WorldWideScience

Sample records for detecting microrna activity

  1. Detecting microRNA activity from gene expression data.

    LENUS (Irish Health Repository)

    Madden, Stephen F

    2010-01-01

    BACKGROUND: MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. RESULTS: Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. CONCLUSIONS: We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources.

  2. Detecting microRNA activity from gene expression data

    LENUS (Irish Health Repository)

    Madden, Stephen F

    2010-05-18

    Abstract Background MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. Results Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. Conclusions We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources.

  3. microRNA Decay: Refining microRNA Regulatory Activity.

    Science.gov (United States)

    Pepin, Genevieve; Gantier, Michael P

    2016-01-01

    MicroRNAs (miRNAs) are short 19-25 nucleotide RNA molecules that impact on most biological processes by regulating the efficiency of messenger RNA (mRNA) translation. To date, most research activities have been focused on the control of miRNA expression and its functional consequences. Nonetheless, much remains unknown about the mechanisms affecting the level of specific miRNAs in the cell, a critical feature impacting their regulatory activity. This review focuses on the factors that regulate the abundance of miRNAs, including synthesis, post-transcriptional modifications, nucleases, target binding, and secretion.

  4. A conformation-induced fluorescence method for microRNA detection

    DEFF Research Database (Denmark)

    Aw, Sherry S; Tang, Melissa Xm; Teo, Yin Nah

    2016-01-01

    MicroRNAs play important roles in a large variety of biological systems and processes through their regulation of target mRNA expression, and show promise as clinical biomarkers. However, their small size presents challenges for tagging or direct detection. Innovation in techniques to sense...... and quantify microRNAs may aid research into novel aspects of microRNA biology and contribute to the development of diagnostics. By introducing an additional stem loop into the fluorescent RNA Spinach and altering its 3' and 5' ends, we have generated a new RNA, Pandan, that functions as the basis for a microRNA...... sensor. Pandan contains two sequence-variable stem loops that encode complementary sequence for a target microRNA of interest. In its sensor form, it requires the binding of a target microRNA in order to reconstitute the RNA scaffold for fluorophore binding and fluorescence. Binding of the target microRNA...

  5. Salivary MicroRNAs and Oral Cancer Detection

    OpenAIRE

    Yoshizawa, Janice M.; Wong, David T.W.

    2013-01-01

    MicroRNAs (miRNAs) in human saliva have recently become an emerging field in saliva research for diagnostics applications and its potential role in biological implications. miRNAs are short noncoding RNA molecules that play important roles in regulating a variety of cellular processes. Dysregulation of miRNAs are known to be associated with many diseases. miRNAs were found present in the saliva of OSCC patients and could serve as potential biomarkers for oral cancer detection. Understanding t...

  6. MicroRNA Detection: Current Technology and Research Strategies

    Science.gov (United States)

    Hunt, Eric A.; Broyles, David; Head, Trajen; Deo, Sapna K.

    2015-07-01

    The relatively new field of microRNA (miR) has experienced rapid growth in methodology associated with its detection and bioanalysis as well as with its role in -omics research, clinical diagnostics, and new therapeutic strategies. The breadth of this area of research and the seemingly exponential increase in number of publications on the subject can present scientists new to the field with a daunting amount of information to evaluate. This review aims to provide a collective overview of miR detection methods by relating conventional, established techniques [such as quantitative reverse transcription polymerase chain reaction (RT-qPCR), microarray, and Northern blotting (NB)] and relatively recent advancements [such as next-generation sequencing (NGS), highly sensitive biosensors, and computational prediction of microRNA/targets] to common miR research strategies. This should guide interested readers toward a more focused study of miR research and the surrounding technology.

  7. Ultrasensitive detection of microRNA through rolling circle amplification on a DNA tetrahedron decorated electrode.

    Science.gov (United States)

    Miao, Peng; Wang, Bidou; Meng, Fanyu; Yin, Jian; Tang, Yuguo

    2015-03-18

    MicroRNAs are a class of evolutionally conserved, small noncoding RNAs involved in the regulation of gene expression and affect a variety of biological processes including cellular differentiation, immunological response, tumor development, and so on. Recently, microRNAs have been identified as promising disease biomarkers. In this work, we have fabricated a novel electrochemical method for ultrasensitive detection of microRNA. Generally, a DNA tetrahedron decorated gold electrode is employed as the recognition interface. Then, hybridizations between DNA tetrahedron, microRNA, and primer probe initiate rolling circle amplification (RCA) on the electrode surface. Silver nanoparticles attached to the RCA products provide significant electrochemical signals and a limit of detection as low as 50 aM is achieved. Moreover, homology microRNA family members with only one or two mismatches can be successfully distinguished. Therefore, this proposed method reveals great advancements toward improved disease diagnosis and prognosis.

  8. Nanomaterials-Based Fluorimetric Methods for MicroRNAs Detection

    Directory of Open Access Journals (Sweden)

    Ming La

    2015-05-01

    Full Text Available MicroRNAs (miRNAs are small endogenous non-coding RNAs of ~22 nucleotides that play important functions in the regulation of many biological processes, including cell proliferation, differentiation, and death. Since their expression has been in close association with the development of many diseases, recently, miRNAs have been regarded as clinically important biomarkers and drug discovery targets. However, because of the short length, high sequence similarity and low abundance of miRNAs in vivo, it is difficult to realize the sensitive and selective detection of miRNAs with conventional methods. In line with the rapid development of nanotechnology, nanomaterials have attracted great attention and have been intensively studied in biological analysis due to their unique chemical, physical and size properties. In particular, fluorimetric methodologies in combination with nanotechnology are especially rapid, sensitive and efficient. The aim of this review is to provide insight into nanomaterials-based fluorimetric methods for the detection of miRNAs, including metal nanomaterials, quantum dots (QDs, graphene oxide (GO and silicon nanoparticles.

  9. A simple molecular beacon with duplex-specific nuclease amplification for detection of microRNA.

    Science.gov (United States)

    Li, Yingcun; Zhang, Jiangyan; Zhao, Jingjing; Zhao, Likun; Cheng, Yongqiang; Li, Zhengping

    2016-02-01

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene activity, promoting or inhibiting cell proliferation, migration and apoptosis. Abnormal expression of miRNAs is associated with many diseases. Therefore, it is essential to establish a simple, rapid and sensitive miRNA detection method. In this paper, based on a simple molecular beacon (MB) and duplex-specific nuclease (DSN), we developed a target recycling amplification method for miRNA detection. By controlling the number of stem bases to 5, the MB probe used in this method can be prevented from hydrolysis by DSN without special modification. This assay is direct and simple to quantitatively detect miRNA with high sensitivity and specificity. The MB probe design provides a new strategy for nuclease-based amplification reaction.

  10. Fluorescence In Situ Hybridization for MicroRNA Detection in Archived Oral Cancer Tissues

    Directory of Open Access Journals (Sweden)

    Zonggao Shi

    2012-01-01

    Full Text Available The noncoding RNA designated as microRNA (miRNA is a large group of small single-stranded regulatory RNA and has generated wide-spread interest in human disease studies. To facilitate delineating the role of microRNAs in cancer pathology, we sought to explore the feasibility of detecting microRNA expression in formalin-fixed paraffin-embedded (FFPE tissues. Using FFPE materials, we have compared fluorescent in situ hybridization (FISH procedures to detect miR-146a with (a different synthetic probes: regular custom DNA oligonucleotides versus locked nucleic acid (LNA incorporated DNA oligonucleotides; (b different reporters for the probes: biotin versus digoxigenin (DIG; (c different visualization: traditional versus tyramide signal amplification (TSA system; (d different blocking reagents for endogenous peroxidase. Finally, we performed miR-146a FISH on a commercially available oral cancer tissue microarray, which contains 40 cases of oral squamous cell carcinoma (OSCC and 10 cases of normal epithelia from the human oral cavity. A sample FISH protocol for detecting miR-146a is provided. In summary, we have established reliable in situ hybridization procedures for detecting the expression of microRNA in FFPE oral cancer tissues. This method is an important tool for studies on the involvement of microRNA in oral cancer pathology and may have potential prognostic or diagnostic value.

  11. Sensitive detection of melanoma metastasis using circulating microRNA expression profiles.

    Science.gov (United States)

    Shiiyama, Rie; Fukushima, Satoshi; Jinnin, Masatoshi; Yamashita, Junji; Miyashita, Azusa; Nakahara, Satoshi; Kogi, Ai; Aoi, Jun; Masuguchi, Shinichi; Inoue, Yuji; Ihn, Hironobu

    2013-10-01

    Numerous studies have indicated that the serum levels of microRNAs are useful for the diagnosis or evaluation of activity in human diseases. However, determining the level of only one of the nearly 2000 microRNAs identified so far may be less significant. Accordingly, we examined the possibility that the expression pattern of multiple microRNAs in each patient may be a more reliable disease marker for melanoma, especially metastatic disease, focusing on the interaction among microRNAs. Six microRNAs (miR-9, miR-145, miR-150, miR-155, miR-203, and miR-205) were evaluated using real-time PCR in 11 patients with metastatic melanoma and in 16 patients without melanoma. The expression of the six microRNAs was significantly different between the patients with metastasis and those without it. MiR-9 and miR-205 and miR-203 and miR-205 showed significant correlations, and the combination of miR-9, miR-145, miR-150, miR-155, and miR-205 was more sensitive than when each miR was used individually to distinguish the patients with metastasis from those without it. This is the first report demonstrating the expression profiles of multiple microRNAs in melanoma patients. Clarifying the involvement of the microRNA network in the pathogenesis of melanoma may contribute to the development of new diagnostic tools and to advancing the understanding of this disease.

  12. Modulation of microRNA activity by semi-microRNAs (smiRNAs

    Directory of Open Access Journals (Sweden)

    Isabelle ePlante

    2012-06-01

    Full Text Available The ribonuclease Dicer plays a central role in the microRNA pathway by catalyzing the formation of 19 to 24-nucleotide (nt long microRNAs. Subsequently incorporated into Ago2 effector complexes, microRNAs are known to regulate messenger RNA (mRNA translation. Whether shorter RNA species derived from microRNAs exist and play a role in mRNA regulation remains unknown. Here, we report the serendipitous discovery of a 12-nt long RNA species corresponding to the 5’ region of the microRNA let-7, and tentatively termed semi-microRNA, or smiRNA. Using a smiRNA derived from the precursor of miR-223 as a model, we show that 12-nt long smiRNA species are devoid of any direct mRNA regulatory activity, as assessed in a reporter gene activity assay in transfected cultured human cells. However, smiR-223 was found to modulate the ability of the microRNA from which it derives to mediate translational repression or cleavage of reporter mRNAs. Our findings suggest that smiRNAs may be generated along the microRNA pathway and participate to the control of gene expression by regulating the activity of the related full-length mature microRNA in vivo.

  13. Smart detection of microRNAs through fluorescence enhancement on a photonic crystal.

    Science.gov (United States)

    Pasquardini, L; Potrich, C; Vaghi, V; Lunelli, L; Frascella, F; Descrovi, E; Pirri, C F; Pederzolli, C

    2016-04-01

    The detection of low abundant biomarkers, such as circulating microRNAs, demands innovative detection methods with increased resolution, sensitivity and specificity. Here, a biofunctional surface was implemented for the selective capture of microRNAs, which were detected through fluorescence enhancement directly on a photonic crystal. To set up the optimal biofunctional surface, epoxy-coated commercially available microscope slides were spotted with specific anti-microRNA probes. The optimal concentration of probe as well as of passivating agent were selected and employed for titrating the microRNA hybridization. Cross-hybridization of different microRNAs was also tested, resulting negligible. Once optimized, the protocol was adapted to the photonic crystal surface, where fluorescent synthetic miR-16 was hybridized and imaged with a dedicated equipment. The photonic crystal consists of a dielectric multilayer patterned with a grating structure. In this way, it is possible to take advantage from both a resonant excitation of fluorophores and an angularly redirection of the emitted radiation. As a result, a significant fluorescence enhancement due to the resonant structure is collected from the patterned photonic crystal with respect to the outer non-structured surface. The dedicated read-out system is compact and based on a wide-field imaging detection, with little or no optical alignment issues, which makes this approach particularly interesting for further development such as for example in microarray-type bioassays.

  14. Detection of microRNAs in patients with sepsis

    Institute of Scientific and Technical Information of China (English)

    Michael A Puskarich; Utsav Nandi; Nathan I Shapiro; Stephen Trzeciak; Jeffrey A Kline; Alan E Jones

    2015-01-01

    Objective: To externally validate the diagnostic and prognostic value of three previously identified microRNAs in emergency department patients with sepsis. Methods: Patients meeting consensus criteria for sepsis and septic shock were compared to controls. Three microRNAs (miR-150, miR-146a, and miR-223) were measured using real-time quantitative PCR, and levels of miRNAs were compared among the three cohorts. The association between miRNAs and both inflammatory markers and Sequential Organ Failure Assessment (SOFA) score were compared. To assess the prognostic value of each miRNA, unadjusted and adjusted logistic regression models were constructed using in-hospital mortality as the dependent variable. Results: Ninety-three patients were enrolled; 24 controls, 29 with sepsis, and 40 with septic shock. We found no difference in serum plasma miR-146a or miR-223 between cohorts, and found no association among these microRNAs and either inflammatory markers or SOFA score. miR-150 demonstrated a significant correlation with SOFA score (ρ= 0.31, P=0.01) and IL-10 (ρ=0.37, P=0.001), but no IL-6 or TNF-α (P=0.046, P=0.59). Logistic regression demonstrated miR-150 to be independently associated with mortality, even after adjusting for SOFA score (P=0.003) or initial lactate (P=0.01). Conclusions: miR-146a and miR-223 demonstrated no significantly diagnostic or prognostic ability in this cohort. miR-150 was associated with inflammation, severity of illness, and mortality. Given the independent predictive value of miR-150, additional research regarding its role in sepsis is warranted.

  15. Detection of microRNAs in archival cytology urine smears.

    Science.gov (United States)

    Simonato, Francesca; Ventura, Laura; Sartori, Nicola; Cappellesso, Rocco; Fassan, Matteo; Busund, Lill-Tove; Fassina, Ambrogio

    2013-01-01

    MicroRNAs' dysregulation and profiling have been demonstrated to be clinically relevant in urothelial carcinoma (UC). Urine cytology is commonly used as the mainstay non-invasive test for secondary prevention and follow-up of UC patients. Ancillary tools are needed to support cytopathologists in the diagnosis of low-grade UC. The feasibility and reliability of microRNAs profiling by qRT-PCR analysis (miR-145 and miR-205) in archival routine urine cytology smears (affected by fixation/staining [Papanicolau] and room temperature storage) was tested in a series of 15 non-neoplastic and 10 UC urine specimens. Only samples with >5,000 urothelial cells and with <50% of inflammatory cells/red blood cells clusters were considered. Overall, a satisfactory amount of total RNA was obtained from all the considered samples (mean 1.27±1.43 µg, range 0.06-4.60 µg). Twenty nanograms of total RNA have been calculated to be the minimal total RNA concentration for reliable and reproducible miRNAs expression profiling analysis of archival cytological smears (slope= -3.4084; R-squared=0.99; efficiency=1.94). miR-145 and miR-205 were significantly downregulated in UC samples in comparison to non-tumor controls. These findings demonstrate that urine archival cytology smears are suitable for obtaining high-quality RNA to be used in microRNAs expression profiling. Further studies should investigate if miRNAs profiling can be successfully translated into clinical practice as diagnostic or prognostic markers.

  16. Detection of microRNAs in archival cytology urine smears.

    Directory of Open Access Journals (Sweden)

    Francesca Simonato

    Full Text Available MicroRNAs' dysregulation and profiling have been demonstrated to be clinically relevant in urothelial carcinoma (UC. Urine cytology is commonly used as the mainstay non-invasive test for secondary prevention and follow-up of UC patients. Ancillary tools are needed to support cytopathologists in the diagnosis of low-grade UC. The feasibility and reliability of microRNAs profiling by qRT-PCR analysis (miR-145 and miR-205 in archival routine urine cytology smears (affected by fixation/staining [Papanicolau] and room temperature storage was tested in a series of 15 non-neoplastic and 10 UC urine specimens. Only samples with >5,000 urothelial cells and with <50% of inflammatory cells/red blood cells clusters were considered. Overall, a satisfactory amount of total RNA was obtained from all the considered samples (mean 1.27±1.43 µg, range 0.06-4.60 µg. Twenty nanograms of total RNA have been calculated to be the minimal total RNA concentration for reliable and reproducible miRNAs expression profiling analysis of archival cytological smears (slope= -3.4084; R-squared=0.99; efficiency=1.94. miR-145 and miR-205 were significantly downregulated in UC samples in comparison to non-tumor controls. These findings demonstrate that urine archival cytology smears are suitable for obtaining high-quality RNA to be used in microRNAs expression profiling. Further studies should investigate if miRNAs profiling can be successfully translated into clinical practice as diagnostic or prognostic markers.

  17. Detection and quantification of microRNA in cerebral microdialysate

    DEFF Research Database (Denmark)

    Bache, Søren; Rasmussen, Rune; Rossing, Maria

    2015-01-01

    BACKGROUND: Secondary brain injury accounts for a major part of the morbidity and mortality in patients with spontaneous aneurysmal subarachnoid hemorrhage (SAH), but the pathogenesis and pathophysiology remain controversial. MicroRNAs (miRNAs) are important posttranscriptional regulators...... of complementary mRNA targets and have been implicated in the pathophysiology of other types of acute brain injury. Cerebral microdialysis is a promising tool to investigate these mechanisms. We hypothesized that miRNAs would be present in human cerebral microdialysate. METHODS: RNA was extracted and miRNA...... profiles were established using high throughput real-time quantification PCR on the following material: 1) Microdialysate sampled in vitro from A) a solution of total RNA extracted from human brain, B) cerebrospinal fluid (CSF) from a neurologically healthy patient, and C) a patient with SAH; and 2...

  18. Molecular assays for the detection of microRNAs in prostate cancer

    Directory of Open Access Journals (Sweden)

    Becker Michael M

    2009-03-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are small non-coding RNAs (about 21 to 24 nucleotides in length that effectively reduce the translation of their target mRNAs. Several studies have shown miRNAs to be differentially expressed in prostate cancer, many of which are found in fragile regions of chromosomes. Expression profiles of miRNAs can provide information to separate malignancies based upon stage, progression and prognosis. Here we describe research prototype assays that detect a number of miRNA sequences with high analytical sensitivity and specificity, including miR-21, miR-182, miR-221 and miR-222, which were identified through expression profiling experiments with prostate cancer specimens. The miRNAs were isolated, amplified and quantified using magnetic bead-based target capture and a modified form of Transcription-Mediated Amplification (TMA. Results Analytical sensitivity and specificity were demonstrated in model system experiments using synthetic mature microRNAs or in vitro miRNA hairpin precursor transcripts. Research prototype assays for miR-21, miR-182, miR-221 and miR-222 provided analytical sensitivities ranging from 50 to 500 copies of target per reaction in sample transport medium. Specific capture and detection of mature miR-221 from complex samples was demonstrated in total RNA isolated from human prostate cancer cell lines and xenografts. Conclusion Research prototype real-time TMA assays for microRNAs provide accurate and reproducible quantitation using 10 nanograms of input total RNA. These assays can also be used directly with tissue specimens, without the need for a preanalytic RNA isolation step, and thus provide a high-throughput method of microRNA profiling in clinical specimens.

  19. microRNA expression profiling on individual breast cancer patients identifies novel panel of circulating microRNA for early detection

    DEFF Research Database (Denmark)

    Hamam, Rimi; Ali, Arwa M.; Alsaleh, Khalid A.;

    2016-01-01

    Breast cancer (BC) is the most common cancer type and the second cause of cancer-related death among women. Therefore, better understanding of breast cancer tumor biology and the identification of novel biomarkers is essential for the early diagnosis and for better disease stratification and mana......Breast cancer (BC) is the most common cancer type and the second cause of cancer-related death among women. Therefore, better understanding of breast cancer tumor biology and the identification of novel biomarkers is essential for the early diagnosis and for better disease stratification...... and management choices. Herein we developed a novel approach which relies on the isolation of circulating microRNAs through an enrichment step using speed-vacuum concentration which resulted in 5-fold increase in microRNA abundance. Global miRNA microarray expression profiling performed on individual samples...... of 46 BC and 14 controls. The expression of those microRNAs was overall higher in patients with stage I, II, and III, compared to stage IV, with potential utilization for early detection. The expression of this microRNA panel was slightly higher in the HER2 and TN compared to patients with luminal...

  20. A novel microRNA assay with optical detection and enzyme-free DNA circuits

    Science.gov (United States)

    Liao, Yuhui; Zhou, Xiaoming

    2014-09-01

    MicroRNAs (miRNAs) participate in the significant processes of life course, can be used as quantificational biomarkers for cellular level researches and related diseases. Conventional methods of miRNAs' quantitative detection are obsessed with low sensitivity, time and labour consuming. Otherwise, the emerging miRNAs detection approaches are mostly exposed to the expensive equipment demands and the professional operation, remains at the stage of laboratory and concept demonstration phase. Herein, we designed a novel miRNAs detection platform that based on enzyme-free DNA circuits and electrochemical luminescence (ECL). MicroRNA21 was chosen as the ideal analyte of this platform. The whole process consists of enzyme-free DNA circuits and ECL signal giving-out steps, achieves advantages of operating in constant temperature condition, without the participation of the enzyme, preferable sensitivity and specificity. Through this approach, the sensitivity achieved at 10pM. It is indicated that this miRNAs detection platform possesses potentials to be an innovation of miRNA detection technologies in routine tests. Benefits of the high penetration of ECL in well-equipped medical establishment, this approach could greatly lessen the obstacles in process of popularization and possess excellent prospects of practical application.

  1. Highly sensitive dual mode electrochemical platform for microRNA detection

    Science.gov (United States)

    Jolly, Pawan; Batistuti, Marina R.; Miodek, Anna; Zhurauski, Pavel; Mulato, Marcelo; Lindsay, Mark A.; Estrela, Pedro

    2016-11-01

    MicroRNAs (miRNAs) play crucial regulatory roles in various human diseases including cancer, making them promising biomarkers. However, given the low levels of miRNAs present in blood, their use as cancer biomarkers requires the development of simple and effective analytical methods. Herein, we report the development of a highly sensitive dual mode electrochemical platform for the detection of microRNAs. The platform was developed using peptide nucleic acids as probes on gold electrode surfaces to capture target miRNAs. A simple amplification strategy using gold nanoparticles has been employed exploiting the inherent charges of the nucleic acids. Electrochemical impedance spectroscopy was used to monitor the changes in capacitance upon any binding event, without the need for any redox markers. By using thiolated ferrocene, a complementary detection mode on the same sensor was developed where the increasing peaks of ferrocene were recorded using square wave voltammetry with increasing miRNA concentration. This dual-mode approach allows detection of miRNA with a limit of detection of 0.37 fM and a wide dynamic range from 1 fM to 100 nM along with clear distinction from mismatched target miRNA sequences. The electrochemical platform developed can be easily expanded to other miRNA/DNA detection along with the development of microarray platforms.

  2. Activated mineralocorticoid receptor regulates micro-RNA-29b in vascular smooth muscle cells.

    Science.gov (United States)

    Bretschneider, Maria; Busch, Bianca; Mueller, Daniel; Nolze, Alexander; Schreier, Barbara; Gekle, Michael; Grossmann, Claudia

    2016-04-01

    Inappropriately activated mineralocorticoid receptor (MR) is a risk factor for vascular remodeling with unclear molecular mechanism. Recent findings suggest that post-transcriptional regulation by micro-RNAs (miRs) may be involved. Our aim was to search for MR-dependent miRs in vascular smooth muscle cells (VSMCs) and to explore the underlying molecular mechanism and the pathologic relevance. We detected that aldosteroneviathe MR reduces miR-29bin vivoin murine aorta and in human primary and cultured VSMCs (ED50= 0.07 nM) but not in endothelial cells [quantitative PCR (qPCR), luciferase assays]. This effect was mediated by an increased decay of miR-29b in the cytoplasm with unchanged miR-29 family member or primary-miR levels. Decreased miR-29b led to an increase in extracellular matrix measured by ELISA and qPCR and enhanced VSMC migration in single cell-tracking experiments. Additionally, cell proliferation and the apoptosis/necrosis ratio (caspase/lactate dehydrogenase assay) was modulated by miR-29b. Enhanced VSMC migration by aldosterone required miR-29b regulation. Control experiments were performed with scrambled RNA and empty plasmids, by comparing aldosterone-stimulated with vehicle-incubated cells. Overall, our findings provide novel insights into the molecular mechanism of aldosterone-mediated vascular pathogenesis by identifying miR-29b as a pathophysiologic relevant target of activated MR in VSMCs and by highlighting the importance of miR processing for miR regulation.-Bretschneider, M., Busch, B., Mueller, D., Nolze, A., Schreier, B., Gekle, M., Grossmann, C. Activated mineralocorticoid receptor regulates micro-RNA-29b in vascular smooth muscle cells. © FASEB.

  3. Effects of pathogen reduction systems on platelet microRNAs, mRNAs, activation, and function.

    Science.gov (United States)

    Osman, Abdimajid; Hitzler, Walter E; Meyer, Claudius U; Landry, Patricia; Corduan, Aurélie; Laffont, Benoit; Boilard, Eric; Hellstern, Peter; Vamvakas, Eleftherios C; Provost, Patrick

    2015-01-01

    Pathogen reduction (PR) systems for platelets, based on chemically induced cross-linking and inactivation of nucleic acids, potentially prevent transfusion transmission of infectious agents, but can increase clinically significant bleeding in some clinical studies. Here, we documented the effects of PR systems on microRNA and mRNA levels of platelets stored in the blood bank, and assessed their impact on platelet activation and function. Unlike platelets subjected to gamma irradiation or stored in additive solution, platelets treated with Intercept (amotosalen+ ultraviolet-A [UVA] light) exhibited significantly reduced levels of 6 of the 11 microRNAs, and 2 of the 3 anti-apoptotic mRNAs (Bcl-xl and Clusterin) that we monitored, compared with platelets stored in plasma. Mirasol (riboflavin+ UVB light) treatment of platelets did not produce these effects. PR neither affected platelet microRNA synthesis or function nor induced cross-linking of microRNA-sized endogenous platelet RNA species. However, the reduction in the platelet microRNA levels induced by Intercept correlated with the platelet activation (p platelet aggregation response to ADP (p platelet activation, resulting in the release of microRNAs and mRNAs from platelets. The clinical implications of this reduction in platelet nucleic acids secondary to Intercept remain to be established.

  4. A Novel Biosensor to Detect MicroRNAs Rapidly

    Directory of Open Access Journals (Sweden)

    Jie-Ying Liao

    2009-01-01

    Full Text Available δ-free F0F1-ATPase within chromatophore was constructed as a novel biosensor to detect miRNA targets. Specific miRNA probes were linked to each rotary β subunits of F0F1-ATPase. Detection of miRNAs was based on the proton flux change induced by light-driven rotation of δ-free F0F1-ATPase. The hybridization reaction was indicated by changes in the fluorescent intensity of pH-sensitive CdTe quantum dots. Our results showed that the assay was attomole sensitivities (1.2×10−18 mol to target miRNAs and capable of distinguishing among miRNA family members. Moreover, the method could be used to monitor real-time hybridization without any complicated fabrication before hybridization. Thus, the rotary biosensor is not only sensitive and specific to detect miRNA target but also easy to perform. The δ-free F0F1-ATPase-based rotary biosensor may be a promising tool for the basic research and clinical application of miRNAs.

  5. Ratiometric FRET-based detection of DNA and micro-RNA in solution

    Energy Technology Data Exchange (ETDEWEB)

    Matveeva, Evgenia G., E-mail: ematveev@hsc.unt.ed [Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, Department of Molecular Biology and Immunology and Department of Cell Biology and Genetics, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107 (United States); Gryczynski, Zygmunt [Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, Department of Molecular Biology and Immunology and Department of Cell Biology and Genetics, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107 (United States); Stewart, Donald R. [Omm Scientific, Inc., 2600 N. Stemmons Freeway, Suite 129, Dallas, TX 75207 (United States); Gryczynski, Ignacy [Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, Department of Molecular Biology and Immunology and Department of Cell Biology and Genetics, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107 (United States)

    2009-11-15

    A ratiometric method for detecting DNA oligomers in bulk solution based on Foerster resonance energy transfer (FRET) is described. The two fluorescence signals (green and red), originating from Cy3 (donor, green) and Cy5 (acceptor, red) labels, are simultaneously detected from the pre-hybridized Cy3oligomerY:Cy5oligomerX system. The ratio of red to green intensities is sensitive to the presence of the single-stranded complimentary oligomer, which replaces single-stranded Cy3oligomerY in the donor:acceptor complex and perturbs the FRET. The detection scheme is generally applicable to the detection of DNA and RNA, and particularly micro-RNA. The proposed method is applicable to various double-stranded various lengths targets (manipulation of the sample preparation conditions, such as temperature, incubation time, denaturizing agent, may be needed).

  6. Hybridization kinetics analysis of an oligonucleotide microarray for microRNA detection

    Institute of Scientific and Technical Information of China (English)

    Botao Zhao; Shuo Ding; Wei Li; Youxin Jin

    2011-01-01

    MicroRNA (miRNA) microarrays have been successfully used for profiling miRNA expression in many physiological processes such as development, differentiation, oncogenesis,and other disease processes. Detecting miRNA by miRNA microarray is actually based on nucleic acid hybridization between target molecules and their corresponding complementary probes. Due to the small size and high degree of similarity among miRNA sequences, the hybridization condition must be carefully optimized to get specific and reliable signals. Previously, we reported a microarray platform to detect miRNA expression. In this study, we evaluated the sensitivity and specificity of our microarray platform. After systematic analysis, we determined an optimized hybridization condition with high sensitivity and specificity for miRNA detection. Our results would be helpful for other hybridization-based miRNA detection methods, such as northern blot and nuclease protection assay.

  7. Dysregulated microRNA Activity in Shwachman-Diamond Syndrome

    Science.gov (United States)

    2015-07-01

    ordering individual cells  throughout  the  course   of  a  biological  process  such  as  hematopoietic  differentiation.  His  specialized skill set is...pathways. 6240101 (Novina) 08/01/2013-07/31/2016* 0.08 CM* American Society of Hematology , Bridge Grant Dysregulated microRNA function in

  8. LNA-FISH for detection of microRNAs in frozen sections

    DEFF Research Database (Denmark)

    Silahtaroglu, Asli N

    2010-01-01

    MicroRNAs (miRNAs) are small ( approximately 22 nt) noncoding RNA molecules that regulate the expression of protein coding genes either by cleavage or translational repression. miRNAs comprise one of the most abundant classes of gene regulatory molecules in multicellular organisms. Yet......, the function of miRNAs at the tissue, cell, and subcellular levels is still to be explored. Especially, determining spatial and temporal expression of miRNAs has been a challenge due to their short size and low expression. This protocol describes a fast and effective method for detection of miRNAs in frozen...... tissue sections using fluorescence in situ hybridization. The method employs the unique recognition power of locked nucleic acids as probes together with enhanced detection power of the tyramide signal amplification system for detection of miRNAs in frozen tissues of human and animal origin within...

  9. Circulating MicroRNAs as Non-Invasive Biomarkers for Early Detection of Non-Small-Cell Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Magdalena B Wozniak

    Full Text Available Detection of lung cancer at an early stage by sensitive screening tests could be an important strategy to improving prognosis. Our objective was to identify a panel of circulating microRNAs in plasma that will contribute to early detection of lung cancer.Plasma samples from 100 early stage (I to IIIA non-small-cell lung cancer (NSCLC patients and 100 non-cancer controls were screened for 754 circulating microRNAs via qRT-PCR, using TaqMan MicroRNA Arrays. Logistic regression with a lasso penalty was used to select a panel of microRNAs that discriminate between cases and controls. Internal validation of model discrimination was conducted by calculating the bootstrap optimism-corrected AUC for the selected model.We identified a panel of 24 microRNAs with optimum classification performance. The combination of these 24 microRNAs alone could discriminate lung cancer cases from non-cancer controls with an AUC of 0.92 (95% CI: 0.87-0.95. This classification improved to an AUC of 0.94 (95% CI: 0.90-0.97 following addition of sex, age and smoking status to the model. Internal validation of the model suggests that the discriminatory power of the panel will be high when applied to independent samples with a corrected AUC of 0.78 for the 24-miRNA panel alone.Our 24-microRNA predictor improves lung cancer prediction beyond that of known risk factors.

  10. Nanomaterials-Based Sensing Strategies for Electrochemical Detection of MicroRNAs

    Directory of Open Access Journals (Sweden)

    Ning Xia

    2014-07-01

    Full Text Available MicroRNAs (miRNAs play important functions in post-transcriptional regulation of gene expression. They have been regarded as reliable molecular biomarkers for many diseases including cancer. However, the content of miRNAs in cells can be low down to a few molecules per cell. Thus, highly sensitive analytical methods for miRNAs detection are desired. Recently, electrochemical biosensors have held great promise as devices suitable for point-of-care diagnostics and multiplexed platforms for fast, simple and low-cost nucleic acid analysis. Signal amplification by nanomaterials is one of the most popular strategies for developing ultrasensitive assay methods. This review surveys the latest achievements in the use of nanomaterials to detect miRNAs with a focus on electrochemical techniques.

  11. Subclinical Detection of Diabetic Cardiomyopathy with MicroRNAs: Challenges and Perspectives

    Directory of Open Access Journals (Sweden)

    Luis E. León

    2016-01-01

    Full Text Available The prevalence of cardiac diabetic diseases has been increased around the world, being the most common cause of death and disability among diabetic patients. In particular, diabetic cardiomyopathy is characterized with a diastolic dysfunction and cardiac remodelling without signs of hypertension and coronary artery diseases. In an early stage, it is an asymptomatic disease; however, clinical studies demonstrate that diabetic myocardia are more vulnerable to injury derived by acute myocardial infarct and are the worst prognosis for rehabilitation. Currently, biochemical and imaging diagnostic methods are unable to detect subclinical manifestation of the disease (prior to diastolic dysfunction. In this review, we elaborately discuss the current scientific evidences to propose circulating microRNAs as promising biomarkers for early detection of diabetic cardiomyopathy and, then, to identify patients at high risk of diabetic cardiomyopathy development. Moreover, here we summarise the research strategies to identify miRNAs as potential biomarkers, present limitations, challenges, and future perspectives.

  12. Point-of-care Diagnostic Tools to Detect Circulating MicroRNAS as Biomarkers of Disease

    Directory of Open Access Journals (Sweden)

    Luis Vaca

    2014-05-01

    Full Text Available MicroRNAs or miRNAs are a form of small non-coding RNAs (ncRNAs of 19–22 nucleotides in length in their mature form. miRNAs are transcribed in the nucleus of all cells from large precursors, many of which have several kilobases in length. Originally identified as intracellular modulators of protein synthesis via posttranscriptional gene silencing, more recently it has been found that miRNAs can travel in extracellular human fluids inside specialized vesicles known as exosomes. We will be referring to this miRNAs as circulating microRNAs. More interestingly, the miRNA content inside exosomes changes during pathological events. In the present review we analyze the literature about circulating miRNAs and their possible use as biomarkers. Furthermore, we explore their future in point-of-care (POC diagnostics and provide an example of a portable POC apparatus useful in the detection of circulating miRNAs.

  13. Simultaneous Detection of Different MicroRNA Types Using the ZIP-Code Array System

    Science.gov (United States)

    Weishaupt, Sonja U.; Rupp, Steffen

    2013-01-01

    MicroRNAs (miRNAs) are important negative regulators of gene expression. Their implication in tumorigenesis is based on their dysregulation in many human cancer diseases. Interestingly, in tumor cells, an altered ratio of precursor and mature miRNA levels has been described. Consequently, differences in miRNA type levels have a high potential as biomarkers and comparative high-throughput-based detection might permit a more accurate characterization of subtypes, especially in the case of very heterogeneous tumor entities. Several molecular methods exist for the detection of mature and precursor miRNAs. DNA microarrays are predestinated as a high-throughput method for comprehensive miRNA detection in tumors. However, the simultaneous array-based detection of both these miRNA types is limited because the mature miRNA sequence is identically present in both forms. Here we present a ZIP-code DNA microarray-based system in combination with a novel labeling approach, which enables the simultaneous detection of precursor and mature miRNAs in one single experiment. Using synthetic miRNA templates, we demonstrate the specificity of the method for the different miRNA types, as well as the detection range up to four orders of magnitude. Moreover, mature and precursor miRNAs were detected and validated in human tumor cells. PMID:24078866

  14. Simultaneous Detection of Different MicroRNA Types Using the ZIP-Code Array System

    Directory of Open Access Journals (Sweden)

    Sonja U. Weishaupt

    2013-01-01

    Full Text Available MicroRNAs (miRNAs are important negative regulators of gene expression. Their implication in tumorigenesis is based on their dysregulation in many human cancer diseases. Interestingly, in tumor cells, an altered ratio of precursor and mature miRNA levels has been described. Consequently, differences in miRNA type levels have a high potential as biomarkers and comparative high-throughput-based detection might permit a more accurate characterization of subtypes, especially in the case of very heterogeneous tumor entities. Several molecular methods exist for the detection of mature and precursor miRNAs. DNA microarrays are predestinated as a high-throughput method for comprehensive miRNA detection in tumors. However, the simultaneous array-based detection of both these miRNA types is limited because the mature miRNA sequence is identically present in both forms. Here we present a ZIP-code DNA microarray-based system in combination with a novel labeling approach, which enables the simultaneous detection of precursor and mature miRNAs in one single experiment. Using synthetic miRNA templates, we demonstrate the specificity of the method for the different miRNA types, as well as the detection range up to four orders of magnitude. Moreover, mature and precursor miRNAs were detected and validated in human tumor cells.

  15. Identification and evaluation of plasma microRNAs for early detection of colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Xiaoya Luo

    Full Text Available BACKGROUND: Colorectal cancer (CRC is one of the most commonly diagnosed cancers. Circulating microRNAs (miRNAs have been suggested as potentially promising markers for early detection of CRC. We aimed to identify and evaluate a panel of miRNAs that might be suitable for CRC early detection. METHODS: MiRNAs were profiled by TaqMan MicroRNA Array and screened for differential expression in 5 pools of plasma samples of CRC patients (N = 50 and 5 pools of neoplasm-free controls (N = 50. Additional miRNAs were selected from a literature review. Identified candidates were evaluated in independent validation samples with respect to discrimination of CRC patients (N = 80 or advanced adenoma patients (N = 50 and neoplasm-free controls (N = 194. Diagnostic performance of the panel of miRNAs was assessed by multiple logistic regression, using bootstrap analysis to correct for over-optimism. RESULTS: Five miRNAs identified to be differentially expressed from TaqMan MicroRNA Array (miR-29a, -106b, -133a, -342-3p, -532-3p, and seven miRNAs reported to be differentially expressed in the literature (miR-18a, -20a, -21, -92a, -143, -145, -181b were selected for validation. Nine of the twelve miRNAs (miR-18a, -20a, -21, -29a, -92a, -106b, -133a, -143, -145 were found to be differentially expressed in CRC patients and controls in the validation samples. The optimism-corrected area under the curve was 0.745 (95% confidence interval: 0.708-0.846. None of the selected miRNAs showed significant differential expression between advanced adenoma patients and neoplasm-free controls. CONCLUSION: The identified panel of miRNAs could be of potential use in the development of a multi-marker blood based test for early detection of CRC. IMPACT: The study underscores the high potential of plasma miRNAs for the improvement of current offers of non-invasive CRC screening.

  16. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs

    Directory of Open Access Journals (Sweden)

    Walton Eric F

    2007-10-01

    Full Text Available Abstract MicroRNAs (miRNAs are a class of small non-coding RNAs with a critical role in development and environmental responses. Efficient and reliable detection of miRNAs is an essential step towards understanding their roles in specific cells and tissues. However, gel-based assays currently used to detect miRNAs are very limited in terms of throughput, sensitivity and specificity. Here we provide protocols for detection and quantification of miRNAs by RT-PCR. We describe an end-point and real-time looped RT-PCR procedure and demonstrate detection of miRNAs from as little as 20 pg of plant tissue total RNA and from total RNA isolated from as little as 0.1 μl of phloem sap. In addition, we have developed an alternative real-time PCR assay that can further improve specificity when detecting low abundant miRNAs. Using this assay, we have demonstrated that miRNAs are differentially expressed in the phloem sap and the surrounding vascular tissue. This method enables fast, sensitive and specific miRNA expression profiling and is suitable for facilitation of high-throughput detection and quantification of miRNA expression.

  17. Recent Advance in Biosensors for microRNAs Detection in Cancer

    Directory of Open Access Journals (Sweden)

    Vittorio de Franciscis

    2011-04-01

    Full Text Available MicroRNAs (miRNAs are short non-protein-coding RNA molecules that regulate the expression of a wide variety of genes. They act by sequence-specific base pairing in the 3’ untranslated region (3’UTR of the target mRNA leading to mRNA degradation or translation inhibition. Recent studies have implicated miRNAs in a wide range of biological processes and diseases including development, metabolism and cancer, and revealed that expression levels of individual miRNAs may serve as reliable molecular biomarkers for cancer diagnosis and prognosis. Therefore, a major challenge is to develop innovative tools able to couple high sensitivity and specificity for rapid detection of miRNAs in a given cell or tissue. In this review, we focus on the latest innovative approaches proposed for miRNA profiling in cancer and discuss their advantages and disadvantages.

  18. Nanotechnology-based strategies for the detection and quantification of microRNA.

    Science.gov (United States)

    Degliangeli, Federica; Pompa, Pier Paolo; Fiammengo, Roberto

    2014-07-28

    MicroRNAs (miRNAs) are important regulators of gene expression, and many pathological conditions, including cancer, are characterized by altered miRNA expression levels. Therefore, accurate and sensitive quantification of miRNAs may result in correct disease diagnosis establishing these small noncoding RNA transcripts as valuable biomarkers. Aiming at overcoming some limitations of conventional quantification strategies, nanotechnology is currently providing numerous significant alternatives to miRNA sensing. In this review an up-to-date account of nanotechnology-based strategies for miRNA detection and quantification is given. The topics covered are: nanoparticle-based approaches in solution, sensing based on nanostructured surfaces, combined nanoparticle/surface sensing approaches, and single-molecule approaches.

  19. Recent Advance in Biosensors for microRNAs Detection in Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Catuogno, Silvia; Esposito, Carla L. [Istituto per l' Endocrinologia e l' Oncologia Sperimentale del CNR “G. Salvatore”, Via S. Pansini 5, 80131 Naples (Italy); Quintavalle, Cristina [Dipartimento di Biologia e Patologia Cellulare e Molecolare, University of Naples “Federico II”, Naples (Italy); Cerchia, Laura [Istituto per l' Endocrinologia e l' Oncologia Sperimentale del CNR “G. Salvatore”, Via S. Pansini 5, 80131 Naples (Italy); Condorelli, Gerolama [Dipartimento di Biologia e Patologia Cellulare e Molecolare, University of Naples “Federico II”, Naples (Italy); Facolta di Scienze Biotecnologiche, University of Naples “Federico II”, Naples (Italy); Franciscis, Vittorio de, E-mail: defranci@unina.it [Istituto per l' Endocrinologia e l' Oncologia Sperimentale del CNR “G. Salvatore”, Via S. Pansini 5, 80131 Naples (Italy)

    2011-04-08

    MicroRNAs (miRNAs) are short non-protein-coding RNA molecules that regulate the expression of a wide variety of genes. They act by sequence-specific base pairing in the 3′ untranslated region (3′UTR) of the target mRNA leading to mRNA degradation or translation inhibition. Recent studies have implicated miRNAs in a wide range of biological processes and diseases including development, metabolism and cancer, and revealed that expression levels of individual miRNAs may serve as reliable molecular biomarkers for cancer diagnosis and prognosis. Therefore, a major challenge is to develop innovative tools able to couple high sensitivity and specificity for rapid detection of miRNAs in a given cell or tissue. In this review, we focus on the latest innovative approaches proposed for miRNA profiling in cancer and discuss their advantages and disadvantages.

  20. Ultrasensitive detection of microRNAs based on hairpin fluorescence probe assisted isothermal amplification.

    Science.gov (United States)

    Ma, Cuiping; Liu, Sen; Shi, Chao

    2014-08-15

    A hairpin fluorescence probe assisted isothermal amplification strategy was used for microRNAs (miRNAs) detection. The fluorescence hairpin probe was rationally designed by software NUPACK to reduce background signal. This isothermal amplification method consisted of two circuits. The amplification strategy not only could detect miRNA, but also amplified and reversely transcribed miRNA into DNA to enhance the stability of the target. The approach was ultrasensitive and as low as 8.5×10(-15)mol/L miR-Let-7a, corresponding to 8.5×10(-20)mol miR-Let-7a in 10µL, was able to be detected within 20min at 37°C. Moreover, successful detection of miR-Let-7a in a total RNA sample was also achieved. Thus, the rapid, simple, isothermal, and highly sensitive approach should be a promising tool for on-the-spot detection.

  1. In situ single step detection of exosome microRNA using molecular beacon.

    Science.gov (United States)

    Lee, Ji Hye; Kim, Jeong Ah; Kwon, Min Hee; Kang, Ji Yoon; Rhee, Won Jong

    2015-06-01

    In situ single step detection of microRNAs (miRNA) in a whole exosome has been developed as a novel diagnosis method that can be utilized for various diseases. Exosomes are small extracellular vesicles that contain biomarker miRNAs produced from their originating cells and are known to travel through the circulatory system. This makes exosomal miRNAs from the body fluids an attractive biomarker that can lead to a paradigm shift in the diagnosis of disease. However, current techniques, including real-time PCR analysis, are time-consuming and laborious, making them unsuitable for exosomal miRNA detection for diagnosis. Thus, the development of alternative methods is necessary. Herein, we have demonstrated that exosomal miRNAs can be detected directly using a nano-sized fluorescent oligonucleotide probe, molecular beacon. MiRNA-21 in exosomes from breast cancer cells were detected successfully by molecular beacons in a quantitative manner. Permeabilization by streptolysin O treatment further enhanced the delivery of molecular beacons into exosomes, giving significantly increased signals from target miRNAs. In addition, we selectively detected cancer cell-derived exosomal miRNA-21 among heterogeneous exosome mixtures and in human serum. The method developed in the article is simple, fast, and sensitive, so it will offer great opportunities for the high-throughput diagnosis and prognosis of diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Comparison of Methodologies to Detect Low Levels of Hemolysis in Serum for Accurate Assessment of Serum microRNAs.

    Science.gov (United States)

    Shah, Jaynish S; Soon, Patsy S; Marsh, Deborah J

    2016-01-01

    microRNAs have emerged as powerful regulators of many biological processes, and their expression in many cancer tissues has been shown to correlate with clinical parameters such as cancer type and prognosis. Present in a variety of biological fluids, microRNAs have been described as a 'gold mine' of potential noninvasive biomarkers. Release of microRNA content of blood cells upon hemolysis dramatically alters the microRNA profile in blood, potentially affecting levels of a significant number of proposed biomarker microRNAs and, consequently, accuracy of serum or plasma-based tests. Several methods to detect low levels of hemolysis have been proposed; however, a direct comparison assessing their sensitivities is currently lacking. In this study, we evaluated the sensitivities of four methods to detect hemolysis in serum (listed in the order of sensitivity): measurement of hemoglobin using a Coulter® AcT diff™ Analyzer, visual inspection, the absorbance of hemoglobin measured by spectrophotometry at 414 nm and the ratio of red blood cell-enriched miR-451a to the reference microRNA miR-23a-3p. The miR ratio detected hemolysis down to approximately 0.001%, whereas the Coulter® AcT diff™ Analyzer was unable to detect hemolysis lower than 1%. The spectrophotometric method could detect down to 0.004% hemolysis, and correlated with the miR ratio. Analysis of hemolysis in a cohort of 86 serum samples from cancer patients and healthy controls showed that 31 of 86 (36%) were predicted by the miR ratio to be hemolyzed, whereas only 8 of these samples (9%) showed visible pink discoloration. Using receiver operator characteristic (ROC) analyses, we identified absorbance cutoffs of 0.072 and 0.3 that could identify samples with low and high levels of hemolysis, respectively. Overall, this study will assist researchers in the selection of appropriate methodologies to test for hemolysis in serum samples prior to quantifying expression of microRNAs.

  3. Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo.

    Science.gov (United States)

    Nudelman, Aaron S; DiRocco, Derek P; Lambert, Talley J; Garelick, Michael G; Le, Josh; Nathanson, Neil M; Storm, Daniel R

    2010-04-01

    Activity-dependent changes in gene-expression are believed to underlie the molecular representation of memory. In this study, we report that in vivo activation of neurons rapidly induces the CREB-regulated microRNA miR-132. To determine if production of miR-132 is regulated by neuronal activity its expression in mouse brain was monitored by quantitative RT-PCR (RT-qPCR). Pilocarpine-induced seizures led to a robust, rapid, and transient increase in the primary transcript of miR-132 (pri-miR-132) followed by a subsequent rise in mature microRNA (miR-132). Activation of neurons in the hippocampus, olfactory bulb, and striatum by contextual fear conditioning, odor-exposure, and cocaine-injection, respectively, also increased pri-miR-132. Induction kinetics of pri-miR-132 were monitored and found to parallel those of immediate early genes, peaking at 45 min and returning to basal levels within 2 h of stimulation. Expression levels of primary and mature-miR-132 increased significantly between postnatal Days 10 and 24. We conclude that miR-132 is an activity-dependent microRNA in vivo, and may contribute to the long-lasting proteomic changes required for experience-dependent neuronal plasticity.

  4. Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo

    DEFF Research Database (Denmark)

    Nudelman, Aaron Samuel; DiRocco, Derek P; Lambert, Talley J

    2010-01-01

    of stimulation. Expression levels of primary and mature-miR-132 increased significantly between postnatal Days 10 and 24. We conclude that miR-132 is an activity-dependent microRNA in vivo, and may contribute to the long-lasting proteomic changes required for experience-dependent neuronal plasticity.......Activity-dependent changes in gene-expression are believed to underlie the molecular representation of memory. In this study, we report that in vivo activation of neurons rapidly induces the CREB-regulated microRNA miR-132. To determine if production of miR-132 is regulated by neuronal activity its...... expression in mouse brain was monitored by quantitative RT-PCR (RT-qPCR). Pilocarpine-induced seizures led to a robust, rapid, and transient increase in the primary transcript of miR-132 (pri-miR-132) followed by a subsequent rise in mature microRNA (miR-132). Activation of neurons in the hippocampus...

  5. MicroRNAs Control Macrophage Formation and Activation: The Inflammatory Link between Obesity and Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Richard Cheng-An Chang

    2014-07-01

    Full Text Available Activation and recruitment of resident macrophages in tissues in response to physiological stress are crucial regulatory processes in promoting the development of obesity-associated metabolic disorders and cardiovascular diseases. Recent studies have provided compelling evidence that microRNAs play important roles in modulating monocyte formation, macrophage maturation, infiltration into tissues and activation. Macrophage-dependent systemic physiological and tissue-specific responses also involve cell-cell interactions between macrophages and host tissue niche cell components, including other tissue-resident immune cell lineages, adipocytes, vascular smooth muscle and others. In this review, we highlight the roles of microRNAs in regulating the development and function of macrophages in the context of obesity, which could provide insights into the pathogenesis of obesity-related metabolic syndrome and cardiovascular diseases.

  6. Biosensor-based microRNA detection: techniques, design, performance, and challenges.

    Science.gov (United States)

    Johnson, Blake N; Mutharasan, Raj

    2014-04-07

    The current state of biosensor-based techniques for amplification-free microRNA (miRNA) detection is critically reviewed. Comparison with non-sensor and amplification-based molecular techniques (MTs), such as polymerase-based methods, is made in terms of transduction mechanism, associated protocol, and sensitivity. Challenges associated with miRNA hybridization thermodynamics which affect assay selectivity and amplification bias are briefly discussed. Electrochemical, electromechanical, and optical classes of miRNA biosensors are reviewed in terms of transduction mechanism, limit of detection (LOD), time-to-results (TTR), multiplexing potential, and measurement robustness. Current trends suggest that biosensor-based techniques (BTs) for miRNA assay will complement MTs due to the advantages of amplification-free detection, LOD being femtomolar (fM)-attomolar (aM), short TTR, multiplexing capability, and minimal sample preparation requirement. Areas of future importance in miRNA BT development are presented which include focus on achieving high measurement confidence and multiplexing capabilities.

  7. Visual Detection of Multiplex MicroRNAs Using Cationic Conjugated Polymer Materials.

    Science.gov (United States)

    Zhou, Yuanyuan; Zhang, Jiangyan; Zhao, Likun; Li, Yingcun; Chen, Hui; Li, Shengliang; Cheng, Yongqiang

    2016-01-20

    A simple, visual, and specific method for simultaneous detection of multiplex microRNAs (miRNAs) has been developed by integrating duplex-specific nuclease (DSN)-induced amplification with cationic conjugated polymer (CCP) materials. The probe DNA with a complementary sequence to target miRNA is labeled with fluorescein dye (FAM). Without target miRNA, the single-strand DNA probe cannot be digested by DSN. Upon adding CCPs, efficient fluorescence resonance energy transfer (FRET) from CCP to FAM occurs owing to strong electrostatic interactions between CCP and the DNA probe. In the presence of target miRNA, the DNA probe hybridizes with target miRNA followed by digestion to small nucleotide fragments by DSN; meanwhile, the miRNA is released and subsequently interacts again with the probe, resulting in the cycled digestion of the DNA probe. In this case, weak electrostatic interactions between oligonucleotide fragments and CCP lead to inefficient FRET from CCP to FAM. Thus, by triggering the FRET signal from CCP to FAM, miRNA can be specially detected, and the fluorescence color change based on FRET can be visualized directly with the naked eye under an UV lamp. Furthermore, an energy transfer cascade can be designed using CCP and DNA probes labeled at the 5'-terminus with FAM and Cy3 dyes, and the multistep FRET processes offer the ability of simultaneous detection of multiplex miRNAs.

  8. Cascaded strand displacement for non-enzymatic target recycling amplification and label-free electronic detection of microRNA from tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Kai; Dou, Baoting; Yang, Jianmei; Yuan, Ruo; Xiang, Yun, E-mail: yunatswu@swu.edu.cn

    2016-04-15

    The monitoring of microRNA (miRNA) expression levels is of great importance in cancer diagnosis. In the present work, based on two cascaded toehold-mediated strand displacement reactions (TSDRs), we have developed a label- and enzyme-free target recycling signal amplification approach for sensitive electronic detection of miRNA-21 from human breast cancer cells. The junction probes containing the locked G-quadruplex forming sequences are self-assembled on the senor surface. The presence of the target miRNA-21 initiates the first TSDR and results in the disassembly of the junction probes and the release of the active G-quadruplex forming sequences. Subsequently, the DNA fuel strand triggers the second TSDR and leads to cyclic reuse of the target miRNA-21. The cascaded TSDRs thus generate many active G-quadruplex forming sequences on the sensor surface, which associate with hemin to produce significantly amplified current response for sensitive detection of miRNA-21 at 1.15 fM. The sensor is also selective and can be employed to monitor miRNA-21 from human breast cancer cells. - Highlights: • Amplified and sensitive detection of microRNA from tumor cells is achieved. • Signal amplification is realized by two cascaded strand displacement reactions. • The developed sensor is selective and label-free without involving any enzymes.

  9. MicroRNA-873 is a Potential Serum Biomarker for the Detection of Ectopic Pregnancy

    Directory of Open Access Journals (Sweden)

    Qi Lu

    2017-05-01

    Full Text Available Background: Ectopic pregnancy (EP refers to the implantation of the zygote outside the uterine cavity. In clinical practice, the diagnosis of EP relies on a combination of ultrasound findings and serum human chorionic gonadotrophin (hCG measurements. However, the need for serial hCG measurements increases the risk of tubal rupture and death, underscoring the need to identify biomarkers for the early detection of EP. Methods: The serum concentrations of 21 microRNAs (miRNAs associated with pregnancy or with known placental expression, as well as serum hCG and progesterone levels were analyzed 36 patients with viable intrauterine pregnancy (VIP, 30 patients with spontaneous abortion (SA, and 34 patients with EP using specific assay kits and reverse transcription PCR. The diagnostic performance of the different serum markers for detecting EP was analyzed by ROC curve analysis. Results: Five miRNAs were differentially expressed between the three groups, of which miR-873 and miR-223 were significantly lower in EP than in VIP and SA patients and did not change significantly according to gestational age, and miR-323 was significantly higher in EP than in VIP and SA. As a single marker, miR-873 had the highest sensitivity for detecting EP at 61.76% (at a fixed specificity of 90%. In comparison, the combination of hCG, progesterone and miR-873 had the highest sensitivity for detecting EP at 79.41% (at a fixed specificity of 90%. Conclusion: Although further validation in large-scale prospective studies is necessary, our results suggest that miR-873 could be a valuable noninvasive and stable biomarker for the early detection of EP.

  10. Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides.

    Science.gov (United States)

    Deo, Monika; Yu, Jenn-Yah; Chung, Kwan-Ho; Tippens, Melissa; Turner, David L

    2006-09-01

    We have developed an in situ hybridization procedure for the detection of microRNAs (miRNAs) in tissue sections from mouse embryos and adult organs. The method uses highly specific washing conditions for RNA oligonucleotide probes conjugated to a fluorescein hapten. We show that this method detects predominantly mature miRNAs rather than the miRNA precursors or primary transcripts. We have determined expression patterns for several miRNAs expressed in the developing and adult nervous system, including miR-124a, miR-9, miR-92, and miR-204. Whereas miR-124a is expressed in neurons, miR-9 is expressed in neural progenitors and some neurons, and miR-204 is expressed in the choroid plexus, retinal pigment epithelium, and ciliary body. miR-204 is located in an intron of the TRPM3 gene, and the TRPM3 mRNA is coexpressed with miR-204 in the choroid plexus. We also find that primary transcripts for miR-124a and miR-9 genes are expressed in patterns similar to their respective mature miRNAs. The ability to visualize expression of specific miRNAs in embryos and tissues should aid studies on miRNA function. Copyright 2006 Wiley-Liss, Inc.

  11. Salivary microRNAs as promising biomarkers for detection of esophageal cancer.

    Directory of Open Access Journals (Sweden)

    Zijun Xie

    Full Text Available BACKGROUND AND PURPOSE: Tissue microRNAs (miRNAs can detect cancers and predict prognosis. Several recent studies reported that tissue, plasma, and saliva miRNAs share similar expression profiles. In this study, we investigated the discriminatory power of salivary miRNAs (including whole saliva and saliva supernatant for detection of esophageal cancer. MATERIALS AND METHODS: By Agilent microarray, six deregulated miRNAs from whole saliva samples from seven patients with esophageal cancer and three healthy controls were selected. The six selected miRNAs were subjected to validation of their expression levels by RT-qPCR using both whole saliva and saliva supernatant samples from an independent set of 39 patients with esophageal cancer and 19 healthy controls. RESULTS: Six miRNAs (miR-10b*, miR-144, miR-21, miR-451, miR-486-5p, and miR-634 were identified as targets by Agilent microarray. After validation by RT-qPCR, miR-10b*, miR-144, and miR-451 in whole saliva and miR-10b*, miR-144, miR-21, and miR-451 in saliva supernatant were significantly upregulated in patients, with sensitivities of 89.7, 92.3, 84.6, 79.5, 43.6, 89.7, and 51.3% and specificities of 57.9, 47.4, 57.9%, 57.9, 89.5, 47.4, and 84.2%, respectively. CONCLUSIONS: We found distinctive miRNAs for esophageal cancer in both whole saliva and saliva supernatant. These miRNAs possess discriminatory power for detection of esophageal cancer. Because saliva collection is noninvasive and convenient, salivary miRNAs show great promise as biomarkers for detection of esophageal cancer in areas at high risk.

  12. Simultaneous and multiplexed detection of exosome microRNAs using molecular beacons.

    Science.gov (United States)

    Lee, Ji Hye; Kim, Jeong Ah; Jeong, Seunga; Rhee, Won Jong

    2016-12-15

    Simultaneous and multiplexed detection of microRNAs (miRNAs) in a whole exosome is developed, which can be utilized as a PCR-free efficient diagnosis method for various diseases. Exosomes are small extracellular vesicles that contain biomarker miRNAs from parental cells. Because they circulate throughout bodily fluids, exosomal biomarkers offer great advantages for diagnosis in many aspects. In general, PCR-based methods can be used for exosomal miRNA detection but they are laborious, expensive, and time-consuming, which make them unsuitable for high-throughput diagnosis of diseases. Previously, we reported that single miRNA in the exosomes can be detected specifically using an oligonucleotide probe or molecular beacon. Herein, we demonstrate for the first time that multiple miRNAs can be detected simultaneously in exosomes using miRNA-targeting molecular beacons. Exosomes from a breast cancer cell line, MCF-7, were used for the production of exosomes because MCF-7 has a high level of miR-21, miR-375, and miR-27a as target miRNAs. Molecular beacons successfully hybridized with multiple miRNAs in the cancer cell-derived exosomes even in the presence of high human serum concentration. In addition, it is noteworthy that the choice of fluorophores for multiplexing biomarkers in an exosome is crucial because of its small size. The proposed method described in this article is beneficial to high-throughput analysis for disease diagnosis, prognosis, and response to treatment because it is a time-, labor-, and cost-saving technique.

  13. MicroRNA-19a mediates gastric carcinoma cell proliferation through the activation of nuclear factor-κB.

    Science.gov (United States)

    Yang, Fan; Wang, Hongjian; Jiang, Zhenyu; Hu, Anxiang; Chu, Lisha; Sun, Yiling; Han, Junqing

    2015-10-01

    In gastric carcinoma, the nuclear factor‑κB (NF‑κB) signaling pathway is highly active, and the constitutive activation of NF‑κB prompts malignant cell proliferation. MicroRNAs are considered to be important mediators in the regulation of the NF‑κB signaling pathway. The present study predominantly focussed on the effects of microRNA (miR)‑19a on NF‑κB activation. Reverse transcription‑quantitative polymerase chain reaction was used to quantify the relative levels of miR‑19a in gastric carcinoma cells. MTT assays were used to determine the effect of miR‑19a on cellular proliferation. To detect the activation of NF‑κB, western blotting was performed to measure the protein levels of NF‑κB and the products of its downstream target genes. To define the target genes, luciferase reporter assays were used. miR‑19a was found to be markedly upregulated in gastric carcinoma cells. The overexpression of miR‑19a resulted in proliferation and enhanced migratory capabilities of the MGC‑803 gastric carcinoma cell line. The results of the western blot analysis demonstrated that the protein levels of p65 increased when the MGC‑803 cells were transfected with miR‑19a mimics. In addition, the downstream target genes of miR‑19a, including intercellular adhesion molecule, vascular cell adhesion molecule and monocyte chemoattractant protein‑1, were upregulated. The results of the luciferase assay indicated that IκB‑α was the target gene of miR‑19a. Therefore, the results of the present study suggested that miR‑19a enhances malignant gastric cell proliferation by constitutively activating the NF‑κB signaling pathway.

  14. Circulating microRNAs as specific biomarkers for breast cancer detection.

    Directory of Open Access Journals (Sweden)

    Enders K O Ng

    Full Text Available BACKGROUND: We previously showed microRNAs (miRNAs in plasma are potential biomarkers for colorectal cancer detection. Here, we aimed to develop specific blood-based miRNA assay for breast cancer detection. METHODOLOGY/PRINCIPAL FINDINGS: TaqMan-based miRNA profiling was performed in tumor, adjacent non-tumor, corresponding plasma from breast cancer patients, and plasma from matched healthy controls. All putative markers identified were verified in a training set of breast cancer patients. Selected markers were validated in a case-control cohort of 170 breast cancer patients, 100 controls, and 95 other types of cancers and then blindly validated in an independent set of 70 breast cancer patients and 50 healthy controls. Profiling results showed 8 miRNAs were concordantly up-regulated and 1 miRNA was concordantly down-regulated in both plasma and tumor tissue of breast cancer patients. Of the 8 up-regulated miRNAs, only 3 were significantly elevated (p<0.0001 before surgery and reduced after surgery in the training set. Results from the validation cohort showed that a combination of miR-145 and miR-451 was the best biomarker (p<0.0001 in discriminating breast cancer from healthy controls and all other types of cancers. In the blind validation, these plasma markers yielded Receiver Operating Characteristic (ROC curve area of 0.931. The positive predictive value was 88% and the negative predictive value was 92%. Altered levels of these miRNAs in plasma have been detected not only in advanced stages but also early stages of tumors. The positive predictive value for ductal carcinoma in situ (DCIS cases was 96%. CONCLUSIONS: These results suggested that these circulating miRNAs could be a potential specific biomarker for breast cancer screening.

  15. Circulating microRNAs as biomarkers for detection of autologous blood transfusion.

    Directory of Open Access Journals (Sweden)

    Nicolas Leuenberger

    Full Text Available MicroRNAs (miRNAs are small non-coding RNAs that regulate various biological processes. Cell-free miRNAs measured in blood plasma have emerged as specific and sensitive markers of physiological processes and disease. In this study, we investigated whether circulating miRNAs can serve as biomarkers for the detection of autologous blood transfusion, a major doping technique that is still undetectable. Plasma miRNA levels were analyzed using high-throughput quantitative real-time PCR. Plasma samples were obtained before and at several time points after autologous blood transfusion (blood bag storage time 42 days in 10 healthy subjects and 10 controls without transfusion. Other serum markers of erythropoiesis were determined in the same samples. Our results revealed a distinct change in the pattern of circulating miRNAs. Ten miRNAs were upregulated in transfusion samples compared with control samples. Among these, miR-30b, miR-30c, and miR-26b increased significantly and showed a 3.9-, 4.0-, and 3.0-fold change, respectively. The origin of these miRNAs was related to pulmonary and liver tissues. Erythropoietin (EPO concentration decreased after blood reinfusion. A combination of miRNAs and EPO measurement in a mathematical model enhanced the efficiency of autologous transfusion detection through miRNA analysis. Therefore, our results lay the foundation for the development of miRNAs as novel blood-based biomarkers to detect autologous transfusion.

  16. Identification of a circulating microRNA signature for colorectal cancer detection.

    Directory of Open Access Journals (Sweden)

    Jia Wang

    Full Text Available Prognosis of patients with colorectal cancer (CRC is generally poor because of the lack of simple, convenient, and noninvasive tools for CRC detection at the early stage. The discovery of microRNAs (miRNAs and their different expression profiles among different kinds of diseases has opened a new avenue for tumor diagnosis. We built a serum microRNA expression profile signature and tested its specificity and sensitivity as a biomarker in the diagnosis of CRC. We also studied its possible role in monitoring the progression of CRC. We conducted a two phase case-control test to identify serum miRNAs as biomarkers for CRC diagnosis. Using quantitative reverse transcription polymerase chain reactions, we tested ten candidate miRNAs in a training set (30 CRCs vs 30 controls. Risk score analysis was used to evaluate the diagnostic value of the serum miRNA profiling system. Other independent samples, including 83 CRCs and 59 controls, were used to validate the diagnostic model. In the training set, six serum miRNAs (miR-21, let-7g, miR-31, miR-92a, miR-181b, and miR-203 had significantly different expression levels between the CRCs and healthy controls. Risk score analysis demonstrated that the six-miRNA-based biomarker signature had high sensitivity and specificity for distinguishing the CRC samples from cancer-free controls. The areas under the receiver operating characteristic (ROC curve of the six-miRNA signature profiles were 0.900 and 0.923 for the two sets of serum samples, respectively. However, for the same serum samples, the areas under the ROC curve used by the tumor markers carcinoembryonic antigen (CEA and carbohydrate antigen 19-9 (CA19-9 were only 0.649 and 0.598, respectively. The expression levels of the six serum miRNAs were also correlated with CRC progression. Thus, the identified six-miRNA signature can be used as a noninvasive biomarker for the diagnosis of CRC, with relatively high sensitivity and specificity.

  17. Profiling of microRNAs in tumor interstitial fluid of breast tumors - a novel resource to identify biomarkers for prognostic classification and detection of cancer.

    Science.gov (United States)

    Halvorsen, Ann Rita; Helland, Åslaug; Gromov, Pavel; Wielenga, Vera Timmermans; Talman, Maj-Lis Møller; Brunner, Nils; Sandhu, Vandana; Børresen-Dale, Anne-Lise; Gromova, Irina; Haakensen, Vilde D

    2017-02-01

    It has been hypothesized based on accumulated data that a class of small noncoding RNAs, termed microRNAs, are key factors in intercellular communication. Here, microRNAs present in interstitial breast tumor fluids have been analyzed to identify relevant markers for a diagnosis of breast cancer and to elucidate the cross-talk that exists among cells in a tumor microenvironment. Matched tumor interstitial fluid samples (TIF, n = 60), normal interstitial fluid samples (NIF, n = 51), corresponding tumor tissue specimens (n = 54), and serum samples (n = 27) were collected from patients with breast cancer, and detectable microRNAs were analyzed and compared. In addition, serum data from 32 patients with breast cancer and 22 healthy controls were obtained for a validation study. To identify potential serum biomarkers of breast cancer, first the microRNA profiles of TIF and NIF samples were compared. A total of 266 microRNAs were present at higher level in the TIF samples as compared to normal counterparts. Sixty-one of these microRNAs were present in > 75% of the serum samples and were subsequently tested in a validation set. Seven of the 61 microRNAs were associated with poor survival, while 23 were associated with the presence of immune cells and adipocytes. To our knowledge, these data demonstrate for the first time that profiling of microRNAs in TIF can identify novel biomarkers for the prognostic classification and detection of breast cancer. In addition, the present findings demonstrate that microRNAs may represent the cross-talk that occurs between tumor cells and their surrounding stroma. © 2016 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  18. MicroRNA Detection Using a Double Molecular Beacon Approach: Distinguishing Between miRNA and Pre-miRNA.

    Science.gov (United States)

    James, Amanda Marie; Baker, Meredith B; Bao, Gang; Searles, Charles D

    2017-01-01

    MicroRNAs (miRNAs) are small, noncoding RNAs that post-transcriptionally regulate gene expression and are recognized for their roles both as modulators of disease progression and as biomarkers of disease activity, including neurological diseases, cancer, and cardiovascular disease (CVD). Commonly, miRNA abundance is assessed using quantitative real-time PCR (qRT-PCR), however, qRT-PCR for miRNA can be labor intensive, time consuming, and may lack specificity for detection of mature versus precursor forms of miRNA. Here, we describe a novel double molecular beacon approach to miRNA assessment that can distinguish and quantify mature versus precursor forms of miRNA in a single assay, an essential feature for use of miRNAs as biomarkers for disease. Using this approach, we found that molecular beacons with DNA or combined locked nucleic acid (LNA)-DNA backbones can detect mature and precursor miRNAs (pre-miRNAs) of low (beacon assay was accurate in assessing miRNA abundance in a sample containing a mixed population of mature and precursor miRNAs. In contrast, qRT-PCR and the single molecular beacon assay overestimated miRNA abundance. Additionally, the double molecular beacon assay was less labor intensive than traditional qRT-PCR and had 10-25% increased specificity. Our data suggest that the double molecular beacon-based approach is more precise and specific than previous methods, and has the promise of being the standard for assessing miRNA levels in biological samples.

  19. Sensitive detection of hepatocellular injury in chronic hepatitis C patients with circulating hepatocyte-derived microRNA-122.

    Science.gov (United States)

    van der Meer, A J; Farid, W R R; Sonneveld, M J; de Ruiter, P E; Boonstra, A; van Vuuren, A J; Verheij, J; Hansen, B E; de Knegt, R J; van der Laan, L J W; Janssen, H L A

    2013-03-01

    As chronic hepatitis C patients with progressive disease can present themselves with normal ALT levels, more sensitive biomarkers are needed. MicroRNAs are newly discovered small noncoding RNAs that are stable and detectable in the circulation. We aimed to investigate the association between hepatocyte-derived microRNAs in serum and liver injury in patients with chronic hepatitis C. The hepatocyte-derived miR-122 and miR-192 were analysed in sera of 102 chronic HCV-infected patients and 24 healthy controls. Serum levels of miR-122 and miR-192 correlated strongly with ALT (R = 0.67 and R = 0.65, respectively, P chronic HCV infection (P = 0.026). Importantly, miR-122 was also superior in discriminating chronic HCV-infected patients with a normal ALT from healthy controls compared with the ALT level (AUC = 0.97 vs AUC = 0.78, P = 0.007). In conclusion, our study confirmed that liver injury is associated with high levels of hepatocyte-derived microRNAs in circulation and demonstrated that in particular miR-122 is a sensitive marker to distinguish chronic hepatitis C patients from healthy controls. More sensitive blood markers would benefit especially those patients with minor levels of hepatocellular injury, who are not identified by current screening with ALT testing.

  20. Multiplex detection of microRNAs by combining molecular beacon probes with T7 exonuclease-assisted cyclic amplification reaction.

    Science.gov (United States)

    Liu, Yacui; Zhang, Jiangyan; Tian, Jingxiao; Fan, Xiaofei; Geng, Hao; Cheng, Yongqiang

    2017-01-01

    A simple, highly sensitive, and specific assay was developed for the homogeneous and multiplex detection of microRNAs (miRNAs) by combining molecular beacon (MB) probes and T7 exonuclease-assisted cyclic amplification. An MB probe with five base pairs in the stem region without special modification can effectively prevent the digestion by T7 exonuclease. Only in the presence of target miRNA is the MB probe hybridized with the target miRNA, and then digested by T7 exonuclease in the 5' to 3' direction. At the same time, the target miRNA is released and subsequently initiates the nuclease-assisted cyclic digestion process, generating enhanced fluorescence signal significantly. The results show that the combination of T7 exonuclease-assisted cyclic amplification reaction and MB probe possesses higher sensitivity for miRNA detection. Moreover, multiplex detection of miRNAs was successfully achieved by designing two MB probes labeled with FAM and Cy3, respectively. As a result, the method opens a new pathway for the sensitive and multiplex detection of miRNAs as well as clinical diagnosis. Graphical Abstract A simple, highly sensitive, and specific assay was developed for the detection of microRNAs by combining molecular beacon probes with T7 exonuclease-assisted cyclic amplification reaction.

  1. Antagonism pattern detection between microRNA and target expression in Ewing's sarcoma.

    Directory of Open Access Journals (Sweden)

    Loredana Martignetti

    Full Text Available MicroRNAs (miRNAs have emerged as fundamental regulators that silence gene expression at the post-transcriptional and translational levels. The identification of their targets is a major challenge to elucidate the regulated biological processes. The overall effect of miRNA is reflected on target mRNA expression, suggesting the design of new investigative methods based on high-throughput experimental data such as miRNA and transcriptome profiles. We propose a novel statistical measure of non-linear dependence between miRNA and mRNA expression, in order to infer miRNA-target interactions. This approach, which we name antagonism pattern detection, is based on the statistical recognition of a triangular-shaped pattern in miRNA-target expression profiles. This pattern is observed in miRNA-target expression measurements since their simultaneously elevated expression is statistically under-represented in the case of miRNA silencing effect. The proposed method enables miRNA target prediction to strongly rely on cellular context and physiological conditions reflected by expression data. The procedure has been assessed on synthetic datasets and tested on a set of real positive controls. Then it has been applied to analyze expression data from Ewing's sarcoma patients. The antagonism relationship is evaluated as a good indicator of real miRNA-target biological interaction. The predicted targets are consistently enriched for miRNA binding site motifs in their 3'UTR. Moreover, we reveal sets of predicted targets for each miRNA sharing important biological function. The procedure allows us to infer crucial miRNA regulators and their potential targets in Ewing's sarcoma disease. It can be considered as a valid statistical approach to discover new insights in the miRNA regulatory mechanisms.

  2. Circulating microRNA-122 as Potential Biomarker for Detection of Testosterone Abuse.

    Directory of Open Access Journals (Sweden)

    Olivier Salamin

    Full Text Available MicroRNAs (miRNAs are small non-coding RNAs that regulate gene expression and thus influence many cellular and physiological processes. miRNAs are also present in cell-free body fluids such as plasma or serum, and these circulating miRNAs are very stable, sensitive, and specific biomarkers of pathophysiological states. In this study, we investigated whether circulating miRNAs could serve as biomarkers of exogenous testosterone administration. Misuse of testosterone as a performance-enhancing drug is thought to be widespread in sports. Detection of testosterone through the urinary steroid profile of the Athlete Biological Passport faces several obstacles, indicating that new biomarkers are required. To this end, we analyzed plasma miRNA levels by high-throughput quantitative real-time PCR. Plasma samples were obtained before and at several time points after transdermal and oral testosterone administration. Screening identified three potential candidate miRNAs that were altered by both routes of testosterone administration. Longitudinal monitoring of these candidates revealed that variation in two of them (miR-150 and miR-342, relative to the corresponding levels in control samples, was testosterone-independent. However, levels of the liver-specific miR-122 increased 3.5-fold 1 day after drug intake. Given that testosterone is metabolized by the liver, this observation suggests that miR-122 in cell-free fluids may be used as a sensitive biomarker of testosterone misuse via multiple dosing routes and could therefore be integrated into a blood-based multiparametric follow-up.

  3. Identification of circulating microRNAs as potential biomarkers for detecting acute myeloid leukemia.

    Directory of Open Access Journals (Sweden)

    Feng Zhi

    Full Text Available Acute myeloid leukemia (AML is the most common acute leukemia in adults. The disease is characterized by various cytogenetic and molecular abnormalities with distinct prognoses and gene expression profiles. Emerging evidence has suggested that circulating microRNAs (miRNAs could serve as noninvasive biomarkers for cancer detection; however, little is known about circulating miRNA profiles in AML patients. In this study, a genome-wide serum miRNA expression analysis was performed using Solexa sequencing for initial screen, followed by validation with real-time PCR assays. The analysis was conducted on training and verification sets of serum samples from 140 newly diagnosed AML patients and 135 normal adult donors. After a two-phase selection and validation process, 6 miRNAs, miR-10a-5p, miR-93-5p, miR-129-5p, miR-155-5p, miR-181b-5p and miR-320d, were found to have significantly different expression levels in AML compared with control serum samples. Furthermore, unsupervised clustering analysis revealed the remarkable ability of the 6-miRNA profile to differentiate between AML patients and normal controls. The areas under the ROC curve for the selected miRNAs ranged from 0.8129 to 0.9531. More importantly, miR-181b-5p levels in serum were significantly associated with overall survival. These data demonstrated that the expression patterns of circulating miRNAs were systematically altered in AML and miR-181b-5p may serve as a predictor for overall survival in AML patients.

  4. MicroRNA biomarkers in whole blood for detection of pancreatic cancer

    DEFF Research Database (Denmark)

    Schultz, Nicolai A; Dehlendorff, Christian; Jensen, Benny V

    2014-01-01

    IMPORTANCE: Biomarkers for the early diagnosis of patients with pancreatic cancer are needed to improve prognosis. OBJECTIVES: To describe differences in microRNA expression in whole blood between patients with pancreatic cancer, chronic pancreatitis, and healthy participants and to identify panels...... of microRNAs for use in diagnosis of pancreatic cancer compared with the cancer antigen 19-9 (CA19-9). DESIGN, SETTING, AND PARTICIPANTS: A case-control study that included 409 patients with pancreatic cancer and 25 with chronic pancreatitis who had been included prospectively in the Danish BIOPAC...... (Biomarkers in Patients with Pancreatic Cancer) study (July 2008-October 2012) plus 312 blood donors as healthy participants. The microRNA expressions in pretreatment whole blood RNA samples were collected and analyzed in 3 randomly determined subcohorts: discovery cohort (143 patients with pancreatic cancer...

  5. Circulating micro-RNAs as potential blood-based markers for early stage breast cancer detection.

    Directory of Open Access Journals (Sweden)

    Michael G Schrauder

    Full Text Available INTRODUCTION: MicroRNAs (miRNAs, miRs are a class of small, non-coding RNA molecules with relevance as regulators of gene expression thereby affecting crucial processes in cancer development. MiRNAs offer great potential as biomarkers for cancer detection due to their remarkable stability in blood and their characteristic expression in many different diseases. We investigated whether microarray-based miRNA profiling on whole blood could discriminate between early stage breast cancer patients and healthy controls. METHODS: We performed microarray-based miRNA profiling on whole blood of 48 early stage breast cancer patients at diagnosis along with 57 healthy individuals as controls. This was followed by a real-time semi-quantitative Polymerase Chain Reaction (RT-qPCR validation in a separate cohort of 24 early stage breast cancer patients from a breast cancer screening unit and 24 age matched controls using two differentially expressed miRNAs (miR-202, miR-718. RESULTS: Using the significance level of p<0.05, we found that 59 miRNAs were differentially expressed in whole blood of early stage breast cancer patients compared to healthy controls. 13 significantly up-regulated miRNAs and 46 significantly down-regulated miRNAs in our microarray panel of 1100 miRNAs and miRNA star sequences could be detected. A set of 240 miRNAs that was evaluated by radial basis function kernel support vector machines and 10-fold cross validation yielded a specificity of 78.8%, and a sensitivity of 92.5%, as well as an accuracy of 85.6%. Two miRNAs were validated by RT-qPCR in an independent cohort. The relative fold changes of the RT-qPCR validation were in line with the microarray data for both miRNAs, and statistically significant differences in miRNA-expression were found for miR-202. CONCLUSIONS: MiRNA profiling in whole blood has potential as a novel method for early stage breast cancer detection, but there are still challenges that need to be addressed to

  6. 3'uridylation controls mature microRNA turnover during CD4 T cell activation.

    Science.gov (United States)

    Gutierrez-Vazquez, Cristina; Enright, Anton J; Rodríguez-Galán, Ana; Perez-García, Arantxa; Collier, Paul; Jones, Matthew R; Benes, Vladimir; Mizgerd, Joseph P; Mittelbrunn, María; Ramiro, Almudena R; Sanchez-Madrid, Francisco

    2017-03-28

    Activation of T lymphocytes requires a tight regulation of microRNAs (miRNAs) expression. Terminal uridyltransferases (TUTases) catalyze 3' non-templated nucleotide addition (3'NTA) to miRNAs which may influence miRNA stability and function. Here, we investigated 3'NTA to mature miRNA in CD4 T lymphocytes by deep sequencing. Upon T cell activation, miRNA sequences bearing terminal uridines are specifically decreased, concomitantly with downregulation of TUT4 and TUT7 enzymes. Analyzing TUT4 deficient T lymphocytes, we proved that this terminal uridyltransferase is essential for the maintenance of miRNA uridylation in steady state of T lymphocytes. Analysis of synthetic uridylated miRNAs shows that 3' addition of uridine promotes degradation of these uridylated miRNAs after T cell activation. Our data underline post-transcriptional uridylation as a mechanism to fine tune miRNA levels during T cell activation.

  7. Persistence of seed-based activity following segmentation of a microRNA guide strand.

    Science.gov (United States)

    Chorn, Guillaume; Zhao, Lihong; Sachs, Alan B; Flanagan, W Michael; Lim, Lee P

    2010-12-01

    microRNAs are ∼ 22 nucleotide regulatory RNAs that are processed into duplexes from hairpin structures and incorporated into Argonaute proteins. Here, we show that a nick in the middle of the guide strand of an miRNA sequence allows for seed-based targeting characteristic of miRNA activity. Insertion of an inverted abasic, a dye, or a small gap between the two segments still permits target knockdown. While activity from the seed region of the segmented miRNA is apparent, activity from the 3' half of the guide strand is impaired, suggesting that an intact guide backbone is required for contribution from the 3' half. miRNA activity was also observed following nicking of a miRNA precursor. These results illustrate a structural flexibility in miRNA duplexes and may have applications in the design of miRNA mimetics.

  8. MicroRNA-143 promotes apoptosis of osteosarcoma cells by caspase-3 activation via targeting Bcl-2.

    Science.gov (United States)

    Li, Wei-Hua; Wu, Hao-Jie; Li, Yu-Xia; Pan, Hua-Gang; Meng, Tao; Wang, Xiao

    2016-05-01

    Osteosarcoma is the most common malignant bone tumor. In recent years, although a lot of research in the mechanism of osteosarcoma development and metastasis had been done, the molecular mechanisms are still elusive. MicroRNAs (miRs), as small noncoding RNA sequences, are dysregulated in various diseases, including cancer, negatively modulating the target genes expression by posttranscriptional repression. MicroRNA-143 (miR-143) has been reported to be reduced in cancers, including pituitary, colorectal, prostate cancer and cervical. We were aimed to detect the effects of miR-143 on osteosarcoma cell invasion and migration as well as to indicate the potential molecular mechanisms by which miR-143 regulated osteosarcoma. After miR-143 transfection, the cancer cells migration and invasion were examined. And Western blot, RT-PCR, flow cytometry and immunochemistry assays were performed to analyze the role of miR-143 in osteosarcoma progression. The results suggested that miR-143 expressed lessly in osteosarcoma cell lines and could suppress cell migration and invasion in U2-OS and MG-63 cells. To our knowledge, it was the first time to target Bcl-2 directly to explore the underlying mechanism by which miR-143 performed its role to induce apoptosis in tumor cells, thus improving osteosarcoma progression. The present study indicated that miR-143 could inhibit Bcl-2 expression, causing Caspas3 activation, thus inducing apoptosis in osteosarcoma cells. MiR-143 may therefore sreve as a potential biomarker for osteosarcoma, and the regulation of its expression might be a novel therapeutic strategy for osteosarcoma treatment.

  9. MicroRNA Profiling of CSF Reveals Potential Biomarkers to Detect Alzheimer`s Disease.

    Directory of Open Access Journals (Sweden)

    Johannes Denk

    Full Text Available The miRBase-21 database currently lists 1881 microRNA (miRNA precursors and 2585 unique mature human miRNAs. Since their discovery, miRNAs have proved to present a new level of epigenetic post-transcriptional control of protein synthesis. Initial results point to a possible involvement of miRNA in Alzheimer's disease (AD. We applied OpenArray technology to profile the expression of 1178 unique miRNAs in cerebrospinal fluid (CSF samples of AD patients (n = 22 and controls (n = 28. Using a Cq of 34 as cut-off, we identified positive signals for 441 miRNAs, while 729 miRNAs could not be detected, indicating that at least 37% of miRNAs are present in the brain. We found 74 miRNAs being down- and 74 miRNAs being up-regulated in AD using a 1.5 fold change threshold. By applying the new explorative "Measure of relevance" method, 6 reliable and 9 informative biomarkers were identified. Confirmatory MANCOVA revealed reliable miR-100, miR-146a and miR-1274a as differentially expressed in AD reaching Bonferroni corrected significance. MANCOVA also confirmed differential expression of informative miR-103, miR-375, miR-505#, miR-708, miR-4467, miR-219, miR-296, miR-766 and miR-3622b-3p. Discrimination analysis using a combination of miR-100, miR-103 and miR-375 was able to detect AD in CSF by positively classifying controls and AD cases with 96.4% and 95.5% accuracy, respectively. Referring to the Ingenuity database we could identify a set of AD associated genes that are targeted by these miRNAs. Highly predicted targets included genes involved in the regulation of tau and amyloid pathways in AD like MAPT, BACE1 and mTOR.

  10. MicroRNAs used as novel biomarkers for detecting cancer metastasis.

    Science.gov (United States)

    Han, Chunshan; Yu, Haixiang; Zhang, Lening; Li, Xiaoli; Feng, Yonggang; Xin, Hua

    2015-03-01

    The low survival rates of cancers are primarily due to late diagnosis and metastasis. Discriminating the metastasis is a crucial factor for prognosis and improving the survival rate of cancer patients. MicroRNAs (miRNAs) can regulate the expression of hundreds of downstream genes, which has a broad effect on the regulation of the whole cell cycle. Accumulating studies have found that the aberrant expression of miRNAs is associated with cancer genesis. The aim of this study is to evaluate the diagnostic value of miRNAs in detecting cancer metastasis. Medline, PubMed, Embase, and CNKI were searched for relevant articles. Sensitivity, specificity, positive and negative likelihood ratio (PLR, NLR) and diagnostic odds ratio (DOR), the summary receiver operator characteristic (SROC) curve and the calculated AUC (area under the SROC curve) were applied to explore the diagnostic accuracy of miRNAs in metastasis. Seven hundred seventy-one metastatic cancer patients and 552 non-metastatic cancer controls from 14 articles were involved in our meta-analysis. A sensitivity of 0.75 (95% confidence interval (CI), 0.72-0.79) and a specificity of 0.80 (95% CI, 0.76-0.84) were observed from metastatic patients and non-metastatic controls in the combined analysis. And the AUC was 0.83 (95% CI, 0.79-0.86). In addition, results from subgroup analyses suggested that a higher diagnostic value for metastasis was acquired in tissue sample other than blood sample (sensitivity, 0.82 versus 0.73; specificity, 0.84 versus 0.79; PLR, 5.0 versus 3.5; NLR, 0.22 versus 0.34; DOR, 23 versus 10; AUC, 0.88 versus 0.80). In summary, this meta-analysis proved the relatively high diagnostic value of miRNA in metastasis, which might be applied as a novel screening tool to detect metastasis along with other biomarkers. We also illustrated that tissue-based miRNAs may have a better diagnostic accuracy than blood-based miRNAs.

  11. The interplay of microRNA and neuronal activity in health and disease

    Science.gov (United States)

    Eacker, Stephen M.; Dawson, Ted M.; Dawson, Valina L.

    2013-01-01

    MicroRNAs (miRNAs) are small 19–23 nucleotide regulatory RNAs that function by modulating mRNA translation and/or turnover in a sequence-specific fashion. In the nervous system, miRNAs regulate the production of numerous proteins involved in synaptic transmission. In turn, neuronal activity can regulate the production and turnover of miRNA through a variety of mechanisms. In this way, miRNAs and neuronal activity are in a reciprocal homeostatic relationship that balances neuronal function. The miRNA function is critical in pathological states related to overexcitation such as epilepsy and stroke, suggesting miRNA’s potential as a therapeutic target. We review the current literature relating the interplay of miRNA and neuronal activity and provide future directions for defining miRNA’s role in disease. PMID:23986658

  12. Scleral micro-RNA signatures in adult and fetal eyes.

    Science.gov (United States)

    Metlapally, Ravikanth; Gonzalez, Pedro; Hawthorne, Felicia A; Tran-Viet, Khanh-Nhat; Wildsoet, Christine F; Young, Terri L

    2013-01-01

    In human eyes, ocular enlargement/growth reflects active extracellular matrix remodeling of the outer scleral shell. Micro-RNAs are small non-coding RNAs that regulate gene expression by base pairing with target sequences. They serve as nodes of signaling networks. We hypothesized that the sclera, like most tissues, expresses micro-RNAs, some of which modulate genes regulating ocular growth. In this study, the scleral micro-RNA expression profile of rapidly growing human fetal eyes was compared with that of stable adult donor eyes using high-throughput microarray and quantitative PCR analyses. Scleral samples from normal human fetal (24 wk) and normal adult donor eyes were obtained (n=4 to 6, each group), and RNA extracted. Genome-wide micro-RNA profiling was performed using the Agilent micro-RNA microarray platform. Micro-RNA target predictions were obtained using Microcosm, TargetScan and PicTar algorithms. TaqMan® micro-RNA assays targeting micro-RNAs showing either highest significance, detection, or fold differences, and collagen specificity, were applied to scleral samples from posterior and peripheral ocular regions (n=7, each group). Microarray data were analyzed using R, and quantitative PCR data with 2^-deltaCt methods. Human sclera was found to express micro-RNAs, and comparison of microarray results for adult and fetal samples revealed many to be differentially expressed (pmicro-RNA expression has been catalogued in human sclera. Some micro-RNAs show age-related differential regulation, higher in the sclera of rapidly growing fetal eyes, consistent with a role in ocular growth regulation. Thus micro-RNAs represent potential targets for ocular growth manipulation, related to myopia and/or other disorders such as scleral ectasia.

  13. Toehold-mediated nonenzymatic amplification circuit on graphene oxide fluorescence switching platform for sensitive and homogeneous microRNA detection

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ru; Liao, Yuhui; Zhou, Xiaoming, E-mail: zhouxm@scnu.edu.cn; Xing, Da, E-mail: xingda@scnu.edu.cn

    2015-08-12

    A novel graphene oxide (GO) fluorescence switch-based homogenous system has been developed to solve two problems that are commonly encountered in conventional GO-based biosensors. First, with the assistance of toehold-mediated nonenzymatic amplification (TMNA), the sensitivity of this system greatly surpasses that of previously described GO-based biosensors, which are always limited to the nM range due to the lack of efficient signal amplification. Second, without enzymatic participation in amplification, the unreliability of detection resulting from nonspecific desorption of DNA probes on the GO surface by enzymatic protein can be avoided. Moreover, the interaction mechanism of the double-stranded TMNA products contains several single-stranded toeholds at two ends and GO has also been explored with combinations of atomic force microscopy imaging, zeta potential detection, and fluorescence assays. It has been shown that the hybrids can be anchored to the surface of GO through the end with more unpaired bases, and that the other end, which has weaker interaction with GO, can escape GO adsorption due to the robustness of the central dsDNA structures. We verified this GO fluorescence switch-based detection system by detecting microRNA 21, an overexpressed non-encoding gene in a variety of malignant cells. Rational design of the probes allowed the isothermal nonenzymatic reaction to achieve more than 100-fold amplification efficiency. The detection results showed that our strategy has a detection limit of 10 pM and a detection range of four orders of magnitude. - Highlights: • This paper explored the interaction mechanism of TMNA products with GO surface. • This homogeneous and isothermal system permits a detection limit of 10 pM for microRNA. • This nonenzymatic strategy can avoid nonspecific desorption caused by enzyme protein. • The interaction model can be used to explore the application ability of nonenzymatic circuit.

  14. The construction of a novel nucleic acids detection microplatform based on the NSET for one-step detecting TK1-DNA and microRNA-21.

    Science.gov (United States)

    Zhang, Jian; Zhao, Qian; Wu, Yudong; Zhang, Bo; Peng, Weipan; Piao, Jiafang; Zhou, Yurui; Gao, Weichen; Gong, Xiaoqun; Chang, Jin

    2017-11-15

    Microbeads-based microchip technology has become the potential for a new generation of nucleic acids detection in a high-throughput and sensitive manner. However the specificity and operational complexity limit the microchip applied in nucleic acids detection. Herein, in this work, we designed a kind of gold-nanoparticles coated polystyrene microbeads as microplatform conjugating with the molecular beacons as probes. Due to the nanoparticle surface energy transfer of gold-nanoparticles, the fluorescence of dye on one end of molecular beacons was effectively quenched. When the target nucleic acids existed, the fluorescence of dye was quickly "turn-on" with high sensitivity. Due to the nanoparticle surface energy transfer effect of gold-nanoparticles, the designed platform performed better sensitivity than traditional microbead-based detection methods and realized quickly detection within 10min without purification steps. In addition, compared with the linear chain probes, the molecular beacons probes enabled higher specificity and wash-free operation. Through different dyes encoded, TK1-DNA and microRNA-21 were simultaneously detected in one step and finally quantified by flow cytometry. The proposed detection method was also capable of monitoring TK1-DNA and microRNA-21 levels in human serum. Our study provides the potential multidetection of DNA and RNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Expression levels of microRNAs are not associated with their regulatory activities

    Directory of Open Access Journals (Sweden)

    Wu Jiarui

    2011-09-01

    Full Text Available Abstract MicroRNAs (miRNAs regulate their targets by triggering mRNA degradation or translational repression. The negative relationship between miRNAs and their targets suggests that the regulatory effect of a miRNA could be determined from the expression levels of its targets. Here, we investigated the relationship between miRNA activities determined by computational programs and miRNA expression levels by using data in which both mRNA and miRNA expression from the same samples were measured. We found that different from the intuitive expectation one might have, miRNA activity shows very weak correlation with miRNA expression, which indicates complex regulating mechanisms between miRNAs and their target genes. Reviewers This manuscript was reviewed by an anonymous reviewer and Dr Yuriy Gusev.

  16. MicroRNAs and Peroxisome Proliferator-Activated Receptors Governing the Differentiation of Mesenchymal Stem Cells.

    Science.gov (United States)

    Huang, Chenglong; Gou, Shiran; Wang, Lei; Huang, Kui; Liu, Lin; Zhao, Wenjie; Zheng, Lige; Xiao, Jingang

    2016-01-01

    Mesenchymal stem cells (MSCs) have the self-renewal ability and the ability to produce multiple differentiation. Elucidating the genetic circuits that govern MSC self-renewal and differentiation is necessary to improve our comprehension of MSCs and their role in regenerative medicine. microRNAs (miRNAs) play important roles in the regulation of transcription, and are strongly linked with MSCs regarding the maintenance of pluripotency properties. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that belong to the nuclear hormonereceptor family. Interestingly, PPARs not only regulate glucose metabolism and lipidhomeostasis, but also contribute to cell proliferation, cell differentiation, and cell apoptosis. The aim of the present review was to provide an insight into the roles of miRNAs and PPARs in the differentiation of MSCs. Understanding the miRNA signature interactions in conjunction with the role of PPARs is critical for the development of improved strategies to regulate the differentiation of MSCs.

  17. Identification of tissue microRNAs predictive of sunitinib activity in patients with metastatic renal cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Celia Prior

    Full Text Available PURPOSE: To identify tissue microRNAs predictive of sunitinib activity in patients with metastatic renal-cell-carcinoma (MRCC and to evaluate in vitro their mechanism of action in sunitinib resistance. METHODS: We screened 673 microRNAs using TaqMan Low-density-Arrays (TLDAs in tumors from MRCC patients with extreme phenotypes of marked efficacy and resistance to sunitinib, selected from an identification cohort (n = 41. The most relevant differentially expressed microRNAs were selected using bioinformatics-based target prediction analysis and quantified by qRT-PCR in tumors from patients presenting similar phenotypes selected from an independent cohort (n = 101. In vitro experiments were conducted to study the role of miR-942 in sunitinib resistance. RESULTS: TLDAs identified 64 microRNAs differentially expressed in the identification cohort. Seven candidates were quantified by qRT-PCR in the independent series. MiR-942 was the most accurate predictor of sunitinib efficacy (p = 0.0074. High expression of miR-942, miR-628-5p, miR-133a, and miR-484 was significantly associated with decreased time to progression and overall survival. These microRNAs were also overexpressed in the sunitinib resistant cell line Caki-2 in comparison with the sensitive cell line. MiR-942 overexpression in Caki-2 up-regulates MMP-9 and VEGF secretion which, in turn, promote HBMEC endothelial migration and sunitinib resistance. CONCLUSIONS: We identified differentially expressed microRNAs in MRCC patients presenting marked sensitivity or resistance to sunitinib. MiR-942 was the best predictor of efficacy. We describe a novel paracrine mechanism through which high miR-942 levels in MRCC cells up-regulates MMP-9 and VEGF secretion to enhance endothelial migration and sunitinib resistance. Our results support further validation of these miRNA in clinical confirmatory studies.

  18. Identification of tissue microRNAs predictive of sunitinib activity in patients with metastatic renal cell carcinoma.

    Science.gov (United States)

    Prior, Celia; Perez-Gracia, Jose Luis; Garcia-Donas, Jesus; Rodriguez-Antona, Cristina; Guruceaga, Elizabeth; Esteban, Emilio; Suarez, Cristina; Castellano, Daniel; del Alba, Aránzazu González; Lozano, Maria Dolores; Carles, Joan; Climent, Miguel Angel; Arranz, Jose Angel; Gallardo, Enrique; Puente, Javier; Bellmunt, Joaquim; Gurpide, Alfonso; Lopez-Picazo, Jose Maria; Hernandez, Alvaro Gonzalez; Mellado, Begoña; Martínez, Esther; Moreno, Fernando; Font, Albert; Calvo, Alfonso

    2014-01-01

    To identify tissue microRNAs predictive of sunitinib activity in patients with metastatic renal-cell-carcinoma (MRCC) and to evaluate in vitro their mechanism of action in sunitinib resistance. We screened 673 microRNAs using TaqMan Low-density-Arrays (TLDAs) in tumors from MRCC patients with extreme phenotypes of marked efficacy and resistance to sunitinib, selected from an identification cohort (n = 41). The most relevant differentially expressed microRNAs were selected using bioinformatics-based target prediction analysis and quantified by qRT-PCR in tumors from patients presenting similar phenotypes selected from an independent cohort (n = 101). In vitro experiments were conducted to study the role of miR-942 in sunitinib resistance. TLDAs identified 64 microRNAs differentially expressed in the identification cohort. Seven candidates were quantified by qRT-PCR in the independent series. MiR-942 was the most accurate predictor of sunitinib efficacy (p = 0.0074). High expression of miR-942, miR-628-5p, miR-133a, and miR-484 was significantly associated with decreased time to progression and overall survival. These microRNAs were also overexpressed in the sunitinib resistant cell line Caki-2 in comparison with the sensitive cell line. MiR-942 overexpression in Caki-2 up-regulates MMP-9 and VEGF secretion which, in turn, promote HBMEC endothelial migration and sunitinib resistance. We identified differentially expressed microRNAs in MRCC patients presenting marked sensitivity or resistance to sunitinib. MiR-942 was the best predictor of efficacy. We describe a novel paracrine mechanism through which high miR-942 levels in MRCC cells up-regulates MMP-9 and VEGF secretion to enhance endothelial migration and sunitinib resistance. Our results support further validation of these miRNA in clinical confirmatory studies.

  19. Detecting new microRNAs in human osteoarthritic chondrocytes identifies miR-3085 as a human, chondrocyte-selective, microRNA

    Science.gov (United States)

    Crowe, N.; Swingler, T.E.; Le, L.T.T.; Barter, M.J.; Wheeler, G.; Pais, H.; Donell, S.T.; Young, D.A.; Dalmay, T.; Clark, I.M.

    2016-01-01

    Summary Objective To use deep sequencing to identify novel microRNAs (miRNAs) in human osteoarthritic cartilage which have a functional role in chondrocyte phenotype or function. Design A small RNA library was prepared from human osteoarthritic primary chondrocytes using in-house adaptors and analysed by Illumina sequencing. Novel candidate miRNAs were validated by northern blot and qRT-PCR. Expression was measured in cartilage models. Targets of novel candidates were identified by microarray and computational analysis, validated using 3′-UTR-luciferase reporter plasmids. Protein levels were assessed by western blot and functional analysis by cell adhesion. Results We identified 990 known miRNAs and 1621 potential novel miRNAs in human osteoarthritic chondrocytes, 60 of the latter were expressed in all samples assayed. MicroRNA-140-3p was the most highly expressed microRNA in osteoarthritic cartilage. Sixteen novel candidate miRNAs were analysed further, of which six remained after northern blot analysis. Three novel miRNAs were regulated across models of chondrogenesis, chondrocyte differentiation or cartilage injury. One sequence (novel #11), annotated in rodents as microRNA-3085-3p, was preferentially expressed in cartilage, dependent on chondrocyte differentiation and, in man, is located in an intron of the cartilage-expressed gene CRTAC-1. This microRNA was shown to target the ITGA5 gene directly (which encodes integrin alpha5) and inhibited adhesion to fibronectin (dependent on alpha5beta1 integrin). Conclusion Deep sequencing has uncovered many potential microRNA candidates expressed in human cartilage. At least three of these show potential functional interest in cartilage homeostasis and osteoarthritis (OA). Particularly, novel #11 (microRNA-3085-3p) which has been identified for the first time in man. PMID:26497608

  20. MicroRNA-155 attenuates activation of hepatic stellate cell by simultaneously preventing EMT process and ERK1 signalling pathway.

    Science.gov (United States)

    Dai, Weiping; Zhao, Juan; Tang, Nan; Zeng, Xin; Wu, Kaiming; Ye, Changhong; Shi, Jian; Lu, Cuihua; Ning, Beifang; Zhang, Junping; Lin, Yong

    2015-04-01

    Epithelial-mesenchymal transition (EMT) process and extracellular signal-regulated kinase 1 (ERK1) signalling pathway play pivotal roles in hepatic stellate cell (HSC) activation, which is associated with the altered expression patterns of microRNAs (miRNAs). miR-155 is considered a typical multifunctional miRNA to regulate many biological processes. However, little attention has been given to the contributions of miR-155 to simultaneous regulation of EMT process and ERK1 pathway during HSC activation. Differential expression of miR-155 was assessed in activated HSC, sera and liver tissues from cirrhotic patients. Whether miR-155 could directly interact with 3'-untranslated region (3'-UTR) of T cell factor 4 (TCF4) and angiotensin II receptor type 1 (AGTR1) respectively was detected by luciferase reporter assay. The effects of enhanced miR-155 on EMT process and ERK1 pathway, cell apoptosis in HSC activation were also evaluated. A significant decrease in miR-155 expression was observed in activated HSC, sera or liver tissues of cirrhotic patients. MiR-155 was found to simultaneously interact with 3'-UTR of TCF4 and AGTR1 mRNAs, which are known as important regulators associated with EMT and ERK1 pathway repectively. Inhibiting miR-155 expression could stimulate the EMT state and ERK1 pathway activity, thus contributing to HSC activation. Forced miR-155 expression markedly decreased the mesenchymal markers and phosphorylated ERK1 level, and enhanced E-cadherin expression, leading to the synchronous inhibitory effect on EMT and ERK1 pathway and inducing HSC apoptosis. Our results implicate that miR-155 plays an important role in regulating the pathological network involving EMT process and ERK1 pathway during HSC activation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Bioinformatic analysis of microRNA networks following the activation of the constitutive androstane receptor (CAR) in mouse liver.

    Science.gov (United States)

    Hao, Ruixin; Su, Shengzhong; Wan, Yinan; Shen, Frank; Niu, Ben; Coslo, Denise M; Albert, Istvan; Han, Xing; Omiecinski, Curtis J

    2016-09-01

    The constitutive androstane receptor (CAR; NR1I3) is a member of the nuclear receptor superfamily that functions as a xenosensor, serving to regulate xenobiotic detoxification, lipid homeostasis and energy metabolism. CAR activation is also a key contributor to the development of chemical hepatocarcinogenesis in mice. The underlying pathways affected by CAR in these processes are complex and not fully elucidated. MicroRNAs (miRNAs) have emerged as critical modulators of gene expression and appear to impact many cellular pathways, including those involved in chemical detoxification and liver tumor development. In this study, we used deep sequencing approaches with an Illumina HiSeq platform to differentially profile microRNA expression patterns in livers from wild type C57BL/6J mice following CAR activation with the mouse CAR-specific ligand activator, 1,4-bis-[2-(3,5,-dichloropyridyloxy)] benzene (TCPOBOP). Bioinformatic analyses and pathway evaluations were performed leading to the identification of 51 miRNAs whose expression levels were significantly altered by TCPOBOP treatment, including mmu-miR-802-5p and miR-485-3p. Ingenuity Pathway Analysis of the differentially expressed microRNAs revealed altered effector pathways, including those involved in liver cell growth and proliferation. A functional network among CAR targeted genes and the affected microRNAs was constructed to illustrate how CAR modulation of microRNA expression may potentially mediate its biological role in mouse hepatocyte proliferation. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.

  2. Signal transducer and activator of transcription-3 induces microRNA-155 expression in chronic lymphocytic leukemia.

    Directory of Open Access Journals (Sweden)

    Ping Li

    Full Text Available MicroRNA (miR abnormalities play a key role in the pathogenesis of chronic lymphocytic leukemia (CLL. High levels of miR-155 have been detected in human neoplasms, and overexpression of miR-155 has been found to induce lymphoma in mice. High levels of miR-155 were detected in CLL cells and STAT3, which is known to induce miR-21 and miR-181b-1 expression, is constitutively activated in CLL. Given these findings, we hypothesized that STAT3 induces miR-155. Sequence analysis revealed that the miR-155 promoter harbors two putative STAT3 binding sites. Therefore, truncated miR-155 promoter constructs and STAT3 small interfering RNA (siRNA were co-transfected into MM1 cells. Of the two putative binding sites, STAT3-siRNA reduced the luciferase activity of the construct containing the 700-709 bp STAT3 binding site, suggesting that this site is involved in STAT3-induced transcription. Electrophoretic mobility shift assay confirmed that STAT3 bound to the miR-155 promoter in CLL cells, and chromatin immunoprecipitation and luciferase assay confirmed that STAT3 bound to the 700-709 bp but not the 615-624 bp putative STAT3 binding site in CLL cells. Finally, STAT3-small hairpin RNA downregulated miR-155 gene expression, suggesting that constitutively activated STAT3 binds to the miR-155 gene promoter. Together, these results suggest that STAT3 activates miR-155 in CLL cells.

  3. MicroRNA expression profiling identifies activated B cell status in chronic lymphocytic leukemia cells.

    Directory of Open Access Journals (Sweden)

    Shuqiang Li

    Full Text Available Chronic lymphocytic leukemia (CLL is thought to be a disease of resting lymphocytes. However, recent data suggest that CLL cells may more closely resemble activated B cells. Using microRNA (miRNA expression profiling of highly-enriched CLL cells from 38 patients and 9 untransformed B cells from normal donors before acute CpG activation and 5 matched B cells after acute CpG activation, we demonstrate an activated B cell status for CLL. Gene set enrichment analysis (GSEA identified statistically-significant similarities in miRNA expression between activated B cells and CLL cells including upregulation of miR-34a, miR-155, and miR-342-3p and downregulation of miR-103, miR-181a and miR-181b. Additionally, decreased levels of two CLL signature miRNAs miR-29c and miR-223 are associated with ZAP70(+ and IgV(H unmutated status and with shorter time to first therapy. These data indicate an activated B cell status for CLL cells and suggest that the direction of change of individual miRNAs may predict clinical course in CLL.

  4. Profiling of microRNAs in tumor interstitial fluid of breast tumors – a novel resource to identify biomarkers for prognostic classification and detection of cancer

    DEFF Research Database (Denmark)

    Halvorsen, Ann Rita; Helland, Åslaug; Gromov, Pavel

    2017-01-01

    and to elucidate the cross-talk that exists among cells in a tumor microenvironment. Matched tumor interstitial fluid samples (TIF, n = 60), normal interstitial fluid samples (NIF, n = 51), corresponding tumor tissue specimens (n = 54), and serum samples (n = 27) were collected from patients with breast cancer......, and detectable microRNAs were analyzed and compared. In addition, serum data from 32 patients with breast cancer and 22 healthy controls were obtained for a validation study. To identify potential serum biomarkers of breast cancer, first the microRNA profiles of TIF and NIF samples were compared. A total of 266...

  5. Profiling of microRNAs in tumor interstitial fluid of breast tumors – a novel resource to identify biomarkers for prognostic classification and detection of cancer

    DEFF Research Database (Denmark)

    Halvorsen, Ann Rita; Helland, Åslaug; Gromov, Pavel;

    2016-01-01

    and to elucidate the cross-talk that exists among cells in a tumor microenvironment. Matched tumor interstitial fluid samples (TIF, n = 60), normal interstitial fluid samples (NIF, n = 51), corresponding tumor tissue specimens (n = 54), and serum samples (n = 27) were collected from patients with breast cancer......, and detectable microRNAs were analyzed and compared. In addition, serum data from 32 patients with breast cancer and 22 healthy controls were obtained for a validation study. To identify potential serum biomarkers of breast cancer, first the microRNA profiles of TIF and NIF samples were compared. A total of 266...

  6. Kaposi's sarcoma-associated herpesvirus microRNA single-nucleotide polymorphisms identified in clinical samples can affect microRNA processing, level of expression, and silencing activity.

    Science.gov (United States)

    Han, Soo-Jin; Marshall, Vickie; Barsov, Eugene; Quiñones, Octavio; Ray, Alex; Labo, Nazzarena; Trivett, Matthew; Ott, David; Renne, Rolf; Whitby, Denise

    2013-11-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) encodes 12 pre-microRNAs that can produce 25 KSHV mature microRNAs. We previously reported single-nucleotide polymorphisms (SNPs) in KSHV-encoded pre-microRNA and mature microRNA sequences from clinical samples (V. Marshall et al., J. Infect. Dis., 195:645-659, 2007). To determine whether microRNA SNPs affect pre-microRNA processing and, ultimately, mature microRNA expression levels, we performed a detailed comparative analysis of (i) mature microRNA expression levels, (ii) in vitro Drosha/Dicer processing, and (iii) RNA-induced silencing complex-dependent targeting of wild-type (wt) and variant microRNA genes. Expression of pairs of wt and variant pre-microRNAs from retroviral vectors and measurement of KSHV mature microRNA expression by real-time reverse transcription-PCR (RT-PCR) revealed differential expression levels that correlated with the presence of specific sequence polymorphisms. Measurement of KSHV mature microRNA expression in a panel of primary effusion lymphoma cell lines by real-time RT-PCR recapitulated some observed expression differences but suggested a more complex relationship between sequence differences and expression of mature microRNA. Furthermore, in vitro maturation assays demonstrated significant SNP-associated changes in Drosha/DGCR8 and/or Dicer processing. These data demonstrate that SNPs within KSHV-encoded pre-microRNAs are associated with differential microRNA expression levels. Given the multiple reports on the involvement of microRNAs in cancer, the biological significance of these phenotypic and genotypic variants merits further studies in patients with KSHV-associated malignancies.

  7. Serum microRNAs as biomarkers of human lymphocyte activation in health and disease.

    Directory of Open Access Journals (Sweden)

    Paola ede Candia

    2014-02-01

    Full Text Available Induction of the adaptive immune system is evaluated mostly by assessment of serum antibody titers and T lymphocyte responses in peripheral blood, although T and B cell activation occurs in lymphoid tissues. In recent years, the release of microRNAs (miRNAs in the extra-cellular environment has been exploited to assess cell functions at distance via measurement of serum miRNAs. Also activated lymphocytes release a large amount of nano-sized vesicles (exosomes, containing miRNA, but there are still few data on whether this phenomenon is reflected in modulation of serum miRNAs. Interestingly, miRNA signatures of CD4+ T cell-derived exosomes are substantially different from intracellular miRNA signatures of the same cells. We have recently identified serum circulating miR-150 as a sensor of general lymphocyte activation and we strongly believe that the identification of miRNAs differentially released by specific CD4+ effector T cell subsets (Th1, Th2, Th17 and Treg may work as serum biomarkers of their elicitation in lymphoid tissues but also in damaged tissues, thus providing pivotal information about the nature of immune responses occurring in health and disease.

  8. Hypoxia: A Master Regulator of MicroRNA Biogenesis and Activity

    Science.gov (United States)

    Nallamshetty, Shriram; Chan, Stephen Y.; Loscalzo, Joseph

    2013-01-01

    Hypoxia, or low oxygen tension, is a unique environmental stress that induces global changes in a complex regulatory network of transcription factors and signaling proteins in order to coordinate cellular adaptations in metabolism, proliferation, DNA repair, and apoptosis. Several lines of evidence now establish microRNAs (miRNAs), which are short non-coding RNAs that regulate gene expression through post-transcriptional mechanisms, as key elements in this response to hypoxia. Oxygen deprivation induces a distinct shift in a specific group of miRNAs, termed hypoxamirs, and emerging evidence indicates that hypoxia regulates several facets of hypoxamir transcription, maturation, and function. Transcription factors such as hypoxia-inducible factor (HIF) are upregulated under conditions of low oxygen availability and directly activate the transcription of a subset of hypoxamirs. Conversely, hypoxia selectively represses other hypoxamirs through less well characterized mechanisms. In addition, oxygen deprivation has been directly implicated in epigenetic modifications such as DNA demethylation that control specific miRNA transcription. Finally, hypoxia also modulates the activity of key proteins that control posttranscriptional events in the maturation and activity of miRNAs. Collectively, these findings establish hypoxia as an important proximal regulator of miRNA biogenesis and function. It will be important for future studies to address the relative contributions of transcriptional and posttranscriptional events in the regulation of specific hypoxamirs and how such miRNAs are coordinated order to integrate into the complex hierarchical regulatory network induced by hypoxia. PMID:23712003

  9. MicroRNA: a small molecule with a big biological impact.

    Science.gov (United States)

    Zhou, Xiaofeng; Yang, Pan-Chyr

    2012-01-01

    One of the most significant achievements in biological science in the last decade is the discovery of RNA interference (RNAi), a process within living cells that regulates gene expression at post-transcriptional levels. Historically, this process was described by other more generic names, such as co-suppression and post transcriptional gene silencing. Only after the molecular mechanism underlying these apparently unrelated processes was fully understood did it become apparent that they all described the RNAi phenomenon. In 2006, Dr. Andrew Fire and Dr. Craig C. Mello were awarded the Nobel Prize in Physiology or Medicine for their work on RNAi interference. RNAi is an RNA-dependent gene silencing process that is controlled by the RNA-induced silencing complex (RISC) and is initiated by two types of small RNA molecules - microRNA (miRNA) and small interfering RNA (siRNA). However, the function of microRNA appears to be far beyond RNAi alone, including direct interaction with the gene promoter and epigenetic regulation of the DNA methylation and histone modification. By regulating gene expression, miRNAs are likely to be involved in diverse biological activities, such as tumorigenesis, immune response, insulin secretion, neurotransmitter synthesis, and circadian rhythm, to name a few. MicroRNAs are 21-23 nucleotide single stranded RNA molecules found in eukaryotic cells. The first miRNA, lin-4, was characterized in C. elegans in the early 1990s [1]. In the early years, the progress on microRNA research was slow and experienced substantial growing pains. The short length and uniqueness of each microRNA rendered many conventional hybridization based methods ineffective; very small RNAs are difficult to reliably amplify or label without introducing bias. In addition, hybridization-based methods for microRNA profiling relied on probes designed to detect known microRNAs or known microRNA species previously identified by sequencing or homology search. Recent evidence of

  10. Electrochemical DNA sandwich biosensor based on enzyme amplified microRNA-21 detection and gold nanoparticles.

    Science.gov (United States)

    Mandli, Jihane; Mohammadi, Hasna; Amine, Aziz

    2017-08-01

    In this work, a novel electrochemical biosensor for miRNA-21 determination, involving a sandwich hybridization assay onto gold nanoparticles modified pencil graphite electrode (PGE) and enzyme signal amplification was reported. The thiol terminated capture probe 1 (SH-P1) was immobilized on the electrode through AuS interaction. In the presence of target miRNA-21, SH-P1 hybridized with the first part of the target, however, the second part hybridizes with a biotinylated probe P2 (B-P2). Then, a streptavidin-conjugated alkaline phosphatase was immobilized by a specific binding of avidin-B-P2. The enzyme catalyzed the electro-inactive α-naphtyl phosphate to an electro-active α-naphtol. The miRNA-21 detection was achieved through the changes of α-naphtol oxidation signals observed at +0.12V vs Ag/AgCl with Differential Pulse Voltammetry. Under the optimal detection conditions, the biosensor exhibited selective and sensitive detection with a linear range from 200pM to 388nM and the detection limit was 100pM (10fmol in 100μL). Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Label-Free MicroRNA Detection Based on Fluorescence Quenching of Gold Nanoparticles with a Competitive Hybridization.

    Science.gov (United States)

    Wang, Wei; Kong, Tao; Zhang, Dong; Zhang, Jinan; Cheng, Guosheng

    2015-11-01

    MicroRNAs (miRNAs), critical biomarkers of acute and chronic diseases, play key regulatory roles in many biological processes. As a result, there is great demand for robust assay platforms to enable an accurate and efficient detection of low-level miRNAs in complex biological samples. In this work, a label-free and Au nanoparticles (NPs) quenching-based competition assay system was developed. In the designed system, Au NPs with diameter sizes of 10 and 20 nm displayed fluorescence quenching efficiencies of 84% and 82% for Cy3 dye on slide surface, whereas the quenching efficiency of commercial BHQ2 quencher was roughly 50%. Assay conditions were optimized for miRNA-205 detection. A limit of detection of 3.8 pM and a detection range covering from 3.8 pM to 10 nM were achieved. Furthermore, the proposed system was capable of specifically discriminating miRNAs with slight variations in their nucleotide sequence and was also qualified for assessing miRNA levels in human serum. Our strategy has the potential to provide new perspectives in profiling the pattern of miRNA expression and biomedical utilizations.

  12. Vascular complications in diabetes: Microparticles and microparticle associated microRNAs as active players.

    Science.gov (United States)

    Alexandru, Nicoleta; Badila, Elisabeta; Weiss, Emma; Cochior, Daniel; Stępień, Ewa; Georgescu, Adriana

    2016-03-25

    The recognition of the importance of diabetes in vascular disease has greatly increased lately. Common risk factors for diabetes-related vascular disease include hyperglycemia, insulin resistance, dyslipidemia, inflammation, hypercoagulability, hypertension, and atherosclerosis. All of these factors contribute to the endothelial dysfunction which generates the diabetic complications, both macro and microvascular. Knowledge of diabetes-related vascular complications and of associated mechanisms it is becoming increasingly important for therapists. The discovery of microparticles (MPs) and their associated microRNAs (miRNAs) have opened new perspectives capturing the attention of basic and clinical scientists for their potential to become new therapeutic targets and clinical biomarkers. MPs known as submicron vesicles generated from membranes of apoptotic or activated cells into circulation have the ability to act as autocrine and paracrine effectors in cell-to-cell communication. They operate as biological vectors modulating the endothelial dysfunction, inflammation, coagulation, angiogenesis, thrombosis, subsequently contributing to the progression of macro and microvascular complications in diabetes. More recently, miRNAs have started to be actively investigated, leading to first exciting reports, which suggest their significant role in vascular physiology and disease. The contribution of MPs and also of their associated miRNAs to the development of vascular complications in diabetes was largely unexplored and undiscussed. In essence, with this review we bring light upon the understanding of impact diabetes has on vascular biology, and the significant role of MPs and MPs associated miRNAs as novel mediators, potential biomarkers and therapeutic targets in vascular complications in diabetes.

  13. MicroRNA-4443 regulates mast cell activation by T cell-derived microvesicles.

    Science.gov (United States)

    Shefler, Irit; Salamon, Pazit; Levi-Schaffer, Francesca; Mor, Adam; Hershko, Alon Y; Mekori, Yoseph A

    2017-08-16

    The mechanism by which mast cells (MCs) are activated in T cell-mediated inflammatory processes remains elusive. Recently, we have shown that microvesicles derived from activated T cells (mvT*s) can stimulate MCs to degranulate and release several cytokines. The aim of this study was to characterize the contribution of microRNAs (miRs) delivered by microvesicles to MC activation. miR profiling was performed with NanoString technology and validated by using real-time PCR. The biological role of mvT* miR was verified by overexpression of miRs in MCs using mimic or inhibitory molecules and analyzing the effect on their predicted targets. mvT*s were found to downregulate the expression of the tyrosine phosphatase protein tyrosine phosphatase receptor type J (PTPRJ), a known extracellular signal-regulated kinase inhibitor. Bioinformatics analysis predicted that miR-4443 regulates the PTPRJ gene expression. Indeed, miR-4443, which was present in mvT*s, was also found to be overexpressed in human MCs stimulated with these MVs. α-Amanitin insensitivity confirmed that overexpression of miR-4443 was not due to transcriptional activation. The luciferase reporter assay indicated that the 3' untranslated region of PTPRJ was targeted by this miR. Transfection of MCs with mimic or inhibitor of miR-4443 resulted in decreased or enhanced PTPRJ expression, respectively. Furthermore, miR-4443 regulated extracellular signal-regulated kinase phosphorylation and IL-8 release in MCs activated by mvT*s. These results support a scenario by which T cell-derived microvesicles act as intercellular carriers of functional miR-4443, which might exert heterotypic regulation of PTPRJ gene expression in MCs, leading to their activation in the context of T cell-mediated inflammatory processes. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  14. Hepatic stellate cell is activated by microRNA-181b via PTEN/Akt pathway.

    Science.gov (United States)

    Zheng, Jianjian; Wu, Cunzao; Xu, Ziqiang; Xia, Peng; Dong, Peihong; Chen, Bicheng; Yu, Fujun

    2015-01-01

    Activation of hepatic stellate cells (HSCs) is an essential event in the initiation and progression of liver fibrosis. MicroRNAs have been shown to play a pivotal role in regulating HSC functions such as cell proliferation, differentiation, and apoptosis. Recently, miR-181b has been reported to promote HSCs proliferation by targeting p27. But whether alpha-smooth muscle actin (α-SMA) or collagens could be promoted by miR-181b in activated HSCs is still not clear. Therefore, the understanding of the role of miR-181b in liver fibrosis remains limited. Our results showed that miR-181b expression was increased much higher than miR-181a expression in vitro in transforming growth factor-β1-induced HSC activation as well as in vivo in carbon tetrachloride-induced rat liver fibrosis. Of note, overexpression of miR-181b significantly increased the expressions level of α-SMA and type I collagen, and further promoted HSCs proliferation. Furthermore, phosphatase and tensin homologs deleted on chromosome 10 (PTEN), a negative regulator of PI3K/Akt pathway, were confirmed as a direct target of miR-181b. We demonstrated that miR-181b could suppress PTEN expression and increase Akt phosphorylation in HSCs. Interestingly, the effects of miR-181b on the activation of HSCs were blocked down by Akt inhibitor LY294002. Our results revealed a profibrotic role of miR-181b in HSC activation and demonstrated that miR-181b could activate HSCs, at least in part, via PTEN/Akt pathway.

  15. Characterization of CLL exosomes reveals a distinct microRNA signature and enhanced secretion by activation of BCR signaling.

    Science.gov (United States)

    Yeh, Yuh-Ying; Ozer, Hatice Gulcin; Lehman, Amy M; Maddocks, Kami; Yu, Lianbo; Johnson, Amy J; Byrd, John C

    2015-05-21

    Multiple studies show that chronic lymphocytic leukemia (CLL) cells are heavily dependent on their microenvironment for survival. Communication between CLL cells and the microenvironment is mediated through direct cell contact, soluble factors, and extracellular vesicles. Exosomes are small particles enclosed with lipids, proteins, and small RNAs that can convey biological materials to surrounding cells. Our data herein demonstrate that CLL cells release significant amounts of exosomes in plasma that exhibit abundant CD37, CD9, and CD63 expression. Our work also pinpoints the regulation of B-cell receptor (BCR) signaling in the release of CLL exosomes: BCR activation by α-immunoglobulin (Ig)M induces exosome secretion, whereas BCR inactivation via ibrutinib impedes α-IgM-stimulated exosome release. Moreover, analysis of serial plasma samples collected from CLL patients on an ibrutinib clinical trial revealed that exosome plasma concentration was significantly decreased following ibrutinib therapy. Furthermore, microRNA (miR) profiling of plasma-derived exosomes identified a distinct exosome microRNA signature, including miR-29 family, miR-150, miR-155, and miR-223 that have been associated with CLL disease. Interestingly, expression of exosome miR-150 and miR-155 increases with BCR activation. In all, this study successfully characterized CLL exosomes, demonstrated the control of BCR signaling in the release of CLL exosomes, and uncovered a disease-relevant exosome microRNA profile.

  16. Chemiluminescence imaging for microRNA detection based on cascade exponential isothermal amplification machinery.

    Science.gov (United States)

    Xu, Yongjie; Li, Dandan; Cheng, Wei; Hu, Rong; Sang, Ye; Yin, Yibing; Ding, Shijia; Ju, Huangxian

    2016-09-14

    A novel G-quadruplex DNAzyme-driven chemiluminescence (CL) imaging method was developed for ultrasensitive and specific detection of miRNA based on the cascade exponential isothermal amplification reaction (EXPAR) machinery. A structurally tailored hairpin probe switch was designed to selectively recognise miRNA and form hybridisation products to trigger polymerase and nicking enzyme machinery, resulting in the generation of product I, which was complementary to a region of the functional linear template. Then, the response of the functional linear template to the generated product I further activated the exponential isothermal amplification machinery, leading to synthesis of numerous horseradish peroxidase mimicking DNAzyme units for CL signal transduction. The amplification paradigm generated a linear response from 10 fM to 100 pM, with a low detection limit of 2.91 fM, and enabled discrimination of target miRNA from a single-base mismatched target. The developed biosensing platform demonstrated the advantages of isothermal, homogeneous, visual detection for miRNA assays, offering a promising tool for clinical diagnosis.

  17. An electrochemical biosensor for sensitive detection of microRNA-155: combining target recycling with cascade catalysis for signal amplification.

    Science.gov (United States)

    Wu, Xiaoyan; Chai, Yaqin; Zhang, Pu; Yuan, Ruo

    2015-01-14

    In this work, a new electrochemical biosensor based on catalyzed hairpin assembly target recycling and cascade electrocatalysis (cytochrome c (Cyt c) and alcohol oxidase (AOx)) for signal amplification was constructed for highly sensitive detection of microRNA (miRNA). It is worth pointing out that target recycling was achieved only based on strand displacement process without the help of nuclease. Moreover, porous TiO2 nanosphere was synthesized, which could offer more surface area for Pt nanoparticles (PtNPs) enwrapping and enhance the amount of immobilized DNA strand 1 (S1) and Cyt c accordingly. With the mimicking sandwich-type reaction, the cascade catalysis amplification strategy was carried out by AOx catalyzing ethanol to acetaldehyde with the concomitant formation of high concentration of H2O2, which was further electrocatalyzed by PtNPs and Cyt c. This newly designed biosensor provided a sensitive detection of miRNA-155 from 0.8 fM to 1 nM with a relatively low detection limit of 0.35 fM.

  18. MicroRNA-93 alleviates neuropathic pain through targeting signal transducer and activator of transcription 3.

    Science.gov (United States)

    Yan, Xue-Tao; Ji, Li-Juan; Wang, Zhiyu; Wu, Xingjun; Wang, Quan; Sun, Shujie; Lu, Jing-Min; Zhang, Yang

    2017-05-01

    Emerging evidence suggests that microRNAs (miRNAs) play a critical role in the pathogenesis of neuropathic pain. However, the exact role of miRNAs in regulating neuropathic pain remains largely unknown. In this study, we aimed to investigate the potential role of miR-93 in a rat model of neuropathic pain induced by chronic constriction sciatic nerve injury (CCI). We found a significant decrease of miR-93 in the spinal cord of CCI rats compared with sham rats. Overexpression of miR-93 significantly alleviated neuropathic pain development and reduced inflammatory cytokine expression, including interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-6 in CCI rats. By bioinformatic analysis and dual-luciferase reporter assay, we found that miR-93 directly targeted the 3'-untranslated region (UTR) of signal transducer and activator of transcription 3 (STAT3), an important regulator of inflammation. Overexpression of miR-93 markedly suppressed the expression of STAT3 in vitro and in vivo. Furthermore, overexpression of STAT3 significantly reversed the miR-93 overexpression-induced suppressive effects on neuropathic pain development and neuroinflammation. Taken together, our study suggests that miR-93 inhibits neuropathic pain development of CCI rats possibly through inhibiting STAT3-mediated neuroinflammation. Our findings indicate that miR-93 may serve as a novel therapeutic target for neuropathic pain intervention. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Expression of human ARGONAUTE 2 inhibits endogenous microRNA activity in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Ira eDeveson

    2013-04-01

    Full Text Available Plant and animal microRNA (miRNA pathways share many analogous components, the ARGONAUTE (AGO proteins being foremost among them. We sought to ascertain the degree of functional conservation shared by Homo sapiens ARGONAUTE 2 (HsAGO2 and Arabidopsis thaliana ARGONAUTE 1 (AtAGO1, which are the predominant AGO family members involved with miRNA activity in their respective species. Transgenic Arabidopsis plants expressing HsAGO2 were indistinguishable from counterparts over-expressing AtAGO1, each group exhibiting the morphological and molecular hallmarks of miRNA-pathway loss-of-function alleles. However, unlike AtAGO1, HsAGO2 was unable to rescue the ago1-27 allele. We conclude that, despite the evolutionary gulf between them, HsAGO2 is likely capable of interacting with some component/s of the Arabidopsis miRNA pathway, thereby perturbing its operation, although differences have arisen such that HsAGO2 alone is insufficient to confer efficient silencing of miRNA targets in planta.

  20. Investigation of the effect of phytohormone on the expression of microRNA-159a in Arabidopsis thaliana seedlings based on mimic enzyme catalysis systematic electrochemical biosensor.

    Science.gov (United States)

    Zhou, Yunlei; Wang, Mo; Xu, Zhenning; Ni, Cailing; Yin, Huanshun; Ai, Shiyun

    2014-04-15

    MicroRNAs (miRNAs) play very important roles in plant growth and development as well as phytohormones. More importantly, microRNAs were recently found to be a new growth regulator involved in plant hormone signaling. Therefore, for investigating the expression change of microRNAs in plants exposed to phytohormones and understanding the effect of phytohormones on microRNAs expression, we developed a simple, sensitive, and label-free method for microRNAs biosensing based on mimic enzyme catalysis signal amplification, where carboxylic graphene-hemin hybrid nanosheets was synthesized and used to catalyze the oxidation reaction of hydroquinone in the presence of H2O2 due to the intrinsic peroxidase-like activity of hemin on the carboxylic graphene surface. The electrochemical reduction current of the oxidative product of benzoquinone was depended on the hybridization amount of microRNAs and used to monitor the microRNAs hybridization event. Under optimal detection conditions, the current response was proportional to the logarithm concentration of microRNA-159a from 0.5 pM to 1.0 nM with the detection limit of 0.17 pM (S/N=3). The fabricated biosensor showed highly reproducible (Relative standard deviation (RSD) was 3.53% for 10 biosensors fabricated independently) and detection selectivity (Even discriminating single-base mismatched microRNA sequence). We also found that abscisic acid, a kind of phytohormone, had greatly influence on microRNA-159a expression in Arabidopsis thaliana seedlings. With increasing abscisic acid concentration and prolonging incubation time, both the expression level of microRNA-159a increased. This graphene-hemin-based approach provides a novel avenue to detect microRNA with high sensitivity and selectivity while avoiding laborious label, disadvantages of bio-enzymes and complex operations for microRNAs separation and enrichment, which might be attractive for genetic analysis and clinic biomedical application.

  1. Ets-1 targeted by microrna-221 regulates angiotensin II-induced renal fibroblast activation and fibrosis.

    Science.gov (United States)

    Di, Jia; Jiang, Lei; Zhou, Yang; Cao, Hongdi; Fang, Li; Wen, Ping; Li, Xiurong; Dai, Chunsun; Yang, Junwei

    2014-01-01

    Fibroblast activation is one of the most important mechanisms for Angiotensin II (Ang II) in promoting renal fibrosis. Transcription factor Ets-1 is recognized to play a key role in kidney diseases. However, the role and mechanisms of Ets-1 in Ang-II induced fibroblast activation and kidney fibrosis are not fully understood. Mice were treated with Ang II via osmotic mini-pumps or Ang II expression plasmid (pAng II). Cultured normal rat kidney interstitial fibroblast (NRK-49F) cells were incubated with Ang II. Role of Ets-1 in renal fibrosis and fibroblast activation were assessed by Western blot, Immunohistochemical staining'MTT, Boyden chamber and Immunofluorescence staining. Effects of miR-221 on Ets-1 and fibroblast activation were investigated by MTT, Boyden chamber, Western blot and Q-PCR. We found that Ets-1 was up-regulated in fibrotic kidneys. Similarly, Ang II could activate NRK-49F cells as demonstrated by up-regulated α-SMA and fibronectin(FN) expression and enhanced cell proliferation and migration. Ang II also induced Ets-1 expression in NRK-49F cells in a dose and time dependent manner. Knock-down of Ets-1 by RNA interference attenuated Ang II-induced activation of NRK-49F cells. Ets-1 was previously reported as a target of microRNA-221 (miR-221). In Ang II-induced fibrotic kidney, miR-221 was down-regulated. Similar results were observed in Ang II treated NRK-49F cells. Ectopic expression of miR-221 mimic attenuated the up-regulation of Ets-1 by Ang II in NRK-49F cells, which further prevented the activation of NRK-49F cells. However, the inhibitor of miR-221 aggravated Ang II induced Ets-1 expression and NRK-49F cells activation. Our study suggests that miR-221/Ets-1 axis takes an important role in mediating AngII induced interstitial fibroblast activation and renal fibrosis. © 2014 S. Karger AG, Basel.

  2. Magnetic resonance beacon to detect intracellular microRNA during neurogenesis.

    Science.gov (United States)

    Lee, Jonghwan; Jin, Yeon A; Ko, Hae Young; Lee, Yong Seung; Heo, Hyejung; Cho, Sujeong; Kim, Soonhag

    2015-02-01

    Magnetic resonance imaging (MRI) offers great spatial resolution for viewing deep tissues and anatomy. We developed a self-assembling signal-on magnetic fluorescence nanoparticle to visualize intracellular microRNAs (miRNAs or miRs) during neurogenesis using MRI. The self-assembling nanoparticle (miR124a MR beacon) was aggregated by the incubation of three different oligonucleotides: a 3' adaptor, a 5' adaptor, and a linker containing miR124a-binding sequences. The T2-weighted magnetic resonance (MR) signal of the self-assembled nanoparticle was quenched when miR124a was absent from test tubes or was minimally expressed in cells and tissues. When miR124a was present in test tubes or highly expressed in vitro and in vivo during P19 cell neurogenesis, it hybridized with the miR124a MR beacon, causing the linker to detach, resulting in increased signal-on MRI intensity. This MR beacon can be used as a new imaging probe to monitor the miRNA-mediated regulation of cellular processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Turing Revisited: Decoding the microRNA Messages in Brain Extracellular Vesicles for Early Detection of Neurodevelopmental Disorders.

    Science.gov (United States)

    Gillet, Virginie; Hunting, Darel John; Takser, Larissa

    2016-09-01

    The prevention of neurodevelopmental disorders (NDD) of prenatal origin suffers from the lack of objective tools for early detection of susceptible individuals and the long time lag, usually in years, between the neurotoxic exposure and the diagnosis of mental dysfunction. Human data on the effects of alcohol, lead, and mercury and experimental data from animals on developmental neurotoxins and their long-term behavioral effects have achieved a critical mass, leading to the concept of the Developmental Origin of Health and Disease (DOHaD). However, there is currently no way to evaluate the degree of brain damage early after birth. We propose that extracellular vesicles (EVs) and particularly exosomes, released by brain cells into the fetal blood, may offer us a non-invasive means of assessing brain damage by neurotoxins. We are inspired by the strategy applied by Alan Turing (a cryptanalyst working for the British government), who created a first computer to decrypt German intelligence communications during World War II. Given the growing evidence that microRNAs (miRNAs), which are among the molecules carried by EVs, are involved in cell-cell communication, we propose that decrypting messages from EVs can allow us to detect damage thus offering an opportunity to cure, reverse, or prevent the development of NDD. This review summarizes recent findings on miRNAs associated with selected environmental toxicants known to be involved in the pathophysiology of NDD.

  4. Direct detection of microRNAs using isothermal amplification and molecular beacon with excellent sensitivity and specificity

    Science.gov (United States)

    Zhang, Wancun; Zhang, Qi; Qian, Zhiyu; Gu, Yueqing

    2017-02-01

    MicroRNAs (miRNAs) play important roles in a wide range of biological processes, including proliferation, development, metabolism, immunological response, tumorigenesis, and viral infection. The detection of miRNAs is imperative for gaining a better understanding of the functions of these biomolecules and has great potential for the early diagnosis of human disease as well as the discovery of new drugs through the use of miRNAs as targets. In this article, we develop a highly sensitive, and specific miRNA assay based on the two-stage isothermal amplification reactions and molecular beacon. The two-stage isothermal amplification reactions involves two templates and two-stage amplification reactions under isothermal conditions. The first template enables the amplification of miRNA, and the second template enables the conversion of miRNA to the reporter oligonucleotide(Y). Importantly, different miRNAs can be converted to the same Y seperately, which can hybridize with the same set of molecular beacon to generate fluorescent signals. This assay is highly sensitive and specific with a detection limit of 1 fM and can even discriminate single-nucleotide differences. Moreover, in combination with the specific templates, this method can be applied for multiplex miRNA assay by simply using the same molecular beacon. This method has potential to become a promising miRNA quantification method in biomedical research and clinical diagnosis.

  5. MicroRNA-214 Suppresses Gluconeogenesis by Targeting Activating Transcriptional Factor 4*

    Science.gov (United States)

    Li, Kai; Zhang, Jin; Yu, Junjie; Liu, Bin; Guo, Yajie; Deng, Jiali; Chen, Shanghai; Wang, Chunxia; Guo, Feifan

    2015-01-01

    Although the gluconeogenesis pathway is already a target for the treatment of type 2 diabetes, the potential role of microRNAs (miRNAs) in gluconeogenesis remains unclear. Here, we investigated the physiological functions of miR-214 in gluconeogenesis. The expression of miR-214 was suppressed by glucagon via protein kinase A signaling in primary hepatocytes, and miR-214 was down-regulated in the livers of fasted, high fat diet-induced diabetic and leptin receptor-mutated (db/db) mice. The overexpression of miR-214 in primary hepatocytes suppressed glucose production, and silencing miR-214 reversed this effect. Gluconeogenesis was suppressed in the livers of mice injected with an adenovirus expressing miR-214 (Ad-miR-214). Additionally, Ad-miR-214 alleviated high fat diet-induced elevation of gluconeogenesis and hyperglycemia. Furthermore, we found that activating transcription factor 4 (ATF4), a reported target of miR-214, can reverse the suppressive effect of miR-214 on gluconeogenesis in primary hepatocytes, and this suppressive effect was blocked in liver-specific ATF4 knock-out mice. ATF4 regulated gluconeogenesis via affecting forkhead box protein O1 (FOXO1) transcriptional activity. Finally, liver-specific miR-214 transgenic mice exhibited suppressed gluconeogenesis and reduced expression of ATF4, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase in liver. Taken together, our results suggest that the miR-214-ATF4 axis is a novel pathway for the regulation of hepatic gluconeogenesis. PMID:25657009

  6. Suppression of hepatic stellate cell activation by microRNA-29b

    Energy Technology Data Exchange (ETDEWEB)

    Sekiya, Yumiko; Ogawa, Tomohiro [Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka (Japan); Liver Research Center, Graduate School of Medicine, Osaka City University, Osaka (Japan); Yoshizato, Katsutoshi [Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka (Japan); Liver Research Center, Graduate School of Medicine, Osaka City University, Osaka (Japan); PhoenixBio Co. Ltd., Hiroshima (Japan); Ikeda, Kazuo [Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Nagoya City University, Aichi (Japan); Kawada, Norifumi, E-mail: kawadanori@med.osaka-cu.ac.jp [Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka (Japan); Liver Research Center, Graduate School of Medicine, Osaka City University, Osaka (Japan)

    2011-08-19

    Highlights: {yields} Expression of miR-29b was found to be down-regulated during the activation of hepatic stellate cells in primary culture. {yields} Transfection of a miR-29b precursor markedly attenuated the expression of Col1a1 and Col1a2 mRNAs. {yields} It blunted the increased expression of {alpha}-SMA, DDR2, FN1, ITGB1, and PDGFR-b mRNAs essential for stellate cell activation. {yields} miR-29b overexpression led stellate cells to remain in a quiescent state, as evidenced by their star-like morphology. {yields} miR-29b overexpression suppressed the expression of c-fos mRNA. -- Abstract: MicroRNAs (miRNAs) participate in the regulation of cellular functions including proliferation, apoptosis, and migration. It has been previously shown that the miR-29 family is involved in regulating type I collagen expression by interacting with the 3'UTR of its mRNA. Here, we investigated the roles of miR-29b in the activation of mouse primary-cultured hepatic stellate cells (HSCs), a principal collagen-producing cell in the liver. Expression of miR-29b was found to be down-regulated during HSC activation in primary culture. Transfection of a miR-29b precursor markedly attenuated the expression of Col1a1 and Col1a2 mRNAs and additionally blunted the increased expression of {alpha}-SMA, DDR2, FN1, ITGB1, and PDGFR-{beta}, which are key genes involved in the activation of HSCs. Further, overexpression of miR-29b led HSCs to remain in a quiescent state, as evidenced by their quiescent star-like cell morphology. Although phosphorylation of FAK, ERK, and Akt, and the mRNA expression of c-jun was unaffected, miR-29b overexpression suppressed the expression of c-fos mRNA. These results suggested that miR-29b is involved in the activation of HSCs and could be a candidate molecule for suppressing their activation and consequent liver fibrosis.

  7. Type 2 Diabetes Monocyte MicroRNA and mRNA Expression: Dyslipidemia Associates with Increased Differentiation-Related Genes but Not Inflammatory Activation.

    Directory of Open Access Journals (Sweden)

    Lucy Baldeón R

    Full Text Available To study the expression pattern of microRNAs and mRNAs related to inflammation in T2D monocytes.A microRNA finding study on monocytes of T2D patients and controls using array profiling was followed by a quantitative Real Time PCR (qPCR study on monocytes of an Ecuadorian validation cohort testing the top over/under-expressed microRNAs. In addition, monocytes of the validation cohort were tested for 24 inflammation-related mRNAs and 2 microRNAs previously found deregulated in (auto-inflammatory monocytes.In the finding study, 142 significantly differentially expressed microRNAs were identified, 15 having the strongest power to discriminate T2D patients from controls (sensitivity 66%, specificity 90%. However, differences in expression of these microRNAs between patients and controls were small. On the basis of >1.4 or <0.6-fold change expression 5 microRNAs were selected for further validation. One microRNA (miR-34c-5p was validated as significantly over-expressed in T2D monocytes. In addition, we found over expression of 3 mRNAs (CD9, DHRS3 and PTPN7 in the validation cohort. These mRNAs are important for cell morphology, adhesion, shape change, and cell differentiation. Classical inflammatory genes (e.g. TNFAIP3 were only over-expressed in monocytes of patients with normal serum lipids. Remarkably, in dyslipidemia, there was a reduction in the expression of inflammatory genes (e.g. ATF3, DUSP2 and PTGS2.The expression profile of microRNAs/mRNAs in monocytes of T2D patients indicates an altered adhesion, differentiation, and shape change potential. Monocyte inflammatory activation was only found in patients with normal serum lipids. Abnormal lipid values coincided with a reduced monocyte inflammatory state.

  8. Ratiometric biosensor array for multiplexed detection of microRNAs based on electrochemiluminescence coupled with cyclic voltammetry.

    Science.gov (United States)

    Feng, Xiaobin; Gan, Ning; Zhang, Huairong; Li, Tianhua; Cao, Yuting; Hu, Futao; Jiang, Qianli

    2016-01-15

    A novel multiplexed ratiometric biosensor array was fabricated on a homemade screen-printed carbon electrode (SPCE) for near-simultaneous detection of microRNA (miRNA)-21 and miRNA-141 based on electrochemiluminescence (ECL) coupled with cyclic voltammetry (CV) method. In the detection system, the ECL signal tags (Ru-SiO2@PLL-Au) were fabricated using poly-l-lysine (PLL) as bridging agent and co-reactant to connect Ru-SiO2 (Ru(bpy)3(2+)-doped silica) and gold nanoparticles (Au NPs), which were respectively modified on two spatial resolved working electrodes (WE1 and WE2) of SPCE. Then the ferrocene (Fc)-labeled hairpin DNA (Fc-HDNA1 and Fc-HDNA2) as CV signal tags and ECL quenching material were immobilized on Ru-SiO2@PLL-Au. Upon miRNA-21 and miRNA-141 adding, the target miRNAs could hybridize with corresponding Fc-HDNA, which could lead to Fc away from Ru-SiO2@PLL-Au. Such conformational changes could recover the ECL of Ru-SiO2@PLL-Au and decreased the CV current of Fc, respectively. This "signal-on" of ECL and "signal-off" of CV were employed for dual-signal ratiometric readout. With the help of a multiplexed switch, two dual-signals from WE1 and WE2 were used for multiplexed detection of miRNA-21 and miRNA-141 down to 6.3 and 8.6fM, respectively. This approach was used in real sample analysis and has significant potential for miRNA biomarkers detection in a clinical laboratory setting. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. An immobilization-free electrochemical impedance biosensor based on duplex-specific nuclease assisted target recycling for amplified detection of microRNA.

    Science.gov (United States)

    Zhang, Jing; Wu, Dong-Zhi; Cai, Shu-Xian; Chen, Mei; Xia, Yao-Kun; Wu, Fang; Chen, Jing-Hua

    2016-01-15

    An immobilization-free electrochemical impedance biosensor for microRNA detection was developed in this work, which was based on both the duplex-specific nuclease assisted target recycling (DSNATR) and capture probes (Cps) enriched from the solution to electrode surface via magnetic beads (MBs). In the absence of miR-21, Cps cannot be hydrolyzed due to the low activity of duplex-specific nuclease (DSN) against ssDNA. Therefore, the intact Cps could be attached to the surface of magnetic glass carbon electrode (MGCE), resulting in a compact negatively charged layer as well as a large charge-transfer resistance. While in the presence of miR-21, it hybridized with Cp to form a DNA-RNA heteroduplex. Due to the considerable cleavage preference for DNA in DNA-RNA hybrids, DSN hydrolyzed the target-binding part of the Cp while liberating the intact miR-21 to hybridize with a new Cp and initiate the second cycle of hydrolysis. In this way, a single miR-21 was able to trigger the permanent hydrolysis of multiple Cps. Finally, all Cps were digested. Thus, the negatively charged layer could not be formed, resulting in a small charge-transfer resistance. By employing the above strategy, the proposed biosensor achieved ultrahigh sensitivity toward miR-21 with a detection limit of 60aM. Meanwhile, the method showed little cross-hybridization among the closely related miRNA family members even at the single-base-mismatched level. Successful attempts were made in applying the approach to detect miR-21 in human serum samples of breast cancer patients.

  10. Neuroinflammation and depression: microglia activation, extracellular microvesicles and microRNA dysregulation

    Directory of Open Access Journals (Sweden)

    Dora eBrites

    2015-12-01

    Full Text Available Patients with chronic inflammation are often associated with the emergence of depression symptoms, while diagnosed depressed patients show increased levels of circulating cytokines. Further studies revealed the activation of the brain immune cell microglia in depressed patients with a greater magnitude in individuals that committed suicide, indicating a crucial role for neuroinflammation in depression brain pathogenesis. Rapid advances in the understanding of microglial and astrocytic neurobiology were obtained in the past fifteen to twenty years. Indeed, recent data reveal that microglia play an important role in managing neuronal cell death, neurogenesis, and synaptic interactions, besides their involvement in immune-response generating cytokines. The communication between microglia and neurons is essential to synchronize these diverse functions with brain activity. Evidence is accumulating that secreted extracellular vesicles (EVs, comprising ectosomes and exosomes with a size ranging from 0.1 to 1 μm, are key players in intercellular signaling. These EVs may carry specific proteins, mRNAs and microRNAs (miRNAs. Transfer of exosomes to neurons was shown to be mediated by oligodendrocytes, microglia and astrocytes that may either be supportive to neurons, or instead disseminate the disease. Interestingly, several recent reports have identified changes in miRNAs in depressed patients, which target not only crucial pathways associated with synaptic plasticity, learning and memory but also the production of neurotrophic factors and immune cell modulation. In this article, we discuss the role of neuroinflammation in the emergence of depression, namely dynamic alterations in the status of microglia response to stimulation, and how their activation phenotypes may have an etiological role in neurodegeneneration, in particular in depressive-like behavior. We will overview the involvement of miRNAs, exosomes, ectosomes and microglia in regulating

  11. Liquid Hybridization and Solid Phase Detection: A Highly Sensitive and Accurate Strategy for MicroRNA Detection in Plants and Animals

    Directory of Open Access Journals (Sweden)

    Fosheng Li

    2016-09-01

    Full Text Available MicroRNAs (miRNAs play important roles in nearly every aspect of biology, including physiological, biochemical, developmental and pathological processes. Therefore, a highly sensitive and accurate method of detection of miRNAs has great potential in research on theory and application, such as the clinical approach to medicine, animal and plant production, as well as stress response. Here, we report a strategic method to detect miRNAs from multicellular organisms, which mainly includes liquid hybridization and solid phase detection (LHSPD; it has been verified in various species and is much more sensitive than traditional biotin-labeled Northern blots. By using this strategy and chemiluminescent detection with digoxigenin (DIG-labeled or biotin-labeled oligonucleotide probes, as low as 0.01–0.25 fmol [for DIG-CDP Star (disodium2-chloro-5-(4-methoxyspiro{1,2-dioxetane-3,2′-(5′-chlorotricyclo[3.3.1.13,7]decan}-4-ylphenyl phosphate system], 0.005–0.1 fmol (for biotin-CDP Star system, or 0.05–0.5 fmol (for biotin-luminol system of miRNA can be detected and one-base difference can be distinguished between miRNA sequences. Moreover, LHSPD performed very well in the quantitative analysis of miRNAs, and the whole process can be completed within about 9 h. The strategy of LHSPD provides an effective solution for rapid, accurate, and sensitive detection and quantitative analysis of miRNAs in plants and animals.

  12. MicroRNA-218 modulates activities of glioma cells by targeting HMGB1

    Science.gov (United States)

    Gu, Jianjun; Xu, Rong; Li, Yaxing; Zhang, Jianhe; Wang, Shousen

    2016-01-01

    To explore the effects of microRNA-218 (miR-218) on glioma cell lines and the related mechanism. U251 and U87 cells were transfected with negative control, miR-218 mimic or miR-218 inhibitor using lipofectamine 2000. The expressions of mRNA and proteins were detected with qRT-PCR and Western blotting. The cell proliferation, apoptosis, migration and invasion were studied using MTT, flow cytometry, Transwell assay and scratch-wound assay, respectively. The targeting effect of HMGB1 by miR-218 was measured with luciferase reporter assay. The results showed that miR-218 was significantly downregulated while HMGB1 was upregulated in both glioma cell lines. Transfection of miR-218 significantly reduced the cell viability and colony formation, increased cell apoptosis and arrested cell in G0/G1 phase. Transfection of miR-218 also decreased the invasion and migration of glioma cells. The expressions of HMGB1, RAGE, cyclin D1 and MMP-9 were downregulated while the expression of caspase-9 was upregulated by miR-218. Silencing HMGB1 increased the expression of RAGE, cyclin D1, MMP-9 but decreased the expression of caspase-9 in U251 and U87 cells. Co-transfection with pcHMGB1 and miR-218 significantly decreased the growth inhibition and increased the apoptosis of glioma cells while these effects were abolished in glioma cells co-transfected with HMGB1 siRNA and miR-218 inhibitor. In addition, co-transfection with pcHMGB1 and miR-218 inhibitor increased the invasiveness of U251 and U87 cells. These findings suggested that miR-218 may negatively regulate HMGB-mediated suppression of RAGE to regulate cell proliferation, apoptosis and invasion, and that intervention of miR-218-HMGB1-RAGE may be useful for developing potential clinical strategies. PMID:27725858

  13. MicroRNA profiling of pericardial fluid samples from patients with heart failure.

    Science.gov (United States)

    Kuosmanen, Suvi M; Hartikainen, Juha; Hippeläinen, Mikko; Kokki, Hannu; Levonen, Anna-Liisa; Tavi, Pasi

    2015-01-01

    Multicellular organisms maintain vital functions through intercellular communication. Release of extracellular vesicles that carry signals to even distant target organs is one way of accomplishing this communication. MicroRNAs can also be secreted from the cells in exosomes and act as paracrine signalling molecules. In addition, microRNAs have been implicated in the pathogenesis of a large number of diseases, including cardiovascular diseases, and are considered as promising candidate biomarkers due to their relative stability and easy quantification from clinical samples. Pericardial fluid contains hormones secreted by the heart and is known to reflect the cardiac function. In this study, we sought to investigate whether pericardial fluid contains microRNAs and if so, whether they could be used to distinguish between different cardiovascular pathologies and disease stages. Pericardial fluid was collected from heart failure patients during open-heart surgery. MicroRNA profiles of altogether 51 patients were measured by quantitative real-time PCR (qPCR) using Exiqon human panels I and II. On the average, 256 microRNAs were detected per sample, and 70 microRNAs out of 742 profiled microRNAs were detected in every sample. The five most abundant microRNAs in pericardial fluid were miR-21-5p, miR-451a, miR-125b-5p, let-7b-5p and miR-16-5p. No specific signatures for cardiovascular pathologies or clinically assessed heart failure stages could be detected from the profiles and, overall, microRNA profiles of the samples were found to be very similar despite the heterogeneity in the study population. Measured microRNA profiles did not separate the samples according to the clinical features of the patients. However, several previously identified heart failure marker microRNAs were detected. The pericardial fluid microRNA profile appeared to be a result of an active and selective secretory process indicating that microRNAs may act as paracrine signalling factors by mediating

  14. Ratiometric FRET-based detection of DNA and micro-RNA on the surface using TIRF detection

    Energy Technology Data Exchange (ETDEWEB)

    Matveeva, Evgenia G., E-mail: evgenia_matveeva@hotmail.co [Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, Department of Molecular Biology and Immunology and Department of Cell Biology and Genetics, 3500 Camp Bowie Blvd., Fort Worth, TX 76107 (United States); Gryczynski, Zygmunt [Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, Department of Molecular Biology and Immunology and Department of Cell Biology and Genetics, 3500 Camp Bowie Blvd., Fort Worth, TX 76107 (United States); Stewart, Donald R. [Omm Scientific, Inc., 2600 N. Stemmons Freeway, Suite 129, Dallas, TX 75207 (United States); Gryczynski, Ignacy [Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, Department of Molecular Biology and Immunology and Department of Cell Biology and Genetics, 3500 Camp Bowie Blvd., Fort Worth, TX 76107 (United States)

    2010-04-15

    A new FRET-based method for the ratiometric detection of DNA oligomers on a surface using TIRF detection mode is reported. The dual-labeled system consisting of two hybridized oligomers, Cy3oligoY:Cy5oligoX was immobilized on the surface, and the total internal reflection fluorescence (TIRF) was used to detect emission signals from the surface. Two signals, green and red, which originated from the green donor Cy3 and the red acceptor Cy5, have been simultaneously detected. When the target single-stranded complimentary oligomer was present in the solution, this oligomer replaced the Cy3oligoY in the donor:acceptor complex on the surface and the ratio of red-to-green signal was dramatically changed. This detection scheme is generally applicable to the detection of DNA or RNA on a surface.

  15. Gold nanoparticles-decorated graphene field-effect transistor biosensor for femtomolar MicroRNA detection.

    Science.gov (United States)

    Cai, Bingjie; Huang, Le; Zhang, Hong; Sun, Zhongyue; Zhang, Zhiyong; Zhang, Guo-Jun

    2015-12-15

    Early detection is proven to be the best chance for successful cancer treatment. MiRNAs, as ideal biomarkers, can identify cancer in the early stage. Therefore, development of highly sensitive and selective detection methods for miRNA is still anticipated. Here we report on a gold nanoparticles (AuNPs)-decorated graphene field-effect transistor (FET) biosensor for highly sensitive, selective and label-free detection of miRNA. The AuNPs-decorated graphene FET biosensor was fabricated by drop-casting the reduced graphene oxide (R-GO) suspension onto the sensor surface, and subsequently decorating AuNPs onto the surface of R-GO. After peptide nucleic acid (PNA) probe was immobilized on the AuNPs surface, miRNA detection was carried out via PNA-miRNA hybridization. It was found that the developed FET biosensor was able to achieve a detection limit as low as 10 fM. In addition, the biosensor enabled an accurate distinction of complementary miRNA from one-base mismatched miRNA and noncomplementary miRNA. What's more, this highly sensitive and selective assay was also applied to the detection of miRNA in serum samples, making it a potential method for diagnosis of gene-related diseases.

  16. Urinary micro-RNA biomarker detection using capped gold nanoslit SPR in a microfluidic chip.

    Science.gov (United States)

    Mousavi, Mansoureh Z; Chen, Huai-Yi; Lee, Kuang-Li; Lin, Heng; Chen, Hsi-Hsien; Lin, Yuh-Feng; Wong, Chung-Shun; Li, Hsiao Fen; Wei, Pei-Kuen; Cheng, Ji-Yen

    2015-06-21

    Successful diagnosis and treatment of many diseases depends on the availability of sensitive, reliable and low cost tools for the detection of the biomarkers associated with the diseases. Simple methods that use non-invasive biological samples are especially suitable for the deployment in the clinical environment. In this paper we demonstrate the application of a method that employs a capped gold nanoslit surface plasmon resonance (SPR) sensor and a microfluidic chip for the detection of a urinary nucleic acid biomarker in clinical samples. This method detects low concentrations of the biomarker in a relatively large volume (∼1 mL) of the sample. The method utilizes magnetic nanoparticles (MNPs) for the isolation of target molecules and signal enhancement in conjunction with surface plasmon resonance (SPR) on capped gold nanoslits. The ability of the method to detect urinary miRNA-16-5p in AKI patients was tested and the result was compared with the data obtained with the polymerase chain reaction (PCR). miRNA-16-5p has been found to be a specific and noninvasive biomarker for acute kidney injury (AKI). Our method allows the detection of the biomarker in the urine of AKI patients without amplification and labeling of the target molecules.

  17. MicroRNA activity profile in the ovarian cancer cell line OVCAR3 identifies a proapoptotic effect of miR-23a

    Directory of Open Access Journals (Sweden)

    Andikyan V

    2015-10-01

    Full Text Available Vaagn Andikyan,1 Gregory Mullokandov,2 Judith Agudo,2 Ravi Sachidanandam,3,4 David Fishman,1 Alessia Baccarini,2 Brian D Brown2,3 1Department of Obstetrics, Gynecology and Reproductive Science, 2Department of Genetics and Genomic Sciences, 3Tisch Cancer Institute, 4Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA Introduction: Molecular profiling has revealed that many microRNAs (miRNAs are highly expressed in ovarian carcinoma. However, it is not yet known which miRNAs are biologically active (ie, they suppress expression of a target gene in ovarian cancer cells. Here we set out to determine the most active miRNAs in ovarian cancer cells. Methods: We performed miRNA molecular profiling by quantitative polymerase chain reaction array, and measured miRNA activity using a library of sensor vectors for 291 different conserved miRNAs. We inhibited miR-23a activity using a lentiviral-based decoy, and measured the percentage of apoptotic cells by flow cytometry. Results: Our miRNA activity profiling identified 54 active miRNAs in OVCAR3 cells, and found that over 150 miRNAs had no detectable activity. To study the function of an active miRNA, we selected miR-23a for further analysis. We inhibited miR-23a in OVCAR3 cells using a decoy vector, and found that there was decreased cell death compared to control (7.4%±1.4% versus 11.2%±0.5%; P<0.05 when the cells were treated with cisplatin. Moreover, the percentage of apoptotic cells was significantly lower in miR-23a inhibited cells compared to control (2.3%±0.4% versus 9.4%±2.6%; P<0.05. Conclusion: This study identifies the active miRNAs in OVCAR3 cells, and suggests that miR-23a may help to regulate chemosensitivity of ovarian cancer cells. Keywords: ovarian cancer, OVCAR3, microRNA profiling, miR-23a, apoptosis

  18. Research Progress of MicroRNA in Early Detection of Ovarian Cancer

    Institute of Scientific and Technical Information of China (English)

    Ze-Hua Wang; Cong-Jian Xu

    2015-01-01

    Objective: This review aimed to update the progress ofmicroRNA (miRNA) in early detection of ovarian cancer.We discussed the current clinical diagnosis methods and biomarkers of ovarian cancer, especially the methods of miRNA in early detection of ovarian cancer.Data Sources: We collected all relevant studies about miRNA and ovarian cancer in PubMed and CNKI from 1995 to 2015.Study Selection: We included all relevant studies concerning miRNA in early detection of ovarian cancer, and excluded the duplicated articles.Results: miRNAs play a key role in various biological processes of ovarian cancer, such as development, proliferation, differentiation, apoptosis and metastasis, and these phenomena appear in the early-stage.Therefore, miRNA can be used as a new biomarker for early diagnosis of ovarian cancer, intervention on miRNA expression of known target genes, and potential target genes can achieve the effect of early prevention.With the development ofnanoscience and technology, analysis methods ofmiRNA are also quickly developed, which may provide better characterization of early detection of ovarian cancer.Conclusions: In the near future, miRNA therapy could be a powerful tool for ovarian cancer prevention and treatment, and combining with the new analysis technology and new nanomaterials, point-of-care tests for miRNA with high throughput, high sensitivity, and strong specificity are developed to achieve the application of diagnostic kits in screening of early ovarian cancer.

  19. Construction and detection of expression vectors of microRNA-9a in BmN cells

    Institute of Scientific and Technical Information of China (English)

    Yong HUANG; Quan ZOU; Sheng-peng WANG; Shun-ming TANG; Guo-zheng ZHANG; Xing-jia SHEN

    2011-01-01

    MicroRNAs (miRNAs) are small endogenous RNAs molecules,approximately 21-23 nucleotides in length,which regulate gene expression by base-pairing with 3' untranslated regions (UTRs) of target mRNAs.However,the functions of only a few miRNAs in organisms are known.Recently,the expression vector of artificial miRNA has become a promising tool for gene function studies.Here,a method for easy and rapid construction of eukaryotic miRNA expression vector was described.The cytoplasmic actin 3 (A3) promoter and flanked sequences of miRNA-9a (miR-9a)precursor were amplified from genomic DNA of the silkworm (Bombyx mori) and was inserted into pCDNA3.0 vector to construct a recombinant plasmid.The enhanced green fluorescent protein (EGFP) gene was used as reporter gene.The Bombyx mori N (BmN) cells were transfected with recombinant miR-9a expression plasmid and were harvested 48 h post transfection.Total RNAs of BmN cells transfected with recombinant vectors were extracted and the expression of miR-9a was evaluated by reverse transcriptase polymerase chain reaction (RT-PCR) and Northern blot.Tests showed that the recombinant miR-9a vector was successfully constructed and the expression of miR-9a with EGFP was detected.=miRNA-9a (miR-9a),EGFP gene,Bombyx mori N (BmN) Cells,Expression vector

  20. Direct fluorescence detection of microRNA based on enzymatically engineered primer extension poly-thymine (EPEPT) reaction using copper nanoparticles as nano-dye.

    Science.gov (United States)

    Chi, Bao-Zhu; Liang, Ru-Ping; Qiu, Wei-Bin; Yuan, Yan-Hong; Qiu, Jian-Ding

    2017-01-15

    A new strategy based on enzymatically engineered primer extension poly-thymine (EPEPT) and nanomaterials in situ generation technology is reported for direct detection of microRNA (miRNA) in a fluorescence turn-on format using the sequential and complementary reactions catalyzed by Klenow Fragment exo(-) (KFexo(-)) and terminal deoxynucleotidyl transferase (TdTase). The short miRNA can be efficiently converted into long poly-thymine (polyT) sequences, which function as template for in situ formation of fluorescence copper nanoparticles (CuNPs) as nano-dye for detecting miRNA. The polyT-CuNPs can effectively form and emit intense red fluorescence under the 340nm excitation. For the proof of concept, microRNA-21 (miR-21) was selected as the model target to testify this strategy as a versatile assay platform. By directly using miR-21 as the primer, the simple, rapid and sensitive miRNA detection was successfully achieved with a good linearity between 1pM and 1nM and a detection limit of 100fM. Thus, the EPEPT strategy holds great potential in biochemical sensing research as an efficient and universal platform.

  1. MicroRNA-200a mediates nasopharyngeal carcinoma cell proliferation through the activation of nuclear factor-κB.

    Science.gov (United States)

    Shi, Zhuliang; Hu, Zhiqiang; Chen, Delu; Huang, Jie; Fan, Jie; Zhou, Subo; Wang, Xin; Hu, Jiandao; Huang, Fei

    2016-02-01

    In nasopharyngeal carcinoma (NPC), the nuclear factor-κB (NF-κB) signaling pathway is highly active. The constitutive activation of NF-κB prompts malignant cell proliferation, and microRNAs are considered an important mediator in regulating the NF-κB signaling pathway. The current study investigated the effect of microRNA-200a (miR-200a) on NF-κB activation. Reverse transcription-quantitative polymerase chain reaction was used to quantify the relative level of miR-200a in NPC tissue samples and CNE2 cells. An MTT assay was used to investigate the effect of miR-200a on cell proliferation. To investigate the activation of NF-κB, western blotting was used to measure the protein levels of NF-κB and its downstream targets. To identify the target genes of miR-200a, a luciferase reporter assay was used. The current study demonstrated that miR-200a was upregulated in NPC tissue samples and cell lines. Overexpression of miR-200a resulted in the proliferation of CNE2 cells. Western blot analysis indicated that the protein levels of p65 increased when CNE2 cells were transfected with miR-200a mimics. Additionally, the downstream targets of miR-200a were upregulated, including vascular cell adhesion molecule, intercellular adhesion molecule and monocyte chemoattractant protein-1. The luciferase assay indicated that IκBα was the target gene of miR-200a. In conclusion, miR-200a was demonstrated to enhance NPC cell proliferation by activating the NF-κB signaling pathway.

  2. Detection of let-7a microRNA by real-time PCR in gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    Hong-He Zhang; Xian-Jun Wang; Guo-Xiong Li; En Yang; Ning-Min Yang

    2007-01-01

    AIM:To establish an accurate and rapid stem-loop reverse transcriptional real-time PCR (RT-PCR) method to quantify human let-7a miRNA in gastric cancer.METHODS: According to the sequence of let-7a miRNA,the stem-loop reverse transcriptional primer, the primers and quantitative MGB probes of real-time PCR were designed and synthesized. The dynamic range and the sensitivity of quantitative reverse transcriptional real-time PCR were determined. The levels of let-7a miRNA were examined in 32 gastric carcinoma samples by stem-loop RT-PCR method.RESULTS: The dynamic range and sensitivity of the let-7a miRNA quantification scheme were evaluated,the result showed the assay could precisely detect 10copies of mature let-7a miRNA in as few as 0.05 ng of total RNA of gastric mucosa. The results of specificity analysis showed no fluorescence signal occurred even though 50 ng of human genomic DNA was added to the reverse transcription (RT) reaction. The expression level of let-7a miRNA in gastric tumor tissues was significantly lower compared to normal tissues in 14 samples from 32patients.CONCLUSION: The stem-loop RT-PCR is a reliable method to detect let-7a miRNA which may play an important role in the development of gastric carcinoma.

  3. Detection of circulating parasite-derived microRNAs in filarial infections.

    Directory of Open Access Journals (Sweden)

    Lucienne Tritten

    2014-07-01

    Full Text Available Filarial nematodes cause chronic and profoundly debilitating diseases in both humans and animals. Applications of novel technology are providing unprecedented opportunities to improve diagnosis and our understanding of the molecular basis for host-parasite interactions. As a first step, we investigated the presence of circulating miRNAs released by filarial nematodes into the host bloodstream. miRNA deep-sequencing combined with bioinformatics revealed over 200 mature miRNA sequences of potential nematode origin in Dirofilaria immitis-infected dog plasma in two independent analyses, and 21 in Onchocerca volvulus-infected human serum. Total RNA obtained from D. immitis-infected dog plasma was subjected to stem-loop RT-qPCR assays targeting two detected miRNA candidates, miR-71 and miR-34. Additionally, Brugia pahangi-infected dog samples were included in the analysis, as these miRNAs were previously detected in extracts prepared from this species. The presence of miR-71 and miR-34 discriminated infected samples (both species from uninfected samples, in which no specific miRNA amplification occurred. However, absolute miRNA copy numbers were not significantly correlated with microfilaraemia for either parasite. This may be due to the imprecision of mf counts to estimate infection intensity or to miRNA contributions from the unknown number of adult worms present. Nonetheless, parasite-derived circulating miRNAs are found in plasma or serum even for those species that do not live in the bloodstream.

  4. Detection of circulating parasite-derived microRNAs in filarial infections.

    Science.gov (United States)

    Tritten, Lucienne; Burkman, Erica; Moorhead, Andrew; Satti, Mohammed; Geary, James; Mackenzie, Charles; Geary, Timothy

    2014-07-01

    Filarial nematodes cause chronic and profoundly debilitating diseases in both humans and animals. Applications of novel technology are providing unprecedented opportunities to improve diagnosis and our understanding of the molecular basis for host-parasite interactions. As a first step, we investigated the presence of circulating miRNAs released by filarial nematodes into the host bloodstream. miRNA deep-sequencing combined with bioinformatics revealed over 200 mature miRNA sequences of potential nematode origin in Dirofilaria immitis-infected dog plasma in two independent analyses, and 21 in Onchocerca volvulus-infected human serum. Total RNA obtained from D. immitis-infected dog plasma was subjected to stem-loop RT-qPCR assays targeting two detected miRNA candidates, miR-71 and miR-34. Additionally, Brugia pahangi-infected dog samples were included in the analysis, as these miRNAs were previously detected in extracts prepared from this species. The presence of miR-71 and miR-34 discriminated infected samples (both species) from uninfected samples, in which no specific miRNA amplification occurred. However, absolute miRNA copy numbers were not significantly correlated with microfilaraemia for either parasite. This may be due to the imprecision of mf counts to estimate infection intensity or to miRNA contributions from the unknown number of adult worms present. Nonetheless, parasite-derived circulating miRNAs are found in plasma or serum even for those species that do not live in the bloodstream.

  5. Thymosin β4 inhibits microglia activation through microRNA 146a in neonatal rats following hypoxia injury.

    Science.gov (United States)

    Zhou, Tian; Huang, Yan-xia; Song, Jian-wen; Ma, Qiao-mei

    2015-12-01

    Neuroinflammation mediated by activated microglia plays a pivotal role in the pathogenesis of neurological disorders, including hypoxic injury of the developing brain. Thymosin β4 (Tβ4), the major G-actin-sequestering molecule, has an anti-inflammatory effect and has been used to treat various neurological diseases. However, the effect of Tβ4 on hypoxia-induced microglia activation in the developing brain remains unclear. We investigate here the effect of Tβ4 on microglia activation of neonatal rats after hypoxia exposure. Tβ4 treatment was carried out on 1-day-old rats and BV-2 cells. Tβ4 expression in microglia was determined by quantitative real time-PCR, western blotting, and immunofluorescence staining. Secretion of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and nitric oxide (NO) was assessed by enzyme-linked immunosorbent assay and colorimetric assay. mRNA expression of TNF-α and IL-1β, and microRNA 146a expression was determined by quantitative real time-PCR. We showed that Tβ4 treatment significantly inhibited secretion of inflammatory mediators in the cerebellum of neonatal rats following hypoxia injury. Increased expression of endogenous Tβ4 in microglia was observed both in hypoxic rats and in BV-2 cells. Tβ4 treatment significantly inhibited the expression and secretion of hypoxia-induced TNF-α, IL-1β, and NO. Remarkably, microRNA 146a expression was found to have increased in Tβ4-treated BV-2 cells. We demonstrated the anti-inflammatory effect of Tβ4 in neonatal rats following hypoxic brain injury. More importantly, our data reveal, for the first time, that Tβ4 inhibits microglia activation in vitro. Therefore, this study contributes to understanding the role and mechanism of Tβ4 function in central nervous system diseases.

  6. Au nanoparticles/hollow molybdenum disulfide microcubes based biosensor for microRNA-21 detection coupled with duplex-specific nuclease and enzyme signal amplification.

    Science.gov (United States)

    Shuai, Hong-Lei; Huang, Ke-Jing; Chen, Ying-Xu; Fang, Lin-Xia; Jia, Meng-Pei

    2017-03-15

    An ultrasensitive electrochemical biosensor for detecting microRNAs is fabricated based on hollow molybdenum disulfide (MoS2) microcubes. Duplex-specific nuclease, enzyme and electrochemical-chemical-chemical redox cycling are used for signal amplification. Hollow MoS2 microcubes constructed by ultrathin nanosheets are synthesized by a facile template-assisted strategy and used as supporting substrate. For biosensor assembling, biotinylated ssDNA capture probes are first immobilized on Au nanoparticles (AuNPs)/MoS2 modified electrode in order to combine with streptavidin-conjugated alkaline phosphatase (SA-ALP). When capture probes hybridize with miRNAs, duplex-specific nuclease cleaves the formative duplexes. At the moment, the biotin group strips from the electrode surface and SA-ALP is incapacitated to attach onto electrode. Then, ascorbic acids induce the electrochemical-chemical-chemical redox cycling to produce electrochemical response in the presence of ferrocene methanol and tris (2-carboxyethyl) phosphine. Under optimum conditions, the proposed biosensor shows a good linear relationship between the current variation and logarithm of the microRNAs concentration ranging from 0.1fM to 0.1pM with a detection limit of 0.086fM (S/N=3). Furthermore, the biosensor is successfully applied to detect target miRNA-21 in human serum samples.

  7. Comparison of microRNA expression levels between initial and recurrent glioblastoma specimens.

    Science.gov (United States)

    Ilhan-Mutlu, Aysegül; Wöhrer, Adelheid; Berghoff, Anna Sophie; Widhalm, Georg; Marosi, Christine; Wagner, Ludwig; Preusser, Matthias

    2013-05-01

    Glioblastoma is the most frequent primary brain tumour in adults. Recent therapeutic advances increased patient's survival, but tumour recurrence inevitably occurs. The pathobiological mechanisms involved in glioblastoma recurrence are still unclear. MicroRNAs are small RNAs proposed o have important roles for cancer including proliferation, aggressiveness and metastases development. There exist only few data on the involvement of microRNAs in glioblastoma recurrence. We selected the following 7 microRNAs with potential relevance for glioblastoma pathobiology by means of a comprehensive literature search: microRNA-10b, microRNA-21, microRNA-181b, microRNA-181c, microRNA-195, microRNA-221 and microRNA-222. We further selected 15 primary glioblastoma patients, of whom formalin fixed and paraffin embedded tissue (FFPE) of the initial and recurrence surgery were available. All patients had received first line treatment consisting of postoperative combined radiochemotherapy with temozolomide (n = 15). Non-neoplastic brain tissue samples from 3 patients with temporal lobe epilepsy served as control. The expression of the microRNAs were analysed by RT-qPCR. These were correlated with each other and with clinical parameters. All microRNAs showed detectable levels of expressions in glioblastoma group, whereas microRNA-10b was not detectable in epilepsy patients. MicroRNAs except microRNA-21 showed significantly higher levels in epilepsy patients when compared to the levels of first resection of glioblastoma. Comparison of microRNA levels between first and second resections revealed no significant change. Cox regression analyses showed no significant association of microRNA expression levels in the tumor tissue with progression free survival times. Expression levels of microRNA-10b, microRNA-21, microRNA-181b, microRNA-181c, microRNA-195, microRNA-221 and microRNA-222 do not differ significantly between initial and recurrent glioblastoma.

  8. Relationship between differential hepatic microRNA expression and decreased hepatic cytochrome P450 3A activity in cirrhosis.

    Directory of Open Access Journals (Sweden)

    Raj Vuppalanchi

    Full Text Available BACKGROUND AND AIM: Liver cirrhosis is associated with decreased hepatic cytochrome P4503A (CYP3A activity but the pathogenesis of this phenomenon is not well elucidated. In this study, we examined if certain microRNAs (miRNA are associated with decreased hepatic CYP3A activity in cirrhosis. METHODS: Hepatic CYP3A activity and miRNA microarray expression profiles were measured in cirrhotic (n=28 and normal (n=12 liver tissue. Hepatic CYP3A activity was measured via midazolam hydroxylation in human liver microsomes. Additionally, hepatic CYP3A4 protein concentration and the expression of CYP3A4 mRNA were measured. Analyses were conducted to identify miRNAs which were differentially expressed between two groups but also were significantly associated with lower hepatic CYP3A activity. RESULTS: Hepatic CYP3A activity in cirrhotic livers was 1.7-fold lower than in the normal livers (0.28 ± 0.06 vs. 0.47 ± 0.07mL* min(-1*mg protein(-1 (mean ± SEM, P=0.02. Six microRNAs (miR-155, miR-454, miR-582-5p, let-7f-1*, miR-181d, and miR-500 had >1.2-fold increase in cirrhotic livers and also had significant negative correlation with hepatic CYP3A activity (range of r = -0.44 to -0.52, P <0.05. Notably, miR-155, a known regulator of liver inflammation, had the highest fold increase in cirrhotic livers (2.2-fold, P=4.16E-08 and significantly correlated with hepatic CYP3A activity (r=-0.50, P=0.017. The relative expression (2(-ΔΔCt mean ± SEM of hepatic CYP3A4 mRNA was significantly higher in cirrhotic livers (21.76 ± 2.65 vs. 5.91 ± 1.29, P=2.04E-07 but their levels did not significantly correlate with hepatic CYP3A activity (r=-0.43, P=0.08. CONCLUSION: The strong association between certain miRNAs, notably miR-155, and lower hepatic CYP3A activity suggest that altered miRNA expression may regulate hepatic CYP3A activity.

  9. Serum microRNA biomarkers for detection of non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Patrick T Hennessey

    Full Text Available Non small cell lung cancer (NSCLC is the leading cause of cancer-related mortality world-wide and the majority of cases are diagnosed at late stages of disease. There is currently no cost-effective screening test for NSCLC, and the development of such a test is a public health imperative. Recent studies have suggested that chest computed tomography screening of patients at high risk of lung cancer can increase survival from disease, however, the cost effectiveness of such screening has not been established. In this Phase I/II biomarker study we examined the feasibility of using serum miRNA as biomarkers of NSCLC using RT-qPCR to examine the expression of 180 miRNAs in sera from 30 treatment naive NSCLC patients and 20 healthy controls. Receiver operating characteristic curves (ROC and area under the curve were used to identify differentially expressed miRNA pairs that could distinguish NSCLC from healthy controls. Selected miRNA candidates were further validated in sera from an additional 55 NSCLC patients and 75 healthy controls. Examination of miRNA expression levels in serum from a multi-institutional cohort of 50 subjects (30 NSCLC patients and 20 healthy controls identified differentially expressed miRNAs. A combination of two differentially expressed miRNAs miR-15b and miR-27b, was able to discriminate NSCLC from healthy controls with sensitivity, specificity, positive predictive value (PPV and negative predictive value (NPV of 100% in the training set. Upon further testing on additional 130 subjects (55 NSCLC and 75 healthy controls, this miRNA pair predicted NSCLC with a specificity of 84% (95% CI 0.73-0.91, sensitivity of 100% (95% CI; 0.93-1.0, NPV of 100%, and PPV of 82%. These data provide evidence that serum miRNAs have the potential to be sensitive, cost-effective biomarkers for the early detection of NSCLC. Further testing in a Phase III biomarker study in is necessary for validation of these results.

  10. miRiaD: A Text Mining Tool for Detecting Associations of microRNAs with Diseases.

    Science.gov (United States)

    Gupta, Samir; Ross, Karen E; Tudor, Catalina O; Wu, Cathy H; Schmidt, Carl J; Vijay-Shanker, K

    2016-04-29

    MicroRNAs are increasingly being appreciated as critical players in human diseases, and questions concerning the role of microRNAs arise in many areas of biomedical research. There are several manually curated databases of microRNA-disease associations gathered from the biomedical literature; however, it is difficult for curators of these databases to keep up with the explosion of publications in the microRNA-disease field. Moreover, automated literature mining tools that assist manual curation of microRNA-disease associations currently capture only one microRNA property (expression) in the context of one disease (cancer). Thus, there is a clear need to develop more sophisticated automated literature mining tools that capture a variety of microRNA properties and relations in the context of multiple diseases to provide researchers with fast access to the most recent published information and to streamline and accelerate manual curation. We have developed miRiaD (microRNAs in association with Disease), a text-mining tool that automatically extracts associations between microRNAs and diseases from the literature. These associations are often not directly linked, and the intermediate relations are often highly informative for the biomedical researcher. Thus, miRiaD extracts the miR-disease pairs together with an explanation for their association. We also developed a procedure that assigns scores to sentences, marking their informativeness, based on the microRNA-disease relation observed within the sentence. miRiaD was applied to the entire Medline corpus, identifying 8301 PMIDs with miR-disease associations. These abstracts and the miR-disease associations are available for browsing at http://biotm.cis.udel.edu/miRiaD . We evaluated the recall and precision of miRiaD with respect to information of high interest to public microRNA-disease database curators (expression and target gene associations), obtaining a recall of 88.46-90.78. When we expanded the evaluation to

  11. Rapid and ultrasensitive detection of microRNA by target-assisted isothermal exponential amplification coupled with poly (thymine)-templated fluorescent copper nanoparticles

    Science.gov (United States)

    Park, Kwan Woo; Batule, Bhagwan S.; Kang, Kyoung Suk; Park, Ki Soo; Park, Hyun Gyu

    2016-10-01

    We devised a novel method for rapid and ultrasensitive detection of target microRNA (miRNA) by employing target-assisted isothermal exponential amplification (TAIEA) combined with poly (thymine)-templated fluorescent copper nanoparticles (CuNPs) as signaling probes. The target miRNA hybridizes to the unimolecular template DNA and works as a primer for the extension reaction to form double-stranded product, which consequently generates two nicking endonuclease recognition sites. By simultaneous nicking and displacement reactions, exponential amplification generates many poly (thymine) strands as final products, which are employed for the synthesis of fluorescent CuNPs. Based on the fluorescent signal from CuNPs, target miRNA is detected as low as 0.27 fM around 1 h of total analysis time. The diagnostic capability of this system has been successfully demonstrated by reliably detecting target miRNA from different cell lysates, showing its great potential towards real clinical applications.

  12. [Detection and analysis of the characteristic expression of microRNAs of anal fistula patients].

    Science.gov (United States)

    Qiu, Jianming; Yu, Jiping; Yang, Guangen; Xu, Kan; Tao, Yong; Lin, Ali; Wang, Dong

    2016-07-01

    To detect and analyze the characteristic miRNAs profile of anal fistula and explore their possible target genes and potential clinical significance. The anal mucosa close to the hemorrhoids were collected from three patients undergoing fistulectomy and hemorrhoidectomy (fistula group) as well as three patients receiving only hemorroidectomy(hemorrhoids group), matching with fistula group in age, gender and body weight. miRNA microarray was used to compare the expression of 1 285 human miRNAs of the anal mucosa between two groups. Cluster analysis was adopted to analyze the accumulation of the differentially expressed miRNAs(Pfistula group, 13 miRNAs were differentially expressed with those in hemorrhoid group, including 2 of up-regulation and 11 of down-regulation. Paired t test showed that in fistula group, miRNA-3609 up-regulation was 5.98 folds(P=0.0231) and miR-181a-2-3p down-regulation was 0.13 folds(P=0.0067) compared to those in hemorrhoid group, which had the greatest differential expression. Cluster analysis suggested that up-regulated miR-3609 and miR-6086 had similar change trend in both groups. Among 11 down-regulated miRNAs, miR-125bp-1-3p and miR-548q had similar expression and other 9 miRNAs had similar expression as well, including miR-1185-1-3p, miR-532-3p, miR-1233-5p, miR-769-5p, miR-149-5p, miR-99b-3p, miR-141-3p, miR-138-5p, and miR-181a-2-3p. Target gene prediction analysis of above 13 genes showed that 7 miRNAs(53.8%) were eligible to predict their potential target genes, yielding totally 104 possible target genes. The rest of 6 miRNAs(46.2%) failed to predict any target gene. The highest score in prediction of target gene was chitinase 1(ChIT1) and its corresponding differential miRNA was miR-769-5p(r=-0.94286, P=0.0167). Gene ontology analysis showed that the most associated biological process related with these 104 target genes was keratinization, immune response and signal transduction. Immunohistochemistry revealed ChiT1 expression of

  13. G-quadruplex fluorescent probe-mediated real-time rolling circle amplification strategy for highly sensitive microRNA detection.

    Science.gov (United States)

    Jiang, Hong-Xin; Liang, Zhen-Zhen; Ma, Yan-Hong; Kong, De-Ming; Hong, Zhang-Yong

    2016-11-02

    Real-time PCR has revolutionized PCR from qualitative to quantitative. As an isothermal DNA amplification technique, rolling circular amplification (RCA) has been demonstrated to be a versatile tool in many fields. Development of a simple, highly sensitive, and specific strategy for real-time monitoring of RCA will increase its usefulness in many fields. The strategy reported here utilized the specific fluorescence response of thioflavin T (ThT) to G-quadruplexes formed by RCA products. Such a real-time monitoring strategy works well in both traditional RCA with linear amplification efficiency and modified RCA proceeded in an exponential manner, and can be readily performed in commercially available real-time PCR instruments, thereby achieving high-throughput detection and making the proposed technique more suitable for biosensing applications. As examples, real-time RCA-based sensing platforms were designed and successfully used for quantitation of microRNA over broad linear ranges (8 orders of magnitude) with a detection limit of 4 aM (or 0.12 zmol). The feasibility of microRNA analysis in human lung cancer cells was also demonstrated. This work provides a new method for real-time monitoring of RCA by using unique nucleic acid secondary structures and their specific fluorescent probes. It has the potential to be extended to other isothermal single-stranded DNA amplification techniques.

  14. PP2A catalytic subunit silence by microRNA-429 activates AMPK and protects osteoblastic cells from dexamethasone.

    Science.gov (United States)

    Guo, Shiguang; Chen, Caiyun; Ji, Feng; Mao, Li; Xie, Yue

    2017-06-03

    Activation of AMP-activated protein kinase (AMPK) could efficiently protect osteoblasts from dexamethasone (Dex). Here, we aim to induce AMPK activation through miRNA-mediated downregulating its phosphatase, protein phosphatase 2A (PP2A). We discovered that microRNA-429 ("miR-429") targets the catalytic subunit of PP2A (PP2A-c). Significantly, expression of miR-429 downregulated PP2A-c and activated AMPK (p-AMPKα1 Thr172) in human osteoblastic cells (OB-6 and hFOB1.19 lines). Remarkably, miR-429 expression alleviated Dex-induced osteoblastic cell death and apoptosis. On the other hand, miR-429-induced AMPK activation and osteoblast cytoprotection were almost abolished when AMPKα1 was either silenced (by targeted shRNA) or mutated (T172A inactivation). Further studies showed that miR-429 expression in osteoblastic cells increased NADPH (nicotinamide adenine dinucleotide phosphate) content to significantly inhibit Dex-induced oxidative stress. Such effect by miR-429 was again abolished with AMPKα1 silence or mutation. Together, we propose that PP2A-c silence by miR-429 activates AMPK and protects osteoblastic cells from Dex. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleicacid probes and tyramide signal amplification

    DEFF Research Database (Denmark)

    Silahtaroglu, Asli N.; Nolting, Dorrit; Andersen, Lars Dyrskjøt;

    2007-01-01

    The ability to determine spatial and temporal microRNA (miRNA) accumulation at the tissue, cell and subcellular levels is essential for understanding the biological roles of miRNAs and miRNA-associated gene regulatory networks. This protocol describes a method for fast and effective detection of mi......RNAs in frozen tissue sections using fluorescence in situ hybridization (FISH). The method combines the unique miRNA recognition properties of locked nucleic acid (LNA)-modified oligonucleotide probes with FISH using the tyramide signal amplification (TSA) technology. Although both approaches have previously...... protocol can be completed within approximately 6 h and allows miRNA detection in a wide variety of animal tissue cryosections as well as in human tumor biopsies at high cellular resolution....

  16. MicroRNA-9 promotes the neuronal differentiation of rat bone marrow mesenchymal stem cells by activating autophagy

    Institute of Scientific and Technical Information of China (English)

    Guang-yu Zhang; Jun Wang; Yan-jie Jia; Rui Han; Ping Li; Deng-na Zhu

    2015-01-01

    MicroRNA-9 (miR-9) has been shown to promote the differentiation of bone marrow mesen-chymal stem cells into neuronal cells, but the precise mechanism is unclear. Our previous study conifrmed that increased autophagic activity improved the efifciency of neuronal differentiation in bone marrow mesenchymal stem cells. Accumulating evidence reveals that miRNAs adjust the autophagic pathways. This study used miR-9-1 lentiviral vector and miR-9-1 inhibitor to modulate the expression level of miR-9. Autophagic activity and neuronal differentiation were measured by the number of light chain-3 (LC3)-positive dots, the ratio of LC3-II/LC3, and the expression levels of the neuronal markers enolase and microtubule-associated protein 2. Re-sults showed that LC3-positive dots, the ratio of LC3-II/LC3, and expression of neuron speciifc enolase and microtubule-associated protein 2 increased in the miR-9+ group. The above results suggest that autophagic activity increased and bone marrow mesenchymal stem cells were prone to differentiate into neuronal cells when miR-9 was overexpressed, demonstrating that miR-9 can promote neuronal differentiation by increasing autophagic activity.

  17. MicroRNA-9 promotes the neuronal differentiation of rat bone marrow mesenchymal stem cells by activating autophagy

    Directory of Open Access Journals (Sweden)

    Guang-yu Zhang

    2015-01-01

    Full Text Available MicroRNA-9 (miR-9 has been shown to promote the differentiation of bone marrow mesenchymal stem cells into neuronal cells, but the precise mechanism is unclear. Our previous study confirmed that increased autophagic activity improved the efficiency of neuronal differentiation in bone marrow mesenchymal stem cells. Accumulating evidence reveals that miRNAs adjust the autophagic pathways. This study used miR-9-1 lentiviral vector and miR-9-1 inhibitor to modulate the expression level of miR-9. Autophagic activity and neuronal differentiation were measured by the number of light chain-3 (LC3-positive dots, the ratio of LC3-II/LC3, and the expression levels of the neuronal markers enolase and microtubule-associated protein 2. Results showed that LC3-positive dots, the ratio of LC3-II/LC3, and expression of neuron specific enolase and microtubule-associated protein 2 increased in the miR-9 + group. The above results suggest that autophagic activity increased and bone marrow mesenchymal stem cells were prone to differentiate into neuronal cells when miR-9 was overexpressed, demonstrating that miR-9 can promote neuronal differentiation by increasing autophagic activity.

  18. IMPROVING CAUSE DETECTION SYSTEMS WITH ACTIVE LEARNING

    Data.gov (United States)

    National Aeronautics and Space Administration — IMPROVING CAUSE DETECTION SYSTEMS WITH ACTIVE LEARNING ISAAC PERSING AND VINCENT NG Abstract. Active learning has been successfully applied to many natural language...

  19. The repertoire and features of human platelet microRNAs.

    Directory of Open Access Journals (Sweden)

    Hélène Plé

    Full Text Available Playing a central role in the maintenance of hemostasis as well as in thrombotic disorders, platelets contain a relatively diverse messenger RNA (mRNA transcriptome as well as functional mRNA-regulatory microRNAs, suggesting that platelet mRNAs may be regulated by microRNAs. Here, we elucidated the complete repertoire and features of human platelet microRNAs by high-throughput sequencing. More than 492 different mature microRNAs were detected in human platelets, whereas the list of known human microRNAs was expanded further by the discovery of 40 novel microRNA sequences. As in nucleated cells, platelet microRNAs bear signs of post-transcriptional modifications, mainly terminal adenylation and uridylation. In vitro enzymatic assays demonstrated the ability of human platelets to uridylate microRNAs, which correlated with the presence of the uridyltransferase enzyme TUT4. We also detected numerous microRNA isoforms (isomiRs resulting from imprecise Drosha and/or Dicer processing, in some cases more frequently than the reference microRNA sequence, including 5' shifted isomiRs with redirected mRNA targeting abilities. This study unveils the existence of a relatively diverse and complex microRNA repertoire in human platelets, and represents a mandatory step towards elucidating the intraplatelet and extraplatelet role, function and importance of platelet microRNAs.

  20. MicroRNA-122 down-regulation is involved in phenobarbital-mediated activation of the constitutive androstane receptor.

    Science.gov (United States)

    Shizu, Ryota; Shindo, Sawako; Yoshida, Takemi; Numazawa, Satoshi

    2012-01-01

    Constitutive androstane receptor (CAR) is a nuclear receptor that regulates the transcription of target genes, including CYP2B and 3A. Phenobarbital activates CAR, at least in part, in an AMP-activated protein kinase (AMPK)-dependent manner. However, the precise mechanisms underlying phenobarbital activation of AMPK are still unclear. In the present study, it was demonstrated that phenobarbital administration to mice decreases hepatic miR-122, a liver-enriched microRNA involved in both hepatic differentiation and function. The time-course change in the phenobarbital-mediated down-regulation of miR-122 was inversely correlated with AMPK activation. Phenobarbital decreased primary miR-122 to approximately 25% of the basal level as early as 1 h and suppressed transactivity of mir-122 promoter in HuH-7 cells, suggesting that the down-regulation occurred at the transcriptional level. AMPK activation by metformin or 5-aminoimidazole-4-carboxamide 1-β-D-ribonucleoside had no evident effect on miR-122 levels. An inhibitory RNA specific for miR-122 increased activated AMPK and CAR-mediated trancactivation of the phenobarbital-responsive enhancer module in HepG2 cells. Conversely, the reporter activity induced by the ectopic CAR was almost completely suppressed by co-transfection with the miR-122 mimic RNA. GFP-tagged CAR was expressed in the cytoplasm in addition to the nucleus in the majority of HuH-7 cells in which miR-122 was highly expressed. Co-transfection of the mimic or the inhibitor RNA for miR-122 further increased or decreased, respectively, the number of cells that expressed GFP-CAR in the cytoplasm. Taken together, these results suggest that phenobarbital-mediated down-regulation of miR-122 is an early and important event in the AMPK-dependent CAR activation and transactivation of its target genes.

  1. microRNA control of interferons and interferon induced anti-viral activity.

    Science.gov (United States)

    Sedger, Lisa M

    2013-12-01

    Interferons (IFNs) are cytokines that are spontaneously produced in response to virus infection. They act by binding to IFN-receptors (IFN-R), which trigger JAK/STAT cell signalling and the subsequent induction of hundreds of IFN-inducible genes, including both protein-coding and microRNA genes. IFN-induced genes then act synergistically to prevent virus replication and create an anti-viral state. miRNA are therefore integral to the innate response to virus infection and are important components of IFN-mediated biology. On the other hand viruses also encode miRNAs that in some cases interfere directly with the IFN response to infection. This review summarizes the important roles of miRNAs in virus infection acting both as IFN-stimulated anti-viral molecules and as critical regulators of IFNs and IFN-stimulated genes. It also highlights how recent knowledge in RNA editing influence miRNA control of virus infection.

  2. MicroRNA-142 reduces monoamine oxidase A expression and activity in neuronal cells by downregulating SIRT1.

    Directory of Open Access Journals (Sweden)

    Amrita Datta Chaudhuri

    Full Text Available Aberrant expression of microRNAs (miRs has been implicated in the pathogenesis of several neurodegenerative disorders. In HIV-associated neurocognitive disorders (HAND, miR-142 was found to be upregulated in neurons and myeloid cells in the brain. We investigated the downstream effects of chronic miR-142 upregulation in neuronal cells by comparing gene expression in stable clones of the human neuroblastoma cell line BE(2M17 expressing miR-142 to controls. Microarray analysis revealed that miR-142 expression led to a reduction in monoamine oxidase (MAO A mRNA, which was validated by qRT-PCR. In addition to the mRNA, the MAOA protein level and enzyme activity were also reduced. Examination of primary human neurons revealed that miR-142 expression indeed resulted in a downregulation of MAOA protein level. Although MAOA is not a direct target of miR-142, SIRT1, a key transcriptional upregulator of MAOA is, thus miR-142 downregulation of MAOA expression is indirect. MiR-142 induced decrease in MAOA expression and activity may contribute to the changes in dopaminergic neurotransmission reported in HAND.

  3. MicroRNA-126 inhibits the proliferation of lung cancer cell line A549

    Institute of Scientific and Technical Information of China (English)

    Xun Yang; Bei-Bei Chen; Ming-Hua Zhang; Xin-Rong Wang

    2015-01-01

    Objective:To study the role of microRNA-126 in the development of lung cancer.Methods:The biological function of microRNA-126 was detected using EdU assay and CCK-8 assay;the target gene of microRNA-126 was analyzed using real time RT-PCR and Western blot assay.Results: In A549 cell line, overexpression of microRNA-126 inhibits the proliferation rate; VEGF is the target gene of microRNA-126; microRNA-126 exerts its function via regulating VEGF protein level.Conclusions: microRNA-126 inhibits the proliferation in A549 cell line.

  4. A novel role for GSK3β as a modulator of Drosha microprocessor activity and MicroRNA biogenesis.

    Science.gov (United States)

    Fletcher, Claire E; Godfrey, Jack D; Shibakawa, Akifumi; Bushell, Martin; Bevan, Charlotte L

    2016-10-23

    Regulation of microRNA (miR) biogenesis is complex and stringently controlled. Here, we identify the kinase GSK3β as an important modulator of miR biogenesis at Microprocessor level. Repression of GSK3β activity reduces Drosha activity toward pri-miRs, leading to accumulation of unprocessed pri-miRs and reduction of pre-miRs and mature miRs without altering levels or cellular localisation of miR biogenesis proteins. Conversely, GSK3β activation increases Drosha activity and mature miR accumulation. GSK3β achieves this through promoting Drosha:cofactor and Drosha:pri-miR interactions: it binds to DGCR8 and p72 in the Microprocessor, an effect dependent upon presence of RNA. Indeed, GSK3β itself can immunoprecipitate pri-miRs, suggesting possible RNA-binding capacity. Kinase assays identify the mechanism for GSK3β-enhanced Drosha activity, which requires GSK3β nuclear localisation, as phosphorylation of Drosha at S(300) and/or S(302); confirmed by enhanced Drosha activity and association with cofactors, and increased abundance of mature miRs in the presence of phospho-mimic Drosha. Functional implications of GSK3β-enhanced miR biogenesis are illustrated by increased levels of GSK3β-upregulated miR targets following GSK3β inhibition. These data, the first to link GSK3β with the miR cascade in humans, highlight a novel pro-biogenesis role for GSK3β in increasing miR biogenesis as a component of the Microprocessor complex with wide-ranging functional consequences.

  5. Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification.

    Science.gov (United States)

    Silahtaroglu, Asli N; Nolting, Dorrit; Dyrskjøt, Lars; Berezikov, Eugene; Møller, Morten; Tommerup, Niels; Kauppinen, Sakari

    2007-01-01

    The ability to determine spatial and temporal microRNA (miRNA) accumulation at the tissue, cell and subcellular levels is essential for understanding the biological roles of miRNAs and miRNA-associated gene regulatory networks. This protocol describes a method for fast and effective detection of miRNAs in frozen tissue sections using fluorescence in situ hybridization (FISH). The method combines the unique miRNA recognition properties of locked nucleic acid (LNA)-modified oligonucleotide probes with FISH using the tyramide signal amplification (TSA) technology. Although both approaches have previously been shown to increase detection sensitivity in FISH, combining these techniques into one protocol significantly decreases the time needed for miRNA detection in cryosections, while simultaneously retaining high detection sensitivity. Starting with fixation of the tissue sections, this miRNA FISH protocol can be completed within approximately 6 h and allows miRNA detection in a wide variety of animal tissue cryosections as well as in human tumor biopsies at high cellular resolution.

  6. Novel specific microRNA biomarkers in idiopathic inflammatory bowel disease unrelated to disease activity.

    Science.gov (United States)

    Lin, Jingmei; Welker, Noah C; Zhao, Zijin; Li, Yong; Zhang, Jianjun; Reuss, Sarah A; Zhang, Xinjun; Lee, Hwajeong; Liu, Yunlong; Bronner, Mary P

    2014-04-01

    The diagnosis of idiopathic inflammatory bowel disease can be challenging. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate protein synthesis through post-transcriptional suppression. This study is to identify new miRNA markers in inflammatory bowel disease, and to examine whether miRNA biomarkers might assist in the diagnosis of inflammatory bowel disease. Illumina small RNA sequencing was performed on non-dysplastic fresh-frozen colonic mucosa samples of the distalmost colectomy tissue from 19 patients with inflammatory bowel disease (10 ulcerative colitis and 9 Crohn disease) and 18 patients with diverticular disease serving as controls. To determine differentially expressed miRNAs, the USeq software package identified 44 miRNAs with altered expression (fold change ≥ 2 and false discovery rate ≤ 0.10) compared with the controls. Among them, a panel of nine miRNAs was aberrantly expressed in both ulcerative colitis and Crohn disease. Validation assays performed using quantitative reverse transcription PCR (qRT-PCR) on additional frozen tissue from ulcerative colitis, Crohn disease, and control groups confirmed specific differential expression in inflammatory bowel disease for miR-31, miR-206, miR-424, and miR-146a (Pdisease controls (n=29), ulcerative colitis (n=36), Crohn disease (n=26), and the other diseases mimicking inflammatory bowel disease including infectious colitis (n=12) and chronic ischemic colitis (n=19), again confirming increased expression specific to inflammatory bowel disease (Pdisease. Furthermore, miR-31 is universally expressed in both ulcerative colitis and Crohn disease not only in fresh-frozen but also in formalin-fixed, paraffin-embedded tissues.

  7. On-Chip Detection of Cellular Activity

    Science.gov (United States)

    Almog, R.; Daniel, R.; Vernick, S.; Ron, A.; Ben-Yoav, H.; Shacham-Diamand, Y.

    The use of on-chip cellular activity monitoring for biological/chemical sensing is promising for environmental, medical and pharmaceutical applications. The miniaturization revolution in microelectronics is harnessed to provide on-chip detection of cellular activity, opening new horizons for miniature, fast, low cost and portable screening and monitoring devices. In this chapter we survey different on-chip cellular activity detection technologies based on electrochemical, bio-impedance and optical detection. Both prokaryotic and eukaryotic cell-on-chip technologies are mentioned and reviewed.

  8. A microRNA activity map of human mesenchymal tumors: connections to oncogenic pathways; an integrative transcriptomic study

    Directory of Open Access Journals (Sweden)

    Fountzilas Elena

    2012-07-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are nucleic acid regulators of many human mRNAs, and are associated with many tumorigenic processes. miRNA expression levels have been used in profiling studies, but some evidence suggests that expression levels do not fully capture miRNA regulatory activity. In this study we integrate multiple gene expression datasets to determine miRNA activity patterns associated with cancer phenotypes and oncogenic pathways in mesenchymal tumors – a very heterogeneous class of malignancies. Results Using a computational method, we identified differentially activated miRNAs between 77 normal tissue specimens and 135 sarcomas and we validated many of these findings with microarray interrogation of an independent, paraffin-based cohort of 18 tumors. We also showed that miRNA activity is imperfectly correlated with miRNA expression levels. Using next-generation miRNA sequencing we identified potential base sequence alterations which may explain differential activity. We then analyzed miRNA activity changes related to the RAS-pathway and found 21 miRNAs that switch from silenced to activated status in parallel with RAS activation. Importantly, nearly half of these 21 miRNAs were predicted to regulate integral parts of the miRNA processing machinery, and our gene expression analysis revealed significant reductions of these transcripts in RAS-active tumors. These results suggest an association between RAS signaling and miRNA processing in which miRNAs may attenuate their own biogenesis. Conclusions Our study represents the first gene expression-based investigation of miRNA regulatory activity in human sarcomas, and our findings indicate that miRNA activity patterns derived from integrated transcriptomic data are reproducible and biologically informative in cancer. We identified an association between RAS signaling and miRNA processing, and demonstrated sequence alterations as plausible causes for differential miRNA activity

  9. Survivin-targeting Artificial MicroRNAs Mediated by Adenovirus Suppress Tumor Activity in Cancer Cells and Xenograft Models

    Directory of Open Access Journals (Sweden)

    Yudan Chi

    2014-01-01

    Full Text Available Survivin is highly expressed in most human tumors and fetal tissue, and absent in terminally differentiated cells. It promotes tumor cell proliferation by negatively regulating cell apoptosis and facilitating cell division. Survivin's selective expression pattern suggests that it might be a suitable target for cancer therapy, which would promote death of transformed but not normal cells. This was tested using artificial microRNAs (amiRNAs targeting survivin. After screening, two effective amiRNAs, which knocked down survivin expression, were identified and cloned into a replication-defective adenoviral vector. Tumor cells infected with the recombinant vector downregulated expression of survivin and underwent apoptotic cell death. Further studies showed that apoptosis was associated with increases in caspase 3 and cleaved Poly (ADP-ribose polymerase, and activation of the p53 signaling pathway. Furthermore, amiRNA treatment caused blockade of mitosis and cell cycle arrest at the G2/M phase. In vivo, survivin-targeting amiRNAs expressed by adenoviral vectors effectively delayed growth of hepatocellular and cervical carcinomas in mouse xenograft models. These results indicate that silencing of survivin by amiRNA has potential for treatment of cancer.

  10. Toward biosensors for the detection of circulating microRNA as a cancer biomarker: an overview of the challenges and successes.

    Science.gov (United States)

    Tavallaie, Roya; De Almeida, Swahnnya R M; Gooding, J Justin

    2015-01-01

    Considerable attention has been dedicated to developing feasible point-of-care tests for cancer diagnosis and prognosis. An ideal biomarker for clinical use should be easily assayed with minimally invasive medical procedures but possess high sensitivity and specificity. The role of microRNAs (miRNAs) in the regulation of different cellular processes, the unique altered patterns in cancer patients and presence in body fluids in the stable form, points to their clinical utility as blood-based biomarkers for diagnosis, prognosis, and treatment of cancer. Although a variety of selective and sensitive laboratory-based methods are already exist for the detection of circulating miRNA, having a simple, low-cost and rapid assay, which could be routinely used in clinical practice, is still required. Among different approaches that have developed for circulating miRNA detection, biosensors, due to the high sensitivity, ease of use, short assay time, non-toxic experimental steps, and adaptability to point-of-care testing, exhibit very attractive properties for developing portable devices. With this view, we present an overview of some of the challenges that still need to be met to be able to use circulating miRNAs in clinical practice, including their clinical significance, sample preparation, and detection. In particular, we highlight the recent advances in the rapidly developing area of biosensors for circulating miRNA detection, along with future prospects and challenges.

  11. Enzyme-free and isothermal detection of microRNA based on click-chemical ligation-assisted hybridization coupled with hybridization chain reaction signal amplification.

    Science.gov (United States)

    Oishi, Motoi

    2015-05-01

    An enzyme-free and isothermal microRNA (miRNA) detection method has been developed based on click-chemical ligation-assisted hybridization coupled with hybridization chain reaction (HCR) on magnetic beads (MBs). The click-chemical ligation between an azide-modified probe DNA and a dibenzocyclooctyne-modified probe DNA occurred through the hybridization of target miRNA (miR-141). HCR on MBs was performed by the addition of DNA hairpin monomers (H1 and H2). After magnetic separation and denaturation/rehybridization of HCR products ([H1/H2] n ), the resulting HCR products were analyzed by the fluorescence emitted from an intercalative dye, allowing amplification of the fluorescent signal. The proposed assay had a limit of detection of 0.55 fmol, which was 230-fold more sensitive than that of the HCR on the MBs coupled with a conventional sandwich hybridization assay (without click-chemical ligation) (limit of detection 127 fmol). Additionally, the proposed assay could discriminate between miR-141 and other miR-200 family members. In contrast to quantitative reverse transcription polymerase chain reaction techniques using enzymes and thermal cycling, this is an enzyme-free assay that can be conducted under isothermal conditions and can specifically detect miR-141 in fetal bovine serum.

  12. Detection of extracellular enzymatic activity in microorganisms ...

    African Journals Online (AJOL)

    sunny t

    2015-09-18

    Sep 18, 2015 ... bacterial and 14 fungi strains that presented positive lipolytic activity were obtained by detection through Rhodamine B ... The samples were placed in plastic bags, then ..... The ecology of chitin degradation. In: Marshall KC.

  13. Carbon nanotube enhanced label-free detection of microRNAs based on hairpin probe triggered solid-phase rolling-circle amplification

    Science.gov (United States)

    Tian, Qianqian; Wang, Ying; Deng, Ruijie; Lin, Lei; Liu, Yang; Li, Jinghong

    2014-12-01

    The detection of microRNAs (miRNAs) is imperative for gaining a better understanding of the functions of these biomarkers and has great potential for the early diagnosis of human disease. High sensitivity and selectivity for miRNA detection brings new challenges. Herein, an ultrasensitive protocol for electrochemical detection of miRNA is designed through carbon nanotube (CNT) enhanced label-free detection based on hairpin probe triggered solid-phase rolling-circle amplification (RCA). Traditionally, RCA, widely applied for signal enhancement in the construction of a variety of biosensors, has an intrinsic limitation of ultrasensitive detection, as it is difficult to separate the enzymes, templates, and padlock DNAs from the RCA products in the homogeneous solution. We purposely designed a solid-phase RCA strategy, using CNTs as the solid substrate, integrated with a hairpin structured probe to recognize target miRNA. In the presence of miRNA the stem-loop structure will be unfolded, triggering the CNT based RCA process. Due to the efficient blocking effect originating from the polymeric RCA products, the label-free assay of miRNA exhibits an ultrasensitive detection limit of 1.2 fM. Furthermore, the protocol possesses excellent specificity for resolving lung cancer-related let-7 family members which have only one-nucleotide variations. The high sensitivity and selectivity give the method great potential for applications in online diagnostics and in situ detection in long-term development.The detection of microRNAs (miRNAs) is imperative for gaining a better understanding of the functions of these biomarkers and has great potential for the early diagnosis of human disease. High sensitivity and selectivity for miRNA detection brings new challenges. Herein, an ultrasensitive protocol for electrochemical detection of miRNA is designed through carbon nanotube (CNT) enhanced label-free detection based on hairpin probe triggered solid-phase rolling-circle amplification

  14. MicroRNA 181b promotes vascular smooth muscle cells proliferation through activation of PI3K and MAPK pathways.

    Science.gov (United States)

    Li, Tie-Jun; Chen, Yan-Li; Gua, Chao-Jun; Xue, Sheng-Jiang; Ma, Shu-Mei; Li, Xiao-Dong

    2015-01-01

    Vascular smooth muscle cells (VSMCs) hyperplasia is a common feature of pathologic cardiovascular event such as restenosis and atherosclerosis. The role and mechanisms of microRNAs (miRs) in VSMCs proliferation are poorly understood. Here, we report that miR-181b promotes VSMCs proliferation and migration. In an animal model, miR-181b was significantly increased in the rat carotid artery after balloon catheter injury. Delivery of miR-181b inhibitor to injured artery exhibited a marked inhibition of neointimal hyperplasia. Transfection of miR-181b with "mimics" to A10 cells accelerated cell proliferation, which was accompanied by an increase of cell migration. The induction of A10 cells proliferation by miR-181b appeared to be involved in activation of S and G2/M checkpoint, concomitant with decreases in cell-cycle inhibitors p21 and p27, and increases in cell-cycle activators CDK4 and cyclinD1. In contract, miR-181b inhibition attenuated A10 cells proliferation, inhibited cell migration and arrested cell cycle transition. Moreover, forced miR-181b expression elevated the phosphorylation levels of Akt and Erk1/2, whereas inhibition of miR-181b produced the opposite effects. Additionally, inhibition of PI3K and MAPK signaling pathways with specific inhibitors, but not inhibition of JNK pathway, significantly abolished the effects of miR-181b in promoting cell proliferation. These findings demonstrate that miR-181b enhances the proliferation and migration of VSMCs through activation of PI3K and MAPK pathways.

  15. Detecting active comets with SDSS

    Energy Technology Data Exchange (ETDEWEB)

    Solontoi, Michael; Ivezic, Zeljko; /Washington U., Seattle, Astron. Dept.; West, Andrew A.; /MIT, MKI; Claire, Mark; /Washington U., Seattle, Astron. Dept.; Juric, Mario; /Princeton U. Observ.; Becker, Andrew; Jones, Lynne; /Washington U., Seattle, Astron. Dept.; Hall, Patrick B.; /York U., Canada; Kent, Steve; /Fermilab; Lupton, Robert H.; /Princeton U. Observ.; Quinn, Tom; /Washington U., Seattle, Astron. Dept. /Princeton U. Observ.

    2010-12-01

    Using a sample of serendipitously discovered active comets in the Sloan Digital Sky Survey (SDSS), we develop well-controlled selection criteria for greatly increasing the efficiency of comet identification in the SDSS catalogs. After follow-up visual inspection of images to reject remaining false positives, the total sample of SDSS comets presented here contains 19 objects, roughly one comet per 10 million other SDSS objects. The good understanding of selection effects allows a study of the population statistics, and we estimate the apparent magnitude distribution to r {approx} 18, the ecliptic latitude distribution, and the comet distribution in SDSS color space. The most surprising results are the extremely narrow range of colors for comets in our sample (e.g. root-mean-square scatter of only {approx}0.06 mag for the g-r color), and the similarity of comet colors to those of jovian Trojans. We discuss the relevance of our results for upcoming deep multi-epoch optical surveys such as the Dark Energy Survey, Pan-STARRS, and the Large Synoptic Survey Telescope (LSST), and estimate that LSST may produce a sample of about 10,000 comets over its 10-year lifetime.

  16. MicroRNAs as Biomarkers for Liver Disease and Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    C. Nelson Hayes

    2016-02-01

    Full Text Available Serum levels of liver enzymes, such as alanine transaminase, aspartate transaminase, and α-fetoprotein, provide insight into liver function and are used during treatment of liver disease, but such information is limited. In the case of hepatocellular carcinoma (HCC, which is often not detected until an advanced stage, more sensitive biomarkers may help to achieve earlier detection. Serum also contains microRNAs, a class of small non-coding RNAs that play an important role in regulating gene expression. miR-122 is specific to the liver and correlates strongly with liver enzyme levels and necroinflammatory activity, and other microRNAs are correlated with the degree of fibrosis. miR-122 has also been found to be required for hepatitis C virus (HCV infection, whereas other microRNAs have been shown to play antiviral roles. miR-125a-5p and miR-1231 have been shown to directly target hepatitis B virus (HBV transcripts, and others are up- or down-regulated in infected individuals. MicroRNA profiles also differ in the case of HBV and HCV infection as well as between HBeAg-positive and negative patients, and in patients with occult versus active HBV infection. In such patients, monitoring of changes in microRNA profiles might provide earlier warning of neoplastic changes preceding HCC.

  17. An interference-free and label-free sandwich-type magnetic silicon microsphere -rGO-based probe for fluorescence detection of microRNA.

    Science.gov (United States)

    Li, Shiyu; He, Kui; Liao, Rong; Chen, Chunyan; Chen, Xiaoming; Cai, Changqun

    2017-11-01

    An interference-free and label-free sensing platform was developed for the highly sensitive detection of microRNA-21 (miRNA-21) in vitro by magnetic silicon microsphere (MNP)-reduced graphene oxide (rGO)-based sandwich probe. In this method, DNA capture probes (P1) were connected with MNPs at the 5' end and hybridized with completely complementary target miRNA. Subsequently, rGO was retained and induced the fluorescence quenching in the supernatant. Through the magnetic separation, the supernatant environment was simplified and the interference to analytical signal was eliminated. When DNA capture probe-modified magnetic silicon microspheres (MNP-P1) were adsorbed through rGO in the absence of a target and formed a sandwich structure, the formed nanostructure was easily removed from the solution by a magnetic field and the fluorescence intensity was maximally recovered. This proposed strategy, which both overcame the expensive and cumbersome fluorescent labeling, and eliminated interference to analytical signal for guaranteeing high signal-to-background ratio, exhibited high sensitivity with a detection limit as low as 0.098nM and special selectivity toward miRNA-21. The method was potentially applicable for not only detection of miRNA-21 but also various biomarker analyses just by changing capture probes. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Detecting Bots Based on Keylogging Activities

    CERN Document Server

    Al-Hammadi, Yousof

    2010-01-01

    A bot is a piece of software that is usually installed on an infected machine without the user's knowledge. A bot is controlled remotely by the attacker under a Command and Control structure. Recent statistics show that bots represent one of the fastest growing threats to our network by performing malicious activities such as email spamming or keylogging. However, few bot detection techniques have been developed to date. In this paper, we investigate a behavioural algorithm to detect a single bot that uses keylogging activity. Our approach involves the use of function calls analysis for the detection of the bot with a keylogging component. Correlation of the frequency of a specified time-window is performed to enhance he detection scheme. We perform a range of experiments with the spybot. Our results show that there is a high correlation between some function calls executed by this bot which indicates abnormal activity in our system.

  19. Quantum dots-labeled strip biosensor for rapid and sensitive detection of microRNA based on target-recycled nonenzymatic amplification strategy.

    Science.gov (United States)

    Deng, Huaping; Liu, Qianwen; Wang, Xin; Huang, Ru; Liu, Hongxing; Lin, Qiumei; Zhou, Xiaoming; Xing, Da

    2017-01-15

    MicroRNAs (miRNAs) have been proved to be potential biomarkers in early cancer diagnosis. It is of great significance for rapid and sensitive detection of miRNAs, particularly with point-of-care (POC) diagnosis. Herein, it is the first time to construct quantum dots (QDs)-labeled strip biosensor based on target-recycled nonenzymatic amplification strategy for miRNA detection. In the system, QDs were served as bright, photostable signal labels, which endow this biosensor with good detection efficiency. Moreover, a target-recycled amplification strategy relies on sequence-specific hairpins strand displacement process without the assistance of enzymes, was introduced to further improve the sensitivity. Meanwhile eliminating the requirement of environment-susceptible enzyme protein makes it easy to preserve and enhances the stability and reproducibility of this sensor. Benefiting from these outstanding characteristics, this platform exhibited a good detection sensitivity range from 2fmol to 200fmol with a limit of 200amol, using only 20μL of sample within 80min. The assay was also 10-fold more sensitive than that with a conventional colloidal gold-based test strip for miRNA detection. Additionally, the analysis of miRNA in various tumor cell extracts was in accordance with the performance of quantitative realtime polymerase chain reaction (qRT-PCR). Clinical tumor samples were also tested, and 16 of 20 samples gave out positive signals, which demonstrated the practical application capacity of the biosensor. Therefore, the proposed biosensor holds great promise for potential POC applications and early cancer diagnosis.

  20. A novel polydopamine-based chemiluminescence resonance energy transfer method for microRNA detection coupling duplex-specific nuclease-aided target recycling strategy.

    Science.gov (United States)

    Wang, Qian; Yin, Bin-Cheng; Ye, Bang-Ce

    2016-06-15

    MicroRNAs (miRNAs), functioning as oncogenes or tumor suppressors, play significant regulatory roles in regulating gene expression and become as biomarkers for disease diagnostics and therapeutics. In this work, we have coupled a polydopamine (PDA) nanosphere-assisted chemiluminescence resonance energy transfer (CRET) platform and a duplex-specific nuclease (DSN)-assisted signal amplification strategy to develop a novel method for specific miRNA detection. With the assistance of hemin, luminol, and H2O2, the horseradish peroxidase (HRP)-mimicking G-rich sequence in the sensing probe produces chemiluminescence, which is quickly quenched by the CRET effect between PDA as energy acceptor and excited luminol as energy donor. The target miRNA triggers DSN to partially degrade the sensing probe in the DNA-miRNA heteroduplex to repeatedly release G-quadruplex formed by G-rich sequence from PDA for the production of chemiluminescence. The method allows quantitative detection of target miRNA in the range of 80 pM-50 nM with a detection limit of 49.6 pM. The method also shows excellent specificity to discriminate single-base differences, and can accurately quantify miRNA in biological samples, with good agreement with the result from a commercial miRNA detection kit. The procedure requires no organic dyes or labels, and is a simple and cost-effective method for miRNA detection for early clinical diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Using Quantitative Real-Time PCR to Detect MicroRNA Expression Profile During Embryonic Stem Cell Differentiation.

    Science.gov (United States)

    Pan, Xiaoping; Murashov, Alexander K; Stellwag, Edmund J; Zhang, Baohong

    2017-01-01

    Quantitative real-time PCR (qRT-PCR) is a reliable method to determine and monitor microRNA (miRNA) expression profiles in different cells, tissues, and organisms. Although there are several different strategies in performing qRT-PCR to determine miRNA expression, all of them have two steps in common: reverse transcription for obtaining cDNA from mature miRNA sequencing and standard real-time PCR for amplification of cDNA. This chapter demonstrates the application of quantitative real-time PCR for determining miRNA expression profiles during mouse embryonic stem cell differentiation. In this method, a mature miRNA sequence is first reverse transcribed into a long cDNA with a 40-50 nt miRNA-specific stem-loop primer; then, a standard real-time PCR reaction is performed for determining miRNA expression using a forward miRNA-specific primer and a universal reverse primer.

  2. Whole-mount in situ detection of microRNAs on Arabidopsis tissues using Zip Nucleic Acid probes.

    Science.gov (United States)

    Begheldo, M; Ditengou, F A; Cimoli, G; Trevisan, S; Quaggiotti, S; Nonis, A; Palme, K; Ruperti, B

    2013-03-01

    MicroRNAs (miRNAs) affect fundamental processes of development. In plants miRNAs regulate organ development, transition to flowering, and responses to abiotic/biotic stresses. To understand the biological role of miRNAs, in addition to identifying their targeted transcripts, it is necessary to characterize the spatiotemporal regulation of their expression. Many methods have been used to define the set of organ-specific miRNAs by tissue dissection and miRNA profiling but none of them can describe their tissue and cellular distribution at the high resolution provided by in situ hybridization (ISH). This article describes the setup and optimization of a whole-mount ISH protocol to target endogenous miRNAs on intact Arabidopsis seedlings using DIG-labeled Zip Nucleic Acid (ZNA) oligonucleotide probes. Automation of the main steps of the procedure by robotized liquid handling has also been implemented in the protocol for best reproducibility of results, enabling running of ISH experiments at high throughput.

  3. MicroRNAs function primarily in the pathogenesis of human anencephaly via the mitogen-activated protein kinase signaling pathway.

    Science.gov (United States)

    Zhang, W D; Yu, X; Fu, X; Huang, S; Jin, S J; Ning, Q; Luo, X P

    2014-02-20

    Anencephaly is one of the most serious forms of neural tube defects (NTDs), a group of congenital central nervous system (CNS) malformations. MicroRNAs (miRNAs) are involved in diverse biological processes via the post-transcriptional regulation of target mRNAs. Although miRNAs play important roles in the development of mammalian CNS, their function in human NTDs remains unknown. Using a miRNA microarray, we identified a unique expression profile in fetal anencephalic brain tissues, characterized by 70 upregulated miRNAs (ratio ≥ 2) and 7 downregulated miRNAs (ratio ≤ 0.5) compared with healthy human samples. Ten miRNAs with altered expression were selected from the microarray findings for validation with real-time quantitative reverse transcription-polymerase chain reaction. We found that in anencephalic tissues, miR-22, miR-23a, miR-34a, miR-103, miR-125a, miR-132, miR-134, miR-138, and miR-185 were significantly upregulated, while miR-149 was significantly downregulated. Furthermore, 459 potential target genes within the validated miRNAs were revealed using combined four target prediction algorithms in the human genome, and subsequently analyzed with the Molecule Annotation System 3.0. A total of 119 target genes were ultimately identified, including those involved in 22 singular annotations (i.e., transcription, signal transduction, and cell cycle) and 55 functional pathways [i.e., mitogen-activated protein kinase (MAPK) signaling pathway, and actin cytoskeleton regulation]. Six target genes (HNRPU, JAG1, FMR1, EGR3, RUNX1T1, and NDEL1) were chosen as candidate genes and associated with congenital birth abnormalities of the brain structure. Our results, therefore, suggest that miRNA maladjustment mainly contributes to the etiopathogenesis of anencephaly via the MAPK signaling pathway.

  4. LIN28: a regulator of tumor-suppressing activity of let-7 microRNA in human breast cancer.

    Science.gov (United States)

    Sakurai, Minako; Miki, Yasuhiro; Masuda, Mariko; Hata, Shuko; Shibahara, Yukiko; Hirakawa, Hisashi; Suzuki, Takashi; Sasano, Hironobu

    2012-09-01

    A tumor-suppressor gene, let-7 microRNA (miRNA) family, is often inactivated in various human malignancies. LIN28 is a RNA-binding protein that has been well characterized for regulation of let-7 maturation in undifferentiated embryonic stem cells at post-transcriptional level. Oncogenic regulation of let-7 miRNAs has been demonstrated in several human malignancies but their correlation with LIN28 has not been studied in breast cancer. We therefore explored a possible mechanism of tumorigenesis in breast carcinoma tissue via an alternation of let-7 miRNA precursor processing by LIN28 in this study. A total of 26 breast cancer surgical pathology specimens were evaluated for LIN28 and LIN28B expression using immunohistochemistry. We then isolated carcinoma cells in 21 cases using laser capture microdissection, and the miRNAs from these samples were profiled using PCR array analysis. LIN28 status was positively correlated with ERα, PR, and Ki-67 status and inversely correlated with HER2 status. These results suggest the possible involvement of LIN28 in regulation of sex steroid dependent cell proliferation of breast carcinoma cells. We further demonstrated that expression of let-7a, let-7c, let-7d (P=0.026) and let-7f (P=0.016) were inversely correlated with those of LIN28. These results also suggest that LIN28 promotes tumorigenic activity by suppressing let-7 miRNA maturation in breast carcinoma cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. MicroRNA-144 Regulates Hepatic ABCA1 and Plasma HDL Following Activation of the Nuclear Receptor FXR

    Science.gov (United States)

    de Aguiar Vallim, Thomas Q.; Tarling, Elizabeth J.; Kim, Tammy; Civelek, Mete; Baldán, Ángel; Esau, Christine; Edwards, Peter A.

    2014-01-01

    Rationale The bile acid receptor Farnesoid-X-Receptor (FXR) regulates many aspects of lipid metabolism by various complex and not fully understood molecular mechanisms. We set out to investigate the molecular mechanisms for FXR-dependent regulation of lipid and lipoprotein metabolism. Objective To identify FXR-regulated microRNAs that were subsequently involved in regulating lipid metabolism. Methods and Results ATP binding cassette transporter A1 (ABCA1) is a major determinant of plasma High Density Lipoprotein (HDL)-cholesterol levels. Here we show that activation of the nuclear receptor FXR in vivo increases hepatic levels of miR-144, which in turn lower hepatic ABCA1 and plasma HDL levels. We identified two complementary sequences to miR-144 in the 3′ untranslated region (UTR) of ABCA1 mRNA that are necessary for miR-144-dependent regulation. Overexpression of miR-144 in vitro decreased both cellular ABCA1 protein and cholesterol efflux to lipid-poor apolipoprotein A-I (ApoA-I) protein, whilst overexpression in vivo reduced hepatic ABCA1 protein and plasma HDL-cholesterol. Conversely, silencing miR-144 in mice increased hepatic ABCA1 protein and HDL-cholesterol. In addition, we utilized tissue-specific FXR deficient mice to show that induction of miR-144 and FXR-dependent hypolipidemia requires hepatic, but not intestinal FXR. Finally, we identified functional FXR response elements (FXREs) upstream of the miR-144 locus, consistent with direct FXR regulation. Conclusion We have identified a novel pathway involving FXR, miR-144 and ABCA1 that together regulate plasma HDL cholesterol. PMID:23519696

  6. Human Activity Detection from RGBD Images

    CERN Document Server

    Sung, Jaeyong; Selman, Bart; Saxena, Ashutosh

    2011-01-01

    Being able to detect and recognize human activities is important for making personal assistant robots useful in performing assistive tasks. The challenge is to develop a system that is low-cost, reliable in unstructured home settings, and also straightforward to use. In this paper, we use a RGBD sensor (Microsoft Kinect) as the input sensor, and present learning algorithms to infer the activities. Our algorithm is based on a hierarchical maximum entropy Markov model (MEMM). It considers a person's activity as composed of a set of sub-activities, and infers the two-layered graph structure using a dynamic programming approach. We test our algorithm on detecting and recognizing twelve different activities performed by four people in different environments, such as a kitchen, a living room, an office, etc., and achieve an average performance of 84.3% when the person was seen before in the training set (and 64.2% when the person was not seen before).

  7. Radiation Detection for Active Interrogation of HEU

    Energy Technology Data Exchange (ETDEWEB)

    Mihalczo, J.T.

    2004-12-09

    This report briefly describes the neutrons and gamma rays emitted by active interrogation of HEU, briefly discusses measurement methods, briefly discusses sources and detectors relevant to detection of shielded HEU in Sealand containers, and lists the measurement possibilities for the various sources. All but one of the measurement methods detect radiation emitted by induced fission in the HEU; the exception utilizes nuclear resonance fluorescence. The brief descriptions are supplemented by references. This report presents some active interrogation possibilities but the status of understanding is not advanced enough to select particular methods. Additional research is needed to evaluate these possibilities.

  8. Highly selective detection of microRNA based on distance-dependent electrochemiluminescence resonance energy transfer between CdTe nanocrystals and Au nanoclusters.

    Science.gov (United States)

    Cheng, Yan; Lei, Jianping; Chen, Yunlong; Ju, Huangxian

    2014-01-15

    A distance-dependent electrochemiluminescence resonance energy transfer (ERET) system based on CdTe nanocrystals and Au nanoclusters (Au NCs) was designed with the aid of ligase for highly selective detection of microRNA (miRNA). First, Au NCs functionalized hairpin DNA was synthesized via Au-S chemistry, and characterized with transmission electron microscopy and dynamic light scattering. The resulting hairpin DNA-Au NCs composite can be bound to the carboxylated CdTe nanocrystals via amide reaction on glass carbon electrode. The strong interaction between CdTe nanocrystals and AuNCs led to the electrochemiluminescence (ECL) quenching of CdTe nanocrystals. In the presence of assistant DNA and miRNA, the ligase can selectively ligate both of them on the strand of the hairpin DNA to form long DNA-RNA heteroduplexes. Thus the ECL signal was recovered due to the blocking of the ERET. As a comparison, when directly opening the hairpin DNA by the target, the ECL emission signal is weak owing to the presence of ERET effect at the short distance. Based on the distance-dependent ERET, a 'signal on' ECL system was utilized for the detection of miRNA with the advantages of 6 orders magnitude linear range and excellent sequence specificity. The total detection processing time of the biosensor was approximately 70 min. By substituting the hairpin DNA with different sequences, this strategy as a new signal transduction approach could be conveniently extended for detection of other short miRNA and DNA.

  9. Abnormal Activity Detection Using Pyroelectric Infrared Sensors

    Directory of Open Access Journals (Sweden)

    Xiaomu Luo

    2016-06-01

    Full Text Available Healthy aging is one of the most important social issues. In this paper, we propose a method for abnormal activity detection without any manual labeling of the training samples. By leveraging the Field of View (FOV modulation, the spatio-temporal characteristic of human activity is encoded into low-dimension data stream generated by the ceiling-mounted Pyroelectric Infrared (PIR sensors. The similarity between normal training samples are measured based on Kullback-Leibler (KL divergence of each pair of them. The natural clustering of normal activities is discovered through a self-tuning spectral clustering algorithm with unsupervised model selection on the eigenvectors of a modified similarity matrix. Hidden Markov Models (HMMs are employed to model each cluster of normal activities and form feature vectors. One-Class Support Vector Machines (OSVMs are used to profile the normal activities and detect abnormal activities. To validate the efficacy of our method, we conducted experiments in real indoor environments. The encouraging results show that our method is able to detect abnormal activities given only the normal training samples, which aims to avoid the laborious and inconsistent data labeling process.

  10. Abnormal Activity Detection Using Pyroelectric Infrared Sensors.

    Science.gov (United States)

    Luo, Xiaomu; Tan, Huoyuan; Guan, Qiuju; Liu, Tong; Zhuo, Hankz Hankui; Shen, Baihua

    2016-06-03

    Healthy aging is one of the most important social issues. In this paper, we propose a method for abnormal activity detection without any manual labeling of the training samples. By leveraging the Field of View (FOV) modulation, the spatio-temporal characteristic of human activity is encoded into low-dimension data stream generated by the ceiling-mounted Pyroelectric Infrared (PIR) sensors. The similarity between normal training samples are measured based on Kullback-Leibler (KL) divergence of each pair of them. The natural clustering of normal activities is discovered through a self-tuning spectral clustering algorithm with unsupervised model selection on the eigenvectors of a modified similarity matrix. Hidden Markov Models (HMMs) are employed to model each cluster of normal activities and form feature vectors. One-Class Support Vector Machines (OSVMs) are used to profile the normal activities and detect abnormal activities. To validate the efficacy of our method, we conducted experiments in real indoor environments. The encouraging results show that our method is able to detect abnormal activities given only the normal training samples, which aims to avoid the laborious and inconsistent data labeling process.

  11. DETECTION OF TELOMERASE ACTIVITY IN BREAST CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    Yang Wentao; Xu Liangzhong; Zhang Taiming; Zhu weiping; Li Xiaomei; Jin Aiping

    1998-01-01

    Objective:To investigate the significance of telomerase activity in breast carcinoma with its respect to axillary lymph node status. Methods: Telomerase activity was analyzed in 88 breast carcinomas and 16benign breast lesions, using polymerase chain reaction (PCR)-based telomeric repeat amplification protocol (TRAP) assay. Results: Telomerase activity was detected in 75 (85%) of 88 breast carcinomas (including three breast carcinomas in situ which were all positive for telomerase activity), whereas in benign breast lesions analyzed only 2(12.5%) of 16 cases were positive for telomerase activity. The difference between the two groups was statistically significant (P<0.001). Besides,telomerase activity was expressed significantly higher in node-positive breast carcinoma (93%) than in nodenegative ones (77%) (P<0.05). Conclusion: Our results suggest that telomerase activation plays an important role during breast carcinoma development. It is possible that this enzyme may serve as an early indication of breast carcinoma.

  12. The interplay of microRNA and neuronal activity in health and disease

    Directory of Open Access Journals (Sweden)

    Stephen Matthew Eacker

    2013-08-01

    Full Text Available  MicroRNA (miRNA are small 19-23nt regulatory RNAs that function by modulating mRNA translation and/or turnover in a sequence-specific fashion. In the nervous system, miRNA regulate the production of numerous proteins involved in synaptic transmission. In turn neuronal activity can regulate the production and turnover of miRNA through a variety of mechanisms. In this way, miRNAs and neuronal activity are in a reciprocal homeostatic relationship that balances neuronal function. MiRNA function is critical in pathological states related to over-excitation such as epilepsy and stroke, suggesting miRNA’s potential as a therapeutic target. We review the current literature relating the interplay of miRNA and neuronal activity and provide future directions for defining miRNA’s role in disease.

  13. Concept of private detective and security activity

    Directory of Open Access Journals (Sweden)

    Alexey Yu. Ogurtsov

    2011-02-01

    Full Text Available Having analyzed the notions contents, the author has singled out three basic criteria, characterizing private detective and security activity under Russian legislation: provision of services for a fee; service provider must have the special permission (license from law enforcement agencies.

  14. Cascading Crater Detection with Active Learning

    Science.gov (United States)

    Miller, W. I.; Stepinski, T. F.; Mu, Y.; Ding, W.

    2011-03-01

    Our strategy for automatic crater detection consists of employing a cascading AdaBoost classifier for identification of craters in images, and using the SOM as an active learning tool to minimize the number of image examples that need to be labeled by an analyst.

  15. An "off-on" electrochemiluminescent biosensor based on DNAzyme-assisted target recycling and rolling circle amplifications for ultrasensitive detection of microRNA.

    Science.gov (United States)

    Zhang, Pu; Wu, Xiaoyan; Yuan, Ruo; Chai, Yaqin

    2015-03-17

    In this study, an off-on switching of a dual amplified electrochemiluminescence (ECL) biosensor based on Pb(2+)-induced DNAzyme-assisted target recycling and rolling circle amplification (RCA) was constructed for microRNA (miRNA) detection. First, the primer probe with assistant probe and miRNA formed Y junction which was cleaved with the addition of Pb(2+) to release miRNA. Subsequently, the released miRNA could initiate the next recycling process, leading to the generation of numerous intermediate DNA sequences (S2). Afterward, bare glassy carbon electrode (GCE) was immersed into HAuCl4 solution to electrodeposit a Au nanoparticle layer (depAu), followed by the assembly of a hairpin probe (HP). Then, dopamine (DA)-modified DNA sequence (S1) was employed to hybridize with HP, which switching off the sensing system. This is the first work that employs DA to quench luminol ECL signal, possessing the biosensor ultralow background signal. Afterward, S2 produced by the target recycling process was loaded onto the prepared electrode to displace S1 and served as an initiator for RCA. With rational design, numerous repeated DNA sequences coupling with hemin to form hemin/G-quadruplex were generated, which could exhibit strongly catalytic toward H2O2, thus amplified the ECL signal and switched the ON state of the sensing system. The liner range for miRNA detection was from 1.0 fM to 100 pM with a low detection limit down to 0.3 fM. Moreover, with the high sensitivity and specificity induced by the dual signal amplification, the proposed miRNA biosensor holds great potential for analysis of other interesting tumor markers.

  16. The synchronous active neutron detection assay system

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, M.M.; Kendall, P.K.

    1994-08-01

    We have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit a 14-MeV neutron generator developed by Schlumberger. The technique, termed synchronous active neutron detection (SAND), follows a method used routinely in other branches of physics to detect very small signals in presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed ``lock-in`` amplifiers. We have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. The Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. Results are preliminary but promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly; it also appears resilient to background neutron interference. The interrogating neutrons appear to be non-thermal and penetrating. Work remains to fully explore relevant physics and optimize instrument design.

  17. Ranging performance of active laser detection

    Science.gov (United States)

    Sun, Huayan; Xiong, Fei; Gu, Suolin

    2006-06-01

    Ranging performance is described for photoelectric equipment reconnaissance using an active laser detection system that is based on the 'cat's eyes' effect of optical windows. Active laser detection systems have an advantage over passive systems because they can measure target velocity and spatial coordinates. However, there are several challenging problems here because of the great distances involved, the low returned power of the uncooperative target, and the optical aberrations induced by the atmosphere. In the design of this system, the principle of detection is based on the 'cat's eyes' effect according to which the optical windows of photoelectric equipments have a strong reflect character towards incident laser beam. With 'cat's eyes' effect, the detection of uncooperative target can be translated into one of a cooperative target, so the ratio of returned laser can be increased. In this paper, the ranging performance presented here takes into account all the various elements of the system, from the laser emission, target, atmospheric propagation to the detector. The characteristics of back-reflected laser and an estimate of the laser Cross Section (LCS) from 'cat's eyes target' are investigated in theory and simulation. The Signal-to-Noise Ratio (SNR) is calculated by combining the probability of detection of the system for given electronic characteristics of the system and for a given probability of false alarms. On the basis of analysis of SNR, minimum detectable signal power, operating distance of the system and factors affecting the ranging performance is analyzed. Results indicate that system has characters of long range, and high sensitivity. It can be used to detect the aerial targets such as reconnaissance drone, navigate missile, reconnaissance satellite etc.

  18. Active fault detection in MIMO systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2014-01-01

    The focus in this paper is on active fault detection (AFD) for MIMO systems with parametric faults. The problem of design of auxiliary inputs with respect to detection of parametric faults is investigated. An analysis of the design of auxiliary inputs is given based on analytic transfer functions...... from auxiliary input to residual outputs. The analysis is based on a singular value decomposition of these transfer functions Based on this analysis, it is possible to design auxiliary input as well as design of the associated residual vector with respect to every single parametric fault in the system...

  19. Controller modification applied for active fault detection

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob; Poulsen, Niels Kjølstad

    2014-01-01

    This paper is focusing on active fault detection (AFD) for parametric faults in closed-loop systems. This auxiliary input applied for the fault detection will also disturb the external output and consequently reduce the performance of the controller. Therefore, only small auxiliary inputs are used...... with the result that the detection and isolation time can be long. In this paper it will be shown, that this problem can be handled by using a modification of the feedback controller. By applying the YJBK-parameterization (after Youla, Jabr, Bongiorno and Kucera) for the controller, it is possible to modify...... the feedback controller with a minor effect on the external output in the fault free case. Further, in the faulty case, the signature of the auxiliary input can be optimized. This is obtained by using a band-pass filter for the YJBK parameter that is only effective in a small frequency range where...

  20. MicroRNA-224 is Readily Detectable in Urine of Individuals with Diabetes Mellitus and is a Potential Indicator of Beta-Cell Demise

    Directory of Open Access Journals (Sweden)

    Siobhán Bacon

    2015-06-01

    Full Text Available MicroRNA (miRNA are a class of non-coding, 19–25 nucleotide RNA critical for network-level regulation of gene expression. miRNA serve as paracrine signaling molecules. Using an unbiased array approach, we previously identified elevated levels of miR-224 and miR-103 to be associated with a monogenic form of diabetes; HNF1A-MODY. miR-224 is a novel miRNA in the field of diabetes. We sought to explore the role of miR-224 as a potential biomarker in diabetes, and whether such diabetes-associated-miRNA can also be detected in the urine of patients. Absolute levels of miR-224 and miR-103 were determined in the urine of n = 144 individuals including carriers of a HNF1A mutation, participants with type 1 diabetes mellitus (T1DM, type 2 diabetes mellitus (T2DM and normal controls. Expression levels were correlated with clinical and biochemical parameters. miR-224 was significantly elevated in the urine of carriers of a HNF1A mutation and participants with T1DM. miR-103 was highly expressed in urine across all diabetes cohorts when compared to controls. For both miR-224 and-103, we found a significant correlation between serum and urine levels (p < 0.01. We demonstrate that miRNA can be readily detected in the urine independent of clinical indices of renal dysfunction. We surmise that the differential expression levels of miR-224 in both HNF1A-MODY mutation carriers and T1DM may be an attempt to compensate for beta-cell demise.

  1. Research Resources: Comparative MicroRNA Profiles in Human Corona Radiata Cells and Cumulus Oophorus Cells Detected by Next-Generation Small RNA Sequencing

    Science.gov (United States)

    Zhang, Yuan-Wei; Liu, Yu-Sheng; Ma, Chun-Hong

    2014-01-01

    During folliculogenesis, cumulus cells surrounding the oocyte differentiate into corona radiata cells (CRCs) and cumulus oophorus cells (COCs), which are involved in gonadal steroidogenesis and the development of germ cells. Several studies suggested that microRNAs (miRNAs) play an important regulatory role at the post-transcriptional level in cumulus cells. However, comparative miRNA profiles and associated processes in human CRCs and COCs have not been reported before. In this study, miRNA profiles were obtained from CRCs and COCs using next generation sequencing in women undergoing controlled ovarian stimulation for IVF. A total of 785 and 799 annotated miRNAs were identified in CRCs and COCs, while high expression levels of six novel miRNAs were detected both in CRCs and in COCs. In addition, different expression patterns in CRCs and COCs were detected in 72 annotated miRNAs. To confirm the miRNA profile in COCs and CRCs, quantitative real-time PCR was used to validate the expression of annotated miRNAs, differentially expressed miRNAs, and novel miRNAs. The miRNAs in the let-7 family were found to be involved in the regulation of a broad range of biological processes in both cumulus cell populations, which was accompanied by a large amount of miRNA editing. Bioinformatics analysis showed that amino acid and energy metabolism were targeted significantly by miRNAs that were differentially expressed between CRCs and COCs. Our work extends the current knowledge of the regulatory role of miRNAs and their targeted pathways in folliculogenesis, and provides novel candidates for molecular biomarkers in the research of female infertility. PMID:25188034

  2. Potential role of blood microRNAs as non-invasive biomarkers for early detection of asymptomatic coronary atherosclerosis in obese children with metabolic syndrome.

    Science.gov (United States)

    Omran, Ahmed; Elimam, Dalia; He, Fang; Peng, Jing; Yin, Fei

    2012-12-01

    The pandemic of the childhood obesity represent a major public health problem all over the world. This leads to detection of many health conditions that were previously considered an adulthood diseases. The rise in the prevalence of the obesity and overweight among children means that the world will face an explosion in the prevalence of the metabolic syndrome (MS), which increases the risk of atherosclerotic disease and death in adulthood. The atherosclerotic process has proved to develop silently for decades during childhood and adolescence before the cardiovascular complications such as myocardial infarction and stroke occur. This means that obese children especially with MS could have heart attacks and suffer from heart disease in an age when they should be very healthy, but most of these data either derived from autopsy findings or studies that confirmed the presence of peripheral atherosclerosis. Very early detection of coronary atherosclerosis in obese children with metabolic syndrome through a non invasive method will be of great importance, allowing for early therapeutic intervention. The discovery of microRNAs (miRNAs) is considered a major scientific breakthrough in the last years; recent studies have suggested a potentially important role of miRNAs in the control of diversity aspects of cardiac functions in health and disease including coronary atherosclerosis. Moreover, circulating miRNAs profiles recently used as a non-invasive biomarker for diagnosis of multiple cardiovascular diseases. The identification of distinct circulating miRNA profiles may impact the development of specific miRNAs as biomarkers in pediatric cardiovascular diseases. Therefore, we postulate that some of these circulating miRNAs may be a potential biomarker for early non-invasive diagnosis of coronary atherosclerosis in very early asymptomatic stage in obese children with metabolic syndrome, giving an excellent chance to fight against the first killer in the adult population in

  3. Research resources: comparative microRNA profiles in human corona radiata cells and cumulus oophorus cells detected by next-generation small RNA sequencing.

    Directory of Open Access Journals (Sweden)

    Xian-Hong Tong

    Full Text Available During folliculogenesis, cumulus cells surrounding the oocyte differentiate into corona radiata cells (CRCs and cumulus oophorus cells (COCs, which are involved in gonadal steroidogenesis and the development of germ cells. Several studies suggested that microRNAs (miRNAs play an important regulatory role at the post-transcriptional level in cumulus cells. However, comparative miRNA profiles and associated processes in human CRCs and COCs have not been reported before. In this study, miRNA profiles were obtained from CRCs and COCs using next generation sequencing in women undergoing controlled ovarian stimulation for IVF. A total of 785 and 799 annotated miRNAs were identified in CRCs and COCs, while high expression levels of six novel miRNAs were detected both in CRCs and in COCs. In addition, different expression patterns in CRCs and COCs were detected in 72 annotated miRNAs. To confirm the miRNA profile in COCs and CRCs, quantitative real-time PCR was used to validate the expression of annotated miRNAs, differentially expressed miRNAs, and novel miRNAs. The miRNAs in the let-7 family were found to be involved in the regulation of a broad range of biological processes in both cumulus cell populations, which was accompanied by a large amount of miRNA editing. Bioinformatics analysis showed that amino acid and energy metabolism were targeted significantly by miRNAs that were differentially expressed between CRCs and COCs. Our work extends the current knowledge of the regulatory role of miRNAs and their targeted pathways in folliculogenesis, and provides novel candidates for molecular biomarkers in the research of female infertility.

  4. A new method for FMRI activation detection

    Science.gov (United States)

    Wei, Jianing; Talavage, Thomas M.; Pollak, Ilya

    2009-02-01

    The objective of fMRI data analysis is to detect the region of the brain that gets activated in response to a specific stimulus presented to the subject. We develop a new algorithm for activation detection in event-related fMRI data. We utilize a forward model for fMRI data acquisition which explicitly incorporates physiological noise, scanner noise and the spatial blurring introduced by the scanner. After slice-by-slice image restoration procedure that independently restores each data slice corresponding to each time index, we estimate the parameters of the hemodynamic response function (HRF) model for each pixel of the restored data. In order to enforce spatial regularity in our estimates, we model the prior distribution of the HRF parameters as a generalized Gaussian Markov random field (GGMRF) model. We develop an algorithm to compute the maximum a posteriori (MAP) estimates of the parameters. We then threshold the amplitude parameters to obtain the final activation map. We illustrate our algorithm by comparing it with the widely used general linear model (GLM) method. In synthetic data experiments, under the same probability of false alarm, the probability of correct detection for our method is up to 15% higher than GLM. In real data experiments, through anatomical analysis and benchmark testing using block paradigm results, we demonstrate that our algorithm produces fewer false alarms than GLM.

  5. Serum Levels of MicroRNA-206 and Novel Mini-STR Assays for Carrier Detection in Duchenne Muscular Dystrophy

    Science.gov (United States)

    Anaya-Segura, Mónica Alejandra; Rangel-Villalobos, Héctor; Martínez-Cortés, Gabriela; Gómez-Díaz, Benjamín; Coral-Vázquez, Ramón Mauricio; Zamora-González, Edgar Oswaldo; García, Silvia; López-Hernández, Luz Berenice

    2016-01-01

    Duchenne Muscular Dystrophy (DMD) is an X-linked neuromuscular disorder in which the detection of female carriers is of the utmost importance for genetic counseling. Haplotyping with polymorphic markers and quantitation of creatine kinase levels (CK) allow tracking of the at-risk haplotype and evidence muscle damage, respectively. Such approaches are useful for carrier detection in cases of unknown mutations. The lack of informative markers and the inaccuracy of CK affect carrier detection. Therefore, herein we designed novel mini-STR (Short Tandem Repeats) assays to amplify 10 loci within the DMD gene and estimated allele frequencies and the polymorphism information content among other parameters in 337 unrelated individuals from three Mexican populations. In addition, we tested the utility of the assays for carrier detection in three families. Moreover, given that serum levels of miR-206 discern between DMD patients and controls with a high area under the curve (AUC), the potential applicability for carrier detection was assessed. The serum levels of miR-206 of non-carriers (n = 24) and carriers (n = 23) were compared by relative quantitation using real-time PCR (p < 0.05), which resulted in an AUC = 0.80 in the Receiver Operating Characteristic curve analysis. In conclusion, miR-206 has potential as a “liquid biopsy” for carrier detection and genetic counseling in DMD. PMID:27529242

  6. Serum Levels of MicroRNA-206 and Novel Mini-STR Assays for Carrier Detection in Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Mónica Alejandra Anaya-Segura

    2016-08-01

    Full Text Available Duchenne Muscular Dystrophy (DMD is an X-linked neuromuscular disorder in which the detection of female carriers is of the utmost importance for genetic counseling. Haplotyping with polymorphic markers and quantitation of creatine kinase levels (CK allow tracking of the at-risk haplotype and evidence muscle damage, respectively. Such approaches are useful for carrier detection in cases of unknown mutations. The lack of informative markers and the inaccuracy of CK affect carrier detection. Therefore, herein we designed novel mini-STR (Short Tandem Repeats assays to amplify 10 loci within the DMD gene and estimated allele frequencies and the polymorphism information content among other parameters in 337 unrelated individuals from three Mexican populations. In addition, we tested the utility of the assays for carrier detection in three families. Moreover, given that serum levels of miR-206 discern between DMD patients and controls with a high area under the curve (AUC, the potential applicability for carrier detection was assessed. The serum levels of miR-206 of non-carriers (n = 24 and carriers (n = 23 were compared by relative quantitation using real-time PCR (p < 0.05, which resulted in an AUC = 0.80 in the Receiver Operating Characteristic curve analysis. In conclusion, miR-206 has potential as a “liquid biopsy” for carrier detection and genetic counseling in DMD.

  7. MicroRNA biogenesis factor DRB1 is a phosphorylation target of mitogen activated protein kinase MPK3 in both rice and Arabidopsis.

    Science.gov (United States)

    Raghuram, Badmi; Sheikh, Arsheed H; Rustagi, Yashika; Sinha, Alok K

    2015-02-01

    MicroRNA (miRNA) biogenesis requires AtDRB1 (double-stranded RNA binding protein)/HYL1 (Hyponastic Leaves1) protein for processing and maturation of miRNA precursors. The AtDRB1/HYL1 protein associates with AtDCL1 (Dicer-Like1) and accurately processes primary-miRNAs (pri-mRNAs) first to precursor-miRNAs (pre-miRNAs) and finally to mature miRNAs. The dephosphorylation of AtDRB1/HYL1 protein is very important for the precise processing of miRNA precursors. The monocot model crop plant Oryza sativa encodes four orthologues of AtDRB1/HYL1 protein, the only one encoded by Arabidopsis thaliana. The present study focuses on the functionality of the O. sativa DRBs as the orthologues of AtDRB1/HYL1 by using RNA binding assays and in planta protein-protein interaction analysis. Further, mitogen-activated protein kinase MPK3 is established as the kinase phosphorylating DRB1 protein in both the model plants, O. sativa and Arabidopsis. MicroRNA microarray analysis in atmpk3 and atmpk6 mutants indicate the importance of AtMPK3 in maintaining the level of miRNAs in the plant.

  8. Graphene oxide-gold nanoparticles hybrids-based surface plasmon resonance for sensitive detection of microRNA.

    Science.gov (United States)

    Wang, Qing; Li, Qing; Yang, Xiaohai; Wang, Kemin; Du, Shasha; Zhang, Hua; Nie, Yajie

    2016-03-15

    In this study, a simple and sensitive surface plasmon resonance (SPR) biosensor for miRNA detection was developed using graphene oxide-gold nanoparticles (GO-AuNPs) hybrids as signal amplification element. Taking advantage of the GO-AuNPs hybrids and their enhanced performance in SPR biosensors, the detection of miRNA was carried out in only two steps. Firstly, the thiolated capture DNA probe with a short complete complementary sequence was immobilized on the Au film surface to recognize the part sequence of target miRNA. Subsequently, the assistant DNA-linked GO-AuNPs hybrids were employed to bind the other section of the target. It was found that the developed SPR biosensor was able to achieve a detection limit as low as 1 fM. Moreover, the method showed excellent ability to discriminate differences among miRNA-200 family members. Notably, human miRNA from cancer cells could also be detected, and the results were in excellent agreement with the ones obtained using qRT-PCR. On the basis of these findings, we believe that this method has great potential for quantitative detection of miRNA in biomedical research and early clinical diagnostics.

  9. Automatic Detection of Adenocarcinoma using Active Contours

    Directory of Open Access Journals (Sweden)

    NeelapalaAnilKumar

    2013-09-01

    Full Text Available CT scan is the one of the image representation for abdomen, where the tumour to be located and specified effectively with clarity, by the medical expert. This role can be hold by using one of the image processing techniques called segmentation. Image segmentation is the technique which isolates the image into different regions to simplify the image and identify the Tumour easily. Image segmentation has been extensively studied by various approaches. This work, focus on the one of the image segmentation technique with a new regularization term that yields an unsupervised segmentation model which identifies different Tumour locations in a given CT image. Active contours form a boundary around a particular part of the image based on an energy function. The energy function may include intensity values of pixels or gradient values. Chen-Vase method of active contour algorithm is adopted for image segmentation. The segmentation is done after properly masking of CT scan image. The cancer prone area is generalized prior to the masking of the image. Effected abdomen cancer can be identified for better analysis of medical experts using image processing MATLAB tools. This paper describes a new method to detect and extract the features in CT scan images, which shows good performance in detection of difficult features. And the developed technique makes use of major image processing methods and fundamentals to detect the cancer with minimum possible human interaction.

  10. Multiplexed microRNA detection using lanthanide-labeled DNA probes and laser ablation inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    de Bang, Thomas Christian; Shah, Pratik; Cho, Seok Keun

    2014-01-01

    . The narrow size range of miRNAs (20-24 nucleotides) combined with the chemical properties of conventional reporter tags has hampered the development of multiplexed miRNA assays. In this study, we have used lanthanide-labeled DNA probes for the detection of miRNAs on membranes using laser ablation inductively...

  11. Integrative approach detected association between genetic variants of microRNA binding sites of TLRs pathway genes and OSCC susceptibility in Chinese Han population.

    Directory of Open Access Journals (Sweden)

    Yun Wang

    Full Text Available Oral squamous cell carcinoma (OSCC is a leading malignancy worldwide; the overall 5-year survival rate is approximately 50%. A variety of proteins in Toll-like receptors (TLRs pathway have been related with the risk of OSCC. However, the influence of genetic variations in TLRs pathway genes on OSCC susceptibility is unclear. Previous studies mainly focused on the coding region of genes, while the UTR region remains unstudied. In the current study, a bioinformatics approach was performed to select candidate single nucleotide polymorphisms (SNPs on microRNA binding sites of TLRs pathway genes related with OSCC. After screening 90 OSCC related TLRs pathway genes, 16 SNPs were selected for genotyping. We found that rs5030486, the polymorphisms on 3' UTR of TRAF6, was significantly associated with OSCC risk. AG genotype of TRAF6 was strongly associated with a decreased risk of OSCC (OR = 0.252; 95% CI = 0.106, 0.598; p = 0.001. In addition, AG genotype was also related with a reduced risk of OSCC progression both in univariable analysis (HR = 0.303, 95% CI = 0.092, 0.995 and multivariable analysis (HR = 0.272, 95% CI = 0.082, 0.903. Furthermore, after detecting the mRNA expression level of TRAF6 in 24 OSCC patients, we found that TRAF6 expression level was significantly different between patients carrying different genotypes at locus rs5030486 (p = 0.013, indicating that rs5030486 of TRAF6 might contribute to OSCC risk by altering TRAF6 expression level. In general, these data indicated that SNP rs5030486 could be a potential bio-marker for OSCC risk and our results might provide new insights into the association of polymorphisms within the non-coding area of genes with cancers.

  12. MicroRNA155 is induced in activated CD4~+ T cells of TNBS-induced colitis in mice

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM:To investigate the expression of microRNA155(miRNA155)in trinitrobenzene sulphonic acid(TNBS)induced colitis and the relationship between miRNA155 and tumor necrosis factor(TNF)expressions.METHODS:In TNBS colitis mice,miRNA155 and TNF mRNA expressions were measured in colons and CD4 + T cells of draining lymph nodes(LNs).CD4 + T cells were cultured in vitro with or without anti-CD3/CD28 antibody,and the expressions of miRNA155 and TNF mRNA in cells and TNF concentration in culture media were examined.RE...

  13. Micro-RNA detection based on fluorescence resonance energy transfer of DNA-carbon quantum dots probes.

    Science.gov (United States)

    Khakbaz, Faeze; Mahani, Mohamad

    2017-04-15

    Carbon quantum dots have been proposed as an effective platform for miRNA detection. Carbon dots were synthesized by citric acid. The synthesized dots were characterized by dynamic light scattering, UV-Vis spectrophotometry, spectrofluorimetry, transmission electron microscopy and FT-IR spectrophotometry. The fluorescence quantum yield of the synthesized dots was determined using quinine sulfate as the standard. The FAM-labeled single stranded DNA, as sensing element, was adsorbed on dots by π-π interaction. The quenching of the dots fluorescence due to fluorescence resonance energy transfer (FRET) was used for mir 9-1 detection. In the presence of the complementary miRNA, the FRET did not take place and the fluorescence was recovered.

  14. Profiling of microRNAs in tumor interstitial fluid of breast tumors – a novel resource to identify biomarkers for prognostic classification and detection of cancer

    OpenAIRE

    Halvorsen, Ann Rita; Helland, Åslaug; Gromov, Pavel; Wielenga, Vera Timmermans; Talman, Maj-Lis Møller; Brünner, Nils; Sandhu, Vandana; Børresen-Dale, Anne-Lise; Gromova, Irina; Haakensen, Vilde D

    2017-01-01

    It has been hypothesized based on accumulated data that a class of small noncoding RNAs, termed microRNAs, are key factors in intercellular communication. Here, microRNAs present in interstitial breast tumor fluids have been analyzed to identify relevant markers for a diagnosis of breast cancer and to elucidate the cross-talk that exists among cells in a tumor microenvironment. Matched tumor interstitial fluid samples (TIF, n = 60), normal interstitial fluid samples (NIF, n = 51), correspondi...

  15. MicroRNAs: Emerging Novel Clinical Biomarkers for Hepatocellular Carcinomas

    Directory of Open Access Journals (Sweden)

    Sumadi Lukman Anwar

    2015-08-01

    Full Text Available The discovery of small non-coding RNAs known as microRNAs has refined our view of the complexity of gene expression regulation. In hepatocellular carcinoma (HCC, the fifth most frequent cancer and the third leading cause of cancer death worldwide, dysregulation of microRNAs has been implicated in all aspects of hepatocarcinogenesis. In addition, alterations of microRNA expression have also been reported in non-cancerous liver diseases including chronic hepatitis and liver cirrhosis. MicroRNAs have been proposed as clinically useful diagnostic biomarkers to differentiate HCC from different liver pathologies and healthy controls. Unique patterns of microRNA expression have also been implicated as biomarkers for prognosis as well as to predict and monitor therapeutic responses in HCC. Since dysregulation has been detected in various specimens including primary liver cancer tissues, serum, plasma, and urine, microRNAs represent novel non-invasive markers for HCC screening and predicting therapeutic responses. However, despite a significant number of studies, a consensus on which microRNA panels, sample types, and methodologies for microRNA expression analysis have to be used has not yet been established. This review focuses on potential values, benefits, and limitations of microRNAs as new clinical markers for diagnosis, prognosis, prediction, and therapeutic monitoring in HCC.

  16. Preliminary investigation of methylation status of microRNA-124a in spinal cords of rat fetuses with congenital spina bifida.

    Science.gov (United States)

    Qin, Pan; Li, Lin; Zhang, Da; Liu, Qiu-Liang; Chen, Xin-Rang; Yang, He-Ying; Fan, Yingzhong; Wang, Jia-Xiang

    2017-01-01

    We investigated the expression of microRNA-124a and its methylation status in the spinal cords of rats with congenital spina bifida versus rats with normal fetuses. Real-time quantitative reverse transcription-polymerase chain reaction was used to compare the expression of microRNA-124a in the spinal cords of 42 rats with all-trans retinoic acid induced congenital spina bifida and 42 rats with normal fetuses. The DNA methylation status in the promoter region of miRNA-124a was detected using methylation specific-PCR. Compared with rats with normal fetuses, expression of microRNA-124a was significantly decreased in rats with congenital spina bifida fetuses. The percentages of spinal cords with DNA hypermethylation in the microRNA-124a promoter were 81% and 14% in the congenital spina bifida and normal control groups, respectively. The difference was statistically significant. Further apoptosis testing revealed increased apoptosis cell numbers in the congenital spina bifida samples. Meanwhile, the phosphorylated mitogen-activated protein kinase protein expression level dramatically decreased in the congenital spina bifida samples. Aberrant DNA methylation was responsible for down-regulation of microRNA-124a by regulating the mitogen-activated protein kinase pathway, suggesting that microRNA-124a is a potential diagnostic biomarker in congenital spina bifida.

  17. Identification of serum microRNAs as novel non-invasive biomarkers for early detection of gastric cancer.

    Directory of Open Access Journals (Sweden)

    Ming-yang Song

    Full Text Available BACKGROUND: To investigate the potential of serum miRNAs as biomarkers for early detection of gastric cancer (GC, a population-based study was conducted in Linqu, a high-risk area of GC in China. METHODOLOGY/PRINCIPAL FINDINGS: All subjects were selected from two large cohort studies. Differential miRNAs were identified in serum pools of GC and control using TaqMan low density array, and validated in individual from 82 pairs of GC and control, and 46 pairs of dysplasia and control by real-time quantitative reverse transcription-polymerase chain reaction. The temporal trends of identified serum miRNA expression were further explored in a retrospective study on 58 GC patients who had at least one pre-GC diagnosis serum sample based on the long-term follow-up population. The miRNA profiling results demonstrated that 16 miRNAs were markedly upregulated in GC patients compared to controls. Further validation identified a panel of three serum miRNAs (miR-221, miR-744, and miR-376c as potential biomarkers for GC detection, and receiver operating characteristic (ROC curve-based risk assessment analysis revealed that this panel could distinguish GCs from controls with 82.4% sensitivity and 58.8% specificity. MiR-221 and miR-376c demonstrated significantly positive correlation with poor differentiation of GC, and miR-221 displayed higher level in dysplasia than in control. Furthermore, the retrospective study revealed an increasing trend of these three miRNA levels during GC development (P for trend<0.05, and this panel could classify serum samples collected up to 5 years ahead of clinical GC diagnosis with 79.3% overall accuracy. CONCLUSIONS/SIGNIFICANCE: These data suggest that serum miR-221, miR-376c and miR-744 have strong potential as novel non-invasive biomarkers for early detection of GC.

  18. Cell-specific detection of microRNA expression during cardiomyogenesis by combined in situ hybridization and immunohistochemistry

    DEFF Research Database (Denmark)

    Schneider, Mikael; Andersen, Ditte Caroline; Silahtaroglu, Asli

    2011-01-01

    . However, although several miRNAs have been identified as differentially regulated during cardiac development and disease, their distinct cell-specific localization remains largely undetermined, likely owing to a lack of adequate methods. We therefore report the development of a markedly improved approach...... combining fluorescence-based miRNA-in situ hybridization (miRNA-ISH) with immunohistochemistry (IHC). We have applied this protocol to differentiating embryoid bodies (EBs) as well as embryonic and adult mouse hearts, to detect miRNAs that were upregulated during EB cardiomyogenesis, as determined by array...... present highlight the importance of determining exact cell-specific localization of miRNAs by sequential miRNA-ISH and IHC in studies aiming at understanding the role of miRNAs and their targets. This approach will hopefully aid in identifying relevant miRNA targets of both the heart and other organs....

  19. Bio-barcode gel assay for microRNA

    Science.gov (United States)

    Lee, Hyojin; Park, Jeong-Eun; Nam, Jwa-Min

    2014-02-01

    MicroRNA has been identified as a potential biomarker because expression level of microRNA is correlated with various cancers. Its detection at low concentrations would be highly beneficial for cancer diagnosis. Here, we develop a new type of a DNA-modified gold nanoparticle-based bio-barcode assay that uses a conventional gel electrophoresis platform and potassium cyanide chemistry and show this assay can detect microRNA at aM levels without enzymatic amplification. It is also shown that single-base-mismatched microRNA can be differentiated from perfectly matched microRNA and the multiplexed detection of various combinations of microRNA sequences is possible with this approach. Finally, differently expressed microRNA levels are selectively detected from cancer cells using the bio-barcode gel assay, and the results are compared with conventional polymerase chain reaction-based results. The method and results shown herein pave the way for practical use of a conventional gel electrophoresis for detecting biomolecules of interest even at aM level without polymerase chain reaction amplification.

  20. Micro-RNA profiling in kidney and bladder cancers.

    Science.gov (United States)

    Gottardo, Fedra; Liu, Chang Gong; Ferracin, Manuela; Calin, George A; Fassan, Matteo; Bassi, Pierfrancesco; Sevignani, Cinzia; Byrne, Dolores; Negrini, Massimo; Pagano, Francesco; Gomella, Leonard G; Croce, Carlo M; Baffa, Raffaele

    2007-01-01

    Micro-RNAs are a group of small noncoding RNAs with modulator activity of gene expression. Recently, micro-RNA genes were found abnormally expressed in several types of cancers. To study the role of the micro-RNAs in human kidney and bladder cancer, we analyzed the expression profile of 245 micro-RNAs in kidney and bladder primary tumors. A total of 27 kidney specimens (20 carcinomas, 4 benign renal tumors, and 3 normal parenchyma) and 27 bladder specimens (25 urothelial carcinomas and 2 normal mucosa) were included in the study. Total RNA was used for hybridization on an oligonucleotide microchip for micro-RNA profiling developed in our laboratories. This microchip contains 368 probes in triplicate, corresponding to 245 human and mouse micro-RNA genes. A set of 4 human micro-RNAs (miR-28, miR-185, miR-27, and let-7f-2) were found significantly up-regulated in renal cell carcinoma (P micro-RNAs miR-223, miR-26b, miR-221, miR-103-1, miR-185, miR-23b, miR-203, miR-17-5p, miR-23a, and miR-205 were significantly up-regulated in bladder cancers (P micro-RNA expression across various stages, whereas with increasing tumor-nodes-metastasis staging in bladder cancer, miR-26b showed a moderate decreasing trend (P = 0.082). Our results show that different micro-RNAs are deregulated in kidney and bladder cancer, suggesting the involvement of these genes in the development and progression of these malignancies. Further studies are needed to clarify the role of micro-RNAs in neoplastic transformation and to test the potential clinical usefulness of micro-RNAs microarrays as diagnostic and prognostic tool.

  1. Decoupled active contour (DAC) for boundary detection.

    Science.gov (United States)

    Mishra, Akshaya Kumar; Fieguth, Paul W; Clausi, David A

    2011-02-01

    The accurate detection of object boundaries via active contours is an ongoing research topic in computer vision. Most active contours converge toward some desired contour by minimizing a sum of internal (prior) and external (image measurement) energy terms. Such an approach is elegant, but suffers from a slow convergence rate and frequently misconverges in the presence of noise or complex contours. To address these limitations, a decoupled active contour (DAC) is developed which applies the two energy terms separately. Essentially, the DAC consists of a measurement update step, employing a Hidden Markov Model (HMM) and Viterbi search, and then a separate prior step, which modifies the updated curve based on the relative strengths of the measurement uncertainty and the nonstationary prior. By separating the measurement and prior steps, the algorithm is less likely to misconverge; furthermore, the use of a Viterbi optimizer allows the method to converge far more rapidly than energy-based iterative solvers. The results clearly demonstrate that the proposed approach is robust to noise, can capture regions of very high curvature, and exhibits limited dependence on contour initialization or parameter settings. Compared to five other published methods and across many image sets, the DAC is found to be faster with better or comparable segmentation accuracy.

  2. MicroRNAs, cancer and ionizing radiation: Where are we?

    Directory of Open Access Journals (Sweden)

    Gustavo Nader Marta

    2015-06-01

    Full Text Available Summary The aim of this study is to describe the biogenesis of microRNA, its relations with carcinogenesis, and the correlation between microRNA and ionizing radiation (IR, focusing on radioresponsiveness. It is known that microRNA biogenesis is well established and involves different enzymatic cleavages, resulting in the production of mature microRNA. MicroRNAs are involved in carcinogenesis. Their interaction is related to the genetic and epigenetic changes associated with activation of proto-oncogenes or inactivation of tumor suppressor genes. Several studies have shown that the levels of expression of some microRNAs vary significantly after irradiation. There are evidences that microRNAs can influence cellular response after IR. In addition, microRNAs are related to modulation of the expression of several post-transcriptional targets in DNA damage response pathways, and to the DNA damage repair regulation mechanism. Future studies can clarify a possible clinical use of microRNAs as a new class of radiosensitive agents.

  3. MicroRNA-181b inhibits thrombin-mediated endothelial activation and arterial thrombosis by targeting caspase recruitment domain family member 10.

    Science.gov (United States)

    Lin, Jibin; He, Shaolin; Sun, Xinghui; Franck, Gregory; Deng, Yihuan; Yang, Dafeng; Haemmig, Stefan; Wara, A K M; Icli, Basak; Li, Dazhu; Feinberg, Mark W

    2016-09-01

    Thrombogenic and inflammatory mediators, such as thrombin, induce NF-κB-mediated endothelial cell (EC) activation and dysfunction, which contribute to pathogenesis of arterial thrombosis. The role of anti-inflammatory microRNA-181b (miR-181b) on thrombosis remains unknown. Our previous study demonstrated that miR-181b inhibits downstream NF-κB signaling in response to TNF-α. Here, we demonstrate that miR-181b uniquely inhibits upstream NF-κB signaling in response to thrombin. Overexpression of miR-181b inhibited thrombin-induced activation of NF-κB signaling, demonstrated by reduction of phospho-IKK-β, -IκB-α, and p65 nuclear translocation in ECs. MiR-181b also reduced expression of NF-κB target genes VCAM-1, intercellular adhesion molecule-1, E-selectin, and tissue factor. Mechanistically, miR-181b targets caspase recruitment domain family member 10 (Card10), an adaptor protein that participates in activation of the IKK complex in response to signals transduced from protease-activated receptor-1. miR-181b reduced expression of Card10 mRNA and protein, but not protease-activated receptor-1. 3'-Untranslated region reporter assays, argonaute-2 microribonucleoprotein immunoprecipitation studies, and Card10 rescue studies revealed that Card10 is a bona fide direct miR-181b target. Small interfering RNA-mediated knockdown of Card10 expression phenocopied effects of miR-181b on NF-κB signaling and targets. Card10 deficiency did not affect TNF-α-induced activation of NF-κB signaling, which suggested stimulus-specific regulation of NF-κB signaling and endothelial responses by miR-181b in ECs. Finally, in response to photochemical injury-induced arterial thrombosis, systemic delivery of miR-181b reduced thrombus formation by 73% in carotid arteries and prolonged time to occlusion by 1.6-fold, effects recapitulated by Card10 small interfering RNA. These data demonstrate that miR-181b and Card10 are important regulators of thrombin-induced EC activation and

  4. MicroRNA-223 and miR-143 are important systemic biomarkers for disease activity in psoriasis

    DEFF Research Database (Denmark)

    Løvendorf, Marianne B; Zibert, John R; Gyldenløve, Mette

    2014-01-01

    BACKGROUND: Psoriasis is a systemic inflammatory skin disease. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that recently have been found in the blood to be relevant as disease biomarkers. OBJECTIVE: We aimed to explore miRNAs potential as blood biomarkers for psoriasis. METHODS......: Using microarray and quantitative real-time PCR we measured the global miRNA expression in whole blood, plasma and peripheral blood mononuclear cells (PBMCs) from patients with psoriasis and healthy controls. RESULTS: We identified several deregulated miRNAs in the blood from patients with psoriasis...... following a significant decrease in psoriasis severity, miR-223 and miR-143 were significantly downregulated in the PBMCs from patients with psoriasis. CONCLUSION: We suggest that changes in the miR-223 and miR-143 expressions in PBMCs from patients with psoriasis may serve as novel biomarkers for disease...

  5. Graphene microelectrode arrays for neural activity detection.

    Science.gov (United States)

    Du, Xiaowei; Wu, Lei; Cheng, Ji; Huang, Shanluo; Cai, Qi; Jin, Qinghui; Zhao, Jianlong

    2015-09-01

    We demonstrate a method to fabricate graphene microelectrode arrays (MEAs) using a simple and inexpensive method to solve the problem of opaque electrode positions in traditional MEAs, while keeping good biocompatibility. To study the interface differences between graphene-electrolyte and gold-electrolyte, graphene and gold electrodes with a large area were fabricated. According to the simulation results of electrochemical impedances, the gold-electrolyte interface can be described as a classical double-layer structure, while the graphene-electrolyte interface can be explained by a modified double-layer theory. Furthermore, using graphene MEAs, we detected the neural activities of neurons dissociated from Wistar rats (embryonic day 18). The signal-to-noise ratio of the detected signal was 10.31 ± 1.2, which is comparable to those of MEAs made with other materials. The long-term stability of the MEAs is demonstrated by comparing differences in Bode diagrams taken before and after cell culturing.

  6. Audio-visual voice activity detection

    Institute of Scientific and Technical Information of China (English)

    LIU Peng; WANG Zuo-ying

    2006-01-01

    In speech signal processing systems,frame-energy based voice activity detection (VAD) method may be interfered with the background noise and non-stationary characteristic of the frame-energy in voice segment.The purpose of this paper is to improve the performance and robustness of VAD by introducing visual information.Meanwhile,data-driven linear transformation is adopted in visual feature extraction,and a general statistical VAD model is designed.Using the general model and a two-stage fusion strategy presented in this paper,a concrete multimodal VAD system is built.Experiments show that a 55.0% relative reduction in frame error rate and a 98.5% relative reduction in sentence-breaking error rate are obtained when using multimodal VAD,compared to frame-energy based audio VAD.The results show that using multimodal method,sentence-breaking errors are almost avoided,and flame-detection performance is clearly improved, which proves the effectiveness of the visual modal in VAD.

  7. An immunological model for detecting bot activities

    Science.gov (United States)

    Karim, Md E.; Phoha, Vir V.; Sultan, Md A.

    2009-05-01

    We develop a hierarchical immunological model to detect bot activities in a computer network. In the proposed model antibody (detector)-antigen (foreign object) reactions are defined using negative selection based approach and negative systems-properties are defined by various temporal as well as non-temporal systems features. Theory of sequential hypothesis testing has been used in the literature for identifying spatial-temporal correlations among malicious remote hosts and among the bots within a botnet. We use it for combining multiple immunocomputing based decisions too. Negative selection based approach defines a self and helps identifying non-selves. We define non-selves with respect to various systems characteristics and then use different combinations of non-selves to design bot detectors. Each detector operates at the client sites of the network under surveillance. A match with any of the detectors suggests presence of a bot. Preliminary results suggest that the proposed model based solutions can improve the identification of bot activities.

  8. Micro-RNA quantification using DNA polymerase and pyrophosphate quantification.

    Science.gov (United States)

    Yu, Hsiang-Ping; Hsiao, Yi-Ling; Pan, Hung-Yin; Huang, Chih-Hung; Hou, Shao-Yi

    2011-12-15

    A rapid quantification method for micro-RNA based on DNA polymerase activity and pyrophosphate quantification has been developed. The tested micro-RNA serves as the primer, unlike the DNA primer in all DNA sequencing methods, and the DNA probe serves as the template for DNA replication. After the DNA synthesis, the pyrophosphate detection and quantification indicate the existence and quantity of the tested miRNA. Five femtomoles of the synthetic RNA could be detected. In 20-100 μg RNA samples purified from SiHa cells, the measurement was done using the proposed assay in which hsa-miR-16 and hsa-miR-21 are 0.34 fmol/μg RNA and 0.71 fmol/μg RNA, respectively. This simple and inexpensive assay takes less than 5 min after total RNA purification and preparation. The quantification is not affected by the pre-miRNA which cannot serve as the primer for the DNA synthesis in this assay. This assay is general for the detection of the target RNA or DNA with a known matched DNA template probe, which could be widely used for detection of small RNA, messenger RNA, RNA viruses, and DNA. Therefore, the method could be widely used in RNA and DNA assays. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. MicroRNAs in rhabdomyosarcoma: pathogenetic implications and translational potentiality

    Directory of Open Access Journals (Sweden)

    Giordano Antonio

    2011-09-01

    Full Text Available Abstract There is growing evidence that interconnections among molecular pathways governing tissue differentiation are nodal points for malignant transformation. In this scenario, microRNAs appear as crucial players. This class of non-coding small regulatory RNA molecules controls developmental programs by modulating gene expression through post-transcriptional silencing of target mRNAs. During myogenesis, muscle-specific and ubiquitously-expressed microRNAs tightly control muscle tissue differentiation. In recent years, microRNAs have emerged as prominent players in cancer as well. Rhabdomyosarcoma is a pediatric skeletal muscle-derived soft-tissue sarcoma that originates from myogenic precursors arrested at different stages of differentiation and that continue to proliferate indefinitely. MicroRNAs involved in muscle cell fate determination appear down-regulated in rhabdomyosarcoma primary tumors and cell lines compared to their normal counterparts. More importantly, they behave as tumor suppressors in this malignancy, as their re-expression is sufficient to restore the differentiation capability of tumor cells and to prevent tumor growth in vivo. In addition, up-regulation of pro-oncogenic microRNAs has also been recently detected in rhabdomyosarcoma. In this review, we provide an overview of current knowledge on microRNAs de-regulation in rhabdomyosarcoma. Additionally, we examine the potential of microRNAs as prognostic and diagnostic markers in this soft-tissue sarcoma, and discuss possible therapeutic applications and challenges of a "microRNA therapy".

  10. MicroRNAs

    DEFF Research Database (Denmark)

    Devaux, Yvan; Stammet, Pascal; Friberg, Hans

    2015-01-01

    cardiac arrest would allow subsequent health care delivery to be tailored to individual patients. However, currently available predictive methods and biomarkers lack sufficient accuracy and therefore cannot be generally recommended in clinical practice. MicroRNAs have recently emerged as potential...... biomarkers of cardiovascular diseases. While the biomarker value of microRNAs for myocardial infarction or heart failure has been extensively studied, less attention has been devoted to their prognostic value after cardiac arrest. This review highlights the recent discoveries suggesting that microRNAs may...

  11. MicroRNAs miR-17 and miR-20a inhibit T cell activation genes and are under-expressed in MS whole blood.

    Directory of Open Access Journals (Sweden)

    Mathew B Cox

    Full Text Available It is well established that Multiple Sclerosis (MS is an immune mediated disease. Little is known about what drives the differential control of the immune system in MS patients compared to unaffected individuals. MicroRNAs (miRNAs are small non-coding nucleic acids that are involved in the control of gene expression. Their potential role in T cell activation and neurodegenerative disease has recently been recognised and they are therefore excellent candidates for further studies in MS. We investigated the transcriptome of currently known miRNAs using miRNA microarray analysis in peripheral blood samples of 59 treatment naïve MS patients and 37 controls. Of these 59, 18 had a primary progressive, 17 a secondary progressive and 24 a relapsing remitting disease course. In all MS subtypes miR-17 and miR-20a were significantly under-expressed in MS, confirmed by RT-PCR. We demonstrate that these miRNAs modulate T cell activation genes in a knock-in and knock-down T cell model. The same T cell activation genes are also up-regulated in MS whole blood mRNA, suggesting these miRNAs or their analogues may provide useful targets for new therapeutic approaches.

  12. Regulation of MicroRNA Biogenesis: A miRiad of mechanisms

    Directory of Open Access Journals (Sweden)

    Davis Brandi N

    2009-08-01

    Full Text Available Abstract microRNAs are small, non-coding RNAs that influence diverse biological functions through the repression of target genes during normal development and pathological responses. Widespread use of microRNA arrays to profile microRNA expression has indicated that the levels of many microRNAs are altered during development and disease. These findings have prompted a great deal of investigation into the mechanism and function of microRNA-mediated repression. However, the mechanisms which govern the regulation of microRNA biogenesis and activity are just beginning to be uncovered. Following transcription, mature microRNA are generated through a series of coordinated processing events mediated by large protein complexes. It is increasingly clear that microRNA biogenesis does not proceed in a 'one-size-fits-all' manner. Rather, individual classes of microRNAs are differentially regulated through the association of regulatory factors with the core microRNA biogenesis machinery. Here, we review the regulation of microRNA biogenesis and activity, with particular focus on mechanisms of post-transcriptional control. Further understanding of the regulation of microRNA biogenesis and activity will undoubtedly provide important insights into normal development as well as pathological conditions such as cardiovascular disease and cancer.

  13. Role of the mTORC1 complex in satellite cell activation by RNA-induced mitochondrial restoration: dual control of cyclin D1 through microRNAs.

    Science.gov (United States)

    Jash, Sukanta; Dhar, Gunjan; Ghosh, Utpalendu; Adhya, Samit

    2014-10-01

    During myogenesis, satellite stem cells (SCs) are induced to proliferate and differentiate to myogenic precursors. The role of energy sensors such as the AMP-activated protein kinase (AMPK) and the mammalian Target of Rapamycin (mTOR) in SC activation is unclear. We previously observed that upregulation of ATP through RNA-mediated mitochondrial restoration (MR) accelerates SC activation following skeletal muscle injury. We show here that during regeneration, the AMPK-CRTC2-CREB and Raptor-mTORC-4EBP1 pathways were rapidly activated. The phosho-CRTC2-CREB complex was essential for myogenesis and activated transcription of the critical cell cycle regulator cyclin D1 (Ccnd1). Knockdown (KD) of either mTORC or its subunit Raptor delayed SC activation without influencing the differentiation program. KD of 4EBP1 had no effect on SC activation but enhanced myofiber size. mTORC1 positively regulated Ccnd1 translation but destabilized Ccnd1 mRNA. These antithetical effects of mTORC1 were mediated by two microRNAs (miRs) targeted to the 3' untranslated region (UTR) of Ccnd1 mRNA: miR-1 was downregulated in mTORC-KD muscle, and depletion of miR-1 resulted in increased levels of mRNA without any effect on Ccnd1 protein. In contrast, miR-26a was upregulated upon mTORC depletion, while anti-miR-26a oligonucleotide specifically stimulated Ccnd1 protein expression. Thus, mTORC may act as a timer of satellite cell proliferation during myogenesis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Detection of plasma microRNA-181b in patients with colon cancer%结肠癌患者血浆中 microRNA-181b水平的检测及意义

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    目的:检测结肠癌患者血浆中 microRNA-181b(miR-181b)的水平变化,并初步探讨其临床意义。方法采用茎环定量逆转录聚合酶链反应(RT-PCR)方法检测42例结肠癌患者及42例健康人血浆中 miR-181b 的水平,并分析 miR-181b 与结肠癌临床病理特征之间的关系。结果与正常对照组(0.38±0.13)相比,结肠癌患者血浆中miR-181b 水平(0.64±0.22)明显升高,二者间差异有统计学意义(P 0.05),而在不同淋巴转移、远处转移及临床分期间的差异具有统计学意义(P 0.05).There were significant differences between plasma miR-181b and lymph node metastasis,distant metastasis and tumor stage (P <0.05).Conclusion The plasma miR-181b in patients with colon cancer increased and miR-181b may contribute to the development of colon cancer.

  15. Spatio-activity based object detection

    CERN Document Server

    Springett, Jarrad

    2008-01-01

    We present the SAMMI lightweight object detection method which has a high level of accuracy and robustness, and which is able to operate in an environment with a large number of cameras. Background modeling is based on DCT coefficients provided by cameras. Foreground detection uses similarity in temporal characteristics of adjacent blocks of pixels, which is a computationally inexpensive way to make use of object coherence. Scene model updating uses the approximated median method for improved performance. Evaluation at pixel level and application level shows that SAMMI object detection performs better and faster than the conventional Mixture of Gaussians method.

  16. Detecting eavesdropping activity in fiber optic networks

    Science.gov (United States)

    MacDonald, Gregory G.

    The secure transmission of data is critical to governments, military organizations, financial institutions, health care providers and other enterprises. The primary method of securing in-transit data is though data encryption. A number of encryption methods exist but the fundamental approach is to assume an eavesdropper has access to the encrypted message but does not have the computing capability to decrypt the message in a timely fashion. Essentially, the strength of security depends on the complexity of the encryption method and the resources available to the eavesdropper. The development of future technologies, most notably quantum computers and quantum computing, is often cited as a direct threat to traditional encryption schemes. It seems reasonable that additional effort should be placed on prohibiting the eavesdropper from coming into possession of the encrypted message in the first place. One strategy for denying possession of the encrypted message is to secure the physical layer of the communications path. Because the majority of transmitted information is over fiber-optic networks, it seems appropriate to consider ways of enhancing the integrity and security of the fiber-based physical layer. The purpose of this research is to investigate the properties of light, as they are manifested in single mode fiber, as a means of insuring the integrity and security of the physical layer of a fiber-optic based communication link. Specifically, the approach focuses on the behavior of polarization in single mode fiber, as it is shown to be especially sensitive to fiber geometry. Fiber geometry is necessarily modified during the placement of optical taps. The problem of detecting activity associated with the placement of an optical tap is herein approached as a supervised machine learning anomaly identification task. The inputs include raw polarization measurements along with additional features derived from various visualizations of the raw data (the inputs are

  17. Modeling the role of peroxisome proliferator-activated receptor γ and microRNA-146 in mucosal immune responses to Clostridium difficile.

    Directory of Open Access Journals (Sweden)

    Monica Viladomiu

    Full Text Available Clostridium difficile is an anaerobic bacterium that has re-emerged as a facultative pathogen and can cause nosocomial diarrhea, colitis or even death. Peroxisome proliferator-activated receptor (PPAR γ has been implicated in the prevention of inflammation in autoimmune and infectious diseases; however, its role in the immunoregulatory mechanisms modulating host responses to C. difficile and its toxins remains largely unknown. To characterize the role of PPARγ in C. difficile-associated disease (CDAD, immunity and gut pathology, we used a mouse model of C. difficile infection in wild-type and T cell-specific PPARγ null mice. The loss of PPARγ in T cells increased disease activity and colonic inflammatory lesions following C. difficile infection. Colonic expression of IL-17 was upregulated and IL-10 downregulated in colons of T cell-specific PPARγ null mice. Also, both the loss of PPARγ in T cells and C. difficile infection favored Th17 responses in spleen and colonic lamina propria of mice with CDAD. MicroRNA (miRNA-sequencing analysis and RT-PCR validation indicated that miR-146b was significantly overexpressed and nuclear receptor co-activator 4 (NCOA4 suppressed in colons of C. difficile-infected mice. We next developed a computational model that predicts the upregulation of miR-146b, downregulation of the PPARγ co-activator NCOA4, and PPARγ, leading to upregulation of IL-17. Oral treatment of C. difficile-infected mice with the PPARγ agonist pioglitazone ameliorated colitis and suppressed pro-inflammatory gene expression. In conclusion, our data indicates that miRNA-146b and PPARγ activation may be implicated in the regulation of Th17 responses and colitis in C. difficile-infected mice.

  18. MicroRNA-21 promotes bone mesenchymal stem cells migration in vitro by activating PI3K/Akt/MMPs pathway.

    Science.gov (United States)

    Lv, Chen; Yang, Shengwu; Chen, Xin; Zhu, Xiongbai; Lin, Wenjun; Wang, Lu; Huang, Zhengxiang; Wang, Mingyue; Tu, Guanjun

    2017-08-24

    MicroRNA-21 (miR-21) contributes to anti-apoptosis in bone marrow mesenchymal stem cells (BMSC), but its role in the migration of BMSCs remains vague. The aim of this study was to determine the possible effect of miR-21 on regulating BMSCs directional migration and the expression of MMP-2/MMP-9 in BMSCs in vitro. BMSCs were successfully infected with miR-21-up lentivirus. Cell migration using Transwell assay indicated that upregulated expression of miR-21 could significantly promote BMSCs migration. Western blot analysis indicated that miR-21 significantly upregulated the expression of MMP-2 and MMP-9, which were related to metastasis-associated genes. GM6001, the specific MMPs inhibitor, abrogated the upregulated expression of MMP-2/MMP-9 and abolished the positive effect of miR-21 on promoting BMSCs migration. Meanwhile, miR-21 significantly enhanced Akt phosphorylation, as measured by Western blot analysis. LY294002, an inhibitor of Akt activation, abrogated the phosphorylation of Akt and abolished the positive effect of miR-21 on promoting BMSCs migration and upregulating MMP-2/MMP-9 expression. These results suggest that miR-21 contributes to BMSCs migration by upregulating MMP-2/MMP-9, potentially via the PI3K/Akt pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Antagonist targeting microRNA-155 protects against lithium-pilocarpine-induced status epilepticus in C57BL/6 mice by activating brain-derived neurotrophic factor

    Directory of Open Access Journals (Sweden)

    Zhengxu eCai

    2016-05-01

    Full Text Available Epilepsy is a severe brain disorder affecting numerous patients. Recently, it is inferred that modulation of microRNA-155 (miR-155 could serve as a promising treatment of mesial temporal lobe epilepsy (MTLE. In the current study, the therapeutic potential of miR-155 antagonist against TLE was evaluated and the underlying mechanism involved in this regulation was explored. TLE model was induced by lithium-pilocarpine method. The effect of miR-155 antagonist on epilepticus symptoms of TLE mice was assessed using Racine classification and electroencephalogram (EEG recordings. The expression of brain-derived neurotrophic factor (BDNF and its association with miR-155 were also assessed with a series of experiments. Our results showed that level of miR-155 was significantly up-regulated after induction of TLE model. Based on the results of EEG and behavior analyses, seizures in mice were alleviated by miR-155 antagonist. Moreover, administration of miR-155 antagonist also significantly increased the level of BDNF. The results of dual luciferase assay and western blotting showed that miR-155 antagonist exerted its action on status epilepticus by directly regulating the activity of BDNF. Taken all the information together, our results demonstrated that miR-155 antagonist might firstly induce the expression of BDNF, which then contributed to the alleviation of epilepsy in the current study.

  20. MicroRNA-29 fine-tunes the expression of key FOXA2-activated lipid metabolism genes and is dysregulated in animal models of insulin resistance and diabetes.

    Science.gov (United States)

    Kurtz, C Lisa; Peck, Bailey C E; Fannin, Emily E; Beysen, Carine; Miao, Ji; Landstreet, Stuart R; Ding, Shengli; Turaga, Vandana; Lund, P Kay; Turner, Scott; Biddinger, Sudha B; Vickers, Kasey C; Sethupathy, Praveen

    2014-09-01

    MicroRNAs (miRNAs) have emerged as biomarkers of metabolic status, etiological factors in complex disease, and promising drug targets. Recent reports suggest that miRNAs are critical regulators of pathways underlying the pathophysiology of type 2 diabetes. In this study, we demonstrate by deep sequencing and real-time quantitative PCR that hepatic levels of Foxa2 mRNA and miR-29 are elevated in a mouse model of diet-induced insulin resistance. We also show that Foxa2 and miR-29 are significantly upregulated in the livers of Zucker diabetic fatty (fa/fa) rats and that the levels of both returned to normal upon treatment with the insulin-sensitizing agent pioglitazone. We present evidence that miR-29 expression in human hepatoma cells is controlled in part by FOXA2, which is known to play a critical role in hepatic energy homeostasis. Moreover, we demonstrate that miR-29 fine-tunes FOXA2-mediated activation of key lipid metabolism genes, including PPARGC1A, HMGCS2, and ABHD5. These results suggest that miR-29 is an important regulatory factor in normal metabolism and may represent a novel therapeutic target in type 2 diabetes and related metabolic syndromes.

  1. MicroRNA 146a (miR-146a is over-expressed during prion disease and modulates the innate immune response and the microglial activation state.

    Directory of Open Access Journals (Sweden)

    Reuben Saba

    Full Text Available Increasing evidence supports the involvement of microRNAs (miRNAs in inflammatory and immune processes in prion neuropathogenesis. MiRNAs are small, non-coding RNA molecules which are emerging as key regulators of numerous cellular processes. We established miR-146a over-expression in prion-infected mouse brain tissues concurrent with the onset of prion deposition and appearance of activated microglia. Expression profiling of a variety of central nervous system derived cell-lines revealed that miR-146a is preferentially expressed in cells of microglial lineage. Prominent up-regulation of miR-146a was evident in the microglial cell lines BV-2 following TLR2 or TLR4 activation and also EOC 13.31 via TLR2 that reached a maximum 24-48 hours post-stimulation, concomitant with the return to basal levels of transcription of induced cytokines. Gain- and loss-of-function studies with miR-146a revealed a substantial deregulation of inflammatory response pathways in response to TLR2 stimulation. Significant transcriptional alterations in response to miR-146a perturbation included downstream mediators of the pro-inflammatory transcription factor, nuclear factor-kappa B (NF-κB and the JAK-STAT signaling pathway. Microarray analysis also predicts a role for miR-146a regulation of morphological changes in microglial activation states as well as phagocytic mediators of the oxidative burst such as CYBA and NOS3. Based on our results, we propose a role for miR-146a as a potent modulator of microglial function by regulating the activation state during prion induced neurodegeneration.

  2. Role of MicroRNA in Aggressive Prostate Cancer

    Science.gov (United States)

    2013-07-01

    prostatic hyperplasia (BPH) specimens (Fig. 8A and B) because BPH is considered benign tissue detected with DAB2IP expression. Furthermore, the...AD_________________ Award Number: W81XWH-11-1-0491 TITLE: Role of microRNA in aggressive prostate ...SUBTITLE Role of microRNA in aggressive prostate cancer 5a. CONTRACT NUMBER W81XWH-11-1-0491 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  3. Expression patterns of microRNAs associated with CML phases and their disease related targets

    Directory of Open Access Journals (Sweden)

    Trněný Marek

    2011-04-01

    Full Text Available Abstract Background MicroRNAs are important regulators of transcription in hematopoiesis. Their expression deregulations were described in association with pathogenesis of some hematological malignancies. This study provides integrated microRNA expression profiling at different phases of chronic myeloid leukemia (CML with the aim to identify microRNAs associated with CML pathogenesis. The functions of in silico filtered targets are in this report annotated and discussed in relation to CML pathogenesis. Results Using microarrays we identified differential expression profiles of 49 miRNAs in CML patients at diagnosis, in hematological relapse, therapy failure, blast crisis and major molecular response. The expression deregulation of miR-150, miR-20a, miR-17, miR-19a, miR-103, miR-144, miR-155, miR-181a, miR-221 and miR-222 in CML was confirmed by real-time quantitative PCR. In silico analyses identified targeted genes of these miRNAs encoding proteins that are involved in cell cycle and growth regulation as well as several key signaling pathways such as of mitogen activated kinase-like protein (MAPK, epidermal growth factor receptor (EGFR, ERBB, transforming growth factor beta (TGFB1 and tumor protein p53 that are all related to CML. Decreased levels of miR-150 were detected in patients at diagnosis, in blast crisis and 67% of hematological relapses and showed significant negative correlation with miR-150 proved target MYB and with BCR-ABL transcript level. Conclusions This study uncovers microRNAs that are potentially involved in CML and the annotated functions of in silico filtered targets of selected miRNAs outline mechanisms whereby microRNAs may be involved in CML pathogenesis.

  4. Active multispectral near-IR detection of small surface targets

    NARCIS (Netherlands)

    Jong, A.N. de; Winkel, J.; Roos, M.

    2001-01-01

    The detection and identification of small surface targets with Electro-Optical sensors is seriously hampered by ground clutter, leading to false alarms and reduced detection probabilities. Active ground illumination can improve the detection performance of EO sensors compared to passive skylight ill

  5. Tamper Detection for Active Surveillance Systems

    DEFF Research Database (Denmark)

    Theodore, Tsesmelis; Christensen, Lars; Fihl, Preben;

    2013-01-01

    If surveillance data are corrupted they are of no use to neither manually post-investigation nor automatic video analysis. It is therefore critical to automatically be able to detect tampering events such as defocusing, occlusion and displacement. In this work we for the first time ad- dress...

  6. Novel microRNA revealed by systematic analysis of the microRNA transcriptome in dentate gyrus granule cells.

    Science.gov (United States)

    Ryan, Brigid; Williams, Joanna M

    2016-09-06

    Post-transcriptional control of gene expression by microRNAs provides an important regulatory system within neurons, allowing co-ordinate and fine-tuned expression of plasticity-related proteins. Indeed, specific microRNAs have been shown to be regulated by synaptic activity in the dentate gyrus, and contribute to the regulated gene expression that underlies the persistence of long-term potentiation (LTP), a model of memory. To fully explore the contribution of microRNAs in synaptic plasticity, it is important to characterize the complete microRNA transcriptome in regions such as the dentate gyrus. Accordingly we used deep sequencing and miRDeep* analysis to search for novel microRNAs expressed in the dentate gyrus granule cell layer. Drawing on combined sequencing and bioinformatics analyses, including hairpin stability and patterns of precursor microRNA processing, we identified nine putative novel microRNAs. We did not find evidence of differential expression of any of these putative microRNAs following LTP at perforant path-granule cell synapses in awake rats (5h post-tetanus; p>0.05). Focusing on novel_miR-1, the most abundant novel miRNA, we showed that this sequence could be amplified from RNA extracted from dentate gyrus granule cells by reverse transcription-quantitative polymerase chain reaction. Further, by computationally predicting mRNA targets of this microRNA, we found that this novel microRNA likely contributes to the regulation of proteins that function at synapses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Downregulation of adenomatous polyposis coli by microRNA-663 promotes odontogenic differentiation through activation of Wnt/beta-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Sung; Park, Min-Gyeong; Lee, Seul Ah; Park, Sun-Young; Kim, Heung-Joong; Yu, Sun-Kyoung; Kim, Chun Sung; Kim, Su-Gwan; Oh, Ji-Su; You, Jae-Seek; Kim, Jin-Soo; Seo, Yo-Seob [Oral Biology Research Institute, School of Dentistry, Chosun University, Gwangju 501-759 (Korea, Republic of); Chun, Hong Sung [Department of Biomedical Science, Chosun University, Gwangju 501-759 (Korea, Republic of); Park, Joo-Cheol [Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, BK 21, Seoul National University, Seoul 110-749 (Korea, Republic of); Kim, Do Kyung, E-mail: kdk@chosun.ac.kr [Oral Biology Research Institute, School of Dentistry, Chosun University, Gwangju 501-759 (Korea, Republic of)

    2014-04-18

    Highlights: • miR-663 is significantly up-regulated during MDPC-23 odontoblastic cell differentiation. • miR-663 accelerates mineralization in MDPC-23 odontoblastic cells without cell proliferation. • miR-663 promotes odontoblastic cell differentiation by targeting APC and activating Wnt/β-catenin signaling in MDPC-23 cells. - Abstract: MicroRNAs (miRNAs) regulate cell differentiation by inhibiting mRNA translation or by inducing its degradation. However, the role of miRNAs in odontogenic differentiation is largely unknown. In this present study, we observed that the expression of miR-663 increased significantly during differentiation of MDPC-23 cells to odontoblasts. Furthermore, up-regulation of miR-663 expression promoted odontogenic differentiation and accelerated mineralization without proliferation in MDPC-23 cells. In addition, target gene prediction for miR-663 revealed that the mRNA of the adenomatous polyposis coli (APC) gene, which is associated with the Wnt/β-catenin signaling pathway, has a miR-663 binding site in its 3′-untranslated region (3′UTR). Furthermore, APC expressional was suppressed significantly by miR-663, and this down-regulation of APC expression triggered activation of Wnt/β-catenin signaling through accumulation of β-catenin in the nucleus. Taken together, these findings suggest that miR-663 promotes differentiation of MDPC-23 cells to odontoblasts by targeting APC-mediated activation of Wnt/β-catenin signaling. Therefore, miR-663 can be considered a critical regulator of odontoblast differentiation and can be utilized for developing miRNA-based therapeutic agents.

  8. Active Fault Detection Based on a Statistical Test

    DEFF Research Database (Denmark)

    Sekunda, André Krabdrup; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2016-01-01

    In this paper active fault detection of closed loop systems using dual Youla-Jabr-Bongiorno-Kucera(YJBK) parameters is presented. Until now all detector design for active fault detection using the dual YJBK parameters has been based on CUSUM detectors. Here a method for design of a matched filter...

  9. Molecular detection by active Fano-sensor

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Yifei; Guo, Zhongyi [School of Computer and Information, Hefei University of Technology, Hefei, 230009 (China)

    2017-04-15

    The optical properties and sensing performances of the molecular sensors based on plasmonic Fano-resonance (PFR) nanostructures have been numerically investigated in detail. The on-resonance sensor, in which the Fano-resonance position is overlapping with the absorption-band of the detected molecules perfectly, reveals a powerful ability to detect the molecules with a low concentration or thin thickness. By the bias-modulation of a single-layer graphene, the Fano-resonance position of the nanostructures can be tuned effectively. On being modulated properly, the PFR sensor shows an ultrahigh performance because of the unprecedentedly high overlap of the Fano-resonance position with the absorption-band of molecules, which is enabling superior signal strength in the molecular detections based on their vibrational fingerprints. Our proposed strategy may enable the development of dynamic sensors and open exciting prospects for bio-sensing. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Breast cancer epigenetics: from DNA methylation to microRNAs.

    Science.gov (United States)

    Veeck, Jürgen; Esteller, Manel

    2010-03-01

    Both appropriate DNA methylation and histone modifications play a crucial role in the maintenance of normal cell function and cellular identity. In cancerous cells these "epigenetic belts" become massively perturbed, leading to significant changes in expression profiles which confer advantage to the development of a malignant phenotype. DNA (cytosine-5)-methyltransferase 1 (Dnmt1), Dnmt3a and Dnmt3b are the enzymes responsible for setting up and maintaining DNA methylation patterns in eukaryotic cells. Intriguingly, DNMTs were found to be overexpressed in cancerous cells, which is believed to partly explain the hypermethylation phenomenon commonly observed in tumors. However, several lines of evidence indicate that further layers of gene regulation are critical coordinators of DNMT expression, catalytic activity and target specificity. Splice variants of DNMT transcripts have been detected which seem to modulate methyltransferase activity. Also, the DNMT mRNA 3'UTR as well as the coding sequence harbors multiple binding sites for trans-acting factors guiding post-transcriptional regulation and transcript stabilization. Moreover, microRNAs targeting DNMT transcripts have recently been discovered in normal cells, yet expression of these microRNAs was found to be diminished in breast cancer tissues. In this review we summarize the current knowledge on mechanisms which potentially lead to the establishment of a DNA hypermethylome in cancer cells.

  11. microRNAs as neuroregulators, biomarkers and therapeutic agents in neurodegenerative diseases.

    Science.gov (United States)

    Basak, Indranil; Patil, Ketan S; Alves, Guido; Larsen, Jan Petter; Møller, Simon Geir

    2016-02-01

    The last decade has experienced the emergence of microRNAs as a key molecular tool for the diagnosis and prognosis of human diseases. Although the focus has mostly been on cancer, neurodegenerative diseases present an exciting, yet less explored, platform for microRNA research. Several studies have highlighted the significance of microRNAs in neurogenesis and neurodegeneration, and pre-clinical studies have shown the potential of microRNAs as biomarkers. Despite this, no bona fide microRNAs have been identified as true diagnostic or prognostic biomarkers for neurodegenerative disease. This is mainly due to the lack of precisely defined patient cohorts and the variability within and between individual cohorts. However, the discovery that microRNAs exist as stable molecules at detectable levels in body fluids has opened up new avenues for microRNAs as potential biomarker candidates. Furthermore, technological developments in microRNA biology have contributed to the possible design of microRNA-mediated disease intervention strategies. The combination of these advancements, with the availability of well-defined longitudinal patient cohort, promises to not only assist in developing invaluable diagnostic tools for clinicians, but also to increase our overall understanding of the underlying heterogeneity of neurodegenerative diseases. In this review, we present a comprehensive overview of the existing knowledge of microRNAs in neurodegeneration and provide a perspective of the applicability of microRNAs as a basis for future therapeutic intervention strategies.

  12. MicroRNA-125b Prevents Cardiac Dysfunction in Polymicrobial Sepsis by Targeting TRAF6-Mediated Nuclear Factor κB Activation and p53-Mediated Apoptotic Signaling.

    Science.gov (United States)

    Ma, He; Wang, Xiaohui; Ha, Tuanzhu; Gao, Ming; Liu, Li; Wang, Ruitao; Yu, Kaijiang; Kalbfleisch, John H; Kao, Race L; Williams, David L; Li, Chuanfu

    2016-12-01

     This study examined the effect of microRNA-125b (miR-125b) on sepsis-induced cardiac dysfunction.  Mouse hearts were transfected with lentivirus expressing miR-125b (LmiR-125b) 7 days before cecal ligation and puncture (CLP)-induced sepsis. Cardiac function was examined by echocardiography before and 6 hours after CLP (n = 6/group). Survival was monitored following CLP-induced sepsis (n = 12/group).  LmiR-125b transfection significantly attenuated cardiac dysfunction due to CLP-induced sepsis. Fractional shortening and ejection fraction values were significantly (P sepsis. Transfection of LmiR-125b into the heart significantly suppressed the expression of ICAM-1 and VCAM-1, decreased the accumulation of macrophages and neutrophils in the myocardium, and decreased serum levels of tumor necrosis factor α and interleukin 1β by targeting tumor necrosis factor receptor-associated factor 6 (TRAF6)-mediated nuclear factor κB (NF-κB) activation. In addition, sepsis-induced myocardial apoptosis was markedly attenuated by LmiR-125b transfection through suppression of p53, Bax, and Bak1 expression. In vitro transfection of endothelial cells with miR-125b mimics attenuate LPS-induced ICAM-1 and VCAM-1 expression by suppressing TRAF6 and NF-κB activation.  Increased myocardial miR-125b expression attenuates sepsis-induced cardiac dysfunction and improves survival. miR-125b may be a target for septic cardiomyopathy. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  13. An integrated dual functional recognition/amplification bio-label for the one-step impedimetric detection of Micro-RNA-21.

    Science.gov (United States)

    Azzouzi, Sawsen; Mak, Wing Cheung; Kor, Kamalodin; Turner, Anthony P F; Ali, Mounir Ben; Beni, Valerio

    2017-06-15

    Alteration in expression of miRNAs has been correlated with different cancer types, tumour stage and response to treatments. In this context, a structurally responsive oligonucleotide-based electrochemical impedimetric biosensor has been developed for the simple and sensitive detection of miRNA-21. A highly specific biotinylated DNA/LNA molecular beacon (MB) probe was conjugated with gold nanoparticles (AuNPs) to create an integrated, dual function bio-label (biotin-MB-AuNPs) for both biorecognition and signal generation. In the presence of target miRNA-21, hybridisation takes place resulting in the "activation" of the biotin-MB; this event makes the biotin group, which was previously "protected" by the steric hindrance of the MB stem-loop structure, accessible. The activated biotin-MB-AuNPs/miRNA complexes become available for capture, via supramolecular interaction, onto a nentravidin-modified electrode for electrochemical transduction. The binding event results in a decrease of the charge transfer resistance at the working electrode/electrolyte interface. The biosensor responded linearly in the range 1-1000 pM of miRNA-21, with a limit of detection of 0.3 pM, good reproducibility (Relative Standard deviation (RSD) =3.3%) and high selectivity over other miRNAs (i.e. miRNA-221 and miRNA-205) sequences. Detection of miRNA-21 in spiked serum samples at clinically relevant levels (low pM range) was also demonstrated, thus illustrating the potential of the biosensor for point-of-care clinical applications. The proposed biosensor design, based on the combination of a neutravidin transducing surface and the dual-function biotin-MB-AuNPs bio-label, provides a simple and robust approach for detection of short-length nucleic acid targets, such as miRNAs.

  14. MicroRNAs MiR-17, MiR-20a, and MiR-106b act in concert to modulate E2F activity on cell cycle arrest during neuronal lineage differentiation of USSC.

    Directory of Open Access Journals (Sweden)

    Hans-Ingo Trompeter

    Full Text Available BACKGROUND: MicroRNAs are short (∼22 nt non-coding regulatory RNAs that control gene expression at the post-transcriptional level. Here the functional impact of microRNAs on cell cycle arrest during neuronal lineage differentiation of unrestricted somatic stem cells from human cord blood (USSC was analyzed. METHODOLOGY/PRINCIPAL FINDINGS: Expression profiling revealed downregulation of microRNAs miR-17, -20a, and -106b in USSC differentiated into neuronal lineage but not in USSC differentiated into osteogenic lineage. Transfection experiments followed by Ki67 immunostainings demonstrated that each of these microRNAs was able to promote proliferation of native USSC and to prevent in part cell cycle arrest during neuronal lineage differentiation of USSC. Bioinformatic target gene predictions followed by experimental target gene validations revealed that miR-17, -20a, and -106b act in a common manner by downregulating an overlapping set of target genes mostly involved in regulation and execution of G(1/S transition. Pro-proliferative target genes cyclinD1 (CCND1 and E2F1 as well as anti-proliferative targets CDKN1A (p21, PTEN, RB1, RBL1 (p107, RBL2 (p130 were shown as common targets for miR-17, -20a, and -106b. Furthermore, these microRNAs also downregulate WEE1 which is involved in G(2/M transition. Most strikingly, miR-17, -20a, and -106b were found to promote cell proliferation by increasing the intracellular activity of E2F transcription factors, despite the fact that miR-17, -20a, and -106b directly target the transcripts that encode for this protein family. CONCLUSIONS/SIGNIFICANCE: Mir-17, -20a, and -106b downregulate a common set of pro- and anti-proliferative target genes to impact cell cycle progression of USSC and increase intracellular activity of E2F transcription factors to govern G(1/S transition.

  15. Video shot boundary detection using motion activity descriptor

    CERN Document Server

    Amel, Abdelati Malek; Abdellatif, Mtibaa

    2010-01-01

    This paper focus on the study of the motion activity descriptor for shot boundary detection in video sequences. We interest in the validation of this descriptor in the aim of its real time implementation with reasonable high performances in shot boundary detection. The motion activity information is extracted in uncompressed domain based on adaptive rood pattern search (ARPS) algorithm. In this context, the motion activity descriptor was applied for different video sequence.

  16. Expression of microRNAs in fecal of patients for pancreatic cancer screening and detection%粪便microRNAs检测用于胰腺癌筛查诊断的价值评价

    Institute of Scientific and Technical Information of China (English)

    任艳; 高军; 王小玮; 刘建强; 顾俊骏; 黄浩杰; 金晶; 龚燕芳; 李兆申

    2011-01-01

    Objective To detect the microRNAs in fecal with patients of pancreatic cancer, and evaluate its diagnostic value. Methods Stool samples were collected from three group persons including 29 pancreatic cancer, 22 chronic pancreatitis and 13 normal controls. The total fecal microRNAs were extracted.The quantity of miR-16, miR-21, miR-155, miR-181a, miR-181b, miR-196a, and miR-210 were detected by using real-time PCR, and miR-16 was used as reference gene. ROC AUC was used to evaluate the diagnostic value for pancreatic cancer. Results MicroRNAs were efficiently obtained from stools, and independent experiments showed high reproducibility for microRNAs extraction and detection. The expression of miR-181b,miR-196a, miR-210 in fecal was 2.22 ±0.64,2.78 ±0.14, 5.55 ±0.38 in pancreatic cancer; 1.42 ±0.39,3.88 ± 0.85,5.39 ± 0.69 in chronic pancreatitis; 0.32 ± 0.40, 1.14 ± 0.98,4.23 ± 0. 99 in normal controls;the three microRNA expressions in pancreatic cancer were group and CP group significantly higher than those in normal controls ( P < 0.05 ). But there was no significant difference between pancreatic cancer group and chronic pancreatitis group. AUC of pancreatic cancer / normal controls miR 18lb was 0.745(95% CI 0. 597-0.894), the sentivity, specificity for pancreatic cancer was 84.6% and 51.7%. AUC of miR-210 was 0. 772(95% CI0.629-0.914), the sentivity, specificity for pancreatic cancer was 84.6% and 65.5%, and the difference was statistically significant (P <0.05). miR-196a was no significant for the diagnosis of pancreatic cancer, but the expression of miR-196a was correlated with the tumor size (r = 0.516, P = 0.041 ).Conclusions The extraction and detection of the fecal microRNAs were non-invasive and reproducible. The expression of miR-181b and miR-210 was increased in stool of patients with pancreatic cancer, and may be potential biomarker for pancreatic cancer.%目的 检测胰腺癌患者粪便microRNAs,评价其诊断价值.方法 收集29

  17. Significant changes in circulating microRNA by dietary supplementation of selenium and coenzyme Q10 in healthy elderly males. A subgroup analysis of a prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens.

    Science.gov (United States)

    Alehagen, Urban; Johansson, Peter; Aaseth, Jan; Alexander, Jan; Wågsäter, Dick

    2017-01-01

    Selenium and coenzyme Q10 is essential for important cellular functions. A low selenium intake is reported from many European countries, and the endogenous coenzyme Q10 production is decreasing in the body with increasing age. Supplementation with selenium and coenzyme Q10 in elderly have shown reduced cardiovascular mortality and reduced levels of markers of inflammation. However, microRNA analyses could give important information on the mechanisms behind the clinical effects of supplementation. Out of the 443 healthy elderly participants that were given supplementation with 200 μg Se/day as organic selenium yeast tablets, and 200 mg/day of coenzyme Q10 capsules, or placebo for 4 years, 25 participants from each group were randomized and evaluated regarding levels of microRNA. Isolation of RNA from plasma samples and quantitative PCR analysis were performed. Volcano- and principal component analyses (PCA)-plots were used to illustrate the differences in microRNA expression between the intervention, and the placebo groups. Serum selenium concentrations were measured before intervention. On average 145 different microRNAs out of 172 were detected per sample. In the PCA plots two clusters could be identified indicating significant difference in microRNA expression between the two groups. The pre-treatment expression of the microRNAs did not differ between active treatment and the placebo groups. When comparing the post-treatment microRNAs in the active and the placebo groups, 70 microRNAs exhibited significant differences in expression, also after adjustment for multiple measurements. For the 20 microRNAs with the greatest difference in expression the difference was up to more than 4 fold and with a P-value that were less than 4.4e-8. Significant differences were found in expression of more than 100 different microRNAs with up to 4 fold differences as a result of the intervention of selenium and coenzyme Q10 combined. The changes in microRNA could be a part of

  18. The Biology of Circulating MicroRNAs in Cardiovascular Disease

    Science.gov (United States)

    Min, Pil-Ki; Chan, Stephen Y.

    2015-01-01

    Since their first description in mammalian cells, more than 2,500 microRNA molecules have been predicted or verified within human cells. Recently, extracellular microRNAs have been described, protected from degradation by specialized packaging in extracellular vesicles or RNA-binding proteins. Such microRNAs, circulating in the bloodstream and extracellular space, have been proposed as attractive candidates as both diagnostic and prognostic biomarkers in various diseases, including a spectrum of cardiovascular conditions. Moreover, consistent with our evolving appreciation of the role of exosomes and microvesicles in intercellular communication, it has been proposed that delivery of active microRNAs to recipient tissues may serve as a primary mode of intercellular communication. Indeed, the transfer of functional microRNAs has been demonstrated in in vitro models and has been reported in a few in vivo contexts. In this review, we will discuss the recent data of circulating microRNAs in cardiovascular disease with an emphasis on their potential roles as diagnostic and prognostic biomarkers as well as the challenges of proving their potential clinical utility. In addition, we will discuss the evidence regarding the role of circulating microRNAs in intercellular communication as well as known molecular factors affecting their packaging, transfer, and uptake in recipient cardiovascular cell types. PMID:26046787

  19. Micro-RNAs

    DEFF Research Database (Denmark)

    Taipaleenmäki, H.; Hokland, L. B.; Chen, Li

    2012-01-01

    Osteoblast differentiation and bone formation (osteogenesis) are regulated by transcriptional and post-transcriptional mechanisms. Recently, a novel class of regulatory factors termed microRNAs has been identified as playing an important role in the regulation of many aspects of osteoblast biology...... including proliferation, differentiation, metabolism and apoptosis. Also, preliminary data from animal disease models suggest that targeting miRNAs in bone can be a novel approach to increase bone mass. This review highlights the current knowledge of microRNA biology and their role in bone formation...

  20. microRNA

    OpenAIRE

    Xin, Xiong; Ning, Zhou

    2007-01-01

    MicroRNAs (miRNAs) are short, 20-22 nucleotide RNA molecules that function as negative regulators of gene expression in eukaryotic organisms. RNA mediated gene silencing pathways have essential roles in development, cell differentiation, proliferation, and cell death. It is becoming clear that microRNAs can play a very important role in regulation of gene expression. Understanding the basic mechanism of miRNA biogenesis is one of the central aims of molecular biologists in the future. MicroRN...

  1. Lower arm electromyography (EMG) activity detection using local binary patterns.

    Science.gov (United States)

    McCool, Paul; Chatlani, Navin; Petropoulakis, Lykourgos; Soraghan, John J; Menon, Radhika; Lakany, Heba

    2014-09-01

    This paper presents a new electromyography activity detection technique in which 1-D local binary pattern histograms are used to distinguish between periods of activity and inactivity in myoelectric signals. The algorithm is tested on forearm surface myoelectric signals occurring due to hand gestures. The novel features of the presented method are that: 1) activity detection is performed across multiple channels using few parameters and without the need for majority vote mechanisms, 2) there are no per-channel thresholds to be tuned, which makes the process of activity detection easier and simpler to implement and less prone to errors, 3) it is not necessary to measure the properties of the signal during a quiescent period before using the algorithm. The algorithm is compared to other offline single- and double-threshold activity detection methods and, for the data sets tested, it is shown to have a better overall performance with greater tolerance to the noise in the real data set used.

  2. Optimal Placement of Accelerometers for the Detection of Everyday Activities

    Directory of Open Access Journals (Sweden)

    Dewar Finlay

    2013-07-01

    Full Text Available This article describes an investigation to determine the optimal placement of accelerometers for the purpose of detecting a range of everyday activities. The paper investigates the effect of combining data from accelerometers placed at various bodily locations on the accuracy of activity detection. Eight healthy males participated within the study. Data were collected from six wireless tri-axial accelerometers placed at the chest, wrist, lower back, hip, thigh and foot. Activities included walking, running on a motorized treadmill, sitting, lying, standing and walking up and down stairs. The Support Vector Machine provided the most accurate detection of activities of all the machine learning algorithms investigated. Although data from all locations provided similar levels of accuracy, the hip was the best single location to record data for activity detection using a Support Vector Machine, providing small but significantly better accuracy than the other investigated locations. Increasing the number of sensing locations from one to two or more statistically increased the accuracy of classification. There was no significant difference in accuracy when using two or more sensors. It was noted, however, that the difference in activity detection using single or multiple accelerometers may be more pronounced when trying to detect finer grain activities. Future work shall therefore investigate the effects of accelerometer placement on a larger range of these activities.

  3. The simulation study on optical target laser active detection performance

    Science.gov (United States)

    Li, Ying-chun; Hou, Zhao-fei; Fan, Youchen

    2014-12-01

    According to the working principle of laser active detection system, the paper establishes the optical target laser active detection simulation system, carry out the simulation study on the detection process and detection performance of the system. For instance, the performance model such as the laser emitting, the laser propagation in the atmosphere, the reflection of optical target, the receiver detection system, the signal processing and recognition. We focus on the analysis and modeling the relationship between the laser emitting angle and defocus amount and "cat eye" effect echo laser in the reflection of optical target. Further, in the paper some performance index such as operating range, SNR and the probability of the system have been simulated. The parameters including laser emitting parameters, the reflection of the optical target and the laser propagation in the atmosphere which make a great influence on the performance of the optical target laser active detection system. Finally, using the object-oriented software design methods, the laser active detection system with the opening type, complete function and operating platform, realizes the process simulation that the detection system detect and recognize the optical target, complete the performance simulation of each subsystem, and generate the data report and the graph. It can make the laser active detection system performance models more intuitive because of the visible simulation process. The simulation data obtained from the system provide a reference to adjust the structure of the system parameters. And it provides theoretical and technical support for the top level design of the optical target laser active detection system and performance index optimization.

  4. Suppressive effect of microRNA-29b on hepatic stellate cell activation and its crosstalk with TGF-β1/Smad3.

    Science.gov (United States)

    Liang, Chunli; Bu, Shurui; Fan, Xiaoming

    2016-07-01

    The microRNA (miR)-29 family is closely associated with fibrotic processes by virtue of its low expression in many tissues during organ fibrosis. The present study investigated whether miR-29b overexpression suppressed hepatic stellate cell (HSC) activation and its interactions with transforming growth factor (TGF)-β1/mothers against decapentaplegic homolog 3 (Smad3), a classical signal transduction pathway contributing to the activation of HSCs. The results showed that transfection of LX-2 (human HSC) cells with miR-29b mimic or pSUPER-Smad3 silencing (si)RNA resulted in significantly increased expression of miR-29b and decreased expression of Smad3. miR-29b overexpression inhibited proliferation of LX-2 cells 24 h after transfection. Both miR-29b overexpression and Smad3 silencing antagonized the effects of TGF-β1 on the expression of α-smooth muscle actin (α-SMA) and collagen type I (col-1). Furthermore, infection with miR-29b mimics suppressed Smad3 and TGF-β1 expression, suggesting that miR-29b inhibited LX-2 activation mediated by both Smad3 and TGF-β1. Nevertheless, primary miR-29a/b1, miR-29b2/c and mature miR-29b were downregulated by TGF-β1 and stimulated by Smad3 silencing, suggesting that TGF-β1/Smad3 signalling pathway regulate not just mature miR-29b but also its transcription. In summary, our results show overwhelming evidence corroborating the suppressive effect of miR-29b on TGF-β1-induced LX-2 cell activation. The results also revealed the existence of crosstalk between miR-29b and TGF-β1/Smad3 during LX-2 activation, suggesting a feedback loop between miR-29b and TGF-β1/Smad3 signalling that promotes liver fibrosis. Copyright © 2016 The Authors. Cell Biochemistry and Function published by John Wiley & Sons, Ltd.

  5. Profiling hepatic microRNAs in zebrafish: fluoxetine exposure mimics a fasting response that targets AMP-activated protein kinase (AMPK.

    Directory of Open Access Journals (Sweden)

    Paul M Craig

    Full Text Available This study examined the similarities in microRNA profiles between fasted and fluoxetine (FLX exposed zebrafish and downstream target transcripts and biological pathways. Using a custom designed microarray targeting 270 zebrafish miRNAs, we identified 9 differentially expressed miRNAs targeting transcripts in biological pathways associated with anabolic metabolism, such as adipogenesis, cholesterol biosynthesis, triacylglycerol synthesis, and insulin signaling. Exposure of female zebrafish to 540 ng/L FLX, an environmentally relevant concentration and a known metabolic repressor, increased specific miRNAs indicating greater inhibition of these pathways in spite of continued feeding. Further examination revealed two specific miRNAs, dre-let-7d and dre-miR-140-5p, were predicted in silico to bind to a primary regulator of metabolism, adenosine monophosphate-activated protein kinase (AMPK, and more specifically the two isoforms of the catalytic subunit, AMPKα1 and α2, respectively. Real-time analysis of the relative transcript abundance of the α1 and α2 mRNAs indicated a significant inverse relationship between specific miRNA and target transcript. This suggests that AMPK-related pathways may be compromised during FLX exposure as a result of increased miRNA abundance. The mechanism by which FLX regulates miRNA abundance is unknown but may be direct at the liver. The serotonin transporter, slc6a4, is the target of FLX and other selective serotonin reuptake inhibitors (SSRI and it was found to be expressed in the liver, although treatment did not alter expression of this transporter. Exposure to FLX disrupts key hepatic metabolic pathways, which may be indicative of reduced overall fitness and these effects may be linked to specific miRNA abundance. This has important implications for the heath of fish because concentrations of SSRIs in aquatic ecosystems are continually increasing.

  6. MicroRNA-144 regulates hepatic ATP binding cassette transporter A1 and plasma high-density lipoprotein after activation of the nuclear receptor farnesoid X receptor.

    Science.gov (United States)

    de Aguiar Vallim, Thomas Q; Tarling, Elizabeth J; Kim, Tammy; Civelek, Mete; Baldán, Ángel; Esau, Christine; Edwards, Peter A

    2013-06-07

    The bile acid receptor farnesoid X receptor (FXR) regulates many aspects of lipid metabolism by variouscomplex and incompletely understood molecular mechanisms. We set out to investigate the molecular mechanisms for FXR-dependent regulation of lipid and lipoprotein metabolism. To identify FXR-regulated microRNAs that were subsequently involved in regulating lipid metabolism. ATP binding cassette transporter A1 (ABCA1) is a major determinant of plasma high-density lipoprotein (HDL)-cholesterol levels. Here, we show that activation of the nuclear receptor FXR in vivo increases hepatic levels of miR-144, which in turn lowers hepatic ABCA1 and plasma HDL levels. We identified 2 complementary sequences to miR-144 in the 3' untranslated region of ABCA1 mRNA that are necessary for miR-144-dependent regulation. Overexpression of miR-144 in vitro decreased both cellular ABCA1 protein and cholesterol efflux to lipid-poor apolipoprotein A-I protein, whereas overexpression in vivo reduced hepatic ABCA1 protein and plasma HDL-cholesterol. Conversely, silencing miR-144 in mice increased hepatic ABCA1 protein and HDL-cholesterol. In addition, we used tissue-specific FXR-deficient mice to show that induction of miR-144 and FXR-dependent hypolipidemia requires hepatic, but not intestinal, FXR. Finally, we identified functional FXR response elements upstream of the miR-144 locus, consistent with direct FXR regulation. We have identified a novel pathway involving FXR, miR-144, and ABCA1 that together regulate plasma HDL-cholesterol.

  7. microRNA in Human Reproduction.

    Science.gov (United States)

    Eisenberg, Iris; Kotaja, Noora; Goldman-Wohl, Debra; Imbar, Tal

    2015-01-01

    microRNAs constitute a large family of approximately 21-nucleotide-long, noncoding RNAs. They emerged more than 20 years ago as key posttranscriptional regulators of gene expression. The regulatory role of these small RNA molecules has recently begun to be explored in the human reproductive system. microRNAs have been shown to play an important role in control of reproductive functions, especially in the processes of oocyte maturation, folliculogenesis, corpus luteum function, implantation, and early embryonic development. Knockout of Dicer, the cytoplasmic enzyme that cleaves the pre-miRNA to its mature form, results in postimplantation embryonic lethality in several animal models, attributing to these small RNA vital functions in reproduction and development. Another intriguing characteristic of microRNAs is their presence in body fluids in a remarkably stable form that is protected from endogenous RNase activity. In this chapter we will describe the current knowledge on microRNAs, specifically relating to human gonadal cells. We will focus on their role in the ovarian physiologic process and ovulation dysfunction, regulation of spermatogenesis and male fertility, and putative involvement in human normal and aberrant trophoblast differentiation and invasion through the process of placentation.

  8. Differential expression of microRNAs in dorsal root ganglia after sciatic nerve injury

    Institute of Scientific and Technical Information of China (English)

    Anjie Lu; Zufa Huang; Chaoyue Zhang; Xianfang Zhang; Jiuhong Zhao; Haiying Zhang; Quanpeng Zhang; Song Wu; Xinan Yi

    2014-01-01

    This study investigated the possible involvement of microRNAs in the regulation of genes that participate in peripheral neural regeneration. A microRNA microarray analysis was conducted and 23 microRNAs were identiifed whose expression was signiifcantly changed in rat dorsal root ganglia after sciatic nerve transection. The expression of one of the downregulated microRNAs, microRNA-214, was validated using quantitative reverse transcriptase-PCR. MicroRNA-214 was predicted to target the 3′-untranslated region of Slit-Robo GTPase-activating protein 3. In situ hybridization veriifed that microRNA-214 was located in the cytoplasm of dorsal root ganglia primary neurons and was downregulated following sciatic nerve transection. Moreover, a com-bination of in situ hybridization and immunohistochemistry revealed that microRNA-214 and Slit-Robo GTPase-activating protein 3 were co-localized in dorsal root ganglion primary neu-rons. Western blot analysis suggested that Slit-Robo GTPase-activating protein 3 was upregulated in dorsal root ganglion neurons after sciatic nerve transection. These data demonstrate that mi-croRNA-214 is located and differentially expressed in dorsal root ganglion primary neurons and may participate in regulating the gene expression of Slit-Robo GTPase-activating protein 3 after sciatic nerve transection.

  9. Mutations Inactivating Herpes Simplex Virus 1 MicroRNA miR-H2 Do Not Detectably Increase ICP0 Gene Expression in Infected Cultured Cells or Mouse Trigeminal Ganglia.

    Science.gov (United States)

    Pan, Dongli; Pesola, Jean M; Li, Gang; McCarron, Seamus; Coen, Donald M

    2017-01-15

    Herpes simplex virus 1 (HSV-1) latency entails the repression of productive ("lytic") gene expression. An attractive hypothesis to explain some of this repression involves inhibition of the expression of ICP0, a lytic gene activator, by a viral microRNA, miR-H2, which is completely complementary to ICP0 mRNA. To test this hypothesis, we engineered mutations that disrupt miR-H2 without affecting ICP0 in HSV-1. The mutant virus exhibited drastically reduced expression of miR-H2 but showed wild-type levels of infectious virus production and no increase in ICP0 expression in lytically infected cells, which is consistent with the weak expression of miR-H2 relative to the level of ICP0 mRNA in that setting. Following corneal inoculation of mice, the mutant was not significantly different from wild-type virus in terms of infectious virus production in the trigeminal ganglia during acute infection, mouse mortality, or the rate of reactivation from explanted latently infected ganglia. Critically, the mutant was indistinguishable from wild-type virus for the expression of ICP0 and other lytic genes in acutely and latently infected mouse trigeminal ganglia. The latter result may be related to miR-H2 being less effective in inhibiting ICP0 expression in transfection assays than a host microRNA, miR-138, which has previously been shown to inhibit lytic gene expression in infected ganglia by targeting ICP0 mRNA. Additionally, transfected miR-138 reduced lytic gene expression in infected cells more effectively than miR-H2. While this study provides little support for the hypothesis that miR-H2 promotes latency by inhibiting ICP0 expression, the possibility remains that miR-H2 might target other genes during latency.

  10. Ago2 immunoprecipitation identifies predicted microRNAs in human embryonic stem cells and neural precursors.

    Directory of Open Access Journals (Sweden)

    Loyal A Goff

    Full Text Available BACKGROUND: MicroRNAs are required for maintenance of pluripotency as well as differentiation, but since more microRNAs have been computationally predicted in genome than have been found, there are likely to be undiscovered microRNAs expressed early in stem cell differentiation. METHODOLOGY/PRINCIPAL FINDINGS: SOLiD ultra-deep sequencing identified >10(7 unique small RNAs from human embryonic stem cells (hESC and neural-restricted precursors that were fit to a model of microRNA biogenesis to computationally predict 818 new microRNA genes. These predicted genomic loci are associated with chromatin patterns of modified histones that are predictive of regulated gene expression. 146 of the predicted microRNAs were enriched in Ago2-containing complexes along with 609 known microRNAs, demonstrating association with a functional RISC complex. This Ago2 IP-selected subset was consistently expressed in four independent hESC lines and exhibited complex patterns of regulation over development similar to previously-known microRNAs, including pluripotency-specific expression in both hESC and iPS cells. More than 30% of the Ago2 IP-enriched predicted microRNAs are new members of existing families since they share seed sequences with known microRNAs. CONCLUSIONS/SIGNIFICANCE: Extending the classic definition of microRNAs, this large number of new microRNA genes, the majority of which are less conserved than their canonical counterparts, likely represent evolutionarily recent regulators of early differentiation. The enrichment in Ago2 containing complexes, the presence of chromatin marks indicative of regulated gene expression, and differential expression over development all support the identification of 146 new microRNAs active during early hESC differentiation.

  11. MicroRNA evolution, expression, and function during short germband development in Tribolium castaneum.

    Science.gov (United States)

    Ninova, Maria; Ronshaugen, Matthew; Griffiths-Jones, Sam

    2016-01-01

    MicroRNAs are well-established players in the development of multicellular animals. Most of our understanding of microRNA function in arthropod development comes from studies in Drosophila. Despite their advantages as model systems, the long germband embryogenesis of fruit flies is an evolutionary derived state restricted to several holometabolous insect lineages. MicroRNA evolution and expression across development in animals exhibiting the ancestral and more widespread short germband mode of embryogenesis has not been characterized. We sequenced small RNA libraries of oocytes and successive intervals covering the embryonic development of the short germband model organism, Tribolium castaneum. We analyzed the evolution and temporal expression of the microRNA complement and sequenced libraries of total RNA to investigate the relationships with microRNA target expression. We show microRNA maternal loading and sequence-specific 3' end nontemplate oligoadenylation of maternally deposited microRNAs that is conserved between Tribolium and Drosophila. We further uncover large clusters encoding multiple paralogs from several Tribolium-specific microRNA families expressed during a narrow interval of time immediately after the activation of zygotic transcription. These novel microRNAs, together with several early expressed conserved microRNAs, target a significant number of maternally deposited transcripts. Comparison with Drosophila shows that microRNA-mediated maternal transcript targeting is a conserved process in insects, but the number and sequences of microRNAs involved have diverged. The expression of fast-evolving and species-specific microRNAs in the early blastoderm of T. castaneum is consistent with previous findings in Drosophila and shows that the unique permissiveness for microRNA innovation at this stage is a conserved phenomenon.

  12. Role of micro-RNA in colorectal cancer screening.

    Science.gov (United States)

    Rodríguez-Montes, José Antonio; Menéndez Sánchez, Pablo

    2014-12-01

    MicroRNAs are involved in carcinogenesis through postranscriptional gene regulatory activity. These molecules are involved in various physiological and pathological functions, such as apoptosis, cell proliferation and differentiation, which indicates their functionality in carcinogenesis as tumour suppressor genes or oncogenes. Several studies have determined the presence of microRNAs in different neoplastic diseases such as colon, prostate, breast, stomach, pancreas, and lung cancer. There are promising data on the usefulness of quantifying microRNAs in different organic fluids and tissues. We have conducted a review of the determinations of microRNAs in the diagnosis of colorectal cancer. Copyright © 2014 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. MicroRNA-214 controls skin and hair follicle development by modulating the activity of the Wnt pathway.

    Science.gov (United States)

    Ahmed, Mohammed I; Alam, Majid; Emelianov, Vladimir U; Poterlowicz, Krzysztof; Patel, Ankit; Sharov, Andrey A; Mardaryev, Andrei N; Botchkareva, Natalia V

    2014-11-24

    Skin development is governed by complex programs of gene activation and silencing, including microRNA-dependent modulation of gene expression. Here, we show that miR-214 regulates skin morphogenesis and hair follicle (HF) cycling by targeting β-catenin, a key component of the Wnt signaling pathway. miR-214 exhibits differential expression patterns in the skin epithelium, and its inducible overexpression in keratinocytes inhibited proliferation, which resulted in formation of fewer HFs with decreased hair bulb size and thinner hair production. The inhibitory effects of miR-214 on HF development and cycling were associated with altered activities of multiple signaling pathways, including decreased expression of key Wnt signaling mediators β-catenin and Lef-1, and were rescued by treatment with pharmacological Wnt activators. Finally, we identify β-catenin as one of the conserved miR-214 targets in keratinocytes. These data provide an important foundation for further analyses of miR-214 as a key regulator of Wnt pathway activity and stem cell functions during normal tissue homeostasis, regeneration, and aging.

  14. DETECTION OF TELOMERASE ACTIVITY IN PATIENTS WITH MYCOSIS FUNGOIDES

    Institute of Scientific and Technical Information of China (English)

    应作霖; 孙建方; 刘珊

    2003-01-01

    Objectives. To detect telomerase activity in patients with mycosis fungoides (MF) and to study therole of telomerase in the tumorigenesis of MF.Methods. The technique of PCR-ELISA was employed to detect telomerase activity in 35 patientswith various stages of MF.Results. 92.3% tumor stage of MF, 78.6% plaque stage of MF and 75.0% patch stage of MF hadpositive telomerase activity. The control samples had no telomerase activity. Telomerase activity in tumorstage of MF was significantly higher than that in plaque stage, while the latter was higher than that inpatch stage. Telomerase activity was correlated with the stage of MF.Conclusion. High level of telomerase activity frequently occurred in patients with MF, suggestingthat telomerase might play an important role in the tumorigenesis of MF and is a useful marker for thediagnosis of MF possibly.

  15. Detection of Extracellular Enzyme Activity in Penicillium using Chromogenic Media.

    Science.gov (United States)

    Yoon, Ji Hwan; Hong, Seung Beom; Ko, Seung Ju; Kim, Seong Hwan

    2007-09-01

    A total of 106 Penicillium species were tested to examine their ability of degrading cellobiose, pectin and xylan. The activity of β-glucosidase was generally strong in all the Penicillium species tested. P. citrinum, P. charlesii, P. manginii and P. aurantiacum showed the higher ability of producing β-glucosidase than other tested species. Pectinase activity was detected in 24 Penicillium species. P. paracanescens, P. sizovae, P. sartoryi, P. chrysogenum, and P. claviforme showed strong pectinase activity. In xylanase assay, 84 Penicillium species showed activity. Strong xylanase activity was detected from P. megasporum, P. sartoryi, P. chrysogenum, P. glandicola, P. discolor, and P. coprophilum. Overall, most of the Penicillium species tested showed strong β-glucosidase activity. The degree of pectinase and xylanase activity varied depending on Penicillium species.

  16. Micro-RNA speciation in fetal, adult and Alzheimer's disease hippocampus.

    Science.gov (United States)

    Lukiw, Walter J

    2007-02-12

    Micro-RNAs constitute a family of small noncoding ribonucleic acids that are posttranscriptional regulators of messenger RNA activity. Although micro-RNAs are known to be dynamically regulated during neural development, the role of micro-RNAs in brain aging and neurodegeneration is not known. This study examined micro-RNA abundance in the hippocampal region of fetal, adult and Alzheimer's disease brain. The data indicate that micro-RNAs encoding miR-9, miR-124a, miR-125b, miR-128, miR-132 and miR-219 are abundantly represented in fetal hippocampus, are differentially regulated in aged brain, and an alteration in specific micro-RNA complexity occurs in Alzheimer hippocampus. These data are consistent with the idea that altered micro-RNA-mediated processing of messenger RNA populations may contribute to atypical mRNA abundance and neural dysfunction in Alzheimer's disease brain.

  17. Multilevel depth and image fusion for human activity detection.

    Science.gov (United States)

    Ni, Bingbing; Pei, Yong; Moulin, Pierre; Yan, Shuicheng

    2013-10-01

    Recognizing complex human activities usually requires the detection and modeling of individual visual features and the interactions between them. Current methods only rely on the visual features extracted from 2-D images, and therefore often lead to unreliable salient visual feature detection and inaccurate modeling of the interaction context between individual features. In this paper, we show that these problems can be addressed by combining data from a conventional camera and a depth sensor (e.g., Microsoft Kinect). We propose a novel complex activity recognition and localization framework that effectively fuses information from both grayscale and depth image channels at multiple levels of the video processing pipeline. In the individual visual feature detection level, depth-based filters are applied to the detected human/object rectangles to remove false detections. In the next level of interaction modeling, 3-D spatial and temporal contexts among human subjects or objects are extracted by integrating information from both grayscale and depth images. Depth information is also utilized to distinguish different types of indoor scenes. Finally, a latent structural model is developed to integrate the information from multiple levels of video processing for an activity detection. Extensive experiments on two activity recognition benchmarks (one with depth information) and a challenging grayscale + depth human activity database that contains complex interactions between human-human, human-object, and human-surroundings demonstrate the effectiveness of the proposed multilevel grayscale + depth fusion scheme. Higher recognition and localization accuracies are obtained relative to the previous methods.

  18. MicroRNA-130a and -130b enhance activation of hepatic stellate cells by suppressing PPARγ expression: A rat fibrosis model study

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Le; Wang, Jinlong; Lu, Hongwei [Department of General Surgery, The Second Affiliated Hospital of Xi' an Jiaotong University, No.157, West 5th Road, Xi' an, Shaanxi 710004 (China); Zhang, Guoyu [West Hospital Ward 1, Shaanxi Provincial People' s Hospital, No.256, Youyi Road(west), Xi' an, Shaanxi 710068 (China); Liu, Yang; Wang, Jiazhong; Zhang, Yafei; Shang, Hao; Ji, Hong; Chen, Xi; Duan, Yanxia [Department of General Surgery, The Second Affiliated Hospital of Xi' an Jiaotong University, No.157, West 5th Road, Xi' an, Shaanxi 710004 (China); Li, Yiming, E-mail: yiminngli@163.com [Department of General Surgery, The Second Affiliated Hospital of Xi' an Jiaotong University, No.157, West 5th Road, Xi' an, Shaanxi 710004 (China)

    2015-09-25

    Hepatic stellate cells (HSCs) are the primary sources of extracellular matrix (ECM) in normal and fibrotic liver. Peroxisome proliferator-activated receptor gamma (PPARγ) maintains HSCs in a quiescent state, and its downregulation induces HSC activation. MicroRNAs (miRNAs) can induce PPARγ mRNA degradation, but the mechanism by which miRNAs regulate PPARγ in rat HSCs is unclear. This study aimed to investigate some miRNAs which putatively bind to the 3′-untranslated region (3′-UTR) of PPARγ mRNA, and increase expression of ECM genes in rat HSCs. In carbon tetrachloride injection (CCl{sub 4}) and common bile duct ligation (CBDL) liver fibrosis models, miRNAs miR-130a, miR-130b, miR-301a, miR-27b and miR-340 levels were found to be increased and PPARγ expression decreased. Overexpression of miR-130a and miR-130b enhanced cell proliferation by involving Runx3. MiR-130a and miR-130b decreased PPARγ expression by targeting the 3′-UTR of PPARγ mRNA in rat HSC-T6 cells. Transforming growth factor-β1 (TGF-β1) may mediate miR-130a and miR-130b overexpression, PPARγ downregulation, and ECM genes overexpression in cell culture. These findings suggest that miR-130a and miR-130b are involved in downregulation of PPARγ in liver fibrosis. - Highlights: • MiR-130a and miR-130b are increased and PPARγ is decreased in liver fibrosis models. • MiR-130a and miR-130b decreased PPARγ by targeting the 3′-UTR of PPARγ mRNA. • MiR-130a and miR-130b enhanced HSC cell proliferation by involving Runx3. • TGF-β1 may mediate miR-130a and miR-130b overexpression.

  19. Distinct and cooperative activities of HESO1 and URT1 nucleotidyl transferases in microRNA turnover in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Bin Tu

    2015-04-01

    Full Text Available 3' uridylation is increasingly recognized as a conserved RNA modification process associated with RNA turnover in eukaryotes. 2'-O-methylation on the 3' terminal ribose protects micro(miRNAs from 3' truncation and 3' uridylation in Arabidopsis. Previously, we identified HESO1 as the nucleotidyl transferase that uridylates most unmethylated miRNAs in vivo, but substantial 3' tailing of miRNAs still remains in heso1 loss-of-function mutants. In this study, we found that among nine other potential nucleotidyl transferases, UTP:RNA uridylyltransferase 1 (URT1 is the single most predominant nucleotidyl transferase that tails miRNAs. URT1 and HESO1 prefer substrates with different 3' end nucleotides in vitro and act cooperatively to tail different forms of the same miRNAs in vivo. Moreover, both HESO1 and URT1 exhibit nucleotidyl transferase activity on AGO1-bound miRNAs. Although these enzymes are able to add long tails to AGO1-bound miRNAs, the tailed miRNAs remain associated with AGO1. Moreover, tailing of AGO1-bound miRNA165/6 drastically reduces the slicing activity of AGO1-miR165/6, suggesting that tailing reduces miRNA activity. However, monouridylation of miR171a by URT1 endows the miRNA the ability to trigger the biogenesis of secondary siRNAs. Therefore, 3' tailing could affect the activities of miRNAs in addition to leading to miRNA degradation.

  20. Ineffective delivery of diet-derived microRNAs to recipient animal organisms

    Science.gov (United States)

    Snow, Jonathan W.; Hale, Andrew E.; Isaacs, Stephanie K.; Baggish, Aaron L.; Chan, Stephen Y.

    2013-01-01

    Cross-kingdom delivery of specific microRNAs to recipient organisms via food ingestion has been reported recently. However, it is unclear if such delivery of microRNAs occurs frequently in animal organisms after typical dietary intake. We found substantial levels of specific microRNAs in diets commonly consumed orally by humans, mice, and honey bees. Yet, after ingestion of fruit replete with plant microRNAs (MIR156a, MIR159a, and MIR169a), a cohort of healthy athletes did not carry detectable plasma levels of those molecules. Similarly, despite consumption of a diet with animal fat replete in endogenous miR-21, negligible expression of miR-21 in plasma or organ tissue was observed in miR-21 −/− recipient mice. Correspondingly, when fed vegetarian diets containing the above plant microRNAs, wild-type recipient mice expressed insignificant levels of these microRNAs. Finally, despite oral uptake of pollen containing these plant microRNAs, negligible delivery of these molecules was observed in recipient honeybees. Therefore, we conclude that horizontal delivery of microRNAs via typical dietary ingestion is neither a robust nor a frequent mechanism to maintain steady-state microRNA levels in a variety of model animal organisms, thus defining the biological limits of these molecules in vivo. PMID:23669076

  1. The detection of intestinal spike activity on surface electroenterograms

    Energy Technology Data Exchange (ETDEWEB)

    Ye-Lin, Y; Garcia-Casado, J; Martinez-de-Juan, J L; Prats-Boluda, G [Instituto interuniversitario de investigacion en bioingenierIa y tecnologIa orientada al ser humano (I3BH), Universidad Politecnica de Valencia, Camino de Vera, s/n, Ed. 8E, Acceso N, 2a, planta 46022 Valencia (Spain); Ponce, J L [Department of Surgery, Hospital Universitario La Fe de Valencia, Avenida Campanar n0. 51, 46009 Valencia (Spain)], E-mail: yiye@eln.upv.es, E-mail: jgarciac@eln.upv.es, E-mail: jlmartinez@eln.upv.es, E-mail: geprabo@eln.upv.es, E-mail: drjlponce@ono.com

    2010-02-07

    Myoelectrical recording could provide an alternative technique for assessing intestinal motility, which is a topic of great interest in gastroenterology since many gastrointestinal disorders are associated with intestinal dysmotility. The pacemaker activity (slow wave, SW) of the electroenterogram (EEnG) has been detected in abdominal surface recordings, although the activity related to bowel contractions (spike bursts, SB) has to date only been detected in experimental models with artificially favored electrical conductivity. The aim of the present work was to assess the possibility of detecting SB activity in abdominal surface recordings under physiological conditions. For this purpose, 11 recording sessions of simultaneous internal and external myolectrical signals were conducted on conscious dogs. Signal analysis was carried out in the spectral domain. The results show that in periods of intestinal contractile activity, high-frequency components of EEnG signals can be detected on the abdominal surface in addition to SW activity. The energy between 2 and 20 Hz of the surface myoelectrical recording presented good correlation with the internal intestinal motility index (0.64 {+-} 0.10 for channel 1 and 0.57 {+-} 0.11 for channel 2). This suggests that SB activity can also be detected in canine surface EEnG recording.

  2. High-throughput functional microRNAs profiling by recombinant AAV-based microRNA sensor arrays.

    Directory of Open Access Journals (Sweden)

    Wenhong Tian

    Full Text Available BACKGROUND: microRNAs (miRNAs are small and non-coding RNAs which play critical roles in physiological and pathological processes. A number of methods have been established to detect and quantify miRNA expression. However, method for high-throughput miRNA function detection is still lacking. PRINCIPAL FINDINGS: We describe an adeno-associated virus (AAV vector-based microRNA (miRNA sensor (Asensor array for high-throughput functional miRNA profiling. Each Asensor contains a Gaussia luciferase (Gluc and a firefly luciferase (Fluc expression cassette to sense functional miRNA and to serve as an internal control respectively. Using this array, we acquired functional profiles of 115 miRNAs for 12 cell lines and found "functional miRNA signatures" for several specific cell lines. The activities of specific miRNAs including the let-7 family, miR-17-92 cluster, miR-221, and miR-222 in HEK 293 cells were compared with their expression levels determined by quantitative reverse transcriptase polymerase chain reaction (QRT-PCR. We also demonstrate two other practical applications of the array, including a comparison of the miRNA activity between HEK293 and HEK293T cells and the ability to monitor miRNA activity changes in K562 cells treated with 12-O-tetradecanoylphorbol-13-acetate (TPA. CONCLUSIONS/SIGNIFICANCE: Our approach has potential applications in the identification of cell types, the characterization of biological and pathological processes, and the evaluation of responses to interventions.

  3. Activation of Cdk5/p25 and tau phosphorylation following chronic brain hypoperfusion in rats involves microRNA-195 down-regulation.

    Science.gov (United States)

    Sun, Li-Hua; Ban, Tao; Liu, Cheng-Di; Chen, Qing-Xin; Wang, Xu; Yan, Mei-Ling; Hu, Xue-Ling; Su, Xiao-Lin; Bao, Ya-Nan; Sun, Lin-Lin; Zhao, Lin-Jing; Pei, Shuang-Chao; Jiang, Xue-Mei; Zong, De-Kang; Ai, Jing

    2015-09-01

    Chronic brain hypoperfusion (CBH) is a common clinical feature of Alzheimer's disease and vascular dementia, but the underlying molecular mechanism is unclear. Our previous study reported that the down-regulation of microRNA-195 (miR-195) promotes amyloidogenesis via regulation of amyloid precursor protein and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) expression at the post-transcriptional level in CBH rats with bilateral common carotid artery occlusion (2VO). CBH owing to unilateral common carotid artery occlusion (UCCAO) increases tau phosphorylation levels at multiple phosphorylation sites in the brain, but the molecular mechanism is poorly understood. The purpose of this study was to investigate whether miR-195 could both deregulate amyloid metabolism and indirectly deregulate tau phosphorylation in CBH. We observed that 2VO leads to tau hyperphosphorylation at Ser202/Thr205, Ser262, Thr231, and Ser422 and to the conversion from cyclin-dependent kinase 5 (Cdk5)/p35 to Cdk5/p25 in rat hippocampi. Endogenous miR-195 was knocked down using over-expression of its antisense molecule (pre-AMO-miR-195) via a lentivirus (lenti-pre-AMO-miR-195); this knockdown increased the tau phosphorylation at Ser202/Thr205, Ser262, Thr231, Ser422, and the Cdk5/p25 activation, but over-expression of miR-195 using lenti-pre-miR-195 decreased the tau phosphorylation and Cdk5/p25 activation. Further in vitro studies demonstrated that miR-195 over-expression prevented tau hyperphosphorylation and Cdk5/p35 activity, which were increased by miR-195 inhibition. A dual luciferase reporter assay showed that miR-195 bound to the Cdk5r1 gene, which encodes p35 protein, in the 3'UTR and inhibited p35 expression. We concluded that tau hyperphosphorylation involves the down-regulation of miR-195, which is mediated by Cdk5/p25 activation in 2VO rats. Our findings demonstrated that down-regulation of miR-195 led to increased vulnerability via the regulation of multiple targets

  4. Feasibility of culvert IED detection using thermal neutron activation

    Science.gov (United States)

    Faust, Anthony A.; McFee, John E.; Clifford, Edward T. H.; Andrews, Hugh Robert; Mosquera, Cristian; Roberts, William C.

    2012-06-01

    Bulk explosives hidden in culverts pose a serious threat to the Canadian and allied armies. Culverts provide an opportunity to conceal insurgent activity, avoid the need for detectable surface disturbances, and limit the applicability of conventional sub-surface sensing techniques. Further, in spite of the large masses of explosives that can be employed, the large sensor{target separation makes detection of the bulk explosive content challeng- ing. Defence R&D Canada { Sueld and Bubble Technology Industries have been developing thermal neutron activation (TNA) sensors for detection of buried bulk explosives for over 15 years. The next generation TNA sensor, known as TNA2, incorporates a number of improvements that allow for increased sensor-to-target dis- tances, making it potentially feasible to detect large improvised explosive devices (IEDs) in culverts using TNA. Experiments to determine the ability of TNA2 to detect improvised explosive devices in culverts are described, and the resulting signal levels observed for relevant quantities of explosives are presented. Observations conrm that bulk explosives detection using TNA against a culvert-IED is possible, with large charges posing a detection challenge at least as dicult as that of a deeply buried anti-tank landmine. Because of the prototype nature of the TNA sensor used, it is not yet possible to make denitive statements about the absolute sensitivity or detection time. Further investigation is warranted.

  5. Pulse-driven magnetoimpedance sensor detection of cardiac magnetic activity.

    Directory of Open Access Journals (Sweden)

    Shinsuke Nakayama

    Full Text Available This study sought to establish a convenient method for detecting biomagnetic activity in the heart. Electrical activity of the heart simultaneously induces a magnetic field. Detection of this magnetic activity will enable non-contact, noninvasive evaluation to be made. We improved the sensitivity of a pulse-driven magnetoimpedance (PMI sensor, which is used as an electric compass in mobile phones and as a motion sensor of the operation handle in computer games, toward a pico-Tesla (pT level, and measured magnetic fields on the surface of the thoracic wall in humans. The changes in magnetic field detected by this sensor synchronized with the electric activity of the electrocardiogram (ECG. The shape of the magnetic wave was largely altered by shifting the sensor position within 20 mm in parallel and/or perpendicular to the thoracic wall. The magnetic activity was maximal in the 4th intercostals near the center of the sterna. Furthermore, averaging the magnetic activity at 15 mm in the distance between the thoracic wall and the sensor demonstrated magnetic waves mimicking the P wave and QRS complex. The present study shows the application of PMI sensor in detecting cardiac magnetic activity in several healthy subjects, and suggests future applications of this technology in medicine and biology.

  6. Pulse-driven magnetoimpedance sensor detection of cardiac magnetic activity.

    Science.gov (United States)

    Nakayama, Shinsuke; Sawamura, Kenta; Mohri, Kaneo; Uchiyama, Tsuyoshi

    2011-01-01

    This study sought to establish a convenient method for detecting biomagnetic activity in the heart. Electrical activity of the heart simultaneously induces a magnetic field. Detection of this magnetic activity will enable non-contact, noninvasive evaluation to be made. We improved the sensitivity of a pulse-driven magnetoimpedance (PMI) sensor, which is used as an electric compass in mobile phones and as a motion sensor of the operation handle in computer games, toward a pico-Tesla (pT) level, and measured magnetic fields on the surface of the thoracic wall in humans. The changes in magnetic field detected by this sensor synchronized with the electric activity of the electrocardiogram (ECG). The shape of the magnetic wave was largely altered by shifting the sensor position within 20 mm in parallel and/or perpendicular to the thoracic wall. The magnetic activity was maximal in the 4th intercostals near the center of the sterna. Furthermore, averaging the magnetic activity at 15 mm in the distance between the thoracic wall and the sensor demonstrated magnetic waves mimicking the P wave and QRS complex. The present study shows the application of PMI sensor in detecting cardiac magnetic activity in several healthy subjects, and suggests future applications of this technology in medicine and biology.

  7. Prospective validation of microRNA signatures for detecting pancreatic malignant transformation in endoscopic-ultrasound guided fine-needle aspiration biopsies

    Science.gov (United States)

    Frampton, Adam E.; Krell, Jonathan; Prado, Mireia Mato; Gall, Tamara M.H.; Abbassi-Ghadi, Nima; Del Vecchio Blanco, Giovanna; Funel, Niccola; Giovannetti, Elisa; Castellano, Leandro; Basyouny, Mohamed; Habib, Nagy A.; Kaltsidis, Harry; Vlavianos, Panagiotis; Stebbing, Justin; Jiao, Long R.

    2016-01-01

    Background Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease. Novel biomarkers are required to aid treatment decisions and improve patient outcomes. MicroRNAs (miRNAs) are potentially ideal diagnostic biomarkers, as they are stable molecules, and tumour and tissue specific. Results Logistic regression analysis revealed an endoscopic-ultrasound fine-needle aspiration (EUS-FNA) 2-miRNA classifier (miR-21 + miR-155) capable of distinguishing benign from malignant pancreatic lesions with a sensitivity of 81.5% and a specificity of 85.7% (AUC 0.930). Validation FNA cohorts confirmed both miRNAs were overexpressed in malignant disease, while circulating miRNAs performed poorly. Methods Fifty-five patients with a suspicious pancreatic lesion on cross-sectional imaging were evaluated by EUS-FNA. At echo-endoscopy, the first part of the FNA was sent for cytological assessment and the second part was used for total RNA extraction. Candidate miRNAs were selected after careful review of the literature and expression was quantified by qRT-PCR. Validation was performed on an independent cohort of EUS-FNAs, as well as formalin-fixed paraffin embedded (FFPE) and plasma samples. Conclusions We provide further evidence for using miRNAs as diagnostic biomarkers for pancreatic malignancy. We demonstrate the feasibility of using fresh EUS-FNAs to establish miRNA-based signatures unique to pancreatic malignant transformation and the potential to enhance risk stratification and selection for surgery. PMID:27086919

  8. [Detection of enzyme activity in decontaminated spices in industrial use].

    Science.gov (United States)

    Müller, R; Theobald, R

    1995-03-01

    A range of decontaminated species of industrial use have been examined for their enzymes (catalase, peroxidase, amylase, lipase activity). The genuine enzymes remain fully active in irradiated spices, whereas the microbial load is clearly reduced. In contrast steam treated spices no longer demonstrate enzyme activities. Steam treatment offers e.g. black pepper without lipase activity, which can no longer cause fat deterioration. Low microbial load in combination with clearly detectable enzyme activity in spices is an indication for irradiation, whereas, reduced microbial contamination combined with enzyme inactivation indicate steam treatment of raw material.

  9. MicroRNA pharmacogenomics

    DEFF Research Database (Denmark)

    Rukov, Jakob Lewin; Shomron, Noam

    2011-01-01

    polymorphisms, copy number variations or differences in gene expression levels of drug metabolizing or transporting genes and drug targets. In this review paper, we focus instead on microRNAs (miRNAs): small noncoding RNAs, prevalent in metazoans, that negatively regulate gene expression in many cellular...... processes. We discuss how miRNAs, by regulating the expression of pharmacogenomic-related genes, can play a pivotal role in drug efficacy and toxicity and have potential clinical implications for personalized medicine....

  10. MicroRNA-130b promotes cell proliferation and invasion by inhibiting peroxisome proliferator-activated receptor-γ in human glioma cells.

    Science.gov (United States)

    Gu, Jian-Jun; Zhang, Jian-He; Chen, Hong-Jie; Wang, Shou-Sen

    2016-06-01

    MicroRNA-130b (miR-130b) is a novel tumor-related miRNA that has been found to be involved in several biological processes. However, there is limited evidence regarding the role of miR-130b in the tumorigenesis of human gliomas. In the present study, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assays were used to quantify miR-130b expression levels in human glioma tissues and glioma cell lines (U251, U87, SNB19 and LN229). The expression level of miR-130b was found to be markedly higher in human glioma tissues than in non‑neoplastic brain specimens. Specifically, higher expression levels of miR‑130b were observed in the glioma cell lines, compared with those in normal human astrocytes (NHA). We also confirmed that miR‑130b interacted with the 3'-untranslated region of peroxisome proliferator‑activated receptor-γ (PPAR‑γ), which negatively affected the protein levels of E-cadherin. Furthermore, its effects on cell proliferation and invasion were examined using CCK8, colony formation, cell cycle and Transwell assays. We found that the upregulation of miR-130b induced cell proliferation, decreased the percentage of cells in the G0/G1 phase and enhanced the invasiveness of U251 glioma cells whereas the downregulation of miR-130b exerted opposing effects. Moreover, it was demonstrated that the downregulation of miR‑130b in U251 glioma cells restored the expression of PPAR-γ and E-cadherin, and inhibited the expression of β-catenin. Notably, PPAR-γ knockdown abolished the inhibitory effect of miR-130b inhibitor on the proliferation and invasivness of U251 cells. Taken together, these findings suggest that miR‑130b promotes the proliferation and invasion of U251 glioma cells by inhibiting PPAR-γ.

  11. MicroRNA signatures in liver diseases

    OpenAIRE

    Chen, Xian-Ming

    2009-01-01

    MicroRNAs (miRNAs) are an emerging class of highly conserved non-coding small RNAs that regulate gene expression at the post-transcriptional level. It is now clear that miRNAs can potentially regulate every aspect of cellular activity, including differentiation and development, metabolism, proliferation, apoptotic cell death, viral infection and tumorigenesis. Recent studies provide clear evidence that miRNAs are abundant in the liver and modulate a diverse spectrum of liver functions. Deregu...

  12. Active acoustic leak detection for LMFBR steam generators. Pt. 7. Potential for small leak detection

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Hiromichi; Yoshida, Kazuo [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1998-05-01

    In order to prevent the expansion of tube damage and to maintain structural integrity in the steam generators (SGs) of fast breeder reactors (FBR), it is necessary to detect precisely and immediately the leakage of water from heat transfer tubes. Therefore, an active acoustic method, which detects the sound attenuation due to bubbles generated in the sodium-water reactions, is being developed. Previous studies have revealed that the active acoustic method can detect bubbles of 10 l/s (equivalence water leak rate about 10 g/s) within 10 seconds in practical steam generators. In order to prevent the expansion of damage to neighboring tubes, however, it is necessary to detect smaller leakage of water from heat transfer tubes. In this study, in order to evaluate the detection sensitivity of the active method, the signal processing methods for emitter and receiver sound and the detection method for leakage within 1 g/s are investigated experimentally, using an SG full-sector model that simulates the actual SGs. A typical result shows that detection of 0.4 l/s air bubbles (equivalent water leak rate about 0.4 g/s) takes about 80 seconds, which is shorter than the propagation time of damage to neighboring tubes. (author)

  13. Detection of cardiac activity changes from human speech

    Science.gov (United States)

    Tovarek, Jaromir; Partila, Pavol; Voznak, Miroslav; Mikulec, Martin; Mehic, Miralem

    2015-05-01

    Impact of changes in blood pressure and pulse from human speech is disclosed in this article. The symptoms of increased physical activity are pulse, systolic and diastolic pressure. There are many methods of measuring and indicating these parameters. The measurements must be carried out using devices which are not used in everyday life. In most cases, the measurement of blood pressure and pulse following health problems or other adverse feelings. Nowadays, research teams are trying to design and implement modern methods in ordinary human activities. The main objective of the proposal is to reduce the delay between detecting the adverse pressure and to the mentioned warning signs and feelings. Common and frequent activity of man is speaking, while it is known that the function of the vocal tract can be affected by the change in heart activity. Therefore, it can be a useful parameter for detecting physiological changes. A method for detecting human physiological changes by speech processing and artificial neural network classification is described in this article. The pulse and blood pressure changes was induced by physical exercises in this experiment. The set of measured subjects was formed by ten healthy volunteers of both sexes. None of the subjects was a professional athlete. The process of the experiment was divided into phases before, during and after physical training. Pulse, systolic, diastolic pressure was measured and voice activity was recorded after each of them. The results of this experiment describe a method for detecting increased cardiac activity from human speech using artificial neural network.

  14. Using Logic Programming to Detect Activities in Pervasive Healthcare

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    2002-01-01

    In this experience paper we present a case study in using logic programming in a pervasive computing project in the healthcare domain. An expert system is used to detect healthcare activities in a pervasive hospital environment where positions of people and things are tracked. Based on detected...... activities an activity-driven computing infrastructure provides computational assistance to healthcare staff on mobile-and pervasive computing equipment. Assistance range from simple activities like fast log-in into the electronic patient medical record system to complex activities like signing for medicine...... given to specific patients. We describe the role of logic programming in the infrastructure and discuss the benefits and problems of using logic programming in a pervasive context....

  15. Interleukin 21 Controls mRNA and MicroRNA Expression in CD40-Activated Chronic Lymphocytic Leukemia Cells

    Science.gov (United States)

    De Cecco, Loris; Capaia, Matteo; Zupo, Simona; Cutrona, Giovanna; Matis, Serena; Brizzolara, Antonella; Orengo, Anna Maria; Croce, Michela; Marchesi, Edoardo; Ferrarini, Manlio; Canevari, Silvana; Ferrini, Silvano

    2015-01-01

    Several factors support CLL cell survival in the microenvironment. Under different experimental conditions, IL21 can either induce apoptosis or promote CLL cell survival. To investigate mechanisms involved in the effects of IL21, we studied the ability of IL21 to modulate gene and miRNA expressions in CD40-activated CLL cells. IL21 was a major regulator of chemokine production in CLL cells and it modulated the expression of genes involved in cell movement, metabolism, survival and apoptosis. In particular, IL21 down-regulated the expression of the chemokine genes CCL4, CCL3, CCL3L1, CCL17, and CCL2, while it up-regulated the Th1-related CXCL9 and CXCL10. In addition, IL21 down-regulated the expression of genes encoding signaling molecules, such as CD40, DDR1 and PIK3CD. IL21 modulated a similar set of genes in CLL and normal B-cells (e.g. chemokine genes), whereas other genes, including MYC, TNF, E2F1, EGR2 and GAS-6, were regulated only in CLL cells. An integrated analysis of the miRNome and gene expression indicated that several miRNAs were under IL21 control and these could, in turn, influence the expression of potential target genes. We focused on hsa-miR-663b predicted to down-regulate several relevant genes. Transfection of hsa-miR-663b or its specific antagonist showed that this miRNA regulated CCL17, DDR1, PIK3CD and CD40 gene expression. Our data indicated that IL21 modulates the expression of genes mediating the crosstalk between CLL cells and their microenvironment and miRNAs may take part in this process. PMID:26305332

  16. Interleukin 21 Controls mRNA and MicroRNA Expression in CD40-Activated Chronic Lymphocytic Leukemia Cells.

    Directory of Open Access Journals (Sweden)

    Loris De Cecco

    Full Text Available Several factors support CLL cell survival in the microenvironment. Under different experimental conditions, IL21 can either induce apoptosis or promote CLL cell survival. To investigate mechanisms involved in the effects of IL21, we studied the ability of IL21 to modulate gene and miRNA expressions in CD40-activated CLL cells. IL21 was a major regulator of chemokine production in CLL cells and it modulated the expression of genes involved in cell movement, metabolism, survival and apoptosis. In particular, IL21 down-regulated the expression of the chemokine genes CCL4, CCL3, CCL3L1, CCL17, and CCL2, while it up-regulated the Th1-related CXCL9 and CXCL10. In addition, IL21 down-regulated the expression of genes encoding signaling molecules, such as CD40, DDR1 and PIK3CD. IL21 modulated a similar set of genes in CLL and normal B-cells (e.g. chemokine genes, whereas other genes, including MYC, TNF, E2F1, EGR2 and GAS-6, were regulated only in CLL cells. An integrated analysis of the miRNome and gene expression indicated that several miRNAs were under IL21 control and these could, in turn, influence the expression of potential target genes. We focused on hsa-miR-663b predicted to down-regulate several relevant genes. Transfection of hsa-miR-663b or its specific antagonist showed that this miRNA regulated CCL17, DDR1, PIK3CD and CD40 gene expression. Our data indicated that IL21 modulates the expression of genes mediating the crosstalk between CLL cells and their microenvironment and miRNAs may take part in this process.

  17. Inverse Problem Solution in Landmines Detection Based on Active Thermography

    Directory of Open Access Journals (Sweden)

    B. Szymanik

    2014-12-01

    Full Text Available Landmines still affect numerous territories in the whole world and pose a serious threat, mostly to civilians. Widely used non-metallic landmines are undetectable using metal detector. Therefore, there is an urging need to improve methods of detecting such objects. In the present study we introduce relatively new method of landmines' detection: active infrared thermography with microwave excitation. In this paper we present the optimization based method of solving inverse problem for microwave heating. This technique will be used in the reconstruction of detected landmines geometric and material properties.

  18. Detection of person presence and its activity in the bathtub

    Science.gov (United States)

    Bujnowski, Adam; Palinski, Arkadiusz; Koscinski, Piotr; Skalski, Lukasz; Skurczynska, Anna; Wtorek, Jerzy

    2013-04-01

    A practical application of a bioimpedance technique for a detection of a bathing person is presented in the paper. It addresses the possibility of supervising people in the bathtub without voiding of their intimacy. The measurement system installed in a fiber-glass or a plastic bathtub is able to detect a presence of the bathing person, to estimate its activity and thus to detect potentially dangerous events. In the paper a principle of measurement, working prototype and measurements are presented. The proposed method can be useful for supporting and supervising bathing of elders, partially disabled or people with some health state risk during the bath and living alone.

  19. Review of MicroRNA Deregulation in Oral Cancer. Part I

    Directory of Open Access Journals (Sweden)

    Antonia Kolokythas

    2011-04-01

    Full Text Available Objectives: Oral cancer is the sixth most common malignancy worldwide. Cancer development and progression requires inactivation of tumour suppressor genes and activation of proto-oncogenes. Expression of these genes is in part dependant on RNA and microRNA based mechanisms. MicroRNAs are essential regulators of diverse cellular processes including proliferation, differentiation, apoptosis, survival, motility, invasion and morphogenesis. Several microRNAs have been found to be aberrantly expressed in various cancers including oral cancer.Material and Methods: A comprehensive review of the available literature from 2000 to 2011 relevant to microRNA deregulation in oral cancer was undertaken using PubMed, Medline, Scholar Google and Scopus. Keywords for the search were: microRNA and oral cancer, microRNA and squamous cell carcinoma, microRNA deregulation. Only full length articles in the English language were included. Strengths and limitations of each study are presented in this review.Results: Several studies were identified that investigated microRNA alternations in the head and neck/oral cavity cancers. Significant progress has been made in identification of microRNA deregulation in these cancers. It has been evident that several microRNAs were found to be deregulated specifically in oral cavity cancers. Among these, several microRNAs have been functionally validated and their potential target genes have been identified.Conclusions: These findings on microRNA deregulation in cancer further enhance our understanding of the disease progression, response to treatment and may assist with future development of targeted therapy.

  20. Perturbation of microRNAs in rat heart during chronic doxorubicin treatment.

    Directory of Open Access Journals (Sweden)

    Caterina Vacchi-Suzzi

    Full Text Available Anti-cancer therapy based on anthracyclines (DNA intercalating Topoisomerase II inhibitors is limited by adverse effects of these compounds on the cardiovascular system, ultimately causing heart failure. Despite extensive investigations into the effects of doxorubicin on the cardiovascular system, the molecular mechanisms of toxicity remain largely unknown. MicroRNAs are endogenously transcribed non-coding 22 nucleotide long RNAs that regulate gene expression by decreasing mRNA stability and translation and play key roles in cardiac physiology and pathologies. Increasing doses of doxorubicin, but not etoposide (a Topoisomerase II inhibitor devoid of cardiovascular toxicity, specifically induced the up-regulation of miR-208b, miR-216b, miR-215, miR-34c and miR-367 in rat hearts. Furthermore, the lowest dosing regime (1 mg/kg/week for 2 weeks led to a detectable increase of miR-216b in the absence of histopathological findings or alteration of classical cardiac stress biomarkers. In silico microRNA target predictions suggested that a number of doxorubicin-responsive microRNAs may regulate mRNAs involved in cardiac tissue remodeling. In particular miR-34c was able to mediate the DOX-induced changes of Sipa1 mRNA (a mitogen-induced Rap/Ran GTPase activating protein at the post-transcriptional level and in a seed sequence dependent manner. Our results show that integrated heart tissue microRNA and mRNA profiling can provide valuable early genomic biomarkers of drug-induced cardiac injury as well as novel mechanistic insight into the underlying molecular pathways.

  1. MicroRNA characterize genetic diversity and drug resistance in pediatric acute lymphoblastic leukemia

    NARCIS (Netherlands)

    D. Schotte (Diana); R.X. de Menezes (Renee); F. Akbari Moqadam (Farhad); L.M. Khankahdani (Leila Mohammadi); E.A.M. Lange-Turenhout (Ellen); C. Chen (Caifu); R. Pieters (Rob); M.L. den Boer (Monique)

    2011-01-01

    textabstractBackground MicroRNA regulate the activity of protein-coding genes including those involved in hematopoietic cancers. The aim of the current study was to explore which microRNA are unique for seven different subtypes of pediatric acute lymphoblastic leukemia. Design and Methods Expression

  2. Novel approaches for single molecule activation and detection

    CERN Document Server

    Benfenati, Fabio; Torre, Vincent

    2014-01-01

    How can we obtain tools able to process and exchange information at the molecular scale In order to do this, it is necessary to activate and detect single molecules under controlled conditions. This book focuses on the generation of biologically-inspired molecular devices. These devices are based on the developments of new photonic tools able to activate and stimulate single molecule machines. Additionally, new light sensitive molecules can be selectively activated by photonic tools. These technological innovations will provide a way to control activation of single light-sensitive molecules, a

  3. Detection of active matriptase using a biotinylated chloromethyl ketone peptide.

    Directory of Open Access Journals (Sweden)

    Sine Godiksen

    Full Text Available Matriptase is a member of the family of type II transmembrane serine proteases that is essential for development and maintenance of several epithelial tissues. Matriptase is synthesized as a single-chain zymogen precursor that is processed into a two-chain disulfide-linked form dependent on its own catalytic activity leading to the hypothesis that matriptase functions at the pinnacle of several protease induced signal cascades. Matriptase is usually found in either its zymogen form or in a complex with its cognate inhibitor hepatocyte growth factor activator inhibitor 1 (HAI-1, whereas the active non-inhibited form has been difficult to detect. In this study, we have developed an assay to detect enzymatically active non-inhibitor-complexed matriptase by using a biotinylated peptide substrate-based chloromethyl ketone (CMK inhibitor. Covalently CMK peptide-bound matriptase is detected by streptavidin pull-down and subsequent analysis by Western blotting. This study presents a novel assay for detection of enzymatically active matriptase in living human and murine cells. The assay can be applied to a variety of cell systems and species.

  4. Electrochemical impedance spectroscopy biosensor for detection of active botulinum neurotoxin

    Directory of Open Access Journals (Sweden)

    Jennifer Halliwell

    2014-12-01

    Full Text Available The standard method for the detection of botulinum neurotoxin is currently the mouse bioassay which is considered to be the most reliable method for the detection of the active form of this toxin. Despite this it is a time-consuming and expensive assay to run and as such many alternative assays have recently been proposed. Herein we report the development of two electrochemical assays for the detection of active botulinum neurotoxin in a pharmaceutical sample. Gold electrodes were modified with self-assembled monolayers of the SNARE protein SNAP-25 which is selectively cleaved by active botulinum neurotoxin A. Cyclic voltammetry and electrochemical impedance spectroscopy were performed on the modified working electrodes to observe changes to the layer on addition of the toxin. Both methods were able to distinguish the difference between the presence of the active toxin and a placebo containing the excipients of the pharmaceutical product. The electrochemical impedance spectroscopy assay also allowed for detection of the active toxin at concentrations as low as 25 fg/ml, with results being obtained in under an hour outperforming the mouse bioassay.

  5. [MicroRNAs in neurobiology].

    Science.gov (United States)

    Kawahara, Yukio

    2008-12-01

    MicroRNAs have emerged as a new regulatory factor of gene expression. They mediate translational repression or degradation of their target mRNAs by RNA interference (RNAi). The expression of each microRNA is tightly regulated in a development- and cell-specific manner by various mechanisms such as blockade of let-7 family expression by Lin-28 or RNA editing. They also act as regulatory switches for development, organogenesis, and cellular differentiation or for controlling distinct functions that are required for the maintenance of each tissue and cell subtypes. The abundant expression of microRNAs as well as the exclusive expression of certain microRNAs in the central nervous system highlights their biological importance at all stages of neural development and in postmitotic and differentiated neurons. Further, some microRNAs, such as miRNA-134, and miRNA-132 are localized and are synthesized in part at synaptic sites in dendrites to regulate synaptic formation and plasticity. In addition to the imparting of basic knowledge about the biogenesis and mechanism of action of microRNAs, this review focuses on the recent advances in microRNA studies in neurobiology, including the expression pattern of microRNAs in the mammalian brain, the role of microRNAs in neural differentiation and maturation, formation and plasticity of synaptic connections, and maintenance of neural function such as the synthesis of the neurotransmitters in selected neurons. Finally, the possible connection between microRNA dysfunction and neurological diseases, and future implications for diagnosis, and treatment of defects in human brain development and neurodegenerative diseases are discussed.

  6. Detecting malicious activities with user-agent-based profiles

    OpenAIRE

    2015-01-01

    Hypertext transfer protocol (HTTP) has become the main protocol to carry out malicious activities. Attackers typically use HTTP for communication with command-and-control servers, click fraud, phishing and other malicious activities, as they can easily hide among the large amount of benign HTTP traffic. The user-agent (UA) field in the HTTP header carries information on the application, operating system (OS), device, and so on, and adversaries fake UA strings as a way to evade detection. Moti...

  7. The synchronous active neutron detection system for spent fuel assay

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, M.M.; Kendall, P.K.

    1994-10-01

    The authors have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit the unique operating features of a 14-MeV neutron generator developed by Schlumberger. This generator and a novel detection system will be applied to the direct measurement of the fissile material content in spent fuel in place of the indirect measures used at present. The technique they are investigating is termed synchronous active neutron detection (SAND). It closely follows a method that has been used routinely in other branches of physics to detect very small signals in the presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed {open_quotes}lock-in{close_quotes} amplifiers. The authors have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. This approach is possible because the Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. The results to date are preliminary but quite promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly. It also appears to be quite resilient to background neutron interference. The interrogating neutrons appear to be nonthermal and penetrating. Although a significant amount of work remains to fully explore the relevant physics and optimize the instrument design, the underlying concept appears sound.

  8. MicroRNA Expression Analyses in Preoperative Pancreatic Juice Samples of Pancreatic Ductal Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Yoshihiko Sadakari

    2010-11-01

    Full Text Available Context Cytological assessment of pancreatic juice is commonly used to diagnose pancreatic ductal adenocarcinoma; however, the sensitivity of cytological assessment has been reported to be low. MicroRNAs are small RNAs regulating various cellular processes and have recently been identified as possible markers of malignant diseases including pancreatic ductal adenocarcinoma. Objective The purposes of this study were to prove the existence of microRNAs in pancreatic juice and to determine whether specific microRNAs in pancreatic juice could be used for detecting pancreatic ductal adenocarcinoma. Methods Relative expression levels of microRNA-21 and microRNA-155 in formalin-fixed paraffin-embedded tissues of resected specimens (no. 13 and pancreatic juice samples collected using preoperative endoscopic retrograde cholangiopancreatography (no. 21 were quantified and their expression levels were then compared to pancreatic ductal adenocarcinoma and chronic pancreatitis. Results Relative expression levels of microRNA-21 in tissue and pancreatic juice samples were significantly higher in pancreatic ductal adenocarcinoma than those in chronic pancreatitis (P=0.009 and P=0.021, respectively. The same results were obtained in the expression levels of microRNA-155 in tissue and pancreatic juice between pancreatic ductal adenocarcinoma and chronic pancreatitis (P=0.014 and P=0.021, respectively. Expression levels of microRNA-21 and microRNA-155 did not correlate with the preoperative cytological results of pancreatic juice. Conclusion MicroRNA-21 and microRNA-155 in pancreatic juice have the potential of becoming biomarkers for diagnosing pancreatic ductal adenocarcinoma.

  9. MicroRNA Expression Signatures During Malignant Progression From Barrett's Esophagus.

    Science.gov (United States)

    Bansal, Ajay; Gupta, Vijayalaxmi; Wang, Kenneth

    2016-06-01

    The rapid increase and poor survival of esophageal adenocarcinoma (EAC) have led to significant efforts to promote early detection. Given that the premalignant lesion of Barrett's esophagus (BE) is the major known risk factor for EAC, multiple investigators have studied biomarker signatures that can predict malignant progression of BE to EAC. MicroRNAs, a novel class of gene regulators, are small non-coding RNAs and have been associated with carcinogenesis. MicroRNAs are ideal biomarkers because of their remarkable stability in fixed tissues, a common method for collection of clinical specimens, and in blood either within exosomes or as microRNA-protein complexes. Multiple studies show potential of microRNAs as tissue and blood biomarkers for diagnosis and prognosis of EAC but the results need confirmation in prospective studies. Although head-to-head comparisons are lacking, microRNA panels require less genes than messenger RNA panels for diagnosis of EAC in BE. MicroRNA diagnostic panels will need to be compared for accuracy against global measures of genome instability that were recently shown to be good predictors of progression but require sophisticated analytic techniques. Early studies on blood microRNA panels are promising but have found microRNA markers to be inconsistent among studies. MicroRNA expression in blood is different between various microRNA sub-compartments such as exosomes and microRNA-protein complexes and could affect blood microRNA measurements. Further standardization is needed to yield consistent results. We have summarized the current understanding of the tissue and blood microRNA signatures that may predict the development and progression of EAC.

  10. Trading detection for resolution in active sonar receivers.

    Science.gov (United States)

    Sharma, Nabin S; Buck, John R; Simmons, James A

    2011-09-01

    This paper proposes an active sonar receivers that offers a smooth trade-off between detection and resolution. A matched filter is the optimal detector of known signals in white Gaussian noise but may fail to resolve the targets if the time separation of targets is less than the mainlobe width of the autocorrelation function of the transmitted signal. An inverse filter achieves optimal resolution performance for multiple targets in the absence of noise, but amplifies the noise outside the signal bandwidth in a manner that makes it impractical in many realistic scenarios. The proposed active sonar receiver, the variable resolution and detection receiver (VRDR) combines the matched and inverse filter properties to achieve a smooth trade-off between detection and resolution. Simulated receiver operating characteristics demonstrate that for a range of dipole sonar targets, the performance of the VRDR is superior to the matched and inverse filter, as well as another previously proposed bandlimited inverse filter.

  11. Cracks Detection Using Active Modal Damping and Piezoelectric Components

    Directory of Open Access Journals (Sweden)

    B. Chomette

    2013-01-01

    Full Text Available The dynamics of a system and its safety can be considerably affected by the presence of cracks. Health monitoring strategies attract so a great deal of interest from industry. Cracks detection methods based on modal parameters variation are particularly efficient in the case of large cracks but are difficult to implement in the case of small cracks due to measurement difficulties in the case of small parameters variation. Therefore the present study proposes a new method to detect small cracks based on active modal damping and piezoelectric components. This method uses the active damping variation identificated with the Rational Fraction Polynomial algorithm as an indicator of cracks detection. The efficiency of the proposed method is demonstrated through numerical simulations corresponding to different crack depth and locations in the case of a finite element model of a clamped-clamped beam including four piezoelectric transducers.

  12. Activation detection in fNIRS by wavelet coherence

    Science.gov (United States)

    Zhang, Xin; Niu, Haijing; Song, Yan; Fan, Yong

    2012-03-01

    Functional near infrared spectroscopy (fNIRS) is an optical technique measuring hemoglobin oxygenation and deoxygenation concentrations of the brain cortex with higher temporal resolution than current alternative techniques. The high temporal resolution enables collecting abundant brain functional information. However, the information collected by fNIRS is correlated and mixed with a variety of physiological signals. Due to the mixture effect, activation detection is one of challenges in fNIRS based studies of the brain functional activities. To achieve a better detection of activated brain regions from the complicated information measures, we present a multi-scale analysis method based on a wavelet coherence measure. In particular, the paradigm of an experiment is used as the reference signal. The coherence of the signal with data measured by fNIRS at each channel is calculated and summed up to evaluate the activation level. Experiments on simulated and real data have demonstrated that the proposed method is efficient and effective to detect activated brain regions covered by the fNIRS probe.

  13. Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleicacid probes and tyramide signal amplification

    DEFF Research Database (Denmark)

    Silahtaroglu, Asli N.; Nolting, Dorrit; Andersen, Lars Dyrskjøt

    2007-01-01

    RNAs in frozen tissue sections using fluorescence in situ hybridization (FISH). The method combines the unique miRNA recognition properties of locked nucleic acid (LNA)-modified oligonucleotide probes with FISH using the tyramide signal amplification (TSA) technology. Although both approaches have previously...... been shown to increase detection sensitivity in FISH, combining these techniques into one protocol significantly decreases the time needed for miRNA detection in cryosections, while simultaneously retaining high detection sensitivity. Starting with fixation of the tissue sections, this miRNA FISH...... protocol can be completed within approximately 6 h and allows miRNA detection in a wide variety of animal tissue cryosections as well as in human tumor biopsies at high cellular resolution....

  14. Optomagnetic Detection of MicroRNA Based on Duplex-Specific Nuclease-Assisted Target Recycling and Multilayer Core-Satellite Magnetic Superstructures

    DEFF Research Database (Denmark)

    Tian, Bo; Ma, Jing; Qiu, Zhen

    2017-01-01

    -efficiency, and potential for bioresponsive multiplexing. Herein, we demonstrate a sensitive and rapid miRNA detection method based on optomagnetic read-out, duplex-specific nuclease (DSN)-assisted target recycling, and the use of multilayer core-satellite magnetic superstructures. Triggered by the presence of target mi......RNA and DSN-assisted target recycling, the core-satellite magnetic superstructures release their "satellites" to the suspension, which subsequently can be quantified accurately in a low-cost and user-friendly optomagnetic setup. Target miRNAs are preserved in the cleaving reaction and can thereby trigger more...... cleavage and release of "satellites". For singleplex detection of let-7b, a linear detection range between 10 fM and 10 nM was observed, and a detection limit of 4.8 fM was obtained within a total assay time of 70 min. Multiplexing was achieved by releasing nanoparticles of different sizes in the presence...

  15. OCT detection of neural activity in American cockroach nervous system

    Science.gov (United States)

    Gorczyńska, Iwona; Wyszkowska, Joanna; Bukowska, Danuta; Ruminski, Daniel; Karnowski, Karol; Stankiewicz, Maria; Wojtkowski, Maciej

    2013-03-01

    We show results of a project which focuses on detection of activity in neural tissue with Optical Coherence Tomography (OCT) methods. Experiments were performed in neural cords dissected from the American cockroach (Periplaneta americana L.). Functional OCT imaging was performed with ultrahigh resolution spectral / Fourier domain OCT system (axial resolution 2.5 μm). Electrical stimulation (voltage pulses) was applied to the sensory cercal nerve of the neural cord. Optical detection of functional activation of the sample was performed in the connective between the terminal abdominal ganglion and the fifth abdominal ganglion. Functional OCT data were collected over time with the OCT beam illuminating selected single point in the connectives (i.e. OCT M-scans were acquired). Phase changes of the OCT signal were analyzed to visualize occurrence of activation in the neural cord. Electrophysiology recordings (microelectrode method) were also performed as a reference method to demonstrate electrical response of the sample to stimulation.

  16. Detecting Intermittent Steering Activity ; Development of a Phase-detection Algorithm

    NARCIS (Netherlands)

    Silva Peixoto de Aboim Chaves, H.M. da; Pauwelussen, J.J.A.; Mulder, M.; Paassen, M.M. van; Happee, R.; Mulder, M.

    2012-01-01

    Drivers usually maintain an error-neglecting control strategy (passive phase) in keeping their vehicle on the road, only to change to an error-correcting approach (active phase) when the vehicle state becomes inadequate. We developed an algorithm that is capable of detecting whether the driver is cu

  17. Pro-active data breach detection: examining accuracy and applicability on personal information detected

    CSIR Research Space (South Africa)

    Botha, J

    2016-03-01

    Full Text Available breaches but does not provide a clear indication of the level of personal information available on the internet since only reported incidents are taken into account. The possibility of pro-active automated breach detection has previously been discussed as a...

  18. Voice Activity Detection Using Fuzzy Entropy and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    R. Johny Elton

    2016-08-01

    Full Text Available This paper proposes support vector machine (SVM based voice activity detection using FuzzyEn to improve detection performance under noisy conditions. The proposed voice activity detection (VAD uses fuzzy entropy (FuzzyEn as a feature extracted from noise-reduced speech signals to train an SVM model for speech/non-speech classification. The proposed VAD method was tested by conducting various experiments by adding real background noises of different signal-to-noise ratios (SNR ranging from −10 dB to 10 dB to actual speech signals collected from the TIMIT database. The analysis proves that FuzzyEn feature shows better results in discriminating noise and corrupted noisy speech. The efficacy of the SVM classifier was validated using 10-fold cross validation. Furthermore, the results obtained by the proposed method was compared with those of previous standardized VAD algorithms as well as recently developed methods. Performance comparison suggests that the proposed method is proven to be more efficient in detecting speech under various noisy environments with an accuracy of 93.29%, and the FuzzyEn feature detects speech efficiently even at low SNR levels.

  19. Detecting Botnet Activities Based on Abnormal DNS traffic

    Directory of Open Access Journals (Sweden)

    Ahmed M. Manasrah

    2009-10-01

    Full Text Available The botnet is considered as a critical issue of the Internet due to its fast growing mechanism and affect. Recently, Botnets have utilized the DNS and query DNS server just like any legitimate hosts. In this case, it is difficult to distinguish between the legitimate DNS traffic and illegitimate DNS traffic. It is important to build a suitable solution for botnet detection in the DNS traffic and consequently protect the network from the malicious Botnets activities. In this paper, a simple mechanism is proposed to monitors the DNS traffic and detects the abnormal DNS traffic issued by the botnet based on the fact that botnets appear as a group of hosts periodically. The proposed mechanism is also able to classify the DNS traffic requested by group of hosts (group behavior and single hosts (individual behavior, consequently detect the abnormal domain name issued by the malicious Botnets. Finally, the experimental results proved that the proposed mechanism is robust and able to classify DNS traffic, and efficiently detects the botnet activity with average detection rate of 89%.

  20. Fast and Simple micro-RNA Northern Blots

    Directory of Open Access Journals (Sweden)

    Nham Tran

    2009-01-01

    Full Text Available RNA northern blots provide robust measurements of gene expression. The simple northern blot technique described in this report has been optimised to provide rapid, reproducible detection and analysis of mature and precursor forms of microRNAs. This protocol economises on the use of commercially available components and secondly reduces the hybridisation step to 2 hours.

  1. Differential microRNA expression in blood in multiple sclerosis

    DEFF Research Database (Denmark)

    Søndergaard, Helle Bach; Hesse, Dan; Krakauer, Martin

    2013-01-01

    microRNAs (miRNAs) regulate the expression of the genome at the post-transcriptional level. They play a role in autoimmunity and inflammation, and show potential for use as therapeutic targets in many diseases. With the recent detection of miRNAs in body fluids, the possibility for using miRNAs...

  2. Endocrine disruptor regulation of microRNA expression in breast carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Syreeta L Tilghman

    Full Text Available BACKGROUND: Several environmental agents termed "endocrine disrupting compounds" or EDCs have been reported to bind and activate the estrogen receptor-α (ER. The EDCs DDT and BPA are ubiquitously present in the environment, and DDT and BPA levels in human blood and adipose tissue are detectable in most if not all women and men. ER-mediated biological responses can be regulated at numerous levels, including expression of coding RNAs (mRNAs and more recently non-coding RNAs (ncRNAs. Of the ncRNAs, microRNAs have emerged as a target of estrogen signaling. Given the important implications of EDC-regulated ER function, we sought to define the effects of BPA and DDT on microRNA regulation and expression levels in estrogen-responsive human breast cancer cells. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the cellular effects of DDT and BPA, we used the human MCF-7 breast cancer cell line, which is ER (+ and hormone sensitive. Our results show that DDT and BPA potentiate ER transcriptional activity, resulting in an increased expression of receptor target genes, including progesterone receptor, bcl-2, and trefoil factor 1. Interestingly, a differential increase in expression of Jun and Fas by BPA but not DDT or estrogen was observed. In addition to ER responsive mRNAs, we investigated the ability of DDT and BPA to alter the miRNA profiles in MCF-7 cells. While the EDCs and estrogen similarly altered the expression of multiple microRNAs in MCF-7 cells, including miR-21, differential patterns of microRNA expression were induced by DDT and BPA compared to estrogen. CONCLUSIONS/SIGNIFICANCE: We have shown, for the first time, that BPA and DDT, two well known EDCs, alter the expression profiles of microRNA in MCF-7 breast cancer cells. A better understanding of the molecular mechanisms of these compounds could provide important insight into the role of EDCs in human disease, including breast cancer.

  3. MicroRNA-9 inhibits vasculogenic mimicry of glioma cell lines by suppressing Stathmin expression.

    Science.gov (United States)

    Song, Yuwen; Mu, Luyan; Han, Xuezhe; Li, Qingla; Dong, Baijing; Li, Hulun; Liu, Xiaoqian

    2013-12-01

    The purpose of this study was to investigate the functions of microRNA-9, which is a tissue-specific microRNA in central nervous system, in the vasculogenic mimicry (VM) of glioma cell lines in vitro and in vivo. Glioma cell lines U87MG, U251 and SHG44 were transfected with microRNA-9 mimic, microRNA-9 inhibitor or scramble sequences. The amount of microRNA-9 and Stathmin (STMN1) mRNA was determined by quantitative real-time PCR, and the protein expression of STMN1 was determined by western blot. Cell proliferation and apoptosis were assessed. The interactions between the 3'UTR of STMN1 and miR-9 was determined by luciferase reporter assay. The VM capacity in vitro was evaluated using VM formation assay, and the rescue experiment of STMN1 was carried out in U251 cells. The in vivo experiment was applied with animal models implanted with U87MG cells.MicroRNA-9 mimic transfection reduced proliferation and increased apoptosis in glioma cell lines (p < 0.05). MicroRNA-9 mimic up-regulated STMN1 mRNA levels but reduced its protein levels (p < 0.05), and luciferase activity of STMN1 was suppressed by microRNA-9 mimic transfection (p < 0.05). Furthermore, microRNA-9 mimic transfection suppressed tumor volume growth, as well as VM both in vitro and in vivo. The cell viability and microtube density were upregulated in U251 cells after STMN1 up-regulation (p < 0.05). STMN1 is a target of microRNA-9, and microRNA-9 could modulate cell proliferation, VM and tumor volume growth through controlling STMN1 expression. MicroRNA-9 and its targets may represent a novel panel of molecules for the development of glioma treatment.

  4. MicroRNA dysregulation in Spinal Cord Injury: causes, consequences and therapeutics

    Directory of Open Access Journals (Sweden)

    Manuel eNieto-Díaz

    2014-02-01

    Full Text Available Trauma to the spinal cord causes permanent disability to more than 180,000 people every year worldwide. The initial mechanical damage triggers a complex set of secondary events involving the neural, vascular, and immune systems that largely determine the functional outcome of the spinal cord injury (SCI. Cellular and biochemical mechanisms responsible for this secondary injury largely depend on activation and inactivation of specific gene programs. Recent studies indicate that microRNAs function as gene expression switches in key processes of the SCI. Microarray data from rodent contusion models reveal that SCI induces changes in the global microRNA expression patterns. Variations in microRNA abundance largely result from alterations in the expression of the cells at the damaged spinal cord. However, microRNA expression levels after SCI are also influenced by the infiltration of immune cells to the injury site and the death and migration of specific neural cells after injury. Evidences on the role of microRNAs in the SCI pathophysiology have come from different sources. Bioinformatic analysis of microarray data has been used to identify specific variations in microRNA expression underlying transcriptional changes in target genes, which are involved in key processes in the SCI. Direct evidences on the role of microRNAs in SCI are scarcer, although recent studies have identified several microRNAs (miR-21, miR/486, miR-20 involved in key mechanisms of the SCI such as cell death or astrogliosis, among others. From a clinical perspective, different evidences make clear that microRNAs can be potent therapeutic tools to manipulate cell state and molecular processes in order to enhance functional recovery. The present article reviews the actual knowledge on how injury affects microRNA expression and the meaning of these changes in the SCI pathophysiology, to finally explore the clinical potential of microRNAs in the SCI.

  5. Neutron threshold activation detectors (TAD) for the detection of fissions

    Science.gov (United States)

    Gozani, Tsahi; Stevenson, John; King, Michael J.

    2011-10-01

    Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons (≈3 vs. ≈0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron "flash") where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector material. The technique

  6. Tetrahedral DNA nanostructure-based microRNA biosensor coupled with catalytic recycling of the analyte.

    Science.gov (United States)

    Miao, Peng; Wang, Bidou; Chen, Xifeng; Li, Xiaoxi; Tang, Yuguo

    2015-03-25

    MicroRNAs are not only important regulators of a wide range of cellular processes but are also identified as promising disease biomarkers. Due to the low contents in serum, microRNAs are always difficult to detect accurately . In this study, an electrochemical biosensor for ultrasensitive detection of microRNA based on tetrahedral DNA nanostructure is developed. Four DNA single strands are engineered to form a tetrahedral nanostructure with a pendant stem-loop and modified on a gold electrode surface, which largely enhances the molecular recognition efficiency. Moreover, taking advantage of strand displacement polymerization, catalytic recycling of microRNA, and silver nanoparticle-based solid-state Ag/AgCl reaction, the proposed biosensor exhibits high sensitivity with the limit of detection down to 0.4 fM. This biosensor shows great clinical value and may have practical utility in early diagnosis and prognosis of certain diseases.

  7. IMPROVING VOICE ACTIVITY DETECTION VIA WEIGHTING LIKELIHOOD AND DIMENSION REDUCTION

    Institute of Scientific and Technical Information of China (English)

    Wang Huanliang; Han Jiqing; Li Haifeng; Zheng Tieran

    2008-01-01

    The performance of the traditional Voice Activity Detection (VAD) algorithms declines sharply in lower Signal-to-Noise Ratio (SNR) environments. In this paper, a feature weighting likelihood method is proposed for noise-robust VAD. The contribution of dynamic features to likelihood score can be increased via the method, which improves consequently the noise robustness of VAD.Divergence based dimension reduction method is proposed for saving computation, which reduces these feature dimensions with smaller divergence value at the cost of degrading the performance a little.Experimental results on Aurora Ⅱ database show that the detection performance in noise environments can remarkably be improved by the proposed method when the model trained in clean data is used to detect speech endpoints. Using weighting likelihood on the dimension-reduced features obtains comparable, even better, performance compared to original full-dimensional feature.

  8. Chemical weapons detection by fast neutron activation analysis techniques

    Science.gov (United States)

    Bach, P.; Ma, J. L.; Froment, D.; Jaureguy, J. C.

    1993-06-01

    A neutron diagnostic experimental apparatus has been tested for nondestructive verification of sealed munitions. Designed to potentially satisfy a significant number of van-mobile requirements, this equipment is based on an easy to use industrial sealed tube neutron generator that interrogates the munitions of interest with 14 MeV neutrons. Gamma ray spectra are detected with a high purity germanium detector, especially shielded from neutrons and gamma ray background. A mobile shell holder has been used. Possible configurations allow the detection, in continuous or in pulsed modes, of gamma rays from neutron inelastic scattering, from thermal neutron capture, and from fast or thermal neutron activation. Tests on full scale sealed munitions with chemical simulants show that those with chlorine (old generation materials) are detectable in a few minutes, and those including phosphorus (new generation materials) in nearly the same time.

  9. The Impact of Hemolysis on Cell-Free microRNA Biomarkers

    Science.gov (United States)

    Kirschner, Michaela B.; Edelman, J.James B.; Kao, Steven C-H.; Vallely, Michael P.; van Zandwijk, Nico; Reid, Glen

    2013-01-01

    Cell-free microRNAs in plasma and serum have become a promising source of biomarkers for various diseases. Despite rapid progress in this field, there remains a lack of consensus regarding optimal quantification methods, reference genes, and quality control of samples. Recent studies have shown that hemolysis occurring during blood collection has substantial impact on the microRNA content in plasma/serum. To date, the impact of hemolysis has only been investigated for a limited number of microRNAs, mainly the red blood cell (RBC)-enriched miRs-16 and -451. In contrast, the effect of hemolysis on other microRNAs – in particular those proposed as biomarkers – has not been addressed. In this study we profiled the microRNA content of hemolyzed and non-hemolyzed plasma as well as RBCs to obtain a profile of microRNAs in the circulation affected or unaffected by hemolysis. Profiling by TaqMan Array Microfluidic Cards was used to compare three pairs of hemolyzed and non-hemolyzed plasma (with varying degrees of hemolysis) and one RBC sample. A total of 136 microRNAs were detectable in at least two of the samples, and of those 15 were at least twofold elevated in all three hemolyzed samples. This number increased to 88 microRNAs for the sample with the highest level of hemolysis, with all of these also detected in the RBC profile. Thus these microRNAs represent a large proportion of detectable microRNAs and those most likely to be affected by hemolysis. Several of the hemolysis-susceptible microRNAs (e.g., miRs-21, -106a, -92a, -17, -16) have also been previously proposed as plasma/serum biomarkers of disease, highlighting the importance of rigorous quality control of plasma/serum samples used for measurement of circulating microRNAs. As low-level hemolysis is a frequent occurrence during plasma/serum collection it is critical that this is taken into account in the measurement of any candidate circulating microRNA. PMID:23745127

  10. Hemolysis and its impact on cell-free microRNA biomarkers

    Directory of Open Access Journals (Sweden)

    Michaela B Kirschner

    2013-05-01

    Full Text Available Cell-free microRNAs in plasma and serum have become a promising source of biomarkers for various diseases. Despite rapid progress in this field, there remains a lack of consensus regarding optimal quantification methods, reference genes and quality control of samples. Recent studies have shown that hemolysis occurring during blood collection has substantial impact on the microRNA content in plasma/serum. To date, the impact of hemolysis has only been investigated for a limited number of microRNAs, mainly the red blood cell (RBC-enriched miRs-16 and -451. In contrast, the effect of hemolysis on other microRNAs - in particular those proposed as biomarkers - has not been addressed. In this study we profiled the microRNA content of hemolysed and non-hemolysed plasma as well as RBCs to obtain a profile of microRNAs in the circulation affected or unaffected by hemolysis. Profiling by TaqMan Array Microfluidic Cards was used to compare three pairs of hemolysed and non-hemolysed plasma (with varying degrees of hemolysis and one RBC sample. A total of 136 microRNAs were detectable in at least two of the samples, and of those 15 were at least 2-fold elevated in all 3 hemolysed samples. This number increased to 88 microRNAs for the sample with the highest level of hemolysis, with all of these also detected in the RBC profile. Thus these microRNAs represent a large proportion of detectable microRNAs and those most likely to be affected by hemolysis. Several of the hemolysis-susceptible microRNAs (e.g. miRs-21, -106a, -92a, -17, -16 have also been previously proposed as plasma/serum biomarkers of disease, highlighting the importance of rigorous quality control of plasma/serum samples used for measurement of circulating microRNAs. As low-level hemolysis is a frequent occurrence during plasma/serum collection it is critical that this is taken into account in the measurement of any candidate circulating microRNA.

  11. Detection activity assessment and diagnosis of dental caries lesions.

    Science.gov (United States)

    Braga, Mariana M; Mendes, Fausto M; Ekstrand, Kim R

    2010-07-01

    This article reviews the current methods for detection and assessment of caries lesions focusing on applicability for daily clinical practice. The end point is to arrive at a diagnosis for each caries lesion. Visual inspection aided by a ball-ended probe is essential for caries lesions assessment and the method must be used for all patients. Use of indices, for example, the International Caries Detection and Assessment System (ICDAS), can improve the performance of this method. Using visual inspection, the clinician must decide about the presence, severity and activity of lesions. After this process, additional methods could aid the dentist in reaching a more appropriate treatment decision in some cases. The ICDAS, including the activity assessment system or the Nyvad system, seems to be the best option to reach final diagnoses for managing lesions. The radiographic method is the most recommended additional method available for daily clinical practice.

  12. Detectability of active triangulation range finder: a solar irradiance approach.

    Science.gov (United States)

    Liu, Huizhe; Gao, Jason; Bui, Viet Phuong; Liu, Zhengtong; Lee, Kenneth Eng Kian; Peh, Li-Shiuan; Png, Ching Eng

    2016-06-27

    Active triangulation range finders are widely used in a variety of applications such as robotics and assistive technologies. The power of the laser source should be carefully selected in order to satisfy detectability and still remain eye-safe. In this paper, we present a systematic approach to assess the detectability of an active triangulation range finder in an outdoor environment. For the first time, we accurately quantify the background noise of a laser system due to solar irradiance by coupling the Perez all-weather sky model and ray tracing techniques. The model is validated with measurements with a modeling error of less than 14.0%. Being highly generic and sufficiently flexible, the proposed model serves as a guide to define a laser system for any geographical location and microclimate.

  13. Doppler radar fall activity detection using the wavelet transform.

    Science.gov (United States)

    Su, Bo Yu; Ho, K C; Rantz, Marilyn J; Skubic, Marjorie

    2015-03-01

    We propose in this paper the use of Wavelet transform (WT) to detect human falls using a ceiling mounted Doppler range control radar. The radar senses any motions from falls as well as nonfalls due to the Doppler effect. The WT is very effective in distinguishing the falls from other activities, making it a promising technique for radar fall detection in nonobtrusive inhome elder care applications. The proposed radar fall detector consists of two stages. The prescreen stage uses the coefficients of wavelet decomposition at a given scale to identify the time locations in which fall activities may have occurred. The classification stage extracts the time-frequency content from the wavelet coefficients at many scales to form a feature vector for fall versus nonfall classification. The selection of different wavelet functions is examined to achieve better performance. Experimental results using the data from the laboratory and real inhome environments validate the promising and robust performance of the proposed detector.

  14. Detection activity assessment and diagnosis of dental caries lesions

    DEFF Research Database (Denmark)

    Braga, Mariana M; Mendes, Fausto M; Ekstrand, Kim R

    2010-01-01

    This article reviews the current methods for detection and assessment of caries lesions focusing on applicability for daily clinical practice. The end point is to arrive at a diagnosis for each caries lesion. Visual inspection aided by a ball-ended probe is essential for caries lesions assessment...... and the method must be used for all patients. Use of indices, for example, the International Caries Detection and Assessment System (ICDAS), can improve the performance of this method. Using visual inspection, the clinician must decide about the presence, severity and activity of lesions. After this process......, additional methods could aid the dentist in reaching a more appropriate treatment decision in some cases. The ICDAS, including the activity assessment system or the Nyvad system, seems to be the best option to reach final diagnoses for managing lesions. The radiographic method is the most recommended...

  15. SVM detection of epileptiform activity in routine EEG.

    LENUS (Irish Health Repository)

    Kelleher, Daniel

    2010-01-01

    Routine electroencephalogram (EEG) is an important test in aiding the diagnosis of patients with suspected epilepsy. These recordings typically last 20-40 minutes, during which signs of abnormal activity (spikes, sharp waves) are looked for in the EEG trace. It is essential that events of short duration are detected during the routine EEG test. The work presented in this paper examines the effect of changing a range of input values to the detection system on its ability to distinguish between normal and abnormal EEG activity. It is shown that the length of analysis window in the range of 0.5s to 1s are well suited to the task. Additionally, it is reported that patient specific systems should be used where possible due to their better performance.

  16. INTEGRAL detects renewed activity from IGR J11435-6109

    DEFF Research Database (Denmark)

    Fiocchi, M.; Chenevez, J.; Sguera, V.

    2015-01-01

    During a recent INTEGRAL public observation of Musca region, performed between 2015-12-11 17:54 and 2015-12-12 12:54 (UTC), renewed activity from the transient X-ray pulsar IGR J11435-6109 has been detected. The 22-60 keV IBIS/ISGRI flux corresponds to (10+/-1) mCrab with an effective exposure time...

  17. Detection of Unusual Human Activities Based on Behavior Modeling

    OpenAIRE

    Hiraishi, Kunihiko; Kobayashi, Koichi

    2014-01-01

    A type of services that require human physical actions and intelligent decision making exists in various real fields, such as nursing in hospitals and caregiving in nursing homes. In this paper, we propose new formalism for modeling human behavior in such services. Behavior models are estimated from event-logs, and can be used for analysis of human activities. We show two analysis methods: one is to detect unusual human activities that appear in event-logs, and the other is to find staffs tha...

  18. A militarily fielded thermal neutron activation sensor for landmine detection

    Energy Technology Data Exchange (ETDEWEB)

    Clifford, E.T.H. [Bubble Technology Industries, Chalk River (Canada); McFee, J.E. [Defence R and D Canada-Suffield, Medicine Hat (Canada)], E-mail: john.mcfee@drdc-rddc.gc.ca; Ing, H.; Andrews, H.R.; Tennant, D.; Harper, E. [Bubble Technology Industries, Chalk River (Canada); Faust, A.A. [Defence R and D Canada-Suffield, Medicine Hat (Canada)

    2007-08-21

    The Canadian Department of National Defence has developed a teleoperated, vehicle-mounted, multi-sensor system to detect anti-tank landmines on roads and tracks in peacekeeping operations. A key part of the system is a thermal neutron activation (TNA) sensor which is placed above a suspect location to within a 30 cm radius and confirms the presence of explosives via detection of the 10.835 MeV gamma ray associated with thermal neutron capture on {sup 14}N. The TNA uses a 100{mu}g{sup 252}Cf neutron source surrounded by four 7.62cmx7.62cm NaI(Tl) detectors. The system, consisting of the TNA sensor head, including source, detectors and shielding, the high-rate, fast pulse processing electronics and the data processing methodology are described. Results of experiments to characterize detection performance are also described. The experiments have shown that anti-tank mines buried 10 cm or less can be detected in roughly a minute or less, but deeper mines and mines significantly displaced horizontally take considerably longer time. Mines as deep as 30 cm can be detected for long count times (1000 s). Four TNA detectors are now in service with the Canadian Forces as part of the four multi-sensor systems, making it the first militarily fielded TNA sensor and the first militarily fielded confirmation sensor for landmines. The ability to function well in adverse climatic conditions has been demonstrated, both in trials and operations.

  19. The Effects Of Stellar Activity On Detecting And Characterising Planets

    Science.gov (United States)

    Aigrain, Suzanne; Angus, R.; Barstow, J.; Rajpaul, V.; Gillen, E.; Parviainen, H.; Pope, B.; Roberts, S.; McQuillan, A.; Gibson, N.; Mazeh, T.; Pont, F.; Zucker, S.

    2016-08-01

    Intrinsic stellar variability associated with magnetic activity, rotation and convection, affects the detection of exoplanets via the transit and radial velocity methods, and the characterisation of their atmospheres. I will review the increasingly sophisticated methods developed in the last few years to mitigate this problem, and outline how stellar variability is likely to impact the field of exoplanets in the future. Planetary transits last a few hours, much shorter than the rotational modulation of star spots (day to weeks), but smaller-scale variability is nonetheless an important limiting factor in our ability to detect transits of Earth analogs in Kepler and Plato data. In radial velocity, the problem is even more severe, as the planet's signal occurs on the orbital timescale, which can coincide with the range expected for stellar rotation periods or activity cycles - but the spectra used to extract radial velocities contain a wealth of information about stellar activity that can be used to disentangle the two types of signals. Finally, when using transits or phase curves to probe the composition and dynamics of planetary atmospheres, star spots must be accounted for very carefully, as they can mimic or mask planetary atmosphere signals. On the positive side, the sensitivity of planet search and characterisation experiments to stellar activity means that they are a treasure trove of information about stellar activity. The continued success of exoplanet surveys depends on our making the best possible use of this information.

  20. Use of the Protease Fluorescent Detection Kit to Determine Protease Activity

    OpenAIRE

    Cupp-Enyard, Carrie

    2009-01-01

    The Protease Fluorescent Detection Kit provides ready-to-use reagents for detecting the presence of protease activity. This simple assay to detect protease activity uses casein labeled with fluorescein isothiocyanate (FITC) as the substrate.

  1. Sensor to detect endothelialization on an active coronary stent

    Directory of Open Access Journals (Sweden)

    Coffey Arthur C

    2010-11-01

    Full Text Available Abstract Background A serious complication with drug-eluting coronary stents is late thrombosis, caused by exposed stent struts not covered by endothelial cells in the healing process. Real-time detection of this healing process could guide physicians for more individualized anti-platelet therapy. Here we present work towards developing a sensor to detect this healing process. Sensors on several stent struts could give information about the heterogeneity of healing across the stent. Methods A piezoelectric microcantilever was insulated with parylene and demonstrated as an endothelialization detector for incorporation within an active coronary stent. After initial characterization, endothelial cells were plated onto the cantilever surface. After they attached to the surface, they caused an increase in mass, and thus a decrease in the resonant frequencies of the cantilever. This shift was then detected electrically with an LCR meter. The self-sensing, self-actuating cantilever does not require an external, optical detection system, thus allowing for implanted applications. Results A cell density of 1300 cells/mm2 on the cantilever surface is detected. Conclusions We have developed a self-actuating, self-sensing device for detecting the presence of endothelial cells on a surface. The device is biocompatible and functions reliably in ionic liquids, making it appropriate for implantable applications. This sensor can be placed along the struts of a coronary stent to detect when the struts have been covered with a layer of endothelial cells and are no longer available surfaces for clot formation. Anti-platelet therapy can be adjusted in real-time with respect to a patient's level of healing and hemorrhaging risks.

  2. Overview of MicroRNA Biology

    OpenAIRE

    2015-01-01

    In considering an overview of microRNA biology, it is useful to consider microRNAs as a part of cellular communication. At the simplest level, microRNAs act to decrease the expression of mRNAs that contain stretches of sequence complementary to the microRNA. This function can be likened to the function of endogenous or synthetic short interfering RNA (siRNA). However, microRNA function is more complicated and nuanced than this ‘on-off’ model would suggest. Further, many microRNA targets are t...

  3. Differentially expressed microRNA in multiple sclerosis: A window into pathogenesis?

    DEFF Research Database (Denmark)

    Martin, Nellie Anne; Illés, Zsolt

    2014-01-01

    . Most studies applied a non-candidate approach of screening by microarray and validation by quantitative polymerase chain reaction or next generation sequencing; others used a candidate-driven approach. Despite a relatively high number of multiple sclerosis-associated microRNA, just a few could...... be repeatedly found, even if similar biological materials were examined. Only part of the identified microRNA has been extensively studied, and the biological function has not been explored in the majority. Some of the microRNA related to multiple sclerosis are also differentially expressed in other autoimmune...... diseases or autoimmune models. In the present review, we discuss microRNA related to disease compartments, activity and phenotype. We also focus on several microRNA with well-defined functions, or because of particular interest due to either validation by several independent studies or in-depth exploration...

  4. MicroRNA and cancer

    National Research Council Canada - National Science Library

    Jansson, Martin D; Lund, Anders H

    2012-01-01

    .... The best characterized non‐coding RNA family consists in humans of about 1400 microRNAs for which abundant evidence have demonstrated fundamental importance in normal development, differentiation, growth control and in human...

  5. TNF-α-induced NF-κB activation upregulates microRNA-150-3p and inhibits osteogenesis of mesenchymal stem cells by targeting β-catenin.

    Science.gov (United States)

    Wang, Nan; Zhou, Zubin; Wu, Tianyi; Liu, Wei; Yin, Peipei; Pan, Chenhao; Yu, Xiaowei

    2016-03-01

    Although systemic or local inflammation, commonly featured by cytokine activation, is implicated in patients with bone loss, the underlying mechanisms are still elusive. As microRNAs (miR), a class of small non-coding RNAs involved in essential physiological processes, have been found in bone cells, we aimed to investigate the role of miR for modulating osteogenesis in inflammatory milieu using human bone marrow mesenchymal stem cells (hBM-MSCs). Induced by proinflammatory cytokine TNF-α, miR-150-3p was identified as a key player in suppressing osteogenic differentiation through downregulating β-catenin, a transcriptional co-activator promoting bone formation. TNF-α treatment increased the levels of miR-150-3p, which directly targeted the 3'-UTR of β-catenin mRNA and in turn repressed its expression. In addition, we observed that miR-150-3p expression was increased by TNF-α via IKK-dependent NF-κB signalling. There are three putative NF-κB binding sites in the promoter region of miR-150, and we identified -686 region as the major NF-κB binding site for stimulation of miR-150 expression by TNF-α. Finally, the osteogenic differentiation of hBM-MSCs was inhibited by either miR-150-3p overexpression or TNF-α treatment, which was prevented by anti-miR-150-3p oligonucleotides. Taken together, our data suggested that miR-150-3p integrated inflammation signalling and osteogenic differentiation and may contribute to the inhibition effects of inflammation on bone formation, thus expanding the pathophysiological functions of microRNAs in bone diseases.

  6. A new fluorescence turn-on nanobiosensor for the detection of micro-RNA-21 based on a DNA-gold nanocluster

    Science.gov (United States)

    Hosseini, Morteza; Ahmadi, Elnaz; Borghei, Yasaman-Sadat; Ganjali, Mohammad Reza

    2017-03-01

    In this study, DNA/gold nanoclusters (AuNCs) were used to develop an AuNC-based turn-on fluorescence probe for the analysis of mi-RNA-21, which is a potential screening biomarker for cancer detection. AuNCs on a DNA scaffold were prepared through a one-pot wet-chemical route and evaluated by transmission electron microscopy and dynamic light scattering. Experiments revealed that the fluorescence intensity of the DNA-AuNCs showed a gradual increase with the addition of the target species in a concentration range from 1pM to 10 nM. The method had a detection limit of 0.7 pM and was able to discriminate the target species from mismatched mi-RNAs very efficiently. The method was used for the determination of mi-RNA spiked human plasma samples, and was evaluated as a promising nanobiosensor for application in the selective detection of mi-RNA in various biomedical and clinical tests.

  7. Identification of reference genes for relative quantification of circulating microRNAs in bovine serum.

    Directory of Open Access Journals (Sweden)

    In-Seon Bae

    Full Text Available Circulating microRNAs in body fluids have been implicated as promising biomarkers for physiopathology disorders. Currently, the expression levels of circulating microRNAs are estimated by reverse transcription quantitative real-time polymerase chain reaction. Use of appropriate reference microRNAs for normalization is critical for accurate microRNA expression analysis. However, no study has systematically investigated reference genes for evaluating circulating microRNA expression in cattle. In this study, we describe the identification and characterization of appropriate reference microRNAs for use in the normalization of circulating microRNA levels in bovine serum. We evaluated the expression stability of ten candidate reference genes in bovine serum by using reverse transcription quantitative real-time polymerase chain reaction. Data were analyzed using geNorm, NormFinder, and BestKeeper statistical algorithms. The results consistently showed that a combination of miR-93 and miR-127 provided the most stably expressed reference. The suitability of these microRNAs was validated, and even when compared among different genders or breeds, the combination of miR-93 and miR-127 was ranked as the most stable microRNA reference. Therefore, we conclude that this combination is the optimal endogenous reference for reverse transcription quantitative real-time polymerase chain reaction-based detection of microRNAs in bovine serum. The data presented in this study are crucial to successful biomarker discovery and validation for the diagnosis of physiopathological conditions in cattle.

  8. Detection of the under-soil intruder activity

    Science.gov (United States)

    Cechak, Jaroslav

    2007-04-01

    The presented paper focuses on the possibilities of technical methods designed to detect a trespasser under the ground, and in general on the possibilities of detection a trespasser behind an obstruction. The paper analyses method of detection of a trespasser that were practically verified by the author of the paper. The first part of the paper discusses the characteristics and use of piezoelectric films that could be used as a replacement for the traditional geophone for detection of underground mining operation. It also provides a block connection diagram of the measuring chain and photos of the practical implementation of the sensor. The consequent part of the paper then discusses the possibilities of detecting a trespasser based on electromagnetic waves emission by humans in the ELF - Extremely Low Frequency band. The paper is supplemented with illustrative photos and results of numeric processing of signals in the form of graphs and courses. The history of excavating and using tunnels spans long into the past. Tunnels were used not only as storage for food and war material but mainly as effective means of protection against attackers. A significant motivating factor for constructing tunnels lies in the hidden possibility of movement of people and transfer of material under the ground of a protected perimeter. At present some tunnels are used as roads for smuggling drugs, weapons, ammunition or illegal passages of people. There are even cases, not exceptional, when tunnels were excavated with the aim to rob a bank safe etc. The fact that construction of tunnels, often quite primitive ones, is not sporadic, can be continually documented not only by historical sources but often also by the daily news summary. The concurrent lack of proper technological means results in the renaissance of using tunnels for illegal purposes even at present. The presented paper focuses on the above mentioned area and points to little used physical principles of detection underground

  9. MicroRNAs and Cardiovascular Disease in Diabetes Mellitus

    Science.gov (United States)

    Ding, Yue

    2017-01-01

    Cardiovascular disease (CVD) is the major macrovascular complication of diabetes mellitus. Recently, although CVD morbidity and mortality have decreased as a result of comprehensive control of CVD risk factors, CVD remains the leading cause of death of patients with diabetes in many countries, indicating the potential underlying pathophysiological mechanisms. MicroRNAs are a class of noncoding, single-stranded RNA molecules that are involved in β-cell function, insulin secretion, insulin resistance, skeletal muscle, and adipose tissue and which play an important role in glucose homeostasis and the pathogenesis of diabetic complications. Here, we review recent progress in research on microRNAs in endothelial cell and vascular smooth muscle cell dysfunction, macrophage and platelet activation, lipid metabolism abnormality, and cardiomyocyte repolarization in diabetes mellitus. We also review the progress of microRNAs as potential biomarkers and therapeutic targets of CVD in patients with diabetes.

  10. Active Sonar Detection in Reverberation via Signal Subspace Extraction Algorithm

    Directory of Open Access Journals (Sweden)

    Ma Xiaochuan

    2010-01-01

    Full Text Available This paper presents a new algorithm called Signal Subspace Extraction (SSE for detecting and estimating target echoes in reverberation. The new algorithm can be taken as an extension of the Principal Component Inverse (PCI and maintains the benefit of PCI algorithm and moreover shows better performance due to a more reasonable reverberation model. In the SSE approach, a best low-rank estimate of a target echo is extracted by decomposing the returns into short duration subintervals and by invoking the Eckart-Young theorem twice. It was assumed that CW is less efficiency in lower Doppler than broadband waveforms in spectrum methods; however, the subspace methods show good performance in detection whatever the respective Doppler is. Hence, the signal emitted by active sonar is CW in the new algorithm which performs well in detection and estimation even when low Doppler is low. Further, a block forward matrix is proposed to extend the algorithm to the sensor array problem. The comparison among the block forward matrix, the conventional matrix, and the three-mode array is discussed. Echo separation is also provided by the new algorithm. Examples are presented using both real, active-sonar data and simulated data.

  11. Detection of pesticides in active and depopulated beehives in Uruguay.

    Science.gov (United States)

    Pareja, Lucía; Colazzo, Marcos; Pérez-Parada, Andrés; Niell, Silvina; Carrasco-Letelier, Leonidas; Besil, Natalia; Cesio, María Verónica; Heinzen, Horacio

    2011-10-01

    The influence of insecticides commonly used for agricultural purposes on beehive depopulation in Uruguay was investigated. Honeycombs, bees, honey and propolis from depopulated hives were analyzed for pesticide residues, whereas from active beehives only honey and propolis were evaluated. A total of 37 samples were analyzed, representing 14,800 beehives. In depopulated beehives only imidacloprid and fipronil were detected and in active beehives endosulfan, coumaphos, cypermethrin, ethion and chlorpyrifos were found. Coumaphos was present in the highest concentrations, around 1,000 μg/kg, in all the propolis samples from active beehives. Regarding depopulated beehives, the mean levels of imidacloprid found in honeycomb (377 μg/kg, Standard Deviation: 118) and propolis (60 μg/kg, Standard Deviation: 57) are higher than those described to produce bee disorientation and fipronil levels detected in bees (150 and 170 μg/kg) are toxic per se. The other insecticides found can affect the global fitness of the bees causing weakness and a decrease in their overall productivity. These preliminary results suggest that bees exposed to pesticides or its residues can lead them in different ways to the beehive.

  12. Detection of Pesticides in Active and Depopulated Beehives in Uruguay

    Directory of Open Access Journals (Sweden)

    Horacio Heinzen

    2011-09-01

    Full Text Available The influence of insecticides commonly used for agricultural purposes on beehive depopulation in Uruguay was investigated. Honeycombs, bees, honey and propolis from depopulated hives were analyzed for pesticide residues, whereas from active beehives only honey and propolis were evaluated. A total of 37 samples were analyzed, representing 14,800 beehives. In depopulated beehives only imidacloprid and fipronil were detected and in active beehives endosulfan, coumaphos, cypermethrin, ethion and chlorpyrifos were found. Coumaphos was present in the highest concentrations, around 1,000 µg/kg, in all the propolis samples from active beehives. Regarding depopulated beehives, the mean levels of imidacloprid found in honeycomb (377 µg/kg, Standard Deviation: 118 and propolis (60 µg/kg, Standard Deviation: 57 are higher than those described to produce bee disorientation and fipronil levels detected in bees (150 and 170 µg/kg are toxic per se. The other insecticides found can affect the global fitness of the bees causing weakness and a decrease in their overall productivity. These preliminary results suggest that bees exposed to pesticides or its residues can lead them in different ways to the beehive.

  13. Analysis of the restricting factors of laser countermeasure active detection technology

    Science.gov (United States)

    Zhang, Yufa; Sun, Xiaoquan

    2016-07-01

    The detection effect of laser active detection system is affected by various kinds of factors. In view of the application requirement of laser active detection, the influence factors for laser active detection are analyzed. The mathematical model of cat eye target detection distance has been built, influence of the parameters of laser detection system and the environment on detection range and the detection efficiency are analyzed. Various parameters constraint detection performance is simulated. The results show that the discovery distance of laser active detection is affected by the laser divergence angle, the incident angle and the visibility of the atmosphere. For a given detection range, the laser divergence angle and the detection efficiency are mutually restricted. Therefore, in view of specific application environment, it is necessary to select appropriate laser detection parameters to achieve optimal detection effect.

  14. Isolation of microRNA targets using biotinylated synthetic microRNAs

    DEFF Research Database (Denmark)

    Ørom, Ulf Andersson; Lund, Anders H

    2007-01-01

    MicroRNAs are small regulatory RNAs found in multicellular organisms where they post-transcriptionally regulate gene expression. In animals, microRNAs bind mRNAs via incomplete base pairings making the identification of microRNA targets inherently difficult. Here, we present a detailed method...... for experimental identification of microRNA targets based on affinity purification of tagged microRNAs associated with their targets. Udgivelsesdato: 2007-Oct...

  15. MicroRNAs and spermatogenesis.

    Science.gov (United States)

    Kotaja, Noora

    2014-06-01

    In mammals, male gametes are produced inside the testis by spermatogenesis, which has three phases: mitotic proliferation of spermatogonia, meiosis of spermatocytes, and haploid differentiation of spermatids. The genome of male germ cells is actively transcribed to produce phase-specific gene expression patterns. Male germ cells have a complex transcriptome. In addition to protein-coding messenger RNAs, many noncoding RNAs, including microRNAs (miRNAs), are produced. The miRNAs are important regulators of gene expression. They function mainly post-transcriptionally to control the stability or translation of their target messenger RNAs. The miRNAs are expressed in a cell-specific manner during spermatogenesis to participate in the control of each step of male germ cell differentiation. Genetically modified mouse models have demonstrated the importance of miRNA pathways for normal spermatogenesis, and functional studies have been designed to dissect the roles of specific miRNAs in distinct cell types. Clinical studies have exploited the well-defined expression profiles of miRNAs, and human spermatozoal or seminal plasma miRNAs have been explored as potential biomarkers for male factor infertility. This review article discusses the current findings that support the central role of miRNAs in the regulation of spermatogenesis and male fertility.

  16. Mining bipartite graphs to improve semantic pedophile activity detection

    OpenAIRE

    Fournier, Raphaël; Danisch, Maximilien

    2014-01-01

    International audience; Peer-to-peer (P2P) networks are popular to exchange large volumes of data through the Internet. Paedophile activity is a very important topic for our society and some works have recently attempted to gauge the extent of paedophile exchanges on P2P networks. A key issue is to obtain an efficient detection tool, which may decide if a sequence of keywords is related to the topic or not. We propose to use social network analysis in a large dataset from a P2P network to imp...

  17. Minimum Detectable Activity for Tomographic Gamma Scanning System

    Energy Technology Data Exchange (ETDEWEB)

    Venkataraman, Ram [Canberra Industries (AREVA BDNM), Meriden, CT (United States); Smith, Susan [Canberra Industries (AREVA BDNM), Meriden, CT (United States); Kirkpatrick, J. M. [Canberra Industries (AREVA BDNM), Meriden, CT (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    For any radiation measurement system, it is useful to explore and establish the detection limits and a minimum detectable activity (MDA) for the radionuclides of interest, even if the system is to be used at far higher values. The MDA serves as an important figure of merit, and often a system is optimized and configured so that it can meet the MDA requirements of a measurement campaign. The non-destructive assay (NDA) systems based on gamma ray analysis are no exception and well established conventions, such the Currie method, exist for estimating the detection limits and the MDA. However, the Tomographic Gamma Scanning (TGS) technique poses some challenges for the estimation of detection limits and MDAs. The TGS combines high resolution gamma ray spectrometry (HRGS) with low spatial resolution image reconstruction techniques. In non-imaging gamma ray based NDA techniques measured counts in a full energy peak can be used to estimate the activity of a radionuclide, independently of other counting trials. However, in the case of the TGS each “view” is a full spectral grab (each a counting trial), and each scan consists of 150 spectral grabs in the transmission and emission scans per vertical layer of the item. The set of views in a complete scan are then used to solve for the radionuclide activities on a voxel by voxel basis, over 16 layers of a 10x10 voxel grid. Thus, the raw count data are not independent trials any more, but rather constitute input to a matrix solution for the emission image values at the various locations inside the item volume used in the reconstruction. So, the validity of the methods used to estimate MDA for an imaging technique such as TGS warrant a close scrutiny, because the pair-counting concept of Currie is not directly applicable. One can also raise questions as to whether the TGS, along with other image reconstruction techniques which heavily intertwine data, is a suitable method if one expects to measure samples whose activities

  18. Molecular Beacon-Based MicroRNA Imaging During Neurogenesis.

    Science.gov (United States)

    Lee, Jonghwan; Kim, Soonhag

    2016-01-01

    The fluorescence monitoring system for examining endogenous microRNA (miRNA) activity in cellular level provides crucial information on not only understanding a critical role of miRNA involving a variety of biological processes, but also evaluating miRNA expression patterns in a noninvasive manner. In this protocol, we report the details of a new procedure for a molecular beacon-based miRNA monitoring system, which includes the illustration scheme for miRNA detection strategy, exogenous miRNA detection, and measurement of endogenous miRNA expression level during neurogenesis. The fluorescence signal of miR-124a beacon quenched by BHQ2 was gradually recovered as increasing concentration of the miR-124a in tube. The functional work of miR-124a beacon was examined in intracellular environment, allowing for the internalization of the miR-124a beacon by lipofectamine, which resulted in activated fluorescent signals of the miR-124a beacon in the HeLa cells after the addition of synthetic miR-124a. The endogenous miR-124a expression level was detected by miR-124a beacon system during neurogenesis, showing brighter fluorescence intensity in cytoplasmic area of P19 cells after induction of neuronal differentiation by retinoic acid. The molecular beacon based-miRNA detection technique could be applicable to the simultaneous visualization of a variety of miRNA expression patterns using different fluorescence dyes. For the study of examining endogenous miRNA expression level using miRNA-beacon system, if cellular differentiation step is already prepared, transfection step of miR-124a beacon into P19 cells, and acquisition of activated fluorescence signal measured by confocal microscope can be conducted approximately within 6 h.

  19. Structural Damage Detection with Piezoelectric Wafer Active Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Giurgiutiu, Victor, E-mail: victorg@sc.edu [University of South Carolina, SC 29205 (United States)

    2011-07-19

    Piezoelectric wafer active sensors (PWAS) are lightweight and inexpensive enablers for a large class of damage detection and structural health monitoring (SHM) applications. This paper starts with a brief review of PWAS physical principles and basic modelling and continues by considering the various ways in which PWAS can be used for damage detection: (a) embedded guided-wave ultrasonics, i.e., pitch-catch, pulse-echo, phased arrays, thickness mode; (b) high-frequency modal sensing, i.e., the electro-mechanical (E/M) impedance method; (c) passive detection, i.e., acoustic emission and impact detection. An example of crack-like damage detection and localization with PWAS phased arrays on a small metallic plate is given. The modelling of PWAS detection of disbond damage in adhesive joints is achieved with the analytical transfer matrix method (TMM). The analytical methods offer the advantage of fast computation which enables parameter studies and carpet plots. A parametric study of the effect of crack size and PWAS location on disbond detection is presented. The power and energy transduction between PWAS and structure is studied analytically with a wave propagation method. Special attention is given to the mechatronics modeling of the complete transduction cycle from electrical excitation into ultrasonic acoustic waves by the piezoelectric effect, the transfer through the structure, and finally reverse piezoelectric transduction to generate the received electric signal. It is found that the combination of PWAS size and wave frequency/wavelength play an important role in identifying transduction maxima and minima that could be exploited to achieve an optimum power-efficient design. The multi-physics finite element method (MP-FEM), which permits fine discretization of damaged regions and complicated structural geometries, is used to study the generation of guided waves in a plate from an electrically excited transmitter PWAS and the capture of these waves as electric

  20. Structural Damage Detection with Piezoelectric Wafer Active Sensors

    Science.gov (United States)

    Giurgiutiu, Victor

    2011-07-01

    Piezoelectric wafer active sensors (PWAS) are lightweight and inexpensive enablers for a large class of damage detection and structural health monitoring (SHM) applications. This paper starts with a brief review of PWAS physical principles and basic modelling and continues by considering the various ways in which PWAS can be used for damage detection: (a) embedded guided-wave ultrasonics, i.e., pitch-catch, pulse-echo, phased arrays, thickness mode; (b) high-frequency modal sensing, i.e., the electro-mechanical (E/M) impedance method; (c) passive detection, i.e., acoustic emission and impact detection. An example of crack-like damage detection and localization with PWAS phased arrays on a small metallic plate is given. The modelling of PWAS detection of disbond damage in adhesive joints is achieved with the analytical transfer matrix method (TMM). The analytical methods offer the advantage of fast computation which enables parameter studies and carpet plots. A parametric study of the effect of crack size and PWAS location on disbond detection is presented. The power and energy transduction between PWAS and structure is studied analytically with a wave propagation method. Special attention is given to the mechatronics modeling of the complete transduction cycle from electrical excitation into ultrasonic acoustic waves by the piezoelectric effect, the transfer through the structure, and finally reverse piezoelectric transduction to generate the received electric signal. It is found that the combination of PWAS size and wave frequency/wavelength play an important role in identifying transduction maxima and minima that could be exploited to achieve an optimum power-efficient design. The multi-physics finite element method (MP-FEM), which permits fine discretization of damaged regions and complicated structural geometries, is used to study the generation of guided waves in a plate from an electrically excited transmitter PWAS and the capture of these waves as electric

  1. MicroRNAs Contribute to Promyelocyte Apoptosis in As2O3-Treated APL Cells

    Directory of Open Access Journals (Sweden)

    Haihai Liang

    2013-12-01

    Full Text Available Background: Arsenic trioxide (As2O3, an ancient drug used in traditional Chinese medicine, has substantial anticancer activities, especially in the treatment of patients suffering from acute promyelocytic leukemia (APL; however the underlying mechanisms are not well understood. Methods: MTT assay was used to detect the cell viability. Flow Cytometry analysis and caspase-3 activity assay were used to measure apoptosis of APL cells. Caspase-3 and Bax levels were analyzed by western blot and let-7d and miR-766 levels were determined by real-time RT-PCR. Results: As2O3 significantly inhibited cell viability and induced apoptosis in APL cells. Several microRNAs, including let-7d and miR-766, were dysregulated in APL cells treated with As2O3. The expression of caspase-3 and Bax, which are targets of let-7d and miR-766, respectively, were up-regulated in As2O3 treated cells. Transfection of let-7d and miR-766 into NB4 cells decreased the expression of caspase-3 and Bax, respectively. Correspondingly, transfection of these microRNAs increased NB4 cell viability. As2O3 induced degradation of promyelocytic leukemia (PML, and then induced the down-regulation of both let-7d and miR-766 in NB4 cells. Conclusions: We construct a dysregulated microRNA network involved in As2O3-induced apoptosis in APL. Targeting this network may be a new strategy for the prevention of side effects associated with APL treatment with As2O3.

  2. MicroRNAs in renal fibrosis

    Directory of Open Access Journals (Sweden)

    Arthur Chi-Kong Chung

    2015-02-01

    Full Text Available MicroRNAs (miRNAs are endogenous short noncoding RNAs that regulate most of important cellular processes by inhibiting gene expression through the post-transcriptional repression of their target mRNAs. . In kidneys, miRNAs have been associated in renal development, homeostasis, and physiological functions. Results from clinical and experimental animal studies demonstrate that miRNAs play essential roles in the pathogenesis of various renal diseases. Chronic kidney diseases (CKD is characterized by renal fibrosis. Transforming growth factor beta (TGF-β is recognized as a major mediator of renal fibrosis because it is able to stimulate the accumulation of extracellular matrix proteins to impair normal kidney function. Recently, emerging evidence demonstrate the relationship between TGF-β signaling and miRNAs expression during renal diseases. TGF-β regulates expression of several microRNAs, such as miR-21, miR-192, miR-200, miR-433, and miR-29. MiR-21, miR-192, and miR-433 which are positively induced by TGF-β signaling play a pathological role in kidney diseases. In contrast, members in both miR-29 and miR-200 families which are inhibited by TGF-β signaling protect kidneys from renal fibrosis by suppressing the deposition of extracellular matrix and preventing epithelial-to-mesenchymal transition, respectively. Clinically, the presence of miRNAs in blood and urine has been examined to be early biomarkers for detecting renal diseases. From experimental animal studies of CKD, targeting microRNAs also provides evidence about therapeutic potential of miRNAs during renal diseases. Now, it comes to the stage to examine the exact mechanisms of miRNAs during the initiation and progression of renal diseases. Therefore, determining the function of miRNAs in renal fibrosis may facilitate the development of both early diagnosis and treatment of renal diseases.

  3. Enhanced ULF electromagnetic activity detected by DEMETER above seismogenic regions

    CERN Document Server

    Athanasiou, M; David, C; Anagnostopoulos, G

    2013-01-01

    In this paper we present results of a comparison between ultra low frequency (ULF) electromagnetic (EM) radiation, recorded by an electric field instrument (ICE) onboard the satellite DEMETER in the topside ionosphere, and the seismicity of regions with high and lower seiismic activity. In particular we evaluated the energy variations of the ULF Ez-electric field component during a period of four years (2006-2009), in order to examine check the possible relation of ULF EM radiation with seismogenic regions located in central America, Indonesia, Eastern Mediterranean Basin and Greece. As a tool of evaluating the ULF Ez energy variations we used Singular Spectrum Analysis (SSA) techniques. The results of our analysis clearly show a significant increase of the ULF EM energy emmited from regions of highest seismic activity at the tectonic plates boundaries. We interpret these results as suggesting that the highest ULF EM energy detected in the topside ionosphere is originated from seismic processes within Earth's...

  4. The Detection and Measurement of the Activity Size Distributions

    Science.gov (United States)

    Ramamurthi, Mukund

    The infiltration of radon into the indoor environment may cause the exposure of the public to excessive amounts of radioactivity and has spurred renewed research interest over the past several years into the occurrence and properties of radon and its decay products in indoor air. The public health risks posed by the inhalation and subsequent lung deposition of the decay products of Rn-222 have particularly warranted the study of their diffusivity and attachment to molecular cluster aerosols in the ultrafine particle size range (0.5-5 nm) and to accumulation mode aerosols. In this research, a system for the detection and measurement of the activity size distributions and concentration levels of radon decay products in indoor environments has been developed. The system is microcomputer-controlled and involves a combination of multiple wire screen sampler -detector units operated in parallel. The detection of the radioactivity attached to the aerosol sampled in these units permits the determination of the radon daughter activity -weighted size distributions and concentration levels in indoor air on a semi-continuous basis. The development of the system involved the design of the detection and measurement system, its experimental characterization and testing in a radon-aerosol chamber, and numerical studies for the optimization of the design and operating parameters of the system. Several concepts of utility to aerosol size distribution measurement methods sampling the ultrafine cluster size range evolved from this study, and are discussed in various chapters of this dissertation. The optimized multiple wire screen (Graded Screen Array) system described in this dissertation is based on these concepts. The principal facet of the system is its ability to make unattended measurements of activity size distributions and concentration levels of radon decay products on a semi-continuous basis. Thus, the capability of monitoring changes in the activity concentrations and size

  5. Nano metal-organic framework (NMOF)-based strategies for multiplexed microRNA detection in solution and living cancer cells

    Science.gov (United States)

    Wu, Yafeng; Han, Jianyu; Xue, Peng; Xu, Rong; Kang, Yuejun

    2015-01-01

    MiRNAs are an emerging type of biomarker for diagnostics and prognostics. A reliable sensing strategy that can monitor miRNA expression in living cancer cells would be critical in view of its extensive advantages for fundamental research related to miRNA-associated bioprocesses and biomedical applications. Conventional miRNA sensing methods include northern blot, microarrays and real-time quantitative PCR. However, none of them is able to monitor miRNA levels expressed in living cancer cells in a real-time fashion. Some fluorescennt biosensors developed recently from carbon nanomaterials, such as single-walled carbon nanotubes (SWNTs), graphene oxide (GO), and carbon nanoparticles, have been successfully used for assaying miRNA in vitro; however the preparation processes are often expensive, complicated and time-consuming, which have motivated the research on other substitute and novel materials. Herein we present a novel sensing strategy based on peptide nucleic acid (PNA) probes labeled with fluorophores and conjugated with an NMOF vehicle to monitor multiplexed miRNAs in living cancer cells. The NMOF works as a fluorescence quencher of the labelled PNA that is firmly bound with the metal center. In the presence of a target miRNA, PNA is hybridized and released from the NMOF leading to the recovery of fluorescence. This miRNA sensor not only enables the quantitative and highly specific detection of multiplexed miRNAs in living cancer cells, but it also allows the precise and in situ monitoring of the spatiotemporal changes of miRNA expression.MiRNAs are an emerging type of biomarker for diagnostics and prognostics. A reliable sensing strategy that can monitor miRNA expression in living cancer cells would be critical in view of its extensive advantages for fundamental research related to miRNA-associated bioprocesses and biomedical applications. Conventional miRNA sensing methods include northern blot, microarrays and real-time quantitative PCR. However, none of

  6. Adhesive disbond detection using piezoelectric wafer active sensors

    Science.gov (United States)

    Roth, William; Giurgiutiu, Victor

    2015-04-01

    The aerospace industry continues to increase the use of adhesives for structural bonding due to the increased joint efficiency (reduced weight), even distribution of the load path and decreases in stress concentrations. However, the limited techniques for verifying the strength of adhesive bonds has reduced its use on primary structures and requires an intensive inspection schedule. This paper discusses a potential structural health monitoring (SHM) technique for the detection of disbonds through the in situ inspection of adhesive joints. This is achieved through the use of piezoelectric wafer active sensors (PWAS), thin unobtrusive sensors which are permanently bonded to the aircraft structure. The detection method discussed in this study is electromechanical impedance spectroscopy (EMIS), a local vibration method. This method detects disbonds from the change in the mechanical impedance of the structure surrounding the disbond. This paper will discuss how predictive modeling can provide valuable insight into the inspection method, and provide better results than empirical methods alone. The inspection scheme was evaluated using the finite element method, and the results were verified experimentally using a large aluminum test article, and included both pristine and disbond coupons.

  7. Scalable wavelet-based active network detection of stepping stones

    Science.gov (United States)

    Gilbert, Joseph I.; Robinson, David J.; Butts, Jonathan W.; Lacey, Timothy H.

    2012-06-01

    Network intrusions leverage vulnerable hosts as stepping stones to penetrate deeper into a network and mask malicious actions from detection. Identifying stepping stones presents a significant challenge because network sessions appear as legitimate traffic. This research focuses on a novel active watermark technique using discrete wavelet transformations to mark and detect interactive network sessions. This technique is scalable, resilient to network noise, and difficult for attackers to discern that it is in use. Previously captured timestamps from the CAIDA 2009 dataset are sent using live stepping stones in the Amazon Elastic Compute Cloud service. The client system sends watermarked and unmarked packets from California to Virginia using stepping stones in Tokyo, Ireland and Oregon. Five trials are conducted in which the system sends simultaneous watermarked samples and unmarked samples to each target. The live experiment results demonstrate approximately 5% False Positive and 5% False Negative detection rates. Additionally, watermark extraction rates of approximately 92% are identified for a single stepping stone. The live experiment results demonstrate the effectiveness of discerning watermark traffic as applied to identifying stepping stones.

  8. Detecting Botnet Activities Based on Abnormal DNS traffic

    CERN Document Server

    Manasrah, Ahmed M; Abouabdalla, Omar Amer; Ramadass, Sureswaran

    2009-01-01

    IThe botnet is considered as a critical issue of the Internet due to its fast growing mechanism and affect. Recently, Botnets have utilized the DNS and query DNS server just like any legitimate hosts. In this case, it is difficult to distinguish between the legitimate DNS traffic and illegitimate DNS traffic. It is important to build a suitable solution for botnet detection in the DNS traffic and consequently protect the network from the malicious Botnets activities. In this paper, a simple mechanism is proposed to monitors the DNS traffic and detects the abnormal DNS traffic issued by the botnet based on the fact that botnets appear as a group of hosts periodically. The proposed mechanism is also able to classify the DNS traffic requested by group of hosts (group behavior) and single hosts (individual behavior), consequently detect the abnormal domain name issued by the malicious Botnets. Finally, the experimental results proved that the proposed mechanism is robust and able to classify DNS traffic, and effi...

  9. Detection and functional annotation of misregulated microRNAs in the brain of the Ts65Dn mouse model of Down syndrome

    Institute of Scientific and Technical Information of China (English)

    HE Xiang-jun; XIAO Yun; ZHANG Qi; MA Li-ping; LI Na; YANG Jing

    2013-01-01

    Background Brain hypoplasia and mental retardation in Down syndrome (DS) can be attributed to a severe and selective disruption of neurogenesis.Secondary disruption of the transcriptome,as well as primary gene dosage imbalance,is responsible for the phenotype.MicroRNA (miRNA) expression is relatively abundant in brain tissue.Perturbed miRNA expression might contribute to the cellular events underlying the pathology in DS.Methods MiRNA expression profiles in the cerebrum of Ts65Dn mice,a DS model,were examined with a real-time RT-PCR array.MiRNA target gene expression was detected by real-time quantitative PCR and Western blotting.Based on the prediction of their cerebrum-specific targets,the functions of the misregulated miRNAs were annotated by Gene Ontology (GO) enrichment analysis.Results A total of 342 miRNAs were examined.Among them,20 miRNAs showed decreased expression in the brains of Ts65Dn mice,and some of these belonged to the same family.Two known targets of the miR-200 family,Lfng and Zeb2,were specifically selected to compare their expression in the cerebrum of Ts65Dn mice with those of euploids.However,no significant difference was found in terms of mRNA and protein expression levels of these genes.By enrichment analysis of the cerebrum-specific targets of each miRNA,we found that 15 of the differential miRNAs could significantly affect target genes that were enriched in the GO biological processes related to nervous system development.Conclusion Perturbed expression of multiple functionally cooperative miRNAs contributes to the cellular events underlying the pathogenesis of DS.

  10. The Regulatory Roles of MicroRNAs in Bone Remodeling and Perspectives as Biomarkers in Osteoporosis.

    Science.gov (United States)

    Sun, Mengge; Zhou, Xiaoya; Chen, Lili; Huang, Shishu; Leung, Victor; Wu, Nan; Pan, Haobo; Zhen, Wanxin; Lu, William; Peng, Songlin

    2016-01-01

    MicroRNAs are involved in many cellular and molecular activities and played important roles in many biological and pathological processes, such as tissue formation, cancer development, diabetes, neurodegenerative diseases, and cardiovascular diseases. Recently, it has been reported that microRNAs can modulate the differentiation and activities of osteoblasts and osteoclasts, the key cells that are involved in bone remodeling process. Meanwhile, the results from our and other research groups showed that the expression profiles of microRNAs in the serum and bone tissues are significantly different in postmenopausal women with or without fractures compared to the control. Therefore, it can be postulated that microRNAs might play important roles in bone remodeling and that they are very likely to be involved in the pathological process of postmenopausal osteoporosis. In this review, we will present the updated research on the regulatory roles of microRNAs in osteoblasts and osteoclasts and the expression profiles of microRNAs in osteoporosis and osteoporotic fracture patients. The perspective of serum microRNAs as novel biomarkers in bone loss disorders such as osteoporosis has also been discussed.

  11. The Regulatory Roles of MicroRNAs in Bone Remodeling and Perspectives as Biomarkers in Osteoporosis

    Directory of Open Access Journals (Sweden)

    Mengge Sun

    2016-01-01

    Full Text Available MicroRNAs are involved in many cellular and molecular activities and played important roles in many biological and pathological processes, such as tissue formation, cancer development, diabetes, neurodegenerative diseases, and cardiovascular diseases. Recently, it has been reported that microRNAs can modulate the differentiation and activities of osteoblasts and osteoclasts, the key cells that are involved in bone remodeling process. Meanwhile, the results from our and other research groups showed that the expression profiles of microRNAs in the serum and bone tissues are significantly different in postmenopausal women with or without fractures compared to the control. Therefore, it can be postulated that microRNAs might play important roles in bone remodeling and that they are very likely to be involved in the pathological process of postmenopausal osteoporosis. In this review, we will present the updated research on the regulatory roles of microRNAs in osteoblasts and osteoclasts and the expression profiles of microRNAs in osteoporosis and osteoporotic fracture patients. The perspective of serum microRNAs as novel biomarkers in bone loss disorders such as osteoporosis has also been discussed.

  12. Peptide-modified optical filters for detecting protease activity.

    Science.gov (United States)

    Kilian, Kristopher A; Böcking, Till; Gaus, Katharina; Gal, Michael; Gooding, J Justin

    2007-11-01

    The organic derivatization of silicon-based nanoporous photonic crystals is presented as a method to immobilize peptides for the detection of protease enzymes in solution. A narrow-line-width rugate filter, a one-dimensional photonic crystal, is fabricated that exhibits a high-reflectivity optical resonance that is sensitive to small changes in the refractive index at the pore walls. To immobilize peptide in the pore of the photonic crystal, the hydrogen-terminated silicon surface was first modified with the alkene 10-succinimidyl undecenoate via hydrosilylation. The monolayer with the succinimide ester moiety at the distal end served the dual function of protecting the underlying silicon from oxidation as well as providing a surface suitable for subsequent derivatization with amines. The surface was further modified with 1-aminohexa(ethylene glycol) (EG(6)) to resist nonspecific adsorption of proteins common in complex biological samples. The distal hydroxyl of the EG(6) is activated using the solid-phase coupling reagent disuccinimidyl carbonate for selective immobilization of peptides as protease recognition elements. X-ray photoelectron spectroscopy analysis reveals high activation and coupling efficiency at each stage of the functionalization. Exposure of the peptide-modified crystals to the protease subtilisin in solution causes a change in the refractive index, resulting in a shift of the resonance to shorter wavelengths, indicating cleavage of organic material within the pores. The lowest detected concentration of enzyme was 37 nM (7.4 pmol in 200 microL).

  13. [MicroRNAs and kidneys].

    Science.gov (United States)

    Stříteská, Jana; Nekvindová, Jana; Cerný, Vladimír; Palička, Vladimír

    2014-01-01

    MicroRNAs are short non-coding ribonucleic acid molecules that regulate gene expression at the post-transcriptional level thus affecting important physiological as well as pathophysiological processes in the organism, for example cell differentiation, proliferation, apoptosis, and metabolism. They are involved in pathogenesis of many diseases including cancer. Many microRNAs are tissue or organ-specific which implies their possible potential as biomarkers or maybe even therapeutical agents as documented by microRNA research interest rising exponentially during last years. Among all, microRNAs are important also for physiological function of the kidney and they are involved in various renal disorders. Today research is focused mainly on renal and urinary tract carcinogenesis, acute kidney injury, chronic renal diseases (polycystic kidney disease) or renal complications of systemic diseases such as diabetic or hypertension nephropathy and autoimmune kidney injury including acute allograft rejection after kidney transplantation. The review summarizes current information about microRNA effect on kidney development and function and also on the most common kidney diseases.

  14. Circulating microRNAs in Cardiovascular Diseases.

    Science.gov (United States)

    Orlicka-Płocka, Marta; Gurda, Dorota; Fedoruk-Wyszomirska, Agnieszka; Smolarek, Iwona; Wyszko, Eliza

    2016-01-01

    Cardiovascular Diseases (CD) are currently one of the most common causes of death. Because heart related deaths occur on such an enormous scale this phenomenon is referred to as an epidemic. Chronic and acute injury of the heart could be an effect of cardiac remodeling, which is a result of molecular, cellular and interstitial changes, influenced by hemodynamic load or neurohormonal activation (Cohn et al., 2000). These small deviations in cardiac activity and morphology may lead to an enormous negative effect. Despite a significant progress, knowledge of standard risk factors for cardiovascular diseases has become less and less effective, which is why predicting and seeking an appropriate treatment is very challenging. As a result, there is a growing interest in finding new markers of the CD. MicroRNAs (miRNAs), are short, non-coding RNAs responsible for regulation of gene expression at the post-transcriptional level. Among them that have the greatest potential are microRNA molecules that circulate in the blood plasma or serum, that are related to direct activation of signaling pathways, implicated in the aging process and thus for the development of cardiovascular disease. This paper is a summary of the current state of knowledge on miRNAs, their biogenesis and potential role as biomarkers to diagnose heart disease.

  15. The detection of microRNA-135a in the patients of Alzheimer′s disease%microRNA-135 a在阿尔茨海默病患者中的检测价值

    Institute of Scientific and Technical Information of China (English)

    刘辰庚; 孟双; 张跃其; 王培昌

    2016-01-01

    Objective To evaluate the clinical value of microRNA-135a ( miR-135a ) in the detection of Alzheimer′s disease (AD).Methods The levels of miR-135a in mild cognitive impairment (MCI), dementia of Alzheimer′s type (DAT) and control group were tested.Results The miR-135a levels in cerebro-spinal fluid from MCI and DAT were significantly higher than those of control ( P<0.05), and it was lower in DAT group than that of MCI group(P<0.05).The miR-135a levels in serum from MCI and DAT were signifi-cantly lower than those of control(P<0.05), and it was lower in DAT group than that in MCI group(P<0.05).Furthermore, miR-135a might be a better marker than Aβ42 for early diagnosis of AD.Conclusions The serum miR-135a was a potential biomarker of AD, espe-cially for its early stage.%目的:初步探讨microRNA-135a(miR-135a)作为阿尔茨海默病(AD)生物标志物的潜在价值。方法使用实时定量 PCR检测痴呆期AD(DAT)患者、轻度认知障碍(MCI)患者和表面健康受试者血清和脑脊液中miR-135a含量。结果 MCI和DAT患者血清 miR-135a水平均低于对照组(P<0.05),且DAT组低于MCI组(P<0.05);MCI和DAT患者脑脊液总体miR-135a水平均低于对照组(P<0.05),且DAT组低于MCI组(P<0.05);且miR-135a对于早期AD的诊断价值可能优于Aβ42。结论血清miR-135a可能为AD,特别是早期AD诊断的标志物。

  16. Circulating MicroRNAs as Potential Biomarkers of Exercise Response

    Directory of Open Access Journals (Sweden)

    Mája Polakovičová

    2016-10-01

    Full Text Available Systematic physical activity increases physical fitness and exercise capacity that lead to the improvement of health status and athletic performance. Considerable effort is devoted to identifying new biomarkers capable of evaluating exercise performance capacity and progress in training, early detection of overtraining, and monitoring health-related adaptation changes. Recent advances in OMICS technologies have opened new opportunities in the detection of genetic, epigenetic and transcriptomic biomarkers. Very promising are mainly small non-coding microRNAs (miRNAs. miRNAs post-transcriptionally regulate gene expression by binding to mRNA and causing its degradation or inhibiting translation. A growing body of evidence suggests that miRNAs affect many processes and play a crucial role not only in cell differentiation, proliferation and apoptosis, but also affect extracellular matrix composition and maintaining processes of homeostasis. A number of studies have shown changes in distribution profiles of circulating miRNAs (c-miRNAs associated with various diseases and disorders as well as in samples taken under physiological conditions such as pregnancy or physical exercise. This overview aims to summarize the current knowledge related to the response of blood c-miRNAs profiles to different modes of exercise and to highlight their potential application as a novel class of biomarkers of physical performance capacity and training adaptation.

  17. Circulating microRNA-200 Family as Diagnostic Marker in Hepatocellular Carcinoma.

    Directory of Open Access Journals (Sweden)

    Sameer A Dhayat

    Full Text Available In this clinical study, we aimed to evaluate the role of circulating microRNA-200 family as a non-invasive tool to identify patients with cirrhosis-associated hepatocellular carcinoma (HCC.Prognosis of HCC remains poor with increasing incidence worldwide, mainly related to liver cirrhosis. So far, no reliable molecular targets exist for early detection of HCC at surgically manageable stages. Recently, we identified members of the microRNA-200 family as potential diagnostic markers of cirrhosis-associated HCC in patient tissue samples. Their value as circulating biomarkers for HCC remained undefined.Blood samples and clinicopathological data of consecutive patients with liver diseases were collected prospectively. Expression of the microRNA-200 family was investigated by qRT-PCR in blood serum samples of 22 HCC patients with and without cirrhosis. Serum samples of patients with non-cancerous chronic liver cirrhosis (n = 22 and of healthy volunteers (n = 15 served as controls.MicroRNA-141 and microRNA-200a were significantly downregulated in blood serum of patients with HCC compared to liver cirrhosis (p<0.007 and healthy controls (p<0.002. MicroRNA-141 and microRNA-200a could well discriminate patients with cirrhosis-associated HCC from healthy volunteers with area under the receiver-operating characteristic curve (AUC values of 0.85 and 0.82, respectively. Additionally, both microRNAs could differentiate between HCC and non-cancerous liver cirrhosis with a fair accuracy.Circulating microRNA-200 family members are significantly deregulated in patients with HCC and liver cirrhosis. Further studies are necessary to confirm the diagnostic value of the microRNA-200 family as accurate serum marker for cirrhosis-associated HCC.

  18. The Role of microRNAs in the Pathogenesis of Herpesvirus Infection

    Directory of Open Access Journals (Sweden)

    Diogo Piedade

    2016-06-01

    Full Text Available MicroRNAs (miRNAs are small non-coding RNAs important in gene regulation. They are able to regulate mRNA translation through base-pair complementarity. Cellular miRNAs have been involved in the regulation of nearly all cellular pathways, and their deregulation has been associated with several diseases such as cancer. Given the importance of microRNAs to cell homeostasis, it is no surprise that viruses have evolved to take advantage of this cellular pathway. Viruses have been reported to be able to encode and express functional viral microRNAs that target both viral and cellular transcripts. Moreover, viral inhibition of key proteins from the microRNA pathway and important changes in cellular microRNA pool have been reported upon viral infection. In addition, viruses have developed multiple mechanisms to avoid being targeted by cellular microRNAs. This complex interaction between host and viruses to control the microRNA pathway usually favors viral infection and persistence by either reducing immune detection, avoiding apoptosis, promoting cell growth, or promoting lytic or latent infection. One of the best examples of this virus-host-microRNA interplay emanates from members of the Herperviridae family, namely the herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2, human cytomegalovirus (HCMV, human herpesvirus 8 (HHV-8, and the Epstein–Barr virus (EBV. In this review, we will focus on the general functions of microRNAs and the interactions between herpesviruses, human hosts, and microRNAs and will delve into the related mechanisms that contribute to infection and pathogenesis.

  19. Optimization of detecting hydrogenase activity for acidogenic fermentation of activated sludge

    Institute of Scientific and Technical Information of China (English)

    ZHENG Guo-chen; HE Jun-guo; LI Jian-zheng; AJAY Kumar Jha; ZHANG Li-guo

    2010-01-01

    In order to evaluate the hydrogen-producing efficiency of anaerobic activated sludge in Anaerobic Baffled Reactor(ABR)fermentation processes,the optimal conditions for hydrogen producing hydrogenase method on methyl viologen(MV)assay was used to detect the hydrogen production activity of the activated sludge.The most favorable parameters such as 0.6 mL sodium acetate buffer(pH 5.0),100 μL lysozyme,0.2 mL sodium di bromoethane(9.0 mmol/L)and 0.7 mmol/L iron added into 1 mL activated sludge(2.66~26.64 gMLVSS/L)were found.Furthermore,reaction temperature and culture time were detected as 40 ℃ and 30 min respectively.Sodium thiosulfate and sodium sulfides were taken as the reducing agent while trichloroacetic acid as terminator.Under the MV optimal conditions,micro-texic Dimethyl sulfoxide(DMSO)get higher security and better accuracy.The sensitivity of the detection methods(DMSO as electron carrier)was increased by more than30%.The results show that the optimal conditions can be applied to measure hydrogenase activity correlating with its specific hydrogen production rate in a hydrogen-producing anaerobic activated sludge system.

  20. Transgenic plants over-expressing insect-specific microRNA acquire insecticidal activity against Helicoverpa armigera: an alternative to Bt-toxin technology.

    Science.gov (United States)

    Agrawal, Aditi; Rajamani, Vijayalakshmi; Reddy, Vanga Siva; Mukherjee, Sunil Kumar; Bhatnagar, Raj K

    2015-10-01

    The success of Bt transgenics in controlling predation of crops has been tempered by sporadic emergence of resistance in targeted insect larvae. Such emerging threats have prompted the search for novel insecticidal molecules that are specific and could be expressed through plants. We have resorted to small RNA-based technology for an investigative search and focused our attention to an insect-specific miRNA that interferes with the insect molting process resulting in the death of the larvae. In this study, we report the designing of a vector that produces artificial microRNA (amiR), namely amiR-24, which targets the chitinase gene of Helicoverpa armigera. This vector was used as transgene in tobacco. Northern blot and real-time analysis revealed the high level expression of amiR-24 in transgenic tobacco plants. Larvae feeding on the transgenic plants ceased to molt further and eventually died. Our results demonstrate that transgenic tobacco plants can express amiR-24 insectice specific to H. armigera.

  1. Active carbon filter health condition detection with piezoelectric wafer active sensors

    Science.gov (United States)

    Bao, Jingjing; Giurgiutiu, Victor; Rubel, Glenn O.; Peterson, Gregory W.; Ball, Thomas M.

    2011-04-01

    The impregnated active carbon used in air purification systems degrades over time due to exposure to contamination and mechanical effects (packing, settling, flow channeling, etc.). A novel approach is proposed to detect contamination in active carbon filters by combining the electromechanical impedance spectroscopy (EMIS) and electrochemical impedance spectroscopy (ECIS). ECIS is currently being used to evaluate active carbon filtration material; however, it cannot differentiate the impedance changes due to chemical contamination from those due to mechanical changes. EMIS can detect impedance changes due to mechanical changes. For the research work presented in this paper, Piezoelectric wafer active sensor (PWAS) was used for the EMIS method. Some remarkable new phenomena were unveiled in the detection of carbon filter status. 1. PWAS EMIS can detect the presence of contaminants, such as water and kerosene in the carbon bed 2. PWAS EMIS can monitor changes in mechanical pressure that may be associated with carbon bed packing, settling and flow channeling 3. EMIS and ECIS measurements are consistent with each other and complimentary A tentative simplified impedance model was created to simulate the PWAS-carbon bed system under increasing pressure. Similar impedance change pattern was observed when comparing the simulation results with experimental data.

  2. Activity-based probes for detection of active MALT1 paracaspase in immune cells and lymphomas.

    Science.gov (United States)

    Eitelhuber, Andrea C; Vosyka, Oliver; Nagel, Daniel; Bognar, Miriam; Lenze, Dido; Lammens, Katja; Schlauderer, Florian; Hlahla, Daniela; Hopfner, Karl-Peter; Lenz, Georg; Hummel, Michael; Verhelst, Steven H L; Krappmann, Daniel

    2015-01-22

    MALT1 paracaspase is activated upon antigen receptor stimulation to promote lymphocyte activation. In addition, deregulated MALT1 protease activity drives survival of distinct lymphomas such as the activated B cell type of diffuse large B cell lymphoma (ABC-DLBCL). Here, we designed fluorophore or biotin-coupled activity based-probes (ABP) that covalently modify the active center of MALT1. MALT1-ABPs are exclusively labeling an active modified full length form of MALT1 upon T cell stimulation. Further, despite the CARMA1 requirement for initial MALT1 activation, the MALT1-ABPs show that protease activity is not confined to the high-molecular CARMA1-BCL10-MALT1 (CBM) complex. Using biotin-coupled ABPs, we developed a robust assay for sensitive and selective detection of active MALT1 in cell lines, primary lymphocytes, and DLBCL tumor biopsies. Taken together, MALT1-ABPs represent powerful chemical tools to measure cellular MALT1 activation, determine efficacy of small molecule inhibitors, and classify lymphomas based on MALT1 activity status.

  3. Combinatorial microRNA target predictions

    DEFF Research Database (Denmark)

    Krek, Azra; Grün, Dominic; Poy, Matthew N.

    2005-01-01

    MicroRNAs are small noncoding RNAs that recognize and bind to partially complementary sites in the 3' untranslated regions of target genes in animals and, by unknown mechanisms, regulate protein production of the target transcript1, 2, 3. Different combinations of microRNAs are expressed...... in different cell types and may coordinately regulate cell-specific target genes. Here, we present PicTar, a computational method for identifying common targets of microRNAs. Statistical tests using genome-wide alignments of eight vertebrate genomes, PicTar's ability to specifically recover published micro......RNA targets, and experimental validation of seven predicted targets suggest that PicTar has an excellent success rate in predicting targets for single microRNAs and for combinations of microRNAs. We find that vertebrate microRNAs target, on average, roughly 200 transcripts each. Furthermore, our results...

  4. Comparison of circulating, hepatocyte specific messenger RNA and microRNA as biomarkers for chronic hepatitis B and C.

    Science.gov (United States)

    Zhang, Xiaonan; Zhang, Zhanqing; Dai, Fahui; Shi, Bisheng; Chen, Liang; Zhang, Xinxin; Zang, Guoqing; Zhang, Jiming; Chen, Xiaorong; Qian, Fangxing; Hu, Yunwen; Yuan, Zhenghong

    2014-01-01

    Circulating microRNAs have been widely recognized as a novel category of biomarker in a variety of physiological and pathological conditions. Other reports revealed that fragments of organ specific messenger RNAs are also detectable in serum/plasma and can be utilized as sensitive indicators of liver pathology and cancer. In order to assess the sensitivity and reliability of these two class of RNAs as marker of hepatitis B or C induced chronic liver disease, we collected plasma samples from 156 chronic hepatitis B or C patients (HBV active n = 112, HBV carrier n = 19, hepatitis C n = 25) and 22 healthy donors and quantified their circulating mRNA for albumin, HP (haptoglobin), CYP2E1 (cytochrome P450, family 2, subfamily E) and ApoA2 (Apolipoprotein A2) in conjunction with microRNA-122, a well established marker for acute and chronic liver injury. We found that plasma microRNA-122 level is significantly elevated in patients with active HBV but not in HBV carriers. Furthermore, microRNA-122 is not elevated in HCV patients even though their median serum alanine aminotransferase (sALT) was three fold of the healthy donors. Nevertheless, circulating mRNAs, especially albumin mRNA, showed much more sensitivity in distinguishing active hepatitis B, hepatitis B carrier or HCV patients from healthy control. Correlation and multiple linear regression analysis suggested that circulating mRNAs and miRNAs are much more related to HBsAg titre than to sALT. Immunoprecipitation of HBsAg in HBV patients' plasma resulted in enrichment of albumin and HP mRNA suggesting that fragments of liver specific transcripts can be encapsidated into HBsAg particles. Taken together, our results suggest that hepatocyte specific transcripts in plasma like albumin mRNA showed greater sensitivity and specificity in differentiating HBV or HCV induced chronic liver disease than microRNA-122. Circulating mRNA fragments merit more attention in the quest of next generation biomarkers for

  5. Comparison of microRNA expression using different preservation methods of matched psoriatic skin samples

    DEFF Research Database (Denmark)

    Løvendorf, Marianne B; Zibert, John R; Hagedorn, Peter H

    2012-01-01

    -frozen (FS) and Tissue-Tek-embedding (OCT). We found a strong correlation of the microRNA expression levels between all preservation methods of matched psoriatic skin samples (r(s) ranging from 0.91 to 0.95 (P ...MicroRNAs are non-coding RNA molecules modulating gene expression post-transcriptionally. Formalin-fixed, paraffin-embedding (FFPE) is a standard preservation method often used in clinical practices, but induces RNA degradation. Extracting high-quality RNA from human skin can be challenging as skin...... that microRNA detection in human skin is robust irrespective of preservation method; thus, microRNAs offer an appropriate and flexible approach in clinical practices and for diagnostic purposes in skin disorders....

  6. Voice activity detection based on deep neural networks and Viterbi

    Science.gov (United States)

    Bai, Liang; Zhang, Zhen; Hu, Jun

    2017-09-01

    Voice Activity Detection (VAD) is important in speech processing. In the applications, the systems usually need to separate speech/non-speech parts, so that only the speech part can be dealt with. How to improve the performances of VAD in different noisy environments is an important issue in speech processing. Deep Neural network, which proves its efficiency in speech recognition, has been widely used in recent years. This paper studies the present typical VAD algorithms, and presents a new VAD algorithm based on deep neural networks and Viterbi algorithm. The result demonstrates the effectiveness of the deep neural network with Viterbi used in VAD. In addition, it shows the flexibility and the real-time performance of the algorithms.

  7. INTEGRAL non detection of renewed activity from Terzan 5

    DEFF Research Database (Denmark)

    Vovk, I.; Kuulkers, E.; Chenevez, Jérôme

    2011-01-01

    Cluster. From the JEM-X mosaic, we estimated a 5 sigma upper limit of 6 mCrab in the 3-10 keV energy band (effective exposure time 5.2 ks). The 5 sigma upper limit in the 20-40 keV energy band derived from the IBIS/ISGRI data was of 11 mCrab (effective exposure 12 ks). The INTEGRAL observations took place...... about 8 hours before the RXTE detection reported in Atel #3714, and thus probably just before the onset of renewed activity. Due to Sun visibility constraints, no other INTEGRAL observations in the direction of Terzan 5 are planned for the next months....

  8. Detection of biologically active diterpenoic acids by Raman Spectroscopy

    DEFF Research Database (Denmark)

    Talian, Ivan; Orinak, Andrej; Efremov, Evtim V.

    2010-01-01

    Three poorly detectable, biologically active diterpenoic acids, kaurenoic, abietic, and gibberellic acid, were studied by using different modes of Raman spectroscopy. Because of their structural similarities, in the absence of strongly polarizable groups, conventional Raman spectroscopy...... is not suitable for their unambiguous identification, especially not in solution. We attempted to increase the sensitivity by applying UV-resonance Raman spectroscopy and surface-enhanced Raman spectroscopy (SERS) techniques. The UV-Raman spectra of the three compounds in ethanol/water 50 : 50 showed only very...... few enhanced Raman lines. SERS spectra with 514-nm excitation with Ag colloids were also relatively weak. The best SERS spectrawere obtained with 785-nm excitation on a novel nanostructured substrate, 'black silicon' coated with a 400-nm gold layer. The spectra showed clear differences...

  9. Biological aerosol detection with combined passive-active infrared measurements

    Science.gov (United States)

    Ifarraguerri, Agustin I.; Vanderbeek, Richard G.; Ben-David, Avishai

    2004-12-01

    A data collection experiment was performed in November of 2003 to measure aerosol signatures using multiple sensors, all operating in the long-wave infrared. The purpose of this data collection experiment was to determine whether combining passive hyperspectral and LIDAR measurements can substantially improve biological aerosol detection performance. Controlled releases of dry aerosols, including road dust, egg albumin and two strains of Bacillus Subtilis var. Niger (BG) spores were performed using the ECBC/ARTEMIS open-path aerosol test chamber located in the Edgewood Area of Aberdeen Proving Grounds, MD. The chamber provides a ~ 20' path without optical windows. Ground truth devices included 3 aerodynamic particle sizers, an optical particle size spectrometer, 6 nephelometers and a high-volume particle sampler. Two sensors were used to make measurements during the test: the AIRIS long-wave infrared imaging spectrometer and the FAL CO2 LIDAR. The AIRIS and FAL data sets were analyzed for detection performance relative to the ground truth. In this paper we present experimental results from the individual sensors as well as results from passive-active sensor fusion. The sensor performance is presented in the form of receiver operating characteristic curves.

  10. Differential Expression of MicroRNAs in Response to Drought Stress in Maize

    Institute of Scientific and Technical Information of China (English)

    LI Jing-sheng; FU Feng-ling; AN Ming; ZHOU Shu-feng; SHE Yue-hui; LI Wan-chen

    2013-01-01

    Drought is one of the major abiotic stresses that limit maize productivity. Apart from the principal transcriptional regulation, post-transcriptional regulation mediated by microRNAs appears to be the prevalent response of plants to abiotic stress. In this study, the differential expression of microRNAs in the previously evaluated drought-tolerant inbred lines R09 under drought stress was detected by microarray hybridization. The target genes of the differentially-expressed microRNAs were predicted by bioinformatics software WMD3 for plant target gene prediction. The possible regulation of the differentially-expressed microRNAs as well as their target genes in maize response to drought stress was analysed according to Gene Ontology. Sixty-eight microRNAs in 29 microRNA families were detected to be differentially expressed in the seedling of the drought-tolerant inbred line R09, accounting for 5.97% of the total number of the probes. The expression profiles were different between the two time points of the drought stress. The functions of the genes targeted by the differentially-expressed microRNAs involve multiple physiological and biochemical pathways of response to abiotic stress, such as transcription regulation, metabolism, signal transduction, hormone stimulation, and transmembrane transport. Under drought stress, the differential expression of microRNAs regulates the expression of their target genes, resulting in multiple responses of physiological and biochemical pathways relative to drought tolerance of maize. miR156, miR159 and miR319 families may play more important roles. The different members of the same family may play similar regulation effects in most cases.

  11. Passive versus active hazard detection and avoidance systems

    Science.gov (United States)

    Neveu, D.; Mercier, G.; Hamel, J.-F.; Simard Bilodeau, V.; Woicke, S.; Alger, M.; Beaudette, D.

    2015-06-01

    Upcoming planetary exploration missions will require advanced guidance, navigation and control technologies to reach landing sites with high precision and safety. Various technologies are currently in development to meet that goal. Some technologies rely on passive sensors and benefit from the low mass and power of such solutions while others rely on active sensors and benefit from an improved robustness and accuracy. This paper presents two different hazard detection and avoidance (HDA) system design approaches. The first architecture relies only on a camera as the passive HDA sensor while the second relies, in addition, on a Lidar as the active HDA sensor. Both options use in common an innovative hazard map fusion algorithm aiming at identifying the safest landing locations. This paper presents the simulation tools and reports the closed-loop software simulation results obtained using each design option. The paper also reports the Monte Carlo simulation campaign that was used to assess the robustness of each design option. The performance of each design option is compared against each other in terms of performance criteria such as percentage of success, mean distance to nearest hazard, etc. The applicability of each design option to planetary exploration missions is also discussed.

  12. Improved Active Harmonic Current Elimination Based on Voltage Detection.

    Directory of Open Access Journals (Sweden)

    Tianyuan Tan

    Full Text Available With the increasing penetration of power electronic equipment in modern residential distribution systems, harmonics mitigation through the distributed generation (DG interfacing converters has received significant attention. Among recently proposed methods, the so-called active resonance damper (ARD and harmonic voltage compensator (HVC based on voltage detection can effectively reduce the harmonic distortions in selected areas of distribution systems. However, it is found out that when traditional ARD algorithm is used to eliminate harmonic current injected by non-linear loads, its performance is constrained by stability problems and can at most eliminate half of the load harmonic currents. Thus, inspired by the duality between ARD and HVC, this paper presents a novel improved resistive active power filter (R-APF algorithm based on integral-decoupling control. The design guideline for its parameters is then investigated through carefully analyzing the closed-loop poles' trajectory. Computer studies demonstrate that the proposed algorithm can effectively mitigate the load harmonic currents and its performance is much better than traditional ARD based on proportional control.

  13. Identification of microRNAs actively involved in fatty acid biosynthesis in developing Brassica napus seeds using high-throughput sequencing

    Directory of Open Access Journals (Sweden)

    Jia Wang

    2016-10-01

    Full Text Available Seed development has a critical role during the spermatophyte life cycle. In Brassica napus, a major oil crop, fatty acids are synthesized and stored in specific tissues during embryogenesis, and understanding the molecular mechanism underlying fatty acid biosynthesis during seed development is an important research goal. In this study, we constructed three small RNA libraries from early seeds at 14, 21 and 28 days after flowering (DAF and used high-throughput sequencing to examine microRNA (miRNA expression. A total of 85 known miRNAs from 30 families and 1,160 novel miRNAs were identified, of which 24, including 5 known and 19 novel miRNAs, were found to be involved in fatty acid biosynthesis. bna-miR156b, bna-miR156c, bna-miR156g, novel_mir_1706, novel_mir_1407, novel_mir_173, and novel_mir_104 were significantly down-regulated at 21 DAF and 28 DAF, whereas bna-miR159, novel_mir_1081, novel_mir_19 and novel_mir_555 were significantly up-regulated. In addition, we found that some miRNAs regulate functional genes that are directly involved in fatty acid biosynthesis and that other miRNAs regulate the process of fatty acid biosynthesis by acting on a large number of transcription factors. The miRNAs and their corresponding predicted targets were partially validated by quantitative RT-PCR. Our data suggest that diverse and complex miRNAs are involved in the seed development process and that miRNAs play important roles in fatty acid biosynthesis during seed development.

  14. microRNA expression profile of peripheral blood mononuclear cells of Klinefelter syndrome.

    Science.gov (United States)

    Sui, Weiguo; Ou, Minglin; Chen, Jiejing; Li, Huan; Lin, Hua; Zhang, Yue; Li, Wuxian; Xue, Wen; Tang, Donge; Gong, Weiwei; Zhang, Ruohan; Li, Fengyan; Dai, Yong

    2012-11-01

    microRNAs are a type of small non-coding RNAs which play important roles in post-transcriptional gene regulation, and the characterization of microRNA expression profiling in peripheral blood mononuclear cells (PBMCs) from patients with Klinefelter syndrome requires further investigation. In this study, PBMCs were obtained from patients with Klinefelter syndrome and normal controls. After preparation of small RNA libraries, the two groups of samples were sequenced simultaneously using next generation high-throughput sequencing technology, and novel and known microRNAs were analyzed. A total of 9,772,392 and 9,717,633 small RNA reads were obtained; 8,014,466 (82.01%) and 8,104,423 (83.40%) genome-matched reads, 64 and 49 novel microRNAs were identified in the library of Klinefelter syndrome and the library of healthy controls, respectively. There were 71 known microRNAs with differential expression levels between the two libraries. Clustering of over-represented gene ontology (GO) classes in predicted targets of novel microRNAs in the Klinefelter syndrome library showed that the most significant GO terms were genes involved in the endomembrane system, nucleotide binding and kinase activity. Our data revealed that there are a large number of microRNAs deregulated in PBMCs taken from patients with Klinefelter syndrome, of which certain novel and known microRNAs may be involved in the pathological process of Klinefelter syndrome. Further studies are necessary to determine the roles of microRNAs in the pathological process of Klinefelter syndrome in the future.

  15. MicroRNA-155 Reinforces HIV Latency*

    Science.gov (United States)

    Ruelas, Debbie S.; Chan, Jonathan K.; Oh, Eugene; Heidersbach, Amy J.; Hebbeler, Andrew M.; Chavez, Leonard; Verdin, Eric; Rape, Michael; Greene, Warner C.

    2015-01-01

    The presence of a small number of infected but transcriptionally dormant cells currently thwarts a cure for the more than 35 million individuals infected with HIV. Reactivation of these latently infected cells may result in three fates: 1) cell death due to a viral cytopathic effect, 2) cell death due to immune clearance, or 3) a retreat into latency. Uncovering the dynamics of HIV gene expression and silencing in the latent reservoir will be crucial for developing an HIV-1 cure. Here we identify and characterize an intracellular circuit involving TRIM32, an HIV activator, and miR-155, a microRNA that may promote a return to latency in these transiently activated reservoir cells. Notably, we demonstrate that TRIM32, an E3 ubiquitin ligase, promotes reactivation from latency by directly modifying IκBα, leading to a novel mechanism of NF-κB induction not involving IκB kinase activation. PMID:25873391

  16. 两种实时定量RT-PCR方法检测miRNAs表达的技术分析%Technical analysis for detection and quantification of microRNAs by two real-time quantitative reverse transcription methods

    Institute of Scientific and Technical Information of China (English)

    闵自信; 杜小云; 宁启兰; 钟楠楠; 郑悦雯; 韩燕; 吕社民; 张蕊

    2013-01-01

    目的 比较两种实时定量反转录聚合酶链反应(RT-qPCR)方法检测microRNAs (miRNAs)表达含量的技术差异,优化不同实验目的和条件下研究miRNAs表达的技术方法.方法 取21d和42d两个时间点的SD大鼠关节软骨组织,采用Trizol法提取总RNA备用.选取rno-miR-15b、rno-miR-16、rno miR 195、rno-miR-497作为研究对象,分别用茎环引物和试剂公司提供的试剂盒方法反转录总RNA,并应用实时定量PCR方法检测这些miRNAs的表达量.提取人血浆中总RNA,用上述两种RT-qPCR方法实时定量检测has-miR-16的表达量.结果 两种方法检测这些miRNAs表达量,在大鼠21d和42 d这两个时间点其表达量变化趋势相同,都呈现增高的趋势,这与我们前期Solexa测序结果相同.在血浆中的结果显示,其中茎环引物反转录方法灵敏度相对较高.结论 茎环引物法在少量几个重要的miRNAs检测中具有优势,而试剂盒方法适用于大量miRNAs的筛查.%Objective To optimize the method for quantifying microRNAs in different experimental purposes and conditions by comparing two real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR) methods. Methods We isolated the total RNA from the SD rat articular cartilage at postnatal day 21 and day 42 with TRIzol(R) reagent. The RT reactions were performed by stem-loop primers and the universal primer of miRNA detection kit respectively; then real time PCR was performed to test the expressions of rno-miR-15b, rno-miR-16, rno-miR-195 and rno-miR-497. In addition, the total RNAs in human plasma were isolated by using TRI Reagent BD (MRC, TR126) according to the instructions by the manufacturer with two different RT-qPCR methods to quantify the expression of has-miR-16. Results The expression change of these miRNAs was of the same increase trend by the two different RT-qPCR methods, which accorded with the results of our Solexa sequencing. The results of plasma demonstrated that

  17. MicroRNAs, Innate Immunity and Ventricular Rupture in Human Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Nina Zidar

    2011-01-01

    Full Text Available MicroRNAs are non-coding RNAs, functionioning as post-transcriptional regulators of gene expression. Some microRNAs have been demonstrated to play a role in regulation of innate immunity. After myocardial infarction (MI, innate immunity is activated leading to an acute inflammatory reaction. There is evidence that an intense inflammatory reaction might contribute to the development of ventricular rupture (VR after MI.

  18. In vivo Monitoring of microRNA Biogenesis Using Reporter Gene Imaging

    OpenAIRE

    2013-01-01

    MicroRNAs are small noncoding RNAs regulating gene expression, through base paring with their target mRNAs, which have been actively investigated as key regulators in a wide range of biological processes. Conventional methods such as Northern blot are generally time-consuming, non-repeatable, and cannot be applied in vivo due to the requirement for cell fixation. Therefore, a noninvasive imaging system is required for the monitoring of microRNA biogenesis to understand the versatile functions...

  19. Seasonal variation of urinary microRNA expression in male goats (Capra hircus) as assessed by next generation sequencing.

    Science.gov (United States)

    Longpre, Kristy M; Kinstlinger, Noah S; Mead, Edward A; Wang, Yongping; Thekkumthala, Austin P; Carreno, Katherine A; Hot, Azra; Keefer, Jennifer M; Tully, Luke; Katz, Larry S; Pietrzykowski, Andrzej Z

    2014-04-01

    Testosterone plays a key role in preparation of a male domesticated goat (Capra hircus) to breeding season including changes in the urogenital tract of a male goat (buck). microRNAs are important regulators of cellular metabolism, differentiation and function. They are powerful intermediaries of hormonal activity in the body, including the urogenital tract. We investigated seasonal changes in expression of microRNAs in goat buck urine and their potential consequences using next generation sequencing (microRNA-Seq). We determined the location of each microRNA gene in the goat genome. Testosterone was measured by radioimmunoassay and the androgen receptor binding sites (ARBS) in the promoters of the microRNA genes were determined by MatInspector. The overall impact of regulated microRNAs on cellular physiology was assessed by mirPath. We observed high testosterone levels during the breeding season and changes in the expression of forty microRNAs. Nineteen microRNAs were upregulated, while twenty-one were downregulated. We identified several ARBS in the promoters of regulated microRNAs. Notably, the mostly inhibited microRNA, miR-1246, has a unique set of several gene copy variants associated with a cluster of androgen receptor binding sites. Concomitant changes in regulated microRNA expression could promote transcription, proliferation and differentiation of urogenital tract cells. Together, these findings indicate that in a domesticated goat (Capra hircus), there are specific changes in the microRNA expression profile in buck urine during breeding season, which could be attributable to high testosterone levels during breeding, and could help in preparation of the urogenital tract for high metabolic demands of that season.

  20. MicroRNA Expression in Alzheimer Blood Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    Hyman M. Schipper

    2007-01-01

    Full Text Available Various coding genes representing multiple functional categories are downregulated in blood mononuclear cells (BMC of patients with sporadic Alzheimer disease (AD. Noncoding microRNAs (miRNA regulate gene expression by degrading messages or inhibiting translation. Using BMC as a paradigm for the study of systemic alterations in AD, we investigated whether peripheral miRNA expression is altered in this condition. MicroRNA levels were assessed using the microRNA microarray (MMChip containing 462 human miRNA, and the results validated by real time PCR. Sixteen AD patients and sixteen normal elderly controls (NEC were matched for ethnicity, age, gender and education. The expression of several BMC miRNAs was found to increase in AD relative to NEC levels, and may differ between AD subjects bearing one or two APOE4 alleles. As compared to NEC, miRNAs signifi cantly upregulated in AD subjects and confi rmed by qPCR were miR-34a and 181b. Predicted target genes downregulated in Alzheimer BMC that correlated with the upregulated miRNAs were largely represented in the functional categories of Transcription/Translation and Synaptic Activity. Several miRNAs targeting the same genes were within the functional category of Injury response/Redox homeostasis. Taken together, induction of microRNA expression in BMC may contribute to the aberrant systemic decline in mRNA levels in sporadic AD.

  1. Protective Effects of Diallyl Sulfide on Ovalbumin-Induced Pulmonary Inflammation of Allergic Asthma Mice by MicroRNA-144, -34a, and -34b/c-Modulated Nrf2 Activation.

    Science.gov (United States)

    Ho, Cheng-Ying; Lu, Chi-Cheng; Weng, Chia-Jui; Yen, Gow-Chin

    2016-01-13

    Allergic airway disorder is characterized by an increase in the level of reactive oxygen species (ROS). The induction of inflammation and hyperresponsiveness by an allergen was ameliorated by antioxidants in vivo. This study investigated the protective effects and underlying mechanism of diallyl sulfide (DAS) on ovalbumin (OVA)-induced allergic asthma of BALB/c mice. The animals were intraperitoneally sensitized by inhaling OVA to induce chronic airway inflammation. By administering DAS, a decrease of the infiltrated inflammatory cell counts and the levels of IL-4 and IL-10 in bronchoalveolar lavage fluid as well as the OVA-specific immunoglobulin E levels in sera were observed. DAS also effectively inhibited OVA-induced inflammatory cell infiltration and mucus hypersecretion in lung tissue. Several OVA-induced inflammatory factors (ROS, 8-hydroxy-2'-deoxyguanosine, 8-iso-prostaglandin F2α, and NF-κB) were inhibited by DAS. In addition, DAS increased OVA inhalation-reduced levels of Nrf2 activation by regulating microRNA-144, -34a and -34b/c. Together, the pathogenesis of OVA-induced asthma is highly associated with oxidative stress, and DAS may be an effective supplement to alleviate this disease.

  2. Bone morphogenetic protein 4 promotes vascular smooth muscle contractility by activating microRNA-21 (miR-21), which down-regulates expression of family of dedicator of cytokinesis (DOCK) proteins.

    Science.gov (United States)

    Kang, Hara; Davis-Dusenbery, Brandi N; Nguyen, Peter H; Lal, Ashish; Lieberman, Judy; Van Aelst, Linda; Lagna, Giorgio; Hata, Akiko

    2012-02-03

    The bone morphogenetic protein 4 (BMP4) signaling pathway plays a critical role in the promotion and maintenance of the contractile phenotype in vascular smooth muscle cell (vSMC). Misexpression or inactivating mutations of the BMP receptor gene can lead to dedifferentiation of vSMC characterized by increased migration and proliferation that is linked to vascular proliferative disorders. Previously we demonstrated that vSMCs increase microRNA-21 (miR-21) biogenesis upon BMP4 treatment, which induces contractile gene expression by targeting programmed cell death 4 (PDCD4). To identify novel targets of miR-21 that are critical for induction of the contractile phenotype by BMP4, biotinylated miR-21 was expressed in vSMCs followed by an affinity purification of mRNAs associated with miR-21. Nearly all members of the dedicator of cytokinesis (DOCK) 180-related protein superfamily were identified as targets of miR-21. Down-regulation of DOCK4, -5, and -7 by miR-21 inhibited cell migration and promoted cytoskeletal organization by modulating an activity of small GTPase. Thus, this study uncovers a regulatory mechanism of the vSMC phenotype by the BMP4-miR-21 axis through DOCK family proteins.

  3. Active palpation sensor for detecting prostatic cancer and hypertrophy

    Science.gov (United States)

    Tanaka, Mami; Furubayashi, Mitsuyuki; Tanahashi, Yoshikatsu; Chonan, Seiji

    2001-03-01

    This paper is concerned with the development of an active palpation sensor for detecting the prostatic cancer and hypertrophy. The receptor of the sensor is a polyvinylidene fluoride (PVDF) film placed on the surface of a sponge rubber layer. It is mounted on a linear z-translation bar and inserted into the examinee's rectum being protected by a medical rubber glove. After positioned faced to the prostate gland, the sensor probe is driven sinusoidally at about 50Hz with peak-to-peak amplitude 2mm. The voltage signal from the PVDF film is integrated over the sampling period and used as the output of sensor for extracting the features of the collected data. The evaluation of stiffness by the sensor on 27 normal and unhealthy prostate glands are compared with the results of diagnosis by the doctor's palpation. It is shown that the output of sensor becomes greater with an increase of the stiffness of the prostate gland, which has good correlation with the doctor's evaluation on the stiffness. Further results on the laboratory test reconfirm that the present sensor well discriminates the stiffness of the prostate glands in vivo and non-invasively.

  4. Deciphering the microRNA signature of pathological cardiac hypertrophy by engineered heart tissue- and sequencing-technology.

    Science.gov (United States)

    Hirt, Marc N; Werner, Tessa; Indenbirken, Daniela; Alawi, Malik; Demin, Paul; Kunze, Ann-Cathrin; Stenzig, Justus; Starbatty, Jutta; Hansen, Arne; Fiedler, Jan; Thum, Thomas; Eschenhagen, Thomas

    2015-04-01

    Pathological cardiac hypertrophy and fibrosis are modulated by a set of microRNAs, most of which have been detected in biologically complex animal models of hypertrophy by arrays with moderate sensitivity and disregard of passenger strand (previously "star") microRNAs. Here, we aimed at precisely analyzing the microRNA signature of cardiac hypertrophy and fibrosis by RNA sequencing in a standardized in vitro hypertrophy model based on engineered heart tissue (EHT). Spontaneously beating, force-generating fibrin EHTs from neonatal rat heart cells were subjected to afterload enhancement for 7days (AE-EHT), and EHTs without intervention served as controls. AE resulted in reduced contractile force and relaxation velocity, fibrotic changes and reactivation of the fetal gene program. Small RNAs were extracted from control and AE-EHTs and sequencing yielded almost 750 different mature microRNAs, many of which have never been described before in rats. The detection of both arms of the precursor stem-loop (pre-miRNA), namely -3p and -5p miRs, was frequent. 22 abundantly sequenced microRNAs were >1.3× upregulated and 15 abundantly sequenced microRNAs downregulated to hypertrophy and fibrotic response, recapitulating prior results in whole animals. Taken together, AE-induced pathological hypertrophy in EHTs is associated with 37 differentially regulated microRNAs, including many passenger strands. Antagonizing miR-21-5p ameliorates dysfunction in this model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. MicroRNAs: Novel Players in the Dialogue between Pancreatic Islets and Immune System in Autoimmune Diabetes

    Directory of Open Access Journals (Sweden)

    Giuliana Ventriglia

    2015-01-01

    Full Text Available MicroRNAs are small noncoding RNA molecules that regulate gene expression in all cell types. Therefore, these tiny noncoding RNA molecules are involved in a wide range of biological processes, exerting functional effects at cellular, tissue, and organ level. In pancreatic islets of Langerhans, including beta-cells, microRNAs are involved in cell differentiation as well as in insulin secretion, while in immune cells they have been shown to play pivotal roles in development, activation, and response to antigens. Indeed, it is not surprising that microRNA alterations can lead to the development of several diseases, including type 1 diabetes (T1D. Type 1 diabetes is the result of a selective autoimmune destruction of insulin-producing beta-cells, characterized by islet inflammation (insulitis, which leads to chronic hyperglycemia. Given the growing importance of microRNA in the pathophysiology of T1D, the aim of this review is to summarize the most recent data on the potential involvement of microRNAs in autoimmune diabetes. Specifically, we will focus on three different aspects: (i microRNAs as regulators of immune homeostasis in autoimmune diabetes; (ii microRNA expression in pancreatic islet inflammation; (iii microRNAs as players in the dialogue between the immune system and pancreatic endocrine cells.

  6. Silencing MicroRNA-155 Attenuates Cardiac Injury and Dysfunction in Viral Myocarditis via Promotion of M2 Phenotype Polarization of Macrophages.

    Science.gov (United States)

    Zhang, Yingying; Zhang, Mengying; Li, Xueqin; Tang, Zongsheng; Wang, Xiangmin; Zhong, Min; Suo, Qifeng; Zhang, Yao; Lv, Kun

    2016-03-02

    Macrophage infiltration is a hallmark feature of viral myocarditis. As studies have shown that microRNA-155 regulates the differentiation of macrophages, we aimed to investigate the role of microRNA-155 in VM. We report that silencing microRNA-155 protects mice from coxsackievirus B3 induced myocarditis. We found that microRNA-155 expression was upregulated and localized primarily in heart-infiltrating macrophages and CD4(+) T lymphocytes during acute myocarditis. In contrast with wildtype (WT) mice, microRNA-155(-/-) mice developed attenuated viral myocarditis, which was characterized by decreased cardiac inflammation and decreased intracardiac CD45(+) leukocytes. Hearts of microRNA-155(-/-) mice expressed decreased levels of the IFN-γ and increased levels of the cytokines IL-4 and IL-13. Although total CD4(+) and regulatory T cells were unchanged in miR-155(-/-) spleen proportionally, the activation of T cells and CD4(+) T cell proliferation in miR-155(-/-) mice were significantly decreased. Beyond the acute phase, microRNA-15(5-/-) mice had reduced mortality and improved cardiac function during 5 weeks of follow-up. Moreover, silencing microRNA-155 led to increased levels of alternatively-activated macrophages (M2) and decreased levels of classically-activated macrophages (M1) in the heart. Combined, our studies suggest that microRNA-155 confers susceptibility to viral myocarditis by affecting macrophage polarization, and thus may be a potential therapeutic target for viral myocarditis.

  7. Experimental identification of microRNA targets

    DEFF Research Database (Denmark)

    Ørom, Ulf Andersson; Lund, Anders H

    2009-01-01

    microRNAs are small RNAs that regulate protein synthesis post-transcriptionally. Animal microRNAs recognize their targets by incomplete base pairing to sequence motifs most often present in the 3' untranslated region of their target mRNAs. This partial complementarity vastly expands the repertoire...... of potential targets and constitutes a problem for computational target prediction. Although computational analyses have shed light on important aspects of microRNA target recognition, several questions remain regarding how microRNAs can recognize and regulate their targets. Forward experimental approaches...... allow for an unbiased study of microRNA target recognition and may unveil novel, rare or uncommon target binding patterns. In this review we focus on animal microRNAs and the experimental approaches that have been described for identification of their targets....

  8. Serum-based microRNA signatures in early diagnosis and prognosis prediction of colon cancer.

    Science.gov (United States)

    Vychytilova-Faltejskova, Petra; Radova, Lenka; Sachlova, Milana; Kosarova, Zdenka; Slaba, Katerina; Fabian, Pavel; Grolich, Tomas; Prochazka, Vladimir; Kala, Zdenek; Svoboda, Marek; Kiss, Igor; Vyzula, Rostislav; Slaby, Ondrej

    2016-10-01

    Early detection of colorectal cancer is the main prerequisite for successful treatment and reduction of mortality. Circulating microRNAs were previously identified as promising diagnostic, prognostic and predictive biomarkers. The purpose of this study was to identify serum microRNAs enabling early diagnosis and prognosis prediction of colon cancer. In total, serum samples from 427 colon cancer patients and 276 healthy donors were included in three-phase biomarker study. Large-scale microRNA expression profiling was performed using Illumina small RNA sequencing. Diagnostic and prognostic potential of identified microRNAs was validated on independent training and validation sets of samples using RT-qPCR. Fifty-four microRNAs were found to be significantly deregulated in serum of colon cancer patients compared to healthy donors (P colon cancer patients from healthy donors with sensitivity of 89% and specificity of 81% (AUC = 0.922). This panel of microRNAs exhibited high diagnostic performance also when analyzed separately in colon cancer patients in early stages of the disease (T1-4N0M0; AUC = 0.877). Further, a prognostic panel based on the expression of miR-23a-3p and miR-376c-3p independent of TNM stage was established (HR 2.30; 95% CI 1.44-3.66; P colon cancer were identified. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. MicroRNAs in Heart Failure, Cardiac Transplantation, and Myocardial Recovery: Biomarkers with Therapeutic Potential.

    Science.gov (United States)

    Shah, Palak; Bristow, Michael R; Port, J David

    2017-09-22

    Heart failure is increasing in prevalence with a lack of recently developed therapies that produce major beneficial effects on its associated mortality. MicroRNAs are small non-coding RNA molecules that regulate gene expression, are differentially regulated in heart failure, and are found in the circulation serving as a biomarker of heart failure. Data suggests that microRNAs may be used to detect allograft rejection in cardiac transplantation and may predict the degree of myocardial recovery in patients with a left ventricular assist device or treated with beta-blocker therapy. Given their role in regulating cellular function, microRNAs are an intriguing target for oligonucleotide therapeutics, designed to mimic or antagonize (antagomir) their biological effects. We review the current state of microRNAs as biomarkers of heart failure and associated conditions, the mechanisms by which microRNAs control cellular function, and how specific microRNAs may be targeted with novel therapeutics designed to treat heart failure.

  10. Alzheimer's disease: presence and role of microRNAs

    Science.gov (United States)

    Basavaraju, Manasa; de Lencastre, Alexandre

    2016-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder that accounts for the most cases of dementia. AD affects more than 25 million people globally and is predicted to affect nearly one in 85 people worldwide by 2050. AD is characterized by the accumulation of dense plaques of β-amyloid peptide (Aβ) and neurofibrillary tangles of hyperphosphorylated tau that cause impairment in memory, cognition, and daily activities. Although early-onset AD has been linked to several mutations, reliable genetic markers for late-onset AD are lacking. Further, the diagnosis of AD biomarkers has its limitations and cannot detect early-stage AD. The identification of accurate, early, and non-invasive biomarkers for AD is, therefore, an unmet challenge. Recently, micro-RNAs (miRNAs) have emerged as a novel class of gene regulatory elements with conserved roles in development and disease. Recent discoveries have uncovered roles of miRNAs in several model organisms during aging and have identified potential miRNAs biomarkers of AD. Here we will discuss this emerging field of miRNAs associated with AD and prospects for the future. PMID:27505094

  11. The Role of MicroRNAs in Kidney Disease

    Directory of Open Access Journals (Sweden)

    Sydwell Mukhadi

    2015-11-01

    Full Text Available MicroRNAs (miRNAs are short noncoding RNAs that regulate pathophysiological processes that suppress gene expression by binding to messenger RNAs. These biomolecules can be used to study gene regulation and protein expression, which will allow better understanding of many biological processes such as cell cycle progression and apoptosis that control the fate of cells. Several pathways have also been implicated to be involved in kidney diseases such as Transforming Growth Factor-β, Mitogen-Activated Protein Kinase signaling, and Wnt signaling pathways. The discovery of miRNAs has provided new insights into kidney pathologies and may provide new innovative and effective therapeutic strategies. Research has demonstrated the role of miRNAs in a variety of kidney diseases including renal cell carcinoma, diabetic nephropathy, nephritic syndrome, renal fibrosis, lupus nephritis and acute pyelonephritis. MiRNAs are implicated as playing a role in these diseases due to their role in apoptosis, cell proliferation, differentiation and development. As miRNAs have been detected in a stable condition in different biological fluids, they have the potential to be tools to study the pathogenesis of human diseases with a great potential to be used in disease prognosis and diagnosis. The purpose of this review is to examine the role of miRNA in kidney disease.

  12. Comparative Characterization of Cardiac Development Specific microRNAs: Fetal Regulators for Future.

    Science.gov (United States)

    Rustagi, Yashika; Jaiswal, Hitesh K; Rawal, Kamal; Kundu, Gopal C; Rani, Vibha

    2015-01-01

    MicroRNAs (miRNAs) are small, conserved RNAs known to regulate several biological processes by influencing gene expression in eukaryotes. The implication of miRNAs as another player of regulatory layers during heart development and diseases has recently been explored. However, there is no study which elucidates the profiling of miRNAs during development of heart till date. Very limited miRNAs have been reported to date in cardiac context. In addition, integration of large scale experimental data with computational and comparative approaches remains an unsolved challenge.The present study was designed to identify the microRNAs implicated in heart development using next generation sequencing, bioinformatics and experimental approaches. We sequenced six small RNA libraries prepared from different developmental stages of the heart using chicken as a model system to produce millions of short sequence reads. We detected 353 known and 703 novel miRNAs involved in heart development. Out of total 1056 microRNAs identified, 32.7% of total dataset of known microRNAs displayed differential expression whereas seven well studied microRNAs namely let-7, miR-140, miR-181, miR-30, miR-205, miR-103 and miR-22 were found to be conserved throughout the heart development. The 3'UTR sequences of genes were screened from Gallus gallus genome for potential microRNA targets. The target mRNAs were appeared to be enriched with genes related to cell cycle, apoptosis, signaling pathways, extracellular remodeling, metabolism, chromatin remodeling and transcriptional regulators. Our study presents the first comprehensive overview of microRNA profiling during heart development and prediction of possible cardiac specific targets and has a big potential in future to develop microRNA based therapeutics against cardiac pathologies where fetal gene re-expression is witnessed in adult heart.

  13. Comparative Characterization of Cardiac Development Specific microRNAs: Fetal Regulators for Future.

    Directory of Open Access Journals (Sweden)

    Yashika Rustagi

    Full Text Available MicroRNAs (miRNAs are small, conserved RNAs known to regulate several biological processes by influencing gene expression in eukaryotes. The implication of miRNAs as another player of regulatory layers during heart development and diseases has recently been explored. However, there is no study which elucidates the profiling of miRNAs during development of heart till date. Very limited miRNAs have been reported to date in cardiac context. In addition, integration of large scale experimental data with computational and comparative approaches remains an unsolved challenge.The present study was designed to identify the microRNAs implicated in heart development using next generation sequencing, bioinformatics and experimental approaches. We sequenced six small RNA libraries prepared from different developmental stages of the heart using chicken as a model system to produce millions of short sequence reads. We detected 353 known and 703 novel miRNAs involved in heart development. Out of total 1056 microRNAs identified, 32.7% of total dataset of known microRNAs displayed differential expression whereas seven well studied microRNAs namely let-7, miR-140, miR-181, miR-30, miR-205, miR-103 and miR-22 were found to be conserved throughout the heart development. The 3'UTR sequences of genes were screened from Gallus gallus genome for potential microRNA targets. The target mRNAs were appeared to be enriched with genes related to cell cycle, apoptosis, signaling pathways, extracellular remodeling, metabolism, chromatin remodeling and transcriptional regulators. Our study presents the first comprehensive overview of microRNA profiling during heart development and prediction of possible cardiac specific targets and has a big potential in future to develop microRNA based therapeutics against cardiac pathologies where fetal gene re-expression is witnessed in adult heart.

  14. Search for microRNAs expressed by intracellular bacterial pathogens in infected mammalian cells.

    Directory of Open Access Journals (Sweden)

    Yuki Furuse

    Full Text Available MicroRNAs are expressed by all multicellular organisms and play a critical role as post-transcriptional regulators of gene expression. Moreover, different microRNA species are known to influence the progression of a range of different diseases, including cancer and microbial infections. A number of different human viruses also encode microRNAs that can attenuate cellular innate immune responses and promote viral replication, and a fungal pathogen that infects plants has recently been shown to express microRNAs in infected cells that repress host cell immune responses and promote fungal pathogenesis. Here, we have used deep sequencing of total expressed small RNAs, as well as small RNAs associated with the cellular RNA-induced silencing complex RISC, to search for microRNAs that are potentially expressed by intracellular bacterial pathogens and translocated into infected animal cells. In the case of Legionella and Chlamydia and the two mycobacterial species M. smegmatis and M. tuberculosis, we failed to detect any bacterial small RNAs that had the characteristics expected for authentic microRNAs, although large numbers of small RNAs of bacterial origin could be recovered. However, a third mycobacterial species, M. marinum, did express an ∼ 23-nt small RNA that was bound by RISC and derived from an RNA stem-loop with the characteristics expected for a pre-microRNA. While intracellular expression of this candidate bacterial microRNA was too low to effectively repress target mRNA species in infected cultured cells in vitro, artificial overexpression of this potential bacterial pre-microRNA did result in the efficient repression of a target mRNA. This bacterial small RNA therefore represents the first candidate microRNA of bacterial origin.

  15. Step detection and activity recognition accuracy of seven physical activity monitors.

    Directory of Open Access Journals (Sweden)

    Fabio A Storm

    Full Text Available The aim of this study was to compare the seven following commercially available activity monitors in terms of step count detection accuracy: Movemonitor (Mc Roberts, Up (Jawbone, One (Fitbit, ActivPAL (PAL Technologies Ltd., Nike+ Fuelband (Nike Inc., Tractivity (Kineteks Corp. and Sensewear Armband Mini (Bodymedia. Sixteen healthy adults consented to take part in the study. The experimental protocol included walking along an indoor straight walkway, descending and ascending 24 steps, free outdoor walking and free indoor walking. These tasks were repeated at three self-selected walking speeds. Angular velocity signals collected at both shanks using two wireless inertial measurement units (OPAL, ADPM Inc were used as a reference for the step count, computed using previously validated algorithms. Step detection accuracy was assessed using the mean absolute percentage error computed for each sensor. The Movemonitor and the ActivPAL were also tested within a nine-minute activity recognition protocol, during which the participants performed a set of complex tasks. Posture classifications were obtained from the two monitors and expressed as a percentage of the total task duration. The Movemonitor, One, ActivPAL, Nike+ Fuelband and Sensewear Armband Mini underestimated the number of steps in all the observed walking speeds, whereas the Tractivity significantly overestimated step count. The Movemonitor was the best performing sensor, with an error lower than 2% at all speeds and the smallest error obtained in the outdoor walking. The activity recognition protocol showed that the Movemonitor performed best in the walking recognition, but had difficulty in discriminating between standing and sitting. Results of this study can be used to inform choice of a monitor for specific applications.

  16. MicroRNAs and drug addiction

    Directory of Open Access Journals (Sweden)

    Paul J Kenny

    2013-05-01

    Full Text Available Drug addiction is considered a disorder of neuroplasticity in brain reward and cognition systems resulting from aberrant activation of gene expression programs in response to prolonged drug consumption. Noncoding RNAs are key regulators of almost all aspects of cellular physiology. MicroRNAs (miRNAs are small (~21–23 nucleotides noncoding RNA transcripts that regulate gene expression at the post-transcriptional level. Recently, microRNAs were shown to play key roles in the drug-induced remodeling of brain reward systems that likely drives the emergence of addiction. Here, we review evidence suggesting that one particular miRNA, miR-212, plays a particularly prominent role in vulnerability to cocaine addiction. We review evidence showing that miR-212 expression is increased in the dorsal striatum of rats that show compulsive-like cocaine-taking behaviors. Increases in miR-212 expression appear to protect against cocaine addiction, as virus-mediated striatal miR-212 over-expression decreases cocaine consumption in rats. Conversely, disruption of striatal miR-212 signaling using an antisense oligonucleotide increases cocaine intake. We also review data that identify two mechanisms by which miR-212 may regulate cocaine intake. First, miR-212 has been shown to amplify striatal CREB signaling through a mechanism involving activation of Raf1 kinase. Second, miR-212 was also shown to regulate cocaine intake by repressing striatal expression of methyl CpG binding protein 2 (MeCP2, consequently decreasing protein levels of brain-derived neurotrophic factor (BDNF. The concerted actions of miR-212 on striatal CREB and MeCP2/BDNF activity greatly attenuate the motivational effects of cocaine. These findings highlight the unique role for miRNAs in simultaneously controlling multiple signaling cascades implicated in addiction.

  17. Pathogenetic and therapeutic applications of microRNAs in major depressive disorder.

    Science.gov (United States)

    Dwivedi, Yogesh

    2016-01-04

    As a class of noncoding RNAs, microRNAs (miRNAs) regulate gene expression by inhibiting translation of messenger RNAs. These miRNAs have been shown to play a critical role in higher brain functioning and actively participate in synaptic plasticity. Pre-clinical evidence demonstrates that expression of miRNAs is differentially altered during stress. On the other hand, depressed individuals show marked changes in miRNA expression in brain. MiRNAs are also target of antidepressants and electroconvulsive therapy. Moreover, these miRNAs are present in circulating blood and can be easily detected. Profiling of miRNAs in blood plasma/serum provides evidence that determination of miRNAs in blood can be used as possible diagnostic and therapeutic tool. In this review article, these aspects are critically reviewed and the role of miRNAs in possible etiopathogenesis and therapeutic implications in the context of major depressive disorder is discussed.

  18. Centrifugation:an important pre-analytic procedure that influences plasma microRNA quantification during blood processing

    Institute of Scientific and Technical Information of China (English)

    Xiao-Hui Zheng; Cui Cui; Xin-Xi Zhou; Yi-Xin Zeng; Wei-Hua Jia

    2013-01-01

    Circulating microRNAs are robustly present in plasma or serum and have become a research focus as biomarkers for tumor diagnosis and prognosis. Centrifugation is a necessary procedure for obtaining high-quality blood supernatant. Herein, we investigated one-step and two-step centrifugations, two centrifugal methods routinely used in microRNA study, to explore their effects on plasma microRNA quantification. The microRNAs obtained from one-step and two-step centrifugations were quantified by microarray and TaqMan-based real-time quantitative polymerase chain reaction (Q-PCR). Dynamic light scattering was performed to explore the difference underlying the two centrifugal methods. The results from the microarray containing 1,347 microRNAs showed that the signal detection rate was greatly decreased in the plasma sample prepared by two-step centrifugation. More importantly, the microRNAs missing in this plasma sample could be recovered and detected in the precipitate generated from the second centrifugation. Consistent with the results from microarray, a marked decrease of three representative microRNAs in two-step centrifugal plasma was validated by Q-PCR. According to the size distribution of all nanoparticles in plasma, there were fewer nanoparticles with size >1,000 nm in two-step centrifugal plasma. Our experiments directly demonstrated that different centrifugation methods produced distinct quantities of plasma microRNAs. Thus, exosomes or protein complexes containing microRNAs may be involved in large nanoparticle formation and may be precipitated after two-step centrifugation. Our results remind us that sample processing methods should be first considered in conducting research.

  19. MicroRNA and cancer

    DEFF Research Database (Denmark)

    Jansson, Martin D; Lund, Anders H

    2012-01-01

    biological phenomena and pathologies. The best characterized non-coding RNA family consists in humans of about 1400 microRNAs for which abundant evidence have demonstrated fundamental importance in normal development, differentiation, growth control and in human diseases such as cancer. In this review, we...... summarize the current knowledge and concepts concerning the involvement of microRNAs in cancer, which have emerged from the study of cell culture and animal model systems, including the regulation of key cancer-related pathways, such as cell cycle control and the DNA damage response. Importantly, microRNA......With the advent of next generation sequencing techniques a previously unknown world of non-coding RNA molecules have been discovered. Non-coding RNA transcripts likely outnumber the group of protein coding sequences and hold promise of many new discoveries and mechanistic explanations for essential...

  20. Toward the promise of microRNAs - Enhancing reproducibility and rigor in microRNA research.

    Science.gov (United States)

    Witwer, Kenneth W; Halushka, Marc K

    2016-11-01

    The fields of applied and translational microRNA research have exploded in recent years as microRNAs have been implicated across a spectrum of diseases. MicroRNA biomarkers, microRNA therapeutics, microRNA regulation of cellular physiology and even xenomiRs have stimulated great interest, which have brought many researchers into the field. Despite many successes in determining general mechanisms of microRNA generation and function, the application of microRNAs in translational areas has not had as much success. It has been a challenge to localize microRNAs to a given cell type within tissues and assay them reliably. At supraphysiologic levels, microRNAs may regulate hosts of genes that are not the physiologic biochemical targets. Thus the applied and translational microRNA literature is filled with pitfalls and claims that are neither scientifically rigorous nor reproducible. This review is focused on increasing awareness of the challenges of working with microRNAs in translational research and recommends better practices in this area of discovery.

  1. MicroRNAs in autoimmune rheumatic diseases

    Directory of Open Access Journals (Sweden)

    G.D. Sebastiani

    2012-03-01

    Full Text Available The etiology of autoimmune diseases remains largely unknown. In recent years, besides genetic factors, several studies proposed that the epigenome may hold the key to a better understanding of autoimmunity initiation and perpetuation. More specifically epigenetic regulatory mechanisms comprise DNA methylation, a variety of histone modifications, and microRNA (miRNA activity, all of which act upon gene and protein expression levels. In particular it is well known that epigenetic mechanisms are important for controlling the pattern of gene expression during development, the cell cycle, and the response to biological or environmental changes. In the present review a description of the most frequent epigenetic deregulations, in particular the role of miRNA, in rheumatic autoimmune disorders will be analyzed.

  2. MicroRNAs in pancreas development.

    Science.gov (United States)

    Dumortier, O; Van Obberghen, E

    2012-10-01

    The development of the pancreas is a tightly regulated process involving extensive morphogenesis, proliferation and differentiation of the epithelium. The finely orchestrated control of gene expression plays a key role in this equilibrium by coordinating the expression of selected gene products at specific moments and in precise locations. MicroRNAs (miRNAs) are small non-coding RNAs that function in general as negative regulators of gene transcripts by interacting with the three prime untranslated regions (3'UTR) of target mRNAs. MiRNAs modulate the expression of numerous target genes that are involved in a variety of cellular systems. Hence the homeostatic control of miRNA biosynthesis and activity is important for the fine-tuning of many physiological processes such as cell differentiation, cell proliferation and organ development. In the present review, we will focus on the implication of these miRNAs on the development of the pancreas and more specifically on β-cells.

  3. MicroRNA: Biological and Computational Perspective

    Institute of Scientific and Technical Information of China (English)

    Yong Kong; Jin-Hua Han

    2005-01-01

    MicroRNAs (miRNAs) are endogenously expressed non-coding RNAs of 20-24nucleotides, which post-transcriptionally regulate gene expression in plants and animals. Recently it has been recognized that miRNAs comprise one of the abundant gene families in multicellular species, and their regulatory functions in various biological processes are widely spread. There has been a surge in the research activities in this field in the past few years. From the very beginning, computational methods have been utilized as indispensable tools, and many discoveries have been obtained through combination of experimental and computational approaches. In this review, both biological and computational aspects of miRNA will be discussed.A brief history of the discovery of miRNA and discussion of microarray applications in miRNA research are also included.

  4. microRNAs and Cardiovascular Remodeling.

    Science.gov (United States)

    Ono, Koh

    2015-01-01

    Heart failure (HF) is associated with significant morbidity and mortality attributable largely to structural changes in the heart and with associated cardiac dysfunction. Remodeling is defined as alteration of the mass, dimensions, or shape of the heart (termed cardiac or ventricular remodeling) and vessels (vascular remodeling) in response to hemodynamic load and/or cardiovascular injury in association with neurohormonal activation. Remodeling may be described as physiologic or pathologic; alternatively, remodeling may be classified as adaptive or maladaptive. The importance of remodeling as a pathogenic mechanism has been controversial because factors leading to remodeling as well as the remodeling itself may be major determinants of patients' prognosis. The basic mechanisms of cardiovascular remodeling, and especially the roles of microRNAs in HF progression and vascular diseases, will be reviewed here.

  5. Understanding alcoholism through microRNA signatures in brains of human alcoholics

    Directory of Open Access Journals (Sweden)

    R. Dayne eMayfield

    2012-04-01

    Full Text Available Advances in the fields of genomics and genetics in the last decade have identified a large number of genes that can potentially influence alcohol-drinking behavior in humans as well as animal models. Consequently, the task of identifying efficient molecular targets that could be used to develop effective therapeutics against the disease has become increasingly daunting. One of the reasons for this is the fact that each of the many alcohol-responsive genes only contributes a small effect to the overall mechanism and disease phenotype, as is characteristic of complex traits. Current research trends are hence shifting towards the analysis of gene networks rather than emphasizing individual genes. The discovery of microRNAs and their mechanisms of action on regulation of transcript level and protein translation have made evident the utility of these small non-coding RNA molecules that act as central coordinators of multiple cross-communicating cellular pathways. Cells exploit the fact that a single microRNA can target hundreds of mRNA transcripts and that a single mRNA transcript can be simultaneously targeted by distinct microRNAs, to ensure fine-tuned and/or redundant control over a large number of cellular functions. By the same token, we can use these properties of microRNAs to develop novel, targeted strategies to combat complex disorders. In this review, we will focus on recent discoveries of microRNA signatures in brain of human alcoholics supporting the hypothesis that changes in gene expression and regulation by microRNAs are responsible for long-term neuroadaptations occurring during development of alcoholism. We also discuss insights into the potential modulation of epigenetic regulators by a subset of microRNAs. Taken together, microRNA activity may be controlling many of the cellular mechanisms already known to be involved in the development of alcoholism, and suggests potential targets for the development of novel therapeutic

  6. MicroRNA profiling of primary cutaneous large B-cell lymphomas.

    Directory of Open Access Journals (Sweden)

    Lianne Koens

    Full Text Available Aberrant expression of microRNAs is widely accepted to be pathogenetically involved in nodal diffuse large B-cell lymphomas (DLBCLs. However, the microRNAs profiles of primary cutaneous large B-cell lymphomas (PCLBCLs are not yet described. Its two main subtypes, i.e., primary cutaneous diffuse large B-cell lymphoma, leg type (PCLBCL-LT and primary cutaneous follicle center lymphoma (PCFCL are characterized by an activated B-cell (ABC-genotype and a germinal center B-cell (GCB-genotype, respectively. We performed high-throughput sequencing analysis on frozen tumor biopsies from 19 cases of PCFCL and PCLBCL-LT to establish microRNA profiles. Cluster analysis of the complete microRNome could not distinguish between the two subtypes, but 16 single microRNAs were found to be differentially expressed. Single microRNA RT-qPCR was conducted on formalin-fixed paraffin-embedded tumor biopsies of 20 additional cases, confirming higher expression of miR-9-5p, miR-31-5p, miR-129-2-3p and miR-214-3p in PCFCL as compared to PCLBCL-LT. MicroRNAs previously described to be higher expressed in ABC-type as compared to GCB-type nodal DLBCL were not differentially expressed between PCFCL and PCLBCL-LT. In conclusion, PCFCL and PCLBCL-LT differ in their microRNA profiles. In contrast to their gene expression profile, they only show slight resemblance with the microRNA profiles found in GCB- and ABC-type nodal DLBCL.

  7. Biomarkers for the detection, prognois and evaluation of active tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Shinimukundan, Harshini [Los Alamos National Laboratory

    2010-12-08

    The global TS surveillance workshop aims to address the problems with current methods for the detection of TB, and tracking emergence of resistant strains. The purpose of the attached presentation is to review the current methods in the detection of pathogen biomarkers for TB and if that technology has promise for diagnosis of TB. A summary of three biomarkers and some data on their detection strategies is presented. Some of the work is from LANL work but much of it is derived from literature references on the subject.

  8. microRNA-146a inhibits G protein-coupled receptor-mediated activation of NF-κB by targeting CARD10 and COPS8 in gastric cancer

    Directory of Open Access Journals (Sweden)

    Crone Stephanie

    2012-09-01

    Full Text Available Abstract Background Gastric cancer is the second most common cause of cancer-related death in the world. Inflammatory signals originating from gastric cancer cells are important for recruiting inflammatory cells and regulation of metastasis of gastric cancer. Several microRNAs (miRNA have been shown to be involved in development and progression of gastric cancer. miRNA-146a (miR-146a is a modulator of inflammatory signals, but little is known about its importance in gastric cancer. We therefore wanted to identify targets of miR-146a in gastric cancer and examine its biological roles. Results The expression of miR-146a was evaluated by quantitative PCR (qPCR and found up-regulated in the gastrin knockout mice, a mouse model of gastric cancer, and in 73% of investigated human gastric adenocarcinomas. Expression of miR-146a by gastric cancer cells was confirmed by in situ hybridization. Global analysis of changes in mRNA levels after miR-146a transfection identified two transcripts, caspase recruitment domain-containing protein 10 (CARD10 and COP9 signalosome complex subunit 8 (COPS8, as new miR-146a targets. qPCR, Western blotting and luciferase assays confirmed these transcripts as direct miR-146a targets. CARD10 and COPS8 were shown to be part of the G protein-coupled receptor (GPCR pathway of nuclear factor-kappaB (NF-kappaB activation. Lysophosphatidic acid (LPA induces NF-kappaB activation via this pathway and over-expression of miR-146a inhibited LPA-induced NF-kappaB activation, reduced LPA-induced expression of tumor-promoting cytokines and growth factors and inhibited monocyte attraction. Conclusions miR-146a expression is up-regulated in a majority of gastric cancers where it targets CARD10 and COPS8, inhibiting GPCR-mediated activation of NF-kappaB, thus reducing expression of NF-kappaB-regulated tumor-promoting cytokines and growth factors. By targeting components of several NF-kappaB-activating pathways, miR-146a is a key component in

  9. Ontology-oriented retrieval of putative microRNAs in Vitis vinifera via GrapeMiRNA: a web database of de novo predicted grape microRNAs

    Directory of Open Access Journals (Sweden)

    Fontana Paolo

    2009-06-01

    Full Text Available Abstract Background Two complete genome sequences are available for Vitis vinifera Pinot noir. Based on the sequence and gene predictions produced by the IASMA, we performed an in silico detection of putative microRNA genes and of their targets, and collected the most reliable microRNA predictions in a web database. The application is available at http://www.itb.cnr.it/ptp/grapemirna/. Description The program FindMiRNA was used to detect putative microRNA genes in the grape genome. A very high number of predictions was retrieved, calling for validation. Nine parameters were calculated and, based on the grape microRNAs dataset available at miRBase, thresholds were defined and applied to FindMiRNA predictions having targets in gene exons. In the resulting subset, predictions were ranked according to precursor positions and sequence similarity, and to target identity. To further validate FindMiRNA predictions, comparisons to the Arabidopsis genome, to the grape Genoscope genome, and to the grape EST collection were performed. Results were stored in a MySQL database and a web interface was prepared to query the database and retrieve predictions of interest. Conclusion The GrapeMiRNA database encompasses 5,778 microRNA predictions spanning the whole grape genome. Predictions are integrated with information that can be of use in selection procedures. Tools added in the web interface also allow to inspect predictions according to gene ontology classes and metabolic pathways of targets. The GrapeMiRNA database can be of help in selecting candidate microRNA genes to be validated.

  10. A Micro-RNA Connection in BRafV600E-Mediated Premature Senescence of Human Melanocytes

    Directory of Open Access Journals (Sweden)

    Gang Ren

    2012-01-01

    Full Text Available Recent high-throughput-sequencing of the cancer genome has identified oncogenic mutations in BRaf genetic locus as one of the critical events in melanomagenesis. In normal cells, the activity of BRaf is tightly regulated. Gain-of-function mutations like those identified in melanoma frequently lead to enhanced cell-survival and unrestrained growth. The activating mutation of BRaf will also induce the cells to senesce. However, the mechanism by which the oncogenic BRaf induces the senescent barrier remains poorly defined. microRNAs have regulatory functions toward the expression of genes that are important in carcinogenesis. Here we show that expression of several microRNAs is altered when the oncogenic version of BRaf is introduced in cultured primary melanocytes and these cells undergo premature cellular senescence. These include eight microRNAs whose expression rates are significantly stimulated and three that are repressed. While most of the induced microRNAs have documented negative effects on cell cycle progression, one of the repressed microRNAs has proven oncogenic functions. Ectopic expression of some of these induced microRNAs increased the expression of senescence markers and induced growth arrest and senescence in primary melanocytes. Taken together, our results suggest that the change in microRNA expression rates may play a vital role in senescence induced by the oncogenic BRaf.

  11. Role of the mTORC1 Complex in Satellite Cell Activation by RNA-Induced Mitochondrial Restoration: Dual Control of Cyclin D1 through MicroRNAs

    OpenAIRE

    Jash, Sukanta; Dhar, Gunjan; Ghosh, Utpalendu; Adhya, Samit

    2014-01-01

    During myogenesis, satellite stem cells (SCs) are induced to proliferate and differentiate to myogenic precursors. The role of energy sensors such as the AMP-activated protein kinase (AMPK) and the mammalian Target of Rapamycin (mTOR) in SC activation is unclear. We previously observed that upregulation of ATP through RNA-mediated mitochondrial restoration (MR) accelerates SC activation following skeletal muscle injury. We show here that during regeneration, the AMPK-CRTC2-CREB and Raptor-mTO...

  12. Expression of coding (mRNA) and non-coding (microRNA) RNA in lung tissue and blood isolated from pigs suffering from bacterial pleuropneumonia

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Schou, Kirstine Klitgaard; Wendt, Karin Tarp

    2010-01-01

    MicroRNAs are small non-coding RNA molecules (18-23 nt), that regulate the activity of other genes at the post-transcriptional level. Recently it has become evident that microRNA plays an important role in modulating and fine tuning innate and adaptive immune responses. Still, little is known about...

  13. MicroRNA-146a and miR-99a are potential biomarkers for disease activity and clinical efficacy assessment in psoriasis patients treated with traditional Chinese medicine.

    Science.gov (United States)

    Yang, Zhibo; Zeng, Bijun; Tang, Xueyong; Wang, Haizhen; Wang, Chang; Yan, Zhangren; Huang, Pan; Pan, Yi; Xu, Bin

    2016-12-24

    Psoriasis is a common chronic inflammatory skin disease. A number of clinical investigations have indicated that traditional Chinese medicine (TCM) is an effective and safe treatment for psoriasis. Zhuhuang Granule (ZG) is a modified formulation of Zhuhuang Decoction, which is used traditionally in China for the treatment of psoriasis in clinical practice. Recent studies have found that microRNAs (miRNAs) play important roles in the pathogenesis of some skin diseases. The objective of our study was to investigate the effect of ZG on the expression of miRNAs in peripheral blood mononuclear cells (PBMCs) from psoriasis patients and to identify specific miRNA biomarkers for psoriasis disease activity and assessment of clinical efficacy. Twenty-five psoriasis patients and 15 healthy control subjects were recruited to participate in this study from October 2013 to October 2014. Microarray and quantitative real-time PCR (qRT-PCR) were used to measure the global miRNA expression in PBMCs from psoriasis patients and healthy control subjects. We also measured the changes in the Psoriasis Area and Severity Index (PASI) score and miRNA expression of patients before and after treatment with ZG. The microarray results showed that 26 miRNAs were upregulated and 13 miRNAs were decreased in psoriasis patients. qRT-PCR validated 3 upregulated miRNAs (miR-146a, miR-31, miR-192-5p) and 2 downregulated miRNAs (miR-99a, miR-200c) in PBMCs from psoriasis patients compared with healthy controls (ppsoriasis severity (R(2)=0.772, ppsoriasis patients treated with ZG. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. MicroRNA-27b plays a role in pulmonary arterial hypertension by modulating peroxisome proliferator-activated receptor γ dependent Hsp90-eNOS signaling and nitric oxide production

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Rui; Bao, Chunrong; Jiang, Lianyong; Liu, Hao; Yang, Yang; Mei, Ju; Ding, Fangbao, E-mail: dbcar126@126.com

    2015-05-01

    Pulmonary artery endothelial dysfunction is associated with pulmonary arterial hypertension (PAH). Based on recent studies showing that microRNA (miR)-27b is aberrantly expressed in PAH, we hypothesized that miR-27b may contribute to pulmonary endothelial dysfunction and vascular remodeling in PAH. The effect of miR-27b on pulmonary endothelial dysfunction and the underlying mechanism were investigated in human pulmonary artery endothelial cells (HPAECs) in vitro and in a monocrotaline (MCT)-induced model of PAH in vivo. miR-27b expression was upregulated in MCT-induced PAH and inversely correlated with the levels of peroxisome proliferator-activated receptor (PPAR)-γ, and miR-27b inhibition attenuated MCT-induced endothelial dysfunction and remodeling and prevented PAH associated right ventricular hypertrophy and systolic pressure in rats. PPARγ was confirmed as a direct target of miR-27b in HPAECs and shown to mediate the effect of miR-27b on the disruption of endothelial nitric oxide synthase (eNOS) coupling to Hsp90 and the suppression of NO production associated with the PAH phenotype. We showed that miR-27b plays a role endothelial function and NO release and elucidated a potential mechanism by which miR-27b regulates Hsp90-eNOS and NO signaling by modulating PPARγ expression, providing potential therapeutic targets for the treatment of PAH. - Highlights: • miR-27b plays a role in endothelial function and NO release. • miR-27b inhibition ameliorates MCT-induced endothelial dysfunction and PAH. • miR-27b targets PPARγ in HPAECs. • miR-27b regulates PPARγ dependent Hsp90-eNOS and NO signaling.

  15. Polycyclic aromatic hydrocarbon (PAH)-mediated upregulation of hepatic microRNA-181 family promotes cancer cell migration by targeting MAPK phosphatase-5, regulating the activation of p38 MAPK

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mi-Kyung [Center for Integrated Risk Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology (KIST) (Korea, Republic of); School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Seoungbuk-Gu, Seoul 136-701 (Korea, Republic of); Park, Yong-Keun [School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Seoungbuk-Gu, Seoul 136-701 (Korea, Republic of); Ryu, Jae-Chun, E-mail: ryujc@kist.re.kr [Center for Integrated Risk Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology (KIST) (Korea, Republic of)

    2013-11-15

    Growing evidence indicates that changes in microRNA (miRNA) expression in cancer induced by chemical carcinogens play an important role in cancer development and progression by regulating related genes. However, the mechanisms underlying miRNA involvement in hepatocarcinogenesis induced by polycyclic aromatic hydrocarbons (PAHs) remain unclear. Thus, the identification of aberrant miRNA expression during PAH-induced cancer cell migration will lead to a better understanding of the substantial role of miRNAs in cancer progression. In the present study, miRNA expression profiling showed significant upregulation of miR-181a, -181b, and -181d in human hepatocellular carcinoma cells (HepG2 line) exposed to benzo[a]anthracene (BA) and benzo[k]fluoranthene (BF). MAPK phosphatase-5 (MKP-5), a validated miR-181 target that deactivates MAPKs, was markedly suppressed while phosphorylation of p38 MAPK was increased after BA and BF exposure. The migration of HepG2 cells, observed using the scratch wound-healing assay, also increased in a dose-dependent manner. Depletion of miR-181 family members by miRNA inhibitors enhanced the expression of MKP-5 and suppressed the phosphorylation of p38 MAPK. Furthermore, the depletion of the miR-181 family inhibited cancer cell migration. Based on these results, we conclude that the miR-181 family plays a critical role in PAH-induced hepatocarcinogenesis by targeting MKP-5, resulting in the regulation of p38 MAPK activation. - Highlights: • We found significant upregulation of miR-181 family in HCC exposed to BA and BF. • We identified the MKP-5 as a putative target of miR-181 family. • MKP-5 was suppressed while p-P38 was increased after BA and BF exposure. • The migration of HepG2 cells increased in a dose-dependent manner.

  16. Dysregulated microRNAs in neurodegenerative disorders.

    Science.gov (United States)

    Lau, Pierre; de Strooper, Bart

    2010-09-01

    The complexity of the nervous system arises in part, from the large diversity of neural cell types that support the architecture of neuronal circuits. Recent studies have highlighted microRNAs as important players in regulating gene expression at the post-transcriptional level and therefore the phenotype of neural cells. A link between microRNAs and neurodegenerative diseases such as Alzheimer's disease, Huntington's disease and Parkinson's disease is becoming increasingly evident. Here, we discuss microRNAs in neurodegeneration, from the fruit fly and mouse utilized as experimental models to dysregulated microRNAs in human neurodegenerative disorders. We propose that studying microRNAs and their mRNA targets in the context of neurodegeneration will significantly contribute to the identification of proteins important for neuronal function and might reveal underlying molecular networks that drive these diseases.

  17. Expression of mature micro-RNA involved in the functioning of p53-dependent system of maintaining the genome stability of the individuals exposed to radiation at clinically relevant doses

    Directory of Open Access Journals (Sweden)

    Shulenina L.V.

    2014-12-01

    Full Text Available Purpose: to explore the content of mature micro-RNA involved in the functioning of p53-dependent system of maintaining the genome stability in the blood of patients in distant time after irradiation at clinically relevant doses and to compare these micro-RNA with the development of malignant tumors in the period of late consequences of radiation injury. Materials and methods. We used the blood samples of patients with acute radiation syndrome (ARS, acute radiation syndrome with the development of local radiation injury (ARS+LRI and local radiation injury (LRI obtained through 1-51 year after radiation injury. The mature mir34a, mir21, mir145, mir16, mir125b, Iet7a which contained in the common fractions of RNA were reverse transcribed by using specific "stem-loop" — primers. The relative amount of micro-RNA in blood of patients by real-time PCR. Statistical analysis of the results was carried out using the non-parametric Mann —Whitney test. Data are presented as median and quartiles, normalized to median of control group accepted for 1. Results. We found a significant reduction of content of mir34a, mir21 in the blood of patients with a diagnosis ARS and the increase of content of mir145 in patients with LRI. Analysis of the individual values of micro-RNA expression in the blood of patients whose cancer was detected, except for patients with a bazalioma, showed consistency of changes with risk of carcinogenesis. Conclusion. For the first time was investigated the functional activity of p53-dependent system of maintaining the genome stability by measuring of micro-RNA in the blood of patients after many years post radiation injury. We found a significant reduction of content of mir34a, mir21 in blood of patients with ARS, and increased mir145 in patients with LRI. Our results suggest that further research with groups of patients, and analysis the dynamics of micro-RNA content would allow for use the micro-RNA as indicators of risk of late

  18. microRNA-146a inhibits G protein-coupled receptor-mediated activation of NF-κB by targeting CARD10 and COPS8 in gastric cancer

    DEFF Research Database (Denmark)

    Crone, Stephanie Geisler; Jacobsen, Anders; Federspiel, Birgitte

    2012-01-01

    Gastric cancer is the second most common cause of cancer-related death in the world. Inflammatory signals originating from gastric cancer cells are important for recruiting inflammatory cells and regulation of metastasis of gastric cancer. Several microRNAs (miRNA) have been shown to be involved...

  19. microRNA-146a inhibits G protein-coupled receptor-mediated activation of NF-κB by targeting CARD10 and COPS8 in gastric cancer

    DEFF Research Database (Denmark)

    Crone, Stephanie Geisler; Jacobsen, Anders; Federspiel, Birgitte;

    2012-01-01

    Gastric cancer is the second most common cause of cancer-related death in the world. Inflammatory signals originating from gastric cancer cells are important for recruiting inflammatory cells and regulation of metastasis of gastric cancer. Several microRNAs (miRNA) have been shown to be involved ...

  20. Detection and measurement of paracaspase MALT1 activity.

    Science.gov (United States)

    Hailfinger, Stephan; Pelzer, Christiane; Thome, Margot

    2014-01-01

    The paracaspase MALT1 is a Cys-dependent, Arg-specific protease that plays an essential role in the activation and proliferation of lymphocytes during the immune response. Oncogenic activation of MALT1 is associated with the development of specific forms of B-cell lymphomas. Through specific cleavage of its substrates, MALT1 controls various aspects of lymphocyte activation, including the activation of transcriptional pathways, the stabilization of mRNAs, and an increase in cellular adhesion. In lymphocytes, the activity of MALT1 is tightly controlled by its inducible monoubiquitination, which promotes the dimerization of MALT1. Here, we describe both in vitro and in vivo assays that have been developed to assess MALT1 activity.

  1. Measurement uncertainty on subsurface defects detection using active infrared thermographic technique

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yoon Jae; Kim [Kongju National University, Cheonan (Korea, Republic of); Choi, Won Jae [Center for Safety Measurements, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2015-10-15

    Active infrared thermography methods have been known to possess good fault detection capabilities for the detection of defects in materials compared to the conventional passive thermal infrared imaging techniques. However, the reliability of the technique has been under scrutiny. This paper proposes the lock-in thermography technique for the detection and estimation of artificial subsurface defect size and depth with uncertainty measurement.

  2. Detection of Extracellular Enzyme Activities in Ganoderma neo-japonicum

    OpenAIRE

    Jo, Woo-Sik; Park, Ha-Na; Cho, Doo-Hyun; Yoo, Young-Bok; Park, Seung-Chun

    2011-01-01

    The ability of Ganoderma to produce extracellular enzymes, including β-glucosidase, cellulase, avicelase, pectinase, xylanase, protease, amylase, and ligninase was tested in chromogenic media. β-glucosidase showed the highest activity, among the eight tested enzymes. In particular, Ganoderma neo-japonicum showed significantly stronger activity for β-glucosidase than that of the other enzymes. Two Ganoderma lucidum isolates showed moderate activity for avicelase; however, Ganoderma neo-japonic...

  3. Stochastic Change Detection based on an Active Fault Diagnosis Approach

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2007-01-01

    output from the system. The classical CUSUM (cumulative sum) method will be modified such that it will be able to detect change in the signature from the auxiliary input signal in the (error) output signal. It will be shown how it is possible to apply both the gain as well as the phase change...... of the output vector in the CUSUM test....

  4. Onboard Detection of Active Canadian Sulfur Springs: A Europa Analogue

    Science.gov (United States)

    Castano, Rebecca; Wagstaff, Kiri; Gleeson, Damhnait; Pappalardo, Robert; Chien, Steve; Tran, Daniel; Scharenbroich, Lucas; Moghaddam, Baback; Tang, Benyang; Bue, Brian; Doggett, Thomas; Mandl, Dan; Frye, Stuart

    2008-01-01

    We discuss a current, ongoing demonstration of insitu onboard detection in which the Earth Observing-1 spacecraft detects surface sulfur deposits that originate from underlying springs by distinguishing the sulfur from the ice-rich glacial background, a good analogue for the Europan surface. In this paper, we describe the process of developing the onboard classifier for detecting the presence of sulfur in a hyperspectral scene, including the use of a training/testing set that is not exhaustively labeled, i.e.not all true positives are marked, and the selection of 12, out of 242, Hyperion instrument wavelength bands to use in the onboard detector. This study aims to demonstrate the potential for future missions to capture short-lived science events, make decisions onboard, identify high priority data for downlink and perform onboard change detection. In the future, such capability could help maximize the science return of downlink bandwidth-limited missions, addressing a significant constraint in all deep-space missions.

  5. Detection of recombinant and cellular MALT1 paracaspase activity.

    Science.gov (United States)

    Nagel, Daniel; Krappmann, Daniel

    2015-01-01

    MALT1 (mucosa-associated lymphoid tissue protein 1) is a key regulator of antigen-induced NF-κB activation in the adaptive immune response. Activation of proteolytic activity of the MALT1 paracaspase was shown to boost the immune response. Additionally, MALT1 proteolytic activity is essential for the survival of MALT1-dependent lymphoma, such as the activated B-cell type (ABC) of diffuse large B-cell lymphoma (DLBCL) or MALT lymphoma. The functional impact of MALT1 paracaspase on T-cell activation and lymphomagenesis suggests that MALT1 is a promising therapeutic target for the treatment of autoimmune diseases and distinct lymphoma entities. To evaluate the requirement of MALT1 in further detail, direct measurement of its activity status is of great importance. We have established a fluorogenic cleavage assay which can be used to measure activity of recombinant and cellular MALT1. Here we describe the basis of the cleavage assay and include a detailed protocol for recombinant production of MALT1 and also the cellular immunoprecipitation of endogenous MALT1 to determine its proteolytic activity.

  6. Detection of phosphatase activity in aquatic and terrestrial cyanobacterial strains

    Directory of Open Access Journals (Sweden)

    Babić Olivera B.

    2013-01-01

    Full Text Available Cyanobacteria, as highly adaptable microorganisms, are characterized by an ability to survive in different environmental conditions, in which a significant role belongs to their enzymes. Phosphatases are enzymes produced by algae in relatively large quantities in response to a low orthophosphate concentration and their activity is significantly correlated with their primary production. The activity of these enzymes was investigated in 11 cyanobacterial strains in order to determine enzyme synthesis depending on taxonomic and ecological group of cyanobacteria. The study was conducted with 4 terrestrial cyanobacterial strains, which belong to Nostoc and Anabaena genera, and 7 filamentous water cyanobacteria of Nostoc, Oscillatoria, Phormidium and Microcystis genera. The obtained results showed that the activity of acid and alkaline phosphatases strongly depended on cyanobacterial strain and the environment from which the strain originated. Higher activity of alkaline phosphatases, ranging from 3.64 to 85.14 μmolpNP/s/dm3, was recorded in terrestrial strains compared to the studied water strains (1.11-5.96 μmolpNP/s/dm3. The activity of acid phosphatases was higher in most tested water strains (1.67-6.28 μmolpNP/s/dm3 compared to the activity of alkaline phosphatases (1.11-5.96 μmolpNP/s/dm3. Comparing enzyme activity of nitrogen fixing and non-nitrogen fixing cyanobacteria, it was found that most nitrogen fixing strains had a higher activity of alkaline phosphatases. The data obtained in this work indicate that activity of phosphatases is a strain specific property. The results further suggest that synthesis and activity of phosphatases depended on eco-physiological characteristics of the examined cyanobacterial strains. This can be of great importance for the further study of enzymes and mechanisms of their activity as a part of cyanobacterial survival strategy in environments with extreme conditions. [Projekat Ministarstva nauke Republike

  7. Follow-up of gestational trophoblastic disease/neoplasia via quantification of circulating nucleic acids of placental origin using C19MC microRNAs, hypermethylated RASSF1A, and SRY sequences.

    Science.gov (United States)

    Hromadnikova, Ilona; Kotlabova, Katerina; Krofta, Ladislav; Hron, Filip

    2017-04-01

    The aim of the study was to evaluate the effectiveness of placental-specific markers, extracellular fetal DNA (sex-determining region Y and hypermethylated RASSF1A sequences) and circulating C19MC microRNAs (miR-516-5p, miR-517-5p, miR-518b, miR-520a-5p, miR-520h, miR-525, and miR-526a) for the diagnosis and consecutive follow-up of gestational trophoblastic disease/neoplasia. Increased levels of extracellular fetal DNA and C19MC microRNAs were detected in patients with active disease when compared with the period when the patients reached remission of the disease. The positive correlation between plasma levels of hypermethylated RASSF1A sequence, C19MC microRNAs, and human chorionic gonadotropin serum levels was found. MiR-520a-5p had the best performance to detect patients with active disease (a positive predictive value of 100% at a null false positive ratio (FPR)). MiR-516-5p and miR-525 were able to diagnose 100% of women with active disease at the FPR 3.9%/7.7%. The overall predictive capacity of single miR-526a (81.8% at null FPR), miR-517-5p (90.9% at 15.4% FPR), miR-518b (100% at 38.5% FPR), and miR-520h (90.9% at 26.9% FPR) biomarkers to detect active disease cases was slightly lower. Transient increase in C19MC microRNA plasma levels after the first cycle of chemotherapy indicated the decay of placental trophoblast residual tissue. The increased levels of extracellular fetal DNA and placental-specific C19MC microRNAs are associated with gestational trophoblastic disease/neoplasia. Screening of extracellular placental-specific biomarkers may represent an additional option to identify a significant proportion of women with active disease and to monitor the therapy response. Non-invasive follow-up of the decomposing residual tissue in the form of extracellular nucleic acids of placental origin packed into apoptotic bodies derived from placental trophoblasts is available.

  8. Detection of static and dynamic activities using uniaxial accelerometers

    NARCIS (Netherlands)

    Veltink, Petrus H.; Bussmann, Hans B.J.; de Vries, Wiebe; de Vries, W.; Martens, Wim L.J.; van Lummel, Rob C.

    1996-01-01

    Rehabilitation treatment may be improved by objective analysis of activities of daily living. For this reason, the feasibility of distinguishing several static and dynamic activities (standing, sitting, lying, walking, ascending stairs, descending stairs, cycling) using a small set of two or three

  9. Study on the Detection of Telomerase Activity by Combining DNA Sequence Analysis with TRAP

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Telomeric repeat amplification protocol (TRAP) is now aconventional assay for detecting telomerase activity. However, this method presents problems owing to tedious quantitation, radioisotopic handling. In order to alleviate these inconveniences, a novel telomerase DNA sequencing assay together with TRAP to detect human telomerase activity was developed. It was used to detect telomerase activity in Hela, HLF, MCF, K562, SMMC-7721 cells, Leukocytes and RNase-pretreated or heat-treated cells as control. Telomerase activity assayed by this method was positive when the number of K562 cells examined was 102,103, and 104. The telomerase activity depended on the number of K562 cells used in the assay. Telomerase activity of Rnase-pretreated cells or heat-treated cells, and human normal peripheral blood leukocyte(Leu) were negative. The result of this method was available within a few hours and was handled without radioisotope. Further studies should be taken to detect telomerase activity in quantitation.

  10. Comparison of microRNA expression profiles in K562-cells-derived microvesicles and parental cells, and analysis of their roles in leukemia.

    Science.gov (United States)

    Chen, Xiaomei; Xiong, Wei; Li, Huiyu

    2016-12-01

    Microvesicles (MVs) are 30-1,000-nm extracellular vesicles that are released from a multitude of cell types and perform diverse cellular functions, including intercellular communication, antigen presentation, and transfer of proteins, messenger RNA and microRNA (also known as miR). MicroRNAs have been demonstrated to be aberrantly expressed in leukemia, and the overall microRNA expression profile may differentiate normal blood cells vs. leukemia cells. MVs containing microRNAs may enable intercellular cross-talk in vivo. This prompted us to investigate specific variations of microRNA expression patterns in MVs derived from leukemia cells. The present study examined the microRNA expression profile of MVs from chronic myeloid leukemia K562 cells and that of MVs from normal human volunteers' peripheral blood cells. The potential targets of the differentially expressed microRNAs were predicted using computational searches. Bioinformatic analyses of the predicted target genes were performed for further evaluation. The present study analyzed microRNAs of MVs derived from leukemia and normal cells, and characterized specific microRNAs expression. The results revealed that MVs derived from K562 cells expressed 181 microRNAs of the 888 microRNAs assessed. Further analysis revealed that 16 microRNAs were downregulated, while 7 were upregulated in these MVs. In addition, significant differences in microRNA expression profiles between MVs derived from K562 cells and K562 cells were identified. The present results revealed that 77 and 122 microRNAs were only expressed in MVs derived from K562 cells and in K562 cells, respectively. There were 104 microRNAs co-expressed in MVs derived from K562 cells and in K562 cells. Target gene-related pathway analyses demonstrated that the majority of the dysregulated microRNAs were involved in pathways associated with leukemia, particularly the mitogen-activated protein kinase (MAPK) and the p53 signaling pathways. By further conducting

  11. Hepatic expression of inflammatory genes and microRNAs in pigs with high “cholesteryl ester transfer protein” (CETP) activity

    DEFF Research Database (Denmark)

    Cirera, Susanna; Tørsleff, Benedicte C Juul; Ritz, Christian

    2016-01-01

    with obesity; e.g., low levels of high-density lipoproteins (HDL) are high risk factors of cardiovascular events. A number of genetic, lifestyle, and environmental factors have been shown to contribute to the lowering of HDL-cholesterol. One of these factors is cholesteryl ester transfer protein (CETP......) promoting the redistribution of cholesteryl esters, triglycerides, and phospholipids between plasma proteins. Moreover, obesity and ORD are often linked with chronic low-grade inflammation leading to insulin resistance and endothelial and microvascular dysfunctions. The aim of this study was to detect...

  12. Radiation Protection in the Application of Active Detection Technologies

    Science.gov (United States)

    2013-07-01

    include prompt and delayed neutron and gamma emissions from induced fission events, x rays from muon interactions with high-Z materials, and other...that was designed involved nanosecond pulses of 8.5 MeV neutrons for scanning cargo contents. Detection of prompt gamma emissions that result when fast...12 1.3.2 Pulsed Fast Neutron Analysis Systems for Security Surveillance ............. 13 1.3.3 Cargo Scanners Using

  13. Passive radiation detection using optically active CMOS sensors

    Science.gov (United States)

    Dosiek, Luke; Schalk, Patrick D.

    2013-05-01

    Recently, there have been a number of small-scale and hobbyist successes in employing commodity CMOS-based camera sensors for radiation detection. For example, several smartphone applications initially developed for use in areas near the Fukushima nuclear disaster are capable of detecting radiation using a cell phone camera, provided opaque tape is placed over the lens. In all current useful implementations, it is required that the sensor not be exposed to visible light. We seek to build a system that does not have this restriction. While building such a system would require sophisticated signal processing, it would nevertheless provide great benefits. In addition to fulfilling their primary function of image capture, cameras would also be able to detect unknown radiation sources even when the danger is considered to be low or non-existent. By experimentally profiling the image artifacts generated by gamma ray and β particle impacts, algorithms are developed to identify the unique features of radiation exposure, while discarding optical interaction and thermal noise effects. Preliminary results focus on achieving this goal in a laboratory setting, without regard to integration time or computational complexity. However, future work will seek to address these additional issues.

  14. Rapid Detection of Biological and Chemical Threat Agents Using Physical Chemistry, Active Detection, and Computational Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Myung; Dong, Li; Fu, Rong; Liotta, Lance; Narayanan, Aarthi; Petricoin, Emanuel; Ross, Mark; Russo, Paul; Zhou, Weidong; Luchini, Alessandra; Manes, Nathan; Chertow, Jessica; Han, Suhua; Kidd, Jessica; Senina, Svetlana; Groves, Stephanie

    2007-01-01

    Basic technologies have been successfully developed within this project: rapid collection of aerosols and a rapid ultra-sensitive immunoassay technique. Water-soluble, humidity-resistant polyacrylamide nano-filters were shown to (1) capture aerosol particles as small as 20 nm, (2) work in humid air and (3) completely liberate their captured particles in an aqueous solution compatible with the immunoassay technique. The immunoassay technology developed within this project combines electrophoretic capture with magnetic bead detection. It allows detection of as few as 150-600 analyte molecules or viruses in only three minutes, something no other known method can duplicate. The technology can be used in a variety of applications where speed of analysis and/or extremely low detection limits are of great importance: in rapid analysis of donor blood for hepatitis, HIV and other blood-borne infections in emergency blood transfusions, in trace analysis of pollutants, or in search of biomarkers in biological fluids. Combined in a single device, the water-soluble filter and ultra-sensitive immunoassay technique may solve the problem of early warning type detection of aerosolized pathogens. These two technologies are protected with five patent applications and are ready for commercialization.

  15. Phenotypic MicroRNA Microarrays

    OpenAIRE

    2013-01-01

    Microarray technology has become a very popular approach in cases where multiple experiments need to be conducted repeatedly or done with a variety of samples. In our lab, we are applying our high density spots microarray approach to microscopy visualization of the effects of transiently introduced siRNA or cDNA on cellular morphology or phenotype. In this publication, we are discussing the possibility of using this micro-scale high throughput process to study the role of microRNAs in the bio...

  16. Heterogeneous data analysis for annotation of microRNAs and novel genome assembly

    NARCIS (Netherlands)

    Zhang, Yanju

    2011-01-01

    This thesis is the collection of four published papers demonstrating annotation of genes and microRNAs with the aid of bioinformatics, in particular using heterogeneous data integration. Gene annotation is the process of detecting the structure and biological function of the raw DNA sequences; while

  17. MicroRNAs as biomarkers for CNS disease

    Directory of Open Access Journals (Sweden)

    Pooja eRao

    2013-11-01

    Full Text Available For many neurological diseases, the efficacy and outcome of treatment depend on early detection. Diagnosis is currently based on the detection of symptoms and neuroimaging abnormalities, which appear at relatively late stages in the pathogenesis. However, the underlying molecular responses to genetic and environmental insults begin much earlier and non-coding RNA networks are critically involved in these cellular regulatory mechanisms. Profiling RNA expression patterns could thus facilitate presymptomatic disease detection.Obtaining indirect readouts of pathological processes is particularly important for brain disorders because of the lack of direct access to tissue for molecular analyses. Living neurons and other CNS cells secrete microRNA and other small non-coding RNA into the extracellular space packaged in exosomes, microvesicles or lipoprotein complexes. This discovery, together with the rapidly evolving massive sequencing technologies that allow detection of virtually all RNA species from small amounts of biological material, has allowed significant progress in the use of extracellular RNA as a biomarker for CNS malignancies, neurological and psychiatric diseases. There is also recent evidence that the interactions between external stimuli and brain pathological processes may be reflected in peripheral tissues, facilitating their use as potential diagnostic markers. In this review, we explore the possibilities and challenges of using microRNA and other small RNAs as a signature for neurodegenerative and other neuropsychatric conditions.

  18. Isothermal circular-strand-displacement polymerization of DNA and microRNA in digital microfluidic devices.

    Science.gov (United States)

    Giuffrida, Maria Chiara; Zanoli, Laura Maria; D'Agata, Roberta; Finotti, Alessia; Gambari, Roberto; Spoto, Giuseppe

    2015-02-01

    Nucleic-acid amplification is a crucial step in nucleic-acid-sequence-detection assays. The use of digital microfluidic devices to miniaturize amplification techniques reduces the required sample volume and the analysis time and offers new possibilities for process automation and integration in a single device. The recently introduced droplet polymerase-chain-reaction (PCR) amplification methods require repeated cycles of two or three temperature-dependent steps during the amplification of the nucleic-acid target sequence. In contrast, low-temperature isothermal-amplification methods have no need for thermal cycling, thus requiring simplified microfluidic-device features. Here, the combined use of digital microfluidics and molecular-beacon (MB)-assisted isothermal circular-strand-displacement polymerization (ICSDP) to detect microRNA-210 sequences is described. MicroRNA-210 has been described as the most consistently and predominantly upregulated hypoxia-inducible factor. The nmol L(-1)-pmol L(-1) detection capabilities of the method were first tested by targeting single-stranded DNA sequences from the genetically modified Roundup Ready soybean. The ability of the droplet-ICSDP method to discriminate between full-matched, single-mismatched, and unrelated sequences was also investigated. The detection of a range of nmol L(-1)-pmol L(-1) microRNA-210 solutions compartmentalized in nanoliter-sized droplets was performed, establishing the ability of the method to detect as little as 10(-18) mol of microRNA target sequences compartmentalized in 20 nL droplets. The suitability of the method for biological samples was tested by detecting microRNA-210 from transfected K562 cells.

  19. Potential roles of microRNAs and ROS in colorectal cancer: diagnostic biomarkers and therapeutic targets

    Science.gov (United States)

    Lin, Jingmei; Chuang, Chia-Chen; Zuo, Li

    2017-01-01

    As one of the most commonly diagnosed cancers worldwide, colorectal adenocarcinoma often occurs sporadically in individuals aged 50 or above and there is an increase among younger patients under 50. Routine screenings are recommended for this age group to improve early detection. The multifactorial etiology of colorectal cancer consists of both genetic and epigenetic factors. Recently, studies have shown that the development and progression of colorectal cancer can be attributed to aberrant expression of microRNA. Reactive oxygen species (ROS) that play a key role in cancer cell survival, can also lead to carcinogenesis and cancer exacerbations. Given the rapid accumulating knowledge in the field, an updated review regarding microRNA and ROS in colorectal cancer is necessary. An extensive literature search has been conducted in PubMed/Medline databases to review the roles of microRNAs and ROS in colorectal cancer. Unique microRNA expression in tumor tissue, peripheral blood, and fecal samples from patients with colorectal cancer is outlined. Therapeutic approaches focusing on microRNA and ROS in colorectal cancer treatment is also delineated. This review aims to summarize the newest knowledge on the pathogenesis of colorectal cancer in the hopes of discovering novel diagnostic biomarkers and therapeutic techniques. PMID:28061475

  20. Attenuation of cardiac dysfunction and remodeling of myocardial infarction by microRNA-130a is mediated by suppression of PTEN and activation of PI3K dependent signaling

    Science.gov (United States)

    Lu, Chen; Wang, Xiaohui; Ha, Tuanzhu; Hu, Yuanping; Liu, Li; Zhang, Xia; Yu, Honghui; Miao, Jonathan; Kao, Race; Kalbfleisch, John; Williams, David; Li, Chuanfu

    2015-01-01

    Objective Activation of PI3K/Akt signaling protects the myocardium from ischemia/reperfusion injury. MicroRNAs have been demonstrated to play an important role in the regulation of gene expression at the post-transcriptional level. In this study, we examined whether miR-130a will attenuate cardiac dysfunction and remodeling after myocardial infarction (MI) via PI3K/Akt dependent mechanism. Approaches and Results To determine the role of miR-130a in the proliferation and migration of endothelial cells, HUVECs were transfected with miR-130a mimics before the cells were subjected to scratch-induced wound injury. Transfection of miR-130a mimics stimulated the migration of endothelial cells into the wound area and increased phosphor-Akt levels. To examine the effect of miR-130a on cardiac dysfunction and remodeling after MI, Lentivirus expressing miR-130a (LmiR-130a) was delivered into mouse hearts seven days before the mice were subjected to MI. Cardiac function was assessed by echocardiography before and for up to 21 days after MI. Ejection fraction (EF%) and fractional shortening (FS%) in the LmiR-130a transfected MI hearts were significantly greater than in LmiR-control and untransfected control MI groups. LmiR-130a transfection increased capillary number and VEGF expression, and decreased collagen deposition in the infarcted myocardium. Importantly, LmiR-130a transfection significantly suppressed PTEN expression and increased the levels of phosphorylated Akt in the myocardium. However, treatment of LmiR-130a-transfected mice with LY294002, a PI3K inhibitor, completely abolished miR-130a-induced attenuation of cardiac dysfunction after MI. Conclusions miR-130a plays a critical role in attenuation of cardiac dysfunction and remodeling after MI. The mechanisms involve activation of PI3K/Akt signaling via suppression of PTEN expression. PMID:26458524

  1. MicroRNA-143 inhibits IL-13-induced dysregulation of the epidermal barrier-related proteins in skin keratinocytes via targeting to IL-13Rα1.

    Science.gov (United States)

    Zeng, Yue-Ping; Nguyen, Giang Huong; Jin, Hong-Zhong

    2016-05-01

    Atopic dermatitis is a chronic inflammatory skin disease characterized by the dysregulation of the epidermal barrier and the immune system. Interleukin (IL)-13, a key T helper 2 cytokine, has been shown to impair the epidermal barrier function via downregulating epidermal barrier proteins. MicroRNAs are small noncoding RNAs of approximately 22 nucleotides that act as negative regulators of gene expression at posttranscriptional levels. MicroRNA-143 is known to be a tumor suppressor in various tumors; however, its role in the regulation of allergic diseases including atopic dermatitis remains elusive. In this study, we investigated whether IL-13Rα1 was a microRNA-143 target to regulate the effects of IL-13 on epidermal barrier function. After the stimulation of IL-13 in human epidermal keratinocytes, the level of microRNA-143 was decreased. The luciferase activity of the vector containing 3'UTR of IL-13Rα1 was decreased in keratinocytes transfected with microRNA-143 mimic compared to those of the corresponding controls. The forced expression of microRNA-143 mimic blocked the IL-13-induced downregulation of filaggrin, loricrin, and involucrin in epidermal keratinocytes. Collectively, these data suggest that microRNA-143 suppresses IL-13 activity and inflammation through targeting of IL-13Rα1 in epidermal keratinocytes. MicroRNA-143 may serve as a potential preventive and therapeutic target in atopic dermatitis.

  2. Flow system for optical activity detection of vegetable extracts employing molecular exclusion continuous chromatographic detection

    Science.gov (United States)

    Fajer, V.; Rodríguez, C.; Naranjo, S.; Mesa, G.; Mora, W.; Arista, E.; Cepero, T.; Fernández, H.

    2006-02-01

    The combination of molecular exclusion chromatography and laser polarimetric detection has turned into a carbohydrate separation and quantification system for plant fluids of industrial value, making it possible the evaluation of the quality of sugarcane juices, agave juices and many other plant extracts. Some previous papers described a system where liquid chromatography separation and polarimetric detection using a LASERPOL 101M polarimeter with He-Ne light source allowed the collection and quantification of discrete samples for analytical purposes. In this paper, the authors are introducing a new improved system which accomplishes polarimetric measurements in a continuous flux. Chromatograms of several carbohydrates standard solutions were obtained as useful references to study juice quality of several sugarcane varieties under different physiological conditions. Results by either discrete or continuous flux systems were compared in order to test the validation of the new system. An application of the system to the diagnostics of scalded foliar is described. A computer program allowing the output of the chromatograms to a display on line and the possibility of digital storing, maxima detections, zone integration, and some other possibilities make this system very competitive and self-convincing.

  3. MicroRNA-500 sustains nuclear factor-κB activation and induces gastric cancer cell proliferation and resistance to apoptosis

    Science.gov (United States)

    Yuan, Zhongyu; Liu, Junling; Sun, Jian; Lei, Fangyong; Wu, Shu; Li, Su; Zhang, Dongsheng

    2015-01-01

    Ubiquitin deconjugation of key signalling molecules by deubiquitinases (DUBs) such as cylindromatosis (CYLD), A20, and OTU deubiquitinase 7B (OTUD7B) has emerged as an important regulatory mechanism in the downregulation of NF-κB signalling and homeostasis. However, how these serial negative regulations are simultaneously disrupted to result in constitutive activation of NF-κB signalling in cancers remains puzzling. Here, we report that the miR-500 directly repressed the expression of CYLD, OTUD7B, and the A20 complex component Tax1-binding protein 1 (TAX1BP1), leading to ubiquitin conjugation of receptor-interacting protein 1 (RIP1) and sustained NF-ĸB activation. Furthermore, we found that miR-500 promoted gastric cancer cell proliferation, survival, and tumorigenicity. Importantly, miR-500 was upregulated in gastric cancer and was highly correlated with malignant progression and poor survival. Hence, we report the uncovering of a novel mechanism for constitutive NF-κB activation, indicating the potentially pivotal role of miR-500 in the progression of gastric cancer. PMID:25595906

  4. Detection of Sulfatase Enzyme Activity with a CatalyCEST MRI Contrast Agent.

    Science.gov (United States)

    Sinharay, Sanhita; Fernández-Cuervo, Gabriela; Acfalle, Jasmine P; Pagel, Mark D

    2016-05-01

    A chemical exchange saturation transfer (CEST) MRI contrast agent has been developed that detects sulfatase enzyme activity. The agent produces a CEST signal at δ=5.0 ppm before enzyme activity, and a second CEST signal appears at δ=9.0 ppm after the enzyme cleaves a sulfate group from the agent. The comparison of the two signals improved detection of sulfatase activity.

  5. Detection of telomerase activity in Plasmodium falciparum using a nonradioactive method

    Directory of Open Access Journals (Sweden)

    Rubiano Claudia C

    2003-01-01

    Full Text Available A simple, quick and sensitive method was used to detect telomerase activity in Plasmodium falciparum. The telomeric repeat amplification protocol (TRAP assay was modified using electrophoresis and staining with SYBR-green I to detect telomerase activity in a range of 10² to 10(7 parasites. This might be a useful way to ascertain telomerase activity in different types of nontumor cells.

  6. Regulatory mechanisms in arterial hypertension: role of microRNA in pathophysiology and therapy.

    Science.gov (United States)

    Klimczak, Dominika; Jazdzewski, Krystian; Kuch, Marek

    2017-02-01

    Multiple factors underlie the pathophysiology of hypertension, involving endothelial dysregulation, vascular smooth muscle dysfunction, increased oxidative stress, sympathetic nervous system activation and altered renin -angiotensin -aldosterone regulatory activity. A class of non-coding RNA called microRNA, consisting of 17-25 nucleotides, exert regulatory function over these processes. This paper summarizes the currently available data from preclinical and clinical studies on miRNA in the development of hypertension as well as the impact of anti-hypertensive treatment on their plasma expression. We present microRNAs' characteristics, their biogenesis and role in the regulation of blood pressure together with their potential diagnostic and therapeutic application in clinical practice.

  7. Active acoustic leak detection for LMFBR steam generators. Pt. 6. Applicability to practical steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Kazuo; Kumagai, Hiromichi; Kinoshita, Izumi [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1998-03-01

    It is necessary to develop a reliable water leak detection system for steam generators of liquid metal reactors in order to prevent the expansion of damage and to maintain the structural integrity of the steam generators. The concept of the active acoustic method is to detect the change of the ultrasonic field due to the hydrogen gas bubbles generated by a sodium-water reaction. This method has the potential for improved detection performance compared with conventional passive methods, from the viewpoint of sensitivity, response time and tolerance against the background noise. A feasibility study of the active acoustic leak detection system is being carried out. This report predicts the performance of the active acoustic method in the practical steam generators from the results of the large scale in-water experiments. The results shows that the active acoustic system can detect a 10 g/s leak within a few seconds in large-scale steam generators. (author)

  8. Voice activity detection using audio-visual information

    DEFF Research Database (Denmark)

    Petsatodis, Theodore; Pnevmatikakis, Aristodemos; Boukis, Christos

    2009-01-01

    An audio-visual voice activity detector that uses sensors positioned distantly from the speaker is presented. Its constituting unimodal detectors are based on the modeling of the temporal variation of audio and visual features using Hidden Markov Models; their outcomes are fused using a post-deci...

  9. Atmospheric Detectives. Atlas 2 Teacher's Guide with Activities.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC. Educational Affairs Div.

    As part of the National Aeronautics and Space Administration Mission to Planet Earth, ATLAS 2 will help develop a thorough picture of the Sun's output, its interaction with the atmosphere, and the well-being of Earth's middle atmosphere. This middle school level guide probes the connection between the activities of scientists and the observable…

  10. Active Multistatic Track Initiation Cued by Passive Acoustic Detection

    Science.gov (United States)

    2012-07-01

    REFERENCES [1] D. Grimmett and S. Coraluppi, “Multistatic Active Sonar System Inter- operability, Data Fusion and Measures of Performance,” NURC ...Technical Report NURC -FR-2006-004, 2006. [2] D. Grimmett, “Multistatic Target Tracking Using Specular Cue Initiation and Directed Data Retrieval,” Proc. of

  11. Novel microRNA prosurvival cocktail for improving engraftment and function of cardiac progenitor cell transplantation.

    Science.gov (United States)

    Hu, Shijun; Huang, Mei; Nguyen, Patricia K; Gong, Yongquan; Li, Zongjin; Jia, Fangjun; Lan, Feng; Liu, Junwei; Nag, Divya; Robbins, Robert C; Wu, Joseph C

    2011-09-13

    Although stem cell therapy has provided a promising treatment for myocardial infarction, the low survival of the transplanted cells in the infarcted myocardium is possibly a primary reason for failure of long-term improvement. Therefore, the development of novel prosurvival strategies to boost stem cell survival will be of significant benefit to this field. Cardiac progenitor cells (CPCs) were isolated from transgenic mice, which constitutively express firefly luciferase and green fluorescent protein. The CPCs were transduced with individual lentivirus carrying the precursor of miR-21, miR-24, and miR-221, a cocktail of these 3 microRNA precursors, or green fluorescent protein as a control. After challenge in serum free medium, CPCs treated with the 3 microRNA cocktail showed significantly higher viability compared with untreated CPCs. After intramuscular and intramyocardial injections, in vivo bioluminescence imaging showed that microRNA cocktail-treated CPCs survived significantly longer after transplantation. After left anterior descending artery ligation, microRNA cocktail-treated CPCs boost the therapeutic efficacy in terms of functional recovery. Histological analysis confirmed increased myocardial wall thickness and CPC engraftment in the myocardium with the microRNA cocktail. Finally, we used bioinformatics analysis and experimental validation assays to show that Bim, a critical apoptotic activator, is an important target gene of the microRNA cocktail, which collectively can bind to the 3'UTR region of Bim and suppress its expression. We have demonstrated that a microRNA prosurvival cocktail (miR-21, miR-24, and miR-221) can improve the engraftment of transplanted cardiac progenitor cells and therapeutic efficacy for treatment of ischemic heart disease.

  12. Dehydroepiandrosterone Activation of G-protein-coupled Estrogen Receptor Rapidly Stimulates MicroRNA-21 Transcription in Human Hepatocellular Carcinoma Cells.

    Science.gov (United States)

    Teng, Yun; Radde, Brandie N; Litchfield, Lacey M; Ivanova, Margarita M; Prough, Russell A; Clark, Barbara J; Doll, Mark A; Hein, David W; Klinge, Carolyn M

    2015-06-19

    Little is known about the regulation of the oncomiR miR-21 in liver. Dehydroepiandrosterone (DHEA) regulates gene expression as a ligand for a G-protein-coupled receptor and as a precursor for steroids that activate nuclear receptor signaling. We report that 10 nm DHEA increases primary miR-21 (pri-miR-21) transcription and mature miR-21 expression in HepG2 cells in a biphasic manner with an initial peak at 1 h followed by a second, sustained response from 3-12 h. DHEA also increased miR-21 in primary human hepatocytes and Hep3B cells. siRNA, antibody, and inhibitor studies suggest that the rapid DHEA-mediated increase in miR-21 involves a G-protein-coupled estrogen receptor (GPER/GPR30), estrogen receptor α-36 (ERα36), epidermal growth factor receptor-dependent, pertussis toxin-sensitive pathway requiring activation of c-Src, ERK1/2, and PI3K. GPER antagonist G-15 attenuated DHEA- and BSA-conjugated DHEA-stimulated pri-miR-21 transcription. Like DHEA, GPER agonists G-1 and fulvestrant increased pri-miR-21 in a GPER- and ERα36-dependent manner. DHEA, like G-1, increased GPER and ERα36 mRNA and protein levels. DHEA increased ERK1/2 and c-Src phosphorylation in a GPER-responsive manner. DHEA increased c-Jun, but not c-Fos, protein expression after 2 h. DHEA increased androgen receptor, c-Fos, and c-Jun recruitment to the miR-21 promoter. These results suggest that physiological concentrations of DHEA activate a GPER intracellular signaling cascade that increases pri-miR-21 transcription mediated at least in part by AP-1 and androgen receptor miR-21 promoter interaction.

  13. A Mathematical Model for MicroRNA in Lung Cancer

    OpenAIRE

    Kang, Hye-Won; Crawford, Melissa; Fabbri, Muller; Nuovo, Gerard; Garofalo, Michela; Nana-Sinkam, S Patrick; Friedman, Avner

    2013-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Lack of early detection and limited options for targeted therapies are both contributing factors to the dismal statistics observed in lung cancer. Thus, advances in both of these areas are likely to lead to improved outcomes. MicroRNAs (miRs or miRNAs) represent a class of non-coding RNAs that have the capacity for gene regulation and may serve as both diagnostic and prognostic biomarkers in lung cancer. Abnormal expression ...

  14. MicroRNA-155 Reinforces HIV Latency.

    Science.gov (United States)

    Ruelas, Debbie S; Chan, Jonathan K; Oh, Eugene; Heidersbach, Amy J; Hebbeler, Andrew M; Chavez, Leonard; Verdin, Eric; Rape, Michael; Greene, Warner C

    2015-05-29

    The presence of a small number of infected but transcriptionally dormant cells currently thwarts a cure for the more than 35 million individuals infected with HIV. Reactivation of these latently infected cells may result in three fates: 1) cell death due to a viral cytopathic effect, 2) cell death due to immune clearance, or 3) a retreat into latency. Uncovering the dynamics of HIV gene expression and silencing in the latent reservoir will be crucial for developing an HIV-1 cure. Here we identify and characterize an intracellular circuit involving TRIM32, an HIV activator, and miR-155, a microRNA that may promote a return to latency in these transiently activated reservoir cells. Notably, we demonstrate that TRIM32, an E3 ubiquitin ligase, promotes reactivation from latency by directly modifying IκBα, leading to a novel mechanism of NF-κB induction not involving IκB kinase activation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. A highly specific and sensitive electroanalytical strategy for microRNAs based on amplified silver deposition by the synergic TiO2 photocatalysis and guanine photoreduction using charge-neutral probes.

    Science.gov (United States)

    Li, Rui; Li, Shuying; Dong, Minmin; Zhang, Liyan; Qiao, Yuchun; Jiang, Yao; Qi, Wei; Wang, Hua

    2015-11-18

    TiO2 photocatalysis and guanine photoreduction were synergically combined for amplifying silver deposition for the electroanalysis of short-chain microRNAs with guanine bases using charge-neutral probes. It could allow for the highly specific and sensitive detection of microRNAs in the blood as well as the identification of their mutant levels.

  16. Evaluation of harmonic detection methods for active power filter applications

    DEFF Research Database (Denmark)

    Asiminoaei, Lucian; Blaabjerg, Frede; Hansen, Steffan

    2005-01-01

    filter is to use a good method for current/voltage reference generation. There exist many implementations supported by different theories (either in time- or frequency-domain), which continuously debate their performances proposing ever better solutions. This paper gives a survey of the common used...... theories. Then, the work here proposes a simulation setup that decouples the harmonic reference generator from the active filter model and its controller. In this way the selected methods can be equally analyzed and compared with respect to their performance, which helps anticipating possible...... implementation issues. The conclusions are collected and a comparison is given at the end, which is useful in deciding the future hardware setup implementation. The comparison shows that the choice of numerical filtering is a key factor for obtaining good accuracies and dynamics for an active filter....

  17. SPR imaging combined with cyclic voltammetry for the detection of neural activity

    Directory of Open Access Journals (Sweden)

    Hui Li

    2014-03-01

    Full Text Available Surface plasmon resonance (SPR detects changes in refractive index at a metal-dielectric interface. In this study, SPR imaging (SPRi combined with cyclic voltammetry (CV was applied to detect neural activity in isolated bullfrog sciatic nerves. The neural activities induced by chemical and electrical stimulation led to an SPR response, and the activities were recorded in real time. The activities of different parts of the sciatic nerve were recorded and compared. The results demonstrated that SPR imaging combined with CV is a powerful tool for the investigation of neural activity.

  18. Coordination of insulin and Notch pathway activities by microRNA miR-305 mediates adaptive homeostasis in the intestinal stem cells of the Drosophila gut.

    Science.gov (United States)

    Foronda, David; Weng, Ruifen; Verma, Pushpa; Chen, Ya-Wen; Cohen, Stephen M

    2014-11-01

    Homeostasis of the intestine is maintained by dynamic regulation of a pool of intestinal stem cells. The balance between stem cell self-renewal and differentiation is regulated by the Notch and insulin signaling pathways. Dependence on the insulin pathway places the stem cell pool under nutritional control, allowing gut homeostasis to adapt to environmental conditions. Here we present evidence that miR-305 is required for adaptive homeostasis of the gut. miR-305 regulates the Notch and insulin pathways in the intestinal stem cells. Notably, miR-305 expression in the stem cells is itself under nutritional control via the insulin pathway. This link places regulation of Notch pathway activity under nutritional control. These findings provide a mechanism through which the insulin pathway controls the balance between stem cell self-renewal and differentiation that is required for adaptive homeostasis in the gut in response to changing environmental conditions.

  19. The Influence of Spirulina platensis Filtrates on Caco-2 Proliferative Activity and Expression of Apoptosis-Related microRNAs and mRNA.

    Science.gov (United States)

    Śmieszek, Agnieszka; Giezek, Ewa; Chrapiec, Martyna; Murat, Martyna; Mucha, Aleksandra; Michalak, Izabela; Marycz, Krzysztof

    2017-03-07

    Spirulina platensis (SP) is a blue-green microalga that has recently raised attention not only as a nutritional component, but also as a source of bioactivities that have therapeutic effects and may find application in medicine, including cancer treatment. In the present study we determined the cytotoxic effect of S. platensis filtrates (SPF) on human colon cancer cell line Caco-2. Three concentrations of SPF were tested-1.25%, 2.5%, and 5% (v/v). We have found that the highest concentration of SPF exerts the strongest anti-proliferative and pro-apoptotic effect on Caco-2 cultures. The SPF negatively affected the morphology of Caco-2 causing colony shrinking and significant inhibition of metabolic and proliferative activity of cells. The wound-healing assay showed that the SPF impaired migratory capabilities of Caco-2. This observation was consistent with lowered mRNA levels for metalloproteinases. Furthermore, SPF decreased the transcript level of pro-survival genes (cyclin D1, surviving, and c-Myc) and reduced the autocrine secretion of Wnt-10b. The cytotoxic effect of SPF involved the modulation of the Bax and Bcl-2 ratio and a decrease of mitochondrial activity, and was related with increased levels of intracellular reactive oxygen species (ROS) and nitric oxide (NO). Moreover, the SPF also caused an increased number of cells in the apoptotic sub-G0 phase and up-regulated expression of mir-145, simultaneously decreasing expression of mir-17 and 146. Obtained results indicate that SPF can be considered as an agent with anti-cancer properties that may be used for colon cancer prevention and treatment.

  20. A comparison of plate assay methods for detecting extracellular cellulase and xylanase activity.

    Science.gov (United States)

    Meddeb-Mouelhi, Fatma; Moisan, Jessica Kelly; Beauregard, Marc

    2014-11-01

    Identification of microorganisms for the production of carbohydrolytic enzymes is extremely important given the increased demand for these enzymes in many industries. To this end, dye-polysaccharide interactions which provide a visual indication of polymer hydrolysis (clear zones or halos) have been used for decades. For the detection of extracellular cellulase or xylanase activity many laboratories use Gram's iodine as the chromogenic dye, as it is a more rapid initial screening method compared to the use of other dyes. Here, we compared Gram's iodine and Congo red as indicators of polysaccharide hydrolysis. We attempted to detect cellulase activity using carboxymethylcellulose, and xylanase activity using birchwood xylan, in fourteen uncharacterized bacteria isolated from wood chips. Our results indicate that Gram's iodine may lead to identification of false positives in a typical screening protocol and that Congo red allows for avoidance of such pitfall. Congo red allowed detection of cellulase activity from live microbial colonies but not Gram's iodine. To confirm this, detection of enzymatic activity was also assessed using cell-free enzyme preparations. Congo red was found to be reliable in detecting cellulase activity with isolated enzymes preparations. Under the same conditions, neither of these dyes detected xylanase activity, despite independent evidence of xylanase activity for one of the preparations. We detected xylanase activity for this particular enzyme preparation using a coloured derivative of xylan (Remazol Brillant Blue R-xylan adduct) that respond to xylan hydrolysis. Our results suggest that methods that rely on interactions between a dye (Congo red or Gram's iodine) and a polymeric substrate (carboxymethylcellulose or birchwood xylan) for indirect detection of hydrolysis may require the use of relevant controls and independent confirmation of enzymatic activities.

  1. The MicroActive project: automatic detection of disease-related molecular cell activity

    Science.gov (United States)

    Furuberg, Liv; Mielnik, Michal; Johansen, Ib-Rune; Voitel, Jörg; Gulliksen, Anja; Solli, Lars; Karlsen, Frank; Bayer, Tobias; Schönfeld, Friedhelm; Drese, Klaus; Keegan, Helen; Martin, Cara; O'Leary, John; Riegger, Lutz; Koltay, Peter

    2007-05-01

    The aim of the MicroActive project is to develop an instrument for molecular diagnostics. The instrument will first be tested for patient screening for a group of viruses causing cervical cancer. Two disposable polymer chips with reagents stored on-chip will be inserted into the instrument for each patient sample. The first chip performs sample preparation of the epithelial cervical cells while mRNA amplification and fluorescent detection takes place in the second chip. More than 10 different virus markers will be analysed in one chip. We report results on sub-functions of the amplification chip. The sample is split into smaller droplets, and the droplets move in parallel channels containing different dried reagents for the different analyses. We report experimental results on parallel droplet movement control using one external pump only, combined with hydrophobic valves. Valve burst pressures are controlled by geometry. We show droplet control using valves with burst pressures between 800 and 4500 Pa. We also monitored the re-hydration times for two necessary dried reagents. After sample insertion, uniform concentration of the reagents in the droplet was reached after respectively 60 s and 10 min. These times are acceptable for successful amplification. Finally we have shown positive amplification of HPV type 16 using dried enzymes stored in micro chambers.

  2. Active terahertz wave imaging system for detecting hidden objects

    Science.gov (United States)

    Gan, Yuner; Liu, Ming; Zhao, Yuejin

    2016-11-01

    Terahertz wave can penetrate the common dielectric materials such as clothing, cardboard boxes, plastics and so on. Besides, the low photon energy and non-ionizing characteristic of the terahertz wave are especially suitable for the safety inspection of the human body. Terahertz imaging technology has a tremendous potential in the field of security inspection such as stations, airports and other public places. Terahertz wave imaging systems are divided into two categories: active terahertz imaging systems and passive terahertz imaging systems. So far, most terahertz imaging systems work at point to point mechanical scan pattern with the method of passive imaging. The imaging results of passive imaging tend to have low contrast and the image is not clear enough. This paper designs and implements an active terahertz wave imaging system combining terahertz wave transmitting and receiving with a Cassegrain antenna. The terahertz wave at the frequency of 94GHz is created by impact ionization avalanche transit time (IMPATT) diode, focused on the feed element for Cassegrain antenna by high density polyethylene (HDPE) lens, and transmitted to the human body by Cassegrain antenna. The reflected terahertz wave goes the same way it was emitted back to the feed element for Cassegrain antenna, focused on the horn antenna of detector by another high density polyethylene lens. The scanning method is the use of two-dimensional planar mirror, one responsible for horizontal scanning, and another responsible for vertical scanning. Our system can achieve a clear human body image, has better sensitivity and resolution than passive imaging system, and costs much lower than other active imaging system in the meantime.

  3. Direct detection of relic active and sterile neutrinos

    CERN Document Server

    Li, Yu-Feng

    2016-01-01

    Both active and sterile sub-eV neutrinos can form the cosmic neutrino background in the early Universe. We consider the beta-decaying (e.g., $^3$H) and EC-decaying (e.g., $^{163}$Ho) nuclei as the promising targets to capture relic neutrinos in the laboratory. We calculate the capture rates of relic electron neutrinos and antineutrinos against the corresponding beta decay or electron capture (EC) decay backgrounds in the (3+$N_{\\rm s}$) flavor mixing scheme, and discuss the future prospect in terms of the PTOLEMY project. We stress that such direct measurements of hot DM might not be hopeless in the long term.

  4. The Inhibition of microRNA-128 on IGF-1-Activating mTOR Signaling Involves in Temozolomide-Induced Glioma Cell Apoptotic Death

    Science.gov (United States)

    Chen, Peng-Hsu; Cheng, Chia-Hsiung; Shih, Chwen-Ming; Ho, Kuo-Hao; Lin, Cheng-Wei; Lee, Chin-Cheng; Liu, Ann-Jeng; Chang, Cheng-Kuei

    2016-01-01

    Temozolomide (TMZ), an alkylating agent of the imidazotetrazine series, is a first-line chemotherapeutic drug used in the clinical therapy of glioblastoma multiforme, the most common and high-grade primary glioma in adults. Micro (mi)RNAs, which are small noncoding RNAs, post-transcriptionally regulate gene expressions and are involved in gliomagenesis. However, no studies have reported relationships between TMZ and miRNA gene regulation. We investigated TMZ-mediated miRNA profiles and its molecular mechanisms underlying the induction of glioma cell death. By performing miRNA microarray and bioinformatics analyses, we observed that expression of 248 miRNAs was altered, including five significantly upregulated and 17 significantly downregulated miRNAs, in TMZ-treated U87MG cells. miR-128 expression levels were lower in different glioma cells and strongly associated with poor survival. TMZ treatment significantly upregulated miR-128 expression. TMZ significantly enhanced miR-128-1 promoter activity and transcriptionally regulated miR-128 levels through c-Jun N-terminal kinase 2/c-Jun pathways. The overexpression and knockdown of miR-128 expression significantly affected TMZ-mediated cell viability and apoptosis-related protein expression. Furthermore, the overexpression of miR-128 alone enhanced apoptotic death of glioma cells through caspase-3/9 activation, poly(ADP ribose) polymerase degradation, reactive oxygen species generation, mitochondrial membrane potential loss, and non-protective autophagy formation. Finally, we identified that key members in mammalian target of rapamycin (mTOR) signaling including mTOR, rapamycin-insensitive companion of mTOR, insulin-like growth factor 1, and PIK3R1, but not PDK1, were direct target genes of miR-128. TMZ inhibited mTOR signaling through miR-128 regulation. These results indicate that miR-128-inhibited mTOR signaling is involved in TMZ-mediated cytotoxicity. Our findings may provide a better understanding of cytotoxic

  5. Artifact detection in electrodermal activity using sparse recovery

    Science.gov (United States)

    Kelsey, Malia; Palumbo, Richard Vincent; Urbaneja, Alberto; Akcakaya, Murat; Huang, Jeannie; Kleckner, Ian R.; Barrett, Lisa Feldman; Quigley, Karen S.; Sejdic, Ervin; Goodwin, Matthew S.

    2017-05-01

    Electrodermal Activity (EDA) - a peripheral index of sympathetic nervous system activity - is a primary measure used in psychophysiology. EDA is widely accepted as an indicator of physiological arousal, and it has been shown to reveal when psychologically novel events occur. Traditionally, EDA data is collected in controlled laboratory experiments. However, recent developments in wireless biosensing have led to an increase in out-of-lab studies. This transition to ambulatory data collection has introduced challenges. In particular, artifacts such as wearer motion, changes in temperature, and electrical interference can be misidentified as true EDA responses. The inability to distinguish artifact from signal hinders analyses of ambulatory EDA data. Though manual procedures for identifying and removing EDA artifacts exist, they are time consuming - which is problematic for the types of longitudinal data sets represented in modern ambulatory studies. This manuscript presents a novel technique to automatically identify and remove artifacts in EDA data using curve fitting and sparse recovery methods. Our method was evaluated using labeled data to determine the accuracy of artifact identification. Procedures, results, conclusions, and future directions are presented.

  6. Circulating microRNAs in Neurodegenerative Diseases.

    Science.gov (United States)

    Grasso, Margherita; Piscopo, Paola; Crestini, Alessio; Confaloni, Annamaria; Denti, Michela A

    2015-01-01

    Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are caused by a combination of events that impair normal neuronal function. Although they are considered different disorders, there are overlapping features among them from the clinical, pathological, and genetic points of view. Synaptic dysfunction and loss, neurite retraction, and the appearance of other abnormalities such as axonal transport defects normally precede the neuronal loss that is a relatively late event. The diagnosis of many neurodegenerative diseases is mainly based on patient's cognitive function analysis, and the development of diagnostic methods is complicated by the brain's capacity to compensate for neuronal loss over a long period of time. This results in the late clinical manifestation of symptoms, a time when successful treatment is no longer feasible. Thus, a noninvasive diagnostic method based on early events detection is particularly important. In the last years, some biomarkers expressed in human body fluids have been proposed. microRNAs (miRNAs), with their high stability, tissue- or cell type-specific expression, lower cost, and shorter time in the assay development, could constitute a good tool to obtain an early disease diagnosis for a wide number of human pathologies, including neurodegenerative diseases. The possibilities and challenges of using these small RNA molecules as a signature for neurodegenerative disorders is a highly promising approach for developing minimally invasive screening tests and to identify new therapeutic targets.

  7. Integration of transcriptomics, proteomics, and microRNA analyses reveals novel microRNA regulation of targets in the mammalian inner ear.

    Directory of Open Access Journals (Sweden)

    Tal Elkan-Miller

    Full Text Available We have employed a novel approach for the identification of functionally important microRNA (miRNA-target interactions, integrating miRNA, transcriptome and proteome profiles and advanced in silico analysis using the FAME algorithm. Since miRNAs play a crucial role in the inner ear, demonstrated by the discovery of mutations in a miRNA leading to human and mouse deafness, we applied this approach to microdissected auditory and vestibular sensory epithelia. We detected the expression of 157 miRNAs in the inner ear sensory epithelia, with 53 miRNAs differentially expressed between the cochlea and vestibule. Functionally important miRNAs were determined by searching for enriched or depleted targets in the transcript and protein datasets with an expression consistent with the dogma of miRNA regulation. Importantly, quite a few of the targets were detected only in the protein datasets, attributable to regulation by translational suppression. We identified and experimentally validated the regulation of PSIP1-P75, a transcriptional co-activator previously unknown in the inner ear, by miR-135b, in vestibular hair cells. Our findings suggest that miR-135b serves as a cellular effector, involved in regulating some of the differences between the cochlear and vestibular hair cells.

  8. Micro-RNA-208a, -208b, and -499 as Biomarkers for Myocardial Damage After Cardiac Surgery in Children.

    Science.gov (United States)

    Bolkier, Yoav; Nevo-Caspi, Yael; Salem, Yishay; Vardi, Amir; Mishali, David; Paret, Gideon

    2016-04-01

    To test the hypothesis that cardiac-enriched micro-RNAs can serve as accurate biomarkers that reflect myocardial injury and to predict the postoperative course following pediatric cardiac surgery. Micro-RNAs have emerged as plasma biomarkers for many pathologic states. We aimed to quantify preoperative and postoperative plasma levels of cardiac-enriched micro-RNA-208a, -208b, and -499 in children undergoing cardiac surgery and to evaluate correlations between their levels, the extent of myocardial damage, and the postoperative clinical course. PICU. Thirty pediatric patients that underwent open heart surgery for the correction of congenital heart defects between January 2012 to July 2013. None. At 12 hours post surgery, the plasma levels of the micro-RNAs increased by 300- to 4,000-fold. At 24 hours, their levels decreased but remained significantly higher than before surgery. Micro-RNA levels were associated with troponin levels, longer cardiopulmonary bypass and aortic crossclamp times, maximal postoperative aspartate aminotransferase levels, and delayed hospital discharge. Circulating micro-RNA-208a, -208b, and -499 are detectable in the plasma of children undergoing cardiac surgery and may serve as novel biomarkers for monitoring and forecasting postoperative myocardial injury and recovery.

  9. Circulating microRNAs are not eliminated by hemodialysis.

    Directory of Open Access Journals (Sweden)

    Filippo Martino

    Full Text Available BACKGROUND: Circulating microRNAs are stably detectable in serum/plasma and other body fluids. In patients with acute kidney injury on dialysis therapy changes of miRNA patterns had been detected. It remains unclear if and how the dialysis procedure itself affects circulating microRNA level. METHODS: We quantified miR-21 and miR-210 by quantitative RT-PCR in plasma of patients with acute kidney injury requiring dialysis and measured pre- and post-dialyser miRNA levels as well as their amount in the collected spent dialysate. Single treatments using the following filters were studied: F60 S (1.3 m(2, Molecular Weight Cut Off (MWCO: 30 kDa, n = 8, AV 1000 S (1.8 m(2, MWCO: 30 kDa, n = 6 and EMiC 2 (1.8 m(2, MWCO: 40 kDa, n = 6. RESULTS: Circulating levels of miR-21 or -210 do not differ between pre- and post-dialyzer blood samples independently of the used filter surface and pore size: miR-21: F60S: p = 0.35, AV 1000 S p = 1.0, EMiC2 p = 1.0; miR-210: F60S: p = 0.91, AV 1000 S p = 0.09, EMiC2 p = 0.31. Correspondingly, only traces of both miRNAs could be found in the collected spent dialysate and ultrafiltrate. CONCLUSIONS: In patients with acute kidney injury circulating microRNAs are not removed by dialysis. As only traces of miR-21 and -210 are detected in dialysate and ultrafiltrate, microRNAs in the circulation are likely to be transported by larger structures such as proteins and/or microvesicles. As miRNAs are not affected by dialysis they might be more robust biomarkers of acute kidney injury.

  10. A microRNA family exerts maternal control on sex determination in C. elegans

    Science.gov (United States)

    McJunkin, Katherine; Ambros, Victor

    2017-01-01

    Gene expression in early animal embryogenesis is in large part controlled post-transcriptionally. Maternally contributed microRNAs may therefore play important roles in early development. We elucidated a major biological role of the nematode mir-35 family of maternally contributed essential microRNAs. We show that this microRNA family regulates the sex determination pathway at multiple levels, acting both upstream of and downstream from her-1 to prevent aberrantly activated male developmental programs in hermaphrodite embryos. Both of the predicted target genes that act downstream from the mir-35 family in this process, suppressor-26 (sup-26) and NHL (NCL-1, HT2A, and LIN-41 repeat) domain-containing-2 (nhl-2), encode RNA-binding proteins, thus delineating a previously unknown post-transcriptional regulatory subnetwork within the well-studied sex determination pathway of Caenorhabditis elegans. Repression of nhl-2 by the mir-35 family is required for not only proper sex determination but also viability, showing that a single microRNA target site can be essential. Since sex determination in C. elegans requires zygotic gene expression to read the sex chromosome karyotype, early embryos must remain gender-naïve; our findings show that the mir-35 family microRNAs act in the early embryo to function as a developmental timer that preserves naïveté and prevents premature deleterious developmental decisions. PMID:28279983

  11. A microRNA family exerts maternal control on sex determination in C. elegans.

    Science.gov (United States)

    McJunkin, Katherine; Ambros, Victor

    2017-02-15

    Gene expression in early animal embryogenesis is in large part controlled post-transcriptionally. Maternally contributed microRNAs may therefore play important roles in early development. We elucidated a major biological role of the nematode mir-35 family of maternally contributed essential microRNAs. We show that this microRNA family regulates the sex determination pathway at multiple levels, acting both upstream of and downstream from her-1 to prevent aberrantly activated male developmental programs in hermaphrodite embryos. Both of the predicted target genes that act downstream from the mir-35 family in this process, suppressor-26 (sup-26) and NHL (NCL-1, HT2A, and LIN-41 repeat) domain-containing-2 (nhl-2), encode RNA-binding proteins, thus delineating a previously unknown post-transcriptional regulatory subnetwork within the well-studied sex determination pathway of Caenorhabditis elegans Repression of nhl-2 by the mir-35 family is required for not only proper sex determination but also viability, showing that a single microRNA target site can be essential. Since sex determination in C. elegans requires zygotic gene expression to read the sex chromosome karyotype, early embryos must remain gender-naïve; our findings show that the mir-35 family microRNAs act in the early embryo to function as a developmental timer that preserves naïveté and prevents premature deleterious developmental decisions.

  12. The emerging roles of microRNAs in the molecular responses of metabolic rate depression

    Institute of Scientific and Technical Information of China (English)

    Kyle K. Biggar; Kenneth B. Storey

    2011-01-01

    Metabolic rate depression is an important survival strategy for many animal species and a common element of hibernation, torpor,estivation, anoxia and diapause. Studies of the molecular mechanisms that regulate reversible transitions to and from hypometabolic states have identified principles of regulatory control. These control mechanisms are conserved among biologically diverse organisms and include the coordinated reduction of specific groups of key regulatory enzymes or proteins in the cell, a process likely driven by microRNA target repression/degradation. The present review focuses on a growing area of research in hypometabolism and mechanisms involving the rapid and reversible control of translation facilitated by microRNAs. The analysis draws primarily from current research on three animal models: hibernating mammals, anoxic turtles and freeze-tolerant frogs (with selected examples from multiple other sources). Here, we demonstrate a link between metabolic rate depression, a well-documented response to periods of environmental stress, and microRNA expression. Microarray-based expression profiles and PCR-driven studies have revealed that specific microRNAs are induced in response to environmental stress. Selected members of this group decrease pro-apeptotic signaling,reduce muscle wasting and reduce protein translation, whereas other members contribute to cell cycle arrest and mitogen-activated protein kinase signaling. Many of the same microRNAs are frequently deregulated in numerous disease pathologies and, hence, the hypometabolism model could provide a novel approach for the treatment of stroke and heart attack in humans.

  13. MicroRNA Regulation in Renal Pathophysiology

    Directory of Open Access Journals (Sweden)

    Jianghui