WorldWideScience

Sample records for detecting botulinum neurotoxins

  1. [Botulinum neurotoxin].

    Science.gov (United States)

    Poulain, B

    2010-01-01

    Botulinum toxin is a multi-molecular complex comprised of a neuro-active moiety (i.e. botulinum neurotoxin) and several associated non-toxic proteins. The toxin dissociates rapidly at plasmatic pH, thereby releasing neurotoxin. Nerve terminals only take up the neurotoxin. In the peripheral nerve system, the neurotoxin mainly blocks acetylcholine release. When acting at the neuromuscular junctions, this results in paralysis of the muscle fibers. The duration of the neurotoxin action is mainly determined by the life-time of neurotoxin molecules inside the nerve terminals. Inhibition of cholinergic transmission induces rapid atrophy of the muscle fibres, and, sometimes, sprouting from poisoned nerve terminals. These effects, as well as the acetylcholine release blockade are entirely reversible. When injected in the periphery, a direct action of botulinum neurotoxin in the central nervous system remains unlikely despite its retrograde ascent demonstrated in animal models. However, indirect effects are numerous. The constituting proteins of the toxin complex can lead to immunisation against the non-toxic associated proteins and neurotoxin. Only the antibodies directed against neurotoxin are potentially neutralizing. Copyright 2009 Elsevier Masson SAS. All rights reserved.

  2. Universal and specific quantitative detection of botulinum neurotoxin genes

    Directory of Open Access Journals (Sweden)

    Arnon Stephen S

    2010-10-01

    Full Text Available Abstract Background Clostridium botulinum, an obligate anaerobic spore-forming bacterium, produces seven antigenic variants of botulinum toxin that are distinguished serologically and termed "serotypes". Botulinum toxin blocks the release of acetylcholine at neuromuscular junctions resulting in flaccid paralysis. The potential lethality of the disease warrants a fast and accurate means of diagnosing suspected instances of food contamination or human intoxication. Currently, the Food and Drug Administration (FDA-accepted assay to detect and type botulinum neurotoxins (BoNTs is the mouse protection bioassay. While specific and sensitive, this assay requires the use of laboratory animals, may take up to four days to achieve a diagnosis, and is unsuitable for high-throughput analysis. We report here a two-step PCR assay that identifies all toxin types, that achieves the specificity of the mouse bioassay while surpassing it in equivalent sensitivity, that has capability for high-throughput analysis, and that provides quantitative results within hours. The first step of our assay consists of a conventional PCR that detects the presence of C. botulinum regardless of the neurotoxin type. The second step uses quantitative PCR (qPCR technology to determine the specific serotype of the neurotoxin. Results We assayed purified C. botulinum DNA and crude toxin preparations, as well as food and stool from healthy individuals spiked with purified BoNT DNA, and one stool sample from a case of infant botulism for the presence of the NTNH gene, which is part of the BoNT gene cluster, and for the presence of serotype-specific BoNT genes. The PCR surpassed the mouse bioassay both in specificity and sensitivity, detecting positive signals in BoNT preparations containing well below the 1 LD50 required for detection via the mouse bioassay. These results were type-specific and we were reliably able to quantify as few as 10 genomic copies. Conclusions While other studies

  3. Botulinum Neurotoxin Injections

    Science.gov (United States)

    ... Special Events Faces of Dystonia Donate Donate Online Membership Find an Event Donor Bill of Rights About Dystonia Symptoms & Diagnosis Forms of Dystonia Genetics Glossary Treatment Find a Doctor Oral Medications Botulinum Neurotoxin Neurosurgery ...

  4. On botulinum neurotoxin variability.

    Science.gov (United States)

    Montecucco, Cesare; Rasotto, Maria Berica

    2015-01-06

    The rapidly growing number of botulinum neurotoxin sequences poses the problem of the possible evolutionary significance of the variability of these superpotent neurotoxins for toxin-producing Clostridium species. To progress in the understanding of this remarkable phenomenon, we suggest that researchers should (i) abandon an anthropocentric view of these neurotoxins as human botulism-causing agents or as human therapeutics, (ii) begin to investigate in depth the role of botulinum neurotoxins in animal botulism in the wilderness, and (iii) devote large efforts to next-generation sequencing of soil samples to identify novel botulinum neurotoxins. In order to compare the fitness of the different toxins, we suggest that assays of all the steps from toxin production to animal death should be performed. Copyright © 2015 Montecucco and Rasotto.

  5. 76 FR 29752 - Nomination of In Vitro Test Methods for Detection and Quantification of Botulinum Neurotoxins and...

    Science.gov (United States)

    2011-05-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Nomination of In Vitro Test Methods for Detection and Quantification of Botulinum Neurotoxins and Detection of Non-Endotoxin Pyrogens; Data Request for Substances... detecting and quantifying botulinum neurotoxin (BoNT), and (2) an in vitro test method proposed for...

  6. Progress in Cell Based Assays for Botulinum Neurotoxin Detection

    Science.gov (United States)

    2013-01-01

    Botulinum neurotoxins (BoNTs) are the most potent human toxins known and the causative agent of botulism, and are widely used as valuable pharmaceuticals. The BoNTs are modular proteins consisting of a heavy chain and a light chain linked by a disulfide bond. Intoxication of neuronal cells by BoNTs is a multi-step process including specific cell binding, endocytosis, conformational change in the endosome, translocation of the enzymatic light chain into the cells cytosol, and SNARE target cleavage. The quantitative and reliable potency determination of fully functional BoNTs produced as active pharmaceutical ingredient (API) requires an assay that considers all steps in the intoxication pathway. The in vivo mouse bioassay has for years been the ‘gold standard’ assay used for this purpose, but it requires the use of large numbers of mice and thus causes associated costs and ethical concerns. Cell-based assays are currently the only in vitro alternative that detect fully functional BoNTs in a single assay and have been utilized for years for research purposes. Within the last 5 years, several cell-based BoNT detection assays have been developed that are able to quantitatively determine BoNT potency with similar or greater sensitivity than the mouse bioassay. These assays now offer an alternative method for BoNT potency determination. Such quantitative and reliable BoNT potency determination is a crucial step in basic research, in the development of pharmaceutical BoNTs, and in the quantitative detection of neutralizing antibodies. PMID:23239357

  7. Antipruritic effects of botulinum neurotoxins

    DEFF Research Database (Denmark)

    Gazerani, Parisa

    2018-01-01

    This review explores current evidence to demonstrate that botulinum neurotoxins (BoNTs) exert antipruritic effects. Both experimental and clinical conditions in which botulinum neurotoxins have been applied for pruritus relief will be presented and significant findings will be highlighted. Potent....... Potential mechanisms underlying antipruritic effects will also be discussed and ongoing challenges and unmet needs will be addressed.......This review explores current evidence to demonstrate that botulinum neurotoxins (BoNTs) exert antipruritic effects. Both experimental and clinical conditions in which botulinum neurotoxins have been applied for pruritus relief will be presented and significant findings will be highlighted...

  8. Development of a quail embryo model for the detection of botulinum neurotoxin activity

    Science.gov (United States)

    Clostridium botulinum is a ubiquitous microorganism that under anaerobic conditions produces botulinum neurotoxins. In regards to both food-borne illness and the potential use of botulinum toxin as a biological weapon, the capability to assess the amount of toxin in a food or environmental sample e...

  9. Botulinum neurotoxins: mechanism of action.

    Science.gov (United States)

    Tighe, Ann P; Schiavo, Giampietro

    2013-06-01

    Botulinum neurotoxins are used clinically for conditions characterized by hyperexcitability of peripheral nerve terminals and hypersecretory syndromes. These neurotoxins are synthesized as precursor proteins with low activity, but their effects are mediated by the active form of the neurotoxin through a multistep mechanism. Following a high-affinity interaction with a protein receptor and polysialogangliosides on the synaptic membrane, botulinum neurotoxins enter the neuron and causes a sustained inhibition of synaptic transmission. The active neurotoxin is part of a high-molecular-weight complex that protects the neurotoxin from proteolytic degradation. Although complexing proteins do not affect diffusion of therapeutic neurotoxin, they may lead to the development of neutralizing antibodies that block responsiveness to it. Nerve terminal intoxication is reversible and its duration varies for different BoNT serotypes. Although it was previously assumed that botulinum neurotoxins exert effects only on the peripheral synapses, such as the neuromuscular junction, there is now substantial evidence that these neurotoxins affect neurotransmission at distal central nervous system sites as well. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Zebrafish Sensitivity to Botulinum Neurotoxins

    Science.gov (United States)

    Chatla, Kamalakar; Gaunt, Patricia S.; Petrie-Hanson, Lora; Ford, Lorelei; Hanson, Larry A.

    2016-01-01

    Botulinum neurotoxins (BoNT) are the most potent known toxins. The mouse LD50 assay is the gold standard for testing BoNT potency, but is not sensitive enough to detect the extremely low levels of neurotoxin that may be present in the serum of sensitive animal species that are showing the effects of BoNT toxicity, such as channel catfish affected by visceral toxicosis of catfish. Since zebrafish are an important animal model for diverse biomedical and basic research, they are readily available and have defined genetic lines that facilitate reproducibility. This makes them attractive for use as an alternative bioassay organism. The utility of zebrafish as a bioassay model organism for BoNT was investigated. The 96 h median immobilizing doses of BoNT/A, BoNT/C, BoNT/E, and BoNT/F for adult male Tübingen strain zebrafish (0.32 g mean weight) at 25 °C were 16.31, 124.6, 4.7, and 0.61 picograms (pg)/fish, respectively. These findings support the use of the zebrafish-based bioassays for evaluating the presence of BoNT/A, BoNT/E, and BoNT/F. Evaluating the basis of the relatively high resistance of zebrafish to BoNT/C and the extreme sensitivity to BoNT/F may reveal unique functional patterns to the action of these neurotoxins. PMID:27153088

  11. Zebrafish Sensitivity to Botulinum Neurotoxins

    Directory of Open Access Journals (Sweden)

    Kamalakar Chatla

    2016-05-01

    Full Text Available Botulinum neurotoxins (BoNT are the most potent known toxins. The mouse LD50 assay is the gold standard for testing BoNT potency, but is not sensitive enough to detect the extremely low levels of neurotoxin that may be present in the serum of sensitive animal species that are showing the effects of BoNT toxicity, such as channel catfish affected by visceral toxicosis of catfish. Since zebrafish are an important animal model for diverse biomedical and basic research, they are readily available and have defined genetic lines that facilitate reproducibility. This makes them attractive for use as an alternative bioassay organism. The utility of zebrafish as a bioassay model organism for BoNT was investigated. The 96 h median immobilizing doses of BoNT/A, BoNT/C, BoNT/E, and BoNT/F for adult male Tübingen strain zebrafish (0.32 g mean weight at 25 °C were 16.31, 124.6, 4.7, and 0.61 picograms (pg/fish, respectively. These findings support the use of the zebrafish-based bioassays for evaluating the presence of BoNT/A, BoNT/E, and BoNT/F. Evaluating the basis of the relatively high resistance of zebrafish to BoNT/C and the extreme sensitivity to BoNT/F may reveal unique functional patterns to the action of these neurotoxins.

  12. Electrical conductance change of graphene-based devices upon surface modification for detecting botulinum neurotoxin

    Science.gov (United States)

    Kim, Daehee; Kim, Ho-Jong; Shim, Seung-Bo; Jung, Suyong; Lee, Nam Hee; Nahm, Seung Hoon; Shin, Eui-Cheol; Yun, Wan Soo; Ha, Dong Han

    2017-06-01

    We report an electric conductance change in a graphene-based device upon molecular adsorption for detecting botulinum neurotoxin (BoNT) using the antibody-antigen binding strategy. This device consists of a 400-µm-wide monolayer of graphene between the source and drain electrodes. As-fabricated devices exhibit p-type behaviors. After modifying graphene with linkers and antibodies, BoNT detection was performed by dropping a target solution and measuring the conductance change of the devices. The immobilization of linkers on graphene decreases the electrical conductance as a result of electron transfer from linkers to graphene. However, the conductance change caused by the adsorption of antibodies or BoNTs is ascribed to the top-gating effects of the molecules adsorbed on graphene. The normalized conductance change of the graphene-based device upon antibody-BoNT binding was greater than 5%.

  13. Mass Spectrometric Detection of Botulinum Neurotoxin by Measuring its Activity in Serum and Milk

    Science.gov (United States)

    Kalb, Suzanne R.; Pirkle, James L.; Barr, John R.

    Botulinum neurotoxins (BoNTs) are bacterial protein toxins which are considered likely agents for bioterrorism due to their extreme toxicity and high availability. A new mass spectrometry based assay called Endopep MS detects and defines the toxin serotype in clinical and food matrices via toxin activity upon a peptide substrate which mimics the toxin's natural target. Furthermore, the subtype of the toxin is differentiated by employing mass spectrometry based proteomic techniques on the same sample. The Endopep-MS assay selectively detects active BoNT and defines the serotype faster and with sensitivity greater than the mouse bioassay. One 96-well plate can be analyzed in under 7 h. On higher level or "hot" samples, the subtype can then be differentiated in less than 2 h with no need for DNA.

  14. A Monoclonal Antibody Based Capture ELISA for Botulinum Neurotoxin Serotype B: Toxin Detection in Food

    Directory of Open Access Journals (Sweden)

    Larry H. Stanker

    2013-11-01

    Full Text Available Botulism is a serious foodborne neuroparalytic disease, caused by botulinum neurotoxin (BoNT, produced by the anaerobic bacterium Clostridium botulinum. Seven toxin serotypes (A–H have been described. The majority of human cases of botulism are caused by serotypes A and B followed by E and F. We report here a group of serotype B specific monoclonal antibodies (mAbs capable of binding toxin under physiological conditions. Thus, they serve as capture antibodies for a sandwich (capture ELISA. The antibodies were generated using recombinant peptide fragments corresponding to the receptor-binding domain of the toxin heavy chain as immunogen. Their binding properties suggest that they bind a complex epitope with dissociation constants (KD’s for individual antibodies ranging from 10 to 48 × 10−11 M. Assay performance for all possible combinations of capture-detector antibody pairs was evaluated and the antibody pair resulting in the lowest level of detection (L.O.D., ~20 pg/mL was determined. Toxin was detected in spiked dairy samples with good recoveries at concentrations as low as 0.5 pg/mL and in ground beef samples at levels as low as 2 ng/g. Thus, the sandwich ELISA described here uses mAb for both the capture and detector antibodies (binding different epitopes on the toxin molecule and readily detects toxin in those food samples tested.

  15. Optimization of peptide substrates for botulinum neurotoxin E improves detection sensitivity in the Endopep-MS assay.

    Science.gov (United States)

    Wang, Dongxia; Krilich, Joan; Baudys, Jakub; Barr, John R; Kalb, Suzanne R

    2015-01-01

    Botulinum neurotoxins (BoNTs) produced by Clostridium botulinum are the most poisonous substances known to humankind. It is essential to have a simple, quick, and sensitive method for the detection and quantification of botulinum toxin in various media, including complex biological matrices. Our laboratory has developed a mass spectrometry-based Endopep-MS assay that is able to rapidly detect and differentiate all types of BoNTs by extracting the toxin with specific antibodies and detecting the unique cleavage products of peptide substrates. Botulinum neurotoxin type E (BoNT/E) is a member of a family of seven distinctive BoNT serotypes (A-G) and is the causative agent of botulism in both humans and animals. To improve the sensitivity of the Endopep-MS assay, we report here the development of novel peptide substrates for the detection of BoNT/E activity through systematic and comprehensive approaches. Our data demonstrate that several optimal peptides could accomplish 500-fold improvement in sensitivity compared with the current substrate for the detection of both not-trypsin-activated and trypsin-activated BoNT/E toxin complexes. A limit of detection of 0.1 mouse LD50/ml was achieved using the novel peptide substrate in the assay to detect not-trypsin-activated BoNT/E complex spiked in serum, stool, and food samples. Published by Elsevier Inc.

  16. Implementing the Bruker MALDI Biotyper in the Public Health Laboratory for C. botulinum Neurotoxin Detection.

    Science.gov (United States)

    Perry, Michael J; Centurioni, Dominick A; Davis, Stephen W; Hannett, George E; Musser, Kimberlee A; Egan, Christina T

    2017-03-09

    Currently, the gold standard method for active botulinum neurotoxin (BoNT) detection is the mouse bioassay (MBA). A Centers for Disease Control and Prevention-developed mass spectrometry (MS)-based assay that detects active BoNT was successfully validated and implemented in a public health laboratory in clinical matrices using the Bruker MALDI-TOF MS (Matrix-assisted laser desorption ionization-time of flight mass spectrometry) Biotyper. For the first time, a direct comparison with the MBA was performed to determine MS-based assay sensitivity using the Bruker MALDI Biotyper. Mice were injected with BoNT/A, /B, /E, and /F at concentrations surrounding the established MS assay limit of detection (LOD) and analyzed simultaneously. For BoNT/B, /E, and /F, MS assay sensitivity was equivalent or better than the MBA at 25, 0.3, and 8.8 mLD 50 , respectively. BoNT/A was detected by the MBA between 1.8 and 18 mLD 50 , somewhat more sensitive than the MS method of 18 mLD 50 . Studies were performed to compare assay performance in clinical specimens. For all tested specimens, the MS method rapidly detected BoNT activity and serotype in agreement with, or in the absence of, results from the MBA. We demonstrate that the MS assay can generate reliable, rapid results while eliminating the need for animal testing.

  17. Implementing the Bruker MALDI Biotyper in the Public Health Laboratory for C. botulinum Neurotoxin Detection

    Directory of Open Access Journals (Sweden)

    Michael J. Perry

    2017-03-01

    Full Text Available Currently, the gold standard method for active botulinum neurotoxin (BoNT detection is the mouse bioassay (MBA. A Centers for Disease Control and Prevention-developed mass spectrometry (MS-based assay that detects active BoNT was successfully validated and implemented in a public health laboratory in clinical matrices using the Bruker MALDI-TOF MS (Matrix-assisted laser desorption ionization–time of flight mass spectrometry Biotyper. For the first time, a direct comparison with the MBA was performed to determine MS-based assay sensitivity using the Bruker MALDI Biotyper. Mice were injected with BoNT/A, /B, /E, and /F at concentrations surrounding the established MS assay limit of detection (LOD and analyzed simultaneously. For BoNT/B, /E, and /F, MS assay sensitivity was equivalent or better than the MBA at 25, 0.3, and 8.8 mLD50, respectively. BoNT/A was detected by the MBA between 1.8 and 18 mLD50, somewhat more sensitive than the MS method of 18 mLD50. Studies were performed to compare assay performance in clinical specimens. For all tested specimens, the MS method rapidly detected BoNT activity and serotype in agreement with, or in the absence of, results from the MBA. We demonstrate that the MS assay can generate reliable, rapid results while eliminating the need for animal testing.

  18. Rapid Microfluidic Assay for the Detection of Botulinum Neurotoxin in Animal Sera.

    Science.gov (United States)

    Babrak, Lmar; Lin, Alice; Stanker, Larry H; McGarvey, Jeffery; Hnasko, Robert

    2016-01-04

    Potent Botulinum neurotoxins (BoNTs) represent a threat to public health and safety. Botulism is a disease caused by BoNT intoxication that results in muscle paralysis that can be fatal. Sensitive assays capable of detecting BoNTs from different substrates and settings are essential to limit foodborne contamination and morbidity. In this report, we describe a rapid 96-well microfluidic double sandwich immunoassay for the sensitive detection of BoNT-A from animal sera. This BoNT microfluidic assay requires only 5 μL of serum, provides results in 75 min using a standard fluorescence microplate reader and generates minimal hazardous waste. The assay has a <30 pg·mL(-1) limit of detection (LOD) of BoNT-A from spiked human serum. This sensitive microfluidic BoNT-A assay offers a fast and simplified workflow suitable for the detection of BoNT-A from serum samples of limited volume in most laboratory settings.

  19. In vitro detection and quantification of botulinum neurotoxin type E activity in avian blood

    Science.gov (United States)

    Piazza, Timothy M.; Blehert, David S.; Dunning, F. Mark; Berlowski-Zier, Brenda M.; Zeytin, Fusun N.; Samuel, Michael D.; Tucker, Ward C.

    2011-01-01

    Botulinum neurotoxin serotype E (BoNT/E) outbreaks in the Great Lakes region cause large annual avian mortality events, with an estimated 17,000 bird deaths reported in 2007 alone. During an outbreak investigation, blood collected from bird carcasses is tested for the presence of BoNT/E using the mouse lethality assay. While sensitive, this method is labor-intensive and low throughput and can take up to 7 days to complete. We developed a rapid and sensitive in vitro assay, the BoTest Matrix E assay, that combines immunoprecipitation with high-affinity endopeptidase activity detection by Förster resonance energy transfer (FRET) to rapidly quantify BoNT/E activity in avian blood with detection limits comparable to those of the mouse lethality assay. On the basis of the analysis of archived blood samples (n = 87) collected from bird carcasses during avian mortality investigations, BoTest Matrix E detected picomolar quantities of BoNT/E following a 2-h incubation and femtomolar quantities of BoNT/E following extended incubation (24 h) with 100% diagnostic specificity and 91% diagnostic sensitivity.

  20. An Ultrasensitive Gold Nanoparticle-based Lateral Flow Test for the Detection of Active Botulinum Neurotoxin Type A

    Science.gov (United States)

    Liu, Jing; Gao, Shan; Kang, Lin; Ji, Bin; Xin, Wenwen; Kang, Jingjing; Li, Ping; Gao, Jie; Wang, Hanbin; Wang, Jinglin; Yang, Hao

    2017-03-01

    Botulism is a severe and potentially lethal paralytic disease caused by several botulinum neurotoxin-producing Clostridia spp. In China, the majority of the cases caused by botulism were from less-developed rural areas. Here, we designed specific substrate peptides and reconfigured gold nanoparticle-based lateral flow test strip (LFTS) to develop an endopeptidase-based lateral flow assay for the diagnosis of botulism. We performed this lateral flow assay on botulinum neurotoxin-spiked human serum samples. The as-prepared LFTS had excellent performance in the detection of botulinum neurotoxin using only 1 μL of simulated serum, and its sensitivity and specificity were comparable to that of mouse lethality assay. Moreover, the assay takes only half a day and does not require highly trained laboratory staff, specialized facility, or equipment. Finally, our LFTS can be potentially extended to other serotypes of BoNTs by designing specific substrate peptides against the different types of BoNTs. Overall, we demonstrate a strategy by which LFTS and endopeptidase activity assays can be integrated to achieve facile and economic diagnosis of botulism in resource-limited settings.

  1. An Ultrasensitive Gold Nanoparticle-based Lateral Flow Test for the Detection of Active Botulinum Neurotoxin Type A.

    Science.gov (United States)

    Liu, Jing; Gao, Shan; Kang, Lin; Ji, Bin; Xin, Wenwen; Kang, Jingjing; Li, Ping; Gao, Jie; Wang, Hanbin; Wang, Jinglin; Yang, Hao

    2017-12-01

    Botulism is a severe and potentially lethal paralytic disease caused by several botulinum neurotoxin-producing Clostridia spp. In China, the majority of the cases caused by botulism were from less-developed rural areas. Here, we designed specific substrate peptides and reconfigured gold nanoparticle-based lateral flow test strip (LFTS) to develop an endopeptidase-based lateral flow assay for the diagnosis of botulism. We performed this lateral flow assay on botulinum neurotoxin-spiked human serum samples. The as-prepared LFTS had excellent performance in the detection of botulinum neurotoxin using only 1 μL of simulated serum, and its sensitivity and specificity were comparable to that of mouse lethality assay. Moreover, the assay takes only half a day and does not require highly trained laboratory staff, specialized facility, or equipment. Finally, our LFTS can be potentially extended to other serotypes of BoNTs by designing specific substrate peptides against the different types of BoNTs. Overall, we demonstrate a strategy by which LFTS and endopeptidase activity assays can be integrated to achieve facile and economic diagnosis of botulism in resource-limited settings.

  2. Mass spectrometry-based methods for detection and differentiation of botulinum neurotoxins

    Science.gov (United States)

    Schmidt, Jurgen G [Los Alamos, NM; Boyer, Anne E [Atlanta, GA; Kalb, Suzanne R [Atlanta, GA; Moura, Hercules [Tucker, GA; Barr, John R [Suwannee, GA; Woolfitt, Adrian R [Atlanta, GA

    2009-11-03

    The present invention is directed to a method for detecting the presence of clostridial neurotoxins in a sample by mixing a sample with a peptide that can serve as a substrate for proteolytic activity of a clostridial neurotoxin; and measuring for proteolytic activity of a clostridial neurotoxin by a mass spectroscopy technique. In one embodiment, the peptide can have an affinity tag attached at two or more sites.

  3. Medical Countermeasure Models. Volume 8. Botulinum Neurotoxin

    Science.gov (United States)

    2013-04-12

    neurotoxin is produced primarily by the bacterial species Clostridium botulinum , although Clostridium baratii and Clostridium butyricum are also capable of...varied from study to study and ranged from 0.02 IU/ml to 0.2 IU/ml. 54 Fiock MA et al., “Studies of Immunity to Toxins of Clostridium Botulinum . IX... Clostridium Botulinum . IX. Immunologic Response of Man to Purified Pentavalent ABCDE Botulinum Toxoid.” The Journal of Immunology. 90(5). 1962. 66 Siegel

  4. A Label Free Colorimetric Assay for the Detection of Active Botulinum Neurotoxin Type A by SNAP-25 Conjugated Colloidal Gold

    Directory of Open Access Journals (Sweden)

    Christopher Gwenin

    2013-08-01

    Full Text Available Botulinum neurotoxins are one of the most potent toxins known to man. Current methods of detection involve the quantification of the toxin but do not take into account the percentage of the toxin that is active. At present the assay used for monitoring the activity of the toxin is the mouse bioassay, which is lengthy and has ethical issues due to the use of live animals. This report demonstrates a novel assay that utilises the endopeptidase activity of the toxin to detect Botulinum neurotoxin in a pharmaceutical sample. The cleaving of SNAP-25 is monitored via UV-Visible spectroscopy with a limit of detection of 373 fg/mL and has been further developed into a high throughput method using a microplate reader detecting down to 600 fg/mL of active toxin. The results show clear differences between the toxin product and the placebo, which contains the pharmaceutical excipients human serum albumin and lactose, showing that the assay detects the active form of the toxin.

  5. Facile electrochemical detection of botulinum neurotoxin type E using a two-step proteolytic cleavage.

    Science.gov (United States)

    Park, Seonhwa; Shin, Yu Mi; Song, Ji-Joon; Yang, Haesik

    2015-10-15

    Facile electrochemical methods for measuring protease concentration or protease activity are essential for point-of-care testing of toxic proteases. However, electrochemical detection of proteases, such as botulinum neurotoxin type E (BoNT/E), that cleave a peptide bond between two specific amino acid residues is challenging. This study reports a facile and sensitive electrochemical method for BoNT/E detection. The method is based on a two-step proteolytic cleavage using a target BoNT/E light chain (BoNT/E-LC) and an externally supplemented exopeptidase, L-leucine-aminopeptidase (LAP). BoNT/E-LC cleaves a peptide bond between arginine and isoleucine in IDTQNRQIDRI-4-amino-1-naphthol (oligopeptide-AN) to generate isoleucine-AN. Subsequently, LAP cleaves a bond between isoleucine and AN to liberate a free electroactive AN species. The liberated AN participates in electrochemical-chemical-chemical (ECC) redox cycling involving Ru(NH3)6(3+), AN, and a reducing agent, which allows a high signal amplification. Electrochemical detection is carried out without surface modification of indium-tin oxide electrodes. We show that dithiothreitol is beneficial for enhancing the enzymatic activity of BoNT/E-LC and also for achieving a fast ECC redox cycling. An incubation temperature of 37°C and the use of phosphate buffered saline (PBS) buffer resulted in optimal signal-to-background ratios for efficient BoNT/E detection. BoNT/E-LC could be detected at concentrations of approximately 2.0 pg/mL, 0.2, and 3 ng/mL after 4h, 2h, and 15 min incubation in PBS buffer, respectively, and approximately 0.3 ng/mL after 2-h incubation in bottled water. The method developed could be applied in fast, sensitive, and selective detection of any protease that cleaves a peptide bond between two specific amino acid residues. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Emerging opportunities for serotypes of botulinum neurotoxins.

    Science.gov (United States)

    Peng Chen, Zhongxing; Morris, J Glenn; Rodriguez, Ramon L; Shukla, Aparna Wagle; Tapia-Núñez, John; Okun, Michael S

    2012-11-07

    Two decades ago, botulinum neurotoxin (BoNT) type A was introduced to the commercial market. Subsequently, the toxin was approved by the FDA to address several neurological syndromes, involving muscle, nerve, and gland hyperactivity. These syndromes have typically been associated with abnormalities in cholinergic transmission. Despite the multiplicity of botulinal serotypes (designated as types A through G), therapeutic preparations are currently only available for BoNT types A and B. However, other BoNT serotypes are under study for possible clinical use and new clinical indications; To review the current research on botulinum neurotoxin serotypes A-G, and to analyze potential applications within basic science and clinical settings; The increasing understanding of botulinal neurotoxin pathophysiology, including the neurotoxin's effects on specific neuronal populations, will help us in tailoring treatments for specific diagnoses, symptoms and patients. Scientists and clinicians should be aware of the full range of available data involving neurotoxin subtypes A-G.

  7. Development of a Highly Sensitive Cell-Based Assay for Detecting Botulinum Neurotoxin Type A through Neural Culture Media Optimization.

    Science.gov (United States)

    Hong, Won S; Pezzi, Hannah M; Schuster, Andrea R; Berry, Scott M; Sung, Kyung E; Beebe, David J

    2016-01-01

    Botulinum neurotoxin (BoNT) is the most lethal naturally produced neurotoxin. Due to the extreme toxicity, BoNTs are implicated in bioterrorism, while the specific mechanism of action and long-lasting effect was found to be medically applicable in treating various neurological disorders. Therefore, for both public and patient safety, a highly sensitive, physiologic, and specific assay is needed. In this paper, we show a method for achieving a highly sensitive cell-based assay for BoNT/A detection using the motor neuron-like continuous cell line NG108-15. To achieve high sensitivity, we performed a media optimization study evaluating three commercially available neural supplements in combination with retinoic acid, purmorphamine, transforming growth factor β1 (TGFβ1), and ganglioside GT1b. We found nonlinear combinatorial effects on BoNT/A detection sensitivity, achieving an EC50 of 7.4 U ± 1.5 SD (or ~7.9 pM). The achieved detection sensitivity is comparable to that of assays that used primary and stem cell-derived neurons as well as the mouse lethality assay. © 2015 Society for Laboratory Automation and Screening.

  8. Clostridium botulinum neurotoxin type B is heat-stable in milk and not inactivated by pasteurization

    Science.gov (United States)

    Foodborne botulism is caused by the ingestion of foods containing botulinum neurotoxins (BoNTs). Currently, the only accepted assay to detect active C. botulinum neurotoxin is an in vivo mouse bioassay, which raises ethical concerns with regard to the use of experimental animals. Therefore, there is...

  9. Quantitative real-time PCR for detection of neurotoxin genes of Clostridium botulinum types A, B and C in equine samples.

    Science.gov (United States)

    Johnson, Amy L; McAdams-Gallagher, Susan C; Sweeney, Raymond W

    2014-01-01

    Botulism in horses in the USA is attributed to Clostridium botulinum types A, B or C. In this study, a duplex quantitative real-time PCR (qPCR) for detection of the neurotoxin genes of C. botulinum types A and B, and a singleplex qPCR for detection of the neurotoxin gene of C. botulinum type C, were optimized and validated for equine gastrointestinal, faecal and feed samples. The performance of these assays was evaluated and compared to the standard mouse bioassay (MBA) using 148 well-characterized samples, most of which were acquired from a repository of veterinary diagnostic samples from cases of botulism: 106 samples positive for C. botulinum (25 type A, 27 type B, 28 type C, 1 type D and 25 type E) and 42 negative samples. The sensitivities of the qPCR assays were 89%, 86% and 96% for C. botulinum types A, B and C, respectively. The overall sensitivity of the mouse bioassay for types A, B and C was 81%. The specificities of the qPCR assays were 99-100% and the specificity of the mouse bioassay was 95%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Qualitative and Quantitative Detection of Botulinum Neurotoxins from Complex Matrices: Results of the First International Proficiency Test

    Directory of Open Access Journals (Sweden)

    Sylvia Worbs

    2015-11-01

    Full Text Available In the framework of the EU project EQuATox, a first international proficiency test (PT on the detection and quantification of botulinum neurotoxins (BoNT was conducted. Sample materials included BoNT serotypes A, B and E spiked into buffer, milk, meat extract and serum. Different methods were applied by the participants combining different principles of detection, identification and quantification. Based on qualitative assays, 95% of all results reported were correct. Successful strategies for BoNT detection were based on a combination of complementary immunological, MS-based and functional methods or on suitable functional in vivo/in vitro approaches (mouse bioassay, hemidiaphragm assay and Endopep-MS assay. Quantification of BoNT/A, BoNT/B and BoNT/E was performed by 48% of participating laboratories. It turned out that precise quantification of BoNT was difficult, resulting in a substantial scatter of quantitative data. This was especially true for results obtained by the mouse bioassay which is currently considered as “gold standard” for BoNT detection. The results clearly demonstrate the urgent need for certified BoNT reference materials and the development of methods replacing animal testing. In this context, the BoNT PT provided the valuable information that both the Endopep-MS assay and the hemidiaphragm assay delivered quantitative results superior to the mouse bioassay.

  11. Qualitative and Quantitative Detection of Botulinum Neurotoxins from Complex Matrices: Results of the First International Proficiency Test

    Science.gov (United States)

    Worbs, Sylvia; Fiebig, Uwe; Zeleny, Reinhard; Schimmel, Heinz; Rummel, Andreas; Luginbühl, Werner; Dorner, Brigitte G.

    2015-01-01

    In the framework of the EU project EQuATox, a first international proficiency test (PT) on the detection and quantification of botulinum neurotoxins (BoNT) was conducted. Sample materials included BoNT serotypes A, B and E spiked into buffer, milk, meat extract and serum. Different methods were applied by the participants combining different principles of detection, identification and quantification. Based on qualitative assays, 95% of all results reported were correct. Successful strategies for BoNT detection were based on a combination of complementary immunological, MS-based and functional methods or on suitable functional in vivo/in vitro approaches (mouse bioassay, hemidiaphragm assay and Endopep-MS assay). Quantification of BoNT/A, BoNT/B and BoNT/E was performed by 48% of participating laboratories. It turned out that precise quantification of BoNT was difficult, resulting in a substantial scatter of quantitative data. This was especially true for results obtained by the mouse bioassay which is currently considered as “gold standard” for BoNT detection. The results clearly demonstrate the urgent need for certified BoNT reference materials and the development of methods replacing animal testing. In this context, the BoNT PT provided the valuable information that both the Endopep-MS assay and the hemidiaphragm assay delivered quantitative results superior to the mouse bioassay. PMID:26703724

  12. Pentaplexed Quantitative Real-Time PCR Assay for the Simultaneous Detection and Quantification of Botulinum Neurotoxin-Producing Clostridia in Food and Clinical Samples▿

    Science.gov (United States)

    Kirchner, Sebastian; Krämer, K. Melanie; Schulze, Martin; Pauly, Diana; Jacob, Daniela; Gessler, Frank; Nitsche, Andreas; Dorner, Brigitte G.; Dorner, Martin B.

    2010-01-01

    Botulinum neurotoxins are produced by the anaerobic bacterium Clostridium botulinum and are divided into seven distinct serotypes (A to G) known to cause botulism in animals and humans. In this study, a multiplexed quantitative real-time PCR assay for the simultaneous detection of the human pathogenic C. botulinum serotypes A, B, E, and F was developed. Based on the TaqMan chemistry, we used five individual primer-probe sets within one PCR, combining both minor groove binder- and locked nucleic acid-containing probes. Each hydrolysis probe was individually labeled with distinguishable fluorochromes, thus enabling discrimination between the serotypes A, B, E, and F. To avoid false-negative results, we designed an internal amplification control, which was simultaneously amplified with the four target genes, thus yielding a pentaplexed PCR approach with 95% detection probabilities between 7 and 287 genome equivalents per PCR. In addition, we developed six individual singleplex real-time PCR assays based on the TaqMan chemistry for the detection of the C. botulinum serotypes A, B, C, D, E, and F. Upon analysis of 42 C. botulinum and 57 non-C. botulinum strains, the singleplex and multiplex PCR assays showed an excellent specificity. Using spiked food samples we were able to detect between 103 and 105 CFU/ml, respectively. Furthermore, we were able to detect C. botulinum in samples from several cases of botulism in Germany. Overall, the pentaplexed assay showed high sensitivity and specificity and allowed for the simultaneous screening and differentiation of specimens for C. botulinum A, B, E, and F. PMID:20435756

  13. Rational Design of Therapeutic and Diagnostic Against Botulinum Neurotoxin

    National Research Council Canada - National Science Library

    Chan, N. W; Wang, Y; Tenn, C. C; Weiss, Ten; Hancock, J. R; Chenler, C. L; Lee, W. E; Dickinson-Laing, T; Yin, J; Gebremedhin, M. G; Mah, D. C

    2006-01-01

    .... In spite of botulinum neurotoxin being the most poisonous material, little is known about its mechanism of binding, effective drugs are lacking, and correct diagnosis of botulinum poisoning is slow...

  14. Label-free electrochemical detection of botulinum neurotoxin type E based on its enzymatic activity using interdigitated electrodes

    Science.gov (United States)

    Hyun, Sang Hwa; Park, Dae Keun; Kang, Aeyeon; Kim, Soohyun; Kim, Daehee; Shin, Yu Mi; Song, Ji-Joon; Yun, Wan Soo

    2016-02-01

    We report a simple label-free electrochemical method of detecting low concentrations of botulinum neurotoxin type E light chain (BoNT/E LC) based on its peptide cleavage activity. Dual-mode cyclic voltammetry was employed to observe changes in the redox signal of ferri-/ferro-cyanide on interdigitated microelectrodes, whose surfaces were covered by peptides designed from synaptosomal-associated protein 25 to be cleaved by BoNT/E LC. With the introduction of BoNT/E LC, the redox signal showed a time-dependent increase due to cleavage of the immobilized peptide molecules. In addition to the increased redox signal intensity, its time-dependence can be considered as a strong evidence of BoNT/E sensing, since the time-dependent increase can only result from the enzymatic activity of BoNT/E LC. Using this method, BoNT/E LC, at concentrations as low as 5 pg/ml, was readily measurable with only an hour of incubation.

  15. Multiplex Biosensing Based on Highly Sensitive Magnetic Nanolabel Quantification: Rapid Detection of Botulinum Neurotoxins A, B, and E in Liquids.

    Science.gov (United States)

    Orlov, Alexey V; Znoyko, Sergey L; Cherkasov, Vladimir R; Nikitin, Maxim P; Nikitin, Petr I

    2016-11-01

    We present a multiplex quantitative lateral flow (LF) assay for simultaneous on-site detection of botulinum neurotoxin (BoNT) types A, B, and E in complex matrixes, which is innovative by virtually no sacrifice in performance while transition from the single-plex assays and by characteristics on the level of laboratory quantitative methods. The novel approach to easy multiplexing is realized via joining an on-demand set of single-plex LF strips, which employ magnetic nanolabels, into a miniature cylinder cartridge that mimics LF strip during all assay stages. The cartridge is read out by an original portable multichannel reader based on the magnetic particle quantification technique. The developed reader offers the unmatched 60 zmol detection limit and 7-order linear dynamic range for volumetric registration of magnetic labels inside a cartridge of several millimeters in diameter regardless of its optical transparency. Each of the test strips, developed here as building blocks for the multiplex assay, can be used "as is" for autonomous quantitative single-plex detection with the same measuring setup, exhibiting the limits of detection (LOD) of 0.22, 0.11, and 0.32 ng/mL for BoNT-A, -B, and -E, respectively. The proposed multiplex assay has demonstrated the remarkably similar LOD values of 0.20, 0.12, 0.35 ng/mL under the same conditions. The multiplex assay performance was successfully validated by BoNT detection in milk and apple and orange juices. The developed methods can be extended to other proteins and used for rapid multianalyte tests for point-of-care in vitro diagnostics, food analysis, biosafety and environmental monitoring, forensics, and security, etc.

  16. Detection of botulinum neurotoxin serotype B at sub mouse LD(50 levels by a sandwich immunoassay and its application to toxin detection in milk.

    Directory of Open Access Journals (Sweden)

    Miles C Scotcher

    2010-06-01

    Full Text Available Botulinum neurotoxin (BoNT, the causative agent of botulism, a serious neuroparylatic disease, is produced by the anaerobic bacterium Clostridium botulinum and consists of a family of seven serotypes (A-H. We previously reported production of high-affinity monoclonal antibodies to BoNT serotype A.Recombinant peptide fragments of the light chain, the transmembrane and receptor-binding domains of the heavy chain of botulinum neurotoxin type B (BoNT/B were expressed in Escherichia coli as GST-fusion proteins and purified. These proteins were used to immunize BALB/cJ mice for the generation of monoclonal antibodies (mAbs. Antibody-producing hybridomas were detected using either a direct binding ELISA binding to plate-immobilized BoNT/B, or with a capture-capture ELISA whereby the capacity of the antibody to capture BoNT/B from solution was tested. A total of five mAbs were selected, two of which bound the toxin light chain and three bound the receptor-binding domain of BoNT/B heavy chain. MAb MCS6-27 was identified via capture-capture ELISA and was the only mAb able to bind BoNT/B in solution under physiological conditions. MAbs F24-1, F26-16, F27-33 and F29-40 were identified via direct binding ELISA, and were able to capture BoNT/B in solution only in the presence of 0.5-0.9 mM sodium dodecyl sulphate (SDS. MAb MCS6-27 and an anti-BoNT/B polyclonal antibody were incorporated into a sandwich ELISA that did not require SDS.We report here the generation of monoclonal antibodies to serotype B and the subsequent development of a sensitive sandwich immunoassay. This immunoassay has a detection limit of 100 fg BoNT/B, fifty times more sensitive than the mouse bioassay detection limit of 5 pg BoNT/B. Additionally, this assay detected as little as 39 pg/mL of toxin in skim, 2% and whole milk.

  17. Positive regulation of botulinum neurotoxin gene expression by CodY in Clostridium botulinum ATCC 3502.

    Science.gov (United States)

    Zhang, Zhen; Dahlsten, Elias; Korkeala, Hannu; Lindström, Miia

    2014-12-01

    Botulinum neurotoxin, produced mainly by the spore-forming bacterium Clostridium botulinum, is the most poisonous biological substance known. Here, we show that CodY, a global regulator conserved in low-G+C Gram-positive bacteria, positively regulates the botulinum neurotoxin gene expression. Inactivation of codY resulted in decreased expression of botA, encoding the neurotoxin, as well as in reduced neurotoxin synthesis. Complementation of the codY mutation in trans rescued neurotoxin synthesis, and overexpression of codY in trans caused elevated neurotoxin production. Recombinant CodY was found to bind to a 30-bp region containing the botA transcription start site, suggesting regulation of the neurotoxin gene transcription through direct interaction. GTP enhanced the binding affinity of CodY to the botA promoter, suggesting that CodY-dependent neurotoxin regulation is associated with nutritional status. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. The Zinc-Dependent Protease Activity of the Botulinum Neurotoxins

    Science.gov (United States)

    Lebeda, Frank J.; Cer, Regina Z.; Mudunuri, Uma; Stephens, Robert; Singh, Bal Ram; Adler, Michael

    2010-01-01

    The botulinum neurotoxins (BoNT, serotypes A-G) are some of the most toxic proteins known and are the causative agents of botulism. Following exposure, the neurotoxin binds and enters peripheral cholinergic nerve endings and specifically and selectively cleaves one or more SNARE proteins to produce flaccid paralysis. This review centers on the kinetics of the Zn-dependent proteolytic activities of these neurotoxins, and briefly describes inhibitors, activators and factors underlying persistence of toxin action. Some of the structural, enzymatic and inhibitor data that are discussed here are available at the botulinum neurotoxin resource, BotDB (http://botdb.abcc.ncifcrf.gov). PMID:22069621

  19. Simultaneous and sensitive detection of six serotypes of botulinum neurotoxin using enzyme-linked immunosorbent assay-based protein antibody microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanfeng; Lou, Jianlong; Jenko, Kathryn L.; Marks, James D.; Varnum, Susan M.

    2012-11-15

    Botulinum neurotoxins (BoNTs), produced by Clostridium botulinum, are a group of seven (A-G) immunologically distinct proteins and cause the paralytic disease botulism. These toxins are the most poisonous substances known to humans and are potential bioweapon agents. Therefore, it is necessary to develop highly sensitive assays for the detection of BoNTs in both clinical and environmental samples. In the present study, we have developed an ELISA-based protein antibody microarray for the sensitive and simultaneous detection of BoNT serotype A, B, C, D, E and F. With engineered high-affinity antibodies, the assays have sensitivities in buffer of 8 fM (1.2 pg/mL) for serotypes A and B, and 32 fM (4.9 pg/mL) for serotypes C, D, E, and F. Using clinical and environmental samples (serum and milk), the microarray is capable of detecting BoNT/A-F to the same levels as in standard buffer. Cross reactivity between assays for individual serotype was also analyzed. These simultaneous, rapid, and sensitive assays have the potential to measure botulinum toxins in a high-throughput manner in complex clinical or environmental samples.

  20. Characterization of Clostridium sp. RKD producing botulinum-like neurotoxin.

    Science.gov (United States)

    Dixit, Aparna; Dhaked, Ram Kumar; Alam, Syed Imteyaz; Singh, Lokendra

    2005-07-01

    A Gram positive, motile, rod-shaped, strictly anaerobic bacterium isolated from intestine of decaying fish was identified as Clostridium sp. RKD and produced a botulinum type B-like neurotoxin as suggested by mouse bioassay and protection with anti botulinum antibodies. The neurotoxicity was functionally characterized by the phrenic nerve hemi-diaphragm assay. Phylogenetic analysis based on 16S rDNA sequence, placed it at a different position from the reported strains of Clostridium botulinum. The strain exhibited differences from both Clostridium botulinum and Clostridium tetani with respect to morphological, biochemical and chemotaxonomic characteristics. Botulinum group specific and serotype specific primers amplified the DNA fragments of 260 and 727 bp, respectively, indicating presence of botulinum type 'B' toxin gene. Sequence of nearly 700 bp amplified using primers specific for botulinum neurotoxin type B gene, did not show any significant match in the database when subjected to BLAST search.

  1. Ultrasound Guidance for Botulinum Neurotoxin Chemodenervation Procedures.

    Science.gov (United States)

    Alter, Katharine E; Karp, Barbara I

    2017-12-28

    Injections of botulinum neurotoxins (BoNTs) are prescribed by clinicians for a variety of disorders that cause over-activity of muscles; glands; pain and other structures. Accurately targeting the structure for injection is one of the principle goals when performing BoNTs procedures. Traditionally; injections have been guided by anatomic landmarks; palpation; range of motion; electromyography or electrical stimulation. Ultrasound (US) based imaging based guidance overcomes some of the limitations of traditional techniques. US and/or US combined with traditional guidance techniques is utilized and or recommended by many expert clinicians; authors and in practice guidelines by professional academies. This article reviews the advantages and disadvantages of available guidance techniques including US as well as technical aspects of US guidance and a focused literature review related to US guidance for chemodenervation procedures including BoNTs injection.

  2. Insights into the evolutionary origins of clostridial neurotoxins from analysis of the Clostridium botulinum strain A neurotoxin gene cluster.

    Science.gov (United States)

    Doxey, Andrew C; Lynch, Michael D J; Müller, Kirsten M; Meiering, Elizabeth M; McConkey, Brendan J

    2008-11-14

    Clostridial neurotoxins (CNTs) are the most deadly toxins known and causal agents of botulism and tetanus neuroparalytic diseases. Despite considerable progress in understanding CNT structure and function, the evolutionary origins of CNTs remain a mystery as they are unique to Clostridium and possess a sequence and structural architecture distinct from other protein families. Uncovering the origins of CNTs would be a significant contribution to our understanding of how pathogens evolve and generate novel toxin families. The C. botulinum strain A genome was examined for potential homologues of CNTs. A key link was identified between the neurotoxin and the flagellin gene (CBO0798) located immediately upstream of the BoNT/A neurotoxin gene cluster. This flagellin sequence displayed the strongest sequence similarity to the neurotoxin and NTNH homologue out of all proteins encoded within C. botulinum strain A. The CBO0798 gene contains a unique hypervariable region, which in closely related flagellins encodes a collagenase-like domain. Remarkably, these collagenase-containing flagellins were found to possess the characteristic HEXXH zinc-protease motif responsible for the neurotoxin's endopeptidase activity. Additional links to collagenase-related sequences and functions were detected by further analysis of CNTs and surrounding genes, including sequence similarities to collagen-adhesion domains and collagenases. Furthermore, the neurotoxin's HCRn domain was found to exhibit both structural and sequence similarity to eukaryotic collagen jelly-roll domains. Multiple lines of evidence suggest that the neurotoxin and adjacent genes evolved from an ancestral collagenase-like gene cluster, linking CNTs to another major family of clostridial proteolytic toxins. Duplication, reshuffling and assembly of neighboring genes within the BoNT/A neurotoxin gene cluster may have lead to the neurotoxin's unique architecture. This work provides new insights into the evolution of C

  3. Detection of Clostridium botulinum neurotoxin genes (A-F) in dairy farms from Northern Germany using PCR: A case-control study.

    Science.gov (United States)

    Fohler, Svenja; Discher, Sabrina; Jordan, Eva; Seyboldt, Christian; Klein, Guenter; Neubauer, Heinrich; Hoedemaker, Martina; Scheu, Theresa; Campe, Amely; Charlotte Jensen, Katharina; Abdulmawjood, Amir

    2016-06-01

    Classical botulism in cattle mainly occurs after ingestion of feed contaminated with preformed toxin. In 2001 a form of botulism ("visceral botulism") was postulated to occur after ingestion of Clostridium (C.) botulinum cells or spores, followed by colonization of the intestine, and local production of botulinum neurotoxin (BoNT) causing chronic generalized disease. To verify the potential role of C. botulinum in the described syndrome, a case-control study was conducted, including 139 farms. Fecal samples, rumen content, water and silage samples were collected on each farm. Real time BoNT gene PCR assays were conducted after enrichment in RCM (Reinforced Clostridial Medium) at 37 °C and conventional PCRs after enrichment in MCM (Modified Cooked Meat Medium) at 30 °C. Furthermore, a direct detection of BoNT genes without prior enrichment was attempted. BoNT A, B, C, D, E and F genes were detected in animal samples from 25 (17.99%), 3 (2.16%), 0 (0.0%), 2 (1.44%), 1 (0.72%), and 3 (2.16%) farms, respectively. Eleven feed samples were positive for BoNT A gene. By enrichment a significant increase in sensitivity was achieved. Therefore, this should be an essential part of any protocol. No significant differences regarding BoNT gene occurrence could be observed between Case and Control farms or chronically diseased and clinically healthy animals within the particular category. Thus, the postulated form of chronic botulism in cows could not be confirmed. This study supports the general opinion that C. botulinum can occasionally be found in the rumen and intestine of cows without causing disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Structures of engineered Clostridium botulinum neurotoxin derivatives

    International Nuclear Information System (INIS)

    Masuyer, Geoffrey; Stancombe, Patrick; Chaddock, John A.; Acharya, K. Ravi

    2011-01-01

    The crystal structures of engineered C. botulinum neurotoxin–SNARE derivatives have been and exhibit strong stability of the LHn fragment. Targeted secretion inhibitors (TSIs) are a new class of engineered biopharmaceutical molecules derived from the botulinum neurotoxins (BoNTs). They consist of the metalloprotease light chain (LC) and translocation domain (Hn) of BoNT; they thus lack the native toxicity towards motor neurons but are able to target soluble N-ethylmaleimide-sensitive fusion protein attachment receptor (SNARE) proteins. These functional fragment (LHn) derivatives are expressed as single-chain proteins and require post-translational activation into di-chain molecules for function. A range of BoNT derivatives have been produced to demonstrate the successful use of engineered SNARE substrate peptides at the LC–Hn interface that gives these molecules self-activating capabilities. Alternatively, recognition sites for specific exoproteases can be engineered to allow controlled activation. Here, the crystal structures of three LHn derivatives are reported between 2.7 and 3.0 Å resolution. Two of these molecules are derivatives of serotype A that contain a SNARE peptide. Additionally, a third structure corresponds to LHn serotype B that includes peptide linkers at the exoprotease activation site. In all three cases the added engineered segments could not be modelled owing to disorder. However, these structures highlight the strong interactions holding the LHn fold together despite the inclusion of significant polypeptide sequences at the LC–Hn interface

  5. Rational Design of Therapeutic and Diagnostic Against Botulinum Neurotoxin

    Science.gov (United States)

    2006-12-01

    Gram-positive bacilli bacterium, Clostridium botulinum, which can be found worldwide in soil. Clostridium tetani is a similar bacterium to C...B: Biological Sciences, 354, 259-268. 6. Nantel, A.J. (1999). Clostridium Botulinum. WHO international programme on chemical safety poisons...of Clostridium botulinum C1 neurotoxin. Nucleic Acids Research, 18, 4924. 20. Binz, T., Kurazono, H., Popoff, M.R., Eklund, M.W., Sakaguchi, G

  6. Structural Studies on Intact Clostridium botulinum Neurotoxins Complexed with Inhibitors Leading to Drug Design

    Science.gov (United States)

    2009-02-01

    TITLE:Structural Studies on Intact Clostridium botulinum Neurotoxins Complexed with Inhibitors Leading to Drug Design PRINCIPAL INVESTIGATOR: Dr...JAN 2009 4. TITLE AND SUBTITLE Structural Studies on Intact Clostridium botulinum 5a. CONTRACT NUMBER Neurotoxins Complexed with Inhibitors... Clostridium , botulinum , neurotoxin, zinc chelators, inhibitors, macromolecular crystallography, 3D structure 16. SECURITY CLASSIFICATION OF: 17

  7. CRYSTAL STRUCTURE OF CLOSTRIDIUM BOTULINUM NEUROTOXIN SEROTYPE B

    International Nuclear Information System (INIS)

    SWAMINATHAN, S.; ESWARAMOORTHY, S.

    2001-01-01

    The toxigenic strains of Clostridium botulinum produce seven serologically distinct types of neurotoxins labeled A - G (EC 3.4.24.69), while Clostridium tetani produces tetanus neurotoxin (EC 3.4.24.68). Botulinum and tetanus neurotoxins (BoNTs and TeNT) are produced as single inactive chains of molecular mass of approximately 150 kDa. Most of these neurotoxins are released after being cleaved into two chains, a heavy chain (HI) of 100 kDa and a light chain (L) of 50 kDa held together by an interchain disulfide bond, by tissue proteinases. BoNT/E is released as a single chain but cleaved by host proteinases[1]. Clostvidium botulinum neurotoxins are extremely poisonous proteins with their LD(sub 50) for humans in the range of 0.1 - 1 ng kg(sup -1)[2]. Botulinum neurotoxins are responsible for neuroparalytic syndromes of botulism characterized by serious neurological disorders and flaccid paralysis. BoNTs block the release of acetylcholine at the neuromuscular junction causing flaccid paralysis while TeNT blocks the release of neurotransmitters like glycine and(gamma)-aminobutyric acid (GABA) in the inhibitory interneurons of the spinal cord resulting in spastic paralysis. In spite of different clinical symptoms, their aetiological agents intoxicate neuronal cells in the same way and these toxins have similar structural organization[3

  8. CRYSTAL STRUCTURE OF CLOSTRIDIUM BOTULINUM NEUROTOXIN SEROTYPE B.

    Energy Technology Data Exchange (ETDEWEB)

    SWAMINATHAN,S.; ESWARAMOORTHY,S.

    2001-11-19

    The toxigenic strains of Clostridium botulinum produce seven serologically distinct types of neurotoxins labeled A - G (EC 3.4.24.69), while Clostridium tetani produces tetanus neurotoxin (EC 3.4.24.68). Botulinum and tetanus neurotoxins (BoNTs and TeNT) are produced as single inactive chains of molecular mass of approximately 150 kDa. Most of these neurotoxins are released after being cleaved into two chains, a heavy chain (HI) of 100 kDa and a light chain (L) of 50 kDa held together by an interchain disulfide bond, by tissue proteinases. BoNT/E is released as a single chain but cleaved by host proteinases [1]. Clostvidium botulinum neurotoxins are extremely poisonous proteins with their LD{sub 50} for humans in the range of 0.1 - 1 ng kg{sup -1} [2]. Botulinum neurotoxins are responsible for neuroparalytic syndromes of botulism characterized by serious neurological disorders and flaccid paralysis. BoNTs block the release of acetylcholine at the neuromuscular junction causing flaccid paralysis while TeNT blocks the release of neurotransmitters like glycine and {gamma}-aminobutyric acid (GABA) in the inhibitory interneurons of the spinal cord resulting in spastic paralysis. In spite of different clinical symptoms, their aetiological agents intoxicate neuronal cells in the same way and these toxins have similar structural organization [3].

  9. Botulinum neurotoxin: a marvel of protein design.

    Science.gov (United States)

    Montal, Mauricio

    2010-01-01

    Botulinum neurotoxin (BoNT), the causative agent of botulism, is acknowledged to be the most poisonous protein known. BoNT proteases disable synaptic vesicle exocytosis by cleaving their cytosolic SNARE (soluble NSF attachment protein receptor) substrates. BoNT is a modular nanomachine: an N-terminal Zn(2+)-metalloprotease, which cleaves the SNAREs; a central helical protein-conducting channel, which chaperones the protease across endosomes; and a C-terminal receptor-binding module, consisting of two subdomains that determine target specificity by binding to a ganglioside and a protein receptor on the cell surface and triggering endocytosis. For BoNT, functional complexity emerges from its modular design and the tight interplay between its component modules--a partnership with consequences that surpass the simple sum of the individual component's action. BoNTs exploit this design at each step of the intoxication process, thereby achieving an exquisite toxicity. This review summarizes current knowledge on the structure of individual modules and presents mechanistic insights into how this protein machine evolved to this level of sophistication. Understanding the design principles underpinning the function of such a dynamic modular protein remains a challenging task.

  10. Structural Studies on Intact Clostridium Botulinum Neurotoxins Complexed with Inhibitors Leading to Drug Design

    Science.gov (United States)

    2006-02-01

    structure1. Introduction Tetanus neurotoxin (TeNT) produced by Clostridium tetani and the seven antigenically distinct botulinum neurotoxins (BoNT/A-G...2-0011 TITLE: Structural Studies on Intact Clostridium Botulinum Neurotoxins Complexed with Inhibitors Leading to Drug...DATES COVERED (From - To) 28 Jan 2005 – 27 Jan 2006 4. TITLE AND SUBTITLE Structural Studies on Intact Clostridium Botulinum Neurotoxins Complexed

  11. Differentiating Botulinum Neurotoxin-Producing Clostridia with a Simple, Multiplex PCR Assay.

    Science.gov (United States)

    Williamson, Charles H D; Vazquez, Adam J; Hill, Karen; Smith, Theresa J; Nottingham, Roxanne; Stone, Nathan E; Sobek, Colin J; Cocking, Jill H; Fernández, Rafael A; Caballero, Patricia A; Leiser, Owen P; Keim, Paul; Sahl, Jason W

    2017-09-15

    Diverse members of the genus Clostridium produce botulinum neurotoxins (BoNTs), which cause a flaccid paralysis known as botulism. While multiple species of clostridia produce BoNTs, the majority of human botulism cases have been attributed to Clostridium botulinum groups I and II. Recent comparative genomic studies have demonstrated the genomic diversity within these BoNT-producing species. This report introduces a multiplex PCR assay for differentiating members of C. botulinum group I, C. sporogenes , and two major subgroups within C. botulinum group II. Coding region sequences unique to each of the four species/subgroups were identified by in silico analyses of thousands of genome assemblies, and PCR primers were designed to amplify each marker. The resulting multiplex PCR assay correctly assigned 41 tested isolates to the appropriate species or subgroup. A separate PCR assay to determine the presence of the ntnh gene (a gene associated with the botulinum neurotoxin gene cluster) was developed and validated. The ntnh gene PCR assay provides information about the presence or absence of the botulinum neurotoxin gene cluster and the type of gene cluster present ( ha positive [ ha + ] or orfX + ). The increased availability of whole-genome sequence data and comparative genomic tools enabled the design of these assays, which provide valuable information for characterizing BoNT-producing clostridia. The PCR assays are rapid, inexpensive tests that can be applied to a variety of sample types to assign isolates to species/subgroups and to detect clostridia with botulinum neurotoxin gene ( bont ) clusters. IMPORTANCE Diverse clostridia produce the botulinum neurotoxin, one of the most potent known neurotoxins. In this study, a multiplex PCR assay was developed to differentiate clostridia that are most commonly isolated in connection with human botulism cases: C. botulinum group I, C. sporogenes , and two major subgroups within C. botulinum group II. Since Bo

  12. Use of Botulinum Neurotoxin Injections to Treat Spasticity

    Science.gov (United States)

    ... your family understand the use of BoNT for treatment of spasticity, a disorder following injury to the brain or ... available evidence on the effect of BoNT for treatment of spasticity. What is botulinum neurotoxin and how does it ...

  13. Development of a Cell-Based Functional Assay for the Detection of Clostridium botulinum Neurotoxin Types A and E

    Directory of Open Access Journals (Sweden)

    Uma Basavanna

    2013-01-01

    Full Text Available The standard procedure for definitive detection of BoNT-producing Clostridia is a culture method combined with neurotoxin detection using a standard mouse bioassay (MBA. The mouse bioassay is highly sensitive and specific, but it is expensive and time-consuming, and there are ethical concerns due to use of laboratory animals. Cell-based assays provide an alternative to the MBA in screening for BoNT-producing Clostridia. Here, we describe a cell-based assay utilizing a fluorescence reporter construct expressed in a neuronal cell model to study toxin activity in situ. Our data indicates that the assay can detect as little as 100 pM BoNT/A activity within living cells, and the assay is currently being evaluated for the analysis of BoNT in food matrices. Among available in vitro assays, we believe that cell-based assays are widely applicable in high-throughput screenings and have the potential to at least reduce and refine animal assays if not replace it.

  14. Substrate Binding Mode and Its Implication on Drug Design for Botulinum Neurotoxin A

    National Research Council Canada - National Science Library

    Kumaran, Desigan; Rawat, Richa; Ahmed, S. A; Swaminathan, Subramanyam

    2008-01-01

    The seven antigenically distinct serotypes of Clostridium botulinum neurotoxins, the causative agents of botulism, block the neurotransmitter release by specifically cleaving one of the three SNARE...

  15. Genomes, neurotoxins and biology of Clostridium botulinum Group I and Group II.

    Science.gov (United States)

    Carter, Andrew T; Peck, Michael W

    2015-05-01

    Recent developments in whole genome sequencing have made a substantial contribution to understanding the genomes, neurotoxins and biology of Clostridium botulinum Group I (proteolytic C. botulinum) and C. botulinum Group II (non-proteolytic C. botulinum). Two different approaches are used to study genomics in these bacteria; comparative whole genome microarrays and direct comparison of complete genome DNA sequences. The properties of the different types of neurotoxin formed, and different neurotoxin gene clusters found in C. botulinum Groups I and II are explored. Specific examples of botulinum neurotoxin genes are chosen for an in-depth discussion of neurotoxin gene evolution. The most recent cases of foodborne botulism are summarised. Copyright © 2014 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  16. Using llama derived single domain antibodies to target botulinum neurotoxins

    Science.gov (United States)

    Swain, Marla D.; Anderson, George P.; Bernstein, Rachael D.; Liu, Jinny L.; Goldman, Ellen R.

    2010-04-01

    Llama serum contains both conventional IgG as well as unique forms of antibody that contain only heavy chains where antigen binding is mediated through a single variable domain. These variable domains can be expressed recombinantly and are referred to as single domain antibodies (sdAb). SdAb are among the smallest known naturally derived antigen binding fragments, possess good solubility, thermal stability, and can refold after heat and chemical denaturation. Llamas were immunized with either BoNT A or B toxoid and phage display libraries prepared. Single domain antibodies (sdAb) that were able to detect botulinum neurotoxin (BoNT) serotypes A and B were selected from their respective libraries. Here, the binders obtained by panning the BoNT B library on either BoNT B toxoid or BoNT B complex toxoid coated plates or BoNT B toxin coupled microspheres are described. Using these panning methods, we selected for binders that showed specificity for BoNT B. Phage displayed binders were screened, moved to a protein expression vector and soluble sdAb was produced. Using a Luminex flow cytometer binders were evaluated in direct binding assays. We have exploited the unique properties of sdAb and used them as biological recognition elements in immuno-based sensors that can detect BoNT B.

  17. Detection and Quantification of Biologically Active Botulinum Neurotoxin Serotypes A and B Using a Förster Resonance Energy Transfer-Based Quantum Dot Nanobiosensor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yun [Center for Food; Fry, H. Christopher [Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, DuPage County, Illinois 60439, United States; Skinner, Guy E. [Center for Food; Schill, Kristin M. [Center for Food; Duncan, Timothy V. [Center for Food

    2017-03-20

    Botulinum neurotoxin (BoNT) is the most potent toxin known. The ingestion of food contaminated with biologically active BoNT causes foodborne botulism, which can lead to respiratory paralysis, coma, and death after ingestion of as little as 70 mu g for a 70 kg human. Because of its lethality and challenges associated with current detection methods, there is an urgent need for highly sensitive rapid screening techniques capable of detecting biologically active BoNT. Here, we describe a Forster resonance energy transfer-based nanobiosensor that uses quantum dots (QDs) and two specific quencher-labeled peptide probes to detect and differentiate two biologically active forms of BoNT, serotypes A and B, which were responsible for 80% of human foodborne botulism cases in the U.S. from 2012 to 2015. Each peptide probe contains an enzymatic cleavage site specific to only one serotype. QDs were selected based on the spectral overlap with the quenchers. In the presence of the target BoNT serotype, the peptide probe is cleaved and the quenching of QD photoluminescence (PL) is reduced, giving a signal that is easily detected by a PL spectrophotometer. This sensor performance was evaluated with light chains of BoNT/A and BoNT/B (LcA and LcB), catalytic domains of the respective serotypes. LcA and LcB were detected in 3 h with limits of detection of 0.2 and 2 ng/mL, respectively. The specificity of the sensor was evaluated, and no cross-reactivity from nontarget serotypes was observed with 2 h of incubation. Because each serotype-specific peptide is conjugated to a QD with a unique emission wavelength, multiple biologically active BoNT serotypes could be detected in one PL spectrum. The sensor was also shown to be responsive to BoNT/A and BoNT/B holotoxins. Good performance of this sensor implies its potential application as a rapid screening method for biologically active BoNT/A and BoNT/B in the laboratory and in the field.

  18. Protein Receptor(s) of Botulinum Neurotoxin

    Science.gov (United States)

    2005-01-01

    B cells (strain Okra) in a 1.5 ml microcentrifuge tube kept in -80’C was added to a 10 ml cooked meat medium (Difco Laboratories, Becton Dickinson, MD...and cultured at 30 TC for 18 to 20 hours. The C. botulinum type B cells in the cooked meat medium was inoculated in 500 ml of toxin production...drugs, carcinogens and decreasing stress of xenobiotic compounds, intracellular carrier proteins and reduction of hydroxyperoxides and nitrates. Because

  19. Genetic diversity within the botulinum neurotoxin-producing bacteria and their neurotoxins.

    Science.gov (United States)

    Hill, K K; Xie, G; Foley, B T; Smith, T J

    2015-12-01

    The recent availability of multiple Clostridium botulinum genomic sequences has initiated a new genomics era that strengthens our understanding of the bacterial species that produce botulinum neurotoxins (BoNTs). Analysis of the genomes has reinforced the historical Group I-VI designations and provided evidence that the bont genes can be located within the chromosome, phage or plasmids. The sequences provide the opportunity to examine closely the variation among the toxin genes, the composition and organization of the toxin complex, the regions flanking the toxin complex and the location of the toxin within different bacterial strains. These comparisons provide evidence of horizontal gene transfer and site-specific insertion and recombination events that have contributed to the variation observed among the neurotoxins. Here, examples that have contributed to the variation observed in serotypes A-H strains are presented to illustrate the mechanisms that have contributed to their variation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Evidence that plasmid-borne botulinum neurotoxin type B genes are widespread among Clostridium botulinum serotype B strains.

    Directory of Open Access Journals (Sweden)

    Giovanna Franciosa

    Full Text Available BACKGROUND: Plasmids that encode certain subtypes of the botulinum neurotoxin type B have recently been detected in some Clostridium botulinum strains. The objective of the present study was to investigate the frequency with which plasmid carriage of the botulinum neurotoxin type B gene (bont/B occurs in strains of C. botulinum type B, Ab, and A(B, and whether plasmid carriage is bont/B subtype-related. METHODOLOGY/PRINCIPAL FINDINGS: PCR-Restriction fragment length polymorphism was employed to identify subtypes of the bont/B gene. Pulsed-field gel electrophoresis and Southern blot hybridization with specific probes were performed to analyze the genomic location of the bont/B subtype genes. All five known bont/B subtype genes were detected among the strains; the most frequently detected subtype genes were bont/B1 and /B2. Surprisingly, the bont/B subtype gene was shown to be plasmid-borne in >50% of the total strains. The same bont/B subtype gene was associated with the chromosome in some strains, whereas it was associated with a plasmid in others. All five known bont/B subtype genes were in some cases found to reside on plasmids, though with varying frequency (e.g., most of the bont/B1 subtype genes were located on plasmids, whereas all but one of the bont/B2 subtypes were chromosomally-located. Three bivalent isolates carried both bont/A and /B genes on the same plasmid. The plasmids carrying the bont gene were five different sizes, ranging from approximately 55 kb to approximately 245 kb. CONCLUSIONS/SIGNIFICANCE: The unexpected finding of the widespread distribution of plasmids harboring the bont/B gene among C. botulinum serotype B strains provides a chance to examine their contribution to the dissemination of the bont genes among heterogeneous clostridia, with potential implications on issues related to pathogenesis and food safety.

  1. Occurrence of Clostridium botulinum neurotoxin in chronic disease of dairy cows.

    Science.gov (United States)

    Seyboldt, Christian; Discher, Sabrina; Jordan, Eva; Neubauer, Heinrich; Jensen, Katharina Charlotte; Campe, Amely; Kreienbrock, Lothar; Scheu, Theresa; Wichern, Anika; Gundling, Frieder; DoDuc, Phuong; Fohler, Svenja; Abdulmawjood, Amir; Klein, Günter; Hoedemaker, Martina

    2015-06-12

    Botulism caused by neurotoxins of Clostridium (C.) botulinum is a rare, but serious life-threatening disease in humans and animals. Botulism in livestock is usually caused by the oral uptake of C. botulinum neurotoxins (BoNT) via contaminated feed and is characterized by flaccid paralysis. In the recent past a new syndrome caused by BoNT in dairy cattle was postulated. It was supposed that C. botulinum is able to colonize the lower intestine and may subsequently produce neurotoxin. The continuous resorption of small amounts of these BoNT may then provoke the so called syndrome of "chronic" or "visceral" botulism involving unspecific clinical symptoms, reduced performance of dairy cows and massive animal losses in the affected herd. To test this hypothesis a case-control study was conducted involving 92 affected farms and 47 control farms located in Northern Germany. Fecal samples of 1388 animals were investigated for the presence of BoNT to verify the key requirement of the hypothesis of chronic botulism. BoNT was not detected in any of the fecal samples using the most sensitive standard method for BoNT detection, the mouse bioassay. Therefore, the existence of "chronic" or "visceral" botulism could not be proven. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Physical Characterization of Clostridium Botulinum Neurotoxin Genes

    Science.gov (United States)

    1993-10-01

    modern food -preserving processes in Western countries has made 1 outbreaks of botulism extremely rare. The frequent use of C.botulinum as a test...organism in the food industry, and the growing use of the toxin by neurobiochemists, has, however, led to the development of human vaccines. The...390v 400v DOTE [• - F -TK--VQ -- 0Q ---YI G Q KM YLFKL NS N - S - N I G NF N K 383 DOTFIFT ED L AINIK FIKIV C RINIT YIF I K MCF LVPIN L L D DDIDII YIT

  3. A Novel Inhibitor Prevents the Peripheral Neuroparalysis of Botulinum Neurotoxins

    Science.gov (United States)

    Azarnia Tehran, Domenico; Zanetti, Giulia; Leka, Oneda; Lista, Florigio; Fillo, Silvia; Binz, Thomas; Shone, Clifford C.; Rossetto, Ornella; Montecucco, Cesare; Paradisi, Cristina; Mattarei, Andrea; Pirazzini, Marco

    2015-01-01

    Botulinum neurotoxins (BoNTs) form a large class of potent and deadly neurotoxins. Given their growing number, it is of paramount importance to discover novel inhibitors targeting common steps of their intoxication process. Recently, EGA was shown to inhibit the action of bacterial toxins and viruses exhibiting a pH-dependent translocation step in mammalian cells, by interfering with their entry route. As BoNTs act in the cytosol of nerve terminals, the entry into an appropriate compartment wherefrom they translocate the catalytic moiety is essential for toxicity. Herein we propose an optimized procedure to synthesize EGA and we show that, in vitro, it prevents the neurotoxicity of different BoNT serotypes by interfering with their trafficking. Furthermore, in mice, EGA mitigates botulism symptoms induced by BoNT/A and significantly decreases the lethality of BoNT/B and BoNT/D. This opens the possibility of using EGA as a lead compound to develop novel inhibitors of botulinum neurotoxins. PMID:26670952

  4. Identification and Biochemical Characterization of Small-Molecule Inhibitors of Clostridium Botulinum Neurotoxin Serotype A

    Science.gov (United States)

    2009-08-01

    inhibitors of Clostridium botulinum neurotoxin serotype A (BoNT/A). Virtual screening was initially performed by computationally docking com- pounds of the...species Clostridium botulinum , C. baratii, and C. butyricum, consist of seven immunologically distinct serotypes (A to G). BoNTs are synthesized as 150...4. TITLE AND SUBTITLE Identification and biochemical characterization of small-molecule inhibitors of Clostridium botulinum neurotoxin serotype

  5. Botulinum neurotoxin homologs in non-Clostridium species.

    Science.gov (United States)

    Mansfield, Michael J; Adams, Jeremy B; Doxey, Andrew C

    2015-01-30

    Clostridial neurotoxins (CNTs) are the deadliest toxins known and the causative agents of botulism and tetanus. Despite their structural and functional complexity, no CNT homologs are currently known outside Clostridium. Here, we report the first homologs of Clostridium CNTs within the genome of the rice fermentation organism Weissella oryzae SG25. One gene in W. oryzae S25 encodes a protein with a four-domain architecture and HExxH protease motif common to botulinum neurotoxins (BoNTs). An adjacent gene with partial similarity to CNTs is also present, and both genes seem to have been laterally transferred into the W. oryzae genome from an unknown source. Identification of mobile, CNT-related genes outside of Clostridium has implications for our understanding of the evolution of this important toxin family. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Botulinum Neurotoxin Is Shielded by NTNHA in an Interlocked Complex

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Shenyan; Rumpel, Sophie; Zhou, Jie; Strotmeier, Jasmin; Bigalke, Hans; Perry, Kay; Shoemaker, Charles B.; Rummel, Andreas; Jin, Rongsheng (Cornell); (Tufts); (Hannover-MED); (Sanford-Burnham)

    2012-03-28

    Botulinum neurotoxins (BoNTs) are highly poisonous substances that are also effective medicines. Accidental BoNT poisoning often occurs through ingestion of Clostridium botulinum-contaminated food. Here, we present the crystal structure of a BoNT in complex with a clostridial nontoxic nonhemagglutinin (NTNHA) protein at 2.7 angstroms. Biochemical and functional studies show that NTNHA provides large and multivalent binding interfaces to protect BoNT from gastrointestinal degradation. Moreover, the structure highlights key residues in BoNT that regulate complex assembly in a pH-dependent manner. Collectively, our findings define the molecular mechanisms by which NTNHA shields BoNT in the hostile gastrointestinal environment and releases it upon entry into the circulation. These results will assist in the design of small molecules for inhibiting oral BoNT intoxication and of delivery vehicles for oral administration of biologics.

  7. Genetic Diversity Among Botulinum Neurotoxin Producing Clostridial Strains

    Energy Technology Data Exchange (ETDEWEB)

    Hill, K K; Smith, T J; Helma, C H; Ticknor, L O; Foley, B T; Svennson, R T; Brown, J L; Johnson, E A; Smith, L A; Okinaka, R T; Jackson, P J; Marks, J D

    2006-07-06

    Clostridium botulinum is a taxonomic designation for many diverse anaerobic spore forming rod-shaped bacteria which have the common property of producing botulinum neurotoxins (BoNTs). The BoNTs are exoneurotoxins that can cause severe paralysis and even death in humans and various other animal species. A collection of 174 C. botulinum strains were examined by amplified fragment length polymorphism (AFLP) analysis and by sequencing of the 16S rRNA gene and BoNT genes to examine genetic diversity within this species. This collection contained representatives of each of the seven different serotypes of botulinum neurotoxins (BoNT A-G). Analysis of the16S rRNA sequences confirmed earlier reports of at least four distinct genomic backgrounds (Groups I-IV) each of which has independently acquired one or more BoNT serotypes through horizontal gene transfer. AFLP analysis provided higher resolution, and can be used to further subdivide the four groups into sub-groups. Sequencing of the BoNT genes from serotypes A, B and E in multiple strains confirmed significant sequence variation within each serotype. Four distinct lineages within each of the BoNT A and B serotypes, and five distinct lineages of serotype E strains were identified. The nucleotide sequences of the seven serotypes of BoNT were compared and show varying degrees of interrelatedness and recombination as has been previously noted for the NTNH gene which is linked to BoNT. These analyses contribute to the understanding of the evolution and phylogeny within this species and assist in the development of improved diagnostics and therapeutics for treatment of botulism.

  8. Botulinum neurotoxin type A in the masseter muscle: effects on incisor eruption in rabbits.

    Science.gov (United States)

    Navarrete, Alfonso L; Rafferty, Katherine L; Liu, Zi Jun; Ye, Wenmin; Greenlee, Geoffrey M; Herring, Susan W

    2013-04-01

    Botulinum neurotoxins are responsible for the paralytic food poisoning, botulism. Commercial formulations such as botulinum neurotoxin type A are increasingly used for various conditions, including cosmetic recontouring of the lower face by injection of the large masseter muscles. The paralysis of a major muscle of mastication lowers occlusal force and thus might affect tooth eruption. The purpose of this study was to investigate the effects of unilateral masseter muscle injection of botulinum neurotoxin type A on the rate of eruption of incisors in a rabbit model. We hypothesized that the teeth would overerupt in an underloaded environment. Forty rabbits were injected with either botulinum neurotoxin type A or saline solution in 1 masseter muscle. Mastication and muscle force production were monitored, and incisor eruption rate was assessed by caliper measurement of grooved teeth. The injection of saline solution had no effect. The masseter muscle injected with botulinum neurotoxin type A showed a dramatic loss of force 3 weeks after injection despite apparently normal mastication. Incisor eruption rate was significantly decreased for the botulinum neurotoxin type A group, an effect attributed to decreased attrition. This study has implications for orthodontics. Although findings from ever-growing rabbit incisors cannot be extrapolated to human teeth, it is clear that botulinum neurotoxin type A caused a decrease in bite force that could influence dental eruption. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  9. Organization and regulation of the neurotoxin genes in Clostridium botulinum and Clostridium tetani.

    Science.gov (United States)

    Raffestin, Stéphanie; Marvaud, Jean Christophe; Cerrato, Rosario; Dupuy, Bruno; Popoff, Michel R

    2004-04-01

    Botulinum and tetanus neurotoxins are structurally and functionally related 150 kDa proteins that are potent inhibitors of neuroexocytosis. Botulinum neurotoxin associates with non-toxic proteins to form complexes of various sizes. The botulinum neurotoxin and non-toxic protein genes are clustered in a DNA segment called the botulinum locus. This locus is probably located on a mobile or degenerate mobile element, which accounts for the various genomic localizations (chromosome, plasmid, phage) in different Clostridium botulinum types. The botulinum neurotoxin and non-toxic protein genes are organized in two polycistronic operons (ntnh-bont and ha operons) transcribed in opposite orientations. The gene that separates the two operons of the botulinum locus in C. botulinum A encodes a 21 kDa protein BotR/A, which is a positive regulator of the expression of the botulinum locus genes. Similarly, in Clostridium tetani, the gene located immediately upstream of the tetanus toxin gene, encodes a positive regulatory protein, TetR. BotR and TetR are possibly alternative sigma factors related to TxeR and UviA, which regulate C. difficile toxin and C. perfringens bacteriocin production, respectively. TxeR and UviA define a new sub-group of the sigma(70) family of RNA polymerase initiation factors. In addition, the C. botulinum genome contains predicted two-component system genes, some of which are possibly involved in regulation of toxinogenesis.

  10. Structural Studies on Intact Clostridium Botulinum Neurotoxins Complexed with Inhibitors Leading to Drug Design

    National Research Council Canada - National Science Library

    Swaminathan, Subramanyam

    2006-01-01

    .... Accordingly it must be possible to design a common drug for all of them. We have determined the structure of the C fragment of botulinum neurotoxin type B and found that the N-terminal helix reorients...

  11. Structural Analysis of Botulinum Neurotoxin Type G Receptor Binding

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, John; Karalewitz, Andrew; Benefield, Desire A.; Mushrush, Darren J.; Pruitt, Rory N.; Spiller, Benjamin W.; Barbieri, Joseph T.; Lacy, D. Borden (Vanderbilt); (MCW)

    2010-10-19

    Botulinum neurotoxin (BoNT) binds peripheral neurons at the neuromuscular junction through a dual-receptor mechanism that includes interactions with ganglioside and protein receptors. The receptor identities vary depending on BoNT serotype (A-G). BoNT/B and BoNT/G bind the luminal domains of synaptotagmin I and II, homologous synaptic vesicle proteins. We observe conditions under which BoNT/B binds both Syt isoforms, but BoNT/G binds only SytI. Both serotypes bind ganglioside G{sub T1b}. The BoNT/G receptor-binding domain crystal structure provides a context for examining these binding interactions and a platform for understanding the physiological relevance of different Syt receptor isoforms in vivo.

  12. Peptide inhibitors of botulinum neurotoxin by mRNA display

    International Nuclear Information System (INIS)

    Yiadom, Kwabena P.A.B.; Muhie, Seid; Yang, David C.H.

    2005-01-01

    Botulinum neurotoxins (BoNTs) are extremely toxic. The metalloproteases associated with the toxins cleave proteins essential for neurotransmitter secretion. Inhibitors of the metalloprotease are currently sought to control the toxicity of BoNTs. Toward that goal, we produced a synthetic cDNA for the expression and purification of the metalloprotease of BoNT/A in Escherichia coli as a biotin-ubiquitin fusion protein, and constructed a combinatorial peptide library to screen for BoNT/A light chain inhibitors using mRNA display. A protease assay was developed using immobilized intact SNAP-25 as the substrate. The new peptide inhibitors showed a 10-fold increase in affinity to BoNT/A light chain than the parent peptide. Interestingly, the sequences of the new peptide inhibitors showed abundant hydrophobic residues but few hydrophilic residues. The results suggest that mRNA display may provide a general approach in developing peptide inhibitors of BoNTs

  13. Factors affecting autocatalysis of botulinum A neurotoxin light chain.

    Science.gov (United States)

    Ahmed, S Ashraf; Ludivico, Matthew L; Smith, Leonard A

    2004-10-01

    The light chain of botulinum neurotoxin serotype A undergoes autocatalytic fragmentation into two major peptides during purification and storage (Ahmed S. A. et al. 2001, J. Protein Chem. 20:221-231) by both intermolecular and intramolecular mechanisms (Ahmed S. A. et al. 2003, Biochemistry 42:12539 12549). In this study, we investigated the effects of buffers and salts on this autocatalytic reaction in the presence and absence of zinc chloride. In the presence of zinc chloride, the fragmentation reaction was enhanced in each of acetate, MES, HEPES and phosphate buffers with maximum occurring in acetate when compared to those in the absence of zinc chloride. Adding sodium chloride in phosphate buffer in the presence of zinc chloride increased the extent of proteolysis. Irrespective of the presence of zinc chloride, adding sodium chloride or potassium chloride in phosphate buffer elicited an additional proteolytic reaction. Higher concentrations of sodium phosphate buffer enhanced the autocatalytic reaction in the absence of zinc chloride. In contrast, in the presence of zinc chloride, higher concentrations of sodium phosphate decreased the autocatalytic reaction. Optimum pH of autocatalysis was not affected significantly by the absence or presence of zinc chloride. Like zinc chloride, other chlorides of divalent metals, such as magnesium, cobalt, iron and calcium also enhanced the autocatalytic reaction. Polyols such as ethylene glycol protected the light chain from fragmentation. Exposure of light chain to UV radiation led to enhanced fragmentation. In order to avoid fragmentation, the protein should be stored frozen in a low concentration buffer of neutral or higher pH devoid of any metal. Our results provide a choice of buffers and salts for isolation, purification and storage of intact botulinum neurotoxin serotype A light chain.

  14. The Structure of the Neurotoxin- Associated Protein HA33/A from Clostridium botulinum Suggests a Reoccurring Beta-Trefoil Fold in the Progenitor Toxin Complex

    National Research Council Canada - National Science Library

    Arndt, Joseph W; Gu, Jenny; Jaroszewski, Lukasz; Schwarzenbacher, Robert; Hanson, Michael A; Lebeda, Frank L; Stevens, Raymond C

    2004-01-01

    The hemagglutinating protein HA33 from Clostridium botulinum is associated with the large botulinum neurotoxin secreted complexes and is critical in toxin protection, internalization, and possibly activation...

  15. Probiotic microorganisms inhibit epithelial cell internalization of botulinum neurotoxin serotype A

    Science.gov (United States)

    Botulinum neurotoxins (BoNTs) are some of the most poisonous natural toxins known to man and are threats to public health and safety. Previous work from our laboratory showed that BoNT serotype A (BoNT/A) complex (holotoxin with neurotoxin-associated proteins) bind and transit through the intestinal...

  16. Rapid multiplex immunoassay to distinguish botulinum neurotoxin serotypes on a single lateral flow device(Abstract)

    Science.gov (United States)

    Clostridium botulinum produces seven antigenically distinct serotypes of botulinum neurotoxin (BoNT/A–G). The potency of these toxins result in a high mortality rate with BoNT/A and /B accounting for most of the naturally occurring outbreaks. The ease of BoNT production and their potential use as bi...

  17. Mechanisms of Botulinum Neurotoxin Induced Skeletal Muscle Atrophy

    Science.gov (United States)

    Hain, Brian A.

    Our previous research suggests that the mechanism of botulinum neurotoxintype A (BoNT/A)-induced atrophy does not occur via a NF-kappaB/Foxo-dependent process. We thus hypothesized that the primary mechanism would be activation of either the proteosomal or calpain pathways. BoNT/A injection induced elevations in proteolytic activity markers of the ubiquitin-proteasome-system (UPS) and calpain systems after 3 days of a single dose. Inhibition of the proteasome significantly attenuated BoNT/Ainduced atrophy 3-days post BoNT/A injection. Calpastatin overexpression prevented BoNT/A-induced calpain activity at 3 days, and but did not result in a significant attenuation of atrophy. Concurrent attenuation of the UPS and calpain systems was sufficient to attenuate all of the atrophy associated with BoNT/A induced atrophy. In conclusion, it appears that the UPS and calpain system work in an additive fashion with neurotoxin-induced muscle atrophy. Inhibiting both of these pathways while administering BoNT/A attenuates all of the observed muscle atrophy.

  18. Purification and characterization of neurotoxin complex from a dual toxin gene containing Clostridium botulinum strain PS-5

    Science.gov (United States)

    Botulinum neurotoxins (BoNTs) are produced as a toxin complex (TC) which consists of neurotoxin (NT) and neurotoxin associated proteins (NAPs). The characterization of NT in its native state is an essential step for developing diagnostics and therapeutic countermeasures against botulism. The presenc...

  19. Recombination and Insertion Events Involving the Botulinum Neurotoxin Complex Genes in Clostridium botulinum Types A, B, E and F and Clostridium butyricum Type E Strains

    Science.gov (United States)

    2009-10-05

    Clostridium botulinum types A, B, E and F and Clostridium butyricum type E strains Karen K Hill*1, Gary Xie2, Brian T Foley3, Theresa J Smith4, Amy C Munk2...ornl.gov; John C Detter - cdetter@lanl.gov * Corresponding author Abstract Background: Clostridium botulinum is a taxonomic designation for at least... botulinum neurotoxin complex genes in Clostridium botulinum types A, B, E and F and Clostridium butyricum type E strains. BMC Genomics 7:1-18 5a

  20. Safety and administration of treatment with botulinum neurotoxin for sialorrhoea in ALS patients

    DEFF Research Database (Denmark)

    Stokholm, Morten Gersel; Bisgård, Carsten; Vilholm, Ole Jakob

    2013-01-01

    Botulinum neurotoxin (BoNT) is a second-line treatment of sialorrhoea in ALS (amyotrophic lateral sclerosis) patients. This article is a review of the published literature concerning safety and administration of this treatment to ALS patients. A PubMed search was performed. All original publicati......Botulinum neurotoxin (BoNT) is a second-line treatment of sialorrhoea in ALS (amyotrophic lateral sclerosis) patients. This article is a review of the published literature concerning safety and administration of this treatment to ALS patients. A PubMed search was performed. All original...

  1. A historical and proteomic analysis of botulinum neurotoxin type/G

    Directory of Open Access Journals (Sweden)

    Rees Jon

    2011-10-01

    Full Text Available Abstract Background Clostridium botulinum is the taxonomic designation for at least six diverse species that produce botulinum neurotoxins (BoNTs. There are seven known serotypes of BoNTs (/A through/G, all of which are potent toxins classified as category A bioterrorism agents. BoNT/G is the least studied of the seven serotypes. In an effort to further characterize the holotoxin and neurotoxin-associated proteins (NAPs, we conducted an in silico and proteomic analysis of commercial BoNT/G complex. We describe the relative quantification of the proteins present in the/G complex and confirm our ability to detect the toxin activity in vitro. In addition, we review previous literature to provide a complete description of the BoNT/G complex. Results An in-depth comparison of protein sequences indicated that BoNT/G shares the most sequence similarity with the/B serotype. A temperature-modified Endopep-MS activity assay was successful in the detection of BoNT/G activity. Gel electrophoresis and in gel digestions, followed by MS/MS analysis of/G complex, revealed the presence of four proteins in the complexes: neurotoxin (BoNT and three NAPs--nontoxic-nonhemagglutinin (NTNH and two hemagglutinins (HA70 and HA17. Rapid high-temperature in-solution tryptic digestions, coupled with MS/MS analysis, generated higher than previously reported sequence coverages for all proteins associated with the complex: BoNT 66%, NTNH 57%, HA70 91%, and HA17 99%. Label-free relative quantification determined that the complex contains 30% BoNT, 38% NTNH, 28% HA70, and 4% HA17 by weight comparison and 17% BoNT, 23% NTNH, 42% HA70, and 17% HA17 by molecular comparison. Conclusions The in silico protein sequence comparisons established that the/G complex is phenetically related to the other six serotypes of C. botulinum. Proteomic analyses and Endopep-MS confirmed the presence of BoNT and NAPs, along with the activity of the commercial/G complex. The use of data

  2. Two-component signal transduction system CBO0787/CBO0786 represses transcription from botulinum neurotoxin promoters in Clostridium botulinum ATCC 3502.

    Science.gov (United States)

    Zhang, Zhen; Korkeala, Hannu; Dahlsten, Elias; Sahala, Elina; Heap, John T; Minton, Nigel P; Lindström, Miia

    2013-03-01

    Blocking neurotransmission, botulinum neurotoxin is the most poisonous biological substance known to mankind. Despite its infamy as the scourge of the food industry, the neurotoxin is increasingly used as a pharmaceutical to treat an expanding range of muscle disorders. Whilst neurotoxin expression by the spore-forming bacterium Clostridium botulinum appears tightly regulated, to date only positive regulatory elements, such as the alternative sigma factor BotR, have been implicated in this control. The identification of negative regulators has proven to be elusive. Here, we show that the two-component signal transduction system CBO0787/CBO0786 negatively regulates botulinum neurotoxin expression. Single insertional inactivation of cbo0787 encoding a sensor histidine kinase, or of cbo0786 encoding a response regulator, resulted in significantly elevated neurotoxin gene expression levels and increased neurotoxin production. Recombinant CBO0786 regulator was shown to bind to the conserved -10 site of the core promoters of the ha and ntnh-botA operons, which encode the toxin structural and accessory proteins. Increasing concentration of CBO0786 inhibited BotR-directed transcription from the ha and ntnh-botA promoters, demonstrating direct transcriptional repression of the ha and ntnh-botA operons by CBO0786. Thus, we propose that CBO0786 represses neurotoxin gene expression by blocking BotR-directed transcription from the neurotoxin promoters. This is the first evidence of a negative regulator controlling botulinum neurotoxin production. Understanding the neurotoxin regulatory mechanisms is a major target of the food and pharmaceutical industries alike.

  3. Botulinum Neurotoxins and Botulism: A Novel Therapeutic Approach

    Science.gov (United States)

    Thanongsaksrikul, Jeeraphong; Chaicumpa, Wanpen

    2011-01-01

    Specific treatment is not available for human botulism. Current remedial mainstay is the passive administration of polyclonal antibody to botulinum neurotoxin (BoNT) derived from heterologous species (immunized animal or mouse hybridoma) together with supportive and symptomatic management. The antibody works extracellularly, probably by blocking the binding of receptor binding (R) domain to the neuronal receptors; thus inhibiting cellular entry of the holo-BoNT. The antibody cannot neutralize the intracellular toxin. Moreover, a conventional antibody with relatively large molecular size (150 kDa) is not accessible to the enzymatic groove and, thus, cannot directly inhibit the BoNT zinc metalloprotease activity. Recently, a 15–20 kDa single domain antibody (VHH) that binds specifically to light chain of BoNT serotype A was produced from a humanized-camel VH/VHH phage display library. The VHH has high sequence homology (>80%) to the human VH and could block the enzymatic activity of the BoNT. Molecular docking revealed not only the interface binding between the VHH and the toxin but also an insertion of the VHH CDR3 into the toxin enzymatic pocket. It is envisaged that, by molecular linking the VHH to a cell penetrating peptide (CPP), the CPP-VHH fusion protein would be able to traverse the hydrophobic cell membrane into the cytoplasm and inhibit the intracellular BoNT. This presents a novel and safe immunotherapeutic strategy for botulism by using a cell penetrating, humanized-single domain antibody that inhibits the BoNT by means of a direct blockade of the groove of the menace enzyme. PMID:22069720

  4. Botulinum Neurotoxins and Botulism: A Novel Therapeutic Approach

    Directory of Open Access Journals (Sweden)

    Wanpen Chaicumpa

    2011-05-01

    Full Text Available Specific treatment is not available for human botulism. Current remedial mainstay is the passive administration of polyclonal antibody to botulinum neurotoxin (BoNT derived from heterologous species (immunized animal or mouse hybridoma together with supportive and symptomatic management. The antibody works extracellularly, probably by blocking the binding of receptor binding (R domain to the neuronal receptors; thus inhibiting cellular entry of the holo-BoNT. The antibody cannot neutralize the intracellular toxin. Moreover, a conventional antibody with relatively large molecular size (150 kDa is not accessible to the enzymatic groove and, thus, cannot directly inhibit the BoNT zinc metalloprotease activity. Recently, a 15–20 kDa single domain antibody (VHH that binds specifically to light chain of BoNT serotype A was produced from a humanized-camel VH/VHH phage display library. The VHH has high sequence homology (>80% to the human VH and could block the enzymatic activity of the BoNT. Molecular docking revealed not only the interface binding between the VHH and the toxin but also an insertion of the VHH CDR3 into the toxin enzymatic pocket. It is envisaged that, by molecular linking the VHH to a cell penetrating peptide (CPP, the CPP-VHH fusion protein would be able to traverse the hydrophobic cell membrane into the cytoplasm and inhibit the intracellular BoNT. This presents a novel and safe immunotherapeutic strategy for botulism by using a cell penetrating, humanized-single domain antibody that inhibits the BoNT by means of a direct blockade of the groove of the menace enzyme.

  5. Independent evolution of neurotoxin and flagellar genetic loci in proteolytic Clostridium botulinum

    Directory of Open Access Journals (Sweden)

    Twine Susan M

    2009-03-01

    Full Text Available Abstract Background Proteolytic Clostridium botulinum is the causative agent of botulism, a severe neuroparalytic illness. Given the severity of botulism, surprisingly little is known of the population structure, biology, phylogeny or evolution of C. botulinum. The recent determination of the genome sequence of C. botulinum has allowed comparative genomic indexing using a DNA microarray. Results Whole genome microarray analysis revealed that 63% of the coding sequences (CDSs present in reference strain ATCC 3502 were common to all 61 widely-representative strains of proteolytic C. botulinum and the closely related C. sporogenes tested. This indicates a relatively stable genome. There was, however, evidence for recombination and genetic exchange, in particular within the neurotoxin gene and cluster (including transfer of neurotoxin genes to C. sporogenes, and the flagellar glycosylation island (FGI. These two loci appear to have evolved independently from each other, and from the remainder of the genetic complement. A number of strains were atypical; for example, while 10 out of 14 strains that formed type A1 toxin gave almost identical profiles in whole genome, neurotoxin cluster and FGI analyses, the other four strains showed divergent properties. Furthermore, a new neurotoxin sub-type (A5 has been discovered in strains from heroin-associated wound botulism cases. For the first time, differences in glycosylation profiles of the flagella could be linked to differences in the gene content of the FGI. Conclusion Proteolytic C. botulinum has a stable genome backbone containing specific regions of genetic heterogeneity. These include the neurotoxin gene cluster and the FGI, each having evolved independently of each other and the remainder of the genetic complement. Analysis of these genetic components provides a high degree of discrimination of strains of proteolytic C. botulinum, and is suitable for clinical and forensic investigations of botulism

  6. A Review of the Disruptive Potential of Botulinum Neurotoxins as Chemical Warfare Agents

    Science.gov (United States)

    2011-10-01

    caused by ingestion of botulinum neurotoxin (BoNT) was first described as “ sausage poisoning” in 1820 and attributed to a bacterium in 1897 [1]. We...References. 1. Erbguth, F.J. and M. Naumann, Historical aspects of botulinum toxin: Justinus Kerner (1786-1862) and the " sausage poison...Liu, Analyzing a bioterror attack on the food supply: the case of botulinum toxin in milk. Proc Natl Acad Sci U S A, 2005. 102(28): p. 9984-9. 8

  7. Neuronal targeting, internalization, and biological activity of a recombinant atoxic derivative of botulinum neurotoxin A

    Science.gov (United States)

    Botulinum neurotoxins (BoNT) have the unique capacity to cross epithelial barriers, target neuromuscular junctions, and translocate active metalloprotease component to the cytosol of motor neurons. We have taken advantage of the molecular carriers responsible for this trafficking to create a family ...

  8. Mechanism of Action of Botulinum Neurotoxin and Overview of Medical Countermeasures for Intoxication

    Science.gov (United States)

    2008-01-01

    a recent study from our laboratory, TVL was injected locally in the rat extensor digitorum longus (EDL) muscle 30 min before a local injection of 0.6...1996. Effect of 3,4-diaminopyridine on rat extensor digitorum longus muscle paralyzed by local injection of botulinum neurotoxin. Toxieon 34:237-249

  9. Holotoxin Activity of Botulinum Neurotoxin Subtype A4 Originating from a Nontoxigenic Clostridium botulinum Expression System.

    Science.gov (United States)

    Bradshaw, Marite; Tepp, William H; Whitemarsh, Regina C M; Pellett, Sabine; Johnson, Eric A

    2014-12-01

    Clostridium botulinum subtype A4 neurotoxin (BoNT/A4) is naturally expressed in the dual-toxin-producing C. botulinum strain 657Ba at 100× lower titers than BoNT/B. In this study, we describe purification of recombinant BoNT/A4 (rBoNT/A4) expressed in a nonsporulating and nontoxigenic C. botulinum expression host strain. The rBoNT/A4 copurified with nontoxic toxin complex components provided in trans by the expression host and was proteolytically cleaved to the active dichain form. Activity of the recombinant BoNT/A4 in mice and in human neuronal cells was about 1,000-fold lower than that of BoNT/A1, and the recombinant BoNT/A4 was effectively neutralized by botulism heptavalent antitoxin. A previous report using recombinant truncated BoNT/A4 light chain (LC) expressed in Escherichia coli has indicated reduced stability and activity of BoNT/A4 LC compared to BoNT/A1 LC, which was surmounted by introduction of a single-amino-acid substitution, I264R. In order to determine whether this mutation would also affect the holotoxin activity of BoNT/A4, a recombinant full-length BoNT/A4 carrying this mutation as well as a second mutation predicted to increase solubility (L260F) was produced in the clostridial expression system. Comparative analyses of the in vitro, cellular, and in vivo activities of rBoNT/A4 and rBoNT/A4-L260F I264R showed 1,000-fold-lower activity than BoNT/A1 in both the mutated and nonmutated BoNT/A4. This indicates that these mutations do not alter the activity of BoNT/A4 holotoxin. In summary, a recombinant BoNT from a dual-toxin-producing strain was expressed and purified in an endogenous clostridial expression system, allowing analysis of this toxin. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. Purification and characterization of neurotoxin complex from a dual toxin gene containing Clostridium Botulinum Strain PS-5.

    Science.gov (United States)

    Singh, Ajay K; Sachdeva, Amita; Degrasse, Jeffrey A; Croley, Timothy R; Stanker, Larry H; Hodge, David; Sharma, Shashi K

    2013-04-01

    Botulinum neurotoxins are produced as a toxin complex (TC) which consists of neurotoxin (NT) and neurotoxin associated proteins. The characterization of NT in its native state is an essential step for developing diagnostics and therapeutic countermeasures against botulism. The presence of NT genes was validated by PCR amplification of toxin specific fragments from genomic DNA of Clostridium botulinum strain PS-5 which indicated the presence of both serotype A and B genes on PS-5 genome. Further, TC was purified and characterized by Western blotting, Digoxin-enzyme linked immunosorbent assay, endopeptidase activity assay, and Liquid chromatography-Mass spectrometry. The data showed the presence of serotype A specific neurotoxin. Based on the analysis of neurotoxin genes and characterization of TC, PS-5 strain appears as a serotype A (B) strain of C. botulinum which produces only serotype A specific TC in the cell culture medium.

  11. A Potent Peptidomimetic Inhibitor of Botulinum Neurotoxin Serotype A has a Very Different Conformation than SNAP-25 Substrate

    Science.gov (United States)

    2008-10-07

    inhibit other BoNT serotypes or thermolysin . 15. SUBJECT TERMS Clostridium botulinum, neurotoxin, serotype A, peptidomimetic inhibitor , light chain...20 0 BoNT/E SNAP-25, residues 1–206 20 0 BoNT/F VAMP residues 1–94 20 0 Thermolysin Synthetic peptidea 500 0 The inhibitor concentration was 4 mM. a...Structure ArticleA Potent Peptidomimetic Inhibitor of Botulinum Neurotoxin Serotype A Has a Very Different Conformation than SNAP-25 Substrate Jorge

  12. Discovery of a fluorene class of compounds as inhibitors of botulinum neurotoxin serotype E by virtual screening.

    Science.gov (United States)

    Kumar, Gyanendra; Agarwal, Rakhi; Swaminathan, Subramanyam

    2012-02-28

    Botulinum neurotoxins are one of the most poisonous biological substances known to humans and present a potential bioterrorism threat. There are no therapeutic interventions developed so far. Here, we report the first small molecule non-peptide inhibitor for botulinum neurotoxin serotype E discovered by structure-based virtual screening and propose a mechanism for its inhibitory activity. This journal is © The Royal Society of Chemistry 2012

  13. Structure- and Substrate- Based Inhibitor Design for Clostridium botulinum Neurotoxin Serotype A*

    Energy Technology Data Exchange (ETDEWEB)

    Kumaran,D.; Rawat, R.; Ludivico, M.; Ahmed, S.; Swaminathan, S.

    2008-01-01

    The seven antigenically distinct serotypes of Clostridium botulinum neurotoxins cleave specific soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex proteins and block the release of neurotransmitters that cause flaccid paralysis and are considered potential bioweapons. Botulinum neurotoxin type A is the most potent among the clostridial neurotoxins, and to date there is no post-exposure therapeutic intervention available. To develop inhibitors leading to drug design, it is imperative that critical interactions between the enzyme and the substrate near the active site are known. Although enzyme-substrate interactions at exosites away from the active site are mapped in detail for botulinum neurotoxin type A, information about the active site interactions is lacking. Here, we present the crystal structures of botulinum neurotoxin type A catalytic domain in complex with four inhibitory substrate analog tetrapeptides, viz. RRGC, RRGL, RRGI, and RRGM at resolutions of 1.6-1.8 Angstroms . These structures show for the first time the interactions between the substrate and enzyme at the active site and delineate residues important for substrate stabilization and catalytic activity. We show that OH of Tyr366 and NH2 of Arg363 are hydrogen-bonded to carbonyl oxygens of P1 and P1' of the substrate analog and position it for catalytic activity. Most importantly, the nucleophilic water is replaced by the amino group of the N-terminal residue of the tetrapeptide. Furthermore, the S1' site is formed by Phe194, Thr215, Thr220, Asp370, and Arg363. The Ki of the best inhibitory tetrapeptide is 157 nm.

  14. New Elements To Consider When Modeling the Hazards Associated with Botulinum Neurotoxin in Food.

    Science.gov (United States)

    Ihekwaba, Adaoha E C; Mura, Ivan; Malakar, Pradeep K; Walshaw, John; Peck, Michael W; Barker, G C

    2016-01-15

    Botulinum neurotoxins (BoNTs) produced by the anaerobic bacterium Clostridium botulinum are the most potent biological substances known to mankind. BoNTs are the agents responsible for botulism, a rare condition affecting the neuromuscular junction and causing a spectrum of diseases ranging from mild cranial nerve palsies to acute respiratory failure and death. BoNTs are a potential biowarfare threat and a public health hazard, since outbreaks of foodborne botulism are caused by the ingestion of preformed BoNTs in food. Currently, mathematical models relating to the hazards associated with C. botulinum, which are largely empirical, make major contributions to botulinum risk assessment. Evaluated using statistical techniques, these models simulate the response of the bacterium to environmental conditions. Though empirical models have been successfully incorporated into risk assessments to support food safety decision making, this process includes significant uncertainties so that relevant decision making is frequently conservative and inflexible. Progression involves encoding into the models cellular processes at a molecular level, especially the details of the genetic and molecular machinery. This addition drives the connection between biological mechanisms and botulism risk assessment and hazard management strategies. This review brings together elements currently described in the literature that will be useful in building quantitative models of C. botulinum neurotoxin production. Subsequently, it outlines how the established form of modeling could be extended to include these new elements. Ultimately, this can offer further contributions to risk assessments to support food safety decision making. Copyright © 2015 Ihekwaba et al.

  15. MOLECULAR-BIOLOGY OF CLOSTRIDIAL TOXINS - EXPRESSION OF MESSENGER-RNAS ENCODING TETANUS AND BOTULINUM NEUROTOXINS IN APLYSIA NEURONS

    NARCIS (Netherlands)

    MOCHIDA, S; POULAIN, B; EISEL, U; BINZ, T; KURAZONO, H; NIEMANN, H; TAUC, L

    1990-01-01

    mRNAs encoding the light chain of tetanus and botulinum neurotoxins were transcribed, in vitro, from the cloned and specifically truncated genes of Clostridium tetani and Clostridium botulinum, respectively, and injected into presynaptic identified cholinergic neurons of the buccal ganglia of

  16. Rapid Detection of Clostridium botulinum Toxins A, B, E, and F in Clinical Samples, Selected Food Matrices, and Buffer Using Paramagnetic Bead-Based Electrochemiluminescence Detection

    National Research Council Canada - National Science Library

    Rivera, Victor R; Gamez, Frank J; Keener, William K; White, Jill A; Poli, Mark A

    2006-01-01

    Sensitive and specific electrochemiluminescence (ECL) assays were used to detect Clostridium botulinum neurotoxins serotypes A, B, E, and F in undiluted human serum, undiluted human urine, assay buffer, and selected food matrices...

  17. Investigations into Small Molecule Non-Peptidic Inhibitors of the Botulinum Neurotoxins

    Science.gov (United States)

    Čapková, Kateřina; Salzameda, Nicholas T.; Janda, Kim D.

    2009-01-01

    Botulinum neurotoxins (BoNTs), proteins secreted by the bacteria genus Clostridium, represent a group of extremely lethal toxins and a potential bioterrorism threat. As the current therapeutic options are of a predominantly prophylactic nature and cannot be used en masse, new strategies and ultimately potential treatments are desperately needed to combat any widespread release of these neurotoxins. In these regards, our laboratory has been working on developing new alternatives to treat botulinum intoxication through the development of inhibitors of the light chain proteases, the etiological agent which causes BoNT intoxication. Such a strategy has required the construction of two high throughput screens and small molecule non-peptidic libraries; excitingly, inhibitors of the BoNT/A protease have been uncovered and are being optimized via structure activity relationship studies. PMID:19327377

  18. Two-component signal transduction system CBO0787/CBO0786 represses transcription from botulinum neurotoxin promoters in Clostridium botulinum ATCC 3502.

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2013-03-01

    Full Text Available Blocking neurotransmission, botulinum neurotoxin is the most poisonous biological substance known to mankind. Despite its infamy as the scourge of the food industry, the neurotoxin is increasingly used as a pharmaceutical to treat an expanding range of muscle disorders. Whilst neurotoxin expression by the spore-forming bacterium Clostridium botulinum appears tightly regulated, to date only positive regulatory elements, such as the alternative sigma factor BotR, have been implicated in this control. The identification of negative regulators has proven to be elusive. Here, we show that the two-component signal transduction system CBO0787/CBO0786 negatively regulates botulinum neurotoxin expression. Single insertional inactivation of cbo0787 encoding a sensor histidine kinase, or of cbo0786 encoding a response regulator, resulted in significantly elevated neurotoxin gene expression levels and increased neurotoxin production. Recombinant CBO0786 regulator was shown to bind to the conserved -10 site of the core promoters of the ha and ntnh-botA operons, which encode the toxin structural and accessory proteins. Increasing concentration of CBO0786 inhibited BotR-directed transcription from the ha and ntnh-botA promoters, demonstrating direct transcriptional repression of the ha and ntnh-botA operons by CBO0786. Thus, we propose that CBO0786 represses neurotoxin gene expression by blocking BotR-directed transcription from the neurotoxin promoters. This is the first evidence of a negative regulator controlling botulinum neurotoxin production. Understanding the neurotoxin regulatory mechanisms is a major target of the food and pharmaceutical industries alike.

  19. The Effect of Chemodenervation by Botulinum Neurotoxin on the Degradation of Hyaluronic Acid Fillers: An Experimental Study.

    Science.gov (United States)

    Küçüker, İsmail; Aksakal, Ibrahim Alper; Polat, Ahmet Veysel; Engin, Murat Sinan; Yosma, Engin; Demir, Ahmet

    2016-01-01

    Early degradation is a common complaint for hyaluronic acid fillers. Although the combination of hyaluronic acid fillers with botulinum neurotoxin type A presented improved clinical results, objective measurement of hyaluronic acid volumes has not been previously assessed. In this study, the authors have split the calvaria of the rabbit to mimic the glabellar region in humans. In this model, the authors applied hyaluronic acid alone to one side and hyaluronic acid combined with botulinum neurotoxin type A to the contralateral side. Two days and 3 months after the filler injection, magnetic resonance imaging was performed to assess the filler volumes. Average initial volume of filler only and filler combined with botulinum neurotoxin type A was 0.61 cm on both sides, and there was no difference between initial volumes of the two sides (p = 0.735). At the end of 3 months, average degraded volumes of filler-only and filler combined with botulinum neurotoxin sides were 0.33 cm and 0.19 cm, respectively, and the degradation difference was significant between the two groups (p = 0.001). End volumes for the filler-only and filler combined with botulinum neurotoxin sides were 0.28 cm and 0.42 cm, respectively, and end volumes between two sides were also statistically significant (p neurotoxin type A significantly decreases the degradation process and increases the remaining volume of the hyaluronic acid fillers at the end of the paralyzed period.

  20. Recommended Immunological Strategies to Screen for Botulinum Neurotoxin-Containing Samples

    Directory of Open Access Journals (Sweden)

    Stéphanie Simon

    2015-11-01

    Full Text Available Botulinum neurotoxins (BoNTs cause the life-threatening neurological illness botulism in humans and animals and are divided into seven serotypes (BoNT/A–G, of which serotypes A, B, E, and F cause the disease in humans. BoNTs are classified as “category A” bioterrorism threat agents and are relevant in the context of the Biological Weapons Convention. An international proficiency test (PT was conducted to evaluate detection, quantification and discrimination capabilities of 23 expert laboratories from the health, food and security areas. Here we describe three immunological strategies that proved to be successful for the detection and quantification of BoNT/A, B, and E considering the restricted sample volume (1 mL distributed. To analyze the samples qualitatively and quantitatively, the first strategy was based on sensitive immunoenzymatic and immunochromatographic assays for fast qualitative and quantitative analyses. In the second approach, a bead-based suspension array was used for screening followed by conventional ELISA for quantification. In the third approach, an ELISA plate format assay was used for serotype specific immunodetection of BoNT-cleaved substrates, detecting the activity of the light chain, rather than the toxin protein. The results provide guidance for further steps in quality assurance and highlight problems to address in the future.

  1. Recommended Immunological Strategies to Screen for Botulinum Neurotoxin-Containing Samples

    Science.gov (United States)

    Simon, Stéphanie; Fiebig, Uwe; Liu, Yvonne; Tierney, Rob; Dano, Julie; Worbs, Sylvia; Endermann, Tanja; Nevers, Marie-Claire; Volland, Hervé; Sesardic, Dorothea; Dorner, Martin B.

    2015-01-01

    Botulinum neurotoxins (BoNTs) cause the life-threatening neurological illness botulism in humans and animals and are divided into seven serotypes (BoNT/A–G), of which serotypes A, B, E, and F cause the disease in humans. BoNTs are classified as “category A” bioterrorism threat agents and are relevant in the context of the Biological Weapons Convention. An international proficiency test (PT) was conducted to evaluate detection, quantification and discrimination capabilities of 23 expert laboratories from the health, food and security areas. Here we describe three immunological strategies that proved to be successful for the detection and quantification of BoNT/A, B, and E considering the restricted sample volume (1 mL) distributed. To analyze the samples qualitatively and quantitatively, the first strategy was based on sensitive immunoenzymatic and immunochromatographic assays for fast qualitative and quantitative analyses. In the second approach, a bead-based suspension array was used for screening followed by conventional ELISA for quantification. In the third approach, an ELISA plate format assay was used for serotype specific immunodetection of BoNT-cleaved substrates, detecting the activity of the light chain, rather than the toxin protein. The results provide guidance for further steps in quality assurance and highlight problems to address in the future. PMID:26703727

  2. Recommended Mass Spectrometry-Based Strategies to Identify Botulinum Neurotoxin-Containing Samples

    Directory of Open Access Journals (Sweden)

    Suzanne R. Kalb

    2015-05-01

    Full Text Available Botulinum neurotoxins (BoNTs cause the disease called botulism, which can be lethal. BoNTs are proteins secreted by some species of clostridia and are known to cause paralysis by interfering with nerve impulse transmission. Although the human lethal dose of BoNT is not accurately known, it is estimated to be between 0.1 μg to 70 μg, so it is important to enable detection of small amounts of these toxins. Our laboratory previously reported on the development of Endopep-MS, a mass-spectrometric‑based endopeptidase method to detect, differentiate, and quantify BoNT immunoaffinity purified from complex matrices. In this work, we describe the application of Endopep-MS for the analysis of thirteen blinded samples supplied as part of the EQuATox proficiency test. This method successfully identified the presence or absence of BoNT in all thirteen samples and was able to successfully differentiate the serotype of BoNT present in the samples, which included matrices such as buffer, milk, meat extract, and serum. Furthermore, the method yielded quantitative results which had z-scores in the range of −3 to +3 for quantification of BoNT/A containing samples. These results indicate that Endopep-MS is an excellent technique for detection, differentiation, and quantification of BoNT in complex matrices.

  3. Treatment of Chronic Migraine with Focus on Botulinum Neurotoxins

    Directory of Open Access Journals (Sweden)

    Sara M. Schaefer

    2015-07-01

    Full Text Available Migraine is the most common neurological disorder, and contributes to disability and large healthcare costs in the United States and the world. The treatment of migraine until recently has focused on medications, both abortive and prophylactic, but treatment of chronic migraine has been revolutionized with the introduction of botulinum toxin injection therapy. In this review, we explore the current understanding of migraine pathophysiology, and the evolution of the use of botulinum toxin therapy including proposed pathophysiological mechanisms through animal data. We also discuss the similarities and differences between three injection techniques.

  4. A protein chip membrane-capture assay for botulinum neurotoxin activity

    International Nuclear Information System (INIS)

    Marconi, Severine; Ferracci, Geraldine; Berthomieu, Maelys; Kozaki, Shunji; Miquelis, Raymond; Boucraut, Jose; Seagar, Michael

    2008-01-01

    Botulinum neurotoxins A and B (BoNT/A and B) are neuromuscular blocking agents which inhibit neurotransmission by cleaving the intra-cellular presynaptic SNARE proteins SNAP-25 and VAMP2, localized respectively in plasma membrane and synaptic vesicles. These neurotoxins are both dangerous pathogens and powerful therapeutic agents with numerous clinical and cosmetic applications. Consequently there is a need for in vitro assays of their biological activity to screen for potential inhibitors and to replace the widely used in vivo mouse assay. Surface plasmon resonance (SPR) was used to measure membrane vesicle capture by antibodies against SNAP-25 and VAMP2. Substrate cleavage by BoNTs modified capture providing a method to assay toxin activity. Firstly using synaptic vesicles as a substrate, a comparison of the EC 50 s for BoNT/B obtained by SPR, ELISA or flow cytometry indicated similar sensitivity although SPR assays were more rapid. Sonication of brain or neuronal cultures generated plasma membrane fragments with accessible intra-cellular epitopes adapted to measurement of BoNT/A activity. SPR responses were proportional to antigen concentration permitting detection of as little as 4 pM SNAP-25 in crude lysates. BoNT/A activity was assayed using monoclonal antibodies that specifically recognize a SNAP-25 epitope generated by the proteolytic action of the toxin. Incubation of intact primary cultured neurons with BoNT/A yielded an EC 50 of 0.5 pM. The SPR biosensor method was sensitive enough to monitor BoNT/A and B activity in cells cultured in a 96-well format providing an alternative to experimental animals for toxicological assays

  5. Novel Ganglioside-mediated Entry of Botulinum Neurotoxin Serotype D into Neurons

    Energy Technology Data Exchange (ETDEWEB)

    Kroken, Abby R.; Karalewitz, Andrew P.-A.; Fu, Zhuji; Kim, Jung-Ja P.; Barbieri, Joseph T. (MCW)

    2012-02-07

    Botulinum Neurotoxins (BoNTs) are organized into seven serotypes, A-G. Although several BoNT serotypes enter neurons through synaptic vesicle cycling utilizing dual receptors (a ganglioside and a synaptic vesicle-associated protein), the entry pathway of BoNT/D is less well understood. Although BoNT/D entry is ganglioside-dependent, alignment and structural studies show that BoNT/D lacks key residues within a conserved ganglioside binding pocket that are present in BoNT serotypes A, B, E, F, and G, which indicate that BoNT/D-ganglioside interactions may be unique. In this study BoNT/D is shown to have a unique association with ganglioside relative to the other BoNT serotypes, utilizing a ganglioside binding loop (GBL, residues Tyr-1235-Ala-1245) within the receptor binding domain of BoNT/D (HCR/D) via b-series gangliosides, including GT1b, GD1b, and GD2. HCR/D bound gangliosides and entered neurons dependent upon the aromatic ring of Phe-1240 within the GBL. This is the first BoNT-ganglioside interaction that is mediated by a phenylalanine. In contrast, Trp-1238, located near the N terminus of the ganglioside binding loop, was mostly solvent-inaccessible and appeared to contribute to maintaining the loop structure. BoNT/D entry and intoxication were enhanced by membrane depolarization via synaptic vesicle cycling, where HCR/D colocalized with synaptophysin, a synaptic vesicle marker, but immunoprecipitation experiments did not detect direct association with synaptic vesicle protein 2. Thus, BoNT/D utilizes unique associations with gangliosides and synaptic vesicles to enter neurons, which may facilitate new neurotoxin therapies.

  6. Control of autophagosome axonal retrograde flux by presynaptic activity unveiled using botulinum neurotoxin type a.

    Science.gov (United States)

    Wang, Tong; Martin, Sally; Papadopulos, Andreas; Harper, Callista B; Mavlyutov, Timur A; Niranjan, Dhevahi; Glass, Nick R; Cooper-White, Justin J; Sibarita, Jean-Baptiste; Choquet, Daniel; Davletov, Bazbek; Meunier, Frédéric A

    2015-04-15

    Botulinum neurotoxin type A (BoNT/A) is a highly potent neurotoxin that elicits flaccid paralysis by enzymatic cleavage of the exocytic machinery component SNAP25 in motor nerve terminals. However, recent evidence suggests that the neurotoxic activity of BoNT/A is not restricted to the periphery, but also reaches the CNS after retrograde axonal transport. Because BoNT/A is internalized in recycling synaptic vesicles, it is unclear which compartment facilitates this transport. Using live-cell confocal and single-molecule imaging of rat hippocampal neurons cultured in microfluidic devices, we show that the activity-dependent uptake of the binding domain of the BoNT/A heavy chain (BoNT/A-Hc) is followed by a delayed increase in retrograde axonal transport of BoNT/A-Hc carriers. Consistent with a role of presynaptic activity in initiating transport of the active toxin, activity-dependent uptake of BoNT/A in the terminal led to a significant increase in SNAP25 cleavage detected in the soma chamber compared with nonstimulated neurons. Surprisingly, most endocytosed BoNT/A-Hc was incorporated into LC3-positive autophagosomes generated in the nerve terminals, which then underwent retrograde transport to the cell soma, where they fused with lysosomes both in vitro and in vivo. Blocking autophagosome formation or acidification with wortmannin or bafilomycin A1, respectively, inhibited the activity-dependent retrograde trafficking of BoNT/A-Hc. Our data demonstrate that both the presynaptic formation of autophagosomes and the initiation of their retrograde trafficking are tightly regulated by presynaptic activity. Copyright © 2015 the authors 0270-6474/15/356179-16$15.00/0.

  7. A substrate sensor chip to assay the enzymatic activity of Botulinum neurotoxin A.

    Science.gov (United States)

    Lévêque, Christian; Ferracci, Géraldine; Maulet, Yves; Grand-Masson, Chloé; Blanchard, Marie-Pierre; Seagar, Michael; El Far, Oussama

    2013-11-15

    Botulinum neurotoxin A (BoNT/A) induces muscle paralysis by enzymatically cleaving the presynaptic SNARE protein SNAP-25, which results in lasting inhibition of acetylcholine release at the neuromuscular junction. A rapid and sensitive in vitro assay for BoNT/A is required to replace the mouse lethality assay (LD50) in current use. We have developed a fully automated sensor to assay the endoprotease activity of BoNT/A. We produced monoclonal antibodies (mAbs) that recognize SNAP-25 neo-epitopes specifically generated by BoNT/A action. Recombinant SNAP-25 was coupled to the sensor surface of a surface plasmon resonance (SPR) system and samples containing BoNT/A were injected over the substrate sensor. Online substrate cleavage was monitored by measuring binding of mAb10F12 to a SNAP-25 neo-epitope. The SNAP-25-chip assay was toxin serotype-specific and detected 55 fM BoNT/A (1 LD50/ml) in 5 min and 0.4 fM (0.01 LD50/ml) in 5h. Time-course and dose-response curves were linear, yielding a limit of quantification of 0.03 LD50/ml. This label-free method is 100 times more sensitive than the mouse assay, potentially providing rapid read-out of small amounts of toxin for environmental surveillance and the quality control of pharmaceutical preparations. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Nerve cell-mimicking liposomes as biosensor for botulinum neurotoxin complete physiological activity.

    Science.gov (United States)

    Weingart, Oliver G; Loessner, Martin J

    2016-12-15

    Botulinum neurotoxins (BoNT) are the most toxic substances known, and their neurotoxic properties and paralysing effects are exploited for medical treatment of a wide spectrum of disorders. To accurately quantify the potency of a pharmaceutical BoNT preparation, its physiological key activities (binding to membrane receptor, translocation, and proteolytic degradation of SNARE proteins) need to be determined. To date, this was only possible using animal models, or, to a limited extent, cell-based assays. We here report a novel in vitro system for BoNT/B analysis, based on nerve-cell mimicking liposomes presenting motoneuronal membrane receptors required for BoNT binding. Following triggered membrane translocation of the toxin's Light Chain, the endopeptidase activity can be quantitatively monitored employing a FRET-based reporter assay within the functionalized liposomes. We were able to detect BoNT/B physiological activity at picomolar concentrations in short time, opening the possibility for future replacement of animal experimentation in pharmaceutical BoNT testing. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Lipid diversity among botulinum neurotoxin-producing clostridia

    Science.gov (United States)

    Guan, Ziqiang; Johnston, Norah C.; Raetz, Christian R. H.; Johnson, Eric A.

    2012-01-01

    Clostridium botulinum has been classified into four groupings (groups I to IV) based on physiological characteristics and 16S rRNA sequencing. We have examined the lipid compositions of 11 representative strains of C. botulinum and a strain of Clostridium sporogenes by 2D-TLC and by MS. All strains contained phosphatidylglycerol (PG), cardiolipin (CL) and phosphatidylethanolamine (PE) in both the all-acyl and the alk-1′-enyl (plasmalogen) forms. Five strains in proteolytic group I, which are related to C. sporogenes, contained varying amounts of an ethanolamine-phosphate derivative of N-acetylglucosaminyl-diradylglycerol, which is also present in C. sporogenes. Three strains in group II, which are related to Clostridium butyricum, Clostridium beijerinckii and Clostridium acetobutylicum, contained lipids characteristic of these saccharolytic species: a glycerol acetal and a PG acetal of the plasmalogen form of PE. Two group III strains, which are related to Clostridium novyi, contained amino-acyl derivatives of PG, which are also found in C. novyi. A strain in group IV had PE, PG and CL, but none of the distinguishing lipids. This work shows that the lipidome of C. botulinum is consistent with its classification by other methods. PMID:22837302

  10. Substrate Binding Mode and its Implication on Drug Design for Botulinum Neurotoxin A

    Energy Technology Data Exchange (ETDEWEB)

    Kumaran, D.; Rawat, R; Ahmed, A; Swaminathan, S

    2008-01-01

    The seven antigenically distinct serotypes of Clostridium botulinum neurotoxins, the causative agents of botulism, block the neurotransmitter release by specifically cleaving one of the three SNARE proteins and induce flaccid paralysis. The Centers for Disease Control and Prevention (CDC) has declared them as Category A biowarfare agents. The most potent among them, botulinum neurotoxin type A (BoNT/A), cleaves its substrate synaptosome-associated protein of 25 kDa (SNAP-25). An efficient drug for botulism can be developed only with the knowledge of interactions between the substrate and enzyme at the active site. Here, we report the crystal structures of the catalytic domain of BoNT/A with its uncleavable SNAP-25 peptide 197QRATKM202 and its variant 197RRATKM202 to 1.5 A and 1.6 A, respectively. This is the first time the structure of an uncleavable substrate bound to an active botulinum neurotoxin is reported and it has helped in unequivocally defining S1 to S5? sites. These substrate peptides make interactions with the enzyme predominantly by the residues from 160, 200, 250 and 370 loops. Most notably, the amino nitrogen and carbonyl oxygen of P1 residue (Gln197) chelate the zinc ion and replace the nucleophilic water. The P1?-Arg198, occupies the S1? site formed by Arg363, Thr220, Asp370, Thr215, Ile161, Phe163 and Phe194. The S2? subsite is formed by Arg363, Asn368 and Asp370, while S3? subsite is formed by Tyr251, Leu256, Val258, Tyr366, Phe369 and Asn388. P4?-Lys201 makes hydrogen bond with Gln162. P5?-Met202 binds in the hydrophobic pocket formed by the residues from the 250 and 200 loop. Knowledge of interactions between the enzyme and substrate peptide from these complex structures should form the basis for design of potent inhibitors for this neurotoxin.

  11. Substrate binding mode and its implication on drug design for botulinum neurotoxin A.

    Directory of Open Access Journals (Sweden)

    Desigan Kumaran

    2008-09-01

    Full Text Available The seven antigenically distinct serotypes of Clostridium botulinum neurotoxins, the causative agents of botulism, block the neurotransmitter release by specifically cleaving one of the three SNARE proteins and induce flaccid paralysis. The Centers for Disease Control and Prevention (CDC has declared them as Category A biowarfare agents. The most potent among them, botulinum neurotoxin type A (BoNT/A, cleaves its substrate synaptosome-associated protein of 25 kDa (SNAP-25. An efficient drug for botulism can be developed only with the knowledge of interactions between the substrate and enzyme at the active site. Here, we report the crystal structures of the catalytic domain of BoNT/A with its uncleavable SNAP-25 peptide (197QRATKM(202 and its variant (197RRATKM(202 to 1.5 A and 1.6 A, respectively. This is the first time the structure of an uncleavable substrate bound to an active botulinum neurotoxin is reported and it has helped in unequivocally defining S1 to S5' sites. These substrate peptides make interactions with the enzyme predominantly by the residues from 160, 200, 250 and 370 loops. Most notably, the amino nitrogen and carbonyl oxygen of P1 residue (Gln197 chelate the zinc ion and replace the nucleophilic water. The P1'-Arg198, occupies the S1' site formed by Arg363, Thr220, Asp370, Thr215, Ile161, Phe163 and Phe194. The S2' subsite is formed by Arg363, Asn368 and Asp370, while S3' subsite is formed by Tyr251, Leu256, Val258, Tyr366, Phe369 and Asn388. P4'-Lys201 makes hydrogen bond with Gln162. P5'-Met202 binds in the hydrophobic pocket formed by the residues from the 250 and 200 loop. Knowledge of interactions between the enzyme and substrate peptide from these complex structures should form the basis for design of potent inhibitors for this neurotoxin.

  12. Snake and Spider Toxins Induce a Rapid Recovery of Function of Botulinum Neurotoxin Paralysed Neuromuscular Junction

    Directory of Open Access Journals (Sweden)

    Elisa Duregotti

    2015-12-01

    Full Text Available Botulinum neurotoxins (BoNTs and some animal neurotoxins (β-Bungarotoxin, β-Btx, from elapid snakes and α-Latrotoxin, α-Ltx, from black widow spiders are pre-synaptic neurotoxins that paralyse motor axon terminals with similar clinical outcomes in patients. However, their mechanism of action is different, leading to a largely-different duration of neuromuscular junction (NMJ blockade. BoNTs induce a long-lasting paralysis without nerve terminal degeneration acting via proteolytic cleavage of SNARE proteins, whereas animal neurotoxins cause an acute and complete degeneration of motor axon terminals, followed by a rapid recovery. In this study, the injection of animal neurotoxins in mice muscles previously paralyzed by BoNT/A or /B accelerates the recovery of neurotransmission, as assessed by electrophysiology and morphological analysis. This result provides a proof of principle that, by causing the complete degeneration, reabsorption, and regeneration of a paralysed nerve terminal, one could favour the recovery of function of a biochemically- or genetically-altered motor axon terminal. These observations might be relevant to dying-back neuropathies, where pathological changes first occur at the neuromuscular junction and then progress proximally toward the cell body.

  13. Snake and Spider Toxins Induce a Rapid Recovery of Function of Botulinum Neurotoxin Paralysed Neuromuscular Junction.

    Science.gov (United States)

    Duregotti, Elisa; Zanetti, Giulia; Scorzeto, Michele; Megighian, Aram; Montecucco, Cesare; Pirazzini, Marco; Rigoni, Michela

    2015-12-08

    Botulinum neurotoxins (BoNTs) and some animal neurotoxins (β-Bungarotoxin, β-Btx, from elapid snakes and α-Latrotoxin, α-Ltx, from black widow spiders) are pre-synaptic neurotoxins that paralyse motor axon terminals with similar clinical outcomes in patients. However, their mechanism of action is different, leading to a largely-different duration of neuromuscular junction (NMJ) blockade. BoNTs induce a long-lasting paralysis without nerve terminal degeneration acting via proteolytic cleavage of SNARE proteins, whereas animal neurotoxins cause an acute and complete degeneration of motor axon terminals, followed by a rapid recovery. In this study, the injection of animal neurotoxins in mice muscles previously paralyzed by BoNT/A or /B accelerates the recovery of neurotransmission, as assessed by electrophysiology and morphological analysis. This result provides a proof of principle that, by causing the complete degeneration, reabsorption, and regeneration of a paralysed nerve terminal, one could favour the recovery of function of a biochemically- or genetically-altered motor axon terminal. These observations might be relevant to dying-back neuropathies, where pathological changes first occur at the neuromuscular junction and then progress proximally toward the cell body.

  14. Three enzymatically active neurotoxins of Clostridium botulinum strain Af84: BoNT/A2, /F4, and /F5.

    Science.gov (United States)

    Kalb, Suzanne R; Baudys, Jakub; Smith, Theresa J; Smith, Leonard A; Barr, John R

    2014-04-01

    Botulinum neurotoxins (BoNTs) are produced by various species of clostridia and are potent neurotoxins which cause the disease botulism, by cleaving proteins needed for successful nerve transmission. There are currently seven confirmed serotypes of BoNTs, labeled A-G, and toxin-producing clostridia typically only produce one serotype of BoNT. There are a few strains (bivalent strains) which are known to produce more than one serotype of BoNT, producing either both BoNT/A and /B, BoNT/A and /F, or BoNT/B and /F, designated as Ab, Ba, Af, or Bf. Recently, it was reported that Clostridium botulinum strain Af84 has three neurotoxin gene clusters: bont/A2, bont/F4, and bont/F5. This was the first report of a clostridial organism containing more than two neurotoxin gene clusters. Using a mass spectrometry based proteomics approach, we report here that all three neurotoxins, BoNT/A2, /F4, and /F5, are produced by C. botulinum Af84. Label free MS(E) quantification of the three toxins indicated that toxin composition is 88% BoNT/A2, 1% BoNT/F4, and 11% BoNT/F5. The enzymatic activity of all three neurotoxins was assessed by examining the enzymatic activity of the neurotoxins upon peptide substrates, which mimic the toxins' natural targets, and monitoring cleavage of the substrates by mass spectrometry. We determined that all three neurotoxins are enzymatically active. This is the first report of three enzymatically active neurotoxins produced in a single strain of Clostridium botulinum.

  15. Two-component systems are involved in the regulation of botulinum neurotoxin synthesis in Clostridium botulinum type A strain Hall.

    Directory of Open Access Journals (Sweden)

    Chloé Connan

    Full Text Available Clostridium botulinum synthesizes a potent neurotoxin (BoNT which associates with non-toxic proteins (ANTPs to form complexes of various sizes. The bont and antp genes are clustered in two operons. In C. botulinum type A, bont/A and antp genes are expressed during the end of the exponential growth phase and the beginning of the stationary phase under the control of an alternative sigma factor encoded by botR/A, which is located between the two operons. In the genome of C. botulinum type A strain Hall, 30 gene pairs predicted to encode two-component systems (TCSs and 9 orphan regulatory genes have been identified. Therefore, 34 Hall isogenic antisense strains on predicted regulatory genes (29 TCSs and 5 orphan regulatory genes have been obtained by a mRNA antisense procedure. Two TCS isogenic antisense strains showed more rapid growth kinetics and reduced BoNT/A production than the control strain, as well as increased bacterial lysis and impairment of the bacterial cell wall structure. Three other TCS isogenic antisense strains induced a low level of BoNT/A and ANTP production. Interestingly, reduced expression of bont/A and antp genes was shown to be independent of botR/A. These results indicate that BoNT/A synthesis is under the control of a complex network of regulation including directly at least three TCSs.

  16. Heat shock and prolonged heat stress attenuate neurotoxin and sporulation gene expression in group I Clostridium botulinum strain ATCC 3502.

    Science.gov (United States)

    Selby, Katja; Mascher, Gerald; Somervuo, Panu; Lindström, Miia; Korkeala, Hannu

    2017-01-01

    Foodborne pathogenic bacteria are exposed to a number of environmental stresses during food processing, storage, and preparation, and in the human body. In order to improve the safety of food, the understanding of molecular stress response mechanisms foodborne pathogens employ is essential. Many response mechanisms that are activated during heat shock may cross-protect bacteria against other environmental stresses. To better understand the molecular mechanisms Clostridium botulinum, the causative agent of botulism, utilizes during acute heat stress and during adaptation to stressfully high temperature, the C. botulinum Group I strain ATCC 3502 was grown in continuous culture at 39°C and exposed to heat shock at 45°C, followed by prolonged heat stress at 45°C to allow adaptation of the culture to the high temperature. Growth in continuous culture was performed to exclude secondary growth phase effects or other environmental impacts on bacterial gene transcription. Changes in global gene expression profiles were studied using DNA microarray hybridization. During acute heat stress, Class I and III heat shock genes as well as members of the SOS regulon were activated. The neurotoxin gene botA and genes encoding the neurotoxin-associated proteins were suppressed throughout the study. Prolonged heat stress led to suppression of the sporulation machinery whereas genes related to chemotaxis and motility were activated. Induced expression of a large proportion of prophage genes was detected, suggesting an important role of acquired genes in the stress resistance of C. botulinum. Finally, changes in the expression of a large number of genes related to carbohydrate and amino acid metabolism indicated remodeling of the cellular metabolism.

  17. Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature

    Science.gov (United States)

    2016-08-26

    Legeay, C. Bouchier, P. Bouvet, M.R. Popoff, An atypical outbreak of food-borne botulism due to Clostridium botulinum types B and E from ham , J Clin...07755 infant botulism/New York , 2004 AFD33678 B8 Maehongson foodborne botulism/Thailand, 2010 AFN61309 BoNT/C C1 Stockholm mink/Sweden BAA14235 CD...6813 soil/Maryland BAA08418 BoNT/D D 1873 ham /Chad, 1958 EES90380 DC VPI 5995 South Africa ABP48747 BoNT/E E1 Beluga whale/Alaska, 1952 CAA43999

  18. Complete nucleotide sequence of a plasmid containing the botulinum neurotoxin gene in Clostridium botulinum type B strain 111 isolated from an infant patient in Japan.

    Science.gov (United States)

    Hosomi, Koji; Sakaguchi, Yoshihiko; Kohda, Tomoko; Gotoh, Kazuyoshi; Motooka, Daisuke; Nakamura, Shota; Umeda, Kaoru; Iida, Tetsuya; Kozaki, Shunji; Mukamoto, Masafumi

    2014-12-01

    Botulinum neurotoxins (BoNTs) are highly potent toxins that are produced by Clostridium botulinum. We determined the complete nucleotide sequence of a plasmid containing the botulinum neurotoxin gene in C. botulinum type B strain 111 in order to obtain an insight into the toxigenicity and evolution of the bont gene in C. botulinum. Group I C. botulinum type B strain 111 was isolated from the first case of infant botulism in Japan in 1995. In previous studies, botulinum neurotoxin subtype B2 (BoNT/B2) produced by strain 111 exhibited different antigenic properties from those of authentic BoNT/B1 produced by strain Okra. We have recently shown that the isolates of strain 111 that lost toxigenicity were cured of the plasmid containing the bont/B2 gene. In the present study, the plasmid (named pCB111) was circular 265,575 bp double-stranded DNA and contained 332 predicted open reading frames (ORFs). 85 gene products of these ORFs could be functionally assigned on the basis of sequence homology to known proteins. The bont/B2 complex genes were located on pCB111 and some gene products may be involved in the conjugative plasmid transfer and horizontal transfer of bont genes. pCB111 was similar to previously identified plasmids containing bont/B1, /B5, or/A3 complex genes in other group I C. botulinum strains. It was suggested that these plasmids had been derived from a common ancestor and had played important roles for the bont gene transfer between C. botulinum.

  19. Thioredoxin and Its Reductase Are Present on Synaptic Vesicles, and Their Inhibition Prevents the Paralysis Induced by Botulinum Neurotoxins

    Directory of Open Access Journals (Sweden)

    Marco Pirazzini

    2014-09-01

    Full Text Available Botulinum neurotoxins consist of a metalloprotease linked via a conserved interchain disulfide bond to a heavy chain responsible for neurospecific binding and translocation of the enzymatic domain in the nerve terminal cytosol. The metalloprotease activity is enabled upon disulfide reduction and causes neuroparalysis by cleaving the SNARE proteins. Here, we show that the thioredoxin reductase-thioredoxin protein disulfide-reducing system is present on synaptic vesicles and that it is functional and responsible for the reduction of the interchain disulfide of botulinum neurotoxin serotypes A, C, and E. Specific inhibitors of thioredoxin reductase or thioredoxin prevent intoxication of cultured neurons in a dose-dependent manner and are also very effective inhibitors of the paralysis of the neuromuscular junction. We found that this group of inhibitors of botulinum neurotoxins is very effective in vivo. Most of them are nontoxic and are good candidates as preventive and therapeutic drugs for human botulism.

  20. An Investigation of Immunogenicity of Chitosan-Based Botulinum Neurotoxin E Binding Domain Recombinant Candidate Vaccine via Mucosal Route

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Bagheripour

    2017-01-01

    Full Text Available Background and Objectives: Botulism syndrome is caused by serotypes A-G of neurotoxins of Clostridium genus. Neurotoxin binding domain is an appropriate vaccine candidate due to its immunogenic activity. In this study, the immunogenicity of chitosan-based botulinum neurotoxin E binding domain recombinant candidate vaccine was investigated via mucosal route of administration. Methods: In this experimental study, chitosan nanoparticles containing rBoNT/E protein were synthesized by ionic gelation method and were administered orally and intranasally to mice. After each administration, IgG antibody titer was measured by ELISA method. Finally, all groups were challenged with active botulinum neurotoxin type E. Data were analyzed using Duncan and repeated ANOVA tests. The significance level was considered as p0.05, even intranasal route reduced the immunogenicity.

  1. PEG precipitation coupled with chromatography is a new and sufficient method for the purification of botulinum neurotoxin type B [corrected].

    Directory of Open Access Journals (Sweden)

    Yao Zhao

    Full Text Available Clostridium botulinum neurotoxins are used to treat a variety of neuro-muscular disorders, as well as in cosmetology. The increased demand requires efficient methods for the production and purification of these toxins. In this study, a new purification process was developed for purifying type B neurotoxin. The kinetics of C.botulinum strain growth and neurotoxin production were determined for maximum yield of toxin. The neurotoxin was purified by polyethylene glycol (PEG precipitation and chromatography. Based on design of full factorial experiment, 20% (w/v PEG-6000, 4 °C, pH 5.0 and 0.3 M NaCl were optimal conditions to obtain a high recovery rate of 87% for the type B neurotoxin complex, as indicated by a purification factor of 61.5 fold. Furthermore, residual bacterial cells, impurity proteins and some nucleic acids were removed by PEG precipitation. The following purification of neurotoxin was accomplished by two chromatography techniques using Sephacryl™ S-100 and phenyl HP columns. The neurotoxin was recovered with an overall yield of 21.5% and the purification factor increased to 216.7 fold. In addition, a mouse bioassay determined the purified neurotoxin complex possessed a specific toxicity (LD(50 of 4.095 ng/kg.

  2. Synergistic capture of Clostridium botulinum Type A neurotoxin by scFv antibodies to novel epitopes

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Sean A.; Barr, John R.; Kalb, Suzanne R.; Marks, James D.; Baird, Cheryl L.; Cangelosi, Gerard A.; Miller, Keith D.; Feldhaus, Michael J.

    2011-10-01

    A non-immune library of human single chain fragment variable (scFv) antibodies displayed on Saccharomyces cerevisiae was screened for binding to the Clostridium botulinum neurotoxin serotype A binding domain [BoNT/A (Hc)] with the goal of identifying scFv to novel epitopes. To do this, an antibody-mediated labeling strategy was used in which antigen-binding yeast clones were selected after labeling with previously characterized monoclonal antibodies (MAbs) specific to the Hc. Twenty unique scFv clones were isolated that bound Hc. Of these, three also bound to full-length BoNT/A toxin complex with affinities ranging from 5 nM to 170 nM. Epitope binning showed that the three unique clones recognized at least two epitopes that were distinct from one another and from the detection MAbs. After production in E. coli, the scFv were coupled to magnetic particles and tested for their ability to capture BoNT/A holotoxin using an Endopep-MS assay. In this assay, toxin captured by scFv coated magnetic particles was detected by incubation of the complex with a peptide containing a BoNT/A-specific cleavage sequence. Mass spectrometry was used to detect the ratio of intact peptide to cleavage products as evidence for toxin capture. When tested individually, each of the scFv showed a weak positive Endopep-MS result. However, when the particles were coated with all three scFv simultaneously, they exhibited significantly higher Endopep-MS activity, consistent with synergistic binding. These results demonstrate novel approaches toward the isolation and characterization of scFv antibodies specific to unlabeled antigen. They also provide evidence that distinct scFv antibodies can work synergistically to increase the efficiency of antigen capture onto a solid support.

  3. Minimal Essential Domains Specifying Toxicity of the Light Chains of Tetanus Toxin and Botulinum Neurotoxin Type A

    NARCIS (Netherlands)

    Kurazono, Hisao; Mochida, Sumiko; Binz, Thomas; Eisel, Ulrich; Quanz, Martin; Grebenstein, Oliver; Wernars, Karel; Poulain, Bernard; Tauc, Ladislav; Niemann, Heiner

    1992-01-01

    To define conserved domains within the light (L) chains of clostridial neurotoxins, we determined the sequence of botulinum neurotoxin type B (BoNT/B) and aligned it with those of tetanus toxin (TeTx) and BoNT/A, BoNT/Cl, BoNT/D, and BoNT/E. The L chains of BoNT/B and TeTx share 51.6% identical

  4. Architecture of the botulinum neurotoxin complex: a molecular machine for protection and delivery.

    Science.gov (United States)

    Lam, Kwok-Ho; Jin, Rongsheng

    2015-04-01

    Botulinum neurotoxins (BoNTs) are extremely poisonous protein toxins that cause the fatal paralytic disease botulism. They are naturally produced in bacteria with several nontoxic neurotoxin-associated proteins (NAPs) and together they form a progenitor toxin complex (PTC), the largest bacterial toxin complex known. In foodborne botulism, the PTC functions as a molecular machine that helps BoNT breach the host defense in the gut. Here, we discuss the substantial recent advance in elucidating the atomic structures and assembly of the 14-subunit PTC, including structures of BoNT and four NAPs. These structural studies shed light on the molecular mechanisms by which BoNT is protected against the acidic environment and proteolytic destruction in the gastrointestinal tract, and how it is delivered across the intestinal epithelial barrier. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Neutralisation of specific surface carboxylates speeds up translocation of botulinum neurotoxin type B enzymatic domain.

    Science.gov (United States)

    Pirazzini, Marco; Henke, Tina; Rossetto, Ornella; Mahrhold, Stefan; Krez, Nadja; Rummel, Andreas; Montecucco, Cesare; Binz, Thomas

    2013-11-29

    Botulinum neurotoxins translocate their enzymatic domain across vesicular membranes. The molecular triggers of this process are unknown. Here, we tested the possibility that this is elicited by protonation of conserved surface carboxylates. Glutamate-48, glutamate-653 and aspartate-877 were identified as possible candidates and changed into amide. This triple mutant showed increased neurotoxicity due to faster cytosolic delivery of the enzymatic domain; membrane translocation could take place at less acidic pH. Thus, neutralisation of specific negative surface charges facilitates membrane contact permitting a faster initiation of the toxin membrane insertion. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Isolation and functional characterization of the novel Clostridium botulinum neurotoxin A8 subtype.

    Directory of Open Access Journals (Sweden)

    Skadi Kull

    Full Text Available Botulism is a severe neurological disease caused by the complex family of botulinum neurotoxins (BoNT. Based on the different serotypes known today, a classification of serotype variants termed subtypes has been proposed according to sequence diversity and immunological properties. However, the relevance of BoNT subtypes is currently not well understood. Here we describe the isolation of a novel Clostridium botulinum strain from a food-borne botulism outbreak near Chemnitz, Germany. Comparison of its botulinum neurotoxin gene sequence with published sequences identified it to be a novel subtype within the BoNT/A serotype designated BoNT/A8. The neurotoxin gene is located within an ha-orfX+ cluster and showed highest homology to BoNT/A1, A2, A5, and A6. Unexpectedly, we found an arginine insertion located in the HC domain of the heavy chain, which is unique compared to all other BoNT/A subtypes known so far. Functional characterization revealed that the binding characteristics to its main neuronal protein receptor SV2C seemed unaffected, whereas binding to membrane-incorporated gangliosides was reduced in comparison to BoNT/A1. Moreover, we found significantly lower enzymatic activity of the natural, full-length neurotoxin and the recombinant light chain of BoNT/A8 compared to BoNT/A1 in different endopeptidase assays. Both reduced ganglioside binding and enzymatic activity may contribute to the considerably lower biological activity of BoNT/A8 as measured in a mouse phrenic nerve hemidiaphragm assay. Despite its reduced activity the novel BoNT/A8 subtype caused severe botulism in a 63-year-old male. To our knowledge, this is the first description and a comprehensive characterization of a novel BoNT/A subtype which combines genetic information on the neurotoxin gene cluster with an in-depth functional analysis using different technical approaches. Our results show that subtyping of BoNT is highly relevant and that understanding of the detailed

  7. Regulation of Botulinum Neurotoxin Synthesis and Toxin Complex Formation by Arginine and Glucose in Clostridium botulinum ATCC 3502.

    Science.gov (United States)

    Fredrick, Chase M; Lin, Guangyun; Johnson, Eric A

    2017-07-01

    Botulinum neurotoxin (BoNT), produced by neurotoxigenic clostridia, is the most potent biological toxin known and the causative agent of the paralytic disease botulism. The nutritional, environmental, and genetic regulation of BoNT synthesis, activation, stability, and toxin complex (TC) formation is not well studied. Previous studies indicated that growth and BoNT formation were affected by arginine and glucose in Clostridium botulinum types A and B. In the present study, C. botulinum ATCC 3502 was grown in toxin production medium (TPM) with different levels of arginine and glucose and of three products of arginine metabolism, citrulline, proline, and ornithine. Cultures were analyzed for growth (optical density at 600 nm [OD 600 ]), spore formation, and BoNT and TC formation by Western blotting and immunoprecipitation and for BoNT activity by mouse bioassay. A high level of arginine (20 g/liter) repressed BoNT production approximately 1,000-fold, enhanced growth, slowed lysis, and reduced endospore production by greater than 1,000-fold. Similar effects on toxin production were seen with equivalent levels of citrulline but not ornithine or proline. In TPM lacking glucose, levels of formation of BoNT/A1 and TC were significantly decreased, and extracellular BoNT and TC proteins were partially inactivated after the first day of culture. An understanding of the regulation of C. botulinum growth and BoNT and TC formation should be valuable in defining requirements for BoNT formation in foods and clinical samples, improving the quality of BoNT for pharmaceutical preparations, and elucidating the biological functions of BoNTs for the bacterium. IMPORTANCE Botulinum neurotoxin (BoNT) is a major food safety and bioterrorism concern and is also an important pharmaceutical, and yet the regulation of its synthesis, activation, and stability in culture media, foods, and clinical samples is not well understood. This paper provides insights into the effects of critical

  8. A three monoclonal antibody combination potently neutralizes multiple botulinum neurotoxin serotype F subtypes.

    Directory of Open Access Journals (Sweden)

    Yongfeng Fan

    Full Text Available Human botulism is primarily caused by botulinum neurotoxin (BoNT serotypes A, B and E, with around 1% caused by serotype F (BoNT/F. BoNT/F comprises at least seven different subtypes with the amino acid sequence difference between subtypes as high as 36%. The sequence differences present a significant challenge for generating monoclonal antibodies (mAbs that can bind, detect and neutralize all BoNT/F subtypes. We used repertoire cloning of immune mouse antibody variable (V regions and yeast display to generate a panel of 33 lead single chain Fv (scFv mAbs that bound one or more BoNT/F subtypes with a median equilibrium dissociation constant (KD of 4.06 × 10-9 M. By diversifying the V-regions of the lead mAbs and selecting for cross reactivity we generated five mAbs that bound each of the seven subtypes. Three scFv binding non-overlapping epitopes were converted to IgG that had KD for the different BoNT/F subtypes ranging from 2.2×10-8 M to 1.47×10-12 pM. An equimolar combination of the mAbs was able to potently neutralize BoNT/F1, F2, F4 and F7 in the mouse neutralization assay. The mAbs have potential utility as diagnostics capable of recognizing the known BoNT/F subtypes and could be developed as antitoxins to prevent and treat type F botulism.

  9. Botulinum Neurotoxins: Qualitative and Quantitative Analysis Using the Mouse Phrenic Nerve Hemidiaphragm Assay (MPN).

    Science.gov (United States)

    Bigalke, Hans; Rummel, Andreas

    2015-11-25

    The historical method for the detection of botulinum neurotoxin (BoNT) is represented by the mouse bioassay (MBA) measuring the animal survival rate. Since the endpoint of the MBA is the death of the mice due to paralysis of the respiratory muscle, an ex vivo animal replacement method, called mouse phrenic nerve (MPN) assay, employs the isolated N. phrenicus-hemidiaphragm tissue. Here, BoNT causes a dose-dependent characteristic decrease of the contraction amplitude of the indirectly stimulated muscle. Within the EQuATox BoNT proficiency 13 test samples were analysed using the MPN assay by serial dilution to a bath concentration resulting in a paralysis time within the range of calibration curves generated with BoNT/A, B and E standards, respectively. For serotype identification the diluted samples were pre-incubated with polyclonal anti-BoNT/A, B or E antitoxin or a combination of each. All 13 samples were qualitatively correctly identified thereby delivering superior results compared to single in vitro methods like LFA, ELISA and LC-MS/MS. Having characterized the BoNT serotype, the final bath concentrations were calculated using the calibration curves and then multiplied by the respective dilution factor to obtain the sample concentration. Depending on the source of the BoNT standards used, the quantitation of ten BoNT/A containing samples delivered a mean z-score of 7 and of three BoNT/B or BoNT/E containing samples z-scores <2, respectively.

  10. Botulinum Neurotoxins: Qualitative and Quantitative Analysis Using the Mouse Phrenic Nerve Hemidiaphragm Assay (MPN

    Directory of Open Access Journals (Sweden)

    Hans Bigalke

    2015-11-01

    Full Text Available The historical method for the detection of botulinum neurotoxin (BoNT is represented by the mouse bioassay (MBA measuring the animal survival rate. Since the endpoint of the MBA is the death of the mice due to paralysis of the respiratory muscle, an ex vivo animal replacement method, called mouse phrenic nerve (MPN assay, employs the isolated N. phrenicus-hemidiaphragm tissue. Here, BoNT causes a dose-dependent characteristic decrease of the contraction amplitude of the indirectly stimulated muscle. Within the EQuATox BoNT proficiency 13 test samples were analysed using the MPN assay by serial dilution to a bath concentration resulting in a paralysis time within the range of calibration curves generated with BoNT/A, B and E standards, respectively. For serotype identification the diluted samples were pre-incubated with polyclonal anti-BoNT/A, B or E antitoxin or a combination of each. All 13 samples were qualitatively correctly identified thereby delivering superior results compared to single in vitro methods like LFA, ELISA and LC-MS/MS. Having characterized the BoNT serotype, the final bath concentrations were calculated using the calibration curves and then multiplied by the respective dilution factor to obtain the sample concentration. Depending on the source of the BoNT standards used, the quantitation of ten BoNT/A containing samples delivered a mean z-score of 7 and of three BoNT/B or BoNT/E containing samples z-scores <2, respectively.

  11. Neurotoxin synthesis is positively regulated by the sporulation transcription factor Spo0A in Clostridium botulinum type E.

    Science.gov (United States)

    Mascher, Gerald; Mertaoja, Anna; Korkeala, Hannu; Lindström, Miia

    2017-10-01

    Clostridium botulinum produces the most potent natural toxin, the botulinum neurotoxin (BoNT), probably to create anaerobiosis and nutrients by killing the host, and forms endospores that facilitate survival in harsh conditions and transmission. Peak BoNT production coincides with initiation of sporulation in C. botulinum cultures, which suggests common regulation. Here, we show that Spo0A, the master regulator of sporulation, positively regulates BoNT production. Insertional inactivation of spo0A in C. botulinum type E strain Beluga resulted in significantly reduced BoNT production and in abolished or highly reduced sporulation in relation to wild-type controls. Complementation with spo0A restored BoNT production and sporulation. Recombinant DNA-binding domain of Spo0A directly bound to a putative Spo0A-binding box (CTTCGAA) within the BoNT/E operon promoter, demonstrating direct regulation. Spo0A is the first neurotoxin regulator reported in C. botulinum type E. Unlike other C. botulinum strains that are terrestrial and employ the alternative sigma factor BotR in directing BoNT expression, C. botulinum type E strains are adapted to aquatic ecosystems, possess distinct epidemiology and lack BotR. Our results provide fundamental new knowledge on the genetic control of BoNT production and demonstrate common regulation of BoNT production and sporulation, providing a key intervention point for control. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Domain Organization in Clostridium botulinum Neurotoxin Type E is Unique: Its Implication in Faster Translocation

    Energy Technology Data Exchange (ETDEWEB)

    Kumaran, D.; Eswaramoorthy, S; Furey, W; Navaza, J; Sax, M; Swaminathan, S

    2009-01-01

    Clostridium botulinum produces seven antigenically distinct neurotoxins [C. botulinum neurotoxins (BoNTs) A-G] sharing a significant sequence homology. Based on sequence and functional similarity, it was believed that their three-dimensional structures will also be similar. Indeed, the crystal structures of BoNTs A and B exhibit similar fold and domain association where the translocation domain is flanked on either side by binding and catalytic domains. Here, we report the crystal structure of BoNT E holotoxin and show that the domain association is different and unique, although the individual domains are similar to those of BoNTs A and B. In BoNT E, both the binding domain and the catalytic domain are on the same side of the translocation domain, and all three have mutual interfaces. This unique association may have an effect on the rate of translocation, with the molecule strategically positioned in the vesicle for quick entry into cytosol. Botulism, the disease caused by BoNT E, sets in faster than any other serotype because of its speedy internalization and translocation, and the present structure offers a credible explanation. We propose that the translocation domain in other BoNTs follows a two-step process to attain translocation-competent conformation as in BoNT E. We also suggest that this translocation-competent conformation in BoNT E is a probable reason for its faster toxic rate compared to BoNT A. However, this needs further experimental elucidation.

  13. A Potent Peptidomimetic Inhibitor of Botulinum Neurotoxin Serotype A has a Very Different Conformation than SNAP-25 Substrate

    National Research Council Canada - National Science Library

    Zuniga, Jorge E; Schmidt, James J; Fenn, Timothy; Burnett, James C; Arac, Demet; Gussio, Rick; Stafford, Robert G; Badie, Shirin S; Bavari, Sina; Brunger, Axel T

    2008-01-01

    Botulinum neurotoxin serotype A is the most lethal of all known toxins. Here, we report the crystal structure, along with SAR data, of the zinc metalloprotease domain of BoNT/A bound to a potent peptidomimetic inhibitor (K(i)=41 nM...

  14. Botulinum neurotoxin treatment in children with cerebral palsy: validation of a needle placement protocol using passive muscle stretching and relaxing

    NARCIS (Netherlands)

    Warnink-Kavelaars, Jessica; Vermeulen, R. Jeroen; Buizer, Annemieke I.; Becher, Jules G.

    2016-01-01

    AimTo validate a detailed intramuscular needle placement protocol using passive muscle stretching and relaxing for botulinum neurotoxin type A (BoNT-A) treatment in the lower extremity of children with spastic cerebral palsy (CP), with verification by electrical stimulation. MethodA prospective

  15. Role of neurotoxin associated proteins in the low pH induced structural changes in the botulinum neurotoxin complex.

    Science.gov (United States)

    Chellappan, Gowri; Kumar, Raj; Cai, Shuowei; Singh, Bal Ram

    2014-12-01

    Botulinum Neurotoxin (BoNT) produced by the bacterium Clostridium botulinum as a complex with NAPs causes botulism. It has been known that the NAPs protect the toxin from both extremes of pHs and proteases of the GI tract. In an attempt to emulate the physiological conditions encountered by the toxin, we examined BoNT/A, BoNT/A complex, and NAPs under different pH conditions and monitored their structural characteristics by far-UV CD and thermal denaturation analysis. BoNT/A complex showed the maximum CD signal with a mean residue weight ellipticity of -1.8 × 10(5)° cm(2)/dmol at 222 nm at both acidic and neutral pHs. Thermal denaturation analysis revealed NAPs to be the most stable amongst the three protein samples examined. Interestingly and quite uniquely, at pH 2.5, there was an increase in CD signal for BoNT complex as a function of temperature, which correlated with the NAPs profile, indicating a shielding effect of NAPs on BoNT complex at low pH. Calculation of the weighted mean of the ellipticities at the Tm for thermal unfolding of toxin and NAPs at neutral and acidic pHs showed variation with that of BoNT complex, suggesting structural reorganization in BoNT complex upon the association of NAPs and BoNT. In conclusion, this study reveals the structural behavior of BoNT complex and NAPs with pH changes substantially, which could be quite relevant for BoNT survival under extreme pH conditions in vivo.

  16. Evolution of Chromosomal Clostridium botulinum Type E Neurotoxin Gene Clusters: Evidence Provided by Their Rare Plasmid-Borne Counterparts.

    Science.gov (United States)

    Carter, Andrew T; Austin, John W; Weedmark, Kelly A; Peck, Michael W

    2016-03-02

    Analysis of more than 150 Clostridium botulinum Group II type E genomes identified a small fraction (6%) where neurotoxin-encoding genes were located on plasmids. Seven closely related (134-144 kb) neurotoxigenic plasmids of subtypes E1, E3, and E10 were characterized; all carried genes associated with plasmid mobility via conjugation. Each plasmid contained the same 24-kb neurotoxin cluster cassette (six neurotoxin cluster and six flanking genes) that had split a helicase gene, rather than the more common chromosomal rarA. The neurotoxin cluster cassettes had evolved as separate genetic units which had either exited their chromosomal rarA locus in a series of parallel events, inserting into the plasmid-borne helicase gene, or vice versa. A single intact version of the helicase gene was discovered on a nonneurotoxigenic form of this plasmid. The observed low frequency for the plasmid location may reflect one or more of the following: 1) Less efficient recombination mechanism for the helicase gene target, 2) lack of suitable target plasmids, and 3) loss of neurotoxigenic plasmids. Type E1 and E10 plasmids possessed a Clustered Regularly Interspaced Short Palindromic Repeats locus with spacers that recognized C. botulinum Group II plasmids, but not C. botulinum Group I plasmids, demonstrating their long-term separation. Clostridium botulinum Group II type E strains also carry nonneurotoxigenic plasmids closely related to C. botulinum Group II types B and F plasmids. Here, the absence of neurotoxin cassettes may be because recombination requires both a specific mechanism and specific target sequence, which are rarely found together. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Exploitation of Botulinum Neurotoxins for Research and Clinical Purposes

    Science.gov (United States)

    1993-06-01

    to the bath-application of Ren-A-H (100 nM) and LC (100 aM ) (Fig. 5C). As no decrease in neurotransmitter release was detected, it appears that the LC...these toxins on the release of a fast trasmitter in the presence of Ba2 + points to a divalent cation-dependent event being involved to some extent in...prxed.sencione 00nod exocesse fof unlab esclied inNthe Magnidscation 2A6()] xn 6(A0) inse (B) g 50ain 0 (small ) aro has 7 r3000. epas am mrn p ) n nacse

  18. Botulinum neurotoxin type-A when utilized in animals with trigeminal sensitization induced a antinociceptive effect

    Directory of Open Access Journals (Sweden)

    Elcio J Piovesan

    2016-06-01

    Full Text Available ABSTRACT Purpose of the study was evaluate the possible antinociceptive effect of botulinum neurotoxin type-A (BoNT/A in an experimental model of trigeminal neuralgia. Method Neuropathic pain was induced by surgical constriction of the infraorbital nerve in rats. A control group underwent a sham procedure consisting of surgical exposure of the nerve. Subgroups of each group received either BoNT/A or isotonic saline solution. The clinical response was assessed with the -20°C test. Animals that underwent nerve constriction developed sensitization; the sham group did not. Results The sensitization was reversed by BoNT/A treatment evident 24 hours following application. Pronociceptive effect was observed in the sham group following BoNT/A. Conclusion BoNT/A has an antinociceptive effect in sensitized animals and a pronociceptive effect in non-sensitized animals.

  19. Substrate-based inhibitors exhibiting excellent protective and therapeutic effects against Botulinum Neurotoxin A intoxication.

    Science.gov (United States)

    Guo, Jiubiao; Wang, Jinglin; Gao, Shan; Ji, Bin; Waichi Chan, Edward; Chen, Sheng

    2015-11-20

    Potent inhibitors to reverse Botulinum neurotoxins (BoNTs) activity in neuronal cells are currently not available. A better understanding of the substrate recognition mechanism of BoNTs enabled us to design a novel class of peptide inhibitors which were derivatives of the BoNT/A substrate, SNAP25. Through a combination of in vitro, cellular based, and in vivo mouse assays, several potent inhibitors of approximately one nanomolar inhibitory strength both in vitro and in vivo have been identified. These compounds represent the first set of inhibitors that exhibited full protection against BoNT/A intoxication in mice model with undetectable toxicity. Our findings validated the hypothesis that a peptide inhibitor targeting the two BoNT structural regions which were responsible for substrate recognition and cleavage respectively could exhibit excellent inhibitory effect, thereby providing insight on future development of more potent inhibitors against BoNTs.

  20. Diverse binding modes, same goal: The receptor recognition mechanism of botulinum neurotoxin.

    Science.gov (United States)

    Lam, Kwok-Ho; Yao, Guorui; Jin, Rongsheng

    2015-03-01

    Botulinum neurotoxins (BoNTs) are among the most deadly toxins known. They act rapidly in a highly specific manner to block neurotransmitter release by cleaving the soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) complex at neuromuscular junctions. The extreme toxicity of BoNTs relies predominantly on their neurotropism that is accomplished by recognition of two host receptors, a polysialo-ganglioside and in the majority of cases a synaptic vesicle protein, through their receptor-binding domains. Two proteins, synaptotagmin and synaptic vesicle glycoprotein 2, have been identified as the receptors for various serotypes of BoNTs. Here, we review recent breakthroughs in the structural studies of BoNT-protein receptor recognitions that highlight a range of diverse mechanisms by which BoNTs manipulate host neuronal proteins for highly specific uptake at neuromuscular junctions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Identification of the synaptic vesicle glycoprotein 2 receptor binding site in botulinum neurotoxin A.

    Science.gov (United States)

    Strotmeier, Jasmin; Mahrhold, Stefan; Krez, Nadja; Janzen, Constantin; Lou, Jianlong; Marks, James D; Binz, Thomas; Rummel, Andreas

    2014-04-02

    Botulinum neurotoxins (BoNTs) inhibit neurotransmitter release by hydrolysing SNARE proteins. The most important serotype BoNT/A employs the synaptic vesicle glycoprotein 2 (SV2) isoforms A-C as neuronal receptors. Here, we identified their binding site by blocking SV2 interaction using monoclonal antibodies with characterised epitopes within the cell binding domain (HC). The site is located on the backside of the conserved ganglioside binding pocket at the interface of the HCC and HCN subdomains. The dimension of the binding pocket was characterised in detail by site directed mutagenesis allowing the development of potent inhibitors as well as modifying receptor binding properties. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Identification of a Unique Ganglioside Binding Loop within Botulinum Neurotoxins C and D-SA

    Energy Technology Data Exchange (ETDEWEB)

    Karalewitz, Andrew P.-A.; Kroken, Abby R.; Fu, Zhuji; Baldwin, Michael R.; Kim, Jung-Ja P.; Barbieri, Joseph T. (MCW); (Missouri)

    2010-09-22

    The botulinum neurotoxins (BoNTs) are the most potent protein toxins for humans. There are seven serotypes of BoNTs (A-G) based on a lack of cross antiserum neutralization. BoNTs utilize gangliosides as components of the host receptors for binding and entry into neurons. Members of BoNT/C and BoNT/D serotypes include mosaic toxins that are organized in D/C and C/D toxins. One D/C mosaic toxin, BoNT/D-South Africa (BoNT/D-SA), was not fully neutralized by immunization with BoNT serotype C or D, which stimulated this study. Here the crystal structures of the receptor binding domains of BoNT/C, BoNT/D, and BoNT/D-SA are presented. Biochemical and cell binding studies show that BoNT/C and BoNT/D-SA possess unique mechanisms for ganglioside binding. These studies provide new information about how the BoNTs can enter host cells as well as a basis for understanding the immunological diversity of these neurotoxins.

  3. A closer look to botulinum neurotoxin type A-induced analgesia.

    Science.gov (United States)

    Guo, Bao-Lin; Zheng, Chen-Xi; Sui, Bing-Dong; Li, Yun-Qing; Wang, Ya-Yun; Yang, Yan-Ling

    2013-09-01

    Chronic pain indicates a type of pain that lasts over time and is accompanied by diagnostic and therapeutic difficulties. It follows that treatment failures are common and patients roam from doctor to doctor in search of an effective care program. So there is an urgent need for long-acting and effective therapeutics to alleviate symptoms of the varied forms of chronic pain. During the past few years, a good success has been achieved with a derivative of a neurotoxin. It has been shown that administration of this toxin can block the release of neurotransmitters and pain mediators. Botulinum neurotoxin type A (BoNT/A) is well known as a treatment for neuromuscular conditions such as dystonia and spasticity. However, the clinical application for BoNT/A has continued to expand. Its analgesic effect has been used in clinical practice with satisfactory results. This review provides an introduction of a hypothesis for the mechanism by which BoNT/A eases chronic pain. It also summarizes the clinical therapeutic effects of BoNT/A in different types of chronic pain and its potential prospects. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Computer-aided identification, synthesis, and biological evaluation of novel inhibitors for botulinum neurotoxin serotype A.

    Science.gov (United States)

    Teng, Yu-Han Gary; Berger, William T; Nesbitt, Natasha M; Kumar, Kunal; Balius, Trent E; Rizzo, Robert C; Tonge, Peter J; Ojima, Iwao; Swaminathan, Subramanyam

    2015-09-01

    Botulinum neurotoxins (BoNTs) are among the most potent biological toxin known to humans, and are classified as Category A bioterrorism agents by the Centers for Disease Control and prevention (CDC). There are seven known BoNT serotypes (A-G) which have been thus far identified in literature. BoNTs have been shown to block neurotransmitter release by cleaving proteins of the soluble NSF attachment protein receptor (SNARE) complex. Disruption of the SNARE complex precludes motor neuron failure which ultimately results in flaccid paralysis in humans and animals. Currently, there are no effective therapeutic treatments against the neurotoxin light chain (LC) after translocation into the cytosols of motor neurons. In this work, high-throughput in silico screening was employed to screen a library of commercially available compounds from ZINC database against BoNT/A-LC. Among the hit compounds from the in silico screening, two lead compounds were identified and found to have potent inhibitory activity against BoNT/A-LC in vitro, as well as in Neuro-2a cells. A few analogs of the lead compounds were synthesized and their potency examined. One of these analogs showed an enhanced activity than the lead compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Botulinum Neurotoxins

    Science.gov (United States)

    2012-03-28

    on Vozrozhdeniye ( Renaissance ) Island in the Aral Sea. The Soviets were also believed to have attempted to use recombinant DNA technology to...inflammatory intestinal disease or surgery (Chia et al., 1986). In addition to the four naturally occurring forms of the disease described

  6. Different substrate recognition requirements for cleavage of synaptobrevin-2 by Clostridium baratii and Clostridium botulinum type F neurotoxins.

    Science.gov (United States)

    Kalb, Suzanne R; Baudys, Jakub; Egan, Christina; Smith, Theresa J; Smith, Leonard A; Pirkle, James L; Barr, John R

    2011-02-01

    Botulinum neurotoxins (BoNTs) cause botulism, which can be fatal if it is untreated. BoNTs cleave proteins necessary for nerve transmission, resulting in paralysis. The in vivo protein target has been reported for all seven serotypes of BoNT, i.e., serotypes A to G. Knowledge of the cleavage sites has led to the development of several assays to detect BoNT based on its ability to cleave a peptide substrate derived from its in vivo protein target. Most serotypes of BoNT can be subdivided into subtypes, and previously, we demonstrated that three of the currently known subtypes of BoNT/F cleave a peptide substrate, a shortened version of synaptobrevin-2, between Q58 and K59. However, our research indicated that Clostridium baratii type F toxin did not cleave this peptide. In this study, we detail experiments demonstrating that Clostridium baratii type F toxin cleaves recombinant synaptobrevin-2 in the same location as that cleaved by proteolytic F toxin. In addition, we demonstrate that Clostridium baratii type F toxin can cleave a peptide substrate based on the sequence of synaptobrevin-2. This peptide substrate is an N-terminal extension of the original peptide substrate used for detection of other BoNT/F toxins and can be used to detect four of the currently known BoNT/F subtypes by mass spectrometry.

  7. Type A botulinum neurotoxin complex proteins differentially modulate host response of neuronal cells.

    Science.gov (United States)

    Wang, Lei; Sun, Yi; Yang, Weiping; Lindo, Paul; Singh, Bal Ram

    2014-05-01

    Type A Botulinum neurotoxin (BoNT/A), the most potent poison known to mankind, is produced by Clostridium botulinum type A as a complex with neurotoxin-associated proteins (NAPs). Currently BoNT/A in purified and complex forms are both available in therapeutic and cosmetic applications to treat neuromuscular disorders. Whereas Xeomin(®) (incobotulinumtoxin A, Merz Pharmaceuticals, Germany) is free from complexing proteins, Botox(®) (onabotulinumtoxin A, Allergan, USA) contains NAPs, which by themselves have no known role in the intracellular biochemical process involved in the blockade of neurotransmitter release. Since the fate and possible interactions of NAPs with patient tissues after intramuscular injection are not known, it was the aim of this study to evaluate the binding of BoNT/A and/or the respective NAPs to cells derived from neuronal and non-neuronal human tissues, and to further explore neuronal cell responses to different components of BoNT/A. BoNT/A alone, the complete BoNT/A complex, and the NAPs alone, all bind to neuronal SH-SY5Y cells. The BoNT/A complex and NAPs additionally bind to RMS13 skeletal muscle cells, TIB-152 lymphoblasts, Detroit 551 fibroblasts besides the SH-SY5Y cells. However, no binding to these non-neuronal cells was observed with pure BoNT/A. Although BoNT/A, both in its purified and complex forms, bind to SH-SY5Y, the intracellular responses of the SH-SY5Y cells to these BoNT/A components are not clearly understood. Examination of inflammatory cytokine released from SH-SY5Y cells revealed that BoNT/A did not increase the release of inflammatory cytokines, whereas exposure to NAPs significantly increased release of IL-6, and MCP-1, and exposure to BoNT/A complex significantly increased release of IL-6, MCP-1, IL-8, TNF-α, and RANTES vs. control, suggesting that different components of BoNT/A complex induce significantly differential host response in human neuronal cells. Results suggest that host response to different

  8. Multiplex real-time PCR SYBR Green for detection and typing of group III Clostridium botulinum.

    Science.gov (United States)

    Anniballi, Fabrizio; Auricchio, Bruna; Delibato, Elisabetta; Antonacci, Monia; De Medici, Dario; Fenicia, Lucia

    2012-01-27

    Clostridium botulinum type C and type D belonging to the group III organisms, are mainly responsible for animal botulism outbreaks. Clinical signs alone are often insufficient to make a diagnosis of botulism and a laboratory confirmation is required. Laboratory confirmation can be performed by demonstrating the presence of botulinum neurotoxins in serum, gastrointestinal contents, liver, wound of sick or dead animals, or by demonstrating the presence of C. botulinum in gastrointestinal contents, liver, and wound. Demonstration of spores in gastrointestinal contents or tissue of animals with clinical signs indicative of botulism reinforces the clinical diagnosis. With the aim of detecting and typing C. botulinum group III organisms, a multiplex real-time PCR SYBR Green was developed and in-house validated. Selectivity, limit of detection, relative accuracy, relative specificity, relative sensitivity, and repeatability of the method were investigated. The multiplex real-time PCR SYBR green used showed a 100% selectivity, 100% relative accuracy, 100% relative specificity, 100% relative sensitivity and a limit of detection of 277 and 580 DNA copies for C. botulinum type C and C. botulinum type D, respectively. The method reported here represents a suitable tool for laboratory diagnosis of type C and D botulism and for testing a large number of samples collected during the animal botulism surveillance and prevention activities. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Neurotoxins from Clostridium botulinum (serotype A) isolated from the soil of Mendoza (Argentina) differ from the A-Hall archetype and from that causing infant botulism.

    Science.gov (United States)

    Caballero, P; Troncoso, M; Patterson, S I; López Gómez, C; Fernandez, R; Sosa, M A

    2016-10-01

    The type A of neurotoxin produced by Clostridium botulinum is the prevalent serotype in strains of Mendoza. The soil is the main reservoir for C.botulinum and is possibly one of the infection sources in infant botulism. In this study, we characterized and compared autochthonous C. botulinum strains and their neurotoxins. Bacterial samples were obtained from the soil and from fecal samples collected from children with infant botulism. We first observed differences in the appearance of the colonies between strains from each source and with the A Hall control strain. In addition, purified neurotoxins of both strains were found to be enriched in a band of 300 kDa, whereas the A-Hall strain was mainly made up of a band of ∼600 kDa. This finding is in line with the lack of hemagglutinating activity of the neurotoxins under study. Moreover, the proteolytic activity of C. botulinum neurotoxins was evaluated against SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptor) proteins from rat brain. It was observed that both, SNAP 25 (synaptosomal-associated protein 25) and VAMP 2 (vesicle-associated membrane protein) were cleaved by the neurotoxins isolated from the soil strains, whereas the neurotoxins from infant botulism strains only induced a partial cleavage of VAMP 2. On the other hand, the neurotoxin from the A-Hall strain was able to cleave both proteins, though at a lesser extent. Our data indicate that the C.botulinum strain isolated from the soil, and its BoNT, exhibit different properties compared to the strain obtained from infant botulism patients, and from the A-Hall archetype. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Detection of Clostridium botulinum in natural sweetening.

    Science.gov (United States)

    Nakano, H; Yoshikuni, Y; Hashimoto, H; Sakaguchi, G

    1992-06-01

    Various sugar products were examined for contamination with C. botulinum spores. Type A, B and C spores were detected in three of 56 samples of sugar for apiculture, which may attest the significance of bee-feed as a source of contamination of honey. The heavy contamination of honey with C. botulinum spores sometimes encountered, however, can not be explained unless some other factors, e.g., that allowing germination and multiplication of the spores somewhere during honey production, are found. Type A spores were detected in some samples of raw sugar and molasses and also in two of 41 samples of brown sugar lump, but not in refined sugar or other various samples taken at a sugar factory or in sugar cane left on the field in Okinawa. The fact that some natural sweetenings are contaminated with C. botulinum spores, even in low concentrations, may be food-hygienically important.

  11. Engineering Botulinum Neurotoxin C1 as a Molecular Vehicle for Intra-Neuronal Drug Delivery.

    Science.gov (United States)

    Vazquez-Cintron, Edwin J; Beske, Phillip H; Tenezaca, Luis; Tran, Bao Q; Oyler, Jonathan M; Glotfelty, Elliot J; Angeles, Christopher A; Syngkon, Aurelia; Mukherjee, Jean; Kalb, Suzanne R; Band, Philip A; McNutt, Patrick M; Shoemaker, Charles B; Ichtchenko, Konstantin

    2017-02-21

    Botulinum neurotoxin (BoNT) binds to and internalizes its light chain into presynaptic compartments with exquisite specificity. While the native toxin is extremely lethal, bioengineering of BoNT has the potential to eliminate toxicity without disrupting neuron-specific targeting, thereby creating a molecular vehicle capable of delivering therapeutic cargo into the neuronal cytosol. Building upon previous work, we have developed an atoxic derivative (ad) of BoNT/C1 through rationally designed amino acid substitutions in the metalloprotease domain of wild type (wt) BoNT/C1. To test if BoNT/C1 ad retains neuron-specific targeting without concomitant toxic host responses, we evaluated the localization, activity, and toxicity of BoNT/C1 ad in vitro and in vivo. In neuronal cultures, BoNT/C1 ad light chain is rapidly internalized into presynaptic compartments, but does not cleave SNARE proteins nor impair spontaneous neurotransmitter release. In mice, systemic administration resulted in the specific co-localization of BoNT/C1 ad with diaphragmatic motor nerve terminals. The mouse LD 50 of BoNT/C1 ad is 5 mg/kg, with transient neurological symptoms emerging at sub-lethal doses. Given the low toxicity and highly specific neuron-targeting properties of BoNT/C1 ad, these data suggest that BoNT/C1 ad can be useful as a molecular vehicle for drug delivery to the neuronal cytoplasm.

  12. Botulinum neurotoxin type A for the treatment of pain: not just in migraine and trigeminal neuralgia.

    Science.gov (United States)

    Sandrini, Giorgio; De Icco, Roberto; Tassorelli, Cristina; Smania, Nicola; Tamburin, Stefano

    2017-12-01

    Despite their huge epidemiological impact, primary headaches, trigeminal neuralgia and other chronic pain conditions still receive suboptimal medical approach, even in developed countries. The limited efficacy of current pain-killers and prophylactic treatments stands among the main reasons for this phenomenon. Botulinum neurotoxin (BoNT) represents a well-established and licensed treatment for chronic migraine, but also an emerging treatment for other types of primary headache, trigeminal neuralgia, neuropathic pain, and an increasing number of pain conditions. We searched and critically reviewed evidence for the efficacy of BoNT for the treatment of chronic pain. Meta-analyses and randomized controlled trials (RCTs) suggest that BoNT potentially represents a multi-purpose drug for the treatment of pain in several disorders due to a favorable safety profile and a long-lasting relief after a single injection. BoNT is an emerging treatment in different pain conditions. Future RCTs should explore the use of BoNT injection therapy combined with systemic drugs and/or physical therapies as new pain treatment strategies.

  13. Basis Tetrapeptides as Potent Intracellular Inhibitors of type A Botulinum Neurotoxin Protease Activity

    Energy Technology Data Exchange (ETDEWEB)

    Hale, M.; Swaminathan, S.; Oyler, G.; Ahmed, S. A.

    2011-01-21

    Botulinum neurotoxins (BoNT) are the most potent of all toxins that cause flaccid muscle paralysis leading to death. They are also potential biothreat agents. A systematic investigation of various short peptide inhibitors of the BoNT protease domain with a 17-residue peptide substrate led to arginine-arginine-glycine-cysteine having a basic tetrapeptide structure as the most potent inhibitor. When assayed in the presence of dithiothreitol (DTT), the inhibitory effect was drastically reduced. Replacing the terminal cysteine with one hydrophobic residue eliminated the DTT effect but with two hydrophobic residues made the pentapeptide a poor inhibitor. Replacing the first arginine with cysteine or adding an additional cysteine at the N terminus did not improve inhibition. When assessed using mouse brain lysates, the tetrapeptides also inhibited BoNT/A cleavage of the endogenous SNAP-25. The peptides penetrated the neuronal cell lines, N2A and BE(2)-M17, without adversely affecting metabolic functions as measured by ATP production and P-38 phosphorylation. Biological activity of the peptides persisted within cultured chick motor neurons and rat and mouse cerebellar neurons for more than 40 h and inhibited BoNT/A protease action inside the neurons in a dose- and time-dependent fashion. Our results define a tetrapeptide as the smallest peptide inhibitor in the backdrop of a large substrate protein of 200+ amino acids having multiple interaction regions with its cognate enzyme. The inhibitors should also be valuable candidates for drug development.

  14. Mode of VAMP Substrate Recognition and Inhibition of Clostridium botulinum Neurotoxin F

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, R.; Schmidt, J; Stafford, R; Swaminathan, S

    2009-01-01

    Clostridium botulinum neurotoxins (BoNTs) cleave neuronal proteins responsible for neurotransmitter release, causing the neuroparalytic disease botulism. BoNT serotypes B, D, F and G cleave and inactivate vesicle-associated membrane protein (VAMP), each at a unique peptide bond. The specificity of BoNTs depends on the mode of substrate recognition. We have investigated the mechanism of substrate recognition of BoNT F by determining the crystal structures of its complex with two substrate-based inhibitors, VAMP 22-58/Gln58D-cysteine and 27-58/Gln58D-cysteine. The inhibitors bind to BoNT F in the canonical direction (as seen for BoNTs A and E substrates) but are positioned specifically via three major exosites away from the active site. The cysteine sulfur of the inhibitors interacts with the zinc and exists as sulfinic acid in the inhibitor VAMP 27-58/Gln58D-cysteine. Arg133 and Arg171, which form part of two separate exosites, are crucial for substrate binding and catalysis.

  15. Neutralization of botulinum neurotoxin by a human monoclonal antibody specific for the catalytic light chain.

    Directory of Open Access Journals (Sweden)

    Sharad P Adekar

    2008-08-01

    Full Text Available Botulinum neurotoxins (BoNT are a family of category A select bioterror agents and the most potent biological toxins known. Cloned antibody therapeutics hold considerable promise as BoNT therapeutics, but the therapeutic utility of antibodies that bind the BoNT light chain domain (LC, a metalloprotease that functions in the cytosol of cholinergic neurons, has not been thoroughly explored.We used an optimized hybridoma method to clone a fully human antibody specific for the LC of serotype A BoNT (BoNT/A. The 4LCA antibody demonstrated potent in vivo neutralization when administered alone and collaborated with an antibody specific for the HC. In Neuro-2a neuroblastoma cells, the 4LCA antibody prevented the cleavage of the BoNT/A proteolytic target, SNAP-25. Unlike an antibody specific for the HC, the 4LCA antibody did not block entry of BoNT/A into cultured cells. Instead, it was taken up into synaptic vesicles along with BoNT/A. The 4LCA antibody also directly inhibited BoNT/A catalytic activity in vitro.An antibody specific for the BoNT/A LC can potently inhibit BoNT/A in vivo and in vitro, using mechanisms not previously associated with BoNT-neutralizing antibodies. Antibodies specific for BoNT LC may be valuable components of an antibody antidote for BoNT exposure.

  16. The destructive effect of botulinum neurotoxins on the SNARE protein: SNAP-25 and synaptic membrane fusion

    Directory of Open Access Journals (Sweden)

    Bin Lu

    2015-06-01

    Full Text Available Synaptic exocytosis requires the assembly of syntaxin 1A and SNAP-25 on the plasma membrane and synaptobrevin 2 (VAMP2 on the vesicular membrane to bridge the two opposite membranes. It is believed that the three SNARE proteins assemble in steps along the dynamic assembly pathway. The C-terminus of SNAP-25 is known to be the target of botulinum neurotoxins (BoNT/A and BoNT/E that block neurotransmitters release in vivo. In this study, we employed electron paramagnetic resonance (EPR spectroscopy to investigate the conformation of the SNAP-25 C-terminus in binary and ternary SNARE complexes. The fluorescence lipid mixing assay shows that the C-terminal of SNAP-25 is essential for membrane fusion, and that the truncated SNAP-25 mutants cleaved by BoNT/A and BoNT/E display different inhibition effects on membrane fusion: SNAP-25E (Δ26 abolishes the fusion activity of the SNARE complex, while SNAP-25A (Δ9 loses most of its function, although it can still form a SDS-resistant SNARE complex as the wild-type SNAP-25. CW-EPR spectra validate the unstable structures of the SNARE complex formed by SNAP-25 mutants. We propose that the truncated SNAP-25 mutants will disrupt the assembly of the SNARE core complex, and then inhibit the synaptic membrane fusion accordingly.

  17. The Receptor Binding Domain of Botulinum Neurotoxin Stereotype C Binds Phosphoinositides

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanfeng; Varnum, Susan M.

    2012-03-01

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known for humans and animals with an extremely low LD50 of {approx} 1 ng/kg. BoNTs generally require a protein and a ganglioside on the cell membrane surface for binding, which is known as a 'dual receptor' mechanism for host intoxication. Recent studies have suggested that in addition to gangliosides, other membrane lipids such as phosphoinositides may be involved in the interactions with the receptor binding domain (HCR) of BoNTs for better membrane penetration. Here, using two independent lipid-binding assays, we tested the interactions of BoNT/C-HCR with lipids in vitro. BoNT/C-HCR was found to bind negatively charged phospholipids, preferentially phosphoinositides. Additional interactions to phosphoinositides may help BoNT/C bind membrane more tightly and transduct signals for subsequent steps of intoxication. Our results provide new insights into the mechanisms of host cell membrane recognition by BoNTs.

  18. Clinical Uses of Botulinum Neurotoxins: Current Indications, Limitations and Future Developments

    Science.gov (United States)

    Chen, Sheng

    2012-01-01

    Botulinum neurotoxins (BoNTs) cause flaccid paralysis by interfering with vesicle fusion and neurotransmitter release in the neuronal cells. BoNTs are the most widely used therapeutic proteins. BoNT/A was approved by the U.S. FDA to treat strabismus, blepharospam, and hemificial spasm as early as 1989 and then for treatment of cervical dystonia, glabellar facial lines, axillary hyperhidrosis, chronic migraine and for cosmetic use. Due to its high efficacy, longevity of action and satisfactory safety profile, it has been used empirically in a variety of ophthalmological, gastrointestinal, urological, orthopedic, dermatological, secretory, and painful disorders. Currently available BoNT therapies are limited to neuronal indications with the requirement of periodic injections resulting in immune-resistance for some indications. Recent understanding of the structure-function relationship of BoNTs prompted the engineering of novel BoNTs to extend therapeutic interventions in non-neuronal systems and to overcome the immune-resistance issue. Much research still needs to be done to improve and extend the medical uses of BoNTs. PMID:23162705

  19. Structural basis of the pH-dependent assembly of a botulinum neurotoxin complex.

    Science.gov (United States)

    Matsui, Tsutomu; Gu, Shenyan; Lam, Kwok-Ho; Carter, Lester G; Rummel, Andreas; Mathews, Irimpan I; Jin, Rongsheng

    2014-11-11

    Botulinum neurotoxins (BoNTs) are among the most poisonous biological substances known. They assemble with non-toxic non-hemagglutinin (NTNHA) protein to form the minimally functional progenitor toxin complexes (M-PTC), which protects BoNT in the gastrointestinal tract and releases it upon entry into the circulation. Here we provide molecular insight into the assembly between BoNT/A and NTNHA-A using small-angle X-ray scattering. We found that the free form BoNT/A maintains a pH-independent conformation with limited domain flexibility. Intriguingly, the free form NTNHA-A adopts pH-dependent conformational changes due to a torsional motion of its C-terminal domain. Once forming a complex at acidic pH, they each adopt a stable conformation that is similar to that observed in the crystal structure of the M-PTC. Our results suggest that assembly of the M-PTC depends on the environmental pH and that the complex form of BoNT/A is induced by interacting with NTNHA-A at acidic pH. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. 125I-labelled botulinum A neurotoxin: pharmacokinetics in cats after intramuscular injection

    International Nuclear Information System (INIS)

    Wiegand, H.; Erdmann, G.; Wellhoener, H.H.

    1976-01-01

    On unilateral injection of sublethal doses of 125 I-botulinum A neurotoxin (BTA) into one gastrocnemius muscle of the cat we found after 48 h: a disto-proximal gradient of radioactivity (RA) hat developed in the sciatic nerve of the injected side. The ventral roots of the spinal cord half segments supplying the injected muscle showed a higher RA than the ventral roots of the contralateral control side. The spinal cord half segments innervating the injected muscle had a RA much higher than the corresponding segments of the contralateral side. However, a small rise of RA was also observed in the contralateral half segments. In histoautoradiographs of the (ligatured) ventral roots the RA was strictly confined to the intraaxonal space of a few nerve fibres. On injection of equal doses of 125 I-BTA into either gastrocnemius muscle we found after 38 h: direct stimulation of only one of the injected muscles caused the RA to reach a higher level in the spinal cord half segments ipsilateral to the stimulated muscle than in the spinal cord half segments of the non-stimulated side. Unilateral stimulation of one gastrocnemius nerve under the influence of gallamine or unilateral antidromic stimulation of the dorsal roots L7, S1 failed to cause a difference in RA between stimulated and non-stimulated side. (orig.) [de

  1. Botulinum neurotoxin: unique folding of enzyme domain of the most-poisonous poison.

    Science.gov (United States)

    Kumar, Raj; Kukreja, Roshan V; Li, Li; Zhmurov, Artem; Kononova, Olga; Cai, Shuowei; Ahmed, Syed A; Barsegov, Valeri; Singh, Bal Ram

    2014-01-01

    Botulinum neurotoxin (BoNT), the most toxic substance known to mankind, is the first example of the fully active molten globule state. To understand its folding mechanism, we performed urea denaturation experiments and theoretical modeling using BoNT serotype A (BoNT/A). We found that the extent of BoNT/A denaturation from the native state (N) shows a nonmonotonic dependence on urea concentration indicating a unique multistep denaturation process, N → I1 [Formula: see text] I2 [Formula: see text] U, with two intermediate states I1 and I2. BoNT/A loses almost all its secondary structure in 3.75 M urea (I1), yet it displays a native-like secondary structure in 5 M urea (I2). This agrees with the results of theoretical modeling, which helped to determine the molecular basis of unique behavior of BoNT/A in solution. Except for I2, all the states revert back to full enzymatic activity for SNAP-25 including the unfolded state U stable in 7 M urea. Our results stress the importance of structural flexibility in the toxin's mechanism of survival and action, an unmatched evolutionary trait from billion-year-old bacteria, which also correlates with the long-lasting enzymatic activity of BoNT inside neuronal cells. BoNT/A provides a rich model to explore protein folding in relation to functional activity.

  2. Botulinum neurotoxin D uses synaptic vesicle protein SV2 and gangliosides as receptors.

    Directory of Open Access Journals (Sweden)

    Lisheng Peng

    2011-03-01

    Full Text Available Botulinum neurotoxins (BoNTs include seven bacterial toxins (BoNT/A-G that target presynaptic terminals and act as proteases cleaving proteins required for synaptic vesicle exocytosis. Here we identified synaptic vesicle protein SV2 as the protein receptor for BoNT/D. BoNT/D enters cultured hippocampal neurons via synaptic vesicle recycling and can bind SV2 in brain detergent extracts. BoNT/D failed to bind and enter neurons lacking SV2, which can be rescued by expressing one of the three SV2 isoforms (SV2A/B/C. Localization of SV2 on plasma membranes mediated BoNT/D binding in both neurons and HEK293 cells. Furthermore, chimeric receptors containing the binding sites for BoNT/A and E, two other BoNTs that use SV2 as receptors, failed to mediate the entry of BoNT/D suggesting that BoNT/D binds SV2 via a mechanism distinct from BoNT/A and E. Finally, we demonstrated that gangliosides are essential for the binding and entry of BoNT/D into neurons and for its toxicity in vivo, supporting a double-receptor model for this toxin.

  3. Camelid-derived heavy-chain nanobody against Clostridium botulinum neurotoxin E in Pichia pastoris.

    Science.gov (United States)

    Baghban, Roghayyeh; Gargari, Seyed Latif Mousavi; Rajabibazl, Masoumeh; Nazarian, Shahram; Bakherad, Hamid

    2016-01-01

    Botulinum neurotoxins (BoNTs) result in severe and often fatal disease, botulism. Common remedial measures such as equine antitoxin and human botulism immunoglobulin in turn are problematic and time-consuming. Therefore, diagnosis and therapy of BoNTs are vital. The variable domain of heavy-chain antibodies (VHH) has unique features, such as the ability to identify and bind specifically to target epitopes and ease of production in bacteria and yeast. The Pichia pastoris is suitable for expression of recombinant antibody fragments. Disulfide bond formation and correct folds of protein with a high yield are some of the advantages of this eukaryotic host. In this study, we have expressed and purified the camelid VHH against BoNT/E in P. pastoris. The final yield of P. pastoris-expressed antibody was estimated to be 16 mg/l, which is higher than that expressed by Escherichia coli. The nanobody expressed in P. pastoris neutralized 4LD50 of the BoNT/E upon i.p. injection in 25% of mice. The nanobody expressed in E. coli extended the mice's survival to 1.5-fold compared to the control. This experiment indicated that the quality of expressed protein in the yeast is superior to that of the bacterial expression. Favorable protein folding by P. pastoris seems to play a role in its better toxin-binding property. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  4. Identification of a Botulinum Neurotoxin-like Toxin in a Commensal Strain of Enterococcus faecium.

    Science.gov (United States)

    Zhang, Sicai; Lebreton, Francois; Mansfield, Michael J; Miyashita, Shin-Ichiro; Zhang, Jie; Schwartzman, Julia A; Tao, Liang; Masuyer, Geoffrey; Martínez-Carranza, Markel; Stenmark, Pål; Gilmore, Michael S; Doxey, Andrew C; Dong, Min

    2018-02-14

    Botulinum neurotoxins (BoNTs), produced by various Clostridium strains, are a family of potent bacterial toxins and potential bioterrorism agents. Here we report that an Enterococcus faecium strain isolated from cow feces carries a BoNT-like toxin, designated BoNT/En. It cleaves both VAMP2 and SNAP-25, proteins that mediate synaptic vesicle exocytosis in neurons, at sites distinct from known BoNT cleavage sites on these two proteins. Comparative genomic analysis determines that the E. faecium strain carrying BoNT/En is a commensal type and that the BoNT/En gene is located within a typical BoNT gene cluster on a 206 kb putatively conjugative plasmid. Although the host species targeted by BoNT/En remains to be determined, these findings establish an extended member of BoNTs and demonstrate the capability of E. faecium, a commensal organism ubiquitous in humans and animals and a leading cause of hospital-acquired multi-drug-resistant (MDR) infections, to horizontally acquire, and possibly disseminate, a unique BoNT gene cluster. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Expression and purification of neurotoxin-associated protein HA-33/A from Clostridium botulinum and evaluation of its antigenicity.

    Science.gov (United States)

    Sayadmanesh, Ali; Ebrahimi, Firouz; Hajizade, Abbas; Rostamian, Mosayeb; Keshavarz, Hani

    2013-01-01

    Botulinum neurotoxin (BoNT) complexes consist of neurotoxin and neurotoxin-associated proteins. Hemagglutinin-33 (HA-33) is a member of BoNT type A (BoNT/A) complex. Considering the protective role of HA-33 in preservation of BoNT/A in gastrointestinal harsh conditions and also its adjuvant role, recombinant production of this protein is favorable. Thus in this study, HA-33 was expressed and purified, and subsequently its antigenicity in mice was studied. Initially, ha-33 gene sequence of Clostridium botulinum serotype A was adopted from GenBank. The gene sequence was optimized and synthesized in pET28a (+) vector. E. coli BL21 (DE3) strain was transformed by the recombinant vector and the expression of HA-33 was optimized at 37°C and 5 h induction time. The recombinant protein was purified by nickel nitrilotriacetic acid agarose affinity chromatography and confirmed by immunoblotting. Enzyme Linked Immunoassay showed a high titer antibody production in mice. The results indicated a highly expressed and purified recombinant protein, which is able to evoke high antibody titers in mice.

  6. Structural analysis of Clostridium botulinum neurotoxin type D as a platform for the development of targeted secretion inhibitors.

    Science.gov (United States)

    Masuyer, Geoffrey; Davies, Jonathan R; Moore, Kevin; Chaddock, John A; Ravi Acharya, K

    2015-09-01

    The botulinum neurotoxin type D is one of seven highly potent toxins produced by Clostridium botulinum which inhibit neurotransmission at cholinergic nerve terminals. A functional fragment derived from the toxin, LHn, consisting of the catalytic and translocation domains, has been heralded as a platform for the development of targeted secretion inhibitors. These secretion inhibitors are aimed at retargeting the toxin towards a specific cell type to inhibit vesicular secretion. Here we report crystal structures of LHn from serotype D at 2.3 Å, and that of SXN101959 at 3.1 Å resolution. SXN101959, a derivative that combines LHn from serotype D with a fragment of the growth hormone releasing hormone, has previously revealed promising results in inhibiting growth hormone release in pituitary somatotrophs. These structures offer for the first time insights into the translocation domain interaction with the catalytic domain in serotype D. Furthermore, structural information from small-angle X-ray scattering of LHn/D is compared among serotypes A, B, and D. Taken together, these results demonstrate the robustness of the 'LHn fold' across serotypes and its use in engineering additional polypeptide components with added functionality. Our study demonstrates the suitability of botulinum neurotoxin, and serotype D in particular, as a basis for engineering novel secretion inhibitors.

  7. Peptide inhibitors of botulinum neurotoxin serotype A: design, inhibition, cocrystal structures, structure-activity relationship and pharmacophore modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kumar G.; Swaminathan S.; Kumaran, D.; Ahmed, S. A.

    2012-05-01

    Clostridium botulinum neurotoxins are classified as Category A bioterrorism agents by the Centers for Disease Control and Prevention (CDC). The seven serotypes (A-G) of the botulinum neurotoxin, the causative agent of the disease botulism, block neurotransmitter release by specifically cleaving one of the three SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins and induce flaccid paralysis. Using a structure-based drug-design approach, a number of peptide inhibitors were designed and their inhibitory activity against botulinum serotype A (BoNT/A) protease was determined. The most potent peptide, RRGF, inhibited BoNT/A protease with an IC{sub 50} of 0.9 {micro}M and a K{sub i} of 358 nM. High-resolution crystal structures of various peptide inhibitors in complex with the BoNT/A protease domain were also determined. Based on the inhibitory activities and the atomic interactions deduced from the cocrystal structures, the structure-activity relationship was analyzed and a pharmacophore model was developed. Unlike the currently available models, this pharmacophore model is based on a number of enzyme-inhibitor peptide cocrystal structures and improved the existing models significantly, incorporating new features.

  8. Researchers unmask secret to long-lasting effects of botulinum neurotoxin A in motor neurons | Center for Cancer Research

    Science.gov (United States)

    A team of scientists led by the Center for Cancer Research's Allan M. Weissman, M.D., and Yien Che Tsai, Ph.D., has discovered a molecular mechanism that explains the extreme toxicity of botulinum neurotoxin A (BoNT/A), the most potent BoNT strain. The discovery, published June 5 in PNAS, also identifies a molecular target that the researchers hope will eventually lead to improved therapies to treat exposure and severely undermine the potential use of BoNTs as bioweapons.  Read more...  

  9. Construction of "Toxin Complex" in a Mutant Serotype C Strain of Clostridium botulinum Harboring a Defective Neurotoxin Gene.

    Science.gov (United States)

    Suzuki, Tomonori; Nagano, Thomas; Niwa, Koichi; Uchino, Masataka; Tomizawa, Motohiro; Sagane, Yoshimasa; Watanabe, Toshihiro

    2017-01-01

    A non-toxigenic mutant of the toxigenic serotype C Clostridium botulinum strain Stockholm (C-St), C-N71, does not produce the botulinum neurotoxin (BoNT). However, the original strain C-St produces botulinum toxin complex, in which BoNT is associated with non-toxic non-hemagglutinin (NTNHA) and three hemagglutinin proteins (HA-70, HA-33, and HA-17). Therefore, in this study, we aimed to elucidate the effects of bont gene knockout on the formation of the "toxin complex." Nucleotide sequence analysis revealed that a premature stop codon was introduced in the bont gene, whereas other genes were not affected by this mutation. Moreover, we successfully purified the "toxin complex" produced by C-N71. The "toxin complex" was identified as a mixture of NTNHA/HA-70/HA-17/HA-33 complexes with intact NTNHA or C-terminally truncated NTNHA, without BoNT. These results indicated that knockout of the bont gene does not affect the formation of the "toxin complex." Since the botulinum toxin complex has been shown to play an important role in oral toxin transport in the human and animal body, a non-neurotoxic "toxin complex" of C-N71 may be valuable for the development of an oral drug delivery system.

  10. Regulation of neurotoxin production and sporulation by a Putative agrBD signaling system in proteolytic Clostridium botulinum.

    Science.gov (United States)

    Cooksley, Clare M; Davis, Ian J; Winzer, Klaus; Chan, Weng C; Peck, Michael W; Minton, Nigel P

    2010-07-01

    A significant number of genome sequences of Clostridium botulinum and related species have now been determined. In silico analysis of these data revealed the presence of two distinct agr loci (agr-1 and agr-2) in all group I strains, each encoding putative proteins with similarity to AgrB and AgrD of the well-studied Staphylococcus aureus agr quorum sensing system. In S. aureus, a small diffusible autoinducing peptide is generated from AgrD in a membrane-located processing event that requires AgrB. Here the characterization of both agr loci in the group I strain C. botulinum ATCC 3502 and of their homologues in a close relative, Clostridium sporogenes NCIMB 10696, is reported. In C. sporogenes NCIMB 10696, agr-1 and agr-2 appear to form transcriptional units that consist of agrB, agrD, and flanking genes of unknown function. Several of these flanking genes are conserved in Clostridium perfringens. In agreement with their proposed role in quorum sensing, both loci were maximally expressed during late-exponential-phase growth. Modulation of agrB expression in C. sporogenes was achieved using antisense RNA, whereas in C. botulinum, insertional agrD mutants were generated using ClosTron technology. In comparison to the wild-type strains, these strains exhibited drastically reduced sporulation and, for C. botulinum, also reduced production of neurotoxin, suggesting that both phenotypes are controlled by quorum sensing. Interestingly, while agr-1 appeared to control sporulation, agr-2 appeared to regulate neurotoxin formation.

  11. Pre-Clinical Study of a Novel Recombinant Botulinum Neurotoxin Derivative Engineered for Improved Safety.

    Science.gov (United States)

    Vazquez-Cintron, Edwin; Tenezaca, Luis; Angeles, Christopher; Syngkon, Aurelia; Liublinska, Victoria; Ichtchenko, Konstantin; Band, Philip

    2016-08-03

    Cyto-012 is a recombinant derivative of Botulinum neurotoxin Type A (BoNT/A). It primarily differs from wild type (wt) BoNT/A1 in that it incorporates two amino acid substitutions in the catalytic domain of the light chain (LC) metalloprotease (E224 > A and Y366 > A), designed to provide a safer clinical profile. Cyto-012 is specifically internalized into rat cortical and hippocampal neurons, and cleaves Synaptosomal-Associated Protein 25 (SNAP-25), the substrate of wt BoNT/A, but exhibits slower cleavage kinetics and therefore requires a higher absolute dose to exhibit pharmacologic activity. The pharmacodynamics of Cyto-012 and wt BoNT/A have similar onset and duration of action using the Digital Abduction Assay (DAS). Intramuscular LD50 values for Cyto-012 and wt BoNT/A respectively, were 0.63 ug (95% CI = 0.61, 0.66) and 6.22 pg (95% CI = 5.42, 7.02). ED50 values for Cyto-012 and wt BoNT/A were respectively, 0.030 ug (95% CI = 0.026, 0.034) and 0.592 pg (95% CI = 0.488, 0.696). The safety margin (intramuscular LD50/ED50 ratio) for Cyto-012 was found to be improved 2-fold relative to wt BoNT/A (p < 0.001). The DAS response to Cyto-012 was diminished when a second injection was administered 32 days after the first. These data suggest that the safety margin of BoNT/A can be improved by modulating their activity towards SNAP-25.

  12. Toxic and nontoxic components of botulinum neurotoxin complex are evolved from a common ancestral zinc protein

    International Nuclear Information System (INIS)

    Inui, Ken; Sagane, Yoshimasa; Miyata, Keita; Miyashita, Shin-Ichiro; Suzuki, Tomonori; Shikamori, Yasuyuki; Ohyama, Tohru; Niwa, Koichi; Watanabe, Toshihiro

    2012-01-01

    Highlights: ► BoNT and NTNHA proteins share a similar protein architecture. ► NTNHA and BoNT were both identified as zinc-binding proteins. ► NTNHA does not have a classical HEXXH zinc-coordinating motif similar to that found in all serotypes of BoNT. ► Homology modeling implied probable key residues involved in zinc coordination. -- Abstract: Zinc atoms play an essential role in a number of enzymes. Botulinum neurotoxin (BoNT), the most potent toxin known in nature, is a zinc-dependent endopeptidase. Here we identify the nontoxic nonhemagglutinin (NTNHA), one of the BoNT-complex constituents, as a zinc-binding protein, along with BoNT. A protein structure classification database search indicated that BoNT and NTNHA share a similar domain architecture, comprising a zinc-dependent metalloproteinase-like, BoNT coiled-coil motif and concanavalin A-like domains. Inductively coupled plasma-mass spectrometry analysis demonstrated that every single NTNHA molecule contains a single zinc atom. This is the first demonstration of a zinc atom in this protein, as far as we know. However, the NTNHA molecule does not possess any known zinc-coordinating motif, whereas all BoNT serotypes possess the classical HEXXH motif. Homology modeling of the NTNHA structure implied that a consensus K-C-L-I-K-X 35 -D sequence common among all NTNHA serotype molecules appears to coordinate a single zinc atom. These findings lead us to propose that NTNHA and BoNT may have evolved distinct functional specializations following their branching out from a common ancestral zinc protein.

  13. Expression and biochemical characterization of light chains of Botulinum neurotoxin subtypes F5 and F7.

    Science.gov (United States)

    Guo, Jiubiao; Chen, Sheng

    2015-07-01

    Botulinum neurotoxins are the most potent protein toxins known to human. To date, seven subtypes of the BoNT/F serotype (BoNT/F1 to BoNT/F7) have been identified, among which BoNT/F5 and BoNT/F7 are the most divergent. However, little structural and functional information is available for these two subtypes due to a lack of suitable recombinant proteins for biochemical characterization, except that they appear to possess unique substrate recognition mechanisms, thereby impeding development of vaccine or inhibitors against these proteins. In the present study, we utilized a combinatorial approach which involved examining the effects of different affinity tags, mapping C-terminal truncation mutants and optimization of expression and purification conditions, that allowed us to successfully express and purify soluble and highly active recombinant LC/F5 and LC/F7 proteins. GST-LC/F5(1-450) and 6× His-LC/F5(1-405) were the formats which exhibit the highest level of solubility and activity, whereas GST-LC/F7(1-405) was the most active form of LC/F7. In comparison, GST-LC/F5(1-450) was more active than GST-LC/F7(1-405), which was in turn more active than the LC/F1 control. Our data suggest that solubility of these proteins strongly correlated with their catalytic activity. Successful expression and purification of LC/F5 and LC/F7 in this work will, for the first time, provide materials for further characterization of these two subtypes of BoNT/F, which is essential for future development of protective vaccine or other therapeutic strategies, as well as BoNT/F protein engineering. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Toxic and nontoxic components of botulinum neurotoxin complex are evolved from a common ancestral zinc protein

    Energy Technology Data Exchange (ETDEWEB)

    Inui, Ken [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472 (Japan); Sagane, Yoshimasa [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Miyata, Keita [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472 (Japan); Miyashita, Shin-Ichiro [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Suzuki, Tomonori [Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558 (Japan); Shikamori, Yasuyuki [Agilent Technologies International Japan, Ltd. Takaura-cho 9-1, Hachioji-shi, Tokyo 192-0033 (Japan); Ohyama, Tohru; Niwa, Koichi [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Watanabe, Toshihiro, E-mail: t-watana@bioindustry.nodai.ac.jp [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer BoNT and NTNHA proteins share a similar protein architecture. Black-Right-Pointing-Pointer NTNHA and BoNT were both identified as zinc-binding proteins. Black-Right-Pointing-Pointer NTNHA does not have a classical HEXXH zinc-coordinating motif similar to that found in all serotypes of BoNT. Black-Right-Pointing-Pointer Homology modeling implied probable key residues involved in zinc coordination. -- Abstract: Zinc atoms play an essential role in a number of enzymes. Botulinum neurotoxin (BoNT), the most potent toxin known in nature, is a zinc-dependent endopeptidase. Here we identify the nontoxic nonhemagglutinin (NTNHA), one of the BoNT-complex constituents, as a zinc-binding protein, along with BoNT. A protein structure classification database search indicated that BoNT and NTNHA share a similar domain architecture, comprising a zinc-dependent metalloproteinase-like, BoNT coiled-coil motif and concanavalin A-like domains. Inductively coupled plasma-mass spectrometry analysis demonstrated that every single NTNHA molecule contains a single zinc atom. This is the first demonstration of a zinc atom in this protein, as far as we know. However, the NTNHA molecule does not possess any known zinc-coordinating motif, whereas all BoNT serotypes possess the classical HEXXH motif. Homology modeling of the NTNHA structure implied that a consensus K-C-L-I-K-X{sub 35}-D sequence common among all NTNHA serotype molecules appears to coordinate a single zinc atom. These findings lead us to propose that NTNHA and BoNT may have evolved distinct functional specializations following their branching out from a common ancestral zinc protein.

  15. Structural Analysis of the Receptor Binding Domain of Botulinum Neurotoxin Serotype D

    Energy Technology Data Exchange (ETDEWEB)

    Y Zhang; G Buchko; L Qin; H Robinson; S Varnum

    2011-12-31

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known. The mechanism for entry into neuronal cells for serotypes A, B, E, F, and G involves a well understood dual receptor (protein and ganglioside) process, however, the mechanism of entry for serotypes C and D remains unclear. To provide structural insights into how BoNT/D enters neuronal cells, the crystal structure of the receptor binding domain (S863-E1276) for this serotype (BoNT/D-HCR) was determined at 1.65{angstrom} resolution. While BoNT/D-HCR adopts an overall fold similar to that observed in other known BoNT HCRs, several major structural differences are present. These structural differences are located at, or near, putative receptor binding sites and may be responsible for BoNT/D host preferences. Two loops, S1195-I1204 and K1236-N1244, located on both sides of the putative protein receptor binding pocket, are displaced >10{angstrom} relative to the corresponding residues in the crystal structures of BoNT/B and G. Obvious clashes were observed in the putative protein receptor binding site when the BoNT/B protein receptor synaptotagmin II was modeled into the BoNT/D-HCR structure. Although a ganglioside binding site has never been unambiguously identified in BoNT/D-HCR, a shallow cavity in an analogous location to the other BoNT serotypes HCR domains is observed in BoNT/D-HCR that has features compatible with membrane binding. A portion of a loop near the putative receptor binding site, K1236-N1244, is hydrophobic and solvent-exposed and may directly bind membrane lipids. Liposome-binding experiments with BoNT/D-HCR demonstrate that this membrane lipid may be phosphatidylethanolamine.

  16. Enhanced neutralization potency of botulinum neurotoxin antibodies using a red blood cell-targeting fusion protein.

    Directory of Open Access Journals (Sweden)

    Sharad P Adekar

    2011-03-01

    Full Text Available Botulinum neurotoxin (BoNT potently inhibits cholinergic signaling at the neuromuscular junction. The ideal countermeasures for BoNT exposure are monoclonal antibodies or BoNT antisera, which form BoNT-containing immune complexes that are rapidly cleared from the general circulation. Clearance of opsonized toxins may involve complement receptor-mediated immunoadherence to red blood cells (RBC in primates or to platelets in rodents. Methods of enhancing immunoadherence of BoNT-specific antibodies may increase their potency in vivo. We designed a novel fusion protein (FP to link biotinylated molecules to glycophorin A (GPA on the RBC surface. The FP consists of an scFv specific for murine GPA fused to streptavidin. FP:mAb:BoNT complexes bound specifically to the RBC surface in vitro. In a mouse model of BoNT neutralization, the FP increased the potency of single and double antibody combinations in BoNT neutralization. A combination of two antibodies with the FP gave complete neutralization of 5,000 LD50 BoNT in mice. Neutralization in vivo was dependent on biotinylation of both antibodies and correlated with a reduction of plasma BoNT levels. In a post-exposure model of intoxication, FP:mAb complexes gave complete protection from a lethal BoNT/A1 dose when administered within 2 hours of toxin exposure. In a pre-exposure prophylaxis model, mice were fully protected for 72 hours following administration of the FP:mAb complex. These results demonstrate that RBC-targeted immunoadherence through the FP is a potent enhancer of BoNT neutralization by antibodies in vivo.

  17. Unique Ganglioside Binding by Botulinum Neurotoxins C and D-SA

    Science.gov (United States)

    Kroken, Abby R.; Karalewitz, Andrew P-A.; Fu, Zhuji; Baldwin, Michael R.; Kim, Jung-Ja P.; Barbieri, Joseph T.

    2011-01-01

    Summary The botulinum neurotoxins (BoNTs) are the most potent protein toxins for humans. There are seven serotypes of BoNTs (A-G) based on a lack of cross anti-sera neutralization. BoNT/C and BoNT/D serotypes include mosaic toxins that are organized as D-C and C-D toxins. One BoNT D-C mosaic toxin, BoNT/D-South Africa (BoNT/D-SA), was not fully neutralized by immunization with a vaccine composed of either prototype BoNT/C-Stockholm or BoNT/D-1873. While several BoNT serotypes utilize dual receptors (gangliosides and proteins) to bind and enter neurons, the basis for BoNT/C and BoNT/D entry into neurons is less well understood. Recent studies solved the crystal structures of the receptor binding domains of BoNT/C, BoNT/D, and BoNT/D-SA. Comparative structural analysis showed that BoNT/C, BoNT/D, and BoNT/D-SA lacked components of the ganglioside binding pocket that exist within other BoNT serotypes. Utilizing structure based alignments, biochemical analyses, and cell binding approaches, BoNT/C and BoNT/D-SA have been shown to possess a unique ganglioside binding domain, the ganglioside binding loop. Defining how BoNTs enter host cells provides insight towards understanding the evolution and extending the potential therapeutic and immunologic values of the BoNT serotypes. PMID:21554541

  18. Botulinum neurotoxin type A induces TLR2-mediated inflammatory responses in macrophages.

    Directory of Open Access Journals (Sweden)

    Yun Jeong Kim

    Full Text Available Botulinum neurotoxin type A (BoNT/A is the most potent protein toxin and causes fatal flaccid muscle paralysis by blocking neurotransmission. Application of BoNT/A has been extended to the fields of therapeutics and biodefense. Nevertheless, the global response of host immune cells to authentic BoNT/A has not been reported. Employing microarray analysis, we performed global transcriptional profiling of RAW264.7 cells, a murine alveolar macrophage cell line. We identified 70 genes that were modulated following 1 nM BoNT/A treatment. The altered genes were mainly involved in signal transduction, immunity and defense, protein metabolism and modification, neuronal activities, intracellular protein trafficking, and muscle contraction. Microarray data were validated with real-time RT-PCR for seven selected genes including tlr2, tnf, inos, ccl4, slpi, stx11, and irg1. Proinflammatory mediators such as nitric oxide (NO and tumor necrosis factor alpha (TNFα were induced in a dose-dependent manner in BoNT/A-stimulated RAW264.7 cells. Increased expression of these factors was inhibited by monoclonal anti-Toll-like receptor 2 (TLR2 and inhibitors specific to intracellular proteins such as c-Jun N-terminal kinase (JNK, extracellular signal-regulated kinase (ERK, and p38 mitogen-activated protein kinase (MAPK. BoNT/A also suppressed lipopolysaccharide-induced NO and TNFα production from RAW264.7 macrophages at the transcription level by blocking activation of JNK, ERK, and p38 MAPK. As confirmed by TLR2-/- knock out experiments, these results suggest that BoNT/A induces global gene expression changes in host immune cells and that host responses to BoNT/A proceed through a TLR2-dependent pathway, which is modulated by JNK, ERK, and p38 MAPK.

  19. Solubility of the catalytic domains of Botulinum neurotoxin serotype E subtypes.

    Science.gov (United States)

    Chen, Sheng; Barbieri, Joseph T

    2016-02-01

    The Clostridium botulinum neurotoxins (BoNTs) are the most potent protein toxins known to humans. There are seven serotypes of the BoNTs (A-G), among which serotypes A, B, E and F are known to cause natural human intoxication. To date, eleven subtypes of LC/E, termed E1∼E11, have been identified. The LCs of BoNT/E were insoluble, prohibiting studies towards understanding the mechanisms of toxin action and substrate recognition. In this work, the molecular basis of insolubility of the recombinant LCs of two representative subtypes of BoNT/E, E1(Beluga) and E3 (Alaska), was determined. Hydrophobicity profile and structural modeling predicted a C-terminal candidate region responsible for the insolubility of LC/Es. Deletion of C-terminal 19 residues of LC/E(1-400) resulted in enhanced solubility, from 2 to ∼50% for LC/EAlaska and from 16 to ∼95% for LC/EBeluga. In addition, resides 230-236 were found to contribute to a different solubility level of LC/EAlaska when compared to LC/EBeluga. Substituting residues (230)TCI(232) in LC/EAlaska to the corresponding residues of (230)KYT(232) in LC/EBeluga enhanced the solubility of LC/EAlaska to a level approaching that of LC/EBeluga. Among these LC/Es and their derivatives, LC/EBeluga 1-400 was the most soluble and stable protein. Each LC/E derivative possessed similar catalytic activity, suggesting that the C-terminal region of LC/Es contributed to protein solubility, but not catalytic activity. In conclusion, this study generated a soluble and stable recombinant LC/E and provided insight into the structural components that govern the solubility and stability of the LCs of other BoNT serotypes and Tetanus toxin. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. A camelid single-domain antibody neutralizes botulinum neurotoxin A by blocking host receptor binding

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Guorui; Lam, Kwok-ho; Weisemann, Jasmin; Peng, Lisheng; Krez, Nadja; Perry, Kay; Shoemaker, Charles B.; Dong, Min; Rummel, Andreas; Jin, Rongsheng (BCH); (Cornell); (Tufts CTSI); (UCI); (MHH)

    2017-08-07

    Antibody treatment is currently the only available countermeasure for botulism, a fatal illness caused by flaccid paralysis of muscles due to botulinum neurotoxin (BoNT) intoxication. Among the seven major serotypes of BoNT/A-G, BoNT/A poses the most serious threat to humans because of its high potency and long duration of action. Prior to entering neurons and blocking neurotransmitter release, BoNT/A recognizes motoneurons via a dual-receptor binding process in which it engages both the neuron surface polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Previously, we identified a potent neutralizing antitoxin against BoNT/A1 termed ciA-C2, derived from a camelid heavy-chain-only antibody (VHH). In this study, we demonstrate that ciA-C2 prevents BoNT/A1 intoxication by inhibiting its binding to neuronal receptor SV2. Furthermore, we determined the crystal structure of ciA-C2 in complex with the receptor-binding domain of BoNT/A1 (HCA1) at 1.68 Å resolution. The structure revealed that ciA-C2 partially occupies the SV2-binding site on HCA1, causing direct interference of HCA1 interaction with both the N-glycan and peptide-moiety of SV2. Interestingly, this neutralization mechanism is similar to that of a monoclonal antibody in clinical trials, despite that ciA-C2 is more than 10-times smaller. Taken together, these results enlighten our understanding of BoNT/A1 interactions with its neuronal receptor, and further demonstrate that inhibiting toxin binding to the host receptor is an efficient countermeasure strategy.

  1. Botulinum neurotoxin type A radiolabeled at either the light or the heavy chain

    International Nuclear Information System (INIS)

    Dekleva, M.L.; DasGupta, B.R.; Sathyamoorthy, V.

    1989-01-01

    Botulinum neurotoxin (NT) has two distinct structural regions called L and H chains (approximately 50 and approximately 100 kDa, respectively). Although the H chain is responsible for binding of the NT to neuronal cells, it is not known which of the subunits is internalized and therefore responsible for causing the blockage of acetylcholine release in susceptible neuronal cells. In this report we describe for the first time the preparation of type A NT which is selectively radiolabeled at either the L or the H chain subunit. Such NT preparations will be useful as tools for determining the distribution of L and H chains in poisoned neuronal cells and the role that each subunit plays in inducing toxicity. The L and H chains of the NT (approximately 150 kDa) were separated, purified, and then individually radiolabeled by reductive methylation of the lysine residues using [3H]- or [14C]formaldehyde. The labeled L and H chains were reconjugated with the complementary unlabeled L and H chains. Formation of -S-S- and noncovalent bonds between the L and H chains regenerated the approximately 150 kDa NT. Autoradiographs of sodium dodecyl sulfate polyacrylamide gels confirmed that each reconstituted NT preparation was labeled at only one subunit chain. NT selectively labeled at either the L or the H chain had specific radioactivities of ca. 25-30 and 45-55 microCi/mumol, respectively, and toxicity (mouse LD50/mg protein) values of 2.2 +/- 1.1 X 10(7) and 3.0 +/- 1.0 X 10(7), respectively. A linear increase in the specific radioactivity of L and H chain subunits was observed with increasing concentrations of 3H- or 14C-labeled formaldehyde in the reaction mixture and with increasing concentrations of L or H chain in the reaction mixture

  2. Widespread sequence variations in VAMP1 across vertebrates suggest a potential selective pressure from botulinum neurotoxins.

    Directory of Open Access Journals (Sweden)

    Lisheng Peng

    2014-07-01

    Full Text Available Botulinum neurotoxins (BoNT/A-G, the most potent toxins known, act by cleaving three SNARE proteins required for synaptic vesicle exocytosis. Previous studies on BoNTs have generally utilized the major SNARE homologues expressed in brain (VAMP2, syntaxin 1, and SNAP-25. However, BoNTs target peripheral motor neurons and cause death by paralyzing respiratory muscles such as the diaphragm. Here we report that VAMP1, but not VAMP2, is the SNARE homologue predominantly expressed in adult rodent diaphragm motor nerve terminals and in differentiated human motor neurons. In contrast to the highly conserved VAMP2, BoNT-resistant variations in VAMP1 are widespread across vertebrates. In particular, we identified a polymorphism at position 48 of VAMP1 in rats, which renders VAMP1 either resistant (I48 or sensitive (M48 to BoNT/D. Taking advantage of this finding, we showed that rat diaphragms with I48 in VAMP1 are insensitive to BoNT/D compared to rat diaphragms with M48 in VAMP1. This unique intra-species comparison establishes VAMP1 as a physiological toxin target in diaphragm motor nerve terminals, and demonstrates that the resistance of VAMP1 to BoNTs can underlie the insensitivity of a species to members of BoNTs. Consistently, human VAMP1 contains I48, which may explain why humans are insensitive to BoNT/D. Finally, we report that residue 48 of VAMP1 varies frequently between M and I across seventeen closely related primate species, suggesting a potential selective pressure from members of BoNTs for resistance in vertebrates.

  3. Predicting Improvement in Writer's Cramp Symptoms following Botulinum Neurotoxin Injection Therapy

    Directory of Open Access Journals (Sweden)

    Mallory Jackman

    2016-09-01

    Full Text Available Introduction: Writer's cramp is a specific focal hand dystonia causing abnormal posturing and tremor in the upper limb. The most popular medical intervention, botulinum neurotoxin type A (BoNT-A therapy, is variably effective for 50–70% of patients. BoNT-A non-responders undergo ineffective treatment and may experience significant side effects. Various assessments have been used to determine response prediction to BoNT-A, but not in the same population of patients. Methods: A comprehensive assessment was employed to measure various symptom aspects. Clinical scales, full upper-limb kinematic measures, self-report, and task performance measures were assessed for nine writer's cramp patients at baseline. Patients received two BoNT-A injections then were classified as responders or non-responders based on a quantified self-report measure. Baseline scores were compared between groups, across all measures, to determine which scores predicted a positive BoNT-A response. Results: Five of nine patients were responders. No kinematic measures were predictably different between groups. Analyses revealed three features that predicted a favorable response and separated the two groups: higher than average cramp severity and cramp frequency, and below average cramp latency. Discussion: Non-kinematic measures appear to be superior in making such predictions. Specifically, measures of cramp severity, frequency, and latency during performance of a specific set of writing and drawing tasks were predictive factors. Since kinematic was not used to determine the injection pattern and the injections were visually guided, it may still be possible to use individual patient kinematics for better outcomes. 

  4. A Three Monoclonal Antibody Combination Potently Neutralizes Multiple Botulinum Neurotoxin Serotype E Subtypes.

    Science.gov (United States)

    Garcia-Rodriguez, Consuelo; Razai, Ali; Geren, Isin N; Lou, Jianlong; Conrad, Fraser; Wen, Wei-Hua; Farr-Jones, Shauna; Smith, Theresa J; Brown, Jennifer L; Skerry, Janet C; Smith, Leonard A; Marks, James D

    2018-03-01

    Human botulism is most commonly caused by botulinum neurotoxin (BoNT) serotypes A, B, and E. For this work, we sought to develop a human monoclonal antibody (mAb)-based antitoxin capable of binding and neutralizing multiple subtypes of BoNT/E. Libraries of yeast-displayed single chain Fv (scFv) antibodies were created from the heavy and light chain variable region genes of humans immunized with pentavalent-toxoid- and BoNT/E-binding scFv isolated by Fluorescence-Activated Cell Sorting (FACS). A total of 10 scFv were isolated that bound one or more BoNT/E subtypes with nanomolar-level equilibrium dissociation constants (K D ). By diversifying the V-regions of the lead mAbs and selecting for cross-reactivity, we generated three scFv that bound all four BoNT/E subtypes tested at three non-overlapping epitopes. The scFvs were converted to IgG that had K D values for the different BoNT/E subtypes ranging from 9.7 nM to 2.28 pM. An equimolar combination of the three mAbs was able to potently neutralize BoNT/E1, BoNT/E3, and BoNT/E4 in a mouse neutralization assay. The mAbs have potential utility as therapeutics and as diagnostics capable of recognizing multiple BoNT/E subtypes. A derivative of the three-antibody combination (NTM-1633) is in pre-clinical development with an investigational new drug (IND) application filing expected in 2018.

  5. Botulinum Neurotoxin Type-A for the Treatment of Atypical Odontalgia.

    Science.gov (United States)

    Cuadrado, María-Luz; García-Moreno, Héctor; Arias, José-Antonio; Pareja, Juan A

    2016-09-01

    Atypical odontalgia (AO), a subform of persistent idiopathic facial pain, is defined as a continuous toothache in which a thorough examination reveals no dental pathology. AO is believed to be a neuropathic condition, given that some cases are preceded by dental procedures. Different topical and systemic medications have been used for the treatment of AO, but their effect is often unsatisfactory. The authors aimed to assess the effect and safety of botulinum neurotoxin type-A (BoNTA) in a series of patients with AO. Four patients with refractory AO (2 males and 2 females, aged 31-72) were treated with local injections of BoNTA to the painful area. BoNTA was injected at various sites into the gums, and two patients had additional injections in the hard palate or the upper lip. The total dose of BoNTA for each procedure was 15-30 U, and the total number of injection points was 6-12. The follow-up ranged from 6 to 20 months. Two patients received two cycles of BoNTA, while the remaining patients received three and five cycles each, respectively. All patients obtained significant relief with complete or almost complete reduction of pain. The analgesic effect was apparent after a latency period of 3-14 days, and the effect persisted for 2-6 months. There were no adverse events reported from any of the interventions. The responses to BoNTA injections in this series agree with those previously observed in neuropathic pain. BoNTA injections may be a safe and effective option for the treatment of AO. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Negative effects of submandibular botulinum neurotoxin A injections on oral motor function in children with drooling due to central nervous system disorders

    NARCIS (Netherlands)

    Hulst, K. van; Kouwenberg, C.V.; Jongerius, P.H.; Feuth, T.; Hoogen, F.J.A. van den; Geurts, A.C.H.; Erasmus, C.E.

    2017-01-01

    AIM: The aims of this study were: (1) to determine the incidence and nature of adverse effects on oral motor function after first injections of botulinum neurotoxin A (BoNT-A) in submandibular glands for excessive drooling in children with central nervous system disorders; and (2) to identify

  7. Subcloning and Assessment of the Expression of Synthetic Gene of Botulinum Neurotoxin Type A Binding Domain (BD/A

    Directory of Open Access Journals (Sweden)

    Majid Zavvary

    2016-08-01

    Full Text Available Background and Objectives: Botulism syndrome is caused by Clostridium botulinum neurotoxin. This neurotoxin has seven serotypes ranging from A to G. The best way to prevent botulism syndrome caused by Botulinum neurotoxin (BoNT, is using recombinant vaccine made from its binding domain (due to having sufficient epitopes to stimulate immune system. In this study, the binding domain of BoNT serotype A (BoNT/A, was investigated. Methods: Initially, BoNT/A gene with accession number CP000727.1, was obtained from GenBank and was codon optimized according to the codon usage of E. coli. Then, the sequence was synthesized in pET28a plasmid and then subcloned in pGEX-4T-1 expression plasmid. The subcloning was done using PCR with Pfu DNA polymerase and then double digestion with XmaI and XhoI restriction enzymes. E. coli BL21 strain was used as the expression host. The selected marker for pGEX-4T-1 was ampicillin. Results: PCR and restriction digestion with the mentioned enzymes confirmed the subcloning process. The assessment of gene expression was performed by SDS-PAGE and western blotting (using horse anti-BoNT/A (and then glutathione affinity chromatography was performed. Although, the subcloning was performed successfully, no protein expression was observed.  Conclusion: According to the findings of this study, it seems that other hosts, such as eukaryotic hosts should be used for recombinant expression of BoNT/A binding domain.

  8. Glycosylated SV2 and Gangliosides as Dual Receptors for Botulinum Neurotoxin Serotype F

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Zhuji; Chen, Chen; Barbieri, Joseph T.; Kim, Jung-Ja P.; Baldwin, Michael R.; (MCW)

    2010-02-22

    Botulinum neurotoxin causes rapid flaccid paralysis through the inhibition of acetylcholine release at the neuromuscular junction. The seven BoNT serotypes (A-G) have been proposed to bind motor neurons via ganglioside-protein dual receptors. To date, the structure-function properties of BoNT/F host receptor interactions have not been resolved. Here, we report the crystal structures of the receptor binding domains (HCR) of BoNT/A and BoNT/F and the characterization of the dual receptors for BoNT/F. The overall polypeptide fold of HCR/A is essentially identical to the receptor binding domain of the BoNT/A holotoxin, and the structure of HCR/F is very similar to that of HCR/A, except for two regions implicated in neuronal binding. Solid phase array analysis identified two HCR/F binding glycans: ganglioside GD1a and oligosaccharides containing an N-acetyllactosamine core. Using affinity chromatography, HCR/F bound native synaptic vesicle glycoproteins as part of a protein complex. Deglycosylation of glycoproteins using {alpha}(1-3,4)-fucosidase, endo-{beta}-galactosidase, and PNGase F disrupted the interaction with HCR/F, while the binding of HCR/B to its cognate receptor, synaptotagmin I, was unaffected. These data indicate that the HCR/F binds synaptic vesicle glycoproteins through the keratan sulfate moiety of SV2. The interaction of HCR/F with gangliosides was also investigated. HCR/F bound specifically to gangliosides that contain {alpha}2,3-linked sialic acid on the terminal galactose of a neutral saccharide core (binding order GT1b = GD1a GM3; no binding to GD1b and GM1a). Mutations within the putative ganglioside binding pocket of HCR/F decreased binding to gangliosides, synaptic vesicle protein complexes, and primary rat hippocampal neurons. Thus, BoNT/F neuronal discrimination involves the recognition of ganglioside and protein (glycosylated SV2) carbohydrate moieties, providing a structural basis for the high affinity and specificity of BoNT/F for neurons.

  9. Crystal Structure of the Botulinum Neurotoxin Type G Binding Domain: Insight into Cell Surface Binding

    Energy Technology Data Exchange (ETDEWEB)

    Stenmark, Pål; Dong, Min; Dupuy, Jérôme; Chapman, Edwin R.; Stevens, Raymond C. (Scripps); (UW)

    2011-11-02

    Botulinum neurotoxins (BoNTs) typically bind the neuronal cell surface via dual interactions with both protein receptors and gangliosides. We present here the 1.9-{angstrom} X-ray structure of the BoNT serotype G (BoNT/G) receptor binding domain (residues 868-1297) and a detailed view of protein receptor and ganglioside binding regions. The ganglioside binding motif (SxWY) has a conserved structure compared to the corresponding regions in BoNT serotype A and BoNT serotype B (BoNT/B), but several features of interactions with the hydrophilic face of the ganglioside are absent at the opposite side of the motif in the BoNT/G ganglioside binding cleft. This may significantly reduce the affinity between BoNT/G and gangliosides. BoNT/G and BoNT/B share the protein receptor synaptotagmin (Syt) I/II. The Syt binding site has a conserved hydrophobic plateau located centrally in the proposed protein receptor binding interface (Tyr1189, Phe1202, Ala1204, Pro1205, and Phe1212). Interestingly, only 5 of 14 residues that are important for binding between Syt-II and BoNT/B are conserved in BoNT/G, suggesting that the means by which BoNT/G and BoNT/B bind Syt diverges more than previously appreciated. Indeed, substitution of Syt-II Phe47 and Phe55 with alanine residues had little effect on the binding of BoNT/G, but strongly reduced the binding of BoNT/B. Furthermore, an extended solvent-exposed hydrophobic loop, located between the Syt binding site and the ganglioside binding cleft, may serve as a third membrane association and binding element to contribute to high-affinity binding to the neuronal membrane. While BoNT/G and BoNT/B are homologous to each other and both utilize Syt-I/Syt-II as their protein receptor, the precise means by which these two toxin serotypes bind to Syt appears surprisingly divergent.

  10. Structural basis for recognition of synaptic vesicle protein 2C by botulinum neurotoxin A

    Science.gov (United States)

    Benoit, Roger M.; Frey, Daniel; Hilbert, Manuel; Kevenaar, Josta T.; Wieser, Mara M.; Stirnimann, Christian U.; McMillan, David; Ceska, Tom; Lebon, Florence; Jaussi, Rolf; Steinmetz, Michel O.; Schertler, Gebhard F. X.; Hoogenraad, Casper C.; Capitani, Guido; Kammerer, Richard A.

    2014-01-01

    Botulinum neurotoxin A (BoNT/A) belongs to the most dangerous class of bioweapons. Despite this, BoNT/A is used to treat a wide range of common medical conditions such as migraines and a variety of ocular motility and movement disorders. BoNT/A is probably best known for its use as an antiwrinkle agent in cosmetic applications (including Botox and Dysport). BoNT/A application causes long-lasting flaccid paralysis of muscles through inhibiting the release of the neurotransmitter acetylcholine by cleaving synaptosomal-associated protein 25 (SNAP-25) within presynaptic nerve terminals. Two types of BoNT/A receptor have been identified, both of which are required for BoNT/A toxicity and are therefore likely to cooperate with each other: gangliosides and members of the synaptic vesicle glycoprotein 2 (SV2) family, which are putative transporter proteins that are predicted to have 12 transmembrane domains, associate with the receptor-binding domain of the toxin. Recently, fibroblast growth factor receptor 3 (FGFR3) has also been reported to be a potential BoNT/A receptor. In SV2 proteins, the BoNT/A-binding site has been mapped to the luminal domain, but the molecular details of the interaction between BoNT/A and SV2 are unknown. Here we determined the high-resolution crystal structure of the BoNT/A receptor-binding domain (BoNT/A-RBD) in complex with the SV2C luminal domain (SV2C-LD). SV2C-LD consists of a right-handed, quadrilateral β-helix that associates with BoNT/A-RBD mainly through backbone-to-backbone interactions at open β-strand edges, in a manner that resembles the inter-strand interactions in amyloid structures. Competition experiments identified a peptide that inhibits the formation of the complex. Our findings provide a strong platform for the development of novel antitoxin agents and for the rational design of BoNT/A variants with improved therapeutic properties.

  11. Detection of Clostridium botulinum in liquid manure and biogas plant wastes.

    Science.gov (United States)

    Neuhaus, Jürgen; Schrödl, Wieland; Shehata, Awad A; Krüger, Monika

    2015-09-01

    Biogas plants have been considered as a source for possible amplification and distribution of pathogenic bacteria capable of causing severe infections in humans and animals. Manure and biogas wastes could be sources for spore-forming bacteria such as Clostridium botulinum. In the present study, 24 liquid manure and 84 biogas waste samples from dairies where the majority of the cows suffered from chronic botulism were investigated for the presence of botulinum neurotoxins (BoNT) and C. botulinum spores. The prevalence of BoNT/A, B, C, D, and E in biogas wastes was 16.6, 8.3, 10.7, 7.1, and 10.8 %, respectively, while in manure, the prevalence was 0.0, 0.0, 0.0, 8.3, and 4.1 %, respectively. After enrichment of samples in reinforced cultural medium, they were tested for C. botulinum BoNT/A, B, C, D, and E using ELISA (indirect C. botulinum detection). The prevalence of C. botulinum type A, B, C, D, and E samples in biogas wastes was 20.2, 15.5, 19, 10.7, and 34.8 %, respectively, while the prevalence in liquid manure was 0.0, 0.0, 0.0, 8.3, and 12.5 %, respectively. In conclusion, the occurrence of BoNT and C. botulinum spores in biogas waste of diseased animals indicates an increased and underestimated hygienic risk. Application of digestates from biogas fermentations as fertilizers could lead to an accumulation of long lifespan spores in the environment and could be a possible health hazard.

  12. CRISPR/Cas9-Mediated Genomic Deletion of the Beta-1, 4 N-acetylgalactosaminyltransferase 1 Gene in Murine P19 Embryonal Carcinoma Cells Results in Low Sensitivity to Botulinum Neurotoxin Type C.

    Directory of Open Access Journals (Sweden)

    Kentaro Tsukamoto

    Full Text Available Botulinum neurotoxins produced by Clostridium botulinum cause flaccid paralysis by inhibiting neurotransmitter release at peripheral nerve terminals. Previously, we found that neurons derived from the murine P19 embryonal carcinoma cell line exhibited high sensitivity to botulinum neurotoxin type C. In order to prove the utility of P19 cells for the study of the intracellular mechanism of botulinum neurotoxins, ganglioside-knockout neurons were generated by deletion of the gene encoding beta-1,4 N-acetylgalactosaminyltransferase 1 in P19 cells using the clustered regularly interspaced short palindromic repeats combined with Cas9 (CRISPR/Cas9 system. By using this system, knockout cells could be generated more easily than with previous methods. The sensitivity of the generated beta-1,4 N-acetylgalactosaminyltransferase 1-depleted P19 neurons to botulinum neurotoxin type C was decreased considerably, and the exogenous addition of the gangliosides GD1a, GD1b, and GT1b restored the susceptibility of P19 cells to botulinum neurotoxin type C. In particular, addition of a mixture of these three ganglioside more effectively recovered the sensitivity of knockout cells compared to independent addition of GD1a, GD1b, or GT1b. Consequently, the genome-edited P19 cells generated by the CRISPR/Cas9 system were useful for identifying and defining the intracellular molecules involved in the toxic action of botulinum neurotoxins.

  13. Structural And Biochemical Studies of Botulinum Neurotoxin Serotype C1 Light Chain Protease: Implications for Dual Substrate Specificity

    Energy Technology Data Exchange (ETDEWEB)

    Jin, R.; Sikorra, S.; Stegmann, C.M.; Pich, A.; Binz, T.; Brunger, A.T.

    2009-06-01

    Clostridial neurotoxins are the causative agents of the neuroparalytic disease botulism and tetanus. They block neurotransmitter release through specific proteolysis of one of the three soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNAREs) SNAP-25, syntaxin, and synaptobrevin, which constitute part of the synaptic vesicle fusion machinery. The catalytic component of the clostridial neurotoxins is their light chain (LC), a Zn2+ endopeptidase. There are seven structurally and functionally related botulinum neurotoxins (BoNTs), termed serotype A to G, and tetanus neurotoxin (TeNT). Each of them exhibits unique specificity for their target SNAREs and peptide bond(s) they cleave. The mechanisms of action for substrate recognition and target cleavage are largely unknown. Here, we report structural and biochemical studies of BoNT/C1-LC, which is unique among BoNTs in that it exhibits dual specificity toward both syntaxin and SNAP-25. A distinct pocket (S1') near the active site likely achieves the correct register for the cleavage site by only allowing Ala as the P1' residue for both SNAP-25 and syntaxin. Mutations of this SNAP-25 residue dramatically reduce enzymatic activity. The remote a-exosite that was previously identified in the complex of BoNT/A-LC and SNAP-25 is structurally conserved in BoNT/C1. However, mutagenesis experiments show that the a-exosite of BoNT/C1 plays a less stringent role in substrate discrimination in comparison to that of BoNT/A, which could account for its dual substrate specificity.

  14. Novel Treatments for Botulism: Development of Antagonists for Identified Steps in the Action of Botulinum Neurotoxins

    Science.gov (United States)

    1991-09-20

    J. (1989). ’Clues to the multi-phasic actions of botulinum toxins.’ XIV &me Confdrence en Neurobiologie , Gif-sur-Yvette, France. Dolly, J.0. (1990...mitter release by botulinum and tetanus toxins at Alyslia syn- apses: role(s) of the constituent chains’. XIV 6me Confdrence en Neurobiologie , Gif-sur

  15. High resolution crystal structures of the receptor-binding domain of Clostridium botulinum neurotoxin serotypes A and FA

    Directory of Open Access Journals (Sweden)

    Jonathan R. Davies

    2018-03-01

    Full Text Available The binding specificity of botulinum neurotoxins (BoNTs is primarily a consequence of their ability to bind to multiple receptors at the same time. BoNTs consist of three distinct domains, a metalloprotease light chain (LC, a translocation domain (HN and a receptor-binding domain (HC. Here we report the crystal structure of HC/FA, complementing an existing structure through the modelling of a previously unresolved loop which is important for receptor-binding. Our HC/FA structure also contains a previously unidentified disulphide bond, which we have also observed in one of two crystal forms of HC/A1. This may have implications for receptor-binding and future recombinant toxin production.

  16. Botulinum Neurotoxin A Injections Influence Stretching of the Gastrocnemius Muscle-Tendon Unit in an Animal Model

    Science.gov (United States)

    Haubruck, Patrick; Mannava, Sandeep; Plate, Johannes F.; Callahan, Michael F.; Wiggins, Walter F.; Schmidmaier, Gerhard; Tuohy, Christopher J.; Saul, Katherine R.; Smith, Thomas L.

    2012-01-01

    Botulinum Neurotoxin A (BoNT-A) injections have been used for the treatment of muscle contractures and spasticity. This study assessed the influence of (BoNT-A) injections on passive biomechanical properties of the muscle-tendon unit. Mousegastrocnemius muscle (GC) was injected with BoNT-A (n = 18) or normal saline (n = 18) and passive, non-destructive, in vivo load relaxation experimentation was performed to examine how the muscle-tendon unit behaves after chemical denervation with BoNT-A. Injection of BoNT-A impaired passive muscle recovery (15% vs. 35% recovery to pre-stretching baseline, p stretch reflex; thereby modulating in vivo passive muscle properties. However, it is also possible that BoNT-A injection may alter the structure of skeletal muscle; thus modulating the in vivo passive biomechanical properties of the muscle-tendon unit. PMID:23012650

  17. Botulinum neurotoxin A and an engineered derivate targeted secretion inhibitor (TSI) A enter cells via different vesicular compartments.

    Science.gov (United States)

    Fonfria, Elena; Donald, Sarah; Cadd, Verity A

    2016-01-01

    Botulinum neurotoxins (BoNTs) are highly potent multi-domain proteins, responsible for botulism in animals and humans. The modular structural organization of BoNTs has led to the development of novel engineered bio-therapeutic proteins called targeted secretion inhibitors (TSIs). We report here that botulinum neurotoxin A (BoNT/A) and a TSI/A in which the neuronal binding domain of BoNT/A has been substituted by an epidermal growth factor (EGF) ligand, named EGFR-targeted TSI/A, exploit different routes to gain entry in the same in vitro neuroblastoma cell system, SiMa cells. We found that the EGF ligand conferred the affinity to the EGFR-targeted TSI/A at the EGF receptor when compared to an untargeted TSI/A and also the ability to internalize into the cells and cleave its cytosolic target protein SNAP-25. Using high content analysis we found that both BoNT/A and the EGFR-targeted TSI/A enter the cell in a concentration-dependent manner and in compartments which are able to translocate the proteins into the cytosol within 4 h. The EGFR-targeted TSI/A internalized into a compartment which gave a punctate staining pattern by immunofluorescence and partially overlapped with structures positive for the early endosomal marker EAA1; whereas BoNT/A did not internalize into a punctate compartment but did so in an acidifying compartment consistent with local synaptic vesicle recycling. These findings show that the BoNT/A translocation domain, common to both BoNT/A and the EGFR-targeted TSI/A, is a versatile tool for cytosolic delivery from distinct intracellular vesicular compartments.

  18. Structural Studies on Intact Clostridium Botulinum Neurotoxins Complexed with Inhibitors Leading to Drug Design

    National Research Council Canada - National Science Library

    Swaminathan, Subramanyam

    2005-01-01

    .... While one is common to botulinum toxins, the other is unique for tetanus. The second unique site also binds a tri-peptide which suggests that this peptide could be used as an inhibitor for tetanus, at least...

  19. Structures of Clostridium Botulinum Neurotoxin Serotype A Light Chain Complexed with Small-Molecule Inhibitors Highlight Active-Site Flexibility

    Energy Technology Data Exchange (ETDEWEB)

    Silvaggi,N.; Boldt, G.; Hixon, M.; Kennedy, J.; Tzipori, S.; Janda, K.; Allen, K.

    2007-01-01

    The potential for the use of Clostridial neurotoxins as bioweapons makes the development of small-molecule inhibitors of these deadly toxins a top priority. Recently, screening of a random hydroxamate library identified a small-molecule inhibitor of C. botulinum Neurotoxin Serotype A Light Chain (BoNT/A-LC), 4-chlorocinnamic hydroxamate, a derivative of which has been shown to have in vivo efficacy in mice and no toxicity. We describe the X-ray crystal structures of BoNT/A-LC in complexes with two potent small-molecule inhibitors. The structures of the enzyme with 4-chlorocinnamic hydroxamate or 2,4-dichlorocinnamic hydroxamate bound are compared to the structure of the enzyme complexed with L-arginine hydroxamate, an inhibitor with modest affinity. Taken together, this suite of structures provides surprising insights into the BoNT/A-LC active site, including unexpected conformational flexibility at the S1' site that changes the electrostatic environment of the binding pocket. Information gained from these structures will inform the design and optimization of more effective small-molecule inhibitors of BoNT/A-LC.

  20. Subcloning and Assessment of the Expression of Synthetic Botulinum Neurotoxin Type B Binding Domain (BD/B

    Directory of Open Access Journals (Sweden)

    Majid Baradaran

    2016-07-01

    Full Text Available Background and Objectives: Botulism syndrome is caused by Clostridium botulinum neurotoxin. This neurotoxin has 7 serotypes, from A to G. The best way to prevent botulism syndrome caused by BoNT/B is immunization with recombinant binding domains of BoNT/B (due to containing sufficient epitopes to stimulate the immune system. In this study, the expression of the BoNT/B binding domain as a candidate vaccine, was investigated. Methods: At first, the sequence of the BoNT/B binding domain gene was obtained from NCBI website with accession number of EF028399.1. After codon optimization, the gene was synthesized in pUC18 vector. Then, the gene was subcloned in pET32a(+ expression vector that carries an ampicillin selection marker. PCR, enzymatic digestion, and sequencing were used to confirm subcloning accuracy, and E. coli BL21(DE3 was used for the expression analysis. The accuracy of protein expression was evaluated by electrophoresis and western blotting. Results: PCR reaction, enzymatic digestion, and sequencing confirmed that the gene of interest has been subcloned appropriately in the vector. The expression analysis by SDS-PAGE and subsequently western blotting, showed that the protein of interest is not expressed in the mentioned expression strain. Conclusion: Although the gene was successfully subcloned in pET32a(+ vector, no significant expression of the gene was observed.

  1. Content of botulinum neurotoxin in Botox®/Vistabel®, Dysport®/Azzalure®, and Xeomin®/Bocouture®.

    Science.gov (United States)

    Frevert, Jürgen

    2010-01-01

    Botulinum neurotoxin type A (BoNT/A) is the active substance in preparations used for the highly effective treatment of neurologic disorders such as cervical dystonia, blepharospasm, or spasticity, as well as other indications such as axillary and palmar hyperhidrosis, and urologic disorders. To determine the amount of BoNT/A protein present in pharmaceutical preparations of Botox®, Dysport®, and Xeomin®, which are identical with Vistabel®, Azzalure®, and Bocouture®, respectively. Rabbit and guinea pig antibodies raised against the 150 kD BoNT/A neurotoxin purified from Clostridium botulinum type A, strain ATCC 3502 ('Hall strain'), were used in a sensitive sandwich ELISA to determine the overall mean concentration of the 150 kD neurotoxin present in four batches of Botox® (C2344C3, C2384C3, C2419, and C2385), two batches of Dysport® (678F and 689X) and three batches of Xeomin® (61,111, 70,604, and 81,208). The specific neurotoxin potency, defined as the potency or biologic activity (units) per mass of neurotoxin protein (ng), was calculated based on the overall mean concentration of BoNT/A neurotoxin. Overall, the mean concentration of BoNT/A neurotoxin in Botox® was 0.73 ng per 100 unit vial (coefficient of variation [CV] = 3.5%), 3.24 ng per 500 unit vial of Dysport®, corresponding to 0.65 ng in 100 units (CV = 11.4%), and 0.44 ng per 100 unit vial of Xeomin® (CV = 1.9%). The specific potency of the 150 kD BoNT/A neurotoxin was calculated as 137 units/ng for Botox®, 154 units/ng Dysport®, and 227 units/ng Xeomin®. The current study has shown that of the three products, Xeomin® contains the highest specific neurotoxin activity, followed by Dysport®, with Botox® having the lowest specific activity. This result suggests that Xeomin® contains only active neurotoxin in contrast with Botox®, which is likely to contain additional denatured/inactive neurotoxin.

  2. Fabrication of a Novel Highly Sensitive and Selective Immunosensor for Botulinum Neurotoxin Serotype A Based on an Effective Platform of Electrosynthesized Gold Nanodendrites/Chitosan Nanoparticles

    Directory of Open Access Journals (Sweden)

    Rahim Sorouri

    2017-05-01

    Full Text Available In this work, a novel nanocomposite consisting of electrosynthesized gold nanodendrites and chitosan nanoparticles (AuNDs/CSNPs has been prepared to fabricate an impedimetric immunosensor based on a screen printed carbon electrode (SPCE for the rapid and sensitive immunoassay of botulinum neurotoxin A (BoNT/A. BoNT/A polyclonal antibody was immobilized on the nanocomposite-modified SPCE for the signal amplification. The structure of the prepared nanocomposite was investigated by transmission electron microscopy (TEM, scanning electron microscopy (SEM, X-ray diffraction (XRD, Fourier transform infrared (FTIR spectroscopy, cyclic voltammetry (CV, and electrochemical impedance spectroscopy (EIS. The charge transfer resistance (RCT changes were used to detect BoNT/A as the specific immuno-interactions at the immunosensor surface that efficiently limited the electron transfer of Fe(CN63−/4− as a redox probe at pH = 7.4. A linear relationship was observed between the %∆RCT and the concentration logarithm of BoNT/A within the range of 0.2 to 230 pg·mL−1 with a detection limit (S/N = 3 of 0.15 pg·mL−1. The practical applicability of the proposed sensor was examined by evaluating the detection of BoNT/A in milk and serum samples with satisfactory recoveries. Therefore, the prepared immunosensor holds great promise for the fast, simple and sensitive detection of BoNT/A in various real samples.

  3. Attomolar detection of botulinum toxin type A in complex biological matrices.

    Directory of Open Access Journals (Sweden)

    Karine Bagramyan

    Full Text Available BACKGROUND: A highly sensitive, rapid and cost efficient method that can detect active botulinum neurotoxin (BoNT in complex biological samples such as foods or serum is desired in order to 1 counter the potential bioterrorist threat 2 enhance food safety 3 enable future pharmacokinetic studies in medical applications that utilize BoNTs. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a botulinum neurotoxin serotype A assay with a large immuno-sorbent surface area (BoNT/A ALISSA that captures a low number of toxin molecules and measures their intrinsic metalloprotease activity with a fluorogenic substrate. In direct comparison with the "gold standard" mouse bioassay, the ALISSA is four to five orders of magnitudes more sensitive and considerably faster. Our method reaches attomolar sensitivities in serum, milk, carrot juice, and in the diluent fluid used in the mouse assay. ALISSA has high specificity for the targeted type A toxin when tested against alternative proteases including other BoNT serotypes and trypsin, and it detects the holotoxin as well as the multi-protein complex form of BoNT/A. The assay was optimized for temperature, substrate concentration, size and volume proportions of the immuno-sorbent matrix, enrichment and reaction times. Finally, a kinetic model is presented that is consistent with the observed improvement in sensitivity. CONCLUSIONS/SIGNIFICANCE: The sensitivity, specificity, speed and simplicity of the BoNT ALISSA should make this method attractive for diagnostic, biodefense and pharmacological applications.

  4. Gangliosides in human, cow and goat milk, and their abilities as to neutralization of cholera toxin and botulinum type A neurotoxin.

    Science.gov (United States)

    Iwamori, Masao; Takamizawa, Kotarou; Momoeda, Mikio; Iwamori, Yuriko; Taketani, Yuji

    2008-10-01

    To elucidate the potential of mammalian milk as to protection of infants from infections, we determined the ganglioside compositions of human, cow and goat milk in relation with cholera toxin and botulinum type A neurotoxin-receptors. Gangliosides accounted for 1 to 2 micromol of lipid-bound sialic acid (LSA) in 100 ml of milk, and GD3 comprised about 69% of LSA in all milk samples. Among the milk samples examined, goat milk was found to contain an amount of gangliosides belonging to the b-pathway representing 15.8% of the total LSA. Accordingly, botulinum neurotoxin bound to GT1b and GQ1b in goat milk, but not to any gangliosides in human or cow milk. On the other hand, GM1, the cholera toxin receptor, was found to be present in all milk samples at concentrations of 0.02% to 0.77% of the total LSA and to be maintained at a relatively constant level in human milk during the postpartum period. Gangliosides from 1 ml of pooled human milk exhibited the ability to attenuate the binding of cholera toxin (30 ng) to GM1 by 93%, and those from 500 microl of goat milk completely inhibited the binding of botulinum type A neurotoxin 1.5 microg to GT1b.

  5. Analysis of active site residues of botulinum neurotoxin E by mutational, functional, and structural studies: Glu335Gln is an apoenzyme.

    Science.gov (United States)

    Agarwal, Rakhi; Binz, Thomas; Swaminathan, Subramanyam

    2005-06-14

    Clostridial neurotoxins comprising the seven serotypes of botulinum neurotoxins and tetanus neurotoxin are the most potent toxins known to humans. Their potency coupled with their specificity and selectivity underscores the importance in understanding their mechanism of action in order to develop a strategy for designing counter measures against them. To develop an effective vaccine against the toxin, it is imperative to achieve an inactive form of the protein which preserves the overall conformation and immunogenicity. Inactive mutants can be achieved either by targeting active site residues or by modifying the surface charges farther away from the active site. The latter affects the long-range forces such as electrostatic potentials in a subtle way without disturbing the structural integrity of the toxin causing some drastic changes in the activity/environment. Here we report structural and biochemical analysis on several mutations on Clostridium botulinum neurotoxin type E light chain with at least two producing dramatic effects: Glu335Gln causes the toxin to transform into a persistent apoenzyme devoid of zinc, and Tyr350Ala has no hydrolytic activity. The structural analysis of several mutants has led to a better understanding of the catalytic mechanism of this family of proteins. The residues forming the S1' subsite have been identified by comparing this structure with a thermolysin-inhibitor complex structure.

  6. Neurotoxin gene profiling of Clostridium botulinum types C and D gathered from different countries within Europe

    NARCIS (Netherlands)

    Woudstra, C.; Skarin, A.; Anniballi, F.; Fenicia, F.; Bano, L.; Drigo, I.; Koene, M.G.J.; Bäyon-Auboyer, M.H.; Buffereau, J.P.; Medici, D.; Fach, P.

    2012-01-01

    Clostridium botulinum types C and D, as well as their mosaic variants C-D and D-C, are associated with avian and mammalian botulism. This study reports on the development of low-density macroarrays based on the GeneDisc cycler platform (Pall-GeneDisc Technologies) applied to the simultaneous

  7. Towards an international standard for detection and typing botulinum neurotoxin-producing Clostridia types A, B, E and F in food, feed and environmental samples: a European ring trial study to evaluate a real-time PCR assay.

    Science.gov (United States)

    Fenicia, Lucia; Fach, Patrick; van Rotterdam, Bart J; Anniballi, Fabrizio; Segerman, Bo; Auricchio, Bruna; Delibato, Elisabetta; Hamidjaja, Raditijo A; Wielinga, Peter R; Woudstra, Cedric; Agren, Joakim; De Medici, Dario; Knutsson, Rickard

    2011-03-01

    A real-time PCR method for detection and typing of BoNT-producing Clostridia types A, B, E, and F was developed on the framework of the European Research Project "Biotracer". A primary evaluation was carried out using 104 strains and 17 clinical and food samples linked to botulism cases. Results showed 100% relative accuracy, 100% relative sensitivity, 100% relative specificity, and 100% selectivity (inclusivity on 73 strains and exclusivity on 31 strains) of the real-time PCR against the reference cultural method combined with the standard mouse bioassay. Furthermore, a ring trial study performed at four different European laboratories in Italy, France, the Netherlands, and Sweden was carried out using 47 strains, and 30 clinical and food samples linked to botulism cases. Results showed a concordance of 95.7% among the four laboratories. The reproducibility generated a relative standard deviation in the range of 2.18% to 13.61%. Considering the high level of agreement achieved between the laboratories, this real-time PCR is a suitable method for rapid detection and typing of BoNT-producing Clostridia in clinical, food and environmental samples and thus support the use of it as an international standard method. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. The analgesic effect on neuropathic pain of retrogradely transported botulinum neurotoxin A involves Schwann cells and astrocytes.

    Directory of Open Access Journals (Sweden)

    Sara Marinelli

    Full Text Available In recent years a growing debate is about whether botulinum neurotoxins are retrogradely transported from the site of injection. Immunodetection of cleaved SNAP-25 (cl-SNAP-25, the protein of the SNARE complex targeted by botulinum neurotoxin serotype A (BoNT/A, could represent an excellent approach to investigate the mechanism of action on the nociceptive pathways at peripheral and/or central level. After peripheral administration of BoNT/A, we analyzed the expression of cl-SNAP-25, from the hindpaw's nerve endings to the spinal cord, together with the behavioral effects on neuropathic pain. We used the chronic constriction injury of the sciatic nerve in CD1 mice as animal model of neuropathic pain. We evaluated immunostaining of cl-SNAP-25 in the peripheral nerve endings, along the sciatic nerve, in dorsal root ganglia and in spinal dorsal horns after intraplantar injection of saline or BoNT/A, alone or colocalized with either glial fibrillar acidic protein, GFAP, or complement receptor 3/cluster of differentiation 11b, CD11b, or neuronal nuclei, NeuN, depending on the area investigated. Immunofluorescence analysis shows the presence of the cl-SNAP-25 in all tissues examined, from the peripheral endings to the spinal cord, suggesting a retrograde transport of BoNT/A. Moreover, we performed in vitro experiments to ascertain if BoNT/A was able to interact with the proliferative state of Schwann cells (SC. We found that BoNT/A modulates the proliferation of SC and inhibits the acetylcholine release from SC, evidencing a new biological effect of the toxin and further supporting the retrograde transport of the toxin along the nerve and its ability to influence regenerative processes. The present results strongly sustain a combinatorial action at peripheral and central neural levels and encourage the use of BoNT/A for the pathological pain conditions difficult to treat in clinical practice and dramatically impairing patients' quality of life.

  9. Comparative characterization of botulinum neurotoxin subtypes F1 and F7 featuring differential substrate recognition and cleavage mechanisms.

    Science.gov (United States)

    Guo, Jiubiao; Chan, Edward Wai Chi; Chen, Sheng

    2016-03-01

    BoNT/F7, one of the seven subtypes of botulinum neurotoxin type F (F1 to F7), is the second-most divergent subtype of this group. Despite sharing >60% identity with BoNT/F1 at both holotoxin and enzymatic domain levels, it requires an N-terminal extended peptide substrate for efficient substrate cleavage, suggesting its unique substrate recognition and specificity mechanism. Substrate mapping and saturation mutagenesis analysis revealed that VAMP2 (20-65) was likely a minimally effective substrate for LC/F7 (light chain of BoNT/F7), and in addition, LC/F7 recognized VAMP2 in a unique way, which differed significantly from that of LC/F1, although both of them share similar substrate binding and hydrolysis mode. LC/F7 utilizes distinct pockets for specific substrate binding and recognition in particular for the B1, B2 and S2 sites recognitions. Our findings provide insights into the distinct substrate recognition features of BoNT subtypes and useful information for therapy development for BoNT/F. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Structural insight into exosite binding and discovery of novel exosite inhibitors of botulinum neurotoxin serotype A through in silico screening

    Science.gov (United States)

    Hu, Xin; Legler, Patricia M.; Southall, Noel; Maloney, David J.; Simeonov, Anton; Jadhav, Ajit

    2014-07-01

    Botulinum neurotoxin serotype A (BoNT/A) is the most lethal toxin among the Tier 1 Select Agents. Development of potent and selective small molecule inhibitors against BoNT/A zinc metalloprotease remains a challenging problem due to its exceptionally large substrate binding surface and conformational plasticity. The exosites of the catalytic domain of BoNT/A are intriguing alternative sites for small molecule intervention, but their suitability for inhibitor design remains largely unexplored. In this study, we employed two recently identified exosite inhibitors, D-chicoric acid and lomofungin, to probe the structural features of the exosites and molecular mechanisms of synergistic inhibition. The results showed that D-chicoric acid favors binding at the α-exosite, whereas lomofungin preferentially binds at the β-exosite by mimicking the substrate β-sheet binding interaction. Molecular dynamics simulations and binding interaction analysis of the exosite inhibitors with BoNT/A revealed key elements and hotspots that likely contribute to the inhibitor binding and synergistic inhibition. Finally, we performed database virtual screening for novel inhibitors of BoNT/A targeting the exosites. Hits C1 and C2 showed non-competitive inhibition and likely target the α- and β-exosites, respectively. The identified exosite inhibitors may provide novel candidates for structure-based development of therapeutics against BoNT/A intoxication.

  11. Computer-aided lead optimization: improved small-molecule inhibitor of the zinc endopeptidase of botulinum neurotoxin serotype A.

    Directory of Open Access Journals (Sweden)

    Jing Tang

    2007-08-01

    Full Text Available Optimization of a serotype-selective, small-molecule inhibitor of botulinum neurotoxin serotype A (BoNTA endopeptidase is a formidable challenge because the enzyme-substrate interface is unusually large and the endopeptidase itself is a large, zinc-binding protein with a complex fold that is difficult to simulate computationally. We conducted multiple molecular dynamics simulations of the endopeptidase in complex with a previously described inhibitor (K(i (app of 7+/-2.4 microM using the cationic dummy atom approach. Based on our computational results, we hypothesized that introducing a hydroxyl group to the inhibitor could improve its potency. Synthesis and testing of the hydroxyl-containing analog as a BoNTA endopeptidase inhibitor showed a twofold improvement in inhibitory potency (K(i (app of 3.8+/-0.8 microM with a relatively small increase in molecular weight (16 Da. The results offer an improved template for further optimization of BoNTA endopeptidase inhibitors and demonstrate the effectiveness of the cationic dummy atom approach in the design and optimization of zinc protease inhibitors.

  12. Botulinum neurotoxin treatment in children with cerebral palsy: validation of a needle placement protocol using passive muscle stretching and relaxing.

    Science.gov (United States)

    Warnink-Kavelaars, Jessica; Vermeulen, R Jeroen; Buizer, Annemieke I; Becher, Jules G

    2016-12-01

    To validate a detailed intramuscular needle placement protocol using passive muscle stretching and relaxing for botulinum neurotoxin type A (BoNT-A) treatment in the lower extremity of children with spastic cerebral palsy (CP), with verification by electrical stimulation. A prospective observational study was performed in 75 children with spastic CP who received regular BoNT-A treatment under general anaesthesia (52 males, 23 females; mean age 8y 9mo, SD 3y 7mo, range 4-18y; mean body mass index 16.2, SD 3.7, range 7.7-26.7). A total of 1084 intramuscular needle placements using passive muscle stretching and relaxing were verified by electrical stimulation. Primary outcome was the positive predictive value. Intramuscular needle placement in the muscles adductor brevis, adductor longus, gracilis, semimembranosus, semitendinosus, biceps femoris, rectus femoris, and lateral and medial heads of the gastrocnemius and soleus had a positive predictive value ranging from 85.7% to 100% (95% confidence interval ranging from 71.5-89.9% to 91.4-100%). This validated detailed protocol for intramuscular needle placement using passive muscle stretching and relaxing for BoNT-A treatment in the lower extremity of children with spastic CP is reliable and has a high positive predictive value. © 2016 Mac Keith Press.

  13. Molecular gene profiling of Clostridium botulinum group III and its detection in naturally contaminated samples originating from various European countries.

    Science.gov (United States)

    Woudstra, Cedric; Le Maréchal, Caroline; Souillard, Rozenn; Bayon-Auboyer, Marie-Hélène; Anniballi, Fabrizio; Auricchio, Bruna; De Medici, Dario; Bano, Luca; Koene, Miriam; Sansonetti, Marie-Hélène; Desoutter, Denise; Hansbauer, Eva-Maria; Dorner, Martin B; Dorner, Brigitte G; Fach, Patrick

    2015-04-01

    We report the development of real-time PCR assays for genotyping Clostridium botulinum group III targeting the newly defined C. novyi sensu lato group; the nontoxic nonhemagglutinin (NTNH)-encoding gene ntnh; the botulinum neurotoxin (BoNT)-encoding genes bont/C, bont/C/D, bont/D, and bont/D/C; and the flagellin (fliC) gene. The genetic diversity of fliC among C. botulinum group III strains resulted in the definition of five major subgroups named fliC-I to fliC-V. Investigation of fliC subtypes in 560 samples, with various European origins, showed that fliC-I was predominant and found exclusively in samples contaminated by C. botulinum type C/D, fliC-II was rarely detected, no sample was recorded as fliC-III or fliC-V, and only C. botulinum type D/C samples tested positive for fliC-IV. The lack of genetic diversity of the flagellin gene of C. botulinum type C/D would support a clonal spread of type C/D strains in different geographical areas. fliC-I to fliC-III are genetically related (87% to 92% sequence identity), whereas fliC-IV from C. botulinum type D/C is more genetically distant from the other fliC types (with only 50% sequence identity). These findings suggest fliC-I to fliC-III have evolved in a common environment and support a different genetic evolution for fliC-IV. A combination of the C. novyi sensu lato, ntnh, bont, and fliC PCR assays developed in this study allowed better characterization of C. botulinum group III and showed the group to be less genetically diverse than C. botulinum groups I and II, supporting a slow genetic evolution of the strains belonging to C. botulinum group III. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Atoxic derivative of botulinum neurotoxin A as a prototype molecular vehicle for targeted delivery to the neuronal cytoplasm.

    Directory of Open Access Journals (Sweden)

    Edwin J Vazquez-Cintron

    Full Text Available We have previously described genetic constructs and expression systems that enable facile production of recombinant derivatives of botulinum neurotoxins (BoNTs that retain the structural and trafficking properties of wt BoNTs. In this report we describe the properties of one such derivative, BoNT/A ad, which was rendered atoxic by introducing two amino acid mutations to the light chain (LC of wt BoNT/A, and which is being developed as a molecular vehicle for delivering drugs to the neuronal cytoplasm. The neuronal binding, internalization, and intracellular trafficking of BoNT/A ad in primary hippocampal cultures was evaluated using three complimentary techniques: flow cytometry, immunohistochemistry, and Western blotting. Neuronal binding of BoNT ad was significantly increased when neurons were incubated in depolarizing medium. Flow cytometry demonstrated that BoNT/A ad internalized into neurons but not glia. After 24 hours, the majority of the neuron-bound BoNT/A ad became internalized, as determined by its resistance to pronase E-induced proteolytic degradation of proteins associated with the plasma membrane of intact cells. Significant amounts of the atoxic LC accumulated in a Triton X-100-extractable fraction of the neurons, and persisted as such for at least 11 days with no evidence of degradation. Immunocytochemical analysis demonstrated that the LC of BoNT/A ad was translocated to the neuronal cytoplasm after uptake and was specifically targeted to SNARE proteins. The atoxic LC consistently co-localized with synaptic markers SNAP-25 and VAMP-2, but was rarely co-localized with markers for early or late endosomes. These data demonstrate that BoNT/A ad mimics the trafficking properties of wt BoNT/A, confirming that our platform for designing and expressing BoNT derivatives provides an accessible system for elucidating the molecular details of BoNT trafficking, and can potentially be used to address multiple medical and biodefense needs.

  15. Crystal Structure of the Receptor-Binding Domain of Botulinum Neurotoxin Type HA, Also Known as Type FA or H

    Directory of Open Access Journals (Sweden)

    Guorui Yao

    2017-03-01

    Full Text Available Botulinum neurotoxins (BoNTs, which have been exploited as cosmetics and muscle-disorder treatment medicines for decades, are well known for their extreme neurotoxicity to humans. They pose a potential bioterrorism threat because they cause botulism, a flaccid muscular paralysis-associated disease that requires immediate antitoxin treatment and intensive care over a long period of time. In addition to the existing seven established BoNT serotypes (BoNT/A–G, a new mosaic toxin type termed BoNT/HA (aka type FA or H was reported recently. Sequence analyses indicate that the receptor-binding domain (HC of BoNT/HA is ~84% identical to that of BoNT/A1. However, BoNT/HA responds differently to some potent BoNT/A-neutralizing antibodies (e.g., CR2 that target the HC. Therefore, it raises a serious concern as to whether BoNT/HA poses a new threat to our biosecurity. In this study, we report the first high-resolution crystal structure of BoNT/HA-HC at 1.8 Å. Sequence and structure analyses reveal that BoNT/HA and BoNT/A1 are different regarding their binding to cell-surface receptors including both polysialoganglioside (PSG and synaptic vesicle glycoprotein 2 (SV2. Furthermore, the new structure also provides explanations for the ~540-fold decreased affinity of antibody CR2 towards BoNT/HA compared to BoNT/A1. Taken together, these new findings advance our understanding of the structure and function of this newly identified toxin at the molecular level, and pave the way for the future development of more effective countermeasures.

  16. The effect of botulinum neurotoxin type A on capsule formation around silicone implants: the in vivo and in vitro study.

    Science.gov (United States)

    Lee, Sang D; Yi, Min-Hee; Kim, Dong W; Lee, Young; Choi, YoungWoong; Oh, Sang-Ha

    2016-02-01

    This study confirms that botulinum neurotoxin type A (BoNT-A) decreases capsular contracture and elucidates a possible mechanism. Silicone blocks were implanted subcutaneously in 20 mice. The experimental groups received BoNT-A (1, 2·5 or 5 U) instilled into the subcutaneous pocket. After 30 days, periprosthetic capsules were harvested and evaluated. The effect of BoNT-A on the differentiation of human dermal fibroblasts to myofibroblasts in culture was examined by Western blot analysis. Changes in transforming growth factor-beta1 (TGF-β1) expression in cultured fibroblasts were determined by enzyme-linked immunosorbent assay (ELISA). In in vivo study, the thickness of capsules (P < 0·05) and the number of alpha-smooth muscle actin (α-SMA)(+) cells in capsules (P < 0·05) were significantly decreased in the experimental groups. TGF-β1 was significantly underexpressed in the experimental groups (P < 0·05). In in vitro study, BoNT-A did not significantly affect fibroblast viability. Western blot analysis showed that α-SMA protein levels were significantly decreased in the experimental groups (P < 0·05). Based on ELISA, the amount of TGF-β1 was significantly decreased in the experimental groups (P < 0·05), especially cells treated with a high dose of BoNT-A (P < 0·001). This study confirms that BoNT-A prevents capsular formation around silicone implants, possibly by blocking TGF-β1 signalling and interrupting the differentiation of fibroblasts to myofibroblasts. © 2014 The Authors. International Wound Journal © 2014 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  17. Accelerated intoxication of GABAergic synapses by botulinum neurotoxin A disinhibits stem cell-derived neuron networks prior to network silencing

    Directory of Open Access Journals (Sweden)

    Phillip H Beske

    2015-04-01

    Full Text Available Botulinum neurotoxins (BoNTs are extremely potent toxins that specifically cleave SNARE proteins in peripheral synapses, preventing neurotransmitter release. Neuronal responses to BoNT intoxication are traditionally studied by quantifying SNARE protein cleavage in vitro or monitoring physiological paralysis in vivo. Consequently, the dynamic effects of intoxication on synaptic behaviors are not well understood. We have reported that mouse embryonic stem cell-derived neurons (ESNs are highly sensitive to BoNT based on molecular readouts of intoxication. Here we study the time-dependent changes in synapse- and network-level behaviors following addition of BoNT/A to spontaneously active networks of glutamatergic and GABAergic ESNs. Whole-cell patch-clamp recordings indicated that BoNT/A rapidly blocked synaptic neurotransmission, confirming that ESNs replicate the functional pathophysiology responsible for clinical botulism. Quantitation of spontaneous neurotransmission in pharmacologically isolated synapses revealed accelerated silencing of GABAergic synapses compared to glutamatergic synapses, which was consistent with the selective accumulation of cleaved SNAP-25 at GAD1+ presynaptic terminals at early timepoints. Different latencies of intoxication resulted in complex network responses to BoNT/A addition, involving rapid disinhibition of stochastic firing followed by network silencing. Synaptic activity was found to be highly sensitive to SNAP-25 cleavage, reflecting the functional consequences of the localized cleavage of the small subpopulation of SNAP-25 that is engaged in neurotransmitter release in the nerve terminal. Collectively these findings illustrate that use of synaptic function assays in networked neurons cultures offers a novel and highly sensitive approach for mechanistic studies of toxin:neuron interactions and synaptic responses to BoNT.

  18. Crystal Structure of the Receptor-Binding Domain of Botulinum Neurotoxin Type HA, Also Known as Type FA or H.

    Science.gov (United States)

    Yao, Guorui; Lam, Kwok-Ho; Perry, Kay; Weisemann, Jasmin; Rummel, Andreas; Jin, Rongsheng

    2017-03-08

    Botulinum neurotoxins (BoNTs), which have been exploited as cosmetics and muscle-disorder treatment medicines for decades, are well known for their extreme neurotoxicity to humans. They pose a potential bioterrorism threat because they cause botulism, a flaccid muscular paralysis-associated disease that requires immediate antitoxin treatment and intensive care over a long period of time. In addition to the existing seven established BoNT serotypes (BoNT/A-G), a new mosaic toxin type termed BoNT/HA (aka type FA or H) was reported recently. Sequence analyses indicate that the receptor-binding domain (H C ) of BoNT/HA is ~84% identical to that of BoNT/A1. However, BoNT/HA responds differently to some potent BoNT/A-neutralizing antibodies (e.g., CR2) that target the H C . Therefore, it raises a serious concern as to whether BoNT/HA poses a new threat to our biosecurity. In this study, we report the first high-resolution crystal structure of BoNT/HA-H C at 1.8 Å. Sequence and structure analyses reveal that BoNT/HA and BoNT/A1 are different regarding their binding to cell-surface receptors including both polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Furthermore, the new structure also provides explanations for the ~540-fold decreased affinity of antibody CR2 towards BoNT/HA compared to BoNT/A1. Taken together, these new findings advance our understanding of the structure and function of this newly identified toxin at the molecular level, and pave the way for the future development of more effective countermeasures.

  19. Crystal Structure of the Receptor-Binding Domain of Botulinum Neurotoxin Type HA, Also Known as Type FA or H

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Guorui; Lam, Kwok-ho; Perry, Kay; Weisemann, Jasmin; Rummel, Andreas; Jin, Rongsheng (Cornell); (Dusseldorf); (UCI)

    2017-03-01

    Botulinum neurotoxins (BoNTs), which have been exploited as cosmetics and muscle-disorder treatment medicines for decades, are well known for their extreme neurotoxicity to humans. They pose a potential bioterrorism threat because they cause botulism, a flaccid muscular paralysis-associated disease that requires immediate antitoxin treatment and intensive care over a long period of time. In addition to the existing seven established BoNT serotypes (BoNT/A–G), a new mosaic toxin type termed BoNT/HA (aka type FA or H) was reported recently. Sequence analyses indicate that the receptor-binding domain (HC) of BoNT/HA is ~84% identical to that of BoNT/A1. However, BoNT/HA responds differently to some potent BoNT/A-neutralizing antibodies (e.g., CR2) that target the HC. Therefore, it raises a serious concern as to whether BoNT/HA poses a new threat to our biosecurity. In this study, we report the first high-resolution crystal structure of BoNT/HA-HC at 1.8 Å. Sequence and structure analyses reveal that BoNT/HA and BoNT/A1 are different regarding their binding to cell-surface receptors including both polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Furthermore, the new structure also provides explanations for the ~540-fold decreased affinity of antibody CR2 towards BoNT/HA compared to BoNT/A1. Taken together, these new findings advance our understanding of the structure and function of this newly identified toxin at the molecular level, and pave the way for the future development of more effective countermeasures

  20. [Botulinum neuro-toxin aype-A in the treatment of chronic tension type headache associated with pericranial tenderness].

    Science.gov (United States)

    Karadaş, Omer; Ipekdal, Ilker Hüseyin; Ulaş, Umit Hidir; Kütükçü, Yaşar; Odabaşi, Zeki

    2012-01-01

    Both peripheral and central nociceptive mechanisms are responsible in chronic TTH. Analgegics are used in the acute treatment of chronic TTH and antidepressants are used in prophylactic treatment. However, further studies are needed to bring out new treatment options. The aim of our study is to investigate the effectiveness of Botulinum Neuro-toxin Type-A (BoNTA) in the treatment of chronic TTH associated with pericranial tenderness (PT). 14 patients with chronic TTH with PT were included in the study. 50 units Botox(®) injection was applied to the pericranial muscles (5 units for each muscles bilaterally: frontal, temporal, semispinalis capitis, spenius capitis and trapezius muscles) for each patient. Severity of headache was evaluated by VAS (Visual Analogue Scale) and number of days with headache per month were recorded before treatment and 2nd and 4th months after treatment. Number of days with headache per month were 19.57 ± 3.25 before treatment, 15.28 ± 4.37 at the 2nd month after treatment and 15.78 ± 3.90 at the 4th month after treatment. Severity of headache was 65.71 ± 9.16 before the treatment, 50.71 ± 13.56 at the 2nd month after treatment and 54.28 ± 10.35 at the 4th month after treatment (p<0.05). Frequency and severity of headache before treatment were significantly decreased at the 2nd month after treatment and this significance continued at the 4th month after treatment (p<0.05). BoNTA treatment may be usefull in the treatment of patients with chronic TTH associated with PT.

  1. Cost-effectiveness of sacral neuromodulation compared to botulinum neurotoxin a or continued medical management in refractory overactive bladder.

    Science.gov (United States)

    Arlandis, Salvador; Castro, David; Errando, Carlos; Fernández, Eldiberto; Jiménez, Miguel; González, Paloma; Crespo, Carlos; Staeuble, Funke; Rodríguez, José Manuel; Brosa, Max

    2011-01-01

    This study assessed the cost-effectiveness and health-care budget impact of sacral neuromodulation (SNM) in refractory idiopathic OAB-wet patients in Spain. A 10-year Markov analytic model was developed to estimate quality-adjusted life-years (QALYs) gained and incontinence episode avoided associated with SNM therapy compared with botulinum neurotoxin A (BoNT-A) or continued optimized medical treatment (OMT). At 10 years, the cumulative costs of SNM, BoNT-A, and OMT were €29,166, €29,458, and €29,370, respectively, whereas the QALYs for SNM, BoNT-A, and OMT are 6.89, 6.38, and 5.12, respectively. Consequently, incremental cost-effectiveness ratios (ICERs) for SNM demonstrate that although the initial costs for SNM are higher than those for the other treatments, decreasing follow-up costs coupled with consistently greater effectiveness in the long term make SNM the economically dominant option at 10 years. Sensitivity analyses suggest that 99.7% and 99.9% (for SNM vs. BoNT-A and OMT, respectively) of the 1000 Monte Carlo iterations fall within the €30,000 cost-effectiveness threshold, considered to be acceptable in Spain. The 10-year incremental cost per incontinence episode avoided for SNM also makes this therapy the dominant option compared to BoNT-A or OMT. Additionally, the estimated budget impact of the gradually increased referral for SNM for the management of OAB patients in Spain is small. As a treatment option for refractory idiopathic OAB, at 10 years, SNM provides a considerable possibility of symptom and quality-of-life improvement and is cost-effective compared to BoNT-A or continued OMT. Copyright © 2011 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  2. Molucular gene profiling of Clostridium botulinum group III and their detection in naturally contaminated samples originating from various European countries

    NARCIS (Netherlands)

    Woudstra, C.; LeMarechal, C.; Souillard, R.; Bäyon-Auboyer, M.H.; Anniballi, F.; Auricchio, B.; Medici, De D.; Bano, L.; Koene, M.G.J.; Sansonetti, M.H.; Hansbauer, E.M.; Desoutter, D.; Dorner, M.B.; Fach, P.; Dorner, B.G.

    2015-01-01

    We report the development of real-time PCR assays for genotyping Clostridium botulinum group III targeting the newly defined C. novyi sensu lato group; the nontoxic nonhemagglutinin (NTNH)-encoding gene ntnh; the botulinum neurotoxin (BoNT)-encoding genes bont/C, bont/C/D, bont/D, and bont/D/C; and

  3. Epitope characterization and variable region sequence of f1-40, a high-affinity monoclonal antibody to botulinum neurotoxin type a (Hall strain.

    Directory of Open Access Journals (Sweden)

    Miles C Scotcher

    Full Text Available BACKGROUND: Botulism, an often fatal neuroparalytic disease, is caused by botulinum neurotoxins (BoNT which consist of a family of seven serotypes (A-H produced by the anaerobic bacterium Clostridium botulinum. BoNT, considered the most potent biological toxin known, is a 150 kDa protein consisting of a 100 kDa heavy-chain (Hc and a 50 kDa light-chain (Lc. F1-40 is a mouse-derived, IgG1 monoclonal antibody that binds the light chain of BoNT serotype A (BoNT/A and is used in a sensitive immunoassay for toxin detection. We report the fine epitope mapping of F1-40 and the deduced amino acid sequence of the variable regions of the heavy and light chains of the antibody. METHODS AND FINDINGS: To characterize the binding epitope of F1-40, three complementary experimental approaches were selected. Firstly, recombinant peptide fragments of BoNT/A light-chain were used in Western blots to identify the epitope domains. Secondly, a peptide phage-display library was used to identify the specific amino acid sequences. Thirdly, the three-dimensional structure of BoNT/A was examined in silico, and the amino acid sequences determined from the phage-display studies were mapped onto the three-dimensional structure in order to visualize the epitope. F1-40 was found to bind a peptide fragment of BoNT/A, designated L1-3, which spans from T125 to L200. The motif QPDRS was identified by phage-display, and was mapped to a region within L1-3. When the three amino acids Q138, P139 and D140 were all mutated to glycine, binding of F1-40 to the recombinant BoNT/A light chain peptide was abolished. Q-138, P-139 and D-140 form a loop on the external surface of BoNT/A, exposed to solvent and accessible to F1-40 binding. CONCLUSIONS: The epitope of F1-40 was localized to a single exposed loop (ss4, ss5 on the Lc of BoNT. Furthermore amino acids Q138, P139 and D140 forming the tip of the loop appear critical for binding.

  4. Management of bladder, prostatic and pelvic floor disorders with botulinum neurotoxin.

    Science.gov (United States)

    Maria, G; Cadeddu, F; Brisinda, D; Brandara, F; Brisinda, G

    2005-01-01

    Since its introduction in the late 1970s for the treatment of strabismus and blepharospasm, botulinum toxin (BoNT) has been increasingly used in the interventional treatment of several other disorders characterized by excessive or inappropriate muscle contractions. The use of this pluripotential agent has extended to a plethora of conditions including: focal dystonia; spasticity; inappropriate contraction in most sphincters of the body such as those associated with spasmodic dysphonia, esophageal achalasia, chronic anal fissure, and vaginismus; eye movement disorders; other hyperkinetic disorders including tics and tremors; autonomic disorders such as hyperhidrosis; genitourinary disorders such as overactive and neurogenic bladder, non-bacterial prostatitis and benign prostatic hyperplasia; and aesthetically undesirable hyperfunctional facial lines. In addition, BoNT is being investigated for the control of the pain, and for the management of tension or migraine headaches and myofascial pain syndrome. BoNT injections have several advantages over drugs and surgical therapies in the management of intractable or chronic disease. Systemic pharmacologic effects are rare; permanent destruction of tissue does not occur. Graded degrees of relaxation may be achieved by varying the dose injected; most adverse effects are transient. Finally, patient acceptance is high. In this paper, clinical experience over the last years with BoNT in urological impaired patients will be illustrated. Moreover, this paper presents current data on the use of BoNT to treat pelvic floor disorders.

  5. Botulinum neurotoxin effects on masseter muscle fibre in WNIN obese rats-Scanning electron microscope analysis.

    Science.gov (United States)

    Nemani, Shivaram; Putchha, Uday K; Periketi, Madhusudhanachary; Pothana, Sailaja; Nappanveettil, Giridharan; Nemani, Harishankar

    2016-09-01

    WNIN/Ob obese mutant rats are unique in comparison to similar rodent models of obesity established in the West. The present study is aimed to evaluate the masticatory function and histological changes in masseter muscle fibres treated with botulinum toxin type A (BoNT/A) in WNIN/Ob rats. Twelve WNIN/Ob obese rats and 12 lean rats at 35 days of age were taken and divided into four groups (6 rats in each group): Group-I (WNIN/Ob) and Group-II (lean) rats were injected with BoNT/A (1 unit) into right side of masseter muscle. For control left masseter of both phenotypes was injected with saline. Group-III (WNIN/Ob) and Group-IV (lean) rats were without any treatment. Growth and food intake was monitored daily for 45 days. Rats were euthanized and gross necropsy was carried out to check any abnormalities. Masseter muscles were dissected and mean muscle mass was recorded. Small portion of muscle was stored in 10% formalin for hematoxylin-eosin (H&E) staining and remaining tissue stored in gluteraldehyde for scanning electron microscopy (SEM). There is a significant decrease in the body weights and food intake of BoNT/A treated obese rats. The H&E staining of the masseter muscle in both groups showed normal morphology and orientation. The SEM analysis showed that, fibre size in BoNT/A treated masseter muscle of obese rats increased more than the saline treated side and in control rats. The increase in the muscle fibre size and transition of muscle fibre subtypes may be due to the reduced masticatory function of the masseter muscle. SCANNING 38:396-402, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  6. High-level expression, purification, crystallization and preliminary X-ray crystallographic studies of the receptor-binding domain of botulinum neurotoxin serotype D

    International Nuclear Information System (INIS)

    Zhang, Yanfeng; Gao, Xiaoli; Qin, Ling; Buchko, Garry W.; Robinson, Howard; Varnum, Susan M.

    2010-01-01

    The receptor-binding domain of botulinum neurotoxin serotype D was expressed in E. coli using a codon-optimized cDNA. The highly purified protein crystallized in space group P2 1 2 1 2 1 , with unit-cell parameters a = 60.8, b = 89.7, c = 93.9 Å, and the crystals diffracted to 1.65 Å resolution. Botulinum neurotoxins (BoNTs) are highly toxic proteins for humans and animals that are responsible for the deadly neuroparalytic disease botulism. Here, details of the expression and purification of the receptor-binding domain (HCR) of BoNT/D in Escherichia coli are presented. Using a codon-optimized cDNA, BoNT/D-HCR was expressed at a high level (150–200 mg per litre of culture) in the soluble fraction. Following a three-step purification protocol, very pure (>98%) BoNT/D-HCR was obtained. The recombinant BoNT/D-HCR was crystallized and the crystals diffracted to 1.65 Å resolution. The crystals belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 60.8, b = 89.7, c = 93.9 Å. Preliminary crystallographic data analysis revealed the presence of one molecule in the asymmetric unit

  7. Structural and mutational analyses of the receptor binding domain of botulinum D/C mosaic neurotoxin: Insight into the ganglioside binding mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Nuemket, Nipawan [Graduate School of Life Sciences, Hokkaido University, Sapporo 060-0810 (Japan); Tanaka, Yoshikazu [Creative Research Institution ' Sousei,' Hokkaido University, Sapporo 001-0021 (Japan); Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810 (Japan); Tsukamoto, Kentaro; Tsuji, Takao [Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192 (Japan); Nakamura, Keiji; Kozaki, Shunji [Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531 (Japan); Yao, Min [Graduate School of Life Sciences, Hokkaido University, Sapporo 060-0810 (Japan); Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810 (Japan); Tanaka, Isao, E-mail: tanaka@castor.sci.hokudai.ac.jp [Graduate School of Life Sciences, Hokkaido University, Sapporo 060-0810 (Japan); Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810 (Japan)

    2011-07-29

    Highlights: {yields} We determined the crystal structure of the receptor binding domain of BoNT in complex with 3'-sialyllactose. {yields} An electron density derived from the 3'-sialyllactose was confirmed at the cleft in the C-terminal subdomain. {yields} Alanine site-directed mutagenesis showed that GBS and GBL are important for ganglioside binding. {yields} A cell binding mechanism, which involves cooperative contribution of two sites, was proposed. -- Abstract: Clostridium botulinum type D strain OFD05, which produces the D/C mosaic neurotoxin, was isolated from cattle killed by the recent botulism outbreak in Japan. The D/C mosaic neurotoxin is the most toxic of the botulinum neurotoxins (BoNT) characterized to date. Here, we determined the crystal structure of the receptor binding domain of BoNT from strain OFD05 in complex with 3'-sialyllactose at a resolution of 3.0 A. In the structure, an electron density derived from the 3'-sialyllactose was confirmed at the cleft in the C-terminal subdomain. Alanine site-directed mutagenesis showed the significant contribution of the residues surrounding the cleft to ganglioside recognition. In addition, a loop adjoining the cleft also plays an important role in ganglioside recognition. In contrast, little effect was observed when the residues located around the surface previously identified as the protein receptor binding site in other BoNTs were substituted. The results of cell binding analysis of the mutants were significantly correlated with the ganglioside binding properties. Based on these observations, a cell binding mechanism of BoNT from strain OFD05 is proposed, which involves cooperative contribution of two ganglioside binding sites.

  8. Structural and mutational analyses of the receptor binding domain of botulinum D/C mosaic neurotoxin: Insight into the ganglioside binding mechanism

    International Nuclear Information System (INIS)

    Nuemket, Nipawan; Tanaka, Yoshikazu; Tsukamoto, Kentaro; Tsuji, Takao; Nakamura, Keiji; Kozaki, Shunji; Yao, Min; Tanaka, Isao

    2011-01-01

    Highlights: → We determined the crystal structure of the receptor binding domain of BoNT in complex with 3'-sialyllactose. → An electron density derived from the 3'-sialyllactose was confirmed at the cleft in the C-terminal subdomain. → Alanine site-directed mutagenesis showed that GBS and GBL are important for ganglioside binding. → A cell binding mechanism, which involves cooperative contribution of two sites, was proposed. -- Abstract: Clostridium botulinum type D strain OFD05, which produces the D/C mosaic neurotoxin, was isolated from cattle killed by the recent botulism outbreak in Japan. The D/C mosaic neurotoxin is the most toxic of the botulinum neurotoxins (BoNT) characterized to date. Here, we determined the crystal structure of the receptor binding domain of BoNT from strain OFD05 in complex with 3'-sialyllactose at a resolution of 3.0 A. In the structure, an electron density derived from the 3'-sialyllactose was confirmed at the cleft in the C-terminal subdomain. Alanine site-directed mutagenesis showed the significant contribution of the residues surrounding the cleft to ganglioside recognition. In addition, a loop adjoining the cleft also plays an important role in ganglioside recognition. In contrast, little effect was observed when the residues located around the surface previously identified as the protein receptor binding site in other BoNTs were substituted. The results of cell binding analysis of the mutants were significantly correlated with the ganglioside binding properties. Based on these observations, a cell binding mechanism of BoNT from strain OFD05 is proposed, which involves cooperative contribution of two ganglioside binding sites.

  9. Catalytic Features of the Botulinum Neurotoxin A Light Chain Revealed by High Resolution Structure of an Inhibitory Peptide Complex

    Energy Technology Data Exchange (ETDEWEB)

    Silvaggi,N.; Wilson, D.; Tzipori, S.; Allen, K.

    2008-01-01

    The Clostridium botulinum neurotoxin serotype A light chain (BoNT/A-LC) is a Zn(II)-dependent metalloprotease that blocks the release of acetylcholine at the neuromuscular junction by cleaving SNAP-25, one of the SNARE proteins required for exocytosis. Because of the potential for use of the toxin in bioterrorism and the increasingly widespread application of the toxin in the medical field, there is significant interest in the development of small-molecule inhibitors of the metalloprotease. Efforts to design such inhibitors have not benefited from knowledge of how peptides bind to the active site since the enzyme-peptide structures available previously either were not occupied in the vicinity of the catalytic Zn(II) ion or did not represent the product of SNAP-25 substrate cleavage. Herein we report the 1.4 Angstroms-resolution X-ray crystal structure of a complex between the BoNT/A-LC and the inhibitory peptide N-Ac-CRATKML, the first structure of the light chain with an inhibitory peptide bound at the catalytic Zn(II) ion. The peptide is bound with the Cys S? atom coordinating the metal ion. Surprisingly, the cysteine sulfur is oxidized to the sulfenic acid form. Given the unstable nature of this species in solution, is it likely that oxidation occurs on the enzyme. In addition to the peptide-bound structure, we report two structures of the unliganded light chain with and without the Zn(II) cofactor bound at 1.25 and 1.20 Angstroms resolution, respectively. The two structures are nearly identical, confirming that the Zn(II) ion plays a purely catalytic role. Additionally, the structure of the Zn(II)-bound uncomplexed enzyme allows identification of the catalytic water molecule and a second water molecule that occupies the same position as the peptidic oxygen in the tetrahedral intermediate. This observation suggests that the enzyme active site is prearranged to stabilize the tetrahedral intermediate of the protease reaction.

  10. Easy expression of the C-terminal heavy chain domain of botulinum neurotoxin serotype A as a vaccine candidate using a bi-cistronic baculovirus system.

    Science.gov (United States)

    Villaflores, Oliver B; Hsei, Chein-Ming; Teng, Chao-Yi; Chen, Ying-Ju; Wey, Jiunn-Jye; Tsui, Pei-Yi; Shyu, Rong-Hwa; Tung, Kuo-Lun; Yeh, Jui-Ming; Chiao, Der-Jiang; Wu, Tzong-Yuan

    2013-04-01

    Clostridial botulinum neurotoxin (BoNT) is one of the most toxic proteins causing the food borne disease, botulism. In previous studies, recombinant BoNT production by Escherichia coli and yeast Pichia pastoris has been hampered by high AT content and codon bias in the gene encoding BoNT and required a synthetic gene to resolve this intrinsic bottleneck. This paper reports the simultaneous expression of the C-terminal heavy chain domain of BoNT (rBoNT/A-HC-6h) and enhanced green fluorescent protein (EGFP) using a bi-cistronic baculovirus-insect cell expression system. The expression of EGFP facilitated the monitoring of viral infection, virus titer determination, and isolation of the recombinant virus. Protein fusion with hexa-His-tag and one-step immobilized metal-ion affinity chromatography (IMAC) purification produced a homogenous, stable, and immunologically active 55-kDa rBoNT/A-HC-6h (about 3mg/L) with >90% purity. Furthermore, measured levels of serum titers were 8-folds for mice vaccinated with the purified rBoNT/A-HC-6h (2μg) than for mice administered with botulinum toxoid after initial immunization. Challenge experiment with botulinum A toxin demonstrated the immunoprotective activity of purified rBoNT/A-HC-6h providing the mice full protection against 10(2) LD50 botulinum A toxin with a dose as low as 0.2μg. This study provided supportive evidence for the use of a bi-cistronic baculovirus-Sf21 insect cell expression system in the facile expression of an immunogenically active rBoNT/A-HC. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Detection limit of Clostridium botulinum spores in dried mushroom samples sourced from China.

    Science.gov (United States)

    Malakar, Pradeep K; Plowman, June; Aldus, Clare F; Xing, Zengtao; Zhao, Yong; Peck, Michael W

    2013-08-16

    A survey of dried mushrooms (Lentinula edodes (Shiitake) and Auricularia auricula (Wood Ear)) sourced from China was carried out to determine the natural contamination of these mushrooms with spores of proteolytic Clostridium botulinum and non-proteolytic C. botulinum. The mushrooms were collected from supermarkets and retailers in 21 cities in China during October 2008. Spore loads of C. botulinum in mushrooms have a degree of uncertainty and variability and this study contributes valuable data for determining prevalence of spores of C. botulinum in mushrooms. An optimized detection protocol that combined selective enrichment culture with multiplex PCR was used to test for spores of proteolytic and non-proteolytic C. botulinum. Detection limits were calculated, using a maximum likelihood protocol, from mushroom samples inoculated with defined numbers of spores of proteolytic C. botulinum or non-proteolytic C. botulinum. Based on the maximum likelihood detection limit, it is estimated that dried mushroom A. auricula contained botulinum, and botulinum. Dried L. edodes contained botulinum and it was not possible to determine reliable detection limits for spores of non-proteolytic C. botulinum using the current detection protocol. © 2013 Elsevier B.V. All rights reserved.

  12. Coupling the Torpedo microplate-receptor binding assay with mass spectrometry to detect cyclic imine neurotoxins.

    Science.gov (United States)

    Aráoz, Rómulo; Ramos, Suzanne; Pelissier, Franck; Guérineau, Vincent; Benoit, Evelyne; Vilariño, Natalia; Botana, Luis M; Zakarian, Armen; Molgó, Jordi

    2012-12-04

    Cyclic imine neurotoxins constitute an emergent family of neurotoxins of dinoflagellate origin that are potent antagonists of nicotinic acetylcholine receptors. We developed a target-directed functional method based on the mechanism of action of competitive agonists/antagonists of nicotinic acetylcholine receptors for the detection of marine cyclic imine neurotoxins. The key step for method development was the immobilization of Torpedo electrocyte membranes rich in nicotinic acetylcholine receptors on the surface of microplate wells and the use of biotinylated-α-bungarotoxin as tracer. Cyclic imine neurotoxins competitively inhibit biotinylated-α-bungarotoxin binding to Torpedo-nicotinic acetylcholine receptors in a concentration-dependent manner. The microplate-receptor binding assay allowed rapid detection of nanomolar concentrations of cyclic imine neurotoxins directly in shellfish samples. Although highly sensitive and specific for the detection of neurotoxins targeting nicotinic acetylcholine receptors as a class, the receptor binding assay cannot identify a given analyte. To address the low selectivity of the microplate-receptor binding assay, the cyclic imine neurotoxins tightly bound to the coated Torpedo nicotinic receptor were eluted with methanol, and the chemical nature of the eluted ligands was identified by mass spectrometry. The immobilization of Torpedo electrocyte membranes on the surface of microplate wells proved to be a high-throughput format for the survey of neurotoxins targeting nicotinic acetylcholine receptors directly in shellfish matrixes with high sensitivity and reproducibility.

  13. Multivalent Chromosomal Expression of the Clostridium botulinum Serotype A Neurotoxin Heavy-Chain Antigen and the Bacillus anthracis Protective Antigen in Lactobacillus acidophilus.

    Science.gov (United States)

    O'Flaherty, Sarah; Klaenhammer, Todd R

    2016-10-15

    Clostridium botulinum and Bacillus anthracis produce potent toxins that cause severe disease in humans. New and improved vaccines are needed for both of these pathogens. For mucosal vaccine delivery using lactic acid bacteria, chromosomal expression of antigens is preferred over plasmid-based expression systems, as chromosomal expression circumvents plasmid instability and the need for antibiotic pressure. In this study, we constructed three strains of Lactobacillus acidophilus NCFM expressing from the chromosome (i) the nontoxic host receptor-binding domain of the heavy chain of Clostridium botulinum serotype A neurotoxin (BoNT/A-Hc), (ii) the anthrax protective antigen (PA), and (iii) both the BoNT/A-Hc and the PA. The BoNT/A-Hc vaccine cassette was engineered to contain the signal peptide from the S-layer protein A from L. acidophilus and a dendritic-cell-targeting peptide. A chromosomal region downstream of lba0889 carrying a highly expressed enolase gene was selected for insertion of the vaccine cassettes. Western blot analysis confirmed the heterologous expression of the two antigens from plasmid and chromosome locations. Stability assays demonstrated loss of the vaccine cassettes from expression plasmids without antibiotic maintenance. RNA sequencing showed high expression of each antigen and that insertion of the vaccine cassettes had little to no effect on the transcription of other genes in the chromosome. This study demonstrated that chromosomal integrative recombinant strains are promising vaccine delivery vehicles when targeted into high-expression chromosomal regions. Levels of expression match high-copy-number plasmids and eliminate the requirement for antibiotic selective maintenance of recombinant plasmids. Clostridium botulinum and Bacillus anthracis produce potent neurotoxins that pose a biochemical warfare concern; therefore, effective vaccines against these bacteria are required. Chromosomal expression of antigens is preferred over plasmid

  14. Optimisation of protocol for Clostridium botulinum detection in mink feed

    Directory of Open Access Journals (Sweden)

    Grenda Tomasz

    2015-09-01

    Full Text Available As the test material mink feed with natural microflora was used. The analyses were conducted using Wrzosek and TPGY broth media, and Willis–Hobbs and Zeissler differential agar media. Wrzosek, Willis–Hobbs, and Zeissler media are described in Polish Standards approved by the National Standards Body in Poland and routinely used in detection of anaerobic bacteria in Poland. Detection and identification of C. botulinum was performed with a previously validated real-time PCR method based on ntnh gene detection, which is common in all C. botulinum toxotypes. The use of Wrzosek broth and Zeissler agar in routine analyses for detection and identification of C. botulinum was ineffective and limited. The obtained results showed the highest culturing process effectiveness in TPGY broth with 72 h incubation at 30°C and isolation on Willis–Hobbs agar. The real-time PCR method based on ntnh gene detection used in this study could be utilised as a supplementary tool to the mouse lethality assay.

  15. High-level Expression Purification Crystallization and Preliminary X-ray Crystallographic Studies of the Receptor Binding Domain of botulinum neurotoxin Serotype D

    Energy Technology Data Exchange (ETDEWEB)

    Y Zhang; X Gao; G Buchko; H Robinson; S Varnum

    2011-12-31

    Botulinum neurotoxins (BoNTs) are highly toxic proteins for humans and animals that are responsible for the deadly neuroparalytic disease botulism. Here, details of the expression and purification of the receptor-binding domain (HCR) of BoNT/D in Escherichia coli are presented. Using a codon-optimized cDNA, BoNT/D{_}HCR was expressed at a high level (150-200 mg per litre of culture) in the soluble fraction. Following a three-step purification protocol, very pure (>98%) BoNT/D{_}HCR was obtained. The recombinant BoNT/D{_}HCR was crystallized and the crystals diffracted to 1.65 {angstrom} resolution. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 60.8, b = 89.7, c = 93.9 {angstrom}. Preliminary crystallographic data analysis revealed the presence of one molecule in the asymmetric unit.

  16. Excellent storage stability and sensitive detection of neurotoxin quinolinic acid.

    Science.gov (United States)

    Singh, Ranjana; Kashyap, Sunayana; Kumar, Suveen; Abraham, Shiju; Gupta, Tejendra K; Kayastha, Arvind M; Malhotra, Bansi D; Saxena, Preeti Suman; Srivastava, Anchal; Singh, Ranjan K

    2017-04-15

    Quinolinic acid (QA) is a metabolite of tryptophan degradation obtained through kynurenine pathway, produced naturally in the mammalian brain as well as in the human cerebrospinal fluid. The presence of QA ~10-40µM is a clear indicator of many neurological disorders as well as deficiency of vitamin B 6 in human being. In the present work; rapid, sensitive and cost-effective bio-electrodes were prepared to detect the trace amount of endogenous neurotoxin (QA). Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) studies were carried out to measure the electrochemical response of the fabricated bio-electrodes as a function of QA concentrations. These devices were found to exhibit desirable sensitivity of ~7.86mAμM -1 cm -2 in wide concentration range (6.5μM-65mM). The lower detection limit of this device is as low as 6.5μM and it has excellent storage stability of ~30 days. The capability of the proposed electrochemical bio-sensor was also checked to detect QA in the real samples (human serum). These results reveal that the use of this electrochemical bio-sensor may provide a potential platform for the detection of QA in the real samples for the prior detection of many diseases. Copyright © 2016. Published by Elsevier B.V.

  17. BotR/A and TetR are alternative RNA polymerase sigma factors controlling the expression of the neurotoxin and associated protein genes in Clostridium botulinum type A and Clostridium tetani.

    Science.gov (United States)

    Raffestin, Stéphanie; Dupuy, Bruno; Marvaud, Jean Christophe; Popoff, Michel R

    2005-01-01

    Clostridium botulinum and Clostridium tetani, respectively, produce potent toxins, botulinum neurotoxin (BoNT) and tetanus neurotoxin (TeTx), which are responsible for severe diseases, botulism and tetanus. Neurotoxin synthesis is a regulated process in Clostridium. The genes botR/A in C. botulinum A and tetR in C. tetani positively regulate expression of BoNT/A and associated non-toxic proteins (ANTPs), as well as TeTx respectively. The botR/A gene lies in close vicinity of the two operons which contain bont/A and antps genes in C. botulinum A, and tetR immediately precedes the tetX gene in C. tetani. We show that BotR/A and TetR function as specific alternative sigma factors rather than positive regulators based on the following results: (i) BotR/A and TetR associated with target DNAs only in the presence of the RNA polymerase core enzyme (Core), (ii) BotR/A and TetR directly bound with the core enzyme, (iii) BotR/A-Core recognized -35 and -10 regions of ntnh-bont/A promoter and (iv) BotR/A and TetR triggered in vitro transcription from the target promoters. In C. botulinum A, bont/A and antps genes are transcribed as bi- and tricistronic operons controlled by BotR/A. BotR/A and TetR are seemingly related to a new subgroup of the sigma70 family that includes TcdR and UviA, which, respectively, regulate production of toxins A and B in C. difficile and bacteriocin in C. perfringens. Sequences of -35 region are highly conserved in the promoter of target toxin genes in C. botulinum, C. tetani, C. difficile and C. perfringens. Overall, a common regulation mechanism probably controls toxin gene expression in these four toxigenic clostridial species.

  18. Advances in Assays and Analytical Approaches for Botulinum Toxin Detection

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Ozanich, Richard M.; Warner, Marvin G.; Bruckner-Lea, Cindy J.; Marks, James D.

    2010-08-04

    Methods to detect botulinum toxin, the most poisonous substance known, are reviewed. Current assays are being developed with two main objectives in mind: 1) to obtain sufficiently low detection limits to replace the mouse bioassay with an in vitro assay, and 2) to develop rapid assays for screening purposes that are as sensitive as possible while requiring an hour or less to process the sample an obtain the result. This review emphasizes the diverse analytical approaches and devices that have been developed over the last decade, while also briefly reviewing representative older immunoassays to provide background and context.

  19. Interactions of a potent cyclic peptide inhibitor with the light chain of botulinum neurotoxin A: Insights from X-ray crystallography.

    Science.gov (United States)

    Kumaran, Desigan; Adler, Michael; Levit, Matthew; Krebs, Michael; Sweeney, Richard; Swaminathan, Subramanyam

    2015-11-15

    The seven antigenically distinct serotypes (A-G) of botulinum neurotoxin (BoNT) are responsible for the deadly disease botulism. BoNT serotype A (BoNT/A) exerts its lethal action by cleaving the SNARE protein SNAP-25, leading to inhibition of neurotransmitter release, flaccid paralysis and autonomic dysfunction. BoNTs are dichain proteins consisting of a ∼ 100 kDa heavy chain and a ∼ 50 kDa light chain; the former is responsible for neurospecific binding, internalization and translocation, and the latter for cleavage of neuronal SNARE proteins. Because of their extreme toxicity and history of weaponization, the BoNTs are regarded as potential biowarfare/bioterrorism agents. No post-symptomatic therapeutic interventions are available for BoNT intoxication other than intensive care; therefore it is imperative to develop specific antidotes against this neurotoxin. To this end, a cyclic peptide inhibitor (CPI-1) was evaluated in a FRET assay for its ability to inhibit BoNT/A light chain (Balc). CPI was found to be highly potent, exhibiting a Ki of 12.3 nM with full-length Balc448 and 39.2 nM using a truncated crystallizable form of the light chain (Balc424). Cocrystallization studies revealed that in the Balc424-CPI-1 complex, the inhibitor adopts a helical conformation, occupies a high percentage of the active site cavity and interacts in an amphipathic manner with critical active site residues. The data suggest that CPI-1 prevents SNAP-25 from accessing the Balc active site by blocking both the substrate binding path at the surface and the Zn(2+) binding region involved in catalysis. This differs from linear peptide inhibitors described to date which block only the latter. Published by Elsevier Ltd.

  20. Botulinum toxin

    Directory of Open Access Journals (Sweden)

    Nigam P

    2010-01-01

    Full Text Available Botulinum toxin, one of the most poisonous biological substances known, is a neurotoxin produced by the bacterium Clostridium botulinum. C. botulinum elaborates eight antigenically distinguishable exotoxins (A, B, C 1 , C 2 , D, E, F and G. All serotypes interfere with neural transmission by blocking the release of acetylcholine, the principal neurotransmitter at the neuromuscular junction, causing muscle paralysis. The weakness induced by injection with botulinum toxin A usually lasts about three months. Botulinum toxins now play a very significant role in the management of a wide variety of medical conditions, especially strabismus and focal dystonias, hemifacial spasm, and various spastic movement disorders, headaches, hypersalivation, hyperhidrosis, and some chronic conditions that respond only partially to medical treatment. The list of possible new indications is rapidly expanding. The cosmetological applications include correction of lines, creases and wrinkling all over the face, chin, neck, and chest to dermatological applications such as hyperhidrosis. Injections with botulinum toxin are generally well tolerated and side effects are few. A precise knowledge and understanding of the functional anatomy of the mimetic muscles is absolutely necessary to correctly use botulinum toxins in clinical practice.

  1. Application of Purified Botulinum Type A Neurotoxin to Treat Experimental Trigeminal Neuropathy in Rats and Patients with Urinary Incontinence and Prostatic Hyperplasia

    Directory of Open Access Journals (Sweden)

    Yoshizo Matsuka

    2012-01-01

    Full Text Available Type A neurotoxin (NTX of Clostridium botulinum was purified by a simple procedure using a lactose gel column. The toxicity of this purified toxin preparation was retained for at least 1 year at −30°C by supplementation with either 0.1% albumin or 0.05% albumin plus 1% trehalose. When purified NTX was used to treat 49 patients with urinary incontinence caused by either refractory idiopathic or neurogenic detrusor overactivity, 36 patients showed significant improvement in symptoms. These beneficial effects were also observed in cases of prostatic hyperplasia. The results obtained with NTX were similar to that of Botox. The effects of NTX on trigeminal neuralgia induced by infraorbital nerve constriction (IoNC in rats were also studied. Trigeminal ganglion neurons from ipsilateral to IoNC exhibited significantly faster onset of FM4-64 release than sham-operated contralateral neurons. Intradermal injection of NTX in the area of IoNC alleviated IoNC-induced pain behavior and reduced the exaggerated FM4-64 release in trigeminal ganglion neurons.

  2. Botulinum Neurotoxin A Injections Influence Stretching of the Gastrocnemius Muscle-Tendon Unit in an Animal Model

    Directory of Open Access Journals (Sweden)

    Christopher J. Tuohy

    2012-08-01

    Full Text Available Botulinum Neurotoxin A (BoNT-A injections have been used for the treatment of muscle contractures and spasticity. This study assessed the influence of (BoNT-A injections on passive biomechanical properties of the muscle-tendon unit. Mouse gastrocnemius muscle (GC was injected with BoNT-A (n = 18 or normal saline (n = 18 and passive, non-destructive, in vivo load relaxation experimentation was performed to examine how the muscle-tendon unit behaves after chemical denervation with BoNT-A. Injection of BoNT-A impaired passive muscle recovery (15% vs. 35% recovery to pre-stretching baseline, p < 0.05 and decreased GC stiffness (0.531 ± 0.061 N/mm vs. 0.780 ± 0.037 N/mm, p < 0.05 compared to saline controls. The successful use of BoNT-A injections as an adjunct to physical therapy may be in part attributed to the disruption of the stretch reflex; thereby modulating in vivo passive muscle properties. However, it is also possible that BoNT-A injection may alter the structure of skeletal muscle; thus modulating the in vivo passive biomechanical properties of the muscle-tendon unit.

  3. Identification of fibroblast growth factor receptor 3 (FGFR3 as a protein receptor for botulinum neurotoxin serotype A (BoNT/A.

    Directory of Open Access Journals (Sweden)

    Birgitte P S Jacky

    Full Text Available Botulinum neurotoxin serotype A (BoNT/A causes transient muscle paralysis by entering motor nerve terminals (MNTs where it cleaves the SNARE protein Synaptosomal-associated protein 25 (SNAP25206 to yield SNAP25197. Cleavage of SNAP25 results in blockage of synaptic vesicle fusion and inhibition of the release of acetylcholine. The specific uptake of BoNT/A into pre-synaptic nerve terminals is a tightly controlled multistep process, involving a combination of high and low affinity receptors. Interestingly, the C-terminal binding domain region of BoNT/A, HC/A, is homologous to fibroblast growth factors (FGFs, making it a possible ligand for Fibroblast Growth Factor Receptors (FGFRs. Here we present data supporting the identification of Fibroblast Growth Factor Receptor 3 (FGFR3 as a high affinity receptor for BoNT/A in neuronal cells. HC/A binds with high affinity to the two extra-cellular loops of FGFR3 and acts similar to an agonist ligand for FGFR3, resulting in phosphorylation of the receptor. Native ligands for FGFR3; FGF1, FGF2, and FGF9 compete for binding to FGFR3 and block BoNT/A cellular uptake. These findings show that FGFR3 plays a pivotal role in the specific uptake of BoNT/A across the cell membrane being part of a larger receptor complex involving ganglioside- and protein-protein interactions.

  4. Phosphatase Inhibitors Function as Novel, Broad Spectrum Botulinum Neurotoxin Antagonists in Mouse and Human Embryonic Stem Cell-Derived Motor Neuron-Based Assays.

    Science.gov (United States)

    Kiris, Erkan; Nuss, Jonathan E; Stanford, Stephanie M; Wanner, Laura M; Cazares, Lisa; Maestre, Michael F; Du, Hao T; Gomba, Glenn Y; Burnett, James C; Gussio, Rick; Bottini, Nunzio; Panchal, Rekha G; Kane, Christopher D; Tessarollo, Lino; Bavari, Sina

    2015-01-01

    There is an urgent need to develop novel treatments to counter Botulinum neurotoxin (BoNT) poisoning. Currently, the majority of BoNT drug development efforts focus on directly inhibiting the proteolytic components of BoNT, i.e. light chains (LC). Although this is a rational approach, previous research has shown that LCs are extremely difficult drug targets and that inhibiting multi-serotype BoNTs with a single LC inhibitor may not be feasible. An alternative approach would target neuronal pathways involved in intoxication/recovery, rather than the LC itself. Phosphorylation-related mechanisms have been implicated in the intoxication pathway(s) of BoNTs. However, the effects of phosphatase inhibitors upon BoNT activity in the physiological target of BoNTs, i.e. motor neurons, have not been investigated. In this study, a small library of phosphatase inhibitors was screened for BoNT antagonism in the context of mouse embryonic stem cell-derived motor neurons (ES-MNs). Four inhibitors were found to function as BoNT/A antagonists. Subsequently, we confirmed that these inhibitors protect against BoNT/A in a dose-dependent manner in human ES-MNs. Additionally, these compounds provide protection when administered in post-intoxication scenario. Importantly, the inhibitors were also effective against BoNT serotypes B and E. To the best of our knowledge, this is the first study showing phosphatase inhibitors as broad-spectrum BoNT antagonists.

  5. Negative effects of submandibular botulinum neurotoxin A injections on oral motor function in children with drooling due to central nervous system disorders.

    Science.gov (United States)

    van Hulst, Karen; Kouwenberg, Carlyn V; Jongerius, Pieter H; Feuth, Ton; van den Hoogen, Franciscus J A; Geurts, Alexander C H; Erasmus, Corrie E

    2017-05-01

    The aims of this study were: (1) to determine the incidence and nature of adverse effects on oral motor function after first injections of botulinum neurotoxin A (BoNT-A) in submandibular glands for excessive drooling in children with central nervous system disorders; and (2) to identify independent predictors of these adverse effects. A cohort study involved 209 children (123 males, 86 females, aged 4-27y, median 8y 4mo), who received submandibular BoNT-A injections for drooling. Adverse effects were categorized into swallowing, eating, drinking, articulation, and other problems. Univariable logistic regression was used to study differences in patients with and without adverse effects. Possible predictors were identified using multivariable logistic regression. Transient adverse effects occurred in 33% of the 209 BoNT-A treatments. Almost 80% of these were mild, versus 8.7% severe. Approximately 54% of the adverse effects spontaneously resolved within 4 weeks; 3% still existed after 32 weeks. A diagnosis of cerebral palsy, higher range of BoNT-A dosage, and a pre-treatment drooling quotient <18% were found to be independent predictors of adverse effects. Before using submandibular BoNT-A injections for drooling, potential adverse effects should be discussed. Oral motor function needs to be monitored, because existing dysphagia may be worsened. The identified clinical predictors could be helpful to optimize patient selection. © 2016 The Authors. Developmental Medicine & Child Neurology published by John Wiley & Sons Ltd on behalf of Mac Keith Press.

  6. Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis

    International Nuclear Information System (INIS)

    Black, J.D.; Dolly, J.O.

    1986-01-01

    Using pharmacological and autoradiographic techniques it has been shown that botulinum neurotoxin (BoNT) is translocated across the motor nerve terminal membrane to reach a postulated intraterminal target. In the present study, the nature of this uptake process was investigated using electron microscopic autoradiography. It was found that internalization is acceptor-mediated and that binding to specific cell surface acceptors involves the heavier chain of the toxin. In addition, uptake was shown to be energy and temperature-dependent and to be accelerated by nerve stimulation, a treatment which also shortens the time course of the toxin-induced neuroparalysis. These results, together with the observation that silver grains were often associated with endocytic structures within the nerve terminal, suggested that acceptor-mediated endocytosis is responsible for toxin uptake. Possible recycling of BoNT acceptors (an important aspect of acceptor-mediated endocytosis of toxins) at motor nerve terminals was indicated by comparing the extent of labeling in the presence and absence of metabolic inhibitors. On the basis of these collective results, it is concluded that BoNT is internalized by acceptor-mediated endocytosis and, hence, the data support the proposal that this toxin inhibits release of acetylcholine by interaction with an intracellular target

  7. Botulinum Toxin

    Science.gov (United States)

    2009-01-01

    show inconsistent and erroneous results. In vivo experiments using the rat extensor digitorum longus (EDL) muscle assay showed sensitivities of rat... digitorum longus muscle paralyzed by local injection of botulinum neurotoxin. Toxicon 34: 237--49. Amon, S. (1995). Botulism as an intestinal...BoNT -induced paralysis. References Adler, M., MacDonald, D.A., Sellin, L.C., Parker, G.W. (1996). Effect of 3,4-diaminopyridine on rat extensor

  8. Light Chain Separated from the Rest of the Type A Botulinum Neurotoxin Molecule is the Most Catalytically Active Form

    Science.gov (United States)

    2010-09-01

    of expressed LC in inhibiting exocytosis in sea urchin eggs [12]. There is however, no experimental evidence available in the literature if the LC...using A0.1% (1 cm light path) value of 1.0 at 278 nm [8] or by BCA assay (Pierce) with bovine serum albumin as standard. Circular dichroism spectra of...neurotoxin: substrate requirements and activation by serum albumin . J Protein Chem 16: 19–26. 38. Chen S, Barbieri JT (2006) Unique substrate recognition by

  9. Crystal structure of the receptor binding domain of the botulinum C-D mosaic neurotoxin reveals potential roles of lysines 1118 and 1136 in membrane interactions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanfeng; Buchko, Garry W.; Qin, Ling; Robinson, Howard; Varnum, Susan M.

    2011-01-07

    The botulinum neurotoxins (BoNTs) produced by different strains of the bacterium Clostridium botulinum are responsible for the disease botulism and include a group of immunologically distinct serotypes (A, B, E, and F) that are considered to be the most lethal natural proteins known for humans. Two BoNT serotypes, C and D, while rarely associated with human infection, are responsible for deadly botulism outbreaks afflicting animals. Also associated with animal infections is the BoNT C-D mosaic protein (BoNT/CD), a BoNT subtype that is essentially a hybrid of the BoNT/C (~two-thirds) and BoNT/D (~one-third) serotypes. While the amino acid sequence of the heavy chain receptor binding (HCR) domain of BoNT/CD (BoNT/CD-HCR) is very similar to the corresponding amino acid sequence of BoNT/D, BoNT/CD-HCR binds synaptosome membranes better than BoNT/D-HCR. To obtain structural insights for the different membrane binding properties, the crystal structure of BoNT/CD-HCR (S867-E1280) was determined at 1.56 Å resolution and compared to previously reported structures for BoNT/D-HCR. Overall, the BoNT/CD-HCR structure is similar to the two sub-domain organization observed for other BoNT HCRs: an N-terminal jellyroll barrel motif and a C-terminal β-trefoil fold. Comparison of the structure of BoNT/CD-HCR with BoNT/D-HCR indicates that K1118 has a similar structural role as the equivalent residue, E1114, in BoNT/D-HCR, while K1136 has a structurally different role than the equivalent residue, G1132, in BoNT/D-HCR. Lysine-1118 forms a salt bridge with E1247 and may enhance membrane interactions by stabilizing the putative membrane binding loop (K1240-N1248). Lysine-1136 is observed on the surface of the protein. A sulfate ion bound to K1136 may mimic a natural interaction with the negatively changed phospholipid membrane surface. Liposome-binding experiments demonstrate that BoNT/CD-HCR binds phosphatidylethanolamine liposomes more tightly than BoNT/D-HCR

  10. Structural Insights into the Functional Role of the Hcn Sub-domain of the Receptor-Binding Domain of the Botulinum Neurotoxin Mosaic Serotype C/D

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanfeng; Gardberg, Anna; Edwards, Tom E.; Sankaran, Banumathi; Robinson, Howard; Varnum, Susan M.; Buchko, Garry W.

    2013-07-01

    Botulinum neurotoxin (BoNT), the causative agent of the deadly neuroparalytic disease botulism, is the most poisonous protein known for humans. Produced by different strains of the anaerobic bacterium Clostridium botulinum, BoNT effects cellular intoxication via a multistep mechanism executed by the three modules of the activated protein. Endocytosis, the first step of cellular intoxication, is triggered by the ~50 kDa, heavy-chain receptor-binding module (HCR) that is specific for a ganglioside and a protein receptor on neuronal cell surfaces. This dual receptor recognition mechanism between BoNT and the host cell’s membrane is well documented and occurs via specific intermolecular interactions with the C-terminal sub-domain, Hcc, of BoNT-HCR. The N-terminal sub-domain of BoNT-HCR, Hcn, comprises ~50% of BoNT-HCR and adopts a B-sheet jelly roll fold. While suspected in assisting cell surface recognition, no unambiguous function for the Hcn sub-domain in BoNT has been indentified. To obtain insights into the potential function of the Hcn sub-domain in BoNT, the first crystal structure of a BoNT with an organic ligand bound to the Hcn sub-domain has been obtained. Here, we describe the crystal structure of BoNT/CD-HCR determined at 1.70 Å resolution with a tetraethylene glycol (PG4) molecule bound in an hydrophobic cleft between B-strands in the B-sheet jelly fold roll of the Hcn sub-domain. The molecule is completely engulfed in the cleft, making numerous hydrophobic (Y932, S959, W966, and D1042) and hydrophilic (S935, W977, L979, N1013, and I1066) contacts with the protein’s side chain and backbone that may mimic in vivo interactions with the phospholipid membranes on neuronal cell surfaces. A sulfate ion was also observed bound to residues T1176, D1177, K1196, and R1243 in the Hcc sub-domain of BoNT/CD-HCR. In the crystal structure of a similar protein, BoNT/D-HCR, a sialic acid

  11. Crystal Structure of the Receptor Binding Domain of the botulinum C-D Mosiac Neurotoxin Reveals Potential Roles of Lysines 1118 and 1136 in Membrane Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Y Zhang; G Buchko; L Qin; H Robinson; S Varnum

    2011-12-31

    The botulinum neurotoxins (BoNTs) produced by different strains of the bacterium Clostridium botulinum are responsible for the disease botulism and include a group of immunologically distinct serotypes (A, B, E, and F) that are considered to be the most lethal natural proteins known for humans. Two BoNT serotypes, C and D, while rarely associated with human infection, are responsible for deadly botulism outbreaks afflicting animals. Also associated with animal infections is the BoNT C-D mosaic protein (BoNT/CD), a BoNT subtype that is essentially a hybrid of the BoNT/C ({approx}two-third) and BoNT/D ({approx}one-third) serotypes. While the amino acid sequence of the heavy chain receptor binding (HCR) domain of BoNT/CD (BoNT/CD-HCR) is very similar to the corresponding amino acid sequence of BoNT/D, BoNT/CD-HCR binds synaptosome membranes better than BoNT/D-HCR. To obtain structural insights for the different membrane binding properties, the crystal structure of BoNT/CD-HCR (S867-E1280) was determined at 1.56 {angstrom} resolution and compared to previously reported structures for BoNT/D-HCR. Overall, the BoNT/CD-HCR structure is similar to the two sub-domain organization observed for other BoNT HCRs: an N-terminal jellyroll barrel motif and a C-terminal {beta}-trefoil fold. Comparison of the structure of BoNT/CD-HCR with BoNT/D-HCR indicates that K1118 has a similar structural role as the equivalent residue, E1114, in BoNT/D-HCR, while K1136 has a structurally different role than the equivalent residue, G1132, in BoNT/D-HCR. Lysine-1118 forms a salt bridge with E1247 and may enhance membrane interactions by stabilizing the putative membrane binding loop (K1240-N1248). Lysine-1136 is observed on the surface of the protein. A sulfate ion bound to K1136 may mimic a natural interaction with the negatively changed phospholipid membrane surface. Liposome-binding experiments demonstrate that BoNT/CD-HCR binds phosphatidylethanolamine liposomes more tightly than BoNT/D-HCR.

  12. Innovative mode of action based in vitro assays for detection of marine neurotoxins

    NARCIS (Netherlands)

    Nicolas, J.A.Y.

    2015-01-01

    Innovative mode of action based in vitro assays for detection of marine neurotoxins

    J. Nicolas, P.J.M. Hendriksen, T.F.H. Bovee, I.M.C.M. Rietjens

    Marine biotoxins are naturally occurring compounds produced by particular phytoplankton species. These toxins often accumulate in

  13. Phosphatase Inhibitors Function as Novel, Broad Spectrum Botulinum Neurotoxin Antagonists in Mouse and Human Embryonic Stem Cell-Derived Motor Neuron-Based Assays.

    Directory of Open Access Journals (Sweden)

    Erkan Kiris

    Full Text Available There is an urgent need to develop novel treatments to counter Botulinum neurotoxin (BoNT poisoning. Currently, the majority of BoNT drug development efforts focus on directly inhibiting the proteolytic components of BoNT, i.e. light chains (LC. Although this is a rational approach, previous research has shown that LCs are extremely difficult drug targets and that inhibiting multi-serotype BoNTs with a single LC inhibitor may not be feasible. An alternative approach would target neuronal pathways involved in intoxication/recovery, rather than the LC itself. Phosphorylation-related mechanisms have been implicated in the intoxication pathway(s of BoNTs. However, the effects of phosphatase inhibitors upon BoNT activity in the physiological target of BoNTs, i.e. motor neurons, have not been investigated. In this study, a small library of phosphatase inhibitors was screened for BoNT antagonism in the context of mouse embryonic stem cell-derived motor neurons (ES-MNs. Four inhibitors were found to function as BoNT/A antagonists. Subsequently, we confirmed that these inhibitors protect against BoNT/A in a dose-dependent manner in human ES-MNs. Additionally, these compounds provide protection when administered in post-intoxication scenario. Importantly, the inhibitors were also effective against BoNT serotypes B and E. To the best of our knowledge, this is the first study showing phosphatase inhibitors as broad-spectrum BoNT antagonists.

  14. [18F]fallypride-PET/CT Analysis of the Dopamine D₂/D₃ Receptor in the Hemiparkinsonian Rat Brain Following Intrastriatal Botulinum Neurotoxin A Injection.

    Science.gov (United States)

    Mann, Teresa; Kurth, Jens; Hawlitschka, Alexander; Stenzel, Jan; Lindner, Tobias; Polei, Stefan; Hohn, Alexander; Krause, Bernd J; Wree, Andreas

    2018-03-06

    Intrastriatal injection of botulinum neurotoxin A (BoNT-A) results in improved motor behavior of hemiparkinsonian (hemi-PD) rats, an animal model for Parkinson's disease. The caudate-putamen (CPu), as the main input nucleus of the basal ganglia loop, is fundamentally involved in motor function and directly interacts with the dopaminergic system. To determine receptor-mediated explanations for the BoNT-A effect, we analyzed the dopamine D₂/D₃ receptor (D₂/D₃R) in the CPu of 6-hydroxydopamine (6-OHDA)-induced hemi-PD rats by [ 18 F]fallypride-PET/CT scans one, three, and six months post-BoNT-A or -sham-BoNT-A injection. Male Wistar rats were assigned to three different groups: controls, sham-injected hemi-PD rats, and BoNT-A-injected hemi-PD rats. Disease-specific motor impairment was verified by apomorphine and amphetamine rotation testing. Animal-specific magnetic resonance imaging was performed for co-registration and anatomical reference. PET quantification was achieved using PMOD software with the simplified reference tissue model 2. Hemi-PD rats exhibited a constant increase of 23% in D₂/D₃R availability in the CPu, which was almost normalized by intrastriatal application of BoNT-A. Importantly, the BoNT-A effect on striatal D₂/D₃R significantly correlated with behavioral results in the apomorphine rotation test. Our results suggest a therapeutic effect of BoNT-A on the impaired motor behavior of hemi-PD rats by reducing interhemispheric changes of striatal D₂/D₃R.

  15. [18F]fallypride-PET/CT Analysis of the Dopamine D2/D3 Receptor in the Hemiparkinsonian Rat Brain Following Intrastriatal Botulinum Neurotoxin A Injection

    Directory of Open Access Journals (Sweden)

    Teresa Mann

    2018-03-01

    Full Text Available Intrastriatal injection of botulinum neurotoxin A (BoNT-A results in improved motor behavior of hemiparkinsonian (hemi-PD rats, an animal model for Parkinson’s disease. The caudate–putamen (CPu, as the main input nucleus of the basal ganglia loop, is fundamentally involved in motor function and directly interacts with the dopaminergic system. To determine receptor-mediated explanations for the BoNT-A effect, we analyzed the dopamine D2/D3 receptor (D2/D3R in the CPu of 6-hydroxydopamine (6-OHDA-induced hemi-PD rats by [18F]fallypride-PET/CT scans one, three, and six months post-BoNT-A or -sham-BoNT-A injection. Male Wistar rats were assigned to three different groups: controls, sham-injected hemi-PD rats, and BoNT-A-injected hemi-PD rats. Disease-specific motor impairment was verified by apomorphine and amphetamine rotation testing. Animal-specific magnetic resonance imaging was performed for co-registration and anatomical reference. PET quantification was achieved using PMOD software with the simplified reference tissue model 2. Hemi-PD rats exhibited a constant increase of 23% in D2/D3R availability in the CPu, which was almost normalized by intrastriatal application of BoNT-A. Importantly, the BoNT-A effect on striatal D2/D3R significantly correlated with behavioral results in the apomorphine rotation test. Our results suggest a therapeutic effect of BoNT-A on the impaired motor behavior of hemi-PD rats by reducing interhemispheric changes of striatal D2/D3R.

  16. British Neurotoxin Network recommendations for managing cervical dystonia in patients with a poor response to botulinum toxin.

    Science.gov (United States)

    Marion, Marie-Helene; Humberstone, Miles; Grunewald, Richard; Wimalaratna, Sunil

    2016-08-01

    Botulinum toxin (BoNT) injections are an effective treatment for cervical dystonia. Approximately 20% of patients eventually stop BoNT treatment, mostly because of treatment failure. These recommendations review the different therapeutic interventions for optimising the treatment in secondary poor responder patients. Immunoresistance has become less common over the years, but the diagnosis has to be addressed with a frontalis test or an Extensor Digitorum Brevis test. In case of immunoresistance to BoNT-A, we discuss the place the different therapeutic options (BoNT-A holidays, BoNT-B injections, alternative BoNT-A injections, deep brain stimulation). When poor responders are not immunoresistant, they benefit from reviewing (1) injections technique with electromyography or ultrasound guidance, (2) muscles selection and (3) dose of BoNT. In addition, in both scenarios, a holistic approach including drug treatment, retraining and psychological support is valuable in the management of these complex and severe cervical dystonia. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. The Regions on the Light Chain of Botulinum Neurotoxin Type A Recognized by T Cells from Toxin-Treated Cervical Dystonia Patients. The Complete Human T-Cell Recognition Map of the Toxin Molecule.

    Science.gov (United States)

    Oshima, Minako; Deitiker, Philip; Jankovic, Joseph; Atassi, M Zouhair

    2018-01-01

    We have recently mapped the in vitro proliferative responses of T cells from botulinum neurotoxin type A (BoNT/A)-treated cervical dystonia (CD) patients with overlapping peptides encompassing BoNT/A heavy chain (residues 449-1296). In the present study, we determined the recognition profiles, by peripheral blood lymphocytes (PBL) from the same set of patients, of BoNT/A light (L) chain (residues 1-453) by using 32 synthetic overlapping peptides that encompassed the entire L chain. Profiles of the T-cell responses (expressed in stimulation index, SI; Z score based on transformed SI) to the peptides varied among the patients. Samples from 14 patients treated solely with BoNT/A recognized 3-13 (average 7.2) peptides/sample at Z > 3.0 level. Two peptide regions representing residues 113-131 and 225-243 were recognized by around 40% of these patients. Regarding treatment parameters, treatment history with current BOTOX ® only group produced significantly lower average T-cell responses to the 32 L-chain peptides compared to treatments with mix of type A including original and current BOTOX ® . Influence of other treatment parameters on T-cell recognition of the L-chain peptides was also observed. Results of the submolecular T-cell recognition of the L chain are compared to those of the H chain and the T-cell recognition profile of the entire BoNT/A molecule is discussed. Abbreviations used: BoNT/A, botulinum neurotoxin type A; BoNT/A i , inactivated BoNT/A; BoNT/B, botulinum neurotoxin type B; CD, cervical dystonia; L chain, the light chain (residues 1-448) of BoNT/A; LNC, lymph node cells; H chain, the heavy chain (residues 449-1296) of BoNT/A; H C , C-terminal domain (residues 855-1296) of H chain; H N , N-terminal domain (residues 449-859) of H chain; MPA, mouse protection assay; SI, stimulation index (SI = cpm of 3 H-thymidine incorporated by antigen-stimulated T cells/cpm incorporated by unstimulated cells); TeNT, tetanus neurotoxin; TeNT i , inactivated TeNT.

  18. In situ detection of the Clostridium botulinum type C1 toxin gene in wetland sediments with a nested PCR assay

    Science.gov (United States)

    Williamson, Judy L.; Rocke, Tonie E.; Aiken, Judd M.

    1999-01-01

    A nested PCR was developed for detection of the Clostridium botulinum type C1 toxin gene in sediments collected from wetlands where avian botulism outbreaks had or had not occurred. The C1 toxin gene was detected in 16 of 18 sites, demonstrating both the ubiquitous distribution of C. botulinum type C in wetland sediments and the sensitivity of the detection assay.

  19. Potent new small-molecule inhibitor of botulinum neurotoxin serotype A endopeptidase developed by synthesis-based computer-aided molecular design.

    Directory of Open Access Journals (Sweden)

    Yuan-Ping Pang

    2009-11-01

    Full Text Available Botulinum neurotoxin serotype A (BoNTA causes a life-threatening neuroparalytic disease known as botulism. Current treatment for post exposure of BoNTA uses antibodies that are effective in neutralizing the extracellular toxin to prevent further intoxication but generally cannot rescue already intoxicated neurons. Effective small-molecule inhibitors of BoNTA endopeptidase (BoNTAe are desirable because such inhibitors potentially can neutralize the intracellular BoNTA and offer complementary treatment for botulism. Previously we reported a serotype-selective, small-molecule BoNTAe inhibitor with a K(i (app value of 3.8+/-0.8 microM. This inhibitor was developed by lead identification using virtual screening followed by computer-aided optimization of a lead with an IC(50 value of 100 microM. However, it was difficult to further improve the lead from micromolar to even high nanomolar potency due to the unusually large enzyme-substrate interface of BoNTAe. The enzyme-substrate interface area of 4,840 A(2 for BoNTAe is about four times larger than the typical protein-protein interface area of 750-1,500 A(2. Inhibitors must carry several functional groups to block the unusually large interface of BoNTAe, and syntheses of such inhibitors are therefore time-consuming and expensive. Herein we report the development of a serotype-selective, small-molecule, and competitive inhibitor of BoNTAe with a K(i value of 760+/-170 nM using synthesis-based computer-aided molecular design (SBCAMD. This new approach accounts the practicality and efficiency of inhibitor synthesis in addition to binding affinity and selectivity. We also report a three-dimensional model of BoNTAe in complex with the new inhibitor and the dynamics of the complex predicted by multiple molecular dynamics simulations, and discuss further structural optimization to achieve better in vivo efficacy in neutralizing BoNTA than those of our early micromolar leads. This work provides new insight

  20. An electrochemiluminescence assay for the detection of bio threat agents in selected food matrices and in the screening of Clostridium botulinum outbreak strains associated with type A botulism.

    Science.gov (United States)

    Sachdeva, Amita; Singh, Ajay K; Sharma, Shashi K

    2014-03-15

    Specific screening methods for complex food matrices are needed that enable unambiguous and sensitive detection of bio threat agents (BTAs) such as Bacillus anthracis spores and microbial toxins (e.g. staphylococcal enterotoxin B (SEB) and clostridial botulinum neurotoxins (BoNTs)). The present study describes an image-based 96-well Meso Scale Discovery (MSD) electrochemiluminescence (ECL) assay for simultaneous detection of BTAs in dairy milk products. The limit of detection of this ECL assay is 40 pg mL⁻¹ for BoNT/A complex, 10 pg mL⁻¹ for SEB and 40000 CFU mL⁻¹ for Bacillus anthracis spores in dairy milk products. The ECL assay was successfully applied to screen type A Clostridium botulinum outbreak strains. The results of the study indicate that this ECL assay is very sensitive, rapid (<6 h) and multiplex in nature. The ECL assay has potential for use as an in vitro screening method for BTAs over other comparable immunoassays. © 2013 Society of Chemical Industry.

  1. Detection of botulinum toxin types A, B, E, and F activity using the quail embryo

    Science.gov (United States)

    We recently demonstrated an effective new model for the detection of botulinum toxin type A using quail embryos in place of the mouse model. These experiments demonstrated that the Japanese quail embryo at 15 days of incubation was an effective vertebrate animal model to detect the activity of botu...

  2. Analysis of the neurotoxin complex genes in Clostridium botulinum A1-A4 and B1 strains: BoNT/A3, /Ba4 and /B1 clusters are located within plasmids.

    Directory of Open Access Journals (Sweden)

    Theresa J Smith

    Full Text Available BACKGROUND: Clostridium botulinum and related clostridial species express extremely potent neurotoxins known as botulinum neurotoxins (BoNTs that cause long-lasting, potentially fatal intoxications in humans and other mammals. The amino acid variation within the BoNT is used to categorize the species into seven immunologically distinct BoNT serotypes (A-G which are further divided into subtypes. The BoNTs are located within two generally conserved gene arrangements known as botulinum progenitor complexes which encode toxin-associated proteins involved in toxin stability and expression. METHODOLOGY/PRINCIPAL FINDINGS: Because serotype A and B strains are responsible for the vast majority of human botulism cases worldwide, the location, arrangement and sequences of genes from eight different toxin complexes representing four different BoNT/A subtypes (BoNT/A1-Ba4 and one BoNT/B1 strain were examined. The bivalent Ba4 strain contained both the BoNT/A4 and BoNT/bvB toxin clusters. The arrangements of the BoNT/A3 and BoNT/A4 subtypes differed from the BoNT/A1 strains and were similar to those of BoNT/A2. However, unlike the BoNT/A2 subtype, the toxin complex genes of BoNT/A3 and BoNT/A4 were found within large plasmids and not within the chromosome. In the Ba4 strain, both BoNT toxin clusters (A4 and bivalent B were located within the same 270 kb plasmid, separated by 97 kb. Complete genomic sequencing of the BoNT/B1 strain also revealed that its toxin complex genes were located within a 149 kb plasmid and the BoNT/A3 complex is within a 267 kb plasmid. CONCLUSIONS/SIGNIFICANCE: Despite their size differences and the BoNT genes they contain, the three plasmids containing these toxin cluster genes share significant sequence identity. The presence of partial insertion sequence (IS elements, evidence of recombination/gene duplication events, and the discovery of the BoNT/A3, BoNT/Ba4 and BoNT/B1 toxin complex genes within plasmids illustrate the

  3. Evaluation of DNA Extraction Methods Suitable for PCR-based Detection and Genotyping of Clostridium botulinum

    DEFF Research Database (Denmark)

    Auricchio, Bruna; Anniballi, Fabrizio; Fiore, Alfonsina

    2013-01-01

    Sufficient quality and quantity of extracted DNA is critical to detecting and performing genotyping of Clostridium botulinum by means of PCR-based methods. An ideal extraction method has to optimize DNA yield, minimize DNA degradation, allow multiple samples to be extracted, and be efficient...... in terms of cost, time, labor, and supplies. Eleven botulinum toxin–producing clostridia strains and 25 samples (10 food, 13 clinical, and 2 environmental samples) naturally contaminated with botulinum toxin–producing clostridia were used to compare 4 DNA extraction procedures: Chelex® 100 matrix, Phenol......-Cloroform-Isoamyl alcohol, NucliSENS® magnetic extraction kit, and DNeasy® Blood & Tissue kit. Integrity, purity, and amount of amplifiable DNA were evaluated. The results show that the DNeasy® Blood & Tissue kit is the best extraction method evaluated because it provided the most pure, intact, and amplifiable DNA. However...

  4. Detection of botulinum neurotoxins in buffer and hney using a surface plasmon resonance (SPR) sensor

    Czech Academy of Sciences Publication Activity Database

    Ladd, J.; Taylor, A.; Homola, Jiří; Jiang, S.

    2008-01-01

    Roč. 130, č. 1 (2008), s. 129-134 ISSN 0925-4005 Grant - others:US FDA (US) FD-U-002250; National Science Foundation(US) CBET-0528605 Institutional research plan: CEZ:AV0Z20670512 Source of funding: N - neverejné zdroje ; N - neverejné zdroje Keywords : surface plasmons * biosensors * toxicology Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 3.122, year: 2008

  5. Invasive slug populations (Arion vulgaris) as potential vectors for Clostridium botulinum.

    Science.gov (United States)

    Gismervik, Kristine; Bruheim, Torkjel; Rørvik, Liv M; Haukeland, Solveig; Skaar, Ida

    2014-10-03

    Norwegian meadows, including those for silage production, are recently found heavily invaded by the slug Arion vulgaris in exposed areas. As a consequence, large numbers of slugs might contaminate grass silage and cause a possible threat to animal feed quality and safety. It is well known that silage contaminated by mammalian or avian carcasses can lead to severe outbreaks of botulism among livestock. Invertebrates, especially fly-larvae (Diptera), are considered important in the transfer of Clostridium botulinum type C and its toxins among birds in wetlands. C. botulinum form highly resistant spores that could easily be consumed by the slugs during feeding. This study aimed to determine whether Arion vulgaris could hold viable C. botulinum and enrich them, which is essential knowledge for assessing the risk of botulism from slug-contaminated silage. Slug carcasses, slug feces and live slugs were tested by a quantitative real-time PCR (qPCR) method after being fed ≅ 5.8 × 104 CFU C. botulinum type C spores/slug. Low amounts of C. botulinum were detected by qPCR in six of 21 slug carcasses with an even spread throughout the 17 day long experiment. Declining amounts of C. botulinum were excreted in slug feces up to day four after the inoculated feed was given. C. botulinum was only quantified the first two days in the sampling of live slugs. The viability of C. botulinum was confirmed for all three sample types (slug carcasses, slug feces and live slugs) by visible growth in enrichment media combined with obtaining a higher quantification cycle (Cq) value than from the non-enriched samples. Neither dead nor live invasive Arion vulgaris slugs were shown to enrich Clostridium botulinum containing the neurotoxin type C gene in this study. Slugs excreted viable C. botulinum in their feces up to day four, but in rapidly decreasing numbers. Arion vulgaris appear not to support enrichment of C. botulinum type C.

  6. Historical and current perspectives on Clostridium botulinum diversity.

    Science.gov (United States)

    Smith, Theresa J; Hill, Karen K; Raphael, Brian H

    2015-05-01

    For nearly one hundred years, researchers have attempted to categorize botulinum neurotoxin-producing clostridia and the toxins that they produce according to biochemical characterizations, serological comparisons, and genetic analyses. Throughout this period the bacteria and their toxins have defied such attempts at categorization. Below is a description of both historic and current Clostridium botulinum strain and neurotoxin information that illustrates how each new finding has significantly added to the knowledge of the botulinum neurotoxin-containing clostridia and their diversity. Published by Elsevier Masson SAS.

  7. Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. I. Ultrastructural autoradiographic localization and quantitation of distinct membrane acceptors for types A and B on motor nerves

    International Nuclear Information System (INIS)

    Black, J.D.; Dolly, J.O.

    1986-01-01

    The labeling patterns produced by radioiodinated botulinum neurotoxin ( 125 I-BoNT) types A and B at the vertebrate neuromuscular junction were investigated using electron microscopic autoradiography. The data obtained allow the following conclusions to be made. (a) 125 I-BoNT type A, applied in vivo or in vitro to mouse diaphragm or frog cutaneous pectoris muscle, interacts saturably with the motor nerve terminal only; silver grains occur on the plasma membrane, within the synaptic bouton, and in the axoplasm of the nerve trunk, suggesting internalization and retrograde intra-axonal transport of toxin or fragments thereof. (b) 125 I-BoNT type B, applied in vitro to the murine neuromuscular junction, interacts likewise with the motor nerve terminal except that a lower proportion of internalized radioactivity is seen. This result is reconcilable with the similar, but not identical, pharmacological action of these toxin types. (c) The saturability of labeling in each case suggested the involvement of acceptors; on preventing the internalization step with metabolic inhibitors, their precise location became apparent. They were found on all unmyelinated areas of the nerve terminal membrane, including the preterminal axon and the synaptic bouton. (d) It is not proposed that these membrane acceptors target BoNT to the nerve terminal and mediate its delivery to an intracellular site, thus contributing to the toxin's selective inhibitory action on neurotransmitter release

  8. Detection of Clostridium botulinum type C cells in the gastrointestinal tracts of Mozambique tilapia (Oreochromis mossambicus) by polymerase chain reaction

    Science.gov (United States)

    Nol, P.; Williamson, J.L.; Rocke, T.E.; Yuill, Thomas M.

    2004-01-01

    We established a method of directly detecting Clostridium botulinum type C cells, while minimizing spore detection, in the intestinal contents of Mozambique tilapia (Oreochromis mossambicus). This technique involved extraction of predominantly cellular DNA from tilapia intestinal tracts and used a polymerase chain reaction assay to detect presence of type C1 toxin gene. We consistently detected C. botulinum type C cells in tilapia gastrointestinal contents at a level of 7.5×104 cells per 0.25 g material or 1.9×103 cells. This technique is useful for determining prevalence of the potentially active organisms within a given population of fish and may be adapted to other types of C. botulinum and vertebrate populations as well.

  9. Detection of Clostridium tetani in human clinical samples using tetX specific primers targeting the neurotoxin.

    Science.gov (United States)

    Ganesh, Madhu; Sheikh, Nasira K; Shah, Pooja; Mehetre, Gajanan; Dharne, Mahesh S; Nagoba, Basavraj S

    2016-01-01

    Tetanus resulting from ear injury remains an important health problem, particularly in the developing world. We report the successful detection of Clostridium tetani using tetX specific primers targeting the Cl. tetani neurotoxin. The sample was obtained from an ear discharge of a case of otogenic tetanus in a 2-year-old male child. Based on the culture results of the ear discharge, Gram staining and virulence testing by genotyping, a diagnosis of tetanus was confirmed. This is the first report from India on the successful detection of Cl. tetani in a human clinical sample using tetX specific primers targeting the Cl. tetani neurotoxin. Copyright © 2015 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  10. Development of a quail embryo model for the detection of botulinum toxin type A activity

    Science.gov (United States)

    Clostridium botulinum is a ubiquitous microorganism which under certain anaerobic conditions can produce botulinum toxins. Due to concerns in regards to both food-borne illness and the potential use of botulinum toxin as a biological weapon, the capability to assess the amount of toxin in a food or...

  11. In vitro detection of cardiotoxins or neurotoxins affecting ion channels or pumps using beating cardiomyocytes as alternative for animal testing.

    Science.gov (United States)

    Nicolas, Jonathan; Hendriksen, Peter J M; de Haan, Laura H J; Koning, Rosella; Rietjens, Ivonne M C M; Bovee, Toine F H

    2015-03-01

    The present study investigated if and to what extent murine stem cell-derived beating cardiomyocytes within embryoid bodies can be used as a broad screening in vitro assay for neurotoxicity testing, replacing for example in vivo tests for marine neurotoxins. Effect of nine model compounds, acting on either the Na(+), K(+), or Ca(2+) channels or the Na(+)/K(+) ATP-ase pump, on the beating was assessed. Diphenhydramine, veratridine, isradipine, verapamil and ouabain induced specific beating arrests that were reversible and none of the concentrations tested induced cytotoxicity. Three K(+) channel blockers, amiodarone, clofilium and sematilide, and the Na(+)/K(+) ATPase pump inhibitor digoxin had no specific effect on the beating. In addition, two marine neurotoxins i.e. saxitoxin and tetrodotoxin elicited specific beating arrests in cardiomyocytes. Comparison of the results obtained with cardiomyocytes to those obtained with the neuroblastoma neuro-2a assay revealed that the cardiomyocytes were generally somewhat more sensitive for the model compounds affecting Na(+) and Ca(2+) channels, but less sensitive for the compounds affecting K(+) channels. The stem cell-derived cardiomyocytes were not as sensitive as the neuroblastoma neuro-2a assay for saxitoxin and tetrodotoxin. It is concluded that the murine stem cell-derived beating cardiomyocytes provide a sensitive model for detection of specific neurotoxins and that the neuroblastoma neuro-2a assay may be a more promising cell-based assay for the screening of marine biotoxins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Evaluating the synergistic neutralizing effect of anti-botulinum oligoclonal antibody preparations.

    Science.gov (United States)

    Diamant, Eran; Lachmi, Bat-El; Keren, Adi; Barnea, Ada; Marcus, Hadar; Cohen, Shoshana; David, Alon Ben; Zichel, Ran

    2014-01-01

    Botulinum neurotoxins (BoNT) are considered some of the most lethal known substances. There are seven botulinum serotypes, of which types A, B and E cause most human botulism cases. Anti-botulinum polyclonal antibodies (PAbs) are currently used for both detection and treatment of the disease. However, significant improvements in immunoassay specificity and treatment safety may be made using monoclonal antibodies (MAbs). In this study, we present an approach for the simultaneous generation of highly specific and neutralizing MAbs against botulinum serotypes A, B, and E in a single process. The approach relies on immunization of mice with a trivalent mixture of recombinant C-terminal fragment (Hc) of each of the three neurotoxins, followed by a parallel differential robotic hybridoma screening. This strategy enabled the cloning of seven to nine MAbs against each serotype. The majority of the MAbs possessed higher anti-botulinum ELISA titers than anti-botulinum PAbs and had up to five orders of magnitude greater specificity. When tested for their potency in mice, neutralizing MAbs were obtained for all three serotypes and protected against toxin doses of 10 MsLD50-500 MsLD50. A strong synergistic effect of up to 400-fold enhancement in the neutralizing activity was observed when serotype-specific MAbs were combined. Furthermore, the highly protective oligoclonal combinations were as potent as a horse-derived PAb pharmaceutical preparation. Interestingly, MAbs that failed to demonstrate individual neutralizing activity were observed to make a significant contribution to the synergistic effect in the oligoclonal preparation. Together, the trivalent immunization strategy and differential screening approach enabled us to generate highly specific MAbs against each of the A, B, and E BoNTs. These new MAbs may possess diagnostic and therapeutic potential.

  13. Evaluating the synergistic neutralizing effect of anti-botulinum oligoclonal antibody preparations.

    Directory of Open Access Journals (Sweden)

    Eran Diamant

    Full Text Available Botulinum neurotoxins (BoNT are considered some of the most lethal known substances. There are seven botulinum serotypes, of which types A, B and E cause most human botulism cases. Anti-botulinum polyclonal antibodies (PAbs are currently used for both detection and treatment of the disease. However, significant improvements in immunoassay specificity and treatment safety may be made using monoclonal antibodies (MAbs. In this study, we present an approach for the simultaneous generation of highly specific and neutralizing MAbs against botulinum serotypes A, B, and E in a single process. The approach relies on immunization of mice with a trivalent mixture of recombinant C-terminal fragment (Hc of each of the three neurotoxins, followed by a parallel differential robotic hybridoma screening. This strategy enabled the cloning of seven to nine MAbs against each serotype. The majority of the MAbs possessed higher anti-botulinum ELISA titers than anti-botulinum PAbs and had up to five orders of magnitude greater specificity. When tested for their potency in mice, neutralizing MAbs were obtained for all three serotypes and protected against toxin doses of 10 MsLD50-500 MsLD50. A strong synergistic effect of up to 400-fold enhancement in the neutralizing activity was observed when serotype-specific MAbs were combined. Furthermore, the highly protective oligoclonal combinations were as potent as a horse-derived PAb pharmaceutical preparation. Interestingly, MAbs that failed to demonstrate individual neutralizing activity were observed to make a significant contribution to the synergistic effect in the oligoclonal preparation. Together, the trivalent immunization strategy and differential screening approach enabled us to generate highly specific MAbs against each of the A, B, and E BoNTs. These new MAbs may possess diagnostic and therapeutic potential.

  14. Systemic colonization of clover (Trifolium repens by Clostridium botulinum strain 2301

    Directory of Open Access Journals (Sweden)

    Matthias eZeiller

    2015-10-01

    Full Text Available In recent years, cases of botulism in cattle and other farm animals and also in farmers increased dramatically. It was proposed, that these cases could be affiliated with the spreading of compost or other organic manures contaminated with Clostridium botulinum spores on farm land. Thus, soils and fodder plants and finally farm animals could be contaminated. Therefore, the colonization behavior and interaction of the botulinum neurotoxin (BoNT D producing C. botulinum strain 2301 and the non-toxin producing Clostridium sporogenes strain 1739 were investigated on clover (Trifolium repens in a field experiment as well as in phytochamber experiments applying axenic and additionally soil based systems under controlled conditions. Plants were harvested and divided into root and shoot parts for further DNA isolation and PCR assays; subsamples were fixed for fluorescence in situ hybridization (FISH analysis in combination with confocal laser scanning microscopy (CLSM. To target C. botulinum and C. sporogenes, 16S rDNA directed primers were used and to specifically detect C. botulinum, BoNT D toxin genes targeted primers, using a multiplex PCR approach, were applied. Our results demonstrate an effective colonization of roots and shoots of clover by C. botulinum strain 2301 and C. sporogenes strain 1739. Detailed analysis of colonization behavior showed that C. botulinum can occur as individual cells, in cell clusters and in microcolonies within the rhizosphere, lateral roots and within the roots tissue of clover. In addition, we observed significant differences in the growth behavior of clover plants when inoculated with Clostridia spores, indicating a plant growth promoting effect. Inoculated plants showed an increased growth index (shoot size, wet and dry weight and an enlarged root system, which suggests the involvement of phytohormonal effects induced by the systemic colonization of clover by C. botulinum strain 2301.

  15. Mechanisms of food processing and storage-related stress tolerance in Clostridium botulinum.

    Science.gov (United States)

    Dahlsten, Elias; Lindström, Miia; Korkeala, Hannu

    2015-05-01

    Vegetative cultures of Clostridium botulinum produce the extremely potent botulinum neurotoxin, and may jeopardize the safety of foods unless sufficient measures to prevent growth are applied. Minimal food processing relies on combinations of mild treatments, primarily to avoid deterioration of the sensory qualities of the food. Tolerance of C. botulinum to minimal food processing is well characterized. However, data on effects of successive treatments on robustness towards further processing is lacking. Developments in genetic manipulation tools and the availability of annotated genomes have allowed identification of genetic mechanisms involved in stress tolerance of C. botulinum. Most studies focused on low temperature, and the importance of various regulatory mechanisms in cold tolerance of C. botulinum has been demonstrated. Furthermore, novel roles in cold tolerance were shown for metabolic pathways under the control of these regulators. A role for secondary oxidative stress in tolerance to extreme temperatures has been proposed. Additionally, genetic mechanisms related to tolerance to heat, low pH, and high salinity have been characterized. Data on genetic stress-related mechanisms of psychrotrophic Group II C. botulinum strains are scarce; these mechanisms are of interest for food safety research and should thus be investigated. This minireview encompasses the importance of C. botulinum as a food safety hazard and its central physiological characteristics related to food-processing and storage-related stress. Special attention is given to recent findings considering genetic mechanisms C. botulinum utilizes in detecting and countering these adverse conditions. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  16. Systemic colonization of clover (Trifolium repens) by Clostridium botulinum strain 2301.

    Science.gov (United States)

    Zeiller, Matthias; Rothballer, Michael; Iwobi, Azuka N; Böhnel, Helge; Gessler, Frank; Hartmann, Anton; Schmid, Michael

    2015-01-01

    In recent years, cases of botulism in cattle and other farm animals and also in farmers increased dramatically. It was proposed, that these cases could be affiliated with the spreading of compost or other organic manures contaminated with Clostridium botulinum spores on farm land. Thus, soils and fodder plants and finally farm animals could be contaminated. Therefore, the colonization behavior and interaction of the botulinum neurotoxin (BoNT D) producing C. botulinum strain 2301 and the non-toxin producing Clostridium sporogenes strain 1739 were investigated on clover (Trifolium repens) in a field experiment as well as in phytochamber experiments applying axenic and additionally soil based systems under controlled conditions. Plants were harvested and divided into root and shoot parts for further DNA isolation and polymerase chain reaction (PCR) assays; subsamples were fixed for fluorescence in situ hybridization analysis in combination with confocal laser scanning microscopy. In addition, we observed significant differences in the growth behavior of clover plants when inoculated with clostridial spores, indicating a plant growth promoting effect. Inoculated plants showed an increased growth index (shoot size, wet and dry weight) and an enlarged root system induced by the systemic colonization of clover by C. botulinum strain 2301. To target C. botulinum and C. sporogenes, 16S rDNA directed primers were used and to specifically detect C. botulinum, BoNT D toxin genes targeted primers, using a multiplex PCR approach, were applied. Our results demonstrate an effective colonization of roots and shoots of clover by C. botulinum strain 2301 and C. sporogenes strain 1739. Detailed analysis of colonization behavior showed that C. botulinum can occur as individual cells, in cell clusters and in microcolonies within the rhizosphere, lateral roots and within the roots tissue of clover.

  17. Clostridium botulinum group I strain genotyping by 15-locus multilocus variable-number tandem-repeat analysis

    NARCIS (Netherlands)

    Fillo, S.; Giordani, F.; Anniballi, F.; Gorgé, O.; Ramisse, V.; Vergnaud, G.; Riehm, J.M.; Scholz, H.C.; Splettstoesser, W.D.; Kieboom, J.; Olsen, J.-S.; Fenicia, L.; Lista, F.

    2011-01-01

    Clostridium botulinum is a taxonomic designation that encompasses a broad variety of spore-forming, Gram-positive bacteria producing the botulinum neurotoxin (BoNT). C. botulinum is the etiologic agent of botulism, a rare but severe neuroparalytic disease. Fine-resolution genetic characterization of

  18. Regulation of toxin synthesis in Clostridium botulinum and Clostridium tetani.

    Science.gov (United States)

    Connan, Chloé; Denève, Cécile; Mazuet, Christelle; Popoff, Michel R

    2013-12-01

    Botulinum and tetanus neurotoxins are structurally and functionally related proteins that are potent inhibitors of neuroexocytosis. Botulinum neurotoxin (BoNT) associates with non-toxic proteins (ANTPs) to form complexes of various sizes, whereas tetanus toxin (TeNT) does not form any complex. The BoNT and ANTP genes are clustered in a DNA segment called the botulinum locus, which has different genomic localization (chromosome, plasmid, phage) in the various Clostridium botulinum types and subtypes. The botulinum locus genes are organized in two polycistronic operons (ntnh-bont and ha/orfX operons) transcribed in opposite orientations. A gene called botR lying between the two operons in C. botulinum type A encodes an alternative sigma factor which regulates positively the synthesis of BoNT and ANTPs at the late exponential growth phase and beginning of the stationary phase. In Clostridium tetani, the gene located immediately upstream of tent encodes a positive regulatory protein, TetR, which is related to BotR. C. botulinum and C. tetani genomes contain several two-component systems and predicted regulatory orphan genes. In C. botulinum type A, four two-component systems have been found that positively or negatively regulate the synthesis of BoNT and ANTPs independently of BotR/A. The synthesis of neurotoxin in Clostridia seems to be under the control of complex network of regulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Clostridium botulinum Spores Found in Honey from Small Apiaries in Poland

    Directory of Open Access Journals (Sweden)

    Wojtacka Joanna

    2016-12-01

    Full Text Available A total of 102 honey samples collected from small apiaries (≤ 20 hives in Poland were analysed for the presence of Clostridium botulinum spores. The samples were prepared using the dilution centrifugation method and cultured in parallel in cooked meat medium (CMM and tripticase peptone glucose yeast (TPGY enrichment broths. Identification of toxin types A, B, and E of Clostridium botulinum strains was performed with the use of the multiplex PCR method. Positive samples were also subjected to quantitative analysis with the use of Clostridium botulinum Isolation Agar Base (CBAB. The prevalence analysis showed 22 (21.6% samples contaminated with C. botulinum spores. The major serotype detected was botulin neurotoxin type A – 16 (72.7% whereas type B was found in 3 (13.6% honey samples and type E also only in 3 (13.6% honey samples. Dual-toxin-producing strains were noted. The average quantity of spores in PCR - C. botulinum positive samples was 190 in 1 gram of honey.

  20. Identification of Small Molecules against Botulinum Neurotoxin B Binding to Neuronal Cells at Ganglioside GT1b Binding Site with Low to Moderate Affinity

    Science.gov (United States)

    2014-10-01

    incubated with BCIP and NBT for chromogenic development. BSA (50 mg/mL) was used as negative control. ELISA: The binding of HCD-BoNT/B to...AP enzyme detection was completed by adding 150 µL of BCIP (5-bromo-4- chloro-3’-indolyl phosphate)/ NBT (nitro-blue tetrazolium) each diluted 1:250...HCC, heavy chain C- terminal sub-domain region of the BD LC, light chain domain NBT , nitro-blue tetrazolium chloride NCI/DTP (National Cancer

  1. Association of toxin-producing Clostridium botulinum with the macroalga Cladophora in the Great Lakes

    Science.gov (United States)

    Chun, Chan Lan; Ochsner, Urs; Byappanahalli, Muruleedhara N.; Whitman, Richard L.; Tepp, William H.; Lin, Guangyun; Johnson, Eric A.; Peller, Julie; Sadowsky, Michael J.

    2013-01-01

    Avian botulism, a paralytic disease of birds, often occurs on a yearly cycle and is increasingly becoming more common in the Great Lakes. Outbreaks are caused by bird ingestion of neurotoxins produced by Clostridium botulinum, a spore-forming, gram-positive, anaerobe. The nuisance, macrophytic, green alga Cladophora (Chlorophyta; mostly Cladophora glomerata L.) is a potential habitat for the growth of C. botulinum. A high incidence of botulism in shoreline birds at Sleeping Bear Dunes National Lakeshore (SLBE) in Lake Michigan coincides with increasingly massive accumulations of Cladophora in nearshore waters. In this study, free-floating algal mats were collected from SLBE and other shorelines of the Great Lakes between June and October 2011. The abundance of C. botulinum in algal mats was quantified and the type of botulism neurotoxin (bont) genes associated with this organism were determined by using most-probable-number PCR (MPN-PCR) and five distinct bont gene-specific primers (A, B, C, E, and F). The MPN-PCR results showed that 16 of 22 (73%) algal mats from the SLBE and 23 of 31(74%) algal mats from other shorelines of the Great Lakes contained the bont type E (bont/E) gene. C. botulinum was present up to 15 000 MPN per gram dried algae based on gene copies of bont/E. In addition, genes for bont/A and bont/B, which are commonly associated with human diseases, were detected in a few algal samples. Moreover, C. botulinum was present as vegetative cells rather than as dormant spores in Cladophora mats. Mouse toxin assays done using supernatants from enrichment of Cladophora containing high densities of C. botulinum (>1000 MPN/g dried algae) showed that Cladophora-borne C. botulinum were toxin-producing species (BoNT/E). Our results indicate that Cladophora provides a habitat for C. botulinum, warranting additional studies to better understand the relationship between this bacterium and the alga, and how this interaction potentially contributes to botulism

  2. Genomic organization and diversity of Clostridium botulinum group III

    OpenAIRE

    Skarin, Hanna

    2015-01-01

    Botulism is caused by botulinum neurotoxins (BoNTs) produced by the spore forming strictly anaerobic bacterium Clostridium botulinum. Seven different types of BoNTs (type A-F) have so far been established on the basis of neutralization with different antibodies. Botulism affects both humans and animals, and there are occasionally large-scale outbreaks of high mortality in animals. Especially large outbreaks of avian botulism have been reported from various countries, including Sweden. Other a...

  3. Clostridium botulinum strains producing BoNT/F4 or BoNT/F5.

    Science.gov (United States)

    Raphael, Brian H; Bradshaw, Marite; Kalb, Suzanne R; Joseph, Lavin A; Lúquez, Carolina; Barr, John R; Johnson, Eric A; Maslanka, Susan E

    2014-05-01

    Botulinum neurotoxin type F (BoNT/F) may be produced by Clostridium botulinum alone or in combination with another toxin type such as BoNT/A or BoNT/B. Type F neurotoxin gene sequences have been further classified into seven toxin subtypes. Recently, the genome sequence of one strain of C. botulinum (Af84) was shown to contain three neurotoxin genes (bont/F4, bont/F5, and bont/A2). In this study, eight strains containing bont/F4 and seven strains containing bont/F5 were examined. Culture supernatants produced by these strains were incubated with BoNT/F-specific peptide substrates. Cleavage products of these peptides were subjected to mass spectral analysis, allowing detection of the BoNT/F subtypes present in the culture supernatants. PCR analysis demonstrated that a plasmid-specific marker (PL-6) was observed only among strains containing bont/F5. Among these strains, Southern hybridization revealed the presence of an approximately 242-kb plasmid harboring bont/F5. Genome sequencing of four of these strains revealed that the genomic backgrounds of strains harboring either bont/F4 or bont/F5 are diverse. None of the strains analyzed in this study were shown to produce BoNT/F4 and BoNT/F5 simultaneously, suggesting that strain Af84 is unusual. Finally, these data support a role for the mobility of a bont/F5-carrying plasmid among strains of diverse genomic backgrounds.

  4. Molecular diversity of Clostridium botulinum and phenotypically similar strains.

    Science.gov (United States)

    Grenda, T; Kukier, E; Sieradzki, Z; Goldsztejn, M; Kwiatek, K

    2016-12-01

    This study was undertaken to examine phenotypic and genetic features of strains preliminary classified as Clostridium botulinum species. The phenotypic characteristics were assessed with different culture media and biochemical tests. The genetic characterization included detection of botulinum toxin genes by PCR and macrorestriction analysis with SmaI, XhoI and SacII by PFGE (Pulsed-field Gel Electrophoresis). Despite similar biochemical properties of all analysed strains, only 47% of them contained genes determining toxicity specific to C. botulinum species. The most valuable differentiation of C. botulinum and C. botulinum-like strains was obtained after SmaI digestion. The highest affinity was observed among C. botulinum type B profiles which was even up to 100%. It was found 100% of affinity between C. botulinum and C. botulinum-like strains, however, the similarity among C. botulinum and C. botulinum-like was generally lower than 80%.

  5. A study on the toxigenesis by Clostridium botulinum in nitrate and nitrite-reduced dry fermented sausages.

    Science.gov (United States)

    Hospital, Xavier F; Hierro, Eva; Stringer, Sandra; Fernández, Manuela

    2016-02-02

    Nitrite has been traditionally used to control Clostridium botulinum in cured meat products. However, in the case of dry fermented sausages, environmental factors such as pH, aw and the competitive microbiota may exert a more relevant role than nitrite in the inhibition of the growth and toxin production by C. botulinum. In this challenge test study, two varieties of Mediterranean dry sausages (salchichón and fuet) were inoculated with spores of C. botulinum Group I (proteolytic) and C. botulinum Group II (nonproteolytic). Sausages were prepared with 150 mg/kg of NaNO3 and 150 mg/kg of NaNO2 (maximum ingoing amounts allowed by the European Union regulation), with a 25% and 50% reduction, and without nitrate/nitrite. The initial pH in both products was 5.6, and decreased to values below 5.0 in salchichón and to 5.2 in fuet. Lactic acid bacteria counts reached 8-9 log cfu/g after fermentation. The aw decreased from initial values of 0.96 to about 0.88-0.90 at the end of ripening. Botulinum neurotoxin was not detected in any of the sausages, including those manufactured without nitrate and nitrite. Despite the environmental conditions were within the range for germination and growth of C. botulinum Group I during the first 8 days of the ripening process in fuet and 10-12 days in salchichón, acidity, aw and incubation temperature combined to inhibit the production of toxin, independently of the concentration of curing agents. Although decreasing or even removing nitrate/nitrite from the formula did not compromise safety regarding C. botulinum in the conditions tested in this study, their antimicrobial role should not be underestimated in the case that other hurdles could fail or other ripening conditions were used, and also considering the effect of nitrite on other pathogens.

  6. Detection of marine neurotoxins and characterization of the presynaptic activity of iotrochotin from the sponge Iotrochota birotulata

    International Nuclear Information System (INIS)

    Martin, J.V.

    1987-01-01

    In order to detect novel presynaptic neurotoxins, a total of 766 extracts from marine organisms collected during expeditions of the research vessel Alpha Helix around the peninsula of Baja Mexico in 1974 and through the Caribbean in 1978 were tested for activity in a synaptosomal assay for the release of acetylcholine (ACh). To eliminate from consideration sample extracts which lysed the synaptosomal membrane, lactate dehydrogenase (LDH) activity was measured as a cytoplasmic marker. On the basis of the screening studies the extract of the sponge lotrochota birotulata was chosen for more detailed characterization. The active factor, iotrochotin (IOT), was sensitive to thermal inactivation, was partially activated by trypsin treatment and had a molecular weight of 12,000-13,000. The activity of IOT was found to be complete by one minute. The maximal release of radioactivity from synaptosomes preloaded with [ 3 H]choline was found to be dependent on the concentration of IOT irrespective of the time of further incubation. The concentration-response curve of IOT activity showed a sigmoid shape which did not fit the Hill equation. IOT caused release of both ACh and choline. Of the radioactivity released by IOT from synaptosomes preloaded with [ 3 H]choline, 50-60% was [ 3 H]ACh. IOT also released [ 3 H]GABA and [ 3 H]norepinephrine from synaptosomes preincubated with these labeled neurotransmitters. The activity of IOT was only minimally sensitive to reduction in Na + or Ca 2+ levels, and was not sensitive to tetrodotoxin. IOT did not dramatically change the fluorescence of synaptosomes incubated with a depolarization-indicating dye. However, depolarization of synaptosomes with high concentrations of K + was still detectable by this method in the presence of IOT

  7. Improvement in laboratory diagnosis of wound botulism and tetanus among injecting illicit-drug users by use of real-time PCR assays for neurotoxin gene fragments.

    Science.gov (United States)

    Akbulut, D; Grant, K A; McLauchlin, J

    2005-09-01

    An upsurge in wound infections due to Clostridium botulinum and Clostridium tetani among users of illegal injected drugs (IDUs) occurred in the United Kingdom during 2003 and 2004. A real-time PCR assay was developed to detect a fragment of the neurotoxin gene of C. tetani (TeNT) and was used in conjunction with previously described assays for C. botulinum neurotoxin types A, B, and E (BoNTA, -B, and -E). The assays were sensitive, specific, rapid to perform, and applicable to investigating infections among IDUs using DNA extracted directly from wound tissue, as well as bacteria growing among mixed microflora in enrichment cultures and in pure culture on solid media. A combination of bioassay and PCR test results confirmed the clinical diagnosis in 10 of 25 cases of suspected botulism and two of five suspected cases of tetanus among IDUs. The PCR assays were in almost complete agreement with the conventional bioassays when considering results from different samples collected from the same patient. The replacement of bioassays by real-time PCR for the isolation and identification of both C. botulinum and C. tetani demonstrates a sensitivity and specificity similar to those of conventional approaches. However, the real-time PCR assays substantially improves the diagnostic process in terms of the speed of results and by the replacement of experimental animals. Recommendations are given for an improved strategy for the laboratory investigation of suspected wound botulism and tetanus among IDUs.

  8. Genomic characterization of Italian Clostridium botulinum group I strains.

    Science.gov (United States)

    Giordani, Francesco; Fillo, Silvia; Anselmo, Anna; Palozzi, Anna Maria; Fortunato, Antonella; Gentile, Bernardina; Azarnia Tehran, Domenico; Ciammaruconi, Andrea; Spagnolo, Ferdinando; Pittiglio, Valentina; Anniballi, Fabrizio; Auricchio, Bruna; De Medici, Dario; Lista, Florigio

    2015-12-01

    Clostridium botulinum is a gram-positive bacterium capable of producing the botulinum neurotoxin, a powerful poison that causes botulism, a severe neuroparalytic disease. Its genome has been sequenced entirely and its gene content has been analyzed. To date, 19 full genomes and 64 draft genomes are available. The geographical origin of these genomes is predominantly from the US. In the present study, 10 Italian genomes of C. botulinum group I were analyzed and compared with previously sequenced group I genomes, in order to genetically characterize the Italian population of C. botulinum group I and to investigate the phylogenetic relationships among different lineages. Using the suites of software ClonalFrame and ClonalOrigin to perform genomic analysis, we demonstrated that Italian C. botulinum group I population is phylogenetically heterogeneous encompassing different and distant lineages including overseas strains, too. Moreover, a high recombination rate was demonstrated in the evolution of C. botulinum group I species. Finally, genome sequencing of the strain 357 led us to identify a novel botulinum neurotoxin subtype, F8. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. In vitro detection of cardiotoxins or neurotoxins affecting ion channels or pumps using beating cardiomyocytes as alternative for animal testing

    NARCIS (Netherlands)

    Nicolas, J.A.Y.; Hendriksen, P.J.M.; Haan, de L.H.J.; Koning, R.; Rietjens, I.M.C.M.; Bovee, T.F.H.

    2015-01-01

    The present study investigated if and to what extent murine stem cell-derived beating cardiomyocytes within embryoid bodies can be used as a broad screening in vitro assay for neurotoxicity testing, replacing for example in vivo tests for marine neurotoxins. Effect of nine model compounds, acting on

  10. DEVELOPMENT OF ENZYME-LINKAGE IMMUNOSORBENT ASSAY AGAINST TYPE B OF CLOSTRIDIUM BOTULINUM: A PRELIMINARY STUDY

    Directory of Open Access Journals (Sweden)

    S. N. Depamede

    2011-12-01

    Full Text Available Clostridium botulinum neurotoxin (BoNTs is one of the causes of economic loss in the livestock industry. This economic loss would be as a direct result when animals poisoned by BoNTs or indirectly when the livestock products are contaminated by BoNTs, which end up with the products are banned by authority. Therefore a routine surveillance of BoNTs in the farm and in livestock product processing industry is urgently needed. One of the most relatively quick and accurate methods to perform a routine detection of the presence of BoNTs is enzyme-linkage immunosorbant assay (ELISA. In this article we describe the results of the development of ELISA, using polyclonal antibodies against BoNTs-B produced locally. Antibodies were generated from six Balb/c mice with standard immunological methods. Mice were immunized three times for a period of 8 weeks with a commercial type B Clostridium botulinum toxoid at a dose of 100 ng per mouse per injection. The resulting antibody was purified by a combination of ammonium sulfate precipitation 50% (w/v technique and a protein A column method. The results of this preliminary study indicated that the developed ELISA method capable of detecting type B Clostridium botulinum toxin up to 1.0 ng/ml.

  11. Inhibition of Metalloprotease Botulinum Serotype A from a Pseudo-Peptide Binding Mode to a Small Molecule that is Active in Primary Neurons

    National Research Council Canada - National Science Library

    Burnett, James C; Ruthel, Gordon; Stegmann, Christian M; Panchal, Rekha G; Nguyen, Tam L; Hermone, Ann R; Stafford, Robert G; Lane, Douglas J; Kenny, Tara A; McGarth, Connor F

    2007-01-01

    An efficient research strategy integrating empirically-guided, structure-based modeling and chemoinformatics was used to discover potent small molecule inhibitors of the botulinum neurotoxin serotype A light chain...

  12. Detection of human neuronal α7 nicotinic acetylcholine receptors by conjugates of snake α-neurotoxin with quantum dots.

    Science.gov (United States)

    Makarova, Ya V; Shelukhina, I V; Mukherjee, A K; Kuznetsov, D V; Tsetlin, V I; Utkin, Yu N

    2017-07-01

    Fluorescent derivatives are widely used to study the structure and functions of proteins. Quantum dots (QDs), fluorescent semiconductor nanocrystals, have a high quantum yield and are much more resistant to bleaching compared to organic dyes. Conjugates of α-neurotoxins with QDs were used for visualization of human α7 acetylcholine receptors heterologously expressed in GH4C1 pituitary adenoma cells. Specific staining of cells by the conjugated toxins was observed.

  13. Characterization of Hemagglutinin Negative Botulinum Progenitor Toxins

    Directory of Open Access Journals (Sweden)

    Suzanne R. Kalb

    2017-06-01

    Full Text Available Botulism is a disease involving intoxication with botulinum neurotoxins (BoNTs, toxic proteins produced by Clostridium botulinum and other clostridia. The 150 kDa neurotoxin is produced in conjunction with other proteins to form the botulinum progenitor toxin complex (PTC, alternating in size from 300 kDa to 500 kDa. These progenitor complexes can be classified into hemagglutinin positive or hemagglutinin negative, depending on the ability of some of the neurotoxin-associated proteins (NAPs to cause hemagglutination. The hemagglutinin positive progenitor toxin complex consists of BoNT, nontoxic non-hemagglutinin (NTNH, and three hemagglutinin proteins; HA-70, HA-33, and HA-17. Hemagglutinin negative progenitor toxin complexes contain BoNT and NTNH as the minimally functional PTC (M-PTC, but not the three hemagglutinin proteins. Interestingly, the genome of hemagglutinin negative progenitor toxin complexes comprises open reading frames (orfs which encode for three proteins, but the existence of these proteins has not yet been extensively demonstrated. In this work, we demonstrate that these three proteins exist and form part of the PTC for hemagglutinin negative complexes. Several hemagglutinin negative strains producing BoNT/A, /E, and /F were found to contain the three open reading frame proteins. Additionally, several BoNT/A-containing bivalent strains were examined, and NAPs from both genes, including the open reading frame proteins, were associated with BoNT/A. The open reading frame encoded proteins are more easily removed from the botulinum complex than the hemagglutinin proteins, but are present in several BoNT/A and /F toxin preparations. These are not easily removed from the BoNT/E complex, however, and are present even in commercially-available purified BoNT/E complex.

  14. Genomics of Clostridium botulinum group III strains.

    Science.gov (United States)

    Sakaguchi, Yoshihiko; Suzuki, Tomonori; Yamamoto, Yumiko; Nishikawa, Atsushi; Oguma, Keiji

    2015-05-01

    In Clostridium botulinum, the characteristics of type C and D strains are quite different from other types, and they are classified as group III. They produce C2 binary toxin and C3 exoenzyme in addition to type C and D neurotoxins. Two different phages and many plasmids are identified in the organisms. The genes of neurotoxin and C3 exoenzyme are converted from toxigenic strains to non-toxigenic strains by the specific bacteriophages (phages), whereas, the C2 toxin gene is carried by large or small plasmids. Classification of type C and D strains has been in confusion because 1) antigenicity of type C and D neurotoxins is complex, 2) the cells produce two types of toxins, neurotoxin and C2 toxin, and 3) some non-toxigenic strains can be converted to produce C or D neurotoxin by the infection with phages. Until now, entire nucleotide sequences of cell chromosomes, phages, and plasmids have been determined. Since both genetic and protein-chemical analyses have been clarifying the above confusions, these data are reviewed historically. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  15. Efficacy of Clostridium botulinum types C and D toxoid vaccination in Danish cows.

    Science.gov (United States)

    Krüger, Monika; Skau, Marie; Shehata, Awad Ali; Schrödl, Wieland

    2013-10-01

    In the present study the efficacy Botulism vaccine (formalinised aluminum hydroxide gel adsorbed toxoid of Clostridium botulinum types C and D) was evaluated in four Danish dairy cows under field conditions. Other four dairy herds were unvaccinated. Blood serum of all animals was analyzed for specific C. botulinum types A, B, C, D and E antibodies using a developed ELISA. Feces of all animals were analyzed for botulinum neurotoxins (BoNTs) and C. botulinum spores. C. botulinum types C and D antibodies were significantly (p vaccinated animals. Vaccination with botulism vaccine significantly reduced (p vaccination increases specific blood serum antibodies and reduces free BoNTs and C. botulinum spores in feces. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. A novel strain of Clostridium botulinum that produces type B and type H botulinum toxins.

    Science.gov (United States)

    Barash, Jason R; Arnon, Stephen S

    2014-01-15

    Clostridium botulinum strain IBCA10-7060, isolated from a patient with infant botulism, produced botulinum neurotoxin type B (BoNT/B) and another BoNT that, by use of the standard mouse bioassay, could not be neutralized by any of the Centers for Disease Control and Prevention-provided monovalent polyclonal botulinum antitoxins raised against BoNT types A-G.  The combining of antitoxins to neutralize the toxicity of known bivalent C. botulinum strains Ab, Ba, Af, and Bf also failed to neutralize the second BoNT. Analysis of culture filtrate by double immunodiffusion yielded a single line of immunoprecipitate with anti-A, anti-B, and anti-F botulinum antitoxins but not with anti-E antitoxin. A heptavalent F(ab')2 botulinum antitoxin A-G obtained from the US Army also did not neutralize the second BoNT. An antitoxin raised against IBCA10-7060 toxoid protected mice against BoNT/B (Okra) and against the second BoNT but did not protect mice against BoNT/A (Hall) or BoNT/F (Langeland). The second BoNT thus fulfilled classic criteria for being designated BoNT/H. IBCA10-7060 is the first C. botulinum type Bh strain to be identified. BoNT/H is the first new botulinum toxin type to be recognized in >40 years, and its recognition could not have been accomplished without the availability of the mouse bioassay.

  17. Unique Ganglioside Recognition Strategies for Clostridial Neurotoxins

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Marc A.; Fu, Zhuji; Kim, Jung-Ja P.; Baldwin, Michael R. (MCW); (UMC)

    2012-03-15

    Botulinum neurotoxins (BoNTs) and tetanus neurotoxin are the causative agents of the paralytic diseases botulism and tetanus, respectively. The potency of the clostridial neurotoxins (CNTs) relies primarily on their highly specific binding to nerve terminals and cleavage of SNARE proteins. Although individual CNTs utilize distinct proteins for entry, they share common ganglioside co-receptors. Here, we report the crystal structure of the BoNT/F receptor-binding domain in complex with the sugar moiety of ganglioside GD1a. GD1a binds in a shallow groove formed by the conserved peptide motif E ... H ... SXWY ... G, with additional stabilizing interactions provided by two arginine residues. Comparative analysis of BoNT/F with other CNTs revealed several differences in the interactions of each toxin with ganglioside. Notably, exchange of BoNT/F His-1241 with the corresponding lysine residue of BoNT/E resulted in increased affinity for GD1a and conferred the ability to bind ganglioside GM1a. Conversely, BoNT/E was not able to bind GM1a, demonstrating a discrete mechanism of ganglioside recognition. These findings provide a structural basis for ganglioside binding among the CNTs and show that individual toxins utilize unique ganglioside recognition strategies.

  18. Diversity of the Germination Apparatus in Clostridium botulinum Groups I, II, III and IV

    Directory of Open Access Journals (Sweden)

    Jason Brunt

    2016-10-01

    Full Text Available Clostridium botulinum is a highly dangerous pathogen that forms very resistant endospores that are ubiquitous in the environment, and which, under favourable conditions germinate to produce vegetative cells that multiply and form the exceptionally potent botulinum neurotoxin. To improve the control of botulinum neurotoxin-forming clostridia, it is important to understand the mechanisms involved in spore germination. Here we present models for spore germination in C. botulinum based on comparative genomics analyses, with C. botulinum Groups I and III sharing similar pathways, which differ from those proposed for C. botulinum Groups II and IV. All spores germinate in response to amino acids interacting with a germinant receptor, with four types of germinant receptor identified (encoded by various combinations of gerA, gerB and gerC genes (gerX. There are three gene clusters with an ABC-like configuration; ABC gerX1, ABABCB gerX2 and ACxBBB gerX4, and a single CA-B gerX3 gene cluster. Subtypes have been identified for most germinant receptors types, and the individual GerX subunits of each cluster show similar grouping in phylogenetic trees. C. botulinum Group I contained the largest variety of gerX subtypes, with three gerX1, three gerX2 and one gerX3 subtypes, while C. botulinum Group III contained two gerX1 types and one gerX4. C. botulinum Groups II and IV contained a single germinant receptor, gerX3 and gerX1, respectively. It is likely that all four C. botulinum Groups include a SpoVA channel involved in DPA release. The cortex lytic enzymes present in C. botulinum Groups I and III appear to be CwlJ and SleB, while in C. botulinum Groups II and IV, SleC appears to be important.

  19. Development and characterization of six monoclonal antibodies to hemagglutinin-70 (HA70) of Clostridium botulinum and their application in a sandwich ELISA

    Science.gov (United States)

    Botulinum neurotoxins (BoNT),produced by Clostridium botulinum, cause severe neuroparalytic disease that if not treated quickly is often fatal. The toxin is synthesized as a 150 kDa precursor protein (holotoxin), which is then enzymatically cleaved to form two subunit chains linked by a single disul...

  20. Detection of toxigenic Clostridium perfringens and Clostridium botulinum from food sold in Lagos, Nigeria.

    Science.gov (United States)

    Chukwu, Emelda E; Nwaokorie, Francisca O; Coker, Akitoye O; Avila-Campos, Mario J; Solis, Rosa L; Llanco, Luis A; Ogunsola, Folasade T

    2016-12-01

    Food-borne diseases contribute to the huge burden of sickness and death globally and in the last decade, have become more frequently reported in Africa. In line with this, food safety is becoming a significant and growing public health problem in Nigeria. Diarrhoea is a common problem in Nigeria and has been reported but there has been little data on the possibility of clostridia as aetiological agents. Clostridium species are ubiquitous in the environment and in the gastrointestinal tract of man and animals and can serve as a marker for faecal contamination. We set out to determine the potential of these foods to transmit Clostridium species. A total of 220 food commodities from six local governments in Lagos State were sampled. Isolates obtained were identified based on cultural, morphological and biochemical characteristics. Toxinotyping was done using multiplex-PCR with primers specific for alpha, beta, epsilon and iota-toxin genes, enterotoxigenic cpe gene and neurotoxigenic BoNt gene. Fifty (22.7%) clostridial species were isolated of which 29 (58%) were identified as C. perfringens. Toxinotyping of the 29 strains showed that 28 (96.6%) were toxin producing C. perfringens type A while one (3.4%) was C. perfringens type D. Two (4%) C. botulinum species were isolated and identified by 16S rRNA sequencing, both harbouring BoNt/A gene. The contamination rates of food with Clostridium species show that food hygiene is a problem and Clostridium species may be a source of food borne disease in Lagos State, Nigeria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Evaluation of a Botulinum Toxoid, Type B, for the Prevention of Shaker Foal Syndrome,

    Science.gov (United States)

    1981-11-06

    pregnancy has been shown to be an efficient means of passively immunizing foals against the tetanus neurotoxin produced by Clostridium tetani . The...9,12 Clostridium botulinum, type B, has been isolated repeatedly from the feces of affected foals 4 and the disease can be reproduced experimentally...immunization of their dams with aluminum hydroxide-adsorbed tetanus toxoid (derived from the neurotoxin of C. tetani ) given in 2-ml doses at 2 months

  2. Detection, concentrations and distribution of paxilline, an animal neurotoxin, in mouse brain: an application of ultra-high sensitivity detection of 14C by accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Roberts, P.B.; Kim, K.

    1999-01-01

    Full text: Paxilline is an intermediate in the biosynthesis of lolitrem neurotoxins that cause the disorder rye grass staggers in livestock grazing on pastures infected with certain fungi. Paxilline itself produces similar symptoms and the 14 C-labelled compound has been produced bio-synthetically at low specific activity. Using conventional liquid scintillation counting it was not possible to detect the labelled compound in the brain of mice sacrificed at the time they displayed physiological symptoms. Accelerator mass spectrometry (AMS) counts 14 C atoms, not decays, and provides sensitivity 10,000-100,000 times greater than conventional scintillation counting of radioactive decays. Measurements are easily obtained at the level of the natural abundance of 14 C in living tissue of 6fCi or 10 -16 moles 14 C per mg total carbon. Extraction of the labelled compound from the tissue is unnecessary and sample size can be 0.01-10mg. Paxilline (8mg/kg ip) was given to 25g mice. The total activity injected was 11,000 dpm though the results showed that 1,000dpm would have been sufficient. The concentration of paxilline in homogenised whole brain was determined to be 985 pg or 0.0075 dpm mg dry tissue. The concentration in the major brain segments ranged from 893-1137 pgmg dry tissue. The spinal cord contained 719 pg/mg dry tissue. Our results suggest that toxicologists and pharmacologists should consider what new information may be obtained by combining tracer studies with the power of AMS detection. The AMS method makes possible great reductions in the amount of label and sample sizes, plus wider ranges in concentration/time course studies. In particular, it opens up new possibilities such as: studies at true dietary or environmental levels; tracer studies in large animal or plant systems; field trials; human studies where radiation dose must be considered; and studies with compounds that can only be synthesised with low specific activity. Copyright (1999) Australasian

  3. Investigations into an Outbreak of Botulism Caused by Clostridium botulinum Type C/D in Laying Hens.

    Science.gov (United States)

    Skarin, Hanna; Lindgren, Ylva; Jansson, Désirée S

    2015-06-01

    This case report describes a recent botulism outbreak in commercial laying hens with a history of increased mortality and flaccid paralysis. Routine diagnostic gross examination and microscopy from seven hens were inconclusive, but botulinum neurotoxin (BoNT) in peripheral blood was neutralized with both type C and type D antitoxins in the mouse bioassay. During a farm visit, 10 additional hens from a 34-wk-old flock on the farm were selected for clinical examination and further sampling. Nine hens were observed in sternal recumbency, with flaccid paralysis of the neck, drooping wings and tail, inability to escape, and bilateral ptosis, and one hen showed nonspecific clinical signs. Samples from cecum and liver were collected, and the gene coding for BoNT was detected by PCR in all 10 cecal samples and in four of the liver samples. Clostridium botulinum mosaic type C/D was isolated from 5 out of 10 hens from either cecum or liver, and the isolates were subjected to pulsed-field gel electrophoresis subtyping. All five isolates produced the same banding pattern, which was identical or showed >90% similarity to isolates from three different outbreaks on broiler farms in Sweden and Denmark during the 2007-10 period. However, they were clearly distinguishable from the predominantly reported pulsotype associated with avian botulism outbreaks in Europe. The authors are unaware of any previous report of C. botulinum mosaic type C/D isolates from laying hens.

  4. Characterization of the spore surface and exosporium proteins of Clostridium sporogenes; implications for Clostridium botulinum group I strains.

    Science.gov (United States)

    Janganan, Thamarai K; Mullin, Nic; Tzokov, Svetomir B; Stringer, Sandra; Fagan, Robert P; Hobbs, Jamie K; Moir, Anne; Bullough, Per A

    2016-10-01

    Clostridium sporogenes is a non-pathogenic close relative and surrogate for Group I (proteolytic) neurotoxin-producing Clostridium botulinum strains. The exosporium, the sac-like outermost layer of spores of these species, is likely to contribute to adhesion, dissemination, and virulence. A paracrystalline array, hairy nap, and several appendages were detected in the exosporium of C. sporogenes strain NCIMB 701792 by EM and AFM. The protein composition of purified exosporium was explored by LC-MS/MS of tryptic peptides from major individual SDS-PAGE-separated protein bands, and from bulk exosporium. Two high molecular weight protein bands both contained the same protein with a collagen-like repeat domain, the probable constituent of the hairy nap, as well as cysteine-rich proteins CsxA and CsxB. A third cysteine-rich protein (CsxC) was also identified. These three proteins are also encoded in C. botulinum Prevot 594, and homologues (75-100% amino acid identity) are encoded in many other Group I strains. This work provides the first insight into the likely composition and organization of the exosporium of Group I C. botulinum spores. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Sequencing and phylogenetic analysis of neurotoxin gene from an environmental isolate of Clostridium sp.: comparison with other clostridial neurotoxins.

    Science.gov (United States)

    Dixit, Aparna; Alam, Syed Imteyaz; Singh, Lokendra

    2006-07-01

    A Clostridium sp. isolated from intestine of decaying fish exhibited 99% sequence identity with C. tetani at 16S rRNA level. It produced a neurotoxin that was neutralized by botulinum antitoxin (A+B+E) as well as tetanus antitoxin. The gene fragments for light chain, C-terminal and N-terminal regions of the heavy chain of the toxin were amplified using three reported primer sets for tetanus neurotoxin (TeNT). The neurotoxin gene fragments were cloned in Escherichia coli and sequenced. The sequences obtained exhibited approximately 98, 99 and 98% sequence identity with reported gene sequences of TeNT/LC, TeNT/HC and TeNT/HN, respectively. The phylogenetic interrelationship between the neurotoxin gene of Clostridium sp. with previously reported gene sequences of Clostridium botulinum A to G and C. tetani was examined by analysis of differences in the nucleotide sequences. Six amino acids were substituted at four different positions in the light chain of neurotoxin from the isolate when compared with the reported closest sequence of TeNT. Of these, four were located in the beta15 motif at a solvent inaccessible, buried region of the protein molecule. One of these substitutions were on the solvent accessible surface residue of alpha1 motif, previously shown to have strong sequence conservation. A substitution of two amino acids observed in N-terminal region of heavy chain were buried residues, located in the beta21 and beta37 motifs showing variability in other related sequences. The C-terminal region responsible for binding to receptor was conserved, showing no changes in the amino acid sequence.

  6. Conversion of a Mouse Fab into a Whole Humanized IgG Antibody for Detecting Botulinum Toxin

    National Research Council Canada - National Science Library

    Palys, Thomas J; Schmid, Kara E; Scherer, John M; Schoepp, Randal J

    2006-01-01

    .... Therefore we sought to convert a murine Fab into a whole humanized IgG. The variable regions from an anti-botulinum Fab were cloned into human IgG heavy and light chain vectors and produced in myeloma cells...

  7. Botulinum Toxin Treatment of Autonomic Disorders: Focal Hyperhidrosis and Sialorrhea.

    Science.gov (United States)

    Hosp, Christine; Naumann, Markus K; Hamm, Henning

    2016-02-01

    Primary focal hyperhidrosis is a common autonomic disorder that significantly impacts quality of life. It is characterized by excessive sweating confined to circumscribed areas, such as the axillae, palms, soles, and face. Less frequent types of focal hyperhidrosis secondary to underlying causes include gustatory sweating in Frey's syndrome and compensatory sweating in Ross' syndrome and after sympathectomy. Approval of onabotulinumtoxinA for severe primary axillary hyperhidrosis in 2004 has revolutionized the treatment of this indication. Meanwhile further type A botulinum neurotoxins like abobotulinumtoxinA and incobotulinumtoxinA, as well as the type B botulinum neurotoxin rimabotulinumtoxinB are successfully used off-label for axillary and various other types of focal hyperhidrosis. For unexplained reasons, the duration of effect differs considerably at different sites. Beside hyperhidrosis, botulinum neurotoxin is also highly valued for the treatment of sialorrhea affecting patients with Parkinson's disease, cerebral palsy, amyotrophic lateral sclerosis, motor neuron disease, and other neurologic conditions. With correct dosing and application, side effects are manageable and transient. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  8. The variability of times to detect growth from individual Clostridium botulinum type E endospores is differentially affected by high pressure treatments

    Science.gov (United States)

    Lenz, Christian A.; Schnabel, Juliane; Vogel, Rudi F.

    2014-10-01

    High pressure thermal (HPT) processing is a candidate technology for the production of safe and stable food. However, little is known about the effect of HPT or high hydrostatic pressure (HHP) treatments at ambient temperature on the variability of times to detect growth from individual spores. We investigated this effect by treating Clostridium botulinum type E spores with HHP (200-600 MPa, 20°C) and HPT (600 MPa, 80°C and 800 MPa, 60°C). Our results indicate that the mean detection times increase and the frequency distribution shifts toward longer times when HHP treatment intensity is increased. HPT treatments result in a highly scattered distribution. In contrast, pressure levels ≤300 MPa decrease detection times and heterogeneity of their distribution, which could lead to an increase in the potential risk originating from C. botulinum type E spores. Data provided here could help to refine risk assessment regarding this important food intoxicator.

  9. Process Research and Development of Antibodies as Countermeasures for C. botulinum

    National Research Council Canada - National Science Library

    Meagher, Michael

    2004-01-01

    ...) cells against serotype A botulinum neurotoxin. We have been able to clone and successful express the full intact S-25 antibody provided by Dr. Jim Marks of UCSF at 30 mg/L in 250 mL spinner shake flasks. A manuscript has been submitted on this work.

  10. Behaviour of individual spores of non proteolytic Clostridium botulinum as an element in quantitative risk assessment

    NARCIS (Netherlands)

    Smelt, J.P.; Stringer, S.C.; Brul, S.

    2013-01-01

    Botulism is a true food poisoning hazard. It is caused by a deadly neurotoxin produced in food by the spore forming organism Clostridium botulinum, which is found in soil all over the world. The frequency of botulism cases is rare, but each year a number of them occur. Ideally a quantitative

  11. What Clinical Strategies Are Applied for Botulinum Toxin Injection in the Oromandibular Region?

    DEFF Research Database (Denmark)

    Bakke, Merete; Dalager, Torben; Møller, Eigild

    2016-01-01

    Botulinum neurotoxin (BoNT) inhibits the release of acetylcholine from cholinergic nerve terminals in muscles or salivary glands. With reduced activation, the muscle activity or secretion decreases. Indications for medical, non‐cosmetic use of BoNT in the orofacial area include among others...

  12. Two-component systems and toxinogenesis regulation in Clostridium botulinum.

    Science.gov (United States)

    Connan, Chloé; Popoff, Michel R

    2015-05-01

    Botulinum neurotoxins (BoNTs) are the most potent toxins ever known. They are mostly produced by Clostridium botulinum but also by other clostridia. BoNTs associate with non-toxic proteins (ANTPs) to form complexes of various sizes. Toxin production is highly regulated through complex networks of regulatory systems involving an alternative sigma factor, BotR, and at least 6 recently described two-component systems (TCSs). TCSs allow bacteria to sense environmental changes and to respond to various stimuli by regulating the expression of specific genes at a transcriptional level. Several environmental stimuli have been identified to positively or negatively regulate toxin synthesis; however, the link between environmental stimuli and TCSs is still elusive. This review aims to highlight the role of TCSs as a central point in the regulation of toxin production in C. botulinum. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. Channels Formed by Botulinum, Tetanus, and Diphtheria Toxins in Planar Lipid Bilayers: Relevance to Translocation of Proteins across Membranes

    Science.gov (United States)

    Hoch, David H.; Romero-Mira, Miryam; Ehrlich, Barbara E.; Finkelstein, Alan; Dasgupta, Bibhuti R.; Simpson, Lance L.

    1985-03-01

    The heavy chains of both botulinum neurotoxin type B and tetanus toxin form channels in planar bilayer membranes. These channels have pH-dependent and voltage-dependent properties that are remarkably similar to those previously described for diphtheria toxin. Selectivity experiments with anions and cations show that the channels formed by the heavy chains of all three toxins are large; thus, these channels could serve as ``tunnel proteins'' for translocation of active peptide fragments. These findings support the hypothesis that the active fragments of botulinum neurotoxin and tetanus toxin, like that of diphtheria toxin, are translocated across the membranes of acidic vesicles.

  14. Molecular Structures and Functional Relationships in Clostridial Neurotoxins

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan S.

    2011-12-01

    The seven serotypes of Clostridium botulinum neurotoxins (A-G) are the deadliest poison known to humans. They share significant sequence homology and hence possess similar structure-function relationships. Botulinum neurotoxins (BoNT) act via a four-step mechanism, viz., binding and internalization to neuronal cells, translocation of the catalytic domain into the cytosol and finally cleavage of one of the three soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) causing blockage of neurotransmitter release leading to flaccid paralysis. Crystal structures of three holotoxins, BoNT/A, B and E, are available to date. Although the individual domains are remarkably similar, their domain organization is different. These structures have helped in correlating the structural and functional domains. This has led to the determination of structures of individual domains and combinations of them. Crystal structures of catalytic domains of all serotypes and several binding domains are now available. The catalytic domains are zinc endopeptidases and share significant sequence and structural homology. The active site architecture and the catalytic mechanism are similar although the binding mode of individual substrates may be different, dictating substrate specificity and peptide cleavage selectivity. Crystal structures of catalytic domains with substrate peptides provide clues to specificity and selectivity unique to BoNTs. Crystal structures of the receptor domain in complex with ganglioside or the protein receptor have provided information about the binding of botulinum neurotoxin to the neuronal cell. An overview of the structure-function relationship correlating the 3D structures with biochemical and biophysical data and how they can be used for structure-based drug discovery is presented here.

  15. Plasmidome Interchange between Clostridium botulinum, Clostridium novyi and Clostridium haemolyticum Converts Strains of Independent Lineages into Distinctly Different Pathogens

    OpenAIRE

    Skarin, Hanna; Segerman, Bo

    2014-01-01

    Clostridium botulinum (group III), Clostridium novyi and Clostridium haemolyticum are well-known pathogens causing animal botulism, gas gangrene/black disease, and bacillary hemoglobinuria, respectively. A close genetic relationship exists between the species, which has resulted in the collective term C. novyi sensu lato. The pathogenic traits in these species, e.g., the botulinum neurotoxin and the novyi alpha toxin, are mainly linked to a large plasmidome consisting of plasmids and circular...

  16. An atypical outbreak of food-borne botulism due to Clostridium botulinum types B and E from ham.

    Science.gov (United States)

    Mazuet, Christelle; Sautereau, Jean; Legeay, Christine; Bouchier, Christiane; Bouvet, Philippe; Popoff, Michel R

    2015-02-01

    An outbreak of human botulism was due to consumption of ham containing botulinum neurotoxins B and E. A Clostridium botulinum type E strain isolated from ham was assigned to a new subtype (E12) based on bont/E gene sequencing and belongs to a new multilocus sequence subtype, as analyzed by whole-genome sequencing. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Validation of a real-time PCR based method for detection of Clostridium botulinum types C, D and their mosaic variants C-D and D-C in a multicenter collaborative trial

    DEFF Research Database (Denmark)

    Woudstra, C.; Skarin, H.; Anniballi, F.

    2013-01-01

    Two real-time PCR arrays based on the GeneDisc® cycler platform (Pall-GeneDisc Technologies) were evaluated in a multicenter collaborative trial for their capacity to specifically detect and discriminate Clostridium botulinum types C, D and their mosaic variants C-D and D-C that are associated wi...

  18. Validation of a real-time PCR based method for detection of Clostridium botulinum types C, D and their mosaic variants C-D and D-C in a multicenter collaborative trial

    NARCIS (Netherlands)

    Woudstra, C.; Skarin, H.; Anniballi, F.; Auricchio, B.; Medici, De D.; Bano, L.; Drigo, I.; Hansen, T.; Löfström, Ch.; Hamidjaja, R.; Rotterdam, van B.; Koene, M.G.J.

    2013-01-01

    Two real-time PCR arrays based on the GeneDisc(®) cycler platform (Pall-GeneDisc Technologies) were evaluated in a multicenter collaborative trial for their capacity to specifically detect and discriminate Clostridium botulinum types C, D and their mosaic variants C-D and D-C that are associated

  19. Botulinum toxin for masseter hypertrophy.

    Science.gov (United States)

    Fedorowicz, Zbys; van Zuuren, Esther J; Schoones, Jan

    2013-09-09

    Benign masseter muscle hypertrophy is an uncommon clinical phenomenon of uncertain aetiology which is characterised by a soft swelling near the angle of the mandible. The swelling may on occasion be associated with facial pain and can be prominent enough to be considered cosmetically disfiguring. Varying degrees of success have been reported for some of the treatment options for masseter hypertrophy, which range from simple pharmacotherapy to more invasive surgical reduction. Injection of botulinum toxin type A into the masseter muscle is generally considered a less invasive modality and has been advocated for cosmetic sculpting of the lower face. Botulinum toxin type A is a powerful neurotoxin which is produced by the anaerobic organism Clostridium botulinum and when injected into a muscle causes interference with the neurotransmitter mechanism producing selective paralysis and subsequent atrophy of the muscle.This review is an update of a previously published Cochrane review. To assess the efficacy and safety of botulinum toxin type A compared to placebo or no treatment, for the management of benign bilateral masseter hypertrophy. We searched the following databases from inception to April 2013: the Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE (via PubMed); EMBASE (via embase.com); Web of Science; CINAHL; Academic Search Premier (via EBSCOhost); ScienceDirect; LILACS (via BIREME); PubMed Central and Google Scholar (from 1700 to 19 April 2013). We searched two bibliographic databases of regional journals (IndMED and Iranmedex) which were expected to contain relevant trials. We also searched reference lists of relevant articles and contacted investigators to identify additional published and unpublished studies. Randomised controlled trials (RCTs) and controlled clinical trials (CCTs) comparing intra-masseteric injections of botulinum toxin versus placebo administered for cosmetic facial sculpting in individuals of any age with bilateral benign

  20. Injectable and topical neurotoxins in dermatology: Basic science, anatomy, and therapeutic agents.

    Science.gov (United States)

    Giordano, Cerrene N; Matarasso, Seth L; Ozog, David M

    2017-06-01

    Botulinum toxin is a potentially deadly anaerobic bacterial toxin that acts by inhibiting release of acetylcholine at the neuromuscular junction, thereby inhibiting contraction of the exposed striated muscle. There are currently 4 botulinum toxin preparations approved by the US Food and Drug Administration (FDA): onabotulinumtoxin, abobotulinumtoxin, incobotulinumtoxin and rimabotulinumtoxin. While significant overlap exists, each product has unique properties and specifications, including dosing, diffusion, and storage. Extensive physician knowledge of facial anatomy, coupled with key differences of the various neurotoxin types, is essential for safe and successful treatments. The first article in this continuing medical education series reviews key characteristics of each neurotoxin, including new and upcoming agents, and provides an anatomic overview of the most commonly injected cosmetic sites. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  1. Primary Cell Culture for Evaluation of Botulinum Neurotoxin Antagonists

    National Research Council Canada - National Science Library

    Sheridan, Robert E; Smith, Theresa J; Adler, Michael

    2005-01-01

    ... + in the presence of 2 mM Ca2+. Release of 3 [H]-glycine was found to be inhibited by BoNT serotypes A, B and E with similar potency ratios to those observed in the acutely isolated mouse diaphragm muscle...

  2. Onset Dynamics of Type A Botulinum Neurotoxin-Induced Paralysis

    National Research Council Canada - National Science Library

    Lebeda, Frank J; Adler, Michael; Erickson, Keith; Chushak, Yaroslav

    2008-01-01

    .... We tested the hypothesis that mathematical models having a minimal number of reactions and reactants can simulate published data concerning the onset of paralysis of skeletal muscles induced by BoNT...

  3. Study of Toxic and Antigenic Structures of Botulinum Neurotoxins.

    Science.gov (United States)

    1985-02-01

    of adult male rats. Extensor digitorum longus nerve-muscle preparation was examined for toxin induced alterations in single twitch and tetanic tension...after injection, the extensor digitorum lonqus nerve-muscle preparation was excised and analyzed in vitro for alterations in spontaneous and nerve

  4. Eosinophil protein X/eosinophil derived neurotoxin (EPX/EDN). Detection by enzyme-linked immunosorbent assay and purification from normal human urine

    DEFF Research Database (Denmark)

    Reimert, C M; Minuva, U; Kharazmi, A

    1991-01-01

    Eosinophil protein X/eosinophil derived neurotoxin (EPX/EDN) is one of the cationic proteins found in the granules of the human eosinophilic granulocytes. EPX was purified from extracts of granules isolated from blood buffy coat cells of healthy donors. Polyclonal anti-EPX antibodies were...

  5. Electrochemical Aptamer Scaffold Biosensors for Detection of Botulism and Ricin Proteins.

    Science.gov (United States)

    Daniel, Jessica; Fetter, Lisa; Jett, Susan; Rowland, Teisha J; Bonham, Andrew J

    2017-01-01

    Electrochemical DNA (E-DNA) biosensors enable the detection and quantification of a variety of molecular targets, including oligonucleotides, small molecules, heavy metals, antibodies, and proteins. Here we describe the design, electrode preparation and sensor attachment, and voltammetry conditions needed to generate and perform measurements using E-DNA biosensors against two protein targets, the biological toxins ricin and botulinum neurotoxin. This method can be applied to generate E-DNA biosensors for the detection of many other protein targets, with potential advantages over other systems including sensitive detection limits typically in the nanomolar range, real-time monitoring, and reusable biosensors.

  6. Linden flower (Tilia spp. as potential vehicle of Clostridium botulinum spores in the transmission of infant botulism El té de tilo como vehículo potencial de esporas de Clostridium botulinum en la transmisión del botulismo infantil

    Directory of Open Access Journals (Sweden)

    M. I. Bianco

    2009-12-01

    Full Text Available Infant botulism is an intestinal toxemia caused principally by Clostridium botulinum. Since the infection occurs in the intestinal tract, numerous food products have been investigated for the presence of C. botulinum and its neurotoxins. In many countries, people use linden flower (Tilia spp tea as a household remedy and give it to infants as a sedative. Therefore, to help provide a clear picture of this disease transmission, we investigated the presence of botulinum spores in linden flowers. In this study, we analyzed 100 samples of unwrapped linden flowers and 100 samples of linden flowers in tea bags to determine the prevalence and spore-load of C. botulinum. Results were analyzed by the Fisher test. We detected a prevalence of 3% of botulinum spores in the unwrapped linden flowers analyzed and a spore load of 30 spores per 100 grams. None of the industrialized linden flowers analyzed were contaminated with botulinum spores. C. botulinum type A was identified in two samples and type B in one sample. Linden flowers must be considered a potential vehicle of C. botulinum, and the ingestion of linden flower tea can represent a risk factor for infant botulism.El botulismo del lactante es una toxiinfección causada, principalmente, por Clostridium botulinum. Debido a que esta infección ocurre en el tracto intestinal, la presencia de esta bacteria y sus neurotoxinas ha sido investigada en numerosos alimentos. En muchos países se utiliza el té de tilo (Tilia spp. como sedante natural, el que se administra incluso a los lactantes. A fin de contribuir al esclarecimiento de la transmisión de esta enfermedad, se investigó la prevalencia y la carga de esporas botulínicas en esta hierba. Se analizaron 100 muestras de tilo comercializado a granel y 100 muestras de tilo industralizado en “saquitos”. Los resultados de prevalencia fueron analizados por el test de Fisher y la carga de esporas por la técnica del número más probable. Se halló una

  7. Colorimetric microtiter plate receptor-binding assay for the detection of freshwater and marine neurotoxins targeting the nicotinic acetylcholine receptors

    Science.gov (United States)

    Rubio, Fernando; Kamp, Lisa; Carpino, Justin; Faltin, Erin; Loftin, Keith A.; Molgó, Jordi; Aráoz, Rómulo

    2014-01-01

    Anatoxin-a and homoanatoxin-a, produced by cyanobacteria, are agonists of nicotinic acetylcholine receptors (nAChRs). Pinnatoxins, spirolides, and gymnodimines, produced by dinoflagellates, are antagonists of nAChRs. In this study we describe the development and validation of a competitive colorimetric, high throughput functional assay based on the mechanism of action of freshwater and marine toxins against nAChRs. Torpedo electrocyte membranes (rich in muscle-type nAChR) were immobilized and stabilized on the surface of 96-well microtiter plates. Biotinylated α-bungarotoxin (the tracer) and streptavidin-horseradish peroxidase (the detector) enabled the detection and quantitation of anatoxin-a in surface waters and cyclic imine toxins in shellfish extracts that were obtained from different locations across the US. The method compares favorably to LC/MS/MS and provides accurate results for anatoxin-a and cyclic imine toxins monitoring. Study of common constituents at the concentrations normally found in drinking and environmental waters, as well as the tolerance to pH, salt, solvents, organic and inorganic compounds did not significantly affect toxin detection. The assay allowed the simultaneous analysis of up to 25 samples within 3.5 h and it is well suited for on-site or laboratory monitoring of low levels of toxins in drinking, surface, and ground water as well as in shellfish extracts.

  8. Genetic diversity of the flagellin genes of Clostridium botulinum groups I and II.

    Science.gov (United States)

    Woudstra, Cedric; Lambert, Dominic; Anniballi, Fabrizio; De Medici, Dario; Austin, John; Fach, Patrick

    2013-07-01

    Botulinum neurotoxins (BoNTs) are produced by phenotypically and genetically different Clostridium species, including Clostridium botulinum and some strains of Clostridium baratii (serotype F) and Clostridium butyricum (serotype E). BoNT-producing clostridia responsible for human botulism encompass strains of group I (secreting proteases, producing toxin serotype A, B, or F, and growing optimally at 37°C) and group II (nonproteolytic, producing toxin serotype E, B, or F, and growing optimally at 30°C). Here we report the development of real-time PCR assays for genotyping C. botulinum strains of groups I and II based on flaVR (variable region sequence of flaA) sequences and the flaB gene. Real-time PCR typing of regions flaVR1 to flaVR10 and flaB was optimized and validated with 62 historical and Canadian C. botulinum strains that had been previously typed. Analysis of 210 isolates of European origin allowed the identification of four new C. botulinum flaVR types (flaVR11 to flaVR14) and one new flaVR type specific to C. butyricum type E (flaVR15). The genetic diversity of the flaVR among C. botulinum strains investigated in the present study reveals the clustering of flaVR types into 5 major subgroups. Subgroups 1, 3, and 4 contain proteolytic Clostridium botulinum, subgroup 2 is made up of nonproteolytic C. botulinum only, and subgroup 5 is specific to C. butyricum type E. The genetic variability of the flagellin genes carried by C. botulinum and the possible association of flaVR types with certain geographical areas make gene profiling of flaVR and flaB promising in molecular surveillance and epidemiology of C. botulinum.

  9. Botulinum toxin drugs: brief history and outlook.

    Science.gov (United States)

    Dressler, D

    2016-03-01

    The global botulinum toxin (BT) market is currently undergoing rapid changes: this may be the time to review the history and the future of BT drug development. Since the early 1990s Botox(®) and Dysport(®) dominated the international BT market. Later, Myobloc(®)/NeuroBloc(®), a liquid BT type B drug, came out, but failed. Xeomin(®) is the latest major BT drug. It features removal of complexing proteins and improved neurotoxin purity. Several new BT drugs are coming out of Korea, China and Russia. Scientific challenges for BT drug development include modification of BT's duration of action, its transdermal transport and the design of BT hybrid drugs for specific target tissues. The increased competition will change the global BT market fundamentally and a re-organisation according to large indication groups, such as therapeutic and cosmetic applications, might occur.

  10. Prevalence of neurotoxic Clostridium botulinum type C in the gastrointestinal tracts of tilapis (Oreochromis mossambicus) in the Salton Sea

    Science.gov (United States)

    Nol, P.J.; Rocke, T.E.; Gross, K.; Yuill, Thomas M.

    2004-01-01

    Tilapia (Oreochromis mossambicus) have been implicated as the source of type C toxin in avian botulism outbreaks in pelicans (Pelecanus erythrorhynchos, Pelecanus occidentalis californicus) at the Salton Sea in southern California (USA). We collected sick, dead, and healthy fish from various sites throughout the Sea during the summers of 1999 through 2001 and tested them for the presence of Clostridium botulinum type C cells by polymerase chain reaction targeting the C1 neurotoxin gene. Four of 96 (4%), 57 of 664 (9%), and five of 355 (1%) tilapia tested were positive for C. botulinum type C toxin gene in 1999, 2000, and 2001, respectively. The total number of positive fish was significantly greater in 2000 than in 2001 (P<0.0001). No difference in numbers of positives was detected between sick and dead fish compared with live fish. In 2000, no significant relationships were revealed among the variables studied, such as location and date of collection.

  11. Interaction of Botulinum Toxin with the Epithelial Barrier

    Directory of Open Access Journals (Sweden)

    Yukako Fujinaga

    2010-01-01

    Full Text Available Botulinum neurotoxin (BoNT is a protein toxin (~150 kDa, which possesses a metalloprotease activity. Food-borne botulism is manifested when BoNT is absorbed from the digestive tract to the blood stream and enters the peripheral nerves, where the toxin cleaves core proteins of the neuroexocytosis apparatus and elicits the inhibition of neurotransmitter release. The initial obstacle to orally ingested BoNT entering the body is the epithelial barrier of the digestive tract. Recent cell biology and molecular biology studies are beginning to elucidate the mechanism by which this large protein toxin crosses the epithelial barrier. In this review, we provide an overview of the structural features of botulinum toxins (BoNT and BoNT complex and the interaction of these toxins with the epithelial barrier.

  12. An Integrative Approach to Computational Modelling of the Gene Regulatory Network Controlling Clostridium botulinum Type A1 Toxin Production.

    Science.gov (United States)

    Ihekwaba, Adaoha E C; Mura, Ivan; Walshaw, John; Peck, Michael W; Barker, Gary C

    2016-11-01

    Clostridium botulinum produces botulinum neurotoxins (BoNTs), highly potent substances responsible for botulism. Currently, mathematical models of C. botulinum growth and toxigenesis are largely aimed at risk assessment and do not include explicit genetic information beyond group level but integrate many component processes, such as signalling, membrane permeability and metabolic activity. In this paper we present a scheme for modelling neurotoxin production in C. botulinum Group I type A1, based on the integration of diverse information coming from experimental results available in the literature. Experiments show that production of BoNTs depends on the growth-phase and is under the control of positive and negative regulatory elements at the intracellular level. Toxins are released as large protein complexes and are associated with non-toxic components. Here, we systematically review and integrate those regulatory elements previously described in the literature for C. botulinum Group I type A1 into a population dynamics model, to build the very first computational model of toxin production at the molecular level. We conduct a validation of our model against several items of published experimental data for different wild type and mutant strains of C. botulinum Group I type A1. The result of this process underscores the potential of mathematical modelling at the cellular level, as a means of creating opportunities in developing new strategies that could be used to prevent botulism; and potentially contribute to improved methods for the production of toxin that is used for therapeutics.

  13. Arrangement of the Clostridium baratii F7 toxin gene cluster with identification of a σ factor that recognizes the botulinum toxin gene cluster promoters.

    Science.gov (United States)

    Dover, Nir; Barash, Jason R; Burke, Julianne N; Hill, Karen K; Detter, John C; Arnon, Stephen S

    2014-01-01

    Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bont gene that is part of a toxin gene cluster that includes several accessory genes. We sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. This TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii.

  14. An overview of botulinum toxins: past, present, and future.

    Science.gov (United States)

    Cartee, Todd V; Monheit, Gary D

    2011-07-01

    Although the mechanism of action of botulinum toxin (BTX) has been intensively studied, many unanswered questions remain regarding the composition and clinical properties of the two formulations of BTX currently approved for cosmetic use. In the first half of this review, these questions are explored in detail, with emphasis on the most pertinent and revelatory studies in the literature. The second half delineates most of the common and some not so common uses of BTX in the face and neck, stressing important patient selection and safety considerations. Complications from neurotoxins at cosmetic doses are generally rare and usually technique dependent. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Botulinum toxin A for trismus in cephalic tetanus

    Directory of Open Access Journals (Sweden)

    Luiz Augusto F. Andrade

    1994-09-01

    Full Text Available Cephalic tetanus is a localized form of tetanus. As in generalized forms , trismus is a prominent feature of the disease, leading to considerable difficulty in feeding, swallowing of the saliva and mouth hygiene. These difficulties often precede respiratory problems and aspiration bronchopneumonia is a frequent life-threatening complication. Muscle relaxants other than curare drugs may show a limited benefit for relieving trismus. Tetanospasmin, the tetanic neurotoxin, and botulinum toxin share many similarities, having a closely related chemical structure, an origin from related microorganisms (Clostridium tetani and Clostridium botulinum, respectively, and presumably, the same mechanisms of action in the neuron. The difference between the two lies in their peculiar neurospecificity, acting in different neurons. Injection of minute doses of botulinum toxin in the muscles involved in focal dystonias or other localized spastic disorders have proved to be very effective in these conditions. We describe the use of botulinum toxin A in the successful treatment of trismus in a patient suffering from cephalic tetanus. We believe that this form of treatment may be of value in lowering the risk of pulmonary complications in tetanic patients.

  16. Notice of CDC's discontinuation of investigational pentavalent (ABCDE) botulinum toxoid vaccine for workers at risk for occupational exposure to botulinum toxins.

    Science.gov (United States)

    2011-10-28

    Effective November 30, 2011, CDC will no longer provide investigational pentavalent (ABCDE) botulinum toxoid (PBT) for vaccination of workers at risk for occupational exposure to botulinum serotypes A, B, C, D, and E. This change might affect persons working in public health laboratories, research facilities, and manufacturing institutions who work with botulinum toxin or neurotoxin-producing species of Clostridium. CDC's decision is based on an assessment of the available data, which indicate a decline in immunogenicity of some of the toxin serotypes. The occurrence of moderate local reactions related to annual booster doses also has increased, which was noted in the 1990s at the U.S. Army Medical Research Institute for Infectious Diseases and resulted in a change in boosting from an annual requirement to only boosting when antibody titers have declined significantly. Additionally, the PBT was manufactured more than 30 years ago. CDC, therefore, has decided not to continue offering this investigational product.

  17. Hemagglutinin gene shuffling among Clostridium botulinum serotypes C and D yields distinct sugar recognition of the botulinum toxin complex.

    Science.gov (United States)

    Miyata, Keita; Suzuki, Tomonori; Hayashi, Shintaro; Miyashita, Shin-Ichiro; Ohyama, Tohru; Niwa, Koichi; Watanabe, Toshihiro; Sagane, Yoshimasa

    2015-10-01

    Clostridium botulinum strains produce a large-sized toxin complex (TC) that is composed of botulinum neurotoxin (BoNT), non-toxic non-hemagglutinin and three different hemagglutinins (HA-70, HA-33 and HA-17). HA components enhance toxin delivery across the intestinal cell wall in a sugar chain-dependent manner. Here we characterized the sugar recognition of serotype D strain 1873 (D-1873) botulinum L-TC. Most L-TCs produced by serotype C and D strains bind to cells via interactions between HA-33 and cell surface sialo-oligosaccharides. However, like the previously reported L-TC produced by serotype C strain Yoichi (C-Yoichi), D-1873 L-TC binds only to cells that have been treated with neuraminidase, indicating that they recognize asialo-oligosaccharides. The D-1873 HA-33 amino acid sequence is similar to that of C-Yoichi, but had lower similarity to the majority of serotype C and D HA-33s. A comparison of TC component primary structures for 12 serotype C and D strains suggested that at least three types of HA-33 genes exist, and these are shuffled among the serotype C and D strains independently of BoNT serotype. This shuffling produces the distinct sugar recognition of serotype C and D botulinum TCs. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Validation of a real-time PCR based method for detection of Clostridium botulinum types C, D and their mosaic variants C-D and D-C in a multicenter collaborative trial.

    Science.gov (United States)

    Woudstra, Cedric; Skarin, Hanna; Anniballi, Fabrizio; Auricchio, Bruna; De Medici, Dario; Bano, Luca; Drigo, Ilenia; Hansen, Trine; Löfström, Charlotta; Hamidjaja, Raditijo; van Rotterdam, Bart J; Koene, Miriam; Bäyon-Auboyer, Marie-Hélène; Buffereau, Jean-Philippe; Fach, Patrick

    2013-08-01

    Two real-time PCR arrays based on the GeneDisc(®) cycler platform (Pall-GeneDisc Technologies) were evaluated in a multicenter collaborative trial for their capacity to specifically detect and discriminate Clostridium botulinum types C, D and their mosaic variants C-D and D-C that are associated with avian and mammalian botulism. The GeneDisc(®) arrays developed as part of the DG Home funded European project 'AnibioThreat' were highly sensitive and specific when tested on pure isolates and naturally contaminated samples (mostly clinical specimen from avian origin). Results of the multicenter collaborative trial involving eight laboratories in five European Countries (two laboratories in France, Italy and The Netherlands, one laboratory in Denmark and Sweden), using DNA extracts issued from 33 pure isolates and 48 naturally contaminated samples associated with animal botulism cases, demonstrated the robustness of these tests. Results showed a concordance among the eight laboratories of 99.4%-100% for both arrays. The reproducibility of the tests was high with a relative standard deviation ranging from 1.1% to 7.1%. Considering the high level of agreement achieved between the laboratories these PCR arrays constitute robust and suitable tools for rapid detection of C. botulinum types C, D and mosaic types C-D and D-C. These are the first tests for C. botulinum C and D that have been evaluated in a European multicenter collaborative trial. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Molecular Assembly of Clostridium botulinum progenitor M complex of type E.

    Science.gov (United States)

    Eswaramoorthy, Subramaniam; Sun, Jingchuan; Li, Huilin; Singh, Bal Ram; Swaminathan, Subramanyam

    2015-12-07

    Clostridium botulinum neurotoxin (BoNT) is released as a progenitor complex, in association with a non-toxic-non-hemagglutinin protein (NTNH) and other associated proteins. We have determined the crystal structure of M type Progenitor complex of botulinum neurotoxin E [PTC-E(M)], a heterodimer of BoNT and NTNH. The crystal structure reveals that the complex exists as a tight, interlocked heterodimer of BoNT and NTNH. The crystal structure explains the mechanism of molecular assembly of the complex and reveals several acidic clusters at the interface responsible for association at low acidic pH and disassociation at basic/neutral pH. The similarity of the general architecture between the PTC-E(M) and the previously determined PTC-A(M) strongly suggests that the progenitor M complexes of all botulinum serotypes may have similar molecular arrangement, although the neurotoxins apparently can take very different conformation when they are released from the M complex.

  20. Identification and genetic characterization of Clostridium botulinum serotype A strains from commercially pasteurized carrot juice.

    Science.gov (United States)

    Marshall, Kristin M; Nowaczyk, Louis; Raphael, Brian H; Skinner, Guy E; Rukma Reddy, N

    2014-12-01

    Clostridium botulinum is an important foodborne pathogen capable of forming heat resistant endospores and producing deadly botulinum neurotoxins (BoNTs). In 2006, C. botulinum was responsible for an international outbreak of botulism attributed to the consumption of commercially pasteurized carrot juice. The purpose of this study was to isolate and characterize strains of C. botulinum from the adulterated product. Carrot juice bottles retrieved from the manufacturing facility were analyzed for the presence of BoNT and BoNT-producing isolates using DIG-ELISA. Toxigenic isolates from the carrot juice were analyzed using pulsed-field gel electrophoresis (PFGE) and DNA microarray analysis to determine their genetic relatedness to the original outbreak strains CDC51348 and CDC51303. PFGE revealed that isolates CJ4-1 and CJ10-1 shared an identical pulsotype with strain CDC51303, whereas isolate CJ5-1 displayed a unique restriction banding pattern. DNA microarray analysis identified several phage related genes unique to strain CJ5-1, and Southern hybridization analysis of XhoI digested and nondigested DNA showed their chromosomal location, while a homolog to pCLI_A009 of plasmid pCLI of C. botulinum serotype Langeland F, was located on a small plasmid. The acquisition or loss of bacteriophages and other mobile genetic elements among C. botulinum strains has epidemiological and evolutionary implications. Published by Elsevier Ltd.

  1. Emerging treatments for overactive bladder: clinical potential of botulinum toxins

    Directory of Open Access Journals (Sweden)

    Tincello DG

    2014-05-01

    Full Text Available Douglas G Tincello,1,2 Tina Rashid,2 Vladimir Revicky21Reproductive Sciences Section, Cancer Studies and Molecular Medicine, University of Leicester, Leicester, UK; 2Urogynecology Unit, Women's and Children's Clinical Business Unit, University Hospitals of Leicester National Health Service Trust, Leicester, UKAbstract: Overactive bladder (OAB is a symptom syndrome including urgency, frequency, and nocturia – with or without incontinence. It is a common manifestation of detrusor overactivity (DO. DO is a urodynamic observation of spontaneous or provoked contractions of the detrusor muscle is seen during the filling phase of the micturition cycle. OAB is, therefore, both a motor and sensory disorder. Botulinum toxin is a purified form of the neurotoxin from Clostridium botulinum and has been used in medicine for many years. Over the last 10 years, it has been used for the treatment of DO and OAB when standard treatments, such as bladder training and oral anticholinergic medication, have failed to provide symptom relief. Botulinum toxin acts by irreversibly preventing neurotransmitter release from the neurons in the motor end plate and also at sensory synapses, although the clinical effect is not permanent due to the growth of new connections within treated tissues. It is known that botulinum toxin modulates vanillioid, purinergic, capsaicin, and muscarinic receptor expression within the lamina propria, returning them to levels seen in normal bladders. Clinically, the effect of botulinum toxin on symptoms of OAB and DO is profound, with large effects upon the symptom of urgency, and also large effects on frequency, nocturia, leakage episodes, and continence rates. These effects have been seen consistently within eight randomized trials and numerous case series. Botulinum toxin appears safe, with the only common side effect being that of voiding difficulty, occurring in up to 10% of treated patients. Dosing regimens are variable, depending on

  2. Mechanisms of Resistance to Neurotoxins

    National Research Council Canada - National Science Library

    Schubert, David

    2002-01-01

    The toxicity of chemically reactive oxygen species (ROS) is thought to make a significant contribution to the death of nerve cells caused by many neurotoxins as well as in stroke and Parkinson's disease...

  3. Detection of cyanobacterial neurotoxin β-N-methylamino-l-alanine within shellfish in the diet of an ALS patient in Florida.

    Science.gov (United States)

    Banack, Sandra Anne; Metcalf, James S; Bradley, Walter G; Cox, Paul Alan

    2014-11-01

    Cyanobacteria produce the neurotoxic amino acid β-N-methylamino-l-alanine (BMAA), which in contaminated marine waters has been found to accumulate in shellfish. Exposure to BMAA has been associated with an increased risk of neurodegenerative disease. Analysis of blinded samples found BMAA to be present in neuroproteins of individuals who died from ALS and ALS/PDC, but generally not in the brains of patients who died of causes unrelated to neurodegeneration or Huntington's disease, an autosomal dominant neurodegenerative disease. We here report support for a link between a patient with ALS and chronic exposure to the cyanobacterial neurotoxin BMAA via shellfish consumption. The patient had frequently eaten lobsters collected in Florida Bay for approximately 30 years. LC-MS/MS analysis of two lobsters which this ALS patient had placed in his freezer revealed BMAA at concentrations of 27 and 4 μg/g, respectively, as well as the presence of 2,4-diaminobutyric acid (DAB), a BMAA isomer. Two additional lobsters recently collected from Florida Bay also contained the neurotoxins BMAA and DAB. These data suggest that invertebrates collected in water where cyanobacterial blooms are present, if consumed, may result in direct human exposure to these neurotoxic amino acids. The data support the assertion that prolonged exposure to BMAA may have played a role in the etiology of ALS in this patient. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Methods, microfluidic devices, and systems for detection of an active enzymatic agent

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Gregory J; Hatch, Anson V; Singh, Anup K; Wang, Ying-Chih

    2014-10-28

    Embodiments of the present invention provide methods, microfluidic devices, and systems for the detection of an active target agent in a fluid sample. A substrate molecule is used that contains a sequence which may cleave in the presence of an active target agent. A SNAP25 sequence is described, for example, that may be cleaved in the presence of Botulinum Neurotoxin. The substrate molecule includes a reporter moiety. The substrate molecule is exposed to the sample, and resulting reaction products separated using electrophoretic separation. The elution time of the reporter moiety may be utilized to identify the presence or absence of the active target agent.

  5. Functional characterisation of germinant receptors in Clostridium botulinum and Clostridium sporogenes presents novel insights into spore germination systems.

    Science.gov (United States)

    Brunt, Jason; Plowman, June; Gaskin, Duncan J H; Itchner, Manoa; Carter, Andrew T; Peck, Michael W

    2014-09-01

    Clostridium botulinum is a dangerous pathogen that forms the highly potent botulinum toxin, which when ingested causes a deadly neuroparalytic disease. The closely related Clostridium sporogenes is occasionally pathogenic, frequently associated with food spoilage and regarded as the non-toxigenic equivalent of Group I C. botulinum. Both species form highly resistant spores that are ubiquitous in the environment and which, under favourable growth conditions germinate to produce vegetative cells. To improve the control of botulinum neurotoxin-forming clostridia, it is imperative to comprehend the mechanisms by which spores germinate. Germination is initiated following the recognition of small molecules (germinants) by a specific germinant receptor (GR) located in the spore inner membrane. The present study precisely defines clostridial GRs, germinants and co-germinants. Group I C. botulinum ATCC3502 contains two tricistronic and one pentacistronic GR operons, while C. sporogenes ATCC15579 has three tricistronic and one tetracistronic GR operons. Insertional knockout mutants, allied with characterisation of recombinant GRs shows for the first time that amino acid stimulated germination in C. botulinum requires two tri-cistronic encoded GRs which act in synergy and cannot function individually. Spore germination in C. sporogenes requires one tri-cistronic GR. Two other GRs form part of a complex involved in controlling the rate of amino-acid stimulated germination. The suitability of using C. sporogenes as a substitute for C. botulinum in germination studies and food challenge tests is discussed.

  6. Genes that encode botulism neurotoxins A,B,E and F in Neotropical bee honey identified with the Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Ana Teresa Fournier

    2006-03-01

    Full Text Available Honey can be used for the treatment of wounds, sores and skin burns, but it might be contaminated with Clostridium botulinum spores. In order to evaluate Costa Rican raw honey samples, the detection of neurotoxin gene sequences (corresponding to the bacterium C. botulinum A, B, E and F was done with the polymerase chain reaction. A total of 64 raw honey samples, coming from different Costa Rican sites were analyzed. Reference C. botulinum strains type A (ATCC 19397, type B (ATCC 7949, type E (ATCC 17786 and type F (ATCC 25764 were used as templates for testing the effectivity of the method. The process consisted in culturing the honey samples in prereduced triptose-peptone-glucose-yeast extract media (TGPYfor 5 days. After this, the bacteria lysate obtained was used for PCR. The amplicons,product of the reaction, were visualized using agarose gel 2%. From the 64 honey samples analyzed, none produced positive results in the PCR, since no amplicons were obtained. Even though, all the reference C. botulinum strains used as controls were visualized and showed the effectivity of the extraction method and of the PCR used. The results obtained show promising therapeutic uses for honey from Costa Rica, but further evaluations shall be done in order to be sure of the safety of the product. Rev. Biol. Trop. 54(1: 29-34. Epub 2006 Mar 31.La miel de abeja es un producto que podría ser utilizado en el tratamiento de heridas, abrasiones y quemaduras de piel; no obstante, podría estar contaminada con esporas de C. botulinum. Con el fin de evaluar muestras de miel de origen costarricense, se detectó las secuencias de genes productores de neurotoxina correspondientes a C. botulinum tipos A, B, E y F utilizando la técnica de PCR (reacción de polimerasa en cadena. 64 diferentes muestras de miel, provenientes de diversos sitios costarricenses, fueron analizadas. Con el fin de evaluar la efectividad del método, se utilizó cepas de referencia tipos A (ATCC

  7. Botulinum Toxin for Rhinitis.

    Science.gov (United States)

    Ozcan, Cengiz; Ismi, Onur

    2016-08-01

    Rhinitis is a common clinical entity. Besides nasal obstruction, itching, and sneezing, one of the most important symptoms of rhinitis is nasal hypersecretion produced by nasal glands and exudate from the nasal vascular bed. Allergic rhinitis is an IgE-mediated inflammatory reaction of nasal mucosa after exposure to environmental allergens. Idiopathic rhinitis describes rhinitis symptoms that occur after non-allergic, noninfectious irritants. Specific allergen avoidance, topical nasal decongestants, nasal corticosteroids, immunotherapy, and sinonasal surgery are the main treatment options. Because the current treatment modalities are not enough for reducing rhinorrhea in some patients, novel treatment options are required to solve this problem. Botulinum toxin is an exotoxin generated by Clostridium botulinum. It disturbs the signal transmission at the neuromuscular and neuroglandular junction by inhibiting the acetylcholine release from the presynaptic nerve terminal. It has been widely used in neuromuscular, hypersecretory, and autonomic nerve system disorders. There have been a lot of published articles concerning the effect of this toxin on rhinitis symptoms. Based on the results of these reports, intranasal botulinum toxin A administration appears to be a safe and effective treatment method for decreasing rhinitis symptoms in rhinitis patients with a long-lasting effect. Botulinum toxin type A will be a good treatment option for the chronic rhinitis patients who are resistant to other treatment methods.

  8. The innovative therapeutic application of botulinum toxin type A in urology patients

    Directory of Open Access Journals (Sweden)

    Chrysoula Belai

    2016-06-01

    Full Text Available In the history of medical science the use of botulinum toxin was impressive. In the early 18th century it was defined as the neurotoxin implicated in the deadly disease botulism. Today, despite the toxic action finds application in the treatment of various diseases in a wide range of Medicine. Its use in urology was revolutionary in the treatment of neurogenic bladder, refractory idiopathic detrusor overactivity and other painful syndromes. The purpose of this review was to describe the treatment option of intravesical injection of botulinum toxin, in diseases of the urinary tract. The review showed that after many test applications under the experimental studies, the botulinum toxin type A has already established itself as the new treatment of choice after failure of conservative drug dealing in patients with neuro-urological symptoms of lower urinary tract. Cases of application of botulinum toxin in Urology are related to overactive bladder, neurogenic or idiopathic etiology, as bladder pain syndrome and chronic pelvic pain syndrome. According to the guidelines of the European Union directives Urology, the intravesical botulinum toxin injections are the most effective, minimally invasive treatment which results in reducing neurogenic hyperactivity of detrusor. In conclusion, this is a safe, easy and effective method that can be applied by health professionals, helping improve patients’ quality of life with neuro-urological diseases.

  9. Investigating CRISPR-Cas systems in Clostridium botulinum via bioinformatics tools.

    Science.gov (United States)

    Negahdaripour, Manica; Nezafat, Navid; Hajighahramani, Nasim; Rahmatabadi, Seyyed Soheil; Ghasemi, Younes

    2017-10-01

    The Clustered regularly interspaced short palindromic repeats (CRISPR) systems are a type of innate immunity found in some prokaryotes, which protect them against alien genetic elements by targeting foreign nucleic acids. Some other functions are also attributed to these systems. Clostridium botulinum bacteria produce botulinum neurotoxins (BoNT), one of the deadliest known toxins for humans and some animals. Food poisoning due to these bacteria is still a challenge in food industries. On the other hand, BoNT has been widely investigated for therapeutic applications including different muscle disorders. Bont genes may be located on bacterial chromosomes, plasmids, or even prophages. Generally, the genomes of Cl. botulinum show a high level of plasticity. In order to investigate the presence and characteristics of CRISPRs in these anaerobe bacteria, an in silico study on 113 CRISPR arrays identified in 38 Cl. botulinum strains was performed. A high occurrence of CRISPR arrays (80%) were found, with a remarkable frequency on plasmids. Several (CRISPR-associated) Cas proteins from different types were recognized in the studied strains, which were mostly Cas6. The CRISPR-Cas systems were identified as type I or III, but no type II. The spacers showed more homology with bacterial plasmids than phages. Active CRISPR-Cas systems can prevent the transfer of foreign genes, which may also include bont genes. This study provides the first insight into the probable roles of CRISPR-Cas systems in Cl. botulinum strains such as toxigenicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Clostridium botulinum group III: a group with dual identity shaped by plasmids, phages and mobile elements

    Directory of Open Access Journals (Sweden)

    Håfström Therese

    2011-04-01

    Full Text Available Abstract Background Clostridium botulinum strains can be divided into four physiological groups that are sufficiently diverged to be considered as separate species. Here we present the first complete genome of a C. botulinum strain from physiological group III, causing animal botulism. We also compare the sequence to three new draft genomes from the same physiological group. Results The 2.77 Mb chromosome was highly conserved between the isolates and also closely related to that of C. novyi. However, the sequence was very different from the human C. botulinum group genomes. Replication-directed translocations were rare and conservation of synteny was high. The largest difference between C. botulinum group III isolates occurred within their surprisingly large plasmidomes and in the pattern of mobile elements insertions. Five plasmids, constituting 13.5% of the total genetic material, were present in the completed genome. Interestingly, the set of plasmids differed compared to other isolates. The largest plasmid, the botulinum-neurotoxin carrying prophage, was conserved at a level similar to that of the chromosome while the medium-sized plasmids seemed to be undergoing faster genetic drift. These plasmids also contained more mobile elements than other replicons. Several toxins and resistance genes were identified, many of which were located on the plasmids. Conclusions The completion of the genome of C. botulinum group III has revealed it to be a genome with dual identity. It belongs to the pathogenic species C. botulinum, but as a genotypic species it should also include C. novyi and C. haemolyticum. The genotypic species share a conserved chromosomal core that can be transformed into various pathogenic variants by modulation of the highly plastic plasmidome.

  11. Clostridium botulinum group III: a group with dual identity shaped by plasmids, phages and mobile elements.

    Science.gov (United States)

    Skarin, Hanna; Håfström, Therese; Westerberg, Josefina; Segerman, Bo

    2011-04-12

    Clostridium botulinum strains can be divided into four physiological groups that are sufficiently diverged to be considered as separate species. Here we present the first complete genome of a C. botulinum strain from physiological group III, causing animal botulism. We also compare the sequence to three new draft genomes from the same physiological group. The 2.77 Mb chromosome was highly conserved between the isolates and also closely related to that of C. novyi. However, the sequence was very different from the human C. botulinum group genomes. Replication-directed translocations were rare and conservation of synteny was high. The largest difference between C. botulinum group III isolates occurred within their surprisingly large plasmidomes and in the pattern of mobile elements insertions. Five plasmids, constituting 13.5% of the total genetic material, were present in the completed genome. Interestingly, the set of plasmids differed compared to other isolates. The largest plasmid, the botulinum-neurotoxin carrying prophage, was conserved at a level similar to that of the chromosome while the medium-sized plasmids seemed to be undergoing faster genetic drift. These plasmids also contained more mobile elements than other replicons. Several toxins and resistance genes were identified, many of which were located on the plasmids. The completion of the genome of C. botulinum group III has revealed it to be a genome with dual identity. It belongs to the pathogenic species C. botulinum, but as a genotypic species it should also include C. novyi and C. haemolyticum. The genotypic species share a conserved chromosomal core that can be transformed into various pathogenic variants by modulation of the highly plastic plasmidome.

  12. USE OF BOTULINUM TOXIN TYPE A IN THE TREATMENT OF SPASTICITY IN CHILDREN WITH CEREBRAL PALSY

    Directory of Open Access Journals (Sweden)

    Ljiljana Lazić

    2011-06-01

    Full Text Available Cerebral palsy has an incidence of about 1-2 per 1000 live births, and in spite of the progress of neonatal medicine, it seems that the incidence will not subside in the near future. The most important characteristic of cerebral palsy is movement abnormality: spasticity, chorea, athetosis, ataxia, dystonia, as well as their different combinations. About 70% of children who suffer from cerebral palsy also suffer from some form of spasticity. Spasticity is a type of muscle hypertonicity characterized by rapid increase in resistance to passive stretching of muscles. The interest for botulinum toxin application in the treatment of spasticity has dramatically increased in the last 10 years. Botulinum toxin is the most powerful neurotoxin that is found in nature. It is produced by anaerobic bacteria – clostridium botulinum. It is produced in eight serotypes of which type A is the most commonly used. Botulinum toxin blocks neuromuscular transmission and causes irreversible weakness of the treated muscle. It has been used since 1993 in the treatment of cerebral palsy in children. The toxin effect is permanent and it results in irreversible denervation. Functional recovery is possible after 2-4 months, due to sprouting of nerve endings and the formation of new synaptic contacts. Treatment with botulinum toxin is safe. Adverse effects are rare, temporary and completely reversible. Application of botulinum toxin prevents or reduces contractures and deformities, and thus delays or avoids surgical treatment. Yet, physical therapy, which prolongs and improves the effects of botulinum toxin, remains an essential and most important form of therapy in the treatment of children with cerebral palsy.

  13. New insight in the epidemiology of avian botulism outbreaks: necrophagous flies as vectors of Clostridium botulinum type C/D.

    Science.gov (United States)

    Anza, Ibone; Vidal, Dolors; Mateo, Rafael

    2014-12-01

    Avian botulism outbreaks spread through the bird carcass-maggot cycle, in which Clostridium botulinum and blowflies interact to ensure their reproduction in a mutualistic relationship where neurotoxin/spore-bearing maggot is one of the keystones. Here we investigated the hypothesis that adult blowflies may also play a significant role in botulism outbreaks by carrying C. botulinum cells between carcasses. We carried out a field experiment placing bird carcasses free of C. botulinum type C/D in containers only accessible to necrophagous flying insects in wetlands where avian botulism outbreaks were occurring and in control sites. Additionally, we performed laboratory trials to evaluate if blowflies may carry C. botulinum type C/D and for how long. Maggots bearing C. botulinum type C/D developed in 27.5% of carcasses placed in wetlands during botulism outbreaks. Calliphoridae flies in laboratory trials were able to transfer C. botulinum between two points and excreted it in their spots for up to 24 h after an infective feeding. Our results confirm that adult necrophagous flies play a role in the spreading of botulism outbreaks, which have implications in the epidemiology of this disease. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Analysis of the genetic distribution among members of Clostridium botulinum group I using a novel multilocus sequence typing (MLST) assay.

    Science.gov (United States)

    Olsen, Jaran S; Scholz, Holger; Fillo, Silvia; Ramisse, Vincent; Lista, Florigio; Trømborg, Anette K; Aarskaug, Tone; Thrane, Ingjerd; Blatny, Janet M

    2014-01-01

    Clostridium botulinum is the etiological agent of botulism. Due to food-borne poisoning and the potential use of the extremely toxic botulinum neurotoxin (BoNT) from C. botulinum in bioterror or biocrime related actions, reliable high resolution typing methods for discriminating C. botulinum strains are needed. Partial sequencing of the adk, atpH, gyrB, proC, rpoD and spo0A genes from 51 various C. botulinum/sporogenes isolates was performed, resulting in 37 different sequence types (STs). Analysis of the sequence data revealed a genetic distribution in five larger clusters with a loose correlation to the BoNT serotypes. The developed MLST assay had a slightly lower resolution ability when compared to the MLVA (multilocus variable number of tandem repeat analysis), but the two methods resulted in similar subclusters of the strains possessing the BoNT serotypes A, B and F. The current work presents the development of a novel MLST assay useful for genotyping C. botulinum related to basic phylogenetic research and trace-back analysis in microbial forensic studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. The Effect of Total Cumulative Dose, Number of Treatment Cycles, Interval between Injections, and Length of Treatment on the Frequency of Occurrence of Antibodies to Botulinum Toxin Type A in the Treatment of Muscle Spasticity

    Science.gov (United States)

    Bakheit, Abdel Magid O.; Liptrot, Anthea; Newton, Rachel; Pickett, Andrew M.

    2012-01-01

    A large cumulative dose of botulinum toxin type A (BoNT-A), frequent injections, a short interval between treatment cycles, and a long duration of treatment have all been suggested, but not confirmed, to be associated with a high incidence of neutralizing antibodies to the neurotoxin. The aim of this study was to investigate whether these…

  16. The pattern of growth observed for Clostridium botulinum type A1 strain ATCC 19397 is influenced by nutritional status and quorum sensing: a modelling perspective.

    Science.gov (United States)

    Ihekwaba, Adaoha E C; Mura, Ivan; Peck, Michael W; Barker, G C

    2015-12-01

    Botulinum neurotoxins (BoNTs) produced by the anaerobic bacterium Clostridium botulinum are the most poisonous substances known to mankind. However, toxin regulation and signals triggering synthesis as well as the regulatory network and actors controlling toxin production are unknown. Experiments show that the neurotoxin gene is growth phase dependent for C. botulinum type A1 strain ATCC 19397, and toxin production is influenced both by culture conditions and nutritional status of the medium. Building mathematical models to describe the genetic and molecular machinery that drives the synthesis and release of BoNT requires a simultaneous description of the growth of the bacterium in culture. Here, we show four plausible modelling options which could be considered when constructing models describing the pattern of growth observed in a botulinum growth medium. Commonly used bacterial growth models are unsuitable to fit the pattern of growth observed, since they only include monotonic growth behaviour. We find that a model that includes both the nutritional status and the ability of the cells to sense their surroundings in a quorum-sensing manner is most successful at explaining the pattern of growth obtained for C. botulinum type A1 strain ATCC 19397. © FEMS 2015.

  17. Botulinum Toxin Treatment of Spasticity in Adults and Children.

    Science.gov (United States)

    Moeini-Naghani, Iman; Hashemi-Zonouz, Taraneh; Jabbari, Bahman

    2016-02-01

    Spasticity is a frequent symptom in stroke, multiple sclerosis, cerebral or spinal trauma, and cerebral palsy that affects and disables a large number of adults and children. In this review, we discuss the pathophysiology and nonpharmacologic and pharmacologic treatments of spasticity with emphasis on the role of botulinum neurotoxins (BoNTs). The world literature is reviewed on double-blind and placebo-controlled clinical trials reporting safety and efficacy of BoNT treatment in adult spasticity and spasticity of children with cerebral palsy. The evidence for efficacy is presented from recommendations of the Assessment and Therapeutics subcommittee of the American Academy of Neurology. A technical section describes the techniques and recommended doses of BoNTs in spasticity. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  18. A sensitive radioimmunoassay of scorpion neurotoxin

    International Nuclear Information System (INIS)

    Tessier, M.; Delori, P.; Bechis, G.; Rochat, H.

    1978-01-01

    Scorpion neurotoxins form a family of homologous proteins which are basic and have approx. mol. wt. 7000. They consist of a single peptide chain crosslinked by four disulfide bridges. The complete amino acid sequences of some of them as well as the N-terminal of others, have been determined: their comparison has led to a classification into four groups. They have been shown to affect the conduction of ions through membrane channels and are thus good tools for the study of these structures on the molecular level. Toxins I and II of Androctonus australis Hector have been labelled with 125 I and specific radioactivities up to 2000 Ci/mmol have been obtained. Here the setting up of a radioimmunoassay allowing a sensitive and specific detection of toxin I of Androctonus australis Hector is reported

  19. Evaluation of neutralizing antibodies to type A, B, E, and F botulinum toxins in sera from human recipients of botulinum pentavalent (ABCDE) toxoid.

    Science.gov (United States)

    Siegel, L S

    1989-08-01

    Twenty-five serum specimens from personnel immunized with botulinum pentavalent toxoid (ABCDE) had titers of neutralizing antibodies to type A (5.7 to 51.6 IU/ml), type B (0.75 to 18 IU/ml), and type E (0.61 to 10 IU/ml) botulinum toxins. Titers for one type could not be used to predict titers for another type in individuals receiving the toxoid. Cross-neutralizing antibodies to type F botulinum toxin were not detected (less than 0.0125 IU/ml).

  20. The same clade of Clostridium botulinum strains is causing avian botulism in southern and northern Europe.

    Science.gov (United States)

    Anza, Ibone; Skarin, Hanna; Vidal, Dolors; Lindberg, Anna; Båverud, Viveca; Mateo, Rafael

    2014-04-01

    Avian botulism is a paralytic disease caused by Clostridium botulinum-produced botulinum neurotoxins (BoNTs), most commonly of type C/D. It is a serious disease of waterbirds and poultry flocks in many countries in Europe. The objective of this study was to compare the genetic relatedness of avian C. botulinum strains isolated in Spain with strains isolated in Sweden using pulsed-field gel electrophoresis (PFGE). Fifteen strains were isolated from Spanish waterbirds using an immunomagnetic separation technique. Isolates were characterized by PCR, and all were identified as the genospecies Clostridium novyi sensu lato and eight harboured the gene coding for the BoNT type C/D. PFGE analysis of the strains revealed four highly similar pulsotypes, out of which two contained strains from both countries. It also showed that outbreaks in wild and domestic birds can be caused by the same strains. These results support a clonal spreading of the mosaic C. botulinum type C/D through Europe and give relevant information for future epidemiological studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Botulinum Toxin for Neuropathic Pain: A Review of the Literature

    Directory of Open Access Journals (Sweden)

    Hyun-Mi Oh

    2015-08-01

    Full Text Available Botulinum neurotoxin (BoNT, derived from Clostridium botulinum, has been used therapeutically for focal dystonia, spasticity, and chronic migraine. Its spectrum as a potential treatment for neuropathic pain has grown. Recent opinions on the mechanism behind the antinociceptive effects of BoNT suggest that it inhibits the release of peripheral neurotransmitters and inflammatory mediators from sensory nerves. There is some evidence showing the axonal transport of BoNT, but it remains controversial. The aim of this review is to summarize the experimental and clinical evidence of the antinociceptive effects, mechanisms, and therapeutic applications of BoNT for neuropathic pain conditions, including postherpetic neuralgia, complex regional pain syndrome, and trigeminal neuralgia. The PubMed and OvidSP databases were searched from 1966 to May 2015. We assessed levels of evidence according to the American Academy of Neurology guidelines. Recent studies have suggested that BoNT injection is an effective treatment for postherpetic neuralgia and is likely efficient for trigeminal neuralgia and post-traumatic neuralgia. BoNT could also be effective as a treatment for diabetic neuropathy. It has not been proven to be an effective treatment for occipital neuralgia or complex regional pain syndrome.

  2. Botulinum Toxin A for Bladder Pain Syndrome/Interstitial Cystitis

    Directory of Open Access Journals (Sweden)

    Bin Chiu

    2016-07-01

    Full Text Available Botulinum neurotoxin A (BoNT-A, derived from Clostridium botulinum, has been used clinically for several diseases or syndrome including chronic migraine, spasticity, focal dystonia and other neuropathic pain. Chronic pelvic or bladder pain is the one of the core symptoms of bladder pain syndrome/interstitial cystitis (BPS/IC. However, in the field of urology, chronic bladder or pelvic pain is often difficult to eradicate by oral medications or bladder instillation therapy. We are looking for new treatment modality to improve bladder pain or associated urinary symptoms such as frequency and urgency for patients with BPS/IC. Recent studies investigating the mechanism of the antinociceptive effects of BoNT A suggest that it can inhibit the release of peripheral neurotransmitters and inflammatory mediators from sensory nerves. In this review, we will examine the evidence supporting the use of BoNTs in bladder pain from basic science models and review the clinical studies on therapeutic applications of BoNT for BPS/IC.

  3. Botulinum Toxin A for Bladder Pain Syndrome/Interstitial Cystitis.

    Science.gov (United States)

    Chiu, Bin; Tai, Huai-Ching; Chung, Shiu-Dong; Birder, Lori A

    2016-07-01

    Botulinum neurotoxin A (BoNT-A), derived from Clostridium botulinum, has been used clinically for several diseases or syndrome including chronic migraine, spasticity, focal dystonia and other neuropathic pain. Chronic pelvic or bladder pain is the one of the core symptoms of bladder pain syndrome/interstitial cystitis (BPS/IC). However, in the field of urology, chronic bladder or pelvic pain is often difficult to eradicate by oral medications or bladder instillation therapy. We are looking for new treatment modality to improve bladder pain or associated urinary symptoms such as frequency and urgency for patients with BPS/IC. Recent studies investigating the mechanism of the antinociceptive effects of BoNT A suggest that it can inhibit the release of peripheral neurotransmitters and inflammatory mediators from sensory nerves. In this review, we will examine the evidence supporting the use of BoNTs in bladder pain from basic science models and review the clinical studies on therapeutic applications of BoNT for BPS/IC.

  4. Affinity chromatography of tetanus toxin, tetanus toxoid, and botulinum A toxin on synaptosomes, and differentiation of their acceptors

    International Nuclear Information System (INIS)

    Habermann, E.

    1976-01-01

    125 I-labelled tetanus toxin and 125 I-labelled botulinum A neurotoxin are known to be specifically bound to brain synaptosomes. In order to discriminate between active toxin and inactive admixtures present in the starting material or arising during iodination, synaptosome columns were prepared using bromacetylcellulose and/or kieselgur (Celite) as carriers. Both types of columns adsorb the toxins from low ionic strength medium and release them if the pH and ionic strength are raised. Botulinum toxin was eluted with lower ionic strength than tetanus toxin, and could be freed from nontoxic admixtures. Analysis by affinity chromatography disclosed partially toxoided tetanus toxin in both labelled and unlabelled toxin samples. High concentrations of formaldehyde (0.5%) destroyed both toxicity and affinity to the synaptosomes of tetanus toxin. Low concentrations of formaldehyde (0.05%) yielded a derivative of low toxicity which was still, however less firmly, bound to synaptosomes. Tetanus and botulinum toxin differ by their acceptors. Whereas unlabelled botulinum toxin is unable to compete with labelled tetanus toxin, unlabelled tetanus toxin slightly competes with botulinum toxin. Both labelled toxins display anomalous binding behaviour in that they cannot be displaced completely even with a large excess of unlabelled toxin. (orig.) [de

  5. Electromyography in cervical dystonia: changes after botulinum and trihexyphenidyl

    NARCIS (Netherlands)

    Brans, J. W.; Aramideh, M.; Koelman, J. H.; Lindeboom, R.; Speelman, J. D.; Ongerboer de Visser, B. W.

    1998-01-01

    BACKGROUND: The value of physical examination in detecting involved neck muscles in cervical dystonia (CD) is uncertain and little is known about changes in electromyographic (EMG) features after botulinum toxin type A (BTA) treatment. METHODS: In a double-blind, randomized study we recorded the EMG

  6. Role of csp genes in NaCl, pH, and ethanol stress response and motility in Clostridium botulinum ATCC 3502.

    Science.gov (United States)

    Derman, Yağmur; Söderholm, Henna; Lindström, Miia; Korkeala, Hannu

    2015-04-01

    Clostridium botulinum is a notable food pathogen and responsible for botulism due to production of botulinum neurotoxin. Strains of C. botulinum can adapt to and survive in stress conditions and food processing. The cold shock protein coding genes (csp) are involved in growth at low temperature, but they may also possess other functions. In this mutational analysis we show that cspB and cspC, but not cspA, are important for NaCl, pH and ethanol stress responses and for motility of C. botulinum ATCC 3502. In all NaCl concentrations tested, the cspB mutant had lower maximum growth rate and, together with the cspC mutant, a longer lag phase compared to the wild-type strain. At low pH, the cspB and cspC mutants showed either lower maximum growth rates or longer lag phases compared to the wild type. In all ethanol concentrations tested, the cspB mutant had lower maximum growth rates and the cspC mutant had a longer lag phase than the wild-type strain. Motility was reduced in cspA and cspC mutants, and flagella formation was affected. The results suggest that cspB plays a universal role in stress response and cspC aids C. botulinum in NaCl, pH and ethanol stress in C. botulinum ATCC 3502. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Construction of Nontoxigenic Mutants of Nonproteolytic Clostridium botulinum NCTC 11219 by Insertional Mutagenesis and Gene Replacement.

    Science.gov (United States)

    Clauwers, Charlien; Vanoirbeek, Kristof; Delbrassinne, Laurence; Michiels, Chris W

    2016-05-15

    Group II nonproteolytic Clostridium botulinum (gIICb) strains are an important concern for the safety of minimally processed ready-to-eat foods, because they can grow and produce botulinum neurotoxin during refrigerated storage. The principles of control of gIICb by conventional food processing and preservation methods have been well investigated and translated into guidelines for the food industry; in contrast, the effectiveness of emerging processing and preservation techniques has been poorly documented. The reason is that experimental studies with C. botulinum are cumbersome because of biosafety and biosecurity concerns. In the present work, we report the construction of two nontoxigenic derivatives of the type E gIICb strain NCTC 11219. In the first strain, the botulinum toxin gene (bont/E) was insertionally inactivated with a retargeted intron using the ClosTron system. In the second strain, bont/E was exchanged for an erythromycin resistance gene using a new gene replacement strategy that makes use of pyrE as a bidirectional selection marker. Growth under optimal and stressed conditions, sporulation efficiency, and spore heat resistance of the mutants were unaltered, except for small differences in spore heat resistance at 70°C and in growth at 2.3% NaCl. The mutants described in this work provide a safe alternative for basic research as well as for food challenge and process validation studies with gIICb. In addition, this work expands the clostridial genetic toolbox with a new gene replacement method that can be applied to replace any gene in gIICb and other clostridia. The nontoxigenic mutants described in this work provide a safe alternative for basic research as well as for food challenge and process validation studies with psychrotrophic Clostridium botulinum In addition, this work expands the clostridial genetic toolbox with a new gene replacement method that can be applied to replace any gene in clostridia. Copyright © 2016, American Society for

  8. Mechanisms of Resistance to Neurotoxins (Addendum)

    National Research Council Canada - National Science Library

    Schubert, David

    2003-01-01

    The toxicity of chemically reactive oxygen species (ROS) is thought to make a significant contribution to the death of nerve cells caused by many neurotoxins as well as in stroke and Parkinson's disease...

  9. Molecular Analysis of Neurotoxin-Induced Apoptosis

    National Research Council Canada - National Science Library

    D'Mello, Santosh R

    2006-01-01

    Apoptosis is a cell-suicide process that is required for the normal development of the nervous system, but that can be aberrantly activated in neurodegenerative diseases and following exposure to neurotoxins...

  10. Implications of Genome-Based Discrimination between Clostridium botulinum Group I and Clostridium sporogenes Strains for Bacterial Taxonomy.

    Science.gov (United States)

    Weigand, Michael R; Pena-Gonzalez, Angela; Shirey, Timothy B; Broeker, Robin G; Ishaq, Maliha K; Konstantinidis, Konstantinos T; Raphael, Brian H

    2015-08-15

    Taxonomic classification of Clostridium botulinum is based on the production of botulinum neurotoxin (BoNT), while closely related, nontoxic organisms are classified as Clostridium sporogenes. However, this taxonomic organization does not accurately mirror phylogenetic relationships between these species. A phylogenetic reconstruction using 2,016 orthologous genes shared among strains of C. botulinum group I and C. sporogenes clearly separated these two species into discrete clades which showed ∼93% average nucleotide identity (ANI) between them. Clustering of strains based on the presence of variable orthologs revealed 143 C. sporogenes clade-specific genetic signatures, a subset of which were further evaluated for their ability to correctly classify a panel of presumptive C. sporogenes strains by PCR. Genome sequencing of several C. sporogenes strains lacking these signatures confirmed that they clustered with C. botulinum strains in a core genome phylogenetic tree. Our analysis also identified C. botulinum strains that contained C. sporogenes clade-specific signatures and phylogenetically clustered with C. sporogenes strains. The genome sequences of two bont/B2-containing strains belonging to the C. sporogenes clade contained regions with similarity to a bont-bearing plasmid (pCLD), while two different strains belonging to the C. botulinum clade carried bont/B2 on the chromosome. These results indicate that bont/B2 was likely acquired by C. sporogenes strains through horizontal gene transfer. The genome-based classification of these species used to identify candidate genes for the development of rapid assays for molecular identification may be applicable to additional bacterial species that are challenging with respect to their classification. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Building-block architecture of botulinum toxin complex: Conformational changes provide insights into the hemagglutination ability of the complex

    Directory of Open Access Journals (Sweden)

    Tomonori Suzuki

    2017-03-01

    Full Text Available Clostridium botulinum produces the botulinum neurotoxin (BoNT. Previously, we provided evidence for the “building-block” model of botulinum toxin complex (TC. In this model, a single BoNT is associated with a single nontoxic nonhemagglutinin (NTNHA, yielding M-TC; three HA-70 molecules are attached and form M-TC/HA-70, and one to three “arms” of the HA-33/HA-17 trimer (two HA-33 and one HA-17 further bind to M-TC/HA-70 via HA-17 and HA-70 binding, yielding one-, two-, and three-arm L-TC. Of all TCs, only the three-arm L-TC caused hemagglutination. In this study, we determined the solution structures for the botulinum TCs using small-angle X-ray scattering (SAXS. The mature three-arm L-TC exhibited the shape of a “bird spreading its wings”, in contrast to the model having three “arms”, as revealed by transmission electron microscopy. SAXS images indicated that one of the three arms of the HA-33/HA-17 trimer bound to both HA-70 and BoNT. Taken together, these findings regarding the conformational changes in the building-block architecture of TC may explain why only three-arm L-TC exhibited hemagglutination.

  12. Human immune response to botulinum pentavalent (ABCDE) toxoid determined by a neutralization test and by an enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Siegel, L S

    1988-11-01

    To determine the immune status of persons receiving botulinum pentavalent (ABCDE) toxoid and to evaluate the effectiveness of the vaccine, we surveyed immunized individuals for neutralizing antibodies to type A and to type B botulinum toxins. After the primary series of three immunizations administered at 0, 2, and 12 weeks, 21 of 23 persons tested (91%) had a titer for type A that was greater than or equal to 0.08 international units (IU)/ml, and 18 (78%) had a titer for type B of greater than or equal to 0.02 IU/ml. (One international unit is defined as the amount of antibody neutralizing 10,000 mouse 50% lethal doses of type A or B botulinum toxin). Just before the first annual booster, 10 of 21 (48%) and 14 of 21 (67%) people lacked a detectable titer for type A and for type B, respectively. After the first booster, all individuals tested had a demonstrable titer to both types A and B. Of 77 persons who had previously received from one to eight boosts of the toxoid, 74 (96%) had an A titer of greater than or equal to 0.25 IU/ml and would not require an additional booster, according to the recommendations of the Centers for disease Control. However, only 44 of 77 (57%) had a B titer of greater than or equal to 0.25 IU/ml. In each group by booster number, even the group having had eight boosts, at least one person would require reimmunization on the basis of B titer. There was a wide range of antibody levels among individuals at the same point in the immunization scheme. Results from an enzyme linked immunosorbent assay, with purified type A or type B neurotoxin as the capture antigen, were compared with neutralization test results on 186 serum samples for type A and 168 samples for type B. Statistically, the correlation coefficients for results from the two assays were high (r = 0.69, P < 0.0001, for type A and r = 0.77, P < 0.0001, for type B). However, due to the wide dispersion of values obtained, using enzyme-linked immunosorbent assay results to predict

  13. Trans generational effects of the neurotoxin BMAA on the aquatic grazer Daphnia magna

    NARCIS (Netherlands)

    Faassen, Elisabeth J.; García-Altares, María; Mendes e Mello, Mariana; Lürling, Miquel

    2015-01-01

    Abstract β-N-Methylamino-l-alanine (BMAA) is a neurotoxin that is suspected to play a role in the neurological diseases amyotrophic lateral sclerosis, Alzheimer's disease and Parkinson’s disease. BMAA has been detected in phytoplankton and globally, the main exposure routes for humans to BMAA are

  14. Trans generational effects of the neurotoxin BMAA on the aquatic grazer Daphnia magna

    NARCIS (Netherlands)

    Faassen, E.J.; Garcia-Altares, M.; Mendes e Mello, M.; Lurling, M.F.L.L.W.

    2015-01-01

    ß-N-Methylamino-l-alanine (BMAA) is a neurotoxin that is suspected to play a role in the neurological diseases amyotrophic lateral sclerosis, Alzheimer's disease and Parkinson’s disease. BMAA has been detected in phytoplankton and globally, the main exposure routes for humans to BMAA are through

  15. Prevalence of toxin-producing Clostridium botulinum associated with the macroalga Cladophora in three Great Lakes: growth and management

    Science.gov (United States)

    Chun, Chan Lan; Kahn, Chase I.; Borchert, Andrew J.; Byappanahalli, Muruleedhara N.; Whitman, Richard L.; Peller, Julie R.; Pier, Christina; Lin, Guangyun; Johnson, Eric A.; Sadowsky, Michael J.

    2015-01-01

    The reemergence of avian botulism caused by Clostridium botulinum type E has been observed across the Great Lakes in recent years. Evidence suggests an association between the nuisance algae, Cladophoraspp., and C. botulinum in nearshore areas of the Great Lakes. However, the nature of the association between Cladophora and C. botulinum is not fully understood due, in part, to the complex food web interactions in this disease etiology. In this study, we extensively evaluated their association by quantitatively examining population size and serotypes of C. botulinum in algal mats collected from wide geographic areas in lakes Michigan, Ontario, and Erie in 2011–2012 and comparing them with frequencies in other matrices such as sand and water. A high prevalence (96%) of C. botulinum type E was observed inCladophora mats collected from shorelines of the Great Lakes in 2012. Among the algae samples containing detectable C. botulinum, the population size of C. Botulinum type E was 100–104 MPN/g dried algae, which was much greater (up to 103 fold) than that found in sand or the water column, indicating thatCladophora mats are sources of this pathogen. Mouse toxinantitoxin bioassays confirmed that the putativeC. botulinum belonged to the type E serotype. Steam treatment was effective in reducing or eliminating C. botulinum type E viable cells in Cladophora mats, thereby breaking the potential transmission route of toxin up to the food chain. Consequently, our data suggest that steam treatment incorporated with a beach cleaning machine may be an effective treatment of Cladophora-borne C. botulinum and may reduce bird mortality and human health risks.

  16. Distinguishing highly-related outbreak-associated Clostridium botulinum type A(B) strains.

    Science.gov (United States)

    Raphael, Brian H; Shirey, Timothy B; Lúquez, Carolina; Maslanka, Susan E

    2014-07-16

    In the United States, most Clostridium botulinum type A strains isolated during laboratory investigations of human botulism demonstrate the presence of an expressed type A botulinum neurotoxin (BoNT/A) gene and an unexpressed BoNT/B gene. These strains are designated type A(B). The most common pulsed-field gel electrophoresis (PFGE) pattern in the C. botulinum PulseNet database is composed of A(B) strains. The purpose of this study was to evaluate the ability of genome sequencing and multi-loci variable number of tandem repeat analysis (MLVA) to differentiate such strains. The genome sequences of type A(B) strains evaluated in this study are closely related and cluster together compared to other available C. botulinum Group I genomes. In silico multilocus sequence typing (MLST) analysis (7-loci) was unable to differentiate any of the type A(B) strains isolated from seven different outbreak investigations evaluated in this study. A 15-locus MLVA scheme demonstrated an improved ability to differentiate these strains, however, repeat unit variation among the strains was restricted to only two loci. Reference-free single nucleotide polymorphism (SNP) analysis demonstrated the ability to differentiate strains from all of the outbreaks examined and a non-outbreak associated strain. This study confirms that type A(B) strains that share the same PFGE pattern also share closely-related genome sequences. The lack of a complete type A(B) strain representative genome sequence hinders the ability to assemble genomes by reference mapping and analysis of SNPs at pre-identified sites. However, compared to other methods evaluated in this study, a reference-free SNP analysis demonstrated optimal subtyping utility for type A(B) strains using de novo assembled genome sequences.

  17. Use of botulinum toxin in individuals with neurogenic detrusor overactivity: State of the art review

    Science.gov (United States)

    Linsenmeyer, Todd A.

    2013-01-01

    Background Botulinum neurotoxin (BoNT) injection into the bladder wall has been shown to be an effective alternative to anticholinergic (antimuscarinic) medications and more invasive surgery in those with multiple sclerosis and spinal cord injury with neurogenic detrusor overactivity (NDO) and urinary incontinence who are not tolerating anticholinergic medications. In August 2011, Botox® (onabotulinumtoxinA) received Food and Drug Administration (FDA) approval for this use. Clinically, intradetrusor injection of BoNT has been found to decrease urinary incontinence and improve quality of life. Its impact on urodynamic parameters is an increase in the maximum cystometric (bladder) capacity and decrease in the maximum detrusor pressures. The most common side effects are urinary tract infections and urinary retention. There have been rare reports and a black box warning of distant spread of BoNT. BoNT has gained popularity because of its effectiveness and long duration of action, relative ease of administration, easy learning curve, reproducibility of results on repeated administration, and low incidence of complications. Objective To discuss the structure and function, mechanisms of action, clinical and urodynamic studies, injection technique, potential beneficial and adverse effects, and potential areas of research of BoNT. Methods Literature search focused on botulinum toxin in MEDLINE/PubMed. Search terms included botulinum toxin, neurogenic bladder, NDO, botox bladder, botox spinal cord injury, botox, FDA, botox side effects. All papers identified were English language, full-text papers. In addition, English abstracts of non-English papers were noted. The reference list of identified articles was also searched for further papers. Conclusion Botulinum toxin is an alternative treatment for individuals with NDO who fail to tolerate anticholinergic medications. Its popularity has increased because of the literature, which has supported its effectiveness, safety, easy

  18. Effect of sporulation medium and its divalent cation content on the heat and high pressure resistance of Clostridium botulinum type E spores.

    Science.gov (United States)

    Lenz, Christian A; Vogel, Rudi F

    2014-12-01

    Clostridium (C.) botulinum type E belongs to the non-proteolytic physiological C. botulinum group II and produces the highly potent Botulinum neurotoxin E (BoNT/E) even at refrigerated temperatures. As C. botulinum type E spores are highly prevalent in aquatic environments, seafood and fishery products are commonly associated with this organism. Hydrostatic high pressure (HHP) treatments, or treatments combining HHP with elevated temperatures (HHPT), can be used to improve traditional preservation methods and increase food safety, quality and durability. In this study, we assessed the effect of different sporulation media and cation concentration on the heat resistance, HHP resistance, and HHPT resistance of spores from three C. botulinum type E strains. SFE (sediment fish extract) sporulation media yielded the most resistant spores, whereas, in M140 media, the least resistant spores were produced. Furthermore our results indicate that the divalent cation content (Ca(2+), Mg(2+) and Mn(2+)) plays a role in the differential development of C. botulinum type E spore resistance to heat, HHP and HHPT in different media. Calcium cations confer heat and HPPT resistance to spores, while high amounts of magnesium cations appear to have a negative effect. Manganese cations in low concentrations are important for the development resistance to HPP and HPPT treatments, but not heat alone. This study provides valuable information on the nature of non-proteolytic C. botulinum type E spores grown in different media. The data provided here can be useful to the food industry and to researchers when considering spore properties in food safety risk assessment and the experimental design of future inactivation studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Phenotypic characterization of Clostridium botulinum strains isolated from infant botulism cases in Argentina Caracterización fenotípica de cepas de Clostridium botulinum aisladas de casos de botulismo del lactante en Argentina

    Directory of Open Access Journals (Sweden)

    M. D. Sagua

    2009-09-01

    Full Text Available Infant botulism is the most common form of human botulism; however, its transmission has not been completely explained yet. Some of the most recognized potential sources of Clostridium botulinum spores are the soil, dust, honey and medicinal herbs. In Argentina, 456 cases of infant botulism were reported between 1982 and 2007. C. botulinum type A was identified in 455 of these cases whereas type B was identified in just one case. However, in Argentina, types A, B, E, F, G, and Af have been isolated from environmental sources. It is not clearly known if strains isolated from infant botulism cases have different characteristics from strains isolated from other sources. During this study, 46 C. botulinum strains isolated from infant botulism cases and from environmental sources were typified according to phenotypic characteristics. Biochemical tests, antimicrobial activity, and haemagglutinin-negative botulinum neurotoxin production showed uniformity among all these strains. Despite the variability observed in the botulinum neurotoxin's binding to cellular receptors, no correlation was found between these patterns and the source of the botulinum neurotoxin. However, an apparent geographical clustering was observed, since strains isolated from Argentina had similar characteristics to those isolated from Italy and Japan, but different to those isolated from the United States.El botulismo del lactante es la forma más común del botulismo humano; sin embargo, su forma de transmisión no ha sido totalmente explicada. El suelo, el polvo ambiental, la miel y algunas hierbas medicinales son potenciales fuentes de esporas de Clostridium botulinum. Entre 1982 y 2007 se informaron en Argentina 456 casos de botulismo del lactante, 455 casos debidos al serotipo A y uno al serotipo B. Sin embargo, los serotipos A, B, E, F, G y Af han sido aislados de suelos y otras fuentes en Argentina. No se conoce si las cepas aisladas de casos de botulismo del lactante

  20. Dolichospermum and Aphanizomenon as neurotoxins producers in some Russian freshwaters.

    Science.gov (United States)

    Chernova, Ekaterina; Sidelev, Sergey; Russkikh, Iana; Voyakina, Ekaterina; Babanazarova, Olga; Romanov, Roman; Kotovshchikov, Anton; Mazur-Marzec, Hanna

    2017-05-01

    Last decades, cyanobacterial blooms have been commonly reported in Russia. Among the boom-forming species, potential toxin producers have been identified. The aim of this paper was to study the presence of neurotoxic compounds - saxitoxins and anatoxin-a - in water bodies from different regions of Russia. We also made attempts to identify the neurotoxin-producing genera. The good convergence of the results obtained by light microscopy, PCR and LC-MS/MS analyses indicated the presence of active neurotoxin producing species in all investigated water bodies. Saxitoxin was detected in phytoplankton from 4 water bodies in Central European Russia and West Siberia, including lake and reservoirs used as a source for potable water. The water bodies differed with the respect of saxitoxin producers which belonged to Aphanizomenon and/or Dolichospermum genera. For the first time, we obtained quantitative data on the intracellular saxitoxin concentration in Russian freshwaters using LC-MS/MS. Anatoxin-a was detected only in lakes of Northwestern Russia. In the eutrophic shallow Lower Suzdal Lake, Aphanizomenon was the stated anatoxin-a-producing genus. In the large shallow artificial hypertrophic Sestroretskij Razliv Lake, it was very likely that both dominant species - Aphanizomenon flos-aquae and Dolichospermum planctonicum - were anatoxin-a producers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Toxin yet not toxic: Botulinum toxin in dentistry

    Directory of Open Access Journals (Sweden)

    Archana M.S.

    2016-04-01

    Full Text Available Paracelsus contrasted poisons from nonpoisons, stating that “All things are poisons, and there is nothing that is harmless; the dose alone decides that something is a poison”. Living organisms, such as plants, animals, and microorganisms, constitute a huge source of pharmaceutically useful medicines and toxins. Depending on their source, toxins can be categorized as phytotoxins, mycotoxins, or zootoxins, which include venoms and bacterial toxins. Any toxin can be harmful or beneficial. Within the last 100 years, the perception of botulinum neurotoxin (BTX has evolved from that of a poison to a versatile clinical agent with various uses. BTX plays a key role in the management of many orofacial and dental disorders. Its indications are rapidly expanding, with ongoing trials for further applications. However, despite its clinical use, what BTX specifically does in each condition is still not clear. The main aim of this review is to describe some of the unclear aspects of this potentially useful agent, with a focus on the current research in dentistry.

  2. The neurotoxin BMAA in aquatic systems

    NARCIS (Netherlands)

    Faassen, E.J.

    2016-01-01

    Eutrophication is a major water quality issue and in many aquatic systems, it leads to the proliferation of toxic phytoplankton species. The neurotoxin β-N-methylamino-L-alanine (BMAA) is one of the compounds that can be present in phytoplankton. BMAA has been suggested to play a role in

  3. BOTDB: A Database for the Clostridial Neurotoxins

    National Research Council Canada - National Science Library

    Lebeda, Frank J

    2003-01-01

    ...) neurotoxins and to track a variety of basic and applied research efforts. The AceDB management system was chosen for this project because of its flexibility in manipulating semi-structured data sets and for its information retrieval query languages...

  4. Botulinum toxin — therapeutic effect in cosmetology

    OpenAIRE

    Morrison A.V.; Bocharova Y.M.; Morrison V.V.

    2016-01-01

    This review presents the data from published literatures and the research works conducted by the authors about mechanisms of action of botulinum toxin and its use in the practical medicine (particularly in dermatology and cosmetology). Indications and contraindications of botulinum toxin use in cosmetology are also considered in this work.

  5. Utilizing Ayurvedic literature for the identification of novel phytochemical inhibitors of botulinum neurotoxin A

    Science.gov (United States)

    Ethnopharmacological relevance: Ayurveda, an ancient holistic system of health care practiced on the Indian subcontinent, utilizes a number of multi-plant formulations and is considered by many as a potential source for novel treatments, as well as the identification of new drugs. Our aim is to iden...

  6. Exogenous mRNA encoding tetanus or botulinum neurotoxins expressed in Aplysia neurons

    NARCIS (Netherlands)

    Mochida, Sumiko; Poulain, Bernard; Eisel, Ulrich; Binz, Thomas; Kurazono, Hisao; Niemann, Heiner; Tauc, Ladislav; Bullock, Theodore H.

    1990-01-01

    Injection of exogenous mRNA purified from various tissue preparations into cellular translation systems such as Xenopus oocytes has allowed expression of complex proteins (e.g., receptors for neurotransmitters). No evidence for expression of injected exogenous mRNA, however, has been reported in

  7. Fungal bis-Naphthopyrones as Inhibitors of Botulinum Neurotoxin Serotype A

    Science.gov (United States)

    2012-04-02

    Salvadori, P.; Speakman, J.-B.; Rheinheimer, J.; Krohn, K. Pseudoanguillosporin A and B: Two new isochromans isolated from the endophytic fungus...Pseudoanguillospora sp. Eur. J. Org. Chem. 2009, 1427−1434. (27) Gill, M.; Gimenez, A.; McKenzie, R. W. Pigments of fungi , part 8. Bisanthraquinones from

  8. Modulation of inflammatory mediators in the trigeminal ganglion by botulinum neurotoxin type A

    DEFF Research Database (Denmark)

    Edvinsson, Jacob; Warfvinge, Karin; Edvinsson, Lars

    2015-01-01

    BACKGROUND: Onabotulinumtoxin type A (BoNT-A) has been found to reduce pain in chronic migraine. The aim of the present study was to ask if BoNT-A can interact directly on sensory mechanisms in the trigeminal ganglion (TG) using an organ culture method. METHODS: To induce inflammation, rat TGs we...

  9. A penicillin- and metronidazole-resistant Clostridium botulinum strain responsible for an infant botulism case.

    Science.gov (United States)

    Mazuet, C; Yoon, E-J; Boyer, S; Pignier, S; Blanc, T; Doehring, I; Meziane-Cherif, D; Dumant-Forest, C; Sautereau, J; Legeay, C; Bouvet, P; Bouchier, C; Quijano-Roy, S; Pestel-Caron, M; Courvalin, P; Popoff, M R

    2016-07-01

    The clinical course of a case of infant botulism was characterized by several relapses despite therapy with amoxicillin and metronidazole. Botulism was confirmed by identification of botulinum toxin and Clostridium botulinum in stools. A C. botulinum A2 strain resistant to penicillins and with heterogeneous resistance to metronidazole was isolated from stool samples up to 110 days after onset. Antibiotic susceptibility was tested by disc agar diffusion and MICs were determined by Etest. Whole genome sequencing allowed detection of a gene cluster composed of blaCBP for a novel penicillinase, blaI for a regulator, and blaR1 for a membrane-bound penicillin receptor in the chromosome of the C. botulinum isolate. The purified recombinant penicillinase was assayed. Resistance to β-lactams was in agreement with the kinetic parameters of the enzyme. In addition, the β-lactamase gene cluster was found in three C. botulinum genomes in databanks and in two of 62 genomes of our collection, all the strains belonging to group I C. botulinum. This is the first report of a C. botulinum isolate resistant to penicillins. This stresses the importance of antibiotic susceptibility testing for adequate therapy of botulism. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  10. Studies on the irradiation of toxins of Clostridium botulinum and Staphylococcus aureus

    International Nuclear Information System (INIS)

    Rose, S.A.; Bailey, N.E.; Stringer, M.F.; Modi, N.K.; Tranter, H.S.; Hambleton, P.

    1988-01-01

    The effects of irradiation of Clostridium botulinum neurotoxin type A (BNTA) and staphylococcal enterotoxin A (SEA) in gelatin phosphate buffer and cooked mince beef slurries were investigated. Estimation of toxins by immunoassays showed that in buffer, toxins were destroyed by irradiation at 8.0 kGy; in mince slurries however, 45% of BTNA and 27-34% of SEA remained after this level of irradiation. At 23.7 kGy, over twice the dose of irradiation proposed for legal acceptance in the UK, 15% of BNTA and 16-26% of SEA still remained. Increasing concentrations of mince conferred increased protection against the effect of irradiation on both toxins. The biological activity of BNTA was more sensitive to irradiation than the immunological activity. Staphylococcal enterotoxin was more resistant to irradiation than BNTA. Irradiation should therefore only be used in conjunction with good manufacturing practices to prevent microbial proliferation and toxin production prior to irradiation. (author)

  11. The Role of Botulinum Toxin A in the Treatment of Raynaud Phenomenon.

    Science.gov (United States)

    Segreto, Francesco; Marangi, Giovanni Francesco; Cerbone, Vincenzo; Persichetti, Paolo

    2016-09-01

    Raynaud phenomenon (RP) is a transient digital ischemia that occurs after exposure to cold temperature or emotional distress. It presents with a triphasic course: the initial white phase is followed by cyanotic discoloration and, subsequently, erythema. The attacks may be associated with pain, paresthesia, and complicate with nonhealing ulceration often leading to amputation. To date, there are no clear-cut therapeutic guidelines and many medications are used off-label. Encouraging results were reported with the use of botulinum neurotoxin-A (BoNT-A). However, there is still ongoing debate regarding indications, contraindications, best injection technique, and mechanism of action. The aim of this study was to address these issues by providing an up-to-date and detailed overview of the use of BoNT-A in RP.A PubMed database search was conducted. The available studies and techniques were evaluated and compared.The search yielded a total of 29 studies. Ten papers, published between 2004 and 2014, were considered relevant. A total of 128 patients underwent BoNT-A injections. Seventy-five percent to 100 % of the patients reported pain reduction after treatment. Healing of ulcers was reported in 75% to 100% of the affected patients. The most common complication was temporary hand weakness, with an average incidence of 14.1%. Injections targeting the neurovascular bundle at or slightly proximal to the A1 pulley were the most commonly performed.Botulinum neurotoxin-A injection proved to be a valid approach in both primary and secondary RP. The available evidence shows the achievement of both symptomatic and functional improvements in this debilitating condition. However, the patient should be adequately informed about the risk of transient hand weakness.

  12. Genomic Epidemiology of Clostridium botulinum Isolates from Temporally Related Cases of Infant Botulism in New South Wales, Australia.

    Science.gov (United States)

    McCallum, Nadine; Gray, Timothy J; Wang, Qinning; Ng, Jimmy; Hicks, Leanne; Nguyen, Trang; Yuen, Marion; Hill-Cawthorne, Grant A; Sintchenko, Vitali

    2015-09-01

    Infant botulism is a potentially life-threatening paralytic disease that can be associated with prolonged morbidity if not rapidly diagnosed and treated. Four infants were diagnosed and treated for infant botulism in NSW, Australia, between May 2011 and August 2013. Despite the temporal relationship between the cases, there was no close geographical clustering or other epidemiological links. Clostridium botulinum isolates, three of which produced botulism neurotoxin serotype A (BoNT/A) and one BoNT serotype B (BoNT/B), were characterized using whole-genome sequencing (WGS). In silico multilocus sequence typing (MLST) found that two of the BoNT/A-producing isolates shared an identical novel sequence type, ST84. The other two isolates were single-locus variants of this sequence type (ST85 and ST86). All BoNT/A-producing isolates contained the same chromosomally integrated BoNT/A2 neurotoxin gene cluster. The BoNT/B-producing isolate carried a single plasmid-borne bont/B gene cluster, encoding BoNT subtype B6. Single nucleotide polymorphism (SNP)-based typing results corresponded well with MLST; however, the extra resolution provided by the whole-genome SNP comparisons showed that the isolates differed from each other by >3,500 SNPs. WGS analyses indicated that the four infant botulism cases were caused by genomically distinct strains of C. botulinum that were unlikely to have originated from a common environmental source. The isolates did, however, cluster together, compared with international isolates, suggesting that C. botulinum from environmental reservoirs throughout NSW have descended from a common ancestor. Analyses showed that the high resolution of WGS provided important phylogenetic information that would not be captured by standard seven-loci MLST. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. [Neurotoxin of the black widow spider and its interaction with receptors from the rat brain].

    Science.gov (United States)

    Ushkarev, Iu A; Grishin, E V

    1986-01-01

    A presynaptic neurotoxin isolated from the venom of the Central Asia spider karakurt (Black Widow Spider, Latrodectus mactans tredecimguttatus) is shown to consist of two identical subunits of mol. weight about 118 kDa. The iodinated neurotoxin binds to the rat brain synaptosomal plasma membranes with Kd 0.1 nM (Bmax 0.1 pmol/mg of protein) at 37 degrees C, and with Kd 0.35 nM (Bmax 0.2 pmol/mg of protein) at 5 degrees C. At intermediate temperatures both types of receptors are detectable. It is supposed that the dimeric form of the toxin interacts with a single class of receptors possessing lateral mobility in the membrane. By the use of different bifunctional reagents it is revealed that the neurotoxin interacts with a presynaptic membrane protein of mol. weight 95 kDa. A protein of the same size accompanied by a 71 kDa protein was isolated by the affinity chromatography of solubilized synaptosomal membranes on the absorbent, containing immobilized neurotoxin.

  14. Meta-analysis of D-values of proteolytic Clostridium botulinum and its surrogate strain Clostridium sporogenes PA 3679.

    Science.gov (United States)

    Diao, Mamadou Moctar; André, Stéphane; Membré, Jeanne-Marie

    2014-03-17

    Foodborne botulism is a serious disease resulting from ingestion of preformed Clostridium botulinum neurotoxin in foodstuff. Since the 19th century, the heat resistance of this spore forming bacteria has been extensively studied in order to guarantee the public health associated with low acidic, ambient stable products. The most largely used heat resistance parameters in thermal settings of such products are the D121.1°C values (time required to have a 10-fold decrease of the spore count, at 121.1°C) and the z-values (temperature increase to have a 10-fold decrease of D-values). To determine D121.1°C and z-values of proteolytic C. botulinum and its nontoxigenic surrogate strain C. sporogenes PA3679, a dataset of 911 D-values was collected from 38 scientific studies. Within a meta-analysis framework, a mixed-effect linear model was developed with the log D-value (min) as response and the heat treatment temperature as explicative variable. The studies (38), the C. botulinum strains (11), and the heat treatment media (liquid media and various food matrices, split into nine categories in total) were considered as co-variables having a random effect. The species (C. botulinum and C. sporogenes) and the pH (five categories) were considered as co-variables having a fixed effect. Overall, the model gave satisfactory results with a residual standard deviation of 0.22. The heat resistance of proteolytic C. botulinum was found significantly lower than the C. sporogenes PA 3679 one: the mean D-values at the reference temperature of 121.1°C, in liquid media and pH neutral, were estimated to 0.19 and 1.28min for C. botulinum and C. sporogenes, respectively. On the other hand, the mean z-values of the two species were similar: 11.3 and 11.1°C for C. botulinum and C. sporogenes, respectively. These results will be applied to thermal settings of low-acid ambient stable products. Copyright © 2014. Published by Elsevier B.V.

  15. Crystal structure of Clostridium botulinum whole hemagglutinin reveals a huge triskelion-shaped molecular complex.

    Science.gov (United States)

    Amatsu, Sho; Sugawara, Yo; Matsumura, Takuhiro; Kitadokoro, Kengo; Fujinaga, Yukako

    2013-12-06

    Clostridium botulinum HA is a component of the large botulinum neurotoxin complex and is critical for its oral toxicity. HA plays multiple roles in toxin penetration in the gastrointestinal tract, including protection from the digestive environment, binding to the intestinal mucosal surface, and disruption of the epithelial barrier. At least two properties of HA contribute to these roles: the sugar-binding activity and the barrier-disrupting activity that depends on E-cadherin binding of HA. HA consists of three different proteins, HA1, HA2, and HA3, whose structures have been partially solved and are made up mainly of β-strands. Here, we demonstrate structural and functional reconstitution of whole HA and present the complete structure of HA of serotype B determined by x-ray crystallography at 3.5 Å resolution. This structure reveals whole HA to be a huge triskelion-shaped molecule. Our results suggest that whole HA is functionally and structurally separable into two parts: HA1, involved in recognition of cell-surface carbohydrates, and HA2-HA3, involved in paracellular barrier disruption by E-cadherin binding.

  16. The European AntibotABE Framework Program and Its Update: Development of Innovative Botulinum Antibodies

    Directory of Open Access Journals (Sweden)

    Christine Rasetti-Escargueil

    2017-10-01

    Full Text Available The goal of the AntiBotABE Program was the development of recombinant antibodies that neutralize botulinum neurotoxins (BoNT A, B and E. These serotypes are lethal and responsible for most human botulinum cases. To improve therapeutic efficacy, the heavy and light chains (HC and LC of the three BoNT serotypes were targeted to achieve a synergistic effect (oligoclonal antibodies. For antibody isolation, macaques were immunized with the recombinant and non-toxic BoNT/A, B or E, HC or LC, followed by the generation of immune phage-display libraries. Antibodies were selected from these libraries against the holotoxin and further analyzed in in vitro and ex vivo assays. For each library, the best ex vivo neutralizing antibody fragments were germline-humanized and expressed as immunoglobulin G (IgGs. The IgGs were tested in vivo, in a standardized model of protection, and challenged with toxins obtained from collections of Clostridium strains. Protective antibody combinations against BoNT/A and BoNT/B were evidenced and for BoNT/E, the anti-LC antibody alone was found highly protective. The combination of these five antibodies as an oligoclonal antibody cocktail can be clinically and regulatorily developed while their high “humanness” predicts a high tolerance in humans.

  17. Botulinum A toxin utilizations in obstetric palsy

    Directory of Open Access Journals (Sweden)

    Atakan Aydin

    2012-12-01

    Conclusion: We conclude that with the help of botulinum A toxin and physyotherapy, obstetrical palsy patient with cocontractions can significantly improve movements and may have less surgery. [Hand Microsurg 2012; 1(3.000: 89-94

  18. Botulinum toxin for the treatment of strabismus.

    Science.gov (United States)

    Rowe, Fiona J; Noonan, Carmel P

    2017-03-02

    The use of botulinum toxin as an investigative and treatment modality for strabismus is well reported in the medical literature. However, it is unclear how effective it is in comparison to other treatment options for strabismus. The primary objective was to examine the efficacy of botulinum toxin therapy in the treatment of strabismus compared with alternative conservative or surgical treatment options. This review sought to ascertain those types of strabismus that particularly benefit from the use of botulinum toxin as a treatment option (such as small angle strabismus or strabismus with binocular potential, i.e. the potential to use both eyes together as a pair). The secondary objectives were to investigate the dose effect and complication rates associated with botulinum toxin. We searched CENTRAL (which contains the Cochrane Eyes and Vision Trials Register) (2016, Issue 6), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to July 2016), Embase (January 1980 to July 2016), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to July 2016), the ISRCTN registry (www.isrctn.com/editAdvancedSearch), ClinicalTrials.gov (www.clinicaltrials.gov), and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 11 July 2016. We handsearched the British and Irish Orthoptic Journal, Australian Orthoptic Journal, proceedings of the European Strabismological Association (ESA), International Strabismological Association (ISA) and International Orthoptic Association (IOA) (www.liv.ac.uk/orthoptics/research/search.htm) and American Academy of Paediatric Ophthalmology and Strabismus meetings (AAPOS). We contacted researchers who are active in this field for information about further

  19. Botulinum toxin for the treatment of bruxism.

    Science.gov (United States)

    Tinastepe, Neslihan; Küçük, Burcu Bal; Oral, Koray

    2015-10-01

    Botulinum toxin, the most potent biological toxin, has been shown to be effective for a variety of disorders in several medical conditions, when used both therapeutically and cosmetically. In recent years, there has been a rising trend in the use of this pharmacological agent to control bruxing activity, despite its reported adverse effects. The aim of this review was to provide a brief overview to clarify the underlying essential ideas for the use of botulinum toxin in bruxism based on available scientific papers. An electronic literature search was performed to identify publications related to botulinum toxin and its use for bruxism in PubMed. Hand searching of relevant articles was also made to identify additional studies. Of the eleven identified studies, only two were randomized controlled trials, compared with the effectiveness of botulinum toxins on the reduction in the frequency of bruxism events and myofascial pain after injection. The authors of these studies concluded that botulinum toxin could be used as an effective treatment for reducing nocturnal bruxism and myofascial pain in patients with bruxism. Evidence-based research was limited on this topic. More randomized controlled studies are needed to confirm that botulinum toxin is safe and reliable for routine clinical use in bruxism.

  20. Effect of electrical stimulation as an adjunct to botulinum toxin type A in the treatment of adult spasticity: a systematic review.

    Science.gov (United States)

    Intiso, Domenico; Santamato, Andrea; Di Rienzo, Filomena

    2017-10-01

    To investigate whether electrical stimulation (ES) as an adjunct to BTX-A boosts botulinum activity and whether the combined therapeutic procedure is more effective than BTX-A alone in reducing spasticity in adult subjects. A search was conducted in PubMed, EMBASE, Cochrane Central Register, and CINAHL from January 1966 to January 2016. Only randomized controlled studies (RCT) involving the combination of BTX-A and ES were considered. RCTs were excluded if BTX plus ES was investigated in animals or healthy subjects; certain techniques were used as an adjunct to BTX-A, but ES was not used; BTX-A or ES were compared but were not used in combination. ES was divided into neuromuscular stimulation (NMS), functional electrical stimulation (FES), and transcutaneous electrical nerve stimulation (TENS). Two authors independently screened all search results and reviewed study characteristics using the Physiotherapy Evidence Database (PEDro) scale. Fifteen RCTs were pinpointed and nine studies were included. Trials varied in methodological quality, size, and outcome measures used. ES was used in the form of NMS and FES in seven and two studies, respectively. No study investigating BTX-A plus TENS was found. BTX-A plus ES produced significant reduction in spasticity on the Ashworth Scale (AS) and on the modified AS in seven studies, but only four showed high quality on the PEDro scale. Significant reduction in compound muscular action potential (CMAP) amplitude was detected after BTX-A plus ES in two studies. ES as an adjunctive therapy to BTX-A may boost BTX-A action in reducing adult spasticity, but ES variability makes it difficult to recommend the combined therapy in clinical practice. Implications for rehabilitation Electrical stimulation (ES) as adjunct to botulinum toxin type A (BTX-A) injections may boost neurotoxin action in treating adult spasticity. Given the variability of ES characteristics and the paucity of high-quality trials, it is difficult to support

  1. High pressure thermal inactivation of Clostridium botulinum type E endospores – kinetic modeling and mechanistic insights

    Directory of Open Access Journals (Sweden)

    Christian Andreas Lenz

    2015-07-01

    Full Text Available Cold-tolerant, neurotoxigenic, endospore forming Clostridium (C. botulinum type E belongs to the non-proteolytic physiological C. botulinum group II, is primarily associated with aquatic environments, and presents a safety risk for seafood. High pressure thermal (HPT processing exploiting the synergistic effect of pressure and temperature can be used to inactivate bacterial endospores.We investigated the inactivation of C. botulinum type E spores by (near isothermal HPT treatments at 300 – 1200 MPa at 30 – 75 °C for 1 s – 10 min. The occurrence of heat and lysozyme susceptible spore fractions after such treatments was determined. The experimental data were modeled to obtain kinetic parameters and represented graphically by isoeffect lines. In contrast to findings for spores of other species and within the range of treatment parameters applied, zones of spore stabilization (lower inactivation than heat treatments alone, large heat susceptible (HPT-induced germinated or lysozyme-dependently germinable (damaged coat layer spore fractions were not detected. Inactivation followed 1st order kinetics. DPA release kinetics allowed for insights into possible inactivation mechanisms suggesting a (poorly effective physiologic-like (similar to nutrient-induced germination at ≤ 450 MPa/≤ 45 °C and non-physiological germination at >500 MPa/>60 – 70 °C.Results of this study support the existence of some commonalities in the HPT inactivation mechanism of C. botulinum type E spores and Bacillus spores although both organisms have significantly different HPT resistance properties. The information presented here contributes to closing the gap in knowledge regarding the HPT inactivation of spore formers relevant to food safety and may help industrial implementation of HPT processing. The markedly lower HPT resistance of C. botulinum type E spores than spores from other C. botulinum types, could allow for the implementation of milder processes without

  2. Fate of Clostridium botulinum and incidence of pathogenic clostridia in biogas processes.

    Science.gov (United States)

    Fröschle, B; Messelhäusser, U; Höller, C; Lebuhn, M

    2015-10-01

    This study aimed to assess the sanitary situation in agricultural biogas plants (BP) regarding pathogenic Clostridium spp. The incidence of Clostridium botulinum, Clostridium difficile, Clostridium novyi, Clostridium haemolyticum, Clostridium septicum and Clostridium chauvoei was investigated in 154 plant and animal substrates, digester sludges and digestates from full-scale BP using a method combining microbial enrichment with Real-Time PCR. The investigated clostridia were absent in the samples, except for Cl. novyi that was barely present (3·9%) and Cl. difficile that was more frequently detected (44·8%). Clostridium botulinum exposed to lab-scale digesters in sentinel chambers was reduced with D-values of 34·6 ± 11·2 days at 38°C and 1·0 ± 0·2 days at 55°C. These findings indicate minor relevance of clostridial pathogens in BP and an improved sanitary quality of the digestion product compared to untreated substrates concerning Cl. botulinum. However, the frequent detection of Cl. difficile opens questions on the durability of this organism in manure digestion lines. This is the first study providing data on the reduction of Cl. botulinum during biogas processes that scientifically invalidate contrary claims by some media in the public. Furthermore, the results improve the fragmentary knowledge on the prevalence of several clostridial pathogens in agricultural biogas production. © 2015 The Society for Applied Microbiology.

  3. Use of Botulinum Toxin A in the Treatment of Lower Urinary Tract Disorders: A Review of the Literature

    Directory of Open Access Journals (Sweden)

    David C. Moore

    2016-03-01

    Full Text Available Botulinum neurotoxin (BoNT is used to treat a variety of ailments, and its therapeutic application in lower urinary tract disorders (LUTDs is well studied. Robust evidence supporting the efficacy and tolerability of BoNT in the treatment of neurogenic detrusor overactivity (NDO and non-neurogenic overactive bladder (OAB has led to regulatory approval for these conditions. Use of BoNT in the treatment of interstitial cystitis/bladder pain syndrome, chronic pelvic pain, and detrusor sphincter dyssynergia has demonstrated some promise, but is still evolving and off-label for these indications. Trials to date do not support the use of BoNT for benign prostatic hyperplasia. This comprehensive review outlines the mechanisms of BoNT in the treatment of LUTDs in adults and presents background and updated data examining the efficacy and adverse events associated with the use of BoNT in common urologic applications.

  4. Use of Botulinum Toxin A in the Treatment of Lower Urinary Tract Disorders: A Review of the Literature

    Science.gov (United States)

    Moore, David C.; Cohn, Joshua A.; Dmochowski, Roger R.

    2016-01-01

    Botulinum neurotoxin (BoNT) is used to treat a variety of ailments, and its therapeutic application in lower urinary tract disorders (LUTDs) is well studied. Robust evidence supporting the efficacy and tolerability of BoNT in the treatment of neurogenic detrusor overactivity (NDO) and non-neurogenic overactive bladder (OAB) has led to regulatory approval for these conditions. Use of BoNT in the treatment of interstitial cystitis/bladder pain syndrome, chronic pelvic pain, and detrusor sphincter dyssynergia has demonstrated some promise, but is still evolving and off-label for these indications. Trials to date do not support the use of BoNT for benign prostatic hyperplasia. This comprehensive review outlines the mechanisms of BoNT in the treatment of LUTDs in adults and presents background and updated data examining the efficacy and adverse events associated with the use of BoNT in common urologic applications. PMID:27023601

  5. [Botulinum toxin therapy for spasticity].

    Science.gov (United States)

    Masakado, Yoshihisa

    2014-09-01

    Botulinum toxin (BTX) administered as an adjunct to other interventions for spasticity can act as a useful and effective therapeutic tool for treating patients disabled by spasticity. Presence of other non-reflex motor disorders (muscle stiffness, shortness, and contracture) can complicate the clinical course and disturb rehabilitative process of patients with spasticity. Treatment of spasticity using BTX can improve paralysis by correcting muscular imbalance that follows these diseases. In patients with chronic severe spasticity, we also have to address unique and difficult-to-treat clinical conditions such as abnormal posture and movement disorders. The effectiveness of BTX in treating some of these conditions is discussed. Because patients with neurological disabilities can show complex dysfunctions, specific functional limitations, goals, and expected outcomes of treatment should be evaluated and discussed with the patient, family members, and caregivers, prior to initiating BTX therapy. BTX therapy might improve not only care, passive function, but also motor functions in these patients by supplementing intensive rehabilitation with repetitive transcranial magnetic stimulation, transcranial direct-current stimulation, peripheral electrical stimulation, muscle stretching, and other rehabilitation strategies.

  6. Structure elucidation of two neurotoxins from Albizia tanganyicensis

    International Nuclear Information System (INIS)

    Steyn, P.S.; Vleggaar, R.

    1987-01-01

    The structures of two neurotoxins isolated from Albizia tanganyicensis were determined by application of 1 H and 13 C n.m.r. spectroscopy as 3-hydroxy-5-hydroxymethyl-4-methoxymethyl-2-methylpyridine and the 5-acetoxymethyl derivative respectively

  7. [Bacterial ecology and resistance to antibiotics in patients with neurogenic overactive bladder treated with intravesical botulinum toxin injections].

    Science.gov (United States)

    Levy, J; Le Breton, F; Jousse, M; Haddad, R; Verollet, D; Guinet-Lacoste, A; Amarenco, G

    2014-10-01

    For the last ten years, botulinum neurotoxin type A has become the gold standard for the treatment of neurogenic overactive detrusor. Bacterial colonization is common for these patients using clean intermittent self-catheterization, and toxin injections are at risk of urinary tract infections. The aim of our study was to determine the prevalence of different germs and their resistance to antibiotics in patients with neurogenic bladder, treated with intravesical botulinum toxin injections. This epidemiologic study took place from September to October 2012 in a urodynamic and neurourology unit in a teaching hospital in Paris, France. Eighty patients with a valid urine culture according to our protocol, were included. Fourty-four culture were positive with 45 bacteria. We found an Escherichia coli in 42.5%, a Klebsiella pneumoniae in 7.5%, a Citrobacter freundii and an enterococcus in 2.5%, and a Staphylococcus aureus in 1.25%. Penicillin resistance were found in 51.11%, 3rd generation cephalosporins in 8.89%, quinolones in 28.89% and sulfamids in 24.44%. None were resistant to fosfomycin. E. coli was the most frequent bacterium. No resistance to fosfomycin was found. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. Botulinum Toxin in Neurogenic Detrusor Overactivity

    Directory of Open Access Journals (Sweden)

    Carlos Arturo Levi D'Ancona

    2012-09-01

    Full Text Available Purpose To evaluate the effects of botulinum toxin on urodynamic parameters and quality of life in patients with neurogenic detrusor overactivity. Methods Thirty four adult patients with spinal cord injury and detrusor overactivity were selected. The patients received 300 units of botulinum toxin type A. The endpoints evaluated with the episodes of urinary incontinence and measured the maximum cystometric capacity, maximum amplitude of detrusor pressure and bladder compliance at the beginning and end of the study (24 weeks and evaluated the quality of life by applying the Qualiveen questionnaire. Results A significant decrease in the episodes of urinary incontinence was observed. All urodynamic parameters presented a significant improvement. The same was observed in the quality of life index and the specific impact of urinary problems scores from the Qualiveen questionnaire. Six patients did not complete the study, two due to incomplete follow-up, and four violated protocol and were excluded from the analyses. No systemic adverse events of botulinum toxin type A were reported. Conclusions A botulinum toxin type A showed a significantly improved response in urodynamics parameters and specific and general quality of life.

  9. Surgery and botulinum toxin in congenital esotropia.

    Science.gov (United States)

    Ruiz, Miguel F; Alvarez, María T; Sánchez-Garrido, Carmen M; Hernáez, José M; Rodríguez, José M

    2004-10-01

    In a previous study we investigated the advantages and drawbacks of early and delayed injection of botulinum toxin as primary treatment of infantile esotropia with nystagmus in abduction (IENA). We carried out a further study to investigate the role and efficacy of surgery in this condition and to determine the possible effect of previous injection of both medial recti with botulinum toxin in patients requiring a final horizontal surgical correction. Review of the records of 44 patients (24 girls and 20 boys) with IENA seen between 1979 and 1998 who had undergone at least one horizontal surgical procedure. The outcomes in the 16 patients who had previously received botulinum toxin were compared with those in the 28 patients for whom surgery was the primary treatment. There was a negative correlation between the pretreatment esotropic angle and age (Pearson's r = -0.45, p IENA with delayed diagnosis and in cases associated with unsteadiness of binocular vision or with nonhorizontal deviations. Initial treatment with botulinum toxin, injected into both medial recti, is effective, reducing the amount of further horizontal surgery and favouring postoperative stability, except in children under 18 months, in whom injection of 5 units induces unbalanced dissociated vertical deviation.

  10. Environmental factors influencing the prevalence of a Clostridium botulinum type C/D mosaic strain in nonpermanent Mediterranean wetlands.

    Science.gov (United States)

    Vidal, Dolors; Anza, Ibone; Taggart, Mark A; Pérez-Ramírez, Elisa; Crespo, Elena; Hofle, Ursula; Mateo, Rafael

    2013-07-01

    Between 1978 and 2008, 13 avian botulism outbreaks were recorded in the wetlands of Mancha Húmeda (central Spain). These outbreaks caused the deaths of around 20,000 birds from over 50 species, including globally endangered white-headed ducks (Oxyura leucoceophala). Here, a significant association was found between the number of dead birds recorded in each botulism outbreak and the mean temperature in July (always >26°C). The presence of Clostridium botulinum type C/D in wetland sediments was detected by real-time PCR (quantitative PCR [qPCR]) in 5.8% of 207 samples collected between 2005 and 2008. Low concentrations of Cl(-) and high organic matter content in sediments were significantly associated with the presence of C. botulinum. Seventy-five digestive tracts of birds found dead during botulism outbreaks were analyzed; C. botulinum was present in 38.7% of them. The prevalence of C. botulinum was 18.2% (n = 22 pools) in aquatic invertebrates (Chironomidae and Corixidae families) and 33.3% (n = 18 pools) in necrophagous invertebrates (Sarcophagidae and Calliphoridae families), including two pools of adult necrophagous flies collected around bird carcasses. The presence of the bacteria in the adult fly form opens up new perspectives in the epidemiology of avian botulism, since these flies may be transporting C. botulinum from one carcass to another.

  11. Botulinum Toxin Type A as a Therapeutic Agent against Headache and Related Disorders

    Directory of Open Access Journals (Sweden)

    Siro Luvisetto

    2015-09-01

    Full Text Available Botulinum neurotoxin A (BoNT/A is a toxin produced by the naturally-occurring Clostridium botulinum that causes botulism. The potential of BoNT/A as a useful medical intervention was discovered by scientists developing a vaccine to protect against botulism. They found that, when injected into a muscle, BoNT/A causes a flaccid paralysis. Following this discovery, BoNT/A has been used for many years in the treatment of conditions of pathological muscle hyperactivity, like dystonias and spasticities. In parallel, the toxin has become a “glamour” drug due to its power to ward off facial wrinkles, particularly frontal, due to the activity of the mimic muscles. After the discovery that the drug also appeared to have a preventive effect on headache, scientists spent many efforts to study the potentially-therapeutic action of BoNT/A against pain. BoNT/A is effective at reducing pain in a number of disease states, including cervical dystonia, neuropathic pain, lower back pain, spasticity, myofascial pain and bladder pain. In 2010, regulatory approval for the treatment of chronic migraine with BoNT/A was given, notwithstanding the fact that the mechanism of action is still not completely elucidated. In the present review, we summarize experimental evidence that may help to clarify the mechanisms of action of BoNT/A in relation to the alleviation of headache pain, with particular emphasis on preclinical studies, both in animals and humans. Moreover, we summarize the latest clinical trials that show evidence on headache conditions that may obtain benefits from therapy with BoNT/A.

  12. Structure, Function and Evolution of Clostridium botulinum C2 and C3 Toxins: Insight to Poultry and Veterinary Vaccines.

    Science.gov (United States)

    Chellapandi, Paulchamy; Prisilla, Arokiyasamy

    2017-01-01

    Clostridium botulinum group III strains are able to produce cytotoxins, C2 toxin and C3 exotoxin, along with botulinum neurotoxin types C and D. C2 toxin and C3 exotoxin produced by this organism are the most important members of bacterial ADP-ribosyltransferase superfamily. Both toxins have distinct pathophysiological functions in the avian and mammalian hosts. The members of this superfamily transfer an ADP-ribose moiety of NAD+ to specific eukaryotic target proteins. The present review describes the structure, function and evolution aspects of these toxins with a special emphasis to the development of veterinary vaccines. C2 toxin is a binary toxin that consists of a catalytic subunit (C2I) and a translocation subunit (C2II). C2I component is structurally and functionally similar to the VIP2 and iota A toxin whereas C2II component shows a significant homology with the protective antigen from anthrax toxin and iota B. Unlike C2 toxin, C3 toxin is devoid of translocation/binding subunit. Extensive studies on their sequence-structure-function link spawn additional efforts to understand the catalytic mechanisms and target recognition. Structural and functional relationships with them are often determined by using evolutionary constraints as valuable biological measures. Enzyme-deficient mutants derived from these toxins have been used as drug/protein delivery systems in eukaryotic cells. Thus, current knowledge on their molecular diversity is a well-known perspective to design immunotoxin or subunit vaccine for C. botulinum infection. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Plasmidome interchange between Clostridium botulinum, Clostridium novyi and Clostridium haemolyticum converts strains of independent lineages into distinctly different pathogens.

    Science.gov (United States)

    Skarin, Hanna; Segerman, Bo

    2014-01-01

    Clostridium botulinum (group III), Clostridium novyi and Clostridium haemolyticum are well-known pathogens causing animal botulism, gas gangrene/black disease, and bacillary hemoglobinuria, respectively. A close genetic relationship exists between the species, which has resulted in the collective term C. novyi sensu lato. The pathogenic traits in these species, e.g., the botulinum neurotoxin and the novyi alpha toxin, are mainly linked to a large plasmidome consisting of plasmids and circular prophages. The plasmidome of C. novyi sensu lato has so far been poorly characterized. In this study we explored the genomic relationship of a wide range of strains of C. novyi sensu lato with a special focus on the dynamics of the plasmidome. Twenty-four genomes were sequenced from strains selected to represent as much as possible the genetic diversity in C. novyi sensu lato. Sixty-one plasmids were identified in these genomes and 28 of them were completed. The genomic comparisons revealed four separate lineages, which did not strictly correlate with the species designations. The plasmids were categorized into 13 different plasmid groups on the basis of their similarity and conservation of plasmid replication or partitioning genes. The plasmid groups, lineages and species were to a large extent entwined because plasmids and toxin genes had moved across the lineage boundaries. This dynamic process appears to be primarily driven by phages. We here present a comprehensive characterization of the complex species group C. novyi sensu lato, explaining the intermixed genetic properties. This study also provides examples how the reorganization of the botulinum toxin and the novyi alpha toxin genes within the plasmidome has affected the pathogenesis of the strains.

  14. Mastoparan-7 rescues botulinum toxin-A poisoned neurons in a mouse spinal cord cell culture model.

    Science.gov (United States)

    Zhang, Peng; Ray, Radharaman; Singh, Bal Ram; Ray, Prabhati

    2013-12-15

    Botulinum neurotoxin serotype A (BoNT/A) is the most potent poison of biological origin known to mankind. The toxicity of BoNT/A is due to the inhibition of neurotransmission at cholinergic synapses; this is responsible for the symptom of flaccid paralysis at peripheral neuromuscular junctions. At a molecular level, the BoNT/A effect is due to its inhibition of stimulated acetylcholine (ACh) release from presynaptic nerve terminals. Currently, there is no antidote available to rescue BoNT/A-poisoned synapses. Here, we report an example of rescuing botulinum-poisoned cultured mouse spinal cord neurons by treatment with Mastoparan-7 (Mas-7), which is known to be a phospholipase A2 activator compound. Mas-7, a naturally occurring bee venom peptide, was delivered to botulinum-poisoned neurons via a drug delivery vehicle (DDV) construct prepared using the recombinant non-toxic heavy chain (HC) fragment of BoNT/A itself. In this method, the BoNT/A HC component in the DDV served as a neuron specific drug targeting molecule. We found that Mas-7 delivered into BoNT/A intoxicated spinal cord cells restored over 40% their property of stimulated neurotransmitter release. Rescue from cell poisoning did not occur from inhibition of the endopeptidase activity of BoNT/A light chain (LC) against its well-known substrate, SNAP-25 that is mechanistically involved in the cholinergic neuroexocytosis process. Rather, Mas-7 induced a physiological host response apparently unrelated to SNAP-25, but linked to the phospholipase-mediated signal transduction pathway. Published by Elsevier Ltd.

  15. Plasmidome interchange between Clostridium botulinum, Clostridium novyi and Clostridium haemolyticum converts strains of independent lineages into distinctly different pathogens.

    Directory of Open Access Journals (Sweden)

    Hanna Skarin

    Full Text Available Clostridium botulinum (group III, Clostridium novyi and Clostridium haemolyticum are well-known pathogens causing animal botulism, gas gangrene/black disease, and bacillary hemoglobinuria, respectively. A close genetic relationship exists between the species, which has resulted in the collective term C. novyi sensu lato. The pathogenic traits in these species, e.g., the botulinum neurotoxin and the novyi alpha toxin, are mainly linked to a large plasmidome consisting of plasmids and circular prophages. The plasmidome of C. novyi sensu lato has so far been poorly characterized. In this study we explored the genomic relationship of a wide range of strains of C. novyi sensu lato with a special focus on the dynamics of the plasmidome. Twenty-four genomes were sequenced from strains selected to represent as much as possible the genetic diversity in C. novyi sensu lato. Sixty-one plasmids were identified in these genomes and 28 of them were completed. The genomic comparisons revealed four separate lineages, which did not strictly correlate with the species designations. The plasmids were categorized into 13 different plasmid groups on the basis of their similarity and conservation of plasmid replication or partitioning genes. The plasmid groups, lineages and species were to a large extent entwined because plasmids and toxin genes had moved across the lineage boundaries. This dynamic process appears to be primarily driven by phages. We here present a comprehensive characterization of the complex species group C. novyi sensu lato, explaining the intermixed genetic properties. This study also provides examples how the reorganization of the botulinum toxin and the novyi alpha toxin genes within the plasmidome has affected the pathogenesis of the strains.

  16. Beneficial effects of botulinum toxin type A in trigeminal neuralgia

    OpenAIRE

    Zúñiga,Carlos; Díaz,Sergio; Piedimonte,Fabián; Micheli,Federico

    2008-01-01

    Botulinum toxin has been thoroughly studied as a potential tool in the treatment of several pain syndromes. Therefore, we assessed the clinical effects of botulinum toxin type A injections in 12 patients with otherwise unresponsive idiopathic trigeminal neuralgia. Patients were infiltrated with 20-50 units of botulinum toxin in trigger zones. Those who presented with mandibular involvement were also infiltrated in the masseter muscle. The patients were assessed on a weekly basis using the Vis...

  17. Effect of Fill Temperature on Clostridium botulinum Type A Toxin Activity during the Hot Filling of Juice Bottles.

    Science.gov (United States)

    Skinner, Guy E; Fleischman, Gregory J; Balster, Fran; Reineke, Karl; Reddy, N Rukma; Larkin, John W

    2015-08-01

    The potential threat of terrorist attacks against the United States food supply using neurotoxin produced by Clostridium botulinum (BoNT) has resulted in the need for studying the effect of various food process operations on the bioavailability of this toxin. The objective of this study was to evaluate C. botulinum type A neurotoxin bioavailability after a simulated hot fill juice bottling operation. C. botulinum type A acid mud toxin (∼10(6) mouse lethal dose [MLD50]/ml) was deposited into juice bottles at an experimentally determined fastest cooling spot. Bottles (12 or 20 oz [355 and 592 ml]) were filled with either apple juice or an orange drink, at 80 or 85°C, in either upright or inverted orientations. Toxicity of the juice was evaluated as a function of holding time (1 to 2 min) by the mouse bioassay. The fastest cooling point in the upright orientation was determined to be at a bottle's bottom rim. In the inverted orientation, the fastest cooling point was in the bottle cap region. With respect to these two points, the upright bottle cooled faster than the inverted bottle, which was reflected in a higher inactivation of BoNT in the latter. For the orange drink (pH 2.9) toxicity was reduced by 0.5 × 10(6) MLD50/ml to a nondetectable level after 1 min in all bottle sizes, orientations, and temperatures as measured by the mouse bioassay. This indicates that there was at least a 0.5 × 10(6) MLD50/ml reduction in activity. Inactivation in apple juice (pH 4.0), to the same degree as in the orange drink, was found only for the inverted orientation at 85°C. Complete inactivation in apple juice for all conditions was found at a lower added toxin level of 0.25 × 10(5) MLD50/ml. In general, bottle inversion and filling at 85°C provided complete inactivation of BoNT to the 0.5 × 10(6) MLD50/ml level. All experiments resulted in the inactivation of 2.5 × 10(4) MLD50/ml of BoNT regardless of juice type, fill temperature, or bottle orientation and size.

  18. Identification and characterization of Clostridium botulinum group III field strains by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS).

    Science.gov (United States)

    Bano, Luca; Drigo, Ilenia; Tonon, Elena; Pascoletti, Simone; Puiatti, Cinzia; Anniballi, Fabrizio; Auricchio, Bruna; Lista, Florigio; Montecucco, Cesare; Agnoletti, Fabrizio

    2017-12-01

    Animal botulism is primarily due to botulinum neurotoxin (BoNT) types C, D or their chimeric variants C/D or D/C, produced by Clostridium botulinum group III, which appears to include the genetically indistinguishable Clostridium haemolyticum and Clostridium novyi. In the present study, we used matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI TOF MS) to identify and characterize 81 BoNT-producing Clostridia isolated in 47 episodes of animal botulism. The instrument's default database, containing no entries for Clostridium botulinum, permitted reliable identification of 26 strains at the genus level. Although supplementation of the database with reference strains enhanced the instrument's ability to identify the neurotoxic strains at the genus level, resolution was not sufficient to recognize field strains at species level. Characterization by MALDI TOF confirmed the well-documented phenotypic and genetic differences between Clostridium botulinum strains of serotypes normally implicated in human botulism (A, B, E, F) and other Clostridium species able to produce BoNTs type C and D. The chimeric and non-chimeric field strains grouped separately. In particular, very low similarity was found between two non-chimeric type C field strains isolated in the same outbreak and the other field strains. This difference was comparable with the differences among the various Clostridia species included in the study. Characterization by MALDI TOF confirmed that BoNT-producing Clostridia isolated from animals are closely related and indistinguishable at the species level from Clostridium haemolyticum and Clostridium novyi reference strains. On the contrary, there seem to be substantial differences among chimeric and some non-chimeric type C strains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A Bioanalytical Platform for Simultaneous Detection and Quantification of Biological Toxins

    Directory of Open Access Journals (Sweden)

    Hans Sigrist

    2012-02-01

    Full Text Available Prevalent incidents support the notion that toxins, produced by bacteria, fungi, plants or animals are increasingly responsible for food poisoning or intoxication. Owing to their high toxicity some toxins are also regarded as potential biological warfare agents. Accordingly, control, detection and neutralization of toxic substances are a considerable economic burden to food safety, health care and military biodefense. The present contribution describes a new versatile instrument and related procedures for array-based simultaneous detection of bacterial and plant toxins using a bioanalytical platform which combines the specificity of covalently immobilized capture probes with a dedicated instrumentation and immuno-based microarray analytics. The bioanalytical platform consists of a microstructured polymer slide serving both as support of printed arrays and as incubation chamber. The platform further includes an easy-to-operate instrument for simultaneous slide processing at selectable assay temperature. Cy5 coupled streptavidin is used as unifying fluorescent tracer. Fluorescence image analysis and signal quantitation allow determination of the toxin’s identity and concentration. The system’s performance has been investigated by immunological detection of Botulinum Neurotoxin type A (BoNT/A, Staphylococcal enterotoxin B (SEB, and the plant toxin ricin. Toxins were detectable at levels as low as 0.5–1 ng·mL−1 in buffer or in raw milk.

  20. A bioanalytical platform for simultaneous detection and quantification of biological toxins.

    Science.gov (United States)

    Weingart, Oliver G; Gao, Hui; Crevoisier, François; Heitger, Friedrich; Avondet, Marc-André; Sigrist, Hans

    2012-01-01

    Prevalent incidents support the notion that toxins, produced by bacteria, fungi, plants or animals are increasingly responsible for food poisoning or intoxication. Owing to their high toxicity some toxins are also regarded as potential biological warfare agents. Accordingly, control, detection and neutralization of toxic substances are a considerable economic burden to food safety, health care and military biodefense. The present contribution describes a new versatile instrument and related procedures for array-based simultaneous detection of bacterial and plant toxins using a bioanalytical platform which combines the specificity of covalently immobilized capture probes with a dedicated instrumentation and immuno-based microarray analytics. The bioanalytical platform consists of a microstructured polymer slide serving both as support of printed arrays and as incubation chamber. The platform further includes an easy-to-operate instrument for simultaneous slide processing at selectable assay temperature. Cy5 coupled streptavidin is used as unifying fluorescent tracer. Fluorescence image analysis and signal quantitation allow determination of the toxin's identity and concentration. The system's performance has been investigated by immunological detection of Botulinum Neurotoxin type A (BoNT/A), Staphylococcal enterotoxin B (SEB), and the plant toxin ricin. Toxins were detectable at levels as low as 0.5-1 ng · mL(-1) in buffer or in raw milk.

  1. New Typical Vector of Neurotoxin β-N-Methylamino-l-Alanine (BMAA in the Marine Benthic Ecosystem

    Directory of Open Access Journals (Sweden)

    Aifeng Li

    2016-11-01

    Full Text Available The neurotoxin β-N-methylamino-l-alanine (BMAA has been identified as an environmental factor triggering neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS and Alzheimer’s disease (AD. We investigated the possible vectors of BMAA and its isomers 2,4-diaminobutyric acid (DAB and N-2(aminoethylglycine (AEG in marine mollusks collected from the Chinese coast. Sixty-eight samples of marine mollusks were collected along the Chinese coast in 2016, and were analyzed by an HILIC-MS/MS (hydrophilic interaction liquid chromatography with tandem quadrupole mass spectrometer method without derivatization. BMAA was detected in a total of five samples from three species: Neverita didyma, Solen strictus, and Mytilus coruscus. The top three concentrations of free-form BMAA (0.99~3.97 μg·g−1 wet weight were detected in N. didyma. DAB was universally detected in most of the mollusk samples (53/68 with no species-specific or regional differences (0.051~2.65 μg·g−1 wet weight. No AEG was detected in any mollusk samples tested here. The results indicate that the gastropod N. didyma might be an important vector of the neurotoxin BMAA in the Chinese marine ecosystem. The neurotoxin DAB was universally present in marine bivalve and gastropod mollusks. Since N. didyma is consumed by humans, we suggest that the origin and risk of BMAA and DAB toxins in the marine ecosystem should be further investigated in the future.

  2. New Typical Vector of Neurotoxin β-N-Methylamino-l-Alanine (BMAA) in the Marine Benthic Ecosystem.

    Science.gov (United States)

    Li, Aifeng; Song, Jialiang; Hu, Yang; Deng, Longji; Ding, Ling; Li, Meihui

    2016-11-04

    The neurotoxin β- N -methylamino-l-alanine (BMAA) has been identified as an environmental factor triggering neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS) and Alzheimer's disease (AD). We investigated the possible vectors of BMAA and its isomers 2,4-diaminobutyric acid (DAB) and N -2(aminoethyl)glycine (AEG) in marine mollusks collected from the Chinese coast. Sixty-eight samples of marine mollusks were collected along the Chinese coast in 2016, and were analyzed by an HILIC-MS/MS (hydrophilic interaction liquid chromatography with tandem quadrupole mass spectrometer) method without derivatization. BMAA was detected in a total of five samples from three species: Neverita didyma , Solen strictus , and Mytilus coruscus . The top three concentrations of free-form BMAA (0.99~3.97 μg·g -1 wet weight) were detected in N. didyma . DAB was universally detected in most of the mollusk samples (53/68) with no species-specific or regional differences (0.051~2.65 μg·g -1 wet weight). No AEG was detected in any mollusk samples tested here. The results indicate that the gastropod N. didyma might be an important vector of the neurotoxin BMAA in the Chinese marine ecosystem. The neurotoxin DAB was universally present in marine bivalve and gastropod mollusks. Since N. didyma is consumed by humans, we suggest that the origin and risk of BMAA and DAB toxins in the marine ecosystem should be further investigated in the future.

  3. Climatic regulation of the neurotoxin domoic acid

    Science.gov (United States)

    Morgaine McKibben, S.; Peterson, William; Wood, A. Michelle; Trainer, Vera L.; Hunter, Matthew; White, Angelicque E.

    2017-01-01

    Domoic acid is a potent neurotoxin produced by certain marine microalgae that can accumulate in the foodweb, posing a health threat to human seafood consumers and wildlife in coastal regions worldwide. Evidence of climatic regulation of domoic acid in shellfish over the past 20 y in the Northern California Current regime is shown. The timing of elevated domoic acid is strongly related to warm phases of the Pacific Decadal Oscillation and the Oceanic Niño Index, an indicator of El Niño events. Ocean conditions in the northeast Pacific that are associated with warm phases of these indices, including changes in prevailing currents and advection of anomalously warm water masses onto the continental shelf, are hypothesized to contribute to increases in this toxin. We present an applied domoic acid risk assessment model for the US West Coast based on combined climatic and local variables. Evidence of regional- to basin-scale controls on domoic acid has not previously been presented. Our findings have implications in coastal zones worldwide that are affected by this toxin and are particularly relevant given the increased frequency of anomalously warm ocean conditions.

  4. Binding assays for the quantitative detection of P. brevis polyether neurotoxins in biological samples and antibodies as therapeutic aids for polyether marine intoxication. Annual report, 1 December 1987-30 November 1988

    Energy Technology Data Exchange (ETDEWEB)

    Baden, D.G.

    1988-12-15

    The polyether lipid-soluble toxins isolated from the marine dinoflagellate Ptychodiscus brevis (formerly Gymnodinium breve) can be detected using two separate types of specific binding reaction. Using tritiated PbTx-3 as a specific probe for binding to voltage-dependent sodium channels in rat brain synaptosomes or to specific polyclonal antibodies, binding equilibria and displacement by unlabeled brevetoxins were compared. Labeled toxin can be displaced in a competitive manner by any of the other 5 naturally-occurring toxins; the quantitative displacement ability of each appears to reflect individual potency in fish bioassay. A comparison of ED50 in Radioimmunoassay and ED50 in synaptosome binding assay indicates that the former assay is useful for detection of toxins which possess the structural backbone of PbTx-3, the immunizing hapten. Thus, the two assays have quantitative applicability; the sodium channel with respect to potency and the antibodies with respect to structure. Microtiter plate assays utilizing each specific brevetoxin binding component and enzyme-linked toxin hapten have been successful and indicate a general applicability of colorimetric prototypes. There, is however, considerable manipulation required to decrease non-specific binding of the hydrophobic toxin-enzyme complex to the plates. Preliminary studies aimed at producing monoclonal antibodies have been explored using brevetoxins linked to keyhole limpet hemocyanin.

  5. An Open Study of Botulinum-A Toxin Treatment of Idiopathic Trigeminal Neuralgia

    Directory of Open Access Journals (Sweden)

    Karim Nikkhah

    2015-07-01

    Full Text Available Introduction: Trigeminal Neuralgia (TN is a unilateral, recurrent, sharp facial pain disorder that is limited to the distribution of divisions of the trigeminal nerve. The aim of this study was to evaluate the efficacy of Botulinum neurotoxin type A (BTX-A for alleviating the frequency and severity of TN pain. Materials and Methods: This trial was performed as a before and after study. We treated 31 patients (15 male and 16 female with mean age of 52 year old that their diagnosis was made at least 4.5 years before. We injected BTX-A in various parts of face and particularly in the origin of mandibular and maxillary branches of trigeminal nerve. Injection volume was determined by the necessity and pain intensity measured with visual analog scale up to 100U. Patients were evaluated before and after the injection and were followed after week, and each month, for a three months period. Other related variables were recorded such as: toxin complications, pain status variations by brushing, chewing, cold weather and patient’s satisfaction with their therapy. Results: showed that after injection, pain intensity and frequency decreased after tooth brushing, chewing and cold weather (P

  6. 9 CFR 113.110 - Clostridium Botulinum Type C Bacterin-Toxoid.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Clostridium Botulinum Type C Bacterin... REQUIREMENTS Inactivated Bacterial Products § 113.110 Clostridium Botulinum Type C Bacterin-Toxoid. Clostridium Botulinum Type C Bacterin-Toxoid shall be produced from a culture of Clostridium botulinum Type C which has...

  7. A novel neurotoxin from venom of the spider, Brachypelma albopilosum.

    Science.gov (United States)

    Zhong, Yunhua; Song, Bo; Mo, Guoxiang; Yuan, Mingwei; Li, Hongli; Wang, Ping; Yuan, Minglong; Lu, Qiumin

    2014-01-01

    Spiders have evolved highly selective toxins for insects. There are many insecticidal neurotoxins in spider venoms. Although a large amount of work has been done to focus on neurotoxicity of spider components, little information, which is related with effects of spider toxins on tumor cell proliferation and cytotoxicity, is available for Brachypelma albopilosum venom. In this work, a novel spider neurotoxin (brachyin) was identified and characterized from venoms of the spider, Brachypelma albopilosum. Brachyin is composed of 41 amino acid residues with the sequence of CLGENVPCDKDRPNCCSRYECLEPTGYGWWYASYYCYKKRS. There are six cysteines in this sequence, which form three disulfided bridges. The serine residue at the C-terminus is amidated. Brachyin showed strong lethal effects on American cockroaches (Periplaneta americana) and Tenebrio molitor (common mealbeetle). This neurotoxin also showed significant analgesic effects in mice models including abdominal writhing induced by acetic acid and formalin-induced paw licking tests. It was interesting that brachyin exerted marked inhibition on tumor cell proliferation.

  8. A novel neurotoxin from venom of the spider, Brachypelma albopilosum.

    Directory of Open Access Journals (Sweden)

    Yunhua Zhong

    Full Text Available Spiders have evolved highly selective toxins for insects. There are many insecticidal neurotoxins in spider venoms. Although a large amount of work has been done to focus on neurotoxicity of spider components, little information, which is related with effects of spider toxins on tumor cell proliferation and cytotoxicity, is available for Brachypelma albopilosum venom. In this work, a novel spider neurotoxin (brachyin was identified and characterized from venoms of the spider, Brachypelma albopilosum. Brachyin is composed of 41 amino acid residues with the sequence of CLGENVPCDKDRPNCCSRYECLEPTGYGWWYASYYCYKKRS. There are six cysteines in this sequence, which form three disulfided bridges. The serine residue at the C-terminus is amidated. Brachyin showed strong lethal effects on American cockroaches (Periplaneta americana and Tenebrio molitor (common mealbeetle. This neurotoxin also showed significant analgesic effects in mice models including abdominal writhing induced by acetic acid and formalin-induced paw licking tests. It was interesting that brachyin exerted marked inhibition on tumor cell proliferation.

  9. Attempts to identify Clostridium botulinum toxin in milk from three experimentally intoxicated Holstein cows

    Science.gov (United States)

    Moeller, R.B.; Puschner, B.; Walker, R.L.; Rocke, T.E.; Smith, S.R.; Cullor, J.S.; Ardans, A.A.

    2009-01-01

    Three adult lactating Holstein cows were injected in the subcutaneous abdominal vein with 175 ng/kg of body weight of Clostridium botulinum type C toxin (451 cow median toxic doses) to determine if this botulinum toxin crosses the blood–milk barrier. Whole blood (in sodium heparin) and clotted blood serum samples were taken at 0 min, 10 min, and 3, 6, 9, and 12 h postinoculation. Milk samples were taken at 0 min and at 3, 6, 9 and 12 h postinoculation. All samples were tested for the presence of the toxin using the mouse bioassay and immunostick ELISA test. The immunostick ELISA identified the toxin in whole blood and the mouse bioassay identified the toxin in serum at all times examined in all 3 animals. Toxin was not identified by either detection method in milk samples collected from the 3 animals. From these results, it appears that Clostridium botulinum type C toxin does not cross from the blood to the milk in detectable concentrations.

  10. Investigation of Clostridium botulinum group III's mobilome content

    NARCIS (Netherlands)

    Woudstra, Cédric; Maréchal, Le Caroline; Souillard, Rozenn; Anniballi, Fabrizio; Auricchio, Bruna; Bano, Luca; Bayon-Auboyer, Marie Hélène; Koene, Miriam; Mermoud, Isabelle; Brito, Roseane B.; Lobato, Francisco C.F.; Silva, Rodrigo O.S.; Dorner, Martin B.; Fach, Patrick

    2018-01-01

    Clostridium botulinum group III is mainly responsible for botulism in animals. It could lead to high animal mortality rates and, therefore, represents a major environmental and economic concern. Strains of this group harbor the botulinum toxin locus on an unstable bacteriophage. Since the release of

  11. Quantitative Mass Spectrometry for Bacterial Protein Toxins — A Sensitive, Specific, High-Throughput Tool for Detection and Diagnosis

    Directory of Open Access Journals (Sweden)

    Suzanne Kalb

    2011-03-01

    Full Text Available Matrix-assisted laser-desorption time-of-flight (MALDI-TOF mass spectrometry (MS is a valuable high-throughput tool for peptide analysis. Liquid chromatography electrospray ionization (LC-ESI tandem-MS provides sensitive and specific quantification of small molecules and peptides. The high analytic power of MS coupled with high-specificity substrates is ideally suited for detection and quantification of bacterial enzymatic activities. As specific examples of the MS applications in disease diagnosis and select agent detection, we describe recent advances in the analyses of two high profile protein toxin groups, the Bacillus anthracis toxins and the Clostridium botulinum neurotoxins. The two binary toxins produced by B. anthracis consist of protective antigen (PA which combines with lethal factor (LF and edema factor (EF, forming lethal toxin and edema toxin respectively. LF is a zinc-dependent endoprotease which hydrolyzes specific proteins involved in inflammation and immunity. EF is an adenylyl cyclase which converts ATP to cyclic-AMP. Toxin-specific enzyme activity for a strategically designed substrate, amplifies reaction products which are detected by MALDI-TOF-MS and LC-ESI-MS/MS. Pre-concentration/purification with toxin specific monoclonal antibodies provides additional specificity. These combined technologies have achieved high specificity, ultrasensitive detection and quantification of the anthrax toxins. We also describe potential applications to diseases of high public health impact, including Clostridium difficile glucosylating toxins and the Bordetella pertussis adenylyl cyclase.

  12. Light Chain of Botulinum A Neurotoxin Expressed as an Inclusion Body from a Synthetic Gene is Catalytically and Functionally Active

    Science.gov (United States)

    2000-01-01

    catalytically and biologically active, stable, gram quantities of the purified LC of a BoNT. Like a new class of zinc-endopeptidases (Monte- cucco and Schiavo...Monte- cucco , C. (1997). FEBSLett. 418, 1-5. Winkler, H. H. and Wood, D. O. (1988). Biochimie 70, 977-986. Zhou, L., de Paiva, A., Liu, D., Aoki, R., and Dolly, J. O. (1995). Bio- chemistry 34, 15175-15181.

  13. Botulinum and Tetanus Neurotoxin Induced Blockage of Synaptic Transmission in Networked Cultures of Human and Rodent Neurons

    Science.gov (United States)

    2015-11-28

    stored at 30C until use. TeNT from Clostridium tetani was purchased from List Biological Laboratories (1.5 107 U/mg; Campbell , California). BOTOX...T. (1979). Free and bound glutamate in natural prod- ucts. In Glutamic Acid: Advances in Biochemistry and Physiology (L. Filer, S. Garattini, M

  14. Prediction of antigenic epitopes and MHC binders of neurotoxin ...

    African Journals Online (AJOL)

    The potassium channel inhibitor alpha-KTx 3.8, a 38-residue peptide was isolated from the venom of Mesobuthus tamulus sindicus. In this assay we have predicted the binding affinity of alpha-KTx 3.8 having 38 amino acids, which shows 30 nonamers. Peptide fragments of the neurotoxin can be used to select nonamers for ...

  15. Synthesis of tritium labelled DSP 4, a selective noradrenaline neurotoxin

    International Nuclear Information System (INIS)

    Sahlberg, Christer; Gawell, Lars

    1985-01-01

    DSP 4 (N-(2-Chloroethyl)-N-ethyl-2-bromobenzylamine) is a neurotoxin, selective for neuronal noradrenaline (NA). Tritium labelled DSP 4 with a specific activity of 105 mCi/mmol was prepared. The key step in the synthesis is a reduction of the aminoester with activated sodium boro[ 3 H]hydride thus forming the alcohol. (author)

  16. Clostridium botulinum type E occurs and grows in the alga Cladophora glomerata

    Science.gov (United States)

    Byappanahalli, M.N.; Whitman, R.L.

    2009-01-01

    In recent years, massive avian die-offs from Clostridium botulinum type E infection have occurred in the Sleeping Bear Dunes National Lakeshore (SLBE) area of Lake Michigan. These outbreaks have been coincidental with massive blooms of the green algae Cladophora, mostly Cladophora glomerata. We tested the hypothesis that Clostridium botulinum type E can grow under suitable conditions in these algal mats. In a lab mesocosm study, Cladophora from four outbreak-impacted beaches from SLBE were compared with four unimpacted beaches in the Milwaukee–Racine area for bontE gene of Clostridium botulinum. Frequency of the bontE gene was higher after incubation (25 °C for up to 6 weeks) of Cladophora from impacted vs. the unimpacted area. Since no type E gene was detected initially in Cladophora from any of the eight locations, we infer that the increased occurrence of type E gene arose from spore germination or vegetative Clostridium growth within the existing algal mats of SLBE. Moreover, we found that the congener Clostridium perfringens readily grows in mesocosms containing Cladophora.

  17. Application of NMR Methods to Identify Detection Reagents for Use in the Development of Robust Nanosensors

    Energy Technology Data Exchange (ETDEWEB)

    Cosman, M; Krishnan, V V; Balhorn, R

    2004-04-29

    Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful technique for studying bi-molecular interactions at the atomic scale. Our NMR lab is involved in the identification of small molecules, or ligands that bind to target protein receptors, such as tetanus (TeNT) and botulinum (BoNT) neurotoxins, anthrax proteins and HLA-DR10 receptors on non-Hodgkin's lymphoma cancer cells. Once low affinity binders are identified, they can be linked together to produce multidentate synthetic high affinity ligands (SHALs) that have very high specificity for their target protein receptors. An important nanotechnology application for SHALs is their use in the development of robust chemical sensors or biochips for the detection of pathogen proteins in environmental samples or body fluids. Here, we describe a recently developed NMR competition assay based on transferred nuclear Overhauser effect spectroscopy (trNOESY) that enables the identification of sets of ligands that bind to the same site, or a different site, on the surface of TeNT fragment C (TetC) than a known ''marker'' ligand, doxorubicin. Using this assay, we can identify the optimal pairs of ligands to be linked together for creating detection reagents, as well as estimate the relative binding constants for ligands competing for the same site.

  18. Ultrasound-guided botulinum toxin injections

    Directory of Open Access Journals (Sweden)

    S. E. Khatkova

    2016-01-01

    Full Text Available One of the key conditions for achieving the desirable result during botulinum toxin therapy for muscular dystonia, spasticity, and other diseases accompanied by spasm, pain, and autonomic dysfunction (dystonias, spasticity, etc. is the proper administration of the agent into the muscles directly involved in the pathological process. The exact entry of botulinum toxin into the target muscles is essential for successful and safe treatment because its injection into a normal muscle may cause side effects. The most common errors are the incorrect depth and incorrect direction of a needle on insertion. Therefore, the exact injection of the agent particularly into the shallow and deep muscles is a difficult task even for an experienced specialist and requires the use of controlling methods.The European Consensus on Botulinum Toxin Therapy points out that various injection techniques are needed for the better identification of necessary muscles. However, there are currently no reports on the clear advantage of any technique. In our country, injections using palpation and anatomical landmarks have been widely used in routine practice so far; electromyographic monitoring and electrostimulation have been less frequently applied. In recent years, the new method ultrasound-guided injection has continued to grow more popular. This effective, accessible, and easy-to-use method makes it possible to manage a real-time injection process and to ensure the exact entry of the agent into the muscle. This paper is dedicated to a comparative analysis of different injection methods and to a description of the ultrasound-guided technique and its advantages over others. 

  19. Ciguatera: the detection of neurotoxins in carnivorous reef fish from ...

    African Journals Online (AJOL)

    Two barracuda and one snapper tested positive for a sodium-channel activator, i.e. presumptive ciguatoxin, in the N2a assay. LC/MS analyses showed that only these three samples contained high-intensity peaks, with masses of 1 222 amu and 1 279 amu. These results represent the first analytical report indicating the ...

  20. Botulinum toxin for treatment of glandular hypersecretory disorders.

    LENUS (Irish Health Repository)

    Laing, T A

    2012-02-03

    SUMMARY: The use of botulinum toxin to treat disorders of the salivary glands is increasing in popularity in recent years. Recent reports of the use of botulinum toxin in glandular hypersecretion suggest overall favourable results with minimal side-effects. However, few randomised clinical trials means that data are limited with respect to candidate suitability, treatment dosages, frequency and duration of treatment. We report a selection of such cases from our own department managed with botulinum toxin and review the current data on use of the toxin to treat salivary gland disorders such as Frey\\'s syndrome, excessive salivation (sialorrhoea), focal and general hyperhidrosis, excessive lacrimation and chronic rhinitis.

  1. Multiplex detection of protein toxins using MALDI-TOF-TOF tandem mass spectrometry: application in unambiguous toxin detection from bioaerosol.

    Science.gov (United States)

    Alam, Syed Imteyaz; Kumar, Bhoj; Kamboj, Dev Vrat

    2012-12-04

    Protein toxins, such as botulinum neurotoxins (BoNTs), Clostridium perfringens epsilon toxin (ETX), staphylococcal enterotoxin B (SEB), shiga toxin (STX), and plant toxin ricin, are involved in a number of diseases and are considered as potential agents for bioterrorism and warfare. From a bioterrorism and warfare perspective, these agents are likely to cause maximum damage to a civilian or military population through an inhalational route of exposure and aerosol is considered the envisaged mode of delivery. Unambiguous detection of toxin from aerosol is of paramount importance, both for bringing mitigation protocols into operation and for implementation of effective medical countermeasures, in case a "biological cloud" is seen over a population. A multiplex, unambiguous, and qualitative detection of protein toxins is reported here using tandem mass spectrometry with MALDI-TOF-TOF. The methodology involving simple sample processing steps was demonstrated to identify toxins (ETX, Clostridium perfringes phospholipase C, and SEB) from blind spiked samples. The novel directed search approach using a list of unique peptides was used to identify toxins from a complex protein mixture. The bioinformatic analysis of seven protein toxins for elucidation of unique peptides with conservation status across all known sequences provides a high confidence for detecting toxins originating from any geographical location and source organism. Use of tandem MS data with peptide sequence information increases the specificity of the method. A prototype for generation of aerosol using a nebulizer and collection using a cyclone collector was used to provide a proof of concept for unambiguous detection of toxin from aerosol using precursor directed tandem mass spectrometry combined with protein database searching. ETX prototoxin could be detected from aerosol at 0.2 ppb concentration in aerosol.

  2. Structural constraints-based evaluation of immunogenic avirulent toxins from Clostridium botulinum C2 and C3 toxins as subunit vaccines.

    Science.gov (United States)

    Prisilla, A; Prathiviraj, R; Sasikala, R; Chellapandi, P

    2016-10-01

    Clostridium botulinum (group-III) is an anaerobic bacterium producing C2 and C3 toxins in addition to botulinum neurotoxins in avian and mammalian cells. C2 and C3 toxins are members of bacterial ADP-ribosyltransferase superfamily, which modify the eukaryotic cell surface proteins by ADP-ribosylation reaction. Herein, the mutant proteins with lack of catalytic and pore forming function derived from C2 (C2I and C2II) and C3 toxins were computationally evaluated to understand their structure-function integrity. We have chosen many structural constraints including local structural environment, folding process, backbone conformation, conformational dynamic sub-space, NAD-binding specificity and antigenic determinants for screening of suitable avirulent toxins. A total of 20 avirulent mutants were identified out of 23 mutants, which were experimentally produced by site-directed mutagenesis. No changes in secondary structural elements in particular to α-helices and β-sheets and also in fold rate of all-β classes. Structural stability was maintained by reordered hydrophobic and hydrogen bonding patterns. Molecular dynamic studies suggested that coupled mutations may restrain the binding affinity to NAD(+) or protein substrate upon structural destabilization. Avirulent toxins of this study have stable energetic backbone conformation with a common blue print of folding process. Molecular docking studies revealed that avirulent mutants formed more favorable hydrogen bonding with the side-chain of amino acids near to conserved NAD-binding core, despite of restraining NAD-binding specificity. Thus, structural constraints in the avirulent toxins would determine their immunogenic nature for the prioritization of protein-based subunit vaccine/immunogens to avian and veterinary animals infected with C. botulinum. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Fluorescent transgenic zebrafish Tg(nkx2.2a:mEGFP provides a highly sensitive monitoring tool for neurotoxins.

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhang

    Full Text Available Previously a standard toxicological test termed as DarT (Danio rerio Teratogenic assay using wild type zebrafish embryos has been established and it is widely applied in toxicological and chemical screenings. As an increasing number of fluorescent transgenic zebrafish lines with specific fluorescent protein expression specifically expressed in different organs and tissues, we envision that the fluorescent markers may provide more sensitive endpoints for monitoring chemical induced phenotypical changes. Here we employed Tg(nkx2.2a:mEGFP transgenic zebrafish which have GFP expression in the central nervous system to investigate its potential for screening neurotoxic chemicals. Five potential neurotoxins (acetaminophen, atenolol, atrazine, ethanol and lindane and one neuroprotectant (mefenamic acid were tested. We found that the GFP-labeled ventral axons from trunk motoneurons, which were easily observed in live fry and measured for quantification, were a highly sensitive to all of the five neurotoxins and the length of axons was significantly reduced in fry which looked normal based on DarT endpoints at low concentrations of neurotoxins. Compared to the most sensitive endpoints of DarT, ventral axon marker could improve the detection limit of these neurotoxins by about 10 fold. In contrast, there was no improvement for detection of the mefenamic acid compared to all DarT endpoints. Thus, ventral axon lengths provide a convenient and measureable marker specifically for neurotoxins. Our study may open a new avenue to use other fluorescent transgenic zebrafish embryos/fry to develop sensitive and specific toxicological tests for different categories of chemicals.

  4. Striving for more good days: patient perspectives on botulinum toxin for the treatment of cervical dystonia

    Directory of Open Access Journals (Sweden)

    Poliziani M

    2016-08-01

    Full Text Available Michele Poliziani,1 Marco Koch,2 Xierong Liu1 1Opinion Health, London, UK; 2Merz Pharmaceuticals GmbH, Frankfurt am Main, Germany Background: The recommended reinjection interval for botulinum neurotoxin (BoNT formulations in the treatment of cervical dystonia (CD is generally ≥12 weeks, though intervals ≥10 weeks are approved for incobotulinumtoxinA in Europe. However, recurring symptoms can occur before the end of this period. Using qualitative research, we sought a greater understanding of disease burden, unmet patient needs, and barriers to treatment. Methods: We conducted online semistructured, focus-group discussions, and online forum follow-up discussions among patients with CD, focusing on disease burden, patient needs, injection cycle preferences, and relationships with health care professionals. A subset of patients was also questioned in telephone interviews about individual experiences of CD and BoNT treatment. All participants were UK residents who had received onabotulinumtoxinA or abobotulinumtoxinA for CD for ≥1 year. Results: Thirty-one patients (81% female; mean duration of CD 16.4 [range 4–31] years; mean BoNT injection cycle length 12.8 weeks participated in the online focus-group and forum follow-up discussions. Of these, seven patients participated in telephone interviews. All had recurring symptoms between treatments, which substantially impacted on their work, family, and social life. Symptom severity fluctuated throughout an injection cycle and differed between patients and across injection cycles. Participants’ relationships with health care professionals and treatment satisfaction varied greatly. Many participants wanted longer-lasting and/or more stable symptom relief with shorter and/or more flexible injection intervals, according to individual needs. Lack of health care resources, long journeys to treatment centers, and immunogenicity/side-effect concerns were perceived as the main barriers to more

  5. Prioritizing drug targets in Clostridium botulinum with a computational systems biology approach.

    Science.gov (United States)

    Muhammad, Syed Aun; Ahmed, Safia; Ali, Amjad; Huang, Hui; Wu, Xiaogang; Yang, X Frank; Naz, Anam; Chen, Jake

    2014-07-01

    A computational and in silico system level framework was developed to identify and prioritize the antibacterial drug targets in Clostridium botulinum (Clb), the causative agent of flaccid paralysis in humans that can be fatal in 5 to 10% of cases. This disease is difficult to control due to the emergence of drug-resistant pathogenic strains and the only available treatment antitoxin which can target the neurotoxin at the extracellular level and cannot reverse the paralysis. This study framework is based on comprehensive systems-scale analysis of genomic sequence homology and phylogenetic relationships among Clostridium, other infectious bacteria, host and human gut flora. First, the entire 2628-annotated genes of this bacterial genome were categorized into essential, non-essential and virulence genes. The results obtained showed that 39% of essential proteins that functionally interact with virulence proteins were identified, which could be a key to new interventions that may kill the bacteria and minimize the host damage caused by the virulence factors. Second, a comprehensive comparative COGs and blast sequence analysis of these proteins and host proteins to minimize the risks of side effects was carried out. This revealed that 47% of a set of C. botulinum proteins were evolutionary related with Homo sapiens proteins to sort out the non-human homologs. Third, orthology analysis with other infectious bacteria to assess broad-spectrum effects was executed and COGs were mostly found in Clostridia, Bacilli (Firmicutes), and in alpha and beta Proteobacteria. Fourth, a comparative phylogenetic analysis was performed with human microbiota to filter out drug targets that may also affect human gut flora. This reduced the list of candidate proteins down to 131. Finally, the role of these putative drug targets in clostridial biological pathways was studied while subcellular localization of these candidate proteins in bacterial cellular system exhibited that 68% of the

  6. What is the risk of aluminium as a neurotoxin?

    Science.gov (United States)

    Exley, Christopher

    2014-06-01

    Aluminium is neurotoxic. Its free ion, Al(3+) (aq), is highly biologically reactive and uniquely equipped to do damage to essential cellular (neuronal) biochemistry. This unequivocal fact must be the starting point in examining the risk posed by aluminium as a neurotoxin in humans. Aluminium is present in the human brain and it accumulates with age. The most recent research demonstrates that a significant proportion of individuals older than 70 years of age have a potentially pathological accumulation of aluminium somewhere in their brain. What are the symptoms of chronic aluminium intoxication in humans? What if neurodegenerative diseases such as Alzheimer's disease are the manifestation of the risk of aluminium as a neurotoxin? How might such an (outrageous) hypothesis be tested?

  7. Investigation of Clostridium botulinum group III's mobilome content.

    Science.gov (United States)

    Woudstra, Cédric; Le Maréchal, Caroline; Souillard, Rozenn; Anniballi, Fabrizio; Auricchio, Bruna; Bano, Luca; Bayon-Auboyer, Marie-Hélène; Koene, Miriam; Mermoud, Isabelle; Brito, Roseane B; Lobato, Francisco C F; Silva, Rodrigo O S; Dorner, Martin B; Fach, Patrick

    2018-02-01

    Clostridium botulinum group III is mainly responsible for botulism in animals. It could lead to high animal mortality rates and, therefore, represents a major environmental and economic concern. Strains of this group harbor the botulinum toxin locus on an unstable bacteriophage. Since the release of the first complete C. botulinum group III genome sequence (strain BKT015925), strains have been found to contain others mobile elements encoding for toxin components. In this study, seven assays targeting toxin genes present on the genetic mobile elements of C. botulinum group III were developed with the objective to better characterize C. botulinum group III strains. The investigation of 110 C. botulinum group III strains and 519 naturally contaminated samples collected during botulism outbreaks in Europe showed alpha-toxin and C2-I/C2-II markers to be systematically associated with type C/D bont-positive samples, which may indicate an important role of these elements in the pathogenicity mechanisms. On the contrary, bont type D/C strains and the related positive samples appeared to contain almost none of the markers tested. Interestingly, 31 bont-negative samples collected on farms after a botulism outbreak revealed to be positive for some of the genetic mobile elements tested. This suggests loss of the bont phage, either in farm environment after the outbreak or during laboratory handling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Persistence of Upper Blepharoptosis After Cosmetic Botulinum Toxin Type A.

    Science.gov (United States)

    Steinsapir, Kenneth D; Groth, Michael J; Boxrud, Cynthia A

    2015-07-01

    Upper eyelid ptosis after cosmetic botulinum toxin is generally considered short-lived and responsive to apraclonidine ophthalmic drops. The authors present a series with persistent ptosis. To report a series of patients with persistent upper eyelid ptosis after cosmetic botulinum toxin. A retrospective case review series of 7 patients referred for management after developing visually significant upper eyelid ptosis after cosmetic botulinum toxin type A treatment. Patients in this series experienced persistent visually significant ptosis after cosmetic botulinum toxin lasting from 6 weeks to 13 months. Six of the 7 patients were treated with apraclonidine ophthalmic solution. Apraclonidine drops appeared to be clinically effective within 4 to 6 weeks of the resolution of ptosis. Upper eyelid ptosis after cosmetic botulinum toxin can persist for many months after treatment. Based on this series, the authors propose that apraclonidine drops can be used at the time of initial assessment to predict the relative longevity of ptosis after cosmetic botulinum toxin treatment (Level 4 evidence recommendation). After a 1-week trial, responders can be advised that ptosis is likely to resolve in 4 to 6 weeks. Nonresponders should be counseled that resolution may take longer than 6 weeks.

  9. Botulinum toxin A for the Treatment of Overactive Bladder

    Directory of Open Access Journals (Sweden)

    Po-Fan Hsieh

    2016-02-01

    Full Text Available The standard treatment for overactive bladder starts with patient education and behavior therapies, followed by antimuscarinic agents. For patients with urgency urinary incontinence refractory to antimuscarinic therapy, currently both American Urological Association (AUA and European Association of Urology (EAU guidelines suggested that intravesical injection of botulinum toxin A should be offered. The mechanism of botulinum toxin A includes inhibition of vesicular release of neurotransmitters and the axonal expression of capsaicin and purinergic receptors in the suburothelium, as well as attenuation of central sensitization. Multiple randomized, placebo-controlled trials demonstrated that botulinum toxin A to be an effective treatment for patients with refractory idiopathic or neurogenic detrusor overactivity. The urinary incontinence episodes, maximum cystometric capacity, and maximum detrusor pressure were improved greater by botulinum toxin A compared to placebo. The adverse effects of botulinum toxin A, such as urinary retention and urinary tract infection, were primarily localized to the lower urinary tract. Therefore, botulinum toxin A offers an effective treatment option for patients with refractory overactive bladder.

  10. A newly discovered neurotoxin ADTIQ associated with hyperglycemia and Parkinson's disease.

    Science.gov (United States)

    Xie, Bingjie; Lin, Fankai; Ullah, Kaleem; Peng, Lei; Ding, Wei; Dai, Rongji; Qing, Hong; Deng, Yulin

    2015-04-10

    Diabetes is associated with an increased risk of Parkinson's disease (PD). Number of studies have suggested that methylglyoxal (MGO) induced by diabetes is related to PD. However, very little is known about its molecular mechanism. On other hand, 1-acetyl-6, 7- dihydroxyl-1, 2, 3, 4- Tetrahydroisoquinoline(ADTIQ) is a dopamine (DA)-derived tetrahydroisoquinoline (TIQ), a novel endogenous neurotoxins, which was first discovered in frozen Parkinson's disease human brain tissue. While ADTIQ precursor methylglyoxal was also found in diabetic patients related to the glucose metabolism and diabetic patients. LC-MS/MS, 1H NMR and infrared spectroscopy identified the structure of ADTIQ. The Annexin V-FITC/PI, MTT and western blot analysis were used to measure the neurotoxicity of ADTIQ. The levels of ADTIQ and methylglyoxal were detected by LC-MS/MS. Here we report the chemical synthesis of ADTIQ, demonstrate its biosynthesis in SH-SY5Y neuroblastoma cell line and investigate its role in the pathogenesis of PD. In addition, a significant increase in the level of ADTIQ was detected in the brains of transgenic mice expressing mutant forms (A53T or A30P) of α-synuclein. ADTIQ also reduced the cell viability and induced mitochondrial apoptosis in dopaminergic cells, suggesting that ADTIQ acts as an endogenous neurotoxin and potentially involved in the pathogenesis of PD. Methylglyoxal, a major byproduct of glucose metabolism and abnormalities in glucose metabolism could influence the levels of ADTIQ. Consistent with the hypothesis, increased levels of ADTIQ and methylglyoxal were detected in the striatum of diabetic rats and SH-SY5Y cells cultured in the presence of high glucose concentrations. Increased levels of ADTIQ could be related with Hyperglycemia and death of dopaminergic neurons. The increased levels of ADTIQ could be a reason of dopamine neuron dysfunction in diabetes. Therefore, ADTIQ may play a key role in increasing the risk for PD in patients with diabetes

  11. Development of an ELISA microarray assay for the sensitive and simultaneous detection of ten biodefense toxins.

    Energy Technology Data Exchange (ETDEWEB)

    Jenko, Kathryn; Zhang, Yanfeng; Kostenko, Yulia; Fan, Yongfeng; Garcia-Rodriguez, Consuelo; Lou, Jianlong; Marks, James D.; Varnum, Susan M.

    2014-10-21

    Plant and microbial toxins are considered bioterrorism threat agents because of their extreme toxicity and/or ease of availability. Additionally, some of these toxins are increasingly responsible for accidental food poisonings. The current study utilized an ELISA-based protein antibody microarray for the multiplexed detection of ten biothreat toxins, botulinum neurotoxins (BoNT) A, B, C, D, E, F, ricin, shiga toxins 1 and 2 (Stx), and staphylococcus enterotoxin B (SEB), in buffer and complex biological matrices. The multiplexed assay displayed a sensitivity of 1.3 pg/mL (BoNT/A, BoNT/B, SEB, Stx-1 and Stx-2), 3.3 pg/mL (BoNT/C, BoNT/E, BoNT/F) and 8.2 pg/mL (BoNT/D, ricin). All assays demonstrated high accuracy (75-120 percent recovery) and reproducibility (most coefficients of variation < 20%). Quantification curves for the ten toxins were also evaluated in clinical samples (serum, plasma, nasal fluid, saliva, stool, and urine) and environmental samples (apple juice, milk and baby food) with overall minimal matrix effects. The multiplex assays were highly specific, with little crossreactivity observed between the selected toxin antibodies. The results demonstrate a multiplex microarray that improves current immunoassay sensitivity for biological warfare agents in buffer, clinical, and environmental samples.

  12. Botulinum toxin injection in laryngeal dyspnea.

    Science.gov (United States)

    Woisard, Virginie; Liu, Xuelai; Bes, Marie Christine Arné; Simonetta-Moreau, Marion

    2017-02-01

    Data, regarding the use of botulinum toxin (BT-A) in laryngeal dyspnea, are scarce, coming from some cases reports in the literature, including Vocal fold paralysis, laryngeal dystonia, vocal cord dysfunction also called paradoxical motion of the vocal fold (PMVF), and post-neuroleptic laryngeal dyskinesia. There is no consensus regarding the muscles and the doses to inject. The aim of this study is to present a retrospective review of patients treated in our ENT Department by BT-A injection in this indication. This study is a retrospective study describing patients who underwent an injection of botulinum toxin for laryngeal dyspnea in the ENT Department from 2005 to 2015 years. The inclusion criteria were a dyspnea associated with a laryngeal dysfunction, confirmed by flexible fiberoptic nasopharyngolaryngoscopy. Information concerning the causes of the dyspnea, the botulinum toxin BT-A injections procedure, post-injection follow-up, and respiratory outcome were collected for all patients included. In the group of 13 patients included, the main cause identified as principal factor linked with the short breath was: a bilateral VF paralysis (Patel et al., Otolaryngol Head Neck Surg 130:686-689, 7), laryngeal dystonia (Balkissoon and Kenn, Semin Respir Crit Care Med 33:595-605, 2), Anxiety syndrome associated with unilateral vocal fold paralysis or asthma (Marcinow et al., Laryngoscope 124:1425-1430, 3), and an isolated asthma (Zwirner et al., Eur Arch Otorhinolaryngol 254:242-245, 1). Nine out of the thirteen patients were improved by the injections. A BT-A-induced stable benefit for four patients led them to stop the injections in the follow-up. Good outcome was observed in five other patients (main cause: bilateral VP paralysis), allowing a progressive lengthening of the delay between BT-A injections. Four patients did not report a positive risk/benefit ratio after BT-A injections; two of them (with bilateral VF paralysis), because of respiratory side effects and

  13. Injectable neurotoxins and fillers: there is no free lunch.

    Science.gov (United States)

    Emer, Jason; Waldorf, Heidi

    2011-01-01

    Injection of neurotoxins and filling agents for the treatment of facial aesthetics has increased dramatically during the past few decades due to an increased interest in noninvasive aesthetic improvements. An aging but still youth-oriented population expects effective treatments with minimal recovery time and limited risk of complications. Injectable neurotoxins and soft tissue stimulators and fillers have filled this niche of "lunch-time" procedures. As demand for these procedures has increased, supply has followed with more noncore cosmetic specialty physicians, as well as unsupervised ancillary staff, becoming providers and advertising them as easy fixes. Despite an excellent record of safety and efficacy demonstrated in scores of published studies, injectable agents do carry risks of complications. These procedures require a physician with in-depth knowledge of facial anatomy and injection techniques to ensure patient safety and satisfaction. In general, adverse events are preventable and technique-dependent. Although most adverse events are minor and temporary, more serious complications can occur. The recognition, management, and treatment of poor outcomes are as important as obtaining the best aesthetic results. This review addresses important considerations regarding the complications of injectable neurotoxins and fillers used for "lunch-time" injectable procedures. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Laser Raman spectroscopy of snake venom neurotoxins: conformation.

    Science.gov (United States)

    Tu, A T; Jo, B H; Yu, N T

    1976-01-01

    Laser Raman spectra of neurotoxins of Pelamis platurus (yellow-bellied sea snake) and Laticauda semifasciata (broad-banded blue sea snake) were investigated. The amide I band appeared at 1672 cm-1 for both toxins, which presents an indication of anti-parallel beta structure. Since this agrees well with the result from the CD-ORD studies of snake neurotoxin, it was concluded that snake neurotoxins mainly consist of beta structure. The amide III band appeared at 1245 cm-1 for P. platurus toxin and 1248 cm-1 for L. semifasciata toxin. The four disulfide bonds present in the toxin have a very similar geometry. After vigorous heat treatment, the backbone configuration of the toxin molecule basically remained the same although it was partially denatured. The major peak at 512 cm-1 was not altered by the heat treatment but a new shoulder appeared at 546 cm-1. This suggests that a new type of S-S stretching vibration (trans-gauche-trans) was produced as a result of heat treatment. However, the majority of the S-S vibrations remained in the gauche-gauche-gauche orientation. A substantial change in the interactions between a tyrosine aromatic ring and neighboring residues was apparently the alteration caused by the heat treatment.

  15. A survey of the current practice of intramuscular Botulinum toxin injections for hemiplegic shoulder pain in the UK.

    Science.gov (United States)

    Holmes, Richard J; Connell, Louise A

    2017-11-10

    To describe the current UK practice for the use of intramuscular Botulinum Toxin type A injections to treat hemiplegic shoulder pain. A UK-based cross-sectional study using an online survey. Participants (n = 68) were medical and non-medical practitioners recruited via the membership of the British Society for Rehabilitation Medicine and the British Neurotoxin Network. Data was analysed using descriptive statistics and content analysis. The majority of respondents would consider Botulinum Toxin type A for hemiplegic shoulder pain (86.8%), though most of these respondents inject for this goal infrequently (83.1%). Pectoralis major was most commonly selected to achieve this goal. Barriers to this intervention included difficulties determining the cause of pain (29.4%), difficulty isolating muscles (27.9%), and a lack of evidence (25%). The doses reported regularly deviated from guidelines and a substantial range in the volumes suggested was observed. Clinicians were mostly reliant on unstandardised measures to assess outcomes. Current UK practice of Botulinum Toxin type A injections for hemiplegic shoulder pain associated with spasticity is highly variable. There are large gaps between current practice and available evidence with regards to muscle selection and doses used. A number of areas for further investigation have been identified to progress current understanding of this intervention. Implications for rehabilitation There are wide variations in practice for this complex intervention and clinicians should consider that their individual decision-making could be based on their own beliefs rather than available evidence. Pectoralis major is most commonly injected to treat hemiplegic shoulder pain, but further evaluation is required to address whether it is the most effective. Clinicians most often use a limitation of shoulder abduction and external rotation, flexor patterning of the upper limb, and pain on passive movement to identify when hemiplegic shoulder

  16. Treatment diary for botulinum toxin spasticity treatment

    DEFF Research Database (Denmark)

    Biering-Sørensen, Bo; Iversen, Helle K; Frederiksen, Inge M S

    2017-01-01

    The aim of this study is to develop a treatment diary for patients receiving spasticity treatment including botulinum toxin injection and physiotherapy and/or occupational therapy. The diary focuses on problems triggered by skeletal muscle overactivity; agreed goals for treatment and the patient......'s self-evaluation of achievement on the Goal Attainment Scale; which skeletal muscles were injected; physiotherapists' and occupational therapists' evaluation of the patients' achievement of objectives on the Goal Attainment Scale; and proposals for optimization of treatment and changing goals....... The evaluation included a satisfaction questionnaire and the WHO-QoL BREF and WHO-5 well-being score. Overall, 10 patients were enrolled in the pilot study. The patients were generally satisfied with the diary, found that it involved them more in their treatment and made it easier to set personal goals...

  17. Treatment diary for botulinum toxin spasticity treatment

    DEFF Research Database (Denmark)

    Biering-Sørensen, Bo; Iversen, Helle K; Frederiksen, Inge M S

    2017-01-01

    's self-evaluation of achievement on the Goal Attainment Scale; which skeletal muscles were injected; physiotherapists' and occupational therapists' evaluation of the patients' achievement of objectives on the Goal Attainment Scale; and proposals for optimization of treatment and changing goals......The aim of this study is to develop a treatment diary for patients receiving spasticity treatment including botulinum toxin injection and physiotherapy and/or occupational therapy. The diary focuses on problems triggered by skeletal muscle overactivity; agreed goals for treatment and the patient....... The evaluation included a satisfaction questionnaire and the WHO-QoL BREF and WHO-5 well-being score. Overall, 10 patients were enrolled in the pilot study. The patients were generally satisfied with the diary, found that it involved them more in their treatment and made it easier to set personal goals...

  18. [Botulinum toxin and facial palsy. Our experience].

    Science.gov (United States)

    Navarrete Alvaro, María Luisa; Junyent, Josefina; Torrent, Luisa

    2010-01-01

    Therapeutic indication of peripheral facial paralysis depends on the degree of nerve injury. Severe facial palsy (electroneuronographic study less than or equal to 10%) leads to healing with sequelae. The sequelae of facial paralysis are contractures, hemifacial spasm and synkinesis.Our purpose was to demonstrate that these patients could benefit from rehabilitation treatment. We present a study of 48 patients with severe peripheral facial paralysis. They were treated from the beginning of reinnervation with botulinum toxin and facial exercises according to the Wisconsin School. The subjective efficacy of rehabilitation is high. Rehabilitation treatment can inform patients about their chances of recovery, give them control over and quality of facial expression and help to achieve greater facial symmetry. These factors provide better functionality and quality of life. Copyright 2009 Elsevier España, S.L. All rights reserved.

  19. Acetylcholinesterase-reduced graphene oxide hybrid films for organophosphorus neurotoxin sensing via quartz crystal microbalance

    Science.gov (United States)

    Tang, Shi; Ma, Wenying; Xie, Guangzhong; Su, Yuanjie; Jiang, Yadong

    2016-09-01

    An acetylcholinesterase (AChE)-reduced graphene oxide (RGO) hybrid films based biosensor enabled by quartz crystal microbalance (QCM) has been developed for the detection of organophosphorus neurotoxin in gas phase at room temperature. To improve the sensing performance, RGO was used to immobilize large quantities of enzyme and provide a favorable microenvironment to maintain the enzyme activity. The experimental results reveal that the response of AChE-RGO/glutaraldehyde based sensors is about 8 times larger than that of the AChE with the sensitivity of 1.583 Hz/mg/m3. 1.0 mg amount of RGO, 5% concentration of glutaraldehyde and pH 6.8 is the optimal condition of this biosensor.

  20. Effects of botulinum toxin A injection on healing and tensile strength of ruptured rabbit Achilles tendons.

    Science.gov (United States)

    Tuzuner, Serdar; Özkan, Özlenen; Erin, Nuray; Özkaynak, Sibel; Cinpolat, An; Özkan, Ömer

    2015-04-01

    Tendon lacerations are most commonly managed with surgical repair. Postoperative complications such as adhesions and ruptures often occur with immobilization. Early postoperative mobilization is therefore advised to minimize complications and time required to return to daily life. The aim of this study was to evaluate whether botulinum neurotoxin type-A (BoNT-A) can be used to enhance healing and prevent rupture in mobilized animals with Achilles tenotomy. Twenty-seven rabbits were divided into 3 groups, namely, I, II, and III, after surgical 1-sided Achilles tenotomy and end-to-end repair. The control group for biomechanical comparisons consisted of randomly selected contralateral (unoperated) healthy Achilles tendons. Group I received BoNT-A (4 U/kg) injection into the calf muscles. One week later, electromyographical confirmation was performed to establish the effects of injection. Surgery was then performed. Animals in the second group (n = 9, group II) were immobilized with a cast postoperatively. The third group (n = 9, group III) was mobilized immediately with no cast or BoNT-A. Tendons were harvested and gap formation or ruptures as well as strength of the repaired tendon were assessed 6 weeks after surgery. Achilles tendons healed in all animals injected with BoNT-A, whereas all were ruptured in group III. All Achilles tendons of animals in groups I and II healed. However, group I repaired tendons were biomechanically equivalent to healthy tendons, whereas group II repaired tendons demonstrated significantly decreased tensile strength (P = 0.009). The present study suggests that local injection of BoNT-A can be used for treatment of tendon rupture and may replace the use of cast for immobilization. However, further studies are needed to determine whether BoNT-A injection can have a beneficial effect on the healing of tendon repairs in humans.

  1. Effect of Equilibrated pH and Indigenous Spoilage Microorganisms on the Inhibition of Proteolytic Clostridium botulinum Toxin Production in Experimental Meals under Temperature Abuse.

    Science.gov (United States)

    Golden, Max C; Wanless, Brandon J; David, Jairus R D; Lineback, D Scott; Talley, Ryan J; Kottapalli, Bala; Glass, Kathleen A

    2017-08-01

    Clostridium botulinum is a foreseeable biological hazard in prepared refrigerated meals that needs to be addressed in food safety plans. The objective of this study was to evaluate the effect of product composition and storage temperature on the inhibition of botulinum toxin formation in nine experimental meals (meat, vegetable, or carbohydrate based). Treatments were inoculated with proteolytic C. botulinum, vacuum packaged, cooked at 90°C for 10 min, and assayed for botulinum toxin in samples stored at 25°C for up to 96 h for phase 1, or at 25°C for 12 h and then transferred to 12.5°C for up to 12 and 6 weeks in phases 1 and 2, respectively. For phase 1, none of the treatments (equilibrated pH 5.8) supported toxin production when stored at 25°C for 48 h, but toxin production was observed in all treatments at 72 h. For the remaining experiments with storage at 12.5°C, toxin production was dependent on equilibrated pH, storage time, and growth of indigenous spoilage microorganisms. In phase 1, no gross spoilage and no botulinum toxin was detected for any treatment (pH ≤5.8) stored at 12.5°C for 12 weeks. In phase 2, gross spoilage varied by commodity, with the brussels sprouts meal with pH 6.5 showing the most rapid spoilage within 2 weeks and botulinum toxin detected at 5 and 6 weeks for the control and cultured celery juice treatments, respectively. In contrast, spoilage microbes decreased the pH of a pH 5.9 beef treatment by 1.0 unit, potentially inhibiting C. botulinum through 6 weeks at 12.5°C. None of the other treatments with pH 5.8 or below supported toxin production or spoilage. This study provides validation for preventive controls in refrigerated meals. These include equilibrated product pH and storage temperature and time to inhibit toxin formation by proteolytic C. botulinum, but the impact of indigenous microflora on safety and interpretation of challenge studies is also highlighted.

  2. First report of an infant botulism case due to Clostridium botulinum type Af.

    Science.gov (United States)

    de Jong, Laura I T; Fernández, Rafael A; Pareja, Virtudes; Giaroli, Gabriel; Guidarelli, Sergio R; Dykes, Janet K; Lúquez, Carolina

    2015-02-01

    Most infant botulism cases worldwide are due to botulinum toxin types A and B. Rarely, Clostridium botulinum strains that produce two serotypes (Ab, Ba, and Bf) have also been isolated from infant botulism cases. This is the first reported case of infant botulism due to C. botulinum type Af worldwide. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Botulinum toxin A treatment of Raynaud's phenomenon: a review.

    Science.gov (United States)

    Iorio, Matthew L; Masden, Derek L; Higgins, James P

    2012-02-01

    Botulinum toxin A has conventionally been used in the upper extremity to treat spasticity resulting from stroke, paraplegia, and dystonia. Recently, it has been used to relieve symptoms of vasospasm in Raynaud's phenomenon. This review summarizes the current literature on botulinum toxin A in the treatment of Raynaud's phenomenon and examines the proposed mechanisms of action, suggested techniques of administration, and clinical efficacy. An Ovid MEDLINE search from 1950 to September 2010 was performed to identify any reports on the use of Botulinum toxin in the treatment of Raynaud's disease or associated vasoconstrictive disorders. All studies pertaining to "Raynaud's disease," "Raynaud's," or "vasoconstriction" were queried and meshed with a secondary search of studies pertaining to "botox" or "botulinum toxin type A." These reports were meshed and subsequently limited to human studies. All studies that met criteria were included and their outcomes evaluated and summarized. Since 2004, there have been 5 studies that have evaluated the use of Botulinum Toxin A for the treatment of Raynaud's. In each study, patients received a range of botulinum toxin injections (10-100 units) in their fingers and hands. The studies have many limitations (lack of controls, variable severity of disease, variability of dosing) but all report favorable clinical results. All showed overall improvement in patient pain as well as a reduction in soft tissue ulceration. Initial reports on the use of botulinum toxin A for Raynaud's phenomenon are promising. Larger controlled trials with improved study design are warranted. A better understanding of the mechanism of action, appropriate dose and dose frequency, and the efficacy relative to other medical and surgical treatments requires investigation. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Botulinum Toxin B Affects Neuropathic Pain but Not Functional Recovery after Peripheral Nerve Injury in a Mouse Model

    Directory of Open Access Journals (Sweden)

    Alba Finocchiaro

    2018-03-01

    Full Text Available Clinical use of neurotoxins from Clostridium botulinum is well established and is continuously expanding, including in treatment of pain conditions. Background: The serotype A (BoNT/A has been widely investigated, and current data demonstrate that it induces analgesia and modulates nociceptive processing initiated by inflammation or nerve injury. Given that data concerning the serotype B (BoNT/B are limited, the aim of the present study was to verify if also BoNT/B is able not only to counteract neuropathic pain, but also to interfere with inflammatory and regenerative processes associated with the nerve injury. Methods: As model of neuropathic pain, chronic constriction injury (CCI of the sciatic nerve was performed in CD1 male mice. Mice were intraplantarly injected with saline (control or BoNT/B (5 or 7.5 pg/mouse into the injured hindpaw. For comparison, another mouse group was injected with BoNT/A (15 pg/mouse. Mechanical allodynia and functional recovery of the injured paw was followed for 101 days. Spinal cords and sciatic nerves were collected at day 7 for immunohistochemistry. Results and Conclusions: The results of this study show that BoNT/B is a powerful biological molecule that, similarly to BoNT/A, can reduce neuropathic pain over a long period of time. However, the analgesic effects are not associated with an improvement in functional recovery, clearly highlighting an important difference between the two serotypes for the treatment of this chronic pain state.

  5. Botulinum Toxin Type A—A Modulator of Spinal Neuron–Glia Interactions under Neuropathic Pain Conditions

    Directory of Open Access Journals (Sweden)

    Ewelina Rojewska

    2018-04-01

    Full Text Available Neuropathic pain represents a significant clinical problem because it is a chronic condition often refractory to available therapy. Therefore, there is still a strong need for new analgesics. Botulinum neurotoxin A (BoNT/A is used to treat a variety of clinical diseases associated with pain. Glia are in continuous bi-directional communication with neurons to direct the formation and refinement of synaptic connectivity. This review addresses the effects of BoNT/A on the relationship between glia and neurons under neuropathic pain. The inhibitory action of BoNT/A on synaptic vesicle fusion that blocks the release of miscellaneous pain-related neurotransmitters is known. However, increasing evidence suggests that the analgesic effect of BoNT/A is mediated through neurons and glial cells, especially microglia. In vitro studies provide evidence that BoNT/A exerts its anti-inflammatory effect by diminishing NF-κB, p38 and ERK1/2 phosphorylation in microglia and directly interacts with Toll-like receptor 2 (TLR2. Furthermore, BoNT/A appears to have no more than a slight effect on astroglia. The full activation of TLR2 in astroglia appears to require the presence of functional TLR4 in microglia, emphasizing the significant interaction between those cell types. In this review, we discuss whether and how BoNT/A affects the spinal neuron–glia interaction and reduces the development of neuropathy.

  6. Botulinum Toxin B Affects Neuropathic Pain but Not Functional Recovery after Peripheral Nerve Injury in a Mouse Model

    Science.gov (United States)

    Finocchiaro, Alba; Marinelli, Sara; De Angelis, Federica; Vacca, Valentina; Pavone, Flaminia

    2018-01-01

    Clinical use of neurotoxins from Clostridium botulinum is well established and is continuously expanding, including in treatment of pain conditions. Background: The serotype A (BoNT/A) has been widely investigated, and current data demonstrate that it induces analgesia and modulates nociceptive processing initiated by inflammation or nerve injury. Given that data concerning the serotype B (BoNT/B) are limited, the aim of the present study was to verify if also BoNT/B is able not only to counteract neuropathic pain, but also to interfere with inflammatory and regenerative processes associated with the nerve injury. Methods: As model of neuropathic pain, chronic constriction injury (CCI) of the sciatic nerve was performed in CD1 male mice. Mice were intraplantarly injected with saline (control) or BoNT/B (5 or 7.5 pg/mouse) into the injured hindpaw. For comparison, another mouse group was injected with BoNT/A (15 pg/mouse). Mechanical allodynia and functional recovery of the injured paw was followed for 101 days. Spinal cords and sciatic nerves were collected at day 7 for immunohistochemistry. Results and Conclusions: The results of this study show that BoNT/B is a powerful biological molecule that, similarly to BoNT/A, can reduce neuropathic pain over a long period of time. However, the analgesic effects are not associated with an improvement in functional recovery, clearly highlighting an important difference between the two serotypes for the treatment of this chronic pain state. PMID:29562640

  7. Understanding the functional anatomy of the frontalis and glabellar complex for optimal aesthetic botulinum toxin type A therapy.

    Science.gov (United States)

    Lorenc, Z Paul; Smith, Stacy; Nestor, Mark; Nelson, Diane; Moradi, Amir

    2013-10-01

    Botulinum neurotoxin type A (BoNTA) is approved for the treatment of glabellar lines and also is commonly injected in an off-label fashion in the frontalis (i.e., frontalis epicranius) muscle to improve the appearance of horizontal forehead lines. This study aimed to review and discuss both the anatomy and physiology of the frontalis muscle and its relationship with antagonist muscles in the upper face and to provide a guide for the use of BoNTA to treat forehead rhytides while minimizing the occurrence of complications such as brow ptosis. A PubMed search was conducted to identify practitioner opinion and clinical publications on the efficacy and safety of BoNTA for aesthetic treatment of the upper face. The use of BoNTA produces durable improvement in the appearance of moderate to severe horizontal forehead lines. Dose and injection technique must be adjusted and individualized based on the variable anatomy and function/mass of muscles in the forehead and upper face as well as on patient goals. Optimal aesthetic outcomes can be achieved by skillfully balancing the opposing effects of the frontalis muscle and its intricate interactions with the procerus, corrugator supercilii, depressor supercilii, and orbicularis oculi muscles. The use of BoNTA to improve the aesthetic appearance of horizontal forehead lines is optimized when clinicians take into account variations in frontalis muscle function and position, anatomy of the brow, and proper injection technique when they devise individualized treatment regimens.

  8. Dicty_cDB: Contig-U04536-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available ulinum gene for infant neurotoxin type A. 44 5.1 1 ( X52066 ) Clostridium botulinum botA gene for type A neurotoxin.... 44 5.1 1 ( M30196 ) C.botulinum neurotoxin gene, complete cds. 44 5.1 1 ...( EU429475 ) Clostridium botulinum botulinum neurotoxin type A... 44 5.1 1 ( EU416227 ) Clostridium botulinu...inum strain A1/A2 boNT/A gene cl... 44 5.1 1 ( EF506573 ) Clostridium botulinum botulinum neurotoxin type A...... 44 5.1 1 ( EF506572 ) Clostridium botulinum botulinum neurotoxin type A... 44 5.1 1 ( EF470982 ) Clostrid

  9. Botulinum toxin for motor and phonic tics in Tourette's syndrome.

    Science.gov (United States)

    Pandey, Sanjay; Srivanitchapoom, Prachaya; Kirubakaran, Richard; Berman, Brian D

    2018-01-05

    Gilles de la Tourette syndrome, or Tourette's syndrome, is defined as the presence of both motor and vocal (phonic) tics for more than 12 months, that manifest before the age of 18 years, in the absence of secondary causes. Treatment of motor and phonic tics is difficult and challenging. To determine the safety and effectiveness of botulinum toxin in treating motor and phonic tics in people with Tourette's syndrome, and to analyse the effect of botulinum toxin on premonitory urge and sensory tics. We searched the Cochrane Movement Disorders Group Trials Register, CENTRAL, MEDLINE, and two trials registers to 25 October 2017. We reviewed reference lists of relevant articles for additional trials. We considered all randomised, controlled, double-blind studies comparing botulinum toxin to placebo or other medications for the treatment of motor and phonic tics in Tourette's syndrome for this review. We sought both parallel group and cross-over studies of children or adults, at any dose, and for any duration. We followed standard Cochrane methods to select studies, assess risk of bias, extract and analyse data. All authors independently abstracted data onto standardized forms; disagreements were resolved by mutual discussion. Only one randomised placebo-controlled, double-blind cross-over study met our selection criteria. In this study, 20 participants with motor tics were enrolled over a three-year recruitment period; 18 (14 of whom had a diagnosis of Tourette's syndrome) completed the study; in total, 21 focal motor tics were treated. Although we considered most bias domains to be at low risk of bias, the study recruited a small number of participants with relatively mild tics and provided limited data for our key outcomes. The effects of botulinum toxin injections on tic frequency, measured by videotape or rated subjectively, and on premonitory urge, are uncertain (very low-quality evidence). The quality of evidence for adverse events following botulinum toxin was

  10. Treatment of palatal myoclonus with botulinum toxin injection.

    Science.gov (United States)

    Anis, Mursalin M; Pollak, Natasha

    2013-01-01

    Palatal myoclonus is a rare cause of pulsatile tinnitus in patients presenting to the otolaryngology office. Rhythmic involuntary contractions of the palatal muscles produce the pulsatile tinnitus in these patients. Treatment of this benign but distressing condition with anxiolytics, anticonvulsants, and surgery has been largely unsuccessful. A few investigators have obtained promising results with botulinum toxin injection into the palatal muscles. We present a patient with palatal myoclonus who failed conservative treatment with anxiolytics. Unilateral injection of botulinum toxin into her tensor veli palatini muscle under electromyographic guidance resolved pulsatile tinnitus in her ipsilateral ear and unmasked pulsatile tinnitus in the contralateral ear. A novel method of following transient postinjection symptoms using a diary is presented in this study. Botulinum toxin dose must be titrated to achieve optimal results in each individual patient, analogous to titrations done for spasmodic dysphonia. Knowledge of the temporal onset of postinjection side effects and symptomatic relief may aid physicians in dose titration and surveillance. We present suggestions on titrating the botulinum toxin dose to optimal levels. A review of the literature on the use of botulinum toxin for palatal myoclonus and some common complications are discussed.

  11. Bupivacaine and botulinum toxin to treat comitant strabismus

    Directory of Open Access Journals (Sweden)

    Luisa Moreira Hopker

    2012-04-01

    Full Text Available PURPOSE: To evaluate the change in ocular motility and muscle thickness measured with ultrasonography after intramuscular injection of bupivacaine and botulinum toxin A. METHODS: Eight patients (five female were enrolled to measure ocular motility prior and 1, 7, 30 and 180 days after one injection of 2 ml of 1.5% bupivacaine and 2.5 U of botulinum toxin A in agonist and antagonist muscles, respectively, of eight amblyopic eyes. Muscle thickness was measured prior and on days 1, 7 and 30 after injection using 10-MHz ultrasonography (eyelid technique. RESULTS: Mean change in alignment was 10 prism diopters after 180 days (n=6. An average increase of 1.01 mm in muscle thickness was observed after 30 days of bupivacaine injection and 0.28 mm increase was observed after botulinum toxin A injection, as measured by ultrasonography. Lateral rectus muscles injected with bupivacaine had a mean increase of 1.5 mm in muscle thickness. CONCLUSION: In this study, a change in ocular motility was observed after 180 days of intramuscular injection of bupivacaine and botulinum toxin in horizontal extraocular muscles. Overall, there was an increase of muscle thickness in both botulinum toxinum A and bupivacaine injected muscles after 30 days of injection when measured by ultrasonography. This change was more pronounced on lateral rectus muscles after bupivacaine injection.

  12. TREATMENT OF LARYNGEAL DYSTONIA WITH BOTULINUM TOXIN: A CASE REPORT

    Directory of Open Access Journals (Sweden)

    Irena Hočevar-Boltežar

    2002-07-01

    Full Text Available Background. Laryngeal dystonia (LD is a form of focal dystonia, involving laryngeal muscles and causing disturbed phonation. Adductor, abductor and mixed forms of LD are described.Methods. Largely unsuccessful treatments include voice therapy, psychotherapy, biofeedback, section of the laryngeal recurrent nerve, laryngeal framework surgery and the use of centrally acting drugs. Botulinum toxin proved to be the most efficient treatment of LD; it acts by chemically denervating hyperactive laryngeal muscles.Case report. Authors report on the first use of botulinum toxin in a patient with LD in Slovenia. A female patient with a degenerative disease of extrapyramidal, cerebellar and autonomous system (probable multiple system atrophy and severe adductor form of LD is presented. By gradually increasing dose, the optimal dosage of botulinum has been established that greatly improves the patient’s speech for four months and causes transient mild adverse effects (dysphagia. Botulinum is injected percutaneously under endoscopic control, using the method, which has been described in literature for the first time.Conclusions. Treatment of LD with botulinum toxin demonstrated good results. It improves patient’s communication with others and the quality of his/her life.

  13. Cyanobacterial Neurotoxin BMAA and Mercury in Sharks.

    Science.gov (United States)

    Hammerschlag, Neil; Davis, David A; Mondo, Kiyo; Seely, Matthew S; Murch, Susan J; Glover, William Broc; Divoll, Timothy; Evers, David C; Mash, Deborah C

    2016-08-16

    Sharks have greater risk for bioaccumulation of marine toxins and mercury (Hg), because they are long-lived predators. Shark fins and cartilage also contain β-N-methylamino-l-alanine (BMAA), a ubiquitous cyanobacterial toxin linked to neurodegenerative diseases. Today, a significant number of shark species have found their way onto the International Union for Conservation of Nature (IUCN) Red List of Threatened Species. Many species of large sharks are threatened with extinction due in part to the growing high demand for shark fin soup and, to a lesser extent, for shark meat and cartilage products. Recent studies suggest that the consumption of shark parts may be a route to human exposure of marine toxins. Here, we investigated BMAA and Hg concentrations in fins and muscles sampled in ten species of sharks from the South Atlantic and Pacific Oceans. BMAA was detected in all shark species with only seven of the 55 samples analyzed testing below the limit of detection of the assay. Hg concentrations measured in fins and muscle samples from the 10 species ranged from 0.05 to 13.23 ng/mg. These analytical test results suggest restricting human consumption of shark meat and fins due to the high frequency and co-occurrence of two synergistic environmental neurotoxic compounds.

  14. Cyanobacterial Neurotoxin BMAA and Mercury in Sharks

    Directory of Open Access Journals (Sweden)

    Neil Hammerschlag

    2016-08-01

    Full Text Available Sharks have greater risk for bioaccumulation of marine toxins and mercury (Hg, because they are long-lived predators. Shark fins and cartilage also contain β-N-methylamino-l-alanine (BMAA, a ubiquitous cyanobacterial toxin linked to neurodegenerative diseases. Today, a significant number of shark species have found their way onto the International Union for Conservation of Nature (IUCN Red List of Threatened Species. Many species of large sharks are threatened with extinction due in part to the growing high demand for shark fin soup and, to a lesser extent, for shark meat and cartilage products. Recent studies suggest that the consumption of shark parts may be a route to human exposure of marine toxins. Here, we investigated BMAA and Hg concentrations in fins and muscles sampled in ten species of sharks from the South Atlantic and Pacific Oceans. BMAA was detected in all shark species with only seven of the 55 samples analyzed testing below the limit of detection of the assay. Hg concentrations measured in fins and muscle samples from the 10 species ranged from 0.05 to 13.23 ng/mg. These analytical test results suggest restricting human consumption of shark meat and fins due to the high frequency and co-occurrence of two synergistic environmental neurotoxic compounds.

  15. Regioselective synthesis of deuterated analogs of the neurotoxin MPTP

    International Nuclear Information System (INIS)

    Mabic, Stephane; Castagnoli, N. Jr.

    1996-01-01

    1-Methyl-4-phenyl-2-pyridone has been used as starting material for the efficient and regioselective synthesis of deuterated analogues of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP-2,2-d 2 MPTP-6,6-d 2 and MPTP-2,2,6,6-d 4 were obtained in good yield through a combination of alkaline deuterium exchange and selective LiAlH 4 and LiAlD 4 reduction reactions. (author)

  16. Occurrence of human pathogenic Clostridium botulinum among healthy dairy animals: an emerging public health hazard.

    Science.gov (United States)

    Abdel-Moein, Khaled A; Hamza, Dalia A

    2016-01-01

    The current study was conducted to investigate the occurrence of human pathogenic Clostridium botulinum in the feces of dairy animals. Fecal samples were collected from 203 apparently healthy dairy animals (50 cattle, 50 buffaloes, 52 sheep, 51 goats). Samples were cultured to recover C. botulinum while human pathogenic C. botulinum strains were identified after screening of all C. botulinum isolates for the presence of genes that encode toxins type A, B, E, F. The overall prevalence of C. botulinum was 18.7% whereas human pathogenic C. botulinum strains (only type A) were isolated from six animals at the rates of 2, 2, 5.8, and 2% for cattle, buffaloes, sheep, and goats, respectively. High fecal carriage rates of C. botulinum among apparently healthy dairy animals especially type A alarm both veterinary and public health communities for a potential role which may be played by dairy animals in the epidemiology of such pathogen.

  17. Application of Botulinum toxin Type A: An arsenal in dentistry

    Directory of Open Access Journals (Sweden)

    Lakshmana B Rao

    2011-01-01

    Full Text Available An extremely effective way of preventing damage to and enhancing treatment of dental hard tissues and restorations would be to ′′de-programme′′ the muscles responsible for excessive destructive forces and other gnathological-related diseases. The new paradigm is the intramuscular injection of Botulinum toxin type A (BOTOX into the affected muscles. It is a natural protein produced by anaerobic bacterium, Clostridium botulinum. The toxin inhibits the release of acetylcholine (ACH, a neurotransmitter responsible for the activation of muscle contraction and glandular secretion, and its administration results in reduction of tone in the injected muscle. There are seven distinct serotypes of Botulinum toxin, viz., A, B, C, D, E, F, and G, which differ in their potency, duration of action, and cellular target sites. This paper describes the different applications of BOTOX in dentistry.

  18. Isolation and characterization of a presynaptic neurotoxin, P-elapitoxin-Bf1a from Malaysian Bungarus fasciatus venom.

    Science.gov (United States)

    Rusmili, Muhamad Rusdi Ahmad; Yee, Tee Ting; Mustafa, Mohd Rais; Hodgson, Wayne C; Othman, Iekhsan

    2014-10-01

    Presynaptic neurotoxins are one of the major components in Bungarus venom. Unlike other Bungarus species that have been studied, β-bungarotoxin has never been isolated from Bungarus fasciatus venom. It was hypothesized that the absence of β-bungarotoxin in this species was due to divergence during evolution prior to evolution of β-bungarotoxin. In this study, we have isolated a β-bungarotoxin isoform we named P-elapitoxin-Bf1a by using gel filtration, cation-exchange and reverse-phase chromatography from Malaysian B. fasciatus venom. The toxin consists of two heterogeneous subunits, subunit A and subunit B. LCMS/MS data showed that subunit A was homologous to acidic phospholipase A2 subunit A3 from Bungarus candidus and B. multicinctus venoms, whereas subunit B was homologous with subunit B1 from B. fasciatus venom that was previously detected by cDNA cloning. The toxin showed concentration- and time-dependent reduction of indirect-twitches without affecting contractile responses to ACh, CCh or KCl at the end of experiment in the chick biventer preparation. Toxin modification with 4-BPB inhibited the neurotoxic effect suggesting the importance of His-48. Tissue pre-incubation with monovalent B. fasciatus (BFAV) or neuro-polyvalent antivenom (NPV), at the recommended titer, was unable to inhibit the twitch reduction induced by the toxin. This study indicates that Malaysian B. fasciatus venom has a unique β-bungarotoxin isoform which was not neutralized by antivenoms. This suggests that there might be other presynaptic neurotoxins present in the venom and there is a variation in the enzymatic neurotoxin composition in venoms from different localities. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Botulinum toxin treatment of lower extremity spasticity

    Directory of Open Access Journals (Sweden)

    S. E. Khat’kova

    2017-01-01

    Full Text Available The article reviews the current concept of lower extremity spasticity, which is a frequent disabling consequence of stroke. Gait biomechanics, step cycle and main pathologic patterns of lower extremity are described (hip adduction, knee flexion, knee extension, foot plantar flexion, equinovarus foot position, toes flexion, hallux extension, including muscles involved in the pathological process. Additionally the article contains detailed information on pathologic principles of lower extremity spasticity development. Special focus is given to sarcomeregenesis as an essential element of the development of potential conditions for muscle tissue adaptation to a new state and restoration of muscle length and strength. At present Botulinum toxin A (BTA is used in a complex spasticity management programs. The results of clinical studies performed in the last decade supporting the efficacy of Botox® (Onabotulinumtoxin A in the treatment of spasticity are reviewed. Effective BTA doses are proposed. Authors came to the conclusion that BTA as a part of complex rehabilitation in patients with poststroke spasticity of lower extremity promotes treatment efficacy due to a decrease of muscle tone and increase of range of movements in the joints. BTA should be regarded as an essential part of standard rehabilitation programs. Further studies to define optimal muscles for intervention, BTA doses and rehabilitation schemes are still needed. 

  20. Why do females use botulinum toxin injections?

    Directory of Open Access Journals (Sweden)

    Carter Singh

    2015-01-01

    Full Text Available Background: Botulinum toxin (BT use for enhancing the facial features has become a commonly accepted form of aesthetic intervention. This study conducted a self-report survey of female BT users in order to explore the motivating factors in its use (cost-benefit analysis. Settings and Design: This is a cross-sectional exploratory pilot study. Materials and Methods: Self-report questionnaires were administered to 41 consecutive clients attending an independent medical practice for BT injections for cosmetic purposes. All the participants were females and represented a range of age groups from the 20s to above 60s. Items in the nonstandardized questionnaire elicited questions relating to the reasons for and against BT use. Statistical Analysis Used: Descriptive analysis was used rather than inferential statistics, and involved ranking the responses according to the most likely reasons for using BT and disadvantages of its use. Results: In general, the primary motivating factor for BT use was to improve self-esteem, and the greatest disadvantage involved financial costs associated with the procedure. Conclusions: The main findings of this study suggest that females who use BT for aesthetic purposes are motivated by personal psychological gains (intrapersonal attributes rather than social gains (interpersonal factors. In other words, they do not believe that having BT will equate to being treated any better by other people but would rather provide them with confidence and satisfaction regarding their self-image.

  1. Labile neurotoxin in serum of calves with "nervous" coccidiosis.

    Science.gov (United States)

    Isler, C M; Bellamy, J E; Wobeser, G A

    1987-01-01

    Mouse inoculation was used to test for the presence of a toxin in the serum, cerebrospinal fluid, and intestinal contents collected from cases of bovine enteric coccidiosis, with and without neurological signs, and from control calves. Intravenous inoculation of mice with 10 mL/kg of serum from calves showing nervous signs caused effects significantly different from those caused by the inoculation of serum from calves not showing nervous signs and from control calves. The effect was particularly evident in female mice. At this dosage severe neurological signs such as loss of righting reflex, seizures and death occurred only with serum from calves with "nervous coccidiosis". The results suggest that serum from the calves with neurological signs contains a neurotoxin. This toxin appears to be highly labile. It was not present in the cerebrospinal fluid at levels comparable to those in the serum. The significance of this labile neurotoxin with respect to the pathogenesis of the neurological signs associated with bovine enteric coccidiosis is unknown. PMID:2955865

  2. Investigation on neurotoxin of sea snail meat

    Directory of Open Access Journals (Sweden)

    Kumar Mohan

    2016-02-01

    Full Text Available Objective: To explore the neurotoxic agent tetramine and characterized with cytotoxicity studies from the chief constituents of sea food Trochus radiatus (T. radiatus and Thais rudolphi (T. rudolphi for coastal people of India. Methods: Extraction was performed by following the method of Hashizume et al. (1987 with apposite modification. The extracted aqueous layer was chromatographed on a column of diethylaminoethyl-Sephadex and Sephadex LH-20. To analysis the toxic compound of T. radiatus and T. rudolphi has been done by high performance thin layer chromatography, gas chromatography-mass spectrometer, and the spectral data was examined by Fourier transform infrared spectrum spectroscopy. The cytotoxicity studies of the purified samples were assessed by hemolytic assay, brine shrimp assay and 3-(4,5-Dimethylthiazol-2-yl-2,5- diphenyltetrazolium bromide – cell proliferation assay. Results: The tetramine content was estimated as 0.4 µg/g and 1.2µg/g respectively (w/w. The maximum haemolytic activity in T. rudolphi was found to be 256 haemolytic unit and 16 haemolytic unit in T. radiatus against human erythrocytes when compared to chicken erythrocytes. The samples exhibited lethality against brine shrimps at 60 and 7 µg/100 mL, respectively. The tetramine from T. rudolphi and T. radiatus showed 54.2% and 70.8% of cytotoxicity against human lymphocyte at 2 mg/ml concentration. Further in the cell morphology studies, cell showed condensed chromatin, cytoplasmic blubbing and detachment from the surface. Furthermore, the presence of tetramine was confirmed based on the Rf values and it was chemically identified as Tetramethylammonium chloride (Pub Chem CID: 6379 through the gas chromatography-mass spectrometer analysis. Conclusions: From the human health point of view, though the residue levels of N,N,N'- trimethyl-1,2-ethanediamine, Tetramethylammonium chloride and N,N-dimethylglycine detected in this study are well below the maximum residue

  3. A model for short alpha-neurotoxin bound to nicotinic acetylcholine receptor from Torpedo californica.

    Science.gov (United States)

    Mordvintsev, Dmitry Y; Polyak, Yakov L; Kuzmine, Dmitry A; Levtsova, Olga V; Tourleigh, Yegor V; Kasheverov, Igor E

    2006-01-01

    Short- and long-chain alpha-neurotoxins from snake venoms are potent blockers of nicotinic acetylcholine receptors (nAChRs). Short alpha-neurotoxins consist of 60-62 amino acid residues and include 4 disulfide bridges, whereas long alpha-neurotoxins have 66-75 residues and 5 disulfides. The spatial structure of these toxins is built by three loops, I-III "fingers," confined by four disulfide bridges; the fifth disulfide of long-chain alpha-neurotoxins is situated close to the tip of central loop II. An accurate knowledge of the mode of alpha-neurotoxin-nAChR interaction is important for rational design of new nAChR agonists and antagonists for medical purposes. Ideas on the topography of toxin-nAChR complexes were based until recently on nAChR interactions with selectively labeled alpha-neurotoxins, mutations in toxins, nAChR, or both. Recently, crystal structures have been solved for the Torpedo marmorata nAChR (4A[Unwin, 2005]) and for the acetylcholine-binding protein (AChBP) complexed with mollusk alpha-conotoxin (2.4 A[Celie et al., 2005]) or alpha-cobratoxin, long-chain alpha-neurotoxin (4 A [Bourne et al., 2005]). However, there were no angstrom-resolution models for complexes of short-chain alpha-neurotoxins. Here, we report the model of the Torpedo californica nAChR extracellular domain complexed to a short-chain alpha-neurotoxin II (NTII) from Naja oxiana cobra venom.

  4. Structure of peptide fragments of a cross-linked complex of [Lys(Abz)26]neurotoxin II from Naja naja oxiana with the nicotinic acetylcholine receptor from Torpedo californica

    International Nuclear Information System (INIS)

    Utkin, Yu.N.; Machold, J.; Franke, P.

    1994-01-01

    After irradiation of a complex of the nicotinic acetylcholine receptor (AChR) with iodinated [Lys(Abz) 26 ]neurotoxin II, the labeled δ-subunit of AChR was isolated, and it was cleaved with the aid of LysC endoproteinase, the hydrolysate being separated by rfHPLC. In a mass-spectrometric analysis of the radioactive fraction, the peptide of the δ-subunit (M r 2593) was detected. By purification of the radioactive rfHPLC fraction with the aid of electrophoresis in tricine gel, three radioactive bands were obtained (M ∼ 16, 10, and 8 kDa). Edman degradation gave for all of them the sequence of a fragment of the δ-subunit beginning from Phe 148 . On further cleavage of the radioactive fraction within the gel by the action of AspN proteinase, followed by rfHPLC, the radioactive peak was eluted under conditions close to those for the elution of the single radioactive peptide 30-44 obtained by the successive cleavage of the [ 125 I] neurotoxin II by LysC/AspN proteinases. This result shows the presence of the corresponding neurotoxin fragment in the sample in which the above-mentioned sequence of the receptor was detected. Since no sequences of the neurotoxin were detected in the radioactive products of the cross-linkages in model experiments at the picomolar level, neurotoxin II and its fragments were investigated by Edman degradation at the picomole level and so was the influence of the p-azidobenzyl group and its photoactivation on the degradation. On the whole, the sequencing of neurotoxin II and its fragments containing photolabeled and iodinated residues took place with extremely low initial yields; a further fall in the yields was observed on the degradation of irradiated Lys 26 -peptides. The results obtained explain the difficulties in the detection of the sequences of the neurotoxin in cross-linkage products available in amounts of only 10-20 pmole

  5. Botulinum toxin in cervical dystonia: low dosage with electromyographic guidance

    NARCIS (Netherlands)

    Brans, J. W.; de Boer, I. P.; Aramideh, M.; Ongerboer de Visser, B. W.; Speelman, J. D.

    1995-01-01

    Sixty patients with idiopathic cervical dystonia were treated a total of 240 times with botulinum toxin type A (BTA). Selected muscles were injected with BTA under electromyographic (EMG) guidance. The clinical effect was measured on the Tsui scale and a 10-point anchored visual analogue scale. A