WorldWideScience

Sample records for detect unlabeled inorganic

  1. Unlabeled probes for the detection and typing of herpes simplex virus.

    Science.gov (United States)

    Dames, Shale; Pattison, David C; Bromley, L Kathryn; Wittwer, Carl T; Voelkerding, Karl V

    2007-10-01

    Unlabeled probe detection with a double-stranded DNA (dsDNA) binding dye is one method to detect and confirm target amplification after PCR. Unlabeled probes and amplicon melting have been used to detect small deletions and single-nucleotide polymorphisms in assays where template is in abundance. Unlabeled probes have not been applied to low-level target detection, however. Herpes simplex virus (HSV) was chosen as a model to compare the unlabeled probe method to an in-house reference assay using dual-labeled, minor groove binding probes. A saturating dsDNA dye (LCGreen Plus) was used for real-time PCR. HSV-1, HSV-2, and an internal control were differentiated by PCR amplicon and unlabeled probe melting analysis after PCR. The unlabeled probe technique displayed 98% concordance with the reference assay for the detection of HSV from a variety of archived clinical samples (n = 182). HSV typing using unlabeled probes was 99% concordant (n = 104) to sequenced clinical samples and allowed for the detection of sequence polymorphisms in the amplicon and under the probe. Unlabeled probes and amplicon melting can be used to detect and genotype as few as 10 copies of target per reaction, restricted only by stochastic limitations. The use of unlabeled probes provides an attractive alternative to conventional fluorescence-labeled, probe-based assays for genotyping and detection of HSV and might be useful for other low-copy targets where typing is informative.

  2. Autonomic intrusion detection: Adaptively detecting anomalies over unlabeled audit data streams in computer networks

    KAUST Repository

    Wang, Wei; Guyet, Thomas; Quiniou, René ; Cordier, Marie-Odile; Masseglia, Florent; Zhang, Xiangliang

    2014-01-01

    In this work, we propose a novel framework of autonomic intrusion detection that fulfills online and adaptive intrusion detection over unlabeled HTTP traffic streams in computer networks. The framework holds potential for self-managing: self-labeling, self-updating and self-adapting. Our framework employs the Affinity Propagation (AP) algorithm to learn a subject’s behaviors through dynamical clustering of the streaming data. It automatically labels the data and adapts to normal behavior changes while identifies anomalies. Two large real HTTP traffic streams collected in our institute as well as a set of benchmark KDD’99 data are used to validate the framework and the method. The test results show that the autonomic model achieves better results in terms of effectiveness and efficiency compared to adaptive Sequential Karhunen–Loeve method and static AP as well as three other static anomaly detection methods, namely, k-NN, PCA and SVM.

  3. Autonomic intrusion detection: Adaptively detecting anomalies over unlabeled audit data streams in computer networks

    KAUST Repository

    Wang, Wei

    2014-06-22

    In this work, we propose a novel framework of autonomic intrusion detection that fulfills online and adaptive intrusion detection over unlabeled HTTP traffic streams in computer networks. The framework holds potential for self-managing: self-labeling, self-updating and self-adapting. Our framework employs the Affinity Propagation (AP) algorithm to learn a subject’s behaviors through dynamical clustering of the streaming data. It automatically labels the data and adapts to normal behavior changes while identifies anomalies. Two large real HTTP traffic streams collected in our institute as well as a set of benchmark KDD’99 data are used to validate the framework and the method. The test results show that the autonomic model achieves better results in terms of effectiveness and efficiency compared to adaptive Sequential Karhunen–Loeve method and static AP as well as three other static anomaly detection methods, namely, k-NN, PCA and SVM.

  4. Development and inter-laboratory validation of unlabeled probe melting curve analysis for detection of JAK2 V617F mutation in polycythemia vera.

    Science.gov (United States)

    Wu, Zhiyuan; Yuan, Hong; Zhang, Xinju; Liu, Weiwei; Xu, Jinhua; Zhang, Wei; Guan, Ming

    2011-01-01

    JAK2 V617F, a somatic point mutation that leads to constitutive JAK2 phosphorylation and kinase activation, has been incorporated into the WHO classification and diagnostic criteria of myeloid neoplasms. Although various approaches such as restriction fragment length polymorphism, amplification refractory mutation system and real-time PCR have been developed for its detection, a generic rapid closed-tube method, which can be utilized on routine genetic testing instruments with stability and cost-efficiency, has not been described. Asymmetric PCR for detection of JAK2 V617F with a 3'-blocked unlabeled probe, saturate dye and subsequent melting curve analysis was performed on a Rotor-Gene® Q real-time cycler to establish the methodology. We compared this method to the existing amplification refractory mutation systems and direct sequencing. Hereafter, the broad applicability of this unlabeled probe melting method was also validated on three diverse real-time systems (Roche LightCycler® 480, Applied Biosystems ABI® 7500 and Eppendorf Mastercycler® ep realplex) in two different laboratories. The unlabeled probe melting analysis could genotype JAK2 V617F mutation explicitly with a 3% mutation load detecting sensitivity. At level of 5% mutation load, the intra- and inter-assay CVs of probe-DNA heteroduplex (mutation/wild type) covered 3.14%/3.55% and 1.72%/1.29% respectively. The method could equally discriminate mutant from wild type samples on the other three real-time instruments. With a high detecting sensitivity, unlabeled probe melting curve analysis is more applicable to disclose JAK2 V617F mutation than conventional methodologies. Verified with the favorable inter- and intra-assay reproducibility, unlabeled probe melting analysis provided a generic mutation detecting alternative for real-time instruments.

  5. Development and inter-laboratory validation of unlabeled probe melting curve analysis for detection of JAK2 V617F mutation in polycythemia vera.

    Directory of Open Access Journals (Sweden)

    Zhiyuan Wu

    Full Text Available BACKGROUND: JAK2 V617F, a somatic point mutation that leads to constitutive JAK2 phosphorylation and kinase activation, has been incorporated into the WHO classification and diagnostic criteria of myeloid neoplasms. Although various approaches such as restriction fragment length polymorphism, amplification refractory mutation system and real-time PCR have been developed for its detection, a generic rapid closed-tube method, which can be utilized on routine genetic testing instruments with stability and cost-efficiency, has not been described. METHODOLOGY/PRINCIPAL FINDINGS: Asymmetric PCR for detection of JAK2 V617F with a 3'-blocked unlabeled probe, saturate dye and subsequent melting curve analysis was performed on a Rotor-Gene® Q real-time cycler to establish the methodology. We compared this method to the existing amplification refractory mutation systems and direct sequencing. Hereafter, the broad applicability of this unlabeled probe melting method was also validated on three diverse real-time systems (Roche LightCycler® 480, Applied Biosystems ABI® 7500 and Eppendorf Mastercycler® ep realplex in two different laboratories. The unlabeled probe melting analysis could genotype JAK2 V617F mutation explicitly with a 3% mutation load detecting sensitivity. At level of 5% mutation load, the intra- and inter-assay CVs of probe-DNA heteroduplex (mutation/wild type covered 3.14%/3.55% and 1.72%/1.29% respectively. The method could equally discriminate mutant from wild type samples on the other three real-time instruments. CONCLUSIONS: With a high detecting sensitivity, unlabeled probe melting curve analysis is more applicable to disclose JAK2 V617F mutation than conventional methodologies. Verified with the favorable inter- and intra-assay reproducibility, unlabeled probe melting analysis provided a generic mutation detecting alternative for real-time instruments.

  6. A Paper-Based Sandwich Format Hybridization Assay for Unlabeled Nucleic Acid Detection Using Upconversion Nanoparticles as Energy Donors in Luminescence Resonance Energy Transfer.

    Science.gov (United States)

    Zhou, Feng; Noor, M Omair; Krull, Ulrich J

    2015-09-24

    Bioassays based on cellulose paper substrates are gaining increasing popularity for the development of field portable and low-cost diagnostic applications. Herein, we report a paper-based nucleic acid hybridization assay using immobilized upconversion nanoparticles (UCNPs) as donors in luminescence resonance energy transfer (LRET). UCNPs with intense green emission served as donors with Cy3 dye as the acceptor. The avidin functionalized UCNPs were immobilized on cellulose paper and subsequently bioconjugated to biotinylated oligonucleotide probes. Introduction of unlabeled oligonucleotide targets resulted in a formation of probe-target duplexes. A subsequent hybridization of Cy3 labeled reporter with the remaining single stranded portion of target brought the Cy3 dye in close proximity to the UCNPs to trigger a LRET-sensitized emission from the acceptor dye. The hybridization assays provided a limit of detection (LOD) of 146.0 fmol and exhibited selectivity for one base pair mismatch discrimination. The assay was functional even in undiluted serum samples. This work embodies important progress in developing DNA hybridization assays on paper. Detection of unlabeled targets is achieved using UCNPs as LRET donors, with minimization of background signal from paper substrates owing to the implementation of low energy near-infrared (NIR) excitation.

  7. Minimizing the t1-noise when using an indirect 1H high-resolution detection of unlabeled samples.

    Science.gov (United States)

    Shen, M; Wegner, S; Trébosc, J; Hu, B; Lafon, O; Amoureux, J P

    2017-10-01

    The most utilized through-space correlation 1 H-{X} methods with proton indirect detection use two consecutive transfers, 1 H → X and then X →  1 H, with the evolution time t 1 in the middle. When the X isotope is not 100% naturally abundant (NA), only the signal of the protons close to these isotopes is modulated by the 1 H-X dipolar interactions. This signal is theoretically disentangled with phase-cycling from the un-modulated one. However, this separation is never perfect and it may lead to t 1 -noise in case of isotopes with very small NA, such as 13 C or even worse 15 N. One way to reduce this t 1 -noise is to minimize, 'purge', during t 1 the un-modulated 1 H magnetization before trying to suppress it with phase-cycling. We analyze experimentally several sequences following the HORROR condition, which allow purging the 1 H transverse magnetization. The comparison is made at three spinning speeds, including very fast ones for 1 H resolution: 27.75, 55.5 and 111 kHz. We show (i) that the efficiency of this purging process increases with the spinning speed, and (ii) that the best recoupling sequences are the two simplest ones: XY and S 1  = SR2 1 2 . We then compare the S/N that can be achieved with the two most used 1 H-{X} 2D methods, called D-HMQC and CP-CP. The only difference in between these two methods is that the transfers are done with either two π/2-pulses on X channel (D-HMQC), or two Cross-Polarization (CP) transfers (CP-CP). The first method, D-HMQC, is very robust and should be preferred when indirectly detecting nuclei with high NA. The second method, CP-CP, (i) requires experimental precautions to limit the t 1 -noise, and (ii) is difficult to use with quadrupolar nuclei because the two CP transfers are then not efficient nor robust. However, CP-CP is presently the best method to indirectly detect isotopes with small NA, such as 13 C and 15 N. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Using Unlabeled Data to Improve Text Classification

    National Research Council Canada - National Science Library

    Nigam, Kamal P

    2001-01-01

    .... This dissertation demonstrates that supervised learning algorithms that use a small number of labeled examples and many inexpensive unlabeled examples can create high-accuracy text classifiers...

  9. Enhancement of breast CADx with unlabeled data.

    Science.gov (United States)

    Jamieson, Andrew R; Giger, Maryellen L; Drukker, Karen; Pesce, Lorenzo L

    2010-08-01

    Unlabeled medical image data are abundant, yet the process of converting them into a labeled ("truth-known") database is time and resource expensive and fraught with ethical and logistics issues. The authors propose a dual-stage CADx scheme in which both labeled and unlabeled (truth-known and "truth-unknown") data are used. This study is an initial exploration of the potential for leveraging unlabeled data toward enhancing breast CADx. From a labeled ultrasound image database consisting of 1126 lesions with an empirical cancer prevalence of 14%, 200 different randomly sampled subsets were selected and the truth status of a variable number of cases was masked to the algorithm to mimic different types of labeled and unlabeled data sources. The prevalence was fixed at 50% cancerous for the labeled data and 5% cancerous for the unlabeled. In the first stage of the dual-stage CADx scheme, the authors term "transductive dimension reduction regularization" (TDR-R), both labeled and unlabeled images characterized by extracted lesion features were combined using dimension reduction (DR) techniques and mapped to a lower-dimensional representation. (The first stage ignored truth status therefore was an unsupervised algorithm.) In the second stage, the labeled data from the reduced dimension embedding were used to train a classifier toward estimating the probability of malignancy. For the first CADx stage, the authors investigated three DR approaches: Laplacian eigen-maps, t-distributed stochastic neighbor embedding (t-SNE), and principal component analysis. For the TDR-R methods, the classifier in the second stage was a supervised (i.e., utilized truth) Bayesian neural net. The dual-stage CADx schemes were compared to a single-stage scheme based on manifold regularization (MR) in a semisupervised setting via the LapSVM algorithm. Performance in terms of areas under the ROC curve (AUC) of the CADx schemes was evaluated in leave-one-out and .632+ bootstrap analyses on a by

  10. Efficient use of unlabeled data for protein sequence classification: a comparative study.

    Science.gov (United States)

    Kuksa, Pavel; Huang, Pai-Hsi; Pavlovic, Vladimir

    2009-04-29

    Recent studies in computational primary protein sequence analysis have leveraged the power of unlabeled data. For example, predictive models based on string kernels trained on sequences known to belong to particular folds or superfamilies, the so-called labeled data set, can attain significantly improved accuracy if this data is supplemented with protein sequences that lack any class tags-the unlabeled data. In this study, we present a principled and biologically motivated computational framework that more effectively exploits the unlabeled data by only using the sequence regions that are more likely to be biologically relevant for better prediction accuracy. As overly-represented sequences in large uncurated databases may bias the estimation of computational models that rely on unlabeled data, we also propose a method to remove this bias and improve performance of the resulting classifiers. Combined with state-of-the-art string kernels, our proposed computational framework achieves very accurate semi-supervised protein remote fold and homology detection on three large unlabeled databases. It outperforms current state-of-the-art methods and exhibits significant reduction in running time. The unlabeled sequences used under the semi-supervised setting resemble the unpolished gemstones; when used as-is, they may carry unnecessary features and hence compromise the classification accuracy but once cut and polished, they improve the accuracy of the classifiers considerably.

  11. Sensitive optical biosensors for unlabeled targets: A review

    International Nuclear Information System (INIS)

    Fan Xudong; White, Ian M.; Shopova, Siyka I.; Zhu Hongying; Suter, Jonathan D.; Sun Yuze

    2008-01-01

    This article reviews the recent progress in optical biosensors that use the label-free detection protocol, in which biomolecules are unlabeled or unmodified, and are detected in their natural forms. In particular, it will focus on the optical biosensors that utilize the refractive index change as the sensing transduction signal. Various optical label-free biosensing platforms will be introduced, including, but not limited to, surface plasmon resonance, interferometers, waveguides, fiber gratings, ring resonators, and photonic crystals. Emphasis will be given to the description of optical structures and their respective sensing mechanisms. Examples of detecting various types of biomolecules will be presented. Wherever possible, the sensing performance of each optical structure will be evaluated and compared in terms of sensitivity and detection limit

  12. Use of Unlabeled Samples for Mitigating the Hughes Phenomenon

    Science.gov (United States)

    Landgrebe, David A.; Shahshahani, Behzad M.

    1993-01-01

    The use of unlabeled samples in improving the performance of classifiers is studied. When the number of training samples is fixed and small, additional feature measurements may reduce the performance of a statistical classifier. It is shown that by using unlabeled samples, estimates of the parameters can be improved and therefore this phenomenon may be mitigated. Various methods for using unlabeled samples are reviewed and experimental results are provided.

  13. Bidirectional Active Learning: A Two-Way Exploration Into Unlabeled and Labeled Data Set.

    Science.gov (United States)

    Zhang, Xiao-Yu; Wang, Shupeng; Yun, Xiaochun

    2015-12-01

    In practical machine learning applications, human instruction is indispensable for model construction. To utilize the precious labeling effort effectively, active learning queries the user with selective sampling in an interactive way. Traditional active learning techniques merely focus on the unlabeled data set under a unidirectional exploration framework and suffer from model deterioration in the presence of noise. To address this problem, this paper proposes a novel bidirectional active learning algorithm that explores into both unlabeled and labeled data sets simultaneously in a two-way process. For the acquisition of new knowledge, forward learning queries the most informative instances from unlabeled data set. For the introspection of learned knowledge, backward learning detects the most suspiciously unreliable instances within the labeled data set. Under the two-way exploration framework, the generalization ability of the learning model can be greatly improved, which is demonstrated by the encouraging experimental results.

  14. Quantification of isotope-labelled and unlabelled folates in plasma, ileostomy and food samples.

    Science.gov (United States)

    Büttner, Barbara E; Öhrvik, Veronica E; Witthöft, Cornelia M; Rychlik, Michael

    2011-01-01

    New stable isotope dilution assays were developed for the simultaneous quantitation of [(13)C(5)]-labelled and unlabelled 5-methyltetrahydrofolic acid, 5-formyltetrahydrofolic acid, folic acid along with unlabelled tetrahydrofolic acid and 10-formylfolic acid in clinical samples deriving from human bioavailability studies, i.e. plasma, ileostomy samples, and food. The methods were based on clean-up by strong anion exchange followed by LC-MS/MS detection. Deuterated analogues of the folates were applied as the internal standards in the stable isotope dilution assays. Assay sensitivity was sufficient to detect all relevant folates in the respective samples as their limits of detection were below 0.62 nmol/L in plasma and below 0.73 μg/100 g in food or ileostomy samples. Quantification of the [(13)C(5)]-label in clinical samples offers the possibility to differentiate between folate from endogenous body pools and the administered dose when executing bioavailability trials.

  15. Simultaneous determination of inorganic anions and cations by supercritical fluid chromatography using evaporative light scattering detection.

    Science.gov (United States)

    Foulon, Catherine; Di Giulio, Pauline; Lecoeur, Marie

    2018-01-26

    Supercritical fluid chromatography (SFC) is commonly used for the analysis of non-polar compounds, but remains poorly explored for the separation of polar and ionized molecules. In this paper, SFC has been investigated for the separation of 14 inorganic ions sampled in aqueous solutions. Four polar stationary phases were first screened using CO 2 -methanol-based mobile phases containing water or different acidic or basic additives, in order to select the most efficient conditions for the simultaneous retention of inorganic cations and anions and to favor their detection using evaporative light scattering detector (ELSD). Orthogonal selectivity was obtained depending on the stationary phase used: whereas anions are less retained on HILIC stationary phase, 2-ethylpyridine (2-EP) stationary phase exhibits strong interaction for anions. Best results were obtained under gradient elution mode using a 2-EP stationary phase and by adding 0.2% triethylamine in the CO 2 -methanol-based mobile phase. The composition of the injection solvent was also investigated. The results showed that a methanolic sample containing a percentage of water not exceeding 20% does not affect the analytical performances obtained on 2-EP. Moreover, the presence of triethylamine in the injection solvent contributes to eliminate peaks shoulders. Among the 14 inorganic ions tested, three cations (Li + , Ca 2+ and Mg 2+ ) and five anions (Cl - , Br - , NO 3 - , I - , SCN - ) were totally resolved in 15 min. NO 3 - and NO 2 - still coeluted in the final optimized conditions. The other investigated ions were either strongly retained on the stationary phase or not detected by the ELSD. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. In-source collision induced dissociation of inorganic explosives for mass spectrometric signature detection and chemical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, Thomas P., E-mail: thomas.forbes@nist.gov; Sisco, Edward

    2015-09-10

    The trace detection, bulk quantification, and chemical imaging of inorganic explosives and components was demonstrated utilizing in-source collision induced dissociation (CID) coupled with laser desorption/ionization mass spectrometry (LDI-MS). The incorporation of in-source CID provided direct control over the extent of adduct and cluster fragmentation as well as organic noise reduction for the enhanced detection of both the elemental and molecular ion signatures of fuel-oxidizer mixtures and other inorganic components of explosive devices. Investigation of oxidizer molecular anions, specifically, nitrates, chlorates, and perchlorates, identified that the optimal in-source CID existed at the transition between fragmentation of the ionic salt bonds and molecular anion bonds. The chemical imaging of oxidizer particles from latent fingerprints was demonstrated, including both cation and anion components in positive and negative mode mass spectrometry, respectively. This investigation demonstrated LDI-MS with in-source CID as a versatile tool for security fields, as well as environmental monitoring and nuclear safeguards, facilitating the detection of elemental and molecular inorganic compounds at nanogram levels. - Highlights: • In-source CID enhanced detection of elemental inorganics up to 1000-fold. • In-source CID optimization of polyatomic oxidizers enhanced detection up to 100-fold. • Optimal CID identified at transition from breaking ionic salt to molecular anion bonds. • Trace detection of inorganic explosives at nanogram levels was demonstrated. • Oxidizer particles were chemically imaged directly from latent fingerprints.

  17. Active learning in the presence of unlabelable examples

    Science.gov (United States)

    Mazzoni, Dominic; Wagstaff, Kiri

    2004-01-01

    We propose a new active learning framework where the expert labeler is allowed to decline to label any example. This may be necessary because the true label is unknown or because the example belongs to a class that is not part of the real training problem. We show that within this framework, popular active learning algorithms (such as Simple) may perform worse than random selection because they make so many queries to the unlabelable class. We present a method by which any active learning algorithm can be modified to avoid unlabelable examples by training a second classifier to distinguish between the labelable and unlabelable classes. We also demonstrate the effectiveness of the method on two benchmark data sets and a real-world problem.

  18. Enhancement of breast CADx with unlabeled data1

    Science.gov (United States)

    Jamieson, Andrew R.; Giger, Maryellen L.; Drukker, Karen; Pesce, Lorenzo L.

    2010-01-01

    Purpose: Unlabeled medical image data are abundant, yet the process of converting them into a labeled (“truth-known”) database is time and resource expensive and fraught with ethical and logistics issues. The authors propose a dual-stage CADx scheme in which both labeled and unlabeled (truth-known and “truth-unknown”) data are used. This study is an initial exploration of the potential for leveraging unlabeled data toward enhancing breast CADx. Methods: From a labeled ultrasound image database consisting of 1126 lesions with an empirical cancer prevalence of 14%, 200 different randomly sampled subsets were selected and the truth status of a variable number of cases was masked to the algorithm to mimic different types of labeled and unlabeled data sources. The prevalence was fixed at 50% cancerous for the labeled data and 5% cancerous for the unlabeled. In the first stage of the dual-stage CADx scheme, the authors term “transductive dimension reduction regularization” (TDR-R), both labeled and unlabeled images characterized by extracted lesion features were combined using dimension reduction (DR) techniques and mapped to a lower-dimensional representation. (The first stage ignored truth status therefore was an unsupervised algorithm.) In the second stage, the labeled data from the reduced dimension embedding were used to train a classifier toward estimating the probability of malignancy. For the first CADx stage, the authors investigated three DR approaches: Laplacian eigenmaps, t-distributed stochastic neighbor embedding (t-SNE), and principal component analysis. For the TDR-R methods, the classifier in the second stage was a supervised (i.e., utilized truth) Bayesian neural net. The dual-stage CADx schemes were compared to a single-stage scheme based on manifold regularization (MR) in a semisupervised setting via the LapSVM algorithm. Performance in terms of areas under the ROC curve (AUC) of the CADx schemes was evaluated in leave-one-out and .632

  19. Hybrid inorganic/organic photonic crystal biochips for cancer biomarkers detection

    Science.gov (United States)

    Sinibaldi, Alberto; Danz, Norbert; Munzert, Peter; Michelotti, Francesco

    2018-06-01

    We report on hybrid inorganic/organic one-dimensional photonic crystal biochips sustaining Bloch surface waves. The biochips were used, together with an optical platform operating in a label-free and fluorescence configuration simultaneously, to detect the cancer biomarker Angiopoietin 2 in a protein base buffer. The hybrid photonic crystals embed in their geometry a thin functionalization poly-acrylic acid layer deposited by plasma polymerization, which is used to immobilize a monoclonal antibody for highly specific biological recognition. The fluorescence operation mode is described in detail, putting into evidence the role of field enhancement and localization at the photonic crystal surface in the shaping and intensification of the angular fluorescence pattern. In the fluorescence operation mode, the hybrid biochips can attain the limit of detection 6 ng/ml.

  20. Radiation Detection and Classification of Heavy Oxide Inorganic Scintillator Crystals for Detection of Fast Neutrons

    Science.gov (United States)

    2016-06-01

    response, diffuse source, collimated source 15. NUMBER OF PAGES 101 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18...protecting the homeland, building security globally, and projecting power and winning decisively [1]. Nuclear material detection is embedded in two...detection. According to Glasstone and Dolan [4] as well as numerous other experts, there are fundamentally three isotopes that could practically be used

  1. Personalized Resource Recommendations using Learning from Positive and Unlabeled Examples

    Directory of Open Access Journals (Sweden)

    Priyank Thakkar

    2016-08-01

    Full Text Available This paper proposes a novel approach for recommending social resources using learning from positive and unlabeled examples. Bookmarks submitted on social bookmarking system delicious1 and artists on online music system last.fm2 are considered as social resources. The foremost feature of this problem is that there are no labeled negative resources/examples available for learning a recommender/classifier. The memory based collaborative filtering has served as the most widely used algorithm for social resource recommendation. However, its predictions are based on some ad hoc heuristic rules and its success depends on the availability of a critical mass of users. This paper proposes model based two-step techniques to learn a classifier using positive and unlabeled examples to address personalized resource recommendations. In the first step of these techniques, naïve Bayes classifier is employed to identify reliable negative resources. In the second step, to generate effective resource recommender, classification and regression tree and least square support vector machine (LS-SVM are exercised. A direct method based on LS-SVM is also put forward to realize the recommendation task. LS-SVM is customized for learning from positive and unlabeled data. Furthermore, the impact of feature selection on our proposed techniques is also studied. Memory based collaborative filtering as well as our proposed techniques exploit usage data to generate personalized recommendations. Experimental results show that the proposed techniques outperform existing method appreciably.

  2. Inorganic nanoparticles and the immune system: detection, selective activation and tolerance

    Science.gov (United States)

    Bastús, Neus G.; Sánchez-Tilló, Ester; Pujals, Silvia; Comenge, Joan; Giralt, Ernest; Celada, Antonio; Lloberas, Jorge; Puntes, Victor F.

    2012-03-01

    The immune system is the responsible for body integrity and prevention of external invasion. On one side, nanoparticles are no triggers that the immune system is prepared to detect, on the other side it is known that foreign bodies, not only bacteria, viruses and parasites, but also inorganic matter, can cause various pathologies such as silicosis, asbestosis or inflammatory reactions. Therefore, nanoparticles entering the body, after interaction with proteins, will be either recognized as self-agents or detected by the immune system, encompassing immunostimulation or immunosuppression responses. The nature of these interactions seems to be dictated not specially by the composition of the material but by modifications of NP coating (composition, surface charge and structure). Herein, we explore the use of gold nanoparticles as substrates to carry multifunctional ligands to manipulate the immune system in a controlled manner, from undetection to immunostimulation. Murine bone marrow macrophages can be activated with artificial nanometric objects consisting of a gold nanoparticle functionalized with peptides. In the presence of some conjugates, macrophage proliferation was stopped and pro-inflammatory cytokines were induced. The biochemical type of response depended on the type of conjugated peptide and was correlated with the degree of ordering in the peptide coating. These findings help to illustrate the basic requirements involved in medical NP conjugate design to either activate the immune system or hide from it, in order to reach their targets before being removed by phagocytes. Additionally, it opens up the possibility to modulate the immune response in order to suppress unwanted responses resulting from autoimmunity, or allergy or to stimulate protective responses against pathogens.

  3. Positive-Unlabeled Learning for Pupylation Sites Prediction

    Directory of Open Access Journals (Sweden)

    Ming Jiang

    2016-01-01

    Full Text Available Pupylation plays a key role in regulating various protein functions as a crucial posttranslational modification of prokaryotes. In order to understand the molecular mechanism of pupylation, it is important to identify pupylation substrates and sites accurately. Several computational methods have been developed to identify pupylation sites because the traditional experimental methods are time-consuming and labor-sensitive. With the existing computational methods, the experimentally annotated pupylation sites are used as the positive training set and the remaining nonannotated lysine residues as the negative training set to build classifiers to predict new pupylation sites from the unknown proteins. However, the remaining nonannotated lysine residues may contain pupylation sites which have not been experimentally validated yet. Unlike previous methods, in this study, the experimentally annotated pupylation sites were used as the positive training set whereas the remaining nonannotated lysine residues were used as the unlabeled training set. A novel method named PUL-PUP was proposed to predict pupylation sites by using positive-unlabeled learning technique. Our experimental results indicated that PUL-PUP outperforms the other methods significantly for the prediction of pupylation sites. As an application, PUL-PUP was also used to predict the most likely pupylation sites in nonannotated lysine sites.

  4. Efficient in situ growth of enzyme-inorganic hybrids on paper strips for the visual detection of glucose.

    Science.gov (United States)

    Li, WanYun; Lu, ShiYu; Bao, ShuJuan; Shi, ZhuanZhuan; Lu, Zhisong; Li, ChangMing; Yu, Ling

    2018-01-15

    A visual colorimetric microfluidic paper-based analytical device (μPAD) was constructed following the direct synthesis of enzyme-inorganic hybrid nanomaterials on the paper matrix. An inorganic solution of MnSO 4 and KH 2 PO 4 containing a diluted enzyme (glucose oxidase, GOx) was subsequently pipetted onto cellulose paper for the in situ growth of GOx@Mn 3 (PO 4 ) 2 hybrid functional materials. The characterization of the morphology and chemical composition validated the presence of hybrid materials roots in the paper fiber, while the Mn 3 (PO 4 ) 2 of the hybrid provided both a surface for enzyme anchoring and a higher peroxidase-like catalytic activity as compared to the Mn 3 (PO 4 ) 2 crystal that was synthesized without enzyme modulation. This new approach for the in situ growth of an enzyme-inorganic hybrid on a paper matrix eliminates centrifugation and the dry process by casting the solution on paper. The sensing material loading was highly reproducible because of the accuracy and stability of pipetting, which eventually contributed to the reliability of the μPAD. The self-assembled natural and artificial enzyme hybrid on the μPADs specifically detected glucose from a group of interferences, which shows great specificity using this method. Moreover, the colorimetric signal exhibited detection limitation for glucose is 0.01mM, which lies in the physiological range of glucose in biological samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Learning gene regulatory networks from only positive and unlabeled data

    Directory of Open Access Journals (Sweden)

    Elkan Charles

    2010-05-01

    Full Text Available Abstract Background Recently, supervised learning methods have been exploited to reconstruct gene regulatory networks from gene expression data. The reconstruction of a network is modeled as a binary classification problem for each pair of genes. A statistical classifier is trained to recognize the relationships between the activation profiles of gene pairs. This approach has been proven to outperform previous unsupervised methods. However, the supervised approach raises open questions. In particular, although known regulatory connections can safely be assumed to be positive training examples, obtaining negative examples is not straightforward, because definite knowledge is typically not available that a given pair of genes do not interact. Results A recent advance in research on data mining is a method capable of learning a classifier from only positive and unlabeled examples, that does not need labeled negative examples. Applied to the reconstruction of gene regulatory networks, we show that this method significantly outperforms the current state of the art of machine learning methods. We assess the new method using both simulated and experimental data, and obtain major performance improvement. Conclusions Compared to unsupervised methods for gene network inference, supervised methods are potentially more accurate, but for training they need a complete set of known regulatory connections. A supervised method that can be trained using only positive and unlabeled data, as presented in this paper, is especially beneficial for the task of inferring gene regulatory networks, because only an incomplete set of known regulatory connections is available in public databases such as RegulonDB, TRRD, KEGG, Transfac, and IPA.

  6. UNLABELED SELECTED SAMPLES IN FEATURE EXTRACTION FOR CLASSIFICATION OF HYPERSPECTRAL IMAGES WITH LIMITED TRAINING SAMPLES

    Directory of Open Access Journals (Sweden)

    A. Kianisarkaleh

    2015-12-01

    Full Text Available Feature extraction plays a key role in hyperspectral images classification. Using unlabeled samples, often unlimitedly available, unsupervised and semisupervised feature extraction methods show better performance when limited number of training samples exists. This paper illustrates the importance of selecting appropriate unlabeled samples that used in feature extraction methods. Also proposes a new method for unlabeled samples selection using spectral and spatial information. The proposed method has four parts including: PCA, prior classification, posterior classification and sample selection. As hyperspectral image passes these parts, selected unlabeled samples can be used in arbitrary feature extraction methods. The effectiveness of the proposed unlabeled selected samples in unsupervised and semisupervised feature extraction is demonstrated using two real hyperspectral datasets. Results show that through selecting appropriate unlabeled samples, the proposed method can improve the performance of feature extraction methods and increase classification accuracy.

  7. The use of x-ray fluorescence in the detection of inorganic elements in medicines drugs

    International Nuclear Information System (INIS)

    Freitas, Tatiana Pereira da Silva de; Ricci Junior, Eduardo; Zucchi, Orgheda Luiza Araujo Domingues

    1997-01-01

    Based on the instrumental wavelength dispersive X-ray fluorescence technique of analysis (W D-X R F), the inorganic elements in four samples of commercial medicines drugs were analyzed. The samples were used without any chemical separation of the elements or chemical pre-treatment. Eleven elements could be identified, namely Si, P, S, Cl, K, Ca, Ti, Mn, Fe, Cu and Zn. However, Si, Ti and Mn have not been mentioned in the printed instructions for the use of the medicines drugs by the producers. (author)

  8. Scintillating Organic–Inorganic Layered Perovskite-type Compounds and the Gamma-ray Detection Capabilities

    OpenAIRE

    Kawano, Naoki; Koshimizu, Masanori; Okada, Go; Fujimoto, Yutaka; Kawaguchi, Noriaki; Yanagida, Takayuki; Asai, Keisuke

    2017-01-01

    We investigated scintillation properties of organic–inorganic layered perovskite-type compounds under gamma-ray and X-ray irradiation. A crystal of the hybrid compounds with phenethyl amine (17 × 23 × 4 mm) was successfully fabricated by the poor-solvent diffusion method. The bulk sample showed superior scintillation properties with notably high light yield (14,000 photons per MeV) under gamma-rays and very fast decay time (11 ns). The light yield was about 1.4 time higher than that of common...

  9. A Novel Method for Detection of Phosphorylation in Single Cells by Surface Enhanced Raman Scattering (SERS) using Composite Organic-Inorganic Nanoparticles (COINs)

    OpenAIRE

    Shachaf, Catherine M.; Elchuri, Sailaja V.; Koh, Ai Leen; Zhu, Jing; Nguyen, Lienchi N.; Mitchell, Dennis J.; Zhang, Jingwu; Swartz, Kenneth B.; Sun, Lei; Chan, Selena; Sinclair, Robert; Nolan, Garry P.

    2009-01-01

    Background Detection of single cell epitopes has been a mainstay of immunophenotyping for over three decades, primarily using fluorescence techniques for quantitation. Fluorescence has broad overlapping spectra, limiting multiplexing abilities. Methodology/Principal Findings To expand upon current detection systems, we developed a novel method for multi-color immuno-detection in single cells using ?Composite Organic-Inorganic Nanoparticles? (COINs) Raman nanoparticles. COINs are Surface-Enhan...

  10. Study of the determination of inorganic arsenic species by CE with capacitively coupled contactless conductivity detection

    Czech Academy of Sciences Publication Activity Database

    Nguyen, H. T. A.; Kubáň, Pavel; Pham, V. H.; Hauser, P.C.

    2007-01-01

    Roč. 28, č. 19 (2007), s. 3500-3506 ISSN 0173-0835 Institutional research plan: CEZ:AV0Z40310501 Keywords : capillary electrophoresis * arsenic speciation * contactless conductivity detection Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.609, year: 2007

  11. Detection of Nonvolatile Inorganic Oxidizer-Based Explosives from Wipe Collections by Infrared Thermal Desorption-Direct Analysis in Real Time Mass Spectrometry.

    Science.gov (United States)

    Forbes, Thomas P; Sisco, Edward; Staymates, Matthew

    2018-05-07

    Infrared thermal desorption (IRTD) was coupled with direct analysis in real time mass spectrometry (DART-MS) for the detection of both inorganic and organic explosives from wipe collected samples. This platform generated discrete and rapid heating rates that allowed volatile and semivolatile organic explosives to thermally desorb at relatively lower temperatures, while still achieving elevated temperatures required to desorb nonvolatile inorganic oxidizer-based explosives. IRTD-DART-MS demonstrated the thermal desorption and detection of refractory potassium chlorate and potassium perchlorate oxidizers, compounds difficult to desorb with traditional moderate-temperature resistance-based thermal desorbers. Nanogram to sub-nanogram sensitivities were established for analysis of a range of organic and inorganic oxidizer-based explosive compounds, with further enhancement limited by the thermal properties of the most common commercial wipe materials. Detailed investigations and high-speed visualization revealed conduction from the heated glass-mica base plate as the dominant process for heating of the wipe and analyte materials, resulting in thermal desorption through boiling, aerosolization, and vaporization of samples. The thermal desorption and ionization characteristics of the IRTD-DART technique resulted in optimal sensitivity for the formation of nitrate adducts with both organic and inorganic species. The IRTD-DART-MS coupling and IRTD in general offer promising explosive detection capabilities to the defense, security, and law enforcement arenas.

  12. Bystander responses in three-dimensional cultures containing radiolabelled and unlabelled human cells

    International Nuclear Information System (INIS)

    Pinto, M.; Azzam, E. I.; Howell, R. W.

    2006-01-01

    Research on the radiation-induced bystander effect has been carried out mainly in 2-D tissue culture systems. This study uses a 3-D model, wherein apparently normal human diploid fibroblasts (AG1522) are grown in a carbon scaffold, to investigate the induction of a G 1 checkpoint in bystander cells present alongside radiolabelled cells. Cultures were simultaneously pulse-labelled with 3 H-deoxycytidine ( 3 HdC) to selectively irradiate a minor fraction of cells, and bromodeoxyuridine (BrdU) to identify the radiolabelled cells. After thorough washing of cultures, iododeoxyuridine (IdU) was administered to detect proliferating bystander cells. The cultures were harvested at various times thereafter, and cells were reacted with two monoclonal antibodies specific to IdU/BrdU or BrdU, respectively, stained with propidium iodide, and subjected to multi-parameter flow cytometry. Cell-cycle progression was followed in radiolabelled cells (BrdU + ) that were chronically irradiated by low energy beta particles emitted by DNA-incorporated 3 H, and in unlabelled bystander cells (BrdU - ) by a flow cytometry based cumulative labelling index assay. As expected, radiolabelled cells were delayed, in a dose-dependent manner, in G 2 and subsequently G 1 . No delay occurred in progression of bystander cells through G 1 , when the labelled cells were irradiated at dose rates up to 0.32 Gy h -1 . (authors)

  13. Optimization of detection system based on inorganic scintillation crystal coupled with a long lightguide

    CERN Document Server

    Globus, M; Ratner, M

    2002-01-01

    Operation characteristics of a scintillation crystal, linked with the photomultiplier by a long transparent lightguide, are considered (such detection systems are used for monitoring the seawater pollution, scintillation measurements in magnetic field, etc.). This system is optimized with respect to the refractive index of the liquid, coupling the crystal with the lightguide, and the roughness degree of the crystal surface. It is shown that the energy resolution of the system can be significantly improved by using the coupling liquid with a refractive index somewhat less than that of the lightguide (a difference of about 0.2 is optimal). Light output and especially energy resolution becomes better with an increase of the roughness degree of the reflecting surface.

  14. Effect of unlabelled monoclonal antibody (MoAb) on biodistribution of /sup 111/Indium labelled (MoAb)

    Energy Technology Data Exchange (ETDEWEB)

    Lamki, L M; Murray, J L; Rosenblum, M G; Patt, Y Z; Babaian, Richard; Unger, M W

    1988-08-01

    We have evaluated immunoscintigraphy in cancer patients using four /sup 111/In-labelled murine monoclonal antibodies (MoAb): 96.5 (anti-P97 of melanoma), ZME-018 (anti-high molecular weight antibody of melanoma), ZCE-025 (anti-CEA for colon cancer) and PAY-276 (anti-prostatic acid phosphatase for prostatic cancer). The effect of increasing the doses of unlabelled MoAb (co-infused with 1 mg labelled MoAb) on the relative body distribution of each labelled MoAb was assessed. Localization in the liver decreased significantly in all cases, with increasing MoAb dose, except for ZME-018. Localization in other organs increased significantly as the liver activity decreased. The spleen activity, however, fell in the case of MoAb ZME-018. Blood-pool activity increased with MoAb dose in all four MoAbs. These findings correlated with the rise in the detection rate of metastases, the plasma half-life, and other pharmacokinetic parameters. However, the dose level at which this correlation occurred varied with each antibody. These data demonstrate the co-infusion of unlabelled MoAb with /sup 111/In-labelled MoAb could alter the organ distribution, pharmacokinetics and tumour uptake in a favourable manner, though the degree to which this occurs depends on the antibody in question.

  15. Statistical-mechanics analysis of Gaussian labeled-unlabeled classification problems

    International Nuclear Information System (INIS)

    Tanaka, Toshiyuki

    2013-01-01

    The labeled-unlabeled classification problem in semi-supervised learning is studied via statistical-mechanics approach. We analytically investigate performance of a learner with an equal-weight mixture of two symmetrically-located Gaussians, performing posterior mean estimation of the parameter vector on the basis of a dataset consisting of labeled and unlabeled data generated from the same probability model as that assumed by the learner. Under the assumption of replica symmetry, we have analytically obtained a set of saddle-point equations, which allows us to numerically evaluate performance of the learner. On the basis of the analytical result we have observed interesting phenomena, in particular the coexistence of good and bad solutions, which may happen when the number of unlabeled data is relatively large compared with that of labeled data

  16. Fast detection and characterization of organic and inorganic gunshot residues on the hands of suspects by CMV-GC-MS and LIBS.

    Science.gov (United States)

    Tarifa, Anamary; Almirall, José R

    2015-05-01

    A rapid method for the characterization of both organic and inorganic components of gunshot residues (GSR) is proposed as an alternative tool to facilitate the identification of a suspected shooter. In this study, two fast screening methods were developed and optimized for the detection of organic compounds and inorganic components indicative of GSR presence on the hands of shooters and non-shooters. The proposed methods consist of headspace extraction of volatile organic compounds using a capillary microextraction of volatiles (CMV) device previously reported as a high-efficiency sampler followed by detection by GC-MS. This novel sampling technique has the potential to yield fast results (LIBS) screening method for the detection of the inorganic components indicative of the presence of GSR (Sb, Pb and Ba) is described. The sampling method for the inorganics consists of liquid extraction of the target elements from the same cotton swabs (previously analyzed for VOCs) and an additional 30 swab samples followed by spiking 1μL of the extract solution onto a Teflon disk and then analyzed by LIBS. Advantages of LIBS include fast analysis (~12s per sample) and high selectivity and sensitivity, with expected LODs 0.1-18ng for each of the target elements after sampling. The analytical performance of the LIBS method is also compared to previously reported methods (inductively coupled plasma-optical emission spectroscopy). The combination of fast CMV sampling, unambiguous organic compound identification with GC-MS and fast LIBS analysis provides the basis for a new comprehensive screening method for GSR. Copyright © 2015 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Unlabelled and radioactive labelled derivatives of butylamino propiophenone and their preparation

    International Nuclear Information System (INIS)

    Findlay, J.W.A.; Butz, R.F.; Welch, R.M.

    1986-01-01

    This invention relates to new unlabelled and radioactive labelled derivatives of butylamino propiophenone and their preparation. This invention is primarily directed to a radioimmunoassay for clinical or experimental testing for the presence of and quantitation of bupropion, a pharmacologically active antidepressant compound, in biological fluids

  18. Discrimination of bromodeoxyuridine labelled and unlabelled mitotic cells in flow cytometric bromodeoxyuridine/DNA analysis

    DEFF Research Database (Denmark)

    Jensen, P O; Larsen, J K; Christensen, I J

    1994-01-01

    Bromodeoxyuridine (BrdUrd) labelled and unlabelled mitotic cells, respectively, can be discriminated from interphase cells using a new method, based on immunocytochemical staining of BrdUrd and flow cytometric four-parameter analysis of DNA content, BrdUrd incorporation, and forward and orthogona...

  19. Poisoning following exposure to chemicals stored in mislabelled or unlabelled containers: a recipe for potential disaster.

    Science.gov (United States)

    Millard, Yvette C; Slaughter, Robin J; Shieffelbien, Lucy M; Schep, Leo J

    2014-09-26

    To investigate poisoning exposures to chemicals that were unlabelled, mislabelled or not in their original containers in New Zealand over the last 10 years, based on calls to the New Zealand National Poisons Centre (NZNPC). Call data from the NZNPC between 2003 and 2012 were analysed retrospectively. Parameters reviewed included patient age, route and site of exposure, product classification and recommended intervention. Of the 324,411 calls received between 2003 and 2012, 100,465 calls were associated with acute human exposure to chemicals. There were 757 inquiries related to human exposure to mislabelled or unlabelled chemicals consisting of 0.75% of chemical exposures. Adults were involved in 51% of incidents, children, containers is a problem for all age groups. Although it represents a small proportion of total calls to the NZNPC it remains a potential risk for serious poisoning. It is important that chemicals are stored securely, in their original containers, and never stored in drinking vessels.

  20. Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data.

    Science.gov (United States)

    Sun, Wenqing; Tseng, Tzu-Liang Bill; Zhang, Jianying; Qian, Wei

    2017-04-01

    In this study we developed a graph based semi-supervised learning (SSL) scheme using deep convolutional neural network (CNN) for breast cancer diagnosis. CNN usually needs a large amount of labeled data for training and fine tuning the parameters, and our proposed scheme only requires a small portion of labeled data in training set. Four modules were included in the diagnosis system: data weighing, feature selection, dividing co-training data labeling, and CNN. 3158 region of interests (ROIs) with each containing a mass extracted from 1874 pairs of mammogram images were used for this study. Among them 100 ROIs were treated as labeled data while the rest were treated as unlabeled. The area under the curve (AUC) observed in our study was 0.8818, and the accuracy of CNN is 0.8243 using the mixed labeled and unlabeled data. Copyright © 2016. Published by Elsevier Ltd.

  1. Positive-unlabeled learning for the prediction of conformational B-cell epitopes

    Science.gov (United States)

    2015-01-01

    Background The incomplete ground truth of training data of B-cell epitopes is a demanding issue in computational epitope prediction. The challenge is that only a small fraction of the surface residues of an antigen are confirmed as antigenic residues (positive training data); the remaining residues are unlabeled. As some of these uncertain residues can possibly be grouped to form novel but currently unknown epitopes, it is misguided to unanimously classify all the unlabeled residues as negative training data following the traditional supervised learning scheme. Results We propose a positive-unlabeled learning algorithm to address this problem. The key idea is to distinguish between epitope-likely residues and reliable negative residues in unlabeled data. The method has two steps: (1) identify reliable negative residues using a weighted SVM with a high recall; and (2) construct a classification model on the positive residues and the reliable negative residues. Complex-based 10-fold cross-validation was conducted to show that this method outperforms those commonly used predictors DiscoTope 2.0, ElliPro and SEPPA 2.0 in every aspect. We conducted four case studies, in which the approach was tested on antigens of West Nile virus, dihydrofolate reductase, beta-lactamase, and two Ebola antigens whose epitopes are currently unknown. All the results were assessed on a newly-established data set of antigen structures not bound by antibodies, instead of on antibody-bound antigen structures. These bound structures may contain unfair binding information such as bound-state B-factors and protrusion index which could exaggerate the epitope prediction performance. Source codes are available on request. PMID:26681157

  2. Effectively identifying compound-protein interactions by learning from positive and unlabeled examples.

    Science.gov (United States)

    Cheng, Zhanzhan; Zhou, Shuigeng; Wang, Yang; Liu, Hui; Guan, Jihong; Chen, Yi-Ping Phoebe

    2016-05-18

    Prediction of compound-protein interactions (CPIs) is to find new compound-protein pairs where a protein is targeted by at least a compound, which is a crucial step in new drug design. Currently, a number of machine learning based methods have been developed to predict new CPIs in the literature. However, as there is not yet any publicly available set of validated negative CPIs, most existing machine learning based approaches use the unknown interactions (not validated CPIs) selected randomly as the negative examples to train classifiers for predicting new CPIs. Obviously, this is not quite reasonable and unavoidably impacts the CPI prediction performance. In this paper, we simply take the unknown CPIs as unlabeled examples, and propose a new method called PUCPI (the abbreviation of PU learning for Compound-Protein Interaction identification) that employs biased-SVM (Support Vector Machine) to predict CPIs using only positive and unlabeled examples. PU learning is a class of learning methods that leans from positive and unlabeled (PU) samples. To the best of our knowledge, this is the first work that identifies CPIs using only positive and unlabeled examples. We first collect known CPIs as positive examples and then randomly select compound-protein pairs not in the positive set as unlabeled examples. For each CPI/compound-protein pair, we extract protein domains as protein features and compound substructures as chemical features, then take the tensor product of the corresponding compound features and protein features as the feature vector of the CPI/compound-protein pair. After that, biased-SVM is employed to train classifiers on different datasets of CPIs and compound-protein pairs. Experiments over various datasets show that our method outperforms six typical classifiers, including random forest, L1- and L2-regularized logistic regression, naive Bayes, SVM and k-nearest neighbor (kNN), and three types of existing CPI prediction models. Source code, datasets and

  3. Speciation of selenoamino acids, selenonium ions and inorganic selenium by ion exchange HPLC with mass spectrometric detection and its application to yeast and algae

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Hansen, M.; Fan, T.

    2001-01-01

    Cation and anion exchange HPLC were used to separate a mixture of 12 selenium species comprising selenoamino acids, selenonium ions and inorganic selenium. The cationic species were separated from each other and from the co-injected anions using a cation exchange column with gradient elution...... by aqueous pyridinium formate at pH similar to 3 as the mobile phase. The anionic species were separated using an anion exchange column with isocratic elution by an aqueous salicylate-TRIS mobile phase at pH 8.5. The separated selenium species were detected as Se-80 by ICP-dynamic reaction cell (DRC...... acid extract of Chlorella algae contained dimethylselenonium propionate (DMSeP), which was verified by HPLC-ES-MS. Se-allylselenocysteine and selenoethionine was detected at the low ng g(-1) concentration level based on co-chromatography with the standard substances spiked to the algal extract....

  4. Identification of inorganic improvised explosive devices by analysis of postblast residues using portable capillary electrophoresis instrumentation and indirect photometric detection with a light-emitting diode.

    Science.gov (United States)

    Hutchinson, Joseph P; Evenhuis, Christopher J; Johns, Cameron; Kazarian, Artaches A; Breadmore, Michael C; Macka, Miroslav; Hilder, Emily F; Guijt, Rosanne M; Dicinoski, Greg W; Haddad, Paul R

    2007-09-15

    A commercial portable capillary electrophoresis (CE) instrument has been used to separate inorganic anions and cations found in postblast residues from improvised explosive devices (IEDs) of the type used frequently in terrorism attacks. The purpose of this analysis was to identify the type of explosive used. The CE instrument was modified for use with an in-house miniaturized light-emitting diode (LED) detector to enable sensitive indirect photometric detection to be employed for the detection of 15 anions (acetate, benzoate, carbonate, chlorate, chloride, chlorite, cyanate, fluoride, nitrate, nitrite, perchlorate, phosphate, sulfate, thiocyanate, thiosulfate) and 12 cations (ammonium, monomethylammonium, ethylammonium, potassium, sodium, barium, strontium, magnesium, manganese, calcium, zinc, lead) as the target analytes. These ions are known to be present in postblast residues from inorganic IEDs constructed from ammonium nitrate/fuel oil mixtures, black powder, and chlorate/perchlorate/sugar mixtures. For the analysis of cations, a blue LED (470 nm) was used in conjunction with the highly absorbing cationic dye, chrysoidine (absorption maximum at 453 nm). A nonaqueous background electrolyte comprising 10 mM chrysoidine in methanol was found to give greatly improved baseline stability in comparison to aqueous electrolytes due to the increased solubility of chrysoidine and its decreased adsorption onto the capillary wall. Glacial acetic acid (0.7% v/v) was added to ensure chrysoidine was protonated and to enhance separation selectivity by means of complexation with transition metal ions. The 12 target cations were separated in less than 9.5 min with detection limits of 0.11-2.30 mg/L (calculated at a signal-to-noise ratio of 3). The anions separation system utilized a UV LED (370 nm) in conjunction with an aqueous chromate electrolyte (absorption maximum at 371 nm) consisting of 10 mM chromium(VI) oxide and 10 mM sodium chromate, buffered with 40 mM tris

  5. Sensitive electrochemical determination of unlabeled MutS protein and detection of point mutations in DNA

    Czech Academy of Sciences Publication Activity Database

    Paleček, Emil; Masařík, Michal; Kizek, René; Kuhlmeier, D.; Hassmann, J.; Schülein, J.

    2004-01-01

    Roč. 76, č. 19 (2004), s. 5930-5936 ISSN 0003-2700 R&D Projects: GA AV ČR IBS5004355; GA AV ČR KSK4055109 Institutional research plan: CEZ:AV0Z5004920 Keywords : MutS protein * DNA repair * mercury electrodes Subject RIV: BO - Biophysics Impact factor: 5.450, year: 2004

  6. Discrimination of bromodeoxyuridine labelled and unlabelled mitotic cells in flow cytometric bromodeoxyuridine/DNA analysis

    DEFF Research Database (Denmark)

    Jensen, P O; Larsen, J K; Christensen, I J

    1994-01-01

    Bromodeoxyuridine (BrdUrd) labelled and unlabelled mitotic cells, respectively, can be discriminated from interphase cells using a new method, based on immunocytochemical staining of BrdUrd and flow cytometric four-parameter analysis of DNA content, BrdUrd incorporation, and forward and orthogonal...... light scatter. The method was optimized using the human leukemia cell lines HL-60 and K-562. Samples of 10(5) ethanol-fixed cells were treated with pepsin/HCl and stained as a nuclear suspension with anti-BrdUrd antibody, FITC-conjugated secondary antibody, and propidium iodide. Labelled mitoses could...

  7. On the asymptotic improvement of supervised learning by utilizing additional unlabeled samples - Normal mixture density case

    Science.gov (United States)

    Shahshahani, Behzad M.; Landgrebe, David A.

    1992-01-01

    The effect of additional unlabeled samples in improving the supervised learning process is studied in this paper. Three learning processes. supervised, unsupervised, and combined supervised-unsupervised, are compared by studying the asymptotic behavior of the estimates obtained under each process. Upper and lower bounds on the asymptotic covariance matrices are derived. It is shown that under a normal mixture density assumption for the probability density function of the feature space, the combined supervised-unsupervised learning is always superior to the supervised learning in achieving better estimates. Experimental results are provided to verify the theoretical concepts.

  8. A novel method for detection of phosphorylation in single cells by surface enhanced Raman scattering (SERS using composite organic-inorganic nanoparticles (COINs.

    Directory of Open Access Journals (Sweden)

    Catherine M Shachaf

    Full Text Available Detection of single cell epitopes has been a mainstay of immunophenotyping for over three decades, primarily using fluorescence techniques for quantitation. Fluorescence has broad overlapping spectra, limiting multiplexing abilities.To expand upon current detection systems, we developed a novel method for multi-color immuno-detection in single cells using "Composite Organic-Inorganic Nanoparticles" (COINs Raman nanoparticles. COINs are Surface-Enhanced Raman Scattering (SERS nanoparticles, with unique Raman spectra. To measure Raman spectra in single cells, we constructed an automated, compact, low noise and sensitive Raman microscopy device (Integrated Raman BioAnalyzer. Using this technology, we detected proteins expressed on the surface in single cells that distinguish T-cells among human blood cells. Finally, we measured intracellular phosphorylation of Stat1 (Y701 and Stat6 (Y641, with results comparable to flow cytometry.Thus, we have demonstrated the practicality of applying COIN nanoparticles for measuring intracellular phosphorylation, offering new possibilities to expand on the current fluorescent technology used for immunoassays in single cells.

  9. A novel method for detection of phosphorylation in single cells by surface enhanced Raman scattering (SERS) using composite organic-inorganic nanoparticles (COINs).

    Science.gov (United States)

    Shachaf, Catherine M; Elchuri, Sailaja V; Koh, Ai Leen; Zhu, Jing; Nguyen, Lienchi N; Mitchell, Dennis J; Zhang, Jingwu; Swartz, Kenneth B; Sun, Lei; Chan, Selena; Sinclair, Robert; Nolan, Garry P

    2009-01-01

    Detection of single cell epitopes has been a mainstay of immunophenotyping for over three decades, primarily using fluorescence techniques for quantitation. Fluorescence has broad overlapping spectra, limiting multiplexing abilities. To expand upon current detection systems, we developed a novel method for multi-color immuno-detection in single cells using "Composite Organic-Inorganic Nanoparticles" (COINs) Raman nanoparticles. COINs are Surface-Enhanced Raman Scattering (SERS) nanoparticles, with unique Raman spectra. To measure Raman spectra in single cells, we constructed an automated, compact, low noise and sensitive Raman microscopy device (Integrated Raman BioAnalyzer). Using this technology, we detected proteins expressed on the surface in single cells that distinguish T-cells among human blood cells. Finally, we measured intracellular phosphorylation of Stat1 (Y701) and Stat6 (Y641), with results comparable to flow cytometry. Thus, we have demonstrated the practicality of applying COIN nanoparticles for measuring intracellular phosphorylation, offering new possibilities to expand on the current fluorescent technology used for immunoassays in single cells.

  10. Inhibitory effect of unlabeled iodothyronines on the deiodination of labeled thyroid hormones by cultured hepatocarcinoma cells

    International Nuclear Information System (INIS)

    Sorimachi, Kenji

    1980-01-01

    Inhibitory effects of unlabeled iodothyronines on the metabolism of thyroxine (T 4 ), 3,3',5-triiodothyronine (T 3 ) and 3,3',5'-triiodothyronine (reverse T 3 , rT 3 ) were investigated in continuously cultured monkey hepatocarcinoma cells which showed a rapid metabolism of the thyroid hormones. Nonphenolic ring deiodination of [3',5'- 125 I]-T 4 and [3'- 125 I]-T 3 was strongly inhibited by excess T 3 , 3,5-diiodothyronine (3,5-T 2 ) and T 4 , whereas rT 3 was the least effective inhibitor. Phenolic ring deiodination of [3',5'- 125 I]-rT 3 was strongly affected by excess unlabeled rT 3 . However, the inhibitory effect of T 4 , T 3 and 3,5-T 3 was much weaker than that of rT 3 . It was concluded that rT 3 is apparently the most effective inhibitor of phenolic ring deiodination but the least effective inhibitor of nonphenolic ring deiodination. (author)

  11. Unlabelled advertorials in Slovenian life-style press: a study of the promotion of health products.

    Science.gov (United States)

    Kovacic, Melita Poler; Erjavec, Karmen; Stular, Katarina

    2011-01-01

    The paper analyses unlabelled advertorials about health products in four life-style magazines and three daily newspapers' life-style supplements in Slovenia. Based on 250 hours of observing the production practice, 20 in-depth interviews with the main participants and a textual analysis of 247 advertorials, supported by three detailed case studies, the process of unlabelled advertorial production was unveiled, reasons for their production explained and their discursive elements of promotion uncovered. Despite their typical news-like appearance, advertorials focus on a product's positive characteristics only and represent an oversimplified viewpoint on health, primarily oriented towards the interest of the pharmaceutical industry. In advertorials, readers are instructed in healthy living and caring about their health through buying the promoted product. No particular differences were found between the magazines and quality dailies' supplements, indicating that the advertorial practice has become a common part of the Slovenian press media scene. The outburst of advertorials in Slovenia is outstanding due to the lack of historical democracy, problems with the supervision of legal transgressions, the small media and advertising market, economic downturns and the financial weakness of the media.

  12. Inhibitory effect of unlabeled iodothyronines on the deiodination of labeled thyroid hormones by cultured hepatocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Sorimachi, K [Dokkyo Univ. Tochigi (Japan). School of Medicine

    1980-04-01

    Inhibitory effects of unlabeled iodothyronines on the metabolism of thyroxine (T/sub 4/), 3,3',5-triiodothyronine (T/sub 3/) and 3,3',5'-triiodothyronine (reverse T/sub 3/, rT/sub 3/) were investigated in continuously cultured monkey hepatocarcinoma cells which showed a rapid metabolism of the thyroid hormones. Nonphenolic ring deiodination of (3',5'-/sup 125/I)-T/sub 4/ and (3'-/sup 125/I)-T/sub 3/ was strongly inhibited by excess T/sub 3/, 3,5-diiodothyronine (3,5-T/sub 2/) and T/sub 4/, whereas rT/sub 3/ was the least effective inhibitor. Phenolic ring deiodination of (3',5'-/sup 125/I)-rT/sub 3/ was strongly affected by excess unlabeled rT/sub 3/. However, the inhibitory effect of T/sub 4/, T/sub 3/ and 3,5-T/sub 3/ was much weaker than that of rT/sub 3/. It was concluded that rT/sub 3/ is apparently the most effective inhibitor of phenolic ring deiodination but the least effective inhibitor of nonphenolic ring deiodination.

  13. Sensor array for the detection of organic and inorganic contaminants in post-consumer recycled plastics for food contact.

    Science.gov (United States)

    Davis, Nathan; Danes, Jeffrey E; Vorst, Keith

    2017-10-01

    Post-consumer recycled (PCR) plastic material is made by collecting used plastic products (e.g., bottles and other plastic packaging materials) and reprocessing them into solid-state pellets or flakes. Plastic recycling has positive environmental benefits, but may also carry potential drawbacks due to unwanted organic and inorganic contaminants. These contaminants can migrate into food packaging made from these recycled plastic materials. The purpose of this research was to identify economically viable real-time monitoring technologies that can be used during the conversion of virgin and recycled resin feedstocks (i.e., various blends of virgin pellets and recycled solid-state pellet or mechanically ground flake) to final articles to ensure the safety, quality and sustainability of packaging feedstocks. Baseline analysis (validation) of real-time technologies was conducted using industry-standard practices for polymer analysis. The data yielded supervised predictive models developed by training sessions completed in a controlled laboratory setting. This technology can be employed to evaluate compliance and aid converters in commodity sourcing of resin without exceeding regulatory thresholds. Furthermore, this technology allowed for real-time decision and diversion strategies during the conversion of resin and flake to final articles or products to minimise the negative impact on human health and environmental exposure.

  14. Direct and simultaneous detection of organic and inorganic ingredients in herbal powder preparations by Fourier transform infrared microspectroscopic imaging.

    Science.gov (United States)

    Chen, Jian-Bo; Sun, Su-Qin; Tang, Xu-Dong; Zhang, Jing-Zhao; Zhou, Qun

    2016-08-05

    Herbal powder preparation is a kind of widely-used herbal product in the form of powder mixture of herbal ingredients. Identification of herbal ingredients is the first and foremost step in assuring the quality, safety and efficacy of herbal powder preparations. In this research, Fourier transform infrared (FT-IR) microspectroscopic identification method is proposed for the direct and simultaneous recognition of multiple organic and inorganic ingredients in herbal powder preparations. First, the reference spectrum of characteristic particles of each herbal ingredient is assigned according to FT-IR results and other available information. Next, a statistical correlation threshold is determined as the lower limit of correlation coefficients between the reference spectrum and a larger number of calibration characteristic particles. After validation, the reference spectrum and correlation threshold can be used to identify herbal ingredient in mixture preparations. A herbal ingredient is supposed to be present if correlation coefficients between the reference spectrum and some sample particles are above the threshold. Using this method, all kinds of herbal materials in powder preparation Kouqiang Kuiyang San are identified successfully. This research shows the potential of FT-IR microspectroscopic identification method for the accurate and quick identification of ingredients in herbal powder preparations. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Total inorganic arsenic detection in real water samples using anodic stripping voltammetry and a gold-coated diamond thin-film electrode.

    Science.gov (United States)

    Song, Yang; Swain, Greg M

    2007-06-12

    An accurate method for total inorganic arsenic determination in real water samples was developed using differential pulse anodic stripping voltammetry (DPASV) and a Au-coated boron-doped diamond thin-film electrode. Keys to the method are the use of a conducting diamond platform and solid phase extraction for sample preparation. In the method, the As(III) present in the sample is first detected by DPASV. The As(V) present is then reduced to As(III) by reaction with Na2SO3 and this is followed by a second detection of As(III) by DPASV. Interfering metal ions (e.g., Cu(II)) that cause decreased electrode response sensitivity for arsenic in real samples are removed by solid phase extraction as part of the sample preparation. For example, Cu(II) caused a 30% decrease in the As stripping peak current at a solution concentration ratio of 3:1 (Cu(II)/As(III)). This loss was mitigated by passage of the solution through a Chelex 100 cation exchange resin. After passage, only a 5% As stripping current response loss was seen. The effect of organic matter on the Au-coated diamond electrode response for As(III) was also evaluated. Humic acid at a 5 ppm concentration caused only a 9% decrease in the As stripping peak charge for Au-coated diamond. By comparison, a 50% response decrease was observed for Au foil. Clearly, the chemical properties of the diamond surface in the vicinity of the metal deposits inhibit molecular adsorption on at least some of the Au surface. The method provided reproducible and accurate results for total inorganic arsenic in two contaminated water samples provided by the U.S. Bureau of Reclamation. The total inorganic As concentration in the two samples, quantified by the standard addition method, was 23.2+/-2.9 ppb for UV plant influent water and 16.4+/-0.9 ppb for Well 119 water (n=4). These values differed from the specified concentrations by less than 4%.

  16. Total inorganic arsenic detection in real water samples using anodic stripping voltammetry and a gold-coated diamond thin-film electrode

    International Nuclear Information System (INIS)

    Song Yang; Swain, Greg M.

    2007-01-01

    An accurate method for total inorganic arsenic determination in real water samples was developed using differential pulse anodic stripping voltammetry (DPASV) and a Au-coated boron-doped diamond thin-film electrode. Keys to the method are the use of a conducting diamond platform and solid phase extraction for sample preparation. In the method, the As(III) present in the sample is first detected by DPASV. The As(V) present is then reduced to As(III) by reaction with Na 2 SO 3 and this is followed by a second detection of As(III) by DPASV. Interfering metal ions (e.g., Cu(II)) that cause decreased electrode response sensitivity for arsenic in real samples are removed by solid phase extraction as part of the sample preparation. For example, Cu(II) caused a 30% decrease in the As stripping peak current at a solution concentration ratio of 3:1 (Cu(II)/As(III)). This loss was mitigated by passage of the solution through a Chelex 100 cation exchange resin. After passage, only a 5% As stripping current response loss was seen. The effect of organic matter on the Au-coated diamond electrode response for As(III) was also evaluated. Humic acid at a 5 ppm concentration caused only a 9% decrease in the As stripping peak charge for Au-coated diamond. By comparison, a 50% response decrease was observed for Au foil. Clearly, the chemical properties of the diamond surface in the vicinity of the metal deposits inhibit molecular adsorption on at least some of the Au surface. The method provided reproducible and accurate results for total inorganic arsenic in two contaminated water samples provided by the U.S. Bureau of Reclamation. The total inorganic As concentration in the two samples, quantified by the standard addition method, was 23.2 ± 2.9 ppb for UV plant influent water and 16.4 ± 0.9 ppb for Well 119 water (n = 4). These values differed from the specified concentrations by less than 4%

  17. Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples

    Energy Technology Data Exchange (ETDEWEB)

    Laborda, Francisco, E-mail: flaborda@unizar.es; Bolea, Eduardo; Cepriá, Gemma; Gómez, María T.; Jiménez, María S.; Pérez-Arantegui, Josefina; Castillo, Juan R.

    2016-01-21

    The increasing demand of analytical information related to inorganic engineered nanomaterials requires the adaptation of existing techniques and methods, or the development of new ones. The challenge for the analytical sciences has been to consider the nanoparticles as a new sort of analytes, involving both chemical (composition, mass and number concentration) and physical information (e.g. size, shape, aggregation). Moreover, information about the species derived from the nanoparticles themselves and their transformations must also be supplied. Whereas techniques commonly used for nanoparticle characterization, such as light scattering techniques, show serious limitations when applied to complex samples, other well-established techniques, like electron microscopy and atomic spectrometry, can provide useful information in most cases. Furthermore, separation techniques, including flow field flow fractionation, capillary electrophoresis and hydrodynamic chromatography, are moving to the nano domain, mostly hyphenated to inductively coupled plasma mass spectrometry as element specific detector. Emerging techniques based on the detection of single nanoparticles by using ICP-MS, but also coulometry, are in their way to gain a position. Chemical sensors selective to nanoparticles are in their early stages, but they are very promising considering their portability and simplicity. Although the field is in continuous evolution, at this moment it is moving from proofs-of-concept in simple matrices to methods dealing with matrices of higher complexity and relevant analyte concentrations. To achieve this goal, sample preparation methods are essential to manage such complex situations. Apart from size fractionation methods, matrix digestion, extraction and concentration methods capable of preserving the nature of the nanoparticles are being developed. This review presents and discusses the state-of-the-art analytical techniques and sample preparation methods suitable for

  18. Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples

    International Nuclear Information System (INIS)

    Laborda, Francisco; Bolea, Eduardo; Cepriá, Gemma; Gómez, María T.; Jiménez, María S.; Pérez-Arantegui, Josefina; Castillo, Juan R.

    2016-01-01

    The increasing demand of analytical information related to inorganic engineered nanomaterials requires the adaptation of existing techniques and methods, or the development of new ones. The challenge for the analytical sciences has been to consider the nanoparticles as a new sort of analytes, involving both chemical (composition, mass and number concentration) and physical information (e.g. size, shape, aggregation). Moreover, information about the species derived from the nanoparticles themselves and their transformations must also be supplied. Whereas techniques commonly used for nanoparticle characterization, such as light scattering techniques, show serious limitations when applied to complex samples, other well-established techniques, like electron microscopy and atomic spectrometry, can provide useful information in most cases. Furthermore, separation techniques, including flow field flow fractionation, capillary electrophoresis and hydrodynamic chromatography, are moving to the nano domain, mostly hyphenated to inductively coupled plasma mass spectrometry as element specific detector. Emerging techniques based on the detection of single nanoparticles by using ICP-MS, but also coulometry, are in their way to gain a position. Chemical sensors selective to nanoparticles are in their early stages, but they are very promising considering their portability and simplicity. Although the field is in continuous evolution, at this moment it is moving from proofs-of-concept in simple matrices to methods dealing with matrices of higher complexity and relevant analyte concentrations. To achieve this goal, sample preparation methods are essential to manage such complex situations. Apart from size fractionation methods, matrix digestion, extraction and concentration methods capable of preserving the nature of the nanoparticles are being developed. This review presents and discusses the state-of-the-art analytical techniques and sample preparation methods suitable for

  19. A comparison of the determination and speciation of inorganic arsenic using general HPLC methodology with UV, MS and MS/MS detection.

    Science.gov (United States)

    Gilmartin, Gregory; Gingrich, Diane

    2018-04-15

    The determination and speciation of arsenic in natural resources such as drinking water and agricultural soils has been a growing concern in recent years due to its many toxicological effects [1-3]. To speciate and quantitate concentrations of arsenic, typically an ion chromatograph (IC) interfaced to an inductively coupled plasma mass spectrometer (ICP-MS) is employed [4-9]. This methodology may be very robust and sensitive, but it is expensive and not as ubiquitous as high performance liquid chromatography (HPLC) with ultraviolet (UV) absorbance detection or electrospray ionization mass spectrometry (ESI-MS). Anion exchange chromatography is a well-documented means of speciating arsenite (As(III), As 2 O 3 ) and arsenate (As(V), AsO 4 ) using UV [10], conductivity [11], or ESI-MS detection [12,13]. This paper demonstrates the utilization of common liquid chromatographic instrumentation to speciate and determines inorganic Arsenic compounds using UV or MS via selected ion recording (SIR) or multiple reaction monitoring (MRM) detection. This paper describes the analysis of arsenite and arsenate samples prepared using both deionized and ground water. The limit of quantitation for the techniques described in this paper for samples spiked in ground water were 454 ppb (As(III)) and 562 ppb (As(V)) for UV detection, 45.4 ppb (As(III)) and 56.2 ppb (As(V)) for SIR detection, and 4.54 ppb (As(III)) and 5.62 ppb (As(V)) for MRM detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Metal-doped inorganic nanoparticles for multiplex detection of biomarkers by a sandwich-type ICP-MS immunoassay.

    Science.gov (United States)

    Ko, Jung Aa; Lim, H B

    2016-09-28

    Metal-doped inorganic nanoparticles were synthesized for the multiplex detection of biomarkers by a sandwich-type inductively coupled plasma mass spectrometry (ICP-MS) immunoassay. The synthesized Cs-doped multicore magnetic nanoparticles (MMNPs) were used not only for magnetic extraction of targets but also for ratiometric measurement in ICP-MS. In addition, three different metal/dye-doped silica nanoparticles (SNPs) were synthesized as probes for multiplex detection: Y/RhBITC (rhodamine B isothiocyanate)-doped SNPs for CRP (cardiovascular disease), Cd/RhBITC-doped SNPs for AFP (tumor), and Au/5(6)-XRITC (X-rhodamine-5-(and-6)-isothiocyanate)-doped SNPs for NSE (heart disease). For quantification, the doped metals of SNPs were measured by ICP-MS and then the signal ratio to Cs of MMNPs was plotted with respect to the concentration of targets by a ratiometry. Limits of detection (LOD) of 0.35 ng/mL to 77 ng mL(-1) and recoveries of 83%-125% were obtained for serum samples spiked with the biomarkers. Since no sample treatment was necessary prior to the extraction, the proposed method provided short analysis time and convenience for the multiplex determination of biomarkers, which will be valuable for clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Wortmannin efficiently suppresses the recovery from radiation-induced damage in pimonidazole-unlabeled quiescent tumor cell population

    International Nuclear Information System (INIS)

    Masunaga, Shin-ichiro; Suzuki, Minoru; Kondo, Natsuko; Narabayashi, Masaru; Ono, Koji; Sakurai, Yoshinori; Tanaka, Hiroki; Maruhashi, Akira

    2013-01-01

    Labeling of proliferating (P) cells in mice bearing EL4 tumors was achieved by continuous administration of 5-bromo-2'-deoxyuridine (BrdU). Tumors were irradiated with γ-rays at 1 h after pimonidazole administration followed by caffeine or wortmannin treatment. Twenty-four hours later, assessment of the responses of quiescent (Q) and total (=P+Q) cell populations were based on the frequencies of micronucleation and apoptosis using immunofluorescence staining for BrdU. The response of the pimonidazole-unlabeled tumor cell fractions was assessed by means of apoptosis frequency using immunofluorescence staining for pimonidazole. The pimonidazole-unlabeled cell fraction showed significantly enhanced radio-sensitivity compared with the whole cell fraction more remarkably in Q cells than total cells. However, a significantly greater decrease in radio-sensitivity in the pimonidazole-unlabeled than the whole cell fraction, evaluated using an assay performed 24 hours after irradiation, was more clearly observed in Q cells than total cells. In both the pimonidazole-unlabeled and the whole cell fractions, wortmannin efficiently suppressed the reduction in sensitivity due to delayed assay. Wortmannin combined with γ-ray irradiation is useful for suppressing the recovery from radiation-induced damage especially in the pimonidazole-unlabeled cell fraction within the total and Q tumor cell populations. (author)

  2. How Well Does BODIPY-Cholesteryl Ester Mimic Unlabeled Cholesteryl Esters in High Density Lipoprotein Particles?

    DEFF Research Database (Denmark)

    Karilainen, Topi; Vuorela, Timo; Vattulainen, Ilpo

    2015-01-01

    We compare the behavior of unlabeled and BODIPY-labeled cholesteryl ester (CE) in high density lipoprotein by atomistic molecular dynamics simulations. We find through replica exchange umbrella sampling and unbiased molecular dynamics simulations that BODIPY labeling has no significant effect...... on the partitioning of CE between HDL and the water phase. However, BODIPY-CE was observed to diffuse more slowly and locate itself closer to the HDL-water interface than CE due to the BODIPY probe that is constrained to the surface region, and because the CE body in BODIPY-CE prefers to align itself away from...... the HDL surface. The implications as to the suitability of BODIPY to explore lipoprotein properties are discussed....

  3. Exploiting the potential of unlabeled endoscopic video data with self-supervised learning.

    Science.gov (United States)

    Ross, Tobias; Zimmerer, David; Vemuri, Anant; Isensee, Fabian; Wiesenfarth, Manuel; Bodenstedt, Sebastian; Both, Fabian; Kessler, Philip; Wagner, Martin; Müller, Beat; Kenngott, Hannes; Speidel, Stefanie; Kopp-Schneider, Annette; Maier-Hein, Klaus; Maier-Hein, Lena

    2018-04-27

    Surgical data science is a new research field that aims to observe all aspects of the patient treatment process in order to provide the right assistance at the right time. Due to the breakthrough successes of deep learning-based solutions for automatic image annotation, the availability of reference annotations for algorithm training is becoming a major bottleneck in the field. The purpose of this paper was to investigate the concept of self-supervised learning to address this issue. Our approach is guided by the hypothesis that unlabeled video data can be used to learn a representation of the target domain that boosts the performance of state-of-the-art machine learning algorithms when used for pre-training. Core of the method is an auxiliary task based on raw endoscopic video data of the target domain that is used to initialize the convolutional neural network (CNN) for the target task. In this paper, we propose the re-colorization of medical images with a conditional generative adversarial network (cGAN)-based architecture as auxiliary task. A variant of the method involves a second pre-training step based on labeled data for the target task from a related domain. We validate both variants using medical instrument segmentation as target task. The proposed approach can be used to radically reduce the manual annotation effort involved in training CNNs. Compared to the baseline approach of generating annotated data from scratch, our method decreases exploratively the number of labeled images by up to 75% without sacrificing performance. Our method also outperforms alternative methods for CNN pre-training, such as pre-training on publicly available non-medical (COCO) or medical data (MICCAI EndoVis2017 challenge) using the target task (in this instance: segmentation). As it makes efficient use of available (non-)public and (un-)labeled data, the approach has the potential to become a valuable tool for CNN (pre-)training.

  4. Inorganic-organic Ag-rhodamine 6G hybrid nanorods: "turn on" fluorescent sensors for highly selective detection of Pb2+ ions in aqueous solution.

    Science.gov (United States)

    Tyagi, A K; Ramkumar, Jayshree; Jayakumar, O D

    2012-02-07

    Lead metal ions are of great concern and the monitoring of their concentration in the environment has become extremely important. In the present study, a new inorganic-organic hybrid assay of Ag nanorods (AgNR)-Rhodamine 6G (R6G) was developed for the sensitive and selective determination of Pb(2+) ions in aqueous solutions. To the best of our knowledge there is almost no literature on the use of silver nanorod sensors for determination of lead ions in aqueous solutions. The sensor is developed by the coating of R6G on the surface of AgNRs. The sensing is based on the photoluminescence of R6G. The sensor was rapid as the measurements were carried out within 3 min of addition of the test solution to the AgNR-R6G hybrid. Moreover, the system showed excellent stability at tested concentration levels of Pb(2+) ions. The naked eye detection of the colour was possible with 1 mg L(-1) of Pb(2+) ions. The present method has a detection limit of 50 μg L(-1) of Pb(2+) (for a signal/noise (S/N) ratio > 3). The selectivity toward Pb(2+) ions against other metal ions was improved using chelating agents. The proposed method was validated by analysis using different techniques.

  5. Radio Interferometric Detection of TiO and TiO_2 in VY Canis Majoris: "seeds" of Inorganic Dust Formation

    Science.gov (United States)

    Brunken, S.; Muller, H. S. P.; Kaminski, T.; Menten, K. M.; Gott-Lieb, C. A.; Patel, N. A.; Young, K. H.; McCarthy, M. C.; Winters, J. M.; Decin, L.

    2013-06-01

    Circumstellar envelopes around late-type stars harbour a rich variety of molecular gas and copious amounts of dust, originating from the mass-loss of the central star during the asymptotic giant branch (AGB) or the red supergiant phase. The formation of dust in these objects, in particular the first nucleation stages out of gas phase molecules, is still poorly understood. Here we report the first detection of pure rotational transitions of the two simplest titanium oxides, TiO and TiO_2, towards the oxygen-rich red supergiant VY Canis Majoris (VY CMa). This actually represents the first secure identification of TiO_2 in space. Observations of several rotational emission lines of both species with the Submillimeter Array (SMA) in the 345 GHz-band and with the IRAM Plateau de Bure Interferometer (PdBI) around 220 GHz confirm the presence of these refractory species in the cool (<1000 K) circumstellar envelope in a region several times the size of the dust formation zone. The role of Ti oxides as "seeds" of inorganic dust formation in oxygen-rich circumstellar envelopes will be discussed in view of the present observations.

  6. A highly reproducible solenoid micropump system for the analysis of total inorganic carbon and ammonium using gas-diffusion with conductimetric detection.

    Science.gov (United States)

    Henríquez, Camelia; Horstkotte, Burkhard; Cerdà, Víctor

    2014-01-01

    In this work, a simple, economic, and miniaturized flow-based analyzer based on solenoid micropumps is presented. It was applied to determine two parameters of high environmental interest: ammonium and total inorganic carbon (TIC) in natural waters. The method is based on gas diffusion (GD) of CO₂ and NH3 through a hydrophobic gas permeable membrane from an acidic or alkaline donor stream, respectively. The analytes are trapped in an acceptor solution, being slightly alkaline for CO₂ and slightly acidic for NH₃. The analytes are quantified using a homemade stainless steel conductimetric cell. The proposed system required five solenoid micro-pumps, one for each reagent and sample. Two especially made air bubble traps were placed down-stream of the solendoid pumps, which provided the acceptor solutions, by this increasing the method's reproducibility. Values of RSD lower than 1% were obtained. Achieved limits of detection were 0.27 µmol L⁻¹ for NH₄⁺ and 50 µmol L⁻¹ for TIC. Add-recovery tests were used to prove the trueness of the method and recoveries of 99.5 ± 7.5% were obtained for both analytes. The proposed system proved to be adequate for monitoring purpose of TIC and NH₄⁺ due to its high sample throughput and repeatability. © 2013 Published by Elsevier B.V.

  7. Improvement of Roller Bearing Diagnosis with Unlabeled Data Using Cut Edge Weight Confidence Based Tritraining

    Directory of Open Access Journals (Sweden)

    Wei-Li Qin

    2016-01-01

    Full Text Available Roller bearings are one of the most commonly used components in rotational machines. The fault diagnosis of roller bearings thus plays an important role in ensuring the safe functioning of the mechanical systems. However, in most cases of bearing fault diagnosis, there are limited number of labeled data to achieve a proper fault diagnosis. Therefore, exploiting unlabeled data plus few labeled data, this paper proposed a roller bearing fault diagnosis method based on tritraining to improve roller bearing diagnosis performance. To overcome the noise brought by wrong labeling into the classifiers training process, the cut edge weight confidence is introduced into the diagnosis framework. Besides a small trick called suspect principle is adopted to avoid overfitting problem. The proposed method is validated in two independent roller bearing fault experiment vibrational signals that both include three types of faults: inner-ring fault, outer-ring fault, and rolling element fault. The results demonstrate the desirable diagnostic performance improvement by the proposed method in the extreme situation where there is only limited number of labeled data.

  8. Intraperitoneal delivery of monoclonal antibodies: enhanced regional delivery advantage using intravenous unlabeled anti-mouse antibody

    International Nuclear Information System (INIS)

    Wahl, R.L.; Fisher, S.

    1987-01-01

    Radiolabeled monoclonal antibodies (MAb) delivered intraperitoneally expose cells in contact with peritoneal fluid to considerably higher levels of MAb than if the MAb dose were given intravenously. This regional delivery advantage for intact MAb is present mainly due to the relatively slow exit of MAb from the peritoneal fluid to the blood. Eventually, following i.p. injection, blood levels of MAb rise resulting in exposure of the animal to high systemic MAb levels and potential toxicity. In this series of experiments, systemic exposure was minimized by the administration of unlabeled goat polyclonal anti-mouse antibody intravenously from 1 1/2 to 6 h following i.p. MAb injection. This maneuver results in the formation of immune complexes with their subsequent clearance and dehalogenation by the reticuloendothelial system, thus minimizing systemic MAb exposure. This approach, of increasing systemic clearance of MAb, did not alter intraperitoneal MAb levels and thus significantly increased the regional delivery advantage to the peritoneal cavity by 70-100%. This approach provides an immunologic rationale for the further enhancement of MAb delivery to i.p. foci of malignant disease and may have diagnostic and therapeutic utility. (author)

  9. A 35-year comparison of children labelled as gifted, unlabelled as gifted and average-ability

    Directory of Open Access Journals (Sweden)

    Joan Freeman

    2014-09-01

    Full Text Available http://dx.doi.org/10.5902/1984686X14273Why are some children seen as gifted while others of identical ability are not?  To find out why and what the consequences might be, in 1974 I began in England with 70 children labelled as gifted.  Each one was matched for age, sex and socio-economic level with two comparison children in the same school class. The first comparison child had an identical gift, and the second taken at random.  Investigation was by a battery of tests and deep questioning of pupils, teachers and parents in their schools and homes which went on for 35 years. A major significant difference was that those labelled gifted had significantly more emotional problems than either the unlabelled but identically gifted or the random controls.  The vital aspects of success for the entire sample, whether gifted or not, have been hard work, emotional support and a positive personal outlook.  But in general, the higher the individual’s intelligence the better their chances in life. 

  10. UV-Visible Spectroscopy-Based Quantification of Unlabeled DNA Bound to Gold Nanoparticles.

    Science.gov (United States)

    Baldock, Brandi L; Hutchison, James E

    2016-12-20

    DNA-functionalized gold nanoparticles have been increasingly applied as sensitive and selective analytical probes and biosensors. The DNA ligands bound to a nanoparticle dictate its reactivity, making it essential to know the type and number of DNA strands bound to the nanoparticle surface. Existing methods used to determine the number of DNA strands per gold nanoparticle (AuNP) require that the sequences be fluorophore-labeled, which may affect the DNA surface coverage and reactivity of the nanoparticle and/or require specialized equipment and other fluorophore-containing reagents. We report a UV-visible-based method to conveniently and inexpensively determine the number of DNA strands attached to AuNPs of different core sizes. When this method is used in tandem with a fluorescence dye assay, it is possible to determine the ratio of two unlabeled sequences of different lengths bound to AuNPs. Two sizes of citrate-stabilized AuNPs (5 and 12 nm) were functionalized with mixtures of short (5 base) and long (32 base) disulfide-terminated DNA sequences, and the ratios of sequences bound to the AuNPs were determined using the new method. The long DNA sequence was present as a lower proportion of the ligand shell than in the ligand exchange mixture, suggesting it had a lower propensity to bind the AuNPs than the short DNA sequence. The ratio of DNA sequences bound to the AuNPs was not the same for the large and small AuNPs, which suggests that the radius of curvature had a significant influence on the assembly of DNA strands onto the AuNPs.

  11. Determination, at equilibrium, of association constants of labelled or unlabelled ligands by a non-graphical method

    International Nuclear Information System (INIS)

    Goertz, G.; Longchampt, J.; Crepy, O.; Judas, O.; Jayle, M.-F.

    1976-01-01

    Determination, at equilibrium of association constants of labelled or unlabelled ligands by a non-graphical method are described. This work deals with the determination of association constants at equilibrium by a non-graphical method in binding systems containing one specific receptor. Equations have been derived from that originally described by Lea (Biochim. Biophys. Acta, 322, 68-74), the terms of which are obtained from the data of simple displacement curves of a bound radioactive ligand by unlabelled competitors identical or different in nature. By knowing the function relating the variations of the bound ligand (B) to the affinity constant (Ksub(i)) and the quantity (Msub(i)) of competitor for a given system, it is possible to calculate any of these parameters when the two others are measured. Thus, it becomes easy to compare the relative affinities of different receptors for the same ligand or that of one receptor for various labelled or unlabelled ligands. Furthermore, theoretical displacement curves can be drawn and compared to experimental data, only when knowing the affinity constant of a specific binding system in given conditions. These modes of calculation have been tested in a study of interactions between various steroids and a fraction of human serum proteins precipitated by ammonium sulfate (30-45%) and containing the sex hormone-binding globulin. Association constants thus obtained agree well with those reported in the literature and determined by graphical procedures

  12. The influence of proteasome inhibitor MG132, external radiation and unlabeled antibody on the tumor uptake and biodistribution of 188Re-labeled anti-E6 C1P5 antibody in cervical cancer in mice

    Science.gov (United States)

    Phaeton, Rébécca; Wang, Xing Guo; Einstein, Mark H.; Goldberg, Gary L.; Casadevall, Arturo; Dadachova, Ekaterina

    2009-01-01

    Background Human Papillomavirus (HPV) infection is considered a necessary step for the development of cervical cancer and >95% of all cervical cancers have detectable HPV sequences. We have recently demonstrated the efficacy of radioimmunotherapy (RIT) which targeted viral oncoprotein E6 in treatment of experimental cervical cancer We hypothesized that pre-treatment of tumor cells with various agents which cause cell death and/or elevation of E6 levels would increase the accumulation of radiolabeled antibodies to E6 in cervical tumors. Methods HPV-16 positive CasKi cells were treated in vitro with up to 6 Gy of external radiation, or proteasome inhibitor MG-132 or unlabeled anti-E6 antibody C1P5 and cell death was assessed. Biodistribution of 188Rhenium (188Re)-labeled C1P5 antibody was performed in both control and radiation MG-132 treated CasKi tumor-bearing nude mice. Results . 188Re-C1P5 antibody demonstrated tumor specificity and very low uptake and fast clearance from the major organs. The amount of tumor uptake was enhanced by MG-132 but was unaffected by pre-treatment with radiation. In addition, in vitro studies demonstrated an unanticipated effect of unlabeled antibody on the amount of cell death, a finding that was suggested by our previous in vivo studies in CasKi tumor model. Conclusion We demonstrated that pre-treatment of cervical tumors with proteasome inhibitor MG-132 and with unlabeled antibody to E6 can serve as a means to generate non-viable cancer cells and to elevate the levels of target oncoproteins in the cells for increasing the accumulation of targeted radiolabeled antibodies in tumors. These results favor further development of RIT of cervical cancers targeting viral antigens. PMID:20127955

  13. Crowd-Sourced Mobility Mapping for Location Tracking Using Unlabeled Wi-Fi Simultaneous Localization and Mapping

    Directory of Open Access Journals (Sweden)

    Mu Zhou

    2015-01-01

    Full Text Available Due to the increasing requirements of the seamless and round-the-clock Location-based services (LBSs, a growing interest in Wi-Fi network aided location tracking is witnessed in the past decade. One of the significant problems of the conventional Wi-Fi location tracking approaches based on received signal strength (RSS fingerprinting is the time-consuming and labor intensive work involved in location fingerprint calibration. To solve this problem, a novel unlabeled Wi-Fi simultaneous localization and mapping (SLAM approach is developed to avoid the location fingerprinting and additional inertial or vision sensors. In this approach, an unlabeled mobility map of the coverage area is first constructed by using the crowd-sourcing from a batch of sporadically recorded Wi-Fi RSS sequences based on the spectral cluster assembling. Then, the sequence alignment algorithm is applied to conduct location tracking and mobility map updating. Finally, the effectiveness of this approach is verified by the extensive experiments carried out in a campus-wide area.

  14. Identification of TNIP1 Polymorphisms by High Resolution Melting Analysis with Unlabelled Probe: Association with Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2012-01-01

    Full Text Available Background. TNFα-induced protein 3 (TNFAIP3 interacting with protein 1 (TNIP1 acts as a negative regulator of NF-κB and plays an important role in maintaining the homeostasis of immune system. A recent genome-wide association study (GWAS showed that the polymorphism of TNIP1 was associated with the disease risk of SLE in Caucasian. In this study, we investigated whether the association of TNIP1 with SLE was replicated in Chinese population. Methods. The association of TNIP1 SNP rs7708392 (G/C was determined by high resolution melting (HRM analysis with unlabeled probe in 285 SLE patients and 336 healthy controls. Results. A new SNP rs79937737 located on 5 bp upstream of rs7708392 was discovered during the HRM analysis. No association of rs7708392 or rs79937737 with the disease risk of SLE was found. Furthermore, rs7708392 and rs79937737 were in weak linkage disequilibrium (LD. Hypotypes analysis of the two SNPs also showed no association with SLE in Chinese population. Conclusions. High resolution melting analysis with unlabeled probes proves to be a powerful and efficient genotyping method for identifying and screening SNPs. No association of rs7708392 or rs79937737 with the disease risk of SLE was observed in Chinese population.

  15. High-resolution melting analysis using unlabeled probe and amplicon scanning simultaneously detects several lactase persistence variants

    DEFF Research Database (Denmark)

    Janukonyté, Jurgita; Vestergaard, Else M; Ladefoged, Søren A

    2010-01-01

    Lactase persistence and thereby tolerance to lactose is a common trait in people of Northern European descent. It is linked to the LCT -13910C>T variant located in intron 13 of the MCM6 gene 13.9 kb upstream of the lactase (LCT) gene. In people of African and Middle Eastern descent, lactase...... persistence can be associated with other variants nearby the -13910C>T variant, limiting the use of the -13910C>T-based SNP analysis, e.g. TaqMan assays for the diagnosis of lactose intolerance. Using high-resolution melting analysis, we identified five samples that were heterozygous for the -13915T>G variant...... the -13910C>T and -13915T>G variants in addition to rarer variants surrounding the -13910 site. This new method may contribute to improve the diagnostic performance of the genetic analysis for lactose intolerance....

  16. Layered inorganic solids

    Czech Academy of Sciences Publication Activity Database

    Čejka, Jiří; Morris, R. E.; Nachtigall, P.; Roth, Wieslaw Jerzy

    2014-01-01

    Roč. 43, č. 27 (2014), s. 10274-10275 ISSN 1477-9226 Institutional support: RVO:61388955 Keywords : layered inorganic solids * physical chemistry * catalysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.197, year: 2014

  17. Inorganic Coatings Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The inorganic Coatings Lab provides expertise to Navy and Joint Service platforms acquisition IPTs to aid in materials and processing choices which balance up-front...

  18. Resonance assignment for a particularly challenging protein based on systematic unlabeling of amino acids to complement incomplete NMR data sets

    International Nuclear Information System (INIS)

    Bellstedt, Peter; Seiboth, Thomas; Häfner, Sabine; Kutscha, Henriette; Ramachandran, Ramadurai; Görlach, Matthias

    2013-01-01

    NMR-based structure determination of a protein requires the assignment of resonances as indispensable first step. Even though heteronuclear through-bond correlation methods are available for that purpose, challenging situations arise in cases where the protein in question only yields samples of limited concentration and/or stability. Here we present a strategy based upon specific individual unlabeling of all 20 standard amino acids to complement standard NMR experiments and to achieve unambiguous backbone assignments for the fast precipitating 23 kDa catalytic domain of human aprataxin of which only incomplete standard NMR data sets could be obtained. Together with the validation of this approach utilizing the protein GB1 as a model, a comprehensive insight into metabolic interconversion ('scrambling”) of NH and CO groups in a standard Escherichia coli expression host is provided

  19. Inorganic and geological materials

    International Nuclear Information System (INIS)

    Dinnin, J.I.

    1975-01-01

    Recently described methods for applied inorganic analysis are reviewed from an interdisciplinary standpoint. Abstracts and periodical literature up to Nov. 1974, are included for consideration. The following areas of interest are covered: general reviews of inorganic analytical techniques; analytical techniques, areas of application, and analysis of individual elements. Selected books, monographs, and review articles on the analytical chemistry of the elements are listed. (416 references.) (U.S.)

  20. Accurate Measurement of the Optical Constants n and k for a Series of 57 Inorganic and Organic Liquids for Optical Modeling and Detection.

    Science.gov (United States)

    Myers, Tanya L; Tonkyn, Russell G; Danby, Tyler O; Taubman, Matthew S; Bernacki, Bruce E; Birnbaum, Jerome C; Sharpe, Steven W; Johnson, Timothy J

    2018-04-01

    For optical modeling and other purposes, we have created a library of 57 liquids for which we have measured the complex optical constants n and k. These liquids vary in their nature, ranging in properties that include chemical structure, optical band strength, volatility, and viscosity. By obtaining the optical constants, one can model most optical phenomena in media and at interfaces including reflection, refraction, and dispersion. Based on the works of others, we have developed improved protocols using multiple path lengths to determine the optical constants n/k for dozens of liquids, including inorganic, organic, and organophosphorus compounds. Detailed descriptions of the measurement and data reduction protocols are discussed; agreement of the derived optical constant n and k values with literature values are presented. We also present results using the n/k values as applied to an optical modeling scenario whereby the derived data are presented and tested for models of 1 µm and 100 µm layers for dimethyl methylphosphonate (DMMP) on both metal (aluminum) and dielectric (soda lime glass) substrates to show substantial differences between the reflected signal from highly reflective substrates and less-reflective substrates.

  1. Inorganic UV filters

    Directory of Open Access Journals (Sweden)

    Eloísa Berbel Manaia

    2013-06-01

    Full Text Available Nowadays, concern over skin cancer has been growing more and more, especially in tropical countries where the incidence of UVA/B radiation is higher. The correct use of sunscreen is the most efficient way to prevent the development of this disease. The ingredients of sunscreen can be organic and/or inorganic sun filters. Inorganic filters present some advantages over organic filters, such as photostability, non-irritability and broad spectrum protection. Nevertheless, inorganic filters have a whitening effect in sunscreen formulations owing to the high refractive index, decreasing their esthetic appeal. Many techniques have been developed to overcome this problem and among them, the use of nanotechnology stands out. The estimated amount of nanomaterial in use must increase from 2000 tons in 2004 to a projected 58000 tons in 2020. In this context, this article aims to analyze critically both the different features of the production of inorganic filters (synthesis routes proposed in recent years and the permeability, the safety and other characteristics of the new generation of inorganic filters.

  2. Inorganic liquid scintillator

    International Nuclear Information System (INIS)

    Pavlicek, Z.; Barta, C.; Jursova, L.

    1986-01-01

    An inorganic liquid scintillator is designed which contains 1 to 30 wt.% of an inorganic molecular compound as the basic active component; the compound contains a cation with an atomic number higher than 47 and a halogen anion. The basic inorganic component is dissolved in water or in an organic solvent in form of non-dissociated molecules or self-complexes in which the bond is preserved between the cation and anion components. The light yield from these scintillators ranges between 70 and 150% of the light yield of a standard organic scintillator based on toluene. They are advantageous in that that they allow to increase the water content in the sample to up to 100%. (M.D.)

  3. Ion-exclusion/cation-exchange chromatography with dual detection of the conductivity and spectrophotometry for the simultaneous determination of common inorganic anionic species and cations in river and wastewater.

    Science.gov (United States)

    Nakatani, Nobutake; Kozaki, Daisuke; Mori, Masanobu; Hasebe, Kiyoshi; Nakagoshi, Nobukazu; Tanaka, Kazuhiko

    2011-01-01

    Simultaneous determinations of common inorganic anionic species (SO(4)(2-), Cl(-), NO(3)(-), phosphate and silicate) and cations (Na(+), NH(4)(+), K(+), Mg(2+) and Ca(2+)) were conducted using an ion-chromatography system with dual detection of conductivity and spectrophotometry in tandem. The separation of ionic species on a weakly acidic cation-exchange resin was accomplished using a mixture of 100 mM ascorbic acid and 4 mM 18-crown-6 as an acidic eluent (pH 2.6), after which the ions were detected using a conductivity detector. Subsequently, phosphate and silicate were analyzed based on derivatization with molybdate and spectrophotometry at 700 nm. The detection limits at S/N = 3 ranged from 0.11 to 2.9 µM for analyte ionic species. This method was applied to practical river water and wastewater with acceptable criteria for the anion-cation balance and comparisons of the measured and calculated electrical conductivity, demonstrating the usefulness of the present method for water quality monitoring.

  4. Thorium inorganic gels

    International Nuclear Information System (INIS)

    Genet, M.; Brandel, V.

    1988-01-01

    The optimum pH and concentration values of thorium salts and oxoacids or oxoacid salts which lead to transparent and stable inorganic gels have been determined. The isotherm drying process of the gel at 50 0 C leads successively to a partly dehydrated gel, then, to the formation of an unusual liquid phase and, finally to a dry amorphous solid phase which is still transparent. This kind of transparent inorganic gels and amorphous phase can be used as matrices for spectroscopic studies [fr

  5. Inorganic matter characterization in vegetable biomass feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Suarez-Garcia, F.; Martinez-Alonso, A.; Fernandez Llorenta, M.; Tascon, J.M.D. [Instituto Nacional del Carbon, CSIC, Oviedo (Spain)

    2002-06-01

    A combination of techniques was used to characterize the inorganic constituents of four types of vegetable biomass: apple pulp, olive cake, olive tree pruning and thistle. Two methods were used to selectively eliminate organic matter: low-temperature oxidation in an oxygen plasma, and medium-temperature oxidation in air. Inorganic species present in the residues were identified by X-ray diffraction and FT-IR spectroscopy. The combination of these techniques allowed one to detect SiO{sub 2}, CaCO{sub 3} and various other Ca-, Mg-, Na- and K-containing phases as inorganic constituents of the studied biomass residues. It is concluded that the oxygen plasma treatment produces sulphates and nitrates that were not present in the starting material. Medium-temperature oxidation does not produce these artificial species but induces some thermal transformations in the mineral constituents of biomass, so that each technique has its own advantages and disadvantages. 27 refs., 6 figs., 3 tabs.

  6. PRIMAL: Page Rank-Based Indoor Mapping and Localization Using Gene-Sequenced Unlabeled WLAN Received Signal Strength

    Directory of Open Access Journals (Sweden)

    Mu Zhou

    2015-09-01

    Full Text Available Due to the wide deployment of wireless local area networks (WLAN, received signal strength (RSS-based indoor WLAN localization has attracted considerable attention in both academia and industry. In this paper, we propose a novel page rank-based indoor mapping and localization (PRIMAL by using the gene-sequenced unlabeled WLAN RSS for simultaneous localization and mapping (SLAM. Specifically, first of all, based on the observation of the motion patterns of the people in the target environment, we use the Allen logic to construct the mobility graph to characterize the connectivity among different areas of interest. Second, the concept of gene sequencing is utilized to assemble the sporadically-collected RSS sequences into a signal graph based on the transition relations among different RSS sequences. Third, we apply the graph drawing approach to exhibit both the mobility graph and signal graph in a more readable manner. Finally, the page rank (PR algorithm is proposed to construct the mapping from the signal graph into the mobility graph. The experimental results show that the proposed approach achieves satisfactory localization accuracy and meanwhile avoids the intensive time and labor cost involved in the conventional location fingerprinting-based indoor WLAN localization.

  7. PRIMAL: Page Rank-Based Indoor Mapping and Localization Using Gene-Sequenced Unlabeled WLAN Received Signal Strength.

    Science.gov (United States)

    Zhou, Mu; Zhang, Qiao; Xu, Kunjie; Tian, Zengshan; Wang, Yanmeng; He, Wei

    2015-09-25

    Due to the wide deployment of wireless local area networks (WLAN), received signal strength (RSS)-based indoor WLAN localization has attracted considerable attention in both academia and industry. In this paper, we propose a novel page rank-based indoor mapping and localization (PRIMAL) by using the gene-sequenced unlabeled WLAN RSS for simultaneous localization and mapping (SLAM). Specifically, first of all, based on the observation of the motion patterns of the people in the target environment, we use the Allen logic to construct the mobility graph to characterize the connectivity among different areas of interest. Second, the concept of gene sequencing is utilized to assemble the sporadically-collected RSS sequences into a signal graph based on the transition relations among different RSS sequences. Third, we apply the graph drawing approach to exhibit both the mobility graph and signal graph in a more readable manner. Finally, the page rank (PR) algorithm is proposed to construct the mapping from the signal graph into the mobility graph. The experimental results show that the proposed approach achieves satisfactory localization accuracy and meanwhile avoids the intensive time and labor cost involved in the conventional location fingerprinting-based indoor WLAN localization.

  8. Cu2I2Se6: A Metal-Inorganic Framework Wide-Bandgap Semiconductor for Photon Detection at Room Temperature.

    Science.gov (United States)

    Lin, Wenwen; Stoumpos, Constantinos C; Kontsevoi, Oleg Y; Liu, Zhifu; He, Yihui; Das, Sanjib; Xu, Yadong; McCall, Kyle M; Wessels, Bruce W; Kanatzidis, Mercouri G

    2018-02-07

    Cu 2 I 2 Se 6 is a new wide-bandgap semiconductor with high stability and great potential toward hard radiation and photon detection. Cu 2 I 2 Se 6 crystallizes in the rhombohedral R3̅m space group with a density of d = 5.287 g·cm -3 and a wide bandgap E g of 1.95 eV. First-principles electronic band structure calculations at the density functional theory level indicate an indirect bandgap and a low electron effective mass m e * of 0.32. The congruently melting compound was grown in centimeter-size Cu 2 I 2 Se 6 single crystals using a vertical Bridgman method. A high electric resistivity of ∼10 12 Ω·cm is readily achieved, and detectors made of Cu 2 I 2 Se 6 single crystals demonstrate high photosensitivity to Ag Kα X-rays (22.4 keV) and show spectroscopic performance with energy resolutions under 241 Am α-particles (5.5 MeV) radiation. The electron mobility is measured by a time-of-flight technique to be ∼46 cm 2 ·V -1 ·s -1 . This value is comparable to that of one of the leading γ-ray detector materials, TlBr, and is a factor of 30 higher than mobility values obtained for amorphous Se for X-ray detection.

  9. Estimation of endogenous glucose production during hyperinsulinemic-euglycemic glucose clamps. Comparison of unlabeled and labeled exogenous glucose infusates

    International Nuclear Information System (INIS)

    Finegood, D.T.; Bergman, R.N.; Vranic, M.

    1987-01-01

    Tracer methodology has been applied extensively to the estimation of endogenous glucose production (Ra) during euglycemic glucose clamps. The accuracy of this approach has been questioned due to the observation of significantly negative estimates for Ra when insulin levels are high. We performed hyperinsulinemic (300 microU/ml)-euglycemic glucose clamps for 180 min in normal dogs and compared the standard approach, an unlabeled exogenous glucose infusate (cold GINF protocol, n = 12), to a new approach in which a tracer (D-[3- 3 H]glucose) was added to the exogenous glucose used for clamping (hot GINF protocol, n = 10). Plasma glucose, insulin and glucagon concentrations, and glucose infusion rates were similar for the two protocols. Plasma glucose specific activity was 20 +/- 1% of basal (at 120-180 min) in the cold GINF studies, and 44 +/- 3 to 187 +/- 5% of basal in the hot GINF studies. With the one-compartment, fixed pool volume model of Steele, Ra for the cold GINF studies was -2.4 +/- 0.7 mg X min-1 X kg-1 at 25 min and remained significantly negative until 110 min (P less than .05). For the hot GINF studies, Ra was never significantly less than zero (P greater than .05) and was greater than in the cold GINF studies at 20-90 min (P less than .05). There was substantially less between-(78%) and within- (40%) experiment variation for the hot GINF studies compared with the cold GINF studies. An alternate approach (regression method) to the application of the one-compartment model, which allows for a variable and estimable effective distribution volume, yielded Ra estimates that were suppressed 60-100% from basal

  10. Inorganic Constituents in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović A.

    2006-02-01

    Full Text Available Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates,minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fractions of trace elements usually decrease when the rank of coal increases.Fractions of the inorganic elements are different, depending on the coal bed and basin. A varietyof analytical methods and techniques can be used to determine the mass fractions, mode ofoccurrence, and distribution of organic constituents in coal. There are many different instrumentalmethods for analysis of coal and coal products but atomic absorption spectroscopy – AAS is theone most commonly used. Fraction and mode of occurrence are one of the main factors that haveinfluence on transformation and separation of inorganic constituents during coal conversion.Coal, as an important world energy source and component for non-fuels usage, will be continuouslyand widely used in the future due to its relatively abundant reserves. However, there is aconflict between the requirements for increased use of coal on the one hand and less pollution onthe other. It’s known that the environmental impacts, due to either coal mining or coal usage, canbe: air, water and land pollution. Although, minor components, inorganic constituents can exert asignificant influence on the economic value, utilization, and environmental impact of the coal.

  11. Inorganic Analytical Chemistry

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    The book is a treatise on inorganic analytical reactions in aqueous solution. It covers about half of the elements in the periodic table, i.e. the most important ones : H, Li, B, C, N, O, Na, Mg, Al, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Sr, Mo, Ag, Cd, Sn, Sb, I, Ba, W,...

  12. A quinoline-based Cu2 + ion complex fluorescence probe for selective detection of inorganic phosphate anion in aqueous solution and its application to living cells

    Science.gov (United States)

    Dai, Yanpeng; Wang, Peng; Fu, Jiaxin; Yao, Kun; Xu, Kuoxi; Pang, Xiaobin

    2017-08-01

    A quinaldine functionalized probe QP has been designed and synthesized. It exhibited selective turn-off fluorescence response toward Cu2 + ion over most of the biologically important ions at physiological pH. The binding ratio of the probe QP and Cu2 + ion was determined to be 1:1 through fluorescence titration, Job's plot and ESI-MS. The binding constant (K) of Cu2 + to probe QP was found to be 2.12 × 104 M- 1. Further, the Cu2 + ensemble of probe QP was found to respond H2PO4- and HPO42 - among other important biological anions via fluorescence turn-on response at physiological pH. Fluorescence microscopy imaging using living Hela cells showed that probe QP could be used as an effective fluorescent probe for detecting Cu2 + cation and H2PO4- and HPO42 - anions in living cells.

  13. Hand drawing of pencil electrodes on paper platforms for contactless conductivity detection of inorganic cations in human tear samples using electrophoresis chips.

    Science.gov (United States)

    Chagas, Cyro L S; Costa Duarte, Lucas; Lobo-Júnior, Eulício O; Piccin, Evandro; Dossi, Nicolò; Coltro, Wendell K T

    2015-08-01

    This paper describes for the first time the fabrication of pencil drawn electrodes (PDE) on paper platforms for capacitively coupled contactless conductivity detection (C(4) D) on electrophoresis microchips. PDE-C(4) D devices were attached on PMMA electrophoresis chips and used for detection of K(+) and Na(+) in human tear samples. PDE-C(4) D devices were produced on office paper and chromatographic paper platforms and their performance were thoroughly investigated using a model mixture containing K(+) , Na(+) , and Li(+) . In comparison with chromatographic paper, PDE-C(4) D fabricated on office paper has exhibited better performance due to its higher electrical conductivity. Furthermore, the detector response was similar to that recorded with electrodes prepared with copper adhesive tape. The fabrication of PDE-C(4) D on office paper has offered great advantages including extremely low cost (paper). The proposed electrodes demonstrated excellent analytical performance with good reproducibility. For an inter-PDE comparison (n = 7), the RSD values for migration time, peak area, and separation efficiency were lower than 2.5, 10.5, and 14%, respectively. The LOD's achieved for K(+) , Na(+) , and Li(+) were 4.9, 6.8, and 9.0 μM, respectively. The clinical feasibility of the proposed approach was successfully demonstrated with the quantitative analysis of K(+) and Na(+) in tear samples. The concentration levels found for K(+) and Na(+) were, respectively, 20.8 ± 0.1 mM and 101.2 ± 0.1 mM for sample #1, and 20.4 ± 0.1 mM and 111.4 ± 0.1 mM for sample #2. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A radioisotope dilution assay for unlabelled vitamin B12-intrinsic factor complex employing the binding intrinsic factor antibody: probable evidence for two types of binding antibody

    International Nuclear Information System (INIS)

    Jacob, E.; O'Brien, H.A.W.; Mollin, D.L.

    1977-01-01

    A new radioisotope dilution assay for vitamin B 12 -intrinsic factor complex is described. The method is based on the use of the binding type intrinsic antibody (the binding reagent), which when combined with the intrinsic factor-vitamin B 12 complex (labelled ligand), is quantitatively adsorbed onto zirconium phosphate gel pH 6.25. The new assay has been shown to provide a measure of intrinsic factor comparable with other intrinsic factor assays, but it has the important advantage of being able to measure the unlabelled vitamin B 12 -intrinsic factor complex (unlabelled ligand), and will, therefore, be valuable in the study of physiological events in the gastrointestinal tract. During the study, it was found that there is some evidence for at least two types of binding intrinsic factor antibody: One which combines preferentially with the intrinsic factor-vitamin B 12 complex and one which combines equally well with this complex or with free intrinsic factor. (author)

  15. Inorganic chemistry and medicine

    International Nuclear Information System (INIS)

    Sadler, P.J.; Guo, Z.

    1999-01-01

    Inorganic chemistry is beginning to have a major impact on medicine. Not only does it offer the prospect of the discovery of truly novel drugs and diagnostic agents, but it promises to make a major contribution to our understanding of the mechanism of action of organic drugs too. Most of this article is concerned with recent developments in medicinal coordination chemistry. The role of metal organic compounds of platinum, titanium, ruthenium, gallium, bismuth, gold, gadolinium, technetium, silver, cobalt in the treatment or diagnosis of common diseases are briefly are examined

  16. Selective inorganic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T. [Sandia National Laboratories, Albuquerque, NM (United States)] [and others

    1995-05-01

    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  17. Inorganic Halogen Oxidizer Research

    Science.gov (United States)

    1979-02-16

    Inorganic Chemistry. Vol. 14. No. 9. 1975 Karl 0. Christ¢ (21) L. J. Basile . P. LaBonvillk. J. R. Ferraro, and J. M. Williams. J. Claim. (38) K. 0. Chriae. E... basils of a nonplanar structure of symmetry CI, are revised for six fundamental frequencies. Imalredetle either the 1:2 adduct N 2F4.2SbF5 or the 1:3...8217 in mT are 7 2.1 for B, facility. We aba thank L. K. White and R. L. Belford 111.0 for C, 55.0 for N, and 17100 for F, and the atomic aniso- trop’c

  18. Modern Trends in Inorganic Chemistry

    Indian Academy of Sciences (India)

    Administrator

    The series of symposia on 'Modern Trends in Inorganic Chemistry' (MTIC), which began in 1985 at the Indian Association for Cultivation of Science, Calcutta has evolved into a forum for the Inorganic Chemistry fraternity of the country to meet every two years and discuss the current status and future projections of research in.

  19. Inorganic Fullerene-Like Nanoparticles and Inorganic Nanotubes

    Directory of Open Access Journals (Sweden)

    Reshef Tenne

    2014-11-01

    Full Text Available Fullerene-like nanoparticles (inorganic fullerenes; IF and nanotubes of inorganic layered compounds (inorganic nanotubes; INT combine low dimensionality and nanosize, enhancing the performance of corresponding bulk counterparts in their already known applications, as well as opening new fields of their own [1]. This issue gathers articles from the diverse area of materials science and is devoted to fullerene-like nanoparticles and nanotubes of layered sulfides and boron nitride and collects the most current results obtained at the interface between fundamental research and engineering.[...

  20. Inorganic elements in sugar samples

    Energy Technology Data Exchange (ETDEWEB)

    Salles, Paulo M.B. de; Campos, Tarcisio P.R. de, E-mail: pauladesalles@yahoo.com.br, E-mail: tprcampos@pq.cnpq.br [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Menezes, Maria Angela de B.C., E-mail: menezes@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    Sugar is considered a safe food ingredient; however, it can be contaminated by organic elements since its planting until its production process. Thus, this study aims at checking the presence of inorganic elements in samples of crystal, refined and brown sugar available for consumption in Brazil. The applied technique was neutron activation analysis, the k{sub 0} method, using the TRIGA MARK - IPR-R1 reactor located at CDTN/CNEN, in Belo Horizonte. It was identified the presence of elements such as, Au, Br, Co, Cr, Hf, K, Na, Sb, Sc and Zn in the samples of crystal/refined sugar and the presence of As, Au, Br, Ca, Co, Cr, Cs, Fe, Hf, K, Na, Sb, Sc, Sm, Sr, Th and Zn in the brown sugar samples. The applied technique was appropriate to this study because it was not necessary to put the samples in solution, essential condition in order to apply other techniques, avoiding contaminations and sample losses, besides allowing a multi elementary detection in different sugar samples. (author)

  1. Inorganic elements in sugar samples

    International Nuclear Information System (INIS)

    Salles, Paulo M.B. de; Campos, Tarcisio P.R. de

    2013-01-01

    Sugar is considered a safe food ingredient; however, it can be contaminated by organic elements since its planting until its production process. Thus, this study aims at checking the presence of inorganic elements in samples of crystal, refined and brown sugar available for consumption in Brazil. The applied technique was neutron activation analysis, the k 0 method, using the TRIGA MARK - IPR-R1 reactor located at CDTN/CNEN, in Belo Horizonte. It was identified the presence of elements such as, Au, Br, Co, Cr, Hf, K, Na, Sb, Sc and Zn in the samples of crystal/refined sugar and the presence of As, Au, Br, Ca, Co, Cr, Cs, Fe, Hf, K, Na, Sb, Sc, Sm, Sr, Th and Zn in the brown sugar samples. The applied technique was appropriate to this study because it was not necessary to put the samples in solution, essential condition in order to apply other techniques, avoiding contaminations and sample losses, besides allowing a multi elementary detection in different sugar samples. (author)

  2. Study of lignin biotransformation by Aspergillus fumigatus and white-rot fungi using 14C-labeled and unlabeled kraft lignins

    International Nuclear Information System (INIS)

    Kadam, K.K.; Drew, S.W.

    1986-01-01

    The biodegradation of lignin by fungi was studied in shake flasks using 14 C-labeled kraft lignin and in a deep-tank fermentor using unlabeled kraft lignin. Among the fungi screened, A. fumigatus - isolated in our laboratories - was most potent in lignin biotransformation. Dialysis-type fermentation, designed to study possible accumulation of low MW lignin-derived products, showed no such accumulation. Recalcitrant carbohydrates like microcrystalline cellulose supported higher lignolytic activity than easily metabolized carbohydrates like cellobiose. An assay developed to distinguish between CO 2 evolved from lignin and carbohydrate substrates demonstrated no stoichiometric correlation between the metabolism of the two cosubstrates. The submerged fermentations with unlabeled liqnin are difficult to monitor since chemical assays do not give accurate and true results. Lignolytic efficiencies that allowed monitoring of such fermentations were defined. Degraded lignins were clearly superior to C. versicolor in all aspects of lignin degradation; A fumigatus brought about substantial demethoxylation and dehydroxylation, whereas C. versicolor degraded lignins closely resembled undegraded kraft lignin. There was a good agreement among the different indices of lignin degradation, namely, 14 CO evolution, OCH 3 loss, OH loss, and monomer and dimer yield after permanganate oxidation

  3. Cancer risk from inorganics

    International Nuclear Information System (INIS)

    Swierenga, S.H.; Gilman, J.P.; McLean, J.R.

    1987-01-01

    Inorganic metals and minerals for which there is evidence of carcinogenicity are identified. The risk of cancer from contact with them in the work place, the general environment, and under conditions of clinical (medical) exposure is discussed. The evidence indicates that minerals and metals most often influence cancer development through their action as cocarcinogens. The relationship between the physical form of mineral fibers, smoking and carcinogenic risk is emphasized. Metals are categorized as established (As, Be, Cr, Ni), suspected (Cd, Pb) and possible carcinogens, based on the existing in vitro, animal experimental and human epidemiological data. Cancer risk and possible modes of action of elements in each class are discussed. Views on mechanisms that may be responsible for the carcinogenicity of metals are updated and analysed. Some specific examples of cancer risks associated with the clinical use of potentially carcinogenic metals and from radioactive pharmaceuticals used in therapy and diagnosis are presented. Questions are raised as to the effectiveness of conventional dosimetry in accurately measuring risk from radiopharmaceuticals. 302 references

  4. Inorganic chemistry of earliest sediments

    International Nuclear Information System (INIS)

    Ochiai, E.I.

    1983-01-01

    A number of inorganic elements are now known to be essential to organisms. Chemical evolutionary processes involving carbon, hydrogen, nitrogen and oxygen have been studied intensively and extensively, but the other essential elements have been rather neglected in the studies of chemical and biological evolution. This article attempts to assess the significance of inorganic chemistry in chemical and biological evolutionary processes on the earth. Emphasis is placed on the catalytic effects of inorganic elements and compounds, and also on possible studies on the earliest sediments, especially banded iron formation and stratabound copper from the inorganic point of view in the hope of shedding some light on the evolution of the environment and the biological effects on it. (orig./WL)

  5. Essentials of inorganic materials synthesis

    CERN Document Server

    Rao, C N R

    2015-01-01

    This compact handbook describes all the important methods of synthesis employed today for synthesizing inorganic materials. Some features: Focuses on modern inorganic materials with applications in nanotechnology, energy materials, and sustainability Synthesis is a crucial component of materials science and technology; this book provides a simple introduction as well as an updated description of methods Written in a very simple style, providing references to the literature to get details of the methods of preparation when required

  6. Identification of inorganic anions by gas chromatography/mass spectrometry.

    Science.gov (United States)

    Sakayanagi, Masataka; Yamada, Yaeko; Sakabe, Chikako; Watanabe, Kunio; Harigaya, Yoshihiro

    2006-03-10

    Inorganic anions were identified by using gas chromatography/mass spectrometry (GC/MS). Derivatization of the anions was achieved with pentafluorobenzyl p-toluenesulphonate (PFB-Tos) as the reaction reagent and a crown ether as a phase transfer catalyst. When PFB-Br was used as the reaction reagent, the retention time of it was close to those of the derivatized inorganic anions and interfered with the analysis. In contrast, the retention time of PFB-Tos differed greatly from the PFB derivatives of the inorganic anions and the compounds of interest could be detected without interference. Although the PFB derivatives of SO4, S2O3, CO3, ClO4, and ClO3 could not be detected, the derivatives of F, Cl, Br, I, CN, OCN, SCN, N3, NO3, and NO2 were detected using PFB-Tos as the derivatizing reagent. The inorganic anions were detectable within 30 ng approximately, which is of sufficient sensitivity for use in forensic chemistry. Accurate mass number was measured for each PFB derivative by high-resolution mass spectrometry (HRMS) within a measurement error of 2 millimass units (mmu), which allowed determination of the compositional formula from the mass number. In addition, actual analysis was performed successively by our method using trial samples of matrix.

  7. Preparation of inorganic hydrophobic catalysts

    International Nuclear Information System (INIS)

    Yang, Yong; Wang, Heyi; Du, Yang

    2009-04-01

    In order to catalyse the oxidation of tritium gas, two inorganic hydrophobic catalysts are prepared. Under room temperature, the catalysed oxidation ratio of 0.3%-1% (V/V) hydrogen gas in air is higher than 95%. Pt-II inorganic hydrophobic catalysts has obviously better catalysing ability than Pt-PTFE and lower ability than Pt-SDB in H 2 -HTO isotopic exchange, because the pressure resistence of Pt-II is much higher than Pt-SDB, it can be used to the CECE cell of heavy water detritium system. (authors)

  8. Detection of unlabeled particles in the low micrometer size range using light scattering and hydrodynamic 3D focusing in a microfluidic system

    DEFF Research Database (Denmark)

    Zhuang, Guisheng; Jensen, Thomas G.; Kutter, Jörg P.

    2012-01-01

    constrained in the out‐of‐plane direction into a narrow sheet, and then focused in‐plane into a small core region, obtaining on‐chip three‐dimensional (3D) hydrodynamic focusing. All the microoptical elements, including waveguides, microlens, and fiber‐to‐waveguide couplers, and the in‐plane focusing channels...... are fabricated in one SU‐8 layer by standard photolithography. The channels for out‐of‐plane focusing are made in a polydimethylsiloxane (PDMS) layer by a single cast using a SU‐8 master. Numerical and experimental results indicate that the device can realize 3D hydrodynamic focusing reliably over a wide range...

  9. Molecular modeling of inorganic compounds

    National Research Council Canada - National Science Library

    Comba, Peter; Hambley, Trevor W; Martin, Bodo

    2009-01-01

    ... mechanics to inorganic and coordination compounds. Initially, simple metal complexes were modeled, but recently the field has been extended to include organometallic compounds, catalysis and the interaction of metal ions with biological macromolecules. The application of molecular mechanics to coordination compounds is complicated by the numbe...

  10. Inorganic nanomedicine--part 1.

    Science.gov (United States)

    Sekhon, Bhupinder S; Kamboj, Seema R

    2010-08-01

    Inorganic nanomedicine refers to the use of inorganic or hybrid nanomaterials and nanosized objects to achieve innovative medical breakthroughs for drug and gene discovery and delivery, discovery of biomarkers, and molecular diagnostics. Potential uses for fluorescent quantum dots include cell labeling, biosensing, in vivo imaging, bimodal magnetic-luminescent imaging, and diagnostics. Biocompatible quantum dot conjugates have been used successfully for sentinel lymph node mapping, tumor targeting, tumor angiogenesis imaging, and metastatic cell tracking. Magnetic nanowires applications include biosensing and construction of nucleic acids sensors. Magnetic cell therapy is used for the repair of blood vessels. Magnetic nanoparticles (MNPs) are important for magnetic resonance imaging, drug delivery, cell labeling, and tracking. Superparamagnetic iron oxide nanoparticles are used for hyperthermic treatment of tumors. Multifunctional MNPs applications include drug and gene delivery, medical imaging, and targeted drug delivery. MNPs could have a vital role in developing techniques to simultaneously diagnose, monitor, and treat a wide range of common diseases and injuries. From the clinical editor: This review serves as an update about the current state of inorganic nanomedicine. The use of inorganic/hybrid nanomaterials and nanosized objects has already resulted in innovative medical breakthroughs for drug/gene discovery and delivery, discovery of biomarkers and molecular diagnostics, and is likely to remain one of the most prolific fields of nanomedicine. 2010 Elsevier Inc. All rights reserved.

  11. James Moir as Inorganic Chemist

    African Journals Online (AJOL)

    NICO

    KEYWORDS. Inorganic chemistry, gold, atomic theory, history of chemistry. .... Figure 2 (a) shows Moir's model for the C atom, where the black circles represent the ..... Na filled the hole in the F atom, both becoming ions even in the crystal state ...

  12. Determining Inorganic and Organic Carbon.

    Science.gov (United States)

    Koistinen, Jaana; Sjöblom, Mervi; Spilling, Kristian

    2017-11-21

    Carbon is the element which makes up the major fraction of lipids and carbohydrates, which could be used for making biofuel. It is therefore important to provide enough carbon and also follow the flow into particulate organic carbon and potential loss to dissolved organic forms of carbon. Here we present methods for determining dissolved inorganic carbon, dissolved organic carbon, and particulate organic carbon.

  13. The role of inorganic phosphate in intact human erythrocytes

    International Nuclear Information System (INIS)

    Nishiguchi, Eiko; Umeda, Masahiro.

    1988-01-01

    The role of inorganic phosphate in intact human erythrocytes was investigated by phosphorus-31 nuclear magnetic resonance ( 31 P NMR). When erythrocytes stored for 5 weeks were incubated at 37 deg C, pH 7.4, in medium containing 2 mM adenine and 10 mM inosine, with or without 5 mM glucose, a substance of around 4 ppm, as assessed by 31 P NMR chemical shift, was detected in the mixture. However, this substance disappeared by the addition of inorganic phosphate. When erythrocytes stored for 4 weeks in acid citrate dextrose (ACD) solution were incubated with 2 mM adenine, 10 mM inosine, 5 mM glucose, 50 mM inorganic phosphate and 10 mM pyruvate at 37 deg C, pH 7.4, the 2,3-DPG level increased gradually, whereas the ATP level initially increased and then decreased. Intracellular inorganic phosphate appeared to be used for the synthesis of ATP and 2,3-DPG during the first 30 min. of the reaction. These results suggests that the inorganic phosphate accelerates glycolysis by increasing the activity of glycolytic enzymes rather than its direct involvement in synthesizing organic phosphorus compounds in stored erythrocytes. The results also suggests that the reserve energy from ATP synthesis is not sufficient for the synthesis of 2,3-DPG. (author)

  14. Hybrid polymer-inorganic photovoltaic cells

    NARCIS (Netherlands)

    Beek, W.J.E.; Janssen, R.A.J.; Merhari, L.

    2009-01-01

    Composite materials made from organic conjugated polymers and inorganic semiconductors such as metal oxides attract considerable interest for photovoltaic applications. Hybrid polymer-inorganic solar cells offer the opportunity to combine the beneficial properties of the two materials in charge

  15. Semi-supervised rail defect detection from imbalanced image data

    NARCIS (Netherlands)

    Hajizadeh, S.; Nunez Vicencio, Alfredo; Tax, D.M.J.; Acarman, Tankut

    2016-01-01

    Rail defect detection by video cameras has recently gained much attention in both
    academia and industry. Rail image data has two properties. It is highly imbalanced towards the non-defective class and it has a large number of unlabeled data samples available for semisupervised learning

  16. Isotopic measurements (C,N,O) of detonation soot produced from labeled and unlabeled Composition B-3 indicate source of solid carbon residues

    Science.gov (United States)

    Podlesak, David; Manner, Virginia; Amato, Ronald; Dattelbaum, Dana; Gusavsen, Richard; Huber, Rachel

    2017-06-01

    Detonation of HE is an exothermic process whereby metastable complex molecules are converted to simple stable molecules such as H2 O, N2, CO, CO2, and solid carbon. The solid carbon contains various allotropes such as detonation nanodiamonds, graphite, and amorphous carbon. It is well known that certain HE formulations such as Composition B (60% RDX, 40% TNT) produce greater amounts of solid carbon than other more oxygen-balanced formulations. To develop a greater understanding of how formulation and environment influence solid carbon formation, we synthesized TNT and RDX with 13 C and 15 N at levels slightly above natural abundance levels. Synthesized RDX and TNT were mixed at a ratio of 60:40 to form Composition B and solid carbon residues were collected from detonations of isotopically-labeled as well as un-labelled Composition B. The raw HE and detonation residues were analyzed isotopically for C, N, O isotopic compositions. We will discuss differences between treatments groups as a function of formulation and environment. LA-UR - 17-21266.

  17. Inorganic, coordination and organometallic compounds

    International Nuclear Information System (INIS)

    Jursik, F.

    1978-01-01

    Separation of cations and anions of inorganic, coordination and metalloorganic compounds by the method of liquid column chromatography is considered. Common scheme of multicomponent cation mixture is suggesteed. Separation conditions, adsrbents, eluents, pH value solution concenstration, elution rate are also suggested. Separation of rare earth elements Cs, Be, Cd, Te, Th, U, Mo, Re, V, Ru, Zr, In compounds is considered as an example of liquid column chromatography application. Data on column chromatography application are summarized in a table

  18. Electrochemical determination of inorganic mercury and arsenic--A review.

    Science.gov (United States)

    Zaib, Maria; Athar, Muhammad Makshoof; Saeed, Asma; Farooq, Umar

    2015-12-15

    Inorganic mercury and arsenic encompasses a term which includes As(III), As(V) and Hg(II) species. These metal ions have been extensively studied due to their toxicity related issues. Different analytical methods are used to monitor inorganic mercury and arsenic in a variety of samples at trace level. The present study reviews various analytical techniques available for detection of inorganic mercury and arsenic with particular emphasis on electrochemical methods especially stripping voltammetry. A detailed critical evaluation of methods, advantages of electrochemical methods over other analytical methods, and various electrode materials available for mercury and arsenic analysis is presented in this review study. Modified carbon paste electrode provides better determination due to better deposition with linear and improved response under studied set of conditions. Biological materials may be the potent and economical alternative as compared to macro-electrodes and chemically modified carbon paste electrodes in stripping analysis of inorganic mercury and arsenic. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Nomenclature on an inorganic compound

    International Nuclear Information System (INIS)

    1998-10-01

    This book contains eleven chapters : which mention nomenclature of an inorganic compound with introduction and general principle on nomenclature of compound. It gives the description of grammar for nomenclature such as brackets, diagonal line, asterisk, and affix, element, atom and groups of atom, chemical formula, naming by stoichiometry, solid, neutral molecule compound, ion, a substituent, radical and name of salt, oxo acid and anion on introduction and definition of oxo acid, coordination compound like symbol of stereochemistry , boron and hydrogen compound and related compound.

  20. In-situ trainable intrusion detection system

    Energy Technology Data Exchange (ETDEWEB)

    Symons, Christopher T.; Beaver, Justin M.; Gillen, Rob; Potok, Thomas E.

    2016-11-15

    A computer implemented method detects intrusions using a computer by analyzing network traffic. The method includes a semi-supervised learning module connected to a network node. The learning module uses labeled and unlabeled data to train a semi-supervised machine learning sensor. The method records events that include a feature set made up of unauthorized intrusions and benign computer requests. The method identifies at least some of the benign computer requests that occur during the recording of the events while treating the remainder of the data as unlabeled. The method trains the semi-supervised learning module at the network node in-situ, such that the semi-supervised learning modules may identify malicious traffic without relying on specific rules, signatures, or anomaly detection.

  1. Heat-resistant inorganic binders.

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich,

    2017-04-01

    Full Text Available The authors consider some aspects of production of inorganic heat-resistant composite materials in which new classes of inorganic binders - the basic salts of various metals – are applied. The possibility to use hydroxochlorides and hydroxonitrates of aluminum, zirconium, chromium and a number of other metals as the binder has been shown. The main products of the thermal decomposition of all types of binders discussed in this paper are nano-dispersed highly refractory oxides. Increased pressure in the manufacture of these materials shifts the position of the minimum of the dependence «production strength – production temperature» in the direction of low temperatures. This effect is caused by decreased film thickness of the binder located between filler particles and hence by increased rate of transfer of the matter to the interface and by facilitated sintering process. Materials based on the systems containing chromium and some other elements in transitional oxidation states are colour. For this reason, they have the worst thermal conductivity under the same heat resistance compared to colorless materials.

  2. Investigations of inorganic and hybrid inorganic-organic nanostructures

    Science.gov (United States)

    Kam, Kinson Chihang

    This thesis focuses on the exploratory synthesis and characterization of inorganic and hybrid inorganic-organic nanomaterials. In particular, nanostructures of semiconducting nitrides and oxides, and hybrid systems of nanowire-polymer composites and framework materials, are investigated. These materials are characterized by a variety of techniques for structure, composition, morphology, surface area, optical properties, and electrical properties. In the study of inorganic nanomaterials, gallium nitride (GaN), indium oxide (In2O3), and vanadium dioxide (VO2) nanostructures were synthesized using different strategies and their physical properties were examined. GaN nanostructures were obtained from various synthetic routes. Solid-state ammonolysis of metastable gamma-Ga2O 3 nanoparticles was found to be particularly successful; they achieved high surface areas and photoluminescent study showed a blue shift in emission as a result of surface and size defects. Similarly, In2O3 nanostructures were obtained by carbon-assisted solid-state syntheses. The sub-oxidic species, which are generated via a self-catalyzed vapor-liquid-solid mechanism, resulted in 1D nanostructures including nanowires, nanotrees, and nanobouquets upon oxidation. On the other hand, hydrothermal methods were used to obtain VO2 nanorods. After post-thermal treatment, infrared spectroscopy demonstrated that these nanorods exhibit a thermochromic transition with temperature that is higher by ˜10°C compared to the parent material. The thermochromic behavior indicated a semiconductor-to-metal transition associated with a structural transformation from monoclinic to rutile. The hybrid systems, on the other hand, enabled their properties to be tunable. In nanowire-polymer composites, zinc oxide (ZnO) and silver (Ag) nanowires were synthesized and incorporated into polyaniline (PANI) and polypyrrole (PPy) via in-situ and ex-situ polymerization method. The electrical properties of these composites are

  3. Survey meter using novel inorganic scintillators

    International Nuclear Information System (INIS)

    Yoshikawa, Akira; Fukuda, Kentaro; Kawaguchi, Noriaki; Kamada, Kei; Fujimoto, Yutaka; Yokota, Yuui; Kurosawa, Shunsuke; Yanagida, Takayuki

    2012-01-01

    Single crystal scintillator materials are widely used for detection of high-energy photons and particles. There is continuous demand for new scintillator materials with higher performance because of increasing number of medical, industrial, security and other applications. This article presents the recent development of three novel inorganic scintillators; Pr-doped Lu 3 Al 5 O 12 (Pr:LuAG), Ce doped Gd 3 (Al, Ga) 5 O 12 (Ce:GAGG) and Ce or Eu-doped 6 LiCaAlF 6 (Ce:LiCAF, Eu:LiCAF). Pr:LuAG shows very interesting scintillation properties including very fast decay time, high light yield and excellent energy resolution. Taking the advantage of these properties, positron emission mammography (PEM) equipped with Pr:LuAG were developed. Ce:GAGG shows very high light yield, which is much higher than that of Ce:LYSO. Survey meter using Ce:GAGG is developed using this scintillator. Ce:LiCAF and Eu:LiCAF were developed for neutron detection. The advantage and disadvantage are discussed comparing with halide scintillators. Eu-doped LiCAF indicated five times higher light yield than that of existing Li-glass. It is expected to be used as the alternative of 3 He. (author)

  4. Uptake and Transformation of Methylated and Inorganic Antimony in Plants.

    Science.gov (United States)

    Ji, Ying; Mestrot, Adrien; Schulin, Rainer; Tandy, Susan

    2018-01-01

    Used as a hardening agent in lead bullets, antimony (Sb) has become a major contaminant in shooting range soils of some countries including Switzerland. Soil contamination by Sb is also an environmental problem in countries with Sb-mining activities such as China and Bolivia. Because of its toxicity and relatively high mobility, there is concern over the risk of Sb transfer from contaminated soils into plants, and thus into the food chain. In particular there is very little information on the environmental behavior of methylated antimony, which can be produced by microbial biomethylation of inorganic Sb in contaminated soils. Using a new extraction and high-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC-ICP-MS) method, we investigated antimony speciation in roots and shoots of wheat, fescue, rye, and ryegrass plants exposed to trimethyl antimony(V) (TMSb), antimonite (Sb(III)), and antimonate (Sb(V)) in hydroponics. The total root Sb concentrations followed the order Sb(III) treatment > Sb(V) treatment > TMSb treatment, except for fescue. Shoot Sb concentrations, however, did not differ among the three treatments. In the Sb(V) treatment small quantities of TMSb were found in the roots, whereas no TMSb was detected in the roots of Sb(III)-treated plants. In contrast, similar concentrations of TMSb were found in the shoots in both inorganic Sb treatments. The results indicate that biomethylation of Sb may occur in plants. In the TMSb treatment TMSb was the major Sb species, but the two inorganic Sb species were also found both in shoots and roots along with some unknown Sb species, suggesting that also TMSb demethylation may occur within plant tissues. The results furthermore indicate that methylated Sb is more mobile in plants than inorganic Sb species. Knowledge about this is important in risk assessments of Sb-contaminated sites, as methylation may render Sb more toxic than inorganic Sb, as it is known for arsenic (As).

  5. Medicinal Uses of Inorganic Compounds - 2

    Indian Academy of Sciences (India)

    In the first part of this article, we described medicinal uses of inorganic compounds relating to cancer care, infection and diabetic control, neurological, cardiovascular and in- flammatory diseases. This article contains further infor- mation on the medicinal uses of inorganic compounds as therapeutic and diagnostic in ...

  6. Recent Advances in Bio-inorganic Chemistry

    Indian Academy of Sciences (India)

    Unknown

    Bio-inorganic chemistry has developed rapidly in recent years. A number of laboratories in India have made significant contributions to this area. The motivation in bringing out this special issue on Bio-inorganic. Chemistry is to highlight the recent work emerging from India in this important and fascinating interdisci-.

  7. Attachment of inorganic moieties onto aliphatic polyurethanes

    Directory of Open Access Journals (Sweden)

    Eliane Ayres

    2007-06-01

    Full Text Available Polyurethanes have been used in a series of applications due basically to their versatility in terms of controlling the behavior by altering basically the type of reagents used. However, for more specific and advanced applications, such as in membranes, biomaterials and sensors, well-organized and defined chemical functionalities are necessary. In this work, inorganic functionalities were incorporated into aliphatic polyurethanes (PU having different macromolecular architectures. Polyurethanes were synthesized using a polyether diol and dicyclohexylmethane 4,4' diisocyanate (H12-MDI. Polyurethanes having carboxylic acid groups were also produced by introducing 2,2- bis (hydroxymethyl propionic acid in the polymerization process. Inorganic functionalities were inserted into polyurethanes by reacting isocyanate end capped chains with aminopropyltriethoxysilane followed by tetraethoxysilane. PU having carboxylic acid groups yielded transparent samples after the incorporation of inorganic entities, as an evidence of smaller and better dispersed inorganic entities in the polymer network. FTIR and swelling measurements showed that polyurethanes having carboxylic acid groups had inorganic domains less packed, condensed and cross-linked when compared to polyurethanes with no carboxylic acid groups. Results also suggested that the progressive incorporation of inorganic moieties in both types of polyurethanes occurred in regions previously activated with inorganic functionalities, instead of by the creation of new domains. The temperatures of thermal decomposition and glass transition were also shifted to higher temperatures when inorganic functionalities were incorporated into polyurethanes.

  8. Uptake of inorganic contaminants by pteridophytes

    International Nuclear Information System (INIS)

    Zheng Jiemin; Chen Ziyuan; Tang Shirong; Guangzhou Univ., Guangzhou; Ding Bingyang

    2005-01-01

    The review covers results at home and abroad in terms of uptake of inorganic contaminants by pteridophytes, and suggests pteridophytes' significance in phytoremediation; the mechanisms related to uptake of inorganic contaminants by pteridophytes and some methods and means used for research on the mechanism are also introduced; the authors' viewpoints on future development trends are presented in this paper. (authors)

  9. Ultrasound exfoliation of inorganic analogues of graphene

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Henych, Jiří; Slušná, Michaela; Ecorchard, Petra

    2014-01-01

    Roč. 9, APR (2014), s. 1-14 ISSN 1556-276X R&D Projects: GA ČR(CZ) GA14-05146S Institutional support: RVO:61388980 Keywords : Ultrasound * Exfoliation * Graphene inorganic analogues Subject RIV: CA - Inorganic Chemistry Impact factor: 2.779, year: 2014

  10. Development of cement material using inorganic additives

    International Nuclear Information System (INIS)

    Toyohara, Masumitsu; Satou, Tatsuaki; Wada, Mikio; Ishii, Tomoharu; Matsuo, Kazuaki.

    1997-01-01

    Inorganic admixtures to enhance the fluidity of cement material was developed. These admixtures turned into easy to immobilize the miscellaneous radioactive waste using cement material. It was found that the ζ potential of cement particles was directly proportional to the content of the inorganic admixtures in cement paste and the particles of cement were dispersed at the high ζ potential. The condensed sodium phosphate, which was the main component of the inorganic admixtures, retarded the dissolution of Ca 2+ ion from the cement, and generated the colloids by incorporating dissolved Ca 2+ ion. The cement material containing the inorganic admixtures was found to have the same mechanical strength and adsorption potential of radionuclides in comparison to normal cement materials. It was confirmed that the cement material containing the inorganic admixture was effectively filled gaps of miscellaneous radioactive waste. (author)

  11. Welcome to Inorganics: A New Open Access, Inclusive Forum for Inorganic Chemistry

    Directory of Open Access Journals (Sweden)

    Duncan H. Gregory

    2013-06-01

    Full Text Available One of the beauties of inorganic chemistry is its sheer diversity. Just as chemistry sits at the centre of the sciences, inorganic chemistry sits at the centre of chemistry itself. Inorganic chemists are fortunate in having the entire periodic table at their disposal, providing a palette for the creation of a multitude of rich and diverse compounds and materials from the simplest salts to the most complex of molecular species. It follows that the language of inorganic chemistry can thus be a demanding one, accommodating sub-disciplines with very different perspectives and frames of reference. One could argue that it is the unequivocal breadth of inorganic chemistry that empowers inorganic chemists to work at the interfaces, not just between the traditional Inorganic-Organic-Physical boundaries of the discipline, but in the regions where chemistry borders the other physical and life sciences, engineering and socio-economics. [...

  12. A novel speciation alternative for the determination of inorganic arsenic in marine samples

    DEFF Research Database (Denmark)

    Rasmussen, Rie Romme; Hedegaard, Rikke Susanne Vingborg; Herbst, M. Birgitte Koch

    Arsenic (As) is bioaccumulated from seawater to concentrations in the mg/kg range in marine animals. More than 50 naturally-occurring arsenic containing species, both inorganic and organic forms, have been identified in marine animals. The organic forms are mainly considered to be non......-toxic, whereas inorganic arsenic is highly toxic and exposure may lead to severe adverse effects including cancer. Since seafood is the major dietary source for arsenic exposure in the European population, arsenic speciation analysis of marine samples is highly relevant for food safety. However, most data...... of inorganic arsenic in marine based food is based on microwave extraction, species separation by strong anion solid phase extraction (SPE) and hydride generation atomic absorption spectrometry (HG-AAS) detection. Separation organic arsenic compounds (e.g. MA, DMA and AB) and inorganic arsenic in the form...

  13. Solid-state NMR of inorganic semiconductors.

    Science.gov (United States)

    Yesinowski, James P

    2012-01-01

    Studies of inorganic semiconductors by solid-state NMR vary widely in terms of the nature of the samples investigated, the techniques employed to observe the NMR signal, and the types of information obtained. Compared with the NMR of diamagnetic non-semiconducting substances, important differences often result from the presence of electron or hole carriers that are the hallmark of semiconductors, and whose theoretical interpretation can be involved. This review aims to provide a broad perspective on the topic for the non-expert by providing: (1) a basic introduction to semiconductor physical concepts relevant to NMR, including common crystal structures and the various methods of making samples; (2) discussions of the NMR spin Hamiltonian, details of some of the NMR techniques and strategies used to make measurements and theoretically predict NMR parameters, and examples of how each of the terms in the Hamiltonian has provided useful information in bulk semiconductors; (3) a discussion of the additional considerations needed to interpret the NMR of nanoscale semiconductors, with selected examples. The area of semiconductor NMR is being revitalized by this interest in nanoscale semiconductors, the great improvements in NMR detection sensitivity and resolution that have occurred, and the current interest in optical pumping and spintronics-related studies. Promising directions for future research will be noted throughout.

  14. First steps towards a generic sample preparation scheme for inorganic engineered nanoparticles in a complex matrix for detection, characterization, and quantification by asymmetric flow-field flow fractionation coupled to multi-angle light scattering and ICP-MS

    DEFF Research Database (Denmark)

    Wagner, Stephan; Legros, Samuel; Löschner, Katrin

    2015-01-01

    content by asymmetric flow-field flow fractionation coupled to a multi-angle light scattering detector and an inductively coupled plasma mass spectrometer. Following the proposed generic procedure SiO2-ENPs were separated from a tomato soup. Two potential sample preparation methods were tested these being...... quality criteria for method development is urgently needed for standardized and systematic development of procedures for separation of ENPs from a complex matrix. The chosen analytical technique was shown to be suitable for detecting SiO2-ENPs in a complex food matrix like tomato soup and may therefore...

  15. Inorganic biomaterials structure, properties and applications

    CERN Document Server

    Zhang, Xiang C

    2014-01-01

    This book provides a practical guide to the use and applications of inorganic biomaterials. It begins by introducing the concept of inorganic biomaterials, which includes bioceramics and bioglass. This concept is further extended to hybrid biomaterials consisting of inorganic and organic materials to mimic natural biomaterials. The book goes on to provide the reader with information on biocompatibility, bioactivity and bioresorbability. The concept of the latter is important because of the increasing role resorbable biomaterials are playing in implant applications. The book also introduces a n

  16. The quest for inorganic fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Pietsch, Susanne; Dollinger, Andreas; Strobel, Christoph H.; Ganteför, Gerd, E-mail: gerd.gantefoer@uni-konstanz.de, E-mail: ydkim91@skku.edu [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Park, Eun Ji; Kim, Young Dok, E-mail: gerd.gantefoer@uni-konstanz.de, E-mail: ydkim91@skku.edu [Department of Chemistry, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of); Seo, Hyun Ook [Center for Free-Electron Laser Science/DESY, D-22607 Hamburg (Germany); Idrobo, Juan-Carlos [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Pennycook, Stephen J. [Department of Materials Science and Engineering, National University of Singapore, Singapore 117575 (Singapore)

    2015-10-07

    Experimental results of the search for inorganic fullerenes are presented. Mo{sub n}S{sub m}{sup −} and W{sub n}S{sub m}{sup −} clusters are generated with a pulsed arc cluster ion source equipped with an annealing stage. This is known to enhance fullerene formation in the case of carbon. Analogous to carbon, the mass spectra of the metal chalcogenide clusters produced in this way exhibit a bimodal structure. The species in the first maximum at low mass are known to be platelets. Here, the structure of the species in the second maximum is studied by anion photoelectron spectroscopy, scanning transmission electron microscopy, and scanning tunneling microcopy. All experimental results indicate a two-dimensional structure of these species and disagree with a three-dimensional fullerene-like geometry. A possible explanation for this preference of two-dimensional structures is the ability of a two-element material to saturate the dangling bonds at the edges of a platelet by excess atoms of one element. A platelet consisting of a single element only cannot do this. Accordingly, graphite and boron might be the only materials forming nano-spheres because they are the only single element materials assuming two-dimensional structures.

  17. Inorganic chemically active adsorbents (ICAAs)

    Energy Technology Data Exchange (ETDEWEB)

    Ally, M.R. [Oak Ridge National Lab., TN (United States); Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  18. Biomedical inorganic polymers bioactivity and applications of natural and synthetic polymeric inorganic molecules

    CERN Document Server

    Müller, Werner E G; Schröder, Heinz C; Schroder, Heinz C

    2014-01-01

    In recent years, inorganic polymers have attracted much attention in nano-biomedicine, in particular in the area of regenerative medicine and drug delivery. This growing interest in inorganic polymers has been further accelerated by the development of new synthetic and analytical methods in the field of nanotechnology and nanochemistry. Examples for biomedical inorganic polymers that had been proven to exhibit biomedical effects and/or have been applied in preclinical or clinical trials are polysilicate / silica glass (such as naturally formed "biosilica" and synthetic "bioglass") and inorganic polyphosphate. Some members of the mentioned biomedical inorganic polymers have already been applied e.g. as "bioglass" for bone repair and bone tissue engineering, or they are used in food processing and in dental care (inorganic polyphosphates). However, there are a number of further biological and medicinal properties of these polymers, which have been elucidated in the last few years but not yet been applied for tr...

  19. Biomedical Probes Based on Inorganic Nanoparticles for Electrochemical and Optical Spectroscopy Applications

    Science.gov (United States)

    Yakoh, Abdulhadee; Pinyorospathum, Chanika; Siangproh, Weena; Chailapakul, Orawon

    2015-01-01

    Inorganic nanoparticles usually provide novel and unique physical properties as their size approaches nanometer scale dimensions. The unique physical and optical properties of nanoparticles may lead to applications in a variety of areas, including biomedical detection. Therefore, current research is now increasingly focused on the use of the high surface-to-volume ratios of nanoparticles to fabricate superb chemical- or biosensors for various detection applications. This article highlights various kinds of inorganic nanoparticles, including metal nanoparticles, magnetic nanoparticles, nanocomposites, and semiconductor nanoparticles that can be perceived as useful materials for biomedical probes and points to the outstanding results arising from their use in such probes. The progress in the use of inorganic nanoparticle-based electrochemical, colorimetric and spectrophotometric detection in recent applications, especially bioanalysis, and the main functions of inorganic nanoparticles in detection are reviewed. The article begins with a conceptual discussion of nanoparticles according to types, followed by numerous applications to analytes including biomolecules, disease markers, and pharmaceutical substances. Most of the references cited herein, dating from 2010 to 2015, generally mention one or more of the following characteristics: a low detection limit, good signal amplification and simultaneous detection capabilities. PMID:26343676

  20. Nanoscale Organic−Inorganic Hybrid Lubricants

    KAUST Repository

    Kim, Daniel; Archer, Lynden A.

    2011-01-01

    Silica (SiO2) nanoparticles densely grafted with amphiphilic organic chains are used to create a family of organic-inorganic hybrid lubricants. Short sulfonate-functionalized alkylaryl chains covalently tethered to the particles form a dense corona

  1. Room-temperature ductile inorganic semiconductor

    Science.gov (United States)

    Shi, Xun; Chen, Hongyi; Hao, Feng; Liu, Ruiheng; Wang, Tuo; Qiu, Pengfei; Burkhardt, Ulrich; Grin, Yuri; Chen, Lidong

    2018-05-01

    Ductility is common in metals and metal-based alloys, but is rarely observed in inorganic semiconductors and ceramic insulators. In particular, room-temperature ductile inorganic semiconductors were not known until now. Here, we report an inorganic α-Ag2S semiconductor that exhibits extraordinary metal-like ductility with high plastic deformation strains at room temperature. Analysis of the chemical bonding reveals systems of planes with relatively weak atomic interactions in the crystal structure. In combination with irregularly distributed silver-silver and sulfur-silver bonds due to the silver diffusion, they suppress the cleavage of the material, and thus result in unprecedented ductility. This work opens up the possibility of searching for ductile inorganic semiconductors/ceramics for flexible electronic devices.

  2. Inorganic nanolayers: structure, preparation, and biomedical applications.

    Science.gov (United States)

    Saifullah, Bullo; Hussein, Mohd Zobir B

    2015-01-01

    Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.

  3. Salicylate-spectrophotometric determination of inorganic monochloramine

    International Nuclear Information System (INIS)

    Tao Hui; Chen Zhonglin; Li Xing; Yang Yanling; Li Guibai

    2008-01-01

    On the basis of classical Berthelot reaction, a simple salicylate-spectrophotometric method was developed for quantitative determination of inorganic monochloramine in water samples. With the catalysis of disodium pentacyanonitrosylferrate(III), inorganic monochloramine reacts with salicylate in equimolar to produce indophenol compound which has an intense absorption at 703 nm. Parameters that influence method performance, such as pH, dosage of salicylate and nitroprussiate and reaction time, were modified to enhance the method performance. By using this method, inorganic monochloramine can be distinguished from organic chloramines and other inorganic chlorine species, such as free chlorine, dichloramine, and trichloramine. The molar absorptivities of the final products formed by these compounds are below ±3% of inorganic monochloramine, because of the α-N in them have only one exchangeable hydrogen atom, and cannot react with salicylate to produce the indophenol compound. The upper concentrations of typical ions that do not interfere with the inorganic monochloramine determination are also tested to be much higher than that mostly encountered in actual water treatment. Case study demonstrates that the results obtained from this method are lower than DPD-titrimetric method because the organic chloramines formed by chlorination of organic nitrogenous compounds give no response in the newly established method. And the result measured by salicylate-spectrophotometric method is coincident with theoretical calculation

  4. Spectrophotometric determination of volautile inorganic hydrides in binary gaseous mixtures

    International Nuclear Information System (INIS)

    Rezchikov, V.G.; Skachkova, I.N.; Kuznetsova, T.S.; Khrushcheva, V.V.

    1985-01-01

    A study was made on possibility of single and continuons analysis of binary mixtures (hydride-gas) for the content of volatile inorganic hydrides (VIH) from absorption spectra in the 185-280 nm band. Dependences of the percentage of VIH transmission on the wavelength are presented. It is shown that the maximum of their absorption depends on the element-hydrogen the bond length and binding energy. Detection limit for boron hydride was established to be n x 10 -3 % vol at 185-190 nm wavelength. Technique for spectrophotometric hydride determination in binary mixtures with hydrogen, argon, helium was developed. The technique provides the continuous control of gaseous mixture composition

  5. Gas chromatographic determination of impurities of inorganic compounds

    International Nuclear Information System (INIS)

    Drugov, Yu.S.

    1985-01-01

    Methods of concentration, separation, detection in gas chromatographic determination of impurities of inorganic compounds including low-boiling gases, reactive gases, organometallic compounds, free metals, anions, etc. are reviewed. Methods of reaction gas chromatography for determining reactive gases, water, anions, metal chelates are considered in detail as well as methods of reaction-sorption concentration and reaction gas extraction. The application of gas chromatograpny ior anaiysis of water and atmosphere contamination, for determination of impurities in highly pure solid substances and gases is described

  6. Inorganic nanostructure-organic polymer heterostructures useful for thermoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    See, Kevin C.; Urban, Jeffrey J.; Segalman, Rachel A.; Coates, Nelson E.; Yee, Shannon K.

    2017-11-28

    The present invention provides for an inorganic nanostructure-organic polymer heterostructure, useful as a thermoelectric composite material, comprising (a) an inorganic nanostructure, and (b) an electrically conductive organic polymer disposed on the inorganic nanostructure. Both the inorganic nanostructure and the electrically conductive organic polymer are solution-processable.

  7. Methods for Introducing Inorganic Polymer Concepts throughout the Undergraduate Curriculum

    Science.gov (United States)

    de Lill, Daniel T.; Carraher, Charles E., Jr.

    2017-01-01

    Inorganic polymers can be introduced in a variety of undergraduate courses to discuss concepts related to polymer chemistry. Inorganic polymers such as silicates and polysiloxanes are simple materials that can be incorporated into an introductory or descriptive inorganic course. Polymers based on inorganic carbon, including diamond and graphite,…

  8. Foundation Coursework in Undergraduate Inorganic Chemistry: Results from a National Survey of Inorganic Chemistry Faculty

    Science.gov (United States)

    Raker, Jeffrey R.; Reisner, Barbara A.; Smith, Sheila R.; Stewart, Joanne L.; Crane, Johanna L.; Pesterfield, Les; Sobel, Sabrina G.

    2015-01-01

    A national survey of inorganic chemists explored the self-reported topics covered in foundation-level courses in inorganic chemistry at the postsecondary level; the American Chemical Society's Committee on Professional Training defines a foundation course as one at the conclusion of which, "a student should have mastered the vocabulary,…

  9. Organic and inorganic ion exchangers as catalysts for the heterogeneous alkylation of aromatics

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J; Widdecke, H [Technische Univ. Braunschweig (Germany, F.R.). Inst. fuer Chemische Technologie

    1979-06-01

    Ion exchangers have advantages over low molecular for use in industrial alkylation reactions. The reactivity and selectivity behaviour of the polymeric catalysts was found to be markedly influenced by the structure of the polymeric matrix as well as the type and number of the functional groups. In this connection many similarities between inorganic ion exchangers (zeolites) and organic ion exchange resins were detected.

  10. Application of ICT-based Learning Resources for University Inorganic Chemistry Course Training

    Directory of Open Access Journals (Sweden)

    Tatyana M. Derkach

    2013-01-01

    Full Text Available The article studies expediency and efficiency of various ICT-based learning resources use in university inorganic chemistry course training, detects difference of attitudes toward electronic resources between students and faculty members, which create the background for their efficiency loss

  11. Intercalation compounds involving inorganic layered structures

    Directory of Open Access Journals (Sweden)

    CONSTANTINO VERA R. L.

    2000-01-01

    Full Text Available Two-dimensional inorganic networks can shown intracrystalline reactivity, i.e., simple ions, large species as Keggin ions, organic species, coordination compounds or organometallics can be incorporated in the interlayer region. The host-guest interaction usually causes changes in their chemical, catalytic, electronic and optical properties. The isolation of materials with interesting properties and making use of soft chemistry routes have given rise the possibility of industrial and technological applications of these compounds. We have been using several synthetic approaches to intercalate porphyrins and phthalocyanines into inorganic materials: smectite clays, layered double hydroxides and layered niobates. The isolated materials have been characterized by elemental and thermal analysis, X-ray diffraction, surface area measurements, scanning electronic microscopy, electronic and resonance Raman spectroscopies and EPR. The degree of layer stacking and the charge density of the matrices as well their acid-base nature were considered in our studies on the interaction between the macrocycles and inorganic hosts.

  12. Industrial inorganic chemistry. 2. rev. ed.

    International Nuclear Information System (INIS)

    Buechner, W.; Schliebs, R.; Winter, G.; Buechel, K.H.

    1986-01-01

    Inorganic chemistry is a branch of considerable economic and technical importance. Apart from supplying the market with metals, fertilizers, building materials, pigments and glass it is one of the major suppliers of process materials to the organic chemical industry. Many modern products of other industrial sectors (video tapes, optical fibers or silicon chips) could not have been developed and manufactured without the achievements of industrial inorganic chemistry. The publication is the first of its kind to give a compact description of the inorganic chemistry sector. A clearly arranged survey facilitates access to production processes, economic aspects, ecological implications, energy consumption and raw material consumption as well as to many other data and facts. Due to its clear arrangement and the combination of technical and economic facts the book is a valuable source of information. (orig./EF) [de

  13. Inorganic Nanoparticles for Multimodal Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Magdalena Swierczewska

    2011-01-01

    Full Text Available Multimodal molecular imaging can offer a synergistic improvement of diagnostic ability over a single imaging modality. Recent development of hybrid imaging systems has profoundly impacted the pool of available multimodal imaging probes. In particular, much interest has been focused on biocompatible, inorganic nanoparticle-based multimodal probes. Inorganic nanoparticles offer exceptional advantages to the field of multimodal imaging owing to their unique characteristics, such as nanometer dimensions, tunable imaging properties, and multifunctionality. Nanoparticles mainly based on iron oxide, quantum dots, gold, and silica have been applied to various imaging modalities to characterize and image specific biologic processes on a molecular level. A combination of nanoparticles and other materials such as biomolecules, polymers, and radiometals continue to increase functionality for in vivo multimodal imaging and therapeutic agents. In this review, we discuss the unique concepts, characteristics, and applications of the various multimodal imaging probes based on inorganic nanoparticles.

  14. Engineered inorganic core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mélinon, Patrice, E-mail: patrice.melinon@univ-lyon1.fr [Institut Lumière matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Léon Brillouin, 43 Boulevard du 11 Novembre 1918, F 69622 Villeurbanne (France); Begin-Colin, Sylvie [IPCMS et OMNT, 23 rue du Loess BP 43, 67034 STRASBOURG Cedex 2 (France); Duvail, Jean Luc [IMN UMR 6502 et OMNT Campus Sciences : 2 rue de la Houssinire, BP32229, 44322 Nantes Cedex3 (France); Gauffre, Fabienne [SPM et OMNT : Institut des sciences chimiques de Rennes - UMR 6226, 263 Avenue du General Leclerc, CS 74205, 35042 RENNES Cedex (France); Boime, Nathalie Herlin [IRAMIS-NIMBE, Laboratoire Francis Perrin (CEA CNRS URA 2453) et OMNT, Bat 522, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Ledoux, Gilles [Institut Lumière Matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Alfred Kastler 43 Boulevard du 11 Novembre 1918 F 69622 Villeurbanne (France); Plain, Jérôme [Universit de technologie de Troyes LNIO-ICD, CNRS et OMNT 12 rue Marie Curie - CS 42060 - 10004 Troyes cedex (France); Reiss, Peter [CEA Grenoble, INAC-SPrAM, UMR 5819 CEA-CNRS-UJF et OMNT, Grenoble cedex 9 (France); Silly, Fabien [CEA, IRAMIS, SPEC, TITANS, CNRS 2464 et OMNT, F-91191 Gif sur Yvette (France); Warot-Fonrose, Bénédicte [CEMES-CNRS, Université de Toulouse et OMNT, 29 rue Jeanne Marvig F 31055 Toulouse (France)

    2014-10-20

    It has been for a long time recognized that nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic structures. At first, size effects occurring in single elements have been studied. More recently, progress in chemical and physical synthesis routes permitted the preparation of more complex structures. Such structures take advantages of new adjustable parameters including stoichiometry, chemical ordering, shape and segregation opening new fields with tailored materials for biology, mechanics, optics magnetism, chemistry catalysis, solar cells and microelectronics. Among them, core/shell structures are a particular class of nanoparticles made with an inorganic core and one or several inorganic shell layer(s). In earlier work, the shell was merely used as a protective coating for the core. More recently, it has been shown that it is possible to tune the physical properties in a larger range than that of each material taken separately. The goal of the present review is to discuss the basic properties of the different types of core/shell nanoparticles including a large variety of heterostructures. We restrict ourselves on all inorganic (on inorganic/inorganic) core/shell structures. In the light of recent developments, the applications of inorganic core/shell particles are found in many fields including biology, chemistry, physics and engineering. In addition to a representative overview of the properties, general concepts based on solid state physics are considered for material selection and for identifying criteria linking the core/shell structure and its resulting properties. Chemical and physical routes for the synthesis and specific methods for the study of core/shell nanoparticle are briefly discussed.

  15. Automated system for on-line determination of dimethylarsinic and inorganic arsenic by hydride generation-atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Chaparro, L.L.; Leal, L.O. [Renewable Energy and Environmental Protection Department, Advanced Materials Research Center (CIMAV), Chihuahua, Chihuahua (Mexico); Ferrer, L.; Cerda, V. [University of the Balearic Islands, Department of Chemistry, Palma de Mallorca (Spain)

    2012-09-15

    A multisyringe flow-injection approach has been coupled to hydride generation-atomic fluorescence spectrometry (HG-AFS) with UV photo-oxidation for dimethylarsinic (DMA), inorganic As and total As determination, depending on the pre-treatment given to the sample (extraction or digestion). The implementation of a UV lamp allows on-line photo-oxidation of DMA and the following arsenic detection, whereas a bypass leads the flow directly to the HG-AFS system, performing inorganic arsenic determination. DMA concentration is calculated by the difference of total inorganic arsenic and measurement of the photo-oxidation step. The detection limits for DMA and inorganic arsenic were 0.09 and 0.47 {mu}g L{sup -1}, respectively. The repeatability values accomplished were of 2.4 and 1.8 %, whereas the injection frequencies were 24 and 28 injections per hour for DMA and inorganic arsenic, respectively. This method was validated by means of a solid reference material BCR-627 (muscle of tuna) with good agreement with the certified values. Satisfactory results for DMA and inorganic arsenic determination were obtained in several water matrices. The proposed method offers several advantages, such as increasing the sampling frequency, low detection limits and decreasing reagents and sample consumption, which leads to lower waste generation. (orig.)

  16. Development of Inorganic Solar Cells by Nanotechnology

    Institute of Scientific and Technical Information of China (English)

    Yafei Zhang; Huijuan Geng; Zhihua Zhou; Jiang Wu; Zhiming Wang; Yaozhong Zhang; Zhongli Li; Liying Zhang; Zhi Yang; Huey Liang Hwang

    2012-01-01

    Inorganic solar cells, as durable photovoltaic devices for harvesting electric energy from sun light,have received tremendous attention due to the fear of exhausting the earth’s energy resources and damaging the living environment due to greenhouse gases. Some recent developments in nanotechnology have opened up new avenues for more relevant inorganic solar cells produced by new photovoltaic conversion concepts and effective solar energy harvesting nanostructures. In this review, the multiple exciton generation effect solar cells, hot carrier solar cells, one dimensional material constructed asymmetrical schottky barrier arrays, noble nanoparticle induced plasmonic enhancement, and light trapping nanostructured semiconductor solar cells are highlighted.

  17. Separation of fission products using inorganic exchangers

    International Nuclear Information System (INIS)

    Murthy, T.S.; Balasubramanian, K.R.; Rao, K.L.N.; Venkatachalam, R.; Varma, R.N.

    1981-01-01

    This paper describes the separation of long lived fission products like caesium-137, strontium-90 using inorganic exchangers ammonium phosphomolybdate and zirconium antimonate. A revised flow sheet is proposed for the sequential separation of these isotopes using the above two compounds. This is a modification of the earlier scheme developed which involved the use of four inorganic exchangers namely ammonium phosphomolybdate, manganese dioxide, zirconium antimonate and polyantimonic acid. The elution of the adsorbed elements like cerium, strontium, and sodium has been studied and it has been possible to elute these using different eluting agents. (author)

  18. Chronic inorganic mercury induced peripheral neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Chu, C.-C.; Huang, C.-C.; Ryu, S.-J. [Chang Gung Memorial Hospital and Chang Gung University, Dept. of Neurology, Tapei (Taiwan, Province of China); Wu, T.-N. [Executive Yuan, Dept. of Health, Surveillance and Quarantine Service, Taipei (Taiwan, Province of China)

    1998-12-01

    We report the clinical features, electrophysiological studies, and morphometric analysis of sural nerve pathology in a patient with polyneuropathy due to inorganic mercury intoxication. He developed slowly progressive generalized paralysis of all limbs after 3 months ingestion of herb drugs which contained mercuric sulfate. Electrophysiologic studies revealed axonal polyneuropathy involving both motor and sensory fibers. Sural nerve biopsy demonstrated axonal degeneration with demyelination and a predominant loss of large myelinated fibers. His muscle strength showed only mild improvement after 2 years` follow-up. We concluded that inorganic mercury exposure may induce severe axonal sensorimotor polyneuropathy in humans and that neurological deficits may persist in severe cases. (au) 21 refs.

  19. Responsive hybrid inorganic-organic system derived from lanthanide luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhan [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zheng, Yuhui, E-mail: yhzheng78@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Jiang, Lasheng; Yang, Jinglian [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Wang, Qianming, E-mail: qmwang@scnu.edu.cn [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangzhou 510006 (China)

    2016-05-15

    Highlights: • A novel covalent hybrid material was used to detect hemoglobin. • All the recognition experiments were performed in buffer solution. • Porous nano-structures was extensively studied for the recognition. - Abstract: Terbium ions were incorporated into new organic-inorganic matrices to achieve intense green emissions. Hemoglobin (HB) interactions lead to dramatic changes in the luminescence emission intensities. Infrared spectra, morphological studies and photoluminescence give information for the speciation and process of hemoglobin additions. The porous material has a large specific surface area of 351 cm{sup 2}/g and the detection limit for HB (0.7 μM) was much lower than its physical doped material (8 μM). This promising hybrid material will lead to the design of versatile optical probes that are efficiently responding to the external targets.

  20. Simple inorganic complexes but intricate hydrogen bonding ...

    Indian Academy of Sciences (India)

    Administrator

    We are interested in obtaining single crystals of metal-opda complexes because their crystal structures would show complex hydrogen bonding network due to the presence of. –NH2 groups in the opda ligand (hydrogen bonding donor sites) and inorganic anions having mostly oxo groups (hydrogen bonding acceptor sites) ...

  1. Medicinal Uses of Inorganic Compounds - 1

    Indian Academy of Sciences (India)

    Worldwide sales of inorganic drugs are growing rapidly. Although about 26 elements in the periodic table are considered essential for mammalian life, both ... Lithium like alcohol can influence mood. Lithium drugs such as lithium carbonate Li2C03. , are used for the treatment of manic-depressive disorders, most likely ...

  2. Corrosion performance of inorganic coatings in seawater

    NARCIS (Netherlands)

    Zhang, X.; Buter, S.J.; Ferrari, G.M.; Westing, E. van; Kowalski, L.

    2011-01-01

    Inorganic coatings are widely used to protect carbon steel hydraulic cylinder rods from wear and corrosion in aggressive offshore environment. Different types of lay-ers such as Ni/Cr, Al2O3, Cr2O3, TiO2, and Inconel 625 layers were applied to the carbon steels by plasma, High Velocity Oxygen Fuel

  3. Inorganic mass spectrometry of solid samples

    International Nuclear Information System (INIS)

    Adams, F.; Vertes, A.

    1990-01-01

    In this review some recent developments in the field of inorganic mass spectrometry of solids are described with special emphasis on the actual state of understanding of the ionization processes. It concentrates on the common characteristics of methods such as spark source-, laser-, secondary ion-, inductively coupled plasma- and glow discharge mass spectrometry. (orig.)

  4. INORGANIC ELEMENTS AND DISTRIBUTION OF EASTERN OYSTERS.

    Science.gov (United States)

    Fisher, William S. In press. Inorganic Elements and Distribution of Eastern Oysters (Abstract). To be presented at the 96th Annual Meeting (Aquaculture 2004) of the National Shellfisheries Association, 1-5 March 2004, Honolulu, HI. 1 p. (ERL,GB R962). For over a century w...

  5. Serum Calcium, Inorganic Phosphates and some Haematological ...

    African Journals Online (AJOL)

    Objectives: Sickle cell disease has long been associated with bone deformities and pain. Mineral salts such as calcium and inorganic phosphate are critical in bone formation and metabolism. This investigation was designed to study the serum concentration of these minerals as well as some haematological parameters in ...

  6. Studies on inorganic exchanger: zirconium antimonate

    International Nuclear Information System (INIS)

    Dash, A.; Balasubramanian, K.R.

    1992-01-01

    The inorganic exchanger zirconium antimonate has been prepared and its characteristics evaluated. A method has been developed for the separation of 90 Sr and 144 Ce from fission products solution using this exchanger. (author). 23 refs., 18 f igs., 9 tabs

  7. Phytochemical, inorganic and proximate composition-guided ...

    African Journals Online (AJOL)

    Sterols, glycosides and anthraquinone were absent in all samples. The inorganic composition result showed relatively high concentration of potassium (very high for seed), calcium (for bark and leaf), magnesium and sulphur in Avocado samples. The Avocado seed contained relatively high content of moisture, carbohydrate ...

  8. Microbiological disproportionation of inorganic sulfur compounds

    DEFF Research Database (Denmark)

    Finster, Kai

    2008-01-01

    The disproportionation of inorganic sulfur intermediates at moderate temperatures (0-80 °C) is a microbiologically catalyzed chemolithotrophic process in which compounds like elemental sulfur, thiosulfate, and sulfite serve as both electron donor and acceptor, and generate hydrogen sulfide and su...

  9. Mechanism study on inorganic oxidants induced inhibition of Ru(bpy)₃²+ electrochemiluminescence and its application for sensitive determination of some inorganic oxidants.

    Science.gov (United States)

    Qiu, Bin; Xue, Lingling; Wu, Yanping; Lin, Zhenyu; Guo, Longhua; Chen, Guonan

    2011-07-15

    Inhibited Ru(bpy)(3)(2+) electrochemiluminescence by inorganic oxidants is investigated. Results showed that a number of inorganic oxidants can quench the ECL of Ru(bpy)(3)(2+)/tri-n-propylamine (TPrA) system, and the logarithm of the decrease in ECL intensity (ΔI) was proportional to the logarithm of analyte concentrations. Based on which, a sensitive approach for detection of these inorganic oxidants was established, e.g. the log-log plots of ΔI versus the concentration of MnO(4)(-), Cr(2)O(7)(2-) and Fe(CN)(6)(3-) are linear in the range of 1×10(-7) to 3×10(-4)M for MnO(4)(-) and Cr(2)O(7)(2-), and 1×10(-7) to 1×10(-4)M for Fe(CN)(6)(3-), with the limit of detection (LOD) of 8.0×10(-8)M, 2×10(-8)M, and 1×10(-8)M, respectively. A series of experiments such as a comparison of the inhibitory effect of different compounds on Ru(bpy)(3)(2+)/TPrA ECL, ECL emission spectra, UV-Vis absorption spectra etc. were investigated in order to discover how these inorganic analytes quench the ECL of Ru(bpy)(3)(2+)/TPrA system. A mechanism based on consumption of TPrA intermediate (TPrA(·)) by inorganic oxidants was proposed. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Influence of Organic and Inorganic Sources of Fertilizer on Growth ...

    African Journals Online (AJOL)

    Influence of Organic and Inorganic Sources of Fertilizer on Growth and Leaf Yield of Kale ... Journal of Agriculture, Science and Technology ... fertilizer gave leaf yields comparable to those applied with exclusively inorganic sources of fertilizer.

  11. Review of progress in soil inorganic carbon research

    Science.gov (United States)

    Bai, S. G.; Jiao, Y.; Yang, W. Z.; Gu, P.; Yang, J.; Liu, L. J.

    2017-12-01

    Soil inorganic carbon is one of the main carbon banks in the near-surface environment, and is the main form of soil carbon library in arid and semi-arid regions, which plays an important role in the global carbon cycle. This paper mainly focuses on the inorganic dynamic process of soil inorganic carbon in soil environment in arid and semi-arid regions, and summarized the composition and source of soil inorganic carbon, influence factors and soil carbon sequestration.

  12. Quantitative method for determination of body inorganic iodine

    International Nuclear Information System (INIS)

    Filatov, A.A.; Tatsievskij, V.A.

    1991-01-01

    An original method of quantitation of body inorganic iodine, based upon a simultaneous administration of a known dose of stable and radioactive iodine with subsequent radiometry of the thyroid was proposed. The calculation is based upon the principle of the dilution of radiactive iodine in human inorganic iodine space. The method permits quantitation of the amount of inorganic iodine with regard to individual features of inorganic space. The method is characterized by simplicity and is not invasive for a patient

  13. Inorganic-organic rubbery scintillators

    CERN Document Server

    Gektin, A V; Pogorelova, N; Neicheva, S; Sysoeva, E; Gavrilyuk, V

    2002-01-01

    Spectral-kinetic luminescence properties of films, containing homogeneously dispersed scintillation particles of CsI, CsI:Tl, CsI:Na, and NaI:Tl in optically transparent organosiloxane matrix, are presented. Material is flexible and rubbery and in consequence the detectors of convenient shapes can be produced. It is found that luminescence spectra of the received films are identical whereas decay times are much shorter compared to the same ones of the corresponding single crystals. Layers with pure CsI demonstrate only the fast UV emission (307 nm, 10 ns) without blue microsecond afterglow typical for crystals. The films containing NaI:Tl are non-hygroscopic and preserve scintillation properties for a long time in humid atmosphere unlike single crystals. Organosiloxane layers with CsI:Tl particles provide high light output with good energy resolution for sup 5 sup 5 Fe, sup 1 sup 0 sup 9 Cd, sup 2 sup 4 sup 1 Am sources, and are capable of detecting both X-rays and alpha-, beta-particles.

  14. Inorganic component of saliva during fasting and after fast break

    OpenAIRE

    Samad, Rasmidar

    2016-01-01

    Oral health is closely related to salivary components. Saliva consists of water, inorganic and organic materials. Fasting changes one???s meal and drinking time that in turn can affect the environment in oral cavity, including inorganic componenet of saliva. The purpose of this study is to determine the inorganic component of saliva during fasting and after fast break.

  15. A review of organic and inorganic biomaterials for neural interfaces.

    Science.gov (United States)

    Fattahi, Pouria; Yang, Guang; Kim, Gloria; Abidian, Mohammad Reza

    2014-03-26

    Recent advances in nanotechnology have generated wide interest in applying nanomaterials for neural prostheses. An ideal neural interface should create seamless integration into the nervous system and performs reliably for long periods of time. As a result, many nanoscale materials not originally developed for neural interfaces become attractive candidates to detect neural signals and stimulate neurons. In this comprehensive review, an overview of state-of-the-art microelectrode technologies provided fi rst, with focus on the material properties of these microdevices. The advancements in electro active nanomaterials are then reviewed, including conducting polymers, carbon nanotubes, graphene, silicon nanowires, and hybrid organic-inorganic nanomaterials, for neural recording, stimulation, and growth. Finally, technical and scientific challenges are discussed regarding biocompatibility, mechanical mismatch, and electrical properties faced by these nanomaterials for the development of long-lasting functional neural interfaces.

  16. Radwaste issues belong in the inorganic classroom

    International Nuclear Information System (INIS)

    Williams, D.H.

    1991-01-01

    The safe isolation of high level radioactive wastes is a matter of significant importance. This material is derived primarily from spent nuclear fuel and defense weapon production. Every element on the periodic chart is represented. The majority are metallic elements. Over the thousands of years that they are to be isolated the primary chemistry will be oxidation. The mobility and fate of particular inner and outer transition element ions become very important. For that, one must understand their hydrolytic nature, their complexing tendencies and the solubilities of various compounds. This topic could easily serve as a centerpiece for an inorganic chemistry course. At the very least, it demands the attention of every teacher of inorganic chemistry and consideration by those whose research is directed to tangible problems. The discussion includes notes on the abundance and lifetimes of particular radioisotopes. The positive student responses to this approach are also shared

  17. The quest for the ideal inorganic scintillator

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Weber, M.J.; Bourret-Courchesne, E.; Klintenberg, M.K.

    2002-01-01

    The past half century has witnessed the discovery of many new inorganic scintillator materials and numerous advances in our understanding of the basic physical processes governing the transformation of ionizing radiation into scintillation light. Whereas scintillators are available with a good combination of physical properties, none provides the desired combination of stopping power, light output, and decay time. A review of the numerous scintillation mechanisms of known inorganic scintillators reveals why none of them is both bright and fast. The mechanisms of radiative recombination in wide-bandgap direct semiconductors, however, remain relatively unexploited for scintillators. We describe how suitably doped semiconductor scintillators could provide a combination of high light output, short decay time, and linearity of response that approach fundamental limits

  18. Molten salt battery having inorganic paper separator

    Science.gov (United States)

    Walker, Jr., Robert D.

    1977-01-01

    A high temperature secondary battery comprises an anode containing lithium, a cathode containing a chalcogen or chalcogenide, a molten salt electrolyte containing lithium ions, and a separator comprising a porous sheet comprising a homogenous mixture of 2-20 wt.% chrysotile asbestos fibers and the remainder inorganic material non-reactive with the battery components. The non-reactive material is present as fibers, powder, or a fiber-powder mixture.

  19. Inorganic Materials Division annual report, 1975

    International Nuclear Information System (INIS)

    Duba, A.; Hornady, B.

    1976-01-01

    This compilation lists abstracts of papers, internal reports, and talks presented during 1975 at national and international meetings by members of the Geoscience and Engineering Section, Inorganic Materials Division, Chemistry and Materials Science Department, Lawrence Livermore Laboratory. Titles of talks at university and local meetings are also listed when available. The subjects range from the in situ retorting of coal to the temperature profile of the moon. A subject classification is included

  20. Sample size and classification error for Bayesian change-point models with unlabelled sub-groups and incomplete follow-up.

    Science.gov (United States)

    White, Simon R; Muniz-Terrera, Graciela; Matthews, Fiona E

    2018-05-01

    Many medical (and ecological) processes involve the change of shape, whereby one trajectory changes into another trajectory at a specific time point. There has been little investigation into the study design needed to investigate these models. We consider the class of fixed effect change-point models with an underlying shape comprised two joined linear segments, also known as broken-stick models. We extend this model to include two sub-groups with different trajectories at the change-point, a change and no change class, and also include a missingness model to account for individuals with incomplete follow-up. Through a simulation study, we consider the relationship of sample size to the estimates of the underlying shape, the existence of a change-point, and the classification-error of sub-group labels. We use a Bayesian framework to account for the missing labels, and the analysis of each simulation is performed using standard Markov chain Monte Carlo techniques. Our simulation study is inspired by cognitive decline as measured by the Mini-Mental State Examination, where our extended model is appropriate due to the commonly observed mixture of individuals within studies who do or do not exhibit accelerated decline. We find that even for studies of modest size ( n = 500, with 50 individuals observed past the change-point) in the fixed effect setting, a change-point can be detected and reliably estimated across a range of observation-errors.

  1. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures.

    Science.gov (United States)

    Shi, Weidong; Song, Shuyan; Zhang, Hongjie

    2013-07-07

    Because of their unique chemical and physical properties, inorganic semiconducting nanostructures have gradually played a pivotal role in a variety of research fields, including electronics, chemical reactivity, energy conversion, and optics. A major feature of these nanostructures is the quantum confinement effect, which strongly depends on their size, shape, crystal structure and polydispersity. Among all developed synthetic methods, the hydrothermal method based on a water system has attracted more and more attention because of its outstanding advantages, such as high yield, simple manipulation, easy control, uniform products, lower air pollution, low energy consumption and so on. Precise control over the hydrothermal synthetic conditions is a key to the success of the preparation of high-quality inorganic semiconducting nanostructures. In this review, only the representative hydrothermal synthetic strategies of inorganic semiconducting nanostructures are selected and discussed. We will introduce the four types of strategies based on exterior reaction system adjustment, namely organic additive- and template-free hydrothermal synthesis, organic additive-assisted hydrothermal synthesis, template-assisted hydrothermal synthesis and substrate-assisted hydrothermal synthesis. In addition, the two strategies based on exterior reaction environment adjustment, including microwave-assisted and magnetic field-assisted hydrothermal synthesis, will be also described. Finally, we conclude and give the future prospects of this research area.

  2. Inorganic particle analysis of dental impression elastomers.

    Science.gov (United States)

    Carlo, Hugo Lemes; Fonseca, Rodrigo Borges; Soares, Carlos José; Correr, Américo Bortolazzo; Correr-Sobrinho, Lourenço; Sinhoreti, Mário Alexandre Coelho

    2010-01-01

    The aim of this study was to determine quantitatively and qualitatively the inorganic particle fraction of commercially available dental elastomers. The inorganic volumetric fraction of two addition silicones (Reprosil Putty/Fluid and Flexitime Easy Putty/Fluid), three condensation silicones (Clonage Putty/Fluid, Optosil Confort/Xantopren VL and Silon APS Putty/Fluid), one polyether (Impregum Soft Light Body) and one polysulfide (Permlastic Light Body) was accessed by weighing a previously determined mass of each material in water before and after burning samples at 600 ºC, during 3 h. Unsettled material samples were soaked in acetone and chloroform for removal of the organic portion. The remaining filler particles were sputter-coated with gold evaluation of their morphology and size, under scanning electron microscopy (SEM). Flexitime Easy Putty was the material with the highest results for volumetric particle fraction, while Impregum Soft had the lowest values. Silon 2 APS Fluid presented the lowest mean filler size values, while Clonage Putty had the highest values. SEM micrographs of the inorganic particles showed several morphologies - lathe-cut, spherical, spherical-like, sticks, and sticks mixed to lathe-cut powder. The results of this study revealed differences in particle characteristics among the elastometic materials that could lead to different results when testing mechanical properties.

  3. Inorganic phosphorus fertilizer ameliorates maize growth by reducing metal uptake, improving soil enzyme activity and microbial community structure.

    Science.gov (United States)

    Wu, Wencheng; Wu, Jiahui; Liu, Xiaowen; Chen, Xianbin; Wu, Yingxin; Yu, Shixiao

    2017-09-01

    Recently, several studies have showed that both organic and inorganic fertilizers are effective in immobilizing heavy metals at low cost, in comparison to other remediation strategies for heavy metal-contaminated farmlands. A pot trial was conducted in this study to examine the effects of inorganic P fertilizer and organic fertilizer, in single application or in combination, on growth of maize, heavy metal availabilities, enzyme activities, and microbial community structure in metal-contaminated soils from an electronic waste recycling region. Results showed that biomass of maize shoot and root from the inorganic P fertilizer treatments were respectively 17.8 and 10.0 folds higher than the un-amended treatments (CK), while the biomass in the organic fertilizer treatments was only comparable to the CK. In addition, there were decreases of 85.0% in Cd, 74.3% in Pb, 66.3% in Cu, and 91.9% in Zn concentrations in the roots of maize grown in inorganic P fertilizer amended soil. Consistently, urease and catalase activities in the inorganic P fertilizer amended soil were 3.3 and 2.0 times higher than the CK, whereas no enhancement was observed in the organic fertilizer amended soil. Moreover, microbial community structure was improved by the application of inorganic P fertilizer, but not by organic fertilizer; the beneficial microbial groups such as Kaistobacter and Koribacter were most frequently detected in the inorganic P fertilizer amended soil. The negligible effect from the organic fertilizer might be ascribed to the decreased pH value in soils. The results suggest that the application of inorganic P fertilizer (or in combination with organic fertilizer) might be a promising strategy for the remediation of heavy metals contaminated soils in electronic waste recycling region. Copyright © 2017. Published by Elsevier Inc.

  4. Gas--liquid chromatographic determination of total inorganic iodine in milk

    International Nuclear Information System (INIS)

    Bakker, H.J.

    1977-01-01

    Total inorganic iodine in milk is determined by conversion to iodobutanone, which is quantitated by gas-liquid chromatography and electron capture detection. As little as 10 μg/L can be determined. The thyroid-active iodine content of milk can be determined rapidly with a relative standard deviation of 1.9%. Average recoveries for added iodide and iodine were 95.5 and 94.6%, respectively

  5. An Infrared Fiber-Optic Raman Sensor for Field Detecting of Organic Biomarkers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — High throughput, fast detection and characterization of inorganic and organic biomarkers have become important challenge for future lunar robotic rover exploration...

  6. Static secondary ion mass spectrometry for organic and inorganic molecular analysis in solids

    International Nuclear Information System (INIS)

    Ham, Rita van; Vaeck, Luc van; Adriaens, Annemie; Adams, Freddy

    2003-01-01

    The use of mass spectra in secondary ion mass spectrometry (S-SIMS) to characterise the molecular composition of inorganic and organic analytes at the surface of solid samples is investigated. Methodological aspects such as mass resolution, mass accuracy, precision and accuracy of isotope abundance measurements, influence of electron flooding and sample morphology are addressed to assess the possibilities and limitations that the methodology can offer to support the structural assignment of the detected ions. The in-sample and between-sample reproducibility of relative peak intensities under optimised conditions is within 10%, but experimental conditions and local hydration, oxidation or contamination can drastically affect the mass spectra. As a result, the use of fingerprinting for identification becomes compromised. Therefore, the preferred way of interpretation becomes the deductive structural approach, based on the use of the empirical desorption-ionisation model. This approach is shown to allow the molecular composition of inorganic and organic components at the surface of solids to be characterised. Examples of inorganic speciation and identification of organic additives with unknown composition in inorganic salt mixtures are given. The methodology is discussed in terms of foreseen developments with respect to the use of polyatomic primary ions

  7. Synthesis of inorganic polymers using fly ash and primary lead slag.

    Science.gov (United States)

    Onisei, S; Pontikes, Y; Van Gerven, T; Angelopoulos, G N; Velea, T; Predica, V; Moldovan, P

    2012-02-29

    The present work reports on the synthesis and properties of inorganic polymers ("geopolymers") made of 100% fly ash from lignite's combustion, 100% primary lead slag and mixtures of the two. In the inorganic polymers with both fly ash and lead slag the main crystalline phases detected are wüstite, magnetite, sodium zinc silicate, quartz, anorthite, and gehlenite; litharge partially dissolves. FTIR analysis in these samples revealed that the main peaks and bands of end members also exist, along with a new amorphous reaction product. In terms of microstructure, both fly ash and lead slag dissolve and contribute in the binding phase whereas the larger particles act as aggregates. For an increasing lead slag in the composition, the binding phase is changing in chemistry and reaches PbO values higher than 50 wt.% for the 100% lead slag inorganic polymer. Regarding the properties of fly ash and lead slag inorganic polymers, compressive strength is higher than 35 MPa in all cases and water absorption diminishes as the lead slag content increases. A comparison of leaching results before and after polymerisation reveals that pH is an important factor as Pb is immobilised in the binding phase, unlike Zn and As. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Magnetic field processing of inorganic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Kunerth, D.C.; Peterson, E.S. [Idaho National Engineering Laboratory, Idaho Falls, ID (United States)

    1995-05-01

    The purpose of this project is to investigate, understand, and demonstrate the use of magnetic field processing (MFP) to modify the properties of inorganic-based polymers and to develop the basic technical knowledge required for industrial implementation. Polyphosphazene membranes for chemical separation applications are being emphasized by this project. Previous work demonstrated that magnetic fields, appropriately applied during processing, can be used to beneficially modify membrane morphology. MFP membranes have significantly increased flux capabilities while maintaining the same chemical selectivity as the unprocessed membranes.

  9. Studies on inorganic exchangers - polyantimonic acid

    International Nuclear Information System (INIS)

    Murthy, T.S.; Balasubramanian, K.R.; Ananthakrishnan, M.; Ramani, K.S.; Varma, R.N.

    1976-01-01

    From the detailed experimental investigations carried out, it may be mentioned that the inorganic exchanger polyantimonic acid could be used for effectively separating strontium from fission product waste solutions free from caesium and zirconium at acidities of the order of 2M or so. After thorough washing of the column with 2M HNO 3 acid to remove any residual activity unadsorbed, the strontium can be eluted with a mixture of 1M AgNO 3 +6M HNO 3 at room temperature. The column after regeneration and conditioning can be used for further adsorption and elution up to a maximum of 6 cycles without much deterioration in column characteristics. (author)

  10. Designing an optimally proportional inorganic scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai, E-mail: jai.singh@cdu.edu.au [School of Engineering and IT, B-Purple-12, Faculty of EHSE, Charles Darwin University, NT 0909 (Australia); Koblov, Alexander [School of Engineering and IT, B-Purple-12, Faculty of EHSE, Charles Darwin University, NT 0909 (Australia)

    2012-09-01

    The nonproportionality observed in the light yield of inorganic scintillators is studied theoretically as a function of the rates of bimolecular and Auger quenching processes occurring within the electron track initiated by a gamma- or X-ray photon incident on a scintillator. Assuming a cylindrical track, the influence of the track radius and concentration of excitations created within the track on the scintillator light yield is also studied. Analysing the calculated light yield a guideline for inventing an optimally proportional scintillator with optimal energy resolution is presented.

  11. Designing an optimally proportional inorganic scintillator

    International Nuclear Information System (INIS)

    Singh, Jai; Koblov, Alexander

    2012-01-01

    The nonproportionality observed in the light yield of inorganic scintillators is studied theoretically as a function of the rates of bimolecular and Auger quenching processes occurring within the electron track initiated by a gamma- or X-ray photon incident on a scintillator. Assuming a cylindrical track, the influence of the track radius and concentration of excitations created within the track on the scintillator light yield is also studied. Analysing the calculated light yield a guideline for inventing an optimally proportional scintillator with optimal energy resolution is presented.

  12. Inorganic pyrophosphatases: structural diversity serving the function

    Science.gov (United States)

    Samygina, V. R.

    2016-05-01

    The review is devoted to ubiquitous enzymes, inorganic pyrophosphatases, which are essential in all living organisms. Despite the long history of investigations, these enzymes continue to attract interest. The review focuses on the three-dimensional structures of various representatives of this class of proteins. The structural diversity, the relationship between the structure and some properties of pyrophosphatases and various mechanisms of enzyme action related to the structural diversity of these enzymes are discussed. Interactions of pyrophosphatase with other proteins and possible practical applications are considered. The bibliography includes 56 references.

  13. Inorganic nitrogen in precipitation and atmospheric sediments

    Energy Technology Data Exchange (ETDEWEB)

    Matheson, D H

    1951-01-01

    In an investigation covering 18 months, daily determinations were made of the inorganic nitrogen contained in precipitation and atmospheric sediments collected at Hamilton, Ont. The nitrogen fall for the whole period averaged 5.8 lb. N per acre per year. Sixty-one per cent of the total nitrogen was collected on 25% of the days when precipitation occurred. The balance, occurring on days without precipitation, is attributable solely to the sedimentation of dust. Ammonia nitrogen averaged 56% of the total, but the proportion for individual days varied widely.

  14. IRIS Toxicological Review of Inorganic Arsenic (Cancer) ...

    Science.gov (United States)

    EPA's Science Advisory Board (SAB) conducted a review of the scientific basis supporting the human health cancer hazard and dose-response assessment of inorganic arsenic that will appear on the Integrated Risk Information System (IRIS) database. EPA revised the assessment and is now returning the assessment to the SAB and releasing the document to the public for a focused review of EPA's responses to the SAB recommendations. This draft IRIS health assessment addresses only cancer human health effects that may result from chronic exposure to this chemical.

  15. Inorganic-whisker-reinforced polymer composites synthesis, properties and applications

    CERN Document Server

    Sun, Qiuju

    2015-01-01

    Inorganic-Whisker-Reinforced Polymer Composites: Synthesis, Properties and Applications gives a comprehensive presentation of inorganic microcrystalline fibers, or whiskers, a polymer composite filler. It covers whisker synthesis, surface modification, applications for reinforcing polymer-matrix composites, and analysis of resulting filled polymer composites. It focuses on calcium carbonate whiskers as a primary case study, introducing surface treatment methods for calcium carbonate whiskers and factors that influence them. Along with calcium carbonate, the book discusses potassium titanate and aluminum borate whiskers, which also comprise the new generation of inorganic whiskers. According to research results, composites filled by inorganic whiskers show improved strength, wear-resistance, thermal conductivity, and antistatic properties. It explains the importance of modifying polymer materials for use with inorganic whiskers and describes preparation and evaluation methods of polymers filled with inorganic ...

  16. Human Exposure and Health Effects of Inorganic and Elemental Mercury

    OpenAIRE

    Park, Jung-Duck; Zheng, Wei

    2012-01-01

    Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability o...

  17. Bio-Based Approaches to Inorganic Material Synthesis (Postprint)

    National Research Council Canada - National Science Library

    Slocik, Joseph M; Stone, Morley O; Naik, Rajesh R

    2007-01-01

    .... Marine sponges create silica spicules also using proteins, termed silicateins. In recent years, our group and others have used biomolecules as templates for the deposition of inorganic materials...

  18. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination

    Science.gov (United States)

    McKay, Gordon; Buekenhoudt, Anita; Motmans, Filip; Khraisheh, Marwan; Atieh, Muataz

    2018-01-01

    Inorganic membrane science and technology is an attractive field of membrane separation technology, which has been dominated by polymer membranes. Recently, the inorganic membrane has been undergoing rapid development and innovation. Inorganic membranes have the advantage of resisting harsh chemical cleaning, high temperature and wear resistance, high chemical stability, long lifetime, and autoclavable. All of these outstanding properties made inorganic membranes good candidates to be used for water treatment and desalination applications. This paper is a state of the art review on the synthesis, development, and application of different inorganic membranes for water and wastewater treatment. The inorganic membranes reviewed in this paper include liquid membranes, dynamic membranes, various ceramic membranes, carbon based membranes, silica membranes, and zeolite membranes. A brief description of the different synthesis routes for the development of inorganic membranes for application in water industry is given and each synthesis rout is critically reviewed and compared. Thereafter, the recent studies on different application of inorganic membrane and their properties for water treatment and desalination in literature are critically summarized. It was reported that inorganic membranes despite their high synthesis cost, showed very promising results with high flux, full salt rejection, and very low or no fouling. PMID:29304024

  19. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination

    Directory of Open Access Journals (Sweden)

    Ahmad Kayvani Fard

    2018-01-01

    Full Text Available Inorganic membrane science and technology is an attractive field of membrane separation technology, which has been dominated by polymer membranes. Recently, the inorganic membrane has been undergoing rapid development and innovation. Inorganic membranes have the advantage of resisting harsh chemical cleaning, high temperature and wear resistance, high chemical stability, long lifetime, and autoclavable. All of these outstanding properties made inorganic membranes good candidates to be used for water treatment and desalination applications. This paper is a state of the art review on the synthesis, development, and application of different inorganic membranes for water and wastewater treatment. The inorganic membranes reviewed in this paper include liquid membranes, dynamic membranes, various ceramic membranes, carbon based membranes, silica membranes, and zeolite membranes. A brief description of the different synthesis routes for the development of inorganic membranes for application in water industry is given and each synthesis rout is critically reviewed and compared. Thereafter, the recent studies on different application of inorganic membrane and their properties for water treatment and desalination in literature are critically summarized. It was reported that inorganic membranes despite their high synthesis cost, showed very promising results with high flux, full salt rejection, and very low or no fouling.

  20. From stretchable to reconfigurable inorganic electronics

    KAUST Repository

    Nassar, Joanna M.

    2016-05-06

    Today’s state-of-the-art electronics are high performing, energy efficient, multi-functional and cost effective. However, they are also typically rigid and brittle. With the emergence of the Internet of Everything, electronic applications are expanding into previously unexplored areas, like healthcare, smart wearable artifacts, and robotics. One major challenge is the physical asymmetry of target application surfaces, which often cause mechanical stretching, contracting, twisting and other deformations to the application. In this review paper, we explore materials, processes, mechanics and devices that enable physically stretchable and reconfigurable electronics. While the concept of stretchable electronics is commonly used in practice, the notion of physically reconfigurable electronics is still in its infancy. Because organic materials are commonly naturally stretchable and physically deformable, we predominantly focus on electronics made from inorganic materials that have the capacity for physical stretching and reconfiguration while retaining their intended attributes. We emphasize how applications of electronics dictate theory to integration strategy for stretchable and reconfigurable inorganic electronics.

  1. Discovery of Deep Structure from Unlabeled Data

    Science.gov (United States)

    2014-11-01

    GPU processors . To evaluate the unsupervised learning component of the algorithms (which has become of less importance in the era of “big data...representations to those in biological visual, auditory, and somatosensory cortex ; and ran numerous control experiments investigating the impact of

  2. Unsupervised Ensemble Anomaly Detection Using Time-Periodic Packet Sampling

    Science.gov (United States)

    Uchida, Masato; Nawata, Shuichi; Gu, Yu; Tsuru, Masato; Oie, Yuji

    We propose an anomaly detection method for finding patterns in network traffic that do not conform to legitimate (i.e., normal) behavior. The proposed method trains a baseline model describing the normal behavior of network traffic without using manually labeled traffic data. The trained baseline model is used as the basis for comparison with the audit network traffic. This anomaly detection works in an unsupervised manner through the use of time-periodic packet sampling, which is used in a manner that differs from its intended purpose — the lossy nature of packet sampling is used to extract normal packets from the unlabeled original traffic data. Evaluation using actual traffic traces showed that the proposed method has false positive and false negative rates in the detection of anomalies regarding TCP SYN packets comparable to those of a conventional method that uses manually labeled traffic data to train the baseline model. Performance variation due to the probabilistic nature of sampled traffic data is mitigated by using ensemble anomaly detection that collectively exploits multiple baseline models in parallel. Alarm sensitivity is adjusted for the intended use by using maximum- and minimum-based anomaly detection that effectively take advantage of the performance variations among the multiple baseline models. Testing using actual traffic traces showed that the proposed anomaly detection method performs as well as one using manually labeled traffic data and better than one using randomly sampled (unlabeled) traffic data.

  3. Optimization of the light extraction from heavy inorganic scintillators

    CERN Document Server

    Kronberger, Matthias; Lecoq, P

    2008-01-01

    Inorganic scintillators are widely used in modern medical imaging modalities as converter for the X- and gamma-radiation that is used to obtain information about the interior of the body. Likewise, they are applied in high-energy physics to measure the energy of particles that are produced in particle physics experiments. Their use is motivated by the very good detection efficiency of these materials for hard radiation which allows the construction of relatively compact and finely pixelised systems with a high spatial resolution. One key problem in the development of the next generation of particle detectors and medical imaging systems is the optimisation of the energy resolution of the detectors. This parameter is influenced by the statistical fluctuations of the light output of the scintillators, i.e. by the number of photons that are detected when a particle deposits its energy in the scintillator. The light output of the scintillator depends not only on the absolute number of generated photons but also on...

  4. Assay using embryo aggregation chimeras for the detection of nonlethal changes in X-irradiated mouse preimplantation embryos

    International Nuclear Information System (INIS)

    Obasaju, M.F.; Wiley, L.M.; Oudiz, D.J.; Miller, L.; Samuels, S.J.; Chang, R.J.; Overstreet, J.W.

    1988-01-01

    We have developed a short-term in vitro assay for the detection of sublethal effects produced by very low levels of ionizing radiation. The assay utilizes mouse embryo aggregation chimeras consisting of one irradiated embryo paired with an unirradiated embryo whose blastomeres have been labeled with fluorescein isothiocyanate (FITC). X irradiation (from 0.05 to 2 Gy) and chimera construction were performed with four-cell stage embryos, and the chimeras were cultured for 40 h to the morula stage. The morulae were partially dissociated with calcium-free culture medium and viewed under phase contrast and epifluorescence microscopy to obtain total embryo cell number and the cellular contribution of irradiated (unlabeled) and control (FITC labeled) embryos per chimera. In chimeras where neither embryo was irradiated, the ratio of the unlabeled blastomeres to the total number of blastomeres per chimera embryo was 0.50 (17.8 +/- 5.6 cells per unlabeled embryo and 17.4 +/- 5.5 cells per FITC-labeled partner embryo). However, in chimeras formed after the unlabeled embryos were irradiated with as little as 0.05 Gy, the ratio of unlabeled blastomeres to the total number of blastomeres per chimera embryo was 0.43 (P less than 0.01). The apparent decreases in cell proliferation were not observed in irradiated embryos that were merely cocultured with control embryos, regardless of whether the embryos were zona enclosed or zona free. We conclude that very low levels of radiation induce sublethal changes in cleaving embryos that are expressed as a proliferative disadvantage within two cell cycles when irradiated embryos are in direct cell-to-cell contact with unirradiated embryos

  5. Engineering properties of inorganic polymer concretes (IPCs)

    International Nuclear Information System (INIS)

    Sofi, M.; Deventer, J.S.J. van; Mendis, P.A.; Lukey, G.C.

    2007-01-01

    This paper presents the engineering properties of inorganic polymer concretes (IPCs) with a compressive strength of 50 MPa. The study includes a determination of the modulus of elasticity, Poisson's ratio, compressive strength, and the splitting tensile strength and flexural strength of IPCs, formulated using three different sources of Class-F fly ash. Six IPC mix designs were adopted to evaluate the effects of the inclusion of coarse aggregates and granulated blast furnace slag into the mixes. A total of 90 cylindrical and 24 small beam specimens were investigated, and all tests were carried out pursuant to the relevant Australian Standards. Although some variability between the mixes was observed, the results show that, in most cases, the engineering properties of IPCs compare favorably to those predicted by the relevant Australian Standards for concrete mixtures

  6. Scintillation response of organic and inorganic scintillators

    CERN Document Server

    Papadopoulos, L M

    1999-01-01

    A method to evaluate the scintillation response of organic and inorganic scintillators to different heavy ionizing particles is suggested. A function describing the rate of the energy consumed as fluorescence emission is derived, i.e., the differential response with respect to time. This function is then integrated for each ion and scintillator (anthracene, stilbene and CsI(Tl)) to determine scintillation response. The resulting scintillation responses are compared to the previously reported measured responses. Agreement to within 2.5% is observed when these data are normalized to each other. In addition, conclusions regarding the quenching parameter kB dependence on the type of the particle and the computed values of kB for certain ions are included. (author)

  7. Neutron Diffraction and Inorganic Materials Discovery

    International Nuclear Information System (INIS)

    Rosseinsky, M.J.

    2005-01-01

    Full text: The discovery of complex inorganic materials is an important academic and technological challenge because of the opportunities these systems offer for observation of new phenomena, and the questions they pose for fundamental understanding. This presentation will illustrate the key role of neutron powder diffraction in enabling the discovery of new classes of materials, and in evaluating their properties and the conditions under which they need to be processed to optimise their behaviour in devices for applications. New chemistry is illustrated by the transition metal oxide hydrides, where both structure and ionic mobility required neutron scattering characterisation. The relationship between chemistry, structure and properties will be addressed by considering the difficulties in inducing superconductivity in analogues of magnesium diboride. The role of both neutron and X-ray diffraction in evaluating the processing of microwave dielectric ceramics will be highlighted, with the discovery of new phases shown to be a useful bonus in this type of in-situ study. (author)

  8. Applications of inorganic nanoparticles as therapeutic agents

    Science.gov (United States)

    Kim, Taeho; Hyeon, Taeghwan

    2014-01-01

    During the last decade, various functional nanostructured materials with interesting optical, magnetic, mechanical and chemical properties have been extensively applied to biomedical areas including imaging, diagnosis and therapy. In therapeutics, most research has focused on the application of nanoparticles as potential delivery vehicles for drugs and genes, because nanoparticles in the size range of 2-100 nm can interact with biological systems at the molecular level, and allow targeted delivery and passage through biological barriers. Recent investigations have even revealed that several kinds of nanomaterials are intrinsically therapeutic. Not only can they passively interact with cells, but they can also actively mediate molecular processes to regulate cell functions. This can be seen in the treatment of cancer via anti-angiogenic mechanisms as well as the treatment of neurodegenerative diseases by effectively controlling oxidative stress. This review will present recent applications of inorganic nanoparticles as therapeutic agents in the treatment of disease.

  9. Practical approaches to biological inorganic chemistry

    CERN Document Server

    Louro, Ricardo O

    2012-01-01

    The book reviews the use of spectroscopic and related methods to investigate the complex structures and mechanisms of biological inorganic systems that contain metals. Each chapter presents an overview of the technique including relevant theory, clearly explains what it is and how it works and then presents how the technique is actually used to evaluate biological structures. Practical examples and problems are included to illustrate each technique and to aid understanding. Designed for students and researchers who want to learn both the basics, and more advanced aspects of bioinorganic chemistry. It includes many colour illustrations enable easier visualization of molecular mechanisms and structures. It provides worked examples and problems that are included to illustrate and test the reader's understanding of each technique. It is written by a multi-author team who use and teach the most important techniques used today to analyse complex biological structures.

  10. Carbon dioxide removal with inorganic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Fain, D.E. [Oak Ridge National Laboratory, TN (United States)

    1993-12-31

    The increasing concentrations of greenhouse gases, particularly carbon dioxide, in the atmosphere has sparked a great deal of interest in the removal of CO{sub 2} from flue gases of fossil fueled plants. Presently, several techniques for the removal of CO{sub 2} are considered to have potential, but are lacking in practicality. For example, amine scrubbing of flue gas streams is potential, but are lacking in practically. For example, amine scrubbing of flue gas streams is effective in removing CO{sub 2}, but costs are high; efficiency suffers; and other acid gases must be removed prior to amine stripping. Membrane systems for CO{sub 2} removal are held in high regard, and inorganic, particularly ceramic, membranes offer the potential for high temperature, thus energy saving, removal.

  11. Inorganic-organic nanocomposites for optical coatings

    Science.gov (United States)

    Schmidt, Helmut K.; Krug, Herbert; Sepeur-Zeitz, Bernhard; Geiter, Elisabeth

    1997-10-01

    The fabrication of nanoparticles by the sol-gel process and their use in polymeric or sol-gel-derived inorganic-organic composite matrices opens up interesting possibilities for designing new optical materials. Two different routes have been chosen for preparing optical nanocomposites: The first is the so-called 'in situ route,' where the nanoparticles are synthesized in a liquid mixture from Zr-alkoxides in a polymerizable system and diffractive gratings were produced by embossing uncured film. The second is the 'separate' preparation route, where a sterically stabilized dry nanoboehmite powder was completely redispersed in an epoxy group-containing matrix and hard coatings with optical quality on polycarbonate were prepared.

  12. Solubility and stability of inorganic carbonates

    International Nuclear Information System (INIS)

    Taylor, P.

    1987-01-01

    The chemistry of inorganic carbonates is reviewed, with emphasis on solubility and hydrolytic stability, in order to identify candidate waste forms for immobilization and disposal of 14 C. At present, CaCO 3 and BaCO 3 are the two most widely favoured wasted forms, primarily because they are the products of proven CO 2 -scrubbing technology. However, they have relatively high solubilities in non-alkaline solutions, necessitating care in selecting and assessing an appropriate disposal environment. Three compounds with better solubility characteristics in near-neutral waters are identified: bismutite, (BiO) 2 CO 3 ; hydrocerussite, Pb 3 (OH) 2 (CO 3 ) 2 ; and rhodochrosite, MnCO 3 . Some of the limitations of each of these alternative waste forms are discussed

  13. Mechanisms of inorganic and organometallic reactions

    CERN Document Server

    The purpose of this series is to provide a continuing critical review of the literature concerned with mechanistic aspects of inorganic and organo­ metallic reactions in solution, with coverage being complete in each volume. The papers discussed are selected on the basis of relevance to the elucidation of reaction mechanisms and many include results of a nonkinetic nature when useful mechanistic information can be deduced. The period of literature covered by this volume is July 1982 through December 1983, and in some instances papers not available for inclusion in the previous volume are also included. Numerical results are usually reported in the units used by the original authors, except where data from different papers are com­ pared and conversion to common units is necessary. As in previous volumes material included covers the major areas of redox processes, reactions of the nonmetallic elements, reaction of inert and labile metal complexes and the reactions of organometallic compounds. While m...

  14. Inorganic phosphate uptake in unicellular eukaryotes.

    Science.gov (United States)

    Dick, Claudia F; Dos-Santos, André L A; Meyer-Fernandes, José R

    2014-07-01

    Inorganic phosphate (Pi) is an essential nutrient for all organisms. The route of Pi utilization begins with Pi transport across the plasma membrane. Here, we analyzed the gene sequences and compared the biochemical profiles, including kinetic and modulator parameters, of Pi transporters in unicellular eukaryotes. The objective of this review is to evaluate the recent findings regarding Pi uptake mechanisms in microorganisms, such as the fungi Neurospora crassa and Saccharomyces cerevisiae and the parasite protozoans Trypanosoma cruzi, Trypanosoma rangeli, Leishmania infantum and Plasmodium falciparum. Pi uptake is the key step of Pi homeostasis and in the subsequent signaling event in eukaryotic microorganisms. Biochemical and structural studies are important for clarifying mechanisms of Pi homeostasis, as well as Pi sensor and downstream pathways, and raise possibilities for future studies in this field. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Characterisation of the inorganic chemistry of surface waters in ...

    African Journals Online (AJOL)

    The main purpose of this study was to determine a simple inorganic chemistry index that can be used for all surface waters in South Africa, in order to characterise the inorganic chemistry of surface waters. Water quality data collected up until 1999 from all sample monitoring stations (2 068 monitoring stations, 364 659 ...

  16. Effect of Inorganic Fertilizer on the Microbial degradation of Diesel ...

    African Journals Online (AJOL)

    The effect of Inorganic Fertilizer (IF) on the microbial degradation of diesel polluted soil in Abeokuta was assessed by collecting Top soil (0 – 15 cm depth) from diesel polluted site of Information and Communication Centre, Federal University of Agriculture, Abeokuta, Nigeria. Inorganic fertilizer was added to the polluted soil ...

  17. Graphene templated Directional Growth of an Inorganic Nanowire

    Science.gov (United States)

    2015-03-23

    14,23–25 have only formed randomly oriented or poorly aligned inorganic nanostructures. Here, we show that inorganic nanowires of gold(I) cyanide can... complex . TEM image simulation from the crystal structure The TEM image simulations are performed using MacTempas and CrystalKit. The imaging

  18. Computer information resources of inorganic chemistry and materials science

    Energy Technology Data Exchange (ETDEWEB)

    Kiselyova, N N; Dudarev, V A; Zemskov, V S [A.A.Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow (Russian Federation)

    2010-02-28

    Information systems used in inorganic chemistry and materials science are considered. The following basic trends in the development of modern information systems in these areas are highlighted: access to information via the Internet, merging of documental and factual databases, involvement of experts in the evaluation of the data reliability, supplementing databases with information analysis tools on the properties of inorganic substances and materials.

  19. Organometallic-inorganic hybrid electrodes for lithium-ion batteries

    Science.gov (United States)

    Huang, Qian; Lemmon, John P.; Choi, Daiwon; Cosimbescu, Lelia

    2016-09-13

    Disclosed are embodiments of active materials for organometallic and organometallic-inorganic hybrid electrodes and particularly active materials for organometallic and organometallic-inorganic hybrid cathodes for lithium-ion batteries. In certain embodiments the organometallic material comprises a ferrocene polymer.

  20. Synthesis of Porous Inorganic Hollow Fibers without Harmful Solvents

    NARCIS (Netherlands)

    Shukla, Sushumna; de Wit, Patrick; Luiten-Olieman, Maria W.J.; Kappert, Emiel; Nijmeijer, Arian; Benes, Nieck Edwin

    2015-01-01

    A route for the fabrication of porous inorganic hollow fibers with high surface-area-to-volume ratio that avoids harmful solvents is presented. The approach is based on bio-ionic gelation of an aqueous mixture of inorganic particles and sodium alginate during wet spinning. In a subsequent thermal

  1. Computer information resources of inorganic chemistry and materials science

    International Nuclear Information System (INIS)

    Kiselyova, N N; Dudarev, V A; Zemskov, V S

    2010-01-01

    Information systems used in inorganic chemistry and materials science are considered. The following basic trends in the development of modern information systems in these areas are highlighted: access to information via the Internet, merging of documental and factual databases, involvement of experts in the evaluation of the data reliability, supplementing databases with information analysis tools on the properties of inorganic substances and materials.

  2. Rumen microorganisms decrease bioavailability of inorganic selenium supplements

    Science.gov (United States)

    Despite the availaility of selenium (Se)-enriched trace mineral supplements, we have observed low Se status in cattle and sheep offered traditional inorganic Se supplements. Reasons for this may include inadequate intake or low bioavailability of inorganic Se sources. The objective of this study w...

  3. Contamination of Kallar Kahar Lake by Inorganic Elements and ...

    African Journals Online (AJOL)

    The present study was conducted to find out the contamination of Kallar Kahar Lake by inorganic elements and heavy metals and the temporal variation of these chemicals in the lake water. Water samples were collected on monthly basis during December 2001 to November 2002. Concentration of 10 inorganic elements ...

  4. An overview of the bioremediation of inorganic contaminants

    International Nuclear Information System (INIS)

    Bolton, H. Jr.; Gorby, Y.A.

    1995-01-01

    Bioremediation, or the biological treatment of wastes, usually is associated with the remediation of organic contaminants. Similarly, there is an increasing body of literature and expertise in applying biological systems to assist in the bioremediation of soils, sediments, and water contaminated with inorganic compounds including metals, radionuclides, nitrates, and cyanides. Inorganic compounds can be toxic both to humans and to organisms used to remediate these contaminants. However, in contrast to organic contaminants, most inorganic contaminants cannot be degraded, but must be remediated by altering their transport properties. Immobilization, mobilization, or transformation of inorganic contaminants via bioaccumulation, biosorption, oxidation, reduction, methylation, demethylation, metal-organic complexation, ligand degradation, and phytoremediation are the various processes applied in the bioremediation of inorganic compounds. This paper briefly describes these processes, referring to other contributors in this book as examples when possible, and summarize the factors that must be considered when choosing bioremediation as a cleanup technology for inorganics. Understanding the current state of knowledge as well as the limitations for bioremediation of inorganic compounds will assist in identifying and implementing successful remediation strategies at sites containing inorganic contaminants. 79 refs

  5. Determination of Inorganic Ion Profiles of Illicit Drugs by Capillary Electrophoresis.

    Science.gov (United States)

    Evans, Elizabeth; Costrino, Carolina; do Lago, Claudimir L; Garcia, Carlos D; Roux, Claude; Blanes, Lucas

    2016-11-01

    A portable capillary electrophoresis instrument with dual capacitively coupled contactless conductivity detection (C 4 D) was used to determine the inorganic ionic profiles of three pharmaceutical samples and precursors of two illicit drugs (contemporary samples of methylone and para-methoxymethamphetamine). The LODs ranged from 0.10 μmol/L to 1.25 μmol/L for the 10 selected cations, and from 0.13 μmol/L to 1.03 μmol/L for the eight selected anions. All separations were performed in less than 6 min with migration times and peak area RSD values ranging from 2 to 7%. The results demonstrate the potential of the analysis of inorganic ionic species to aid in the identification and/or differentiation of unknown tablets, and real samples found in illicit drug manufacture scenarios. From the resulting ionic fingerprint, the unknown tablets and samples can be further classified. © 2016 American Academy of Forensic Sciences.

  6. Total and inorganic arsenic in fish, seafood and seaweeds--exposure assessment.

    Science.gov (United States)

    Mania, Monika; Rebeniak, Małgorzata; Szynal, Tomasz; Wojciechowska-Mazurek, Maria; Starska, Krystyna; Ledzion, Ewa; Postupolski, Jacek

    2015-01-01

    According to the European Food Safety Authority (EFSA), fish, seafood and seaweeds are foodstuffs that significantly contribute to dietary arsenic intake. With the exception of some algal species, the dominant compounds of arsenic in such food products are the less toxic organic forms. Both the Joint FAO/WHO Expert Committee on Food Additives (JECFA) and EFSA recommend that speciation studies be performed to determine the different chemical forms in which arsenic is present in food due to the differences in their toxicity. Knowing such compositions can thus enable a complete exposure assessment to be made. Determination of total and inorganic arsenic contents in fish, their products, seafood and seaweeds present on the Polish market. This was then followed by an exposure assessment of consumers to inorganic arsenic in these foodstuffs. Total and inorganic arsenic was determined in 55 samples of fish, their products, seafood as well as seaweeds available on the market. The analytical method was hydride generation atomic absorption spectrometry (HGAAS), after dry ashing of samples and reduction of arsenic to arsenic hydride using sodium borohydride. In order to isolate only the inorganic forms of arsenic prior to mineralisation, samples were subjected to concentrated HCl hydrolysis, followed by reduction with hydrobromic acid and hydrazine sulphate after which triple chloroform extractions and triple 1M HCl re-extractions were performed. Exposure of adults was estimated in relation to the Benchmark Dose Lower Confidence Limit (BMDL0.5) as set by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) that resulted in a 0.5% increase in lung cancer (3.0 μg/kg body weight (b.w.) per day). Mean total arsenic content from all investigated fish samples was 0.46 mg/kg (90th percentile 0.94 mg/kg), whilst the inorganic arsenic content never exceeded the detection limit of the analytical method used (0.025 mg/kg). In fish products, mean total arsenic concentration was

  7. Bioavailability of nickel in man: effects of foods and chemically-defined dietary constituents on the absorption of inorganic nickel.

    Science.gov (United States)

    Solomons, N W; Viteri, F; Shuler, T R; Nielsen, F H

    1982-01-01

    By serial determination of the change in plasma nickel concentration following a standard dose of 22.4 mg of nickel sulfate hexahydrate containing 5 mg of elemental nickel, the bioavailability of nickel was estimated in human subjects. Plasma nickel concentration was stable in the fasting state and after an unlabeled test meal, but after the standard dose of nickel in water was elevated 48.8, 73.0, 80.0, and 53.3 microgram/1, respectively, at hours 1, 2, 3, and 4. Plasma nickel did not rise above fasting levels when 5 mg of nickel was added to two standard meals: a typical Guatemalan meal and a North American breakfast. When 5 mg of nickel was added to five beverages-whole cow milk, coffee, tea, orange juice, and Coca Cola-the rise in plasma nickel was significantly suppressed with all but Coca Cola. Response to nickel also was suppressed in the presence of 1 g of ascorbic acid. Phytic acid in a 2:1 molar ratio with nickel, however, did not affect the rise in plasma nickel. The chelate of iron and ethylenediaminetetraacetate, NaFeEDTA, an iron-fortifying agent suggested for application in Central America, slightly but not significantly depressed plasma nickel rise at 2 hours, whereas disodium EDTA depressed plasma nickel levels significantly below the fasting nickel curve at 3 and 4 hours postdose. These studies suggest that the differential responses of inorganic nickel to distinct foods, beverages, and chemically-defined dietary constituents could be important to human nutrition.

  8. Determination of total and inorganic mercury in fish samples with on-line oxidation coupled to atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Shao Lijun; Gan Wuer; Su Qingde

    2006-01-01

    An atomic fluorescence spectrometry system for determination of total and inorganic mercury with electromagnetic induction-assisted heating on-line oxidation has been developed. Potassium peroxodisulphate was used as the oxidizing agent to decompose organomercury compounds. Depending on the temperature selected, inorganic or total mercury could be determined with the same manifold. Special accent was put on the study of the parameters influencing the on-line digestion efficiency. The tolerance to the interference of coexisting ions was carefully examined in this system. Under optimal conditions, the detection limits (3σ) were evaluated to be 2.9 ng l -1 for inorganic mercury and 2.6 ng l -1 for total mercury, respectively. The relative standard deviations for 10 replicate determinations of 1.0 μg l -1 Hg were 2.4 and 3.2% for inorganic mercury and total mercury, respectively. The proposed method was successfully applied to the determination of total and inorganic mercury in fish samples

  9. Appendix: a solution hybridization assay to detect radioactive globin messenger RNA nucleotide sequences

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J

    1976-09-15

    In view of the sensitivity and specificity of the solution hybridization assay for unlabeled globin mRNA a similar technique has been devised to detect radioactive globin mRNA sequences with unlabeled globin cDNA. Several properties of the hybridization reaction are presented since RNA kinetic experiments reported recently depend on the validity of this assay. Data on hybridization analysis of (/sup 3/H)RNA from mouse fetal liver or erythroleukemia cell cytoplasm are presented. These data indicate that the excess cDNA solution assay for radioactive globin mRNA detection is specific for globin mRNA sequences. It can be performed rapidly and is highly reproducible from experiment. It is at least 500-fold less sensitive than the assay for unlabeled globin mRNA, due to the RNAase backgrounds of 0.05 to 0.15 %. However, this limitation has not affected kinetic experiments with non-dividing fetal liver erythroid cells, which synthesize relatively large quantities of globin mRNA.

  10. Zeta potential control in decontamination with inorganic membranes and inorganic adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Andalaft, E; Vega, R; Correa, M; Araya, R; Loyola, P [Comision Chilena de Energia Nuclear, Santiago (Chile)

    1997-02-01

    The application of some advanced separation processes such as microfiltration and ultrafiltration, electroosmosis and electrodialysis for treating nuclear waste from different aqueous streams is under examination at the Chilean Commission for Nuclear Energy. The application of these techniques can be extended to regular industrial wastes when economically advisable. This report deals mainly with electrodialysis, electroosmosis and adsorption with inorganic materials. Special attention is paid to zeta potential control as a driving factor to electroosmosis. For radioactive contaminants that are present in the form of cations, anions, non-ionic solutions, colloids and suspended matter, appropriate combination of the processes may considerably increase the efficiency of processes used. As an example, colloids and suspended particles may be retained in porous ceramic membranes by nanofiltration, ultrafiltration or microfiltration depending on the particle size of the particles. The control of zeta potential by acting in the solid phase or else on the liquid phase has been studied; a mathematical model to predict electrodialysis data has been developed, and finally, the use of a home-made inorganic adsorbent illustrated. The effect of gamma irradiation on the membranes has also been studied. Properties such as salt retention, water flux and pore size diameter determined on both organic and inorganic membranes before and after irradiation indicate deterioration of the organic membrane. (author). 13 refs, 15 figs, 2 tabs.

  11. Artificial inorganic Biohybrids: the functional combination of microorganisms and cells with inorganic materials.

    Science.gov (United States)

    Holzmeister, Ib; Schamel, Martha; Groll, Jürgen; Gbureck, Uwe; Vorndran, Elke

    2018-04-23

    Biohybrids can be defined as the functional combination of proteins, viable cells or microorganisms with non-biological materials. This article reviews recent findings on the encapsulation of microorganisms and eukaryotic cells in inorganic matrices such as silica gels or cements. The entrapment of biological entities into a support material is of great benefit for processing since the encapsulation matrix protects sensitive cells from shear forces, unfavourable pH changes, or cytotoxic solvents, avoids culture-washout, and simplifies the separation of formed products. After reflecting general aspects of such an immobilization as well as the chemistry of the inorganic matrices, we focused on manufacturing aspects and the application of such biohybrids in biotechnology, medicine as well as in environmental science and for civil engineering purpose. The encapsulation of living cells and microorganisms became an intensively studied and rapidly expanding research field with manifold applications in medicine, bio- and environmental technology, or civil engineering. Here, the use of silica or cements as encapsulation matrices have the advantage of a higher chemical and mechanical resistance towards harsh environmental conditions during processing compared to their polymeric counterparts. In this perspective, the article gives an overview about the inorganic material systems used for cell encapsulation, followed by reviewing the most important applications. The future may lay in a combination of the currently achieved biohybrid systems with additive manufacturing techniques. In a longer perspective, this would enable the direct printing of cell loaded bioreactor components. Copyright © 2018. Published by Elsevier Ltd.

  12. Zeta potential control in decontamination with inorganic membranes and inorganic adsorbents

    International Nuclear Information System (INIS)

    Andalaft, E.; Vega, R.; Correa, M.; Araya, R.; Loyola, P.

    1997-01-01

    The application of some advanced separation processes such as microfiltration and ultrafiltration, electroosmosis and electrodialysis for treating nuclear waste from different aqueous streams is under examination at the Chilean Commission for Nuclear Energy. The application of these techniques can be extended to regular industrial wastes when economically advisable. This report deals mainly with electrodialysis, electroosmosis and adsorption with inorganic materials. Special attention is paid to zeta potential control as a driving factor to electroosmosis. For radioactive contaminants that are present in the form of cations, anions, non-ionic solutions, colloids and suspended matter, appropriate combination of the processes may considerably increase the efficiency of processes used. As an example, colloids and suspended particles may be retained in porous ceramic membranes by nanofiltration, ultrafiltration or microfiltration depending on the particle size of the particles. The control of zeta potential by acting in the solid phase or else on the liquid phase has been studied; a mathematical model to predict electrodialysis data has been developed, and finally, the use of a home-made inorganic adsorbent illustrated. The effect of gamma irradiation on the membranes has also been studied. Properties such as salt retention, water flux and pore size diameter determined on both organic and inorganic membranes before and after irradiation indicate deterioration of the organic membrane. (author). 13 refs, 15 figs, 2 tabs

  13. Inorganic arsenic levels in baby rice are of concern

    International Nuclear Information System (INIS)

    Meharg, Andrew A.; Sun, Guoxin; Williams, Paul N.; Adomako, Eureka; Deacon, Claire; Zhu, Yong-Guan; Feldmann, Joerg; Raab, Andrea

    2008-01-01

    Inorganic arsenic is a chronic exposure carcinogen. Analysis of UK baby rice revealed a median inorganic arsenic content (n = 17) of 0.11 mg/kg. By plotting inorganic arsenic against total arsenic, it was found that inorganic concentrations increased linearly up to 0.25 mg/kg total arsenic, then plateaued at 0.16 mg/kg at higher total arsenic concentrations. Inorganic arsenic intake by babies (4-12 months) was considered with respect to current dietary ingestion regulations. It was found that 35% of the baby rice samples analysed would be illegal for sale in China which has regulatory limit of 0.15 mg/kg inorganic arsenic. EU and US food regulations on arsenic are non-existent. When baby inorganic arsenic intake from rice was considered, median consumption (expressed as μg/kg/d) was higher than drinking water maximum exposures predicted for adults in these regions when water intake was expressed on a bodyweight basis. - Median consumption of organic arsenic levels for UK babies from baby rice is above threshold considered safe

  14. Inorganic nanolayers: structure, preparation, and biomedical applications

    Directory of Open Access Journals (Sweden)

    Saifullah B

    2015-09-01

    Full Text Available Bullo Saifullah, Mohd Zobir B HusseinMaterials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA, Universiti Putra Malaysia, Serdang, MalaysiaAbstract: Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes, high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.Keywords: inorganic nanolayers, layered double hydroxides, layered hydroxy salts, drug delivery, biosensors, bioimaging

  15. Hybrid organic-inorganic rotaxanes and molecular shuttles.

    Science.gov (United States)

    Lee, Chin-Fa; Leigh, David A; Pritchard, Robin G; Schultz, David; Teat, Simon J; Timco, Grigore A; Winpenny, Richard E P

    2009-03-19

    The tetravalency of carbon and its ability to form covalent bonds with itself and other elements enables large organic molecules with complex structures, functions and dynamics to be constructed. The varied electronic configurations and bonding patterns of inorganic elements, on the other hand, can impart diverse electronic, magnetic, catalytic and other useful properties to molecular-level structures. Some hybrid organic-inorganic materials that combine features of both chemistries have been developed, most notably metal-organic frameworks, dense and extended organic-inorganic frameworks and coordination polymers. Metal ions have also been incorporated into molecules that contain interlocked subunits, such as rotaxanes and catenanes, and structures in which many inorganic clusters encircle polymer chains have been described. Here we report the synthesis of a series of discrete rotaxane molecules in which inorganic and organic structural units are linked together mechanically at the molecular level. Structural units (dialkyammonium groups) in dumb-bell-shaped organic molecules template the assembly of essentially inorganic 'rings' about 'axles' to form rotaxanes consisting of various numbers of rings and axles. One of the rotaxanes behaves as a 'molecular shuttle': the ring moves between two binding sites on the axle in a large-amplitude motion typical of some synthetic molecular machine systems. The architecture of the rotaxanes ensures that the electronic, magnetic and paramagnetic characteristics of the inorganic rings-properties that could make them suitable as qubits for quantum computers-can influence, and potentially be influenced by, the organic portion of the molecule.

  16. Anticorrosive organic/inorganic hybrid coatings

    Science.gov (United States)

    Gao, Tongzhai

    Organic/inorganic hybrid coating system was developed for anticorrosion applications using polyurea, polyurethane or epoxide as the organic phase and polysiloxane, formed by sol-gel process, as the inorganic phase. Polyurea/polysiloxane hybrid coatings were formulated and moisture cured using HDI isocyanurate, alkoxysilane-functionalized HDI isocyanurate, and tetraethyl orthosilicate (TEOS) oligomers. Two urethanes were prepared using the same components as abovementioned in addition to the oligoesters derived from either cyclohexane diacids (CHDA) and 2-butyl-2-ethyl-1,3-propanediol (BEPD) or adipic acid (AA), isophthalic acid (IPA), 1,6-hexanediol (HD), and trimethylol propane (TMP). Accelerated weathering and outdoor exposure were performed to study the weatherability of the polyurethane/polysiloxane hybrid coating system. FTIR and solid-state 13C NMR revealed that the degradation of the hybrid coatings occurred at the urethane and ester functionalities of the organic phase. DMA and DSC analyses showed the glass transition temperature increased and broadened after weathering. SEM was employed to observe the change of morphology of the hybrid coatings and correlated with the gloss variation after weathering. Rutile TiO2 was formulated into polyurethane/polysiloxane hybrid coatings in order to investigate the effect of pigmentation on the coating properties and the sol-gel precursor. Chemical interaction between the TiO2 and the sol-gel precursor was investigated using solid-state 29Si NMR and XPS. The morphology, mechanical, viscoelastic, thermal properties of the pigmented coatings were evaluated as a function of pigmentation volume concentration (PVC). Using AFM and SEM, the pigment were observed to be well dispersed in the polymer matrix. The thermal stability, the tensile modulus and strength of the coatings were enhanced with increasing PVC, whereas the pull-off adhesion and flexibility were reduced with increasing PVC. Finally, the pigmented coatings were

  17. Mechanics and thermal management of stretchable inorganic electronics.

    Science.gov (United States)

    Song, Jizhou; Feng, Xue; Huang, Yonggang

    2016-03-01

    Stretchable electronics enables lots of novel applications ranging from wearable electronics, curvilinear electronics to bio-integrated therapeutic devices that are not possible through conventional electronics that is rigid and flat in nature. One effective strategy to realize stretchable electronics exploits the design of inorganic semiconductor material in a stretchable format on an elastomeric substrate. In this review, we summarize the advances in mechanics and thermal management of stretchable electronics based on inorganic semiconductor materials. The mechanics and thermal models are very helpful in understanding the underlying physics associated with these systems, and they also provide design guidelines for the development of stretchable inorganic electronics.

  18. Mechanics and thermal management of stretchable inorganic electronics

    Science.gov (United States)

    Song, Jizhou; Feng, Xue; Huang, Yonggang

    2016-01-01

    Stretchable electronics enables lots of novel applications ranging from wearable electronics, curvilinear electronics to bio-integrated therapeutic devices that are not possible through conventional electronics that is rigid and flat in nature. One effective strategy to realize stretchable electronics exploits the design of inorganic semiconductor material in a stretchable format on an elastomeric substrate. In this review, we summarize the advances in mechanics and thermal management of stretchable electronics based on inorganic semiconductor materials. The mechanics and thermal models are very helpful in understanding the underlying physics associated with these systems, and they also provide design guidelines for the development of stretchable inorganic electronics. PMID:27547485

  19. Sol-gel processing with inorganic metal salt precursors

    Science.gov (United States)

    Hu, Zhong-Cheng

    2004-10-19

    Methods for sol-gel processing that generally involve mixing together an inorganic metal salt, water, and a water miscible alcohol or other organic solvent, at room temperature with a macromolecular dispersant material, such as hydroxypropyl cellulose (HPC) added. The resulting homogenous solution is incubated at a desired temperature and time to result in a desired product. The methods enable production of high quality sols and gels at lower temperatures than standard methods. The methods enable production of nanosize sols from inorganic metal salts. The methods offer sol-gel processing from inorganic metal salts.

  20. Inorganic and organic radiation chemistry: state and problems

    International Nuclear Information System (INIS)

    Kalyazin, E.P.; Bugaenko, L.T.

    1990-01-01

    Radiation inorganic and organic chemistry is presented on the basis of the general scheme and classification of radiolysis products and elementary processes, by which evolution of radiation-affected substances up to the final radiolysis products takes place. The evolution is traced for the representatives of inorganic and organic compounds. The contribution of radiation inorganic and organic chemistry to radiation technology, radiation materials technology, radiation ecology and medicine, is shown. Tendencies in the development of radiation chemistry and prediction of its certain directions are considered

  1. Simulation of perovskite solar cells with inorganic hole transporting materials

    DEFF Research Database (Denmark)

    Wang, Yan; Xia, Zhonggao; Liu, Yiming

    2015-01-01

    Device modeling organolead halide perovskite solar cells with planar architecture based on inorganic hole transporting materials (HTMs) were performed. A thorough understanding of the role of the inorganic HTMs and the effect of band offset between HTM/absorber layers is indispensable for further...... improvement in power conversion efficiency (PCE). Here, we investigated the effect of band offset between inorganic HTM/absorber layers. The solar cell simulation program adopted in this work is named wxAMPS, an updated version of the AMPS tool (Analysis of Microelectronic and Photonic Structure)....

  2. Hybrid Organic-Inorganic Bridged Silsesquioxane Nanoparticles for Cancer Nanomedicine

    KAUST Repository

    Fatieiev, Yevhen

    2017-10-01

    It is well established that cancer is one of the leading causes of death globally. Its complete eradication requires early detection and intensive drug treatment. In many cases it might also require surgery. Unfortunately, current medicine is still more focused on cancer treatment rather than elimination of its reason. The mechanism of tumor emergence and development is quite complicated, although, we are constantly advancing in this field. Nanomedicine is envisioned as the silver bullet against cancer. Thus, nanoscale systems with therapeutic and diagnostic modalities can simultaneously perform several functions: accurate detection of tumor site, precise targeting, and controlled drug release inside abnormal cells and tissues while being nontoxic to healthy ones. Moreover, surface modification of such nanoparticles allows them to be invisible to the immune system and have longer blood circulating time. The performed research in this dissertation is completely based on hybrid organicinorganic bridged silsesquioxane (also known as organosilica) nanomaterials, therefore comprising "soft" organic/bioorganic part which can imitate certain biorelevant structures and facilitates successful escape from the immune system for more efficient accumulation in cancer cells, while "hard" inorganic part serves as a rigid and stable basis for the creation of cargo nanocarriers and imaging agents. This dissertation discusses the 5 critical points of safe biodegradable nanoplatforms, delivery of large biomolecules, and cytotoxicity regarding the shape of nanoparticles. As a result novel fluorescent biodegradable oxamide-based organosilica nanoparticles were developed, light-triggered surface charge reversal for large biomolecule delivery was applied with hollow bridged silsesquioxane nanomaterials, and biocompatibility of periodic mesoporous organosilicas with different morphologies was studied. Furthermore, the current achievements and future perspectives of mesoporous silica

  3. Hybrid Organic-Inorganic Bridged Silsesquioxane Nanoparticles for Cancer Nanomedicine

    KAUST Repository

    Fatieiev, Yevhen

    2017-01-01

    It is well established that cancer is one of the leading causes of death globally. Its complete eradication requires early detection and intensive drug treatment. In many cases it might also require surgery. Unfortunately, current medicine is still more focused on cancer treatment rather than elimination of its reason. The mechanism of tumor emergence and development is quite complicated, although, we are constantly advancing in this field. Nanomedicine is envisioned as the silver bullet against cancer. Thus, nanoscale systems with therapeutic and diagnostic modalities can simultaneously perform several functions: accurate detection of tumor site, precise targeting, and controlled drug release inside abnormal cells and tissues while being nontoxic to healthy ones. Moreover, surface modification of such nanoparticles allows them to be invisible to the immune system and have longer blood circulating time. The performed research in this dissertation is completely based on hybrid organicinorganic bridged silsesquioxane (also known as organosilica) nanomaterials, therefore comprising "soft" organic/bioorganic part which can imitate certain biorelevant structures and facilitates successful escape from the immune system for more efficient accumulation in cancer cells, while "hard" inorganic part serves as a rigid and stable basis for the creation of cargo nanocarriers and imaging agents. This dissertation discusses the 5 critical points of safe biodegradable nanoplatforms, delivery of large biomolecules, and cytotoxicity regarding the shape of nanoparticles. As a result novel fluorescent biodegradable oxamide-based organosilica nanoparticles were developed, light-triggered surface charge reversal for large biomolecule delivery was applied with hollow bridged silsesquioxane nanomaterials, and biocompatibility of periodic mesoporous organosilicas with different morphologies was studied. Furthermore, the current achievements and future perspectives of mesoporous silica

  4. Inorganic ion exchangers for nuclear waste remediation

    Energy Technology Data Exchange (ETDEWEB)

    Clearfield, A.; Bortun, A.; Bortun, L.; Behrens, E. [Texas A& M Univ., College Station, TX (United States)

    1997-10-01

    The objective of this work is to provide a broad spectrum of inorganic ion exchangers that can be used for a range of applications and separations involving remediation of groundwater and tank wastes. The authors intend to scale-up the most promising exchangers, through partnership with AlliedSignal Inc., to provide samples for testing at various DOE sites. While much of the focus is on exchangers for removal of Cs{sup +} and Sr{sup 2+} from highly alkaline tank wastes, especially at Hanford, the authors have also synthesized exchangers for acid wastes, alkaline wastes, groundwater, and mercury, cobalt, and chromium removal. These exchangers are now available for use at DOE sites. Many of the ion exchangers described here are new, and others are improved versions of previously known exchangers. They are generally one of three types: (1) layered compounds, (2) framework or tunnel compounds, and (3) amorphous exchangers in which a gel exchanger is used to bind a fine powder into a bead for column use. Most of these exchangers can be regenerated and used again.

  5. Protonation of inorganic 5-Fluorocytosine salts

    Science.gov (United States)

    Souza, Matheus S.; da Silva, Cecília C. P.; Almeida, Leonardo R.; Diniz, Luan F.; Andrade, Marcelo B.; Ellena, Javier

    2018-06-01

    5-Fluorocytosine (5-FC) has been widely used for the treatment of fungal infections and recently was found to exert an extraordinary antineoplastic activity in gene directed prodrug therapy. However, despite of its intense use, 5-FC exhibits tabletability issues due its physical instability in humid environments, leading to transition from the anhydrous to monohydrate phase. By considering that salt formation is an interesting strategy to overcome this problem, in this paper crystal engineering approach was applied to the supramolecular synthesis of new 5-FC salts with sulfuric, hydrobromic and methanesulfonic inorganic acids. A total of four structures were obtained, namely 5-FC sulfate monohydrate (1:1:1), 5-FC hydrogen sulfate (1:1), 5-FC mesylate (1:1) and 5-FC hydrobromide (1:1), the last one being a polymorphic form of a structure already reported in the literature. These novel salts were structurally characterized by single crystal X-ray diffraction and its supramolecular organization were analyses by Hirshfeld surface analysis. The vibrational behavior was evaluated by Raman spectroscopy and it was found to be consistent with the crystal structures.

  6. Inorganic polymers and materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sneddon, Larry G.

    2001-01-01

    This DOE-sponsored project was focused on the design, synthesis, characterization, and applications of new types of boron and silicon polymers with a goal of attaining processable precursors to advanced ceramic materials of technological importance. This work demonstrated a viable design strategy for the systematic formation of polymeric precursors to ceramics based on the controlled functionalization of preformed polymers with pendant groups of suitable compositions and crosslinking properties. Both the new dipentylamine-polyborazylene and pinacolborane-hydridopolysilazane polymers, unlike the parent polyborazylene and other polyborosilazanes, are stable as melts and can be easily spun into polymer fibers. Subsequent pyrolyses of these polymer fibers then provide excellent routes to BN and SiNCB ceramic fibers. The ease of synthesis of both polymer systems suggests new hybrid polymers with a range of substituents appended to polyborazylene or polysilazane backbones, as well as other types of preceramic polymers, should now be readily achieved, thereby allowing even greater control over polymer and ceramic properties. This control should now enable the systematic tailoring of the polymers and derived ceramics for use in different technological applications. Other major recent achievements include the development of new types of metal-catalyzed methods needed for the polymerization and modification of inorganic monomers and polymers, and the modification studies of polyvinylsiloxane and related polymers with substituents that enable the formation of single source precursors to high-strength, sintered SiC ceramics.

  7. Interfacial Coatings for Inorganic Composite Insulation Systems

    International Nuclear Information System (INIS)

    Hooker, M. W.; Fabian, P. E.; Stewart, M. W.; Grandlienard, S. D.; Kano, K. S.

    2006-01-01

    Inorganic (ceramic) insulation materials are known to have good radiation resistance and desirable electrical and mechanical properties at cryogenic and elevated temperatures. In addition, ceramic materials can withstand the high-temperature reaction cycle used with Nb3Sn superconductor materials, allowing the insulation to be co-processed with the superconductor in a wind-and-react fabrication process. A critical aspect in the manufacture of ceramic-based insulation systems is the deposition of suitable fiber-coating materials that prevent chemical reaction of the fiber and matrix materials, and thus provide a compliant interface between the fiber and matrix, which minimizes the impact of brittle failure of the ceramic matrix. Ceramic insulation produced with CTD-FI-202 fiber interfaces have been found to exhibit very high shear and compressive strengths. However, this material is costly to produce. Thus, the goal of the present work is to evaluate alternative, lower-cost materials and processes. A variety of oxide and polyimide coatings were evaluated, and one commercially available polyimide coating has been shown to provide some improvement as compared to uncoated and de-sized S2 glass

  8. Applications of inorganic Ion-conductor

    Energy Technology Data Exchange (ETDEWEB)

    Fujiki, Yoshinori [Science and Technology Agency, Tokyo (Japan)

    1989-03-01

    Physical properties and application of solid electrolyte, particularly of inorganic solid electrolyte, are described. Ion conductors have been widely used not only for electric power application but also for sensors, gas separators, display elements, Coulomb meters, storage elements, etc. The most extensively used pacemakers now employ Li/I{sub 2}(PVP) primary batteries. Thin film lithium secondary battery has a feature of providing comparatively large electric current, with 2.5 V charging, 1.8 V discharging, and 3 mA.cm{sup {minus}2} short circuit current. The capacity of about 4 mAh per 1 cm{sup 2} electrode has been achieved. The most widely used solid electrolyte for the oxygen sensor is the stabilized ZrO{sub 2}. The relation of air/fuel mix proportion with the change in electromotive force is shown. Although solid electrolyte fuel cell is not yet put to practical use, a result of an experiment is introduced. Brief explanations are made on the oxygen pump, electrochromic display elements, Coulomb meter and voltage storage element. 18 refs., 11 figs., 6 tabs.

  9. Nanoscale Organic−Inorganic Hybrid Lubricants

    KAUST Repository

    Kim, Daniel

    2011-03-15

    Silica (SiO2) nanoparticles densely grafted with amphiphilic organic chains are used to create a family of organic-inorganic hybrid lubricants. Short sulfonate-functionalized alkylaryl chains covalently tethered to the particles form a dense corona brush that stabilizes them against aggregation. When these hybrid particles are dispersed in poly-α-olefin (PAO) oligomers, they form homogeneous nanocomposite fluids at both low and high particle loadings. By varying the volume fraction of the SiO2 nanostructures in the PAO nanocomposites, we show that exceptionally stable hybrid lubricants can be created and that their mechanical properties can be tuned to span the spectrum from simple liquids to complex gels. We further show that these hybrid lubricants simultaneously exhibit lower interfacial friction coefficients, enhanced wear and mechanical properties, and superior thermal stability in comparison with either PAO or its nanocomposites created at low nanoparticle loadings. Profilometry and energy dispersive X-ray spectroscopic analysis of the wear track show that the enhanced wear characteristics in PAO-SiO2 composite lubricants originate from two sources: localization of the SiO2 particles into the wear track and extension of the elastohydrodynamic lubrication regime to Sommerfeld numbers more than an order of magnitude larger than for PAO. © 2011 American Chemical Society.

  10. Efficiency and yield spectra of inorganic scintillates

    International Nuclear Information System (INIS)

    Rodnyi, P.A.

    1998-01-01

    Recent developments in the field of energy loss in inorganic scintillators are reviewed. The main parameters, which control the fundamental limit of the scintillator energy efficiency, are determined. It is shown that together with simple cascade processes one should take into account the production of plasmons to estimate the energy efficiency of scintillators or other phosphors excited by an ionizing radiation. Core-to-valence luminescence related to 5pCs→3pCl transitions is investigated in some chlorides: CsCl, KCl, RbCl, NaCl, KCaCl 3 , RbCaCl 3 . The yield spectra of the crystals in the VUV and X-ray regions are also studied. It is shown that the 4pRb-core states are involved in the process of creation of holes in the 5pCs-core band in Rb-based crystals. The formation of holes in the potassium core band acts as a competing process and suppresses the radiative core-to-valence transitions

  11. A hybrid organic-inorganic perovskite dataset

    Science.gov (United States)

    Kim, Chiho; Huan, Tran Doan; Krishnan, Sridevi; Ramprasad, Rampi

    2017-05-01

    Hybrid organic-inorganic perovskites (HOIPs) have been attracting a great deal of attention due to their versatility of electronic properties and fabrication methods. We prepare a dataset of 1,346 HOIPs, which features 16 organic cations, 3 group-IV cations and 4 halide anions. Using a combination of an atomic structure search method and density functional theory calculations, the optimized structures, the bandgap, the dielectric constant, and the relative energies of the HOIPs are uniformly prepared and validated by comparing with relevant experimental and/or theoretical data. We make the dataset available at Dryad Digital Repository, NoMaD Repository, and Khazana Repository (http://khazana.uconn.edu/), hoping that it could be useful for future data-mining efforts that can explore possible structure-property relationships and phenomenological models. Progressive extension of the dataset is expected as new organic cations become appropriate within the HOIP framework, and as additional properties are calculated for the new compounds found.

  12. Hybrid Organic-Inorganic Perovskite Photodetectors.

    Science.gov (United States)

    Tian, Wei; Zhou, Huanping; Li, Liang

    2017-11-01

    Hybrid organic-inorganic perovskite materials garner enormous attention for a wide range of optoelectronic devices. Due to their attractive optical and electrical properties including high optical absorption coefficient, high carrier mobility, and long carrier diffusion length, perovskites have opened up a great opportunity for high performance photodetectors. This review aims to give a comprehensive summary of the significant results on perovskite-based photodetectors, focusing on the relationship among the perovskite structures, device configurations, and photodetecting performances. An introduction of recent progress in various perovskite structure-based photodetectors is provided. The emphasis is placed on the correlation between the perovskite structure and the device performance. Next, recent developments of bandgap-tunable perovskite and hybrid photodetectors built from perovskite heterostructures are highlighted. Then, effective approaches to enhance the stability of perovskite photodetector are presented, followed by the introduction of flexible and self-powered perovskite photodetectors. Finally, a summary of the previous results is given, and the major challenges that need to be addressed in the future are outlined. A comprehensive summary of the research status on perovskite photodetectors is hoped to push forward the development of this field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. High inorganic triphosphatase activities in bacteria and mammalian cells: identification of the enzymes involved.

    Directory of Open Access Journals (Sweden)

    Gregory Kohn

    Full Text Available BACKGROUND: We recently characterized a specific inorganic triphosphatase (PPPase from Nitrosomonas europaea. This enzyme belongs to the CYTH superfamily of proteins. Many bacterial members of this family are annotated as predicted adenylate cyclases, because one of the founding members is CyaB adenylate cyclase from A. hydrophila. The aim of the present study is to determine whether other members of the CYTH protein family also have a PPPase activity, if there are PPPase activities in animal tissues and what enzymes are responsible for these activities. METHODOLOGY/PRINCIPAL FINDINGS: Recombinant enzymes were expressed and purified as GST- or His-tagged fusion proteins and the enzyme activities were determined by measuring the release of inorganic phosphate. We show that the hitherto uncharacterized E. coli CYTH protein ygiF is a specific PPPase, but it contributes only marginally to the total PPPase activity in this organism, where the main enzyme responsible for hydrolysis of inorganic triphosphate (PPP(i is inorganic pyrophosphatase. We further show that CyaB hydrolyzes PPP(i but this activity is low compared to its adenylate cyclase activity. Finally we demonstrate a high PPPase activity in mammalian and quail tissue, particularly in the brain. We show that this activity is mainly due to Prune, an exopolyphosphatase overexpressed in metastatic tumors where it promotes cell motility. CONCLUSIONS AND GENERAL SIGNIFICANCE: We show for the first time that PPPase activities are widespread in bacteria and animals. We identified the enzymes responsible for these activities but we were unable to detect significant amounts of PPP(i in E. coli or brain extracts using ion chromatography and capillary electrophoresis. The role of these enzymes may be to hydrolyze PPP(i, which could be cytotoxic because of its high affinity for Ca(2+, thereby interfering with Ca(2+ signaling.

  14. Chicken fat and inorganic nitrogen source for lipase production by ...

    African Journals Online (AJOL)

    MA41) from Atlantic Forest, using chicken fat and association of organic and inorganic nitrogen sources in submerged fermentation to seek economically attractive bioprocess. A 2-level, 4-factor Central Composite Design (CCD) and response ...

  15. Sol-gel Synthesis of a Biotemplated Inorganic Photocatalyst

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Yue, Yuanzheng; He, Wen

    2012-01-01

    chemistry and photocatalysis, provides an opportunity to teach valuable laboratory skills and to introduce students to the synthesis, isolation, and characterization of inorganic materials. This laboratory activity is adaptable to a range of educational levels and to various instrumental techniques....

  16. Effects of organic and inorganic amendments on soil erodibility

    Directory of Open Access Journals (Sweden)

    Nutullah Özdemir

    2015-10-01

    Full Text Available The objective of the present investigation is to find out the effect of incorporating of various organic and inorganic matter sources such as lime (L, zeolit (Z, polyacrylamide (PAM and biosolid (BS on the instability index. A bulk surface (0–20 cm depth soil sample was taken from Samsun, in northern part of Turkey. Some soil properties were determined as follows; fine in texture, modarete in organic matter content, low in pH and free of alkaline problem. The soil samples were treated with the inorganic and organic materials at four different levels including the control treatments in a randomized factorial block design. The soil samples were incubated for ten weeks. After the incubation period, corn was grown in all pots. The results can be summarized as organic and inorganic matter treatments increased structure stability and decreased soil erodibility. Effectiveness of the treatments varied depending on the types and levels of organic and inorganic materials.

  17. Major inorganic elements in tap water samples in Peninsular Malaysia.

    Science.gov (United States)

    Azrina, A; Khoo, H E; Idris, M A; Amin, I; Razman, M R

    2011-08-01

    Quality drinking water should be free from harmful levels of impurities such as heavy metals and other inorganic elements. Samples of tap water collected from 24 locations in Peninsular Malaysia were determined for inorganic element content. Minerals and heavy metals were analysed by spectroscopy methods, while non-metal elements were analysed using test kits. Minerals and heavy metals determined were sodium, magnesium, potassium, calcium, chromium, manganese, iron, nickel, copper, zinc, arsenic, cadmium and lead while the non-metal elements were fluoride, chloride, nitrate and sulphate. Most of the inorganic elements found in the samples were below the maximum permitted levels recommended by inter-national drinking water standard limits, except for iron and manganese. Iron concentration of tap water from one of the locations was higher than the standard limit. In general, tap water from different parts of Peninsular Malaysia had low concentrations of heavy metals and inorganic elements.

  18. A review of the inorganic and organometallic chemistry of zirconium

    International Nuclear Information System (INIS)

    Kalvins, A.K.

    1985-01-01

    The results of a literature review of the inorganic and organometallic chemistry of zirconium are presented. Compounds with physical and chemical properties compatible with the requirements of an ir laser zirconium isotope separation process have been identified

  19. Surface Chemistry and Spectroscopy of Chromium in Inorganic Oxides

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.; Schoonheydt, R.A.

    1996-01-01

    Focuses on the surface chemistry and spectroscopy of chromium in inorganic oxides. Characterization of the molecular structures of chromium; Mechanics of hydrogenation-dehydrogenation reactions; Mobility and reactivity on oxidic surfaces.

  20. Metal oxalate complexes as novel inorganic dopants: Studies on ...

    Indian Academy of Sciences (India)

    Unknown

    UV-visible and IR spectral features not only confirmed the polyaniline doping by complex anions but also substantiated ... MoS3 dopant. Although inorganic metal complexes bear- ... distilled water and then with methanol and acetone until.

  1. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    NICO

    radiation balance.4,5 Major water-soluble inorganic ions are associated with atmospheric ... molecular weight carboxylic acids in aerosol samples collected from a rural ... include biomass burning, agriculture, livestock and soil dust. Tropical ...

  2. Inorganic Nanostructured High-Temperature Magnet Wires, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a high-temperature tolerant electrically-insulating coating for magnet wires. The Phase I program will result in a flexible, inorganic...

  3. Inorganic-organic hybrid polymers for food packaging

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2015-09-01

    Full Text Available packaging application. Numerous hybrid inorganic-organic materials have been developed using low temperature sol-gel chemistry, which enables the tailoring of the nanostructure and the resulting material is often multifunctional, offering a wide range...

  4. Annual reports in inorganic and general syntheses 1974

    CERN Document Server

    Niedenzu, Kurt

    1975-01-01

    Annual Reports in Inorganic and General Syntheses-1974 presents an organized annual summary of synthetic developments in inorganic chemistry and its related areas. The book discusses the chemistry of simple and complex metal hydrides of main groups I, II, and III, boron, aluminium, gallium, indium, thallium, silicon, germanium, tin, lead, phosphorus, arsenic, antimony, bismuth, chalcogens, halogens, and pseudohalogens. The text also describes the chemistry of scandium, yttrium, lanthanides, actinides, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, ma

  5. A comparison of organic and inorganic nitrates/nitrites.

    Science.gov (United States)

    Omar, Sami A; Artime, Esther; Webb, Andrew J

    2012-05-15

    Although both organic and inorganic nitrates/nitrites mediate their principal effects via nitric oxide, there are many important differences. Inorganic nitrate and nitrite have simple ionic structures and are produced endogenously and are present in the diet, whereas their organic counterparts are far more complex, and, with the exception of ethyl nitrite, are all medicinally synthesised products. These chemical differences underlie the differences in pharmacokinetic properties allowing for different modalities of administration, particularly of organic nitrates, due to the differences in their bioavailability and metabolic profiles. Whilst the enterosalivary circulation is a key pathway for orally ingested inorganic nitrate, preventing an abrupt effect or toxic levels of nitrite and prolonging the effects, this is not used by organic nitrates. The pharmacodynamic differences are even greater; while organic nitrates have potent acute effects causing vasodilation, inorganic nitrite's effects are more subtle and dependent on certain conditions. However, in chronic use, organic nitrates are considerably limited by the development of tolerance and endothelial dysfunction, whereas inorganic nitrate/nitrite may compensate for diminished endothelial function, and tolerance has not been reported. Also, while inorganic nitrate/nitrite has important cytoprotective effects against ischaemia-reperfusion injury, continuous use of organic nitrates may increase injury. While there are concerns that inorganic nitrate/nitrite may induce carcinogenesis, direct evidence of this in humans is lacking. While organic nitrates may continue to dominate the therapeutic arena, this may well change with the increasing recognition of their limitations, and ongoing discovery of beneficial effects and specific advantages of inorganic nitrate/nitrite. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Annual reports in inorganic and general syntheses 1973

    CERN Document Server

    Niedenzu, Kurt

    1974-01-01

    Annual Reports in Inorganic and General Syntheses-1973 presents an organized annual summary of synthetic developments in inorganic chemistry and its related areas. The book covers the synthetic aspects and structural or mechanistic features of elements, including the main group hydrides, alkali and alkaline earth elements, boron, aluminium, gallium, indium, thallium, silicon, germanium, tin, and lead, nitrogen, phosphorus, arsenic, antimony, bismuth, chalcogens, halogens and pseudohalogens, and noble gases. The text also discusses the synthetic aspects and structural or mechanistic features of

  7. Casting fine grained, fully dense, strong inorganic materials

    Science.gov (United States)

    Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.

    2015-11-24

    Methods and apparatuses for casting inorganic materials are provided. The inorganic materials include metals, metal alloys, metal hydrides and other materials. Thermal control zones may be established to control the propagation of a freeze front through the casting. Agitation from a mechanical blade or ultrasonic energy may be used to reduce porosity and shrinkage in the casting. After solidification of the casting, the casting apparatus may be used to anneal the cast part.

  8. Biomarkers of Exposure: A Case Study with Inorganic Arsenic

    OpenAIRE

    Hughes, Michael F.

    2006-01-01

    The environmental contaminant inorganic arsenic (iAs) is a human toxicant and carcinogen. Most mammals metabolize iAs by reducing it to trivalency, followed by oxidative methylation to pentavalency. iAs and its methylated metabolites are primarily excreted in urine within 4–5 days by most species and have a relatively low rate of bioaccumulation. Intra- and interindividual differences in the methylation of iAs may affect the adverse health effects of arsenic. Both inorganic and organic trival...

  9. Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers

    Science.gov (United States)

    2016-06-15

    AFRL-AFOSR-JP-TR-2016-0071 Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers Cheolmin Park YONSEI UNIVERSITY...Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-14-1-4054 5c.  PROGRAM ELEMENT...prospects for a variety of emerging applications in a broad range of fields, such as electronics, energy conversion and storage, catalysis and polymer

  10. Annual reports in inorganic and general syntheses 1972

    CERN Document Server

    Niedenzu, Kurt

    1973-01-01

    Annual Reports in Inorganic and General Syntheses-1972 presents an organized annual summary of synthetic developments in inorganic chemistry and its related areas. The book discusses alkali and alkaline earth elements, alloys, silver, gold, zinc, cadmium, mercury, boron, aluminum, gallium, indium, thallium, yttrium, scandium, lanthanides, actinides, titanium, zirconium, hafnium, Group V and VI transition elements, manganese, technetium, rhenium, iron, cobalt, nickel, ruthenium, osmium, rhodium, and iridium. The text also describes the chemistry of palladium, platinum, silicon, germanium, tin,

  11. Durability of an inorganic polymer concrete coating

    Science.gov (United States)

    Wasserman, Kenneth

    The objective of the research program reported in this thesis is to evaluate the durability of an inorganic polymer composite coating exposed to freeze/thaw cycling and wet-dry cycling. Freeze/thaw cycling is performed following ASTM D6944-09 Standard Practice for Resistance of Cured Coatings to Thermal Cycling and wet/dry cycling is performed following guidelines set forth in a thesis written by Ronald Garon at Rutgers University. For both sets of experiments, four coating mixture proportions were evaluated. The variables were: silica/alumina ratio, mixing protocol using high shear and normal shear mixing, curing temperatures of 70 and 120 degrees Fahrenheit and use of nano size constituent materials. The mix with highest silica/alumina ratio was designated as Mix 1 and mixes with lower ratios were designated as Mix 2 and Mix 3. Mix 4 had nano silica particles. Four prisms were used for each variable including control that had no coating. The performance of the coating was evaluated using adhesion strength measured using: ASTM D7234 Test Method for Pull-Off Strength of Coatings on Concrete Using Portable Adhesion Testers. Tests were performed after every five consecutive cycles of thermal conditioning and six consecutive cycles of wet-dry exposure. Results from the thermal cycling and wet-dry testing demonstrate that all coating formulations are durable. The minimum adhesion strength was 300 psi even though a relatively weak base concrete surface was chosen for the study. The weak surface was chosen to simulate aged concrete surfaces present in actual field conditions. Due to the inherent nature of the test procedure the variation in test results is high. However, based on the test results, high shear mixer and high temperature curing are not recommended. As expected nano size constituent materials provide better performance.

  12. Synthesis of polymer/inorganic nanocomposite films using highly porous inorganic scaffolds.

    Science.gov (United States)

    Zhang, Huanjun; Popp, Matthias; Hartwig, Andreas; Mädler, Lutz

    2012-04-07

    Polymeric/inorganic nanocomposite films have been fabricated through a combination of flame-spray-pyrolysis (FSP) made inorganic scaffold and surface initiated polymerization of cyanoacrylate. The highly porous structure of pristine SnO(2) films allows the uptake of cyanoacrylate and the polymerization is surface initiated by the water adsorbed onto the SnO(2) surface. Scanning electron microscopy study reveals a nonlinear increase in the composite particle size and the film thickness with polymerization time. The structural change is rather homogeneous throughout the whole layer. The composite is formed mainly by an increase of the particle size and not by just filling the existing pores. High-resolution transmission electron microscopy imaging shows SnO(2) nanoparticles embedded in the polymeric matrix, constituting the nanocomposite material. Thermogravimetric analysis indicates that the porosity of the nanocomposite films decreases from 98% to 75%, resulting in a significant enhancement of the hardness of the films. DC conductivity measurements conducted in situ on the nanocomposite layer suggest a gradual increase in the layer resistance, pointing to a loss of connectivity between the SnO(2) primary particles as the polymerization proceeds. This journal is © The Royal Society of Chemistry 2012

  13. Holographic patterning of organic-inorganic photopolymerizable nanocomposites

    Science.gov (United States)

    Sakhno, Oksana V.; Goldenberg, Leonid M.; Smirnova, Tatiana N.; Stumpe, J.

    2009-09-01

    We present here novel easily processible organic-inorganic nanocomposites suitable for holographic fabrication of diffraction optical elements (DOE). The nanocomposites are based on photocurable acrylate monomers and inorganic nanoparticles (NP). The compatibility of inorganic NP with monomers was achieved by capping the NP surface with proper organic shells. Surface modification allows to introduce up to 50wt.% of inorganic NP in organic media. Depending on the NP nature (metal oxides, phosphates, semiconductors, noble metals) and their properties, the materials for both efficient DOE and multifunctional elements can be designed. Organic-inorganic composites prepared have been successfully used for the effective inscription of periodic volume refractive index structures using the holographic photopolymerization method. The nanocomposite preparation procedure, their properties and optical performance of holographic gratings are reported. The use of functional NP makes it possible to obtain effective holographic gratings having additional physical properties such as light-emission or NLO. Some examples of such functional polymer-NP structures and their possible application fields are presented. The combination of easy photo-patterning of soft organic compounds with physical properties of inorganic materials in new nanocomposites and the flexibility of the holographic patterning method allow the fabrication of mono- and multifunctional one- and multi-dimensional passive or active optical and photonic elements.

  14. Development of conjugate methods with gas chromatography for inorganic compounds analysis

    International Nuclear Information System (INIS)

    Baccan, N.

    1975-01-01

    The application of gas chromatography combined with mass spectrometry or with nuclear methods for the analysis of inorganic compounds is studied. The advantages of the use of a gas chromatograph coupled with a quadrupole mass spectrometer or with a high resolution radiation detector, are discussed. We also studied the formation and solvent extraction of metal chelates; an aliquot of the organic phase was directly injected into the gas chromatograph and the eluted compounds were detected by mass spectrometry or, when radioactive, by nuclear methods. (author)

  15. Inorganic elements in green sea turtles (Chelonia mydas): relationships among external and internal tissues

    Science.gov (United States)

    Faust, Derek R.; Hooper, Michael J.; Cobb, George P.; Barnes, Melanie; Shaver, Donna; Ertolacci, Shauna; Smith, Philip N.

    2014-01-01

    Inorganic elements from anthropogenic sources have entered marine environments worldwide and are detectable in marine organisms, including sea turtles. Threatened and endangered classifications of sea turtles have heretofore made assessments of contaminant concentrations difficult because of regulatory restrictions on obtaining samples using nonlethal techniques. In the present study, claw and skin biopsy samples were examined as potential indicators of internal tissue burdens in green sea turtles (Chelonia mydas). Significant relationships were observed between claw and liver, and claw and muscle concentrations of mercury, nickel, arsenic, and selenium (p turtles.

  16. Biological methylation of inorganic mercury by Saccharomyces cerevisiae - a possible environmental process

    International Nuclear Information System (INIS)

    Reisinger, K.; Stoeppler, M.; Nuernberg, H.W.

    1983-01-01

    The biological methylation of inorganic mercury by S-adenosylmethione (SAM) was investigated by incubation experiments with Saccharomyces cerevisae (''bakers' yeast''). The methyl donor (methionine) and the acceptor (Hg 2+ as HgCl 2 ) were also applied in their labelled form (double labelling). Methylmercury as a result of a possibly biological methyl group transfer could not be detected. As reaction product only small amounts (0.01per mille yield) of elemental mercury (Hg 0 ) were found, while the overwhelming amount of HgCl 2 had not reacted. (orig.) [de

  17. 2D Organic-Inorganic Hybrid Thin Films for Flexible UV-Visible Photodetectors

    KAUST Repository

    Velusamy, Dhinesh Babu

    2017-02-13

    Flexible 2D inorganic MoS and organic g-CN hybrid thin film photodetectors with tunable composition and photodetection properties are developed using simple solution processing. The hybrid films fabricated on paper substrate show broadband photodetection suitable for both UV and visible light with good responsivity, detectivity, and reliable and rapid photoswitching characteristics comparable to monolayer devices. This excellent performance is retained even after the films are severely deformed at a bending radius of ≈2 mm for hundreds of cycles. The detailed charge transfer and separation processes at the interface between the 2D materials in the hybrid films are confirmed by femtosecond transient absorption spectroscopy with broadband capability.

  18. Interconnection between the geometry and the structure of unit cells of substances in inorganic chemistry

    International Nuclear Information System (INIS)

    Eliseev, A.A.; Kuz'micheva, G.M.

    1979-01-01

    Regularity of interconnection between the geometry and the structure of elementary cells of inorganic compounds is investigated. Structural motives on the basis of NaCl structure for all phases of rare earth chalcogenides are built. It is shown that compounds (phases of variable content), detected on 23 (out of 48 possible) state diagrams of rare earths chalcogen binary systems are closely bound both from the viewpoint of geometric dimensions of elementary cells and structural motives. It is shown that using ion representations the number of formula units in the cell of a new rare earth chalcogenide can be calculated and its structural motif can be built

  19. Low-temperature fabrication and characterization of a symmetric hybrid organic–inorganic slab waveguide for evanescent light microscopy

    Science.gov (United States)

    Agnarsson, Björn; Mapar, Mokhtar; Sjöberg, Mattias; Alizadehheidari, Mohammadreza; Höök, Fredrik

    2018-06-01

    Organic and inorganic solid materials form the building blocks for most of today’s high-technological instruments and devices. However, challenges related to dissimilar material properties have hampered the synthesis of thin-film devices comprised of both organic and inorganic films. We here give a detailed description of a carefully optimized processing protocol used for the construction of a three-layered hybrid organic–inorganic waveguide-chip intended for combined scattering and fluorescence evanescent-wave microscopy in aqueous environments using conventional upright microscopes. An inorganic core layer (SiO2 or Si3N4), embedded symmetrically in an organic cladding layer (CYTOP), aids simple, yet efficient in-coupling of light, and since the organic cladding layer is refractive index matched to water, low stray-light (background) scattering of the propagating light is ensured. Another major advantage is that the inorganic core layer makes the chip compatible with multiple well-established surface functionalization schemes that allows for a broad range of applications, including detection of single lipid vesicles, metallic nanoparticles or cells in complex environments, either label-free—by direct detection of scattered light—or by use of fluorescence excitation and emission. Herein, focus is put on a detailed description of the fabrication of the waveguide-chip, together with a fundamental characterization of its optical properties and performance, particularly in comparison with conventional epi illumination. Quantitative analysis of images obtained from both fluorescence and scattering intensities from surface-immobilized polystyrene nanoparticles in suspensions of different concentrations, revealed enhanced signal-to-noise and signal-to-background ratios for the waveguide illumination compared to the epi-illumination.

  20. Network Intrusion Detection through Stacking Dilated Convolutional Autoencoders

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2017-01-01

    Full Text Available Network intrusion detection is one of the most important parts for cyber security to protect computer systems against malicious attacks. With the emergence of numerous sophisticated and new attacks, however, network intrusion detection techniques are facing several significant challenges. The overall objective of this study is to learn useful feature representations automatically and efficiently from large amounts of unlabeled raw network traffic data by using deep learning approaches. We propose a novel network intrusion model by stacking dilated convolutional autoencoders and evaluate our method on two new intrusion detection datasets. Several experiments were carried out to check the effectiveness of our approach. The comparative experimental results demonstrate that the proposed model can achieve considerably high performance which meets the demand of high accuracy and adaptability of network intrusion detection systems (NIDSs. It is quite potential and promising to apply our model in the large-scale and real-world network environments.

  1. Modelling inorganic biocide emission from treated wood in water

    Energy Technology Data Exchange (ETDEWEB)

    Tiruta-Barna, Ligia, E-mail: Ligia.barna@insa-toulouse.fr [Universite de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse (France); INRA, UMR792, Laboratoire d' Ingenierie des Systemes Biologiques et des Procedes, F-31400 Toulouse (France); CNRS, UMR5504, F-31400 Toulouse (France); Schiopu, Nicoleta [Universite Paris-Est, CSTB- Scientific and Technical Centre for the Building Industry, ESE/Environment, 24, rue Joseph Fourier, 38400 Saint Martin d' Heres (France)

    2011-09-15

    Highlights: {center_dot} We developed a mechanistic model for biocide metals fixation/mobilisation in wood. {center_dot} This is the first chemical model explaining the biocide leaching from treated wood. {center_dot} The main fixation mechanism is the surface complexation with wood polymers. {center_dot} The biocide mobilization is due to metal-DOC complexation and pH effect. - Abstract: The objective of this work is to develop a chemical model for explaining the leaching behaviour of inorganic biocides from treated wood. The standard leaching test XP CEN/TS14429 was applied to a commercial construction material made of treated Pinus sylvestris (Copper Boron Azole preservative). The experimental results were used for developing a chemical model under PHREEQC (a geochemical software, with LLNL, MINTEQ data bases) by considering the released species detected in the eluates: main biocides Cu and B, other trace biocides (Cr and Zn), other elements like Ca, K, Cl, SO{sub 4}{sup -2}, dissolved organic matter (DOC). The model is based on chemical phenomena at liquid/solid interfaces (complexation, ion exchange and hydrolysis) and is satisfactory for the leaching behaviour representation. The simulation results confronted with the experiments confirmed the hypotheses of: (1) biocide fixation by surface complexation reactions with wood specific sites (carboxyl and phenol for Cu, Zn, Cr(III), aliphatic hydroxyl for B, ion exchange to a lesser extent) and (2) biocide mobilisation by extractives (DOC) coming from the wood. The maximum of Cu, Cr(III) and Zn fixation occurred at neutral pH (including the natural pH of wood), while B fixation was favoured at alkaline pH.

  2. Instrumentation and analytical methods in carbon balance studies - inorganic components in a marine environment

    Energy Technology Data Exchange (ETDEWEB)

    Skjelvan, I.; Johannessen, T.; Miller, L.; Stoll, M.

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. Substantial amounts of anthropogenic CO{sub 2} enters the atmosphere. The land biota acts as a sink for CO{sub 2}, with uncertain consequences. About 30% of the anthropogenic CO{sub 2} added to the atmosphere is absorbed by the ocean and how the ocean acts as a sink is central in understanding the carbon cycle. In their project the authors investigate the inorganic carbon in the ocean, especially total dissolved inorganic carbon, alkalinity, and partial pressure of CO{sub 2} (pCO{sub 2}) in surface ocean and atmosphere. To determine total dissolved inorganic carbon, coulometric analysis is used in which an exact amount of sea water is acidified and the amount of carbon extracted is determined by a coulometer. Alkalinity is determined by potentiometric titration. In the pCO{sub 2} measurement, a small amount of air is circulated in a large amount of sea water and when after some time the amount of CO{sub 2} in the air reflects the CO{sub 2} concentration in the water, the pCO{sub 2} in the gas phase is determined by infra-red detection. The atmospheric pCO{sub 2} is also determined, and the difference between the two partial pressures gives information about source or sink activities. Total carbon and alkalinity measurements are done on discrete samples taken from all depths in the ocean, but for partial pressure detection an underway system is used, which determines the pCO{sub 2} in the surface ocean continuously

  3. Affective topic model for social emotion detection.

    Science.gov (United States)

    Rao, Yanghui; Li, Qing; Wenyin, Liu; Wu, Qingyuan; Quan, Xiaojun

    2014-10-01

    The rapid development of social media services has been a great boon for the communication of emotions through blogs, microblogs/tweets, instant-messaging tools, news portals, and so forth. This paper is concerned with the detection of emotions evoked in a reader by social media. Compared to classical sentiment analysis conducted from the writer's perspective, analysis from the reader's perspective can be more meaningful when applied to social media. We propose an affective topic model with the intention to bridge the gap between social media materials and a reader's emotions by introducing an intermediate layer. The proposed model can be used to classify the social emotions of unlabeled documents and to generate a social emotion lexicon. Extensive evaluations using real-world data validate the effectiveness of the proposed model for both these applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. A biological indicator of inorganic arsenic exposure using the sum of urinary inorganic arsenic and monomethylarsonic acid concentrations

    Science.gov (United States)

    Hata, Akihisa; Kurosawa, Hidetoshi; Endo, Yoko; Yamanaka, Kenzo; Fujitani, Noboru; Endo, Ginji

    2016-01-01

    Objectives: The sum of urinary inorganic arsenic (iAs), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) concentrations is used for the biological monitoring of occupational iAs exposure. Although DMA is a major metabolite of iAs, it is an inadequate index because high DMA levels are present in urine after seafood consumption. We estimated the urinary iAs+MMA concentration corresponding to iAs exposure. Methods: We used data from two arsenic speciation analyses of urine samples from 330 Bangladeshi with oral iAs exposure and 172 Japanese workers without occupational iAs exposure using high-performance liquid chromatography with inductively coupled plasma mass spectrometry. Results: iAs, MMA, and DMA, but not arsenobetaine (AsBe), were detected in the urine of the Bangladeshi subjects. The correlation between iAs+MMA+DMA and iAs+MMA was obtained as log (iAs+MMA) = 1.038 log (iAs+MMA+DMA) -0.658. Using the regression formula, the iAs+MMA value was calculated as 2.15 and 7.5 μg As/l, corresponding to 3 and 10 μg As/m3 of exposures, respectively. In the urine of the Japanese workers, arsenic was mostly excreted as AsBe. We used the 95th percentile of iAs+MMA (12.6 μg As/l) as the background value. The sum of the calculated and background values can be used as a biological indicator of iAs exposure. Conclusion: We propose 14.8 and 20.1 μg As/l of urinary iAs+MMA as the biological indicators of 3 and 10 μg As/m3 iAs exposure, respectively. PMID:27010090

  5. Computer-Assisted Inverse Design of Inorganic Electrides

    Directory of Open Access Journals (Sweden)

    Yunwei Zhang

    2017-02-01

    Full Text Available Electrides are intrinsic electron-rich materials enabling applications as excellent electron emitters, superior catalysts, and strong reducing agents. There are a number of organic electrides; however, their instability at room temperature and sensitivity to moisture are bottlenecks for their practical uses. Known inorganic electrides are rare, but they appear to have greater thermal stability at ambient conditions and are thus better characterized for application. Here, we develop a computer-assisted inverse-design method for searching for a large variety of inorganic electrides unbiased by any known electride structures. It uses the intrinsic property of interstitial electron localization of electrides as the global variable function for swarm intelligence structure searches. We construct two rules of thumb on the design of inorganic electrides pointing to electron-rich ionic systems and low electronegativity of the cationic elements involved. By screening 99 such binary compounds through large-scale computer simulations, we identify 24 stable and 65 metastable new inorganic electrides that show distinct three-, two-, and zero-dimensional conductive properties, among which 18 are existing compounds that have not been pointed to as electrides. Our work reveals the rich abundance of inorganic electrides by providing 33 hitherto unexpected structure prototypes of electrides, of which 19 are not in the known structure databases.

  6. Evaluation of inorganic sorbent treatment for LWR coolant process streams

    International Nuclear Information System (INIS)

    Roddy, J.W.

    1984-03-01

    This report presents results of a survey of the literature and of experience at selected nuclear installations to provide information on the feasibility of replacing organic ion exchangers with inorganic sorbents at light-water-cooled nuclear power plants. Radioactive contents of the various streams in boiling water reactors and pressurized water reactors were examined. In addition, the methods and performances of current methods used for controlling water quality at these plants were evaluated. The study also includes a brief review of the physical and chemical properties of selected inorganic sorbents. Some attributes of inorganic sorbents would be useful in processing light water reactor (LWR) streams. The inorganic resins are highly resistant to damage from ionizing radiation, and their exchange capacities are generally equivalent to those of organic ion exchangers. However, they are more limited in application, and there are problems with physical integrity, especially in acidic solutions. Research is also needed in the areas of selectivity and anion removal before inorganic sorbents can be considered as replacements for the synthetic organic resins presently used in LWRs. 11 figures, 14 tables

  7. Simultaneous determination of inorganic anions and cations in explosive residues by ion chromatography.

    Science.gov (United States)

    Meng, Hong-Bo; Wang, Tian-Ran; Guo, Bao-Yuan; Hashi, Yuki; Guo, Can-Xiong; Lin, Jin-Ming

    2008-07-15

    A non-suppressed ion chromatographic method by connecting anion-exchange and cation-exchange columns directly was developed for the separation and determination of five inorganic anions (sulfate, nitrate, chloride, nitrite, and chlorate) and three cations (sodium, ammonium, and potassium) simultaneously in explosive residues. The mobile phase was composed of 3.5mM phthalic acid with 2% acetonitrile and water at flow rate of 0.2 mL/min. Under the optimal conditions, the eight inorganic ions were completely separated and detected simultaneously within 16 min. The limits of detection (S/N=3) of the anions and cations were in the range of 50-100 microg/L and 150-320 microg/L, respectively, the linear correlation coefficients were 0.9941-0.9996, and the R.S.D. of retention time and peak area were 0.10-0.29% and 5.65-8.12%, respectively. The method was applied successfully to the analysis of the explosive samples with satisfactory results.

  8. Response of Inorganic Scintillators to Neutrons of 3 and 15 MeV Energy

    CERN Document Server

    Lucchini, M; Pizzichemi, M; Chipaux, R; Jacquot, F; Mazue, H; Wolff, H; Lecoq, P; Auffray, E

    2014-01-01

    In the perspective of the development of future high energy physics experiments, homogeneous calorimeters based on inorganic scintillators can be considered for the detection of hadrons (e.g., calorimeter based on dual-readout technique). Although of high importance in the high energy physics framework as well as for homeland security applications, the response of these inorganic scintillators to neutrons has been only scarcely investigated. This paper presents results obtained using five common scintillating crystals (of size around 2x2x2 cm 3), namely lead tungstate (PbWO4), bismuth germanate (BGO), cerium fluoride (CeF3), Ce-doped lutetium-yttrium orthosilicate (LYSO:Ce) and lutetium aluminum garnet (LuAG:Ce) in a pulsed flux of almost mono-energetic (similar to 3 MeV and similar to 15 MeV) neutrons provided by the Van de Graff accelerator SAMES of CEA Valduc. Energy spectra have been recorded, calibrated and compared with Geant4 simulations computed with different physics models. The neutron detection eff...

  9. Survey of inorganic arsenic in marine animals and marine certified reference materials by anion exchange high-performance liquid chromatography-inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Sloth, Jens Jørgen; Larsen, Erik Huusfeldt; Julshamn, Kåre

    2005-01-01

    , bivalves, and marine mammals as well as a range of marine certified reference materials, and the results were compared to values published in the literature. For fish and marine mammals, the results were in most cases below the limit of detection. For other sample types, inorganic arsenic concentrations up...

  10. Heterostructures based on inorganic and organic van der Waals systems

    International Nuclear Information System (INIS)

    Lee, Gwan-Hyoung; Lee, Chul-Ho; Zande, Arend M. van der; Han, Minyong; Cui, Xu; Arefe, Ghidewon; Hone, James; Nuckolls, Colin; Heinz, Tony F.; Kim, Philip

    2014-01-01

    The two-dimensional limit of layered materials has recently been realized through the use of van der Waals (vdW) heterostructures composed of weakly interacting layers. In this paper, we describe two different classes of vdW heterostructures: inorganic vdW heterostructures prepared by co-lamination and restacking; and organic-inorganic hetero-epitaxy created by physical vapor deposition of organic molecule crystals on an inorganic vdW substrate. Both types of heterostructures exhibit atomically clean vdW interfaces. Employing such vdW heterostructures, we have demonstrated various novel devices, including graphene/hexagonal boron nitride (hBN) and MoS 2 heterostructures for memory devices; graphene/MoS 2 /WSe 2 /graphene vertical p-n junctions for photovoltaic devices, and organic crystals on hBN with graphene electrodes for high-performance transistors

  11. Organic-Inorganic Perovskites: Structural Versatility for Functional Materials Design.

    Science.gov (United States)

    Saparov, Bayrammurad; Mitzi, David B

    2016-04-13

    Although known since the late 19th century, organic-inorganic perovskites have recently received extraordinary research community attention because of their unique physical properties, which make them promising candidates for application in photovoltaic (PV) and related optoelectronic devices. This review will explore beyond the current focus on three-dimensional (3-D) lead(II) halide perovskites, to highlight the great chemical flexibility and outstanding potential of the broader class of 3-D and lower dimensional organic-based perovskite family for electronic, optical, and energy-based applications as well as fundamental research. The concept of a multifunctional organic-inorganic hybrid, in which the organic and inorganic structural components provide intentional, unique, and hopefully synergistic features to the compound, represents an important contemporary target.

  12. Transparent bulk-size nanocomposites with high inorganic loading

    International Nuclear Information System (INIS)

    Chen, Shi; Gaume, Romain

    2015-01-01

    With relatively high nanoparticle loading in polymer matrices, hybrid nanocomposites made by colloidal dispersion routes suffer from severe inhomogeneous agglomeration, a phenomenon that deteriorates light transmission even when the refractive indices of the inorganic and organic phases are closely matched. The dispersion of particles in a matrix is of paramount importance to obtain composites of high optical quality. Here, we describe an innovative, yet straightforward method to fabricate monolithic transparent hybrid nanocomposites with very high particle loading and high refractive index mismatch tolerance between the inorganic and organic constituents. We demonstrate 77% transmission at 800 nm in a 2 mm-thick acrylate polymer nanocomposite containing 61 vol. % CaF 2 nanoparticles. Modeling shows that similar performance could easily be obtained with various inorganic phases relevant to a number of photonic applications

  13. Hydrogen Bonding and Stability of Hybrid Organic-Inorganic Perovskites

    KAUST Repository

    El-Mellouhi, Fedwa

    2016-09-08

    In the past few years, the efficiency of solar cells based on hybrid organic–inorganic perovskites has exceeded the level needed for commercialization. However, existing perovskites solar cells (PSCs) suffer from several intrinsic instabilities, which prevent them from reaching industrial maturity, and stabilizing PSCs has become a critically important problem. Here we propose to stabilize PSCs chemically by strengthening the interactions between the organic cation and inorganic anion of the perovskite framework. In particular, we show that replacing the methylammonium cation with alternative protonated cations allows an increase in the stability of the perovskite by forming strong hydrogen bonds with the halide anions. This interaction also provides opportunities for tuning the electronic states near the bandgap. These mechanisms should have a universal character in different hybrid organic–inorganic framework materials that are widely used.

  14. Organic-inorganic membranes for filtration of corn distillery

    Directory of Open Access Journals (Sweden)

    Myronchuk Valeriy G.

    2016-01-01

    Full Text Available Organic-inorganic membranes were obtained by modification of polymer microfiltration membrane with inorganic ion-exchangers, which form secondary porosity inside macroporous substrate (zirconium hydrophosphate or simultaneously in the macroporous substrate and active layer, depending of the particle size (from ≈50 nm up to several microns. Precipitation of the inorganic constituent is considered from the point of view of Ostwald-Freundlich equation. Such processes as pressing test in deionized water and filtration of corn distillery at 1-6 bar were investigated. Theoretical model allowing to establish fouling mechanism, was applied. It was found that the particles both in the substrate and active layer prevent fouling of the membrane with organics and provide rejection of colloidal particles.

  15. Total and inorganic arsenic in fish samples from Norwegian waters.

    Science.gov (United States)

    Julshamn, Kaare; Nilsen, Bente M; Frantzen, Sylvia; Valdersnes, Stig; Maage, Amund; Nedreaas, Kjell; Sloth, Jens J

    2012-01-01

    The contents of total arsenic and inorganic arsenic were determined in fillet samples of Northeast Artic cod, herring, mackerel, Greenland halibut, tusk, saithe and Atlantic halibut. In total, 923 individual fish samples were analysed. The fish were mostly caught in the open sea off the coast of Norway, from 40 positions. The determination of total arsenic was carried out by inductively coupled plasma mass spectrometry following microwave-assisted wet digestion. The determination of inorganic arsenic was carried out by high-performance liquid chromatography-ICP-MS following microwave-assisted dissolution of the samples. The concentrations found for total arsenic varied greatly between fish species, and ranged from 0.3 to 110 mg kg(-1) wet weight. For inorganic arsenic, the concentrations found were very low (fish used in the recent EFSA opinion on arsenic in food.

  16. Mechanical Designs for Inorganic Stretchable Circuits in Soft Electronics.

    Science.gov (United States)

    Wang, Shuodao; Huang, Yonggang; Rogers, John A

    2015-09-01

    Mechanical concepts and designs in inorganic circuits for different levels of stretchability are reviewed in this paper, through discussions of the underlying mechanics and material theories, fabrication procedures for the constituent microscale/nanoscale devices, and experimental characterization. All of the designs reported here adopt heterogeneous structures of rigid and brittle inorganic materials on soft and elastic elastomeric substrates, with mechanical design layouts that isolate large deformations to the elastomer, thereby avoiding potentially destructive plastic strains in the brittle materials. The overall stiffnesses of the electronics, their stretchability, and curvilinear shapes can be designed to match the mechanical properties of biological tissues. The result is a class of soft stretchable electronic systems that are compatible with traditional high-performance inorganic semiconductor technologies. These systems afford promising options for applications in portable biomedical and health-monitoring devices. Mechanics theories and modeling play a key role in understanding the underlining physics and optimization of these systems.

  17. Hydrogen Bonding and Stability of Hybrid Organic-Inorganic Perovskites

    KAUST Repository

    El-Mellouhi, Fedwa; Marzouk, Asma; Bentria, El Tayeb; Rashkeev, Sergey N.; Kais, Sabre; Alharbi, Fahhad H.

    2016-01-01

    In the past few years, the efficiency of solar cells based on hybrid organic–inorganic perovskites has exceeded the level needed for commercialization. However, existing perovskites solar cells (PSCs) suffer from several intrinsic instabilities, which prevent them from reaching industrial maturity, and stabilizing PSCs has become a critically important problem. Here we propose to stabilize PSCs chemically by strengthening the interactions between the organic cation and inorganic anion of the perovskite framework. In particular, we show that replacing the methylammonium cation with alternative protonated cations allows an increase in the stability of the perovskite by forming strong hydrogen bonds with the halide anions. This interaction also provides opportunities for tuning the electronic states near the bandgap. These mechanisms should have a universal character in different hybrid organic–inorganic framework materials that are widely used.

  18. Human Exposure and Health Effects of Inorganic and Elemental Mercury

    Science.gov (United States)

    Zheng, Wei

    2012-01-01

    Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability of 7% to 15% after ingestion; they are also irritants and cause gastrointestinal symptoms. Upon entering the body, inorganic mercury compounds are accumulated mainly in the kidneys and produce kidney damage. In contrast, human exposure to elemental mercury is mainly by inhalation, followed by rapid absorption and distribution in all major organs. Elemental mercury from ingestion is poorly absorbed with a bioavailability of less than 0.01%. The primary target organs of elemental mercury are the brain and kidney. Elemental mercury is lipid soluble and can cross the blood-brain barrier, while inorganic mercury compounds are not lipid soluble, rendering them unable to cross the blood-brain barrier. Elemental mercury may also enter the brain from the nasal cavity through the olfactory pathway. The blood mercury is a useful biomarker after short-term and high-level exposure, whereas the urine mercury is the ideal biomarker for long-term exposure to both elemental and inorganic mercury, and also as a good indicator of body burden. This review discusses the common sources of mercury exposure, skin lightening products containing mercury and mercury release from dental amalgam filling, two issues that happen in daily life, bear significant public health importance, and yet undergo extensive debate on their safety. PMID:23230464

  19. Hybrid Organic/Inorganic Nanocomposites for Photovoltaic Cells

    Science.gov (United States)

    Liu, Ruchuan

    2014-01-01

    Inorganic/organic hybrid solar cells have attracted a lot of interest due to their potential in combining the advantages of both components. To understand the key issues in association with photoinduced charge separation/transportation processes and to improve overall power conversion efficiency, various combinations with nanostructures of hybrid systems have been investigated. Here, we briefly review the structures of hybrid nanocomposites studied so far, and attempt to associate the power conversion efficiency with these nanostructures. Subsequently, we are then able to summarize the factors for optimizing the performance of inorganic/organic hybrid solar cells. PMID:28788591

  20. Inorganic electret with enhanced charge stability for energy harvesting

    DEFF Research Database (Denmark)

    Wang, Fei; Hansen, Ole

    2013-01-01

    We report a new surface treatment of inorganic electret materials which enhances the charge stability. Coating the surfaces with 1H, 1H, 2H, 2H - perfluorodecyltrichlorosilane (FDTS) makes the electret surface more hydrophobic which improves the surface charge stability under high humidity condit...... conditions. Thermal tests show that the thermal stability of charge in the inorganic electrets is also much better than that of polymer materials such as CYTOP. A demonstrator device with SiO2 electrets shows promising results for energy harvesting applications....

  1. Binary systems solubilities of inorganic and organic compounds

    CERN Document Server

    Stephen, H

    1963-01-01

    Solubilities of Inorganic and Organic Compounds, Volume 1: Binary Systems, Part 1 is part of an approximately 5,500-page manual containing a selection from the International Chemical Literature on the Solubilities of Elements, Inorganic Compounds, Metallo-organic and Organic Compounds in Binary, Ternary and Multi-component Systems. A careful survey of the literature in all languages by a panel of scientists specially appointed for the task by the U.S.S.R. Academy of Sciences, Moscow, has made the compilation of this work possible. The complete English edition in five separately bound volumes w

  2. Organic and inorganic osmolytes at lipid membrane interfaces

    DEFF Research Database (Denmark)

    Westh, P.; Peters, Günther H.j.

    2008-01-01

    This chapter discusses the interactions of organic osmolytes and membranous interfaces, and the effects of these interactions on the properties of the membrane. It also includes a treatment of inorganic ions at the membrane interface since osmolyte effects involve a balance between organic...... and inorganic components. Before turning to the physicochemical discussion of interfacial interactions, the chapter outlines some central parts of the biology and biotechnology of organic osmolytes. It reviews the central relationships in preferential interaction theory, which we use in subsequent paragraphs...

  3. Total and inorganic arsenic in fish samples from Norwegian waters

    DEFF Research Database (Denmark)

    Julshamn, K.; Nilsen, B. M.; Frantzen, S.

    2012-01-01

    The contents of total arsenic and inorganic arsenic were determined in fillet samples of Northeast Arctic cod, herring, mackerel, Greenland halibut, tusk, saithe and Atlantic halibut. In total, 923 individual fish samples were analysed. The fish were mostly caught in the open sea off the coast......-assisted dissolution of the samples. The concentrations found for total arsenic varied greatly between fish species, and ranged from 0.3 to 110 mg kg–1 wet weight. For inorganic arsenic, the concentrations found were very low (...

  4. Development of Inorganic Solar Cells by Nano-technology

    Institute of Scientific and Technical Information of China (English)

    Yafei Zhang; HueyLiang Hwang; Huijuan Geng; Zhihua Zhou; Jiang Wu; Zhiming Wang; Yaozhong Zhang; Zhongli Li; Liying Zhang; Zhi Yang

    2012-01-01

    Inorganic solar cells, as durable photovoltaic devices for harvesting electric energy from sun light, have received tremendous attention due to the fear of exhausting the earth’s energy resources and damaging the living environment due to greenhouse gases. Some recent developments in nanotechnology have opened up new avenues for more relevant inorganic solar cells produced by new photovoltaic conversion concepts and effective solar energy harvesting nanostructures. In this review, the multiple exciton generation effect solar cells, hot carrier solar cells, one dimensional material constructed asymmetrical schottky barrier arrays, noble nanoparticle induced plasmonic enhancement, and light trapping nanostructured semiconductor solar cells are highlighted.

  5. Effects of atmospheric inorganic nitrogen deposition on ocean biogeochemistry

    OpenAIRE

    Krishnamurthy, Aparna; Moore, J. Keith; Zender, Charles S; Luo, Chao

    2007-01-01

     We perform a sensitivity study with the Biogeochemical Elemental Cycling (BEC) ocean model to understand the impact of atmospheric inorganic nitrogen deposition on marine biogeochemistry and air-sea CO2 exchange. Simulations involved examining the response to three different atmospheric inorganic nitrogen deposition scenarios namely, Pre-industrial (22 Tg N/year), 1990s (39 Tg N/year), and an Intergovernmental Panel on Climate Change (IPCC) prediction for 2100, IPCC-A1FI (69 Tg N/year). Glob...

  6. Sol-gel additive for systems with inorganic binders

    International Nuclear Information System (INIS)

    Akstinat, M.; Antenen, D.; Suter, W.

    1996-01-01

    A sol-gel additive for inorganic binder systems and sol-gel process for producing air-placed concrete and mortar by using such sol-gel additives are disclosed. Sol-gel additives for gel-derived inorganic binder systems (for example plaster, cement, lime, special slags, etc.) marked improve the consistency of such binder systems during processing or allow their consistency to be regulated. In addition, these sol-gel additives regulate setting times and substantially improve durability (chemical resistance, reduced permeability) and the mechanical properties of the set binder system. (author)

  7. Prototypes of Newly Conceived Inorganic and Biological Sensors for Health and Environmental Applications

    Directory of Open Access Journals (Sweden)

    Rosanna Spera

    2012-12-01

    Full Text Available This paper describes the optimal implementation of three newly conceived sensors for both health and environmental applications, utilizing a wide range of detection methods and complex nanocomposites. The first one is inorganic and based on matrices of calcium oxide, the second is based on protein arrays and a third one is based on Langmuir-Blodgett laccase multi-layers. Special attention was paid to detecting substances significant to the environment (such as carbon dioxide and medicine (drug administration, cancer diagnosis and prognosis by means of amperometric, quartz crystal microbalance with frequency (QCM_F and quartz crystal microbalance with dissipation monitoring (QCM_D technologies. The resulting three implemented nanosensors are described here along with proofs of principle and their corresponding applications.

  8. Speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li Xun [Department of Chemistry, Beijing Normal University, Beijing 100875 (China); Department of Chemistry and Life Science, Gannan Teachers College, Ganzhou 341000 (China); Jia Jing [Department of Chemistry, Beijing Normal University, Beijing 100875 (China); Wang Zhenghao [Department of Chemistry, Beijing Normal University, Beijing 100875 (China)]. E-mail: zhwang@bnu.edu.cn

    2006-02-23

    A simple procedure was developed for the speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry (EcHG-AAS), without pre-reduction of As(V). Glassy carbon was selected as cathode material in the flow cell. An optimum catholyte concentration for simultaneous generation of arsine from As(III) and As(V) was 0.06 mol l{sup -1} H{sub 2}SO{sub 4}. Under the optimized conditions, adequate sensitivity and difference in ratio of slopes of the calibration curves for As(III) and As(V) can be achieved at the electrolytic currents of 0.6 and 1 A. The speciation of inorganic arsenic can be performed by controlling the electrolytic currents, and the concentration of As(III) and As(V) in the sample can be calculated according to the equations of absorbance additivity obtained at two selected electrolytic currents. The calibration curves were linear up to 50 ng ml{sup -1} for both As(III) and As(V) at 0.6 and 1 A. The detection limits of the method were 0.2 and 0.5 ng ml{sup -1} for As(III) and As(V) at 0.6 A, respectively. The relative standard deviations were of 2.1% for 20 ng ml{sup -1} As(III) and 2.5% for 20 ng ml{sup -1} As(V). The method was validated by the analysis of human hair certified reference material and successfully applied to speciation of soluble inorganic arsenic in Chinese medicine.

  9. Speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Li Xun; Jia Jing; Wang Zhenghao

    2006-01-01

    A simple procedure was developed for the speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry (EcHG-AAS), without pre-reduction of As(V). Glassy carbon was selected as cathode material in the flow cell. An optimum catholyte concentration for simultaneous generation of arsine from As(III) and As(V) was 0.06 mol l -1 H 2 SO 4 . Under the optimized conditions, adequate sensitivity and difference in ratio of slopes of the calibration curves for As(III) and As(V) can be achieved at the electrolytic currents of 0.6 and 1 A. The speciation of inorganic arsenic can be performed by controlling the electrolytic currents, and the concentration of As(III) and As(V) in the sample can be calculated according to the equations of absorbance additivity obtained at two selected electrolytic currents. The calibration curves were linear up to 50 ng ml -1 for both As(III) and As(V) at 0.6 and 1 A. The detection limits of the method were 0.2 and 0.5 ng ml -1 for As(III) and As(V) at 0.6 A, respectively. The relative standard deviations were of 2.1% for 20 ng ml -1 As(III) and 2.5% for 20 ng ml -1 As(V). The method was validated by the analysis of human hair certified reference material and successfully applied to speciation of soluble inorganic arsenic in Chinese medicine

  10. The philosophy and assumptions underlying exposure limits for ionising radiation, inorganic lead, asbestos and noise

    International Nuclear Information System (INIS)

    Akber, R.

    1996-01-01

    Full text: A review of the literature relating to exposure to, and exposure limits for, ionising radiation, inorganic lead, asbestos and noise was undertaken. The four hazards were chosen because they were insidious and ubiquitous, were potential hazards in both occupational and environmental settings and had early and late effects depending on dose and dose rate. For all four hazards, the effect of the hazard was enhanced by other exposures such as smoking or organic solvents. In the cases of inorganic lead and noise, there were documented health effects which affected a significant percentage of the exposed populations at or below the [effective] exposure limits. This was not the case for ionising radiation and asbestos. None of the exposure limits considered exposure to multiple mutagens/carcinogens in the calculation of risk. Ionising radiation was the only one of the hazards to have a model of all likely exposures, occupational, environmental and medical, as the basis for the exposure limits. The other three considered occupational exposure in isolation from environmental exposure. Inorganic lead and noise had economic considerations underlying the exposure limits and the exposure limits for asbestos were based on the current limit of detection. All four hazards had many variables associated with exposure, including idiosyncratic factors, that made modelling the risk very complex. The scientific idea of a time weighted average based on an eight hour day, and forty hour week on which the exposure limits for lead, asbestos and noise were based was underpinned by neither empirical evidence or scientific hypothesis. The methodology of the ACGIH in the setting of limits later brought into law, may have been unduly influenced by the industries most closely affected by those limits. Measuring exposure over part of an eight hour day and extrapolating to model exposure over the longer term is not the most effective way to model exposure. The statistical techniques used

  11. Matrix influences on the determination of common ions by using ion chromatography part 1--determination of inorganic anions.

    Science.gov (United States)

    Michalski, Rajmund; Lyko, Aleksandra; Kurzyca, Iwona

    2012-07-01

    Ion chromatography is the most popular instrumental analytical method used for the determination of anions and cations in water and wastewater. Isocratic ion chromatography with suppressed conductivity detection is frequently used in laboratories carrying out routine analyses of inorganic anions. The paper presents the results of the research into the influence of selected inorganic anions dominant in environmental samples (Cl(-), NO(3)(-), SO(4)(2-)) on the possibility of simultaneous determination of F(-), Cl(-), NO(2)(-), NO(3)(-), PO(4)(3-) and SO(4)(2-) with the application of this most popular ion chromatography type in standard separation conditions. Four Dionex and four Metrohm anion-exchange columns were tested in standard separation conditions recommended by their manufacturers with both standard solutions and environmental samples with complex matrix.

  12. Application of ion chromatography to the determination of water-soluble inorganic and organic ions in atmospheric aerosols.

    Science.gov (United States)

    Yu, Xue-Chun; He, Ke-Bin; Ma, Yong-Liang; Yang, Fu-Mo; Duan, Feng-Kui; Zheng, Ai-Hua; Zhao, Cheng-Yi

    2004-01-01

    A simple, sensitive and convenient ion chromatography(IC) method was established for the simultaneous determination of twelve water-soluble inorganic anions(F- , Cl- , NO2(-), NO3(-), SO3(2-), SO4(2-) , PO4(3-)), and fifteen water-soluble organic ions(formate, acetate, MSA, oxalate, malonate, succinate, phthalates, etc.) in atmospheric aerosols. The linear concentrations ranged from 0.005 microg/m3 to 500 microg/m3 ( r = 0.999-0.9999). The relative standard deviation (RSD) were 0.43%-2.00% and the detection limits were from 2.7 ng/m3 to 88 ng/m3. The proposed method was successfully applied to the simultaneous determination of those inorganic ions and organic ions in PM2.5 of Beijing.

  13. The sorption of iodine by an inorganic zinc primer

    Energy Technology Data Exchange (ETDEWEB)

    Evans, G J; Bekeris, P A [Toronto Univ., ON (Canada). Dept. of Chemical Engineering and Applied Chemistry

    1996-12-01

    The purpose of this work was to identify and evaluate significant parameters in the sorption of I{sub 2}(g) onto Carbo Zinc 11 inorganic primer, a paint used in the containment structure of some CANDU reactors. Air containing known amounts of {sup 131}I{sub 2}(g) was passed through 0.64 cm diameter glass tubing coated on the inner surface with paint. The accumulation of iodine on the surface was continuously monitored using two scintillation detectors. The test parameters covered were relative humidity, flow rate, I{sub 2} concentration and paint temperature. Adsorption was rapid at 23{sup o}C and predominantly gas phase mass transfer limited: the deposition velocity of 0.7{+-}0.4 cm/s was similar to the gas phase mass transfer coefficient of 1.2 cm/s estimated for the system. The deposition velocity observed at a higher paint surface temperature was an order of magnitude smaller. A similar deposition velocity was observed at 23{sup o}C for adsorption of I{sub 2}(g) from essentially dry air suggesting that the low deposition velocity observed for high surface temperature was limited by the amount of water on the paint surface. The rate of adsorption on the paint was directly proportional to the I{sub 2}(g) concentration over the range in concentration studied. The majority of the iodine retained by the paint could not be removed by washing with methanol or chloroform, but it was removed by water indicating that it was in an ionic form. Analysis of the speciation of the iodine in the wash water indicated that only a third of it was in the form of I{sup -}; the form of the remaining iodine could not be resolved. Desorption from the paint was negligible at room temperature but was detectable at higher temperatures. These low desorption rates and the ionic nature of the surface iodine indicated that adsorption occurred predominantly through a chemisorption process. A number of possible mechanisms were proposed. (author) 5 figs., 2 tabs., 6 refs.

  14. Radiation-induced centers in inorganic glasses

    International Nuclear Information System (INIS)

    Brekhovskikh, S.M.; Tyul'nin, V.A.

    1988-01-01

    The nature, structure and formation mechanisms of radiation-induced colour centers, EPR, luminescence, generated ionizing radiation in nonorganic oxide glasses are considered. Experimental material covering both fundamental aspects of radiation physics and glass chemistry, and aspects intimately connected with the creation of new materials with the given radiation-spectral characteristics, with possibilities to prepare radiation-stable and radiation-sensitive glasses is systematized and generalized. Considerable attention is paid to the detection of radiation-induced center binding with composition, glass structures redox conditions for their synthesis. Some new possibilities of practical application of glasses with radiation-induced centers, in particular, to record optical information are reflected in the paper

  15. Synchrotron radiation studies of inorganic-organic semiconductor interfaces

    International Nuclear Information System (INIS)

    Evans, D.A.; Steiner, H.J.; Vearey-Roberts, A.R.; Bushell, A.; Cabailh, G.; O'Brien, S.; Wells, J.W.; McGovern, I.T.; Dhanak, V.R.; Kampen, T.U.; Zahn, D.R.T.; Batchelor, D.

    2003-01-01

    Organic semiconductors (polymers and small molecules) are widely used in electronic and optoelectronic technologies. Many devices are based on multilayer structures where interfaces play a central role in device performance and where inorganic semiconductor models are inadequate. Synchrotron radiation techniques such as photoelectron spectroscopy (PES), near-edge X-ray absorption fine structure (NEXAFS) and X-ray standing wave spectroscopy (XSW) provide a powerful means of probing the structural, electronic and chemical properties of these interfaces. The surface-specificity of these techniques allows key properties to be monitored as the heterostructure is fabricated. This methodology has been directed at the growth of hybrid organic-inorganic semiconductor interfaces involving copper phthalocyanine as the model organic material and InSb and GaAs as the model inorganic semiconductor substrates. Core level PES has revealed that these interfaces are abrupt and chemically inert due to the weak bonding between the molecules and the inorganic semiconductor. NEXAFS studies have shown that there is a preferred orientation of the molecules within the organic semiconductor layers. The valence band offsets for the heterojunctions have been directly measured using valence level PES and were found to be very different for copper phthalocyanine on InSb and GaAs (0.7 and -0.3 eV respectively) although an interface dipole is present in both cases

  16. Extraordinary Interfacial Stitching between Single All-Inorganic Perovskite Nanocrystals

    NARCIS (Netherlands)

    Gomez, Leyre; Lin, Junhao; De Weerd, Chris; Poirier, Lucas; Boehme, Simon C.; Von Hauff, Elizabeth; Fujiwara, Yasufumi; Suenaga, Kazutomo; Gregorkiewicz, Tom

    2018-01-01

    All-inorganic cesium lead halide perovskite nanocrystals are extensively studied because of their outstanding optoelectronic properties. Being of a cubic shape and typically featuring a narrow size distribution, CsPbX3 (X = Cl, Br, and I) nanocrystals are the ideal starting material for the

  17. Tolerance of High Inorganic Mercury of Perna viridis : Laboratory ...

    African Journals Online (AJOL)

    Tolerance of High Inorganic Mercury of Perna viridis : Laboratory Studies of Its Accumulation, Depuration and Distribution. ... coefficient, indicating that it could act as one of the excretion routes for Hg and it can be proposed as a sensitive biomonitoring material for Hg. The fecal materials released by the mussel had elevated ...

  18. Heavy metals and inorganic constituents in medicinal plants of ...

    African Journals Online (AJOL)

    Heavy metals such as Cr, Fe, Zn, Mn, Ni, Pb, Cu and Cd, and inorganic ions like HCO3-, CO32-, Ca2+, Mg2+, Cl-, Na+, SO42-, NO3-, Fe2+ and F- were investigated in medicinally important plants: Taraxacam officinale, Cichorium intybus and Figonia critica, applying atomic absorption spectrophotometer techniques. In the ...

  19. Development of ultrafiltration and inorganic adsorbents: January--March 1977

    International Nuclear Information System (INIS)

    Koenst, J.W. Jr.

    1977-01-01

    Ultrafiltration media with and without the assistance of bone char filters were evaluated to determine their effectiveness in removing radionuclides from contaminated solutions. Precipitants, resin, adsorbents, and inorganic adsorbents were studied to determine their effectiveness in decontaminating solutions. A study of the effects of radiation on ultrafiltration media was initiated. An ultrafiltration media pilot plant was ordered and is being installed

  20. Comparative assessment of different poultry manures and inorganic ...

    African Journals Online (AJOL)

    Dr. M.B. Adewole

    20-10-10) applied at 0.4 t ha-1 and zero manure/inorganic fertilizer application served as ... poultry composts were air-dried, ground and analyzed for their chemical ..... research. 2nd Ed. John Wiley & Sons, Incorporation, New York, 680 p.

  1. Properties of extended inorganic solids predicted/rationalized by ...

    Indian Academy of Sciences (India)

    Administrator

    Due to the vastly complex nature of the problem, guidelines for the preparation of extended inorganic solids with specific electronic properties remain meagre. Here we present the use of First Principles LMTO band structure calculations for the rationalization of the properties of a number of interesting extended solids.

  2. Safe recycling of materials containing persistent inorganic and carbon nanoparticles

    NARCIS (Netherlands)

    Reijnders, L.; Njuguna, J.; Pielichowski, K.; Zhu, H.

    2014-01-01

    For persistent inorganic and carbon nanomaterials, considerable scope exists for a form of recycling called ‘resource cascading’. Resource cascading is aimed at the maximum exploitation of quality and service time of natural resources. Options for resource cascading include engineered nanomaterials

  3. Influence of lignin on properties of wood-inorganic sorbents

    International Nuclear Information System (INIS)

    Remez, V.P.; Charina, M.V.; Klass, S.M.; Shubin, A.S.; Tkachev, K.V.; Isaeva, O.F.

    1986-01-01

    Present article is devoted to influence of lignin on properties of wood-inorganic sorbents. The influence of component composition of matrix on sorption properties of sorbents and their stability in different mediums is studied. The dependence of sorption capacity of sorbent on component matrix composition and its porous structure is defined.

  4. Evaluation of Creatine Kinase Activity and Inorganic Phosphate ...

    African Journals Online (AJOL)

    subjects presenting with major VOC. Keywords: Serum creatine kinase activity, Serum inorganic phosphate concentration, Sickle cell disease,. Steady state, Vaso‑occlusive crisis. Original Article. Address for correspondence: Dr. John C Aneke,. Department of Hematology,. Nnamdi Azikiwe University Teaching. Hospital ...

  5. Modern applications of polarography and voltammetry to inorganic analysis

    International Nuclear Information System (INIS)

    Lee, A.F.

    1983-01-01

    This report summarized developments in polarography and voltametry up to 1982. Modern electronic equipment and scanning waveforms are explained briefly. Extensive tables of recent inorganic applications, mainly in the geochemical and metallurgical fields, are included, and show results based on the new approaches

  6. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    Atmospheric aerosol samples of PM2.5 and PM10 were collected in April–May 2011 from a rural site in Tanzania and analyzed for water-soluble inorganic ions and low molecular weight carboxylic acids using ion chromatography. PM2.5 and PM10 low-volume samplers with quartz fibre filters were deployed and aerosol ...

  7. Technical note: An inorganic water chemistry dataset (1972–2011 ...

    African Journals Online (AJOL)

    A national dataset of inorganic chemical data of surface waters (rivers, lakes, and dams) in South Africa is presented and made freely available. The dataset comprises more than 500 000 complete water analyses from 1972 up to 2011, collected from more than 2 000 sample monitoring stations in South Africa. The dataset ...

  8. Thermal hazard assessment of TMCH mixed with inorganic acids

    Directory of Open Access Journals (Sweden)

    Yeh Chi-Tang

    2018-01-01

    Full Text Available 1,1-Bis(tert-butylperoxy-3,3,5-trimethylcyclohexane (TMCH is a typical peroxide with two peroxy groups that may runaway and/or explode due to mixing with inorganic acids, such as HCl, HNO3, H2SO4, or H3PO4. In this study, reactivities of TMCH mixed with the above inorganic acids were assessed by differential scanning calorimetry (DSC. Furthermore, data obtained by DSC, such as exothermic onset temperature (T0, maximum temperature (Tmax, and heat of decomposition (ΔHd could be employed to acquire thermal safety parameters. Moreover, thermal activity monitor III (TAM III was employed to investigate the thermal hazards while storing or transporting TMCH and TMCH mixed with four types of commonly used inorganic acids, here as HCl, HNO3, H2SO4, or H3PO4 under isothermal conditions. Mixing TMCH with those inorganic acids resulted in higherΔHd except H3PO4, and mixing TMCH with HCl clearly decreased T0. Therefore, the phenomena of mixing those incompatible materials with TMCH can be concluded as the worst cases in terms of contamination hazards during storage and transportation of TMCH.

  9. Fundamentals of EUV resist-inorganic hardmask interactions

    Science.gov (United States)

    Goldfarb, Dario L.; Glodde, Martin; De Silva, Anuja; Sheshadri, Indira; Felix, Nelson M.; Lionti, Krystelle; Magbitang, Teddie

    2017-03-01

    High resolution Extreme Ultraviolet (EUV) patterning is currently limited by EUV resist thickness and pattern collapse, thus impacting the faithful image transfer into the underlying stack. Such limitation requires the investigation of improved hardmasks (HMs) as etch transfer layers for EUV patterning. Ultrathin (<5nm) inorganic HMs can provide higher etch selectivity, lower post-etch LWR, decreased defectivity and wet strippability compared to spin-on hybrid HMs (e.g., SiARC), however such novel layers can induce resist adhesion failure and resist residue. Therefore, a fundamental understanding of EUV resist-inorganic HM interactions is needed in order to optimize the EUV resist interfacial behavior. In this paper, novel materials and processing techniques are introduced to characterize and improve the EUV resist-inorganic HM interface. HM surface interactions with specific EUV resist components are evaluated for open-source experimental resist formulations dissected into its individual additives using EUV contrast curves as an effective characterization method to determine post-development residue formation. Separately, an alternative adhesion promoter platform specifically tailored for a selected ultrathin inorganic HM based on amorphous silicon (aSi) is presented and the mitigation of resist delamination is exemplified for the cases of positive-tone and negative-tone development (PTD, NTD). Additionally, original wafer priming hardware for the deposition of such novel adhesion promoters is unveiled. The lessons learned in this work can be directly applied to the engineering of EUV resist materials and processes specifically designed to work on such novel HMs.

  10. Effect of organic and inorganic fertilizers on nutrient concentrations ...

    African Journals Online (AJOL)

    Effect of organic and inorganic fertilizers on nutrient concentrations in plantain ( Musa spp.) ... Fruit parameters measured were fruit weight, edible proportion and pulp dry matter content; also, the concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), iron (Fe) and zinc (Zn) in fruits were determined.

  11. Evaluation of Serum Calcium and Inorganic Phosphate Levels in ...

    African Journals Online (AJOL)

    The importance of calcium and inorganic phosphate in pregnancy cannot be overemphasized. Their adequacy or otherwise amongst pregnant and lactating women in Enugu metropolis receiving their routine antenatal supplements was the focus of this study. Two hundred subjects (forty in each trimester; forty lactating and ...

  12. Isotope dilution mass spectrometry of inorganic and organic substances

    International Nuclear Information System (INIS)

    Heumann, K.G.

    1986-01-01

    The aim of this short review of IDMS is to provide an introduction into the principles of this analytical method and to show possible applications of this accurate technique, e.g. negative thermal ionization IDMS for inorganic anion analysis or the analysis of organic compounds in the field of clinical chemistry. (orig./RB)

  13. Evaluation of Pollutant Loads: Organic and Inorganic in River ...

    African Journals Online (AJOL)

    This study was carried out to determine the organic and inorganic pollutant loads in River Ukoghor of the Lower Benue Basin. Grab water samples were collected from the outlet of the River into River Benue, twice a month in three replications for a period of eight months (April November, 2002) using sterilized one-litre ...

  14. Effect of organic and inorganic fertilizer on yield and chlorophyll ...

    African Journals Online (AJOL)

    The effects of amending soil with organic (poultry manure) and inorganic fertilizer on yield and chlorophyll content of maize (Zea mays L.) and sorghum (Sorghum bicolour (L.) Moench) was carried out at the Teaching and Research (T&R) Farm of the Obafemi Awolowo University, (O.A.U.) Ile - Ife, Nigeria. The experiment ...

  15. Turning Sunlight into Electricity-Inorganic Solar Cells and Beyond

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Turning Sunlight into Electricity - Inorganic Solar Cells and Beyond. A K Shukla. Volume 16 Issue 12 December 2011 pp 1294-1302. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. Modern Trends in Inorganic Chemistry (MTIC-XIII)

    Indian Academy of Sciences (India)

    MAC 10

    Institute of Science, Bangalore during December 7–10, 2009. The MTIC series of ... The topics covered in this issue span a wide range from ... chemistry that reflect the current trends of research in inorganic chemistry in India. We thank the ...

  17. Response of food organisms to inorganic nitrogen availability ...

    African Journals Online (AJOL)

    Influence of inorganic N2 forms on pond food organisms was investigated. Seven identified plankton taxa comprising four phytoplankton: Desmidiaceae (desmids), Bacillariophyceae (diatoms), Cyanophyceae (blue-green algae) and Chlorophyceae (green algae) and three zooplankton: Protozoa, Cladocera and Rotifera ...

  18. Generalized synthesis of periodic surfactant/inorganic composite materials

    NARCIS (Netherlands)

    Huo, Q.; Margolese, D.I.; Ciesla, U.; Feng, P.; Gier, T.E.; Sieger, P.; Leon, R.; Petroff, P.M.; Schüth, F.; Stucky, G.D.

    1994-01-01

    THE recent synthesis of silica-based mesoporous materials by the cooperative assembly of periodic inorganic and surfactant-based structures has attracted great interest because it extends the range of molecular-sieve materials into the very-large-pore regime. If the synthetic approach can be

  19. Evaluation of Creatine Kinase Activity and Inorganic Phosphate ...

    African Journals Online (AJOL)

    Background: Biochemical parameters vary in subjects with different hemoglobin phenotypes, compared with normal controls. Aim: The aim was to evaluate serum creatine kinase (CK) activity and inorganic phosphate concentrations in Nigerian adults with homozygous and heterozygous hemoglobin phenotypes. Subjects ...

  20. Microcantilever-Enabled Neutron Detection

    Directory of Open Access Journals (Sweden)

    Kevin R. Kyle

    2014-04-01

    Full Text Available A new concept for neutron radiation detection was demonstrated using piezoresistive microcantilevers as the active sensing element. Microcantilevers were used to measure the tiny volumetric changes in a sensing material upon absorption of neutron radiation and transmutation into a new element. Highly ordered inorganic crystalline lattices of boron-rich materials dispersed in polymeric rubber matrices were shown to act as volumetric neutron transducers.

  1. Chemical control in steam systems by using a stabilized inorganic product with gain of energy and speed in detecting contaminations; Controle quimico em geradores de vapor, pelo uso de agente inorganico estabilizado, com ganhos de energia e celeridade na deteccao de contaminacoes

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Barny de; Pereira, Renato Andre Nunes [Kurita do Brasil, Rio de Janeiro, RJ (Brazil)

    2010-07-01

    This paper shows the basic conditions to control the relation between phosphate and sodium in high pressure boilers by applying a stabilized chemical product ensuring operation with low variability and energy gain by the eliminating of corrective blowdown. It presents the routine and the relevant benefits provided by a strong monitoring program of phosphate application in high pressure boilers as an important tool do detect deviations and to get better control of silica solubilization in this pressure level. (author)

  2. Biological monitoring of arsenic exposure of gallium arsenide- and inorganic arsenic-exposed workers by determination of inorganic arsenic and its metabolites in urine and hair

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, H.; Takahashi, K.; Mashiko, M.; Yamamura, Y. (St. Marianna Univ. School of Medicine, Kawasaki (Japan))

    1989-11-01

    In an attempt to establish a method for biological monitoring of inorganic arsenic exposure, the chemical species of arsenic were measured in the urine and hair of gallium arsenide (GaAs) plant and copper smelter workers. Determination of urinary inorganic arsenic concentration proved sensitive enough to monitor the low-level inorganic arsenic exposure of the GaAs plant workers. The urinary inorganic arsenic concentration in the copper smelter workers was far higher than that of a control group and was associated with high urinary concentrations of the inorganic arsenic metabolites, methylarsonic acid (MAA) and dimethylarsinic acid (DMAA). The results established a method for exposure level-dependent biological monitoring of inorganic arsenic exposure. Low-level exposures could be monitored only by determining urinary inorganic arsenic concentration. High-level exposures clearly produced an increased urinary inorganic arsenic concentration, with an increased sum of urinary concentrations of inorganic arsenic and its metabolites (inorganic arsenic + MAA + DMAA). The determination of urinary arsenobetaine proved to determine specifically the seafood-derived arsenic, allowing this arsenic to be distinguished clearly from the arsenic from occupational exposure. Monitoring arsenic exposure by determining the arsenic in the hair appeared to be of value only when used for environmental monitoring of arsenic contamination rather than for biological monitoring.

  3. Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions

    NARCIS (Netherlands)

    Obernberger, I.; Biedermann, F.; Widmann, W.; Riedl, R.

    1997-01-01

    Inorganic elements and compounds in biomass fuels influence the combustion process and the composition of the ashes produced. Consequently, knowledge about the material fluxes of inorganic elements and compounds during biomass combustion for different kinds of biofuels and their influencing

  4. Inorganic pyrophosphatase in uncultivable hemotrophic mycoplasmas: identification and properties of the enzyme from Mycoplasma suis

    Directory of Open Access Journals (Sweden)

    Wittenbrink Max M

    2010-07-01

    Full Text Available Abstract Background Mycoplasma suis belongs to a group of highly specialized hemotrophic bacteria that attach to the surface of host erythrocytes. Hemotrophic mycoplasmas are uncultivable and the genomes are not sequenced so far. Therefore, there is a need for the clarification of essential metabolic pathways which could be crucial barriers for the establishment of an in vitro cultivation system for these veterinary significant bacteria. Inorganic pyrophosphatases (PPase are important enzymes that catalyze the hydrolysis of inorganic pyrophosphate PPi to inorganic phosphate Pi. PPases are essential and ubiquitous metal-dependent enzymes providing a thermodynamic pull for many biosynthetic reactions. Here, we describe the identification, recombinant production and characterization of the soluble (sPPase of Mycoplasma suis. Results Screening of genomic M. suis libraries was used to identify a gene encoding the M. suis inorganic pyrophosphatase (sPPase. The M. suis sPPase consists of 164 amino acids with a molecular mass of 20 kDa. The highest identity of 63.7% was found to the M. penetrans sPPase. The typical 13 active site residues as well as the cation binding signature could be also identified in the M. suis sPPase. The activity of the M. suis enzyme was strongly dependent on Mg2+ and significantly lower in the presence of Mn2+ and Zn2+. Addition of Ca2+ and EDTA inhibited the M. suis sPPase activity. These characteristics confirmed the affiliation of the M. suis PPase to family I soluble PPases. The highest activity was determined at pH 9.0. In M. suis the sPPase builds tetramers of 80 kDa which were detected by convalescent sera from experimentally M. suis infected pigs. Conclusion The identification and characterization of the sPPase of M. suis is an additional step towards the clarification of the metabolism of hemotrophic mycoplasmas and, thus, important for the establishment of an in vitro cultivation system. As an antigenic and conserved

  5. Preparation of chitosan/nano hydroxyapatite organic-inorganic hybrid microspheres for bone repair.

    Science.gov (United States)

    Chen, Jingdi; Pan, Panpan; Zhang, Yujue; Zhong, Shengnan; Zhang, Qiqing

    2015-10-01

    In this work, we encapsulated icariin (ICA) into chitosan (CS)/nano hydroxyapatite (nHAP) composite microspheres to form organic-inorganic hybrid microspheres for drug delivery carrier. The composition and morphology of composite microspheres were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and differential scanning calorimetry- thermogravimetric analysis (DSC-TGA). Moreover, we further studied the performance of swelling properties, degradation properties and drug release behavior of the microspheres. ICA, the extract of traditional Chinese medicine-epimedium, was combined to study drug release properties of the microspheres. ICA loaded microspheres take on a sustained release behavior, which can be not only ascribed to electrostatic interaction between reactive negative hydroxyl (OH) of ICA and positive amine groups (NH₂) of CS, but also depended on the homogeneous dispersion of HAP nanoparticles inside CS organic matrix. In addition, the adhesion and morphology of osteoblasts were detected by inverted fluorescence microscopy. The biocompatibility of CS/nHAP/ICA microspheres was evaluated by the MTT cytotoxicity assay, Hoechst 33258 and PI fluorescence staining. These studies demonstrate that composite microspheres provide a suitable microenvironment for osteoblast attachment and proliferation. It can be speculated that the ICA loaded CS-based organic-inorganic hybrid microspheres might have potential applications in drug delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Cancer incidence following long-term consumption of drinking water with high inorganic selenium content.

    Science.gov (United States)

    Vinceti, Marco; Vicentini, Massimo; Wise, Lauren A; Sacchettini, Claudio; Malagoli, Carlotta; Ballotari, Paola; Filippini, Tommaso; Malavolti, Marcella; Rossi, Paolo Giorgi

    2018-04-16

    Selenium, a trace element to which humans are exposed mainly through diet, has been involved in the etiology of human cancer. We investigated the long-term effects of selenium exposure on cancer incidence using data from a natural experiment in Northern Italy. During the 1970s-1980s, in a part of the Italian municipality of Reggio Emilia, residents were inadvertently exposed to unusually high levels of inorganic hexavalent selenium (selenate) through drinking water. We followed the exposed residents for 28years, generating data on incidence (when available) and mortality rates for selected cancer sites; the remaining municipal residents comprised the unexposed (reference) group. We observed no substantial difference in overall cancer incidence comparing exposed and unexposed cohorts. We detected, however, a higher incidence of cancer at some sites, and for a few of them, namely cancers of the buccal cavity and pharynx, melanoma, urinary tract and lymphoid tissue, the excess incidence was particularly evident in the first period of follow-up but decreased over time. Overall, these results suggest that consumption of water with levels of selenium in its inorganic hexavalent form close to the European standard, 10μg/L, may have unfavourable effects on cancer incidence. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Identification of homemade inorganic explosives by ion chromatographic analysis of post-blast residues.

    Science.gov (United States)

    Johns, Cameron; Shellie, Robert A; Potter, Oscar G; O'Reilly, John W; Hutchinson, Joseph P; Guijt, Rosanne M; Breadmore, Michael C; Hilder, Emily F; Dicinoski, Greg W; Haddad, Paul R

    2008-02-29

    Anions and cations of interest for the post-blast identification of homemade inorganic explosives were separated and detected by ion chromatographic (IC) methods. The ionic analytes used for identification of explosives in this study comprised 18 anions (acetate, benzoate, bromate, carbonate, chlorate, chloride, chlorite, chromate, cyanate, fluoride, formate, nitrate, nitrite, perchlorate, phosphate, sulfate, thiocyanate and thiosulfate) and 12 cations (ammonium, barium(II), calcium(II), chromium(III), ethylammonium, magnesium(II), manganese(II), methylammonium, potassium(I), sodium(I), strontium(II), and zinc(II)). Two IC separations are presented, using suppressed IC on a Dionex AS20 column with potassium hydroxide as eluent for anions, and non-suppressed IC for cations using a Dionex SCS 1 column with oxalic acid/acetonitrile as eluent. Conductivity detection was used in both cases. Detection limits for anions were in the range 2-27.4ppb, and for cations were in the range 13-115ppb. These methods allowed the explosive residue ions to be identified and separated from background ions likely to be present in the environment. Linearity (over a calibration range of 0.05-50ppm) was evaluated for both methods, with r(2) values ranging from 0.9889 to 1.000. Reproducibility over 10 consecutive injections of a 5ppm standard ranged from 0.01 to 0.22% relative standard deviation (RSD) for retention time and 0.29 to 2.16%RSD for peak area. The anion and cation separations were performed simultaneously by using two Dionex ICS-2000 chromatographs served by a single autoinjector. The efficacy of the developed methods was demonstrated by analysis of residue samples taken from witness plates and soils collected following the controlled detonation of a series of different inorganic homemade explosives. The results obtained were also confirmed by parallel analysis of the same samples by capillary electrophoresis (CE) with excellent agreement being obtained.

  8. Identification of the inorganic pyrophosphate metabolizing, ATP substituting pathway in mammalian spermatozoa.

    Science.gov (United States)

    Yi, Young-Joo; Sutovsky, Miriam; Kennedy, Chelsey; Sutovsky, Peter

    2012-01-01

    Inorganic pyrophosphate (PPi) is generated by ATP hydrolysis in the cells and also present in extracellular matrix, cartilage and bodily fluids. Fueling an alternative pathway for energy production in cells, PPi is hydrolyzed by inorganic pyrophosphatase (PPA1) in a highly exergonic reaction that can under certain conditions substitute for ATP-derived energy. Recombinant PPA1 is used for energy-regeneration in the cell-free systems used to study the zymology of ATP-dependent ubiquitin-proteasome system, including the role of sperm-borne proteasomes in mammalian fertilization. Inspired by an observation of reduced in vitro fertilization (IVF) rates in the presence of external, recombinant PPA1, this study reveals, for the first time, the presence of PPi, PPA1 and PPi transporter, progressive ankylosis protein ANKH in mammalian spermatozoa. Addition of PPi during porcine IVF increased fertilization rates significantly and in a dose-dependent manner. Fluorometric assay detected high levels of PPi in porcine seminal plasma, oviductal fluid and spermatozoa. Immunofluorescence detected PPA1 in the postacrosomal sheath (PAS) and connecting piece of boar spermatozoa; ANKH was present in the sperm head PAS and equatorial segment. Both ANKH and PPA1 were also detected in human and mouse spermatozoa, and in porcine spermatids. Higher proteasomal-proteolytic activity, indispensable for fertilization, was measured in spermatozoa preserved with PPi. The identification of an alternative, PPi dependent pathway for ATP production in spermatozoa elevates our understanding of sperm physiology and sets the stage for the improvement of semen extenders, storage media and IVF media for animal biotechnology and human assisted reproductive therapies.

  9. Identification of the inorganic pyrophosphate metabolizing, ATP substituting pathway in mammalian spermatozoa.

    Directory of Open Access Journals (Sweden)

    Young-Joo Yi

    Full Text Available Inorganic pyrophosphate (PPi is generated by ATP hydrolysis in the cells and also present in extracellular matrix, cartilage and bodily fluids. Fueling an alternative pathway for energy production in cells, PPi is hydrolyzed by inorganic pyrophosphatase (PPA1 in a highly exergonic reaction that can under certain conditions substitute for ATP-derived energy. Recombinant PPA1 is used for energy-regeneration in the cell-free systems used to study the zymology of ATP-dependent ubiquitin-proteasome system, including the role of sperm-borne proteasomes in mammalian fertilization. Inspired by an observation of reduced in vitro fertilization (IVF rates in the presence of external, recombinant PPA1, this study reveals, for the first time, the presence of PPi, PPA1 and PPi transporter, progressive ankylosis protein ANKH in mammalian spermatozoa. Addition of PPi during porcine IVF increased fertilization rates significantly and in a dose-dependent manner. Fluorometric assay detected high levels of PPi in porcine seminal plasma, oviductal fluid and spermatozoa. Immunofluorescence detected PPA1 in the postacrosomal sheath (PAS and connecting piece of boar spermatozoa; ANKH was present in the sperm head PAS and equatorial segment. Both ANKH and PPA1 were also detected in human and mouse spermatozoa, and in porcine spermatids. Higher proteasomal-proteolytic activity, indispensable for fertilization, was measured in spermatozoa preserved with PPi. The identification of an alternative, PPi dependent pathway for ATP production in spermatozoa elevates our understanding of sperm physiology and sets the stage for the improvement of semen extenders, storage media and IVF media for animal biotechnology and human assisted reproductive therapies.

  10. Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic-inorganic hybrid and purely organic solids.

    Science.gov (United States)

    Pal, Nabanita; Bhaumik, Asim

    2013-03-01

    With the discovery of MCM-41 by Mobil researchers in 1992 the journey of the research on mesoporous materials started and in the 21st century this area of scientific investigation have extended into numerous branches, many of which contribute significantly in emerging areas like catalysis, energy, environment and biomedical research. As a consequence thousands of publications came out in large varieties of national and international journals. In this review, we have tried to summarize the published works on various synthetic pathways and formation mechanisms of different mesoporous materials viz. inorganic, organic-inorganic hybrid and purely organic solids via soft templating pathways. Generation of nanoscale porosity in a solid material usually requires participation of organic template (more specifically surfactants and their supramolecular assemblies) called structure-directing agent (SDA) in the bottom-up chemical reaction process. Different techniques employed for the syntheses of inorganic mesoporous solids, like silicas, metal doped silicas, transition and non-transition metal oxides, mixed oxides, metallophosphates, organic-inorganic hybrids as well as purely organic mesoporous materials like carbons, polymers etc. using surfactants are depicted schematically and elaborately in this paper. Moreover, some of the frontline applications of these mesoporous solids, which are directly related to their functionality, composition and surface properties are discussed at the appropriate places. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Estimation of Fano factor in inorganic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bora, Vaibhav, E-mail: bora.vaibhav@gmail.com [Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona and College of Optical Sciences, University of Arizona, Tucson, AZ 85724 (United States); Barrett, Harrison H., E-mail: barrett@radiology.arizona.edu [Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona and College of Optical Sciences, University of Arizona, Tucson, AZ 85724 (United States); Fastje, David, E-mail: dfastje@gmail.com [Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona and College of Optical Sciences, University of Arizona, Tucson, AZ 85724 (United States); Clarkson, Eric, E-mail: clarkson@radiology.arizona.edu [Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona and College of Optical Sciences, University of Arizona, Tucson, AZ 85724 (United States); Furenlid, Lars, E-mail: furen@radiology.arizona.edu [Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona and College of Optical Sciences, University of Arizona, Tucson, AZ 85724 (United States); Bousselham, Abdelkader, E-mail: abousselham@qf.org.qa [Qatar Foundation, QEERI, P.O. Box 5825, Doha (Qatar); Shah, Kanai S., E-mail: kanaishah@yahoo.com [Radiation Monitoring Devices, Inc., Watertown, MA 02472 (United States); Glodo, Jarek, E-mail: jglodo@rmdinc.com [Radiation Monitoring Devices, Inc., Watertown, MA 02472 (United States)

    2016-01-01

    The Fano factor of an integer-valued random variable is defined as the ratio of its variance to its mean. Correlation between the outputs of two photomultiplier tubes on opposite faces of a scintillation crystal was used to estimate the Fano factor of photoelectrons and scintillation photons. Correlations between the integrals of the detector outputs were used to estimate the photoelectron and photon Fano factor for YAP:Ce, SrI{sub 2}:Eu and CsI:Na scintillator crystals. At 662 keV, SrI{sub 2}:Eu was found to be sub-Poisson, while CsI:Na and YAP:Ce were found to be super-Poisson. An experiment setup inspired from the Hanbury Brown and Twiss experiment was used to measure the correlations as a function of time between the outputs of two photomultiplier tubes looking at the same scintillation event. A model of the scintillation and the detection processes was used to generate simulated detector outputs as a function of time for different values of Fano factor. The simulated outputs from the model for different Fano factors was compared to the experimentally measured detector outputs to estimate the Fano factor of the scintillation photons for YAP:Ce, LaBr{sub 3}:Ce scintillator crystals. At 662 keV, LaBr{sub 3}:Ce was found to be sub-Poisson, while YAP:Ce was found to be close to Poisson.

  12. Plant uptake of dual-labeled organic N biased by inorganic C uptake

    DEFF Research Database (Denmark)

    Rasmussen, Jim; Sauheitl, Leopold; Eriksen, Jørgen

    2010-01-01

    glycine or CO2-3 , but found no differences in uptake rates between these C-sources. The uptake of inorganic C to the shoot tissue was higher for maize grown in full light compared to shading, which indicates a passive uptake of inorganic C with water. We conclude that uptake of inorganic C produced...

  13. Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation Of Inorganic Nanoparticles And Organic/Inorganic Hybrid Nanocomposites

    Science.gov (United States)

    Pate, Ryan; Lantz, Kevin R.; Dhawan, Anuj; Vo-Dinh, Tuan; Stiff-Roberts, Adrienne D.

    2010-10-01

    In this research, resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) has been used to deposit different classes of inorganic nanoparticles, including bare, un-encapsulated ZnO and Au nanoparticles, as well as ligand-encapsulated CdSe colloidal quantum dots (CQDs). RIR-MAPLE has been used for thin-film deposition of different organic/inorganic hybrid nanocomposites using some of these inorganic nanoparticles, including CdSe CQD-poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-(1-cyanovinylene)phenylene] (MEH-CN-PPV) nanocomposites and Au nanoparticle-poly(methyl methacrylate) (PMMA) nanocomposites. The unique contribution of this research is that a technique is demonstrated for the deposition of organic-based thin-films requiring solvents with bond energies that do not have to be resonant with the laser energy. By creating an emulsion of solvent and ice in the target, RIR-MAPLE using a 2.94 μm laser can deposit most material systems because the hydroxyl bonds in the ice component of the emulsion matrix are strongly resonant with the 2.94 μm laser. In this way, the types of materials that can be deposited using RIR-MAPLE has been significantly expanded. Furthermore, materials with different solvent bond energies can be co-deposited without concern for material degradation and without the need to specifically tune the laser energy to each material solvent bond energy, thereby facilitating the realization of organic/inorganic hybrid nanocomposite thin-films. In addition to the structural characterization of the inorganic nanoparticle and hybrid nanocomposite thin-films deposited using this RIR-MAPLE technique, optical characterization is presented to demonstrate the potential of such films for optoelectronic device applications.

  14. Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation Of Inorganic Nanoparticles And Organic/Inorganic Hybrid Nanocomposites

    International Nuclear Information System (INIS)

    Pate, Ryan; Lantz, Kevin R.; Stiff-Roberts, Adrienne D.; Dhawan, Anuj; Vo-Dinh, Tuan

    2010-01-01

    In this research, resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) has been used to deposit different classes of inorganic nanoparticles, including bare, un-encapsulated ZnO and Au nanoparticles, as well as ligand-encapsulated CdSe colloidal quantum dots (CQDs). RIR-MAPLE has been used for thin-film deposition of different organic/inorganic hybrid nanocomposites using some of these inorganic nanoparticles, including CdSe CQD-poly[2-methoxy-5-(2'-ethylhexyloxy )-1,4-(1-cyanovinylene)phenylene](MEH-CN-PPV) nanocomposites and Au nanoparticle-poly(methyl methacrylate)(PMMA) nanocomposites. The unique contribution of this research is that a technique is demonstrated for the deposition of organic-based thin-films requiring solvents with bond energies that do not have to be resonant with the laser energy. By creating an emulsion of solvent and ice in the target, RIR-MAPLE using a 2.94 μm laser can deposit most material systems because the hydroxyl bonds in the ice component of the emulsion matrix are strongly resonant with the 2.94 μm laser. In this way, the types of materials that can be deposited using RIR-MAPLE has been significantly expanded. Furthermore, materials with different solvent bond energies can be co-deposited without concern for material degradation and without the need to specifically tune the laser energy to each material solvent bond energy, thereby facilitating the realization of organic/inorganic hybrid nanocomposite thin-films. In addition to the structural characterization of the inorganic nanoparticle and hybrid nanocomposite thin-films deposited using this RIR-MAPLE technique, optical characterization is presented to demonstrate the potential of such films for optoelectronic device applications.

  15. Gas dispersion concentration of trace inorganic contaminants from fuel gas and analysis using head-column field-amplified sample stacking capillary electrophoresis.

    Science.gov (United States)

    Yang, Jianmin; Li, Hai-Fang; Li, Meilan; Lin, Jin-Ming

    2012-08-21

    The presence of inorganic elements in fuel gas generally accelerates the corrosion and depletion of materials used in the fuel gas industry, and even leads to serious accidents. For identification of existing trace inorganic contaminants in fuel gas in a portable way, a highly efficient gas-liquid sampling collection system based on gas dispersion concentration is introduced in this work. Using the constructed dual path gas-liquid collection setup, inorganic cations and anions were simultaneously collected from real liquefied petroleum gas (LPG) and analyzed by capillary electrophoresis (CE) with indirect UV absorbance detection. The head-column field-amplified sample stacking technique was applied to improve the detection limits to 2-25 ng mL(-1). The developed collection and analytical methods have successfully determined existing inorganic contaminants in a real LPG sample in the range of 4.59-138.69 μg m(-3). The recoveries of cations and anions with spiked LPG samples were between 83.98 and 105.63%, and the relative standard deviations (RSDs) were less than 7.19%.

  16. Monitoring organic and inorganic pollutants in juvenile live sea turtles: results from a study of Chelonia mydas and Eretmochelys imbricata in Cape Verde.

    Science.gov (United States)

    Camacho, María; Boada, Luis D; Orós, Jorge; López, Pedro; Zumbado, Manuel; Almeida-González, Maira; Luzardo, Octavio P

    2014-05-15

    Despite the current environmental concern regarding the risk posed by contamination in marine ecosystems, the concentrations of pollutants in sea turtles have not been thoroughly elucidated. In the current study, we determined the concentrations of 18 organochlorine pesticides (OCPs), 18 polychlorinated biphenyls (PCBs), 16 polycyclic aromatic hydrocarbons (PAHs) and 11 inorganic elements (Cu, Mn, Pb, Zn, Cd, Ni, Cr, As, Al, Hg and Se) for the first time in two sea turtle species (Chelonia mydas and Eretmochelys imbricata). Only five of the 18 analyzed OCPs were detected in both species. The average total OCP concentration was higher in green turtles than in hawksbills (0.33 ng/ml versus 0.20 ng/ml). Higher concentrations of individual congeners and total PCBs were also detected in green turtles than in hawksbills (∑PCBs=0.73ng/ml versus 0.19 ng/ml), and different PCB contamination profiles were observed in these two species. Concerning PAHs, we also observed a different contamination profile and higher levels of contamination in green turtles (∑PAHs=12.06 ng/ml versus 2.95 ng/ml). Di- and tri-cyclic PAHs were predominant in both populations, suggesting a petrogenic origin, rather than urban sources of PAHs. Additionally, all of the samples exhibited detectable levels of the 11 inorganic elements. In this case, we also observed relevant differences between both species. Thus, Zn was the most abundant inorganic element in hawksbills (an essential inorganic element), whereas Ni, a well-known toxicant, was the most abundant inorganic element in green turtles. The presence of contaminants is greater in green turtles relative to hawksbill turtles, suggesting a greater exposure to hazardous chemical contaminants for green turtles. These results provide baseline data for these species that can serve for future monitoring purposes outlined in the EU's Marine Strategy Framework Directive. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Does the determination of inorganic arsenic in rice depend on the method?

    DEFF Research Database (Denmark)

    de la Calle, Maria Beatriz; Emteborg, Håkan; Linsinger, Thomas P.J.

    2011-01-01

    , on the determination of total and inorganic arsenic (As) in rice. The main aim of this PT was to judge the state of the art of analytical capability for the determination of total and inorganic As in rice. For this reason, participation in this exercise was open to laboratories from all over the world. Some 98...... laboratories reported results for total As and 32 for inorganic As. The main conclusions of IMEP-107 were that the concentration of inorganic As determined in rice does not depend on the analytical method applied and that introduction of a maximum level for inorganic As in rice should not be postponed because...

  18. Effect of organic and inorganic fertilizer applied together on N and P absorption and soil fertility

    International Nuclear Information System (INIS)

    Wang Kuibo; Yu Meiyan; Shen Xiuzhen; Wang Tongyan; Chen Xueliu; Wang Zhifen

    1994-01-01

    15 N trace experiments show that organic and inorganic fertilizer applied together promotes organic N mineralization and absorption. Base fertilizer is mainly for nutrition organs and spring fertilizer for reproduction organs. Organic and inorganic fertilizer applied together obtained the highest production efficiency of total N. Total P amount in wheat plant is slightly higher than that of inorganic N applied only, but P distribution in nutrition organs was slightly lower than that of inorganic N applied only. Organic and inorganic fertilizer applied together, not only promoted the production but also increased fertility of soil, so it is an important measure for wheat to obtain high production continuously

  19. Determination of Inorganic Arsenic in a Wide Range of Food Matrices using Hydride Generation - Atomic Absorption Spectrometry.

    Science.gov (United States)

    de la Calle, Maria B; Devesa, Vicenta; Fiamegos, Yiannis; Vélez, Dinoraz

    2017-09-01

    The European Food Safety Authority (EFSA) underlined in its Scientific Opinion on Arsenic in Food that in order to support a sound exposure assessment to inorganic arsenic through diet, information about distribution of arsenic species in various food types must be generated. A method, previously validated in a collaborative trial, has been applied to determine inorganic arsenic in a wide variety of food matrices, covering grains, mushrooms and food of marine origin (31 samples in total). The method is based on detection by flow injection-hydride generation-atomic absorption spectrometry of the iAs selectively extracted into chloroform after digestion of the proteins with concentrated HCl. The method is characterized by a limit of quantification of 10 µg/kg dry weight, which allowed quantification of inorganic arsenic in a large amount of food matrices. Information is provided about performance scores given to results obtained with this method and which were reported by different laboratories in several proficiency tests. The percentage of satisfactory results obtained with the discussed method is higher than that of the results obtained with other analytical approaches.

  20. Effects of adding bulking agent, inorganic nutrient and microbial inocula on biopile treatment for oil-field drilling waste.

    Science.gov (United States)

    Ma, Jie; Yang, Yongqi; Dai, Xiaoli; Chen, Yetong; Deng, Hanmei; Zhou, Huijun; Guo, Shaohui; Yan, Guangxu

    2016-05-01

    Contamination from oil-field drilling waste is a worldwide environmental problem. This study investigated the performance of four bench-scale biopiles in treating drilling waste: 1) direct biopile (DW), 2) biopile plus oil-degrading microbial consortium (DW + M), 3) biopile plus microbial consortium and bulking agents (saw dust) (DW + M + BA), 4) biopile plus microbial consortium, bulking agents, and inorganic nutrients (Urea and K2HPO4) (DW + M + BA + N). Ninety days of biopiling removed 41.0%, 44.0%, 55.7% and 87.4% of total petroleum hydrocarbon (TPH) in the pile "DW", "DW + M", "DW + M + BA", and "DW + M + BA + N" respectively. Addition of inorganic nutrient and bulking agents resulted in a 56.9% and 26.6% increase in TPH removal efficiency respectively. In contrast, inoculation of hydrocarbon-degrading microorganisms only slightly enhanced the contaminant removal (increased 7.3%). The biopile with stronger contaminant removal also had higher pile temperature and lower pile pH (e.g., in "DW + M + BA + N"). GC-MS analysis shows that biopiling significantly reduced the total number of detected contaminants and changed the chemical composition. Overall, this study shows that biopiling is an effective remediation technology for drilling waste. Adding inorganic nutrients and bulking agents can significantly improve biopile performance while addition of microbial inocula had minimal positive impacts on contaminant removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Total arsenic in selected food samples from Argentina: Estimation of their contribution to inorganic arsenic dietary intake.

    Science.gov (United States)

    Sigrist, Mirna; Hilbe, Nandi; Brusa, Lucila; Campagnoli, Darío; Beldoménico, Horacio

    2016-11-01

    An optimized flow injection hydride generation atomic absorption spectroscopy (FI-HGAAS) method was used to determine total arsenic in selected food samples (beef, chicken, fish, milk, cheese, egg, rice, rice-based products, wheat flour, corn flour, oats, breakfast cereals, legumes and potatoes) and to estimate their contributions to inorganic arsenic dietary intake. The limit of detection (LOD) and limit of quantification (LOQ) values obtained were 6μgkg(-)(1) and 18μgkg(-)(1), respectively. The mean recovery range obtained for all food at a fortification level of 200μgkg(-)(1) was 85-110%. Accuracy was evaluated using dogfish liver certified reference material (DOLT-3 NRC) for trace metals. The highest total arsenic concentrations (in μgkg(-)(1)) were found in fish (152-439), rice (87-316) and rice-based products (52-201). The contribution to inorganic arsenic (i-As) intake was calculated from the mean i-As content of each food (calculated by applying conversion factors to total arsenic data) and the mean consumption per day. The primary contributors to inorganic arsenic intake were wheat flour, including its proportion in wheat flour-based products (breads, pasta and cookies), followed by rice; both foods account for close to 53% and 17% of the intake, respectively. The i-As dietary intake, estimated as 10.7μgday(-)(1), was significantly lower than that from drinking water in vast regions of Argentina. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Analysis of trace inorganic anions in weak acid salts by single pump cycling-column-switching ion chromatography.

    Science.gov (United States)

    Huang, Zhongping; Ni, Chengzhu; Zhu, Zhuyi; Pan, Zaifa; Wang, Lili; Zhu, Yan

    2015-05-01

    The application of ion chromatography with the single pump cycling-column-switching technique was described for the analysis of trace inorganic anions in weak acid salts within a single run. Due to the hydrogen ions provided by an anion suppressor electrolyzing water, weak acid anions could be transformed into weak acids, existing as molecules, after passing through the suppressor. Therefore, an anion suppressor and ion-exclusion column were adopted to achieve on-line matrix elimination of weak acid anions with high concentration for the analysis of trace inorganic anions in weak acid salts. A series of standard solutions consisting of target anions of various concentrations from 0.005 to 10 mg/L were analyzed, with correlation coefficients r ≥ 0.9990. The limits of detection were in the range of 0.67 to 1.51 μg/L, based on the signal-to-noise ratio of 3 and a 25 μL injection volume. Relative standard deviations for retention time, peak area, and peak height were all less than 2.01%. A spiking study was performed with satisfactory recoveries between 90.3 and 104.4% for all anions. The chromatographic system was successfully applied to the analysis of trace inorganic anions in five weak acid salts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Environmental Conditions Influencing Sorption of Inorganic Anions to Multiwalled Carbon Nanotubes Studied by Column Chromatography.

    Science.gov (United States)

    Metzelder, Florian; Schmidt, Torsten C

    2017-05-02

    Sorption to carbon-based nanomaterials is typically studied in batch experiments. An alternative method offering advantages to study sorption is column chromatography. Sorbent packed columns are used and sorption data are determined by relating sorbate retention to that of a nonretarded tracer. We have now for the first time applied this technique to study the influence of environmental conditions on sorption of inorganic anions (bromide, nitrite, nitrate, and iodide) to multiwalled carbon nanotubes. Deuterium oxide was used as nonretarded tracer. Sorption isotherms were best described by the Freundlich model. Sorption increased in the order bromide 4.5 the surface charge was negative, but sorption was still detectable at pH 6 and 9. Consequently, other forces than electrostatic attraction contributed to sorption. These forces may include H-bonding as indicated by sorption enthalpy determined by variation of column temperature. Overall, column chromatography represents a promising alternative in sorption studies to reveal sorbent properties.

  4. Electron microscopy localization and characterization of functionalized composite organic-inorganic SERS nanoparticles on leukemia cells.

    Science.gov (United States)

    Koh, Ai Leen; Shachaf, Catherine M; Elchuri, Sailaja; Nolan, Garry P; Sinclair, Robert

    2008-12-01

    We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic nanoparticle (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet scanning electron microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron (BSE) detector was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution transmission electron microscopy (TEM) images and scanning Auger electron spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens.

  5. Electron microscopy localization and characterization of functionalized composite organic-inorganic SERS nanoparticles on leukemia cells

    International Nuclear Information System (INIS)

    Koh, Ai Leen; Shachaf, Catherine M.; Elchuri, Sailaja; Nolan, Garry P.; Sinclair, Robert

    2008-01-01

    We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic nanoparticle (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet scanning electron microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron (BSE) detector was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution transmission electron microscopy (TEM) images and scanning Auger electron spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens.

  6. Neutron activation analysis of the distribution of inorganic elements among five varieties of Brazilian corn

    International Nuclear Information System (INIS)

    Armelin, M.J.; Maihara, V.A.; Vasconcellos, M.B.; Favaro, D.I.; Nascimento, V.F.

    1992-01-01

    Instrumental neutron activation analysis (INAA) was applied to determine the elements Br, Ca, Cl, Cu, Fe, I, K, Mg, Mn, Na, Rb, S, V, Zn in five varieties of Brazilian corn, resulting from the studies carried out in order to increase their protein contents. The accuracy of the method was evaluated by means of reference material analysis. In general, the precision of the method was lower than 15%, except for Cu, I and S. Sensitivity and detection limit were also determined. Besides, tryptophan contents were determined. It was observed that the tryptophan content in improved corn samples was twice as large as in the normal samples. However, the same ratio was not observed in the inorganic element contents. (author) 11 refs.; 3 tabs

  7. Study on time characteristics of fast time response inorganic scintillator CeF3

    International Nuclear Information System (INIS)

    Hu Mengchun; Zhou Dianzhong; Guo Cun; Ye Wenying

    2003-01-01

    The cerium fluoride (CeF 3 ) is a kind of new fast time response inorganic scintillator. The physical characteristics of CeF 3 are well suitable for detection of domestic pulse γ-rays. The time response of detector composed by phototube with CeF 3 are measured by use of the pulse radiation source with rise time about 0.8 ns, and FWHM time 1.5-2.2 ns. Experiment results show that the rise time is less than 2 ns, FWHM time is about 10 ns, fall time is about 60 ns, average decay time constant is 20-30 ns, respectively for CeF 3

  8. Migration of components from cork stoppers to food: challenges in determining inorganic elements in food simulants.

    Science.gov (United States)

    Corona, T; Iglesias, M; Anticó, E

    2014-06-18

    The inorganic elements potentially migrating from cork to a food simulant [a hydroalcoholic solution containing 12 and 20% (v/v) ethanol] have been determined by means of inductively coupled plasma (ICP) with atomic emission and mass spectrometric detection. The experimental instrumental conditions were evaluated in depth, taking into account spectroscopic and nonspectroscopic interference caused by the presence of ethanol and other components in the sample. We report concentrations ranging from 4 μg kg(-1) for Cd to 28000 μg kg(-1) for Al in the food simulant (concentrations given in kilograms of cork). The values found for Ba, Mn, Fe, Cu, and Zn have been compared with the guideline values stated in EU Regulation 10/2011. In all cases, cork met the general safety criteria applicable to food contact material. Finally, we have proposed water as an alternative to the hydroalcoholic solution to simplify quantification of the tested elements using ICP techniques.

  9. Mixtures of organic and inorganic substrates, particle size and proportion.

    Directory of Open Access Journals (Sweden)

    Emilio Raymundo Morales-Maldonado

    2015-06-01

    Full Text Available The objective of this paper was to review the mixtures of organic and inorganic materials used in the preparation of a new material, particle size, proportion, and their response in plant. In Mexico, agricultural waste is considered as a pollutant reservoir; however, from another perspective, this represents an industry with great potential. The nutrients ingested by animals represent nutriments available for plants when properly recycled. An option that minimizes the risk of contamination and improves its quality is the production of compost and vermicompost. Both processes are an alternative to organic production. A material by itself does not meet the optimum conditions. Reducing the volume of an organic material increases compaction and compression of roots, affecting the efficiency of irrigation and fertilization, so it is necessary to make mixtures with inorganic materials, that is used in the development of a new material for better growing conditions of the plant.

  10. Heterogeneous Catalysis of Polyoxometalate Based Organic–Inorganic Hybrids

    Directory of Open Access Journals (Sweden)

    Yuanhang Ren

    2015-03-01

    Full Text Available Organic–inorganic hybrid polyoxometalate (POM compounds are a subset of materials with unique structures and physical/chemical properties. The combination of metal-organic coordination complexes with classical POMs not only provides a powerful way to gain multifarious new compounds but also affords a new method to modify and functionalize POMs. In parallel with the many reports on the synthesis and structure of new hybrid POM compounds, the application of these compounds for heterogeneous catalysis has also attracted considerable attention. The hybrid POM compounds show noteworthy catalytic performance in acid, oxidation, and even in asymmetric catalytic reactions. This review summarizes the design and synthesis of organic–inorganic hybrid POM compounds and particularly highlights their recent progress in heterogeneous catalysis.

  11. Multinuclear solid-state nuclear magnetic resonance of inorganic materials

    CERN Document Server

    MacKenzie, Kenneth J D

    2002-01-01

    Techniques of solid state nuclear magnetic resonance (NMR) spectroscopy are constantly being extended to a more diverse range of materials, pressing into service an ever-expanding range of nuclides including some previously considered too intractable to provide usable results. At the same time, new developments in both hardware and software are being introduced and refined. This book covers the most important of these new developments. With sections addressed to non-specialist researchers (providing accessible answers to the most common questions about the theory and practice of NMR asked by novices) as well as a more specialised and up-to-date treatment of the most important areas of inorganic materials research to which NMR has application, this book should be useful to NMR users whatever their level of expertise and whatever inorganic materials they wish to study.

  12. Gas Permeation Characteristics across Nano-Porous Inorganic Membranes

    Directory of Open Access Journals (Sweden)

    M.R Othman, H. Mukhtar

    2012-10-01

    Full Text Available An overview of parameters affecting gas permeation in inorganic membranes is presented. These factors include membrane physical characteristics, operational parameters and gas molecular characteristics. The membrane physical characteristics include membrane materials and surface area, porosity, pore size and pore size distribution and membrane morphology. The operational parameters include feed flow rate and concentration, stage cut, temperature and pressure. The gas molecular characteristics include gas molecular weight, diameter, critical temperature, critical pressure, Lennard-Jones parameters and diffusion volumes. The current techniques of material characterization may require complementary method in describing microscopic heterogeneity of the porous ceramic media. The method to be incorporated in the future will be to apply a stochastic model and/or fractal dimension. Keywords: Inorganic membrane, surface adsorption, Knudsen diffusion, Micro-porous membrane, permeation, gas separation.

  13. Conducting Layered Organic-inorganic Halides Containing -Oriented Perovskite Sheets.

    Science.gov (United States)

    Mitzi, D B; Wang, S; Feild, C A; Chess, C A; Guloy, A M

    1995-03-10

    Single crystals of the layered organic-inorganic perovskites, [NH(2)C(I=NH(2)](2)(CH(3)NH(3))m SnmI3m+2, were prepared by an aqueous solution growth technique. In contrast to the recently discovered family, (C(4)H(9)NH(3))(2)(CH(3)NH(3))n-1SnnI3n+1, which consists of (100)-terminated perovskite layers, structure determination reveals an unusual structural class with sets of m -oriented CH(3)NH(3)SnI(3) perovskite sheets separated by iodoformamidinium cations. Whereas the m = 2 compound is semiconducting with a band gap of 0.33 +/- 0.05 electron volt, increasing m leads to more metallic character. The ability to control perovskite sheet orientation through the choice of organic cation demonstrates the flexibility provided by organic-inorganic perovskites and adds an important handle for tailoring and understanding lower dimensional transport in layered perovskites.

  14. Guidelines for determining inputs of inorganic contaminants into estuaries

    International Nuclear Information System (INIS)

    1987-01-01

    This publication describes sampling and sample preparation procedures suitable to obtain unpolluted samples for the purpose of determining river inputs of inorganic pollutants into estuaries. Emphasis is placed on heavy metal pollutants but procedures are suitable, with appropriate modifications for other inorganic pollutants. For example, the collection of samples for mercury may require modifications of handling procedures. River water samples are collected at the most down-river point where no estuarine influences effect results. Samples are collected using a peristaltic pump and separated into aqueous and particulate phases for pollutant analysis. As is the case of all trace pollutant analyses, meticulous care is required to prevent pollution of the sample and in addition to the precautions described in this method, great personal attention is required to minimize sample handling, pollution by smoke, hands, hair, dust, talc from gloves, etc., and to avoid all contact of the samples and reagents with skin and metallic objects. 1 ref., 3 figs, 1 tab

  15. Comparison of several ethanol productions using xylanase, inorganic salts, surfactant

    Science.gov (United States)

    Wu, Yan; Lu, Jie; Yang, Rui-feng; Song, Wen-jing; Li, Hai-ming; Wang, Hai-song; Zhou, Jing-hui

    2017-03-01

    Liquid hot water (LHW) pretreatment is an effective and environmentally friendly method to produce bioethanol with lignocellulosic materials. Corn stover was pretreated with liquid hot water (LHW) and then subjected to semi-simultaneous saccharification and fermentation (S-SSF) to obtain high ethanol concentration and yield. The present study aimed to confirm the effect of several additives on the fermentation digestibility of unwashed WIS of corn stover pretreated with LHW. So we also investigated the process, such as enzyme addition, inorganic salts, surfactant and different loading Triton. Results show that high ethanol concentration is necessary to add xylanase in the stage of saccharification. The ethanol concentration increased mainly with magnesium ion on fermentation. Comparing with Tween 80, Span 80 and Polyethylene glycol, Triton is the best surfactant. In contrast to using xylanase and Triton respectively, optimization can make up the lack of stamina and improve effect of single inorganic salts.

  16. Biopolymer colloids for controlling and templating inorganic synthesis

    Directory of Open Access Journals (Sweden)

    Laura C. Preiss

    2014-11-01

    Full Text Available Biopolymers and biopolymer colloids can act as controlling agents and templates not only in many processes in nature, but also in a wide range of synthetic approaches. Inorganic materials can be either synthesized ex situ and later incorporated into a biopolymer structuring matrix or grown in situ in the presence of biopolymers. In this review, we focus mainly on the latter case and distinguish between the following possibilities: (i biopolymers as controlling agents of nucleation and growth of inorganic materials; (ii biopolymers as supports, either as molecular supports or as carrier particles acting as cores of core–shell structures; and (iii so-called “soft templates”, which include on one hand stabilized droplets, micelles, and vesicles, and on the other hand continuous scaffolds generated by gelling biopolymers.

  17. Modern state of radiation chemistry of inorganic solids

    International Nuclear Information System (INIS)

    Zakharov, Yu.A.; Nevostruev, V.A.; Ryabykh, S.M.; Safonov, Yu.N.

    1985-01-01

    Regularities of radiolysis of different metal salts and inorganic acid complex anions are considered taking account of the nature of electron states and radiation transformations in them. By chemical processes during irradiation the solid salts considered are divided into 2 groups: salts in which the processes stimulated by radiation lead to chemical transformations in anion and cation subsystems, their valency changed, (1st group); salts in which radiation-chemical transformations influence anion sublattice and cation valency is without any change (2nd group). It is shown that the main part of secondary chemical transformations is realized from low-energy excited electron states. For first group salts these states are of cation nature, at this secondary reactions are determined by ionization processes. For second group salts low-energy electron terms are mostly of anion nature. Classification of inorganic salts by the character of transformations in anion sublattices is marked to be developed

  18. Composite inorganic ion-exchangers and their applications

    International Nuclear Information System (INIS)

    Sebesta, F.; John, J.; Motl, A.

    1998-01-01

    Composite inorganic ion exchangers are described containing modified polyacrylonitrile as the binding polymer. An overview of existing composite ion exchangers is presented, and the universality and assets of the developed procedure of treatment of inorganic ion exchanger powders are highlighted. Examples of applicability of the ion exchangers to the separation and concentration of radionuclides include in particular: wastes from the operation of nuclear power plants, contaminated surface waters and ground water, high level radioactive wastes from spent fuel reprocessing, and wastewaters from uranium ore mining and milling. In addition, composite ion exchangers find use in the monitoring of contamination of the hydrosphere and the environment and in the investigation of radionuclide migration in surface waters and ground water

  19. Mixtures of organic and inorganic substrates, particle size and proportion

    International Nuclear Information System (INIS)

    Morales-Maldonado, Emilio Raymundo; Casanova-Lugo, Fernando

    2015-01-01

    The mixtures of organic and inorganic materials used in the preparation of a new material, particle size, proportion and their response in plant were reviewed. Agricultural wastes are considered a pollutant reservoir in Mexico; however, for another perspective this represent an industry with great potential. The nutrients ingested by animals represent nutriments available for plants when properly recycled. The production of compost and vermicompost is an option that minimize the risk of contamination and improve quality. Both processes are an alternative for organic production. The efficiency of irrigation and fertilization are affected for the reducing the volumen of an organic material incresase compaction and compression of roots. The mixtures with inorganic materials are used in the development of a new material to obtain better growing conditions for the plant. (author) [es

  20. Nucleic acid and nucleotide-mediated synthesis of inorganic nanoparticles

    Science.gov (United States)

    Berti, Lorenzo; Burley, Glenn A.

    2008-02-01

    Since the advent of practical methods for achieving DNA metallization, the use of nucleic acids as templates for the synthesis of inorganic nanoparticles (NPs) has become an active area of study. It is now widely recognized that nucleic acids have the ability to control the growth and morphology of inorganic NPs. These biopolymers are particularly appealing as templating agents as their ease of synthesis in conjunction with the possibility of screening nucleotide composition, sequence and length, provides the means to modulate the physico-chemical properties of the resulting NPs. Several synthetic procedures leading to NPs with interesting photophysical properties as well as studies aimed at rationalizing the mechanism of nucleic acid-templated NP synthesis are now being reported. This progress article will outline the current understanding of the nucleic acid-templated process and provides an up to date reference in this nascent field.

  1. Energy-effective Grinding of Inorganic Solids Using Organic Additives.

    Science.gov (United States)

    Mishra, Ratan K; Weibel, Martin; Müller, Thomas; Heinz, Hendrik; Flatt, Robert J

    2017-08-09

    We present our research findings related to new formulations of the organic additives (grinding aids) needed for the efficient grinding of inorganic solids. Even though the size reduction phenomena of the inorganic solid particles in a ball mill is purely a physical process, the addition of grinding aids in milling media introduces a complex physicochemical process. In addition to further gain in productivity, the organic additive helps to reduce the energy needed for grinding, which in the case of cement clinker has major environmental implications worldwide. This is primarily due to the tremendous amounts of cement produced and almost 30% of the associated electrical energy is consumed for grinding. In this paper, we examine the question of how to optimize these grinding aids linking molecular insight into their working mechanisms, and also how to design chemical additives of improved performance for industrial comminution.

  2. A novel lattice energy calculation technique for simple inorganic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Cemal [Department of Chemistry, Faculty of Science, Cumhuriyet University, 58140 Sivas (Turkey); Kaya, Savaş, E-mail: savaskaya@cumhuriyet.edu.tr [Department of Chemistry, Faculty of Science, Cumhuriyet University, 58140 Sivas (Turkey); Banerjee, Priyabrata [Surface Engineering and Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209 (India)

    2017-01-01

    In this pure theoretical study, a hitherto unexplored equation based on Shannon radii of the ions forming that crystal and chemical hardness of any crystal to calculate the lattice energies of simple inorganic ionic crystals has been presented. To prove the credibility of this equation, the results of the equation have been compared with experimental outcome obtained from Born-Fajans-Haber- cycle which is fundamentally enthalpy-based thermochemical cycle and prevalent theoretical approaches proposed for the calculation of lattice energies of ionic compounds. The results obtained and the comparisons made have demonstrated that the new equation is more useful compared to other theoretical approaches and allows to exceptionally accurate calculation of lattice energies of inorganic ionic crystals without doing any complex calculations.

  3. Lithium-ion transport in inorganic solid state electrolyte

    International Nuclear Information System (INIS)

    Gao Jian; Li Hong; Zhao Yu-Sheng; Shi Si-Qi

    2016-01-01

    An overview of ion transport in lithium-ion inorganic solid state electrolytes is presented, aimed at exploring and designing better electrolyte materials. Ionic conductivity is one of the most important indices of the performance of inorganic solid state electrolytes. The general definition of solid state electrolytes is presented in terms of their role in a working cell (to convey ions while isolate electrons), and the history of solid electrolyte development is briefly summarized. Ways of using the available theoretical models and experimental methods to characterize lithium-ion transport in solid state electrolytes are systematically introduced. Then the various factors that affect ionic conductivity are itemized, including mainly structural disorder, composite materials and interface effects between a solid electrolyte and an electrode. Finally, strategies for future material systems, for synthesis and characterization methods, and for theory and calculation are proposed, aiming to help accelerate the design and development of new solid electrolytes. (topical review)

  4. Inorganic Photovoltaics Materials and Devices: Past, Present, and Future

    Science.gov (United States)

    Hepp, Aloysius F.; Bailey, Sheila G.; Rafaelle, Ryne P.

    2005-01-01

    This report describes recent aspects of advanced inorganic materials for photovoltaics or solar cell applications. Specific materials examined will be high-efficiency silicon, gallium arsenide and related materials, and thin-film materials, particularly amorphous silicon and (polycrystalline) copper indium selenide. Some of the advanced concepts discussed include multi-junction III-V (and thin-film) devices, utilization of nanotechnology, specifically quantum dots, low-temperature chemical processing, polymer substrates for lightweight and low-cost solar arrays, concentrator cells, and integrated power devices. While many of these technologies will eventually be used for utility and consumer applications, their genesis can be traced back to challenging problems related to power generation for aerospace and defense. Because this overview of inorganic materials is included in a monogram focused on organic photovoltaics, fundamental issues and metrics common to all solar cell devices (and arrays) will be addressed.

  5. Enhanced mobilization of major inorganics during coalification of peats

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, A.M. [Univ. of Southwestern Louisiana, Lafayette, LA (United States); Cohen, A.D. [Univ. of South Carolina, Columbia, SC (United States); Orem, W.H. [Geological Survey, Reston, VA (United States)

    1995-12-01

    Release patterns for Na, Cl, Ca, Mg, and Si from Cladium, Rhizophora, and Cyrilla peats have been determined by means of experiments to 60{degrees}C and 2100 psi. Where pore solution concentrations are high, significant mobilization is directly through loss of pore solutions. Changes in organic structures during early stage coalification may also mobilize exchangeable ions. Attack on solid inorganic phases begins during peatification and may be accelerated at temperatures above 40{degrees}C by increased organic acid production. Respective maximum concentrations for acetate, formate, and oxalate are around 900, 700, and 70 mg/l in the Cyrilla experiments at 60{degrees}C. Enhanced concentrations of Si, Al and other inorganics may result from these.

  6. Survey of electrochemical production of inorganic compounds. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    The electrochemical generation of inorganic compounds, excluding chlorine/caustic, has been critically reviewed. About 60 x 10/sup 12/ Btu/y fossil fuel equivalent will be used in the year 2000 for the electrosynthesis of inorganic compounds. Significant energy savings in chlorate production can result from the development of suitable electrocatalysts for lowering the cathodic overpotential. Perchlorates, electrolytic hypochlorite, electrolytic manganese dioxide, fluorine and other miscellaneous compounds use relatively small amounts of electrical energy. Implementation of caustic scrubber technology for stack gas cleanup would result in appreciable amounts of sodium sulfate which could be electrolyzed to regenerate caustic. Hydrogen peroxide, now produced by the alkyl anthraquinone process, could be made electrolytically by a new process coupling anodic oxidation of sulfate with cathodic reduction of oxygen in alkaline solution. Ozone is currently manufactured using energy-inefficient silent discharge equipment. A novel energy-efficient approach which uses an oxygen-enhanced anodic reaction is examined.

  7. Characterization of inorganic wastes from metal working industries

    International Nuclear Information System (INIS)

    Gomez, A.; Viguri, J.R.; Andres, A.; Irabien, A.; Guise, L.; Magalhaes, J.; Castro, F.

    1999-01-01

    The paper present the results obtained in the characterisation of metalworking wastes, with the sampling of wastes and characterisation data interpretation subjects as the main studied steps. The results of this work allow to establish the environmental impact assessment of the inorganic wastes from a wide range of metalworking processes in order to determine the optimum options to their management (treatment and/or reuses)

  8. Effect of combined application of organic P and inorganic N ...

    African Journals Online (AJOL)

    A study was undertaken to assess the effect of combined application of organic-P and inorganic-N fertilizers on post harvest quality of carrot (Daucus carota l.) stored at 1°C and ambient conditions (8.6 - 24.8°C). For the fertilizer treatments, 309 kg orga ha-1 (for P) in combination with each of six rates of urea (0, 68.5, 267.2, ...

  9. Radiation effects on thermal decomposition of inorganic solids

    International Nuclear Information System (INIS)

    Dedgaonkar, V.G.

    1985-01-01

    Radiation effects on the thermal decomposition characteristics of inorganic oxyanions like permanganates, nitrates, zeolites and particularly ammonium perchlorate (AP) have been highlighted.The last compound finds wide application as an oxidizer in solid rocket propellents and although several hundred papers have been published on it during the last 30-40 years, most of which from the point of view of understanding and controlling the decomposition behaviour, there are only a few reports available in this area following the radiation treatment. (author)

  10. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis.

    Science.gov (United States)

    Liang, Yongye; Li, Yanguang; Wang, Hailiang; Dai, Hongjie

    2013-02-13

    Electrochemical systems, such as fuel cell and water splitting devices, represent some of the most efficient and environmentally friendly technologies for energy conversion and storage. Electrocatalysts play key roles in the chemical processes but often limit the performance of the entire systems due to insufficient activity, lifetime, or high cost. It has been a long-standing challenge to develop efficient and durable electrocatalysts at low cost. In this Perspective, we present our recent efforts in developing strongly coupled inorganic/nanocarbon hybrid materials to improve the electrocatalytic activities and stability of inorganic metal oxides, hydroxides, sulfides, and metal-nitrogen complexes. The hybrid materials are synthesized by direct nucleation, growth, and anchoring of inorganic nanomaterials on the functional groups of oxidized nanocarbon substrates including graphene and carbon nanotubes. This approach affords strong chemical attachment and electrical coupling between the electrocatalytic nanoparticles and nanocarbon, leading to nonprecious metal-based electrocatalysts with improved activity and durability for the oxygen reduction reaction for fuel cells and chlor-alkali catalysis, oxygen evolution reaction, and hydrogen evolution reaction. X-ray absorption near-edge structure and scanning transmission electron microscopy are employed to characterize the hybrids materials and reveal the coupling effects between inorganic nanomaterials and nanocarbon substrates. Z-contrast imaging and electron energy loss spectroscopy at single atom level are performed to investigate the nature of catalytic sites on ultrathin graphene sheets. Nanocarbon-based hybrid materials may present new opportunities for the development of electrocatalysts meeting the requirements of activity, durability, and cost for large-scale electrochemical applications.

  11. The exchange of inorganic carbon on the Canadian Beaufort Shelf

    Science.gov (United States)

    Mol, Jacoba; Thomas, Helmuth; Hu, Xianmin; Myers, Paul G.

    2017-04-01

    The Mackenzie Shelf in the southeastern Beaufort Sea is an area that has experienced large changes in the past several decades as warming, sea-ice loss, and increased river discharge have altered carbon cycling. Upwelling and downwelling events are common on the shelf, caused by strong, fluctuating along-shore winds and resulting cross-shelf Ekman transport. Downwelling carries inorganic carbon and other remineralization products off the shelf and into the deep basin for possible long-term storage in the world oceans. Upwelling carries water high in dissolved inorganic carbon (DIC) and nutrients from the Pacific-origin upper halocline layer (UHL) onto the shelf. Profiles of DIC and total alkalinity (TA) taken in August and September of 2014 are used to investigate the cycling of inorganic carbon on the Mackenzie Shelf. The along-shore and cross-shelf transport of inorganic carbon is quantified using velocity field output from a simulation of the Arctic and Northern Hemisphere Atlantic (ANHA4) configuration of the Nucleus of European Modelling of the Ocean (NEMO) model. A strong upwelling event prior to sampling on the Mackenzie Shelf is analyzed and the resulting influence on the carbonate system, including the saturation state of aragonite and pH levels, is investigated. TA and δ18O are used to examine water mass distributions in the study area and analyze the influence of Pacific Water, Mackenzie River freshwater, and sea-ice melt on carbon dynamics and air-sea fluxes of CO2 in the surface mixed layer. Understanding carbon transfer in this seasonally dynamic environment is key in order to quantify the importance of Arctic shelf regions to the global carbon cycle and to provide a basis for understanding how its role will respond to the aforementioned changes in the regional marine system.

  12. Inorganic nanostructured materials for high performance electrochemical supercapacitors

    Science.gov (United States)

    Liu, Sheng; Sun, Shouheng; You, Xiao-Zeng

    2014-01-01

    Electrochemical supercapacitors (ES) are a well-known energy storage system that has high power density, long life-cycle and fast charge-discharge kinetics. Nanostructured materials are a new generation of electrode materials with large surface area and short transport/diffusion path for ions and electrons to achieve high specific capacitance in ES. This mini review highlights recent developments of inorganic nanostructure materials, including carbon nanomaterials, metal oxide nanoparticles, and metal oxide nanowires/nanotubes, for high performance ES applications.

  13. Inorganic ion exchangers. Application to liquid effluent processing

    International Nuclear Information System (INIS)

    Dozol, M.

    1983-10-01

    Main inorganic ion exchangers used for radioactive liquid effluents presented in this report are: synthetic and natural zeolites, in titanium oxides, titanates, niobates, tantalates, zirconates, some insoluble salts of zirconium, molybdenum and tin, heteropolyacids and polyantimonic acid. Properties of these ion exchangers are described: structure, adsoption, radiation effects and thermal stability, application to waste processing, radioactive waste storage uranium and cesium 137 recovery are evoked [fr

  14. Precaecal phosphorus digestibility of inorganic phosphate sources in male broilers

    Science.gov (United States)

    Bikker, P.; Spek, J. W.; Van Emous, R. A.; Van Krimpen, M. M.

    2016-01-01

    Abstract The aim of this study, comprising two experiments, was (1) to determine in Experiment 1 the relationship of incremental dietary P (phosphorus) content on precaecal digestible P in male broilers and (2) to determine in Experiment 2 the precaecal P digestibility of various inorganic P sources at marginal levels of P supply.In Experiment 1, a total of 260 male Ross 308 broilers were divided into groups of 10 birds per pen resulting in 8 replicates for treatment 1 and 6 replicates for treatments 2–4. Experimental diets were formulated to contain 4 incremental concentrations of digestible P by means of increasing concentrations of monocalcium phosphate (MCP). In the second experiment, 480-d-old male Ross 308 broilers were divided in groups of 12 birds per pen resulting in 16 replicates for the basal diet and 6 replicates for each test diet. A total of 4 inorganic P sources, MCP, monodicalcium phosphate (MDCP), dicalcium phosphate (DCP) and defluorinated phosphate (DFP) were added to the basal diet to determine the precaecal P digestibility. Three of the 4 inorganic P sources (MCP, MDCP and DCP) represented a mix of batches from different producers. At the end of both experiments, the chyme of the posterior part of the small intestine was collected. Digestibility of P and Ca was determined using titanium dioxide as indigestible marker.In Experiment 1, a reduction in precaecal digestibility of P was observed above an estimated precaecal digestible dietary P concentration of 4.8 g/kg.The precaecal P digestibility of the tested inorganic P sources in Experiment 2 was 78.3% for MCP, 59.0% for DCP, 70.7% for MDCP and 31.5% for DFP. PMID:27635437

  15. Inorganic anion exchangers for the treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Dyer, A.; Jamil, M.A.

    1987-07-01

    Inorganic anion exchangers are evaluated for Tc, I and S isotope removal from aqueous nuclear waste streams. Chemical, thermal, and radiation stabilities were examined. Selected exchangers were examined in detail for their selectivities, kinetics and mechanism of the sorption process (especially in NO 3 - , OH - and BO 3 - environments). Cement encapsulation and leaching experiments were made on the exchangers showing most promise for 'radwaste' treatment. (author)

  16. Hybrid Organic/Inorganic Thiol-ene-Based Photopolymerized Networks

    OpenAIRE

    Schreck, Kathleen M.; Leung, Diana; Bowman, Christopher N.

    2011-01-01

    The thiol-ene reaction serves as a more oxygen tolerant alternative to traditional (meth)acrylate chemistry for forming photopolymerized networks with numerous desirable attributes including energy absorption, optical clarity, and reduced shrinkage stress. However, when utilizing commercially available monomers, many thiol-ene networks also exhibit decreases in properties such as glass transition temperature (Tg) and crosslink density. In this study, hybrid organic/inorganic thiol-ene resins ...

  17. Thermal studies on some new inorganic exchange materials

    International Nuclear Information System (INIS)

    Murthy, G.S.; Satyanarayana, J.; Reddy, V.N.

    1998-01-01

    The new inorganic exchangers developed in this laboratory zirconium phosphate-ammonium molybdophosphate (ZrP-AMP), titanium phosphate-ammonium molybdophosphate (TiP-AMP) and alumina-ammonium molybdophosphate (alumina-AMP) have been investigated extensively to study the removal of Cs from high level nuclear waste. As a part of these studies thermal studies on these substances have been carried out to elucidate the information on thermal stability of these exchangers. Results obtained are presented here and discussed. (author)

  18. Effects of electron beam irradiation on inorganic exchanger AMP

    International Nuclear Information System (INIS)

    Rao, K.L.N.; Mathew, C.; Deshpande, R.S.; Jadhav, A.V.; Pande, B.M.; Shukla, J.P.

    1996-01-01

    The heteropolyacid salt inorganic exchanger ammonium molybdophosphate (AMP) was subjected to an electron dose upto 2 MGy to assess any possible radiation damage. The breakthrough and total exchange capacity of AMP for Cs + from simulated fission product solutions were determined for both control and irradiated samples. The scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDX) were deployed to examine any marked microscopic changes taking place in this exchanger. (author). 3 refs., 3 figs

  19. Effectiveness of liquid radioactive waste purification by inorganic granulated sorbents

    International Nuclear Information System (INIS)

    Komarevskij, V.M.; Stepanets, O.V.; Sharygin, L.M.; Matveev, S.A.

    1995-01-01

    Study results on purification of simulative and real liquid radioactive wastes from fission products radionuclides and by inorganic corrosion-nature sorbents 'Thermoxide' are presented. Properties by sorption of cesium, strontium and cobalt are studied; results of experiments on purification of weakly-salted water solutions (waste waters, ships drainage tanks, showers and laundries) of the Beloyarsk NPP are presented. Sorbents source characteristics are determined. 4 refs., 2 figs., 3 tabs

  20. Thermal stability of inorganic and organic compounds in atmospheric particulate matter

    Science.gov (United States)

    Perrino, Cinzia; Marconi, Elisabetta; Tofful, Luca; Farao, Carmela; Materazzi, Stefano; Canepari, Silvia

    2012-07-01

    The thermal behaviour of atmospheric particulate matter (PM) has been investigated by using different analytical approaches to explore the added value offered by these technique in environmental studies. The thermogravimetric analysis (TGA), carried out on both certified material and real PM samples, has shown that several mass losses can be detected starting from 80 °C up to above 500 °C, when pyrolysis occur. Thermo-optical analysis of PM and ion chromatographic analysis of the residual have shown that the mass losses in the temperature range 80-180 °C are not justified by the release of either organic or inorganic compounds; it can be thus attributed to the release of weakly and strongly bound water. Release of water has also been evidenced in the temperature range 225-275 °C. The release of ammonium chloride and nitrate has been detected only above 80 °C. This indicates that the release of nitric acid, hydrochloric acid and ammonia, which is observed downstream of the filters during the sampling of atmospheric PM at ambient temperature, cannot be reproduced off-line, after the end of the sampling. We successfully explored one of the possible explanations, that is the desorption of HNO3, HCl and NH3 adsorbed on collected particles. NH4NO3 and NH4Cl, which can be thermally released by the filter, exhibit a different thermal behaviour from NaNO3 and NaCl, which are thermally stable up to 370 °C. This different behaviour can be used to discriminate between natural and secondary sources of atmospheric inorganic salts, as the interconversion that is observed when heating mixtures of pure salts resulted to be not relevant when heating real PM samples.

  1. Design and development of anisotropic inorganic/polystyrene nanocomposites by surface modification of zinc oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xiao [School of Materials Science and Engineering, Tongji University, Shanghai 200092 (China); Research Center for Translational Medicine, East Hospital, the Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092 (China); Huang, Shiming [Department of Physics, Tongji University, Shanghai 200092 (China); Wang, Yilong, E-mail: yilongwang@tongji.edu.cn [Research Center for Translational Medicine, East Hospital, the Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092 (China); Shi, Donglu, E-mail: shid@ucmail.uc.edu [Research Center for Translational Medicine, East Hospital, the Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092 (China); The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221 (United States)

    2016-07-01

    Anisotropic yolk/shell or Janus inorganic/polystyrene nanocomposites were prepared by combining miniemulsion polymerization and sol–gel reaction. The morphologies of the anisotropic composites were found to be greatly influenced by surface modification of zinc oxide (ZnO) nanoparticle seeds. Two different types of the oleic acid modified ZnO nanoparticles (OA-ZnO) were prepared by post-treatment of commercial ZnO powder and homemade OA-ZnO nanoparticles. The morphologies and properties of the nanocomposites were investigated by transmission electron microscope (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), and energy dispersive X-ray spectroscopy (EDX). It was found that both post-treated OA-ZnO and in-situ prepared OA-ZnO nanoparticles resulted in the yolk–shell and Janus structure nanocomposites, but with varied size and morphology. These nanocomposites showed stable and strong fluorescence by introducing quantum dots as the co-seeds. The fluorescent anisotropic nanocomposites were decorated separately with surface carboxyl and hydroxyl groups. These composites with unique anisotropic properties will have high potential in biomedical applications, particularly in bio-detection. - Graphical abstract: Design and development of anisotropic inorganic/polystyrene nanocomposites by surface modification of zinc oxide nanoparticles. - Highlights: • Non-magnetic anisotropic yolk/shell or Janus nanocomposites are prepared and characterized. • Different surface modification of zinc oxide (ZnO) nanoparticles results in varied morphology and size of the final product. • Fluorescent anisotropic nanocomposites embodying quantum dots are an ideal candidate for bio-detection applications.

  2. Morphology and the chemical make-up of the inorganic components of black corals

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, D.; Florek, M.; Nowak, J. [Department of Chemistry, John Paul II Catholic University of Lublin, 20-718 Lublin (Poland); Kwiatek, W.; Lekki, J. [Institute of Nuclear Physics, Department of Nuclear Spectroscopy, 31-342 Krakow (Poland); Chevallier, P. [former LPS, CEN Saclay et LURE, Universite Paris-Sud, Bat 209D, F-91405 Orsay (France); Hacura, A.; Wrzalik, R. [Institute of Physics, Silesian University, 40-007 Katowice (Poland); Ben-Nissan, B. [Department of Chemistry, Materials and Forensic Sciences, University of Technology, Sydney, PO Box 123, Broadway 2007, NSW (Australia); Van Grieken, R. [Department of Chemistry, University of Antwerp, B-2610 Antwerp (Belgium); Kuczumow, A., E-mail: kuczon@kul.lublin.pl [Department of Chemistry, John Paul II Catholic University of Lublin, 20-718 Lublin (Poland)

    2009-04-30

    Black corals (Cnidaria, Antipatharia) from three different sources were investigated with the aim of detecting inorganic components and their morphology. In general, the skeleton of black corals was composed of the chitin fibrils admixed with peptides and the chitin presence was confirmed by the X-ray diffraction (XRD), Fourier Transformed Infrared Spectrometry (FTIR) and microRaman Microscopy, the latter giving the opportunity of tracing single fibrils and their location. The composition and concentrations of the inorganic components of the black corals were measured, using a scanning electron microprobe and micro-Particle Induced X-ray Emission ({mu}-PIXE). The application of such instruments enabled the estimation of the constituent distributions in a microscale. The mapping option was the most useful technique of making analyses in these studies, just to reveal the composition of chamber-like cells. Analysis of the morphology and microstructure showed that there were three distinct regions within the coral: a core and the cells encircled with adjacent interface gluing strips. The majority of the elements analyzed were selectively distributed and segregated in a striking way in mentioned distinctive zones of the skeleton and it was detected for the first time. The core area was characterized by the relatively elevated concentrations of Ca. The measurements gave extremely clear images of the distribution of particular elements in the skeletal tissue, with I, Ca, K and Fe much more concentrated in the gluing zones, while C, N, Na and Mg present in the interiors of particular skeletal cells. The distribution of some elements (Mg, Fe) and some compounds (chitin) and functional groups (S-S, C-I) allows differentiating the biological and mechanical functions of particular fragments of the rods. The kinds of elements and their concentrations measured were essentially in compliance with rare data available in the literature. The Raman technique gave the additional

  3. Morphology and the chemical make-up of the inorganic components of black corals

    International Nuclear Information System (INIS)

    Nowak, D.; Florek, M.; Nowak, J.; Kwiatek, W.; Lekki, J.; Chevallier, P.; Hacura, A.; Wrzalik, R.; Ben-Nissan, B.; Van Grieken, R.; Kuczumow, A.

    2009-01-01

    Black corals (Cnidaria, Antipatharia) from three different sources were investigated with the aim of detecting inorganic components and their morphology. In general, the skeleton of black corals was composed of the chitin fibrils admixed with peptides and the chitin presence was confirmed by the X-ray diffraction (XRD), Fourier Transformed Infrared Spectrometry (FTIR) and microRaman Microscopy, the latter giving the opportunity of tracing single fibrils and their location. The composition and concentrations of the inorganic components of the black corals were measured, using a scanning electron microprobe and micro-Particle Induced X-ray Emission (μ-PIXE). The application of such instruments enabled the estimation of the constituent distributions in a microscale. The mapping option was the most useful technique of making analyses in these studies, just to reveal the composition of chamber-like cells. Analysis of the morphology and microstructure showed that there were three distinct regions within the coral: a core and the cells encircled with adjacent interface gluing strips. The majority of the elements analyzed were selectively distributed and segregated in a striking way in mentioned distinctive zones of the skeleton and it was detected for the first time. The core area was characterized by the relatively elevated concentrations of Ca. The measurements gave extremely clear images of the distribution of particular elements in the skeletal tissue, with I, Ca, K and Fe much more concentrated in the gluing zones, while C, N, Na and Mg present in the interiors of particular skeletal cells. The distribution of some elements (Mg, Fe) and some compounds (chitin) and functional groups (S-S, C-I) allows differentiating the biological and mechanical functions of particular fragments of the rods. The kinds of elements and their concentrations measured were essentially in compliance with rare data available in the literature. The Raman technique gave the additional

  4. Development of a Research-Oriented Inorganic Chemistry Laboratory Course

    Science.gov (United States)

    Vallarino, L. M.; Polo, D. L.; Esperdy, K.

    2001-02-01

    We report the development of a research-oriented, senior-level laboratory course in inorganic chemistry, which is a requirement for chemistry majors who plan to receive the ACS-approved Bachelor of Science degree and is a recommended elective for other chemistry majors. The objective of this course is to give all students the advantage of a research experience in which questions stemming from the literature lead to the formulation of hypotheses, and answers are sought through experiment. The one-semester Inorganic Chemistry Laboratory is ideal for this purpose, since for most students it represents the last laboratory experience before graduation and can assume the role of "capstone" course--a course where students are challenged to recall previously learned concepts and skills and put them into practice in the performance of an individual, original research project. The medium chosen for this teaching approach is coordination chemistry, a branch of chemistry that involves the interaction of inorganic and organic compounds and requires the use of various synthetic and analytical methods. This paper presents an outline of the course organization and requirements, examples of activities performed by the students, and a critical evaluation of the first five years' experience.

  5. Relationships between lattice energies of inorganic ionic solids

    Science.gov (United States)

    Kaya, Savaş

    2018-06-01

    Lattice energy, which is a measure of the stabilities of inorganic ionic solids, is the energy required to decompose a solid into its constituent independent gaseous ions. In the present work, the relationships between lattice energies of many diatomic and triatomic inorganic ionic solids are revealed and a simple rule that can be used for the prediction of the lattice energies of inorganic ionic solids is introduced. According to this rule, the lattice energy of an AB molecule can be predicted with the help of the lattice energies of AX, BY and XY molecules in agreement with the experimental data. This rule is valid for not only diatomic molecules but also triatomic molecules. The lattice energy equations proposed in this rule provides compatible results with previously published lattice energy equations by Jenkins, Kaya, Born-Lande, Born-Mayer, Kapustinskii and Reddy. For a large set of tested molecules, calculated percent standard deviation values considering experimental data and the results of the equations proposed in this work are in general between %1-2%.

  6. Inorganic arsenic exposure and type 2 diabetes mellitus in Mexico

    International Nuclear Information System (INIS)

    Coronado-Gonzalez, Jose Antonio; Razo, Luz Maria del; Garcia-Vargas, Gonzalo; Sanmiguel-Salazar, Francisca; Escobedo-de la Pena, Jorge

    2007-01-01

    Inorganic arsenic exposure in drinking water has been recently related to diabetes mellitus. To evaluate this relationship the authors conducted in 2003, a case-control study in an arseniasis-endemic region from Coahuila, a northern state of Mexico with a high incidence of diabetes. The present analysis includes 200 cases and 200 controls. Cases were obtained from a previous cross-sectional study conducted in that region. Diagnosis of diabetes was established following the American Diabetes Association criteria, with two fasting glucose values ≥126 mg/100 ml (≥7.0 mmol/l) or a history of diabetes treated with insulin or oral hypoglycemic agents. The next subject studied, subsequent to the identification of a case in the cross-sectional study was taken as control. Inorganic arsenic exposure was measured through total arsenic concentrations in urine, measured by hydride-generation atomic absorption spectrophotometry. Subjects with intermediate total arsenic concentration in urine (63.5-104 μg/g creatinine) had two-fold higher risk of having diabetes (odds ratio=2.16; 95% confidence interval: 1.23, 3.79), but the risk was almost three times greater in subjects with higher concentrations of total arsenic in urine (odds ratio=2.84; 95% confidence interval: 1.64, 4.92). This data provides additional evidence that inorganic arsenic exposure may be diabetogenic

  7. Study of nonproportionality in the light yield of inorganic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai [School of Engineering and IT, B-purple-12, Faculty of EHSE, Charles Darwin University, Darwin, Northern Territory 0909 (Australia)

    2011-07-15

    Using a phenomenological approach, the light yield is derived for inorganic scintillators as a function of the rates of linear, bimolecular, and Auger processes occurring in the electron track initiated by an x ray or a {gamma}-ray photon. A relation between the track length and incident energy is also derived. It is found that the nonproportionality in the light yield can be eliminated if either nonlinear processes of interaction among the excited electrons, holes, and excitons can be eliminated from occurring or the high density situation can be relieved by diffusion of carriers from the track at a faster rate than the rate of activation of nonlinear processes. The influence of the track length and radius on the yield nonproportionality is discussed in view of the known experimental results. Inventing new inorganic scintillating materials with high carrier mobility can lead to a class of proportional inorganic scintillators. Results agree qualitatively with experimental results for the dependence of light yield on the incident energy.

  8. Inorganic phosphate inhibits sympathetic neurotransmission in canine saphenous veins

    International Nuclear Information System (INIS)

    Edoute, Y.; Vanhoutte, P.M.; Shepherd, J.T.

    1987-01-01

    Inorganic phosphate has been proposed as the initiator of metabolic vasodilatation in active skeletal muscle. The present study was primarily designed to determine if this substance has an inhibitory effect on adrenergic neurotransmission. Rings of canine saphenous veins were suspended for isometric tension recording in organ chambers. A comparison was made of the ability of inorganic phosphate (3 to 14 mM) to relax rings contracted to the same degree by electrical stimulation, exogenous norepinephrine, and prostaglandin F/sub 2α/. The relaxation during electrical stimulation was significantly greater at all concentrations of phosphate. In strips of saphenous veins previously incubated with [ 3 H]norepinephrine, the depression of the contractile response caused by phosphate during electrical stimulated was accompanied by a significant reduction in the overflow of labeled neurotransmitter. Thus inorganic phosphate inhibits sympathetic neurotransmission and hence may have a key role in the sympatholysis in the active skeletal muscles during exercise. By contrast, in this preparation, it has a modest direct relaxing action on the vascular smooth muscle

  9. Inorganic and organic trace mineral supplementation in weanling pig diets

    Directory of Open Access Journals (Sweden)

    MARIA C. THOMAZ

    2015-06-01

    Full Text Available A study was conducted to evaluate the effects of dietary inorganic and organic trace minerals in two levels of supplementation regarding performance, diarrhea occurrence, hematological parameters, fecal mineral excretion and mineral retention in metacarpals and liver of weanling pigs. Seventy piglets weaned at 21 days of age with an average initial body weight of 6.70 ± 0.38 kg were allotted in five treatments: control diet (no added trace mineral premix; 50% ITMP (control diet with inorganic trace mineral premix supplying only 50% of trace mineral requirements; 50% OTMP (control diet with organic trace mineral premix supplying only 50% of trace mineral requirements; 100% ITMP (control diet with inorganic trace mineral premix supplying 100% of trace mineral requirements; and 100% OTMP (control diet with organic trace mineral premix supplying 100% of trace mineral requirements. Feed intake and daily weight gain were not affected by treatments, however, piglets supplemented by trace minerals presented better gain:feed ratio. No differences were observed at calcium, phosphorus, potassium, magnesium, sodium and sulfur excreted in feces per kilogram of feed intake. Treatments did not affect calcium, phosphorus, magnesium, sulfur and iron content in metacarpals. Trace mineral supplementation, regardless of level and source, improved the performance of piglets.

  10. Quantum chemical studies on the some inorganic corrosion inhibitors

    International Nuclear Information System (INIS)

    Sayin, Koray; Karakaş, Duran

    2013-01-01

    Highlights: •Some quantum chemical parameters are important to determine inhibition efficiency. •Quantum chemical calculations were performed on six inorganic inhibitors. •Five experimental reports were used to explain the theoretical results. •Atomic charges and %contributions were used to determine the atom at protonation process. •For inorganic inhibitors, the best method and basis set were investigated. -- Abstract: Some quantum chemical parameters were calculated by using Hartree–Fock (HF) approximation, Density Functional Theory (DFT/B3LYP) and Møller Plesset perturbation theory (MP3) methods at LANL2DZ, LANL2MB and SDD levels in gas phase and water for dichromate (Cr 2 O 7 2- ), chromate (CrO 4 2- ), tungstate (WO 4 2- ), molybdate (MoO 4 2- ), nitrite (NO 2 - ) and nitrate (NO 3 - ) which are used as inorganic corrosion inhibitors. All theoretical results and experimental inhibition efficiencies of inhibitors were subjected to correlation analyses. In a summary, MP3/SDD level in water was found as the best level. In this level, the inhibition efficiency ranking was found as CrO 4 2- >WO 4 2- >MoO 4 2- >Cr 2 O 7 2- >NO 2 - ≈NO 3 -

  11. Redox-responsive theranostic nanoplatforms based on inorganic nanomaterials.

    Science.gov (United States)

    Han, Lu; Zhang, Xiao-Yong; Wang, Yu-Long; Li, Xi; Yang, Xiao-Hong; Huang, Min; Hu, Kun; Li, Lu-Hai; Wei, Yen

    2017-08-10

    Spurred on by advances in materials chemistry and nanotechnology, scientists have developed many novel nanopreparations for cancer diagnosis and therapy. To treat complex malignant tumors effectively, multifunctional nanomedicines with targeting ability, imaging properties and controlled drug release behavior should be designed and exploited. The therapeutic efficiency of loaded drugs can be dramatically improved using redox-responsive nanoplatforms which can sense the differences in the redox status of tumor tissues and healthy ones. Redox-sensitive nanocarriers can be constructed from both organic and inorganic nanomaterials; however, at present, drug delivery nanovectors progressively lean towards inorganic nanomaterials because of their facile synthesis/modification and their unique physicochemical properties. In this review, we focus specifically on the preparation and application of redox-sensitive nanosystems based on mesoporous silica nanoparticles (MSNs), carbon nanomaterials, magnetic nanoparticles, gold nanomaterials and other inorganic nanomaterials. We discuss relevant examples of redox-sensitive nanosystems in each category. Finally, we discuss current challenges and future strategies from the aspect of material design and practical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Size and Crystallinity in Protein-Templated Inorganic Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, Craig C.; Uchida, Masaki; Reichhardt, Courtney; Harrington, Richard; Kang, Sebyung; Klem, Michael T.; Parise, John B.; Douglas, Trevor (SBU); (Montana)

    2010-12-01

    Protein cages such as ferritins and virus capsids have been used as containers to synthesize a wide variety of protein-templated inorganic nanoparticles. While identification of the inorganic crystal phase has been successful in some cases, very little is known about the detailed nanoscale structure of the inorganic component. We have used pair distribution function analysis of total X-ray scattering to measure the crystalline domain size in nanoparticles of ferrihydrite, {gamma}-Fe{sub 2}O{sub 3}, Mn{sub 3}O{sub 4}, CoPt, and FePt grown inside 24-meric ferritin cages from H. sapiens and P. furiosus. The material properties of these protein-templated nanoparticles are influenced by processes at a variety of length scales: the chemistry of the material determines the precise arrangement of atoms at very short distances, while the interior volume of the protein cage constrains the maximum nanoparticle size attainable. At intermediate length scales, the size of coherent crystalline domains appears to be constrained by the arrangement of crystal nucleation sites on the interior of the cage. On the basis of these observations, some potential synthetic strategies for the control of crystalline domain size in protein-templated nanoparticles are suggested.

  13. Study of nonproportionality in the light yield of inorganic scintillators

    International Nuclear Information System (INIS)

    Singh, Jai

    2011-01-01

    Using a phenomenological approach, the light yield is derived for inorganic scintillators as a function of the rates of linear, bimolecular, and Auger processes occurring in the electron track initiated by an x ray or a γ-ray photon. A relation between the track length and incident energy is also derived. It is found that the nonproportionality in the light yield can be eliminated if either nonlinear processes of interaction among the excited electrons, holes, and excitons can be eliminated from occurring or the high density situation can be relieved by diffusion of carriers from the track at a faster rate than the rate of activation of nonlinear processes. The influence of the track length and radius on the yield nonproportionality is discussed in view of the known experimental results. Inventing new inorganic scintillating materials with high carrier mobility can lead to a class of proportional inorganic scintillators. Results agree qualitatively with experimental results for the dependence of light yield on the incident energy.

  14. Inorganic carbon availability in benthic diatom communities: photosynthesis and migration.

    Science.gov (United States)

    Marques da Silva, Jorge; Cruz, Sónia; Cartaxana, Paulo

    2017-09-05

    Diatom-dominated microphytobenthos (MPB) is the main primary producer of many intertidal and shallow subtidal environments, being therefore of critical importance to estuarine and coastal food webs. Owing to tidal cycles, intertidal MPB diatoms are subjected to environmental conditions far more variable than the ones experienced by pelagic diatoms (e.g. light, temperature, salinity, desiccation and nutrient availability). Nevertheless, benthic diatoms evolved adaptation mechanisms to these harsh conditions, including the capacity to move within steep physical and chemical gradients, allowing them to perform photosynthesis efficiently. In this contribution, we will review present knowledge on the effects of dissolved inorganic carbon (DIC) availability on photosynthesis and productivity of diatom-dominated MPB. We present evidence of carbon limitation of photosynthesis in benthic diatom mats and highly productive MPB natural communities. Furthermore, we hypothesize that active vertical migration of epipelic motile diatoms could overcome local depletion of DIC in the photic layer, providing the cells alternately with light and inorganic carbon supply. The few available longer-term experiments on the effects of inorganic carbon enrichment on the productivity of diatom-dominated MPB have yielded inconsistent results. Therefore, further studies are needed to properly assess the response of MPB communities to increased CO 2 and ocean acidification related to climate change.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Author(s).

  15. Kinetics of Inorganic Calcite Dissolution in Seawater under Pressure

    Science.gov (United States)

    Dong, S.; Subhas, A.; Rollins, N.; Berelson, W.; Adkins, J. F.

    2016-02-01

    While understanding calcium carbonate dissolution is vital in constructing global carbon cycles and predicting the effect of seawater acidification as a result of increasing atmospheric CO2, there is still a major debate over the basic formulation of a dissolution rate law. The kinetics of calcium carbonate dissolution are typically described by the equation: Rate=k(1-Ω)n, while Ω=[Ca2+][CO32-]/Ksp. In this study, 13C-labeled calcite is dissolved in unlabeled seawater and the evolving d13C composition of the fluid is traced over time to establish dissolution rate. Instead of changing ion concentration to obtain varying Ω (as in our previous study; Subhas et al. 2015), we changed Ksp by conducting experiments under different pressures (described in theory as ∂lnKsp/∂P=-ΔV/RT, where ΔV is partial molal volume). This involved the construction of a pressure vessel that could hold our sample bag and provide aliquots while remaining pressurized. Pressure experiments were conducted between 0-2000PSI. Results support the conclusion in our previous study that near-equilibrium dissolution rates are highly nonlinear, but give a disparate relationship between undersaturation and dissolution rate if Ω is calculated assuming the specific ΔV embedded in CO2SYS. A revised ΔV from -37cm3 to -65cm3 would make the dissolution formulation equation agree, but clearly appears unreasonable. Our results are explained by a pressure effect on carbonate dissolution kinetics over and above the influence of pressure on Ω. If this is a phenomenon that occurs in nature, then we would predict that dissolution should be occurring shallower in the water column (as sometimes observed) than indicated by standard Ω calculations.

  16. Evaluation of in vitro antibacterial effect of room curing polymethylmethacrylate material adding nano-silver base inorganic antibacterial agents

    International Nuclear Information System (INIS)

    Jia Chunli; Wang Xiaorong; Zhang Citong; Sun Shiqun; Yang Yun

    2012-01-01

    Objective: To investigate the antibacterial effect of room curing polymethylmethacrylate (PMMA) material adding nano-silver base inorganic antibacterial agent and to detect the changes of its mechanical property. Methods: Nano-silver base inorganic antibacterial agent was added to the room curing PMMA material in the range of 0.5% -3.0% at an interval of 0.5% by ball milling specimen. Antibacterial rates of the specimens were detected by film method. Bending strength, impact strength, and wear resistance of the specimens were respectively detected on electronic universal testing machine, impact test machine and friction and wear test machine. Results: The antibacterial rates of Streptococcus mutans and Candida albicans were more than 50% when antibiotics content was 1.0% . The antibacterial rates of Streptococcus mutans and Candida albicans were more than 90% when the antibiotics content was 2.5% . The three mechanical properties were increased compared with control group when the antibacterial agents were in the range of 1.0% -1.5% . Then the three mechanical properties were decreased with the increasing of antimicrobial concentration. When the antibiotics content was 2.0% , the wear resistance had significant difference compared with control group (P<0.05); when the antibiotics content was 2.5% , the bending strength and impact strength had significant difference compared with control group (P<0.05). Conclusion: The antibacterial effect of room curing PMMA adding nano-silver base inorganic antibacterial agent is ideal. The antibacterial rate is increased gradually with the increasing content of antibacterial agents. There is no significant effect on the mechanical properties of room curing PMMA material, but the antibacterial effects are satisfied when the content of antibacterial agents is 2.0% . (authors)

  17. Synthesis, Processing, and Characterization of Inorganic-Organic Hybrid Cross-Linked Silica, Organic Polyimide, and Inorganic Aluminosilicate Aerogels

    Science.gov (United States)

    Nguyen, Baochau N.; Guo, Haiquan N.; McCorkle, Linda S.

    2014-01-01

    As aerospace applications become ever more demanding, novel insulation materials with lower thermal conductivity, lighter weight and higher use temperature are required to fit the aerospace application needs. Having nanopores and high porosity, aerogels are superior thermal insulators, among other things. The use of silica aerogels in general is quite restricted due to their inherent fragility, hygroscopic nature, and poor mechanical properties, especially in extereme aerospace environments. Our research goal is to develop aerogels with better mechanical and environmental stability for a variety of aeronautic and space applications including space suit insulation for planetary surface missions, insulation for inflatable structures for habitats, inflatable aerodynamic decelerators for entry, descent and landing (EDL) operations, and cryotank insulation for advance space propulsion systems. Different type of aerogels including organic-inorganic polymer reinforced (hybrid) silica-based aerogels, polyimide aerogels and inorganic aluminosilicate aerogels have been developed and examined.

  18. Inorganic bromine in the marine boundary layer: a critical review

    Directory of Open Access Journals (Sweden)

    R. Sander

    2003-01-01

    Full Text Available The cycling of inorganic bromine in the marine boundary layer (mbl has received increased attention in recent years. Bromide, a constituent of sea water, is injected into the atmosphere in association with sea-salt aerosol by breaking waves on the ocean surface. Measurements reveal that supermicrometer sea-salt aerosol is substantially depleted in bromine (often exceeding 50% relative to conservative tracers, whereas marine submicrometer aerosol is often enriched in bromine. Model calculations, laboratory studies, and field observations strongly suggest that the supermicrometer depletions reflect the chemical transformation of particulate bromide to reactive inorganic gases that influence the processing of ozone and other important constituents of marine air. Mechanisms for the submicrometer enrichments are not well understood. Currently available techniques cannot reliably quantify many Br containing compounds at ambient concentrations and, consequently, our understanding of inorganic Br cycling over the oceans and its global significance are uncertain. To provide a more coherent framework for future research, we have reviewed measurements in marine aerosol, the gas phase, and in rain. We also summarize sources and sinks, as well as model and laboratory studies of chemical transformations. The focus is on inorganic bromine over the open oceans outside the polar regions. The generation of sea-salt aerosol at the ocean surface is the major tropospheric source producing about 6.2 Tg/a of bromide. The transport of Br from continents (as mineral aerosol, and as products from biomass-burning and fossil-fuel combustion can be of local importance. Transport of degradation products of long-lived Br containing compounds from the stratosphere and other sources contribute lesser amounts. Available evidence suggests that, following aerosol acidification, sea-salt bromide reacts to form Br2 and BrCl that volatilize to the gas phase and photolyze in daylight

  19. Electrochemical impedance spectroscopy and zero resistance ammeters (ZRA) as tools for studying the behaviour of zinc-rich inorganic coatings

    International Nuclear Information System (INIS)

    Novoa, X.R.; Izquierdo, M.; Merino, P.; Espada, L.

    1989-01-01

    Impedance spectra obtained from zinc-rich inorganic coatings after one year of atmospheric exposure, have been interpreted on the basis of the study of the galvanic couple Zn/Fe, using a potentiostat combined with two ZRA. The area ratio of Zn/Fe is one of the factors conditioning the cathodic protection of iron. When this ratio is locally 1:1 or lower, corrosion spots are detected on iron and the overall impedance spectra shows a 'flattened' shape at low frequencies. The type of atmosphere determines the durability and evolution of the coating's protection mechanism. (author) 9 refs., 13 figs

  20. Ultraviolet absorption detection of DNA in gels

    International Nuclear Information System (INIS)

    Mahon, A.R.

    1998-01-01

    A method and apparatus for the detection and quantification of large fragments of unlabelled deoxyribonucleic acid (DNA) in agarose gels is presented. The technique is based on ultra-violet (UV) absorption by nucleotides. A deuterium lamp was used to illuminate regions of an electrophoresis gel. As DNA bands passed through the illuminated region of the gel the amount of UV light transmitted was reduced due to DNA absorption. Two detection systems were investigated. In the first system, synthetic chemical vapour deposition (CVD) diamond strip detectors were used to locate regions of DNA in the gels by detecting the transmitted light. CVD diamond has a high indirect band gap of 5.45 eV and is therefore sensitive to UV photons of wavelengths < 224 nm. A number of CVD diamond samples were characterised to investigate their suitability as detectors for this application. The detectors' quantum efficiency, UV response and time response were measured. DNA bands containing as little as 20 ng were detected by the diamond. In a second system, a deuterium lamp was used to illuminate individual sample lanes of an electrophoresis gel via an array of optical fibres. During electrophoresis the regions of DNA were detected with illumination at 260 nm, using a UV-sensitive charge coupled device (CCD). As the absorption coefficient of a DNA sample is approximately proportional to its mass, the technique is inherently quantitative. This system had a detection limit of 0.25 ng compared with 2-10 ng for the most popular conventional technique, ethidium bromide (EtBr) staining. Using this detection technique, the DNA sample remains in its native state. The removal of carcinogenic dyes from the detection procedure greatly reduces associated biological hazards. (author)

  1. Effects of inorganic substances on water splitting in ion-exchange membranes; II. Optimal contents of inorganic substances in preparing bipolar membranes.

    Science.gov (United States)

    Kang, Moon-Sung; Choi, Yong-Jin; Moon, Seung-Hyeon

    2004-05-15

    An approach to enhancing the water-splitting performance of bipolar membranes (BPMs) is introducing an inorganic substance at the bipolar (BP) junction. In this study, the immobilization of inorganic matters (i.e., iron hydroxides and silicon compounds) at the BP junction and the optimum concentration have been investigated. To immobilize these inorganic matters, novel methods (i.e., electrodeposition of the iron hydroxide and processing of the sol-gel to introduce silicon groups at the BP junction) were suggested. At optimal concentrations, the immobilized inorganic matters significantly enhanced the water-splitting fluxes, indicating that they provide alternative paths for water dissociation, but on the other hand possibly reduce the polarization of water molecules between the sulfonic acid and quaternary ammonium groups at high contents. Consequently, the amount of inorganic substances introduced should be optimized to obtain the maximum water splitting in the BPM.

  2. Organic-inorganic semiconductor hybrid systems. Structure, morphology, and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    El Helou, Mira

    2012-08-22

    This dissertation addresses the preparation and characterization of hybrid semiconducting systems combining organic with inorganic materials. Characterization methods used included to determine the structure, morphology, and thermal stability comprised X-ray diffraction (XRD), atomic force microscopy (AFM), thermal desorption spectroscopy (TDS), and X-ray photoelectron spectroscopy (XPS). One organic-inorganic semiconducting system was pentacene (C{sub 22}H{sub 14}) and zinc oxide. This interface was investigated in detail for pentacene on an oxygen-terminated zinc oxide surface, i.e. ZnO(000 anti 1). An extended study on the promising p-n junction was carried out for pentacene on ZnO with different orientations which exhibit different chemical and structural characteristics: ZnO(000 anti 1), ZnO(0001), and ZnO(10 anti 10). Moreover, the organic crystal structure of pentacene was selectively tuned by carefully choosing the substrate temperature. This defined interface with a physisorbed pentacene layer on ZnO was characterized by optical absorption which depends on the temperature of the measured system, the pentacene film thickness, and the molecular orientation and packing. The high quality of the pentacene films allowed in one case to characterize the Davydov splitting by linear polarized light focused on a single crystallite. Another subject in the field of organic-inorganic hybrid materials comprised conjugated dithiols used as self-assembled monolayers (SAMs) for immobilizing semiconducting CdS nanoparticles (NPs) on Au substrates. It was demonstrated that an appropriate selection and preparation of the conjugated SAMs is crucial for building up a light-addressable potentiometric sensor with a sufficient efficiency. An optimized electron transfer was achieved with SAMs of long range ordering, high stability, and adequate conductivity. This was examined for different linkers and was best for stilbenedithiol immobilized in solution at higher temperatures. Due

  3. Determination of inorganic mercury and total mercury in biological and environmental samples by flow injection-cold vapor-atomic absorption spectrometry using sodium borohydride as the sole reducing agent

    International Nuclear Information System (INIS)

    Rio Segade, Susana; Tyson, Julian F.

    2003-01-01

    A simple, fast, precise and accurate method to determine inorganic mercury and total mercury in biological and environmental samples was developed. The optimized flow-injection mercury system permitted the separate determination of inorganic mercury and total mercury using sodium borohydride as reducing agent. Inorganic mercury was selectively determined after reduction with 10 -4 % w/v sodium borohydride, while total mercury was determined after reduction with 0.75% w/v sodium borohydride. The calibration graphs were linear up to 30 ng ml -1 . The detection limits of the method based on three times the standard deviation of the blank were 24 and 3.9 ng l -1 for total mercury and inorganic mercury determination, respectively. The relative standard deviation was less than 1.5% for a 10 ng ml -1 mercury standard. As a means of checking method performance, deionized water and pond water samples were spiked with methylmercury and inorganic mercury; quantitative recovery for total mercury and inorganic mercury was obtained. The accuracy of the method was verified by analyzing alkaline and acid extracts of five biological and sediment reference materials. Microwave-assisted extraction procedures resulted in higher concentrations of recovered mercury species, lower matrix interference with mercury determination and less time involved in sample treatment than conventional extraction procedures. The standard addition method was only needed for calibration when biological samples were analyzed. The detection limits were in the range of 1.2-19 and 6.6-18 ng g -1 in biological and sediment samples for inorganic mercury and total mercury determination, respectively

  4. Performance of different tomato cultivars under organic and inorganic regimes

    International Nuclear Information System (INIS)

    Ali, I.; Khattak, A. M.; Ali, M.; Ullah, K.

    2015-01-01

    To study the performance of different tomato cultivars under organic and inorganic regimes an experiment was conducted at New Developmental Farm, The University of Agriculture, Peshawar, Pakistan during the summer 2013-14. The experiment was laid out in RCBD with split plot arrangement having four replications. Organic regimes (FYM, poultry manure and mushroom compost) and inorganic (NPK) regimes were allotted to main plot, while cultivars (Roma VF, Roma, Super Classic, Bambino and Rio Grande) were subjected to sub plots. Organic and Inorganic regimes significantly (P ≤ 0.01) influenced all the studied attributes of tomato cultivars. Among different cultivars, Roma gave maximum plant survival (93.8 percentage), number of leaves plant (84.1), number of flower inflorescence (5.4), number of fruits inflorescence (4.3), number of fruit plant (25.4), fruit size (63.9 cm) fruit weight plant (9.1 kg) and total yield (22.9 t ha). However, it was closely followed by cultivar Rio Grande for number of leaves plant (79.6), number of flower inflorescence (5.1), number of fruits inflorescence (4.0) and number of fruits plant (24.9). Cultivar Super Classic produced minimum number of leaves plant (67.7), flower inflorescence (4.8), fruit size (60.6 cm), fruit weight plant (8.6 kg) and total yield (21.7 t ha). Similarly, highest plant survival (90.0 percentage), number of flower inflorescence (5.1), number of fruits inflorescence (4.0), number of fruit plant (25.4), fruit size (62.4 ml), fruit weight plant (8.90 kg) and total yield (22.9 t ha) were recorded in plants provided with organic conditions Roma cultivar performed better than other cultivars under the agro climatic condition of Peshawar followed by cultivar Rio Grande. Therefore, organic tomato production, and these two cultivars are recommended to be grown in Peshawar area. (author)

  5. Novel inorganic materials for polymer electrolyte and alkaline fuel cells

    Science.gov (United States)

    Tadanaga, Kiyoharu

    2012-06-01

    Inorganic materials with high ionic conductivity must have big advantages for the thermal and long term stability when the materials are used as the electrolyte of fuel cells. In the present paper, novel ionic conductive inorganic materials for polymer electrolyte fuel cells (PEFCs) and all solid state alkaline fuel cells (AFCs) that have been developed by our group have been reviewed. PEFCs which can operate in temperature range from 100 to 200 °C are intensively studied because of some advantages such as reduction of CO poisoning of Pt catalyst and acceleration of electrode reactions. We showed that the fuel cells using the composite membranes prepared from phosphosilicate gel powder and polyimide precursor can operate in the temperature range from 30 to 180 °C. We also found that the inorganic-organic hybrid membranes with acid-base pairs from 3-aminopropyl triethoxy silane and H2SO4 or H3PO4 show high proton conductivity under dry atmosphere, and the membranes are thermally stable at intermediate temperatures. On the other hand, because the use of noble platinum is the serious problem for the commercialization of PEFCs and because oxidation reactions are usually faster than those of acid-type fuel cells, alkaline type fuel cells, in which a nonplatinum catalyst can be used, are attractive. Recently, we have proposed an alkaline-type direct ethanol fuel cell (DEFC) using a natural clay electrolyte with non-platinum catalysts. So-called hydrotalcite clay, Mg-Al layered double hydroxide intercalated with CO32- (Mg-Al CO32- LDH), has been proved to be a hydroxide ion conductor. An alkalinetype DEFC using Mg-Al CO32- LDH as the electrolyte and aqueous solution of ethanol and potassium hydroxide as a source of fuel exhibited excellent electrochemical performance.

  6. Leaching of DOC, DN, and inorganic constituents from scrap tires.

    Science.gov (United States)

    Selbes, Meric; Yilmaz, Ozge; Khan, Abdul A; Karanfil, Tanju

    2015-11-01

    One concern for recycle and reuse of scrap tires is the leaching of tire constituents (organic and inorganic) with time, and their subsequent potential harmful impacts in environment. The main objective of this study was to examine the leaching of dissolved organic carbon (DOC), dissolved nitrogen (DN), and selected inorganic constituents from scrap tires. Different sizes of tire chips and crumb rubber were exposed to leaching solutions with pH's ranging from 3.0 to 10.0 for 28days. The leaching of DOC and DN were found to be higher for smaller size tire chips; however, the leaching of inorganic constituents was independent of the size. In general, basic pH conditions increased the leaching of DOC and DN, whereas acidic pH conditions led to elevated concentrations of metals. Leaching was minimal around the neutral pH values for all the monitored parameters. Analysis of the leaching rates showed that components associated with the rubbery portion of the tires (DOC, DN, zinc, calcium, magnesium, etc.) exhibited an initial rapid followed by a slow release. On the other hand, a constant rate of leaching was observed for iron and manganese, which are attributed to the metal wires present inside the tires. Although the total amounts that leached varied, the observed leaching rates were similar for all tire chip sizes and leaching solutions. Operation under neutral pH conditions, use of larger size tire chips, prewashing of tires, and removal of metal wires prior to application will reduce the impact of tire recycle and reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Inorganic and organic contaminants in Alaskan shorebird eggs.

    Science.gov (United States)

    Saalfeld, David T; Matz, Angela C; McCaffery, Brian J; Johnson, Oscar W; Bruner, Phil; Lanctot, Richard B

    2016-05-01

    Many shorebird populations throughout North America are thought to be declining, with potential causes attributed to habitat loss and fragmentation, reduced prey availability, increased predation, human disturbance, and increased exposure to environmental pollutants. Shorebirds may be particularly vulnerable to contaminant exposure throughout their life cycle, as they forage primarily on invertebrates in wetlands, where many contaminants accumulate disproportionately in the sediments. Therefore, it is important to document and monitor shorebird populations thought to be at risk and assess the role that environmental contaminants may have on population declines. To investigate potential threats and provide baseline data on shorebird contaminant levels in Alaskan shorebirds, contaminant concentrations were evaluated in shorebird eggs from 16 species residing in seven geographic distinct regions of Alaska. Similar to previous studies, low levels of most inorganic and organic contaminants were found, although concentrations of several inorganic and organic contaminants were higher than those of previous studies. For example, elevated strontium levels were observed in several species, especially black oystercatcher (Haematopus bachmani) sampled in Prince William Sound, Alaska. Additionally, contaminant concentrations varied among species, with significantly higher concentrations of inorganic contaminants found in eggs of pectoral sandpiper (Calidris melanotos), semipalmated sandpiper (Calidris pusilla), black oystercatcher, and bar-tailed godwit (Limosa lapponica). Similarly, significantly higher concentrations of some organic contaminants were found in the eggs of American golden plover (Pluvialis dominica), black-bellied plover (Pluvialis squatarola), pacific golden plover (Pluvialis fulva), bar-tailed godwit, and semipalmated sandpiper. Despite these elevated levels, current concentrations of contaminants in shorebird eggs suggest that breeding environments are

  8. 2010 INORGANIC CHEMISTRY GORDON RESEARCH CONFERENCE JUNE 20 - 25, 2010

    Energy Technology Data Exchange (ETDEWEB)

    JOHN LOCKEMEYER

    2010-06-25

    The Inorganic Chemistry GRC is one of the longest-standing of the GRCs, originating in 1951. Over the years, this conference has played a role in spawning many other GRCs in specialized fields, due to the involvement of elements from most of the periodic table. These include coordination, organometallic, main group, f-element, and solid state chemistries; materials science, catalysis, computational chemistry, nanotechnology, bioinorganic, environmental, and biomedical sciences just to name a few. The 2010 Inorganic Chemistry GRC will continue this tradition, where scientists at all levels from academic, industrial, and national laboratories meet to define the important problems in the field and to highlight emerging opportunities through exchange of ideas and discussion of unpublished results. Invited speakers will present on a wide variety of topics, giving attendees a look at areas both inside and outside of their specialized areas of interest. In addition to invited speakers, the poster sessions at GRCs are a key feature of the conference. All conferees at the Inorganic Chemistry GRC are invited to present a poster on their work, and here the informal setting promotes the free exchange of ideas and fosters new relationships. As in previous years, we will offer poster presenters the opportunity to compete for one of several program spots in which they can give an oral presentation based on the subject matter of their poster. This is a great way to get your work noticed by the scientists attending the meeting, especially for those early in their career path such as junior faculty members, postdoctoral fellows, and those at comparable ranks. Anyone interested in participating in the poster competition should bring an electronic slide presentation and a small hard copy of their poster to submit to the committee.

  9. Microbial volatilization of inorganic selenium from landfill leachate; Mikrobiologische Volatilisierung von anorganischem Selen aus Deponiesickerwaessern bei umweltrelevanten Konzentrationen

    Energy Technology Data Exchange (ETDEWEB)

    Peitzsch, Mirko; Kremer, Daniel; Kersten, Michael [Mainz Univ. (Germany). Inst. fuer Geowissenschaften

    2010-04-15

    Background, aim, and scope: Determination of the rates of microbial alkylation are of interest with respect to natural attenuation of harmful selenium concentrations or selenium charges in contaminated ecosystems. Materials and methods: Landfill gas and the headspace of microbial microcosm incubation vessels were sampled in Tedlar {sup registered} bags. On-line hyphenation of an efficient enrichment method (cryotrapping-cryofocusing), a gaschromatographic separation technique, and the sensitive ICP-MS detection system was used for speciation of volatile organoselenium compounds. A detection limit at the ultra trace level (pg Se) was achieved with this CT-CF-GC-ICP-MS technique. Results: Incubation of landfill leachate with Alternata alternata as an active methylating organism showed a production of volatile selenium compounds (DMSe, DMDSe, EMDSe, DEDSe) over the whole range of applied inorganic selenium concentrations (10 {mu}gL{sup -1} to 10 mgL{sup -1}), with volatilization rates of up to 10 mg m{sup -3}d{sup -1}. For selenium concentrations of 1 mgL{sup -1} in the nutrient broth, up to 7 % of the inorganic selenium was volatilized after one week. The same volatile selenium compounds were observed in landfill gas. Discussion: The amount of volatilized selenium was comparable to that found in other studies with microbial pure cultures as well as isolates from waters or soils, but at much lower initial concentrations used in the incubations. Conclusions: The alkylation of selenium in the enriched mixed culture from landfill leachate at environmentally relevant concentrations indicates that the organoselenium compounds of same species composition and distribution determined in landfill gas are produced by microorganisms. Recommendations and perspectives: The microbial alkylation of toxic inorganic selenium species to less toxic or non-toxic, volatile compounds is an efficient method for bioremediation of contaminated sites even at relatively low Se concentrations.

  10. Combustion synthesis of inorganic materials; Muki zairyo no nensho gose

    Energy Technology Data Exchange (ETDEWEB)

    Oyanagi, M. [Ryukoku University, Kyoto (Japan)

    1999-11-01

    Combustion synthesis of porous titan carbide is outlined. In combustion synthesis, exothermic chain reaction, which is induced by igniting at one point of the simple substance mixture, propagates the combustion wave, and the compound is synthesized, which can be sintered by it. By this method, to this day intermetallic compounds, ceramics and high melting point composite materials have been synthesized, and synthetics can be made compact by adding pressure during or just after the reaction. Recently, applying the induction heating jointly, preheating before the reaction and heat treatment after the reaction can be controlled, accordingly, many high melting point inorganic compounds and composite materials can be made by combustion synthesis under pressure. (NEDO)

  11. Low-melting point inorganic nitrate salt heat transfer fluid

    Science.gov (United States)

    Bradshaw, Robert W [Livermore, CA; Brosseau, Douglas A [Albuquerque, NM

    2009-09-15

    A low-melting point, heat transfer fluid made of a mixture of four inorganic nitrate salts: 9-18 wt % NaNO.sub.3, 40-52 wt % KNO.sub.3, 13-21 wt % LiNO.sub.3, and 20-27 wt % Ca(NO.sub.3).sub.2. These compositions can have liquidus temperatures less than 100 C; thermal stability limits greater than 500 C; and viscosity in the range of 5-6 cP at 300 C; and 2-3 cP at 400 C.

  12. Simultaneous determination of inorganic and organic anions by ion chromatography

    International Nuclear Information System (INIS)

    Park, Yang Soon; Joe, Ki Soo; Han, Sun Ho; Park, Soon Dal; Choi, Kwang Soon

    1999-06-01

    Four methods were investigated for the simultaneous determination of several inorganic and organic anions in aqueous solution by ion chromatography. The first is two columns coupled system. The second is the gradient elution system with an anion exchange column. The third is the system with a mixed-mode stationary phase. The fourth is the system with an anion exchange column and the eluant of low conductivity without ion suppressor. The advantages and disadvantages of individual systems were discussed. The suitable methods were proposed for the application to the samples of the nuclear power industry and the environment. (author)

  13. Inorganic arsenic impairs differentiation and functions of human dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Macoch, Mélinda; Morzadec, Claudie [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Fardel, Olivier [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Pôle Biologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033 Rennes (France); Vernhet, Laurent, E-mail: laurent.vernhet@univ-rennes1.fr [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France)

    2013-01-15

    Experimental studies have demonstrated that the antileukemic trivalent inorganic arsenic prevents the development of severe pro-inflammatory diseases mediated by excessive Th1 and Th17 cell responses. Differentiation of Th1 and Th17 subsets is mainly regulated by interleukins (ILs) secreted from dendritic cells (DCs) and the ability of inorganic arsenic to impair interferon-γ and IL-17 secretion by interfering with the physiology of DCs is unknown. In the present study, we demonstrate that high concentrations of sodium arsenite (As(III), 1–2 μM) clinically achievable in plasma of arsenic-treated patients, block differentiation of human peripheral blood monocytes into immature DCs (iDCs) by inducing their necrosis. Differentiation of monocytes in the presence of non-cytotoxic concentrations of As(III) (0.1 to 0.5 μM) only slightly impacts endocytotic activity of iDCs or expression of co-stimulatory molecules in cells activated with lipopolysaccharide. However, this differentiation in the presence of As(III) strongly represses secretion of IL-12p70 and IL-23, two major regulators of Th1 and Th17 activities, from iDCs stimulated with different toll-like receptor (TLR) agonists in metalloid-free medium. Such As(III)-exposed DCs also exhibit reduced mRNA levels of IL12A and/or IL12B genes when activated with TLR agonists. Finally, differentiation of monocytes with non-cytotoxic concentrations of As(III) subsequently reduces the ability of activated DCs to stimulate the release of interferon-γ and IL-17 from Th cells. In conclusion, our results demonstrate that clinically relevant concentrations of inorganic arsenic markedly impair in vitro differentiation and functions of DCs, which may contribute to the putative beneficial effects of the metalloid towards inflammatory autoimmune diseases. Highlights: ► Inorganic arsenic impairs differentiation and functions of human dendritic cells (DCs) ► Arsenite (> 1 μM) blocks differentiation of dendritic cells by

  14. Modified inorganic surfaces as a model for hydroxyapatite growth

    CERN Document Server

    Pramatarova, Lilyana

    2006-01-01

    The process by which organisms in Nature create minerals is known as biomineralization - a process that involves complex interactions between inorganic ions, crystals and organic molecules; resulting in a controlled nucleation and growth of minerals from aqueous solutions. During the last few decades, biomineralization has been intensively studied, due to its involvement in a wide range of biological events; starting with the formation of bones, teeth, cartilage, shells, coral (so-called physiological mineralization) and encompassing pathological mineralization, i.e. the formation of kidney st

  15. Inorganic elements in sugar samples consumed in several countries

    International Nuclear Information System (INIS)

    Salles, P.M.B.; Campos, T.P.R.; Menezes, M.A. de B.C.; Jacimovic, Radojko

    2016-01-01

    Sugar is considered safe food ingredient, however, it can present inorganic elements as impurities uptake during cultivation and production process. Therefore, this study aimed at identifies the presence of these elements in granulated and brown sugar samples available for consumption in public places in several countries. The neutron activation technique applying the methodology to analyse larger samples, 5 g-sample, established at CDTN/CNEN based on k 0 -method was used to determine the elemental concentrations. Several essential and nonessential elements were determined in a large range of concentrations. The results are discussed comparing to maximum values foreseen in the international and Brazilian legislations. (author)

  16. Organic-Inorganic Composites of Semiconductor Nanocrystals for Efficient Excitonics.

    Science.gov (United States)

    Guzelturk, Burak; Demir, Hilmi Volkan

    2015-06-18

    Nanocomposites of colloidal semiconductor nanocrystals integrated into conjugated polymers are the key to soft-material hybrid optoelectronics, combining advantages of both plastics and particles. Synergic combination of the favorable properties in the hybrids of colloidal nanocrystals and conjugated polymers offers enhanced performance and new functionalities in light-generation and light-harvesting applications, where controlling and mastering the excitonic interactions at the nanoscale are essential. In this Perspective, we highlight and critically consider the excitonic interactions in the organic-inorganic nanocomposites to achieve highly efficient exciton transfer through rational design of the nanocomposites. The use of strong excitonic interactions in optoelectronic devices can trigger efficiency breakthroughs in hybrid optoelectronics.

  17. Inorganic arsenic impairs differentiation and functions of human dendritic cells

    International Nuclear Information System (INIS)

    Macoch, Mélinda; Morzadec, Claudie; Fardel, Olivier; Vernhet, Laurent

    2013-01-01

    Experimental studies have demonstrated that the antileukemic trivalent inorganic arsenic prevents the development of severe pro-inflammatory diseases mediated by excessive Th1 and Th17 cell responses. Differentiation of Th1 and Th17 subsets is mainly regulated by interleukins (ILs) secreted from dendritic cells (DCs) and the ability of inorganic arsenic to impair interferon-γ and IL-17 secretion by interfering with the physiology of DCs is unknown. In the present study, we demonstrate that high concentrations of sodium arsenite (As(III), 1–2 μM) clinically achievable in plasma of arsenic-treated patients, block differentiation of human peripheral blood monocytes into immature DCs (iDCs) by inducing their necrosis. Differentiation of monocytes in the presence of non-cytotoxic concentrations of As(III) (0.1 to 0.5 μM) only slightly impacts endocytotic activity of iDCs or expression of co-stimulatory molecules in cells activated with lipopolysaccharide. However, this differentiation in the presence of As(III) strongly represses secretion of IL-12p70 and IL-23, two major regulators of Th1 and Th17 activities, from iDCs stimulated with different toll-like receptor (TLR) agonists in metalloid-free medium. Such As(III)-exposed DCs also exhibit reduced mRNA levels of IL12A and/or IL12B genes when activated with TLR agonists. Finally, differentiation of monocytes with non-cytotoxic concentrations of As(III) subsequently reduces the ability of activated DCs to stimulate the release of interferon-γ and IL-17 from Th cells. In conclusion, our results demonstrate that clinically relevant concentrations of inorganic arsenic markedly impair in vitro differentiation and functions of DCs, which may contribute to the putative beneficial effects of the metalloid towards inflammatory autoimmune diseases. Highlights: ► Inorganic arsenic impairs differentiation and functions of human dendritic cells (DCs) ► Arsenite (> 1 μM) blocks differentiation of dendritic cells by

  18. Solidification of low-level wastes by inorganic binder

    International Nuclear Information System (INIS)

    Sasaki, M.T.; Shimojo, M.; Suzuki, K.; Kajikawa, A.; Karasawa, Y.

    1995-01-01

    The use of an alkali activated slag binder has been studied for solidification and stabilization of low-level wastes in nuclear power stations and spent fuel processing facilities. The activated slag effectively formed waste products having good physical properties with high waste loading for sodium sulfate, sodium nitrate, calcium pyrophosphate/phosphate and spent ion-exchange resins. Moreover, the results of the study suggest the slag has the ability to become a common inorganic binder for the solidification of various radioactive wastes. This paper also describes the fixation of radionuclides by the activated slag binder

  19. Potential Role of Inorganic Confined Environments in Prebiotic Phosphorylation.

    Science.gov (United States)

    Dass, Avinash Vicholous; Jaber, Maguy; Brack, André; Foucher, Frédéric; Kee, Terence P; Georgelin, Thomas; Westall, Frances

    2018-03-05

    A concise outlook on the potential role of confinement in phosphorylation and phosphate condensation pertaining to prebiotic chemistry is presented. Inorganic confinement is a relatively uncharted domain in studies concerning prebiotic chemistry, and even more so in terms of experimentation. However, molecular crowding within confined dimensions is central to the functioning of contemporary biology. There are numerous advantages to confined environments and an attempt to highlight this fact, within this article, has been undertaken, keeping in context the limitations of aqueous phase chemistry in phosphorylation and, to a certain extent, traditional approaches in prebiotic chemistry.

  20. Matrices for Sensors from Inorganic, Organic, and Biological Nanocomposites

    Directory of Open Access Journals (Sweden)

    Eugenia Pechkova

    2011-08-01

    Full Text Available Matrices and sensors resulting from inorganic, organic and biological nanocomposites are presented in this overview. The term nanocomposite designates a solid combination of a matrix and of nanodimensional phases differing in properties from the matrix due to dissimilarities in structure and chemistry. The nanoocomposites chosen for a wide variety of health and environment sensors consist of Anodic Porous Allumina and P450scc, Carbon nanotubes and Conductive Polymers, Langmuir Blodgett Films of Lipases, Laccases, Cytochromes and Rhodopsins, Three-dimensional Nanoporous Materials and Nucleic Acid Programmable Protein Arrays.

  1. Mass spectrometry a versatile aid to inorganic analysis

    International Nuclear Information System (INIS)

    Stefani, Rene

    1976-01-01

    Several hundred publications have appeared in the last three years that deal with applications of Mass Spectrometry to inorganic analysis. Bulk and localized trace analysis, surface and thin film characterization and microstructure examination are currently performed by Secondary Ion Mass Spectrometry, Spark Source Mass Spectrometry and the newly developed Laser Probe Mass Spectrometry. Suitable experimental procedures allow insulators, biologic materials and microsamples to be analysed. In spite of the classification by techniques this review is essentially devoted to the most significant papers in analytical applications but instrumental and basic features are sometimes introduced to support the discussions

  2. Hybrid organic-inorganic heterojunctions for photovoltaic applications

    OpenAIRE

    Dietmüller, Roland

    2012-01-01

    Hybrid organic-inorganic bulk heterojunction solar cells based on silicon nanocrystals (Si-nc) have been realized and investigated. A photo-induced charge transfer could be demonstrated in composites made of silicon nanocrystals and poly(3-hexylthiophene) (P3HT) or [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) via light-induced electron spin resonance measurements. With bulk heterojunction solar cells made of P3HT/Si-nc composites in a sandwich structure, open-circuit voltages of up to 0....

  3. Annual reports in inorganic and general syntheses 1976

    CERN Document Server

    Zimmer, Hans

    2013-01-01

    Annual Reports in Inorganic and General Syntheses-1976 presents an annual review of synthetically useful information that would prove beneficial to nearly all organic chemists, both specialist and nonspecialist in synthesis. It should help relieve some of the information storage burden of the specialist and should aid the nonspecialist who is seeking help with a specific problem to become rapidly aware of recent synthetic advances.This is the fifth volume of ARIGS and is organized along the lines developed for the preceding volumes. The authors were encouraged to use synthetic aspects as their

  4. Engineering the Interface Between Inorganic Materials and Cells

    Energy Technology Data Exchange (ETDEWEB)

    Schaffer, David

    2014-05-31

    To further optimize cell function in hybrid “living materials”, it would be advantageous to render mammalian cells responsive to novel “orthogonal” cues, i.e. signals they would not ordinarily respond to but that can be engineered to feed into defined intracellular signaling pathways. We recently developed an optogenetic method, based on A. thaliana Cry2, for rapid and reversible protein oligomerization in response to blue light. We also demonstrated the ability to use this method to channel the light input into several defined signaling pathways, work that will enhance communication between inorganic devices and living systems.

  5. Forecasting of heat capacity of molecular inorganic liquids

    International Nuclear Information System (INIS)

    Sladkov, I.B.; Neganov, O.S.

    1992-01-01

    On the basis of analysis of experimental material on heat capacity of liquids, covering 350 molecular inorganic compounds, atomic parts of heat capacity for 58 elements of the Periodic system were obtained. Data on the accuracy of heat capacity calculation by the Neumann-Kopp rule using the recommended atomic parts C p are presented. For the Kelli rule it is assertained that the factor of proportiomality between heat capacity and the number of atoms in compound molecule in the general case depends on the type of anion and compound coordination. The Neumann-Kopp-Kelli rules provide a satisfactory accuracy of prediction

  6. Synthesis, Properties and Mineralogy of Important Inorganic Materials

    CERN Document Server

    Warner, Terence E

    2010-01-01

    Intended as a textbook for courses involving preparative solid-state chemistry, this book offers clear and detailed descriptions on how to prepare a selection of inorganic materials that exhibit important optical, magnetic and electrical properties, on a laboratory scale. The text covers a wide range of preparative methods and can be read as separate, independent chapters or as a unified coherent body of work. Discussions of various chemical systems reveal how the properties of a material can often be influenced by modifications to the preparative procedure, and vice versa. References to miner

  7. Hybrid organic-inorganic materials based on hydroxyapatite structure

    Energy Technology Data Exchange (ETDEWEB)

    Moussa, Sana Ben; Bachouâ, Hassen [U.R. Matériaux et synthèse organique UR17ES31, Institut Préparatoire aux Etudes d’Ingénieur de Monastir, Université de Monastir, 5019 Monastir (Tunisia); Gruselle, Michel, E-mail: michel.gruselle@upmc.fr [Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire, F-75005 Paris (France); Beaunier, Patricia [Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 7197, Laboratoire de Réactivité de Surface, F-75005 Paris (France); Flambard, Alexandrine [Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire, F-75005 Paris (France); Badraoui, Béchir [U.R. Matériaux et synthèse organique UR17ES31, Institut Préparatoire aux Etudes d’Ingénieur de Monastir, Université de Monastir, 5019 Monastir (Tunisia)

    2017-04-15

    The present article details the formation of calcium hydroxyapatite synthesized by the hydrothermal way, in presence of glycine or sarcosine. The presence of these amino-acids during the synthetic processes reduces the crystalline growthing through the formation of hybrid organic-inorganic species The crystallite sizes are decreasing and the morphology is modified with the increase of the amino-acid concentration. - Graphical abstract: Formation of Ca carboxylate salt leading to the grafting of glycine and sarcosine on the Ca=Hap surface (R= H, CH3).

  8. The spectrographic analysis of inorganic impurities in heavy water

    International Nuclear Information System (INIS)

    Artaud, J.; Normand, J.; Vie, R.

    1961-01-01

    Inorganic impurities in heavy water are determined by two spectrographic methods. First is described the copper-spark method which is sensitive and directly applicable, and is particular useful because of the absence of a support. Secondly the graphite impregnation method is given; this is used when the first method is not applicable (determination of copper) and for the alkali metals. For the usual elements, the sensitivity of the copper spark method is of the order of 0,1 μg/ml whereas for the graphite impregnation method the sensitivity is only 0,3 μg/ml. (author) [fr

  9. Inorganic Chemistry in Hydrogen Storage and Biomass Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Thorn, David [Los Alamos National Laboratory

    2012-06-13

    Making or breaking C-H, B-H, C-C bonds has been at the core of catalysis for many years. Making or breaking these bonds to store or recover energy presents us with fresh challenges, including how to catalyze these transformations in molecular systems that are 'tuned' to minimize energy loss and in molecular and material systems present in biomass. This talk will discuss some challenging transformations in chemical hydrogen storage, and some aspects of the inorganic chemistry we are studying in the development of catalysts for biomass utilization.

  10. Qualitative tests for the determination of inorganic bases

    OpenAIRE

    Založnik, Urša

    2013-01-01

    The unit on acids, bases and salts is dealt with in primary and secondary schools and can be very interesting to students because they encounter these substances on an everyday basis. In my Diploma thesis I will focus on bases, especially on how the students could determine in the most interesting way whether a solution is acid or base and which solution (base) that actually is. My goal is to develop simple qualitative tests to determine inorganic bases in primary schools. In nature, ba...

  11. Multi length-scale characterisation inorganic materials series

    CERN Document Server

    Bruce, Duncan W; Walton, Richard I

    2013-01-01

    Whereas the first five volumes in the Inorganic Materials Series focused on particular classes of materials (synthesis, structures, chemistry, and properties), it is now very timely to provide complementary volumes that introduce and review state-of-the-art techniques for materials characterization. This is an important way of emphasizing the interplay of chemical synthesis and physical characterization. The methods reviewed include spectroscopic, diffraction, and surface techniques that examine the structure of materials on all length scales, from local atomic structure to long-range crystall

  12. Effect of inorganic and organic zinc supplementation on coccidial infections in goat kids

    Directory of Open Access Journals (Sweden)

    Petra Strnadová

    2011-01-01

    Full Text Available The aim of this study was to identify the effect of zinc-enriched diet fed to goats and their kids on the number of Coccidia oocysts shed by kids, on clinical signs of coccidiosis, weight gains, and kids’ blood plasma concentration of zinc. A total of 22 goat kids were divided into 4 groups of 5 or 6 animals. Goats and kids from the control group did not receive any additional zinc, the second group was supplemented with inorganic zinc (zinc oxide, the third group was given zinc lactate, and the fourth group received chelated zinc. Samples of kids’ faeces were taken weekly from 3 to 9 weeks of their age (a total of 7 samples were taken. Samples of faeces were examined by a quantitative method to detect the number of oocysts. Kids were weighed weekly and their blood was taken in order to determine zinc concentrations in blood plasma. Animals from the group supplemented with zinc chelate and zinc lactate shed a significantly (p ≤ 0.05 lower number of oocysts (13.4% and 11.9%, respectively compared to the number of oocyst shed by control and zinc oxide supplemented groups (25% and 49.7%, respectively. Shedding of oocysts was not accompanied by clinical symptoms of coccidiosis in any of the groups. Kids supplemented with zinc chelate showed significantly highest weight gains and blood plasma concentration of zinc (p ≤ 0.05 as compared to control and inorganic zinc supplemented groups. Organic zinc is to be recommended to be used as a prophylaxis against coccidiosis in goat kids.

  13. Organic and inorganic composition and microbiology of produced waters from Pennsylvania shale gas wells

    Science.gov (United States)

    Akob, Denise M.; Cozzarelli, Isabelle M.; Dunlap, Darren S.; Rowan, Elisabeth L.; Lorah, Michelle M.

    2015-01-01

    Hydraulically fractured shales are becoming an increasingly important source of natural gas production in the United States. This process has been known to create up to 420 gallons of produced water (PW) per day, but the volume varies depending on the formation, and the characteristics of individual hydraulic fracture. PW from hydraulic fracturing of shales are comprised of injected fracturing fluids and natural formation waters in proportions that change over time. Across the state of Pennsylvania, shale gas production is booming; therefore, it is important to assess the variability in PW chemistry and microbiology across this geographical span. We quantified the inorganic and organic chemical composition and microbial communities in PW samples from 13 shale gas wells in north central Pennsylvania. Microbial abundance was generally low (66–9400 cells/mL). Non-volatile dissolved organic carbon (NVDOC) was high (7–31 mg/L) relative to typical shallow groundwater, and the presence of organic acid anions (e.g., acetate, formate, and pyruvate) indicated microbial activity. Volatile organic compounds (VOCs) were detected in four samples (∼1 to 11.7 μg/L): benzene and toluene in the Burket sample, toluene in two Marcellus samples, and tetrachloroethylene (PCE) in one Marcellus sample. VOCs can be either naturally occurring or from industrial activity, making the source of VOCs unclear. Despite the addition of biocides during hydraulic fracturing, H2S-producing, fermenting, and methanogenic bacteria were cultured from PW samples. The presence of culturable bacteria was not associated with salinity or location; although organic compound concentrations and time in production were correlated with microbial activity. Interestingly, we found that unlike the inorganic chemistry, PW organic chemistry and microbial viability were highly variable across the 13 wells sampled, which can have important implications for the reuse and handling of these fluids

  14. Total and inorganic arsenic in foods of the first Hong Kong total diet study.

    Science.gov (United States)

    Chung, Stephen Wai-cheung; Lam, Chi-ho; Chan, Benny Tsz-pun

    2014-04-01

    Arsenic (As) is a metalloid that occurs in different inorganic and organic forms, which are found in the environment from both natural occurrence and anthropogenic activity. The inorganic forms of As (iAs) are more toxic as compared with the organic As, but so far most of the occurrence data in food collected in the framework of official food control are still reported as total As without differentiating the various As species. In this paper, total As and iAs contents of 600 total diet study (TDS) samples, subdivided into 15 different food groups, were quantified by high-resolution inductively coupled plasma mass spectrometry (HR-ICP/MS) and hydride generation (HG) ICP/MS respectively. The method detection limits for both total As and iAs were 3 μg As kg(-1). As the samples were prepared for TDS, food items were purchased directly from the market or prepared as for normal consumption, i.e. table ready, in the manner most representative of and consistent with cultural habits in Hong Kong as far as practicable. The highest total As and iAs content were found in 'fish, seafood and their products' and 'vegetables and their products' respectively. Besides, this paper also presents the ratios of iAs and total As content in different ready-to-eat food items. The highest ratio of iAs to total As was found in 'vegetables and their products'. It is likely that iAs in vegetables maintained its status even after cooking.

  15. Inorganic Arsenic Induces NRF2-Regulated Antioxidant Defenses in Both Cerebral Cortex and Hippocampus in Vivo.

    Science.gov (United States)

    Zhang, Yang; Duan, Xiaoxu; Li, Jinlong; Zhao, Shuo; Li, Wei; Zhao, Lu; Li, Wei; Nie, Huifang; Sun, Guifang; Li, Bing

    2016-08-01

    Inorganic arsenic is reported to induce the reactive oxygen species-mediated oxidative stress, which is supposed to be one of the main mechanisms of arsenic-related neurological diseases. Nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator of antioxidant defense systems, up-regulates the expression of target genes to fight against oxidative damages caused by harmful substances, including metals. In the present study, mice were used as a model to investigate the oxidative stress levels and the expressions of NRF2-regulated antioxidant substances in both cerebral cortex and hippocampus with 5, 10 and 20 mg/kg NaAsO2 exposure intra-gastrically. Our results showed that acute NaAsO2 treatment resulted in decreased total anti-oxidative capacity (T-AOC) and increased maleic dialdehyde production in the nervous system. We also detected rapidly elevation of NRF2 protein levels by enhancement of Nrf2 transcription, especially at 20 mg/kg NaAsO2 exposure group. In the meantime, mRNA and protein levels of Nrf2 encoding antioxidant enzymes heme oxygenase-1 (HO-1), NAD(P)H: quinine oxidoreductase 1 (NQO1) and glutathione S-transferase (GST) were consistently elevated time- and dose-dependently both in the cerebral cortex and hippocampus. Taken together, the presence study demonstrated the activation of NRF2 pathway, an early antioxidant defensive response, in both cerebral cortex and hippocampus upon inorganic arsenic (iAs) exposure in vivo. A better knowledge on the roles of NRF2 pathway in maintaining cellular redox homeostasis would be helpful for the strategies on improvement of neurotoxicity related to this metalloid.

  16. The use of ethephon and mixtures of ethephon luith inorganic defoliants to defoliate apple nursery trees

    Directory of Open Access Journals (Sweden)

    A. Basak

    2015-06-01

    Full Text Available Ethephon alone and in a mixture with inorganic defoliants was used to defoliate apple nursery trees of three cultivars: Yellow Transparent, McIntosh and Jonathan. The mixture of ethephon with copper sulphate or magnesium chlorate defoliated the trees better than ethophon or inorganic defoliants used seperately in twice as high concentrations as in a mixture. The tress defoliated with the mixtures of defoliants suffered less from frost injury than those treated with only the inorganic defoliants.

  17. Quantum confinement and dielectric profiles of colloidal nanoplatelets of halide inorganic and hybrid organic-inorganic perovskites

    Science.gov (United States)

    Sapori, Daniel; Kepenekian, Mikaël; Pedesseau, Laurent; Katan, Claudine; Even, Jacky

    2016-03-01

    Quantum confinement as well as high frequency ε∞ and static εs dielectric profiles are described for nanoplatelets of halide inorganic perovskites CsPbX3 (X = I, Br, Cl) and hybrid organic-inorganic perovskites (HOP) in two-dimensional (2D) and three-dimensional (3D) structures. 3D HOP are currently being sought for their impressive photovoltaic ability. Prior to this sudden popularity, 2D HOP materials were driving intense activity in the field of optoelectronics. Such developments have been enriched by the recent ability to synthesize colloidal nanostructures of controlled sizes of 2D and 3D HOP. This raises the need to achieve a thorough description of the electronic structure and dielectric properties of these systems. In this work, we go beyond the abrupt dielectric interface model and reach the atomic scale description. We examine the influence of the nature of the halogen and of the cation on the band structure and dielectric constants. Similarly, we survey the effect of dimensionality and shape of the perovskite. In agreement with recent experimental results, we show an increase of the band gap and a decrease of ε∞ when the size of a nanoplatelet reduces. By inspecting 2D HOP, we find that it cannot be described as a simple superposition of independent inorganic and organic layers. Finally, the dramatic impact of ionic contributions on the dielectric constant εs is analysed.Quantum confinement as well as high frequency ε∞ and static εs dielectric profiles are described for nanoplatelets of halide inorganic perovskites CsPbX3 (X = I, Br, Cl) and hybrid organic-inorganic perovskites (HOP) in two-dimensional (2D) and three-dimensional (3D) structures. 3D HOP are currently being sought for their impressive photovoltaic ability. Prior to this sudden popularity, 2D HOP materials were driving intense activity in the field of optoelectronics. Such developments have been enriched by the recent ability to synthesize colloidal nanostructures of controlled

  18. Organic-inorganic hybrid membranes in separation processes: a 10-year review

    Directory of Open Access Journals (Sweden)

    V. C. Souza

    2013-12-01

    Full Text Available In relation to some inorganic membranes, polymeric membranes have relatively low separation performance. However, the processing flexibility and low cost of polymers still make them highly attractive for many industrial separation applications. Polymer-inorganic hybrid membranes constitute an emerging research field and have been recently developed to improve the separation properties of polymer membranes because they possess properties of both organic and inorganic membranes such as good hydrophilicity, selectivity, permeability, mechanical strength, and thermal and chemical stability. The structures and processing of polymer-inorganic nanocomposite hybrid membranes, as well as their use in the fields of ultrafiltration, nanofiltration, pervaporation, gas separation and separation mechanism are reviewed.

  19. Possibility of sorption purification of chromium comprising waste waters of galvanic production by inorganic ion exchangers

    International Nuclear Information System (INIS)

    Khaynakov, S.A.; Likov, E.P.; Bortun, A.I.; Belyukov, V.N.

    1986-01-01

    Present work is devoted to possibilities of sorption purification of chromium comprising waste waters of galvanic production by inorganic ion exchangers. Thus, the comparative study of sorption of chromium ions on anion exchanger A B-17 and on inorganic ion exchangers on the basis of hydrated titanium and zirconium dioxides in static and dynamic conditions is conducted. The influence of chromium ions concentration, solutions acidity (ph=1÷12) and presence of base electrolyte on sorption is studied. The state of chromium ions sorbed by inorganic ion exchangers is studied by means of infrared spectroscopy and spectroscopy. It is defined that inorganic sorbents could be used for chromium extraction from different solutions.

  20. Proceedings of the Alfred O. Nier symposium on inorganic mass spectrometry

    International Nuclear Information System (INIS)

    Rokop, D.J.

    1993-05-01

    Over 100 inorganic mass spectroscopists, including representatives from 9 different countries, attended. This proceedings contains 12 papers, 11 abstracts, and 38 poster abstracts; an author index is included

  1. The Electrical Characteristics of The N-Organic Semiconductor/P-Inorganic Semiconductor Diode

    International Nuclear Information System (INIS)

    Aydin, M. E.

    2008-01-01

    n-organic semiconductor (PEDOT) / p-inorganic semiconductor Si diode was formed by deep coating method. The method has been achieved by coating n-inorganic semiconductor PEDOT on top of p-inorganic semiconductor. The n-organic semiconductor PEDOT/ p-inorganic semiconductor diode demonstrated rectifying behavior by the current-voltage (I-V) curves studied at room temperature. The barrier height , ideality factor values were obtained as of 0.88 eV and 1.95 respectively. The diode showed non-ideal I-V behavior with an ideality factor greater than unity that could be ascribed to the interfacial layer

  2. Polystyrene-poly(vinylphenol) copolymers as compatibilzers for organic-inorganic composites

    International Nuclear Information System (INIS)

    Landry, C.J.T.; Coltrain, B.K.; Teegarden, D.M.

    1996-01-01

    Random, graft, and block copolymers of polystyrene (PS) and poly(4-vinylphenol) (PVPh), and PVPh homopolymer are shown to act as compatibilizers for incompatible organic-inorganic composite materials. The VPh component reacts, or interacts strongly with the polymerizing inorganic (titanium or zirconium) alkoxide. The organic components studied were PS, poly(vinyl methyl ether), and poly(styrene-co-acrylonitrile). The use of such compatibilizers provides a means of combining in situ polymerized inorganic oxides and hydrophobic polymers. This is seen as a reduction in the size of the dispersed inorganic phase and results in improved optical and mechanical properties

  3. Self-assembly of inorganic nanoparticles: Ab ovo

    Science.gov (United States)

    Kotov, Nicholas A.

    2017-09-01

    There are numerous remarkable studies related to the self-organization of polymers, coordination compounds, microscale particles, biomolecules, macroscale particles, surfactants, and reactive molecules on surfaces. The focus of this paper is on the self-organization of nanoscale inorganic particles or simply nanoparticles (NPs). Although there are fascinating and profound discoveries made with other self-assembling structures, the ones involving NPs deserve particular attention because they (a) are omnipresent in Nature; (b) have relevance to numerous disciplines (physics, chemistry, biology, astronomy, Earth sciences, and others); (c) embrace most of the features, geometries, and intricacies observed for the self-organization of other chemical species; (d) offer new tools for studies of self-organization phenomena; and (e) have a large economic impact, extending from energy and construction industries, to optoelectronics, biomedical technologies, and food safety. Despite the overall success of the field it is necessary to step back from its multiple ongoing research venues and consider two questions: What is self-assembly of nanoparticles? and Why do we need to study it? The reason to bring them up is to achieve greater scientific depth in the understanding of these omnipresent phenomena and, perhaps, deepen their multifaceted impact. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Paule Pileni.

  4. MANOVA statistical analysis of inorganic compounds in groundwater Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Tanty, Heruna, E-mail: herunatanty@yahoo.com [Department of Mathematics, Bina Nusantara University, Jl. K.H. Syahdan No. 9 Palmerah, Jakarta Barat (Indonesia); Bekti, Rokhana Dwi, E-mail: groo-jgroo@yahoo.com [Department of Statistics, Bina Nusantara University, Jl. K.H. Syahdan No. 9 Palmerah, Jakarta Barat (Indonesia); Herlina, Tati, E-mail: tatat-04her@yahoo.com, E-mail: nurlelasari@unpad.ac.id; Nurlelasari, E-mail: tatat-04her@yahoo.com, E-mail: nurlelasari@unpad.ac.id [Department of Chemistry, University of Padjajaran, Jl. Raya Jatinangor-Sumedang km 21, Jatinangor 45363, Jawa Barat (Indonesia)

    2014-10-24

    The present study was carried out to determine levels of inorganic compounds contained in the ground water and Reverse Osmosis (RO) water filtration result. The data in groundwater samples was collected from Bekasi, Tangerang and Jakarta in Indonesia. A total of 30 samples were collected and analyzed for the determine Cadmium (Cd), Chromium (Cr), Manganese (Mn), Cyanide (CN) and Lead (Pb). The results of the study revealed that in groundwater, the average of Cd 0.0058 mg / l, Mn 1.5233 mg / l, Cr 0.0127 mg/l, Pb 0.0060 mg / l, and CN 0.0040 mg / l. The level of RO result were: Cd 0.0027 mg / l, Mn 0.1767 mg / l, Cr 0.0024 mg / l, Pb 0.0021 mg / l, and CN 0.0023 mg / l . This means that Cd and Mn in ground water were higher than the values recommended by PAK-EPA and WHO or the standard of Indonesian Ministry of Health. But after filtration Reverse Osmosis (RO) Mn and Cd levels decreased to levels below the standardized value. By comparing of mean in MANOVA and nonparametric MANOVA in α=5%, there are differences in average levels of inorganic substances Mn, Cr, Cd, Pb, and CN between before and after RO filtration.

  5. Organic-inorganic hybrid carbon dots for cell imaging

    Science.gov (United States)

    Liu, Huan; Zhang, Hongwen; Li, Jiayu; Tang, Yuying; Cao, Yu; Jiang, Yan

    2018-04-01

    In this paper, nitrogen-doped carbon dots (CDs) had been synthesized directly by one-step ultrasonic treatment under mild conditions. During the functionalization process, Octa-aminopropyl polyhedral oligomeric silsesquioxane hydrochloride salt (OA-POSS) was used as stabilizing and passivation agent, which lead to self-assembling of CDs in aqueous medium solution. OA-POSS was obtained via hydrolytic condensation of γ-aminopropyl triethoxy silane (APTES). The average size of CDs prepared was approximately 3.3 nm with distribution between 2.5 nm and 4.5 nm. The prepared organic-inorganic hybrid carbon dots have several characteristics such as photoluminescence emission wavelength, efficient cellular uptake, and good biocompatibility. The results indicate that OA-POSS can maintain the fluorescence properties of the carbon dots effectively, and reduced cytotoxicity provides the possibility for biomedical applications. More than 89% of the Hela cells were viable when incubated with 2 mg ml‑1 or lesser organic-inorganic hybrid carbon dots. Thus, it provides a potential for multicolor imaging with HeLa cells.

  6. Proceedings from the Workshop on Phytoremediation of Inorganic Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    J. T. Brown; G. Matthern; A. Glenn (INEEL); J. Kauffman (EnviroIssues); S. Rock (USEPA); M. Kuperberg (Florida State U); C. Ainsworth (PNNL); J. Waugh (Roy F. Weston Assoc.)

    2000-02-01

    The Metals and Radionuclides Product Line of the US Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) is responsible for the development of technologies and systems that reduce the risk and cost of remediation of radionuclide and hazardous metal contamination in soils and groundwater. The rapid and efficient remediation of these sites and the areas surrounding them represents a technological challenge. Phytoremediation, the use of living plants to cleanup contaminated soils, sediments, surface water and groundwater, is an emerging technology that may be applicable to the problem. The use of phytoremediation to cleanup organic contamination is widely accepted and is being implemented at numerous sites. This workshop was held to initiate a discussion in the scientific community about whether phytoremediation is applicable to inorganic contaminants, such as metals and radionuclides, across the DOE complex. The Workshop on Phytoremediation of Inorganic Contaminants was held at Argonne National Laboratory from November 30 through December 2, 1999. The purpose of the workshop was to provide SCFA and the DOE Environmental Restoration Program with an understanding of the status of phytoremediation as a potential remediation technology for DOE sites. The workshop was expected to identify data gaps, technologies ready for demonstration and deployment, and to provide a set of recommendations for the further development of these technologies.

  7. Proceedings from the Workshop on Phytoremediation of Inorganic Contaminants

    International Nuclear Information System (INIS)

    Brown, J.T.; Matthern, G.; Glenn, A.; Kauffman, J.; Rock, S.; Kuperberg, M.; Ainsworth, C.; Waugh, J.

    2000-01-01

    The Metals and Radionuclides Product Line of the US Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) is responsible for the development of technologies and systems that reduce the risk and cost of remediation of radionuclide and hazardous metal contamination in soils and groundwater. The rapid and efficient remediation of these sites and the areas surrounding them represents a technological challenge. Phytoremediation, the use of living plants to cleanup contaminated soils, sediments, surface water and groundwater, is an emerging technology that may be applicable to the problem. The use of phytoremediation to cleanup organic contamination is widely accepted and is being implemented at numerous sites. This workshop was held to initiate a discussion in the scientific community about whether phytoremediation is applicable to inorganic contaminants, such as metals and radionuclides, across the DOE complex. The Workshop on Phytoremediation of Inorganic Contaminants was held at Argonne National Laboratory from November 30 through December 2, 1999. The purpose of the workshop was to provide SCFA and the DOE Environmental Restoration Program with an understanding of the status of phytoremediation as a potential remediation technology for DOE sites. The workshop was expected to identify data gaps, technologies ready for demonstration and deployment, and to provide a set of recommendations for the further development of these technologies

  8. Distribution of inorganic elements in single cells of Chara corallina

    International Nuclear Information System (INIS)

    Li Zijie; Zhang Zhiyong; Chai Zhifang; Yu Ming; Zhou Yunlong

    2005-01-01

    There are actually 20 chemical elements necessary or beneficial for plant growth. Carbon, hydrogen, and oxygen are supplied by air and water. The six macronutrients, nitrogen, phosphorus, potassium., calcium, magnesium, and sulfur are required by plants in large amounts. The rest of the elements are required in trace amounts (micronutrients). Essential trace elements include boron, chlorine, copper, iron, manganese, sodium, zinc, molybdenum, and nickel. Beneficial mineral elements include silicon and cobalt. The functions of the inorganic elements closely related to their destinations in plant cells. Plant cells have unique structures, including a central vacuole, plastids, and a thick cell wall that surrounds the cell membrane. Generally, it is very difficult to determine concentrations of inorganic elements in a single plant cell. Chara corallina is a freshwater plant that inhabits temperate zone ponds and lakes. It consists of alternating nodes and internodes. Each internodal segment is a single large cell, up to 10 cm in length, and 1 mm in diameter. With this species it was possible to isolate subcellular fractions with surgical methods with minimal risk of cross contamination. In this study, concentrations of magnesium, calcium, manganese, iron, copper, zinc, and molybdenum in the cell wall, cytoplasm, and vacuole of single cells of Chara corallina were determined by inductively coupled plasma mass spectrometry (ICP-MS). The distribution characteristics of these elements in the cell components were discussed.

  9. A Humidity Sensing Organic-Inorganic Composite for Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Khasan S. Karimov

    2013-03-01

    Full Text Available In this paper, we present the effect of varying humidity levels on the electrical parameters and the multi frequency response of the electrical parameters of an organic-inorganic composite (PEPC+NiPc+Cu2O-based humidity sensor. Silver thin films (thickness ~200 nm were primarily deposited on plasma cleaned glass substrates by the physical vapor deposition (PVD technique. A pair of rectangular silver electrodes was formed by patterning silver film through standard optical lithography technique. An active layer of organic-inorganic composite for humidity sensing was later spun coated to cover the separation between the silver electrodes. The electrical characterization of the sensor was performed as a function of relative humidity levels and frequency of the AC input signal. The sensor showed reversible changes in its capacitance with variations in humidity level. The maximum sensitivity ~31.6 pF/%RH at 100 Hz in capacitive mode of operation has been attained. The aim of this study was to increase the sensitivity of the previously reported humidity sensors using PEPC and NiPc, which has been successfully achieved.

  10. Effect of inorganic salts on the volatility of organic acids.

    Science.gov (United States)

    Häkkinen, Silja A K; McNeill, V Faye; Riipinen, Ilona

    2014-12-02

    Particulate phase reactions between organic and inorganic compounds may significantly alter aerosol chemical properties, for example, by suppressing particle volatility. Here, chemical processing upon drying of aerosols comprised of organic (acetic, oxalic, succinic, or citric) acid/monovalent inorganic salt mixtures was assessed by measuring the evaporation of the organic acid molecules from the mixture using a novel approach combining a chemical ionization mass spectrometer coupled with a heated flow tube inlet (TPD-CIMS) with kinetic model calculations. For reference, the volatility, i.e. saturation vapor pressure and vaporization enthalpy, of the pure succinic and oxalic acids was also determined and found to be in agreement with previous literature. Comparison between the kinetic model and experimental data suggests significant particle phase processing forming low-volatility material such as organic salts. The results were similar for both ammonium sulfate and sodium chloride mixtures, and relatively more processing was observed with low initial aerosol organic molar fractions. The magnitude of low-volatility organic material formation at an atmospherically relevant pH range indicates that the observed phenomenon is not only significant in laboratory conditions but is also of direct atmospheric relevance.

  11. Measurement for Surface Tension of Aqueous Inorganic Salt

    Directory of Open Access Journals (Sweden)

    Jiming Wen

    2018-03-01

    Full Text Available Bubble columns are effective means of filtration in filtered containment venting systems. Here, the surface tension has a significant influence on bubble size distribution and bubble deformation, which have a strong impact on the behavior of the bubble column. The influence of aqueous inorganic compounds on the surface tension depends on the electrolytic activity, Debye length, entropy of ion hydration, and surface deficiencies or excess. In this work, the surface tensions of same specific aqueous solutions have been measured by different methods including platinum plate method, platinum ring method, and maximum bubble pressure method. The measured surface tensions of both sodium hydroxide and sodium thiosulfate are less than that of water. As solution temperature ranges from 20 to 75°C, the surface tension of 0.5 mol/L sodium hydroxide solution decreases from 71 to 55 mN/m while that of 1 mol/L solution decreases from 60 to 45 mN/m. Similarly during the same temperature range, the surface tension of 0.5 mol/L sodium thiosulfate decreases from 70 to 38 mN/m, and that of 1 mol/L sodium thiosulfate is between 68 and 36 mN/m. The analysis for the influence mechanism of aqueous inorganic on surface tension is provided. In addition, experimental results show that the surface tension of solid aerosol suspension liquid has no obvious difference from that of distilled water.

  12. Mean age distribution of inorganic soil-nitrogen

    Science.gov (United States)

    Woo, Dong K.; Kumar, Praveen

    2016-07-01

    Excess reactive nitrogen in soils of intensively managed landscapes causes adverse environmental impact, and continues to remain a global concern. Many novel strategies have been developed to provide better management practices and, yet, the problem remains unresolved. The objective of this study is to develop a model to characterize the "age" of inorganic soil-nitrogen (nitrate, and ammonia/ammonium). We use the general theory of age, which provides an assessment of the time elapsed since inorganic nitrogen has been introduced into the soil system. We analyze a corn-corn-soybean rotation, common in the Midwest United States, as an example application. We observe two counter-intuitive results: (1) the mean nitrogen age in the topsoil layer is relatively high; and (2) mean nitrogen age is lower under soybean cultivation compared to corn although no fertilizer is applied for soybean cultivation. The first result can be explained by cation-exchange of ammonium that retards the leaching of nitrogen, resulting in an increase in the mean nitrogen age near the soil surface. The second result arises because the soybean utilizes the nitrogen fertilizer left from the previous year, thereby removing the older nitrogen and reducing mean nitrogen age. Estimating the mean nitrogen age can thus serve as an important tool to disentangle complex nitrogen dynamics by providing a nuanced characterization of the time scales of soil-nitrogen transformation and transport processes.

  13. Inorganic treatments for the consolidation and protection of stone artefacts

    Directory of Open Access Journals (Sweden)

    Mauro Matteini

    2008-04-01

    Full Text Available Consolidation and protection are two of the principal kinds of treatments through which the decay of old statues, stone facades, plasters and mural paintings caused by both natural atmospheric agents and, above all in the last five decades, by atmospheric pollution, is faced. The most traditional approach has been and is mainly based on the use of organic polymeric materials. They offer the advantage of easy application procedures and the possibility to obtain, at short times, very satisfying results. Different is their behaviour at long times. Some drawbacks come out over time both under the esthetical point of view as well as to the durability, compatibility and efficacy. Particularly critical is the situation when porous materials and soluble salts - gypsum above all - are simultaneously present. In such a situation inorganic treatments demonstrate to be much more appropriate. They assure durable and compatible results. In the present paper two of the most efficient and appropriate inorganic methods are reviewed in detail: the barium hydroxide method, both as desulfating and consolidating agent, and the ammonium oxalate method as passivating agent, consolidant and as a treatment capable of improving the natural colour contrast of the stone, when it is lost due to decay processes.

  14. Micronutrients as Impurities of Inorganic Fertilizers Marketed in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    A.S. Modaihsh

    2000-06-01

    Full Text Available Inorganic fertilizers with major nutrients are likely to be contaminated with some micronutrients. Fertilizers, utilized in Saudi Arabia, were analyzed for their total and water-soluble content of Fe, Zn, Mn and Cu. They represented three categories namely: phosphatic, solid multiple nutrient fertilizers (SMNF and water-soluble multiple nutrient fertilizers (WSMF. Total iron content in examined fertilizers was higher in phosphatic fertilizers and lower in WSMF. Nevertheless, only a very small portion of the total iron content is likely to be available to plants. It was estimated, on the basis of total content, that almost 2 g of iron would be applied to soil for each added kg of phosphatic fertilizer. The highest total content of Zn was recorded for phosphatic fertilizers. The data suggested that less than half kg of Zn would be accumulated in soil if 500 kg of phosphatic fertilizers were applied in one year. This value however, fell dramatically, to one fourth of the value, when only the available forms of Zn were considered. Fertilizer content of manganese and copper were lower than both Fe and Zn. Micronutrient impurities present in inorganic fertilizers might not have an immediate influence on plant nutrition due to their lower solubility.

  15. Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials

    CERN Document Server

    Levitsky, Igor A; Karachevtsev, Victor A

    2012-01-01

    Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials describes physical, optical and spectroscopic properties of the emerging class of nanocomposites formed from carbon nanotubes (CNTs)  interfacing with organic and inorganic materials. The three main chapters detail novel trends in  photophysics related to the interaction of  light with various carbon nanotube composites from relatively simple CNT/small molecule assemblies to complex hybrids such as CNT/Si and CNT/DNA nanostructures.   The latest experimental results are followed up with detailed discussions and scientific and technological perspectives to provide a through coverage of major topics including: ·   Light harvesting, energy conversion, photoinduced charge separation  and transport  in CNT based nanohybrids · CNT/polymer composites exhibiting photoactuation; and ·         Optical  spectroscopy  and structure of CNT/DNA complexes. Including original data and a short review of recent research, Phot...

  16. Inorganic photovoltaic devices fabricated using nanocrystal spray deposition.

    Science.gov (United States)

    Foos, Edward E; Yoon, Woojun; Lumb, Matthew P; Tischler, Joseph G; Townsend, Troy K

    2013-09-25

    Soluble inorganic nanocrystals offer a potential route to the fabrication of all-inorganic devices using solution deposition techniques. Spray processing offers several advantages over the more common spin- and dip-coating procedures, including reduced material loss during fabrication, higher sample throughput, and deposition over a larger area. The primary difference observed, however, is an overall increase in the film roughness. In an attempt to quantify the impact of this morphology change on the devices, we compare the overall performance of spray-deposited versus spin-coated CdTe-based Schottky junction solar cells and model their dark current-voltage characteristics. Spray deposition of the active layer results in a power conversion efficiency of 2.3 ± 0.3% with a fill factor of 45.7 ± 3.4%, Voc of 0.39 ± 0.06 V, and Jsc of 13.3 ± 3.0 mA/cm(2) under one sun illumination.

  17. Characterization of Nanoreinforcement Dispersion in Inorganic Nanocomposites: A Review

    Directory of Open Access Journals (Sweden)

    Nouari Saheb

    2014-05-01

    Full Text Available Metal and ceramic matrix composites have been developed to enhance the stiffness and strength of metals and alloys, and improve the toughness of monolithic ceramics, respectively. It is possible to further improve their properties by using nanoreinforcement, which led to the development of metal and ceramic matrix nanocomposites, in which case, the dimension of the reinforcement is on the order of nanometer, typically less than 100 nm. However, in many cases, the properties measured experimentally remain far from those estimated theoretically. This is mainly due to the fact that the properties of nanocomposites depend not only on the properties of the individual constituents, i.e., the matrix and reinforcement as well as the interface between them, but also on the extent of nanoreinforcement dispersion. Therefore, obtaining a uniform dispersion of the nanoreinforcement in the matrix remains a key issue in the development of nanocomposites with the desired properties. The issue of nanoreinforcement dispersion was not fully addressed in review papers dedicated to processing, characterization, and properties of inorganic nanocomposites. In addition, characterization of nanoparticles dispersion, reported in literature, remains largely qualitative. The objective of this review is to provide a comprehensive description of characterization techniques used to evaluate the extent of nanoreinforcement dispersion in inorganic nanocomposites and critically review published work. Moreover, methodologies and techniques used to characterize reinforcement dispersion in conventional composites, which may be used for quantitative characterization of nanoreinforcement dispersion in nanocomposites, is also presented.

  18. Cyclodextrin-Modified inorganic materials for the construction of nanocarriers.

    Science.gov (United States)

    Cutrone, Giovanna; Casas-Solvas, Juan M; Vargas-Berenguel, Antonio

    2017-10-15

    Inorganic nanoparticles, such as gold, silver, quantum dots and magnetic nanoparticles, offer a promising way to develop multifunctional nanoparticles for biomedical applications. Such nanoparticles have the potential to combine in a single, stable construct various functionalities, simultaneously providing imaging abilities, thermal therapies and the ability to deliver drugs in a targeted fashion. An approach for providing drug loading abilities to these inorganic nanoparticles consists in the modification of their surface with a coating of cyclodextrins, and thereby endowing the nanoparticles with the potential of functioning as drug nanocarriers. This review presents the advances carried out in the preparation of cyclodextrin-contained gold, silver, quantum dot and magnetic nanoparticles as well as their applications as drug nanocarriers. The nanoparticle surface can be modified incorporating cyclodextrin moieties, (i) in situ during the synthesis of the nanoparticles, either using the cyclodextrin as reducing agent or as stabilizer; or (ii) in a post-synthetic stage. The cyclodextrin coating contributes to provide biocompatibility to the nanoparticles and to reduce their cytotoxicity. Cyclodextrin-modified nanoparticles display a multivalent presentation of quasi-hydrophobic cavities that enables, not only drug loading in a non-covalent manner, but also the non-covalent assembly of targeting motifs and optical probes. This paper also provides an overview of some of the reported applications including the in vitro studies and, to a lesser extent, in vivo studies on the drug-loaded nanoparticles behavior. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Detecting Vessels Carrying Migrants Using Machine Learning

    Science.gov (United States)

    Sfyridis, A.; Cheng, T.; Vespe, M.

    2017-10-01

    Political instability, conflicts and inequalities result into significant flows of people worldwide, moving to different countries in search of a better life, safety or to be reunited with their families. Irregular crossings into Europe via sea routes, despite not being new, have recently increased together with the loss of lives of people in the attempt to reach EU shores. This highlights the need to find ways to improve the understanding of what is happening at sea. This paper, intends to expand the knowledge available on practices among smugglers and contribute to early warning and maritime situational awareness. By identifying smuggling techniques and based on anomaly detection methods, behaviours of interest are modelled and one class support vector machines are used to classify unlabelled data and detect potential smuggling vessels. Nine vessels are identified as potentially carrying irregular migrants and refugees. Though, further inspection of the results highlights possible misclassifications caused by data gaps and limited knowledge on smuggling tactics. Accepted classifications are considered subject to further investigation by the authorities.

  20. DETECTING VESSELS CARRYING MIGRANTS USING MACHINE LEARNING

    Directory of Open Access Journals (Sweden)

    A. Sfyridis

    2017-10-01

    Full Text Available Political instability, conflicts and inequalities result into significant flows of people worldwide, moving to different countries in search of a better life, safety or to be reunited with their families. Irregular crossings into Europe via sea routes, despite not being new, have recently increased together with the loss of lives of people in the attempt to reach EU shores. This highlights the need to find ways to improve the understanding of what is happening at sea. This paper, intends to expand the knowledge available on practices among smugglers and contribute to early warning and maritime situational awareness. By identifying smuggling techniques and based on anomaly detection methods, behaviours of interest are modelled and one class support vector machines are used to classify unlabelled data and detect potential smuggling vessels. Nine vessels are identified as potentially carrying irregular migrants and refugees. Though, further inspection of the results highlights possible misclassifications caused by data gaps and limited knowledge on smuggling tactics. Accepted classifications are considered subject to further investigation by the authorities.

  1. Composite sorbents of inorganic ion-exchangers and polyacrylonitrile binding matrix. Methods of modification of properties of inorganic ion-exchangers for application in column packed beds

    International Nuclear Information System (INIS)

    Sebesta, F.

    1997-01-01

    Methods of preparation of granules of inorganic ion exchangers as well as methods for improvement of granular strength of these materials are reviewed. The resulting ion exchangers are classified in three groups - 'intrinsic', supported and composite ion exchangers. Their properties are compared and possibilities of their technological application are evaluated. A new method of preparation of inorganic-organic composite sorbents of inorganic ion-exchangers and polyacrylonitrile binding matrix is described, advantages and disadvantages of such sorbents are discussed. Proposed fields of application include tratment of liquid radioactive and/or hazardous wastes, decontamination of natural water as well as analytical applications. (author)

  2. Effect of cigarette smoking on the detection of small radiographic opacities in inorganic dust diseases

    International Nuclear Information System (INIS)

    Blanc, P.D.; Gamsu, G.

    1988-01-01

    Whether cigarette smoking can cause radiographic opacities indistinguishable from those due to pneumoconiosis remains controversial. The situation becomes clearer when one limits the abnormalities to those that can be standardized under the International Labour Office (ILO) classification system. The bulk of the evidence indicates that, using the ILO system, cigarette smoking alone is not associated with radiographic opacities that would be mistaken for pneumoconiosis with sufficient frequency to be of any practical importance. The effects of cigarette smoking, as a cofactor, in conjunction with occupational dust exposure depend on the type of dust. No relationship has been convincingly demonstrated for coal dust or silica. Only with asbestos exposure does there appear to be a significant cigarette smoking-associated increase in the frequency of irregular radiographic opacities. This increase does not appear to translate into a restrictive impairment in pulmonary function. The limited information available indicates that the features of asbestosis on high-resolution computed tomography are not similarly related to cigarette smoking. Additional research is needed to substantiate the relationship between smoking and occupational exposure to dust of many types, and also the possible imaging and pathophysiologic significance of their interactions. 47 references

  3. Recent R&D trends in inorganic single crystal scintillator materials for radiation detection

    Czech Academy of Sciences Publication Activity Database

    Nikl, Martin; Yoshikawa, A.

    2015-01-01

    Roč. 3, č. 4 (2015), s. 463-481 ISSN 2195-1071 R&D Projects: GA MŠk(CZ) LH14266; GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : scintillator * single crystal * luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.359, year: 2015

  4. Simultaneous determination of inorganic mercury and methylmercury compounds in natural waters

    Energy Technology Data Exchange (ETDEWEB)

    Logar, Martina; Horvat, Milena [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Akagi, Hirokatsu [National Institute for Minamata Disease, 4058-18 Hama, Minamata, Kumamoto 867-0008 (Japan); Pihlar, Boris [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Askerceva 5, 1000 Ljubljana (Slovenia)

    2002-11-01

    The purpose of the present work was to develop a simple, rapid, sensitive and accurate method for the simultaneous determination of inorganic mercury (Hg{sup 2+}) and monomethylmercury compounds (MeHg) in natural water samples at the pg L{sup -1} level. The method is based on the simultaneous extraction of MeHg and Hg{sup 2+}dithizonates into an organic solvent (toluene) after acidification of about 300 mL of a water sample, followed by back extraction into an aqueous solution of Na {sub 2}S, removal of H {sub 2}S by purging with N {sub 2}, subsequent ethylation with sodium tetraethylborate, room temperature precollection on Tenax, isothermal gas chromatographic separation (GC), pyrolysis and cold vapour atomic fluorescence spectrometric detection (CV AFS) of mercury. The limit of detection calculated on the basis of three times the standard deviation of the blank was about 0.006 ng L {sup -1} for MeHg and 0.06 ng L {sup -1} for Hg {sup 2+}when 300 mL of water was analysed. The repeatability of the results was about 5% for MeHg and 10% for Hg {sup 2+}. Recoveries were 90-110% for both species. (orig.)

  5. Catalysis-reduction strategy for sensing inorganic and organic mercury based on gold nanoparticles.

    Science.gov (United States)

    Li, Xiaokun; Zhang, Youlin; Chang, Yulei; Xue, Bin; Kong, Xianggui; Chen, Wei

    2017-06-15

    In view of the high biotoxicity and trace concentration of mercury (Hg) in environmental water, developing simple, ultra-sensitive and highly selective method capable of simultaneous determination of various Hg species has attracted wide attention. Here, we present a novel catalysis-reduction strategy for sensing inorganic and organic mercury in aqueous solution through the cooperative effect of AuNP-catalyzed properties and the formation of gold amalgam. For the first time, a new AuNP-catalyzed-organic reaction has been discovered and directly used for sensing Hg 2+ , Hg 2 2+ and CH 3 Hg + according to the change of the amount of the catalytic product induced by the deposition of Hg atoms on the surface of AuNPs. The detection limit of Hg species is 5.0pM (1 ppt), which is 3 orders of magnitude lower than the U.S. Environmental Protection Agency (EPA) limit value of Hg for drinking water (2 ppb). The high selectivity can be exceptionally achieved by the specific formation of gold amalgam. Moreover, the application for detecting tap water samples further demonstrates that this AuNP-based assay can be an excellent method used for sensing mercury at very low content in the environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Charge-density matching in organic-inorganic uranyl compounds

    International Nuclear Information System (INIS)

    Krivovichev, S.V.; Krivovichev, S.V.; Tananaev, I.G.; Myasoedov, B.F.

    2007-01-01

    Single crystals of [C 10 H 26 N 2 ][(UO 2 )(SeO 4 ) 2 (H 2 O)](H 2 SeO 4 ) 0.85 (H 2 O) 2 (1), [C 10 H 26 N 2 ][(UO 2 )(SeO 4 ) 2 ] (H 2 SeO 4 ) 0.50 (H 2 O) (2), and [C 8 H 20 N] 2 [(UO 2 )(SeO 4 ) 2 (H 2 O)] (H 2 O) (3) were prepared by evaporation from aqueous solution of uranyl nitrate, selenic acid and the respective amines. The structures of the compounds have been solved by direct methods and structural models have been obtained. The structures of the compounds 1, 2, and 3 contain U and Se atoms in pentagonal bipyramidal and tetrahedral coordinations, respectively. The UO 7 and SeO 4 polyhedra polymerize by sharing common O atoms to form chains (compound 1) or sheets (compounds 2 and 3). In the structure of 1, the layers consisting of hydrogen-bonded [UO 2 (SeO 4 ) 2 (H 2 O)] 2- chains are separated by mixed organic-inorganic layers comprising from [NH 3 (CH 2 ) 10 NH 3 ] 2+ molecules, H 2 O molecules, and disordered electroneutral (H 2 SeO 4 ) groups. The structure of 2 has a similar architecture but a purely inorganic layer is represented by a fully connected [UO 2 (SeO 4 ) 2 ] 2- sheet. The structure of 3 does not contain disordered (H 2 SeO 4 ) groups but is based upon alternating [UO 2 (SeO 4 ) 2 (H 2 O)] 2- sheets and 1.5-nm-thick organic blocks consisting of positively charged protonated octylamine molecules, [NH 3 (CH 2 ) 7 CH 3 ] + . The structures may be considered as composed of anionic inorganic sheets (2D blocks) and cationic organic blocks self-organized according to competing hydrophilic-hydrophobic interactions. Analysis of the structures allows us to conclude that the charge-density matching principle is observed in uranyl compounds. In order to satisfy some basic peculiarities of uranyl (in general, actinyl) chemistry, it requires specific additional mechanisms: (a) in long-chain-amine-templated compounds, protonated amine molecules inter-digitate; (b) in long-chain-diamine-templated compounds, incorporation of acid-water interlayers into

  7. Biomolecule mediating synthesis of inorganic nanoparticles and their applications

    Science.gov (United States)

    Wei, Zengyan

    Project 1. The conventional phage display technique focuses on screening peptide sequences that can bind on target substrates, however the selected peptides are not necessary to nucleate and mediate the growth of the target inorganic crystals, and in many cases they only show moderate affinity to the targets. Here we report a novel phage display approach that can directly screen peptides catalytically growing inorganic nanoparticles in aqueous solution at room temperature. In this study, the phage library is incubated with zinc precursor at room temperature. Among random peptide sequences displayed on phages, those phages that can grow zinc oxide (ZnO) nanoparticles are selected with centrifugation. After several rounds of selection, the peptide sequences displayed on the phage viruses are analyzed by DNA sequencing. Our screening protocol provide a simple and convenient route for the discovery of catalytic peptides that can grow inorganic nanoparticles at room temperature. This novel screening protocol can extend the method on finding a wide range of new catalysts. Project 2. Genetically engineered collagen peptides are assembled into freestanding films when quantum dots (QDs) are co-assembled as joints between collagen domains. These peptide-based films show excellent mechanical properties with Young's modulus of 20 GPa, much larger than most of the multi-composite polymer films and previously reported freestanding nanoparticle-assembled sheets, and it is even close to that reported for the bone tissue in nature. These films show little permanent deformation under small indentation while the mechanical hysteresis becomes remarkable when the load approaches near and beyond the rupture point, which is also characteristic of the bone tissue. Project 3. The shape-controlled synthesis of nanoparticles have been established in single-phase solutions by controlling growth directions of crystalline facets on seed nanocrystals kinetically; however, it is difficult to

  8. Multiplexed detection of DNA sequences using a competitive displacement assay in a microfluidic SERRS-based device.

    Science.gov (United States)

    Yazdi, Soroush H; Giles, Kristen L; White, Ian M

    2013-11-05

    We demonstrate sensitive and multiplexed detection of DNA sequences through a surface enhanced resonance Raman spectroscopy (SERRS)-based competitive displacement assay in an integrated microsystem. The use of the competitive displacement scheme, in which the target DNA sequence displaces a Raman-labeled reporter sequence that has lower affinity for the immobilized probe, enables detection of unlabeled target DNA sequences with a simple single-step procedure. In our implementation, the displacement reaction occurs in a microporous packed column of silica beads prefunctionalized with probe-reporter pairs. The use of a functionalized packed-bead column in a microfluidic channel provides two major advantages: (i) immobilization surface chemistry can be performed as a batch process instead of on a chip-by-chip basis, and (ii) the microporous network eliminates the diffusion limitations of a typical biological assay, which increases the sensitivity. Packed silica beads are also leveraged to improve the SERRS detection of the Raman-labeled reporter. Following displacement, the reporter adsorbs onto aggregated silver nanoparticles in a microfluidic mixer; the nanoparticle-reporter conjugates are then trapped and concentrated in the silica bead matrix, which leads to a significant increase in plasmonic nanoparticles and adsorbed Raman reporters within the detection volume as compared to an open microfluidic channel. The experimental results reported here demonstrate detection down to 100 pM of the target DNA sequence, and the experiments are shown to be specific, repeatable, and quantitative. Furthermore, we illustrate the advantage of using SERRS by demonstrating multiplexed detection. The sensitivity of the assay, combined with the advantages of multiplexed detection and single-step operation with unlabeled target sequences makes this method attractive for practical applications. Importantly, while we illustrate DNA sequence detection, the SERRS-based competitive

  9. Optical detection of polychlorinated biphenyls

    Science.gov (United States)

    Kuncova, Gabriela; Berkova, Daniela; Burkhard, Jiri; Demnerova, Katerina; Pazlarova, Jarmila; Triska, Jan; Vrchotova, Nadezda

    1999-12-01

    In this paper we describe the detection of polychlorinated biphenyls (PCBs) which is based on the measurement of changes of optical absorption at 400 nm of the medium in an aerobic bioreactor with immobilized cells Pseudomonas species 2. The rate of production, composition and the concentration of yellow intermediates are influenced by concentration and composition of PCB mixtures, concentration of cells and by the methods of immobilization. The method was applied in the detection of commercial mixture D103. It was found that the advantageous carriers were inorganic or organic-inorganic matrices, which sorbed PCBs and a cell outgrowth from their surface was low. In water contaminated with transformer oil and chlorinated hydrocarbons the detection limit is 10-2 gD103/kg. In transformer oil the upper limit for degradation of D103 by sodium dehalogenation (1.5 gD103 /kgoil) was determined also in the presence of the same concentration of trichloroethylene. The employment to of a liquid core waveguide spectrophotometer instead of a diode array spectrophotometer increased the sensitivity of the measurement of yellow intermediates by a factor of 100. An extrinsic fiber-optic sensor was used for in-situ measurement during biodegradation of PCBs in bioreactors.

  10. Analytical assessment about the simultaneous quantification of releasable pharmaceutical relevant inorganic nanoparticles in tap water and domestic waste water.

    Science.gov (United States)

    Krystek, Petra; Bäuerlein, Patrick S; Kooij, Pascal J F

    2015-03-15

    For pharmaceutical applications, the use of inorganic engineered nanoparticles is of growing interest while silver (Ag) and gold (Au) are the most relevant elements. A few methods were developed recently but the validation and the application testing were quite limited. Therefore, a routinely suitable multi element method for the identification of nanoparticles of different sizes below 100 nm and elemental composition by applying asymmetric flow field flow fraction (AF4) - inductively coupled plasma mass spectrometry (ICPMS) is developed. A complete validation model of the quantification of releasable pharmaceutical relevant inorganic nanoparticles based on Ag and Au is presented for the most relevant aqueous matrices of tap water and domestic waste water. The samples are originated from locations in the Netherlands and it is of great interest to study the unwanted presence of Ag and Au as nanoparticle residues due to possible health and environmental risks. During method development, instability effects are observed for 60 nm and 70 nm Ag ENPs with different capping agents. These effects are studied more closely in relation to matrix effects. Besides the methodological aspects, the obtained analytical results and relevant performance characteristics (e.g. measuring range, limit of detection, repeatability, reproducibility, trueness, and expanded uncertainty of measurement) are determined and discussed. For the chosen aqueous matrices, the results of the performance characteristics are significantly better for Au ENPs in comparison to Ag ENPs; e.g. repeatability and reproducibility are below 10% for all Au ENPs respectively maximal 27% repeatability for larger Ag ENPs. The method is a promising tool for the simultaneous determination of releasable pharmaceutical relevant inorganic nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Advances in organic-inorganic hybrid sorbents for the extraction of organic and inorganic pollutants in different types of food and environmental samples.

    Science.gov (United States)

    Ng, Nyuk-Ting; Kamaruddin, Amirah Farhan; Wan Ibrahim, Wan Aini; Sanagi, Mohd Marsin; Abdul Keyon, Aemi S

    2018-01-01

    The efficiency of the extraction and removal of pollutants from food and the environment has been an important issue in analytical science. By incorporating inorganic species into an organic matrix, a new material known as an organic-inorganic hybrid material is formed. As it possesses high selectivity, permeability, and mechanical and chemical stabilities, organic-inorganic hybrid materials constitute an emerging research field and have become popular to serve as sorbents in various separaton science methods. Here, we review recent significant advances in analytical solid-phase extraction employing organic-inorganic composite/nanocomposite sorbents for the extraction of organic and inorganic pollutants from various types of food and environmental matrices. The physicochemical characteristics, extraction properties, and analytical performances of sorbents are discussed; including morphology and surface characteristics, types of functional groups, interaction mechanism, selectivity and sensitivity, accuracy, and regeneration abilities. Organic-inorganic hybrid sorbents combined with extraction techniques are highly promising for sample preparation of various food and environmental matrixes with analytes at trace levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Quantification of the release of inorganic elements from biofuels

    DEFF Research Database (Denmark)

    Frandsen, Flemming; van Lith, Simone Cornelia; Korbee, Rob

    2007-01-01

    -scale and pilot-scale fixed-bed release data. In conclusion, it is recommended to perform the described lab-scale tests in order to obtain reliable quantitative data on the release of inorganic elements under grate-firing or suspension-firing conditions. Advanced fuel characterization by use of chemical......, the results from the lab-scale fixed-bed release tests were compared to pilot-scale mass balance tests. While large differences were seen between the lab-scale release data and the release information obtained by the fuel characterization techniques, a good correlation was found between the lab...... elements are thermodynamically stable as a function of temperature. This information is needed for the interpretation of the lab-scale release data. Thus, for the purpose of modeling ash or aerosol formation, fuel characterization methods should be combined with lab-scale release measurements. Pilot...

  13. A new inorganic atmospheric aerosol phase equilibrium model (UHAERO

    Directory of Open Access Journals (Sweden)

    N. R. Amundson

    2006-01-01

    Full Text Available A variety of thermodynamic models have been developed to predict inorganic gas-aerosol equilibrium. To achieve computational efficiency a number of the models rely on a priori specification of the phases present in certain relative humidity regimes. Presented here is a new computational model, named UHAERO, that is both efficient and rigorously computes phase behavior without any a priori specification. The computational implementation is based on minimization of the Gibbs free energy using a primal-dual method, coupled to a Newton iteration. The mathematical details of the solution are given elsewhere. The model computes deliquescence behavior without any a priori specification of the relative humidities of deliquescence. Also included in the model is a formulation based on classical theory of nucleation kinetics that predicts crystallization behavior. Detailed phase diagrams of the sulfate/nitrate/ammonium/water system are presented as a function of relative humidity at 298.15 K over the complete space of composition.

  14. Inorganic Metal Oxide/Organic Polymer Nanocomposites And Method Thereof

    Science.gov (United States)

    Gash, Alexander E.; Satcher, Joe H.; Simpson, Randy

    2004-11-16

    A synthetic method for preparation of hybrid inorganic/organic energetic nanocomposites is disclosed herein. The method employs the use of stable metal in organic salts and organic solvents as well as an organic polymer with good solubility in the solvent system to produce novel nanocomposite energetic materials. In addition, fuel metal powders (particularly those that are oxophilic) can be incorporated into composition. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N.sub.2 adsoprtion/desorption methods, and Fourier-Transform (FT-IR) spectroscopy. According to these characterization methods the organic polymer phase fills the nanopores of the material, providing superb mixing of the component phases in the energetic nanocomposite.

  15. Reactions of inorganic free radicals with liver protecting drugs

    International Nuclear Information System (INIS)

    Gyoergy, I.; Foeldiak, G.; Blazovics, A.; Feher, J.

    1990-01-01

    Liver protecting drugs, silibinin, a flavonolignane, and the dihydroquinoline derivatives, CH 402 and MTDQ-DA, were shown to inhibit processes in which enzymatically or non-enzymatically generated free radicals were involved. Inorganic free radicals (N 3 , (SCN) 2 - , OH, Trp, CO 2 - , O 2 - ) produced by pulse radiolysis readily react with the compounds, which transform into exceptionally long-lived, unreactive transients. Time evolution of the UV and visible spectra indicate that oxidising radicals form a phenoxyl type radical from silibinin, while OH forms an adduct by attacking, simultaneously, at various sites of the molecule. Superoxide radicals reduce silibinin and oxidise CH 402 and MTDQ-DA. It is concluded that the drugs might exhibit antioxidant behavior in living systems. (author)

  16. Inorganic coatings on stainless steel for protection against crevice corrosion

    International Nuclear Information System (INIS)

    Henrikson, Sture

    1989-12-01

    In order to create protection against crevice corrosion stainless steel test specimens of type 316 steel with various inorganic coatings applied on crevice surfaces were tested for 3-50 months at 25 and 30 degree C in natural seawater containing 0.2-1.5 ppm free chlorine. Various metallic coatings, Ni base alloys with Cr and Mo, Ni with W, pure Ag and pure Mo, as well as ceramic coatings - Cr 2 O 3 , TiO 2 and Al 2 O 3 - were studied. All the coatings tested, except pure Molybdenum applied by plasma spraying in a max 0.1 mm thick layer were found to promote crevice corrosion of the stainless steel. A significant reduction of the crevice corrosion susceptibility was obtained with Molybdenum. The result is considered promising enough to justify full scale tests in seawater on flange joints of pipes, valves or pumps. (author)

  17. Inorganic Polymer Matrix Composite Strength Related to Interface Condition

    Directory of Open Access Journals (Sweden)

    John Bridge

    2009-12-01

    Full Text Available Resin transfer molding of an inorganic polymer binder was successfully demonstrated in the preparation of ceramic fiber reinforced engine exhaust valves. Unfortunately, in the preliminary processing trials, the resulting composite valves were too brittle for in-engine evaluation. To address this limited toughness, the effectiveness of a modified fiber-matrix interface is investigated through the use of carbon as a model material fiber coating. After sequential heat treatments composites molded from uncoated and carbon coated fibers are compared using room temperature 3-point bend testing. Carbon coated Nextel fiber reinforced geopolymer composites demonstrated a 50% improvement in strength, versus that of the uncoated fiber reinforced composites, after the 250 °C postcure.

  18. Inorganic trace analysis by laser ionization mass spectrometry

    International Nuclear Information System (INIS)

    Becker, S.; Dietze, H.J.

    1991-01-01

    Among the different spectrometric techniques for trace analysis Laser Ionization Mass Spectrometry (LIMS) is well established as a trace analytic method with a wide coverage. In the LIMS the sample material is evaporated and ionized by means of a focused pulsed laser beam in a laser microplasma, which is formed in the spot area of the irradiated sample. All chemical elements in the sample materials are evaporated and ionized in the laser plasma. The formed ions are separated according to mass and energy by a time-of-flight, quadrupole or double focusing mass spectrometer. In this review the characteristics and analytical features, some recent developments, and applications of laser ionization mass spectrometry in inorganic trace analysis are described. (orig.)

  19. Laser ionization mass spectrometry in inorganic trace analysis

    International Nuclear Information System (INIS)

    Becker, J.S.; Dietze, H.J.

    1992-01-01

    Among the different spectrometric techniques for trace analysis Laser Ionization Mass Spectrometry (LIMS) is well established as a trace analytical method. With the LIMS technique the sample material is evaporated and ionized by means of a focused pulsed laser in a laser microplasma, which is formed in the spot area of the irradiated sample. All chemical elements in the sample materials are evaporated and ionized in the laser plasma. The ions formed are separated according to their mass and energy by a time-of-flight, quadrupole or double focusing mass spectrometer. In this review the characteristics and analytical features, some recent developments and applications of laser ionization mass spectrometry in inorganic trace analysis are described. (orig.)

  20. Solidification of radioactive wastes with inorganic binders (literature survey)

    International Nuclear Information System (INIS)

    Rudolph, G.; Koester, R.

    A survey is provided on solidification of radioactive waste solutions, sludges and tritium waste water through cement and other inorganic binders. A general survey of the possibilities described in the literature is followed by a somewhat more detailed description of the work carried on at four research establishments in the United States, Oak Ridge National Laboratory, Savannah River Laboratory, Brookhaven National Laboratory, and Atlantic Richfield Hanford Company, supplemented by personal information. Additional sections describe the experiences with various types of cement and the possibilities for improvement of solidification products through preliminary fixation of the toxic nuclides (transformation into insoluble products or absorption); there is a further possibility of post-treatment through polymer impregnation. Finally, definition and determination of leachability are provided and some results compiled. 74 references, 7 figures, 5 tables