement on these was fair to moderate. A highly significant time-trend was found regarding interstitial abnormalities, which were more frequent in late examinations. Visual scoring of chest CT is able to characterise the presence, pattern, and progression of early emphysema. Continuous smokers progress; former smokers do not. (orig.)

  11. Dissociation of Axonal Neurofilament Content from Its Transport Rate.

    Directory of Open Access Journals (Sweden)

    Aidong Yuan

    Full Text Available The axonal cytoskeleton of neurofilament (NF is a long-lived network of fibrous elements believed to be a stationary structure maintained by a small pool of transported cytoskeletal precursors. Accordingly, it may be predicted that NF content in axons can vary independently from the transport rate of NF. In the present report, we confirm this prediction by showing that human NFH transgenic mice and transgenic mice expressing human NFL Ser55 (Asp develop nearly identical abnormal patterns of NF accumulation and distribution in association with opposite changes in NF slow transport rates. We also show that the rate of NF transport in wild-type mice remains constant along a length of the optic axon where NF content varies 3-fold. Moreover, knockout mice lacking NFH develop even more extreme (6-fold proximal to distal variation in NF number, which is associated with a normal wild-type rate of NF transport. The independence of regional NF content and NF transport is consistent with previous evidence suggesting that the rate of incorporation of transported NF precursors into a metabolically stable stationary cytoskeletal network is the major determinant of axonal NF content, enabling the generation of the striking local variations in NF number seen along axons.

  12. Functional complexity of the axonal growth cone: a proteomic analysis.

    Directory of Open Access Journals (Sweden)

    Adriana Estrada-Bernal

    Full Text Available The growth cone, the tip of the emerging neurite, plays a crucial role in establishing the wiring of the developing nervous system. We performed an extensive proteomic analysis of axonal growth cones isolated from the brains of fetal Sprague-Dawley rats. Approximately 2000 proteins were identified at ≥ 99% confidence level. Using informatics, including functional annotation cluster and KEGG pathway analysis, we found great diversity of proteins involved in axonal pathfinding, cytoskeletal remodeling, vesicular traffic and carbohydrate metabolism, as expected. We also found a large and complex array of proteins involved in translation, protein folding, posttranslational processing, and proteasome/ubiquitination-dependent degradation. Immunofluorescence studies performed on hippocampal neurons in culture confirmed the presence in the axonal growth cone of proteins representative of these processes. These analyses also provide evidence for rough endoplasmic reticulum and reveal a reticular structure equipped with Golgi-like functions in the axonal growth cone. Furthermore, Western blot revealed the growth cone enrichment, relative to fetal brain homogenate, of some of the proteins involved in protein synthesis, folding and catabolism. Our study provides a resource for further research and amplifies the relatively recently developed concept that the axonal growth cone is equipped with proteins capable of performing a highly diverse range of functions.

  13. Subtypes of GABAergic neurons project axons in the neocortex

    Directory of Open Access Journals (Sweden)

    Shigeyoshi Higo

    2009-11-01

    Full Text Available γ-aminobutyric acid (GABAergic neurons in the neocortex have been regarded as interneurons and speculated to modulate the activity of neurons locally. Recently, however, several experiments revealed that neuronal nitric oxide synthase (nNOS-positive GABAergic neurons project cortico-cortically with long axons. In this study, we illustrate Golgi-like images of the nNOS-positive GABAergic neurons using a nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d reaction and follow the emanating axon branches in cat brain sections. These axon branches projected cortico-cortically with other non-labeled arcuate fibers, contra-laterally via the corpus callosum and anterior commissure. The labeled fibers were not limited to the neocortex but found also in the fimbria of the hippocampus. In order to have additional information on these GABAergic neuron projections, we investigated green fluorescent protein (GFP-labeled GABAergic neurons in GAD67-Cre knock-in / GFP Cre-reporter mice. GFP-labeled axons emanate densely, especially in the fimbria, a small number in the anterior commissure, and very sparsely in the corpus callosum. These two different approaches confirm that not only nNOS-positive GABAergic neurons but also other subtypes of GABAergic neurons project long axons in the cerebral cortex and are in a position to be involved in information processing.

  14. A novel technique using hydrophilic polymers to promote axonal fusion

    Directory of Open Access Journals (Sweden)

    Ravinder Bamba

    2016-01-01

    Full Text Available The management of traumatic peripheral nerve injury remains a considerable concern for clinicians. With minimal innovations in surgical technique and a limited number of specialists trained to treat peripheral nerve injury, outcomes of surgical intervention have been unpredictable. The inability to manipulate the pathophysiology of nerve injury (i.e., Wallerian degeneration has left scientists and clinicians depending on the slow and lengthy process of axonal regeneration (~1 mm/day. When axons are severed, the endings undergo calcium-mediated plasmalemmal sealing, which limits the ability of the axon to be primarily repaired. Polythethylene glycol (PEG in combination with a bioengineered process overcomes the inability to fuse axons. The mechanism for PEG axonal fusion is not clearly understood, but multiple studies have shown that a providing a calcium-free environment is essential to the process known as PEG fusion. The proposed mechanism is PEG-induced lipid bilayer fusion by removing the hydration barrier surrounding the axolemma and reducing the activation energy required for membrane fusion to occur. This review highlights PEG fusion, its past and current studies, and future directions in PEG fusion.

  15. A novel technique using hydrophilic polymers to promote axonal fusion

    Institute of Scientific and Technical Information of China (English)

    Ravinder Bamba; D Colton Riley; Nathaniel D Kelm; Mark D Does; Richard D Dortch; Wesley P hTayer

    2016-01-01

    The management of traumatic peripheral nerve injury remains a considerable concern for clinicians. With minimal innovations in surgical technique and a limited number of specialists trained to treat peripheral nerve injury, outcomes of surgical intervention have been unpredictable. The inability to manipulate the pathophysiology of nerve injury (i.e., Wallerian degeneration) has left scientists and clinicians depending on the slow and lengthy process of axonal regeneration (~1 mm/day). When axons are severed, the endings undergo calcium-mediated plasmalemmal sealing, which limits the ability of the axon to be primarily re-paired. Polythethylene glycol (PEG) in combination with a bioengineered process overcomes the inability to fuse axons. The mechanism for PEG axonal fusion is not clearly understood, but multiple studies have shown that a providing a calcium-free environment is essential to the process known as PEG fusion. The proposed mechanism is PEG-induced lipid bilayer fusion by removing the hydration barrier surrounding the axolemma and reducing the activation energy required for membrane fusion to occur. This review highlights PEG fusion, its past and current studies, and future directions in PEG fusion.

  16. Multireader assessment as an alternative to reference assessment to improve the detection of radiographic progression in a large longitudinal cohort of rheumatoid arthritis (ESPOIR)

    Science.gov (United States)

    Gandjbakhch, Frederique; Granger, Benjamin; Freund, Romain; Foltz, Violaine; Jousse-Joulin, Sandrine; Devauchelle, Valerie; Afshar, Mona; Albert, Jean David; Bailly, Florian; Constant, Elodie; Biale, Lisa; Milin, Morgane; Couderc, Marion; Denarie, Delphine; Fradin, Anne; Martaille, Virginie; Pierreisnard, Audrey; Poursac, Nicolas; Saraux, Alain; Fautrel, Bruno

    2017-01-01

    Introduction Structural damage progression is a major outcome in rheumatoid arthritis (RA). Its evaluation and follow-up in trials should involve radiographic scoring by 1 or 2 readers (reference assessment), which is challenging in large longitudinal cohorts with multiple assessments. Objectives To compare the reproducibility of multireader and reference assessment to improve the feasibility of detecting radiographic progression in a large cohort of patients with early arthritis (ESPOIR). Methods We used 3 sessions to train 12 rheumatologists in radiographic scoring by the van der Heijde-modified Sharp score (SHS). Multireader scoring was based on 10 trained-reader assessments, each reader scoring a random sample of 1/5 of all available radiographs (for double scoring for each X-ray set) for patients included in the ESPOIR cohort with complete radiographic data at M0 and M60. Reference scoring was performed by 2 experienced readers. Scoring was performed blindly to clinical data, with radiographs in chronological order. We compared multireader and reference assessments by intraclass correlation coefficients (ICCs) for SHS and significant radiographic progression (SRP). Results The intrareader and inter-reader reproducibility for trained assessors increased during the training sessions (ICC 0.79 to 0.94 and 0.76 to 0.92), respectively. For the 524 patients included, agreement between multireader and reference assessment of SHS progression between M0 and M60 and SRP assessment were almost perfect, ICC (0.88 (95% CI 0.82 to 0.93)) and (0.99 (95% CI 0.99 to 0.99)), respectively. Conclusions Multireader assessment of radiographic structural damage progression is comparable to reference assessment and could be used to improve the feasibility of radiographic scoring in large longitudinal cohort with numerous X-ray evaluations.

  17. Axonal damage and loss of connectivity in nigrostriatal and mesolimbic dopamine pathways in early Parkinson's disease.

    Science.gov (United States)

    Caminiti, Silvia Paola; Presotto, Luca; Baroncini, Damiano; Garibotto, Valentina; Moresco, Rosa Maria; Gianolli, Luigi; Volonté, Maria Antonietta; Antonini, Angelo; Perani, Daniela

    2017-01-01

    A progressive loss of dopamine neurons in the substantia nigra (SN) is considered the main feature of idiopathic Parkinson's disease (PD). Recent neuropathological evidence however suggests that the axons of the nigrostriatal dopaminergic system are the earliest target of α-synuclein accumulation in PD, thus the principal site for vulnerability. Whether this applies to in vivo PD, and also to the mesolimbic system has not been investigated yet. We used [(11)C]FeCIT PET to measure presynaptic dopamine transporter (DAT) activity in both nigrostriatal and mesolimbic systems, in 36 early PD patients (mean disease duration in months ± SD 21.8 ± 10.7) and 14 healthy controls similar for age. We also performed anatomically-driven partial correlation analysis to evaluate possible changes in the connectivity within both the dopamine networks at an early clinical phase. In the nigrostriatal system, we found a severe DAT reduction in the afferents to the dorsal putamen (DPU) (η(2) = 0.84), whereas the SN was the less affected region (η(2) = 0.31). DAT activity in the ventral tegmental area (VTA) and the ventral striatum (VST) were also reduced in the patient group, but to a lesser degree (VST η(2) = 0.71 and VTA η(2) = 0.31). In the PD patients compared to the controls, there was a marked decrease in dopamine network connectivity between SN and DPU nodes, supporting the significant derangement in the nigrostriatal pathway. These results suggest that neurodegeneration in the dopamine pathways is initially more prominent in the afferent axons and more severe in the nigrostriatal system. Considering PD as a disconnection syndrome starting from the axons, it would justify neuroprotective interventions even if patients have already manifested clinical symptoms.

  18. 大曲中微生物研究和检测进展%Research & Detection Progress of Microbes in Daqu

    Institute of Scientific and Technical Information of China (English)

    邢钢; 敖宗华; 邓波

    2012-01-01

    The research and detection progress of microbes in Daqu was elaborated from two aspects including traditional biology and modem biology, which might provide new approaches to Daqu microbes research and further provide scientific guidance for Daqu production from the angle of microbiology.%从传统生物学和现代生物学两方面对大曲微生物的研究和检测进行阐述,以期为大曲微生物的研究提供思路,并进一步从微生物的角度指导大曲生产。

  19. Neurofilament proteins in axonal regeneration and neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    Haitao Wang; Minfei Wu; Chuanjun Zhan; Enyuan Ma; Maoguang Yang; Xiaoyu Yang; Yingpu Li

    2012-01-01

    Neurofilament protein is a component of the mature neuronal cytoskeleton, and it interacts with the zygosome, which is mediated by neurofilament-related proteins. Neurofilament protein regulates enzyme function and the structure of linker proteins. In addition, neurofilament gene expression plays an important role in nervous system development. Previous studies have shown that neurofilament gene transcriptional regulation is crucial for neurofilament protein expression, especially in axonal regeneration and degenerative diseases. Post-transcriptional regulation increased neurofilament protein gene transcription during axonal regeneration, ultimately resulting in a pattern of neurofilament protein expression. An expression imbalance of post-transcriptional regulatory proteins and other disorders could lead to amyotrophic lateral sclerosis or other neurodegenerative diseases. These findings indicated that after transcription, neurofilament protein regulated expression of related proteins and promoted regeneration of damaged axons, suggesting that regulation disorders could lead to neurodegenerative diseases.

  20. Inflections in threshold electrotonus to depolarizing currents in sensory axons.

    Science.gov (United States)

    Burke, David; Howells, James; Trevillion, Louise; Kiernan, Matthew C; Bostock, Hugh

    2007-12-01

    Threshold electrotonus involves tracking the changes in axonal excitability produced by subthreshold polarizing currents and is the only technique that allows insight into the function of internodal conductances in human subjects in vivo. There is often an abrupt transient reversal of the threshold change as excitability increases in response to conditioning depolarizing currents (S1 phase). In recordings from motor axons, it has been recently demonstrated that this notch or inflection is due to activation of low-threshold axons. We report that a notch is frequently seen in sensory recordings (in 33 of 50 healthy subjects) using the standard threshold electrotonus protocol. When large, the notch can distort subsequent phases of threshold electrotonus and could complicate quantitative measurements and modeling studies.

  1. Pili canaliculi as manifestation of giant axonal neuropathy*

    Science.gov (United States)

    de Almeida Jr., Hiram Larangeira; Garcias, Gilberto; Silva, Ricardo Marques e; Batista, Stela Laner; Pasetto, Fernanda

    2016-01-01

    Giant axonal neuropathy is a rare autosomal recessive neurodegenerative disease. The condition is characterized by neurons with abnormally large axons due to intracellular filament accumulation. The swollen axons affect both the peripheral and central nervous system. A 6-year old female patient had been referred to a geneticist reporting problems with walking and hypotonia. At the age of 10, she became wheelchair dependent. Scanning electron microscopy of a curly hair classified it as pili canaliculi. GAN gene sequencing demonstrated mutation c.1456G>A (p.GLU486LYS). At the age of 12, the patient died due to respiratory complications. Dermatologists should be aware of this entity since hair changes are considered suggestive of GAN.

  2. Using quantum filters to process images of diffuse axonal injury

    Science.gov (United States)

    Pineda Osorio, Mateo

    2014-06-01

    Some images corresponding to a diffuse axonal injury (DAI) are processed using several quantum filters such as Hermite Weibull and Morse. Diffuse axonal injury is a particular, common and severe case of traumatic brain injury (TBI). DAI involves global damage on microscopic scale of brain tissue and causes serious neurologic abnormalities. New imaging techniques provide excellent images showing cellular damages related to DAI. Said images can be processed with quantum filters, which accomplish high resolutions of dendritic and axonal structures both in normal and pathological state. Using the Laplacian operators from the new quantum filters, excellent edge detectors for neurofiber resolution are obtained. Image quantum processing of DAI images is made using computer algebra, specifically Maple. Quantum filter plugins construction is proposed as a future research line, which can incorporated to the ImageJ software package, making its use simpler for medical personnel.

  3. The axon-protective WLD(S) protein partially rescues mitochondrial respiration and glycolysis after axonal injury.

    Science.gov (United States)

    Godzik, Katharina; Coleman, Michael P

    2015-04-01

    The axon-protective Wallerian degeneration slow (WLD(S)) protein can ameliorate the decline in axonal ATP levels after neurite transection. Here, we tested the hypothesis that this effect is associated with maintenance of mitochondrial respiration and/or glycolysis. We used isolated neurites of superior cervical ganglion (SCG) cultures in the Seahorse XF-24 Metabolic Flux Analyser to determine mitochondrial respiration and glycolysis under different conditions. We observed that both mitochondrial respiration and glycolysis declined significantly during the latent phase of Wallerian degeneration. WLD(S) partially reduced the decline both in glycolysis and in mitochondrial respiration. In addition, we found that depleting NAD levels in uncut cultures led to changes in mitochondrial respiration and glycolysis similar to those rescued by WLD(S) after cut, suggesting that the maintenance of NAD levels in Wld(S) neurites after axonal injury at least partially underlies the maintenance of ATP levels. However, by using another axon-protective mutation (Sarm1(-/-)), we could demonstrate that rescue of basal ECAR (and hence probably glycolysis) rather than basal OCR (mitochondrial respiration) may be part of the protective phenotype to delay Wallerian degeneration. These findings open new routes to study glycolysis and the connection between NAD and ATP levels in axon degeneration, which may help to eventually develop therapeutic strategies to treat neurodegenerative diseases.

  4. Rho-independent stimulation of axon outgrowth and activation of the ERK and Akt signaling pathways by C3 transferase in sensory neurons

    Directory of Open Access Journals (Sweden)

    Maria eAuer

    2012-10-01

    Full Text Available Peripheral nerve injury triggers the activation of RhoA in spinal motor and peripheral sensory neurons. RhoA activates a number of effector proteins including the Rho-associated kinase, ROCK, which targets the cytoskeleton and leads to inhibition of neurite outgrowth. Blockade of the Rho/ROCK pathway by pharmacological means improves axon regeneration after experimental injury. C3bot transferase, an exoenzyme produced by Clostridium botulinum, inactivates RhoA by ADP-ribosylation. Up to now it was not investigated thoroughly whether C3bot exerts positive effects on peripheral axon regeneration as well. In the present study, recombinant membrane permeable C3bot produced a small, but significant, axon outgrowth effect on peripheral sensory neurons dissociated from adult dorsal root ganglia of the rat. Neuronal overexpression of C3, however, did not enhance axonal growth. Moreover, transfection of plasmids encoding dominant negative RhoA or RhoA specific shRNAs failed to increase axonal growth. Furthermore, we show that the C3bot mutant, C3E174Q, which lacks RhoA inhibitory activity, still stimulates axonal growth. When analyzing possible signaling mechanisms we found that ERK (extracellular signal-regulated kinase and Akt are activated by C3bot and ERK is induced by the C3E174Q mutant. Upregulation of kinase activities by C3bot occurs significantly faster than inactivation of RhoA indicating a RhoA-independent pathway of action by C3bot. The induction of ERK signaling by C3bot was detected in embryonic hippocampal neurons, too. Taken together, although RhoA plays a central role for inhibition of axon outgrowth by myelin-derived inhibitors, it does not interfere with axonal growth of sensory neurons on a permissive substrate in vitro. C3bot blocks neuronal RhoA activity, but its positive effects on axon elongation and branching appear to be mediated by Rho independent mechanisms involving activation of axon growth promoting ERK and Akt kinases.

  5. Axonal TDP-43 aggregates in sporadic amyotrophic lateral sclerosis.

    Science.gov (United States)

    Onozato, T; Nakahara, A; Suzuki-Kouyama, E; Hineno, A; Yasude, T; Nakamura, T; Yahikozawa, H; Watanabe, M; Kayanuma, K; Makishita, H; Ohara, S; Hashimoto, T; Higuchi, K; Sakai, T; Asano, K; Hashimoto, T; Kanno, H; Nakayama, J; Oyanagi, K

    2016-10-01

    Axonal aggregates of phosphorylated (p-) transactive response DNA-binding protein 43 kDa (TDP-43) in sporadic amyotrophic lateral sclerosis (sALS) were examined in relation to propagation of the protein in the nervous system. Brains and spinal cords of Japanese patients with sALS and control subjects were examined immunohistochemically using formalin-fixed paraffin-embedded specimens with special reference to the topographical distribution, microscopic features, presynaptic aggregates, and correlation between the aggregates in axons and the clinical course. (i) Aggregates of p-TDP-43 were frequently present in axons of the hypoglossal and facial nerve fibres and the spinal anterior horn cells. (ii) Aggregates of p-TDP-43 in the axons showed two characteristic microscopic features - dash-like granuloreticular aggregates (GRAs) and massive aggregates (MAs). (iii) MAs were surrounded by p-neurofilaments, but p-neurofilament immunnoreactivity decreased at the inside of axons with GRAs. (iv) Patients showing MAs and GRAs had a relatively shorter clinical course than patients without the aggregates. (v) Some neurones in the red nucleus in patients were surrounded by synapses containing p- and p-independent (i)-TDP-43, and almost all neurones had lost their nuclear TDP-43 immunoreactivity; 17% of those neurones in the red nucleus also had TDP-43-immunopositive neuronal cytoplasmic inclusions, but no postsynaptic p-TDP-43 deposition was evident. There are two types of axonal p-TDP-43 aggregates, MAs and GRAs, located predominantly in the facial and hypoglossal nuclei and anterior horn cells. These aggregates may influence the function of neurones, and presynaptic aggregates of the protein induce loss of p-i-TDP-43 in the nuclei of postsynaptic neurones. © 2016 British Neuropathological Society.

  6. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    Energy Technology Data Exchange (ETDEWEB)

    Menelaou, Evdokia; Paul, Latoya T. [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Perera, Surangi N. [Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States); Svoboda, Kurt R., E-mail: svobodak@uwm.edu [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States)

    2015-04-01

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner.

  7. 真菌毒素检测技术研究进展%Research Progress of Mycotoxin Detection Technologies

    Institute of Scientific and Technical Information of China (English)

    尚艳娥

    2012-01-01

    Some classic mycotoxin detection techniques were reviewed in this paper. The latest develop- ment in detection technologies was briefly introduced. And the development trend of mycotoxins detection technology, was summerized.%对较为经典的真菌毒素检测技术进行了综述,并对近些年研究开发的一些新技术和新动态作了简要介绍,总结了真菌毒素检测领域的发展趋势和方向,为食品安全检测技术的研究开发提供一定的参考.

  8. The progress on detection methods of Giardia lamblia%蓝氏贾第鞭毛虫检测方法的研究进展

    Institute of Scientific and Technical Information of China (English)

    朱海波; 李国清

    2010-01-01

    Giardia lamblia is an important waterborne zoonotic parasitic protozoan. It can cause diarrhea in humans and animals. Traditional detection methods are mainly stool examinations. With the application of immunological and molecular biology techniques, its immunological and molecular detection methods have made considerable developments in recent years. This article reviewed the progress in this field.%蓝氏贾第鞭毛虫是一种重要的水源性人兽共患的寄生原虫,可致人和动物的腹泻.传统的检测方法主要为粪便检查,随着免疫学与分子生物学技术的应用,其免疫学检测和分子生物学检测近年来有了较大的发展.该文就上述研究进展进行综述.

  9. Tuning the orchestra: transcriptional pathways controlling axon regeneration

    Directory of Open Access Journals (Sweden)

    Andrea eTedeschi

    2012-01-01

    Full Text Available Trauma in the adult mammalian central nervous system leads to irreversible structural and functional impairment due to failed regeneration attempts. In contrast, neurons in the peripheral nervous system exhibit a greater regenerative ability. It has been proposed that an orchestrated sequence of transcriptional events controlling the expression of specific sets of genes may be the underlying basis of an early cell-autonomous regenerative response. Understanding whether transcriptional fine tuning, in parallel with strategies aimed at counteracting extrinsic impediments promotes axon re-growth following central nervous system injuries represents an exciting challenge for future studies. Transcriptional pathways controlling axon regeneration are presented and discussed in this review.

  10. Giant Axonal Neuropathy Among Two Siblings - A Case Report

    Directory of Open Access Journals (Sweden)

    John Jhon. K

    2001-01-01

    Full Text Available Giant axonal neuropathy is a rate disorder with an autosomal recessive inheritance. It should be differentiated from toxic neuropathies, and hereditary degenerative disorders of nervous system like Friedreich′s ataxia and HMSN. Thick curly hair, though may not be present always is a useful clinical clue to identify cases. Prognosis is generally poor though course of the illness is variable. We report here a clinically and hisopathologically characteristic familial case of giant axonal neuropathy, which occurred in a 17-year-old boy, and his 21-year-old sister.

  11. Schwann cell expressed Nogo-B modulates axonal branching of adult sensory neurons through the Nogo-B receptor NgBR

    Directory of Open Access Journals (Sweden)

    Christoph eEckharter

    2015-11-01

    Full Text Available In contrast to the central nervous system (CNS nerve fibers do regenerate in the peripheral nervous system (PNS although in a clinically unsatisfying manner. A major problem is excessive sprouting of regenerating axons which results in aberrant reinnervation of target tissue and impaired functional recovery. In the CNS, the reticulon protein Nogo-A has been identified as a prominent oligodendrocyte expressed inhibitor of long-distance growth of regenerating axons. We show here that the related isoform Nogo-B is abundantly expressed in Schwann cells in the PNS. Other than Nogo-A in oligodendrocytes, Nogo-B does not localize to the myelin sheath but is detected in the ER and the plasma membrane of Schwann cells. Adult sensory neurons that are cultured on nogo-a/b deficient Schwann cells form significantly fewer axonal branches versus those on wildtype Schwann cells, while their maximal axonal extension is unaffected. We demonstrate that this effect of Nogo-B on neuronal morphology is restricted to undifferentiated Schwann cells and is mediated by direct physical contact between these two cell types. Moreover, we show that blocking the Nogo-B specific receptor NgBR, which we find expressed on sensory neurons and to interact with Schwann cell expressed Nogo-B, produces the same branching phenotype as observed after deletion of Nogo-B. These data provide evidence for a novel function of the nogo gene that is implemented by the Nogo-B isoform. The remarkably specific effects of Nogo-B/ NgBR on axonal branching, while leaving axonal extension unaffected, are of potential clinical relevance in the context of excessive axonal sprouting after peripheral nerve injury.

  12. CXCR7 antagonism prevents axonal injury during experimental autoimmune encephalomyelitis as revealed by in vivo axial diffusivity

    Directory of Open Access Journals (Sweden)

    Cruz-Orengo Lillian

    2011-12-01

    Full Text Available Abstract Background Multiple Sclerosis (MS is characterized by the pathological trafficking of leukocytes into the central nervous system (CNS. Using the murine MS model, experimental autoimmune encephalomyelitis (EAE, we previously demonstrated that antagonism of the chemokine receptor CXCR7 blocks endothelial cell sequestration of CXCL12, thereby enhancing the abluminal localization of CXCR4-expressing leukocytes. CXCR7 antagonism led to decreased parenchymal entry of leukocytes and amelioration of ongoing disease during EAE. Of note, animals that received high doses of CXCR7 antagonist recovered to baseline function, as assessed by standard clinical scoring. Because functional recovery reflects axonal integrity, we utilized diffusion tensor imaging (DTI to evaluate axonal injury in CXCR7 antagonist- versus vehicle-treated mice after recovery from EAE. Methods C57BL6/J mice underwent adoptive transfer of MOG-reactive Th1 cells and were treated daily with either CXCR7 antagonist or vehicle for 28 days; and then evaluated by DTI to assess for axonal injury. After imaging, spinal cords underwent histological analysis of myelin and oligodendrocytes via staining with luxol fast blue (LFB, and immunofluorescence for myelin basic protein (MBP and glutathione S-transferase-π (GST-π. Detection of non-phosphorylated neurofilament H (NH-F was also performed to detect injured axons. Statistical analysis for EAE scores, DTI parameters and non-phosphorylated NH-F immunofluorescence were done by ANOVA followed by Bonferroni post-hoc test. For all statistical analysis a p Results In vivo DTI maps of spinal cord ventrolateral white matter (VLWM axial diffusivities of naïve and CXCR7 antagonist-treated mice were indistinguishable, while vehicle-treated animals exhibited decreased axial diffusivities. Quantitative differences in injured axons, as assessed via detection of non-phosphorylated NH-F, were consistent with axial diffusivity measurements. Overall

  13. Axonal transport and neurodegenerative disease: vesicle-motor complex formation and their regulation

    Directory of Open Access Journals (Sweden)

    Anderson EN

    2014-03-01

    Full Text Available Eric N Anderson,* Joseph A White II,* Shermali GunawardenaDepartment of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA *These authors contributed equally to this work Abstract: The process of axonal transport serves to move components over very long distances on microtubule tracks in order to maintain neuronal viability. Molecular motors – kinesin and dynein – are essential for the movement of neuronal cargoes along these tracks; defects in this pathway have been implicated in the initiation or progression of some neurodegenerative diseases, suggesting that this process may be a key contributor in neuronal dysfunction. Recent work has led to the identification of some of the motor-cargo complexes, adaptor proteins, and their regulatory elements in the context of disease proteins. In this review, we focus on the assembly of the amyloid precursor protein, huntingtin, mitochondria, and the RNA-motor complexes and discuss how these may be regulated during long-distance transport in the context of neurodegenerative disease. As knowledge of these motor-cargo complexes and their involvement in axonal transport expands, insight into how defects in this pathway contribute to the development of neurodegenerative diseases becomes evident. Therefore, a better understanding of how this pathway normally functions has important implications for early diagnosis and treatment of diseases before the onset of disease pathology or behavior. Keywords: kinesin, dynein, amyloid precursor protein, huntingtin, microtubules

  14. Plasminogen deficiency causes reduced corticospinal axonal plasticity and functional recovery after stroke in mice.

    Directory of Open Access Journals (Sweden)

    Zhongwu Liu

    Full Text Available Tissue plasminogen activator (tPA has been implicated in neurite outgrowth and neurological recovery post stroke. tPA converts the zymogen plasminogen (Plg into plasmin. In this study, using plasminogen knockout (Plg-/- mice and their Plg-native littermates (Plg+/+, we investigated the role of Plg in axonal remodeling and neurological recovery after stroke. Plg+/+ and Plg-/- mice (n = 10/group were subjected to permanent intraluminal monofilament middle cerebral artery occlusion (MCAo. A foot-fault test and a single pellet reaching test were performed prior to and on day 3 after stroke, and weekly thereafter to monitor functional deficit and recovery. Biotinylated dextran amine (BDA was injected into the left motor cortex to anterogradely label the corticospinal tract (CST. Animals were euthanized 4 weeks after stroke. Neurite outgrowth was also measured in primary cultured cortical neurons harvested from Plg+/+ and Plg-/- embryos. In Plg+/+ mice, the motor functional deficiency after stroke progressively recovered with time. In contrast, recovery in Plg-/- mice was significantly impaired compared to Plg+/+ mice (p0.82, p<0.01. Plg-/- neurons exhibited significantly reduced neurite outgrowth. Our data suggest that plasminogen-dependent proteolysis has a beneficial effect during neurological recovery after stroke, at least in part, by promoting axonal remodeling in the denervated spinal cord.

  15. Metabolic Syndrome, Neurotoxic 1-Deoxysphingolipids and Nervous Tissue Inflammation in Chronic Idiopathic Axonal Polyneuropathy (CIAP)

    Science.gov (United States)

    Hube, Larissa; Dohrn, Maike F.; Karsai, Gergely; Hirshman, Sarah; Van Damme, Philip; Schulz, Jörg B.; Weis, Joachim; Hornemann, Thorsten; Claeys, Kristl G.

    2017-01-01

    Aim Chronic idiopathic axonal polyneuropathy (CIAP) is a slowly progressive, predominantly sensory, axonal polyneuropathy, with no aetiology being identified despite extensive investigations. We studied the potential role of the metabolic syndrome, neurotoxic 1-deoxysphingolipids (1-deoxySLs), microangiopathy and inflammation in sural nerve biopsies. Methods We included 30 CIAP-patients, 28 with diabetic distal symmetrical polyneuropathy (DSPN) and 31 healthy controls. We assessed standardised scales, tested for the metabolic syndrome, measured 1-deoxySLs in plasma, performed electroneurography and studied 17 sural nerve biopsies (10 CIAP; 7 DSPN). Results One third of the CIAP-patients had a metabolic syndrome, significantly less frequent than DSPN-patients (89%). Although the metabolic syndrome was not significantly more prevalent in CIAP compared to healthy controls, hypercholesterolemia did occur significantly more frequent. 1-deoxySLs were significantly and equally elevated in both patient groups compared to healthy controls. Mean basal lamina thickness of small endoneurial vessels and the number of CD68- or CD8-positive cells in biopsies of CIAP- and DSPN-patients did not differ significantly. However, the number of leucocyte-common-antigen positive cells was significantly increased in CIAP. Conclusions A non-significant trend towards a higher occurrence of the metabolic syndrome in CIAP-patients compared to healthy controls was found. 1-deoxySLs were significantly increased in plasma of CIAP-patients. Microangiopathy and an inflammatory component were present in CIAP-biopsies. PMID:28114358

  16. The axon-glia unit in white matter stroke: mechanisms of damage and recovery.

    Science.gov (United States)

    Rosenzweig, Shira; Carmichael, S Thomas

    2015-10-14

    Approximately one quarter of all strokes in humans occur in white matter, and the progressive nature of white matter lesions often results in severe physical and mental disability. Unlike cortical grey matter stroke, the pathology of white matter stroke revolves around disrupted connectivity and injured axons and glial cells, rather than neuronal cell bodies. Consequently, the mechanisms behind ischemic damage to white matter elements, the regenerative responses of glial cells and their signaling pathways, all differ significantly from those in grey matter. Development of effective therapies for white matter stroke would require an enhanced understanding of the complex cellular and molecular interactions within the white matter, leading to the identification of new therapeutic targets. This review will address the unique properties of the axon-glia unit during white matter stroke, describe the challenging process of promoting effective white matter repair, and discuss recently-identified signaling pathways which may hold potential targets for repair in this disease. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.

  17. Non-invasive aneuploidy detection using free fetal DNA and RNA in maternal plasma: recent progress and future possibilities.

    NARCIS (Netherlands)

    Go, A.T.; Vugt, J.M.G. van; Oudejans, C.B.

    2011-01-01

    BACKGROUND: Cell-free fetal DNA (cff DNA) and RNA can be detected in maternal plasma and used for non-invasive prenatal diagnostics. Recent technical advances have led to a drastic change in the clinical applicability and potential uses of free fetal DNA and RNA. This review summarizes the latest cl

  18. Recent progress in early detection of prostate cancer%前列腺癌早期诊断新进展

    Institute of Scientific and Technical Information of China (English)

    胡梦博; 姜昊文; 丁强

    2013-01-01

    前列腺癌发病率高,发病隐匿,进展缓慢,早期诊断、及时治疗能有效降低前列腺癌死亡率。本文对2013年欧洲泌尿外科学会和美国泌尿外科学会的前列腺癌早期诊断指南进行了介绍和解读,并阐述了PCA3、风险计算器、基因检测等前列腺癌早期诊断的新方法,旨在提高前列腺癌早期诊断的科学性和有效性。%Prostate cancer, which has insidious onset and develops slowly, has high rate of morbidity. Early detection and treatment can effectively decrease its mortality rate. We introduce and explain the guideline for early detection of prostate cancer by European Association of Urology and American Urological Association updated in 2013, as well as some new early detection methods such as PCA3, risk calculator and genetic test in order to improve the effect of early detection of prostate cancer in China.

  19. Quantitative T1 and T2 mapping in recurrent glioblastomas under bevacizumab: earlier detection of tumor progression compared to conventional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Lescher, Stephanie; Jurcoane, Alina; Veit, Andreas [Hospital of Goethe University, Institute of Neuroradiology, Frankfurt am Main (Germany); Baehr, Oliver [Hospital of Goethe University, Department of Neurology, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main (Germany); Deichmann, Ralf [Brain Imaging Center, Center for Imaging in Neuroscience, Frankfurt am Main (Germany); Hattingen, Elke [Hospital of Goethe University, Institute of Neuroradiology, Frankfurt am Main (Germany); Hospital of University Bonn, Instiute of Neuroradiology, Bonn (Germany)

    2014-10-07

    Treatment with the humanized anti-vascular endothelial growth factor (VEGF) antibody bevacizumab in glioblastoma patients suppresses contrast enhancement via the reduction of vascular permeability, which does not necessarily indicate real reduction of tumor cell mass. Therefore, other imaging criteria are needed to recognize tumor growth under bevacizumab more reliably. It is still unknown, whether quantitative T1 mapping is useful to monitor the effects of anti-angiogenic therapy or to indicate a tumor progression earlier and more reliable compared to conventional magnetic resonance imaging (MRI) sequences. This raised the question whether quantitative T1 mapping is more suitable to monitor treatment effects of bevacizumab. Conventional and quantitative MRI was performed on six consecutive patients with recurrent glioblastoma before treatment with bevacizumab and every 8 weeks thereafter until further tumor progression. Quantitative T1 maps before and after intravenous application of contrast agent and quantitative T2 maps were performed to calculate serial differential maps and subtraction maps from one time point, subtracting contrast-enhanced T1 maps from non-contrast T1 maps. In five illustrative cases, tumor progression was documented earlier in differential T1 relaxation time (DiffT1) and T2 relaxation time (DiffT2) maps before changes in the conventional MRI studies were obvious. Four patients showed previous prolongation of T1 relaxation time in the DiffT1 maps, suggesting tumor progression, and subtraction maps revealed faint contrast enhancement matching with the areas of T1 prolongation. Our results emphasize that quantitative relaxation time mapping could be a promising method for tumor monitoring in glioblastoma patients under anti-angiogenic therapy. Quantitative T1 mapping seems to detect enhancing tumor earlier than conventional contrast-enhanced T1-weighted images. (orig.)

  20. Rapid axonal transport in primate optic nerve. Distribution of pressure-induced interruption.

    Science.gov (United States)

    Radius, R L; Anderson, D R

    1981-04-01

    Six primate eyes were studied after four hours of elevated intraocular pressure. Tissue specimens from the region of the lamina cribrosa were examined in cross section by transmission electron microscopy. Interruption in fast orthograde and retrograde axonal transport was identified in individual axons by noting accumulation of membraneous microorganelles, such as mitochondria and microvesicles within axon cylinders. Although organelle accumulation varied from bundle to bundle, involvement of individual axons was diffuse across the extent of a specific axon bundle. This observation contradicts the apparent association of axonal transport block with crosswise-oriented trabecular beams at the level of the lamina cribrosa as seen in tissue specimens examined in longitudinal section. It also fails to support the notion that blocked axonal transport with elevated pressure is produced by kinking of axons at the lamina.

  1. Overexpression of Pax6 results in microphthalmia, retinal dysplasia and defective retinal ganglion cell axon guidance

    Directory of Open Access Journals (Sweden)

    Jeffery Glen

    2008-05-01

    Full Text Available Abstract Background The transcription factor Pax6 is expressed by many cell types in the developing eye. Eyes do not form in homozygous loss-of-function mouse mutants (Pax6Sey/Sey and are abnormally small in Pax6Sey/+ mutants. Eyes are also abnormally small in PAX77 mice expressing multiple copies of human PAX6 in addition to endogenous Pax6; protein sequences are identical in the two species. The developmental events that lead to microphthalmia in PAX77 mice are not well-characterised, so it is not clear whether over- and under-expression of Pax6/PAX6 cause microphthalmia through similar mechanisms. Here, we examined the consequences of over-expression for the eye and its axonal connections. Results Eyes form in PAX77+/+ embryos but subsequently degenerate. At E12.5, we found no abnormalities in ocular morphology, retinal cell cycle parameters and the incidence of retinal cell death. From E14.5 on, we observed malformations of the optic disc. From E16.5 into postnatal life there is progressively more severe retinal dysplasia and microphthalmia. Analyses of patterns of gene expression indicated that PAX77+/+ retinae produce a normal range of cell types, including retinal ganglion cells (RGCs. At E14.5 and E16.5, quantitative RT-PCR with probes for a range of molecules associated with retinal development showed only one significant change: a slight reduction in levels of mRNA encoding the secreted morphogen Shh at E16.5. At E16.5, tract-tracing with carbocyanine dyes in PAX77+/+ embryos revealed errors in intraretinal navigation by RGC axons, a decrease in the number of RGC axons reaching the thalamus and an increase in the proportion of ipsilateral projections among those RGC axons that do reach the thalamus. A survey of embryos with different Pax6/PAX6 gene dosage (Pax6Sey/+, Pax6+/+, PAX77+ and PAX77+/+ showed that (1 the total number of RGC axons projected by the retina and (2 the proportions that are sorted into the ipsilateral and

  2. Progress research of dynamic algorithms in community detection%动态社区发现算法的研究进展

    Institute of Scientific and Technical Information of China (English)

    王莉军; 杨炳儒; 翟云; 谢永红

    2011-01-01

    This paper summaried the main research progress of dynamic community detection internationally recent years. Firstly, it analyzed the principle of dynamic algorithms in community detection from the three aspects, such as synchronization, spin and random walk. Secondly, it deeply analyzed and comprehensive compared the several dynamic algorithms in community detection currently. And last, pointed out the hot research issues of dynamic community detection and the major problems need to focus in the future.%综述了近年来国内外对动态社区发现的主要研究进展.从同步、自旋和随机游动三个方面分析了动态社区发现算法的原理.对目前存在的各种动态社区发现算法进行了深入剖析和全面比较,指出当前动态社区发现的研究热点及将来需要重点关注的主要问题.

  3. Imaging features in conventional MRI, spectroscopy and diffusion weighted images of hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS).

    Science.gov (United States)

    Bender, Benjamin; Klose, Uwe; Lindig, Tobias; Biskup, Saskia; Nägele, Thomas; Schöls, Ludger; Karle, Kathrin N

    2014-12-01

    Hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS) is a rare autosomal dominant disease caused by mutations within the colony stimulating factor 1 receptor (CSF1R) gene. While a small number of reports on imaging findings in routine MRI exist, reported imaging findings in DWI and spectroscopy are scarce, and limited to not genetically proven case reports. We assessed MRI including DWI and MR spectroscopy in six patients with HDLS and two asymptomatic mutation carriers. A total of 13 MRIs were evaluated and a score of the white-matter lesion (WML) load was calculated. The course of MR abnormalities was followed for 6-19 months in four patients and 95 months in one carrier. MRI revealed widespread white-matter lesions of patchy or confluent pattern especially in the frontal and occipital lobe. The pyramidal tract was less affected than the surrounding tissue in all symptomatic patients on conventional T2WI. Three of four cases with DWI showed small dots of diffusion restriction within WML. Spectroscopy showed increased levels of mIns, Cho and lactate while NAA was decreased. Asymptomatic mutation carriers had, for the age of the patients, unusually pronounced unspecific WMLs. No diffusion restriction or alterations in metabolite levels could be detected in asymptomatic mutation carriers. Microbleeds were not found in any patient. Diffusion restriction seems to be a typical imaging pattern visible in patients with active disease progression in HDLS. Spectroscopic findings and the absence of microbleeds differ clearly from reported findings in CADASIL and subcortical arteriosclerotic encephalopathy. While the distribution and character of WMLs in asymptomatic cases remain unspecific they are likely to represent subclinical markers of HDLS.

  4. Axon diameter and intra-axonal volume fraction of the corticospinal tract in idiopathic normal pressure hydrocephalus measured by q-space imaging.

    Directory of Open Access Journals (Sweden)

    Kouhei Kamiya

    Full Text Available PURPOSE: Previous studies suggest that compression and stretching of the corticospinal tract (CST potentially cause treatable gait disturbance in patients with idiopathic normal pressure hydrocephalus (iNPH. Measurement of axon diameter with diffusion MRI has recently been used to investigate microstructural alterations in neurological diseases. In this study, we investigated alterations in the axon diameter and intra-axonal fraction of the CST in iNPH by q-space imaging (QSI analysis. METHODS: Nineteen patients with iNPH and 10 age-matched controls were recruited. QSI data were obtained with a 3-T system by using a single-shot echo planar imaging sequence with the diffusion gradient applied parallel to the antero-posterior axis. By using a two-component low-q fit model, the root mean square displacements of intra-axonal space ( =  axon diameter and intra-axonal volume fraction of the CST were calculated at the levels of the internal capsule and body of the lateral ventricle, respectively. RESULTS: Wilcoxon's rank-sum test revealed a significant increase in CST intra-axonal volume fraction at the paraventricular level in patients (p<0.001, whereas no significant difference was observed in the axon diameter. At the level of the internal capsule, neither axon diameter nor intra-axonal volume fraction differed significantly between the two groups. CONCLUSION: Our results suggest that in patients with iNPH, the CST does not undergo irreversible axonal damage but is rather compressed and/or stretched owing to pressure from the enlarged ventricle. These analyses of axon diameter and intra-axonal fraction yield insights into microstructural alterations of the CST in iNPH.

  5. Monitoring Radiographic Brain Tumor Progression

    Directory of Open Access Journals (Sweden)

    John H. Sampson

    2011-03-01

    Full Text Available Determining radiographic progression in primary malignant brain tumors has posed a significant challenge to the neuroncology community. Glioblastoma multiforme (GBM, WHO Grade IV through its inherent heterogeneous enhancement, growth patterns, and irregular nature has been difficult to assess for progression. Our ability to detect tumor progression radiographically remains inadequate. Despite the advanced imaging techniques, detecting tumor progression continues to be a clinical challenge. Here we review the different criteria used to detect tumor progression, and highlight the inherent challenges with detection of progression.

  6. Absence of SARM1 Rescues Development and Survival of NMNAT2-Deficient Axons

    OpenAIRE

    Jonathan Gilley; Giuseppe Orsomando; Isabel Nascimento-Ferreira; Michael P. Coleman

    2015-01-01

    Summary SARM1 function and nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) loss both promote axon degeneration, but their relative relationship in the process is unknown. Here, we show that NMNAT2 loss and resultant changes to NMNAT metabolites occur in injured SARM1-deficient axons despite their delayed degeneration and that axon degeneration specifically induced by NMNAT2 depletion requires SARM1. Strikingly, SARM1 deficiency also corrects axon outgrowth in mice lacking NMNAT2, i...

  7. Computational Analysis of Axonal Transport: A Novel Assessment of Neurotoxicity, Neuronal Development and Functions

    Directory of Open Access Journals (Sweden)

    Toshiyuki Gotoh

    2012-03-01

    Full Text Available Axonal transport plays a crucial role in neuronal morphogenesis, survival and function. Despite its importance, however, the molecular mechanisms of axonal transport remain mostly unknown because a simple and quantitative assay system for monitoring this cellular process has been lacking. In order to better characterize the mechanisms involved in axonal transport, we formulate a novel computer-assisted monitoring system of axonal transport. Potential uses of this system and implications for future studies will be discussed.

  8. Axonal outgrowth is associated with increased ERK 1/2 activation but decreased caspase 3 linked cell death in Schwann cells after immediate nerve repair in rats

    Directory of Open Access Journals (Sweden)

    Kanje Martin

    2011-01-01

    Full Text Available Abstract Background Extracellular-signal regulated kinase (ERK1/2 is activated by nerve damage and its activation precedes survival and proliferation of Schwann cells. In contrast, activation of caspase 3, a cysteine protease, is considered as a marker for apoptosis in Schwann cells. In the present study, axonal outgrowth, activation of ERK1/2 by phosphorylation (p-ERK 1/2 and immunoreactivity of cleaved caspase 3 were examined after immediate, delayed, or no repair of transected rat sciatic nerves. Results Axonal outgrowth, detected by neurofilament staining, was longer after immediate repair than after either the delayed or no repair conditions. Immediate repair also showed a higher expression of p-ERK 1/2 and a lower number of cleaved caspase 3 stained Schwann cells than after delayed nerve repair. If the transected nerve was not repaired a lower level of p-ERK 1/2 was found than in either the immediate or delayed repair conditions. Axonal outgrowth correlated to p-ERK 1/2, but not clearly with cleaved caspase 3. Contact with regenerating axons affected Schwann cells with respect to p-ERK 1/2 and cleaved caspase 3 after immediate nerve repair only. Conclusion The decreased regenerative capacity that has historically been observed after delayed nerve repair may be related to impaired activation of Schwann cells and increased Schwann cell death. Outgrowing axons influence ERK 1/2 activation and apoptosis of Schwann cells.

  9. IFNgamma enhances microglial reactions to hippocampal axonal degeneration

    DEFF Research Database (Denmark)

    Jensen, M B; Hegelund, I V; Lomholt, N D

    2000-01-01

    Glial reactivity is implicated in CNS repair and regenerative responses. Microglia, the cells responding earliest to axonal injury, produce tumor necrosis factor-alpha (TNFalpha), a cytokine with both cytopathic and neuroprotective effects. We have studied activation of hippocampal microglia to p...

  10. Traction Force and Tension Fluctuations During Axon Growth

    Directory of Open Access Journals (Sweden)

    Jamison ePolackwich

    2015-10-01

    Full Text Available Actively generated mechanical forces play a central role in axon growthand guidance, but the mechanisms that underly force generation andregulation in growing axons remain poorly understood. We reportmeasurements of the dynamics of traction stresses from growth cones ofactively advancing axons from postnatal rat DRG neurons. By tracking themovement of the growth cone and analyzing the traction stress field froma reference frame that moves with it, we are able to show that there isa clear and consistent average stress field that underlies the complexspatial stresses present at any one time. The average stress field hasstrong maxima on the sides of the growth cone, directed inward towardthe growth cone neck. This pattern represents a contractile stresscontained within the growth cone, and a net force that is balanced bythe axon tension. Using high time-resolution measurements of the growthcone traction stresses, we show that the stress field is composed offluctuating local stress peaks, with a large number peaks that live fora short time, a population of peaks whose lifetime distribution followsan exponential decay, and a small number of very long-lived peaks. Weshow that the high time-resolution data also reveal that the tensionappears to vary randomly over short time scales, roughly consistent withthe lifetime of the stress peaks, suggesting that the tensionfluctuations originate from stochastic adhesion dynamics.

  11. Drosophila Ryks and their roles in axon and muscle guidance

    NARCIS (Netherlands)

    Lahaye, Liza Lucia

    2015-01-01

    In the last decade it has become clear that a number of the molecular mechanisms that are required for proper navigation of axons in complex nervous systems are also employed to guide muscles to their appropriate attachment sites. Among the gene families that mediate these diverse processes is the R

  12. Pain in patients with chronic idiopathic axonal polyneuropathy

    NARCIS (Netherlands)

    Erdmann, P.G.; Genderen, F.R. van; Teunissen, L.L.; Notermans, N.C.; Lindeman, E.; Wijck, A.J.M. van; Meeteren, N.L.U. van

    2010-01-01

    Background/Aims: Pain in patients with chronic idiopathic axonal polyneuropathy (CIAP) has never been studied in detail. The aim of the study was to investigate the pain experienced by patients with CIAP, and to determine whether pain is associated with health-related quality of life (HRQoL).

  13. Quantifying mechanical force in axonal growth and guidance

    Directory of Open Access Journals (Sweden)

    Ahmad Ibrahim Mahmoud Athamneh

    2015-09-01

    Full Text Available Mechanical force plays a fundamental role in neuronal development, physiology, and regeneration. In particular, research has shown that force is involved in growth cone-mediated axonal growth and guidance as well as stretch-induced elongation when an organism increases in size after forming initial synaptic connections. However, much of the details about the exact role of force in these fundamental processes remain unknown. In this review, we highlight (1 standing questions concerning the role of mechanical force in axonal growth and guidance and (2 different experimental techniques used to quantify forces in axons and growth cones. We believe that satisfying answers to these questions will require quantitative information about the relationship between elongation, forces, cytoskeletal dynamics, axonal transport, signaling, substrate adhesion, and stiffness contributing to directional growth advance. Furthermore, we address why a wide range of force values have been reported in the literature, and what these values mean in the context of neuronal mechanics. We hope that this review will provide a guide for those interested in studying the role of force in development and regeneration of neuronal networks.

  14. Life-or-death decisions upon axonal damage.

    Science.gov (United States)

    Roselli, Francesco; Caroni, Pico

    2012-02-01

    In this issue of Neuron, Hu et al. (2012) report that upon axonal damage, CHOP and XBP1 unfolded protein response pathways are not recruited equally and have opposite effects on neuronal survival. XBP1 pathway boosting may represent a valuable neuroprotective strategy.

  15. Drosophila Ryks and their roles in axon and muscle guidance

    NARCIS (Netherlands)

    Lahaye, Liza Lucia

    2015-01-01

    In the last decade it has become clear that a number of the molecular mechanisms that are required for proper navigation of axons in complex nervous systems are also employed to guide muscles to their appropriate attachment sites. Among the gene families that mediate these diverse processes is the R

  16. IFNgamma enhances microglial reactions to hippocampal axonal degeneration

    DEFF Research Database (Denmark)

    Jensen, M B; Hegelund, I V; Lomholt, N D;

    2000-01-01

    periods. Message for the immune cytokine interferon-gamma (IFNgamma) was undetectable, and glial reactivity to axonal lesions occurred as normal in IFNgamma-deficient mice. Microglial responses to lesion-induced neuronal injury were markedly enhanced in myelin basic protein promoter-driven transgenic mice...

  17. Axonal transport of thiamine in frog sciatic nerves in vitro.

    Science.gov (United States)

    Bergquist, J E; Hanson, M

    1983-03-01

    Thiamine has an essential and unknown function in nerve membranes. Administration of thiamine can alleviate symptoms of thiamine deficiency within a few hours. The time course is consistent with a fast axonal transport of the vitamin. Very little is known about axonal transport of low-molecular-weight substances with a preferential localization to the axon membrane. We investigated if labeled thiamine could be transported in the frog sciatic nerve. Radioactivity accumulated proximal to a ligature on the sciatic nerve after supplying the dorsal ganglia with [35S]thiamine in vitro. The accumulation was reduced by inhibition of the energy metabolism with dinitrophenol and by inhibition of protein synthesis in the ganglia with cycloheximide. Vinblastine did not affect the accumulation of thiamine at a concentration which was sufficient to block transport of [3H]leucine-labeled proteins. Accumulation distal to a ligature could be demonstrated in vivo but not in vitro after injecting the gastrocnemius muscle with labeled thiamine. Axonal transport of [3H]leucine-labeled proteins was inhibited by thiamine at millimolar concentrations in the incubation medium. A transient reduction of the compound action potential was obtained at these concentrations. Thiamine was migrating at a fast rate in frog sciatic nerves in both orthograde and retrograde directions. The uptake and/or transport was dependent on energy metabolism and a concomitant protein synthesis. The lack of effect by vinblastine suggests that the transported fraction of thiamine differs in subcellular localization from the bulk of transported [3H]leucine-labeled proteins.

  18. Investigation on the mechanism of peripheral axonal injury in glaucoma

    Directory of Open Access Journals (Sweden)

    Jun- Hong Zhao

    2013-05-01

    Full Text Available AIM: To compare the angles of longitudinal section of sclera around optic nerve heads and the never fiber layer changes in healthy adults and patients with glaucoma, and to investigate the mechanism of peripheral retinal axonal injury, with the combined knowledge of biomechanics. METHODS: The optical nerves and their peripheral tissue specimen in the 12 eyes from health adult donators and 12 eyes from glaucoma patient donators were dyed by Glees' method to compare the angles of longitudinal section of sclera around optic nerve heads(through optic nerve center, and to observe the anatomical features of the peripheral retinal axons. RESULTS: The mean angle of longitudinal section of sclera around optic nerve in healthy adults was 73.3°, while that in patients with absolute glaucoma was 75.6°. The difference showed no significance(t=1.44, P>0.05. There was a sharp bend in the course of peripheral optical fiber in healthy adults. However, the optic nerve fiber disappeared completely in patients with glaucoma end stage. CONCLUSION: The angle between the medial edge and leading edge of sclera(around optic nerve headsis an acute angle. The optical fiber in glaucoma end stage disappeared completely. The phenomenon may be related to high intraocular pressure, the sclera shape, the shear modulus of sclera and axons, and “axonal bending-injury” mechanism.

  19. Axonal dynamics of excitatory and inhibitory neurons in somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Sally A Marik

    Full Text Available Cortical topography can be remapped as a consequence of sensory deprivation, suggesting that cortical circuits are continually modified by experience. To see the effect of altered sensory experience on specific components of cortical circuits, we imaged neurons, labeled with a genetically modified adeno-associated virus, in the intact mouse somatosensory cortex before and after whisker plucking. Following whisker plucking we observed massive and rapid reorganization of the axons of both excitatory and inhibitory neurons, accompanied by a transient increase in bouton density. For horizontally projecting axons of excitatory neurons there was a net increase in axonal projections from the non-deprived whisker barrel columns into the deprived barrel columns. The axon collaterals of inhibitory neurons located in the deprived whisker barrel columns retracted in the vicinity of their somata and sprouted long-range projections beyond their normal reach towards the non-deprived whisker barrel columns. These results suggest that alterations in the balance of excitation and inhibition in deprived and non-deprived barrel columns underlie the topographic remapping associated with sensory deprivation.

  20. Differential Axonal Projection of Mitral and Tufted Cells in the Mouse Main Olfactory System

    Directory of Open Access Journals (Sweden)

    Shin Nagayama

    2010-09-01

    Full Text Available In the past decade, much has been elucidated regarding the functional organization of the axonal connection of olfactory sensory neurons to olfactory bulb (OB glomeruli. However, the manner in which projection neurons of the OB process odorant input and send this information to higher brain centers remains unclear. Here, we report long-range, large-scale tracing of the axonal projection patterns of OB neurons using two-photon microscopy. Tracer injection into a single glomerulus demonstrated widely distributed mitral/tufted cell axonal projections on the lateroventral surface of the mouse brain, including the anterior/posterior piriform cortex (PC and olfactory tubercle (OT. We noted two distinct groups of labeled axons: PC-orienting axons and OT-orienting axons. Each group occupied distinct parts of the lateral olfactory tract. PC-orienting axons projected axon collaterals to a wide area of the PC but only a few collaterals to the OT. OT-orienting axons densely projected axon collaterals primarily to the anterolateral OT (alOT. Different colored dye injections into the superficial and deep portions of the OB external plexiform layer revealed that the PC-orienting axon populations originated in presumed mitral cells and the OT-orienting axons in presumed tufted cells. These data suggest that although mitral and tufted cells receive similar odor signals from a shared glomerulus, they process the odor information in different ways and send their output to different higher brain centers via the PC and alOT.

  1. Wnt-induced calcium signaling mediates axon growth and guidance in the developing corpus callosum.

    Science.gov (United States)

    Hutchins, B Ian; Li, Li; Kalil, Katherine

    2012-01-10

    Wnt5a gradients guide callosal axons by repulsion through Ryk receptors in vivo. We recently found that Wnt5a repels cortical axons and promotes axon outgrowth through calcium signaling in vitro. Here, using cortical slices, we show that Wnt5a signals through Ryk to guide and promote outgrowth of callosal axons after they cross the midline. Calcium transient frequencies in callosal growth cones positively correlate with axon outgrowth rates in vitro. In cortical slices, calcium release through inositol 1,4,5-trisphosphate (IP(3)) receptors and calcium entry through transient receptor potential channels modulate axon growth and guidance. Knocking down Ryk inhibits calcium signaling in cortical axons, reduces rates of axon outgrowth subsequent to midline crossing, and causes axon guidance defects. Calcium- and calmodulin-dependent protein kinase II (CaMKII) is required downstream of Wnt-induced calcium signaling for postcrossing callosal axon growth and guidance. Taken together, these results suggest that growth and guidance of postcrossing callosal axons by Wnt-Ryk-calcium signaling involves axon repulsion through CaMKII.

  2. Chronic excitotoxin-induced axon degeneration in a compartmented neuronal culture model

    Directory of Open Access Journals (Sweden)

    Katherine A Hosie

    2012-02-01

    Full Text Available Glutamate excitotoxicity is a major pathogenic process implicated in many neurodegenerative conditions, including AD (Alzheimer's disease and following traumatic brain injury. Occurring predominantly from over-stimulation of ionotropic glutamate receptors located along dendrites, excitotoxic axonal degeneration may also occur in white matter tracts. Recent identification of axonal glutamate receptor subunits within axonal nanocomplexes raises the possibility of direct excitotoxic effects on axons. Individual neuronal responses to excitotoxicity are highly dependent on the complement of glutamate receptors expressed by the cell, and the localization of the functional receptors. To enable isolation of distal axons and targeted excitotoxicity, murine cortical neuron cultures were prepared in compartmented microfluidic devices, such that distal axons were isolated from neuronal cell bodies. Within the compartmented culture system, cortical neurons developed to relative maturity at 11 DIV (days in vitro as demonstrated by the formation of dendritic spines and clustering of the presynaptic protein synaptophysin. The isolated distal axons retained growth cone structures in the absence of synaptic targets, and expressed glutamate receptor subunits. Glutamate treatment (100 μM to the cell body chamber resulted in widespread degeneration within this chamber and degeneration of distal axons in the other chamber. Glutamate application to the distal axon chamber triggered a lesser degree of axonal degeneration without degenerative changes in the untreated somal chamber. These data indicate that in addition to current mechanisms of indirect axonal excitotoxicity, the distal axon may be a primary target for excitotoxicity in neurodegenerative conditions.

  3. Exclusion of integrins from CNS axons is regulated by Arf6 activation and the AIS

    NARCIS (Netherlands)

    Franssen, Elske H P; Zhao, Rong-Rong; Koseki, Hiroaki; Kanamarlapudi, Venkateswarlu; Hoogenraad, Casper C; Eva, Richard; Fawcett, James W

    2015-01-01

    Integrins are adhesion and survival molecules involved in axon growth during CNS development, as well as axon regeneration after injury in the peripheral nervous system (PNS). Adult CNS axons do not regenerate after injury, partly due to a low intrinsic growth capacity. We have previously studied

  4. 转基因检测技术研究进展%Research progress on detection of transgenic crops

    Institute of Scientific and Technical Information of China (English)

    王林; 韩飞; 李爱科; 刘建学

    2011-01-01

    随着各国转基因标识制度的相继建立和公众对转基因产品关注度的提高,人们对转基因技术的灵敏度和准确性提出了更严格的要求,因此各种转基因检测技术也就成了研究热点。近十几年来国外的科学研究处于本领域的前沿,为了促进转基因作物的相关科技研发、推广,使人们对于全球转基因检测技术的现状以及未来发展趋势有较为清晰和全面的了解,较全面地对国内外各种转基因作物检测技术进行了综述。%With the establishment of countries' transgenic marking system and more public attention to transgenic productions, more strictly regulations on sensitivity and accuracy of transgenic technologies were built. As a result, transgenic detection technologies were the hot spot now. In the recent decades, researches abroad keep the state at the forefront of transgenic detection technologies. Different kinds of transgenic detection technologies researched both in China and abroad were summarized in order to improve and generalize the researches on transgenic crop and to be aware clearly and completely in public about current situation of global transgenic technologies and their future development trend.

  5. A Case of Acute Motor Axonal Neuropathy Mimicking Brain Death and Review of the Literature.

    Science.gov (United States)

    Ravikumar, Sandhya; Poysophon, Poysophon; Poblete, Roy; Kim-Tenser, May

    2016-01-01

    We describe a case report of fulminant Guillain-Barré syndrome (GBS) mimicking brain death. A previously healthy 60-year-old male was admitted to the neurointensive care unit after developing rapidly progressive weakness and respiratory failure. On presentation, the patient was found to have absent brainstem and spinal cord reflexes resembling that of brain death. Acute motor axonal neuropathy, a subtype of GBS, was diagnosed by cerebrospinal fluid and nerve conduction velocity testing. An electroencephalogram showed that the patient had normal, appropriately reactive brain function. Transcranial Doppler (TCD) ultrasound showed appropriate blood flow to the brain. GBS rarely presents with weakness so severe as to mimic brain death. This article provides a review of similar literature. This case demonstrates the importance of performing a proper brain death examination, which includes evaluation for irreversible cerebral injury, exclusion of any confounding conditions, and performance of tests such as electroencephalography and TCDs when uncertainty exists about the reliability of the clinical exam.

  6. Progress of a cross-correlation based optical strain measurement technique for detecting radial growth on a rotating disk

    Science.gov (United States)

    Clem, Michelle M.; Woike, Mark R.; Abdul-Aziz, Ali

    2014-04-01

    The Aeronautical Sciences Project under NASA's Fundamental Aeronautics Program is interested in the development of novel measurement technologies, such as optical surface measurements for the in situ health monitoring of critical constituents of the internal flow path. In situ health monitoring has the potential to detect flaws, i.e. cracks in key components, such as engine turbine disks, before the flaws lead to catastrophic failure. The present study, aims to further validate and develop an optical strain measurement technique to measure the radial growth and strain field of an already cracked disk, mimicking the geometry of a sub-scale turbine engine disk, under loaded conditions in the NASA Glenn Research Center's High Precision Rotordynamics Laboratory. The technique offers potential fault detection by imaging an applied high-contrast random speckle pattern under unloaded and loaded conditions with a CCD camera. Spinning the cracked disk at high speeds (loaded conditions) induces an external load, resulting in a radial growth of the disk of approximately 50.0-μm in the flawed region and hence, a localized strain field. When imaging the cracked disk under static conditions, the disk will be undistorted; however, during rotation the cracked region will grow radially, thus causing the applied particle pattern to be `shifted'. The resulting particle displacements between the two images is measured using the two-dimensional cross-correlation algorithms implemented in standard Particle Image Velocimetry (PIV) software to track the disk growth, which facilitates calculation of the localized strain field. A random particle distribution is adhered onto the surface of the cracked disk and two bench top experiments are carried out to evaluate the technique's ability to measure the induced particle displacements. The disk is shifted manually using a translation stage equipped with a fine micrometer and a hotplate is used to induce thermal growth of the disk, causing the

  7. Nicotine elicits prolonged calcium signaling along ventral hippocampal axons.

    Science.gov (United States)

    Zhong, Chongbo; Talmage, David A; Role, Lorna W

    2013-01-01

    Presynaptic nicotinic acetylcholine receptors (nAChRs) have long been implicated in the modulation of CNS circuits. We previously reported that brief exposure to low concentrations of nicotine induced sustained potentiation of glutamatergic transmission at ventral hippocampal (vHipp)-striatal synapses. Here, we exploited nAChR subtype-selective antagonists and agonists and α7*nAChR knockout mutant mice (α7-/-) to elucidate the signaling mechanisms underlying nAChR-mediated modulation of synaptic transmission. Using a combination of micro-slices culture from WT and α7-/-mice, calcium imaging, and immuno-histochemical techniques, we found that nicotine elicits localized and oscillatory increases in intracellular Ca(2+) along vHipp axons that persists for up to 30 minutes. The sustained phase of the nicotine-induced Ca(2+) response was blocked by α-BgTx but not by DHβE and was mimicked by α7*nAChR agonists but not by non-α7*nAChR agonists. In vHipp slices from α7-/- mice, nicotine elicited only transient increases of axonal Ca(2+) signals and did not activate CaMKII. The sustained phase of the nicotine-induced Ca(2+) response required localized activation of CaMKII, phospholipase C, and IP3 receptor mediated Ca(2+)-induced Ca(2+) release (CICR). In conclusion, activation of presynaptic nAChRs by nicotine elicits Ca(2+) influx into the presynaptic axons, the sustained phase of the nicotine-induced Ca(2+) response requires that axonal α7*nAChR activate a downstream signaling network in the vHipp axons.

  8. Pretarget sorting of retinocollicular axons in the mouse.

    Science.gov (United States)

    Plas, Daniel T; Lopez, Joshua E; Crair, Michael C

    2005-10-31

    The map of the retina onto the optic tectum is a highly conserved feature of the vertebrate visual system; the mechanism by which this mapping is accomplished during development is a long-standing problem of neurobiology. The early suggestion by Roger Sperry that the map is formed through interactions between retinal ganglion cell axons and target cells within the tectum has gained significant experimental support and widespread acceptance. Nonetheless, reports in a variety of species indicate that some aspects of retinotopic order exist within the optic tract, leading to the suggestion that this "preordering" of retinal axons may play a role in the formation of the mature tectal map. A satisfactory account of pretarget order must provide the mechanism by which such axon order develops. Insofar as this mechanism must ultimately be determined genetically, the mouse suggests itself as the natural species in which to pursue these studies. Quantitative and repeatable methods are required to assess the contribution of candidate genes in mouse models. For these reasons, we have undertaken a quantitative study of the degree of retinotopic order within the optic tract and nerve of wild-type mice both before and after the development of the retinotectal map. Our methods are based on tract tracing using lipophilic dyes, and our results indicate that there is a reestablishment of dorsoventral but not nasotemporal retinal order when the axons pass through the chiasm and that this order is maintained throughout the subsequent tract. Furthermore, this dorsoventral retinotopic order is well established by the day after birth, long before the final target zone is discernible within the tectum. We conclude that pretarget sorting of axons according to origin along the dorsoventral axis of the retina is both spatially and chronologically appropriate to contribute to the formation of the retinotectal map, and we suggest that these methods be used to search for the molecular basis of

  9. DRP1 inhibition rescues retinal ganglion cells and their axons by preserving mitochondrial integrity in a mouse model of glaucoma.

    Science.gov (United States)

    Kim, K-Y; Perkins, G A; Shim, M S; Bushong, E; Alcasid, N; Ju, S; Ellisman, M H; Weinreb, R N; Ju, W-K

    2015-08-06

    Glaucoma is the leading cause of irreversible blindness and is characterized by slow and progressive degeneration of the optic nerve head axons and retinal ganglion cell (RGC), leading to loss of visual function. Although oxidative stress and/or alteration of mitochondrial (mt) dynamics induced by elevated intraocular pressure (IOP) are associated with this neurodegenerative disease, the mechanisms that regulate mt dysfunction-mediated glaucomatous neurodegeneration are poorly understood. Using a mouse model of glaucoma, DBA/2J (D2), which spontaneously develops elevated IOP, as well as an in vitro RGC culture system, we show here that oxidative stress, as evidenced by increasing superoxide dismutase 2 (SOD2) and mt transcription factor A (Tfam) protein expression, triggers mt fission and loss by increasing dynamin-related protein 1 (DRP1) in the retina of glaucomatous D2 mice as well as in cultured RGCs exposed to elevated hydrostatic pressure in vitro. DRP1 inhibition by overexpressing DRP1 K38A mutant blocks mt fission and triggers a subsequent reduction of oxidative stress, as evidenced by decreasing SOD2 and Tfam protein expression. DRP1 inhibition promotes RGC survival by increasing phosphorylation of Bad at serine 112 in the retina and preserves RGC axons by maintaining mt integrity in the glial lamina of glaucomatous D2 mice. These findings demonstrate an important vicious cycle involved in glaucomatous neurodegeneration that starts with elevated IOP producing oxidative stress; the oxidative stress then leads to mt fission and a specific form of mt dysfunction that generates further oxidative stress, thus perpetuating the cycle. Our findings suggest that DRP1 is a potential therapeutic target for ameliorating oxidative stress-mediated mt fission and dysfunction in RGC and its axons during glaucomatous neurodegeneration. Thus, DRP1 inhibition may provide a new therapeutic strategy for protecting both RGCs and their axons in glaucoma and other optic

  10. Improved spatial regression analysis of diffusion tensor imaging for lesion detection during longitudinal progression of multiple sclerosis in individual subjects

    Science.gov (United States)

    Liu, Bilan; Qiu, Xing; Zhu, Tong; Tian, Wei; Hu, Rui; Ekholm, Sven; Schifitto, Giovanni; Zhong, Jianhui

    2016-03-01

    Subject-specific longitudinal DTI study is vital for investigation of pathological changes of lesions and disease evolution. Spatial Regression Analysis of Diffusion tensor imaging (SPREAD) is a non-parametric permutation-based statistical framework that combines spatial regression and resampling techniques to achieve effective detection of localized longitudinal diffusion changes within the whole brain at individual level without a priori hypotheses. However, boundary blurring and dislocation limit its sensitivity, especially towards detecting lesions of irregular shapes. In the present study, we propose an improved SPREAD (dubbed improved SPREAD, or iSPREAD) method by incorporating a three-dimensional (3D) nonlinear anisotropic diffusion filtering method, which provides edge-preserving image smoothing through a nonlinear scale space approach. The statistical inference based on iSPREAD was evaluated and compared with the original SPREAD method using both simulated and in vivo human brain data. Results demonstrated that the sensitivity and accuracy of the SPREAD method has been improved substantially by adapting nonlinear anisotropic filtering. iSPREAD identifies subject-specific longitudinal changes in the brain with improved sensitivity, accuracy, and enhanced statistical power, especially when the spatial correlation is heterogeneous among neighboring image pixels in DTI.

  11. α-1-Antitrypsin detected by MALDI imaging in the study of glomerulonephritis: Its relevance in chronic kidney disease progression.

    Science.gov (United States)

    Smith, Andrew; L'Imperio, Vincenzo; De Sio, Gabriele; Ferrario, Franco; Scalia, Carla; Dell'Antonio, Giacomo; Pieruzzi, Federico; Pontillo, Claudia; Filip, Szymon; Markoska, Katerina; Granata, Antonio; Spasovski, Goce; Jankowski, Joachim; Capasso, Giovambattista; Pagni, Fabio; Magni, Fulvio

    2016-06-01

    Idiopathic glomerulonephritis (GN), such as membranous glomerulonephritis, focal segmental glomerulosclerosis (FSGS), and IgA nephropathy (IgAN), represent the most frequent primary glomerular kidney diseases (GKDs) worldwide. Although the renal biopsy currently remains the gold standard for the routine diagnosis of idiopathic GN, the invasiveness and diagnostic difficulty related with this procedure highlight the strong need for new diagnostic and prognostic biomarkers to be translated into less invasive diagnostic tools. MALDI-MS imaging MALDI-MSI was applied to fresh-frozen bioptic renal tissue from patients with a histological diagnosis of FSGS (n = 6), IgAN, (n = 6) and membranous glomerulonephritis (n = 7), and from controls (n = 4) in order to detect specific molecular signatures of primary glomerulonephritis. MALDI-MSI was able to generate molecular signatures capable to distinguish between normal kidney and pathological GN, with specific signals (m/z 4025, 4048, and 4963) representing potential indicators of chronic kidney disease development. Moreover, specific disease-related signatures (m/z 4025 and 4048 for FSGS, m/z 4963 and 5072 for IgAN) were detected. Of these signals, m/z 4048 was identified as α-1-antitrypsin and was shown to be localized to the podocytes within sclerotic glomeruli by immunohistochemistry. α-1-Antitrypsin could be one of the markers of podocyte stress that is correlated with the development of FSGS due to both an excessive loss and a hypertrophy of podocytes.

  12. Research Progress on Detection of Edible Oil Quality%食用油质量检测研究进展

    Institute of Scientific and Technical Information of China (English)

    陈金体; 黄秋娜; 续颖

    2016-01-01

    The quality of edible oil testing needs to be in accordance with the relevant technical indicators, with reliable detection methods. Based on this, edible oil quality testing related technical indicators were briefly introduced, and then from the conductance method, chromatography and spectroscopy, described the different methods of edible oil quality detection and its application, in order to through the discussion of this paper, give workers some reference, to constantly improve the edible oil quality inspection work, ensure food quality and safety of oil.%食用油质量检测需要按照相关的技术指标,凭借可靠的检测方法进行。基于此,针对食用油质量检测的相关技术指标进行简要介绍,然后从电导法、色谱法及光谱法等方面,逐一阐述食用油质量检测的不同方法及其具体运用,以期给予相关工作者一些参考,能够不断提升食用油质量检测工作效率,保证食用油质量安全。

  13. Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons.

    Science.gov (United States)

    Colbert, C M; Johnston, D

    1996-11-01

    A long-standing hypothesis is that action potentials initiate first in the axon hillock/initial segment (AH-IS) region because of a locally high density of Na+ channels. We tested this idea in subicular pyramidal neurons by using patch-clamp recordings in hippocampal slices. Simultaneous recordings from the soma and IS confirmed that orthodromic action potentials initiated in the axon and then invaded the soma. However, blocking Na+ channels in the AH-IS with locally applied tetrodotoxin (TTX) did not raise the somatic threshold membrane potential for orthodromic spikes. TTX applied to the axon beyond the AH-IS (30-60 microm from the soma) raised the apparent somatic threshold by approximately 8 mV. We estimated the Na+ current density in the AH-IS and somatic membranes by using cell-attached patch-clamp recordings and found similar magnitudes (3-4 pA/microm2). Thus, the present results suggest that orthodromic action potentials initiate in the axon beyond the AH-IS and that the minimum threshold for spike initiation of the neuron is not determined by a high density of Na+ channels in the AH-IS region.

  14. ALS Along the Axons – Expression of Coding and Noncoding RNA Differs in Axons of ALS models

    Science.gov (United States)

    Rotem, Nimrod; Magen, Iddo; Ionescu, Ariel; Gershoni-Emek, Noga; Altman, Topaz; Costa, Christopher J.; Gradus, Tal; Pasmanik-Chor, Metsada; Willis, Dianna E.; Ben-Dov, Iddo Z.; Hornstein, Eran; Perlson, Eran

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a multifactorial lethal motor neuron disease with no known treatment. Although the basic mechanism of its degenerative pathogenesis remains poorly understood, a subcellular spatial alteration in RNA metabolism is thought to play a key role. The nature of these RNAs remains elusive, and a comprehensive characterization of the axonal RNAs involved in maintaining neuronal health has yet to be described. Here, using cultured spinal cord (SC) neurons grown using a compartmented platform followed by next-generation sequencing (NGS) technology, we find that RNA expression differs between the somatic and axonal compartments of the neuron, for both mRNA and microRNA (miRNA). Further, the introduction of SOD1G93A and TDP43A315T, established ALS-related mutations, changed the subcellular expression and localization of RNAs within the neurons, showing a spatial specificity to either the soma or the axon. Altogether, we provide here the first combined inclusive profile of mRNA and miRNA expression in two ALS models at the subcellular level. These data provide an important resource for studies on the roles of local protein synthesis and axon degeneration in ALS and can serve as a possible target pool for ALS treatment. PMID:28300211

  15. IH activity is increased in populations of slow versus fast motor axons of the rat.

    Directory of Open Access Journals (Sweden)

    Chad eLorenz

    2014-09-01

    Full Text Available Much is known about the electrophysiological variation in motoneuron somata across different motor units. However comparatively less is known about electrophysiological variation in motor axons and how this could impact function or electrodiagnosis in healthy or diseased states. We performed nerve excitability testing on two groups of motor axons in Sprague-Dawley rats that are known to differ significantly in their chronic daily activity patterns and in the relative proportion of motor unit types: one group innervating the soleus (slow motor axons and the other group innervating the tibialis anterior (fast motor axons muscles. We found that slow motor axons have significantly larger accommodation compared to fast motor axons upon application of a 100 ms hyperpolarizing conditioning stimulus that is 40% of axon threshold (Z = 3.24, p = 0.001 or 20% of axon threshold (Z = 2.67, p = 0.008. Slow motor axons had larger accommodation to hyperpolarizing currents in the current-threshold measurement (-80% Z = 3.07, p = 0.002; -90% Z = 2.98, p = 0.003. In addition, we found that slow motor axons have a significantly smaller rheobase than fast motor axons (Z = -1.99, p = 0.047 accompanied by a lower threshold in stimulus-response curves. The results provide evidence that slow motor axons have greater activity of the hyperpolarization-activated inwardly rectifying cation conductance (IH than fast motor axons. It is possible that this difference between fast and slow axons is caused by an adaptation to their chronic differences in daily activity patterns, and that this adaptation might have a functional effect on the motor unit. Moreover, these findings indicate that slow and fast motor axons may react differently to pathological conditions.

  16. Diffusion tensor MRI shows progressive changes in the hippocampus and dentate gyrus after status epilepticus in rat - histological validation with Fourier-based analysis.

    Science.gov (United States)

    Salo, Raimo A; Miettinen, Tuukka; Laitinen, Teemu; Gröhn, Olli; Sierra, Alejandra

    2017-03-04

    Imaging markers for monitoring disease progression, recovery, and treatment efficacy are a major unmet need for many neurological diseases, including epilepsy. Recent evidence suggests that diffusion tensor imaging (DTI) provides high microstructural contrast even outside major white matter tracts. We hypothesized that in vivo DTI could detect progressive microstructural changes in the dentate gyrus and the hippocampal CA3bc in the rat brain after status epilepticus (SE). To test this hypothesis, we induced SE with systemic kainic acid or pilocarpine in adult male Wistar rats and subsequently scanned them using in vivo DTI at five time-points: prior to SE, and 10, 20, 34, and 79 days post SE. In order to tie the DTI findings to changes in the tissue microstructure, myelin- and glial fibrillary acidic protein (GFAP)-stained sections from the same animals underwent Fourier analysis. We compared the Fourier analysis parameters, anisotropy index and angle of myelinated axons or astrocyte processes, to corresponding DTI parameters, fractional anisotropy (FA) and the orientation angle of the principal eigenvector. We found progressive detectable changes in DTI parameters in both the dentate gyrus (FA, axial diffusivity [D||], linear anisotropy [CL] and spherical anisotropy [CS], pmixed-effects model [LMEM]) and the CA3bc (FA, D||, CS, and angle, p<0.001, LMEM; CL and planar anisotropy [CP], p<0.01, LMEM) post SE. The Fourier analysis revealed that both myelinated axons and astrocyte processes played a role in the water diffusion anisotropy changes detected by DTI in individual portions of the dentate gyrus (suprapyramidal blade, mid-portion, and infrapyramidal blade). In the whole dentate gyrus, myelinated axons markedly contributed to the water diffusion changes. In CA3bc as well as in CA3b and CA3c, both myelinated axons and astrocyte processes contributed to water diffusion anisotropy and orientation. Our study revealed that DTI is a promising method for noninvasive

  17. Genetic study of axon regeneration with cultured adult dorsal root ganglion neurons.

    Science.gov (United States)

    Saijilafu; Zhou, Feng-Quan

    2012-08-17

    It is well known that mature neurons in the central nervous system (CNS) cannot regenerate their axons after injuries due to diminished intrinsic ability to support axon growth and a hostile environment in the mature CNS(1,2). In contrast, mature neurons in the peripheral nervous system (PNS) regenerate readily after injuries(3). Adult dorsal root ganglion (DRG) neurons are well known to regenerate robustly after peripheral nerve injuries. Each DRG neuron grows one axon from the cell soma, which branches into two axonal branches: a peripheral branch innervating peripheral targets and a central branch extending into the spinal cord. Injury of the DRG peripheral axons results in substantial axon regeneration, whereas central axons in the spinal cord regenerate poorly after the injury. However, if the peripheral axonal injury occurs prior to the spinal cord injury (a process called the conditioning lesion), regeneration of central axons is greatly improved(4). Moreover, the central axons of DRG neurons share the same hostile environment as descending corticospinal axons in the spinal cord. Together, it is hypothesized that the molecular mechanisms controlling axon regeneration of adult DRG neurons can be harnessed to enhance CNS axon regeneration. As a result, adult DRG neurons are now widely used as a model system to study regenerative axon growth(5-7). Here we describe a method of adult DRG neuron culture that can be used for genetic study of axon regeneration in vitro. In this model adult DRG neurons are genetically manipulated via electroporation-mediated gene transfection(6,8). By transfecting neurons with DNA plasmid or si/shRNA, this approach enables both gain- and loss-of-function experiments to investigate the role of any gene-of-interest in axon growth from adult DRG neurons. When neurons are transfected with si/shRNA, the targeted endogenous protein is usually depleted after 3-4 days in culture, during which time robust axon growth has already occurred

  18. Detection of DR antigen on leukemic cells from a patient suffering from adult T-cell leukemia and progressive systemic sclerosis.

    Directory of Open Access Journals (Sweden)

    Mizushima,Keiichi

    1983-10-01

    Full Text Available This report concerns an unusual case of adult T cell leukemia (ATL complicated with progressive systemic sclerosis (PSS. The surface markers of peripheral blood mononuclear cells (PBM and lymph node cells, both of which mainly consisted of leukemic cells, were examined. The effect of these cells on the pokeweed mitogen (PWM-induced IgG synthesis by normal PBM also was studied. The leukemic cells formed rosettes with sheep red blood cells (SRBC; E and expressed T cell antigen, Leu-1, and DR antigen. The detection of cell surface antigens was carried out by employing monoclonal antibodies against these antigens. We diagnosed this case as DR positive ATL. In terms of the immunoregulatory function of these leukemic cells, the co-culture experiments showed that these cells had some suppressive effect on the PWM-induced IgG production by allogeneic normal PBM.

  19. Progress of Collection and Detection Method of Bioaerosol%生物气溶胶采集与检测研究进展

    Institute of Scientific and Technical Information of China (English)

    李金有; 王林; 李西标; 陈春田; 慈颖; 郭文静

    2013-01-01

    Sampling efficiency was affected by the types of bioaerosol sampler, sampling theory and culture method ect. Culture method, molecular biological method and electronic microscopical method were the routine aerosol detection method. This paper introduced the principle and the application of biological aerosol sampler. In addition, the relevant progresses were also reviewed.%概述了研究气溶胶采样器的类型、采样原理、不同采样器的优缺点以及部分影响采样效率的因素。对生物气溶胶样本的检测常用方法如培养法、分子生学物检测与电镜观察等也做了介绍,对有关的研究进展进行了概述。

  20. Research progress on the detection methods of microRNA%微小RNA检测方法的研究进展

    Institute of Scientific and Technical Information of China (English)

    叶燕; 申娴娟; 鞠少卿

    2013-01-01

    microRNA (miRNA) is a class of endogenous non-coding small RNAs,they play an important role in post-transcriptional regulation of gene expression through combining the target mRNA that the target protein would not synthesis.The present studies have found that miRNA is involved in many kinds of physiological processes,as well as the pathological processes.The abnormal expression of miRNA in many diseases can be used in diagnosis,prognosis and treatment monitoring.But all of these studies depend on an ideal detection method of miRNA.A lot of detection methods of miRNA expression developed from qualitative analysis to quantitative analysis step by step and from single miRNA detection to high throughput screening in recent years.Various detection methods are improved constantly,the specificity and sensitivity has been improved at the same time,detection procedure become simple and practicable,detection time shorten considerably and cost also reduced ceaselessly,which make the application of miRNA in clinical possible.This review highlights the latest research progress of the common detection methods of miRNA.%微小RNA(miRNA)是一类内源性非编码小分子RNA,其可与靶mRNA结合从而抑制靶蛋白的合成,在转录后水平调控基因的表达.现有研究发现,miRNA参与多种生理及病理过程,其表达异常可用于疾病的辅助诊断、治疗监测和预后判断等,而这些研究都需要建立理想的miRNA检测方法才能够完成.近年来miRNA检测方法迅猛发展,从定性逐步发展到半定量,再到精确定量,从单个miRNA检测到高通量筛查.同时各种检测方法不断改良,其特异度和敏感度显著提高,检测程序变得简单易行,检测时间明显缩短,检测成本也不断降低,使miRNA检测用于临床实践成为可能.

  1. Increased Human Wildtype Tau Attenuates Axonal Transport Deficits Caused by Loss of APP in Mouse Models

    Directory of Open Access Journals (Sweden)

    Karen D.B. Smith

    2010-07-01

    Full Text Available Amyloid precursor protein (APP is implicated in axonal elongation, synaptic plasticity, and axonal transport. However, the role of APP on axonal transport in conjunction with the microtubule associated protein tau continues to be debated. Here we measured in vivo axonal transport in APP knockout mice with Manganese Enhanced MRI (MEMRI to determine whether APP is necessary for maintaining normal axonal transport. We also tested how overexpression and mutations of tau affect axonal transport in the presence or absence of APP. In vivo axonal transport reduced significantly in the absence of functional APP. Overexpression of human wildtype tau maintained normal axonal transport and resulted in a transient compensation of axonal transport deficits in the absence of APP. Mutant R406Wtau in combination with the absence of APP compounded axonal transport deficits and these deficits persisted with age. These results indicate that APP is necessary for axonal transport, and overexpression of human wildtype tau can compensate for the absence of APP at an early age.

  2. The importance of axonal undulation in diffusion MR measurements: a Monte Carlo simulation study.

    Science.gov (United States)

    Nilsson, Markus; Lätt, Jimmy; Ståhlberg, Freddy; van Westen, Danielle; Hagslätt, Håkan

    2012-05-01

    Many axons follow wave-like undulating courses. This is a general feature of extracranial nerve segments, but is also found in some intracranial nervous tissue. The importance of axonal undulation has previously been considered, for example, in the context of biomechanics, where it has been shown that posture affects undulation properties. However, the importance of axonal undulation in the context of diffusion MR measurements has not been investigated. Using an analytical model and Monte Carlo simulations of water diffusion, this study compared undulating and straight axons in terms of diffusion propagators, diffusion-weighted signal intensities and parameters derived from diffusion tensor imaging, such as the mean diffusivity (MD), the eigenvalues and the fractional anisotropy (FA). All parameters were strongly affected by the presence of undulation. The diffusivity perpendicular to the undulating axons increased with the undulation amplitude, thus resembling that of straight axons with larger diameters. Consequently, models assuming straight axons for the estimation of the axon diameter from diffusion MR measurements might overestimate the diameter if undulation is present. FA decreased from approximately 0.7 to 0.5 when axonal undulation was introduced into the simulation model structure. Our results indicate that axonal undulation may play a role in diffusion measurements when investigating, for example, the optic and sciatic nerves and the spinal cord. The simulations also demonstrate that the stretching or compression of neuronal tissue comprising undulating axons alters the observed water diffusivity, suggesting that posture may be of importance for the outcome of diffusion MRI measurements.

  3. Eph:ephrin-B1 forward signaling controls fasciculation of sensory and motor axons.

    Science.gov (United States)

    Luxey, Maëva; Jungas, Thomas; Laussu, Julien; Audouard, Christophe; Garces, Alain; Davy, Alice

    2013-11-15

    Axon fasciculation is one of the processes controlling topographic innervation during embryonic development. While axon guidance steers extending axons in the accurate direction, axon fasciculation allows sets of co-extending axons to grow in tight bundles. The Eph:ephrin family has been involved both in axon guidance and fasciculation, yet it remains unclear how these two distinct types of responses are elicited. Herein we have characterized the role of ephrin-B1, a member of the ephrinB family in sensory and motor innervation of the limb. We show that ephrin-B1 is expressed in sensory axons and in the limb bud mesenchyme while EphB2 is expressed in motor and sensory axons. Loss of ephrin-B1 had no impact on the accurate dorso-ventral innervation of the limb by motor axons, yet EfnB1 mutants exhibited decreased fasciculation of peripheral motor and sensory nerves. Using tissue-specific excision of EfnB1 and in vitro experiments, we demonstrate that ephrin-B1 controls fasciculation of axons via a surround repulsion mechanism involving growth cone collapse of EphB2-expressing axons. Altogether, our results highlight the complex role of Eph:ephrin signaling in the development of the sensory-motor circuit innervating the limb.

  4. Changes in microtubule stability and density in myelin-deficient shiverer mouse CNS axons

    Science.gov (United States)

    Kirkpatrick, L. L.; Witt, A. S.; Payne, H. R.; Shine, H. D.; Brady, S. T.

    2001-01-01

    Altered axon-Schwann cell interactions in PNS myelin-deficient Trembler mice result in changed axonal transport rates, neurofilament and microtubule-associated protein phosphorylation, neurofilament density, and microtubule stability. To determine whether PNS and CNS myelination have equivalent effects on axons, neurofilaments, and microtubules in CNS, myelin-deficient shiverer axons were examined. The genetic defect in shiverer is a deletion in the myelin basic protein (MBP) gene, an essential component of CNS myelin. As a result, shiverer mice have little or no compact CNS myelin. Slow axonal transport rates in shiverer CNS axons were significantly increased, in contrast to the slowing in demyelinated PNS nerves. Even more striking were substantial changes in the composition and properties of microtubules in shiverer CNS axons. The density of axonal microtubules is increased, reflecting increased expression of tubulin in shiverer, and the stability of microtubules is drastically reduced in shiverer axons. Shiverer transgenic mice with two copies of a wild-type myelin basic protein transgene have an intermediate level of compact myelin, making it possible to determine whether the actual level of compact myelin is an important regulator of axonal microtubules. Both increased microtubule density and reduced microtubule stability were still observed in transgenic mouse nerves, indicating that signals beyond synaptogenesis and the mere presence of compact myelin are required for normal regulation of the axonal microtubule cytoskeleton.

  5. 血指印检测研究进展%Progress in the Detection Methods of Blood Fingerprints

    Institute of Scientific and Technical Information of China (English)

    张美芹; 张亭; 秦刚; 张扬; 张学记

    2012-01-01

    As one of the most effective methods for personal identification, the discovery and visualization of blood fingerprints play a key role in criminal investigation. According to the different reaction mechanism, the methods can be classified as chemical reaction; physical adsorption; biological labeling and optical photography. In this paper, we review the detection techniques and materials of the blood fingerprints and their advantages and disadvantages. In addition, we analyze the new trend and perspective in the blood fingerprints' examination.%犯罪现场血指印的发现和提取在案件侦破中起着非常重要的作用,是最有效的个人身份鉴定手段之一.血指印检测方法依据反应原理的不同分为化学方法、物理方法、生物染色和光学方法等4类.本文重点综述了血指印的检测技术、常用试剂及其优缺点,并展望了血指印检测方法的方向和前景.

  6. Research Progress on Rapid Detection Technique of Microorganism in Raw Milk%生乳微生物快速检测技术研究进展

    Institute of Scientific and Technical Information of China (English)

    孔丽娜; 李祖明; 吴聪明; 许文涛

    2013-01-01

    随着乳品工业的迅速发展,研究和建立生乳微生物快速检测技术以加强对乳品卫生安全检测越来越受到各国的重视。本文对生乳微生物快速检测技术的原理、特点和研究进展进行了综述,包括普通PCR、实时荧光定量PCR、PCR-DGGE、基因芯片、ELISA、电化学阻抗、ATP生物发光法、流式细胞计数法、还原法和微生物自动检测仪等。最后对生乳微生物快速检测技术研究的广阔前景作了展望。%With the rapid development of milk food industry , studying and establishing rapid detection technique of microorganism in raw milk to strengthen the monitoring of hygiene and safety of milk food is paid more and more attention to by various countries. The research progress , principle and characteristic of the rapid detection technique of microorganism in raw milk were summarized in this paper , which including ordinary PCR, real-time fluorescent quantitative PCR, PCR-DGGE, gene chip, ELISA, electrochemical impedance, bioluminescence technique, flow cyLometry, reduction test and microbial automatic detection system. Finally , the future prospect of rapid detection technique of microorganism in raw milk was forecasted.

  7. Interplay between kinesin-1 and cortical dynein during axonal outgrowth and microtubule organization in Drosophila neurons.

    Science.gov (United States)

    del Castillo, Urko; Winding, Michael; Lu, Wen; Gelfand, Vladimir I

    2015-12-28

    In this study, we investigated how microtubule motors organize microtubules in Drosophila neurons. We showed that, during the initial stages of axon outgrowth, microtubules display mixed polarity and minus-end-out microtubules push the tip of the axon, consistent with kinesin-1 driving outgrowth by sliding antiparallel microtubules. At later stages, the microtubule orientation in the axon switches from mixed to uniform polarity with plus-end-out. Dynein knockdown prevents this rearrangement and results in microtubules of mixed orientation in axons and accumulation of microtubule minus-ends at axon tips. Microtubule reorganization requires recruitment of dynein to the actin cortex, as actin depolymerization phenocopies dynein depletion, and direct recruitment of dynein to the membrane bypasses the actin requirement. Our results show that cortical dynein slides 'minus-end-out' microtubules from the axon, generating uniform microtubule arrays. We speculate that differences in microtubule orientation between axons and dendrites could be dictated by differential activity of cortical dynein.

  8. Effect of vesicle traps on traffic jam formation in fast axonal transport.

    Science.gov (United States)

    Kuznetsov, A V

    2010-08-01

    The purpose of this paper is to develop a model for simulation of the formation of organelle traps in fast axonal transport. Such traps may form in the regions of microtubule polar mismatching. Depending on the orientation of microtubules pointing toward the trap region, these traps can accumulate either plus-end or minus-end oriented vesicles. The model predicts that the maximum concentrations of organelles occur at the boundaries of the trap regions; the overall concentration of organelles in the axon with traps is greatly increased compared to that in a healthy axon, which is expected to contribute to mechanical damages of the axon. The organelle traps induce hindrance to organelle transport down the axon; the total organelle flux down the axon with traps is found to be significantly reduced compared to that in a healthy axon.

  9. Regulation of neuronal axon specification by glia-neuron gap junctions in C. elegans

    Science.gov (United States)

    Meng, Lingfeng; Zhang, Albert; Jin, Yishi; Yan, Dong

    2016-01-01

    Axon specification is a critical step in neuronal development, and the function of glial cells in this process is not fully understood. Here, we show that C. elegans GLR glial cells regulate axon specification of their nearby GABAergic RME neurons through GLR-RME gap junctions. Disruption of GLR-RME gap junctions causes misaccumulation of axonal markers in non-axonal neurites of RME neurons and converts microtubules in those neurites to form an axon-like assembly. We further uncover that GLR-RME gap junctions regulate RME axon specification through activation of the CDK-5 pathway in a calcium-dependent manner, involving a calpain clp-4. Therefore, our study reveals the function of glia-neuron gap junctions in neuronal axon specification and shows that calcium originated from glial cells can regulate neuronal intracellular pathways through gap junctions. DOI: http://dx.doi.org/10.7554/eLife.19510.001 PMID:27767956

  10. Antiretroviral Therapy-Associated Acute Motor and Sensory Axonal Neuropathy

    Directory of Open Access Journals (Sweden)

    Kimberly N. Capers

    2011-01-01

    Full Text Available Guillain-Barré syndrome (GBS has been reported in HIV-infected patients in association with the immune reconstitution syndrome whose symptoms can be mimicked by highly active antiretroviral therapy (HAART-mediated mitochondrial toxicity. We report a case of a 17-year-old, HIV-infected patient on HAART with a normal CD4 count and undetectable viral load, presenting with acute lower extremity weakness associated with lactatemia. Electromyography/nerve conduction studies revealed absent sensory potentials and decreased compound muscle action potentials, consistent with a diagnosis of acute motor and sensory axonal neuropathy. Lactatemia resolved following cessation of HAART; however, neurological deficits minimally improved over several months in spite of immune modulatory therapy. This case highlights the potential association between HAART, mitochondrial toxicity and acute axonal neuropathies in HIV-infected patients, distinct from the immune reconstitution syndrome.

  11. Axon and muscle spindle hyperplasia in the myostatin null mouse.

    Science.gov (United States)

    Elashry, Mohamed I; Otto, Anthony; Matsakas, Antonios; El-Morsy, Salah E; Jones, Lisa; Anderson, Bethan; Patel, Ketan

    2011-02-01

    Germline deletion of the myostatin gene results in hyperplasia and hypertrophy of the tension-generating (extrafusal) fibres in skeletal muscle. As this gene is expressed predominantly in myogenic tissues it offers an excellent model with which to investigate the quantitative relationship between muscle and axonal development. Here we show that skeletal muscle hyperplasia in myostatin null mouse is accompanied by an increase in nerve fibres in major nerves of both the fore- and hindlimbs. We show that axons within these nerves undergo hypertrophy. Furthermore, we provide evidence that the age-related neural atrophic process is delayed in the absence of myostatin. Finally, we show that skeletal muscle hyperplasia in the myostatin null mouse is accompanied by an increase in the number of muscle spindles (also called stretch receptors or proprioceptors). However, our work demonstrates that the mechanisms regulating intrafusal fibre hyperplasia and hypertrophy differ from those that control the aetiology of extrafusal fibres.

  12. Intrinsic axonal growth and the drive for regeneration

    Directory of Open Access Journals (Sweden)

    Kevin J O'Donovan

    2016-10-01

    Full Text Available Following damage to the adult nervous system in conditions like stroke, spinal cord injury or traumatic brain injury, many neurons die and most of the remaining spared neurons fail to regenerate. Injured neurons fail to regrow both because of the inhibitory milieu in which they reside as well as a loss of the intrinsic growth capacity of the neurons. If we are to develop effective therapeutic interventions that promote functional recovery for the devastating injuries described above, we must not only better understand the molecular mechanisms of developmental axonal growth in hopes of re-activating these pathways in the adult, but at the same time be aware that re-activation of adult axonal growth may proceed via distinct mechanisms. With this knowledge in hand, promoting adult regeneration of central nervous system neurons can become a more tractable and realistic therapeutic endeavor.

  13. NG2 cells response to axonal alteration in the spinal cord white matter in mice with genetic disruption of neurofilament light subunit expression

    Directory of Open Access Journals (Sweden)

    Xiao Zhi

    2008-10-01

    Full Text Available Abstract Background Chondroitin sulphate proteoglycan (NG2 expressing cells, morphologically characterized by multi-branched processes and small cell bodies, are the 4th commonest cell population of non-neuronal cell type in the central nervous system (CNS. They can interact with nodes of Ranvier, receive synaptic input, generate action potential and respond to some pathological stimuli, but the function of the cells is still unclear. We assumed the NG2 cells may play an active role in neuropathogenesis and aimed to determine if NG2 cells could sense and response to the alterations in the axonal contents caused by disruption of neurofilament light subunit (NFL expression. Results In the early neuropathological development stage, our study showed that the diameter of axons of upper motor neurons of NFL-/- mice decreased significantly while the thickness of their myelin sheath increased remarkably. Although there was an obvious morphological distortion in axons with occasionally partial demyelination, no obvious changes in expression of myelin proteins was detected. Parallel to these changes in the axons and their myelination, the processes of NG2 cells were disconnected from the nodes of Ranvier and extended further, suggesting that these cells in the spinal cord white matter could sense the alteration in axonal contents caused by disruption of NFL expression before astrocytic and microglial activation. Conclusion The structural configuration determined by the NFL gene may be important for maintenance of normal morphology of myelinated axons. The NG2 cells might serve as an early sensor for the delivery of information from impaired neurons to the local environment.

  14. Transient focal cerebral ischemia/reperfusion induces early and chronic axonal changes in rats: its importance for the risk of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Qinan Zhang

    Full Text Available The dementia of Alzheimer's type and brain ischemia are known to increase at comparable rates with age. Recent advances suggest that cerebral ischemia may contribute to the pathogenesis of Alzheimer's disease (AD, however, the neuropathological relationship between these two disorders is largely unclear. It has been demonstrated that axonopathy, mainly manifesting as impairment of axonal transport and swelling of the axon and varicosity, is a prominent feature in AD and may play an important role in the neuropathological mechanisms in AD. In this study, we investigated the early and chronic changes of the axons of neurons in the different brain areas (cortex, hippocampus and striatum using in vivo tracing technique and grading analysis method in a rat model of transient focal cerebral ischemia/reperfusion (middle cerebral artery occlusion, MCAO. In addition, the relationship between the changes of axons and the expression of β-amyloid 42 (Aβ42 and hyperphosphorylated Tau, which have been considered as the key neuropathological processes of AD, was analyzed by combining tracing technique with immunohistochemistry or western blotting. Subsequently, we found that transient cerebral ischemia/reperfusion produced obvious swelling of the axons and varicosities, from 6 hours after transient cerebral ischemia/reperfusion even up to 4 weeks. We could not observe Aβ plaques or overexpression of Aβ42 in the ischemic brain areas, however, the site-specific hyperphosphorylated Tau could be detected in the ischemic cortex. These results suggest that transient cerebral ischemia/reperfusion induce early and chronic axonal changes, which may be an important mechanism affecting the clinical outcome and possibly contributing to the development of AD after stroke.

  15. Three-Dimensional Histology Volume Reconstruction of Axonal Tract Tracing Data: Exploring Topographical Organization in Subcortical Projections from Rat Barrel Cortex.

    Directory of Open Access Journals (Sweden)

    Izabela M Zakiewicz

    Full Text Available Topographical organization is a hallmark of the mammalian brain, and the spatial organization