WorldWideScience

Sample records for detailed nmr analysis

  1. CcpNmr AnalysisAssign: a flexible platform for integrated NMR analysis

    International Nuclear Information System (INIS)

    Skinner, Simon P.; Fogh, Rasmus H.; Boucher, Wayne; Ragan, Timothy J.; Mureddu, Luca G.; Vuister, Geerten W.

    2016-01-01

    NMR spectroscopy is an indispensably powerful technique for the analysis of biomolecules under ambient conditions, both for structural- and functional studies. However, in practice the complexity of the technique has often frustrated its application by non-specialists. In this paper, we present CcpNmr version-3, the latest software release from the Collaborative Computational Project for NMR, for all aspects of NMR data analysis, including liquid- and solid-state NMR data. This software has been designed to be simple, functional and flexible, and aims to ensure that routine tasks can be performed in a straightforward manner. We have designed the software according to modern software engineering principles and leveraged the capabilities of modern graphics libraries to simplify a variety of data analysis tasks. We describe the process of backbone assignment as an example of the flexibility and simplicity of implementing workflows, as well as the toolkit used to create the necessary graphics for this workflow. The package can be downloaded from www.ccpn.ac.uk/v3-software/downloads http://www.ccpn.ac.uk/v3-software/downloads and is freely available to all non-profit organisations.

  2. CcpNmr AnalysisAssign: a flexible platform for integrated NMR analysis

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Simon P.; Fogh, Rasmus H. [University of Leicester, Department of Molecular and Cell Biology, Leicester Institute for Structural- and Chemical Biology (United Kingdom); Boucher, Wayne [University of Cambridge, Department of Biochemistry (United Kingdom); Ragan, Timothy J.; Mureddu, Luca G.; Vuister, Geerten W., E-mail: gv29@le.ac.uk [University of Leicester, Department of Molecular and Cell Biology, Leicester Institute for Structural- and Chemical Biology (United Kingdom)

    2016-10-15

    NMR spectroscopy is an indispensably powerful technique for the analysis of biomolecules under ambient conditions, both for structural- and functional studies. However, in practice the complexity of the technique has often frustrated its application by non-specialists. In this paper, we present CcpNmr version-3, the latest software release from the Collaborative Computational Project for NMR, for all aspects of NMR data analysis, including liquid- and solid-state NMR data. This software has been designed to be simple, functional and flexible, and aims to ensure that routine tasks can be performed in a straightforward manner. We have designed the software according to modern software engineering principles and leveraged the capabilities of modern graphics libraries to simplify a variety of data analysis tasks. We describe the process of backbone assignment as an example of the flexibility and simplicity of implementing workflows, as well as the toolkit used to create the necessary graphics for this workflow. The package can be downloaded from www.ccpn.ac.uk/v3-software/downloads http://www.ccpn.ac.uk/v3-software/downloads and is freely available to all non-profit organisations.

  3. Complete 1H NMR spectral analysis of ten chemical markers of Ginkgo biloba.

    Science.gov (United States)

    Napolitano, José G; Lankin, David C; Chen, Shao-Nong; Pauli, Guido F

    2012-08-01

    The complete and unambiguous (1)H NMR assignments of ten marker constituents of Ginkgo biloba are described. The comprehensive (1)H NMR profiles (fingerprints) of ginkgolide A, ginkgolide B, ginkgolide C, ginkgolide J, bilobalide, quercetin, kaempferol, isorhamnetin, isoquercetin, and rutin in DMSO-d(6) were obtained through the examination of 1D (1)H NMR and 2D (1)H,(1)H-COSY data, in combination with (1)H iterative full spin analysis (HiFSA). The computational analysis of discrete spin systems allowed a detailed characterization of all the (1)H NMR signals in terms of chemical shifts (δ(H)) and spin-spin coupling constants (J(HH)), regardless of signal overlap and higher order coupling effects. The capability of the HiFSA-generated (1)H fingerprints to reproduce experimental (1)H NMR spectra at different field strengths was also evaluated. As a result of this analysis, a revised set of (1)H NMR parameters for all ten phytoconstituents was assembled. Furthermore, precise (1)H NMR assignments of the sugar moieties of isoquercetin and rutin are reported for the first time. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Nmrglue: an open source Python package for the analysis of multidimensional NMR data.

    Science.gov (United States)

    Helmus, Jonathan J; Jaroniec, Christopher P

    2013-04-01

    Nmrglue, an open source Python package for working with multidimensional NMR data, is described. When used in combination with other Python scientific libraries, nmrglue provides a highly flexible and robust environment for spectral processing, analysis and visualization and includes a number of common utilities such as linear prediction, peak picking and lineshape fitting. The package also enables existing NMR software programs to be readily tied together, currently facilitating the reading, writing and conversion of data stored in Bruker, Agilent/Varian, NMRPipe, Sparky, SIMPSON, and Rowland NMR Toolkit file formats. In addition to standard applications, the versatility offered by nmrglue makes the package particularly suitable for tasks that include manipulating raw spectrometer data files, automated quantitative analysis of multidimensional NMR spectra with irregular lineshapes such as those frequently encountered in the context of biomacromolecular solid-state NMR, and rapid implementation and development of unconventional data processing methods such as covariance NMR and other non-Fourier approaches. Detailed documentation, install files and source code for nmrglue are freely available at http://nmrglue.com. The source code can be redistributed and modified under the New BSD license.

  5. Nmrglue: an open source Python package for the analysis of multidimensional NMR data

    Energy Technology Data Exchange (ETDEWEB)

    Helmus, Jonathan J., E-mail: jjhelmus@gmail.com [Argonne National Laboratory, Environmental Science Division (United States); Jaroniec, Christopher P., E-mail: jaroniec@chemistry.ohio-state.edu [Ohio State University, Department of Chemistry and Biochemistry (United States)

    2013-04-15

    Nmrglue, an open source Python package for working with multidimensional NMR data, is described. When used in combination with other Python scientific libraries, nmrglue provides a highly flexible and robust environment for spectral processing, analysis and visualization and includes a number of common utilities such as linear prediction, peak picking and lineshape fitting. The package also enables existing NMR software programs to be readily tied together, currently facilitating the reading, writing and conversion of data stored in Bruker, Agilent/Varian, NMRPipe, Sparky, SIMPSON, and Rowland NMR Toolkit file formats. In addition to standard applications, the versatility offered by nmrglue makes the package particularly suitable for tasks that include manipulating raw spectrometer data files, automated quantitative analysis of multidimensional NMR spectra with irregular lineshapes such as those frequently encountered in the context of biomacromolecular solid-state NMR, and rapid implementation and development of unconventional data processing methods such as covariance NMR and other non-Fourier approaches. Detailed documentation, install files and source code for nmrglue are freely available at http://nmrglue.comhttp://nmrglue.com. The source code can be redistributed and modified under the New BSD license.

  6. Nmrglue: an open source Python package for the analysis of multidimensional NMR data

    International Nuclear Information System (INIS)

    Helmus, Jonathan J.; Jaroniec, Christopher P.

    2013-01-01

    Nmrglue, an open source Python package for working with multidimensional NMR data, is described. When used in combination with other Python scientific libraries, nmrglue provides a highly flexible and robust environment for spectral processing, analysis and visualization and includes a number of common utilities such as linear prediction, peak picking and lineshape fitting. The package also enables existing NMR software programs to be readily tied together, currently facilitating the reading, writing and conversion of data stored in Bruker, Agilent/Varian, NMRPipe, Sparky, SIMPSON, and Rowland NMR Toolkit file formats. In addition to standard applications, the versatility offered by nmrglue makes the package particularly suitable for tasks that include manipulating raw spectrometer data files, automated quantitative analysis of multidimensional NMR spectra with irregular lineshapes such as those frequently encountered in the context of biomacromolecular solid-state NMR, and rapid implementation and development of unconventional data processing methods such as covariance NMR and other non-Fourier approaches. Detailed documentation, install files and source code for nmrglue are freely available at http://nmrglue.comhttp://nmrglue.com. The source code can be redistributed and modified under the New BSD license.

  7. PDBStat: a universal restraint converter and restraint analysis software package for protein NMR

    International Nuclear Information System (INIS)

    Tejero, Roberto; Snyder, David; Mao, Binchen; Aramini, James M.; Montelione, Gaetano T.

    2013-01-01

    The heterogeneous array of software tools used in the process of protein NMR structure determination presents organizational challenges in the structure determination and validation processes, and creates a learning curve that limits the broader use of protein NMR in biology. These challenges, including accurate use of data in different data formats required by software carrying out similar tasks, continue to confound the efforts of novices and experts alike. These important issues need to be addressed robustly in order to standardize protein NMR structure determination and validation. PDBStat is a C/C++ computer program originally developed as a universal coordinate and protein NMR restraint converter. Its primary function is to provide a user-friendly tool for interconverting between protein coordinate and protein NMR restraint data formats. It also provides an integrated set of computational methods for protein NMR restraint analysis and structure quality assessment, relabeling of prochiral atoms with correct IUPAC names, as well as multiple methods for analysis of the consistency of atomic positions indicated by their convergence across a protein NMR ensemble. In this paper we provide a detailed description of the PDBStat software, and highlight some of its valuable computational capabilities. As an example, we demonstrate the use of the PDBStat restraint converter for restrained CS-Rosetta structure generation calculations, and compare the resulting protein NMR structure models with those generated from the same NMR restraint data using more traditional structure determination methods. These results demonstrate the value of a universal restraint converter in allowing the use of multiple structure generation methods with the same restraint data for consensus analysis of protein NMR structures and the underlying restraint data

  8. PDBStat: a universal restraint converter and restraint analysis software package for protein NMR

    Energy Technology Data Exchange (ETDEWEB)

    Tejero, Roberto [Rutgers, The State University of New Jersey, Center for Advanced Biotechnology and Medicine (United States); Snyder, David [William Paterson University, Department of Chemistry (United States); Mao, Binchen; Aramini, James M.; Montelione, Gaetano T., E-mail: guy@cabm.rutgers.edu [Rutgers, The State University of New Jersey, Center for Advanced Biotechnology and Medicine (United States)

    2013-08-15

    The heterogeneous array of software tools used in the process of protein NMR structure determination presents organizational challenges in the structure determination and validation processes, and creates a learning curve that limits the broader use of protein NMR in biology. These challenges, including accurate use of data in different data formats required by software carrying out similar tasks, continue to confound the efforts of novices and experts alike. These important issues need to be addressed robustly in order to standardize protein NMR structure determination and validation. PDBStat is a C/C++ computer program originally developed as a universal coordinate and protein NMR restraint converter. Its primary function is to provide a user-friendly tool for interconverting between protein coordinate and protein NMR restraint data formats. It also provides an integrated set of computational methods for protein NMR restraint analysis and structure quality assessment, relabeling of prochiral atoms with correct IUPAC names, as well as multiple methods for analysis of the consistency of atomic positions indicated by their convergence across a protein NMR ensemble. In this paper we provide a detailed description of the PDBStat software, and highlight some of its valuable computational capabilities. As an example, we demonstrate the use of the PDBStat restraint converter for restrained CS-Rosetta structure generation calculations, and compare the resulting protein NMR structure models with those generated from the same NMR restraint data using more traditional structure determination methods. These results demonstrate the value of a universal restraint converter in allowing the use of multiple structure generation methods with the same restraint data for consensus analysis of protein NMR structures and the underlying restraint data.

  9. Comprehensive NMR analysis of compositional changes of black garlic during thermal processing.

    Science.gov (United States)

    Liang, Tingfu; Wei, Feifei; Lu, Yi; Kodani, Yoshinori; Nakada, Mitsuhiko; Miyakawa, Takuya; Tanokura, Masaru

    2015-01-21

    Black garlic is a processed food product obtained by subjecting whole raw garlic to thermal processing that causes chemical reactions, such as the Maillard reaction, which change the composition of the garlic. In this paper, we report a nuclear magnetic resonance (NMR)-based comprehensive analysis of raw garlic and black garlic extracts to determine the compositional changes resulting from thermal processing. (1)H NMR spectra with a detailed signal assignment showed that 38 components were altered by thermal processing of raw garlic. For example, the contents of 11 l-amino acids increased during the first step of thermal processing over 5 days and then decreased. Multivariate data analysis revealed changes in the contents of fructose, glucose, acetic acid, formic acid, pyroglutamic acid, cycloalliin, and 5-(hydroxymethyl)furfural (5-HMF). Our results provide comprehensive information on changes in NMR-detectable components during thermal processing of whole garlic.

  10. Detailed NMR investigation of cyclodextrin-perfluorinated surfactant interactions in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Weiss-Errico, Mary Jo; O’Shea, Kevin E., E-mail: osheak@fiu.edu

    2017-05-05

    Highlights: • Perfluorochemicals (PFCs) are strongly encapsulated by cyclodextrins (CDs). • Competition studies confirm strong CD:PFC host-guest interactions. • {sup 19}F NMR Spectroscopy demonstrates association constants up to 10{sup 5} M{sup −1}. • Position of CD along PFC chain is elucidated from NMR results. • CD:PFC complex is not disturbed under a variety of water quality conditions. - Abstract: Perfluorochemicals (PFCs) are contaminants of serious concern because of their toxicological properties, widespread presence in drinking water sources, and incredible stability in the environment. To assess the potential application of α-, β-, and γ-cyclodextrins for PFC remediation, we investigated their complexation with linear fluorinated carboxylic acids, sulfonates, and a sulfonamide with carbon backbones ranging from C4-C9. {sup 19}F Nuclear Magnetic Resonance (NMR) spectroscopy studies demonstrated β-CD formed the strongest complexes with these PFCs. The polar head group had a modest influence, but for PFCs with backbones longer than six carbons, strong association constants are observed for 1:1 (K{sub 1:1} ∼ 10{sup 5} M{sup −1}) and 2:1 (K{sub 2:1} ∼ 10{sup 3} M{sup −1}) β-CD:PFC complexes. Excess β-CD can be used to complex 99.5% of the longer chain PFCs. Competition studies with adamantane-carboxylic acid and phenol confirmed the nature and persistence of the β-CD:PFC complex. Detailed analyses of the individual NMR chemical shifts and Job plots indicate the favored positions of the β-CD along the PFC chain. Solution pH, ionic strength, and the presence of humic acid have modest influence on the β-CD:PFC complexes. The strong encapsulation of PFCs by β-CD under a variety of water quality conditions demonstrates the tremendous potential of CD-based materials for the environmental remediation of PFCs.

  11. Nanodisc-Targeted STD NMR Spectroscopy Reveals Atomic Details of Ligand Binding to Lipid Environments.

    Science.gov (United States)

    Muñoz-García, Juan C; Inacio Dos Reis, Rosana; Taylor, Richard J; Henry, Alistair J; Watts, Anthony

    2018-05-18

    Saturation transfer difference (STD) NMR spectroscopy is one of the most popular ligand-based NMR techniques for the study of protein-ligand interactions. This is due to its robustness and the fact that it is focused on the signals of the ligand, without any need for NMR information on the macromolecular target. This technique is most commonly applied to systems involving different types of ligands (e.g., small organic molecules, carbohydrates or lipids) and a protein as the target, in which the latter is selectively saturated. However, only a few examples have been reported where membrane mimetics are the macromolecular binding partners. Here, we have employed STD NMR spectroscopy to investigate the interactions of the neurotransmitter dopamine with mimetics of lipid bilayers, such as nanodiscs, by saturation of the latter. In particular, the interactions between dopamine and model lipid nanodiscs formed either from charged or zwitterionic lipids have been resolved at the atomic level. The results, in agreement with previous isothermal titration calorimetry studies, show that dopamine preferentially binds to negatively charged model membranes, but also provide detailed atomic insights into the mode of interaction of dopamine with membrane mimetics. Our findings provide relevant structural information for the design of lipid-based drug carriers of dopamine and its structural analogues and are of general applicability to other systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Detailed 1H and 13C NMR spectral data assignment for two dihydrobenzofuran neolignans

    International Nuclear Information System (INIS)

    Medeiros, Talita C.T.; Dias, Herbert J.; Crotti, Antônio E.M.

    2016-01-01

    In this work we present a complete proton ( 1 H) and carbon 13 ( 13 C) nuclear magnetic resonance (NMR) spectral analysis of two synthetic dihydrofuran neolignans (±)-trans-dehydrodicoumarate dimethyl ester and (±)-trans-dehydrodiferulate dimethyl ester. Unequivocal assignments were achieved by 1 H NMR, proton decoupled 13 C ( 13 C{ 1 H}) NMR spectra, gradient-selected correlation spectroscopy (gCOSY), J-resolved, gradient-selected heteronuclear multiple quantum coherence (gHMQC), gradient-selected heteronuclear multiple bond coherence (gHMBC) and nuclear Overhauser effect spectroscopy (NOESY) experiments. All hydrogen coupling constants were measured, clarifying all the hydrogen signals multiplicities. Computational methods were also used to simulate the 1 H and 13 C chemical shifts and showed good agreement with the trans configuration of the substituents at C 7 and C 8 . (author)

  13. Crystallographically-based analysis of the NMR spectra of maghemite

    International Nuclear Information System (INIS)

    Spiers, K.M.; Cashion, J.D.

    2012-01-01

    All possible iron environments with respect to nearest neighbour vacancies in vacancy-ordered and vacancy-disordered maghemite have been evaluated and used as the foundation for a crystallographically-based analysis of the published NMR spectra of maghemite. The spectral components have been assigned to particular configurations and excellent agreement obtained in comparing predicted spectra with published spectra taken in applied magnetic fields. The broadness of the published NMR lines has been explained by calculations of the magnetic dipole fields at the various iron sites and consideration of the supertransferred hyperfine fields. - Highlights: ► Analysis of 57 Fe NMR of maghemite based on vacancy ordering and nearest neighbour vacancies. ► Assignment of NMR spectral components based on crystallographic analysis of unique iron sites. ► Strong agreement between predicted spectra and published spectra taken in applied magnetic fields. ► Maghemite NMR spectral broadening due to various iron sites and supertransferred hyperfine field.

  14. Covariance NMR Processing and Analysis for Protein Assignment.

    Science.gov (United States)

    Harden, Bradley J; Frueh, Dominique P

    2018-01-01

    During NMR resonance assignment it is often necessary to relate nuclei to one another indirectly, through their common correlations to other nuclei. Covariance NMR has emerged as a powerful technique to correlate such nuclei without relying on error-prone peak peaking. However, false-positive artifacts in covariance spectra have impeded a general application to proteins. We recently introduced pre- and postprocessing steps to reduce the prevalence of artifacts in covariance spectra, allowing for the calculation of a variety of 4D covariance maps obtained from diverse combinations of pairs of 3D spectra, and we have employed them to assign backbone and sidechain resonances in two large and challenging proteins. In this chapter, we present a detailed protocol describing how to (1) properly prepare existing 3D spectra for covariance, (2) understand and apply our processing script, and (3) navigate and interpret the resulting 4D spectra. We also provide solutions to a number of errors that may occur when using our script, and we offer practical advice when assigning difficult signals. We believe such 4D spectra, and covariance NMR in general, can play an integral role in the assignment of NMR signals.

  15. NMR-CT scanner

    International Nuclear Information System (INIS)

    Kose, Katsumi; Sato, Kozo; Sugimoto, Hiroshi; Sato, Masataka.

    1983-01-01

    A brief explanation is made on the imaging methods for a practical diagnostic NMR-CT scanner : A whole-body NMR-CT scanner utilizing a resistive magnet has been developed by Toshiba in cooperation with the Institute for Solid State Physics, the University of Tokyo. Typical NMR-CT images of volunteers and patients obtained in the clinical experiments using this device are presented. Detailed specifications are also shown about the practical NMR-CTs which are to be put on the market after obtaining the government approval. (author)

  16. A software framework for analysing solid-state MAS NMR data

    International Nuclear Information System (INIS)

    Stevens, Tim J.; Fogh, Rasmus H.; Boucher, Wayne; Higman, Victoria A.; Eisenmenger, Frank; Bardiaux, Benjamin; Rossum, Barth-Jan van; Oschkinat, Hartmut; Laue, Ernest D.

    2011-01-01

    Solid-state magic-angle-spinning (MAS) NMR of proteins has undergone many rapid methodological developments in recent years, enabling detailed studies of protein structure, function and dynamics. Software development, however, has not kept pace with these advances and data analysis is mostly performed using tools developed for solution NMR which do not directly address solid-state specific issues. Here we present additions to the CcpNmr Analysis software package which enable easier identification of spinning side bands, straightforward analysis of double quantum spectra, automatic consideration of non-uniform labelling schemes, as well as extension of other existing features to the needs of solid-state MAS data. To underpin this, we have updated and extended the CCPN data model and experiment descriptions to include transfer types and nomenclature appropriate for solid-state NMR experiments, as well as a set of experiment prototypes covering the experiments commonly employed by solid-sate MAS protein NMR spectroscopists. This work not only improves solid-state MAS NMR data analysis but provides a platform for anyone who uses the CCPN data model for programming, data transfer, or data archival involving solid-state MAS NMR data.

  17. ImatraNMR: Novel software for batch integration and analysis of quantitative NMR spectra

    Science.gov (United States)

    Mäkelä, A. V.; Heikkilä, O.; Kilpeläinen, I.; Heikkinen, S.

    2011-08-01

    Quantitative NMR spectroscopy is a useful and important tool for analysis of various mixtures. Recently, in addition of traditional quantitative 1D 1H and 13C NMR methods, a variety of pulse sequences aimed for quantitative or semiquantitative analysis have been developed. To obtain actual usable results from quantitative spectra, they must be processed and analyzed with suitable software. Currently, there are many processing packages available from spectrometer manufacturers and third party developers, and most of them are capable of analyzing and integration of quantitative spectra. However, they are mainly aimed for processing single or few spectra, and are slow and difficult to use when large numbers of spectra and signals are being analyzed, even when using pre-saved integration areas or custom scripting features. In this article, we present a novel software, ImatraNMR, designed for batch analysis of quantitative spectra. In addition to capability of analyzing large number of spectra, it provides results in text and CSV formats, allowing further data-analysis using spreadsheet programs or general analysis programs, such as Matlab. The software is written with Java, and thus it should run in any platform capable of providing Java Runtime Environment version 1.6 or newer, however, currently it has only been tested with Windows and Linux (Ubuntu 10.04). The software is free for non-commercial use, and is provided with source code upon request.

  18. NMR spectroscopy: a tool for conformational analysis

    International Nuclear Information System (INIS)

    Tormena, Claudio F.; Cormanich, Rodrigo A.; Rittner, Roberto; Freitas, Matheus P.

    2011-01-01

    The present review deals with the application of NMR data to the conformational analysis of simple organic compounds, together with other experimental methods like infrared spectroscopy and with theoretical calculations. Each sub-section describes the results for a group of compounds which belong to a given organic function like ketones, esters, etc. Studies of a single compound, even of special relevance, were excluded since the main goal of this review is to compare the results for a given function, where different substituents were used or small structural changes were introduced in the substrate, in an attempt to disclose their effects in the conformational equilibrium. Moreover, the huge amount of data available in the literature, on this research field, imposed some limitations which will be detailed in the Introduction, but it can be reminded in advance that these limitations include mostly the period when these results were published. (author)

  19. Synergistic effect of the simultaneous chemometric analysis of {sup 1}H NMR spectroscopic and stable isotope (SNIF-NMR, {sup 18}O, {sup 13}C) data: Application to wine analysis

    Energy Technology Data Exchange (ETDEWEB)

    Monakhova, Yulia B., E-mail: yul-monakhova@mail.ru [Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, Karlsruhe 76187 (Germany); Bruker Biospin GmbH, Silberstreifen, Rheinstetten 76287 (Germany); Department of Chemistry, Saratov State University, Astrakhanskaya Street 83, Saratov 410012 (Russian Federation); Godelmann, Rolf [Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, Karlsruhe 76187 (Germany); Hermann, Armin [Landesuntersuchungsamt -Institut für Lebensmittelchemie und Arzneimittelprüfung, Emy-Roeder-Straße 1, Mainz 55129 (Germany); Kuballa, Thomas [Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, Karlsruhe 76187 (Germany); Cannet, Claire; Schäfer, Hartmut; Spraul, Manfred [Bruker Biospin GmbH, Silberstreifen, Rheinstetten 76287 (Germany); Rutledge, Douglas N. [AgroParisTech, UMR 1145, Ingénierie Procédés Aliments, 16 rue Claude Bernard, Paris F-75005 (France)

    2014-06-23

    Highlights: • {sup 1}H NMR profilings of 718 wines were fused with stable isotope analysis data (SNIF-NMR, {sup 18}O, {sup 13}C). • The best improvement was obtained for prediction of the geographical origin of wine. • Certain enhancement was also obtained for the year of vintage (from 88 to 97% for {sup 1}H NMR to 99% for the fused data). • Independent component analysis was used as an alternative chemometric tool for classification. - Abstract: It is known that {sup 1}H NMR spectroscopy represents a good tool for predicting the grape variety, the geographical origin, and the year of vintage of wine. In the present study we have shown that classification models can be improved when {sup 1}H NMR profiles are fused with stable isotope (SNIF-NMR, {sup 18}O, {sup 13}C) data. Variable selection based on clustering of latent variables was performed on {sup 1}H NMR data. Afterwards, the combined data of 718 wine samples from Germany were analyzed using linear discriminant analysis (LDA), partial least squares-discriminant analysis (PLS-DA), factorial discriminant analysis (FDA) and independent components analysis (ICA). Moreover, several specialized multiblock methods (common components and specific weights analysis (ComDim), consensus PCA and consensus PLS-DA) were applied to the data. The best improvement in comparison with {sup 1}H NMR data was obtained for prediction of the geographical origin (up to 100% for the fused data, whereas stable isotope data resulted only in 60–70% correct prediction and {sup 1}H NMR data alone in 82–89% respectively). Certain enhancement was obtained also for the year of vintage (from 88 to 97% for {sup 1}H NMR to 99% for the fused data), whereas in case of grape varieties improved models were not obtained. The combination of {sup 1}H NMR data with stable isotope data improves efficiency of classification models for geographical origin and vintage of wine and can be potentially used for other food products as well.

  20. Combined chemometric analysis of (1)H NMR, (13)C NMR and stable isotope data to differentiate organic and conventional milk.

    Science.gov (United States)

    Erich, Sarah; Schill, Sandra; Annweiler, Eva; Waiblinger, Hans-Ulrich; Kuballa, Thomas; Lachenmeier, Dirk W; Monakhova, Yulia B

    2015-12-01

    The increased sales of organically produced food create a strong need for analytical methods, which could authenticate organic and conventional products. Combined chemometric analysis of (1)H NMR-, (13)C NMR-spectroscopy data, stable-isotope data (IRMS) and α-linolenic acid content (gas chromatography) was used to differentiate organic and conventional milk. In total 85 raw, pasteurized and ultra-heat treated (UHT) milk samples (52 organic and 33 conventional) were collected between August 2013 and May 2014. The carbon isotope ratios of milk protein and milk fat as well as the α-linolenic acid content of these samples were determined. Additionally, the milk fat was analyzed by (1)H and (13)C NMR spectroscopy. The chemometric analysis of combined data (IRMS, GC, NMR) resulted in more precise authentication of German raw and retail milk with a considerably increased classification rate of 95% compared to 81% for NMR and 90% for IRMS using linear discriminate analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Detailed Source-Specific Molecular Composition of Ambient Aerosol Organic Matter Using Ultrahigh Resolution Mass Spectrometry and 1H NMR

    Directory of Open Access Journals (Sweden)

    Amanda S. Willoughby

    2016-06-01

    Full Text Available Organic aerosols (OA are universally regarded as an important component of the atmosphere that have far-ranging impacts on climate forcing and human health. Many of these impacts are related to OA molecular characteristics. Despite the acknowledged importance, current uncertainties related to the source apportionment of molecular properties and environmental impacts make it difficult to confidently predict the net impacts of OA. Here we evaluate the specific molecular compounds as well as bulk structural properties of total suspended particulates in ambient OA collected from key emission sources (marine, biomass burning, and urban using ultrahigh resolution mass spectrometry (UHR-MS and proton nuclear magnetic resonance spectroscopy (1H NMR. UHR-MS and 1H NMR show that OA within each source is structurally diverse, and the molecular characteristics are described in detail. Principal component analysis (PCA revealed that (1 aromatic nitrogen species are distinguishing components for these biomass burning aerosols; (2 these urban aerosols are distinguished by having formulas with high O/C ratios and lesser aromatic and condensed aromatic formulas; and (3 these marine aerosols are distinguished by lipid-like compounds of likely marine biological origin. This study provides a unique qualitative approach for enhancing the chemical characterization of OA necessary for molecular source apportionment.

  2. Teaching NMR spectra analysis with nmr.cheminfo.org.

    Science.gov (United States)

    Patiny, Luc; Bolaños, Alejandro; Castillo, Andrés M; Bernal, Andrés; Wist, Julien

    2018-06-01

    Teaching spectra analysis and structure elucidation requires students to get trained on real problems. This involves solving exercises of increasing complexity and when necessary using computational tools. Although desktop software packages exist for this purpose, nmr.cheminfo.org platform offers students an online alternative. It provides a set of exercises and tools to help solving them. Only a small number of exercises are currently available, but contributors are invited to submit new ones and suggest new types of problems. Copyright © 2018 John Wiley & Sons, Ltd.

  3. Detailed {sup 1}H and {sup 13}C NMR spectral data assignment for two dihydrobenzofuran neolignans

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Talita C.T.; Dias, Herbert J.; Crotti, Antônio E.M., E-mail: millercrotti@ffclrp.usp.br [Universidade de São Paulo (USP), Ribeirão Preto, SP (Brazil). Faculdade de Filosofia, Ciências e Letras. Departamento de Química

    2016-07-01

    In this work we present a complete proton ({sup 1}H) and carbon 13 ({sup 13}C) nuclear magnetic resonance (NMR) spectral analysis of two synthetic dihydrofuran neolignans (±)-trans-dehydrodicoumarate dimethyl ester and (±)-trans-dehydrodiferulate dimethyl ester. Unequivocal assignments were achieved by 1 H NMR, proton decoupled {sup 13}C ({sup 13}C{"1H}) NMR spectra, gradient-selected correlation spectroscopy (gCOSY), J-resolved, gradient-selected heteronuclear multiple quantum coherence (gHMQC), gradient-selected heteronuclear multiple bond coherence (gHMBC) and nuclear Overhauser effect spectroscopy (NOESY) experiments. All hydrogen coupling constants were measured, clarifying all the hydrogen signals multiplicities. Computational methods were also used to simulate the {sup 1}H and {sup 13}C chemical shifts and showed good agreement with the trans configuration of the substituents at C{sub 7} and C{sub 8}. (author)

  4. Quantitative analysis of protein-ligand interactions by NMR.

    Science.gov (United States)

    Furukawa, Ayako; Konuma, Tsuyoshi; Yanaka, Saeko; Sugase, Kenji

    2016-08-01

    Protein-ligand interactions have been commonly studied through static structures of the protein-ligand complex. Recently, however, there has been increasing interest in investigating the dynamics of protein-ligand interactions both for fundamental understanding of the underlying mechanisms and for drug development. NMR is a versatile and powerful tool, especially because it provides site-specific quantitative information. NMR has widely been used to determine the dissociation constant (KD), in particular, for relatively weak interactions. The simplest NMR method is a chemical-shift titration experiment, in which the chemical-shift changes of a protein in response to ligand titration are measured. There are other quantitative NMR methods, but they mostly apply only to interactions in the fast-exchange regime. These methods derive the dissociation constant from population-averaged NMR quantities of the free and bound states of a protein or ligand. In contrast, the recent advent of new relaxation-based experiments, including R2 relaxation dispersion and ZZ-exchange, has enabled us to obtain kinetic information on protein-ligand interactions in the intermediate- and slow-exchange regimes. Based on R2 dispersion or ZZ-exchange, methods that can determine the association rate, kon, dissociation rate, koff, and KD have been developed. In these approaches, R2 dispersion or ZZ-exchange curves are measured for multiple samples with different protein and/or ligand concentration ratios, and the relaxation data are fitted to theoretical kinetic models. It is critical to choose an appropriate kinetic model, such as the two- or three-state exchange model, to derive the correct kinetic information. The R2 dispersion and ZZ-exchange methods are suitable for the analysis of protein-ligand interactions with a micromolar or sub-micromolar dissociation constant but not for very weak interactions, which are typical in very fast exchange. This contrasts with the NMR methods that are used

  5. NMR/MS Translator for the Enhanced Simultaneous Analysis of Metabolomics Mixtures by NMR Spectroscopy and Mass Spectrometry: Application to Human Urine.

    Science.gov (United States)

    Bingol, Kerem; Brüschweiler, Rafael

    2015-06-05

    A novel metabolite identification strategy is presented for the combined NMR/MS analysis of complex metabolite mixtures. The approach first identifies metabolite candidates from 1D or 2D NMR spectra by NMR database query, which is followed by the determination of the masses (m/z) of their possible ions, adducts, fragments, and characteristic isotope distributions. The expected m/z ratios are then compared with the MS(1) spectrum for the direct assignment of those signals of the mass spectrum that contain information about the same metabolites as the NMR spectra. In this way, the mass spectrum can be assigned with very high confidence, and it provides at the same time validation of the NMR-derived metabolites. The method was first demonstrated on a model mixture, and it was then applied to human urine collected from a pool of healthy individuals. A number of metabolites could be detected that had not been reported previously, further extending the list of known urine metabolites. The new analysis approach, which is termed NMR/MS Translator, is fully automated and takes only a few seconds on a computer workstation. NMR/MS Translator synergistically uses the power of NMR and MS, enhancing the accuracy and efficiency of the identification of those metabolites compiled in databases.

  6. A global analysis of NMR distance constraints from the PDB

    International Nuclear Information System (INIS)

    Vranken, Wim

    2007-01-01

    Information obtained from Nuclear Magnetic Resonance (NMR) experiments is encoded as a set of constraint lists when calculating three-dimensional structures for a protein. With the amount of constraint data from the world wide Protein Data Bank (wwPDB) that is now available, it is possible to do a global, large-scale analysis using only information from the constraints, without taking the coordinate information into account. This article describes such an analysis of distance constraints from NOE data based on a set of 1834 NMR PDB entries containing 1909 protein chains. In order to best represent the quality and extent of the data that is currently deposited at the wwPDB, only the original data as deposited by the authors was used, and no attempt was made to 'clean up' and further interpret this information. Because the constraint lists provide a single set of data, and not an ensemble of structural solutions, they are easier to analyse and provide a reduced form of structural information that is relevant for NMR analysis only. The online resource resulting from this analysis makes it possible to check, for example, how often a particular contact occurs when assigning NOESY spectra, or to find out whether a particular sequence fragment is likely to be difficult to assign. In this respect it formalises information that scientists with experience in spectrum analysis are aware of but cannot necessarily quantify. The analysis described here illustrates the importance of depositing constraints (and all other possible NMR derived information) along with the structure coordinates, as this type of information can greatly assist the NMR community

  7. LC-NMR coupling technology: recent advancements and applications in natural products analysis

    NARCIS (Netherlands)

    Exarchou, V.; Krucker, M.; Beek, van T.A.; Vervoort, J.J.M.; Gerothanassis, I.P.; Albert, K.

    2005-01-01

    An overview of recent advances in nuclear magnetic resonance (NMR) coupled with separation technologies and their application in natural product analysis is given and discussed. The different modes of LC-NMR operation are described, as well as how technical improvements assist in establishing LC-NMR

  8. KUJIRA, a package of integrated modules for systematic and interactive analysis of NMR data directed to high-throughput NMR structure studies

    International Nuclear Information System (INIS)

    Kobayashi, Naohiro; Iwahara, Junji; Koshiba, Seizo; Tomizawa, Tadashi; Tochio, Naoya; Guentert, Peter; Kigawa, Takanori; Yokoyama, Shigeyuki

    2007-01-01

    The recent expansion of structural genomics has increased the demands for quick and accurate protein structure determination by NMR spectroscopy. The conventional strategy without an automated protocol can no longer satisfy the needs of high-throughput application to a large number of proteins, with each data set including many NMR spectra, chemical shifts, NOE assignments, and calculated structures. We have developed the new software KUJIRA, a package of integrated modules for the systematic and interactive analysis of NMR data, which is designed to reduce the tediousness of organizing and manipulating a large number of NMR data sets. In combination with CYANA, the program for automated NOE assignment and structure determination, we have established a robust and highly optimized strategy for comprehensive protein structure analysis. An application of KUJIRA in accordance with our new strategy was carried out by a non-expert in NMR structure analysis, demonstrating that the accurate assignment of the chemical shifts and a high-quality structure of a small protein can be completed in a few weeks. The high completeness of the chemical shift assignment and the NOE assignment achieved by the systematic analysis using KUJIRA and CYANA led, in practice, to increased reliability of the determined structure

  9. Structure determination of helical filaments by solid-state NMR spectroscopy

    Science.gov (United States)

    Ahmed, Mumdooh; Spehr, Johannes; König, Renate; Lünsdorf, Heinrich; Rand, Ulfert; Lührs, Thorsten; Ritter, Christiane

    2016-01-01

    The controlled formation of filamentous protein complexes plays a crucial role in many biological systems and represents an emerging paradigm in signal transduction. The mitochondrial antiviral signaling protein (MAVS) is a central signal transduction hub in innate immunity that is activated by a receptor-induced conversion into helical superstructures (filaments) assembled from its globular caspase activation and recruitment domain. Solid-state NMR (ssNMR) spectroscopy has become one of the most powerful techniques for atomic resolution structures of protein fibrils. However, for helical filaments, the determination of the correct symmetry parameters has remained a significant hurdle for any structural technique and could thus far not be precisely derived from ssNMR data. Here, we solved the atomic resolution structure of helical MAVSCARD filaments exclusively from ssNMR data. We present a generally applicable approach that systematically explores the helical symmetry space by efficient modeling of the helical structure restrained by interprotomer ssNMR distance restraints. Together with classical automated NMR structure calculation, this allowed us to faithfully determine the symmetry that defines the entire assembly. To validate our structure, we probed the protomer arrangement by solvent paramagnetic resonance enhancement, analysis of chemical shift differences relative to the solution NMR structure of the monomer, and mutagenesis. We provide detailed information on the atomic contacts that determine filament stability and describe mechanistic details on the formation of signaling-competent MAVS filaments from inactive monomers. PMID:26733681

  10. Carbon-13 NMR of flavinoids

    International Nuclear Information System (INIS)

    Agrawal, P.K.

    1989-01-01

    The present book has been written with the objective of introducing the organic chemists with the conceptual and experimental basis required for interpretation of 13 C NMR spectra of a flavonoid and to a discussion of general usefulness of the technique in solving flavonoid structural problem. After a brief general introduction to the essential aspects of flavonoids and 13 C NMR spectroscopy, considerable emphasis has been placed in chapter 2 on the various experimental methods and the interpretation of spectral details which enable individual resonance lines to be associated with the appropriate carbons in a molecule. The whole bulk of the literature, published on 13 C NMR of flavonoids in the major journals upto 1986 alongwith some recent references of 1987 has been classified in several categories such as: flavonoids, isflavonoids, other flavonoids, flavonoid glycosides, chalconoids and flavanoids. Each category constitutes a chapter. Finally the last chapter is devoted largely to a discussion for the differentiation of various categories and subcategories of flavonoids and for the establishment of aromatic substitution pattern in these compounds. It should be emphasized that the book is a data book and only concerned with the actual analysis of 13 C NMR spectra, thus a reasonable familiarity with basic instrumentation of 13 C NMR and general pattern of nuclear chemical shifts has been assumed. (author). refs.; figs.; tabs

  11. Straightforward and complete deposition of NMR data to the PDBe

    International Nuclear Information System (INIS)

    Penkett, Christopher J.; Ginkel, Glen van; Velankar, Sameer; Swaminathan, Jawahar; Ulrich, Eldon L.; Mading, Steve; Stevens, Tim J.; Fogh, Rasmus H.; Gutmanas, Aleksandras; Kleywegt, Gerard J.; Henrick, Kim; Vranken, Wim F.

    2010-01-01

    We present a suite of software for the complete and easy deposition of NMR data to the PDB and BMRB. This suite uses the CCPN framework and introduces a freely downloadable, graphical desktop application called CcpNmr Entry Completion Interface (ECI) for the secure editing of experimental information and associated datasets through the lifetime of an NMR project. CCPN projects can be created within the CcpNmr Analysis software or by importing existing NMR data files using the CcpNmr FormatConverter. After further data entry and checking with the ECI, the project can then be rapidly deposited to the PDBe using AutoDep, or exported as a complete deposition NMR-STAR file. In full CCPN projects created with ECI, it is straightforward to select chemical shift lists, restraint data sets, structural ensembles and all relevant associated experimental collection details, which all are or will become mandatory when depositing to the PDB. Instructions and download information for the ECI are available from the PDBe web site at http://www.ebi.ac.uk/pdbe/nmr/deposition/eci.htmlhttp://www.ebi.ac.uk/pdbe/nmr/deposition/eci.html.

  12. Assessment of 1H NMR-based metabolomics analysis for normalization of urinary metals against creatinine.

    Science.gov (United States)

    Cassiède, Marc; Nair, Sindhu; Dueck, Meghan; Mino, James; McKay, Ryan; Mercier, Pascal; Quémerais, Bernadette; Lacy, Paige

    2017-01-01

    Proton nuclear magnetic resonance ( 1 H NMR, or NMR) spectroscopy and inductively coupled plasma-mass spectrometry (ICP-MS) are commonly used for metabolomics and metal analysis in urine samples. However, creatinine quantification by NMR for the purpose of normalization of urinary metals has not been validated. We assessed the validity of using NMR analysis for creatinine quantification in human urine samples in order to allow normalization of urinary metal concentrations. NMR and ICP-MS techniques were used to measure metabolite and metal concentrations in urine samples from 10 healthy subjects. For metabolite analysis, two magnetic field strengths (600 and 700MHz) were utilized. In addition, creatinine concentrations were determined by using the Jaffe method. Creatinine levels were strongly correlated (R 2 =0.99) between NMR and Jaffe methods. The NMR spectra were deconvoluted with a target database containing 151 metabolites that are present in urine. A total of 50 metabolites showed good correlation (R 2 =0.7-1.0) at 600 and 700MHz. Metal concentrations determined after NMR-measured creatinine normalization were comparable to previous reports. NMR analysis provided robust urinary creatinine quantification, and was sufficient for normalization of urinary metal concentrations. We found that NMR-measured creatinine-normalized urinary metal concentrations in our control subjects were similar to general population levels in Canada and the United Kingdom. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis

    Directory of Open Access Journals (Sweden)

    Qu Lijia

    2009-03-01

    Full Text Available Abstract Background Spectral processing and post-experimental data analysis are the major tasks in NMR-based metabonomics studies. While there are commercial and free licensed software tools available to assist these tasks, researchers usually have to use multiple software packages for their studies because software packages generally focus on specific tasks. It would be beneficial to have a highly integrated platform, in which these tasks can be completed within one package. Moreover, with open source architecture, newly proposed algorithms or methods for spectral processing and data analysis can be implemented much more easily and accessed freely by the public. Results In this paper, we report an open source software tool, Automics, which is specifically designed for NMR-based metabonomics studies. Automics is a highly integrated platform that provides functions covering almost all the stages of NMR-based metabonomics studies. Automics provides high throughput automatic modules with most recently proposed algorithms and powerful manual modules for 1D NMR spectral processing. In addition to spectral processing functions, powerful features for data organization, data pre-processing, and data analysis have been implemented. Nine statistical methods can be applied to analyses including: feature selection (Fisher's criterion, data reduction (PCA, LDA, ULDA, unsupervised clustering (K-Mean and supervised regression and classification (PLS/PLS-DA, KNN, SIMCA, SVM. Moreover, Automics has a user-friendly graphical interface for visualizing NMR spectra and data analysis results. The functional ability of Automics is demonstrated with an analysis of a type 2 diabetes metabolic profile. Conclusion Automics facilitates high throughput 1D NMR spectral processing and high dimensional data analysis for NMR-based metabonomics applications. Using Automics, users can complete spectral processing and data analysis within one software package in most cases

  14. Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis.

    Science.gov (United States)

    Wang, Tao; Shao, Kang; Chu, Qinying; Ren, Yanfei; Mu, Yiming; Qu, Lijia; He, Jie; Jin, Changwen; Xia, Bin

    2009-03-16

    Spectral processing and post-experimental data analysis are the major tasks in NMR-based metabonomics studies. While there are commercial and free licensed software tools available to assist these tasks, researchers usually have to use multiple software packages for their studies because software packages generally focus on specific tasks. It would be beneficial to have a highly integrated platform, in which these tasks can be completed within one package. Moreover, with open source architecture, newly proposed algorithms or methods for spectral processing and data analysis can be implemented much more easily and accessed freely by the public. In this paper, we report an open source software tool, Automics, which is specifically designed for NMR-based metabonomics studies. Automics is a highly integrated platform that provides functions covering almost all the stages of NMR-based metabonomics studies. Automics provides high throughput automatic modules with most recently proposed algorithms and powerful manual modules for 1D NMR spectral processing. In addition to spectral processing functions, powerful features for data organization, data pre-processing, and data analysis have been implemented. Nine statistical methods can be applied to analyses including: feature selection (Fisher's criterion), data reduction (PCA, LDA, ULDA), unsupervised clustering (K-Mean) and supervised regression and classification (PLS/PLS-DA, KNN, SIMCA, SVM). Moreover, Automics has a user-friendly graphical interface for visualizing NMR spectra and data analysis results. The functional ability of Automics is demonstrated with an analysis of a type 2 diabetes metabolic profile. Automics facilitates high throughput 1D NMR spectral processing and high dimensional data analysis for NMR-based metabonomics applications. Using Automics, users can complete spectral processing and data analysis within one software package in most cases. Moreover, with its open source architecture, interested

  15. Isotopomer analysis of lipid biosynthesis by high resolution mass spectrometry and NMR

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Andrew N., E-mail: anlane01@louisville.edu [JG Brown Cancer Center, 529 S. Jackson Street, Louisville, KY 40202 (United States); Center for Regulatory and Environmental Analytical Metabolomics (CREAM), University of Louisville, Louisville, KY (United States); Fan, Teresa W.-M. [JG Brown Cancer Center, 529 S. Jackson Street, Louisville, KY 40202 (United States); Center for Regulatory and Environmental Analytical Metabolomics (CREAM), University of Louisville, Louisville, KY (United States); Department of Chemistry, University of Louisville, Louisville, KY 40292 (United States); Xie, Zhengzhi; Moseley, Hunter N.B.; Higashi, Richard M. [Center for Regulatory and Environmental Analytical Metabolomics (CREAM), University of Louisville, Louisville, KY (United States); Department of Chemistry, University of Louisville, Louisville, KY 40292 (United States)

    2009-10-05

    We have coupled 2D-NMR and infusion FT-ICR-MS with computer-assisted assignment to profile {sup 13}C-isotopologues of glycerophospholipids (GPL) directly in crude cell extracts, resulting in very high information throughput of >3000 isobaric molecules in a few minutes. A mass accuracy of better than 1 ppm combined with a resolution of 100,000 at the measured m/z was required to distinguish isotopomers from other GPL structures. Isotopologue analysis of GPLs extracted from LCC2 breast cancer cells grown on [U-{sup 13}C]-glucose provided a rich trove of information about the biosynthesis and turnover of the GPLs. The isotopologue intensity ratios from the FT-ICR-MS were accurate to {approx}1% or better based on natural abundance background, and depended on the signal-to-nose ratio. The time course of incorporation of {sup 13}C from [U-{sup 13}C]-glucose into a particular phosphatidylcholine was analyzed in detail, to provide a quantitative measure of the sizes of glycerol, acetyl CoA and total GPL pools in growing LCC2 cells. Independent and complementary analysis of the positional {sup 13}C enrichment in the glycerol and fatty acyl chains obtained from high resolution 2D NMR was used to verify key aspects of the model. This technology enables simple and rapid sample preparation, has rapid analysis, and is generally applicable to unfractionated GPLs of almost any head group, and to mixtures of other classes of metabolites.

  16. Isotopomer analysis of lipid biosynthesis by high resolution mass spectrometry and NMR

    International Nuclear Information System (INIS)

    Lane, Andrew N.; Fan, Teresa W.-M.; Xie, Zhengzhi; Moseley, Hunter N.B.; Higashi, Richard M.

    2009-01-01

    We have coupled 2D-NMR and infusion FT-ICR-MS with computer-assisted assignment to profile 13 C-isotopologues of glycerophospholipids (GPL) directly in crude cell extracts, resulting in very high information throughput of >3000 isobaric molecules in a few minutes. A mass accuracy of better than 1 ppm combined with a resolution of 100,000 at the measured m/z was required to distinguish isotopomers from other GPL structures. Isotopologue analysis of GPLs extracted from LCC2 breast cancer cells grown on [U- 13 C]-glucose provided a rich trove of information about the biosynthesis and turnover of the GPLs. The isotopologue intensity ratios from the FT-ICR-MS were accurate to ∼1% or better based on natural abundance background, and depended on the signal-to-nose ratio. The time course of incorporation of 13 C from [U- 13 C]-glucose into a particular phosphatidylcholine was analyzed in detail, to provide a quantitative measure of the sizes of glycerol, acetyl CoA and total GPL pools in growing LCC2 cells. Independent and complementary analysis of the positional 13 C enrichment in the glycerol and fatty acyl chains obtained from high resolution 2D NMR was used to verify key aspects of the model. This technology enables simple and rapid sample preparation, has rapid analysis, and is generally applicable to unfractionated GPLs of almost any head group, and to mixtures of other classes of metabolites.

  17. Functional Analysis of the Nitrogen Metabolite Repression Regulator Gene nmrA in Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Xiaoyun Han

    2016-11-01

    Full Text Available In Aspergillus nidulans, the nitrogen metabolite repression regulator NmrA plays a major role in regulating the activity of the GATA transcription factor AreA during nitrogen metabolism. However, the function of nmrA in Aspergillus flavus has notbeen previously studied. Here, we report the identification and functional analysis of nmrA in A. flavus. Our work showed that the amino acid sequences of NmrA are highly conserved among Aspergillus species and that A. flavus NmrA protein contains a canonical Rossmann fold motif. Deletion of nmrA slowed the growth of A. flavus but significantly increased conidiation and sclerotia production. Moreover, seed infection experiments indicated that nmrA is required for the invasive virulence of A. flavus. In addition, the ΔnmrA mutant showed increased sensitivity to rapamycin and methyl methanesulfonate, suggesting that nmrA could be responsive to target of rapamycin signaling and DNA damage. Furthermore, quantitative real-time reverse transcription polymerase chain reaction analysis suggested that nmrA might interact with other nitrogen regulatory and catabolic genes. Our study provides a better understanding of nitrogen metabolite repression and the nitrogen metabolism network in fungi.

  18. Structural Biology: Practical NMR Applications

    CERN Document Server

    Teng, Quincy

    2005-01-01

    This textbook begins with an overview of NMR development and applications in biological systems. It describes recent developments in instrument hardware and methodology. Chapters highlight the scope and limitation of NMR methods. While detailed math and quantum mechanics dealing with NMR theory have been addressed in several well-known NMR volumes, chapter two of this volume illustrates the fundamental principles and concepts of NMR spectroscopy in a more descriptive manner. Topics such as instrument setup, data acquisition, and data processing using a variety of offline software are discussed. Chapters further discuss several routine stategies for preparing samples, especially for macromolecules and complexes. The target market for such a volume includes researchers in the field of biochemistry, chemistry, structural biology and biophysics.

  19. NMR investigations of molecular dynamics

    Science.gov (United States)

    Palmer, Arthur

    2011-03-01

    NMR spectroscopy is a powerful experimental approach for characterizing protein conformational dynamics on multiple time scales. The insights obtained from NMR studies are complemented and by molecular dynamics (MD) simulations, which provide full atomistic details of protein dynamics. Homologous mesophilic (E. coli) and thermophilic (T. thermophilus) ribonuclease H (RNase H) enzymes serve to illustrate how changes in protein sequence and structure that affect conformational dynamic processes can be monitored and characterized by joint analysis of NMR spectroscopy and MD simulations. A Gly residue inserted within a putative hinge between helices B and C is conserved among thermophilic RNases H, but absent in mesophilic RNases H. Experimental spin relaxation measurements show that the dynamic properties of T. thermophilus RNase H are recapitulated in E. coli RNase H by insertion of a Gly residue between helices B and C. Additional specific intramolecular interactions that modulate backbone and sidechain dynamical properties of the Gly-rich loop and of the conserved Trp residue flanking the Gly insertion site have been identified using MD simulations and subsequently confirmed by NMR spin relaxation measurements. These results emphasize the importance of hydrogen bonds and local steric interactions in restricting conformational fluctuations, and the absence of such interactions in allowing conformational adaptation to substrate binding.

  20. Comparative 1H NMR-based metabonomic analysis of HIV-1 sera

    International Nuclear Information System (INIS)

    Philippeos, C.; Steffens, F. E.; Meyer, D.

    2009-01-01

    1 H NMR spectroscopy of sera from HIV-1 infected and uninfected individuals was performed on 300 and 600 MHz instruments. The resultant spectra were automatically data reduced to 90 and 180 integral segments of equal length. Analysis of variance identified significant differences between the sample groups, especially for the samples analyzed on 600 MHz and reduced to fewer segments. Linear discriminant analysis correctly classified 100% of the samples analyzed on the 300 MHz NMR (reduced to 180 segments); an increase in instrument sensitivity resulted in lower percentages of correctly classified samples. Multinomial logistic regression (MLR) resulted in 100% correct classification of all samples from both instruments. Thus 1 H-NMR metabonomics on either instrument distinguishes HIV-positive individuals using or not using anti retroviral therapy, but the sensitivity of the instrument impacts on data reduction. Furthermore, MLR is a novel multivariate statistical technique for improved classification of biological data analyzed in NMR

  1. MetaboLab - advanced NMR data processing and analysis for metabolomics

    Directory of Open Access Journals (Sweden)

    Günther Ulrich L

    2011-09-01

    Full Text Available Abstract Background Despite wide-spread use of Nuclear Magnetic Resonance (NMR in metabolomics for the analysis of biological samples there is a lack of graphically driven, publicly available software to process large one and two-dimensional NMR data sets for statistical analysis. Results Here we present MetaboLab, a MATLAB based software package that facilitates NMR data processing by providing automated algorithms for processing series of spectra in a reproducible fashion. A graphical user interface provides easy access to all steps of data processing via a script builder to generate MATLAB scripts, providing an option to alter code manually. The analysis of two-dimensional spectra (1H,13C-HSQC spectra is facilitated by the use of a spectral library derived from publicly available databases which can be extended readily. The software allows to display specific metabolites in small regions of interest where signals can be picked. To facilitate the analysis of series of two-dimensional spectra, different spectra can be overlaid and assignments can be transferred between spectra. The software includes mechanisms to account for overlapping signals by highlighting neighboring and ambiguous assignments. Conclusions The MetaboLab software is an integrated software package for NMR data processing and analysis, closely linked to the previously developed NMRLab software. It includes tools for batch processing and gives access to a wealth of algorithms available in the MATLAB framework. Algorithms within MetaboLab help to optimize the flow of metabolomics data preparation for statistical analysis. The combination of an intuitive graphical user interface along with advanced data processing algorithms facilitates the use of MetaboLab in a broader metabolomics context.

  2. Complete 1H NMR spectral analysis of ten chemical markers of Ginkgo biloba

    OpenAIRE

    Napolitano, José G.; Lankin, David C.; Chen, Shao-Nong; Pauli, Guido F.

    2012-01-01

    The complete and unambiguous 1H NMR assignments of ten marker constituents of Ginkgo biloba are described. The comprehensive 1H NMR profiles (fingerprints) of ginkgolide A, ginkgolide B, ginkgolide C, ginkgolide J, bilobalide, quercetin, kaempferol, isorhamnetin, isoquercetin, and rutin in DMSO-d6 were obtained through the examination of 1D 1H NMR and 2D 1H,1H-COSY data, in combination with 1H iterative Full Spin Analysis (HiFSA). The computational analysis of discrete spin systems allowed a ...

  3. NMR-based approach to the analysis of radiopharmaceuticals: radiochemical purity, specific activity, and radioactive concentration values by proton and tritium NMR spectroscopy.

    Science.gov (United States)

    Schenk, David J; Dormer, Peter G; Hesk, David; Pollack, Scott R; Lavey, Carolee Flader

    2015-06-15

    Compounds containing tritium are widely used across the drug discovery and development landscape. These materials are widely utilized because they can be efficiently synthesized and produced at high specific activity. Results from internally calibrated (3)H and (1)H nuclear magnetic resonance (NMR) spectroscopy suggests that at least in some cases, this calibrated approach could supplement or potentially replace radio-high-performance liquid chromatography for radiochemical purity, dilution and scintillation counting for the measurement of radioactivity per volume, and liquid chromatography/mass spectrometry analysis for the determination of specific activity. In summary, the NMR-derived values agreed with those from the standard approaches to within 1% to 9% for solution count and specific activity. Additionally, the NMR-derived values for radiochemical purity deviated by less than 5%. A benefit of this method is that these values may be calculated at the same time that (3)H NMR analysis provides the location and distribution of tritium atoms within the molecule. Presented and discussed here is the application of this method, advantages and disadvantages of the approach, and a rationale for utilizing internally calibrated (1)H and (3)H NMR spectroscopy for specific activity, radioactive concentration, and radiochemical purity whenever acquiring (3)H NMR for tritium location. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Functional studies using NMR

    International Nuclear Information System (INIS)

    McCready, V.R.; Leach, M.O.; Sutton; Ell, P.

    1986-01-01

    The object of this book is to discuss and evaluate an area of Nuclear Magnetic Resonance which to date has been less emphasized than it might be, namely the use of NMR for functional studies. The book commences with a discussion of the areas in which the NMR techniques might be needed due to deficiencies in other techniques. The physics of NMR especially relating to functional measurement are then explained. Technical factors in producing functional images are discussed and the use of paramagnetic substances for carrying out flow studies are detailed. Particular attention is paid to specific studies in the various organs. The book ends with a survey of imaging in each organ and the relation of NMR images to other techniques such as ultrasound, nuclear medicine and X-rays

  5. Exploring high-resolution magic angle spinning (HR-MAS) NMR spectroscopy for metabonomic analysis of apples.

    Science.gov (United States)

    Vermathen, Martina; Marzorati, Mattia; Vermathen, Peter

    2012-01-01

    Classical liquid-state high-resolution (HR) NMR spectroscopy has proved a powerful tool in the metabonomic analysis of liquid food samples like fruit juices. In this paper the application of (1)H high-resolution magic angle spinning (HR-MAS) NMR spectroscopy to apple tissue is presented probing its potential for metabonomic studies. The (1)H HR-MAS NMR spectra are discussed in terms of the chemical composition of apple tissue and compared to liquid-state NMR spectra of apple juice. Differences indicate that specific metabolic changes are induced by juice preparation. The feasibility of HR-MAS NMR-based multivariate analysis is demonstrated by a study distinguishing three different apple cultivars by principal component analysis (PCA). Preliminary results are shown from subsequent studies comparing three different cultivation methods by means of PCA and partial least squares discriminant analysis (PLS-DA) of the HR-MAS NMR data. The compounds responsible for discriminating organically grown apples are discussed. Finally, an outlook of our ongoing work is given including a longitudinal study on apples.

  6. DNA oligonucleotide conformations: high resolution NMR studies

    International Nuclear Information System (INIS)

    Mellema, J.-R.

    1984-01-01

    The present work describes a DNA double-helix model, which is well comparable with the models derived from fibre-diffraction studies. The model has a mononucleotide repeat with torsion angles in accordance with average geometries as derived from 1 H NMR studies. Special attention was paid to reduce the number of short H-H nonbonding contacts, which are abundantly present in the 'classical' fibre-diffraction models. Chapter 3 describes the first complete assignment of a 1 H NMR spectrum of a DNA tetramer, d(TAAT). Preliminary conformational data derived from the spectral parameters recorded at 27 0 C are given. A more detailed analysis employing temperature-dependence studies is given in Chapter 4. (Auth.)

  7. Two-dimensional NMR spectroscopy strongly enhances soil organic matter composition analysis

    Science.gov (United States)

    Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Hedenström, Mattias; Schleucher, Jürgen

    2016-04-01

    Soil organic matter (SOM) is the largest terrestrial carbon pool and strongly affects soil properties. With climate change, understanding SOM processes and turnover and how they could be affected by increasing temperatures becomes critical. This is particularly key for organic soils as they represent a huge carbon pool in very sensitive ecosystems, like boreal ecosystems and peatlands. Nevertheless, characterization of SOM molecular composition, which is essential to elucidate soil carbon processes, is not easily achieved, and further advancements in that area are greatly needed. Solid-state one-dimensional (1D) 13C nuclear magnetic resonance (NMR) spectroscopy is often used to characterize its molecular composition, but only provides data on a few major functional groups, which regroup many different molecular fragments. For instance, in the carbohydrates region, signals of all monosaccharides present in many different polymers overlap. This overlap thwarts attempts to identify molecular moieties, resulting in insufficient information to characterize SOM composition. Here we show that two-dimensional (2D) liquid-state 1H-13C NMR spectra provided much richer data on the composition of boreal plant litter and organic surface soil. The 2D spectra indeed resolved overlaps observed in 1D 13C spectra and displayed signals from hundreds of identifiable molecular groups. For example, in the aromatics region, signals from individual lignin units could be recognized. It was hence possible to follow the fate of specific structural moieties in soils. We observed differences between litter and soil samples, and were able to relate them to the decomposition of identifiable moieties. Sample preparation and data acquisition were both simple and fast. Further, using multivariate data analysis, we aimed at linking the detailed chemical fingerprints of SOM to turnover rates in a soil incubation experiment. With the multivariate models, we were able to identify specific molecular

  8. Quantitative produced water analysis using mobile 1H NMR

    International Nuclear Information System (INIS)

    Wagner, Lisabeth; Fridjonsson, Einar O; May, Eric F; Stanwix, Paul L; Graham, Brendan F; Carroll, Matthew R J; Johns, Michael L; Kalli, Chris

    2016-01-01

    Measurement of oil contamination of produced water is required in the oil and gas industry to the (ppm) level prior to discharge in order to meet typical environmental legislative requirements. Here we present the use of compact, mobile 1 H nuclear magnetic resonance (NMR) spectroscopy, in combination with solid phase extraction (SPE), to meet this metrology need. The NMR hardware employed featured a sufficiently homogeneous magnetic field, such that chemical shift differences could be used to unambiguously differentiate, and hence quantitatively detect, the required oil and solvent NMR signals. A solvent system consisting of 1% v/v chloroform in tetrachloroethylene was deployed, this provided a comparable 1 H NMR signal intensity for the oil and the solvent (chloroform) and hence an internal reference 1 H signal from the chloroform resulting in the measurement being effectively self-calibrating. The measurement process was applied to water contaminated with hexane or crude oil over the range 1–30 ppm. The results were validated against known solubility limits as well as infrared analysis and gas chromatography. (paper)

  9. Automated NMR relaxation dispersion data analysis using NESSY

    Directory of Open Access Journals (Sweden)

    Gooley Paul R

    2011-10-01

    Full Text Available Abstract Background Proteins are dynamic molecules with motions ranging from picoseconds to longer than seconds. Many protein functions, however, appear to occur on the micro to millisecond timescale and therefore there has been intense research of the importance of these motions in catalysis and molecular interactions. Nuclear Magnetic Resonance (NMR relaxation dispersion experiments are used to measure motion of discrete nuclei within the micro to millisecond timescale. Information about conformational/chemical exchange, populations of exchanging states and chemical shift differences are extracted from these experiments. To ensure these parameters are correctly extracted, accurate and careful analysis of these experiments is necessary. Results The software introduced in this article is designed for the automatic analysis of relaxation dispersion data and the extraction of the parameters mentioned above. It is written in Python for multi platform use and highest performance. Experimental data can be fitted to different models using the Levenberg-Marquardt minimization algorithm and different statistical tests can be used to select the best model. To demonstrate the functionality of this program, synthetic data as well as NMR data were analyzed. Analysis of these data including the generation of plots and color coded structures can be performed with minimal user intervention and using standard procedures that are included in the program. Conclusions NESSY is easy to use open source software to analyze NMR relaxation data. The robustness and standard procedures are demonstrated in this article.

  10. Application of NMR Spectroscopy in the Analysis of Petroleum Derivatives and Products

    Directory of Open Access Journals (Sweden)

    Parlov Vuković, J.

    2012-11-01

    Full Text Available Complex chemical composition and physical properties of oil and fuel make their complete cha racterization very difficult. Components present in oil and oil products differ in structure, size, po larity and functionality. The presence and structure of specific hydrocarbons in final products depend on the processing procedure and type of the fuel. In order to predict or improve fuel pro perties it is necessary to determine its composition. Thus, new and more sophisticated analytical methods and procedures are constantly being developed. NMR spectroscopy plays a significant role in analysis and identification of complex hydrocarbon mixtures of petroleum and petroleum products. In this review, we describe the application of NMR spectroscopy for analyzing gasoline and diesel fuels. Hence, by using NMR spectroscopy it is possible to determine gasoline composition and presence of benzene and oxygenates, as well as some important physical characteristics of gasoli ne such as the research octane number. An application of different NMR techniques made it pos sible to characterize diesel fuels and middle oil distillates from various refineries. Data so obtained can be used in combination with statistical methods to predict fuel properties and to monitor pro- duction processes in the petroleum industry. NMR spectroscopy has proven useful in analysis of FAME which has recently been used as an ecologically acceptable alternative fuel. Furthermore, techniques such as CP/MAS for characterization of solid state oil-geochemical samples are inclu- ded. Also, possibilities of using NMR spectroscopy in the analysis of polymeric additives are di- scussed.

  11. Polymeric proanthocyanidins 13C NMR studies of procyanidins

    Science.gov (United States)

    Lawrence J. Porter; Roger H. Newman; Lai Yeap Foo; Herbert Wong; Richard W. Hemingway

    1982-01-01

    Proanthocyanidin polymers have been shown to consist entirely of flavan-3-ol units by a combination of techniques including 13C n.m.r. spectroscopy. The 13C n.m.r. spectra of the polymers and related molecules are now considered in more detail. Prior to this study UC n.m.r. data has been published of procyanidins and...

  12. Comparative {sup 1}H NMR-based metabonomic analysis of HIV-1 sera

    Energy Technology Data Exchange (ETDEWEB)

    Philippeos, C. [University of Johannesburg, Department of Biochemistry (South Africa); Steffens, F. E. [University of Pretoria, Department of Statistics (South Africa); Meyer, D. [University of Pretoria, Department of Biochemistry (South Africa)], E-mail: debra.meyer@up.ac.za

    2009-07-15

    {sup 1}H NMR spectroscopy of sera from HIV-1 infected and uninfected individuals was performed on 300 and 600 MHz instruments. The resultant spectra were automatically data reduced to 90 and 180 integral segments of equal length. Analysis of variance identified significant differences between the sample groups, especially for the samples analyzed on 600 MHz and reduced to fewer segments. Linear discriminant analysis correctly classified 100% of the samples analyzed on the 300 MHz NMR (reduced to 180 segments); an increase in instrument sensitivity resulted in lower percentages of correctly classified samples. Multinomial logistic regression (MLR) resulted in 100% correct classification of all samples from both instruments. Thus {sup 1}H-NMR metabonomics on either instrument distinguishes HIV-positive individuals using or not using anti retroviral therapy, but the sensitivity of the instrument impacts on data reduction. Furthermore, MLR is a novel multivariate statistical technique for improved classification of biological data analyzed in NMR.

  13. Mixture analysis by long-range J-resolved 2D NMR

    International Nuclear Information System (INIS)

    Ha, S.T.K.; Lee, R.W.K.; Wilkins, C.L.

    1987-01-01

    In most spectroscopic qualitative analyses chromatographic separations are done before identification. Unfortunately, this general approach has suffered from a number of shortcomings. Off-line chromatographic separation followed by spectroscopic analysis is time consuming and inefficient and on-line analysis suffers from mismatch of the material flow requirements between chromatographic columns and spectroscopic instruments. An alternative mixture identification procedure solely based upon use of edited 13 C NMR spectra and a 13 C NMR chemical shift data base is reported. This approach has been demonstrated in the analyses of several mixtures, including a mixture of amino acids and some isomers. In all cases, identifications of components of these mixtures are successful

  14. Whole-core analysis by 13C NMR

    International Nuclear Information System (INIS)

    Vinegar, H.J.; Tutunjian, P.N.; Edelstein, W.A.; Roemer, P.B.

    1991-01-01

    This paper reports on a whole-core nuclear magnetic resonance (NMR) system that was used to obtain natural abundance 13 C spectra. The system enables rapid, nondestructive measurements of bulk volume of movable oil, aliphatic/aromatic ratio, oil viscosity, and organic vs. carbonate carbon. 13 C NMR can be used in cores where the 1 H NMR spectrum is too broad to resolve oil and water resonances separately. A 5 1/4-in. 13 C/ 1 H NMR coil was installed on a General Electric (GE) CSI-2T NMR imager/spectrometer. With a 4-in.-OD whole core, good 13 C signal/noise ratio (SNR) is obtained within minutes, while 1 H spectra are obtained in seconds. NMR measurements have been made of the 13 C and 1 H density of crude oils with a wide range of API gravities. For light- and medium-gravity oils, the 13 C and 1 H signal per unit volume is constant within about 3.5%. For heavy crudes, the 13 C and 1 H density measured by NMR is reduced by the shortening of spin-spin relaxation time. 13 C and 1 H NMR spin-lattice relaxation times were measured on a suite of Cannon viscosity standards, crude oils (4 to 60 degrees API), and alkanes (C 5 through C 16 ) with viscosities at 77 degrees F ranging from 0.5 cp to 2.5 x 10 7 cp. The 13 C and 1 H relaxation times show a similar correlation with viscosity from which oil viscosity can be estimated accurately for viscosities up to 100 cp. The 13 C surface relaxation rate for oils on water-wet rocks is very low. Nonproton decoupled 13 C NMR is shown to be insensitive to kerogen; thus, 13 C NMR measures only the movable hydrocarbon content of the cores. In carbonates, the 13 C spectrum also contains a carbonate powder pattern useful in quantifying inorganic carbon and distinguishing organic from carbonate carbon

  15. [Rapid analysis of suppositories by quantitative 1H NMR spectroscopy].

    Science.gov (United States)

    Abramovich, R A; Kovaleva, S A; Goriainov, S V; Vorob'ev, A N; Kalabin, G A

    2012-01-01

    Rapid analysis of suppositories with ibuprofen and arbidol by quantitative 1H NMR spectroscopy was performed. Optimal conditions for the analysis were developed. The results are useful for design of rapid methods for quality control of suppositories with different components

  16. Solid-state NMR of inorganic semiconductors.

    Science.gov (United States)

    Yesinowski, James P

    2012-01-01

    Studies of inorganic semiconductors by solid-state NMR vary widely in terms of the nature of the samples investigated, the techniques employed to observe the NMR signal, and the types of information obtained. Compared with the NMR of diamagnetic non-semiconducting substances, important differences often result from the presence of electron or hole carriers that are the hallmark of semiconductors, and whose theoretical interpretation can be involved. This review aims to provide a broad perspective on the topic for the non-expert by providing: (1) a basic introduction to semiconductor physical concepts relevant to NMR, including common crystal structures and the various methods of making samples; (2) discussions of the NMR spin Hamiltonian, details of some of the NMR techniques and strategies used to make measurements and theoretically predict NMR parameters, and examples of how each of the terms in the Hamiltonian has provided useful information in bulk semiconductors; (3) a discussion of the additional considerations needed to interpret the NMR of nanoscale semiconductors, with selected examples. The area of semiconductor NMR is being revitalized by this interest in nanoscale semiconductors, the great improvements in NMR detection sensitivity and resolution that have occurred, and the current interest in optical pumping and spintronics-related studies. Promising directions for future research will be noted throughout.

  17. 11B NMR study of calcium-hexaborides

    International Nuclear Information System (INIS)

    Mean, B.J.; Lee, K.H.; Kang, K.H.; Lee, Moohee; Rhee, J.S.; Cho, B.K.

    2005-01-01

    We have performed 11 B nuclear magnetic resonance (NMR) measurements to look for microscopic evidence of the ferromagnetic state in several CaB 6 single crystals. A number of 11 B NMR resonance peaks are observed with the frequency and intensity of those peaks distinctively changing depending on the angle between the crystalline axis and a magnetic field. Analyzing this behavior, we find that the electric field gradient tensor at the boron has its principal axis perpendicular to the six cubic faces with a quadrupole resonance frequency ν Q ∼600kHz. However, the satellite resonances are found to be made of two peaks. Detailed analysis of the four composite satellite peaks confirms that there are two different boron sites with slightly different ν Q 's. This suggests that the boron octahedron cages are locally distorted. However, this distortion is not directly related to ferromagnetism. Even though the magnetization data highlight the ferromagnetic hysteresis, 11 B NMR linewidth and shift data show no clear microscopic evidence of the ferromagnetic state in several different compositions of CaB 6 single crystals

  18. relaxGUI: a new software for fast and simple NMR relaxation data analysis and calculation of ps-ns and μs motion of proteins

    International Nuclear Information System (INIS)

    Bieri, Michael; D’Auvergne, Edward J.; Gooley, Paul R.

    2011-01-01

    Investigation of protein dynamics on the ps-ns and μs-ms timeframes provides detailed insight into the mechanisms of enzymes and the binding properties of proteins. Nuclear magnetic resonance (NMR) is an excellent tool for studying protein dynamics at atomic resolution. Analysis of relaxation data using model-free analysis can be a tedious and time consuming process, which requires good knowledge of scripting procedures. The software relaxGUI was developed for fast and simple model-free analysis and is fully integrated into the software package relax. It is written in Python and uses wxPython to build the graphical user interface (GUI) for maximum performance and multi-platform use. This software allows the analysis of NMR relaxation data with ease and the generation of publication quality graphs as well as color coded images of molecular structures. The interface is designed for simple data analysis and management. The software was tested and validated against the command line version of relax.

  19. relaxGUI: a new software for fast and simple NMR relaxation data analysis and calculation of ps-ns and μs motion of proteins.

    Science.gov (United States)

    Bieri, Michael; d'Auvergne, Edward J; Gooley, Paul R

    2011-06-01

    Investigation of protein dynamics on the ps-ns and μs-ms timeframes provides detailed insight into the mechanisms of enzymes and the binding properties of proteins. Nuclear magnetic resonance (NMR) is an excellent tool for studying protein dynamics at atomic resolution. Analysis of relaxation data using model-free analysis can be a tedious and time consuming process, which requires good knowledge of scripting procedures. The software relaxGUI was developed for fast and simple model-free analysis and is fully integrated into the software package relax. It is written in Python and uses wxPython to build the graphical user interface (GUI) for maximum performance and multi-platform use. This software allows the analysis of NMR relaxation data with ease and the generation of publication quality graphs as well as color coded images of molecular structures. The interface is designed for simple data analysis and management. The software was tested and validated against the command line version of relax.

  20. Computer compensation for NMR quantitative analysis of trace components

    International Nuclear Information System (INIS)

    Nakayama, T.; Fujiwara, Y.

    1981-01-01

    A computer program has been written that determines trace components and separates overlapping components in multicomponent NMR spectra. This program uses the Lorentzian curve as a theoretical curve of NMR spectra. The coefficients of the Lorentzian are determined by the method of least squares. Systematic errors such as baseline/phase distortion are compensated and random errors are smoothed by taking moving averages, so that there processes contribute substantially to decreasing the accumulation time of spectral data. The accuracy of quantitative analysis of trace components has been improved by two significant figures. This program was applied to determining the abundance of 13C and the saponification degree of PVA

  1. LipSpin: A New Bioinformatics Tool for Quantitative 1H NMR Lipid Profiling.

    Science.gov (United States)

    Barrilero, Rubén; Gil, Miriam; Amigó, Núria; Dias, Cintia B; Wood, Lisa G; Garg, Manohar L; Ribalta, Josep; Heras, Mercedes; Vinaixa, Maria; Correig, Xavier

    2018-02-06

    The structural similarity among lipid species and the low sensitivity and spectral resolution of nuclear magnetic resonance (NMR) have traditionally hampered the routine use of 1 H NMR lipid profiling of complex biological samples in metabolomics, which remains mostly manual and lacks freely available bioinformatics tools. However, 1 H NMR lipid profiling provides fast quantitative screening of major lipid classes (fatty acids, glycerolipids, phospholipids, and sterols) and some individual species and has been used in several clinical and nutritional studies, leading to improved risk prediction models. In this Article, we present LipSpin, a free and open-source bioinformatics tool for quantitative 1 H NMR lipid profiling. LipSpin implements a constrained line shape fitting algorithm based on voigt profiles and spectral templates from spectra of lipid standards, which automates the analysis of severely overlapped spectral regions and lipid signals with complex coupling patterns. LipSpin provides the most detailed quantification of fatty acid families and choline phospholipids in serum lipid samples by 1 H NMR to date. Moreover, analytical and clinical results using LipSpin quantifications conform with other techniques commonly used for lipid analysis.

  2. Phosphorus-31 NMR analysis of gold plating baths

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.E.

    1992-03-01

    This report describes the nuclear magnetic resonance (NMR) analysis of gold plating baths in the Micro-Miniature Electronic Assembly department of Allied-Signal Inc., Kansas City Division (KCD). The baths were analyzed for phosphorylated components. In freshly prepared gold plating baths in this department the principle compound observed is aminotrimethyl-phosphonate, or ATMP. As the bath is used in production, the ATMP breaks down; and new compounds, aminodimethylphosphonate (ADMP), aminomonomethylphosphonate, (AMMP), and inorganic phosphate (H{sub 2}PO{sub 4}{sup {minus}}), are formed. The NMR method has been used for almost three years to monitor the concentrations of the ATMP and breakdown products. In a previous report, results from January through October 1988 were reported. In this report, results from November 1988 through January 1991 are given.

  3. Introduction to some basic aspects of NMR

    International Nuclear Information System (INIS)

    Goldman, M.

    1992-01-01

    The principal interactions are reviewed that are experienced by nuclear spins making magnetic resonance feasible and which disturb it in a way that gives access to the properties of bulk matter. The interactions leading to NMR include Zeeman interaction, dipole-dipole interactions, and exchange interactions. Spin-lattice relaxation relevant to NMR is revisited next. It is followed by an overview of spin temperature. Finally, the care of periodic Hamiltonian is discussed in detail as another contribution to NMR. (R.P.) 48 refs., 12 figs

  4. NMR Metabolic profiling of green tea (Camellia sinensis L.) leaves grown at Kemuning, Indonesia

    Science.gov (United States)

    Wahyuni, D. S. C.; Kristanti, M. W.; Putri, R. K.; Rinanto, Y.

    2017-01-01

    Green tea (Camellia sinensis L.) has been famous as a beverage and natural medicine. It contains a broad range of primary and secondary metabolites i.e. polyphenols. Nuclear Magnetic Resonance (NMR) has been widely used for metabolic profiling in medicinal plants. It provides a very fast and detailed analysis of the biomolecular composition of crude extracts. Moreover, an NMR spectrum is a physical characteristic of a compound and thus highly reproducible. Therefore, this study aims to profile metabolites of three different varieties of green tea C. Sinensis grown in Kemuning, Middle Java. Three varieties of green tea collected on Kemuning (TR1 2025, Gambung 4/5, and Chiaruan 143) were used in this study. 1H-NMR spectra were recorded at 230C on a 400 MHz Agilent WB (Widebore). The analysis was performed on dried green tea leaves and analyzed by 1H-NMR, 2D-J-resolved and 1H-1H correlated spectroscopy (COSY). MestRenova version 11.0.0 applied to identify metabolites in samples. A 1H-NMR spectrum of tea showed amino acids and organic acids signal at the area δ 0.8-4.0. These were theanine, alanine, threonine, succinic acid, aspartic acid, lactic acid. Anomeric protons of carbohydrate were shown by the region of β-glucose, α-glucose, fructose and sucrose. The phenolic region was depicted at area δ 5.5-8.5. Epigallocatechin derivates and caffeine were detected in the tea leaves. The detail compound identification was observed and discussed in the text.

  5. NMR Metabolic profiling of green tea (Camellia sinensis L.) leaves grown at Kemuning, Indonesia

    International Nuclear Information System (INIS)

    Wahyuni, D. S. C.; Kristanti, M. W.; Putri, R. K.; Rinanto, Y.

    2017-01-01

    Green tea (Camellia sinensis L.) has been famous as a beverage and natural medicine. It contains a broad range of primary and secondary metabolites i.e. polyphenols. Nuclear Magnetic Resonance (NMR) has been widely used for metabolic profiling in medicinal plants. It provides a very fast and detailed analysis of the biomolecular composition of crude extracts. Moreover, an NMR spectrum is a physical characteristic of a compound and thus highly reproducible. Therefore, this study aims to profile metabolites of three different varieties of green tea C. Sinensis grown in Kemuning, Middle Java. Three varieties of green tea collected on Kemuning (TR1 2025, Gambung 4/5, and Chiaruan 143) were used in this study. 1H-NMR spectra were recorded at 230C on a 400 MHz Agilent WB (Widebore). The analysis was performed on dried green tea leaves and analyzed by 1H-NMR, 2D-J-resolved and 1H-1H correlated spectroscopy (COSY). MestRenova version 11.0.0 applied to identify metabolites in samples. A 1 H-NMR spectrum of tea showed amino acids and organic acids signal at the area δ 0.8–4.0. These were theanine, alanine, threonine, succinic acid, aspartic acid, lactic acid. Anomeric protons of carbohydrate were shown by the region of β-glucose, α-glucose, fructose and sucrose. The phenolic region was depicted at area δ 5.5-8.5. Epigallocatechin derivates and caffeine were detected in the tea leaves. The detail compound identification was observed and discussed in the text. (paper)

  6. Integrative NMR for biomolecular research

    International Nuclear Information System (INIS)

    Lee, Woonghee; Cornilescu, Gabriel; Dashti, Hesam; Eghbalnia, Hamid R.; Tonelli, Marco; Westler, William M.; Butcher, Samuel E.; Henzler-Wildman, Katherine A.; Markley, John L.

    2016-01-01

    NMR spectroscopy is a powerful technique for determining structural and functional features of biomolecules in physiological solution as well as for observing their intermolecular interactions in real-time. However, complex steps associated with its practice have made the approach daunting for non-specialists. We introduce an NMR platform that makes biomolecular NMR spectroscopy much more accessible by integrating tools, databases, web services, and video tutorials that can be launched by simple installation of NMRFAM software packages or using a cross-platform virtual machine that can be run on any standard laptop or desktop computer. The software package can be downloaded freely from the NMRFAM software download page ( http://pine.nmrfam.wisc.edu/download-packages.html http://pine.nmrfam.wisc.edu/download_packages.html ), and detailed instructions are available from the Integrative NMR Video Tutorial page ( http://pine.nmrfam.wisc.edu/integrative.html http://pine.nmrfam.wisc.edu/integrative.html ).

  7. Integrative NMR for biomolecular research

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woonghee, E-mail: whlee@nmrfam.wisc.edu; Cornilescu, Gabriel; Dashti, Hesam; Eghbalnia, Hamid R.; Tonelli, Marco; Westler, William M.; Butcher, Samuel E.; Henzler-Wildman, Katherine A.; Markley, John L., E-mail: markley@nmrfam.wisc.edu [University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison and Biochemistry Department (United States)

    2016-04-15

    NMR spectroscopy is a powerful technique for determining structural and functional features of biomolecules in physiological solution as well as for observing their intermolecular interactions in real-time. However, complex steps associated with its practice have made the approach daunting for non-specialists. We introduce an NMR platform that makes biomolecular NMR spectroscopy much more accessible by integrating tools, databases, web services, and video tutorials that can be launched by simple installation of NMRFAM software packages or using a cross-platform virtual machine that can be run on any standard laptop or desktop computer. The software package can be downloaded freely from the NMRFAM software download page ( http://pine.nmrfam.wisc.edu/download-packages.html http://pine.nmrfam.wisc.edu/download{sub p}ackages.html ), and detailed instructions are available from the Integrative NMR Video Tutorial page ( http://pine.nmrfam.wisc.edu/integrative.html http://pine.nmrfam.wisc.edu/integrative.html ).

  8. Recent Advances in Characterization of Lignin Polymer by Solution-State Nuclear Magnetic Resonance (NMR Methodology

    Directory of Open Access Journals (Sweden)

    Run-Cang Sun

    2013-01-01

    Full Text Available The demand for efficient utilization of biomass induces a detailed analysis of the fundamental chemical structures of biomass, especially the complex structures of lignin polymers, which have long been recognized for their negative impact on biorefinery. Traditionally, it has been attempted to reveal the complicated and heterogeneous structure of lignin by a series of chemical analyses, such as thioacidolysis (TA, nitrobenzene oxidation (NBO, and derivatization followed by reductive cleavage (DFRC. Recent advances in nuclear magnetic resonance (NMR technology undoubtedly have made solution-state NMR become the most widely used technique in structural characterization of lignin due to its versatility in illustrating structural features and structural transformations of lignin polymers. As one of the most promising diagnostic tools, NMR provides unambiguous evidence for specific structures as well as quantitative structural information. The recent advances in two-dimensional solution-state NMR techniques for structural analysis of lignin in isolated and whole cell wall states (in situ, as well as their applications are reviewed.

  9. Structural properties of carbon nanotubes derived from 13C NMR

    KAUST Repository

    Abou-Hamad, E.; Babaa, M.-R.; Bouhrara, M.; Kim, Y.; Saih, Y.; Dennler, S.; Mauri, F.; Basset, Jean-Marie; Goze-Bac, C.; Wå gberg, T.

    2011-01-01

    We present a detailed experimental and theoretical study on how structural properties of carbon nanotubes can be derived from 13C NMR investigations. Magic angle spinning solid state NMR experiments have been performed on single- and multiwalled

  10. NMR and rotational angles in solution conformation of polypeptides

    Science.gov (United States)

    Bystrov, V. F.

    1985-01-01

    Professor San-Ichiro Mizushima and Professor Yonezo Morino's classical contributions provided unique means and firm basis for understanding of conformational states and internal rotation in polypeptide molecules. Now the NMR spectroscopy is the best choice to study molecular conformation, mechanism of action and structure-functional relationships of peptide and proteins in solution under conditions approaching those of their physiological environments. Crucial details of spatial structure and interactions of these molecules in solution are revealed by using proton-proton and carbon-proton vicinal coupling constants, proton nuclear Overhauser effect and spectral perturbation techniques. The results of NMR conformational analysis are presented for valinomycin "bracelet", gramicidin A double helices, honey-bee neurotoxin apamin, scorpion insectotoxins and snake neurotoxins of long and short types.

  11. Quali- and quantitative analysis of commercial coffee by NMR

    International Nuclear Information System (INIS)

    Tavares, Leila Aley; Ferreira, Antonio Gilberto

    2006-01-01

    Coffee is one of the beverages most widely consumed in the world and the 'cafezinho' is normally prepared from a blend of roasted powder of two species, Coffea arabica and Coffea canephora. Each one exhibits differences in their taste and in the chemical composition, especially in the caffeine percentage. There are several procedures proposed in the literature for caffeine determination in different samples like soft drinks, coffee, medicines, etc but most of them need a sample workup which involves at least one step of purification. This work describes the quantitative analysis of caffeine using 1 H NMR and the identification of the major components in commercial coffee samples using 1D and 2D NMR techniques without any sample pre-treatment. (author)

  12. An integrated workflow for robust alignment and simplified quantitative analysis of NMR spectrometry data

    Directory of Open Access Journals (Sweden)

    Dommisse Roger

    2011-10-01

    Full Text Available Abstract Background Nuclear magnetic resonance spectroscopy (NMR is a powerful technique to reveal and compare quantitative metabolic profiles of biological tissues. However, chemical and physical sample variations make the analysis of the data challenging, and typically require the application of a number of preprocessing steps prior to data interpretation. For example, noise reduction, normalization, baseline correction, peak picking, spectrum alignment and statistical analysis are indispensable components in any NMR analysis pipeline. Results We introduce a novel suite of informatics tools for the quantitative analysis of NMR metabolomic profile data. The core of the processing cascade is a novel peak alignment algorithm, called hierarchical Cluster-based Peak Alignment (CluPA. The algorithm aligns a target spectrum to the reference spectrum in a top-down fashion by building a hierarchical cluster tree from peak lists of reference and target spectra and then dividing the spectra into smaller segments based on the most distant clusters of the tree. To reduce the computational time to estimate the spectral misalignment, the method makes use of Fast Fourier Transformation (FFT cross-correlation. Since the method returns a high-quality alignment, we can propose a simple methodology to study the variability of the NMR spectra. For each aligned NMR data point the ratio of the between-group and within-group sum of squares (BW-ratio is calculated to quantify the difference in variability between and within predefined groups of NMR spectra. This differential analysis is related to the calculation of the F-statistic or a one-way ANOVA, but without distributional assumptions. Statistical inference based on the BW-ratio is achieved by bootstrapping the null distribution from the experimental data. Conclusions The workflow performance was evaluated using a previously published dataset. Correlation maps, spectral and grey scale plots show clear

  13. An integrated workflow for robust alignment and simplified quantitative analysis of NMR spectrometry data.

    Science.gov (United States)

    Vu, Trung N; Valkenborg, Dirk; Smets, Koen; Verwaest, Kim A; Dommisse, Roger; Lemière, Filip; Verschoren, Alain; Goethals, Bart; Laukens, Kris

    2011-10-20

    Nuclear magnetic resonance spectroscopy (NMR) is a powerful technique to reveal and compare quantitative metabolic profiles of biological tissues. However, chemical and physical sample variations make the analysis of the data challenging, and typically require the application of a number of preprocessing steps prior to data interpretation. For example, noise reduction, normalization, baseline correction, peak picking, spectrum alignment and statistical analysis are indispensable components in any NMR analysis pipeline. We introduce a novel suite of informatics tools for the quantitative analysis of NMR metabolomic profile data. The core of the processing cascade is a novel peak alignment algorithm, called hierarchical Cluster-based Peak Alignment (CluPA). The algorithm aligns a target spectrum to the reference spectrum in a top-down fashion by building a hierarchical cluster tree from peak lists of reference and target spectra and then dividing the spectra into smaller segments based on the most distant clusters of the tree. To reduce the computational time to estimate the spectral misalignment, the method makes use of Fast Fourier Transformation (FFT) cross-correlation. Since the method returns a high-quality alignment, we can propose a simple methodology to study the variability of the NMR spectra. For each aligned NMR data point the ratio of the between-group and within-group sum of squares (BW-ratio) is calculated to quantify the difference in variability between and within predefined groups of NMR spectra. This differential analysis is related to the calculation of the F-statistic or a one-way ANOVA, but without distributional assumptions. Statistical inference based on the BW-ratio is achieved by bootstrapping the null distribution from the experimental data. The workflow performance was evaluated using a previously published dataset. Correlation maps, spectral and grey scale plots show clear improvements in comparison to other methods, and the down

  14. CASD-NMR 2: robust and accurate unsupervised analysis of raw NOESY spectra and protein structure determination with UNIO

    International Nuclear Information System (INIS)

    Guerry, Paul; Duong, Viet Dung; Herrmann, Torsten

    2015-01-01

    UNIO is a comprehensive software suite for protein NMR structure determination that enables full automation of all NMR data analysis steps involved—including signal identification in NMR spectra, sequence-specific backbone and side-chain resonance assignment, NOE assignment and structure calculation. Within the framework of the second round of the community-wide stringent blind NMR structure determination challenge (CASD-NMR 2), we participated in two categories of CASD-NMR 2, namely using either raw NMR spectra or unrefined NOE peak lists as input. A total of 15 resulting NMR structure bundles were submitted for 9 out of 10 blind protein targets. All submitted UNIO structures accurately coincided with the corresponding blind targets as documented by an average backbone root mean-square deviation to the reference proteins of only 1.2 Å. Also, the precision of the UNIO structure bundles was virtually identical to the ensemble of reference structures. By assessing the quality of all UNIO structures submitted to the two categories, we find throughout that only the UNIO–ATNOS/CANDID approach using raw NMR spectra consistently yielded structure bundles of high quality for direct deposition in the Protein Data Bank. In conclusion, the results obtained in CASD-NMR 2 are another vital proof for robust, accurate and unsupervised NMR data analysis by UNIO for real-world applications

  15. Thermal and structural analysis of a cryogenic conduction cooling system for a HTS NMR magnet

    Energy Technology Data Exchange (ETDEWEB)

    In, Se Hwan; Hong, Yong Jun; Yeom, Han Kil; Ko, Hyo Bong; Park, Seong Je [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2016-03-15

    The superconducting NMR magnets have used cryogen such as liquid helium for their cooling. The conduction cooling method using cryocoolers, however, makes the cryogenic cooling system for NMR magnets more compact and user-friendly than the cryogen cooling method. This paper describes the thermal and structural analysis of a cryogenic conduction cooling system for a 400 MHz HTS NMR magnet, focusing on the magnet assembly. The highly thermo-conductive cooling plates between HTS double pancake coils are used to transfer the heat generated in coils, namely Joule heating at lap splice joints, to thermal link blocks and finally the cryocooler. The conduction cooling structure of the HTS magnet assembly preliminarily designed is verified by thermal and structural analysis. The orthotropic thermal properties of the HTS coil, thermal contact resistance and radiation heat load are considered in the thermal analysis. The thermal analysis confirms the uniform temperature distribution for the present thermal design of the NMR magnet within 0.2 K. The mechanical stress and the displacement by the electromagnetic force and the thermal contraction are checked to verify structural stability. The structural analysis indicates that the mechanical stress on each component of the magnet is less than its material yield strength and the displacement is acceptable in comparison with the magnet dimension.

  16. NMR spectroscopy using liquid crystal solvents

    CERN Document Server

    Emsley, JW

    2013-01-01

    NMR Spectroscopy using Liquid Crystal Solvents covers the importance of using a liquid crystal solvent in NMR to derive nuclear dipolar spin-spin coupling constants. This book is composed of ten chapters, and begins with a brief description of the features and benefits of liquid crystal in NMR spectroscopic analysis. The succeeding chapters deal with the mode of operation of nuclear spin Hamiltonian for partially oriented molecules and the analysis of NMR spectra of partially oriented molecules, as well as the determination of rigid molecule structure. These topics are followed by discussions

  17. PVT Degradation Studies: NMR Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Herman M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-06-06

    Under certain environmental conditions, polyvinyl toluene (PVT) plastic scintillator has been observed to undergo internal fogging. Nuclear magnetic resonance spectroscopy has been used to elucidate the state of water inside the PVT. The deuterium NMR results show that water absorbed by PVT under warm, humid conditions enters several distinct environments, and when the PVT is transferred from incubation to ambient temperature and humidity the water is lost on a time scale of a few hours from these samples. Most of the deuterium NMR peaks can be assigned to bulk liquid water, but almost 35% of the detected signal intensity is contained in a resonance that resembles spectra of water contained in nanometer-scale pores in mesoporous carbon.

  18. Structural Analysis of N- and O-glycans Using ZIC-HILIC/Dialysis Coupled to NMR Detection

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Yi; Feng, Ju; Deng, Shuang; Cao, Li; Zhang, Qibin; Zhao, Rui; Zhang, Zhaorui; Jiang, Yuxuan; Zink, Erika M.; Baker, Scott E.; Lipton, Mary S.; Pasa-Tolic, Ljiljana; Hu, Jian Z.; Wu, Si

    2014-11-19

    Protein glycosylation, an important and complex post-translational modification (PTM), is involved in various biological processes including the receptor-ligand and cell-cell interaction, and plays a crucial role in many biological functions. However, little is known about the glycan structures of important biological complex samples, and the conventional glycan enrichment strategy (i.e., size-exclusion column [SEC] separation,) prior to nuclear magnetic resonance (NMR) detection is time-consuming and tedious. In this study, we employed SEC, Zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC), and ZIC-HILIC coupled with dialysis strategies to enrich the glycopeptides from the pronase E digests of RNase B, followed by NMR analysis of the glycoconjugate. Our results suggest that the ZIC-HILIC enrichment coupled with dialysis is the most efficient, which was thus applied to the analysis of biological complex sample, the pronase E digest of the secreted proteins from the fungi Aspergillus niger. The NMR spectra revealed that the secreted proteins from A. niger contain both N-linked glycans with a high-mannose core and O-linked glycans bearing mannose and glucose with 1->3 and 1->6 linkages. In all, our study provides compelling evidence that ZIC-HILIC separation coupled to dialysis is superior to the commonly used SEC separation to prepare glycopeptides for the downstream NMR analysis, which could greatly facilitate the future NMR-based glycoproteomics research.

  19. The fluorescence properties and NMR analysis of protopine and allocryptopine

    International Nuclear Information System (INIS)

    Kubala, Martin; Vacek, Jan; Popa, Igor; Janovska, Marika; Kosina, Pavel; Ulrichova, Jitka; Travnicek, Zdenek; Simanek, Vilim

    2011-01-01

    The fluorescence properties of protopine and allocryptopine in aqueous and organic environments are described for the first time. The fluorescence of alkaloids and their pH-dependent interconversion to cationic forms (transannular interaction) were studied using steady-state and time-resolved fluorescence techniques. For the analysis of tricyclic base and cis/trans tetracyclic cations of the alkaloids, NMR and X-ray crystallography were used. - Highlights: → We describe fundamental fluorescence characteristics of alkaloids protopine and allocryptopine. → We analyzed the pH-dependent transitions and cis/trans isomerization. → These two alkaloids can be better distinguished by their fluorescence decay characteristics. → The fluorescence parameters are related to the NMR and crystallographic structural data.

  20. Reliability of ^1^H NMR analysis for assessment of lipid oxidation at frying temperatures

    Science.gov (United States)

    The reliability of a method using ^1^H NMR analysis for assessment of oil oxidation at a frying temperature was examined. During heating and frying at 180 °C, changes of soybean oil signals in the ^1^H NMR spectrum including olefinic (5.16-5.30 ppm), bisallylic (2.70-2.88 ppm), and allylic (1.94-2.1...

  1. NMR imaging of the brain: initial impressions

    International Nuclear Information System (INIS)

    Spencer, D.H.; Bydder, G.M.

    1983-01-01

    An NMR imaging system designed and built by Thorn-EMI Ltd was installed at Hammersmith Hospital in March 1981. In the first year of operation 180 patients and 40 volunteers have had cranial examinations and initial impressions bases on this experience are presented. Patients with a wide variety of neurological diseases have been studied to provide a basis for diagnostic interpretation, to define distinctive features, and to evaluate different types of scanning sequences. NMR imaging appears to be of considerable value in neurological diagnosis and has a number of advantages over CT. The detailed evaluation of NMR imaging will require much more work but the initial results are very promising

  2. Detailed NMR, Including 1,1-ADEQUATE, and Anticancer Studies of Compounds from the Echinoderm Colobometra perspinosa

    Directory of Open Access Journals (Sweden)

    Catherine H. Liptrot

    2009-11-01

    Full Text Available From the dichloromethane/methanol extract of the crinoid Colobometra perspinosa, collected south east of Richards Island (Bedara, Family Islands, Central Great Barrier Reef, Australia, 3-(1'-hydroxypropyl-1,6,8-trihydroxy-9,10-anthraquinone [one of the two stereoisomers of rhodoptilometrin, (1], 3-propyl-1,6,8-trihydroxy-9,10-anthraquinone (3, 2-[(phenylacetylamino]ethanesulfonic acid (4, and 4-hydroxybutanoic acid (5 were isolated. Comparison of 1H- and 13C-NMR data for rhodoptilometrin (1 with those reported in the literature showed significant differences for some resonances associated with rings A and C. In an attempt to provide accurately assigned 1H- and 13C-NMR data, as well as to confirm the structure of 1, a thorough NMR investigation of this compound was undertaken. Measurements included: concentration dependent 13C, 1D selective NOE, HSQC, HMBC and 1,1-ADEQUATE. The NMR data for 4 and 5 are reported here for the first time, as is their occurrence from the marine environment. The in vitro anticancer activity of the original extract was found to be associated with 1, 3 and 5.

  3. Analysis of the structural quality of the CASD-NMR 2013 entries

    Energy Technology Data Exchange (ETDEWEB)

    Ragan, Timothy J.; Fogh, Rasmus H. [University of Leicester, Department of Biochemistry, School of Biological Sciences (United Kingdom); Tejero, Roberto [Universidad de Valencia, Departamento de Química Física (Spain); Vranken, Wim [Vrije Universiteit Brussel, Structural Biology Brussels (Belgium); Montelione, Gaetano T. [Rutgers, The State University of New Jersey, Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium (United States); Rosato, Antonio [University of Florence, Magnetic Resonance Center, Department of Chemistry (Italy); Vuister, Geerten W., E-mail: gv29@le.ac.uk [University of Leicester, Department of Biochemistry, School of Biological Sciences (United Kingdom)

    2015-08-15

    We performed a comprehensive structure validation of both automated and manually generated structures of the 10 targets of the CASD-NMR-2013 effort. We established that automated structure determination protocols are capable of reliably producing structures of comparable accuracy and quality to those generated by a skilled researcher, at least for small, single domain proteins such as the ten targets tested. The most robust results appear to be obtained when NOESY peak lists are used either as the primary input data or to augment chemical shift data without the need to manually filter such lists. A detailed analysis of the long-range NOE restraints generated by the different programs from the same data showed a surprisingly low degree of overlap. Additionally, we found that there was no significant correlation between the extent of the NOE restraint overlap and the accuracy of the structure. This result was surprising given the importance of NOE data in producing good quality structures. We suggest that this could be explained by the information redundancy present in NOEs between atoms contained within a fixed covalent network.

  4. NMR imaging of the cardiovascular system

    International Nuclear Information System (INIS)

    Canby, R.C.; Evanochko, W.T.; Pohost, G.M.

    1986-01-01

    Proton nuclear magnetic resonance (NMR) imaging permits high-resolution tomographic and three-dimensional images of the human body to be obtained without exposure to ionizing radiation. Such imaging not only yields anatomic resolution comparable to X-ray examinations but also provides a potential means to discriminate between healthy tissue and diseased tissue. This potential is based on certain NMR properties known as relaxation times, which determine, in part, the signal intensity in an image. These properties are related to such factors as the sizes and concentrations of proteins and mobile lipids and the compartmentalization of the protons of water. Although NMR imaging (also called magnetic resonance imaging, MRI) is becoming widely available for clinical use, application to the cardiovascular system, though promising, remains primarily a research tool. Gated proton NMR imaging can generate cardiac images with excellent morphologic detail and contrast; however, its ultimate importance as a cardiovascular diagnostic modality will depend on the development of several unique applications. These applications are discussed in this paper

  5. Fundamentals of Protein NMR Spectroscopy

    CERN Document Server

    Rule, Gordon S

    2006-01-01

    NMR spectroscopy has proven to be a powerful technique to study the structure and dynamics of biological macromolecules. Fundamentals of Protein NMR Spectroscopy is a comprehensive textbook that guides the reader from a basic understanding of the phenomenological properties of magnetic resonance to the application and interpretation of modern multi-dimensional NMR experiments on 15N/13C-labeled proteins. Beginning with elementary quantum mechanics, a set of practical rules is presented and used to describe many commonly employed multi-dimensional, multi-nuclear NMR pulse sequences. A modular analysis of NMR pulse sequence building blocks also provides a basis for understanding and developing novel pulse programs. This text not only covers topics from chemical shift assignment to protein structure refinement, as well as the analysis of protein dynamics and chemical kinetics, but also provides a practical guide to many aspects of modern spectrometer hardware, sample preparation, experimental set-up, and data pr...

  6. Interlaboratory Comparison Test as an Evaluation of Applicability of an Alternative Edible Oil Analysis by 1H NMR Spectroscopy.

    Science.gov (United States)

    Zailer, Elina; Holzgrabe, Ulrike; Diehl, Bernd W K

    2017-11-01

    A proton (1H) NMR spectroscopic method was established for the quality assessment of vegetable oils. To date, several research studies have been published demonstrating the high potential of the NMR technique in lipid analysis. An interlaboratory comparison was organized with the following main objectives: (1) to evaluate an alternative analysis of edible oils by using 1H NMR spectroscopy; and (2) to determine the robustness and reproducibility of the method. Five different edible oil samples were analyzed by evaluating 15 signals (free fatty acids, peroxides, aldehydes, double bonds, and linoleic and linolenic acids) in each spectrum. A total of 21 NMR data sets were obtained from 17 international participant laboratories. The performance of each laboratory was assessed by their z-scores. The test was successfully passed by 90.5% of the participants. Results showed that NMR spectroscopy is a robust alternative method for edible oil analysis.

  7. 17O NMR investigation of oxidative degradation in polymers under γ-irradiation

    International Nuclear Information System (INIS)

    ALAM, TODD M.; CELINA, MATHIAS C.; ASSINK, ROGER A.; CLOUGH, ROGER LEE; GILLEN, KENNETH T.

    2000-01-01

    The γ-irradiated-oxidation of pentacontane (C 50 H 102 ) and the polymer polyisoprene was investigated as a function of oxidation level using 17 O nuclear magnetic resonance (NMR) spectroscopy. It is demonstrated that by using 17 O labeled O 2 gas during the γ-irradiation process, details about the oxidative degradation mechanisms can be directly obtained from the analysis of the 17 O NMR spectra. Production of carboxylic acids is the primary oxygen-containing functionality during the oxidation of pentacontane, while ethers and alcohols are the dominant oxidation product observed for polyisoprene. The formation of ester species during the oxidation process is very minor for both materials, with water also being produced in significant amounts during the radiolytic oxidation of polyisoprene. The ability to focus on the oxidative component of the degradation process using 17 O NMR spectroscopy demonstrates the selectivity of this technique over more conventional approaches

  8. Development and applications of quantitative NMR spectroscopy

    International Nuclear Information System (INIS)

    Yamazaki, Taichi

    2016-01-01

    Recently, quantitative NMR spectroscopy has attracted attention as an analytical method which can easily secure traceability to SI unit system, and discussions about its accuracy and inaccuracy are also started. This paper focuses on the literatures on the advancement of quantitative NMR spectroscopy reported between 2009 and 2016, and introduces both NMR measurement conditions and actual analysis cases in quantitative NMR. The quantitative NMR spectroscopy using an internal reference method enables accurate quantitative analysis with a quick and versatile way in general, and it is possible to obtain the precision sufficiently applicable to the evaluation of pure substances and standard solutions. Since the external reference method can easily prevent contamination to samples and the collection of samples, there are many reported cases related to the quantitative analysis of biologically related samples and highly scarce natural products in which NMR spectra are complicated. In the precision of quantitative NMR spectroscopy, the internal reference method is superior. As the quantitative NMR spectroscopy widely spreads, discussions are also progressing on how to utilize this analytical method as the official methods in various countries around the world. In Japan, this method is listed in the Pharmacopoeia and Japanese Standard of Food Additives, and it is also used as the official method for purity evaluation. In the future, this method will be expected to spread as the general-purpose analysis method that can ensure traceability to SI unit system. (A.O.)

  9. 1H-NMR METABONOMICS ANALYSIS OF SERA DIFFERENTIATES BETWEEN MAMMARY TUMOR-BEARING MICE AND HEALTHY CONTROLS

    Science.gov (United States)

    Global analysis of 1H-NMR spectra of serum is an appealing approach for the rapid detection of cancer. To evaluate the usefulness of this method in distinguishing between mammary tumor-bearing mice and healthy controls, we conducted 1H-NMR metabonomic analyses on serum samples ob...

  10. NMR-based urine analysis in rats: prediction of proximal tubule kidney toxicity and phospholipidosis.

    Science.gov (United States)

    Lienemann, Kai; Plötz, Thomas; Pestel, Sabine

    2008-01-01

    The aim of safety pharmacology is early detection of compound-induced side-effects. NMR-based urine analysis followed by multivariate data analysis (metabonomics) identifies efficiently differences between toxic and non-toxic compounds; but in most cases multiple administrations of the test compound are necessary. We tested the feasibility of detecting proximal tubule kidney toxicity and phospholipidosis with metabonomics techniques after single compound administration as an early safety pharmacology approach. Rats were treated orally, intravenously, inhalatively or intraperitoneally with different test compounds. Urine was collected at 0-8 h and 8-24 h after compound administration, and (1)H NMR-patterns were recorded from the samples. Variation of post-processing and feature extraction methods led to different views on the data. Support Vector Machines were trained on these different data sets and then aggregated as experts in an Ensemble. Finally, validity was monitored with a cross-validation study using a training, validation, and test data set. Proximal tubule kidney toxicity could be predicted with reasonable total classification accuracy (85%), specificity (88%) and sensitivity (78%). In comparison to alternative histological studies, results were obtained quicker, compound need was reduced, and very importantly fewer animals were needed. In contrast, the induction of phospholipidosis by the test compounds could not be predicted using NMR-based urine analysis or the previously published biomarker PAG. NMR-based urine analysis was shown to effectively predict proximal tubule kidney toxicity after single compound administration in rats. Thus, this experimental design allows early detection of toxicity risks with relatively low amounts of compound in a reasonably short period of time.

  11. Demetalation of Fe, Mn, and Cu chelates and complexes: application to the NMR analysis of micronutrient fertilizers.

    Science.gov (United States)

    López-Rayo, Sandra; Lucena, Juan J; Laghi, Luca; Cremonini, Mauro A

    2011-12-28

    The application of nuclear magnetic resonance (NMR) for the quality control of fertilizers based on Fe(3+), Mn(2+), and Cu(2+) chelates and complexes is precluded by the strong paramagnetism of metals. Recently, a method based on the use of ferrocyanide has been described to remove iron from commercial iron chelates based on the o,o-EDDHA [ethylenediamine-N,N'bis(2-hydroxyphenylacetic)acid] chelating agent for their analysis and quantification by NMR. The present work extended that procedure to other paramagnetic ions, manganese and copper, and other chelating, EDTA (ethylenediaminetetraacetic acid), IDHA [N-(1,2-dicarboxyethyl)-d,l-aspartic acid], and complexing agents, gluconate and heptagluconate. Results showed that the removal of the paramagnetic ions was complete, allowing us to obtain (1)H NMR spectra characterized by narrow peaks. The quantification of the ligands by NMR and high-performance liquid chromatography showed that their complete recovery was granted. The NMR analysis enabled detection and quantification of unknown impurities without the need of pure compounds as internal standards.

  12. Simultaneous analysis of amino acid and organic acid by NMR spectrometry, 2

    International Nuclear Information System (INIS)

    Koda, Naoya; Yamaguchi, Shuichi; Mori, Takeshi.

    1987-01-01

    Analysis of urine from patients with inborn error of metabolism were studied by 1 H-nuclear magnetic resonance (NMR) spectrometry. Diseases studied were as follows; phenylketonuria, biotin responsive multiple carboxylase deficiency, non-ketotic hyperglycinemia, 3-ketothiolase deficiency, alkaptonuria, methylmalonic acidemia, isovaleric acidemia, glutaric aciduria, argininosuccinic aciduria and hyperornithinemia. In each disease, specific metabolites in urine were recognized by NMR spectrometry. This method is accomplished within 10 minutes with non-treated small volume of urine and will be successfully available for the screening and/or diagnosis of inherited metabolic diseases of amino acid and organic acid. (author)

  13. Implementation of picoSpin Benchtop NMR Instruments into Organic Chemistry Teaching Laboratories through Spectral Analysis of Fischer Esterification Products

    Science.gov (United States)

    Yearty, Kasey L.; Sharp, Joseph T.; Meehan, Emma K.; Wallace, Doyle R.; Jackson, Douglas M.; Morrison, Richard W.

    2017-01-01

    [Superscript 1]H NMR analysis is an important analytical technique presented in introductory organic chemistry courses. NMR instrument access is limited for undergraduate organic chemistry students due to the size of the instrument, price of NMR solvents, and the maintenance level required for instrument upkeep. The University of Georgia Chemistry…

  14. Reproducibility of NMR analysis of urine samples: impact of sample preparation, storage conditions, and animal health status.

    Science.gov (United States)

    Schreier, Christina; Kremer, Werner; Huber, Fritz; Neumann, Sindy; Pagel, Philipp; Lienemann, Kai; Pestel, Sabine

    2013-01-01

    Spectroscopic analysis of urine samples from laboratory animals can be used to predict the efficacy and side effects of drugs. This employs methods combining (1)H NMR spectroscopy with quantification of biomarkers or with multivariate data analysis. The most critical steps in data evaluation are analytical reproducibility of NMR data (collection, storage, and processing) and the health status of the animals, which may influence urine pH and osmolarity. We treated rats with a solvent, a diuretic, or a nephrotoxicant and collected urine samples. Samples were titrated to pH 3 to 9, or salt concentrations increased up to 20-fold. The effects of storage conditions and freeze-thaw cycles were monitored. Selected metabolites and multivariate data analysis were evaluated after (1)H NMR spectroscopy. We showed that variation of pH from 3 to 9 and increases in osmolarity up to 6-fold had no effect on the quantification of the metabolites or on multivariate data analysis. Storage led to changes after 14 days at 4°C or after 12 months at -20°C, independent of sample composition. Multiple freeze-thaw cycles did not affect data analysis. Reproducibility of NMR measurements is not dependent on sample composition under physiological or pathological conditions.

  15. Reproducibility of NMR Analysis of Urine Samples: Impact of Sample Preparation, Storage Conditions, and Animal Health Status

    Directory of Open Access Journals (Sweden)

    Christina Schreier

    2013-01-01

    Full Text Available Introduction. Spectroscopic analysis of urine samples from laboratory animals can be used to predict the efficacy and side effects of drugs. This employs methods combining 1H NMR spectroscopy with quantification of biomarkers or with multivariate data analysis. The most critical steps in data evaluation are analytical reproducibility of NMR data (collection, storage, and processing and the health status of the animals, which may influence urine pH and osmolarity. Methods. We treated rats with a solvent, a diuretic, or a nephrotoxicant and collected urine samples. Samples were titrated to pH 3 to 9, or salt concentrations increased up to 20-fold. The effects of storage conditions and freeze-thaw cycles were monitored. Selected metabolites and multivariate data analysis were evaluated after 1H NMR spectroscopy. Results. We showed that variation of pH from 3 to 9 and increases in osmolarity up to 6-fold had no effect on the quantification of the metabolites or on multivariate data analysis. Storage led to changes after 14 days at 4°C or after 12 months at −20°C, independent of sample composition. Multiple freeze-thaw cycles did not affect data analysis. Conclusion. Reproducibility of NMR measurements is not dependent on sample composition under physiological or pathological conditions.

  16. Phosphorus-31 NMR (nuclear magnetic resonance) analysis of gold plating baths

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.E.

    1990-01-01

    This report describes the nuclear magnetic resonance (NMR) analysis of the gold plating baths in the Micro-Miniature Electronic Assembly department of Allied-Signal Inc., Kansas City Division (KCD). The baths were analyzed for phosphorylated components. In freshly prepared gold plating baths, a 50-percent aqueous solution of aminotrimethylphosphonate (ATMP) is the principal compound observed. As the bath is used in production, the ATMP breaks down and new materials (phosphate, ADMP, and AMMP) are identified. The NMR method was used to monitor the concentrations of the ATMP and breakdown products for a nine-month period. The 225-liter bath had plated approximately 100 square feet of gold during the nine-month period. These results can be used to predict the performance of baths as they are used in production. The accuracy of the analysis is 96 percent for ATMP and 92 percent for phosphate. The precision (relative standard deviation) is 5.2 percent for ATMP and 4.5 percent for phosphate. 1 ref., 5 figs., 2 tabs.

  17. NMR of geophysical drill cores with a mobile Halbach scanner

    International Nuclear Information System (INIS)

    Talnishnikh, E.

    2007-01-01

    This thesis is devoted to a mobile NMR with an improved Halbach scanner. This is a lightweight tube-shaped magnet with sensitive volume larger and a homogeneity of the magnetic field higher than the previous prototype version. The improved Halbach scanner is used for analysis of water-saturated drill cores and plugs with diameters up to 60 mm. To provide the analysis, the standard 1D technique with the CPMG sequence as well as 2D correlation experiments were successfully applied and adapted to study properties of fluid-saturated sediments. Afterwards the Halbach scanner was calibrated to fast non-destructive measurements of porosity, relaxation time distributions, and estimation of permeability. These properties can be calculated directly from the NMR data using the developed methodology. Any independent measurements of these properties with other methods are not needed. One of the main results of this work is the development of a new NMR on-line core scanner for measurements of porosity in long cylindrical and semi cylindrical drill cores. Also dedicated software was written to operate the NMR on-line core scanner. The physical background of this work is the study of the diffusion influence on transverse relaxation. The diffusion effect in the presence of internal gradients in porous media was probed by 1D and 2D experiments. The transverse relaxation time distributions obtained from 1D and from 2D experiments are comparable but different in fine details. Two new methodologies were developed based on the results of this study. First is the methodology quantifying the influence of diffusion in the internal gradients of water-saturated sediments on transverse relaxation from 2D correlation experiments. The second one is the correction of the permeability estimation from the NMR data taking in account the influence of the diffusion. Furthermore, PFG NMR technique was used to study restricted diffusion in the same kind of samples. Preliminary results are reported

  18. NMR of geophysical drill cores with a mobile Halbach scanner

    Energy Technology Data Exchange (ETDEWEB)

    Talnishnikh, E.

    2007-08-21

    This thesis is devoted to a mobile NMR with an improved Halbach scanner. This is a lightweight tube-shaped magnet with sensitive volume larger and a homogeneity of the magnetic field higher than the previous prototype version. The improved Halbach scanner is used for analysis of water-saturated drill cores and plugs with diameters up to 60 mm. To provide the analysis, the standard 1D technique with the CPMG sequence as well as 2D correlation experiments were successfully applied and adapted to study properties of fluid-saturated sediments. Afterwards the Halbach scanner was calibrated to fast non-destructive measurements of porosity, relaxation time distributions, and estimation of permeability. These properties can be calculated directly from the NMR data using the developed methodology. Any independent measurements of these properties with other methods are not needed. One of the main results of this work is the development of a new NMR on-line core scanner for measurements of porosity in long cylindrical and semi cylindrical drill cores. Also dedicated software was written to operate the NMR on-line core scanner. The physical background of this work is the study of the diffusion influence on transverse relaxation. The diffusion effect in the presence of internal gradients in porous media was probed by 1D and 2D experiments. The transverse relaxation time distributions obtained from 1D and from 2D experiments are comparable but different in fine details. Two new methodologies were developed based on the results of this study. First is the methodology quantifying the influence of diffusion in the internal gradients of water-saturated sediments on transverse relaxation from 2D correlation experiments. The second one is the correction of the permeability estimation from the NMR data taking in account the influence of the diffusion. Furthermore, PFG NMR technique was used to study restricted diffusion in the same kind of samples. Preliminary results are reported

  19. Chemical tagging of chlorinated phenols for their facile detection and analysis by NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Valdez, Carlos A. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Leif, Roald N. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)

    2015-03-22

    A derivatization method that employs diethyl (bromodifluoromethyl) phosphonate (DBDFP) to efficiently tag the endocrine disruptor pentachlorophenol (PCP) and other chlorinated phenols (CPs) along with their reliable detection and analysis by NMR is presented. The method accomplishes the efficient alkylation of the hydroxyl group in CPs with the difluoromethyl (CF2H) moiety in extremely rapid fashion (5 min), at room temperature and in an environmentally benign manner. The approach proved successful in difluoromethylating a panel of 18 chlorinated phenols, yielding derivatives that displayed unique 1H, 19F NMR spectra allowing for the clear discrimination between isomerically related CPs. Due to its biphasic nature, the derivatization can be applied to both aqueous and organic mixtures where the analysis of CPs is required. Furthermore, the methodology demonstrates that PCP along with other CPs can be selectively derivatized in the presence of other various aliphatic alcohols, underscoring the superiority of the approach over other general derivatization methods that indiscriminately modify all analytes in a given sample. The present work demonstrates the first application of NMR on the qualitative analysis of these highly toxic and environmentally persistent species.

  20. [Non-invasive analysis of proteins in living cells using NMR spectroscopy].

    Science.gov (United States)

    Tochio, Hidehito; Murayama, Shuhei; Inomata, Kohsuke; Morimoto, Daichi; Ohno, Ayako; Shirakawa, Masahiro

    2015-01-01

    NMR spectroscopy enables structural analyses of proteins and has been widely used in the structural biology field in recent decades. NMR spectroscopy can be applied to proteins inside living cells, allowing characterization of their structures and dynamics in intracellular environments. The simplest "in-cell NMR" approach employs bacterial cells; in this approach, live Escherichia coli cells overexpressing a specific protein are subjected to NMR. The cells are grown in an NMR active isotope-enriched medium to ensure that the overexpressed proteins are labeled with the stable isotopes. Thus the obtained NMR spectra, which are derived from labeled proteins, contain atomic-level information about the structure and dynamics of the proteins. Recent progress enables us to work with higher eukaryotic cells such as HeLa and HEK293 cells, for which a number of techniques have been developed to achieve isotope labeling of the specific target protein. In this review, we describe successful use of electroporation for in-cell NMR. In addition, (19)F-NMR to characterize protein-ligand interactions in cells is presented. Because (19)F nuclei rarely exist in natural cells, when (19)F-labeled proteins are delivered into cells and (19)F-NMR signals are observed, one can safely ascertain that these signals originate from the delivered proteins and not other molecules.

  1. Molecular and Silica-Supported Molybdenum Alkyne Metathesis Catalysts: Influence of Electronics and Dynamics on Activity Revealed by Kinetics, Solid-State NMR, and Chemical Shift Analysis.

    Science.gov (United States)

    Estes, Deven P; Gordon, Christopher P; Fedorov, Alexey; Liao, Wei-Chih; Ehrhorn, Henrike; Bittner, Celine; Zier, Manuel Luca; Bockfeld, Dirk; Chan, Ka Wing; Eisenstein, Odile; Raynaud, Christophe; Tamm, Matthias; Copéret, Christophe

    2017-12-06

    Molybdenum-based molecular alkylidyne complexes of the type [MesC≡Mo{OC(CH 3 ) 3-x (CF 3 ) x } 3 ] (MoF 0 , x = 0; MoF 3 , x = 1; MoF 6 , x = 2; MoF 9 , x = 3; Mes = 2,4,6-trimethylphenyl) and their silica-supported analogues are prepared and characterized at the molecular level, in particular by solid-state NMR, and their alkyne metathesis catalytic activity is evaluated. The 13 C NMR chemical shift of the alkylidyne carbon increases with increasing number of fluorine atoms on the alkoxide ligands for both molecular and supported catalysts but with more shielded values for the supported complexes. The activity of these catalysts increases in the order MoF 0 molecular and supported species. Detailed solid-state NMR analysis of molecular and silica-supported metal alkylidyne catalysts coupled with DFT/ZORA calculations rationalize the NMR spectroscopic signatures and discernible activity trends at the frontier orbital level: (1) increasing the number of fluorine atoms lowers the energy of the π*(M≡C) orbital, explaining the more deshielded chemical shift values; it also leads to an increased electrophilicity and higher reactivity for catalysts up to MoF 6 , prior to a sharp decrease in reactivity for MoF 9 due to the formation of stable metallacyclobutadiene intermediates; (2) the silica-supported catalysts are less active than their molecular analogues because they are less electrophilic and dynamic, as revealed by their 13 C NMR chemical shift tensors.

  2. The application of NMR-based milk metabolite analysis in milk authenticity identification.

    Science.gov (United States)

    Li, Qiangqiang; Yu, Zunbo; Zhu, Dan; Meng, Xianghe; Pang, Xiumei; Liu, Yue; Frew, Russell; Chen, He; Chen, Gang

    2017-07-01

    Milk is an important food component in the human diet and is a target for fraud, including many unsafe practices. For example, the unscrupulous adulteration of soymilk into bovine and goat milk or of bovine milk into goat milk in order to gain profit without declaration is a health risk, as the adulterant source and sanitary history are unknown. A robust and fit-for-purpose technique is required to enforce market surveillance and hence protect consumer health. Nuclear magnetic resonance (NMR) is a powerful technique for characterization of food products based on measuring the profile of metabolites. In this study, 1D NMR in conjunction with multivariate chemometrics as well as 2D NMR was applied to differentiate milk types and to identify milk adulteration. Ten metabolites were found which differed among milk types, hence providing characteristic markers for identifying the milk. These metabolites were used to establish mathematical models for milk type differentiation. The limit of quantification (LOQ) of adulteration was 2% (v/v) for soymilk in bovine milk, 2% (v/v) for soymilk in goat milk and 5% (v/v) for bovine milk in goat milk, with relative standard deviation (RSD) less than 10%, which can meet the needs of daily inspection. The NMR method described here is effective for milk authenticity identification, and the study demonstrates that the NMR-based milk metabolite analysis approach provides a means of detecting adulteration at expected levels and can be used for dairy quality monitoring. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. NMR in structure-based drug design.

    Science.gov (United States)

    Carneiro, Marta G; Ab, Eiso; Theisgen, Stephan; Siegal, Gregg

    2017-11-08

    NMR spectroscopy is a powerful technique that can provide valuable structural information for drug discovery endeavors. Here, we discuss the strengths (and limitations) of NMR applications to structure-based drug discovery, highlighting the different levels of resolution and throughput obtainable. Additionally, the emerging field of paramagnetic NMR in drug discovery and recent developments in approaches to speed up and automate protein-observed NMR data collection and analysis are discussed. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  4. NMR and MS Methods for Metabolomics.

    Science.gov (United States)

    Amberg, Alexander; Riefke, Björn; Schlotterbeck, Götz; Ross, Alfred; Senn, Hans; Dieterle, Frank; Keck, Matthias

    2017-01-01

    Metabolomics, also often referred as "metabolic profiling," is the systematic profiling of metabolites in biofluids or tissues of organisms and their temporal changes. In the last decade, metabolomics has become more and more popular in drug development, molecular medicine, and other biotechnology fields, since it profiles directly the phenotype and changes thereof in contrast to other "-omics" technologies. The increasing popularity of metabolomics has been possible only due to the enormous development in the technology and bioinformatics fields. In particular, the analytical technologies supporting metabolomics, i.e., NMR, UPLC-MS, and GC-MS, have evolved into sensitive and highly reproducible platforms allowing the determination of hundreds of metabolites in parallel. This chapter describes the best practices of metabolomics as seen today. All important steps of metabolic profiling in drug development and molecular medicine are described in great detail, starting from sample preparation to determining the measurement details of all analytical platforms, and finally to discussing the corresponding specific steps of data analysis.

  5. NMR and MS methods for metabonomics.

    Science.gov (United States)

    Dieterle, Frank; Riefke, Björn; Schlotterbeck, Götz; Ross, Alfred; Senn, Hans; Amberg, Alexander

    2011-01-01

    Metabonomics, also often referred to as "metabolomics" or "metabolic profiling," is the systematic profiling of metabolites in bio-fluids or tissues of organisms and their temporal changes. In the last decade, metabonomics has become increasingly popular in drug development, molecular medicine, and other biotechnology fields, since it profiles directly the phenotype and changes thereof in contrast to other "-omics" technologies. The increasing popularity of metabonomics has been possible only due to the enormous development in the technology and bioinformatics fields. In particular, the analytical technologies supporting metabonomics, i.e., NMR, LC-MS, UPLC-MS, and GC-MS have evolved into sensitive and highly reproducible platforms allowing the determination of hundreds of metabolites in parallel. This chapter describes the best practices of metabonomics as seen today. All important steps of metabolic profiling in drug development and molecular medicine are described in great detail, starting from sample preparation, to determining the measurement details of all analytical platforms, and finally, to discussing the corresponding specific steps of data analysis.

  6. Characterization of mu s-ms dynamics of proteins using a combined analysis of N-15 NMR relaxation and chemical shift: Conformational exchange in plastocyanin induced by histidine protonations

    DEFF Research Database (Denmark)

    Hass, M. A. S.; Thuesen, Marianne Hallberg; Christensen, Hans Erik Mølager

    2004-01-01

    of the exchanging species can be determined independently of the relaxation rates. The applicability of the approach is demonstrated by a detailed analysis of the conformational exchange processes previously observed in the reduced form of the blue copper protein, plastocyanin from the cyanobacteria Anabaena......An approach is presented that allows a detailed, quantitative characterization of conformational exchange processes in proteins on the mus-ms time scale. The approach relies on a combined analysis of NMR relaxation rates and chemical shift changes and requires that the chemical shift...... quantitatively by the correlation between the R-ex terms and the corresponding chemical shift differences of the exchanging species. By this approach, the R-ex terms of N-15 nuclei belonging to contiguous regions in the protein could be assigned to the same exchange process. Furthermore, the analysis...

  7. Robust and transferable quantification of NMR spectral quality using IROC analysis

    Science.gov (United States)

    Zambrello, Matthew A.; Maciejewski, Mark W.; Schuyler, Adam D.; Weatherby, Gerard; Hoch, Jeffrey C.

    2017-12-01

    Non-Fourier methods are increasingly utilized in NMR spectroscopy because of their ability to handle nonuniformly-sampled data. However, non-Fourier methods present unique challenges due to their nonlinearity, which can produce nonrandom noise and render conventional metrics for spectral quality such as signal-to-noise ratio unreliable. The lack of robust and transferable metrics (i.e. applicable to methods exhibiting different nonlinearities) has hampered comparison of non-Fourier methods and nonuniform sampling schemes, preventing the identification of best practices. We describe a novel method, in situ receiver operating characteristic analysis (IROC), for characterizing spectral quality based on the Receiver Operating Characteristic curve. IROC utilizes synthetic signals added to empirical data as "ground truth", and provides several robust scalar-valued metrics for spectral quality. This approach avoids problems posed by nonlinear spectral estimates, and provides a versatile quantitative means of characterizing many aspects of spectral quality. We demonstrate applications to parameter optimization in Fourier and non-Fourier spectral estimation, critical comparison of different methods for spectrum analysis, and optimization of nonuniform sampling schemes. The approach will accelerate the discovery of optimal approaches to nonuniform sampling experiment design and non-Fourier spectrum analysis for multidimensional NMR.

  8. Rapid prediction of multi-dimensional NMR data sets

    International Nuclear Information System (INIS)

    Gradmann, Sabine; Ader, Christian; Heinrich, Ines; Nand, Deepak; Dittmann, Marc; Cukkemane, Abhishek; Dijk, Marc van; Bonvin, Alexandre M. J. J.; Engelhard, Martin; Baldus, Marc

    2012-01-01

    We present a computational environment for Fast Analysis of multidimensional NMR DAta Sets (FANDAS) that allows assembling multidimensional data sets from a variety of input parameters and facilitates comparing and modifying such “in silico” data sets during the various stages of the NMR data analysis. The input parameters can vary from (partial) NMR assignments directly obtained from experiments to values retrieved from in silico prediction programs. The resulting predicted data sets enable a rapid evaluation of sample labeling in light of spectral resolution and structural content, using standard NMR software such as Sparky. In addition, direct comparison to experimental data sets can be used to validate NMR assignments, distinguish different molecular components, refine structural models or other parameters derived from NMR data. The method is demonstrated in the context of solid-state NMR data obtained for the cyclic nucleotide binding domain of a bacterial cyclic nucleotide-gated channel and on membrane-embedded sensory rhodopsin II. FANDAS is freely available as web portal under WeNMR (http://www.wenmr.eu/services/FANDAShttp://www.wenmr.eu/services/FANDAS).

  9. Rapid prediction of multi-dimensional NMR data sets

    Energy Technology Data Exchange (ETDEWEB)

    Gradmann, Sabine; Ader, Christian [Utrecht University, Faculty of Science, Bijvoet Center for Biomolecular Research (Netherlands); Heinrich, Ines [Max Planck Institute for Molecular Physiology, Department of Physical Biochemistry (Germany); Nand, Deepak [Utrecht University, Faculty of Science, Bijvoet Center for Biomolecular Research (Netherlands); Dittmann, Marc [Max Planck Institute for Molecular Physiology, Department of Physical Biochemistry (Germany); Cukkemane, Abhishek; Dijk, Marc van; Bonvin, Alexandre M. J. J. [Utrecht University, Faculty of Science, Bijvoet Center for Biomolecular Research (Netherlands); Engelhard, Martin [Max Planck Institute for Molecular Physiology, Department of Physical Biochemistry (Germany); Baldus, Marc, E-mail: m.baldus@uu.nl [Utrecht University, Faculty of Science, Bijvoet Center for Biomolecular Research (Netherlands)

    2012-12-15

    We present a computational environment for Fast Analysis of multidimensional NMR DAta Sets (FANDAS) that allows assembling multidimensional data sets from a variety of input parameters and facilitates comparing and modifying such 'in silico' data sets during the various stages of the NMR data analysis. The input parameters can vary from (partial) NMR assignments directly obtained from experiments to values retrieved from in silico prediction programs. The resulting predicted data sets enable a rapid evaluation of sample labeling in light of spectral resolution and structural content, using standard NMR software such as Sparky. In addition, direct comparison to experimental data sets can be used to validate NMR assignments, distinguish different molecular components, refine structural models or other parameters derived from NMR data. The method is demonstrated in the context of solid-state NMR data obtained for the cyclic nucleotide binding domain of a bacterial cyclic nucleotide-gated channel and on membrane-embedded sensory rhodopsin II. FANDAS is freely available as web portal under WeNMR (http://www.wenmr.eu/services/FANDAShttp://www.wenmr.eu/services/FANDAS).

  10. Reproducibility of NMR Analysis of Urine Samples: Impact of Sample Preparation, Storage Conditions, and Animal Health Status

    OpenAIRE

    Schreier, Christina; Kremer, Werner; Huber, Fritz; Neumann, Sindy; Pagel, Philipp; Lienemann, Kai; Pestel, Sabine

    2013-01-01

    Introduction. Spectroscopic analysis of urine samples from laboratory animals can be used to predict the efficacy and side effects of drugs. This employs methods combining 1H NMR spectroscopy with quantification of biomarkers or with multivariate data analysis. The most critical steps in data evaluation are analytical reproducibility of NMR data (collection, storage, and processing) and the health status of the animals, which may influence urine pH and osmolarity. Methods. We treated rats wit...

  11. Cool-Climate Red Wines—Chemical Composition and Comparison of Two Protocols for 1H–NMR Analysis

    Directory of Open Access Journals (Sweden)

    Violetta Aru

    2018-01-01

    Full Text Available This study investigates the metabolome of 26 experimental cool-climate wines made from 22 grape varieties using two different protocols for wine analysis by proton nuclear magnetic resonance (1H–NMR spectroscopy. The wine samples were analyzed as-is (wet and as dried samples. The NMR datasets were preprocessed by alignment and mean centering. No normalization or scaling was performed. The “wet” method preserved the inherent properties of the samples and provided a fast and effective overview of the molecular composition of the wines. The “dried” method yielded a slightly better sensitivity towards a broader range of the compounds present in wines. A total of 27 metabolites including amino acids, organic acids, sugars, and alkaloids were identified in the 1H–NMR spectra of the wine samples. Principal component analysis was performed on both NMR datasets evidencing well-defined molecular fingerprints for ‘Baco Noir’, ‘Bolero’, ‘Cabernet Cantor’, ‘Cabernet Cortis’, ‘Don Muscat’, ‘Eszter’, ‘Golubok’, ‘New York Muscat’, ‘Regent’, ‘Rondo’, ‘Triomphe d’Alsace’, ‘Précose Noir’, and ‘Vinoslivy’ wines. Amongst the identified metabolites, lactic acid, succinic acid, acetic acid, gallic acid, glycerol, and methanol were found to drive sample groupings. The 1H–NMR data was compared to the absolute concentration values obtained from a reference Fourier transform infrared method, evidencing a high correlation.

  12. Dynamic NMR under nonstationary conditions: Theoretical model, numerical calculation, and potential of application

    Energy Technology Data Exchange (ETDEWEB)

    Babailov, S. P., E-mail: babajlov@niic.nsc.ru [A. V. Nikolaevs Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation); National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050 (Russian Federation); Purtov, P. A. [Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Insitutskaya 3, 630090 Novosibirsk (Russian Federation); Fomin, E. S. [Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Av. Lavrentyev 10, 630090 Novosibirsk (Russian Federation)

    2016-08-07

    An expression has been derived for the time dependence of the NMR line shape for systems with multi-site chemical exchange in the absence of spin-spin coupling, in a zero saturation limit. The dynamics of variation of the NMR line shape with time is considered in detail for the case of two-site chemical exchange. Mathematical programs have been designed for numerical simulation of the NMR spectra of chemical exchange systems. The analytical expressions obtained are useful for NMR line shape simulations for systems with photoinduced chemical exchange.

  13. Fast and Efficient Fragment-Based Lead Generation by Fully Automated Processing and Analysis of Ligand-Observed NMR Binding Data.

    Science.gov (United States)

    Peng, Chen; Frommlet, Alexandra; Perez, Manuel; Cobas, Carlos; Blechschmidt, Anke; Dominguez, Santiago; Lingel, Andreas

    2016-04-14

    NMR binding assays are routinely applied in hit finding and validation during early stages of drug discovery, particularly for fragment-based lead generation. To this end, compound libraries are screened by ligand-observed NMR experiments such as STD, T1ρ, and CPMG to identify molecules interacting with a target. The analysis of a high number of complex spectra is performed largely manually and therefore represents a limiting step in hit generation campaigns. Here we report a novel integrated computational procedure that processes and analyzes ligand-observed proton and fluorine NMR binding data in a fully automated fashion. A performance evaluation comparing automated and manual analysis results on (19)F- and (1)H-detected data sets shows that the program delivers robust, high-confidence hit lists in a fraction of the time needed for manual analysis and greatly facilitates visual inspection of the associated NMR spectra. These features enable considerably higher throughput, the assessment of larger libraries, and shorter turn-around times.

  14. The installation of a commercial resistive NMR imager

    International Nuclear Information System (INIS)

    Smith, M.A.; Best, J.J.K.; Douglas, R.H.B.; Kean, D.M.

    1984-01-01

    It has been demonstrated that a relatively low-cost resistive NMR imager can be installed in a normal hospital environment without many major or expensive modifications. The magnet can be adjusted to give adequate uniformity and there is sufficient RF shielding to give good quality clinical images. The fringe field of the magnet of this system, which operates at the lowest field strength of any commercial NMR imager, does not present a problem to imaging unit staff. The long term reliability and detailed specifications with regard to image quality have yet to be determined. These will be determined whilst the imager is being used for clinical studies as part of the national clinical evaluation of NMR imaging supported by the Medical Research Council. (author)

  15. NMR analysis of male fathead minnow urinary metabolites: A potential approach for studying impacts of chemical exposures

    Energy Technology Data Exchange (ETDEWEB)

    Ekman, D.R. [Ecosystems Research Division, U.S. EPA, 960 College Station Road, Athens, GA 30605 (United States)], E-mail: ekman.drew@epa.gov; Teng, Q. [Ecosystems Research Division, U.S. EPA, 960 College Station Road, Athens, GA 30605 (United States); Jensen, K.M.; Martinovic, D.; Villeneuve, D.L.; Ankley, G.T. [Mid-Continent Ecology Division, U.S. EPA, 6201 Congdon Boulevard, Duluth, MN 55804 (United States); Collette, T.W. [Ecosystems Research Division, U.S. EPA, 960 College Station Road, Athens, GA 30605 (United States)

    2007-11-30

    The potential for profiling metabolites in urine from male fathead minnows (Pimephales promelas) to assess chemical exposures was explored using nuclear magnetic resonance (NMR) spectroscopy. Both one-dimensional (1D) and two-dimensional (2D) NMR spectroscopy was used for the assignment of metabolites in urine from unexposed fish. Because fathead minnow urine is dilute, we lyophilized these samples prior to analysis. Furthermore, 1D {sup 1}H NMR spectra of unlyophilized urine from unexposed male fathead minnow and Sprague-Dawley rat were acquired to qualitatively compare rat and fish metabolite profiles and to provide an estimate of the total urinary metabolite pool concentration difference. As a small proof-of-concept study, lyophilized urine samples from male fathead minnows exposed to three different concentrations of the antiandrogen vinclozolin were analyzed by 1D {sup 1}H NMR to assess exposure-induced changes. Through a combination of principal components analysis (PCA) and measurements of {sup 1}H NMR peak intensities, several metabolites were identified as changing with statistical significance in response to exposure. Among those changes occurring in response to exposure to the highest concentration (450 {mu}g/L) of vinclozolin were large increases in taurine, lactate, acetate, and formate. These increases coincided with a marked decrease in hippurate, a combination potentially indicative of hepatotoxicity. The results of these investigations clearly demonstrate the potential utility of an NMR-based approach for assessing chemical exposures in male fathead minnow, using urine collected from individual fish.

  16. NMR analysis of male fathead minnow urinary metabolites: A potential approach for studying impacts of chemical exposures

    International Nuclear Information System (INIS)

    Ekman, D.R.; Teng, Q.; Jensen, K.M.; Martinovic, D.; Villeneuve, D.L.; Ankley, G.T.; Collette, T.W.

    2007-01-01

    The potential for profiling metabolites in urine from male fathead minnows (Pimephales promelas) to assess chemical exposures was explored using nuclear magnetic resonance (NMR) spectroscopy. Both one-dimensional (1D) and two-dimensional (2D) NMR spectroscopy was used for the assignment of metabolites in urine from unexposed fish. Because fathead minnow urine is dilute, we lyophilized these samples prior to analysis. Furthermore, 1D 1 H NMR spectra of unlyophilized urine from unexposed male fathead minnow and Sprague-Dawley rat were acquired to qualitatively compare rat and fish metabolite profiles and to provide an estimate of the total urinary metabolite pool concentration difference. As a small proof-of-concept study, lyophilized urine samples from male fathead minnows exposed to three different concentrations of the antiandrogen vinclozolin were analyzed by 1D 1 H NMR to assess exposure-induced changes. Through a combination of principal components analysis (PCA) and measurements of 1 H NMR peak intensities, several metabolites were identified as changing with statistical significance in response to exposure. Among those changes occurring in response to exposure to the highest concentration (450 μg/L) of vinclozolin were large increases in taurine, lactate, acetate, and formate. These increases coincided with a marked decrease in hippurate, a combination potentially indicative of hepatotoxicity. The results of these investigations clearly demonstrate the potential utility of an NMR-based approach for assessing chemical exposures in male fathead minnow, using urine collected from individual fish

  17. NMR analysis of seven selections of vermentino grape berry: metabolites composition and development.

    Science.gov (United States)

    Mulas, Gilberto; Galaffu, Maria Grazia; Pretti, Luca; Nieddu, Gianni; Mercenaro, Luca; Tonelli, Roberto; Anedda, Roberto

    2011-02-09

    The goal of this work was to study via NMR the unaltered metabolic profile of Sardinian Vermentino grape berry. Seven selections of Vermentino were harvested from the same vineyard. Berries were stored and extracted following an unbiased extraction protocol. Extracts were analyzed to investigate variability in metabolites concentration as a function of the clone, the position of berries in the bunch or growing area within the vineyard. Quantitative NMR and statistical analysis (PCA, correlation analysis, Anova) of the experimental data point out that, among the investigated sources of variation, the position of the berries within the bunch mainly influences the metabolic profile of berries, while the metabolic profile does not seem to be significantly influenced by growing area and clone. Significant variability of the amino acids such as arginine, proline, and organic acids (malic and citric) characterizes the rapid rearrangements of the metabolic profile in response to environmental stimuli. Finally, an application is described on the analysis of metabolite variation throughout the physiological development of berries.

  18. High resolution NMR spectroscopy of synthetic polymers in bulk

    International Nuclear Information System (INIS)

    Komorski, R.A.

    1986-01-01

    The contents of this book are: Overview of high-resolution NMR of solid polymers; High-resolution NMR of glassy amorphous polymers; Carbon-13 solid-state NMR of semicrystalline polymers; Conformational analysis of polymers of solid-state NMR; High-resolution NMR studies of oriented polymers; High-resolution solid-state NMR of protons in polymers; and Deuterium NMR of solid polymers. This work brings together the various approaches for high-resolution NMR studies of bulk polymers into one volume. Heavy emphasis is, of course, given to 13C NMR studies both above and below Tg. Standard high-power pulse and wide-line techniques are not covered

  19. Basics of spectroscopic instruments. Hardware of NMR spectrometer

    International Nuclear Information System (INIS)

    Sato, Hajime

    2009-01-01

    NMR is a powerful tool for structure analysis of small molecules, natural products, biological macromolecules, synthesized polymers, samples from material science and so on. Magnetic Resonance Imaging (MRI) is applicable to plants and animals Because most of NMR experiments can be done by an automation mode, one can forget hardware of NMR spectrometers. It would be good to understand features and performance of NMR spectrometers. Here I present hardware of a modern NMR spectrometer which is fully equipped with digital technology. (author)

  20. Investigation of zeolites by solid state quadrapole NMR

    International Nuclear Information System (INIS)

    Janssen, R.

    1990-01-01

    The subject of this thesis is the NMR investigation of zeolites. The nature and properties of zeolites are discussed. Some of the basic priniples of NMR techniques on quadrupole nuclei are presented. A special technique, namely a two-dimensional nutation experiment is discussed in detail. The theory of the nutation experiment for quadrupole spin species with spin quantum number 3/2 as well as 5/2 is presented. For both spin spcies the theoretical spectra are compared with experimental results. It is also shown that the nutation expeirment can be performed with several pulse schemes. It is shown how phase-sensitive pure-absorption nutation spectra can be obtained and an NMR-probe is presented that is capable of performing NMR experiments at high (up to 500 degree C) temperatures. The two-dimensional nutation NMR technique has been applied to sodium cations in zeolite NaA. For this purpose a numbre of zeolite samples were prepared that contained different amounts of water. With the aid of nutation NMR the hydration of the zeolite can be studied and conclusions can be drawn about the symmetry of the surrounding of the sodium cations. With the aid of an extension of the nutation NMR experiment: Rotary Echo Nutation NMR, it is shown that in zeolite NaA, in various stages of hydration, the sodium cations or water molecules are mobile. Proof is given by means of high-temperature 23 Na-NMR that dehydrates zeolite NaA undergoes a phase transition at ca. 120 degree C. In a high-temperature NMR investigation of zeolite ZSM-5 it is shown that the sodium ions start to execute motions when the temperature is increased. (author). 198 refs.; 72 figs.; 6 tabs

  1. NMR

    International Nuclear Information System (INIS)

    Kneeland, J.B.; Lee, B.C.P.; Whalen, J.P.; Knowles, R.J.R.; Cahill, P.T.

    1984-01-01

    Although still quite new, NMR imaging has already emerged as a safe, noninvasive, painless, and effective diagnostic modality requiring no ionizing radiation. Also, NMR appears already to have established itself as the method of choice for the examination of the brain spinal cord (excluding herniated disks). Another area in which NMR excels is in the examination of the pelvis. The use of surface coils offers the promise of visualizing structures with resolution unobtainable by any other means. In addition, NMR, with its superb visualization of vascular structures and potential ability to measure flow, may soon revolutionize the diagnosis of cardiovascular disease. Finally, NMR, through biochemically and physiologically based T/sub 1/ and T/sub 2/ indices or through spectroscopy, may provide a means of monitoring therapeutic response so as to permit tailoring of treatment to the individual patient. In short, NMR is today probably at the same stage as the x-ray was in Roentgen's day

  2. NMR studies of stock process water and reaction pathways in hydrothermal carbonization of furfural residue

    Directory of Open Access Journals (Sweden)

    Fen Yue

    2018-04-01

    Full Text Available Hydrothermal carbonization (HTC is a valuable approach to convert furfural residue (FR into carbon material. The prepared biochars are usually characterized comprehensively, while the stock process water still remains to be studied in detail. Herein, a NMR study of the main components in stock process water generated at different HTC reaction conditions was reported. Various qualitative and quantitative NMR techniques (1H and 13C NMR, 1H–1H COSY and 1H13C HSQC etc. especially 1D selective gradient total correlation spectroscopy (TOCSY NMR were strategically applied in the analysis of HTC stock process water. Without separation and purification, it was demonstrated that the main detectable compounds are 5-hydroxymethylfurfural, formic acid, methanol, acetic acid, levulinic acid, glycerol, hydroxyacetone and acetaldehyde in this complicate mixture. Furthermore, the relationship between the concentration of major products and the reaction conditions (180–240 °C at 8 h, and 1–24 h at 240 °C was established. Finally, reasonable reaction pathways for hydrothermal conversion of FR were proposed based on this result and our previously obtained characteristics of biochars. The routine and challenging NMR methods utilized here would be an alternative other than HPLC or GC for biomass conversion research and can be extended to more studies. Keywords: NMR, Hydrothermal carbonization, Furfural residue, Stock process water

  3. Effect of rootstock on the scion of Hevea brasiliensis through metabolic analysis of latex samples by 1H NMR

    Directory of Open Access Journals (Sweden)

    Eduardo Sanches Pereira do Nascimento

    2011-01-01

    Full Text Available In this study, the effect of rootstock on grafting through metabolomic analysis of latex (Hevea brasiliensis samples was verified by 1H nuclear magnetic resonance (NMR and multivariate data analysis. Sixteen metabolites present in the latex cytosol were characterized by NMR. PCA analysis showed that the latex samples of the RR and GR groups can be differentiated. The GR group samples present a metabolic profile similar to the RR group samples, while the RG group is in an intermediate position between RR and GG groups. Sucrose and formate contributed greatly to the separation obtained by PCA, presenting a good correlation between the results. 1H NMR was an efficient technique to differentiate latex samples from different types of rootstocks and grafting and in the future could be used to predict rubber production by latex analysis.

  4. NMR Analysis of Some Pentacycloundecanedione Derivatives

    African Journals Online (AJOL)

    NJD

    Although many authors have commented on the difficulty of ... coming these former difficulties. Cookson's dione 19,10 .... and 2.58 ppm) is the common factor and the positions of H-2. (2.94 ppm) .... Owing to advances in NMR technology, the.

  5. Contact replacement for NMR resonance assignment.

    Science.gov (United States)

    Xiong, Fei; Pandurangan, Gopal; Bailey-Kellogg, Chris

    2008-07-01

    Complementing its traditional role in structural studies of proteins, nuclear magnetic resonance (NMR) spectroscopy is playing an increasingly important role in functional studies. NMR dynamics experiments characterize motions involved in target recognition, ligand binding, etc., while NMR chemical shift perturbation experiments identify and localize protein-protein and protein-ligand interactions. The key bottleneck in these studies is to determine the backbone resonance assignment, which allows spectral peaks to be mapped to specific atoms. This article develops a novel approach to address that bottleneck, exploiting an available X-ray structure or homology model to assign the entire backbone from a set of relatively fast and cheap NMR experiments. We formulate contact replacement for resonance assignment as the problem of computing correspondences between a contact graph representing the structure and an NMR graph representing the data; the NMR graph is a significantly corrupted, ambiguous version of the contact graph. We first show that by combining connectivity and amino acid type information, and exploiting the random structure of the noise, one can provably determine unique correspondences in polynomial time with high probability, even in the presence of significant noise (a constant number of noisy edges per vertex). We then detail an efficient randomized algorithm and show that, over a variety of experimental and synthetic datasets, it is robust to typical levels of structural variation (1-2 AA), noise (250-600%) and missings (10-40%). Our algorithm achieves very good overall assignment accuracy, above 80% in alpha-helices, 70% in beta-sheets and 60% in loop regions. Our contact replacement algorithm is implemented in platform-independent Python code. The software can be freely obtained for academic use by request from the authors.

  6. Optimized slice-selective 1H NMR experiments combined with highly accurate quantitative 13C NMR using an internal reference method

    Science.gov (United States)

    Jézéquel, Tangi; Silvestre, Virginie; Dinis, Katy; Giraudeau, Patrick; Akoka, Serge

    2018-04-01

    Isotope ratio monitoring by 13C NMR spectrometry (irm-13C NMR) provides the complete 13C intramolecular position-specific composition at natural abundance. It represents a powerful tool to track the (bio)chemical pathway which has led to the synthesis of targeted molecules, since it allows Position-specific Isotope Analysis (PSIA). Due to the very small composition range (which represents the range of variation of the isotopic composition of a given nuclei) of 13C natural abundance values (50‰), irm-13C NMR requires a 1‰ accuracy and thus highly quantitative analysis by 13C NMR. Until now, the conventional strategy to determine the position-specific abundance xi relies on the combination of irm-MS (isotopic ratio monitoring Mass Spectrometry) and 13C quantitative NMR. However this approach presents a serious drawback since it relies on two different techniques and requires to measure separately the signal of all the carbons of the analyzed compound, which is not always possible. To circumvent this constraint, we recently proposed a new methodology to perform 13C isotopic analysis using an internal reference method and relying on NMR only. The method combines a highly quantitative 1H NMR pulse sequence (named DWET) with a 13C isotopic NMR measurement. However, the recently published DWET sequence is unsuited for samples with short T1, which forms a serious limitation for irm-13C NMR experiments where a relaxing agent is added. In this context, we suggest two variants of the DWET called Multi-WET and Profiled-WET, developed and optimized to reach the same accuracy of 1‰ with a better immunity towards T1 variations. Their performance is evaluated on the determination of the 13C isotopic profile of vanillin. Both pulse sequences show a 1‰ accuracy with an increased robustness to pulse miscalibrations compared to the initial DWET method. This constitutes a major advance in the context of irm-13C NMR since it is now possible to perform isotopic analysis with high

  7. Characterization of solid polymer dispersions of active pharmaceutical ingredients by 19F MAS NMR and factor analysis

    Czech Academy of Sciences Publication Activity Database

    Urbanová, Martina; Brus, Jiří; Šeděnková, Ivana; Policianová, Olivia; Kobera, Libor

    2013-01-01

    Roč. 100, 1 January (2013), s. 59-66 ISSN 1386-1425 R&D Projects: GA ČR GPP106/11/P426; GA MŠk 2B08021 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : solid-state NMR * factor analysis * 19F MAS NMR Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 2.129, year: 2013

  8. Quantifying NMR relaxation correlation and exchange in articular cartilage with time domain analysis

    Science.gov (United States)

    Mailhiot, Sarah E.; Zong, Fangrong; Maneval, James E.; June, Ronald K.; Galvosas, Petrik; Seymour, Joseph D.

    2018-02-01

    Measured nuclear magnetic resonance (NMR) transverse relaxation data in articular cartilage has been shown to be multi-exponential and correlated to the health of the tissue. The observed relaxation rates are dependent on experimental parameters such as solvent, data acquisition methods, data analysis methods, and alignment to the magnetic field. In this study, we show that diffusive exchange occurs in porcine articular cartilage and impacts the observed relaxation rates in T1-T2 correlation experiments. By using time domain analysis of T2-T2 exchange spectroscopy, the diffusive exchange time can be quantified by measurements that use a single mixing time. Measured characteristic times for exchange are commensurate with T1 in this material and so impacts the observed T1 behavior. The approach used here allows for reliable quantification of NMR relaxation behavior in cartilage in the presence of diffusive fluid exchange between two environments.

  9. PINE-SPARKY.2 for automated NMR-based protein structure research.

    Science.gov (United States)

    Lee, Woonghee; Markley, John L

    2018-05-01

    Nuclear magnetic resonance (NMR) spectroscopy, along with X-ray crystallography and cryoelectron microscopy, is one of the three major tools that enable the determination of atomic-level structural models of biological macromolecules. Of these, NMR has the unique ability to follow important processes in solution, including conformational changes, internal dynamics and protein-ligand interactions. As a means for facilitating the handling and analysis of spectra involved in these types of NMR studies, we have developed PINE-SPARKY.2, a software package that integrates and automates discrete tasks that previously required interaction with separate software packages. The graphical user interface of PINE-SPARKY.2 simplifies chemical shift assignment and verification, automated detection of secondary structural elements, predictions of flexibility and hydrophobic cores, and calculation of three-dimensional structural models. PINE-SPARKY.2 is available in the latest version of NMRFAM-SPARKY from the National Magnetic Resonance Facility at Madison (http://pine.nmrfam.wisc.edu/download_packages.html), the NMRbox Project (https://nmrbox.org) and to subscribers to the SBGrid (https://sbgrid.org). For a detailed description of the program, see http://www.nmrfam.wisc.edu/pine-sparky2.htm. whlee@nmrfam.wisc.edu or markley@nmrfam.wisc.edu. Supplementary data are available at Bioinformatics online.

  10. Classical and quantum molecular dynamics in NMR spectra

    CERN Document Server

    Szymański, Sławomir

    2018-01-01

    The book provides a detailed account of how condensed-phase molecular dynamics are reflected in the line shapes of NMR spectra. The theories establishing connections between random, time-dependent molecular processes and lineshape effects are exposed in depth. Special emphasis is placed on the theoretical aspects, involving in particular intermolecular processes in solution, and molecular symmetry issues. The Liouville super-operator formalism is briefly introduced and used wherever it is beneficial for the transparency of presentation. The proposed formal descriptions of the discussed problems are sufficiently detailed to be implemented on a computer. Practical applications of the theory in solid- and liquid-phase studies are illustrated with appropriate experimental examples, exposing the potential of the lineshape method in elucidating molecular dynamics NMR-observable molecular phenomena where quantization of the spatial nuclear degrees of freedom is crucial are addressed in the last part of the book. As ...

  11. Deuterium and lithium-6 MAS NMR studies of manganese oxide electrode materials

    Science.gov (United States)

    Paik, Younkee

    Electrolytic manganese dioxide (EMD) is used world wide as the cathode materials in both lithium and alkaline primary (non-rechargeable) batteries. We have developed deuterium and lithium MAS NMR techniques to study EMD and related manganese oxides and hydroxides, where diffraction techniques are of limited value due to a highly defective nature of the structures. Deuterons in EMD, manganite, groutite, and deuterium-intercalated pyrolusite and ramsdellite were detected by NMR, for the first time, and their locations and motions in the structures were analyzed by applying variable temperature NMR techniques. Discharge mechanisms of EMD in alkaline (aqueous) electrolytes were studied, in conjunction with step potential electrochemical spectroscopic (SPECS) method, and five distinctive discharge processes were proposed. EMD is usually heat-treated at about 300--400°C to remove water to be used in lithium batteries. Details of the effects of heat-treatment, such as structural and compositional changes as a function of heat-treatment temperature, were studied by a combination of MAS NMR, XRD, and thermogravimetric analysis. Lithium local environments in heat-treated EMD (HEMD) that were discharged in lithium cells, were described in terms of related environments found in model compounds pyrolusite and ramsdellite where specific Li + sites were detected by MAS NMR and the hyperfine shift scale method of Grey et al. Acid-leaching of Li2MnO3 represents an approach for synthesizing new or modified manganese oxide electrode materials for lithium rechargeable batteries. Progressive removal of lithium from specific crystallographic sites, followed by a gradual change of the crystal structure, was monitored by a combination of NMR and XRD techniques.

  12. Variable-temperature NMR and conformational analysis of Oenothein B

    International Nuclear Information System (INIS)

    Santos, Suzana C.; Carvalho, Ariadne G.; Fortes, Gilmara A.C.; Ferri, Pedro H.; Oliveira, Anselmo E. de

    2014-01-01

    Oenothein B is a dimeric hydrolyzable tannin with a wide range of biological activities, such as antitumour, anti-inflammatory and antiviral. Its nuclear magnetic resonance (NMR) at room temperature show duplications and broadening of signals. Experiments of 1D and 2D NMR at lower temperatures were useful for the complete NMR assignments of all hydrogens and carbons. The 3D structure of the most stable conformer was determined for the first time by nuclear Overhauser effect spectroscopy (NOESY) experiment (-20 deg C) and density functional theory (DFT)(B3LYP/6-31G)/ polarizable continuum model (PCM) quantum chemical calculations. The favoured conformation showed a highly compacted geometry and a lack of symmetry, in which the two valoneoyl groups showed distinct conformational parameters and stabilities. (author)

  13. Variable-temperature NMR and conformational analysis of Oenothein B

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Suzana C.; Carvalho, Ariadne G.; Fortes, Gilmara A.C.; Ferri, Pedro H.; Oliveira, Anselmo E. de, [Universidade Federal de Goias (UFGO), Goiania, GO (Brazil). Instituto de Quimica

    2014-02-15

    Oenothein B is a dimeric hydrolyzable tannin with a wide range of biological activities, such as antitumour, anti-inflammatory and antiviral. Its nuclear magnetic resonance (NMR) at room temperature show duplications and broadening of signals. Experiments of 1D and 2D NMR at lower temperatures were useful for the complete NMR assignments of all hydrogens and carbons. The 3D structure of the most stable conformer was determined for the first time by nuclear Overhauser effect spectroscopy (NOESY) experiment (-20 deg C) and density functional theory (DFT)(B3LYP/6-31G)/ polarizable continuum model (PCM) quantum chemical calculations. The favoured conformation showed a highly compacted geometry and a lack of symmetry, in which the two valoneoyl groups showed distinct conformational parameters and stabilities. (author)

  14. Compositional differences among Chinese soy sauce types studied by (13)C NMR spectroscopy coupled with multivariate statistical analysis.

    Science.gov (United States)

    Kamal, Ghulam Mustafa; Wang, Xiaohua; Bin Yuan; Wang, Jie; Sun, Peng; Zhang, Xu; Liu, Maili

    2016-09-01

    Soy sauce a well known seasoning all over the world, especially in Asia, is available in global market in a wide range of types based on its purpose and the processing methods. Its composition varies with respect to the fermentation processes and addition of additives, preservatives and flavor enhancers. A comprehensive (1)H NMR based study regarding the metabonomic variations of soy sauce to differentiate among different types of soy sauce available on the global market has been limited due to the complexity of the mixture. In present study, (13)C NMR spectroscopy coupled with multivariate statistical data analysis like principle component analysis (PCA), and orthogonal partial least square-discriminant analysis (OPLS-DA) was applied to investigate metabonomic variations among different types of soy sauce, namely super light, super dark, red cooking and mushroom soy sauce. The main additives in soy sauce like glutamate, sucrose and glucose were easily distinguished and quantified using (13)C NMR spectroscopy which were otherwise difficult to be assigned and quantified due to serious signal overlaps in (1)H NMR spectra. The significantly higher concentration of sucrose in dark, red cooking and mushroom flavored soy sauce can directly be linked to the addition of caramel in soy sauce. Similarly, significantly higher level of glutamate in super light as compared to super dark and mushroom flavored soy sauce may come from the addition of monosodium glutamate. The study highlights the potentiality of (13)C NMR based metabonomics coupled with multivariate statistical data analysis in differentiating between the types of soy sauce on the basis of level of additives, raw materials and fermentation procedures. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Metabolomic differentiation of maca (Lepidium meyenii) accessions cultivated under different conditions using NMR and chemometric analysis.

    Science.gov (United States)

    Zhao, Jianping; Avula, Bharathi; Chan, Michael; Clément, Céline; Kreuzer, Michael; Khan, Ikhlas A

    2012-01-01

    To gain insights on the effects of color type, cultivation history, and growing site on the composition alterations of maca (Lepidium meyenii Walpers) hypocotyls, NMR profiling combined with chemometric analysis was applied to investigate the metabolite variability in different maca accessions. Maca hypocotyls with different colors (yellow, pink, violet, and lead-colored) cultivated at different geographic sites and different areas were examined for differences in metabolite expression. Differentiations of the maca accessions grown under the different cultivation conditions were determined by principle component analyses (PCAs) which were performed on the datasets derived from their ¹H NMR spectra. A total of 16 metabolites were identified by NMR analysis, and the changes in metabolite levels in relation to the color types and growing conditions of maca hypocotyls were evaluated using univariate statistical analysis. In addition, the changes of the correlation pattern among the metabolites identified in the maca accessions planted at the two different sites were examined. The results from both multivariate and univariate analysis indicated that the planting site was the major determining factor with regards to metabolite variations in maca hypocotyls, while the color of maca accession seems to be of minor importance in this respect. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Solid-state NMR basic principles and practice

    CERN Document Server

    Apperley, David C; Hodgkinson, Paul

    2014-01-01

    Nuclear Magnetic Resonance (NMR) has proved to be a uniquely powerful and versatile tool for analyzing and characterizing chemicals and materials of all kinds. This book focuses on the latest developments and applications for "solid-state" NMR, which has found new uses from archaeology to crystallography to biomaterials and pharmaceutical science research. The book will provide materials engineers, analytical chemists, and physicists, in and out of lab, a survey of the techniques and the essential tools of solid-state NMR, together with a practical guide on applications. In this concise introduction to the growing field of solid-state nuclear magnetic resonance spectroscopy The reader will find: * Basic NMR concepts for solids, including guidance on the spin-1/2 nuclei concept * Coverage of the quantum mechanics aspects of solid state NMR and an introduction to the concept of quadrupolar nuclei * An understanding relaxation, exchange and quantitation in NMR * An analysis and interpretation of NMR data, with e...

  17. Stochastic models (cooperative and non-cooperative) for NMR analysis of the hetero-association of aromatic molecules in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Evstigneev, Maxim P. [Department of Physics, Sevastopol National Technical University, Sevastopol 99053, Crimea (Ukraine)], E-mail: max_evstigneev@mail.ru; Davies, David B. [School of Biological and Chemical Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX (United Kingdom); Veselkov, Alexei N. [Department of Physics, Sevastopol National Technical University, Sevastopol 99053, Crimea (Ukraine)

    2006-01-25

    Stochastic cooperative (STOCH-C) and non-cooperative (STOCH-NC) models have been developed for NMR analysis of the hetero-association of aromatic compounds in solution, in order to take into account all physically meaningful association reactions of molecules in which there are no limitations on the lengths of the aggregates and complexes. These algorithmical approaches are compared with previously published basic (BASE) and generalized (GEN) analytical statistical thermodynamical models of hetero-association of biologically active aromatic molecules using the same sets of published NMR data measured under the same solution conditions (0.1 M phosphate buffer, pD = 7.1, T = 298 K). It is shown that, within experimental errors, the BASE analytical model may be used to describe molecular systems characterized by relatively small contributions of hetero-association reactions, whereas the GEN model may be applied to hetero-association reactions of any aromatic compound with different self-association properties. The STOCH-C computational algorithm enabled the effect on hetero-association of the interactions of molecules with different cooperativity parameters of self-association to be estimated for the first time and it is proposed that the algorithm for the stochastic models has great potential for detailed investigation and understanding of the interactions of aromatic molecules in solution.

  18. Stochastic models (cooperative and non-cooperative) for NMR analysis of the hetero-association of aromatic molecules in aqueous solution

    International Nuclear Information System (INIS)

    Evstigneev, Maxim P.; Davies, David B.; Veselkov, Alexei N.

    2006-01-01

    Stochastic cooperative (STOCH-C) and non-cooperative (STOCH-NC) models have been developed for NMR analysis of the hetero-association of aromatic compounds in solution, in order to take into account all physically meaningful association reactions of molecules in which there are no limitations on the lengths of the aggregates and complexes. These algorithmical approaches are compared with previously published basic (BASE) and generalized (GEN) analytical statistical thermodynamical models of hetero-association of biologically active aromatic molecules using the same sets of published NMR data measured under the same solution conditions (0.1 M phosphate buffer, pD = 7.1, T = 298 K). It is shown that, within experimental errors, the BASE analytical model may be used to describe molecular systems characterized by relatively small contributions of hetero-association reactions, whereas the GEN model may be applied to hetero-association reactions of any aromatic compound with different self-association properties. The STOCH-C computational algorithm enabled the effect on hetero-association of the interactions of molecules with different cooperativity parameters of self-association to be estimated for the first time and it is proposed that the algorithm for the stochastic models has great potential for detailed investigation and understanding of the interactions of aromatic molecules in solution

  19. Connection between NMR and electrical conductivity in glassy chalcogenide fast ionic conductors

    International Nuclear Information System (INIS)

    Kim, K.H.

    1995-01-01

    The work documented in this thesis follows the traditional order. In this chapter a general discussion of ionic conduction and of glassy materials are followed by a brief outline of the experimental techniques for the investigation of fast ionic conduction in glassy materials, including NMR and impedance spectroscopy techniques. A summary of the previous and present studies is presented in the last section of this introductory chapter. The details of the background theory and models are found in the Chapter II, followed by the description of the experimental details in Chapter III. Chapter IV of the thesis describes the experimental results and the analysis of the experimental observations followed by the conclusions in chapter V

  20. Characterization of natural bentonite by NMR

    International Nuclear Information System (INIS)

    Leite, Sidnei Q.M.; Dieguez, Lidia C.; Menezes, Sonia M.C.; San Gil, Rosane A.S.

    1993-01-01

    Solid state NMR as well as several other instrumental chemical analysis techniques were used in order to characterize two natural occurring bentonite. The methodology is described. The NMR spectra, together with the other used techniques suggest that the observed differences are due to iron inclusions in tetrahedral and octahedral sites

  1. NMR reaction monitoring in flow synthesis.

    Science.gov (United States)

    Gomez, M Victoria; de la Hoz, Antonio

    2017-01-01

    Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed.

  2. Identification and quantification of the main organic components of vinegars by high resolution 1H NMR spectroscopy

    International Nuclear Information System (INIS)

    Caligiani, A.; Acquotti, D.; Palla, G.; Bocchi, V.

    2007-01-01

    A detailed analysis of the proton high-field NMR spectra of vinegars (in particular of Italian balsamic vinegars) is reported. A large number of organic substances belonging to different classes, such as carbohydrates, alcohols, organic acids, volatile compounds and amino acids, were assigned. The possibility of quantification of the substances identified in the whole vinegar sample, without extraction or pre-concentration steps, was also tested. The data validity was demonstrated in terms of precision, accuracy, repeatability and inter-day reproducibility. The effects of the most critical experimental parameters (sample concentration, water suppression and relaxation time) on the analysis response were also discussed. 1 H NMR results were compared with those obtained by traditional techniques (GC-MS, titrations), and good correlations were obtained. The results showed that 1 H NMR with water suppression allows a rapid, simultaneous determination of carbohydrates (glucose and fructose), organic acids (acetic, formic, lactic, malic, citric, succinic and tartaric acids), alcohols and polyols (ethanol, acetoin, 2,3-butanediol, hydroxymethylfurfural), and volatile substances (ethyl acetate) in vinegar samples. On the contrary, the amino acid determination without sample pre-concentration was critical. The 1 H NMR method proposed was applied to different samples of vinegars, allowing, in particular, the discrimination of vinegars and balsamic vinegars

  3. Nuclear magnetic resonance (NMR): principles and applications

    International Nuclear Information System (INIS)

    Quibilan, E.I.

    The basis for the phenomenon of nuclear magnetic resonance (NMR) is the ability of certain nuclei possessing both intrinsic angular momentum or ''spin'' I and magnetic moment to absorb electromagnetic energy in the radio frequency range. In principle, there are approximately 200 nuclei which may be investigated using the NMR technique. The NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum provides a variety of qualitative and quantitative analytical applications. The most obvious applications consist of the measurements of nuclear properties, such as spin number and nuclear magnetic moment. In liquids, the fine structure of resonance spectra provides a tool for chemical identification and molecular structure analysis. Other applications include the measurements of self-diffusion coefficients, magnetic fields and field homogeneity, inter-nuclear distances, and, in some cases, the water content of biological materials. (author)

  4. Principles of high resolution NMR in solids

    CERN Document Server

    Mehring, Michael

    1983-01-01

    The field of Nuclear Magnetic Resonance (NMR) has developed at a fascinating pace during the last decade. It always has been an extremely valuable tool to the organic chemist by supplying molecular "finger print" spectra at the atomic level. Unfortunately the high resolution achievable in liquid solutions could not be obtained in solids and physicists and physical chemists had to live with unresolved lines open to a wealth of curve fitting procedures and a vast amount of speculations. High resolution NMR in solids seemed to be a paradoxon. Broad structure­ less lines are usually encountered when dealing with NMR in solids. Only with the recent advent of mUltiple pulse, magic angle, cross-polarization, two-dimen­ sional and multiple-quantum spectroscopy and other techniques during the last decade it became possible to resolve finer details of nuclear spin interactions in solids. I have felt that graduate students, researchers and others beginning to get involved with these techniques needed a book which trea...

  5. 1H NMR-Based Metabolomic Analysis of Sub-Lethal Perfluorooctane Sulfonate Exposure to the Earthworm, Eisenia fetida, in Soil

    Directory of Open Access Journals (Sweden)

    Myrna J. Simpson

    2013-08-01

    Full Text Available 1H NMR-based metabolomics was used to measure the response of Eisenia fetida earthworms after exposure to sub-lethal concentrations of perfluorooctane sulfonate (PFOS in soil. Earthworms were exposed to a range of PFOS concentrations (five, 10, 25, 50, 100 or 150 mg/kg for two, seven and fourteen days. Earthworm tissues were extracted and analyzed by 1H NMR. Multivariate statistical analysis of the metabolic response of E. fetida to PFOS exposure identified time-dependent responses that were comprised of two separate modes of action: a non-polar narcosis type mechanism after two days of exposure and increased fatty acid oxidation after seven and fourteen days of exposure. Univariate statistical analysis revealed that 2-hexyl-5-ethyl-3-furansulfonate (HEFS, betaine, leucine, arginine, glutamate, maltose and ATP are potential indicators of PFOS exposure, as the concentrations of these metabolites fluctuated significantly. Overall, NMR-based metabolomic analysis suggests elevated fatty acid oxidation, disruption in energy metabolism and biological membrane structure and a possible interruption of ATP synthesis. These conclusions obtained from analysis of the metabolic profile in response to sub-lethal PFOS exposure indicates that NMR-based metabolomics is an excellent discovery tool when the mode of action (MOA of contaminants is not clearly defined.

  6. Petrophysical properties of greensand as predicted from NMR measurements

    DEFF Research Database (Denmark)

    Hossain, Zakir; Grattoni, Carlos A.; Solymar, Mikael

    2011-01-01

    ABSTRACT: Nuclear magnetic resonance (NMR) is a useful tool in reservoir evaluation. The objective of this study is to predict petrophysical properties from NMR T2 distributions. A series of laboratory experiments including core analysis, capillary pressure measurements, NMR T2 measurements...... with macro-pores. Permeability may be predicted from NMR by using Kozeny's equation when surface relaxivity is known. Capillary pressure drainage curves may be predicted from NMR T2 distribution when pore size distribution within a sample is homogeneous....

  7. NMR Detection of Semi-Specific Antibody Interactions in Serum Environments

    Directory of Open Access Journals (Sweden)

    Saeko Yanaka

    2017-09-01

    Full Text Available Although antibody functions are executed in heterogeneous blood streams characterized by molecular crowding and promiscuous intermolecular interaction, detailed structural characterizations of antibody interactions have thus far been performed under homogeneous in vitro conditions. NMR spectroscopy potentially has the ability to study protein structures in heterogeneous environments, assuming that the target protein can be labeled with NMR-active isotopes. Based on our successful development of isotope labeling of antibody glycoproteins, here we apply NMR spectroscopy to characterize antibody interactions in heterogeneous extracellular environments using mouse IgG-Fc as a test molecule. In human serum, many of the HSQC peaks originating from the Fc backbone exhibited attenuation in intensity of various magnitudes. Similar spectral changes were induced by the Fab fragment of polyclonal IgG isolated from the serum, but not by serum albumin, indicating that a subset of antibodies reactive with mouse IgG-Fc exists in human serum without preimmunization. The metaepitopes recognized by serum polyclonal IgG cover the entire molecular surface of Fc, including the binding sites to Fc receptors and C1q. In-serum NMR observation will offer useful tools for the detailed characterization of biopharamaceuticals, including therapeutic antibodies in physiologically relevant heterogeneous environments, also giving deeper insight into molecular recognition by polyclonal antibodies in the immune system.

  8. Graphical analysis of NMR structural quality and interactive contact map of NOE assignments in ARIA

    Directory of Open Access Journals (Sweden)

    Malliavin Thérèse E

    2008-06-01

    Full Text Available Abstract Background The Ambiguous Restraints for Iterative Assignment (ARIA approach is widely used for NMR structure determination. It is based on simultaneously calculating structures and assigning NOE through an iterative protocol. The final solution consists of a set of conformers and a list of most probable assignments for the input NOE peak list. Results ARIA was extended with a series of graphical tools to facilitate a detailed analysis of the intermediate and final results of the ARIA protocol. These additional features provide (i an interactive contact map, serving as a tool for the analysis of assignments, and (ii graphical representations of structure quality scores and restraint statistics. The interactive contact map between residues can be clicked to obtain information about the restraints and their contributions. Profiles of quality scores are plotted along the protein sequence, and contact maps provide information of the agreement with the data on a residue pair level. Conclusion The graphical tools and outputs described here significantly extend the validation and analysis possibilities of NOE assignments given by ARIA as well as the analysis of the quality of the final structure ensemble. These tools are included in the latest version of ARIA, which is available at http://aria.pasteur.fr. The Web site also contains an installation guide, a user manual and example calculations.

  9. NMR reaction monitoring in flow synthesis

    Directory of Open Access Journals (Sweden)

    M. Victoria Gomez

    2017-02-01

    Full Text Available Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed.

  10. LEGO-NMR spectroscopy: a method to visualize individual subunits in large heteromeric complexes.

    Science.gov (United States)

    Mund, Markus; Overbeck, Jan H; Ullmann, Janina; Sprangers, Remco

    2013-10-18

    Seeing the big picture: Asymmetric macromolecular complexes that are NMR active in only a subset of their subunits can be prepared, thus decreasing NMR spectral complexity. For the hetero heptameric LSm1-7 and LSm2-8 rings NMR spectra of the individual subunits of the complete complex are obtained, showing a conserved RNA binding site. This LEGO-NMR technique makes large asymmetric complexes accessible to detailed NMR spectroscopic studies. © 2013 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of Creative Commons the Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  11. Ligand screening by saturation-transfer difference (STD) NMR spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, V V

    2005-04-26

    NMR based methods to screen for high-affinity ligands have become an indispensable tool for designing rationalized drugs, as these offer a combination of good experimental design of the screening process and data interpretation methods, which together provide unprecedented information on the complex nature of protein-ligand interactions. These methods rely on measuring direct changes in the spectral parameters, that are often simpler than the complex experimental procedures used to study structure and dynamics of proteins. The goal of this review article is to provide the basic details of NMR based ligand-screening methods, with particular focus on the saturation transfer difference (STD) experiment. In addition, we provide an overview of other NMR experimental methods and a practical guide on how to go about designing and implementing them.

  12. Stripline-based microfluidic devices for high-resolution NMR spectroscopy

    NARCIS (Netherlands)

    Bart, J.

    2009-01-01

    A novel route towards microchip integrated NMR analysis was studied. For NMR analysis of mass-limited samples, research has focussed for decennia on microsolenoidal or planar helical detection coils on microfluidic substrates. Since these approaches suffer from static field distortion resulting in

  13. DNP-enhanced solid-state NMR spectroscopy of active pharmaceutical ingredients.

    Science.gov (United States)

    Zhao, Li; Pinon, Arthur C; Emsley, Lyndon; Rossini, Aaron J

    2017-11-28

    Solid-state NMR spectroscopy has become a valuable tool for the characterization of both pure and formulated active pharmaceutical ingredients (APIs). However, NMR generally suffers from poor sensitivity that often restricts NMR experiments to nuclei with favorable properties, concentrated samples, and acquisition of one-dimensional (1D) NMR spectra. Here, we review how dynamic nuclear polarization (DNP) can be applied to routinely enhance the sensitivity of solid-state NMR experiments by one to two orders of magnitude for both pure and formulated APIs. Sample preparation protocols for relayed DNP experiments and experiments on directly doped APIs are detailed. Numerical spin diffusion models illustrate the dependence of relayed DNP enhancements on the relaxation properties and particle size of the solids and can be used for particle size determination when the other factors are known. We then describe the advanced solid-state NMR experiments that have been enabled by DNP and how they provide unique insight into the molecular and macroscopic structure of APIs. For example, with large sensitivity gains provided by DNP, natural isotopic abundance, 13 C- 13 C double-quantum single-quantum homonuclear correlation NMR spectra of pure APIs can be routinely acquired. DNP also enables solid-state NMR experiments with unreceptive quadrupolar nuclei such as 2 H, 14 N, and 35 Cl that are commonly found in APIs. Applications of DNP-enhanced solid-state NMR spectroscopy for the molecular level characterization of low API load formulations such as commercial tablets and amorphous solid dispersions are described. Future perspectives for DNP-enhanced solid-state NMR experiments on APIs are briefly discussed. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Direct 13C NMR Detection in HPLC Hyphenation Mode

    DEFF Research Database (Denmark)

    Wubshet, Sileshi Gizachew; Johansen, Kenneth; Nyberg, Nils

    2012-01-01

    Solid phase extraction (SPE) was introduced as a crucial step in the HPLC-SPE-NMR technique to enable online analyte enrichment from which proton-detected NMR experiments on submicrogram amounts from complex mixtures were possible. However, the significance of direct-detected (13)C NMR experiments...... application of HPLC-SPE-NMR analysis using direct-detected (13)C NMR spectra. HPLC column loading, accumulative SPE trappings, and the effect of different elution solvents were evaluated and optimized. A column loading of approximately 600 mug of a prefractionated triterpenoid mixture, six trappings...

  15. Successful Sampling Strategy Advances Laboratory Studies of NMR Logging in Unconsolidated Aquifers

    Science.gov (United States)

    Behroozmand, Ahmad A.; Knight, Rosemary; Müller-Petke, Mike; Auken, Esben; Barfod, Adrian A. S.; Ferré, Ty P. A.; Vilhelmsen, Troels N.; Johnson, Carole D.; Christiansen, Anders V.

    2017-11-01

    The nuclear magnetic resonance (NMR) technique has become popular in groundwater studies because it responds directly to the presence and mobility of water in a porous medium. There is a need to conduct laboratory experiments to aid in the development of NMR hydraulic conductivity models, as is typically done in the petroleum industry. However, the challenge has been obtaining high-quality laboratory samples from unconsolidated aquifers. At a study site in Denmark, we employed sonic drilling, which minimizes the disturbance of the surrounding material, and extracted twelve 7.6 cm diameter samples for laboratory measurements. We present a detailed comparison of the acquired laboratory and logging NMR data. The agreement observed between the laboratory and logging data suggests that the methodologies proposed in this study provide good conditions for studying NMR measurements of unconsolidated near-surface aquifers. Finally, we show how laboratory sample size and condition impact the NMR measurements.

  16. Analysis of Polycyclic Aromatic Hydrocarbon (PAH Mixtures Using Diffusion-Ordered NMR Spectroscopy and Adsorption by Powdered Activated Carbon and Biochar

    Directory of Open Access Journals (Sweden)

    Dong An

    2018-03-01

    Full Text Available Analysis of polycyclic aromatic hydrocarbons (PAHs in air and water sources is a key part of environmental chemistry research, since most PAHs are well known to be associated with negative health impacts on humans. This study explores an approach for analyzing PAH mixtures with advanced nuclear magnetic resonance (NMR spectroscopic techniques including high-resolution one-dimensional (1D NMR spectroscopy and diffusion-ordered NMR spectroscopy (DOSY NMR. With this method, different kinds of PAHs can be detected and differentiated from a mixture with high resolution. The adsorption process of PAH mixtures by PAC and biochar was studied to understand the mechanism and assess the method.

  17. NMR data-driven structure determination using NMR-I-TASSER in the CASD-NMR experiment

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Richard [Huazhong University of Science and Technology, School of Software Engineering (China); Wang, Yan [Huazhong University of Science and Technology, School of Life Science and Technology (China); Xue, Zhidong, E-mail: zdxue@hust.edu.cn [Huazhong University of Science and Technology, School of Software Engineering (China); Zhang, Yang, E-mail: zhng@umich.edu [University of Michigan, Department of Computational Medicine and Bioinformatics (United States)

    2015-08-15

    NMR-I-TASSER, an adaption of the I-TASSER algorithm combining NMR data for protein structure determination, recently joined the second round of the CASD-NMR experiment. Unlike many molecular dynamics-based methods, NMR-I-TASSER takes a molecular replacement-like approach to the problem by first threading the target through the PDB to identify structural templates which are then used for iterative NOE assignments and fragment structure assembly refinements. The employment of multiple templates allows NMR-I-TASSER to sample different topologies while convergence to a single structure is not required. Retroactive and blind tests of the CASD-NMR targets from Rounds 1 and 2 demonstrate that even without using NOE peak lists I-TASSER can generate correct structure topology with 15 of 20 targets having a TM-score above 0.5. With the addition of NOE-based distance restraints, NMR-I-TASSER significantly improved the I-TASSER models with all models having the TM-score above 0.5. The average RMSD was reduced from 5.29 to 2.14 Å in Round 1 and 3.18 to 1.71 Å in Round 2. There is no obvious difference in the modeling results with using raw and refined peak lists, indicating robustness of the pipeline to the NOE assignment errors. Overall, despite the low-resolution modeling the current NMR-I-TASSER pipeline provides a coarse-grained structure folding approach complementary to traditional molecular dynamics simulations, which can produce fast near-native frameworks for atomic-level structural refinement.

  18. Investigation of Oxidative Degradation in Polymers Using (17)O NMR Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd M.; Celina, Mathew; Assink, Roger A.; Clough, Roger L.; Gillen, Kenneth T.; Wheeler David R.

    1999-07-20

    The thermal oxidation of pentacontane (C{sub 50}H{sub 102}), and of the homopolymer polyisoprene, has been investigated using {sup 17}O NMR spectroscopy. By performing the oxidation using {sup 17}O labeled O{sub 2} gas, it is possible to easily identify degradation products, even at relatively low concentrations. It is demonstrated that details of the degradation mechanism can be obtained from analysis of the {sup 17}O NMR spectra as a function of total oxidation. Pentacontane reveals the widest variety of reaction products, and exhibits changes in the relative product distributions with increasing O{sub 2} consumption. At low levels of oxygen incorporation, peroxides are the major oxidation product, while at later stages of degradation these species are replaced by increasing concentrations of ketones, alcohols, carboxylic acids and esters. Analyzing the product distribution can help in identification of the different free-radical decomposition pathways of hydroperoxides, including recombination, proton abstraction and chain scission, as well as secondary reactions. The {sup 17}O NMR spectra of thermally oxidized polyisoprene reveal fewer degradation functionalities, but exhibit an increased complexity in the type of observed degradation species due to structural features such as unsaturation and methyl branching. Alcohols and ethers formed from hydrogen abstraction and free radical termination.

  19. Implementation of the NMR CHEmical Shift Covariance Analysis (CHESCA): A Chemical Biologist's Approach to Allostery.

    Science.gov (United States)

    Boulton, Stephen; Selvaratnam, Rajeevan; Ahmed, Rashik; Melacini, Giuseppe

    2018-01-01

    Mapping allosteric sites is emerging as one of the central challenges in physiology, pathology, and pharmacology. Nuclear Magnetic Resonance (NMR) spectroscopy is ideally suited to map allosteric sites, given its ability to sense at atomic resolution the dynamics underlying allostery. Here, we focus specifically on the NMR CHEmical Shift Covariance Analysis (CHESCA), in which allosteric systems are interrogated through a targeted library of perturbations (e.g., mutations and/or analogs of the allosteric effector ligand). The atomic resolution readout for the response to such perturbation library is provided by NMR chemical shifts. These are then subject to statistical correlation and covariance analyses resulting in clusters of allosterically coupled residues that exhibit concerted responses to the common set of perturbations. This chapter provides a description of how each step in the CHESCA is implemented, starting from the selection of the perturbation library and ending with an overview of different clustering options.

  20. Recommendations of the wwPDB NMR Validation Task Force

    Science.gov (United States)

    Montelione, Gaetano T.; Nilges, Michael; Bax, Ad; Güntert, Peter; Herrmann, Torsten; Richardson, Jane S.; Schwieters, Charles; Vranken, Wim F.; Vuister, Geerten W.; Wishart, David S.; Berman, Helen M.; Kleywegt, Gerard J.; Markley, John L.

    2013-01-01

    As methods for analysis of biomolecular structure and dynamics using nuclear magnetic resonance spectroscopy (NMR) continue to advance, the resulting 3D structures, chemical shifts, and other NMR data are broadly impacting biology, chemistry, and medicine. Structure model assessment is a critical area of NMR methods development, and is an essential component of the process of making these structures accessible and useful to the wider scientific community. For these reasons, the Worldwide Protein Data Bank (wwPDB) has convened an NMR Validation Task Force (NMR-VTF) to work with the wwPDB partners in developing metrics and policies for biomolecular NMR data harvesting, structure representation, and structure quality assessment. This paper summarizes the recommendations of the NMR-VTF, and lays the groundwork for future work in developing standards and metrics for biomolecular NMR structure quality assessment. PMID:24010715

  1. NMR study of structure of lanthanide complexes in solution

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1976-01-01

    The diagnostic value PMR studies of diamagnetic lanthanide complexes to define the nature of the species in the lanthanide-pyruvate system is discussed. The use of NMR spectra of both diamagnetic and paramagnetic lanthanide complexes to obtain detailed structural information is reviewed

  2. Monitoring chemical reactions by low-field benchtop NMR at 45 MHz: pros and cons.

    Science.gov (United States)

    Silva Elipe, Maria Victoria; Milburn, Robert R

    2016-06-01

    Monitoring chemical reactions is the key to controlling chemical processes where NMR can provide support. High-field NMR gives detailed structural information on chemical compounds and reactions; however, it is expensive and complex to operate. Conversely, low-field NMR instruments are simple and relatively inexpensive alternatives. While low-field NMR does not provide the detailed information as the high-field instruments as a result of their smaller chemical shift dispersion and the complex secondary coupling, it remains of practical value as a process analytical technology (PAT) tool and is complimentary to other established methods, such as ReactIR and Raman spectroscopy. We have tested a picoSpin-45 (currently under ThermoFisher Scientific) benchtop NMR instrument to monitor three types of reactions by 1D (1) H NMR: a Fischer esterification, a Suzuki cross-coupling, and the formation of an oxime. The Fischer esterification is a relatively simple reaction run at high concentration and served as proof of concept. The Suzuki coupling is an example of a more complex, commonly used reaction involving overlapping signals. Finally, the oxime formation involved a reaction in two phases that cannot be monitored by other PAT tools. Here, we discuss the pros and cons of monitoring these reactions at a low-field of 45 MHz by 1D (1) H NMR. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  3. The GNAT: A new tool for processing NMR data.

    Science.gov (United States)

    Castañar, Laura; Poggetto, Guilherme Dal; Colbourne, Adam A; Morris, Gareth A; Nilsson, Mathias

    2018-06-01

    The GNAT (General NMR Analysis Toolbox) is a free and open-source software package for processing, visualising, and analysing NMR data. It supersedes the popular DOSY Toolbox, which has a narrower focus on diffusion NMR. Data import of most common formats from the major NMR platforms is supported, as well as a GNAT generic format. Key basic processing of NMR data (e.g., Fourier transformation, baseline correction, and phasing) is catered for within the program, as well as more advanced techniques (e.g., reference deconvolution and pure shift FID reconstruction). Analysis tools include DOSY and SCORE for diffusion data, ROSY T 1 /T 2 estimation for relaxation data, and PARAFAC for multilinear analysis. The GNAT is written for the MATLAB® language and comes with a user-friendly graphical user interface. The standard version is intended to run with a MATLAB installation, but completely free-standing compiled versions for Windows, Mac, and Linux are also freely available. © 2018 The Authors Magnetic Resonance in Chemistry Published by John Wiley & Sons Ltd.

  4. Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy.

    Science.gov (United States)

    Konuma, Tsuyoshi; Harada, Erisa; Sugase, Kenji

    2015-12-01

    Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.

  5. Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Konuma, Tsuyoshi [Icahn School of Medicine at Mount Sinai, Department of Structural and Chemical Biology (United States); Harada, Erisa [Suntory Foundation for Life Sciences, Bioorganic Research Institute (Japan); Sugase, Kenji, E-mail: sugase@sunbor.or.jp, E-mail: sugase@moleng.kyoto-u.ac.jp [Kyoto University, Department of Molecular Engineering, Graduate School of Engineering (Japan)

    2015-12-15

    Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.

  6. Structural analysis of the carbohydrate chains of glycoproteins by 500-MHz 1H-NMR spectroscopy

    International Nuclear Information System (INIS)

    Mutsaers, J.H.G.M.

    1986-01-01

    This thesis deals with the structural analysis by 500-MHz 1 H-NMR spectroscopy of carbohydrate chains obtained from glycoproteins. In the chapters 1 to 6 the structural analysis of N-glycosidically linked carbohydrate chains is described. The chapters 7 to 10 describe the structural analysis of O-glycosidically linked carbohydrate chains. 381 refs.; 44 figs.; 24 tabs.; 7 schemes

  7. 1H-13C NMR-based profiling of biotechnological starch utilization

    DEFF Research Database (Denmark)

    Sundekilde, Ulrik K.; Meier, Sebastian

    2016-01-01

    Starch is used in food-and non-food applications as a renewable and degradable source of carbon and energy. Insight into the chemical detail of starch degradation remains challenging as the starch constituents amylose and amylopectin are homopolymers. We show that considerable molecular detail...... of starch fragmentation can be obtained from multivariate analysis of spectral features in optimized 1H-13C NMR spectroscopy of starch fragments to identify relevant features that distinguish processes in starch utilization. As a case study, we compare the profiles of starch fragments in commercial beer...... samples. Spectroscopic profiles of homooligomeric starch fragments can be excellent indicators of process conditions. In addition, differences in the structure and composition of starch fragments have predictive value for down-stream process output such as ethanol production from starch. Thus, high...

  8. Complex Mixture Analysis of Organic Compounds in Yogurt by NMR Spectroscopy

    Science.gov (United States)

    Lu, Yi; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru

    2016-01-01

    NMR measurements do not require separation and chemical modification of samples and therefore rapidly and directly provide non-targeted information on chemical components in complex mixtures. In this study, one-dimensional (1H, 13C, and 31P) and two-dimensional (1H-13C and 1H-31P) NMR spectroscopy were conducted to analyze yogurt without any pretreatment. 1H, 13C, and 31P NMR signals were assigned to 10 types of compounds. The signals of α/β-lactose and α/β-galactose were separately observed in the 1H NMR spectra. In addition, the signals from the acyl chains of milk fats were also successfully identified but overlapped with many other signals. Quantitative difference spectra were obtained by subtracting the diffusion ordered spectroscopy (DOSY) spectra from the quantitative 1H NMR spectra. This method allowed us to eliminate interference on the overlaps; therefore, the correct intensities of signals overlapped with those from the acyl chains of milk fat could be determined directly without separation. Moreover, the 1H-31P HMBC spectra revealed for the first time that N-acetyl-d-glucosamine-1-phosphate is contained in yogurt. PMID:27322339

  9. Which kind of aromatic structures are produced during biomass charring? New insights provided by modern solid-state NMR spectroscopy

    Science.gov (United States)

    Knicker, Heike; Paneque-Carmona, Marina; Velasco-Molina, Marta; de la Rosa, José Maria; León-Ovelar, Laura Regina; Fernandez-Boy, Elena

    2017-04-01

    Intense research on biochar and charcoal of the last years has revealed that depending on the production conditions, the chemical and physical characteristics of their aromatic network can greatly vary. Since such variations are determining the behavior and stability of charred material in soils, a better understanding of the structural changes occurring during their heating and the impact of those changes on their function is needed. One method to characterize pyrogenic organic matter (PyOM) represents solid-state 13C NMR spectroscopy applying the cross polarization (CP) magic angle spinning technique (MAS). A drawback of this technique is that the quantification of NMR spectra of samples with highly condensed and proton-depleted structures is assumed to be bias. Typical samples with such attributes are charcoals produced at temperatures above 700°C under pyrolytic conditions. Commonly their high condensation degree leads to graphenic structures that are not only reducing the CP efficiency but create also a conductive lattice which acts as a shield and prevents the entering of the excitation pulse into the sample during the NMR experiments. Since the latter can damage the NMR probe and in the most cases the obtained NMR spectra show only one broad signal assignable to aromatic C, this technique is rarely applied for characterizing high temperature chars or soot. As a consequence, a more detailed knowledge of the nature of the aromatic ring systems is still missing. The latter is also true for the aromatic domains of PyOM produced at lower temperatures, since older NMR instruments operating at low magnetic fields deliver solid-state 13C NMR spectra with low resolution which turns a more detailed analysis of the aromatic chemical shift region into a challenging task. In order to overcome this disadvantages, modern NMR spectroscopy offers not only instruments with greatly improved resolution but also special pulse sequences for NMR experiments which allow a more

  10. NMR in the SPINE Structural Proteomics project.

    Science.gov (United States)

    Ab, E; Atkinson, A R; Banci, L; Bertini, I; Ciofi-Baffoni, S; Brunner, K; Diercks, T; Dötsch, V; Engelke, F; Folkers, G E; Griesinger, C; Gronwald, W; Günther, U; Habeck, M; de Jong, R N; Kalbitzer, H R; Kieffer, B; Leeflang, B R; Loss, S; Luchinat, C; Marquardsen, T; Moskau, D; Neidig, K P; Nilges, M; Piccioli, M; Pierattelli, R; Rieping, W; Schippmann, T; Schwalbe, H; Travé, G; Trenner, J; Wöhnert, J; Zweckstetter, M; Kaptein, R

    2006-10-01

    This paper describes the developments, role and contributions of the NMR spectroscopy groups in the Structural Proteomics In Europe (SPINE) consortium. Focusing on the development of high-throughput (HTP) pipelines for NMR structure determinations of proteins, all aspects from sample preparation, data acquisition, data processing, data analysis to structure determination have been improved with respect to sensitivity, automation, speed, robustness and validation. Specific highlights are protonless (13)C-direct detection methods and inferential structure determinations (ISD). In addition to technological improvements, these methods have been applied to deliver over 60 NMR structures of proteins, among which are five that failed to crystallize. The inclusion of NMR spectroscopy in structural proteomics pipelines improves the success rate for protein structure determinations.

  11. Synthesis and NMR Elucidation of Novel Pentacycloundecane ...

    African Journals Online (AJOL)

    Herein we report the synthesis and NMR elucidation of five novel pentacycloundecane (PCU)-derived short peptides as potential HIV protease inhibitors. 1H and 13C spectral analysis show major overlapping of methine resonance of the PCU 'cage' thereby making it extremely difficult to assign the NMR signals. Attachment ...

  12. A simple protocol for NMR analysis of the enantiomeric purity of chiral hydroxylamines.

    Science.gov (United States)

    Tickell, David A; Mahon, Mary F; Bull, Steven D; James, Tony D

    2013-02-15

    A practically simple three-component chiral derivatization protocol for determining the enantiopurity of chiral hydroxylamines by (1)H NMR spectroscopic analysis is described, involving their treatment with 2-formylphenylboronic acid and enantiopure BINOL to afford a mixture of diastereomeric nitrono-boronate esters whose ratio is an accurate reflection of the enantiopurity of the parent hydroxylamine.

  13. Muscular pathology: echographic and NMR imaging aspects

    International Nuclear Information System (INIS)

    Pascal-Suisse, P.; Beaurain, P.; Mougniot, C.

    1995-01-01

    A comparison of echographic techniques and NMR imaging has been done for the diagnosis of muscular trauma and tumor pathologies. In traumatic pathology, the echographic analysis allows to determine the complete assessment of recent muscular injuries. NMR imaging can be used in granuloma or fibrous callosity appreciation and for the analysis of deep injury (muscles and muscles-tendon junctions) and of muscular aponeurosis. Echography must be used together with color coding Doppler technique in the diagnosis of tumor pathology and for the study of slow fluxes. The recently available energy Doppler technique seems to be powerful in the study of vascularization of small expansive formations, but their extension to adjacent bone or tissue can only be appreciated using NMR imaging. (J.S.)

  14. Fractional order analysis of Sephadex gel structures: NMR measurements reflecting anomalous diffusion

    Science.gov (United States)

    Magin, Richard L.; Akpa, Belinda S.; Neuberger, Thomas; Webb, Andrew G.

    2011-12-01

    We report the appearance of anomalous water diffusion in hydrophilic Sephadex gels observed using pulse field gradient (PFG) nuclear magnetic resonance (NMR). The NMR diffusion data was collected using a Varian 14.1 Tesla imaging system with a home-built RF saddle coil. A fractional order analysis of the data was used to characterize heterogeneity in the gels for the dynamics of water diffusion in this restricted environment. Several recent studies of anomalous diffusion have used the stretched exponential function to model the decay of the NMR signal, i.e., exp[-( bD) α], where D is the apparent diffusion constant, b is determined the experimental conditions (gradient pulse separation, durations and strength), and α is a measure of structural complexity. In this work, we consider a different case where the spatial Laplacian in the Bloch-Torrey equation is generalized to a fractional order model of diffusivity via a complexity parameter, β, a space constant, μ, and a diffusion coefficient, D. This treatment reverts to the classical result for the integer order case. The fractional order decay model was fit to the diffusion-weighted signal attenuation for a range of b-values (0 < b < 4000 s mm -2). Throughout this range of b values, the parameters β, μ and D, were found to correlate with the porosity and tortuosity of the gel structure.

  15. Chemometric analysis of ESIMS and NMR data from Piper species

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Lydia F.; Freitas, Giovana C.; Yoshida, Nidia C.; Silva, Renata A.; Gaia, Anderson M.; Silva, Adalberto M.; Kato, Massuo J.; Emerenciano, Vicente de P., E-mail: majokato@iq.usp.br [Departamento de Quimica Fundamental, Instituto de Quimica, Universidade de Sao Paulo, SP (Brazil); Scotti, Marcus T. [Centro de Ciencias Aplicadas e Educacao (Campus IV), Universidade Federal da Paraiba, Rio Tinto, PB (Brazil); Guimaraes, Elsie F. [Instituto de Pesquisas Jardim Botanico do Rio de Janeiro, RJ (Brazil); Floh, Eny I.S. [Departamento de Botanica, Instituto de Biociencias, Sao Paulo, SP (Brazil); Colombo, Carlos A.; Siqueira, Walter J. [Centro de Genetica Biologia Molecular e Fitoquimica, Instituto Agronomico de Campinas, SP (Brazil)

    2011-09-15

    The metabolomic profiling based on the application of multivariate analysis (principal component analysis, PCA) of positive mode electrospray ionization mass spectrometric (ESIMS) and {sup 1}H nuclear magnetic resonance (NMR) data of crude extracts highlighted some species characterized by lignans (P. solmsianum, P. truncatum and P. cernuum), neolignans (P. regnellii) and chromenes (P. gaudichaudianum). A specific analysis focusing on species having pendant and globular inflorescences (P. caldense, P. carniconnectivum, P. bowiei and P. permucronatum) or amides-producing species indicated higher potential of the methodology in determining similarities and establishing priorities for further phytochemical investigation. Such intraspecific analysis applied to analyzed seedling leaves of the P. solmsianum, P. regnellii and P. gaudichaudianum species revealed the production of dillapiole and apiole instead of lignans, neolignans or prenylated benzoic acid, produced by the adult leaves, respectively. In case of amides-producing species, a similar profile was observed regardless the developmental stage. (author)

  16. Chemometric analysis of ESIMS and NMR data from Piper species

    International Nuclear Information System (INIS)

    Yamaguchi, Lydia F.; Freitas, Giovana C.; Yoshida, Nidia C.; Silva, Renata A.; Gaia, Anderson M.; Silva, Adalberto M.; Kato, Massuo J.; Emerenciano, Vicente de P.; Scotti, Marcus T.; Guimaraes, Elsie F.; Floh, Eny I.S.; Colombo, Carlos A.; Siqueira, Walter J.

    2011-01-01

    The metabolomic profiling based on the application of multivariate analysis (principal component analysis, PCA) of positive mode electrospray ionization mass spectrometric (ESIMS) and 1 H nuclear magnetic resonance (NMR) data of crude extracts highlighted some species characterized by lignans (P. solmsianum, P. truncatum and P. cernuum), neolignans (P. regnellii) and chromenes (P. gaudichaudianum). A specific analysis focusing on species having pendant and globular inflorescences (P. caldense, P. carniconnectivum, P. bowiei and P. permucronatum) or amides-producing species indicated higher potential of the methodology in determining similarities and establishing priorities for further phytochemical investigation. Such intraspecific analysis applied to analyzed seedling leaves of the P. solmsianum, P. regnellii and P. gaudichaudianum species revealed the production of dillapiole and apiole instead of lignans, neolignans or prenylated benzoic acid, produced by the adult leaves, respectively. In case of amides-producing species, a similar profile was observed regardless the developmental stage. (author)

  17. Autonomous driving in NMR.

    Science.gov (United States)

    Perez, Manuel

    2017-01-01

    The automatic analysis of NMR data has been a much-desired endeavour for the last six decades, as it is the case with any other analytical technique. This need for automation has only grown as advances in hardware; pulse sequences and automation have opened new research areas to NMR and increased the throughput of data. Full automatic analysis is a worthy, albeit hard, challenge, but in a world of artificial intelligence, instant communication and big data, it seems that this particular fight is happening with only one technique at a time (let this be NMR, MS, IR, UV or any other), when the reality of most laboratories is that there are several types of analytical instrumentation present. Data aggregation, verification and elucidation by using complementary techniques (e.g. MS and NMR) is a desirable outcome to pursue, although a time-consuming one if performed manually; hence, the use of automation to perform the heavy lifting for users is required to make the approach attractive for scientists. Many of the decisions and workflows that could be implemented under automation will depend on the two-way communication with databases that understand analytical data, because it is desirable not only to query these databases but also to grow them in as much of an automatic manner as possible. How these databases are designed, set up and the data inside classified will determine what workflows can be implemented. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Proton NMR studies of functionalized nanoparticles in aqueous environments

    Science.gov (United States)

    Tataurova, Yulia Nikolaevna

    Nanoscience is an emerging field that can provide potential routes towards addressing critical issues such as clean and sustainable energy, environmental remediation and human health. Specifically, porous nanomaterials, such as zeolites and mesoporous silica, are found in a wide range of applications including catalysis, drug delivery, imaging, environmental protection, and sensing. The characterization of the physical and chemical properties of nanocrystalline materials is essential to the realization of these innovative applications. The great advantage of porous nanocrystals is their increased external surface area that can control their biological, chemical and catalytic activities. Specific functional groups synthesized on the surface of nanoparticles are able to absorb heavy metals from the solution or target disease cells, such as cancer cells. In these studies, three main issues related to functionalized nanomaterials will be addressed through the application of nuclear magnetic resonance (NMR) techniques including: 1) surface composition and structure of functionalized nanocrystalline particles; 2) chemical properties of the guest molecules on the surface of nanomaterials, and 3) adsorption and reactivity of surface bound functional groups. Nuclear magnetic resonance (NMR) is one of the major spectroscopic techniques available for the characterization of molecular structure and conformational dynamics with atomic level detail. This thesis deals with the application of 1H solution state NMR to porous nanomaterial in an aqueous environment. Understanding the aqueous phase behavior of functionalized nanomaterials is a key factor in the design and development of safe nanomaterials because their interactions with living systems are always mediated through the aqueous phase. This is often due to a lack of fundamental knowledge in interfacial chemical and physical phenomena that occur on the surface of nanoparticles. The use of solution NMR spectroscopy results

  19. NMR imaging: A 'chemical' microscope for coal analysis

    International Nuclear Information System (INIS)

    French, D.C.; Dieckman, S.L.; Gopalsami, N.; Botto, R.E.

    1991-01-01

    This paper presents a new three-dimensional (3-D) nuclear magnetic resonance (NMR) imaging technique for spatially mapping proton distributions in whole coals and solvent-swollen coal samples. The technique is based on a 3-D back-projection protocol for data acquisition, and a reconstruction technique based on 3-D Radon transform inversion. In principle, the 3-D methodology provides higher spatial resolution of solid materials than is possible with conventional slice-selection protocols. The applicability of 3-D NMR imaging has been demonstrated by mapping the maceral phases in Utah Blind Canyon (APCS number-sign 6) coal and the distribution of mobile phases in Utah coal swollen with deuterated and protic pyridine. 7 refs., 5 figs

  20. Two-dimensional NMR spectroscopy. Applications for chemists and biochemists

    International Nuclear Information System (INIS)

    Croasmun, W.R.; Carlson, R.M.K.

    1987-01-01

    Two-dimensional nuclear magnetic resonance spectroscopy (2-D NMR) has become a very powerful class of experiments (in the hands of an adept scientist) with broad adaptability to new situations. It is the product of a happy marriage between modern pulse FT-NMR technology, with its large memory and high-speed computers, and the physicists and chemists who love to manipulate spin systems. Basic 2-D experiments are now a standard capability of modern NMR spectrometers, and this timely book intends to make 2-D NMR users of those who are familiar with normal 1-D NMR. The 2-D NMR goal is correlation of the lines of the observed NMR spectrum with other properties of the system. This book deals with applications to high-resolution spectrum analysis, utilizing either coupling between the NMR-active nuclei or chemical exchange to perform the correlation. The coupling can be scalar (through bonds) or direct through space (within 5 A). The coupling may be homonuclear (between like nuclei) or heteronuclear

  1. Rapid NMR method for the quantification of organic compounds in thin stillage.

    Science.gov (United States)

    Ratanapariyanuch, Kornsulee; Shen, Jianheng; Jia, Yunhua; Tyler, Robert T; Shim, Youn Young; Reaney, Martin J T

    2011-10-12

    Thin stillage contains organic and inorganic compounds, some of which may be valuable fermentation coproducts. This study describes a thorough analysis of the major solutes present in thin stillage as revealed by NMR and HPLC. The concentration of charged and neutral organic compounds in thin stillage was determined by excitation sculpting NMR methods (double pulse field gradient spin echo). Compounds identified by NMR included isopropanol, ethanol, lactic acid, 1,3-propanediol, acetic acid, succinic acid, glycerophosphorylcholine, betaine, glycerol, and 2-phenylethanol. The concentrations of lactic and acetic acid determined with NMR were comparable to those determined using HPLC. HPLC and NMR were complementary, as more compounds were identified using both methods. NMR analysis revealed that stillage contained the nitrogenous organic compounds betaine and glycerophosphorylcholine, which contributed as much as 24% of the nitrogen present in the stillage. These compounds were not observed by HPLC analysis.

  2. A chiral aluminum solvating agent (CASA) for 1H NMR chiral analysis of alcohols at low temperature.

    Science.gov (United States)

    Seo, Min-Seob; Jang, Sumin; Kim, Hyunwoo

    2018-03-16

    A chiral aluminum solvating agent (CASA) was demonstrated to be a general and efficient reagent for 1H NMR chiral analysis of alcohols. The sodium salt of the CASA (CASA-Na) showed a complete baseline peak separation of the hydroxyl group for various chiral alcohols including primary, secondary, and tertiary alcohols with alkyl and aryl substituents in CD3CN. Due to the weak intermolecular interaction, 1H NMR measurement at low temperature (-40 to 10 °C) was required.

  3. Conformational analysis of capsaicin using 13C, 15N MAS NMR, GIAO DFT and GA calculations

    Science.gov (United States)

    Siudem, Paweł; Paradowska, Katarzyna; Bukowicki, Jarosław

    2017-10-01

    Capsaicin produced by plants from genus Capsicum exerts multiple pharmacological effects and has found applications in food and pharmaceutical industry. The alkaloid was studied by a combined approach: solid-state NMR, GA conformational search and GIAO DFT methods. The 13C CPMAS NMR spectra were recorded using variable contact time and dipolar dephasing experiments. The results of cross-polarization (CP) kinetics, such as TCP values and long T1ρH (100-200 ms), indicated that the capsaicin molecule is fairly mobile, especially at the end of the aliphatic chain. The15N MAS NMR spectrum showed one narrow signal at -255 ppm. Genetic algorithm (GA) search with multi modal optimization was used to find low-energy conformations of capsaicin. Theoretical GIAO DFT calculations were performed using different basis sets to characterize five selected conformations. 13C CPMAS NMR was used as a validation method and the experimental chemical shifts were compared with those calculated for selected stable conformers. Conformational analysis suggests that the side chain can be bent or extended. A comparison of the experimental and the calculated chemical shifts indicates that solid capsaicin does not have the same structure as those established by PWXRD.

  4. Analysis of porous media and objects of cultural heritage by mobile NMR

    International Nuclear Information System (INIS)

    Haber, Agnes

    2012-01-01

    Low-field NMR techniques are used to study porous system, from simple to complex structures, and objects of cultural heritage. It is shown that NMR relaxometry can be used to study the fluid dynamics inside a porous system. A simple theoretical model for multi-site relaxation exchange NMR is used to extract exchange kinetic parameters when applied on a model porous systems. It provides a first step towards the study of more complex systems, where continuous relaxation distributions are present, such as soil systems or building materials. Moisture migration is observed in the soil systems with the help of 1D and 2D NMR relaxometry methods. In case of the concrete samples, the difference in composition makes a significant difference in the ability of water uptake. The single-sided NMR sensor proves to be a useful tool for on-site measurements. This is very important also in the case of the cultural heritage objects, as most of the objects can not be moved out of their environment. Mobile NMR turns out to be a simple but reliable and powerful tool to investigate moisture distributions and pore structures in porous media as well as the conservation state and history of objects of cultural heritage.

  5. Characterization of nylon 6/poly(propylene oxide) polymeric mixture by combined NMR techniques

    International Nuclear Information System (INIS)

    Costa, Dilma Alves; Oliveira, Clara Marize F.; Tavares, Maria Ines B.

    1995-01-01

    Polymeric mixtures aim to improve physical or chemical properties of materials. This mixtures can be compatible or not. The compatibility between polymers determine changes of properties. This work has presented a detailed study where nylon 6 and poly(propylene oxide) mixture was analysed by 13 C NMR in the solid state, and NMR spectra were shown and explained. The molecular mobility as well as the compatibility have been observed and discussed

  6. Image restoration from non-uniform magnetic field influence for direct Fourier NMR imaging

    International Nuclear Information System (INIS)

    Sekihara, K.; Kuroda, M.; Kohno, H.

    1984-01-01

    A new technique is proposed for NMR image restoration from the influence of main magnetic field non-uniformities. This technique is applicable to direct Fourier NMR imaging. The mathematical basis and details of this technique are fully described. Modification to include image restoration from non-linear field gradient influence is also presented. Computer simulation demonstrates the effectiveness of this technique for both Fourier zeugmatography and spin-warp imaging. (author)

  7. Lateral interactions in the photoreceptor membrane: a NMR study

    International Nuclear Information System (INIS)

    Mollevanger, L.C.P.J.

    1987-01-01

    The photoreceptor membrane has an exceptionally high content of polyunsaturated fatty acyl chains combined with a high amount of phosphatidyl ethanolamine. It is situated in a cell organelle, the rod outer segment, with a high biological activity in which controlable trans-membrane currents of different ions play an important role. These characteristics make it a very interesting biological membrane to search for the existence of non-bilayer structures. Therefore in this thesis a detailed study of the polymorphic phase behaviour of the rod outer segment photoreceptor lipids was undertaken, concerning modulation of the polymorphic phase behaviour of photoreceptor membrane lipids by divalent cations and temperature, polymorphism of the individual phospholipid classes phosphatidylethanolamine and phosphatidylserine and effects of cholesterol, bilayer stabilization by (rhod)opsin. Morphologically intact rod outer segment possesses a large magnetic anisotropy. This property is used to obtain 31 P-NMR of oriented photoreceptor membranes which allows spectral analysis and identification of individual phospholipid classes, and allows to study lateral lipid diffusion in intact disk membranes. The power of high resolution solid state 13 C-NMR to study the conformation of the chromophore in rhodopsin is demonstrated. (Auth.)

  8. Unified integration intervals for the structural characterization of oil, coal or fractions there of by 1h NMR and 13c NMR

    International Nuclear Information System (INIS)

    Avella, Eliseo; Fierro, Ricardo

    2010-01-01

    Based on an analysis of publications reported between 1972 and 2006, it became clear that there are inaccuracies in the limits of the ranges of integration that the authors assigned to signals in nuclear magnetic resonance (NMR) to the structural characterization of petroleum, coals and their derived fractions, from their hydrogen (1H NMR) and carbon (13C NMR) spectra. Consequently, consolidated limits were determined for the integration of 1H NMR spectra and 13C NMR of these samples using a statistical treatment applied to the limits of integration intervals already published. With these unified limits, correlation NMR charts were developed that are useful for the allocation of the integral at such intervals, and at smaller intervals defined in terms of the intersection between different assignments. Also raised equations needed to establish the integral attributable to specific fragments in an attempt to make a more accurate structural characterization from NMR spectra of oil, coal or fractions derived.

  9. Fully automated system for pulsed NMR measurements

    International Nuclear Information System (INIS)

    Cantor, D.M.

    1977-01-01

    A system is described which places many of the complex, tedious operations for pulsed NMR experiments under computer control. It automatically optimizes the experiment parameters of pulse length and phase, and precision, accuracy, and measurement speed are improved. The hardware interface between the computer and the NMR instrument is described. Design features, justification of the choices made between alternative design strategies, and details of the implementation of design goals are presented. Software features common to all the available experiments are discussed. Optimization of pulse lengths and phases is performed via a sequential search technique called Uniplex. Measurements of the spin-lattice and spin-spin relaxation times and of diffusion constants are automatic. Options for expansion of the system are explored along with some of the limitations of the system

  10. Iterative algorithm of discrete Fourier transform for processing randomly sampled NMR data sets

    International Nuclear Information System (INIS)

    Stanek, Jan; Kozminski, Wiktor

    2010-01-01

    Spectra obtained by application of multidimensional Fourier Transformation (MFT) to sparsely sampled nD NMR signals are usually corrupted due to missing data. In the present paper this phenomenon is investigated on simulations and experiments. An effective iterative algorithm for artifact suppression for sparse on-grid NMR data sets is discussed in detail. It includes automated peak recognition based on statistical methods. The results enable one to study NMR spectra of high dynamic range of peak intensities preserving benefits of random sampling, namely the superior resolution in indirectly measured dimensions. Experimental examples include 3D 15 N- and 13 C-edited NOESY-HSQC spectra of human ubiquitin.

  11. NMR of unfolded proteins

    Indian Academy of Sciences (India)

    Unknown

    2005-01-03

    Jan 3, 2005 ... covering all the systems, so far discovered.5,7,8,12. With the increasing ... Structural investigations on proteins by NMR are, currently ... rapid analysis of unfolded proteins. ...... and hence help in design of drugs against them.

  12. 1H-NMR/13C-NMR studies of branched structures in PVC obtained at atmospheric pressure

    International Nuclear Information System (INIS)

    Braun, D.; Holzer, G.; Hjertberg, T.

    1981-01-01

    The 1 H-NMR-spectra of raw poly (vinyl cloride) obtained at atmospheric pressure (U-PVC) have revealed the presence of high concentrations of branches. The content of labile chlorine was determined by reaction with phenole in order to estimate the branch points with tertiary chlorine. The branch length of reductively dehalogenated U-PVC by 13 C-NMR analysis have provided evidence for both short chain branches including chloromethyl groups and 2.4-dichloro-n-butyl groups and long chain branching. For a number of U-polymers the total amount of branching ranges from 7.5 to 13.5/1000 C. The 13 C-NMR measurements point to a ratio of methyl/butyl branches of 1:1 and short chains/long chains of 6:1. (orig.)

  13. Experimental and NMR theoretical methodology applied to geometric analysis of the bioactive clerodane trans-dehydrocrotonin

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Breno Almeida; Firme, Caio Lima, E-mail: firme.caio@gmail.com, E-mail: caiofirme@quimica.ufrn.br [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Instituto de Quimica; Maciel, Maria Aparecida Medeiros [Universidade Potiguar, Natal, RN (Brazil). Programa de Pos-graduacao em Biotecnologia; Kaiser, Carlos R. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Quimica; Schilling, Eduardo; Bortoluzzi, Adailton J. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Departamento de Quimica

    2014-04-15

    trans-Dehydrocrotonin (t-DCTN) a bioactive 19-nor-diterpenoid clerodane type isolated from Croton cajucara Benth, is one of the most investigated clerodane in the current literature. In this work, a new approach joining X-ray diffraction data, nuclear magnetic resonance (NMR) data and theoretical calculations was applied to the thorough characterization of t-DCTN. For that, the geometry of t-DCTN was reevaluated by X-ray diffraction as well as {sup 1}H and {sup 13}C NMR data, whose geometrical parameters where compared to those obtained from B3LYP/6-311G++(d,p) level of theory. From the evaluation of both calculated and experimental values of {sup 1}H and {sup 13}C NMR chemical shifts and spin-spin coupling constants, it was found very good correlations between theoretical and experimental magnetic properties of t-DCTN. Additionally, the delocalization indexes between hydrogen atoms correlated accurately with theoretical and experimental spin-spin coupling constants. An additional topological analysis from quantum theory of atoms in molecules (QTAIM) showed intramolecular interactions for t-DCTN. (author)

  14. Experimental and NMR theoretical methodology applied to geometric analysis of the bioactive clerodane trans-dehydrocrotonin

    International Nuclear Information System (INIS)

    Soares, Breno Almeida; Firme, Caio Lima; Maciel, Maria Aparecida Medeiros; Kaiser, Carlos R.; Schilling, Eduardo; Bortoluzzi, Adailton J.

    2014-01-01

    trans-Dehydrocrotonin (t-DCTN) a bioactive 19-nor-diterpenoid clerodane type isolated from Croton cajucara Benth, is one of the most investigated clerodane in the current literature. In this work, a new approach joining X-ray diffraction data, nuclear magnetic resonance (NMR) data and theoretical calculations was applied to the thorough characterization of t-DCTN. For that, the geometry of t-DCTN was reevaluated by X-ray diffraction as well as 1 H and 13 C NMR data, whose geometrical parameters where compared to those obtained from B3LYP/6-311G++(d,p) level of theory. From the evaluation of both calculated and experimental values of 1 H and 13 C NMR chemical shifts and spin-spin coupling constants, it was found very good correlations between theoretical and experimental magnetic properties of t-DCTN. Additionally, the delocalization indexes between hydrogen atoms correlated accurately with theoretical and experimental spin-spin coupling constants. An additional topological analysis from quantum theory of atoms in molecules (QTAIM) showed intramolecular interactions for t-DCTN. (author)

  15. 1H NMR and Multivariate Analysis for Geographic Characterization of Commercial Extra Virgin Olive Oil: A Possible Correlation with Climate Data

    Directory of Open Access Journals (Sweden)

    Domenico Rongai

    2017-11-01

    Full Text Available 1H Nuclear Magnetic Resonance (NMR spectroscopy coupled with multivariate analysis has been applied in order to investigate metabolomic profiles of more than 200 extravirgin olive oils (EVOOs collected in a period of over four years (2009–2012 from different geographic areas. In particular, commercially blended EVOO samples originating from different Italian regions (Tuscany, Sicily and Apulia, as well as European (Spain and Portugal and non-European (Tunisia, Turkey, Chile and Australia countries. Multivariate statistical analysis (Principal Component Analisys (PCA and Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA applied on the NMR data revealed the existence of marked differences between Italian (in particular from Tuscany, Sicily and Apulia regions and foreign (in particular Tunisian EVOO samples. A possible correlation with available climate data has been also investigated. These results aim to develop a powerful NMR-based tool able to protect Italian olive oil productions.

  16. NMR methods for the investigation of structure and transport

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, Edme H. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Mechanische Verfahrenstechnik und Mechanik

    2012-07-01

    Extensive derivations of required fundamental relations for readers with engineering background New applications based on MRI, PGSE-NMR, and low-field NMR New concepts in quantitative data evaluation and image analysis Methods of nuclear magnetic resonance (NMR) are increasingly applied in engineering sciences. The book summarizes research in the field of chemical and process engineering performed at the Karlsruhe Institute of Technology (KIT). Fundamentals of the methods are exposed for readers with an engineering background. Applications cover the fields of mechanical process engineering (filtration, solid-liquid separation, powder mixing, rheometry), chemical process engineering (trickle-bed reactor, ceramic sponges), bioprocess engineering (biofilm growth), and food process engineering (microwave heating, emulsions). Magnetic Resonance Imaging (MRI) as well as low-field NMR are covered with notes on hardware. Emphasis is placed on quantitative data analysis and image processing. (orig.)

  17. NMR methods for the investigation of structure and transport

    International Nuclear Information System (INIS)

    Hardy, Edme H.

    2012-01-01

    Extensive derivations of required fundamental relations for readers with engineering background New applications based on MRI, PGSE-NMR, and low-field NMR New concepts in quantitative data evaluation and image analysis Methods of nuclear magnetic resonance (NMR) are increasingly applied in engineering sciences. The book summarizes research in the field of chemical and process engineering performed at the Karlsruhe Institute of Technology (KIT). Fundamentals of the methods are exposed for readers with an engineering background. Applications cover the fields of mechanical process engineering (filtration, solid-liquid separation, powder mixing, rheometry), chemical process engineering (trickle-bed reactor, ceramic sponges), bioprocess engineering (biofilm growth), and food process engineering (microwave heating, emulsions). Magnetic Resonance Imaging (MRI) as well as low-field NMR are covered with notes on hardware. Emphasis is placed on quantitative data analysis and image processing. (orig.)

  18. Guiding automated NMR structure determination using a global optimization metric, the NMR DP score

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuanpeng Janet, E-mail: yphuang@cabm.rutgers.edu; Mao, Binchen; Xu, Fei; Montelione, Gaetano T., E-mail: gtm@rutgers.edu [Rutgers, The State University of New Jersey, Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium (United States)

    2015-08-15

    ASDP is an automated NMR NOE assignment program. It uses a distinct bottom-up topology-constrained network anchoring approach for NOE interpretation, with 2D, 3D and/or 4D NOESY peak lists and resonance assignments as input, and generates unambiguous NOE constraints for iterative structure calculations. ASDP is designed to function interactively with various structure determination programs that use distance restraints to generate molecular models. In the CASD–NMR project, ASDP was tested and further developed using blinded NMR data, including resonance assignments, either raw or manually-curated (refined) NOESY peak list data, and in some cases {sup 15}N–{sup 1}H residual dipolar coupling data. In these blinded tests, in which the reference structure was not available until after structures were generated, the fully-automated ASDP program performed very well on all targets using both the raw and refined NOESY peak list data. Improvements of ASDP relative to its predecessor program for automated NOESY peak assignments, AutoStructure, were driven by challenges provided by these CASD–NMR data. These algorithmic improvements include (1) using a global metric of structural accuracy, the discriminating power score, for guiding model selection during the iterative NOE interpretation process, and (2) identifying incorrect NOESY cross peak assignments caused by errors in the NMR resonance assignment list. These improvements provide a more robust automated NOESY analysis program, ASDP, with the unique capability of being utilized with alternative structure generation and refinement programs including CYANA, CNS, and/or Rosetta.

  19. Crystallinity and compositional changes in carbonated apatites: Evidence from 31P solid-state NMR, Raman, and AFM analysis

    Science.gov (United States)

    McElderry, John-David P.; Zhu, Peizhi; Mroue, Kamal H.; Xu, Jiadi; Pavan, Barbara; Fang, Ming; Zhao, Guisheng; McNerny, Erin; Kohn, David H.; Franceschi, Renny T.; Holl, Mark M. Banaszak; Tecklenburg, Mary M. J.; Ramamoorthy, Ayyalusamy; Morris, Michael D.

    2013-10-01

    Solid-state (magic-angle spinning) NMR spectroscopy is a useful tool for obtaining structural information on bone organic and mineral components and synthetic model minerals at the atomic-level. Raman and 31P NMR spectral parameters were investigated in a series of synthetic B-type carbonated apatites (CAps). Inverse 31P NMR linewidth and inverse Raman PO43-ν1 bandwidth were both correlated with powder XRD c-axis crystallinity over the 0.3-10.3 wt% CO32- range investigated. Comparison with bone powder crystallinities showed agreement with values predicted by NMR and Raman calibration curves. Carbonate content was divided into two domains by the 31P NMR chemical shift frequency and the Raman phosphate ν1 band position. These parameters remain stable except for an abrupt transition at 6.5 wt% carbonate, a composition which corresponds to an average of one carbonate per unit cell. This near-binary distribution of spectroscopic properties was also found in AFM-measured particle sizes and Ca/P molar ratios by elemental analysis. We propose that this transition differentiates between two charge-balancing ion-loss mechanisms as measured by Ca/P ratios. These results define a criterion for spectroscopic characterization of B-type carbonate substitution in apatitic minerals.

  20. Characterization of wet aggregate stability of soils by ¹H-NMR relaxometry.

    Science.gov (United States)

    Buchmann, C; Meyer, M; Schaumann, G E

    2015-09-01

    For the assessment of soil structural stability against hydraulic stress, wet sieving or constant head permeability tests are typically used but rather limited in their intrinsic information value. The multiple applications of several tests is the only possibility to assess important processes and mechanisms during soil aggregate breakdown, e.g. the influences of soil fragment release or differential swelling on the porous systems of soils or soil aggregate columns. Consequently, the development of new techniques for a faster and more detailed wet aggregate stability assessment is required. (1)H nuclear magnetic resonance relaxometry ((1)H-NMR relaxometry) might provide these requirements because it has already been successfully applied on soils. We evaluated the potential of (1)H-NMR relaxometry for the assessment of wet aggregate stability of soils, with more detailed information on occurring mechanisms at the same time. Therefore, we conducted single wet sieving and constant head permeability tests on untreated and 1% polyacrylic acid-treated soil aggregates of different textures and organic matter contents, subsequently measured by (1)H-NMR relaxometry after percolation. The stability of the soil aggregates were mainly depending on their organic matter contents and the type of aggregate stabilization, whereby additional effects of clay swelling on the measured wet aggregate stability were identified by the transverse relaxation time (T2) distributions. Regression analyses showed that only the percentage of water stable aggregates could be determined accurately from percolated soil aggregate columns by (1)H-NMR relaxometry measurements. (1)H-NMR relaxometry seems a promising technique for wet aggregate stability measurements but should be further developed for nonpercolated aggregate columns and real soil samples. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Conformational Change in the Mechanism of Inclusion of Ketoprofen in β-Cyclodextrin: NMR Spectroscopy, Ab Initio Calculations, Molecular Dynamics Simulations, and Photoreactivity.

    Science.gov (United States)

    Guzzo, T; Mandaliti, W; Nepravishta, R; Aramini, A; Bodo, E; Daidone, I; Allegretti, M; Topai, A; Paci, M

    2016-10-11

    Inclusion of drugs in cyclodextrins (CDs) is a recognized tool for modifying several properties such as solubility, stability, bioavailability, and so on. The photoreactive behavior of the β-CD/ketoprofen (KP) complex upon UV exposure showed a significant increase in photodecarboxylation, whereas the secondary degradation products by hydroxylation of the benzophenone moiety were inhibited. The results may account for an improvement of KP photophysical properties upon inclusion, thus better fostering its topical use. To correlate the structural details of the inclusion with these results, an NMR spectroscopic study of KP upon inclusion in β-CD was performed. Effects of the magnetically anisotropic centers of KP, changing their orientations upon inclusion and giving chemical shift variations, were specifically correlated with the results of the molecular dynamic simulations and ab initio calculations. In the large variety of papers focusing on the structural analysis of β-CD complexes, this work represents one of the few examples in which a detailed analysis of these simultaneous upfield-downfield NMR shifts of the same aromatic molecule upon inclusion is reported. Interestingly, the results demonstrate that the observed upfield and downfield shifts upon inclusion are not related to any direct magnetic role of β-CD. The conformational change of KP upon the inclusion process consists of a slight reduction in the angle between the two phenyl rings and in a remarkable reduction in the mobility of the carboxyl group, the latter being one of the main contributions to the NMR resonance shifts. These structural details help in understanding the features of the inclusion complex and, eventually, the driving force for its formation.

  2. NMR Phase Noise in Bitter Magnets

    Science.gov (United States)

    Sigmund, E. E.; Calder, E. S.; Thomas, G. W.; Mitrović, V. F.; Bachman, H. N.; Halperin, W. P.; Kuhns, P. L.; Reyes, A. P.

    2001-02-01

    We have studied the temporal instability of a high field resistive Bitter magnet through nuclear magnetic resonance (NMR). This instability leads to transverse spin decoherence in repeated and accumulated NMR experiments as is normally performed during signal averaging. We demonstrate this effect via Hahn echo and Carr-Purcell-Meiboom-Gill (CPMG) transverse relaxation experiments in a 23-T resistive magnet. Quantitative analysis was found to be consistent with separate measurements of the magnetic field frequency fluctuation spectrum, as well as with independent NMR experiments performed in a magnetic field with a controlled instability. Finally, the CPMG sequence with short pulse delays is shown to be successful in recovering the intrinsic spin-spin relaxation even in the presence of magnetic field temporal instability.

  3. Fraction of boroxol rings in vitreous boron oxide from a first-principles analysis of Raman and NMR spectra.

    Science.gov (United States)

    Umari, P; Pasquarello, Alfredo

    2005-09-23

    We determine the fraction f of B atoms belonging to boroxol rings in vitreous boron oxide through a first-principles analysis. After generating a model structure of vitreous B2O3 by first-principles molecular dynamics, we address a large set of properties, including the neutron structure factor, the neutron density of vibrational states, the infrared spectra, the Raman spectra, and the 11B NMR spectra, and find overall good agreement with corresponding experimental data. From the analysis of Raman and 11B NMR spectra, we yield consistently for both probes a fraction f of approximately 0.75. This result indicates that the structure of vitreous boron oxide is largely dominated by boroxol rings.

  4. Prediction of peak overlap in NMR spectra

    International Nuclear Information System (INIS)

    Hefke, Frederik; Schmucki, Roland; Güntert, Peter

    2013-01-01

    Peak overlap is one of the major factors complicating the analysis of biomolecular NMR spectra. We present a general method for predicting the extent of peak overlap in multidimensional NMR spectra and its validation using both, experimental data sets and Monte Carlo simulation. The method is based on knowledge of the magnetization transfer pathways of the NMR experiments and chemical shift statistics from the Biological Magnetic Resonance Data Bank. Assuming a normal distribution with characteristic mean value and standard deviation for the chemical shift of each observable atom, an analytic expression was derived for the expected overlap probability of the cross peaks. The analytical approach was verified to agree with the average peak overlap in a large number of individual peak lists simulated using the same chemical shift statistics. The method was applied to eight proteins, including an intrinsically disordered one, for which the prediction results could be compared with the actual overlap based on the experimentally measured chemical shifts. The extent of overlap predicted using only statistical chemical shift information was in good agreement with the overlap that was observed when the measured shifts were used in the virtual spectrum, except for the intrinsically disordered protein. Since the spectral complexity of a protein NMR spectrum is a crucial factor for protein structure determination, analytical overlap prediction can be used to identify potentially difficult proteins before conducting NMR experiments. Overlap predictions can be tailored to particular classes of proteins by preparing statistics from corresponding protein databases. The method is also suitable for optimizing recording parameters and labeling schemes for NMR experiments and improving the reliability of automated spectra analysis and protein structure determination.

  5. Probing the Structure and Dynamics of Proteins by Combining Molecular Dynamics Simulations and Experimental NMR Data.

    Science.gov (United States)

    Allison, Jane R; Hertig, Samuel; Missimer, John H; Smith, Lorna J; Steinmetz, Michel O; Dolenc, Jožica

    2012-10-09

    NMR experiments provide detailed structural information about biological macromolecules in solution. However, the amount of information obtained is usually much less than the number of degrees of freedom of the macromolecule. Moreover, the relationships between experimental observables and structural information, such as interatomic distances or dihedral angle values, may be multiple-valued and may rely on empirical parameters and approximations. The extraction of structural information from experimental data is further complicated by the time- and ensemble-averaged nature of NMR observables. Combining NMR data with molecular dynamics simulations can elucidate and alleviate some of these problems, as well as allow inconsistencies in the NMR data to be identified. Here, we use a number of examples from our work to highlight the power of molecular dynamics simulations in providing a structural interpretation of solution NMR data.

  6. A route to quantitative 13C NMR analysis of multicomponent polyesters

    DEFF Research Database (Denmark)

    Hvilsted, S.

    1991-01-01

    A protocol for quantitative sequential 13C NMR analysis is developed for polyesters composed of trimethylol propane (TMP), neopentyl glycol (NPG), and adipic and isophthalic acids. TMP centred, structural models with methyl adipate and isophthalate branches in all possible combinations...

  7. Analysis of organophosphorus pesticides using FT-NMR

    International Nuclear Information System (INIS)

    Miyata, Yoshihiko; Takahashi, Yoshikazu; Ando, Hiroaki

    1988-01-01

    A rapid and highly selective method of the identification of 23 kinds of organophosphorus pesticides was develop by using 31 P FT-NMR with 1 H complete decoupling method. Chemical shifts referenced by 85 % H 3 PO 4 were within -4 to 100 ppm, and there was no overlapping among the organophosphorus pesticides used in this experiment. (author)

  8. NMR imaging

    International Nuclear Information System (INIS)

    Andrew, E.R.

    1983-01-01

    Since hydrogen is the most abundant element in all living organisms, proton NMR lends itself well as a method of investigation in biology and medicine. NMR imaging has some special advantages as a diagnostic tool: no ionizing radiation is used, it is noninvasive; it provides a safer means of imaging than the use of x-rays, gamma rays, positrons, or heavy ions. In contrast with ultrasound, the radiation penetrates the bony structures without attenuation. In additional to morphological information, NMR imaging provides additional diagnostic insights through relaxation parameters, which are not available from other imaging methods. In the decade since the first primitive NMR images were obtained, the quality of images now obtained approaches those from CT x-ray scanners. Prototype instruments are being constructed for clinical evaluation and the first whole-body scanners are beginning to appear on the market at costs comparable to CT scanners. Primary differences in equipment for conventional NMR and NMR imaging are the much larger aperture magnets that are required for the examination of human subjects and the addition of coils to generate field gradients and facilities for manipulating the gradients. Early results from clinical trials in many parts of the world are encouraging, and in a few years, the usefuleness of this modality of medical imaging to the medical profession in diagnosis and treatment of disease will be defined. 10 figures

  9. Structural biology by NMR: structure, dynamics, and interactions.

    Directory of Open Access Journals (Sweden)

    Phineus R L Markwick

    2008-09-01

    Full Text Available The function of bio-macromolecules is determined by both their 3D structure and conformational dynamics. These molecules are inherently flexible systems displaying a broad range of dynamics on time-scales from picoseconds to seconds. Nuclear Magnetic Resonance (NMR spectroscopy has emerged as the method of choice for studying both protein structure and dynamics in solution. Typically, NMR experiments are sensitive both to structural features and to dynamics, and hence the measured data contain information on both. Despite major progress in both experimental approaches and computational methods, obtaining a consistent view of structure and dynamics from experimental NMR data remains a challenge. Molecular dynamics simulations have emerged as an indispensable tool in the analysis of NMR data.

  10. LARGE SCALE PRODUCTION, PURIFICATION, AND 65CU SOLID STATE NMR OF AZURIN

    Energy Technology Data Exchange (ETDEWEB)

    Gao, A.; Heck, R.W.

    2008-01-01

    This paper details a way to produce azurin with an effi ciency over 10 times greater than previously described and demonstrates the fi rst solid state nuclear magnetic resonance spectrum of 65Cu(I) in a metalloprotein. A synthetic gene for azurin based upon the DNA sequence from Pseudomonas aeruginosa including the periplasmic targeting sequence was subcloned into a T7 overexpression vector to create the plasmid pGS-azurin, which was transformed into BL21 (DE3) competent cells. The leader sequence on the expressed protein causes it to be exported to the periplasmic space of Escherichia coli. Bacteria grown in a fermentation unit were induced to overexpress the azurin, which was subsequently purifi ed through an endosmotic shock procedure followed by high performance liquid chromatography (HPLC). 1,500 mg of azurin were purifi ed per liter of culture. 65Cu(II) was added to apo-azurin and then reduced. The 65Cu metal cofactor in azurin was observed with solid state nuclear magnetic resonance (NMR) to determine any structural variations that accompanied copper reduction. This is the fi rst solid state NMR spectra of a copper(I) metalloprotein. Analysis of the NMR spectra is being used to complement hypotheses set forth by x-ray diffraction and computational calculations of electron transfer mechanisms in azurin.

  11. NMR analysis of silk for the interpretation of ancient history

    International Nuclear Information System (INIS)

    Chujo, Riichiro

    1998-01-01

    The aim of this paper is the characterization of archaeological silk with the aid of nuclear magnetic resonance (NMR). In this paper the nucleus is confined to 13C as a stable isotope carbon which is the most basic element in organic compounds. Among the stable carbon isotopes 12C is the most abundant but it has no magnetic moment and the natural abundance of 13C is only 1.108% and this isotope is frequently used in NMR due to its non-zero magnetic moment

  12. Perspectives of biomolecular NMR in drug discovery: the blessing and curse of versatility

    International Nuclear Information System (INIS)

    Jahnke, Wolfgang

    2007-01-01

    The versatility of NMR and its broad applicability to several stages in the drug discovery process is well known and generally considered one of the major strengths of NMR (Pellecchia et al., Nature Rev Drug Discov 1:211-219, 2002; Stockman and Dalvit, Prog Nucl Magn Reson Spectrosc 41:187-231, 2002; Lepre et al., Comb Chem High throughput screen 5:583-590, 2002; Wyss et al., Curr Opin Drug Discov Devel 5:630-647, 2002; Jahnke and Widmer, Cell Mol Life Sci 61:580-599, 2004; Huth et al., Methods Enzymol 394:549-571, 2005b; Klages et al., Mol Biosyst 2:318-332, 2006; Takeuchi and Wagner, Curr Opin Struct Biol 16:109-117, 2006; Zartler and Shapiro, Curr Pharm Des 12:3963-3972, 2006). Indeed, NMR is the only biophysical technique which can detect and quantify molecular interactions, and at the same time provide detailed structural information with atomic level resolution. NMR should therefore be ideally suited and widely requested as a tool for drug discovery research, and numerous examples of drug discovery projects which have substantially benefited from NMR contributions or were even driven by NMR have been described in the literature. However, not all pharmaceutical companies have rigorously implemented NMR as integral tool of their research processes. Some companies invest with limited resources, and others do not use biomolecular NMR at all. This discrepancy in assessing the value of a technology is striking, and calls for clarification-under which circumstances can NMR provide added value to the drug discovery process? What kind of contributions can NMR make, and how is it implemented and integrated for maximum impact? This perspectives article suggests key areas of impact for NMR, and a model of integrating NMR with other technologies to realize synergies and maximize their value for drug discovery

  13. Statistical models and NMR analysis of polymer microstructure

    Science.gov (United States)

    Statistical models can be used in conjunction with NMR spectroscopy to study polymer microstructure and polymerization mechanisms. Thus, Bernoullian, Markovian, and enantiomorphic-site models are well known. Many additional models have been formulated over the years for additional situations. Typica...

  14. Analysis of a nanocrystalline polymer dispersion of ebselen using solid-state NMR, Raman microscopy, and powder X-ray diffraction.

    Science.gov (United States)

    Vogt, Frederick G; Williams, Glenn R

    2012-07-01

    Nanocrystalline drug-polymer dispersions are of significant interest in pharmaceutical delivery. The purpose of this work is to demonstrate the applicability of methods based on two-dimensional (2D) and multinuclear solid-state NMR (SSNMR) to a novel nanocrystalline pharmaceutical dispersion of ebselen with polyvinylpyrrolidone-vinyl acetate (PVP-VA), after initial characterization with other techniques. A nanocrystalline dispersion of ebselen with PVP-VA was prepared and characterized by powder X-ray diffraction (PXRD), confocal Raman microscopy and mapping, and differential scanning calorimetry (DSC), and then subjected to detailed 1D and 2D SSNMR analysis involving ¹H, ¹³C, and ⁷⁷Se isotopes and ¹H spin diffusion. PXRD was used to show that dispersion contains nanocrystalline ebselen in the 35-60 nm size range. Confocal Raman microscopy and spectral mapping were able to detect regions where short-range interactions may occur between ebselen and PVP-VA. Spin diffusion effects were analyzed using 2D SSNMR experiments and are able to directly detect interactions between ebselen and the surrounding PVP-VA. The methods used here, particularly the 2D SSNMR methods based on spin diffusion, provided detailed structural information about a nanocrystalline polymer dispersion of ebselen, and should be useful in other studies of these types of materials.

  15. CRAFT (complete reduction to amplitude frequency table)--robust and time-efficient Bayesian approach for quantitative mixture analysis by NMR.

    Science.gov (United States)

    Krishnamurthy, Krish

    2013-12-01

    The intrinsic quantitative nature of NMR is increasingly exploited in areas ranging from complex mixture analysis (as in metabolomics and reaction monitoring) to quality assurance/control. Complex NMR spectra are more common than not, and therefore, extraction of quantitative information generally involves significant prior knowledge and/or operator interaction to characterize resonances of interest. Moreover, in most NMR-based metabolomic experiments, the signals from metabolites are normally present as a mixture of overlapping resonances, making quantification difficult. Time-domain Bayesian approaches have been reported to be better than conventional frequency-domain analysis at identifying subtle changes in signal amplitude. We discuss an approach that exploits Bayesian analysis to achieve a complete reduction to amplitude frequency table (CRAFT) in an automated and time-efficient fashion - thus converting the time-domain FID to a frequency-amplitude table. CRAFT uses a two-step approach to FID analysis. First, the FID is digitally filtered and downsampled to several sub FIDs, and secondly, these sub FIDs are then modeled as sums of decaying sinusoids using the Bayesian approach. CRAFT tables can be used for further data mining of quantitative information using fingerprint chemical shifts of compounds of interest and/or statistical analysis of modulation of chemical quantity in a biological study (metabolomics) or process study (reaction monitoring) or quality assurance/control. The basic principles behind this approach as well as results to evaluate the effectiveness of this approach in mixture analysis are presented. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Parent heparin and daughter LMW heparin correlation analysis using LC-MS and NMR

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinyue, E-mail: liux22@rpi.edu [National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, 250100 (China); Department of Chemistry and Chemical Biology, Department of Chemical and Biological Engineering, Department of Biology, Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180 (United States); St Ange, Kalib, E-mail: stangk2@rpi.edu [Department of Chemistry and Chemical Biology, Department of Chemical and Biological Engineering, Department of Biology, Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180 (United States); Wang, Xiaohua, E-mail: wangx35@rpi.edu [Department of Chemistry and Chemical Biology, Department of Chemical and Biological Engineering, Department of Biology, Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180 (United States); School of Computer and Information, Hefei University of Technology, Hefei (China); Lin, Lei, E-mail: Linl5@rpi.edu [Department of Chemistry and Chemical Biology, Department of Chemical and Biological Engineering, Department of Biology, Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180 (United States); Zhang, Fuming, E-mail: zhangf2@rpi.edu [Department of Chemistry and Chemical Biology, Department of Chemical and Biological Engineering, Department of Biology, Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180 (United States); and others

    2017-04-08

    approach relied on LC-MS and NMR analysis. • Monosaccharide compositional analysis relied on top-down NMR analysis. • Intact chain, oligosaccharide, and disaccharide analyses relied on LC-MS. • Differences due to parent heparin were observed using principal component analysis.

  17. Parent heparin and daughter LMW heparin correlation analysis using LC-MS and NMR

    International Nuclear Information System (INIS)

    Liu, Xinyue; St Ange, Kalib; Wang, Xiaohua; Lin, Lei; Zhang, Fuming

    2017-01-01

    on LC-MS and NMR analysis. • Monosaccharide compositional analysis relied on top-down NMR analysis. • Intact chain, oligosaccharide, and disaccharide analyses relied on LC-MS. • Differences due to parent heparin were observed using principal component analysis.

  18. Recommendations and Standardization of Biomarker Quantification Using NMR-based Metabolomics with Particular Focus on Urinary Analysis

    KAUST Repository

    Emwas, Abdul-Hamid M.

    2016-01-08

    NMR-based metabolomics has shown considerable promise in disease diagnosis and biomarker discovery because it allows one to non-destructively identify and quantify large numbers of novel metabolite biomarkers in both biofluids and tissues. Indeed, precise metabolite quantification is a necessary prerequisite to move any chemical biomarker or biomarker panel from the lab into the clinic. Among the many biofluids (urine, serum, plasma, cerebrospinal fluid and saliva) commonly used for disease diagnosis and prognosis, urine has several advantages. It is abundant, sterile, easily obtained, needs little sample preparation and does not require any invasive medical procedures for collection. Furthermore, urine captures and concentrates many “unwanted” or “undesirable” compounds throughout the body, thereby providing a rich source of potentially useful disease biomarkers. However, the incredible variation in urine chemical concentrations due to effects such as gender, age, diet, life style, health conditions, and physical activity make the analysis of urine and the identification of useful urinary biomarkers by NMR quite challenging. In this review, we discuss a number of the most significant issues regarding NMR-based urinary metabolomics with a specific emphasis on metabolite quantification for disease biomarker applications. We also propose a number of data collection and instrumental recommendations regarding NMR pulse sequences, acceptable acquisition parameter ranges, relaxation effects on quantitation, proper handling of instrumental differences, as well as recommendations regarding sample preparation and biomarker assessment.

  19. Recommendations and Standardization of Biomarker Quantification Using NMR-based Metabolomics with Particular Focus on Urinary Analysis

    KAUST Repository

    Emwas, Abdul-Hamid M.; Roy, Raja; McKay, Ryan T.; Ryan, Danielle; Brennan, Lorraine; Tenori, Leonardo; Luchinat, Claudio; Gao, Xin; Zeri, Ana Carolina; Gowda, G. A. Nagana; Raftery, Daniel; Steinbeck, Christoph; Salek, Reza M; Wishart, David S.

    2016-01-01

    NMR-based metabolomics has shown considerable promise in disease diagnosis and biomarker discovery because it allows one to non-destructively identify and quantify large numbers of novel metabolite biomarkers in both biofluids and tissues. Indeed, precise metabolite quantification is a necessary prerequisite to move any chemical biomarker or biomarker panel from the lab into the clinic. Among the many biofluids (urine, serum, plasma, cerebrospinal fluid and saliva) commonly used for disease diagnosis and prognosis, urine has several advantages. It is abundant, sterile, easily obtained, needs little sample preparation and does not require any invasive medical procedures for collection. Furthermore, urine captures and concentrates many “unwanted” or “undesirable” compounds throughout the body, thereby providing a rich source of potentially useful disease biomarkers. However, the incredible variation in urine chemical concentrations due to effects such as gender, age, diet, life style, health conditions, and physical activity make the analysis of urine and the identification of useful urinary biomarkers by NMR quite challenging. In this review, we discuss a number of the most significant issues regarding NMR-based urinary metabolomics with a specific emphasis on metabolite quantification for disease biomarker applications. We also propose a number of data collection and instrumental recommendations regarding NMR pulse sequences, acceptable acquisition parameter ranges, relaxation effects on quantitation, proper handling of instrumental differences, as well as recommendations regarding sample preparation and biomarker assessment.

  20. NMR of lignins

    Science.gov (United States)

    John Ralph; Larry L. Landucci

    2010-01-01

    This chapter will consider the basic aspects and findings of several forms of NMR spectroscopy, including separate discussions of proton, carbon, heteronuclear, and multidimensional NMR. Enhanced focus will be on 13C NMR, because of its qualitative and quantitative importance, followed by NMR’s contributions to our understanding of lignin...

  1. Quantitative analysis of deuterium using the isotopic effect on quaternary {sup 13}C NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Tamim A., E-mail: tamim.darwish@ansto.gov.au [National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 21, Kirrawee DC, NSW 2232 (Australia); Yepuri, Nageshwar Rao; Holden, Peter J. [National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 21, Kirrawee DC, NSW 2232 (Australia); James, Michael [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia)

    2016-07-13

    Quantitative analysis of specifically deuterated compounds can be achieved by a number of conventional methods, such as mass spectroscopy, or by quantifying the residual {sup 1}H NMR signals compared to signals from internal standards. However, site specific quantification using these methods becomes challenging when dealing with non-specifically or randomly deuterated compounds that are produced by metal catalyzed hydrothermal reactions in D{sub 2}O, one of the most convenient deuteration methods. In this study, deuterium-induced NMR isotope shifts of quaternary {sup 13}C resonances neighboring deuterated sites have been utilized to quantify the degree of isotope labeling of molecular sites in non-specifically deuterated molecules. By probing {sup 13}C NMR signals while decoupling both proton and deuterium nuclei, it is possible to resolve {sup 13}C resonances of the different isotopologues based on the isotopic shifts and the degree of deuteration of the carbon atoms. We demonstrate that in different isotopologues, the same quaternary carbon, neighboring partially deuterated carbon atoms, are affected to an equal extent by relaxation. Decoupling both nuclei ({sup 1}H, {sup 2}H) resolves closely separated quaternary {sup 13}C signals of the different isotopologues, and allows their accurate integration and quantification under short relaxation delays (D1 = 1 s) and hence fast accumulative spectral acquisition. We have performed a number of approaches to quantify the deuterium content at different specific sites to demonstrate a convenient and generic analysis method for use in randomly deuterated molecules, or in cases of specifically deuterated molecules where back-exchange processes may take place during work up. - Graphical abstract: The relative intensities of quaternary {sup 13}C {"1H,"2H} resonances are equal despite the different relaxation delays, allowing the relative abundance of the different deuterated isotopologues to be calculated using NMR fast

  2. Spin Choreography: Basic Steps in High Resolution NMR (by Ray Freeman)

    Science.gov (United States)

    Minch, Michael J.

    1998-02-01

    There are three orientations that NMR courses may take. The traditional molecular structure course focuses on the interpretation of spectra and the use of chemical shifts, coupling constants, and nuclear Overhauser effects (NOE) to sort out subtle details of structure and stereochemistry. Courses can also focus on the fundamental quantum mechanics of observable NMR parameters and processes such a spin-spin splitting and relaxation. More recently there are courses devoted to the manipulation of nuclear spins and the basic steps of one- and two-dimensional NMR experiments. Freeman's book is directed towards the latter audience. Modern NMR methods offer a myriad ways to extract information about molecular structure and motion by observing the behavior of nuclear spins under a variety of conditions. In Freeman's words: "We can lead the spins through an intricate dance, carefully programmed in advance, to enhance, simplify, correlate, decouple, edit or assign NMR spectra." This is a carefully written, well-illustrated account of how this dance is choreographed by pulse programming, double resonance, and gradient effects. Although well written, this book is not an easy read; every word counts. It is recommended for graduate courses that emphasize the fundamentals of magnetic resonance. It is not a text on interpretation of spectra.

  3. NMR signal analysis in the large COMPASS $^{14}$NH$_{3}$ target

    CERN Document Server

    Koivuniemi, J; Hess, C; Kisselev, Y U; Meyer, W; Radtke, E; Reicherz, G; Doshita, N; Iwata, T; Kondo, K; Michigami, T

    2009-01-01

    In the large COMPASS polarized proton target the 1508 cm$^{3}$ of irradiated granular ammonia is polarized with dynamic nuclear polarization method using 4 mm microwaves in 2.5 T eld. The nuclear polarization up to 90 - 93 % is determined with cw NMR. The properties of the observed ammonia proton signals are described and spin thermodynamics in high elds is presented. Also the second moment of the NMR line is estimated.

  4. A Toolbox of Solid-State NMR Experiments for the Characterization of Soft Organic Nanomaterials

    KAUST Repository

    Straasø, Lasse Arnt

    2016-02-02

    Determining how organic molecules self-assemble into a solid material is a challenging and demanding task if a single crystal of the material cannot be produced. Solid-state NMR spectroscopy offers access to such molecular details via an appropriate selection of techniques. This report gives a selected overview of 1D and 2D solid-state NMR techniques for elucidating the structure of soft organic solids. We focus on how the solid-state NMR techniques are designed from the perspective of the different nuclear interactions, using average Hamiltonian theory and product operators. We also introduce recent methods for quantification and reduction of experimental artifacts. Finally, we highlight how the solid-state NMR techniques can be applied to soft organic materials by reviewing recent applications to semicrystalline polymers, π-conjugated polymers, natural silk, and graphene-related materials.

  5. A Toolbox of Solid-State NMR Experiments for the Characterization of Soft Organic Nanomaterials

    KAUST Repository

    Straasø , Lasse Arnt; Saleem, Qasim; Hansen, Michael Ryan

    2016-01-01

    Determining how organic molecules self-assemble into a solid material is a challenging and demanding task if a single crystal of the material cannot be produced. Solid-state NMR spectroscopy offers access to such molecular details via an appropriate selection of techniques. This report gives a selected overview of 1D and 2D solid-state NMR techniques for elucidating the structure of soft organic solids. We focus on how the solid-state NMR techniques are designed from the perspective of the different nuclear interactions, using average Hamiltonian theory and product operators. We also introduce recent methods for quantification and reduction of experimental artifacts. Finally, we highlight how the solid-state NMR techniques can be applied to soft organic materials by reviewing recent applications to semicrystalline polymers, π-conjugated polymers, natural silk, and graphene-related materials.

  6. Structural properties of carbon nanotubes derived from 13C NMR

    KAUST Repository

    Abou-Hamad, E.

    2011-10-10

    We present a detailed experimental and theoretical study on how structural properties of carbon nanotubes can be derived from 13C NMR investigations. Magic angle spinning solid state NMR experiments have been performed on single- and multiwalled carbon nanotubes with diameters in the range from 0.7 to 100 nm and with number of walls from 1 to 90. We provide models on how diameter and the number of nanotube walls influence NMR linewidth and line position. Both models are supported by theoretical calculations. Increasing the diameter D, from the smallest investigated nanotube, which in our study corresponds to the inner nanotube of a double-walled tube to the largest studied diameter, corresponding to large multiwalled nanotubes, leads to a 23.5 ppm diamagnetic shift of the isotropic NMR line position δ. We show that the isotropic line follows the relation δ = 18.3/D + 102.5 ppm, where D is the diameter of the tube and NMR line position δ is relative to tetramethylsilane. The relation asymptotically tends to approach the line position expected in graphene. A characteristic broadening of the line shape is observed with the increasing number of walls. This feature can be rationalized by an isotropic shift distribution originating from different diamagnetic shielding of the encapsulated nanotubes together with a heterogeneity of the samples. Based on our results, NMR is shown to be a nondestructive spectroscopic method that can be used as a complementary method to, for example, transmission electron microscopy to obtain structural information for carbon nanotubes, especially bulk samples.

  7. Si-O-Si bond-angle distribution in vitreous silica from first-principles 29Si NMR analysis

    International Nuclear Information System (INIS)

    Mauri, Francesco; Pasquarello, Alfredo; Pfrommer, Bernd G.; Yoon, Young-Gui; Louie, Steven G.

    2000-01-01

    The correlation between 29 Si chemical shifts and Si-O-Si bond angles in SiO 2 is determined within density-functional theory for the full range of angles present in vitreous silica. This relation closely reproduces measured shifts of crystalline polymorphs. The knowledge of the correlation allows us to reliably extract from the experimental NMR spectrum the mean (151 degree sign ) and the standard deviation (11 degree sign ) of the Si-O-Si angular distribution of vitreous silica. In particular, we show that the Mozzi-Warren Si-O-Si angular distribution is not consistent with the NMR data. This analysis illustrates the potential of our approach for structural determinations of silicate glasses. (c) 2000 The American Physical Society

  8. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    International Nuclear Information System (INIS)

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs

  9. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    Energy Technology Data Exchange (ETDEWEB)

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs.

  10. Characterization of Silicon Nanocrystal Surfaces by Multidimensional Solid-State NMR Spectroscopy

    International Nuclear Information System (INIS)

    Hanrahan, Michael P.; Fought, Ellie L.; Windus, Theresa L.; Wheeler, Lance M.; Anderson, Nicholas C.

    2017-01-01

    The chemical and photophysical properties of silicon nanocrystals (Si NCs) are strongly dependent on the chemical composition and structure of their surfaces. Here we use fast magic angle spinning (MAS) and proton detection to enable the rapid acquisition of dipolar and scalar 2D 1 H– 29 Si heteronuclear correlation (HETCOR) solid-state NMR spectra and reveal a molecular picture of hydride-terminated and alkyl-functionalized surfaces of Si NCs produced in a nonthermal plasma. 2D 1 H– 29 Si HETCOR and dipolar 2D 1 H– 1 H multiple-quantum correlation spectra illustrate that resonances from surface mono-, di-, and trihydride groups cannot be resolved, contrary to previous literature assignments. Instead the 2D NMR spectra illustrate that there is large distribution of 1 H and 29 Si chemical shifts for the surface hydride species in both the as-synthesized and functionalized Si NCs. However, proton-detected 1 H– 29 Si refocused INEPT experiments can be used to unambiguously differentiate NMR signals from the different surface hydrides. Varying the 29 Si evolution time in refocused INEPT experiments and fitting the oscillation of the NMR signals allows for the relative populations of the different surface hydrides to be estimated. This analysis confirms that monohydride species are the predominant surface species on the as-synthesized Si NCs. A reduction in the populations of the di- and trihydrides is observed upon functionalization with alkyl groups, consistent with our previous hypothesis that the trihydride, or silyl (*SiH 3 ), group is primarily responsible for initiating surface functionalization reactions. Density functional theory (DFT) calculations were used to obtain quantum chemical structural models of the Si NC surface and reproduce the observed 1 H and 29 Si chemical shifts. Furthermore, the approaches outlined here will be useful to obtain a more detailed picture of surface structures for Si NCs and other hydride-passivated nanomaterials.

  11. High-resolution solution-state NMR of unfractionated plant cell walls

    Science.gov (United States)

    John Ralph; Fachuang Lu; Hoon Kim; Dino Ress; Daniel J. Yelle; Kenneth E. Hammel; Sally A. Ralph; Bernadette Nanayakkara; Armin Wagner; Takuya Akiyama; Paul F. Schatz; Shawn D. Mansfield; Noritsugu Terashima; Wout Boerjan; Bjorn Sundberg; Mattias Hedenstrom

    2009-01-01

    Detailed structural studies on the plant cell wall have traditionally been difficult. NMR is one of the preeminent structural tools, but obtaining high-resolution solution-state spectra has typically required fractionation and isolation of components of interest. With recent methods for dissolution of, admittedly, finely divided plant cell wall material, the wall can...

  12. Temperature-induced transitions in disordered proteins probed by NMR spectroscopy

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Poulsen, Flemming Martin; Kragelund, Birthe Brandt

    2012-01-01

    Intrinsically disordered proteins are abundant in nature and perform many important physiological functions. Multidimensional NMR spectroscopy has been crucial for the understanding of the conformational properties of disordered proteins and is increasingly used to probe their conformational...... ensembles. Compared to folded proteins, disordered proteins are more malleable and more easily perturbed by environmental factors. Accordingly, the experimental conditions and especially the temperature modify the structural and functional properties of disordered proteins. NMR spectroscopy allows analysis...... of temperature-induced structural changes at residue resolution using secondary chemical shift analysis, paramagnetic relaxation enhancement, and residual dipolar couplings. This chapter discusses practical aspects of NMR studies of temperature-induced structural changes in disordered proteins....

  13. Structural investigation of e-beam cured epoxy resins through solid state NMR

    International Nuclear Information System (INIS)

    Alessi, Sabina; Spinella, Alberto; Caponetti, Eugenio; Dispenza, Clelia; Spadaro, Giuseppe

    2012-01-01

    In this paper the network structure of e-beam cured DGEBF based epoxy resins is investigated. Two epoxy systems, having different reactivity and cured in different process conditions, were analyzed through solid state NMR spectroscopy. The analysis shows that the more reactive system has higher cross-linking density and higher uniformity of network distribution. Similar information were obtained, in a previous work, on the same systems through dynamic mechanical thermal analysis. It is worth noting that unlike DMTA tests, which interfere with the molecular structure of the analyzed material, due to the heating during the analysis itself, more reliable information, without any artefact, are obtained by solid state NMR, carried out at constant room temperature. - Highlights: ► The structure of two e-beam cured epoxy systems is investigated through solid state NMR. ► The aim is to have direct information about the structure without inducing modifications. ► The different molecular structures are able to emphasize the response of solid state NMR. ► T 1 H, T 1ρ H and T CH measurements indicate different cross-linking degrees. ► The NMR results are in agreement with DMTA analysis performed in a previous paper.

  14. Principal components analysis of protein structure ensembles calculated using NMR data

    International Nuclear Information System (INIS)

    Howe, Peter W.A.

    2001-01-01

    One important problem when calculating structures of biomolecules from NMR data is distinguishing converged structures from outlier structures. This paper describes how Principal Components Analysis (PCA) has the potential to classify calculated structures automatically, according to correlated structural variation across the population. PCA analysis has the additional advantage that it highlights regions of proteins which are varying across the population. To apply PCA, protein structures have to be reduced in complexity and this paper describes two different representations of protein structures which achieve this. The calculated structures of a 28 amino acid peptide are used to demonstrate the methods. The two different representations of protein structure are shown to give equivalent results, and correct results are obtained even though the ensemble of structures used as an example contains two different protein conformations. The PCA analysis also correctly identifies the structural differences between the two conformations

  15. Structure determination of the single glycan of rabbit serotransferrin by methylation analysis and 360 MHz 1H NMR spectroscopy

    International Nuclear Information System (INIS)

    Leger, D.; Tordera, V.; Spik, G.; Dorland, L.; Haverkamp, J.; Vliegenthart, J.F.G.

    1978-01-01

    The glycopeptide fraction of rabbit serotransferrin (STF) has been investigated applying an original method for the determination of glycan primary structure combining monosaccharide determination, permethylation and 360 MHz 1 H NMR. It is concluded that the highly purified rabbit transferrin contains only 1 glycan chain/molecule. A heterogeneity of the glycan moiety in the sialic acid residues was observed on isolation by paper electrophoresis of a disialylglycopeptide G-1 and a monosialylglycopeptide 2. The primary structure of glycopeptide G-1 deduced on the basis of the data of carbohydrate composition, permethylation analysis and 360 MHz 1 H NMR spectroscopy is identical to the primary structure of human serotransferrin glycan and the glycopeptide G-2 was shown by 1 H NMR spectroscopy, to be a mixture of two isomeric monosialylglycopeptides. (Auth.)

  16. Dynamic membrane interactions of antibacterial and antifungal biomolecules, and amyloid peptides, revealed by solid-state NMR spectroscopy.

    Science.gov (United States)

    Naito, Akira; Matsumori, Nobuaki; Ramamoorthy, Ayyalusamy

    2018-02-01

    A variety of biomolecules acting on the cell membrane folds into a biologically active structure in the membrane environment. It is, therefore, important to determine the structures and dynamics of such biomolecules in a membrane environment. While several biophysical techniques are used to obtain low-resolution information, solid-state NMR spectroscopy is one of the most powerful means for determining the structure and dynamics of membrane bound biomolecules such as antibacterial biomolecules and amyloidogenic proteins; unlike X-ray crystallography and solution NMR spectroscopy, applications of solid-state NMR spectroscopy are not limited by non-crystalline, non-soluble nature or molecular size of membrane-associated biomolecules. This review article focuses on the applications of solid-state NMR techniques to study a few selected antibacterial and amyloid peptides. Solid-state NMR studies revealing the membrane inserted bent α-helical structure associated with the hemolytic activity of bee venom melittin and the chemical shift oscillation analysis used to determine the transmembrane structure (with α-helix and 3 10 -helix in the N- and C-termini, respectively) of antibiotic peptide alamethicin are discussed in detail. Oligomerization of an amyloidogenic islet amyloid polypeptide (IAPP, or also known as amylin) resulting from its aggregation in a membrane environment, molecular interactions of the antifungal natural product amphotericin B with ergosterol in lipid bilayers, and the mechanism of lipid raft formation by sphingomyelin studied using solid state NMR methods are also discussed in this review article. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Value of NMR logging for heavy oil characterization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.; Chen, J.; Georgi, D. [Baker Hughes, Calgary, AB (Canada); Sun, B. [Chevron Energy Technology Co., Calgary, AB (Canada)

    2008-07-01

    Non-conventional, heavy oil fields are becoming increasingly important to the security of energy supplies and are becoming economically profitable to produce. Heavy oil reservoirs are difficult to evaluate since they are typically shallow and the connate waters are very fresh. Other heavy oil reservoirs are oil-wet where the resistivities are not indicative of saturation. Nuclear magnetic resonance (NMR) detects molecular level interactions. As such, it responds distinctively to different hydrocarbon molecules, thereby opening a new avenue for constituent analysis. This feature makes NMR a more powerful technique than bulk oil density or viscosity measurements for characterizing oils, and is the basis for detecting gas in heavy oil fields. NMR logging, which measures fluid in pore space directly, is capable of separating oil from water. It is possible to discern movable from bound water by analyzing NMR logs. The oil viscosity can be also quantified from NMR logs, NMR relaxation time and diffusivity estimates. The unique challenges for heavy oil reservoir characterization for the NMR technique were discussed with reference to the extra-fast decay of the NMR signal in response to extra-heavy oil/tars, and the lack of sensitivity in measuring very slow diffusion of heavy oil molecules. This paper presented various methods for analyzing heavy oil reservoirs in different viscosity ranges. Heavy oil fields in Venezuela, Kazakhstan, Canada, Alaska and the Middle East were analyzed using different data interpretation approaches based on the reservoir formation characteristics and the heavy oil type. NMR direct fluid typing was adequate for clean sands and carbonate reservoirs while integrated approaches were used to interpret extra heavy oils and tars. It was concluded that NMR logs can provide quantitative measures for heavy oil saturation, identify sweet spots or tar streaks, and quantify heavy oil viscosity within reasonable accuracy. 14 refs., 16 figs.

  18. On the structure of amorphous calcium carbonate--a detailed study by solid-state NMR spectroscopy.

    Science.gov (United States)

    Nebel, Holger; Neumann, Markus; Mayer, Christian; Epple, Matthias

    2008-09-01

    The calcium carbonate phases calcite, aragonite, vaterite, monohydrocalcite (calcium carbonate monohydrate), and ikaite (calcium carbonate hexahydrate) were studied by solid-state NMR spectroscopy ( (1)H and (13)C). Further model compounds were sodium hydrogencarbonate, potassium hydrogencarbonate, and calcium hydroxide. With the help of these data, the structure of synthetically prepared additive-free amorphous calcium carbonate (ACC) was analyzed. ACC contains molecular water (as H 2O), a small amount of mobile hydroxide, and no hydrogencarbonate. This supports the concept of ACC as a transient precursor in the formation of calcium carbonate biominerals.

  19. Molecular motion of micellar solutes: a 13C NMR relaxation study

    International Nuclear Information System (INIS)

    Stark, R.E.; Kasakevich, M.L.; Granger, J.W.

    1982-01-01

    A series of simple NMR relaxation experiments have been performed on nitrobenzene and aniline dissolved in the ionic detergents sodium dodecyl sulfate (SDS) and hexadecyltrimethylammonium bromide (CTAB). Using 13 C relaxation rates at various molecular sites, and comparing data obtained in organic media with those for micellar solutions, the viscosity at the solubilization site was estimated and a detailed picture of motional restrictions imposed by the micellar enviroment was derived. Viscosities of 8 to 17 cp indicate a rather fluid environment for solubilized nitrobenzene; both additives exhibit altered motional preferences in CTAB solutions only. As an aid in interpretation of the NMR data, quasi-elastic light scattering and other physical techniques have been used to evaluate the influence of organic solutes on micellar size and shape. The NMR methods are examined critically in terms of their general usefulness for studies of solubilization in detergent micelles. 48 references

  20. Isotope labeling for NMR studies of macromolecular structure and interactions

    International Nuclear Information System (INIS)

    Wright, P.E.

    1994-01-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform 13 C, 15 N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific 13 C and 15 N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions

  1. Isotope labeling for NMR studies of macromolecular structure and interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wright, P.E. [Scripps Research Institute, La Jolla, CA (United States)

    1994-12-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform {sup 13}C, {sup 15}N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific {sup 13}C and {sup 15}N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions.

  2. NMR Evidence for the Topologically Nontrivial Nature in a Family of Half-Heusler Compounds

    KAUST Repository

    Zhang, Xiaoming

    2016-03-16

    Spin-orbit coupling (SOC) is expected to partly determine the topologically nontrivial electronic structure of heavy half-Heusler ternary compounds. However, to date, attempts to experimentally observe either the strength of SOC or how it modifies the bulk band structure have been unsuccessful. By using bulk-sensitive nuclear magnetic resonance (NMR) spectroscopy combined with first-principles calculations, we reveal that 209Bi NMR isotropic shifts scale with relativity in terms of the strength of SOC and average atomic numbers, indicating strong relativistic effects on NMR parameters. According to first-principles calculations, we further claim that nuclear magnetic shieldings from relativistic p1/2 states and paramagnetic contributions from low-lying unoccupied p3/2 states are both sensitive to the details of band structures tuned by relativity, which explains why the hidden relativistic effects on band structure can be revealed by 209Bi NMR isotropic shifts in topologically nontrivial half-Heusler compounds. Used in complement to surface-sensitive methods, such as angle resolved photon electron spectroscopy and scanning tunneling spectroscopy, NMR can provide valuable information on bulk electronic states.

  3. Electrokinetic transport of water and methanol in Nafion membranes as observed by NMR spectroscopy

    International Nuclear Information System (INIS)

    Hallberg, Fredrik; Vernersson, Thomas; Pettersson, Erik Thyboll; Dvinskikh, Sergey V.; Lindbergh, Goeran; Furo, Istvan

    2010-01-01

    Electrophoretic NMR (eNMR) and pulsed-field-gradient NMR (PFG-NMR) methods were used to study transport processes in situ and in a chemically resolved manner in the electrolyte of an experimental direct methanol fuel cell (DMFC) setup, constituted of several layers of Nafion 117. The measurements were conducted at room temperature for membranes fully swollen by methanol-water mixtures over a wide concentration interval. The experimental setup and the experimental protocol for the eNMR experiments are discussed in detail. The magnitude of the water and methanol self-diffusion coefficients show a good agreement with previously published data while the ratio of the two self-diffusion coefficients may indicate an imperfect mixing of the two solvent molecules. On the molecular level, the drag of water and methanol molecules by protons is roughly of the same magnitude, with the drag of methanol molecules increasing with increasing methanol content. The electro-osmotic drag defined on mass-flow basis increased for methanol from a low level with increasing methanol concentration while that of water remained roughly constant.

  4. NMR Evidence for the Topologically Nontrivial Nature in a Family of Half-Heusler Compounds

    KAUST Repository

    Zhang, Xiaoming; Hou, Zhipeng; Wang, Yue; Xu, Guizhou; Shi, Chenglong; Liu, EnKe; Xi, Xuekui; Wang, Wenhong; Wu, Guangheng; Zhang, Xixiang

    2016-01-01

    Spin-orbit coupling (SOC) is expected to partly determine the topologically nontrivial electronic structure of heavy half-Heusler ternary compounds. However, to date, attempts to experimentally observe either the strength of SOC or how it modifies the bulk band structure have been unsuccessful. By using bulk-sensitive nuclear magnetic resonance (NMR) spectroscopy combined with first-principles calculations, we reveal that 209Bi NMR isotropic shifts scale with relativity in terms of the strength of SOC and average atomic numbers, indicating strong relativistic effects on NMR parameters. According to first-principles calculations, we further claim that nuclear magnetic shieldings from relativistic p1/2 states and paramagnetic contributions from low-lying unoccupied p3/2 states are both sensitive to the details of band structures tuned by relativity, which explains why the hidden relativistic effects on band structure can be revealed by 209Bi NMR isotropic shifts in topologically nontrivial half-Heusler compounds. Used in complement to surface-sensitive methods, such as angle resolved photon electron spectroscopy and scanning tunneling spectroscopy, NMR can provide valuable information on bulk electronic states.

  5. NMR imaging and pharmaceutical sciences

    International Nuclear Information System (INIS)

    Beall, P.T.; Good, W.R.

    1986-01-01

    Described is the technique of NMR-imaging in diagnostic medicine. Proton and phosphorus NMR in diagnosis of abnormal tissue pathology. Discussed is the value of NMR to the pharmaceutical sciences. NMR may play an important role in monitoring the response of tissues to drugs, determining the localization of drugs, performing real time pharmacokinetics and testing the use of NMR contrast pharmaceuticals

  6. MetAssimulo:Simulation of Realistic NMR Metabolic Profiles

    Directory of Open Access Journals (Sweden)

    De Iorio Maria

    2010-10-01

    Full Text Available Abstract Background Probing the complex fusion of genetic and environmental interactions, metabolic profiling (or metabolomics/metabonomics, the study of small molecules involved in metabolic reactions, is a rapidly expanding 'omics' field. A major technique for capturing metabolite data is 1H-NMR spectroscopy and this yields highly complex profiles that require sophisticated statistical analysis methods. However, experimental data is difficult to control and expensive to obtain. Thus data simulation is a productive route to aid algorithm development. Results MetAssimulo is a MATLAB-based package that has been developed to simulate 1H-NMR spectra of complex mixtures such as metabolic profiles. Drawing data from a metabolite standard spectral database in conjunction with concentration information input by the user or constructed automatically from the Human Metabolome Database, MetAssimulo is able to create realistic metabolic profiles containing large numbers of metabolites with a range of user-defined properties. Current features include the simulation of two groups ('case' and 'control' specified by means and standard deviations of concentrations for each metabolite. The software enables addition of spectral noise with a realistic autocorrelation structure at user controllable levels. A crucial feature of the algorithm is its ability to simulate both intra- and inter-metabolite correlations, the analysis of which is fundamental to many techniques in the field. Further, MetAssimulo is able to simulate shifts in NMR peak positions that result from matrix effects such as pH differences which are often observed in metabolic NMR spectra and pose serious challenges for statistical algorithms. Conclusions No other software is currently able to simulate NMR metabolic profiles with such complexity and flexibility. This paper describes the algorithm behind MetAssimulo and demonstrates how it can be used to simulate realistic NMR metabolic profiles with

  7. The NMR Probe of High-T$_{c}$ Materials

    CERN Document Server

    Walstedt, Russell E

    2008-01-01

    The NMR probe has yielded a vast array of data for the high-Tc materials, corresponding to different compounds, ionic sites, and nuclear species, as well as to a wide variety of experimental conditions. Over the twenty years, since the discovery of superconducting cuprates, ongoing analysis and discussion of cuprate NMR data have resulted in a wealth of important insights into the physics of these exotic systems. The aims of this monograph are threefold. First, it reviews NMR methodology as it has been applied to the cuprate studies. This is addressed to NMR practitioners and to physics laypersons alike. Next, it presents a review of cuprate NMR measurements and the wide variety of phenomena which they represent. The third phase is to recount the theoretical model calculations and other proposals which have been put forward to account for these data. Parts two and three are presented in parallel, as there are many aspects to both topics, each with its own interesting history. There is, even twenty years on, a...

  8. DFT molecular modeling and NMR conformational analysis of a new longipinenetriolone diester

    Science.gov (United States)

    Cerda-García-Rojas, Carlos M.; Guerra-Ramírez, Diana; Román-Marín, Luisa U.; Hernández-Hernández, Juan D.; Joseph-Nathan, Pedro

    2006-05-01

    The structure and conformational behavior of the new natural compound (4 R,5 S,7 S,8 R,9 S,10 R,11 R)-longipin-2-en-7,8,9-triol-1-one 7-angelate-9-isovalerate (1) isolated from Stevia eupatoria, were studied by molecular modeling and NMR spectroscopy. A Monte Carlo search followed by DFT calculations at the B3LYP/6-31G* level provided the theoretical conformations of the sesquiterpene framework, which were in full agreement with results derived from the 1H- 1H coupling constant analysis.

  9. Tritium NMR in the analysis of tritiated compounds

    International Nuclear Information System (INIS)

    Kaspersen, F.M.; Funke, C.W.; Vader, Jan; Wagenaars, G.N.

    1993-01-01

    An overview is given of the possibilities of 3 H NMR in the characterisation of 3 H-labelled compounds. This technique gives information on the identity of the tritiated compounds, the position of the tritium, the distribution of the label and even the radiochemical purity of the labelled products. (author)

  10. Extraction and [superscript 1]H NMR Analysis of Fats from Convenience Foods: A Laboratory Experiment for Organic Chemistry

    Science.gov (United States)

    Hartel, Aaron M.; Moore, Amy C.

    2014-01-01

    The extraction and analysis of fats from convenience foods (crackers, cookies, chips, candies) has been developed as an experiment for a second-year undergraduate organic chemistry laboratory course. Students gravimetrically determine the fat content per serving and then perform a [superscript 1]H NMR analysis of the recovered fat to determine the…

  11. FANTEN: a new web-based interface for the analysis of magnetic anisotropy-induced NMR data

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldelli, Mauro; Carlon, Azzurra; Ravera, Enrico; Parigi, Giacomo, E-mail: parigi@cerm.unifi.it; Luchinat, Claudio, E-mail: luchinat@cerm.unifi.it [University of Florence, CERM and Department of Chemistry “Ugo Schiff” (Italy)

    2015-01-15

    Pseudocontact shifts (PCSs) and residual dipolar couplings (RDCs) arising from the presence of paramagnetic metal ions in proteins as well as RDCs due to partial orientation induced by external orienting media are nowadays routinely measured as a part of the NMR characterization of biologically relevant systems. PCSs and RDCs are becoming more and more popular as restraints (1) to determine and/or refine protein structures in solution, (2) to monitor the extent of conformational heterogeneity in systems composed of rigid domains which can reorient with respect to one another, and (3) to obtain structural information in protein–protein complexes. The use of both PCSs and RDCs proceeds through the determination of the anisotropy tensors which are at the origin of these NMR observables. A new user-friendly web tool, called FANTEN (Finding ANisotropy TENsors), has been developed for the determination of the anisotropy tensors related to PCSs and RDCs and has been made freely available through the WeNMR ( http://fanten-enmr.cerm.unifi.it:8080 http://fanten-enmr.cerm.unifi.it:8080 ) gateway. The program has many new features not available in other existing programs, among which the possibility of a joint analysis of several sets of PCS and RDC data and the possibility to perform rigid body minimizations.

  12. NMR characterization of lignins isolated from fruit and vegetable insoluble dietary fiber.

    Science.gov (United States)

    Bunzel, Mirko; Ralph, John

    2006-10-18

    Compositional information for lignins in food is rare and concentrated on cereal grains and brans. As lignins are suspected to have important health roles in the dietary fiber complex, the confusing current information derived from nonspecific lignin determination methods needs to be augmented by diagnostic structural studies. For this study, lignin fractions were isolated from kiwi, pear, rhubarb, and, for comparison, wheat bran insoluble dietary fiber. Clean pear and kiwi lignin isolates allowed for substantive structural profiling, but it is suggested that the significance of lignin in wheat has been overestimated by reliance on nonspecific analytical methods. Volume integration of NMR contours in two-dimensional (13)C-(1)H correlation spectra shows that pear and wheat lignins have comparable guaiacyl and syringyl contributions and that kiwi lignins are particularly guaiacyl-rich (approximately 94% guaiacyl) and suggest that rhubarb lignins, which could not be isolated from contaminating materials, are as syringyl-rich (approximately 96% syringyl) as lignins from any known natural or transgenic fiber source. Typical lignin structures, including those newly NMR-validated (glycerols, spirodienones, and dibenzodioxocins), and resinols implicated as possible mammalian lignan precursors in the gut are demonstrated via their NMR correlation spectra in the fruit and vegetable samples. A novel putative benzodioxane structure appears to be associated with the kiwi lignin. It is concluded that the fruits and vegetables examined contain authentic lignins and that the detailed structural analysis exposes limitations of currently accepted analytical methods.

  13. Simultaneous analysis of amino acid and organic acid by NMR spectrometry, 2. Diagnostic aids for inborn error of metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Koda, Naoya; Yamaguchi, Shuichi; Mori, Takeshi.

    1987-09-01

    Analysis of urine from patients with inborn error of metabolism were studied by /sup 1/H-nuclear magnetic resonance (NMR) spectrometry. Diseases studied were as follows; phenylketonuria, biotin responsive multiple carboxylase deficiency, non-ketotic hyperglycinemia, 3-ketothiolase deficiency, alkaptonuria, methylmalonic acidemia, isovaleric acidemia, glutaric aciduria, argininosuccinic aciduria and hyperornithinemia. In each disease, specific metabolites in urine were recognized by NMR spectrometry. This method is accomplished within 10 minutes with non-treated small volume of urine and will be successfully available for the screening andor diagnosis of inherited metabolic diseases of amino acid and organic acid.

  14. Analysis of the mechanical properties and characterization by solid state 13 C NMR of recycled EVA copolymer/silica composites

    International Nuclear Information System (INIS)

    Stael, Giovanni Chaves; Rocha, Marisa Cristina Guimaraes

    2005-01-01

    The incorporation of micrometer sized silica particles on poly (ethylene-co-vinyl acetate) - EVA - residues from the footwear industry was evaluated. The effects of the processing parameters - temperature and mixing ratio - on the mechanical behavior of molded plates of neat recycled EVA and EVA/silica composites were also investigated. The mechanical properties measured by the tensile test, the fractographic analysis by scanning electron microscopy (SEM), and the 13 C Nuclear Magnetic Resonance (NMR) showed a reduced EVA to silica compatibility. Therefore, incorporation of untreated silica to recycled EVA copolymer produced a slight decrease on the mechanical performance of EVA/silica composites in respect to neat EVA copolymer. The NMR analysis also shows that the crosslinking process on recycled EVA may be occurring at the carbonyl group. (author)

  15. Combining NMR and small angle X-ray and neutron scattering in the structural analysis of a ternary protein-RNA complex

    International Nuclear Information System (INIS)

    Hennig, Janosch; Wang, Iren; Sonntag, Miriam; Gabel, Frank; Sattler, Michael

    2013-01-01

    Many processes in the regulation of gene expression and signaling involve the formation of protein complexes involving multi-domain proteins. Individual domains that mediate protein-protein and protein-nucleic acid interactions are typically connected by flexible linkers, which contribute to conformational dynamics and enable the formation of complexes with distinct binding partners. Solution techniques are therefore required for structural analysis and to characterize potential conformational dynamics. Nuclear magnetic resonance spectroscopy (NMR) provides such information but often only sparse data are obtained with increasing molecular weight of the complexes. It is therefore beneficial to combine NMR data with additional structural restraints from complementary solution techniques. Small angle X-ray/neutron scattering (SAXS/SANS) data can be efficiently combined with NMR-derived information, either for validation or by providing additional restraints for structural analysis. Here, we show that the combination of SAXS and SANS data can help to refine structural models obtained from data-driven docking using HADDOCK based on sparse NMR data. The approach is demonstrated with the ternary protein-protein-RNA complex involving two RNA recognition motif (RRM) domains of Sex-lethal, the N-terminal cold shock domain of Upstream-to-N-Ras, and msl-2 mRNA. Based on chemical shift perturbations we have mapped protein-protein and protein-RNA interfaces and complemented this NMR-derived information with SAXS data, as well as SANS measurements on subunit-selectively deuterated samples of the ternary complex. Our results show that, while the use of SAXS data is beneficial, the additional combination with contrast variation in SANS data resolves remaining ambiguities and improves the docking based on chemical shift perturbations of the ternary protein-RNA complex.

  16. Combining NMR and small angle X-ray and neutron scattering in the structural analysis of a ternary protein-RNA complex

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Janosch; Wang, Iren; Sonntag, Miriam [Institute of Structural Biology, Helmholtz Zentrum Muenchen (Germany); Gabel, Frank [Extremophiles and Large Molecular Assemblies Group (ELMA), Institut de Biologie Structurale (IBS) CEA-CNRS-UJF (France); Sattler, Michael, E-mail: sattler@helmholtz-muenchen.de [Institute of Structural Biology, Helmholtz Zentrum Muenchen (Germany)

    2013-05-15

    Many processes in the regulation of gene expression and signaling involve the formation of protein complexes involving multi-domain proteins. Individual domains that mediate protein-protein and protein-nucleic acid interactions are typically connected by flexible linkers, which contribute to conformational dynamics and enable the formation of complexes with distinct binding partners. Solution techniques are therefore required for structural analysis and to characterize potential conformational dynamics. Nuclear magnetic resonance spectroscopy (NMR) provides such information but often only sparse data are obtained with increasing molecular weight of the complexes. It is therefore beneficial to combine NMR data with additional structural restraints from complementary solution techniques. Small angle X-ray/neutron scattering (SAXS/SANS) data can be efficiently combined with NMR-derived information, either for validation or by providing additional restraints for structural analysis. Here, we show that the combination of SAXS and SANS data can help to refine structural models obtained from data-driven docking using HADDOCK based on sparse NMR data. The approach is demonstrated with the ternary protein-protein-RNA complex involving two RNA recognition motif (RRM) domains of Sex-lethal, the N-terminal cold shock domain of Upstream-to-N-Ras, and msl-2 mRNA. Based on chemical shift perturbations we have mapped protein-protein and protein-RNA interfaces and complemented this NMR-derived information with SAXS data, as well as SANS measurements on subunit-selectively deuterated samples of the ternary complex. Our results show that, while the use of SAXS data is beneficial, the additional combination with contrast variation in SANS data resolves remaining ambiguities and improves the docking based on chemical shift perturbations of the ternary protein-RNA complex.

  17. Theory of NMR probe design

    International Nuclear Information System (INIS)

    Schnall, M.D.

    1988-01-01

    The NMR probe is the intrinsic part of the NMR system which allows transmission of a stimulus to a sample and the reception of a resulting signal from a sample. NMR probes are used in both imaging and spectroscopy. Optimal probe design is important to the production of adequate signal/moise. It is important for anyone using NMR techniques to understand how NMR probes work and how to optimize probe design

  18. Applications of NMR spectroscopy to xenobiotic metabolism

    International Nuclear Information System (INIS)

    Harris, T.M.

    1989-01-01

    Recent years have seen high field NMR spectrometers become commonplace in research laboratories. At the same time, major advances in methodology for structural analysis have occurred, particularly notable among these being the development of two-dimensional spectroscopic techniques. Many applications have been made of NMR spectroscopy in the study of xenobiotic metabolic processes. This deals with two specific applications which have been made in the author's laboratory and involve mechanistic studies of the reactions of the carcinogens ethylene dibromide and aflatoxin with DNA

  19. Molecular characterization of dissolved organic matter from subtropical wetlands: a comparative study through the analysis of optical properties, NMR and FTICR/MS

    Science.gov (United States)

    Hertkorn, Norbert; Harir, Mourad; Cawley, Kaelin M.; Schmitt-Kopplin, Philippe; Jaffé, Rudolf

    2016-04-01

    Wetlands provide quintessential ecosystem services such as maintenance of water quality, water supply and biodiversity, among others; however, wetlands are also among the most threatened ecosystems worldwide. Natural dissolved organic matter (DOM) is an abundant and critical component in wetland biogeochemistry. This study describes the first detailed, comparative, molecular characterization of DOM in subtropical, pulsed, wetlands, namely the Everglades (USA), the Pantanal (Brazil) and the Okavango Delta (Botswana), using optical properties, high-field nuclear magnetic resonance (NMR) and ultrahigh-resolution mass spectrometry (FT-ICRMS), and compares compositional features to variations in organic matter sources and flooding characteristics (i.e., differences in hydroperiod). While optical properties showed a high degree of variability within and between the three wetlands, analogies in DOM fluorescence properties were such that an established excitation emission matrix fluorescence parallel factor analysis (EEM-PARAFAC) model for the Everglades was perfectly applicable to the other two wetlands. Area-normalized 1H NMR spectra of selected samples revealed clear distinctions of samples while a pronounced congruence within the three pairs of wetland DOM readily suggested the presence of an individual wetland-specific molecular signature. Within sample pairs (long- vs. short-hydroperiod sites), internal differences mainly referred to intensity variations (denoting variable abundance) rather than to alterations of NMR resonances positioning (denoting diversity of molecules). The relative disparity was largest between the Everglades long- and short-hydroperiod samples, whereas Pantanal and Okavango samples were more alike among themselves. Otherwise, molecular divergence was most obvious in the case of unsaturated protons (δH > 5 ppm). 2-D NMR spectroscopy for a particular sample revealed a large richness of aliphatic and unsaturated substructures, likely derived from

  20. NMR as a probe metabolic disorders in disease and treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yushmanov, Victor E [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Chemical Physics

    1994-12-31

    The effects of malignant tumors, chemical and physical factors (toxic agents, ionizing radiation) as well as of their treatment on tissue metabolism were studied by NMR imaging. The importance of NMR is highlighted since it enables to a better understanding of molecular mechanisms of diseases and therapeutic interventions, in addition to the analysis of metabolic disorders in human beings. Combined with the studies of experimental animal pathologies, may constitute a base for new types of NMR-diagnosis in vivo 10 refs.

  1. NMR-based Structural Analysis of Threonylcarbamoyl-AMP Synthase and Its Substrate Interactions.

    Science.gov (United States)

    Harris, Kimberly A; Bobay, Benjamin G; Sarachan, Kathryn L; Sims, Alexis F; Bilbille, Yann; Deutsch, Christopher; Iwata-Reuyl, Dirk; Agris, Paul F

    2015-08-14

    The hypermodified nucleoside N(6)-threonylcarbamoyladenosine (t(6)A37) is present in many distinct tRNA species and has been found in organisms in all domains of life. This post-transcriptional modification enhances translation fidelity by stabilizing the anticodon/codon interaction in the ribosomal decoding site. The biosynthetic pathway of t(6)A37 is complex and not well understood. In bacteria, the following four proteins have been discovered to be both required and sufficient for t(6)A37 modification: TsaC, TsaD, TsaB, and TsaE. Of these, TsaC and TsaD are members of universally conserved protein families. Although TsaC has been shown to catalyze the formation of L-threonylcarbamoyl-AMP, a key intermediate in the biosynthesis of t(6)A37, the details of the enzymatic mechanism remain unsolved. Therefore, the solution structure of Escherichia coli TsaC was characterized by NMR to further study the interactions with ATP and L-threonine, both substrates of TsaC in the biosynthesis of L-threonylcarbamoyl-AMP. Several conserved amino acids were identified that create a hydrophobic binding pocket for the adenine of ATP. Additionally, two residues were found to interact with L-threonine. Both binding sites are located in a deep cavity at the center of the protein. Models derived from the NMR data and molecular modeling reveal several sites with considerable conformational flexibility in TsaC that may be important for L-threonine recognition, ATP activation, and/or protein/protein interactions. These observations further the understanding of the enzymatic reaction catalyzed by TsaC, a threonylcarbamoyl-AMP synthase, and provide structure-based insight into the mechanism of t(6)A37 biosynthesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. 13C-NMR chemical shift databases as a quick tool to evaluate structural models of humic substances

    DEFF Research Database (Denmark)

    Nyrop Albers, Christian; Hansen, Poul Erik

    2010-01-01

    Models for humic and fulvic acids are discussed based on 13C liquid state NMR spectra combined with results from elemental analysis and titration studies. The analysis of NMR spectra is based on a full reconstruction of the NMR spectrum done with help of 13C-NMR data bases by adding up chemical...... side missing structural elements in the models can be suggested. A number of proposed structures for humic and fulvic acids are discussed based on the above analysis....

  3. Structure determination of the single glycan of rabbit serotransferrin by methylation analysis and 360 MHz /sup 1/H NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Leger, D; Tordera, V; Spik, G [Lille-1 Univ., 59 - Villeneuve-d' Ascq (France); Dorland, L; Haverkamp, J; Vliegenthart, J F.G. [Rijksuniversiteit Utrecht (Netherlands)

    1978-09-15

    The glycopeptide fraction of rabbit serotransferrin (STF) has been investigated applying an original method for the determination of glycan primary structure combining monosaccharide determination, permethylation and 360 MHz /sup 1/H NMR. It is concluded that the highly purified rabbit transferrin contains only 1 glycan chain/molecule. A heterogeneity of the glycan moiety in the sialic acid residues was observed on isolation by paper electrophoresis of a disialylglycopeptide G-1 and a monosialylglycopeptide 2. The primary structure of glycopeptide G-1 deduced on the basis of the data of carbohydrate composition, permethylation analysis and 360 MHz /sup 1/H NMR spectroscopy is identical to the primary structure of human serotransferrin glycan and the glycopeptide G-2 was shown by /sup 1/H NMR spectroscopy, to be a mixture of two isomeric monosialylglycopeptides.

  4. Calibrating Detailed Chemical Analysis of M dwarfs

    Science.gov (United States)

    Veyette, Mark; Muirhead, Philip Steven; Mann, Andrew; Brewer, John; Allard, France; Homeier, Derek

    2018-01-01

    The ability to perform detailed chemical analysis of Sun-like F-, G-, and K-type stars is a powerful tool with many applications including studying the chemical evolution of the Galaxy, assessing membership in stellar kinematic groups, and constraining planet formation theories. Unfortunately, complications in modeling cooler stellar atmospheres has hindered similar analysis of M-dwarf stars. Large surveys of FGK abundances play an important role in developing methods to measure the compositions of M dwarfs by providing benchmark FGK stars that have widely-separated M dwarf companions. These systems allow us to empirically calibrate metallicity-sensitive features in M dwarf spectra. However, current methods to measure metallicity in M dwarfs from moderate-resolution spectra are limited to measuring overall metallicity and largely rely on astrophysical abundance correlations in stellar populations. In this talk, I will discuss how large, homogeneous catalogs of precise FGK abundances are crucial to advancing chemical analysis of M dwarfs beyond overall metallicity to direct measurements of individual elemental abundances. I will present a new method to analyze high-resolution, NIR spectra of M dwarfs that employs an empirical calibration of synthetic M dwarf spectra to infer effective temperature, Fe abundance, and Ti abundance. This work is a step toward detailed chemical analysis of M dwarfs at a similar precision achieved for FGK stars.

  5. nmrML: A Community Supported Open Data Standard for the Description, Storage, and Exchange of NMR Data.

    Science.gov (United States)

    Schober, Daniel; Jacob, Daniel; Wilson, Michael; Cruz, Joseph A; Marcu, Ana; Grant, Jason R; Moing, Annick; Deborde, Catherine; de Figueiredo, Luis F; Haug, Kenneth; Rocca-Serra, Philippe; Easton, John; Ebbels, Timothy M D; Hao, Jie; Ludwig, Christian; Günther, Ulrich L; Rosato, Antonio; Klein, Matthias S; Lewis, Ian A; Luchinat, Claudio; Jones, Andrew R; Grauslys, Arturas; Larralde, Martin; Yokochi, Masashi; Kobayashi, Naohiro; Porzel, Andrea; Griffin, Julian L; Viant, Mark R; Wishart, David S; Steinbeck, Christoph; Salek, Reza M; Neumann, Steffen

    2018-01-02

    NMR is a widely used analytical technique with a growing number of repositories available. As a result, demands for a vendor-agnostic, open data format for long-term archiving of NMR data have emerged with the aim to ease and encourage sharing, comparison, and reuse of NMR data. Here we present nmrML, an open XML-based exchange and storage format for NMR spectral data. The nmrML format is intended to be fully compatible with existing NMR data for chemical, biochemical, and metabolomics experiments. nmrML can capture raw NMR data, spectral data acquisition parameters, and where available spectral metadata, such as chemical structures associated with spectral assignments. The nmrML format is compatible with pure-compound NMR data for reference spectral libraries as well as NMR data from complex biomixtures, i.e., metabolomics experiments. To facilitate format conversions, we provide nmrML converters for Bruker, JEOL and Agilent/Varian vendor formats. In addition, easy-to-use Web-based spectral viewing, processing, and spectral assignment tools that read and write nmrML have been developed. Software libraries and Web services for data validation are available for tool developers and end-users. The nmrML format has already been adopted for capturing and disseminating NMR data for small molecules by several open source data processing tools and metabolomics reference spectral libraries, e.g., serving as storage format for the MetaboLights data repository. The nmrML open access data standard has been endorsed by the Metabolomics Standards Initiative (MSI), and we here encourage user participation and feedback to increase usability and make it a successful standard.

  6. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR.

    Science.gov (United States)

    van der Schot, Gijs; Bonvin, Alexandre M J J

    2015-08-01

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on unassigned NOE lists (Huang et al. in J Am Chem Soc 127:1665-1674, 2005b, doi: 10.1021/ja047109h). We compare the original submissions using a previous version of the server based on Rosetta version 2.6 with recalculated targets using the new R3FP fragment picker for fragment selection and implementing a new annotation of prediction reliability (van der Schot et al. in J Biomol NMR 57:27-35, 2013, doi: 10.1007/s10858-013-9762-6), both implemented in the CS-Rosetta3 WeNMR server. In this second round of CASD-NMR, the WeNMR CS-Rosetta server has demonstrated a much better performance than in the first round since only converged targets were submitted. Further, recalculation of all CASD-NMR targets using the new version of the server demonstrates that our new annotation of prediction quality is giving reliable results. Predictions annotated as weak are often found to provide useful models, but only for a fraction of the sequence, and should therefore only be used with caution.

  7. NMR studies of the fate of adenine nucleotides in glucose-starved erythrocytes

    International Nuclear Information System (INIS)

    Bubb, W.A.; Mulquiney, P.J.; Kuchel, P.W.; Rohwer, J.; De Atauri, P.

    2002-01-01

    Full text: As a consequence of many refinements during the past 30 years, we now have a detailed understanding of the glycolytic pathway in human erythrocytes. By comparison, and notwithstanding their central importance to four key steps in erythrocyte glycolysis, our knowledge of the catabolism of adenine nucleotides remains relatively limited. In particular, the mechanism for the degradation of AMP, whose concentration rises under conditions of oxidative stress or glucose deprivation, remains poorly understood, AMP degradation may proceed via two possible pathways which converge in the production of inosine. Analysis of the key intermediates for the respective pathways, adenosine and AMP, as well as determination of end products is not straightforward. High-resolution NMR spectroscopy affords a potentially simple analytical solution to this problem but is complicated by spectral overlap and the sensitivity of key resonances to variations in pH and the concentrations of cations such as Mg 2+ . We describe a multinuclear NMR approach towards characterising the intermediates and end-products of adenine nucleotide metabolism in glucose-starved human erythrocytes. Assignments based on homo- and heteronuclear correlation experiments for both 13 C and 31 P are presented

  8. Towards automatic metabolomic profiling of high-resolution one-dimensional proton NMR spectra

    International Nuclear Information System (INIS)

    Mercier, Pascal; Lewis, Michael J.; Chang, David; Baker, David; Wishart, David S.

    2011-01-01

    Nuclear magnetic resonance (NMR) and Mass Spectroscopy (MS) are the two most common spectroscopic analytical techniques employed in metabolomics. The large spectral datasets generated by NMR and MS are often analyzed using data reduction techniques like Principal Component Analysis (PCA). Although rapid, these methods are susceptible to solvent and matrix effects, high rates of false positives, lack of reproducibility and limited data transferability from one platform to the next. Given these limitations, a growing trend in both NMR and MS-based metabolomics is towards targeted profiling or “quantitative” metabolomics, wherein compounds are identified and quantified via spectral fitting prior to any statistical analysis. Despite the obvious advantages of this method, targeted profiling is hindered by the time required to perform manual or computer-assisted spectral fitting. In an effort to increase data analysis throughput for NMR-based metabolomics, we have developed an automatic method for identifying and quantifying metabolites in one-dimensional (1D) proton NMR spectra. This new algorithm is capable of using carefully constructed reference spectra and optimizing thousands of variables to reconstruct experimental NMR spectra of biofluids using rules and concepts derived from physical chemistry and NMR theory. The automated profiling program has been tested against spectra of synthetic mixtures as well as biological spectra of urine, serum and cerebral spinal fluid (CSF). Our results indicate that the algorithm can correctly identify compounds with high fidelity in each biofluid sample (except for urine). Furthermore, the metabolite concentrations exhibit a very high correlation with both simulated and manually-detected values.

  9. Towards automatic metabolomic profiling of high-resolution one-dimensional proton NMR spectra

    Energy Technology Data Exchange (ETDEWEB)

    Mercier, Pascal; Lewis, Michael J.; Chang, David, E-mail: dchang@chenomx.com [Chenomx Inc (Canada); Baker, David [Pfizer Inc (United States); Wishart, David S. [University of Alberta, Department of Computing Science and Biological Sciences (Canada)

    2011-04-15

    Nuclear magnetic resonance (NMR) and Mass Spectroscopy (MS) are the two most common spectroscopic analytical techniques employed in metabolomics. The large spectral datasets generated by NMR and MS are often analyzed using data reduction techniques like Principal Component Analysis (PCA). Although rapid, these methods are susceptible to solvent and matrix effects, high rates of false positives, lack of reproducibility and limited data transferability from one platform to the next. Given these limitations, a growing trend in both NMR and MS-based metabolomics is towards targeted profiling or 'quantitative' metabolomics, wherein compounds are identified and quantified via spectral fitting prior to any statistical analysis. Despite the obvious advantages of this method, targeted profiling is hindered by the time required to perform manual or computer-assisted spectral fitting. In an effort to increase data analysis throughput for NMR-based metabolomics, we have developed an automatic method for identifying and quantifying metabolites in one-dimensional (1D) proton NMR spectra. This new algorithm is capable of using carefully constructed reference spectra and optimizing thousands of variables to reconstruct experimental NMR spectra of biofluids using rules and concepts derived from physical chemistry and NMR theory. The automated profiling program has been tested against spectra of synthetic mixtures as well as biological spectra of urine, serum and cerebral spinal fluid (CSF). Our results indicate that the algorithm can correctly identify compounds with high fidelity in each biofluid sample (except for urine). Furthermore, the metabolite concentrations exhibit a very high correlation with both simulated and manually-detected values.

  10. An NMR study of the covalent and noncovalent interactions of CC-1065 and DNA

    International Nuclear Information System (INIS)

    Scahill, T.A.; Jensen, R.M.; Swenson, D.H.; Hatzenbuhler, N.T.; Petzold, G.; Wierenga, W.; Brahme, N.D.

    1990-01-01

    The binding of the antitumor drug CC-1065 has been studied with nuclear magnetic resonance (NMR) spectroscopy. This study involves two parts, the elucidation of the covalent binding site of the drug to DNA and a detailed investigation of the noncovalent interactions of CC-1065 with a DNA fragment through analysis of 2D NOE (NOESY) experiments. A CC-1065-DNA adduct was prepared, and an adenine adduct was released upon heating. NMR ( 1 H and 13 C) analysis of the adduct shows that the drug binds to N3 of adenine by reaction of its cyclopropyl group. The reaction pathway and product formed were determined by analysis of the 13 C DEPT spectra. An octamer duplex, d(CGATTAGC·GCTAATCG), was synthesized and used in the interaction study of CC-1065 and the oligomer. The duplex and the drug-octamer complex were both analyzed by 2D spectroscopy (COSY, NOESY). The relative intensity of the NOEs observed between the drug (CC-1065) and the octamer duplex shows conclusively that the drug is located in the minor groove, covalently attached to N3 of adenine 6 and positioned from the 3' → 5' end in relation to strand A [d(CGATTA 6 GC)]. A mechanism for drug binding and stabilization can be inferred from the NOE data and model-building studies

  11. Automatic 1H-NMR Screening of Fatty Acid Composition in Edible Oils

    Directory of Open Access Journals (Sweden)

    David Castejón

    2016-02-01

    Full Text Available In this work, we introduce an NMR-based screening method for the fatty acid composition analysis of edible oils. We describe the evaluation and optimization needed for the automated analysis of vegetable oils by low-field NMR to obtain the fatty acid composition (FAC. To achieve this, two scripts, which automatically analyze and interpret the spectral data, were developed. The objective of this work was to drive forward the automated analysis of the FAC by NMR. Due to the fact that this protocol can be carried out at low field and that the complete process from sample preparation to printing the report only takes about 3 min, this approach is promising to become a fundamental technique for high-throughput screening. To demonstrate the applicability of this method, the fatty acid composition of extra virgin olive oils from various Spanish olive varieties (arbequina, cornicabra, hojiblanca, manzanilla, and picual was determined by 1H-NMR spectroscopy according to this protocol.

  12. Analysis of the mechanical properties and characterization by solid state 13C NMR of recycled EVA copolymer/silica composites

    Directory of Open Access Journals (Sweden)

    Giovanni Chaves Stael

    2005-09-01

    Full Text Available The incorporation of micrometer sized silica particles on poly (ethylene-co-vinyl acetate - EVA - residues from the footwear industry was evaluated. The effects of the processing parameters - temperature and mixing ratio - on the mechanical behavior of molded plates of neat recycled EVA and EVA/silica composites were also investigated. The mechanical properties measured by the tensile test, the fractographic analysis by scanning electron microscopy (SEM, and the 13C Nuclear Magnetic Resonance (NMR showed a reduced EVA to silica compatibility. Therefore, incorporation of untreated silica to recycled EVA copolymer produced a slight decrease on the mechanical performance of EVA/silica composites in respect to neat EVA copolymer. The NMR analysis also shows that the crosslinking process on recycled EVA may be occurring at the carbonyl group.

  13. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR

    NARCIS (Netherlands)

    Van Der Schot, Gijs; Bonvin, Alexandre M J J

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on

  14. Experimental solid state NMR of gas hydrates : problems and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Moudrakovski, I.; Lu, H.; Ripmeester, J. [National Research Council of Canada, Ottawa, ON (Canada). Steacie Inst. for Molecular Sciences; Kumar, R.; Susilo, R. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Luzi, M. [GeoForschungsZentrum Potsdam, Potsdam (Germany)

    2008-07-01

    Solid State NMR is a suitable spectroscopic technique for hydrate research for several reasons, including its capability to distinguish between different structural types of hydrates, its quantitative nature and potential for both in-situ and time resolved experiments. This study illustrated the applications of solid state NMR for compositional and structural studies of clathrate hydrates, with particular emphasis on experimental techniques and potential ways to overcome technical difficulties. In order to use the method to its full capacity, some instrumental developments are needed to adapt it to the specific experimental requirements of hydrate studies, such as very low temperatures and high pressures. This presentation discussed the quantification of the Carbon-13 spectra with examples from natural and synthetic hydrates prepared from multi-component mixtures of hydrocarbons. The main approach used for the first two examples was Carbon-13 NMR with Magic Angle Spinning (MAS) at -100 degrees C. The detailed characterization of mixed hydrogen hydrates required low temperature hydrogen MAS. The quantification problems encountered during these experiments were also discussed. The purpose of these recent experimental developments was to prompt wider application of Solid State NMR in hydrate research. NMR proved to be a viable method for analyzing the composition and structure of multi-component mixed gas hydrates; characterizing natural gas hydrates; and, evaluating the formation conditions and properties of mixed hydrogen hydrates. The limitations of the method were highlighted and sensible choices of experimental conditions and techniques that ensure accurate results were discussed. 34 refs., 10 figs.

  15. C-13 NMR spectroscopy of plasma reduces interference of hypertriglyceridemia in the H-1 NMR detection of malignancy

    International Nuclear Information System (INIS)

    Fossell, E.T.; Hall, F.M.; McDonagh, J.

    1991-01-01

    The authors have previously described the application of water-suppressed proton nuclear magnetic resonance (H-1 NMR) spectroscopy of plasma for detection of malignancy. Subsequently, hypertriglyceridemia has been identified as a source of false positive results. Here is described a confirmatory, adjunctive technique -analysis of the carbon-13 (C-13) NMR spectrum of plasma- which also identifies the presence of malignancy but is not sensitive to the plasma triglyceride level. Blinded plasma samples from 480 normal donors and 208 patients scheduled for breast biopsy were analyzed by water-suppressed H-1 and C-13 NMR spectroscopy. Triglyceride levels were also measured. Among the normal donors, there were 38 individuals with hypertriglyceridemia of whom 18 had results consistent with malignancy by H-1 NMR spectroscopy. However, the C-13 technique reduced the apparent H-1 false positive rate from 7.0 to 0.6 percent. Similarly, in the breast biopsy cohort, C-13 reduced the false positive rate from 2.8 to 0.9 percent. Furthermore, the accuracy of the combined H-1/C-13 test in this blinded study was greater than 96 percent in 208 patients studied. (author). 27 refs.; 5 figs.; 4 tabs

  16. Single corn kernel wide-line NMR oil analysis for breeding purpose

    Energy Technology Data Exchange (ETDEWEB)

    Wilmers, M C.C.; Rettori, C; Vargas, H; Barberis, G E [Universidade Estadual de Campinas (Brazil). Inst. de Fisica; da Silva, W J [Universidade Estadual de Campinas (Brazil). Inst. de Biologia

    1978-12-01

    The Wide-Line NMR technique was used to determine the oil content in single corn seeds. Using distinct radio frequency (RF) power, a systematic work was done in kernels with about 10% of moisture, and also in artificially dried seeds with approximated 5% of moisture. For nondried seeds NMR spectra showed clearly the presence of three resonances with different RF saturation factor. For dried seeds, the oil concentration determined by NMR was highly correlated (r = 0,997) with that determined by a gravimetric method. The highest discrepancy between the two methods was found to be about 1,3%. When relative measurements are required as in the case of single kernel for recurrent selection program, precision in the individual selected kernel will be about 2,5%. Applying this technique, a first cycle of recurrent selection using S/sub 1/ lines for low and high oil content was performed in an open pollinated variety. Gain from selection was 12.0 and 14.1% in the populations for high and low oil contents, respectively.

  17. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR

    Energy Technology Data Exchange (ETDEWEB)

    Schot, Gijs van der [Uppsala University, Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology (Sweden); Bonvin, Alexandre M. J. J., E-mail: a.m.j.j.bonvin@uu.nl [Utrecht University, Faculty of Science – Chemistry, Bijvoet Center for Biomolecular Research (Netherlands)

    2015-08-15

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on unassigned NOE lists (Huang et al. in J Am Chem Soc 127:1665–1674, 2005b, doi: 10.1021/ja047109h 10.1021/ja047109h ). We compare the original submissions using a previous version of the server based on Rosetta version 2.6 with recalculated targets using the new R3FP fragment picker for fragment selection and implementing a new annotation of prediction reliability (van der Schot et al. in J Biomol NMR 57:27–35, 2013, doi: 10.1007/s10858-013-9762-6 10.1007/s10858-013-9762-6 ), both implemented in the CS-Rosetta3 WeNMR server. In this second round of CASD-NMR, the WeNMR CS-Rosetta server has demonstrated a much better performance than in the first round since only converged targets were submitted. Further, recalculation of all CASD-NMR targets using the new version of the server demonstrates that our new annotation of prediction quality is giving reliable results. Predictions annotated as weak are often found to provide useful models, but only for a fraction of the sequence, and should therefore only be used with caution.

  18. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR

    International Nuclear Information System (INIS)

    Schot, Gijs van der; Bonvin, Alexandre M. J. J.

    2015-01-01

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on unassigned NOE lists (Huang et al. in J Am Chem Soc 127:1665–1674, 2005b, doi: 10.1021/ja047109h 10.1021/ja047109h ). We compare the original submissions using a previous version of the server based on Rosetta version 2.6 with recalculated targets using the new R3FP fragment picker for fragment selection and implementing a new annotation of prediction reliability (van der Schot et al. in J Biomol NMR 57:27–35, 2013, doi: 10.1007/s10858-013-9762-6 10.1007/s10858-013-9762-6 ), both implemented in the CS-Rosetta3 WeNMR server. In this second round of CASD-NMR, the WeNMR CS-Rosetta server has demonstrated a much better performance than in the first round since only converged targets were submitted. Further, recalculation of all CASD-NMR targets using the new version of the server demonstrates that our new annotation of prediction quality is giving reliable results. Predictions annotated as weak are often found to provide useful models, but only for a fraction of the sequence, and should therefore only be used with caution

  19. Can NMR solve some significant challenges in metabolomics?

    Science.gov (United States)

    Gowda, G.A. Nagana; Raftery, Daniel

    2015-01-01

    The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact biospecimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory. PMID:26476597

  20. Can NMR solve some significant challenges in metabolomics?

    Science.gov (United States)

    Nagana Gowda, G A; Raftery, Daniel

    2015-11-01

    The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact bio-specimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Can NMR solve some significant challenges in metabolomics?

    Science.gov (United States)

    Nagana Gowda, G. A.; Raftery, Daniel

    2015-11-01

    The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact bio-specimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory.

  2. Direct Comparison of 19F qNMR and 1H qNMR by Characterizing Atorvastatin Calcium Content

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-01-01

    Full Text Available Quantitative nuclear magnetic resonance (qNMR is a powerful tool in measuring drug content because of its high speed, sensitivity, and precision. Most of the reports were based on proton qNMR (1H qNMR and only a few fluorine qNMR (19F qNMR were reported. No research has been conducted to directly compare the advantage and disadvantage between these two methods. In the present study, both 19F and 1H qNMR were performed to characterize the content of atorvastatin calcium with the same internal standard. Linearity, precision, and results from two methods were compared. Results showed that 19F qNMR has similar precision and sensitivity to 1H qNMR. Both methods generate similar results compared to mass balance method. Major advantage from 19F qNMR is that the analyte signal is with less or no interference from impurities. 19F qNMR is an excellent approach to quantify fluorine-containing analytes.

  3. Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment

    International Nuclear Information System (INIS)

    Fan Ying; Shi Lichi; Ladizhansky, Vladimir; Brown, Leonid S.

    2011-01-01

    Overexpression of isotope-labeled multi-spanning eukaryotic membrane proteins for structural NMR studies is often challenging. On the one hand, difficulties with achieving proper folding, membrane insertion, and native-like post-translational modifications frequently disqualify bacterial expression systems. On the other hand, eukaryotic cell cultures can be prohibitively expensive. One of the viable alternatives, successfully used for producing proteins for solution NMR studies, is yeast expression systems, particularly Pichia pastoris. We report on successful implementation and optimization of isotope labeling protocols, previously used for soluble secreted proteins, to produce homogeneous samples of a eukaryotic seven-transmembrane helical protein, rhodopsin from Leptosphaeria maculans. Even in shake-flask cultures, yields exceeded 5 mg of purified uniformly 13 C, 15 N-labeled protein per liter of culture. The protein was stable (at least several weeks at 5°C) and functionally active upon reconstitution into lipid membranes at high protein-to-lipid ratio required for solid-state NMR. The samples gave high-resolution 13 C and 15 N solid-state magic angle spinning NMR spectra, amenable to a detailed structural analysis. We believe that similar protocols can be adopted for challenging mammalian targets, which often resist characterization by other structural methods.

  4. BnmrOffice: A Free Software for β-nmr Data Analysis

    Science.gov (United States)

    Saadaoui, Hassan

    A data-analysis framework with a graphical user interface (GUI) is developed to analyze β-nmr spectra in an automated and intuitive way. This program, named BnmrOffice is written in C++ and employs the QT libraries and tools for designing the GUI, and the CERN's Minuit optimization routines for minimization. The program runs under multiple platforms, and is available for free under the terms of the GNU GPL standards. The GUI is structured in tabs to search, plot and analyze data, along other functionalities. The user can tweak the minimization options; and fit multiple data files (or runs) using single or global fitting routines with pre-defined or new models. Currently, BnmrOffice reads TRIUMF's MUD data and ASCII files, and can be extended to other formats.

  5. Vivaldi: Visualization and validation of biomacromolecular NMR structures from the PDB

    Science.gov (United States)

    Hendrickx, Pieter M S; Gutmanas, Aleksandras; Kleywegt, Gerard J

    2013-01-01

    We describe Vivaldi (VIsualization and VALidation DIsplay; http://pdbe.org/vivaldi), a web-based service for the analysis, visualization, and validation of NMR structures in the Protein Data Bank (PDB). Vivaldi provides access to model coordinates and several types of experimental NMR data using interactive visualization tools, augmented with structural annotations and model-validation information. The service presents information about the modeled NMR ensemble, validation of experimental chemical shifts, residual dipolar couplings, distance and dihedral angle constraints, as well as validation scores based on empirical knowledge and databases. Vivaldi was designed for both expert NMR spectroscopists and casual non-expert users who wish to obtain a better grasp of the information content and quality of NMR structures in the public archive. © Proteins 2013. © 2012 Wiley Periodicals, Inc. PMID:23180575

  6. Conformational, vibrational, NMR and DFT studies of N-methylacetanilide.

    Science.gov (United States)

    Arjunan, V; Santhanam, R; Rani, T; Rosi, H; Mohan, S

    2013-03-01

    A detailed conformational, vibrational, NMR and DFT studies of N-methylacetanilide have been carried out. In DFT, B3LYP method have been used with 6-31G(**), 6-311++G(**) and cc-pVTZ basis sets. The vibrational frequencies were calculated resulting in IR and Raman frequencies together with intensities and Raman depolarisation ratios. The dipole moment derivatives were computed analytically. Owing to the complexity of the molecule, the potential energy distributions of the vibrational modes of the compound are also calculated. Isoelectronic molecular electrostatic potential surface (MEP) and electron density surface were examined. (1)H and (13)C NMR isotropic chemical shifts were calculated and the assignments made are compared with the experimental values. The energies of important MO's of the compound were also determined from TD-DFT method. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Dynamic pulsed-field-gradient NMR

    CERN Document Server

    Sørland, Geir Humborstad

    2014-01-01

    Dealing with the basics, theory and applications of dynamic pulsed-field-gradient NMR NMR (PFG NMR), this book describes the essential theory behind diffusion in heterogeneous media that can be combined with NMR measurements to extract important information of the system being investigated. This information could be the surface to volume ratio, droplet size distribution in emulsions, brine profiles, fat content in food stuff, permeability/connectivity in porous materials and medical applications currently being developed. Besides theory and applications it will provide the readers with background knowledge on the experimental set-ups, and most important, deal with the pitfalls that are numerously present in work with PFG-NMR. How to analyze the NMR data and some important basic knowledge on the hardware will be explained, too.

  8. A Solid-State NMR Experiment: Analysis of Local Structural Environments in Phosphate Glasses

    Science.gov (United States)

    Anderson, Stanley E.; Saiki, David; Eckert, Hellmut; Meise-Gresch, Karin

    2004-01-01

    An experiment that can be used to directly study the local chemical environments of phosphorus in solid amorphous materials is demonstrated. The experiment aims at familiarizing the students of chemistry with the principles of solid-state NMR, by having them synthesize a simple phosphate glass, and making them observe the (super 31)P NMR spectrum,…

  9. NMR and Chemometric Characterization of Vacuum Residues and Vacuum Gas Oils from Crude Oils of Different Origin

    Directory of Open Access Journals (Sweden)

    Jelena Parlov Vuković

    2015-03-01

    Full Text Available NMR spectroscopy in combination with statistical methods was used to study vacuum residues and vacuum gas oils from 32 crude oils of different origin. Two chemometric metodes were applied. Firstly, principal component analysis on complete spectra was used to perform classification of samples and clear distinction between vacuum residues and vacuum light and heavy gas oils were obtained. To quantitatively predict the composition of asphaltenes, principal component regression models using areas of resonance signals spaned by 11 frequency bins of the 1H NMR spectra were build. The first 5 principal components accounted for more than 94 % of variations in the input data set and coefficient of determination for correlation between measured and predicted values was R2 = 0.7421. Although this value is not significant, it shows the underlying linear dependence in the data. Pseudo two-dimensional DOSY NMR experiments were used to assess the composition and structural properties of asphaltenes in a selected crude oil and its vacuum residue on the basis of their different hydrodynamic behavior and translational diffusion coefficients. DOSY spectra showed the presence of several asphaltene aggregates differing in size and interactions they formed. The obtained results have shown that NMR techniques in combination with chemometrics are very useful to analyze vacuum residues and vacuum gas oils. Furthermore, we expect that our ongoing investigation of asphaltenes from crude oils of different origin will elucidate in more details composition, structure and properties of these complex molecular systems.

  10. 11B nutation NMR study of powdered borosilicates

    International Nuclear Information System (INIS)

    Woo, Ae Ja; Yang, Kyung Hwa; Han, Duk Young

    1998-01-01

    In this work, we applied the 1D 11 B nutation NMR method for the analysis of the local structural environments in powdered borosilicates (SiO 2 -B 2 O 3 ). Spin dynamics during a rf irradiation for spin I=3/2 was analytically calculated with a density matrix formalism. Spectral simulation programs were written in MATLAB on a PC. Two borosilicates prepared by the sol-gel process at different stabilization temperature were used for the 1D 11 B nutation NMR experiment. The 11 B NMR parameters, quadrupole coupling constants (e 2 qQ/h) and asymmetry parameters (η), for each borosilicate were extracted from the nonlinear least-squares fitting. The effects of heat treatments on the local structures of boron sites in borosilicates were discussed

  11. NMR spectroscopic and analytical ultracentrifuge analysis of membrane protein detergent complexes

    Directory of Open Access Journals (Sweden)

    Choe Senyon

    2007-11-01

    Full Text Available Abstract Background Structural studies of integral membrane proteins (IMPs are hampered by inherent difficulties in their heterologous expression and in the purification of solubilized protein-detergent complexes (PDCs. The choice and concentrations of detergents used in an IMP preparation play a critical role in protein homogeneity and are thus important for successful crystallization. Results Seeking an effective and standardized means applicable to genomic approaches for the characterization of PDCs, we chose 1D-NMR spectroscopic analysis to monitor the detergent content throughout their purification: protein extraction, detergent exchange, and sample concentration. We demonstrate that a single NMR measurement combined with a SDS-PAGE of a detergent extracted sample provides a useful gauge of the detergent's extraction potential for a given protein. Furthermore, careful monitoring of the detergent content during the process of IMP production allows for a high level of reproducibility. We also show that in many cases a simple sedimentation velocity measurement provides sufficient data to estimate both the oligomeric state and the detergent-to-protein ratio in PDCs, as well as to evaluate the homogeneity of the samples prior to crystallization screening. Conclusion The techniques presented here facilitate the screening and selection of the extraction detergent, as well as help to maintain reproducibility in the detergent exchange and PDC concentration procedures. Such reproducibility is particularly important for the optimization of initial crystallization conditions, for which multiple purifications are routinely required.

  12. NMR, ESI/MS, and MALDI-TOF/MS analysis of pear juice polymeric proanthocyanidins with potent free radical scavenging activity.

    Science.gov (United States)

    Es-Safi, Nour-Eddine; Guyot, Sylvain; Ducrot, Paul-Henri

    2006-09-20

    The structure of a polymeric proanthocyanidin fraction isolated from pear juice was characterized by NMR, ESI/MS, and MALDI-TOF/MS analyses, and its antioxidant activity was investigated using the DPPH free radical scavenging method. The results obtained from 13C NMR analysis showed the predominance of signals representative of procyanidins. Typical signals in the chemical shift region between 70 and 90 ppm demonstrated the exclusive presence of epicatechin units. The results obtained through negative ESI/MS analysis showed singly and doubly charged ions corresponding to the molecular mass of procyanidins with a degree of polymerization up to 22. The spectra obtained through MALDI-TOF/MS analysis revealed the presence of two series of tannin oligomers. Supporting the observations from NMR spectroscopy, the first series consists of well-resolved tannin identified as procyanidin polymers units with chain lengths of up to 25. A second series of monogalloyl flavan-3-ols polymers with polymerization degree up to 25 were also detected. This is the first mass spectrometric evidence confirming the existence of galloylated procyanidin oligomers in pear fruits. Within each of these oligomers, various signals exist suggesting the presence of several oligomeric tannins. The antioxidant properties of the polymeric fraction were investigated through reduction of the DPPH free radical, and the results obtained showed that the polymeric fraction exhibited a higher antioxidant power compared to those of (+)-catechin and B3 procyanidin dimer.

  13. NMR structure of the HIV-1 reverse transcriptase thumb subdomain

    Energy Technology Data Exchange (ETDEWEB)

    Sharaf, Naima G. [University of Pittsburgh, School of Medicine, Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions (United States); Brereton, Andrew E. [Oregon State University, Department of Biochemistry and Biophysics, 2011 Ag & Life Sciences Bldg (United States); Byeon, In-Ja L. [University of Pittsburgh, School of Medicine, Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions (United States); Andrew Karplus, P. [Oregon State University, Department of Biochemistry and Biophysics, 2011 Ag & Life Sciences Bldg (United States); Gronenborn, Angela M., E-mail: amg100@pitt.edu [University of Pittsburgh, School of Medicine, Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions (United States)

    2016-12-15

    The solution NMR structure of the isolated thumb subdomain of HIV-1 reverse transcriptase (RT) has been determined. A detailed comparison of the current structure with dozens of the highest resolution crystal structures of this domain in the context of the full-length enzyme reveals that the overall structures are very similar, with only two regions exhibiting local conformational differences. The C-terminal capping pattern of the αH helix is subtly different, and the loop connecting the αI and αJ helices in the p51 chain of the full-length p51/p66 heterodimeric RT differs from our NMR structure due to unique packing interactions in mature RT. Overall, our data show that the thumb subdomain folds independently and essentially the same in isolation as in its natural structural context.

  14. 35Cl/37Cl isotope effects in 103Rh NMR of [RhCln(H2O)6−n]3−n complex anions in hydrochloric acid solution as a unique ‘NMR finger-print’ for unambiguous speciation

    International Nuclear Information System (INIS)

    Geswindt, Theodor E.; Gerber, Wilhelmus J.; Brand, D. Jacobus; Koch, Klaus R.

    2012-01-01

    Graphical abstract: 35 Cl/ 37 Cl isotope effects in 103 Rh NMR as a unique ‘NMR-fingerprints’ leading to the unambiguous assignment of [RhCl n (H 2 O) 6−n ] 3−n (n = 3–6) complexes without reliance on accurate δ( 103 Rh) chemical shifts. Highlights: ► Direct 103 Rh NMR (19.11 MHz) spectroscopic method of speciation of [RhCl n (H 2 O) 6−n ] 3−n in HCl. ► 35 Cl/ 37 Cl isotope effects in 103 Rh NMR of [RhCl n (H 2 O) 6−n ] 3−n anions isotopologue and isotopomer induced 103 Rh NMR ‘finger-print’ for unambiguous identification. ► 103 Rh NMR identification of stereoisomers without a need for accurate chemical shifts. - Abstract: A detailed analysis of the 35 Cl/ 37 Cl isotope effects observed in the 19.11 MHz 103 Rh NMR resonances of [RhCl n (H 2 O) 6−n ] 3−n complexes (n = 3–6) in acidic solution at 292.1 K, shows that the ‘fine structure’ of each 103 Rh resonance can be understood in terms of the unique isotopologue and in certain instances the isotopomer distribution in each complex. These 35 Cl/ 37 Cl isotope effects in the 103 Rh NMR resonance of the [Rh 35/37 Cl 6 ] 3− species manifest only as a result of the statistically expected 35 Cl/ 37 Cl isotopologues, whereas for the aquated species such as for example [Rh 35/37 Cl 5 (H 2 O)] 2− , cis-[Rh 35/37 Cl 4 (H 2 O) 2 ] − as well as the mer-[Rh 35/37 Cl 3 (H 2 O) 3 ] complexes, additional fine-structure due to the various possible isotopomers within each class of isotopologues, is visible. Of interest is the possibility of the direct identification of stereoisomers cis-[RhCl 4 (H 2 O) 2 ] − , trans-[RhCl 4 (H 2 O) 2 ] − , fac-[RhCl 3 (H 2 O) 3 ] and mer-[RhCl 3 (H 2 O) 3 ] based on the 103 Rh NMR line shape, other than on the basis of their very similar δ( 103 Rh) chemical shift. The 103 Rh NMR resonance structure thus serves as a novel and unique ‘NMR-fingerprint’ leading to the unambiguous assignment of [RhCl n (H 2 O) 6−n ] 3−n complexes (n = 3–6

  15. Novel methods and applications of NMR and MRI. Low-power RF excitation and hyperpolarized Xenon-129

    International Nuclear Information System (INIS)

    Amor, Nadia

    2012-01-01

    Since their discovery in the middle of the last century, Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) have become an important and very versatile tool in industry, medicine, and basic research. The aim of this work is to explore possible improvements and new applications of NMR methods. First, a recently introduced excitation NMR pulse sequence, termed Frank sequence excitation, which allows for significant reduction of rf-excitation power, is systematically analyzed and compared to conventional NMR in detail. Furthermore, its feasibility for MRI is investigated and advantages as well as drawbacks in comparison to standard MRI are discussed. The second part focuses on new biomedical applications of hyperpolarized (HP) 129 Xe which not only offers a signal enhancement of several orders of magnitude but also provides new contrast mechanisms. A setup for continuous dissolution of HP 129 Xe gas into blood and other fluids is optimized and analyzed quantitatively by NMR and MRI. On the basis of these results, blood-dissolved HP 129 Xe is used to investigate blood-gas dynamics, as well as the rheological behavior of blood.

  16. NMR and IR Spectroscopy for the Structural Characterization of Edible Fats and Oils: An Instrumental Analysis Laboratory

    Science.gov (United States)

    Crowther, Molly W.

    2008-01-01

    This article describes an upper-level instrumental laboratory for undergraduates that explores the complementary nature of IR and NMR spectroscopy for analysis of several edible fats and oils that are structurally similar but differ in physical properties and health implications. Five different fats and oils are analyzed for average chain length,…

  17. Principal component analysis for verifying 1H NMR spectral assignments. The case of 3-aryl (1,2,4)-oxadiazole-5-carbohydrazide benzylidene

    International Nuclear Information System (INIS)

    Silva, Joao Bosco P. da; Malvestiti, Ivani; Hallwass, Fernando; Ramos, Mozart N.; Leite, Lucia F.C. da Costa; Barreiro, Eliezer J.

    2005-01-01

    The 1 H NMR data set of a series of 3-aryl (1,2,4)-oxadiazole-5-carbohydrazide benzylidene derivatives synthesized in our group was analyzed using the chemometric technique of principal component analysis (PCA). Using the original 1H NMR data PCA allowed identifying some misassignments of the proton aromatic chemical shifts. As a consequence of this multivariate analysis, nuclear Overhauser difference experiments were performed to investigate the ambiguity of other assignments of the ortho and meta aromatic hydrogens for the compound with the bromine substituent. The effect of the 1,2,4-oxadiazole group as an electron acceptor, mainly for the hydrogens 12,13, has been highlighted. (author)

  18. In vivo NMR analysis of incorporation of [2-13C] glycine into silk fibroin

    International Nuclear Information System (INIS)

    Asakura, Tetsuo; Nagashima, Mariko; Demura, Makoto; Osanai, Minoru.

    1990-01-01

    The biosynthetic mechanism of silk fibroin in silkworms, Bombyx mori, is unique because this fibrous protein composed mainly of glycine, alanine and serine is produced very rapidly in large quantity in the posterior silk glands. It is very meaningful to investigate into the biosynthesis of silk protein under nondestructive condition by in vivo NMR and C-13 labeling techniques. The sugar metabolism related to the production of silk fibroin was analyzed by monitoring the change in the C-13 labeled peaks in the NMR spectra for silkworms. In this paper, the monitoring of the 2-(C-13) glycine metabolism in Bombyx mori by the C-13 NMR in vivo is reported. In particular, the in vivo transport of glycine from the midgut to the posterior silk gland was measured, and the rate constants were determined with the course of the peak intensity in the C-13 NMR spectra. It is possible to discuss quantitatively the in vivo production of silk fibroin with these rate constants. The experiment and the results are reported. The in vivo C-13 NMR spectra of a 5 day old, 5th instar larva of Bombyx mori after the oral administration of 2-(C-13) glycine are shown. The significant increase of the peak intensity occurred. (K.I.)

  19. Portable, Low-cost NMR with Laser-Lathe Lithography Produced

    Energy Technology Data Exchange (ETDEWEB)

    Herberg, J L; Demas, V; Malba, V; Bernhardt, A; Evans, L; Harvey, C; Chinn, S; Maxwell, R; Reimer, J; Pines, A

    2006-12-21

    Nuclear Magnetic Resonance (NMR) is unsurpassed in its ability to non-destructively probe chemical identity. Portable, low-cost NMR sensors would enable on-site identification of potentially hazardous substances, as well as the study of samples in a variety of industrial applications. Recent developments in RF microcoil construction (i.e. coils much smaller than the standard 5 mm NMR RF coils), have dramatically increased NMR sensitivity and decreased the limits-of-detection (LOD). We are using advances in laser pantographic microfabrication techniques, unique to LLNL, to produce RF microcoils for field deployable, high sensitivity NMR-based detectors. This same fabrication technique can be used to produce imaging coils for MRI as well as for standard hardware shimming or 'ex-situ' shimming of field inhomogeneities typically associated with inexpensive magnets. This paper describes a portable NMR system based on a laser-fabricated microcoil and homebuilt probe design. For testing this probe, we used a hand-held 2 kg Halbach magnet that can fit into the palm of a hand, and an RF probe with laser-fabricated microcoils. The focus of the paper is on the evaluation of the microcoils, RF probe, and first generation gradient coils. The setup of this system, initial results, sensitivity measurements, and future plans are discussed. The results, even though preliminary, are promising and provide the foundation for developing a portable, inexpensive NMR system for chemical analysis. Such a system will be ideal for chemical identification of trace substances on site.

  20. Solid-state NMR covariance of homonuclear correlation spectra.

    Science.gov (United States)

    Hu, Bingwen; Amoureux, Jean-Paul; Trebosc, Julien; Deschamps, Michael; Tricot, Gregory

    2008-04-07

    Direct covariance NMR spectroscopy, which does not involve a Fourier transformation along the indirect dimension, is demonstrated to obtain homonuclear correlation two-dimensional (2D) spectra in the solid state. In contrast to the usual 2D Fourier transform (2D-FT) NMR, in a 2D covariance (2D-Cov) spectrum the spectral resolution in the indirect dimension is determined by the resolution along the detection dimension, thereby largely reducing the time-consuming indirect sampling requirement. The covariance method does not need any separate phase correction or apodization along the indirect dimension because it uses those applied in the detection dimension. We compare in detail the specifications obtained with 2D-FT and 2D-Cov, for narrow and broad resonances. The efficiency of the covariance data treatment is demonstrated in organic and inorganic samples that are both well crystallized and amorphous, for spin -1/2 nuclei with 13C, 29Si, and 31P through-space or through-bond homonuclear 2D correlation spectra. In all cases, the experimental time has been reduced by at least a factor of 10, without any loss of resolution and signal to noise ratio, with respect to what is necessary with the 2D-FT NMR. According to this method, we have been able to study the silicate network of glasses by 2D NMR within reasonable experimental time despite the very long relaxation time of the 29Si nucleus. The main limitation of the 2D-Cov data treatment is related to the introduction of autocorrelated peaks onto the diagonal, which does not represent any actual connectivity.

  1. Fluorine dynamics in BaF2 superionic conductors investigated by NMR

    OpenAIRE

    Gumann, Patryk

    2008-01-01

    In this work the dynamics of fluorine in solid-state electrolytes having BaF2-structure was investigated using three different NMR-methods: field cycling relaxometry, lineshape analysis, and static field gradient NMR. For this purpose a pure BaF2 crystal, as well as crystals doped with trivalent impurities (LaF3), were studied as a function of temperature. The main goal of this investigation was to utilize the structure information provided by neutron scattering and MAS NMR data in order to s...

  2. Paramagnetic NMR investigation of dendrimer-based host-guest interactions.

    Directory of Open Access Journals (Sweden)

    Fei Wang

    Full Text Available In this study, the host-guest behavior of poly(amidoamine (PAMAM dendrimers bearing amine, hydroxyl, or carboxylate surface functionalities were investigated by paramagnetic NMR studies. 2,2,6,6-Tetramethylpiperidinyloxy (TEMPO derivatives were used as paramagnetic guest molecules. The results showed that TEMPO-COOH significantly broaden the ¹H NMR peaks of amine- and hydroxyl-terminated PAMAM dendrimers. In comparison, no paramagnetic relaxation enhancement (PRE was observed between TEMPO-NH₂, TEMPO-OH and the three types of PAMAM dendrimers. The PRE phenomenon observed is correlated with the encapsulation of TEMPO-COOH within dendrimer pockets. Protonation of the tertiary amine groups within PAMAM dendrimers plays an important role during this process. Interestingly, the absence of TEMPO-COOH encapsulation within carboxylate-terminated PAMAM dendrimer is observed due to the repulsion of TEMPO-COO- anion and anionic dendrimer surface. The combination of paramagnetic probes and ¹H NMR linewidth analysis can be used as a powerful tool in the analysis of dendrimer-based host-guest systems.

  3. HPLC-NMR revisited: Using time-slice HPLC-SPE-NMR with database assisted dereplication

    DEFF Research Database (Denmark)

    Johansen, Kenneth; Wubshet, Sileshi Gizachew; Nyberg, Nils

    2013-01-01

    Time based trapping of chromatographically separated compounds on to solid-phase extraction cartridges (SPE) and subsequent elution to NMR-tubes was done to emulate the function of HPLC–NMR for dereplication purposes. Sufficient mass sensitivity was obtained by the use of a state-of-the-art HPLC......–SPE–NMR-system with a cryogenically cooled probe head, designed for 1.7 mm NMR-tubes. The resulting 1H NMR spectra (600 MHz) were evaluated against a database of previously acquired and prepared spectra. The in-house developed matching algorithm, based on partitioning of the spectra and allowing for changes in the chemical shifts......, is described and the code included as Supplementary Information. Two mixtures of natural products was used to test the approach; one extract of Carthamus oxyacantha (wild safflower) containing an array of spiro compounds and one extract of the endophytic fungus Penicillum namyslowski containing griseofulvin...

  4. NMR for chemists and biologists

    CERN Document Server

    Carbajo, Rodrigo J

    2013-01-01

    This book offers a concise introduction to the field of nuclear magnetic resonance or NMR. It presents the basic foundations of NMR in a non-mathematical way and provides an overview of both recent and important biological applications of NMR.

  5. An NMR log echo data de-noising method based on the wavelet packet threshold algorithm

    International Nuclear Information System (INIS)

    Meng, Xiangning; Xie, Ranhong; Li, Changxi; Hu, Falong; Li, Chaoliu; Zhou, Cancan

    2015-01-01

    To improve the de-noising effects of low signal-to-noise ratio (SNR) nuclear magnetic resonance (NMR) log echo data, this paper applies the wavelet packet threshold algorithm to the data. The principle of the algorithm is elaborated in detail. By comparing the properties of a series of wavelet packet bases and the relevance between them and the NMR log echo train signal, ‘sym7’ is found to be the optimal wavelet packet basis of the wavelet packet threshold algorithm to de-noise the NMR log echo train signal. A new method is presented to determine the optimal wavelet packet decomposition scale; this is within the scope of its maximum, using the modulus maxima and the Shannon entropy minimum standards to determine the global and local optimal wavelet packet decomposition scales, respectively. The results of applying the method to the simulated and actual NMR log echo data indicate that compared with the wavelet threshold algorithm, the wavelet packet threshold algorithm, which shows higher decomposition accuracy and better de-noising effect, is much more suitable for de-noising low SNR–NMR log echo data. (paper)

  6. NMR-based metabonomic analysis of the hepatotoxicity induced by combined exposure to PCBs and TCDD in rats

    International Nuclear Information System (INIS)

    Lu Chunfeng; Wang Yimei; Sheng Zhiguo; Liu Gang; Fu Ze; Zhao Jing; Zhao Jun; Yan Xianzhong; Zhu Benzhan; Peng Shuangqing

    2010-01-01

    A metabonomic approach using 1 H NMR spectroscopy was adopted to investigate the metabonomic pattern of rat urine after oral administration of environmental endocrine disruptors (EDs) polychlorinated biphenyls (PCBs) and 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) alone or in combination and to explore the possible hepatotoxic mechanisms of combined exposure to PCBs and TCDD. 1 H NMR spectra of urines collected 24 h before and after exposure were analyzed via pattern recognition by using principal component analysis (PCA). Serum biochemistry and liver histopathology indicated significant hepatotoxicity in the rats of the combined group. The PCA scores plots of urinary 1 H NMR data showed that all the treatment groups could be easily distinguished from the control group, so could the PCBs or TCDD group and the combined group. The loadings plots of the PCA revealed remarkable increases in the levels of lactate, glucose, taurine, creatine, and 2-hydroxy-isovaleric acid and reductions in the levels of 2-oxoglutarate, citrate, succinate, hippurate, and trimethylamine-N-oxide in rat urine after exposure. These changes were more striking in the combined group. The changed metabolites may be considered possible biomarker for the hepatotoxicity. The present study demonstrates that combined exposure to PCBs and TCDD induced significant hepatotoxicity in rats, and mitochondrial dysfunction and fatty acid metabolism perturbations might contribute to the hepatotoxicity. There was good conformity between changes in the urine metabonomic pattern and those in serum biochemistry and liver histopathology. These results showed that the NMR-based metabonomic approach may provide a promising technique for the evaluation of the combined toxicity of EDs.

  7. Analysis of the mechanical properties and characterization by solid state {sup 13} C NMR of recycled EVA copolymer/silica composites

    Energy Technology Data Exchange (ETDEWEB)

    Stael, Giovanni Chaves [Observatorio Nacional, Rio de Janeiro, RJ (Brazil)]. E-mail: stael@on.br; Rocha, Marisa Cristina Guimaraes [Universidade do Estado do Rio de Janeiro, Nova Friburgo, RJ (Brazil). Instituto Politecnico; Menezes, Sonia Maria Cabral de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. Quimica; D' Almeida, Jose Roberto Morais; Ruiz, Naira Machado da Silva [Pontificia Universidade Catolica do Rio de Janeiro, RJ (Brazil)

    2005-07-15

    The incorporation of micrometer sized silica particles on poly (ethylene-co-vinyl acetate) - EVA - residues from the footwear industry was evaluated. The effects of the processing parameters - temperature and mixing ratio - on the mechanical behavior of molded plates of neat recycled EVA and EVA/silica composites were also investigated. The mechanical properties measured by the tensile test, the fractographic analysis by scanning electron microscopy (SEM), and the {sup 13} C Nuclear Magnetic Resonance (NMR) showed a reduced EVA to silica compatibility. Therefore, incorporation of untreated silica to recycled EVA copolymer produced a slight decrease on the mechanical performance of EVA/silica composites in respect to neat EVA copolymer. The NMR analysis also shows that the crosslinking process on recycled EVA may be occurring at the carbonyl group. (author)

  8. Compact NMR

    Energy Technology Data Exchange (ETDEWEB)

    Bluemich, Bernhard; Haber-Pohlmeier, Sabina; Zia, Wasif [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie (ITMC)

    2014-06-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures, while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue. In both applications, the sample (or patient) is positioned inside a large, superconducting magnet to magnetize the atomic nuclei. Interrogating radio-frequency pulses result in frequency spectra that provide the chemist with molecular information, the medical doctor with anatomic images, and materials scientist with NMR relaxation parameters. Recent advances in magnet technology have led to a variety of small permanent magnets to allow compact and low-cost instruments. The goal of this book is to provide an introduction to the practical use of compact NMR at a level nearly as basic as the operation of a smart phone.

  9. Bioinformatics tools for the analysis of NMR metabolomics studies focused on the identification of clinically relevant biomarkers.

    Science.gov (United States)

    Puchades-Carrasco, Leonor; Palomino-Schätzlein, Martina; Pérez-Rambla, Clara; Pineda-Lucena, Antonio

    2016-05-01

    Metabolomics, a systems biology approach focused on the global study of the metabolome, offers a tremendous potential in the analysis of clinical samples. Among other applications, metabolomics enables mapping of biochemical alterations involved in the pathogenesis of diseases, and offers the opportunity to noninvasively identify diagnostic, prognostic and predictive biomarkers that could translate into early therapeutic interventions. Particularly, metabolomics by Nuclear Magnetic Resonance (NMR) has the ability to simultaneously detect and structurally characterize an abundance of metabolic components, even when their identities are unknown. Analysis of the data generated using this experimental approach requires the application of statistical and bioinformatics tools for the correct interpretation of the results. This review focuses on the different steps involved in the metabolomics characterization of biofluids for clinical applications, ranging from the design of the study to the biological interpretation of the results. Particular emphasis is devoted to the specific procedures required for the processing and interpretation of NMR data with a focus on the identification of clinically relevant biomarkers. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  10. MULTIVARIATE CURVE RESOLUTION OF NMR SPECTROSCOPY METABONOMIC DATA

    Science.gov (United States)

    Sandia National Laboratories is working with the EPA to evaluate and develop mathematical tools for analysis of the collected NMR spectroscopy data. Initially, we have focused on the use of Multivariate Curve Resolution (MCR) also known as molecular factor analysis (MFA), a tech...

  11. A novel tridentate Schiff base dioxo-molybdenum(VI) complex: synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, ¹H NMR and ¹³C NMR spectra.

    Science.gov (United States)

    Saheb, Vahid; Sheikhshoaie, Iran; Stoeckli-Evans, Helen

    2012-09-01

    A new dioxo-molybdenum(VI) complex [MoO(2)(L)(H(2)O)] has been synthesized, using 5-methoxy 2-[(2-hydroxypropylimino)methyl]phenol as tridentate ONO donor Schiff base ligand (H(2)L) and MoO(2)(acac)(2). The yellow crystals of the compound are used for single-crystal X-ray analysis and measuring Fourier Transform Infrared (FTIR), UV-visible, (1)H NMR and (13)C NMR spectra. Electronic structure calculations at the B3LYP and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the UV-visible, FTIR, (1)H NMR and (13)C NMR spectra of the compound. Vibrational assignments and analysis of the fundamental modes of the compound are performed. Time-dependent density functional theory (TDDFT) method is used to calculate the electronic transitions of the complex. All theoretical methods can well reproduce the structure of the compound. The (1)H NMR shielding tensors computed at the B3LYP/DGDZVP level of theory is in agreement with experimental (1)H NMR spectra. However, the (13)C NMR shielding tensors computed at the B3LYP level, employing a combined basis set of DGDZVP for Mo and 6-31+G(2df,p) for other atoms, are in better agreement with experimental (13)C NMR spectra. The electronic transitions calculated at the B3LYP/DGDZVP level by using TD-DFT method is in accordance with the observed UV-visible spectrum of the compound. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Remeasuring HEWL pKa values by NMR spectroscopy 

    DEFF Research Database (Denmark)

    Webb, Helen; Tynan-Connolly, Barbara Mary; Lee, Gregory M

    2011-01-01

    Site-specific pK(a) values measured by NMR spectroscopy provide essential information on protein electrostatics, the pH-dependence of protein structure, dynamics and function, and constitute an important benchmark for protein pK(a) calculation algorithms. Titration curves can be measured by track......Site-specific pK(a) values measured by NMR spectroscopy provide essential information on protein electrostatics, the pH-dependence of protein structure, dynamics and function, and constitute an important benchmark for protein pK(a) calculation algorithms. Titration curves can be measured...... by tracking the NMR chemical shifts of several reporter nuclei versus sample pH. However, careful analysis of these curves is needed to extract residue-specific pK(a) values since pH-dependent chemical shift changes can arise from many sources, including through-bond inductive effects, through-space electric...... protonated carbons and protons in this protein. We extracted pK(a) values from the resulting titration curves using standard fitting methods, and compared these values to each other, and with those measured previously by ¹H NMR (Bartik et al., Biophys J 1994;66:1180–1184). This analysis gives insights...

  13. Crystallization and preliminary X-ray crystallographic analysis of the NmrA-like DDB-G0286605 protein from the social amoeba Dictyostelium discoideum

    International Nuclear Information System (INIS)

    Kim, Min-Kyu; Yim, Hyung-Soon; Kang, Sa-Ouk

    2010-01-01

    In order to investigate its structure and function, the NmrA-like domain-containing DDB-G0286605 protein from D. discoideum was expressed, purified and crystallized. X-ray diffraction analysis is reported to a resolution of 1.64 Å. The DDB-G0286605 gene product from Dictyostelium discoideum, an NmrA-like protein that belongs to the short-chain dehydrogenase/reductase family, has been crystallized by the hanging-drop vapour-diffusion method at 295 K. A 1.64 Å resolution data set was collected using synchrotron radiation. The DDB-G0286605 protein crystals belonged to space group P2 1 , with unit-cell parameters a = 67.598, b = 54.935, c = 84.219 Å, β = 109.620°. Assuming the presence of two molecules in the asymmetric unit, the solvent content was estimated to be about 43.25% with 99% probability. Molecular-replacement trials were attempted with three NmrA-like proteins, NmrA, HSCARG and QOR2, as search models, but failed. This may be a consequence of the low sequence identity between the DDB-G0286605 protein and the search models (DDB-G0286605 has a primary-sequence identity of 28, 32 and 19% to NmrA, HCARG and QOR2, respectively)

  14. Solid-State NMR Study of New Copolymers as Solid Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Daigle

    2018-01-01

    Full Text Available We report the analysis of comb-like polymers by solid-state NMR. The polymers were previously evaluated as solid-polymer-electrolytes (SPE for lithium-polymer-metal batteries that have suitable ionic conductivity at 60 °C. We propose to develop a correlation between 13C solid-state NMR measurements and phase segregation. 13C solid-state NMR is a perfect tool for differentiating polymer phases with fast or slow motions. 7Li was used to monitor the motion of lithium ions in the polymer, and activation energies were calculated.

  15. Recent Advances in Multinuclear NMR Spectroscopy for Chiral Recognition of Organic Compounds

    Directory of Open Access Journals (Sweden)

    Márcio S. Silva

    2017-02-01

    Full Text Available Nuclear magnetic resonance (NMR is a powerful tool for the elucidation of chemical structure and chiral recognition. In the last decade, the number of probes, media, and experiments to analyze chiral environments has rapidly increased. The evaluation of chiral molecules and systems has become a routine task in almost all NMR laboratories, allowing for the determination of molecular connectivities and the construction of spatial relationships. Among the features that improve the chiral recognition abilities by NMR is the application of different nuclei. The simplicity of the multinuclear NMR spectra relative to 1H, the minimal influence of the experimental conditions, and the larger shift dispersion make these nuclei especially suitable for NMR analysis. Herein, the recent advances in multinuclear (19F, 31P, 13C, and 77Se NMR spectroscopy for chiral recognition of organic compounds are presented. The review describes new chiral derivatizing agents and chiral solvating agents used for stereodiscrimination and the assignment of the absolute configuration of small organic compounds.

  16. Toxic actions of dinoseb in medaka (Oryzias latipes) embryos as determined by in vivo 31P NMR, HPLC-UV and 1H NMR metabolomics.

    Science.gov (United States)

    Viant, Mark R; Pincetich, Christopher A; Hinton, David E; Tjeerdema, Ronald S

    2006-03-10

    Changes in metabolism of Japanese medaka (Oryzias latipes) embryos exposed to dinoseb (2-sec-butyl-4,6-dinitrophenol), a substituted dinitrophenol herbicide, were determined by in vivo (31)P NMR, high-pressure liquid chromatography (HPLC)-UV, and (1)H NMR metabolomics. ATP and phosphocreatine (PCr) metabolism were characterized within intact embryos by in vivo (31)P NMR; concentrations of ATP, GTP, ADP, GDP, AMP and PCr were determined by HPLC-UV; and changes in numerous polar metabolites were characterized by (1)H NMR-based metabolomics. Rangefinding exposures determined two sublethal doses of dinoseb, 50 and 75 ppb, in which embryos survived from 1-day post fertilization (DPF) through the duration of embryogenesis. In vivo (31)P NMR data were acquired from 900 embryos in 0, 50, and 75 ppb dinoseb at 14, 62, and 110 h (n = 6 groups) after initiation of exposure. After 110 h, embryos were observed for normal development and hatching success, then either preserved in 10% formalin for growth analysis or flash frozen and extracted for HPLC-UV and (1)H NMR analysis. Dinoseb exposure at both concentrations resulted in significant declines in [ATP] and [PCr] at 110 h as measured by in vivo (31)P NMR (p fashion. Metabolic effects measured by in vivo (31)P NMR showed a significant increase in orthophosphate levels (P(i); p < 0.05), and significant decreases in [ATP], [PCr] and the PCr/P(i) ratio (p < 0.05). Metabolomics revealed a dose-response relationship between dinoseb and endogenous metabolite changes, with both dinoseb concentrations producing significantly different metabolic profiles from controls (p < 0.05). Metabolic changes included decreased concentrations of ATP, PCr, alanine and tyrosine, and increased concentrations of lactate with medaka embryotoxicity. This study demonstrated that medaka embryos respond to dinoseb with significant changes in metabolism, reduced growth and heart rates, and increased abnormal development and post-exposure mortality. All

  17. Automatic maximum entropy spectral reconstruction in NMR

    International Nuclear Information System (INIS)

    Mobli, Mehdi; Maciejewski, Mark W.; Gryk, Michael R.; Hoch, Jeffrey C.

    2007-01-01

    Developments in superconducting magnets, cryogenic probes, isotope labeling strategies, and sophisticated pulse sequences together have enabled the application, in principle, of high-resolution NMR spectroscopy to biomolecular systems approaching 1 megadalton. In practice, however, conventional approaches to NMR that utilize the fast Fourier transform, which require data collected at uniform time intervals, result in prohibitively lengthy data collection times in order to achieve the full resolution afforded by high field magnets. A variety of approaches that involve nonuniform sampling have been proposed, each utilizing a non-Fourier method of spectrum analysis. A very general non-Fourier method that is capable of utilizing data collected using any of the proposed nonuniform sampling strategies is maximum entropy reconstruction. A limiting factor in the adoption of maximum entropy reconstruction in NMR has been the need to specify non-intuitive parameters. Here we describe a fully automated system for maximum entropy reconstruction that requires no user-specified parameters. A web-accessible script generator provides the user interface to the system

  18. Systematic comparison of crystal and NMR protein structures deposited in the protein data bank.

    Science.gov (United States)

    Sikic, Kresimir; Tomic, Sanja; Carugo, Oliviero

    2010-09-03

    Nearly all the macromolecular three-dimensional structures deposited in Protein Data Bank were determined by either crystallographic (X-ray) or Nuclear Magnetic Resonance (NMR) spectroscopic methods. This paper reports a systematic comparison of the crystallographic and NMR results deposited in the files of the Protein Data Bank, in order to find out to which extent these information can be aggregated in bioinformatics. A non-redundant data set containing 109 NMR - X-ray structure pairs of nearly identical proteins was derived from the Protein Data Bank. A series of comparisons were performed by focusing the attention towards both global features and local details. It was observed that: (1) the RMDS values between NMR and crystal structures range from about 1.5 Å to about 2.5 Å; (2) the correlation between conformational deviations and residue type reveals that hydrophobic amino acids are more similar in crystal and NMR structures than hydrophilic amino acids; (3) the correlation between solvent accessibility of the residues and their conformational variability in solid state and in solution is relatively modest (correlation coefficient = 0.462); (4) beta strands on average match better between NMR and crystal structures than helices and loops; (5) conformational differences between loops are independent of crystal packing interactions in the solid state; (6) very seldom, side chains buried in the protein interior are observed to adopt different orientations in the solid state and in solution.

  19. Metabolomic profiling of the phytomedicinal constituents of Carica papaya L. leaves and seeds by 1H NMR spectroscopy and multivariate statistical analysis.

    Science.gov (United States)

    Gogna, Navdeep; Hamid, Neda; Dorai, Kavita

    2015-11-10

    Extracts from the Carica papaya L. plant are widely reported to contain metabolites with antibacterial, antioxidant and anticancer activity. This study aims to analyze the metabolic profiles of papaya leaves and seeds in order to gain insights into their phytomedicinal constituents. We performed metabolite fingerprinting using 1D and 2D 1H NMR experiments and used multivariate statistical analysis to identify those plant parts that contain the most concentrations of metabolites of phytomedicinal value. Secondary metabolites such as phenyl propanoids, including flavonoids, were found in greater concentrations in the leaves as compared to the seeds. UPLC-ESI-MS verified the presence of significant metabolites in the papaya extracts suggested by the NMR analysis. Interestingly, the concentration of eleven secondary metabolites namely caffeic, cinnamic, chlorogenic, quinic, coumaric, vanillic, and protocatechuic acids, naringenin, hesperidin, rutin, and kaempferol, were higher in young as compared to old papaya leaves. The results of the NMR analysis were corroborated by estimating the total phenolic and flavonoid content of the extracts. Estimation of antioxidant activity in leaves and seed extracts by DPPH and ABTS in-vitro assays and antioxidant capacity in C2C12 cell line also showed that papaya extracts exhibit high antioxidant activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. LC-NMR, NMR, and LC-MS identification and LC-DAD quantification of flavonoids and ellagic acid derivatives in Drosera peltata.

    Science.gov (United States)

    Braunberger, Christina; Zehl, Martin; Conrad, Jürgen; Fischer, Sonja; Adhami, Hamid-Reza; Beifuss, Uwe; Krenn, Liselotte

    2013-08-01

    The herb of Drosera peltata, commonly named the shield sundew, is used as an antitussive in phytotherapy, although the plants' composition has not been determined in detail so far. Hence, in this study, we present a validated, sensitive, reliable, and cheap narrow-bore LC-DAD method for the simultaneous quantification of flavonoids and ellagic acid derivatives in this herbal drug. In addition, the structures of 13 compounds have been elucidated by LC-MS, LC-NMR, and offline NMR experiments after isolation: herbacetin-3-O-glucoside (1), gossypitrin (2), ellagic acid (3), quercetin-7-O-glucoside (4), isoquercitrin (5), kaempferol-3-O-(6″-O-galloyl)-glucoside (6), herbacetin-7-O-glucoside (7), astragalin (8), gossypetin (9), herbacetin (10), quercetin (11), 3,3'-di-O-methyl ellagic acid (12), and kaempferol (13). Compounds 1, 2, 4, 5, 6, 7, and 10 have been identified in D. peltata for the first time, and compounds 1, 4, 6, 7, and 10 have not been detected in any Drosera species before. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Ligand-receptor Interactions by NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Novak. P.

    2008-04-01

    Full Text Available Today NMR spectroscopy is a method of choice for elucidation of interactions between biomolecules and the potential ligands. Knowledge on these interactions is an essential prerequisite for the rational drug design. The most important contribution of NMR to drug design a few years ago was the 3D structure determination of proteins. Besides delivering the 3D structures of the free proteins as a raw material for the modeling studies on ligand binding, NMR can directly yield valuable experimental data on the biologically important protein-ligand complexes. In addition to X-ray diffraction, NMR spectroscopy can provide information on the internal protein dynamics ordynamics of intermolecular interactions. Changes in NMR parameters allow us to detect ("SAR by NMR" and quantitatively determine binding affinities (titration, diffusion NMR experiments, etc. of potential ligands. Also, it is possible to determine the binding site and conformations of ligands, receptors and receptor-ligand complexes with the help of NMR methods such as tr-NOESY. Epitopes or functional groups responsible for binding of ligands to the receptor can be identified by employing STD or WaterLOGSY experiments. In this review are described some of the most frequent NMR methods for the characterization of the interactions between biomolecules and ligands, together with their advantages and disadvantages.

  2. Sub-minute kinetics of human red cell fumarase: 1 H spin-echo NMR spectroscopy and 13 C rapid-dissolution dynamic nuclear polarization.

    Science.gov (United States)

    Shishmarev, Dmitry; Wright, Alan J; Rodrigues, Tiago B; Pileio, Giuseppe; Stevanato, Gabriele; Brindle, Kevin M; Kuchel, Philip W

    2018-03-01

    Fumarate is an important probe of metabolism in hyperpolarized magnetic resonance imaging and spectroscopy. It is used to detect the release of fumarase in cancer tissues, which is associated with necrosis and drug treatment. Nevertheless, there are limited reports describing the detailed kinetic studies of this enzyme in various cells and tissues. Thus, we aimed to evaluate the sub-minute kinetics of human red blood cell fumarase using nuclear magnetic resonance (NMR) spectroscopy, and to provide a quantitative description of the enzyme that is relevant to the use of fumarate as a probe of cell rupture. The fumarase reaction was studied using time courses of 1 H spin-echo and 13 C-NMR spectra. 1 H-NMR experiments showed that the fumarase reaction in hemolysates is sufficiently rapid to make its kinetics amenable to study in a period of approximately 3 min, a timescale characteristic of hyperpolarized 13 C-NMR spectroscopy. The rapid-dissolution dynamic nuclear polarization (RD-DNP) technique was used to hyperpolarize [1,4- 13 C]fumarate, which was injected into concentrated hemolysates. The kinetic data were analyzed using recently developed FmR α analysis and modeling of the enzymatic reaction using Michaelis-Menten equations. In RD-DNP experiments, the decline in the 13 C-NMR signal from fumarate, and the concurrent rise and fall of that from malate, were captured with high spectral resolution and signal-to-noise ratio, which allowed the robust quantification of fumarase kinetics. The kinetic parameters obtained indicate the potential contribution of hemolysis to the overall rate of the fumarase reaction when 13 C-NMR RD-DNP is used to detect necrosis in animal models of implanted tumors. The analytical procedures developed will be applicable to studies of other rapid enzymatic reactions using conventional and hyperpolarized substrate NMR spectroscopy. Copyright © 2018 John Wiley & Sons, Ltd.

  3. Two dimensional solid state NMR

    International Nuclear Information System (INIS)

    Kentgens, A.P.M.

    1987-01-01

    This thesis illustrates, by discussing some existing and newly developed 2D solid state experiments, that two-dimensional NMR of solids is a useful and important extension of NMR techniques. Chapter 1 gives an overview of spin interactions and averaging techniques important in solid state NMR. As 2D NMR is already an established technique in solutions, only the basics of two dimensional NMR are presented in chapter 2, with an emphasis on the aspects important for solid spectra. The following chapters discuss the theoretical background and applications of specific 2D solid state experiments. An application of 2D-J resolved NMR, analogous to J-resolved spectroscopy in solutions, to natural rubber is given in chapter 3. In chapter 4 the anisotropic chemical shift is mapped out against the heteronuclear dipolar interaction to obtain information about the orientation of the shielding tensor in poly-(oxymethylene). Chapter 5 concentrates on the study of super-slow molecular motions in polymers using a variant of the 2D exchange experiment developed by us. Finally chapter 6 discusses a new experiment, 2D nutation NMR, which makes it possible to study the quadrupole interaction of half-integer spins. 230 refs.; 48 figs.; 8 tabs

  4. 1 H NMR study and multivariate data analysis of reindeer skin tanning methods.

    Science.gov (United States)

    Zhu, Lizheng; Ilott, Andrew J; Del Federico, Eleonora; Kehlet, Cindie; Klokkernes, Torunn; Jerschow, Alexej

    2017-04-01

    Reindeer skin clothing has been an essential component in the lives of indigenous people of the arctic and sub-arctic regions, keeping them warm during harsh winters. However, the skin processing technology, which often conveys the history and tradition of the indigenous group, has not been well documented. In this study, NMR spectra and relaxation behaviors of reindeer skin samples treated with a variety of vegetable tannin extracts, oils and fatty substances are studied and compared. With the assistance of principal component analysis (PCA), one can recognize patterns and identify groupings of differently treated samples. These methods could be important aids in efforts to conserve museum leather artifacts with unknown treatment methods and in the analysis of reindeer skin tanning processes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. (3,2)D GFT-NMR experiments for fast data collection from proteins

    International Nuclear Information System (INIS)

    Xia Youlin; Zhu Guang; Veeraraghavan, Sudha; Gao Xiaolian

    2004-01-01

    High throughput structure determination of proteins will contribute to the success of proteomics investigations. The G-Matrix Fourier Transformation NMR (GFT-NMR) method significantly shortens experimental time by reducing the number of the dimensions of data acquisition for isotopically labeled proteins (Kim, S. and Szyperski, T. (2003) J. Am. Chem. Soc.125, 1385). We demonstrate herein a suite of ten 3D → 2D or (3,2)D GFT-NMR experiments using 13 C/ 15 N-labeled ubiquitin. These experiments were completed within 18 hours, representing a 4- to 18-fold reduction in data acquisition time compared to the corresponding conventional 3D experiments. A subset of the GFT-NMR experiments, (3,2)D HNCO, HNCACB, HN(CO)CACB, and 2D 1 H- 15 N HSQC, which are necessary for backbone assignments, were carried out within 6 hours. To facilitate the analysis of the GFT-NMR spectra, we developed automated procedures for viewing and analyzing the GFT-NMR spectra. Our overall strategy allows (3,2)D GFT-NMR experiments to be readily performed and analyzed. Nevertheless, the increase in spectral overlap and the reduction in signal sensitivity in these fast NMR experiments presently limit their application to relatively small proteins

  6. Novel methods and applications of NMR and MRI. Low-power RF excitation and hyperpolarized Xenon-129

    Energy Technology Data Exchange (ETDEWEB)

    Amor, Nadia

    2012-07-01

    Since their discovery in the middle of the last century, Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) have become an important and very versatile tool in industry, medicine, and basic research. The aim of this work is to explore possible improvements and new applications of NMR methods. First, a recently introduced excitation NMR pulse sequence, termed Frank sequence excitation, which allows for significant reduction of rf-excitation power, is systematically analyzed and compared to conventional NMR in detail. Furthermore, its feasibility for MRI is investigated and advantages as well as drawbacks in comparison to standard MRI are discussed. The second part focuses on new biomedical applications of hyperpolarized (HP) {sup 129}Xe which not only offers a signal enhancement of several orders of magnitude but also provides new contrast mechanisms. A setup for continuous dissolution of HP {sup 129}Xe gas into blood and other fluids is optimized and analyzed quantitatively by NMR and MRI. On the basis of these results, blood-dissolved HP {sup 129}Xe is used to investigate blood-gas dynamics, as well as the rheological behavior of blood.

  7. NMR and MRI of continuously dissolved hyperpolarized {sup 129}Xe by means of hollow fibers

    Energy Technology Data Exchange (ETDEWEB)

    Amor, Nadia; Kueppers, Markus; Bluemich, Bernhard [ITMC of RWTH Aachen University (Germany); Hamilton, Kathrin; Schmitz-Rode, Thomas; Steinseifer, Ulrich [HIA of RWTH Aachen University (Germany); Appelt, Stephan [Research Center Juelich (Germany)

    2011-07-01

    Various methods of hyperpolarizing (HP) spin systems have been developed during the last years to increase the intrinsically low sensitivity of NMR by several orders of magnitude. Among them is the hyperpolarization of {sup 129}Xe via Spin Exchange Optical Pumping (SEOP). NMR of HP {sup 129}Xe is of great interest because of its good solubility and its very sensitive chemical shift. The main obstacle for many applications is the efficient and continuous dissolution into carrier agents without formation of foams or bubbles. It has been overcome by the so-called ''xenonizer'' setups. They mainly consist of commercially available hollow fiber membranes typically used in clinical oxygenators. A purpose-built xenonizer setup has been developed and analyzed in detail by NMR spectroscopy and MRI for varying fiber materials as well as for different fluids, including bio-relevant fluids such as blood, plasma, and erythrocytes. As a result, the xenonizer technology could be further understood and improved, and new applications of HP {sup 129}Xe for medical NMR were explored.

  8. Analysis of the extracts of Isatis tinctoria by new analytical approaches of HPLC, MS and NMR.

    Science.gov (United States)

    Zhou, Jue; Qu, Fan

    2011-01-01

    The methods of extraction, separation and analysis of alkaloids and indole glucosinolates (GLs) ofIsatis tinctoria were reviewed. Different analytical approaches such as High-pressure Liquid Chromatography (HPLC), Liquid Chromatography with Electrospray Ionization Mass Spectrometry (LC/ESI/MS), Electrospray Ionization Time-Of-Flight Mass Spectrometry (ESI-TOF-MS), and Nuclear Magnetic Resonance (NMR) were used to validate and identity of these constituents. These methods provide rapid separation, identification and quantitative measurements of alkaloids and GLs of Isatis tinctoria. By connection with different detectors to HPLC such as PDA, ELSD, ESI- and APCI-MS in positive and negative ion modes, complicated compounds could be detected with at least two independent detection modes. The molecular formula can be derived in a second step of ESI-TOF-MS data. But for some constituents, UV and MS cannot provide sufficient structure identification. After peak purification, NMR by semi-preparative HPLC can be used as a complementary method.

  9. Advanced NMR technology for bioscience and biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Hammel, P.C.; Hernandez, G.; Trewhella, J.; Unkefer, C.J. [Los Alamos National Lab., NM (US); Boumenthal, D.K. [Univ. of Utah, Salt Lake City, UT (US); Kennedy, M.A. [Pacific Northwest National Lab., Richland, WA (US); Moore, G.J. [Wayne State Univ., Detroit, MI (US)

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). NMR plays critical roles in bioscience and biotechnology in both imaging and structure determination. NMR is limited, however, by the inherent low sensitivity of the NMR experiment and the demands for spectral resolution required to study biomolecules. The authors addressed both of these issues by working on the development of NMR force microscopy for molecular imaging, and high field NMR with isotope labeling to overcome limitations in the size of biomolecules that can be studied using NMR. A novel rf coil design for NMR force microscopy was developed that increases the limits of sensitivity in magnetic resonance detection for imaging, and the authors demonstrated sub-surface spatial imaging capabilities. The authors also made advances in the miniaturization of two critical NMR force microscope components. They completed high field NMR and isotope labeling studies of a muscle protein complex which is responsible for regulating muscle contraction and is too large for study using conventional NMR approaches.

  10. On the Analytical Superiority of 1D NMR for Fingerprinting the Higher Order Structure of Protein Therapeutics Compared to Multidimensional NMR Methods.

    Science.gov (United States)

    Poppe, Leszek; Jordan, John B; Rogers, Gary; Schnier, Paul D

    2015-06-02

    An important aspect in the analytical characterization of protein therapeutics is the comprehensive characterization of higher order structure (HOS). Nuclear magnetic resonance (NMR) is arguably the most sensitive method for fingerprinting HOS of a protein in solution. Traditionally, (1)H-(15)N or (1)H-(13)C correlation spectra are used as a "structural fingerprint" of HOS. Here, we demonstrate that protein fingerprint by line shape enhancement (PROFILE), a 1D (1)H NMR spectroscopy fingerprinting approach, is superior to traditional two-dimensional methods using monoclonal antibody samples and a heavily glycosylated protein therapeutic (Epoetin Alfa). PROFILE generates a high resolution structural fingerprint of a therapeutic protein in a fraction of the time required for a 2D NMR experiment. The cross-correlation analysis of PROFILE spectra allows one to distinguish contributions from HOS vs protein heterogeneity, which is difficult to accomplish by 2D NMR. We demonstrate that the major analytical limitation of two-dimensional methods is poor selectivity, which renders these approaches problematic for the purpose of fingerprinting large biological macromolecules.

  11. A new Schiff base compound N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone): synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, 1H NMR and 13C NMR spectra.

    Science.gov (United States)

    Saheb, Vahid; Sheikhshoaie, Iran

    2011-10-15

    The Schiff base compound, N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone) (NDHA) is synthesized through the condensation of 2-hydroxylacetophenone and 2,2-dimethyl 1,3-amino propane in methanol at ambient temperature. The yellow crystalline precipitate is used for X-ray single-crystal determination and measuring Fourier transform infrared (FTIR), UV-visible, (1)H NMR and (13)C NMR spectra. Electronic structure calculations at the B3LYP, PBEPBE and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the FTIR, (1)H NMR and (13)C NMR spectra of the compound. Time-dependent density functional theory (TDDFT) method is used to calculate the UV-visible spectrum of NDHA. Vibrational frequencies are determined experimentally and compared with those obtained theoretically. Vibrational assignments and analysis of the fundamental modes of the compound are also performed. All theoretical methods can well reproduce the structure of the compound. The (1)H NMR and (13)C NMR chemical shifts calculated by all DFT methods are consistent with the experimental data. However, the NMR shielding tensors computed at the B3LYP/6-31+G(d,p) level of theory are in better agreement with experimental (1)H NMR and (13)C NMR spectra. The electronic absorption spectrum calculated at the B3LYP/6-31+G(d,p) level by using TD-DFT method is in accordance with the observed UV-visible spectrum of NDHA. In addition, some quantum descriptors of the molecule are calculated and conformational analysis is performed and the results were compared with the crystallographic data. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Structure of the charge density wave in cuprate superconductors: Lessons from NMR

    Science.gov (United States)

    Atkinson, W. A.; Ufkes, S.; Kampf, A. P.

    2018-03-01

    Using a mix of numerical and analytic methods, we show that recent NMR 17O measurements provide detailed information about the structure of the charge-density wave (CDW) phase in underdoped YBa2Cu3O6 +x . We perform Bogoliubov-de Gennes (BdG) calculations of both the local density of states and the orbitally resolved charge density, which are closely related to the magnetic and electric quadrupole contributions to the NMR spectrum, using a microscopic model that was shown previously to agree closely with x-ray experiments. The BdG results reproduce qualitative features of the experimental spectrum extremely well. These results are interpreted in terms of a generic "hot-spot" model that allows one to trace the origins of the NMR line shapes. We find that four quantities—the orbital character of the Fermi surface at the hot spots, the Fermi surface curvature at the hot spots, the CDW correlation length, and the magnitude of the subdominant CDW component—are key in determining the line shapes.

  13. Study on 1H-NMR fingerprinting of Rhodiolae Crenulatae Radix et Rhizoma.

    Science.gov (United States)

    Wen, Shi-yuan; Zhou, Jiang-tao; Chen, Yan-yan; Ding, Li-qin; Jiang, Miao-miao

    2015-07-01

    Nuclear magnetic resonance (1H-NMR) fingerprint of Rhodiola rosea medicinal materials was established, and used to distinguish the quality of raw materials from different sources. Pulse sequence for water peak inhibition was employed to acquire 1H-NMR spectra with the temperature at 298 K and spectrometer frequency of 400.13 MHz. Through subsection integral method, the obtained NMR data was subjected to similarity analysis and principal component analysis (PCA). 10 batches raw materials of Rhodiola rosea from different origins were successfully distinguished by PCA. The statistical results indicated that rhodiola glucoside, butyl alcohol, maleic acid and alanine were the main differential ingredients. This method provides an auxiliary method of Chinese quality approach to evaluate the quality of Rhodiola crenulata without using natural reference substances.

  14. Use of optimized 1D TOCSY NMR for improved quantitation and metabolomic analysis of biofluids

    Energy Technology Data Exchange (ETDEWEB)

    Sandusky, Peter [Eckerd College, Department of Chemistry (United States); Appiah-Amponsah, Emmanuel; Raftery, Daniel, E-mail: raftery@purdue.edu [Purdue University, Department of Chemistry (United States)

    2011-04-15

    One dimensional selective TOCSY experiments have been shown to be advantageous in providing improved data inputs for principle component analysis (PCA) (Sandusky and Raftery 2005a, b). Better subpopulation cluster resolution in the observed scores plots results from the ability to isolate metabolite signals of interest via the TOCSY based filtering approach. This report reexamines the quantitative aspects of this approach, first by optimizing the 1D TOCSY experiment as it relates to the measurement of biofluid constituent concentrations, and second by comparing the integration of 1D TOCSY read peaks to the bucket integration of 1D proton NMR spectra in terms of precision and accuracy. This comparison indicates that, because of the extensive peak overlap that occurs in the 1D proton NMR spectra of biofluid samples, bucket integrals are often far less accurate as measures of individual constituent concentrations than 1D TOCSY read peaks. Even spectral fitting approaches have proven difficult in the analysis of significantly overlapped spectral regions. Measurements of endogenous taurine made over a sample population of human urine demonstrates that, due to background signals from other constituents, bucket integrals of 1D proton spectra routinely overestimate the taurine concentrations and distort its variation over the sample population. As a result, PCA calculations performed using data matrices incorporating 1D TOCSY determined taurine concentrations produce better scores plot subpopulation cluster resolution.

  15. Use of optimized 1D TOCSY NMR for improved quantitation and metabolomic analysis of biofluids

    International Nuclear Information System (INIS)

    Sandusky, Peter; Appiah-Amponsah, Emmanuel; Raftery, Daniel

    2011-01-01

    One dimensional selective TOCSY experiments have been shown to be advantageous in providing improved data inputs for principle component analysis (PCA) (Sandusky and Raftery 2005a, b). Better subpopulation cluster resolution in the observed scores plots results from the ability to isolate metabolite signals of interest via the TOCSY based filtering approach. This report reexamines the quantitative aspects of this approach, first by optimizing the 1D TOCSY experiment as it relates to the measurement of biofluid constituent concentrations, and second by comparing the integration of 1D TOCSY read peaks to the bucket integration of 1D proton NMR spectra in terms of precision and accuracy. This comparison indicates that, because of the extensive peak overlap that occurs in the 1D proton NMR spectra of biofluid samples, bucket integrals are often far less accurate as measures of individual constituent concentrations than 1D TOCSY read peaks. Even spectral fitting approaches have proven difficult in the analysis of significantly overlapped spectral regions. Measurements of endogenous taurine made over a sample population of human urine demonstrates that, due to background signals from other constituents, bucket integrals of 1D proton spectra routinely overestimate the taurine concentrations and distort its variation over the sample population. As a result, PCA calculations performed using data matrices incorporating 1D TOCSY determined taurine concentrations produce better scores plot subpopulation cluster resolution.

  16. 1H NMR spectroscopy-based interventional metabolic phenotyping

    DEFF Research Database (Denmark)

    Lauridsen, Michael B; Bliddal, Henning; Christensen, Robin

    2010-01-01

    1H NMR spectroscopy-based metabolic phenotyping was used to identify biomarkers in the plasma of patients with rheumatoid arthritis (RA). Forty-seven patients with RA (23 with active disease at baseline and 24 in remission) and 51 healthy subjects were evaluated during a one-year follow-up with a......1H NMR spectroscopy-based metabolic phenotyping was used to identify biomarkers in the plasma of patients with rheumatoid arthritis (RA). Forty-seven patients with RA (23 with active disease at baseline and 24 in remission) and 51 healthy subjects were evaluated during a one-year follow......-up with assessments of disease activity (DAS-28) and 1H NMR spectroscopy of plasma samples. Discriminant analysis provided evidence that the metabolic profiles predicted disease severity. Cholesterol, lactate, acetylated glycoprotein, and lipid signatures were found to be candidate biomarkers for disease severity.......0007). However, after 31 days of optimized therapy, the two patient groups were not significantly different (P=0.91). The metabolic profiles of both groups of RA patients were different from the healthy subjects. 1H NMR-based metabolic phenotyping of plasma samples in patients with RA is well suited...

  17. NMR surprizes with thin slices and strong gradients

    Energy Technology Data Exchange (ETDEWEB)

    Gaedke, Achim; Kresse, Benjamin [Institute of Condensed Matter Physics, Technische Universitaet Darmstadt (Germany); Nestle, Nikolaus

    2008-07-01

    In the context of our work on diffusion-relaxation-coupling in thin excited slices, we perform NMR experiments in static magnetic field gradients up to 200 T/m. For slice thicknesses in the range of 10{mu}m, the frequency bandwidth of the excited slices becomes sufficiently narrow that free induction decays (FIDs) become observable despite the presence of the strong static gradient. The observed FIDs were also simulated using standard methods from MRI physics. Possible effects of diffusion during the FID duration are still minor at this slice thickness in water but might become dominant for smaller slices or more diffusive media. Furthermore, the detailed excitation structure of the RF pulses was studied in profiling experiments over the edge of a plane liquid cell. Side lobe effects to the slices will be discussed along with approaches to control them. The spatial resolution achieved in the profiling experiments furthermore allows the identification of thermal expansion phenomena in the NMR magnet. Measures to reduce the temperature drift problems are presented.

  18. Recent Advances in Targeted and Untargeted Metabolomics by NMR and MS/NMR Methods

    Energy Technology Data Exchange (ETDEWEB)

    Bingol, Kerem

    2018-04-18

    Metabolomics has made significant progress in multiple fronts in the last 18 months. This minireview aimed to give an overview of these advancements in the light of their contribution to targeted and untargeted metabolomics. New computational approaches have emerged to overcome manual absolute quantitation step of metabolites in 1D 1H NMR spectra. This provides more consistency between inter-laboratory comparisons. Integration of 2D NMR metabolomics databases under a unified web server allowed very accurate identification of the metabolites that have been catalogued in these databases. For the remaining uncatalogued and unknown metabolites, new cheminformatics approaches have been developed by combining NMR and mass spectrometry. These hybrid NMR/MS approaches accelerated the identification of unknowns in untargeted studies, and now they are allowing to profile ever larger number of metabolites in application studies.

  19. Magic Angle Spinning NMR Metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Zhi Hu, Jian

    2016-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is a non-destructive, quantitative, reproducible, untargeted and unbiased method that requires no or minimal sample preparation, and is one of the leading analytical tools for metabonomics research [1-3]. The easy quantification and the no need of prior knowledge about compounds present in a sample associated with NMR are advantageous over other techniques [1,4]. 1H NMR is especially attractive because protons are present in virtually all metabolites and its NMR sensitivity is high, enabling the simultaneous identification and monitoring of a wide range of low molecular weight metabolites.

  20. Theoretical NMR spectroscopy of N-heterocyclic carbenes and their metal complexes

    KAUST Repository

    Falivene, Laura

    2016-12-26

    Recent theoretical analysis of the NMR properties of free N-heterocyclic carbenes (NHC) and Metal-NHC complexes has complemented experiments, allowing the establishment of structure/property relationships and the rationalization of otherwise surprising experimental results. In this review, the main conclusions from recent literature are discussed, with the aim to offer a vision of the potential of theoretical analyses of NMR properties.

  1. Structure of Coordination Complexes: The Synergy between NMR ...

    African Journals Online (AJOL)

    NICO

    determined by density functional theory (DFT) methods and the application of the Boltzmann equation, are in ... single crystals suitable for crystallography can be obtained, ...... NMR analysis of bonding in transition metal olefin complexes.

  2. 1H NMR Spectroscopy and Multivariate Analysis of Monovarietal EVOOs as a Tool for Modulating Coratina-Based Blends

    Directory of Open Access Journals (Sweden)

    Laura Del Coco

    2014-04-01

    Full Text Available Coratina cultivar-based olives are very common among 100% Italian extra virgin olive oils (EVOOs. Often, the very spicy character of this cultivar, mostly due to the high polyphenols concentration, requires blending with other “sweetener” oils. In this work, monovarietal EVOO samples from the Coratina cultivar (Apulia, Italy were investigated and compared with monovarietal EVOO from native or recently introduced Apulian (Italy cultivars (Ogliarola Garganica, Ogliarola Barese, Cima di Mola, Peranzana, Picholine, from Calabria (Italy (Carolea and Rossanese and from other Mediterranean countries, such as Spain (Picual and Greece (Kalamata and Koroneiki by 1H NMR spectroscopy and multivariate analysis (principal component analysis (PCA. In this regard, NMR signals could allow a first qualitative evaluation of the chemical composition of EVOO and, in particular, of its minor component content (phenols and aldehydes, an intrinsic behavior of EVOO taste, related to the cultivar and geographical origins. Moreover, this study offers an opportunity to address blended EVOOs tastes by using oils from a specific region or country of origin.

  3. High-resolution, high-sensitivity NMR of nano-litre anisotropic samples by coil spinning

    Energy Technology Data Exchange (ETDEWEB)

    Sakellariou, D [CEA Saclay, DSM, DRECAM, SCM, Lab Struct and Dynam Resonance Magnet, CNRS URA 331, F-91191 Gif Sur Yvette, (France); Le Goff, G; Jacquinot, J F [CEA Saclay, DSM, DRECAM, SPEC: Serv Phys Etat Condense, CNRS URA 2464, F-91191 Gif Sur Yvette, (France)

    2007-07-01

    Nuclear magnetic resonance (NMR) can probe the local structure and dynamic properties of liquids and solids, making it one of the most powerful and versatile analytical methods available today. However, its intrinsically low sensitivity precludes NMR analysis of very small samples - as frequently used when studying isotopically labelled biological molecules or advanced materials, or as preferred when conducting high-throughput screening of biological samples or 'lab-on-a-chip' studies. The sensitivity of NMR has been improved by using static micro-coils, alternative detection schemes and pre-polarization approaches. But these strategies cannot be easily used in NMR experiments involving the fast sample spinning essential for obtaining well-resolved spectra from non-liquid samples. Here we demonstrate that inductive coupling allows wireless transmission of radio-frequency pulses and the reception of NMR signals under fast spinning of both detector coil and sample. This enables NMR measurements characterized by an optimal filling factor, very high radio-frequency field amplitudes and enhanced sensitivity that increases with decreasing sample volume. Signals obtained for nano-litre-sized samples of organic powders and biological tissue increase by almost one order of magnitude (or, equivalently, are acquired two orders of magnitude faster), compared to standard NMR measurements. Our approach also offers optimal sensitivity when studying samples that need to be confined inside multiple safety barriers, such as radioactive materials. In principle, the co-rotation of a micrometer-sized detector coil with the sample and the use of inductive coupling (techniques that are at the heart of our method) should enable highly sensitive NMR measurements on any mass-limited sample that requires fast mechanical rotation to obtain well-resolved spectra. The method is easy to implement on a commercial NMR set-up and exhibits improved performance with miniaturization, and we

  4. Construction of a NMR permanent magnet; Construcao de um ima permanente para RMN

    Energy Technology Data Exchange (ETDEWEB)

    Colnago, Luiz Alberto; Martins Neto, Ladislau; Oste, Rene de [Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA), Sao Carlos, SP (Brazil). Nucleo de Pesquisa e Desenvolvimento de Instrumentacao Agropecuaria

    1992-12-31

    Viewing the development of the pulsed, low resolution NMR spectrometers for quantitative analysis, the electronic part of a NMR spectrometer has first been constructed, based on a 1.4 Tesla magnet of a 60 MHz Varian device, with a gap increased to 23 mm, therefore reducing the field to .66 Tesla (28 MHz for the hydrogen). For the complete construction of the spectrometer in Brazil, a permanent magnet for NMR has also been constructed 9 refs., 3 figs.

  5. NMR and TRLFS studies of Ln(iii) and An(iii) C5-BPP complexes.

    Science.gov (United States)

    Adam, Christian; Beele, Björn B; Geist, Andreas; Müllich, Udo; Kaden, Peter; Panak, Petra J

    2015-02-01

    C5-BPP is a highly efficient N-donor ligand for the separation of trivalent actinides, An(iii), from trivalent lanthanides, Ln(iii). The molecular origin of the selectivity of C5-BPP and many other N-donor ligands of the BTP-type is still not entirely understood. We present here the first NMR studies on C5-BPP Ln(iii) and An(iii) complexes. C5-BPP is synthesized with 10% 15 N labeling and characterized by NMR and LIFDI-MS methods. 15 N NMR spectroscopy gives a detailed insight into the bonding of C5-BPP with lanthanides and Am(iii) as a representative for trivalent actinide cations, revealing significant differences in 15 N chemical shift for coordinating nitrogen atoms compared to Ln(iii) complexes. The temperature dependence of NMR chemical shifts observed for the Am(iii) complex indicates a weak paramagnetism. This as well as the observed large chemical shift for coordinating nitrogen atoms show that metal-ligand bonding in Am(C5-BPP) 3 has a larger share of covalence than in lanthanide complexes, confirming earlier studies. The Am(C5-BPP) 3 NMR sample is furthermore spiked with Cm(iii) and characterized by time-resolved laser fluorescence spectroscopy (TRLFS), yielding important information on the speciation of trace amounts of minor complex species.

  6. Solid-state NMR studies of form I of atorvastatin calcium.

    Science.gov (United States)

    Wang, Wei David; Gao, Xudong; Strohmeier, Mark; Wang, Wei; Bai, Shi; Dybowski, Cecil

    2012-03-22

    Solid-state (13)C, (19)F, and (15)N magic angle spinning NMR studies of Form I of atorvastatin calcium are reported, including chemical shift tensors of all resolvable carbon sites and fluorine sites. The complete (13)C and (19)F chemical shift assignments are given based on an extensive analysis of (13)C-(1)H HETCOR and (13)C-(19)F HETCOR results. The solid-state NMR data indicate that the asymmetric unit of this material contains two atorvastatin molecules. A possible structure of Form I of atorvastatin calcium (ATC-I), derived from solid-state NMR data and density functional theory calculations of various structures, is proposed for this important active pharmaceutical ingredient (API).

  7. 27Al NMR studies of NpPd5Al2

    International Nuclear Information System (INIS)

    Chudo, H.; Sakai, H.; Tokunaga, Y.; Kambe, S.; Aoki, D.; Homma, Y.; Shiokawa, Y.; Haga, Y.; Ikeda, S.; Matsuda, T.D.; Onuki, Y.; Yasuoka, H.

    2009-01-01

    We present 27 Al NMR studies for a single crystal of the Np-based superconductor NpPd 5 Al 2 (T c =4.9K). We have observed a five-line 27 Al NMR spectrum with a center line and four satellite lines separated by first-order nuclear quadrupole splittings. The Knight shift clearly drops below T c . The temperature dependence of the 27 Al nuclear spin-lattice relaxation rate shows no coherence peak below T c , indicating that NpPd 5 Al 2 is an unconventional superconductor with an anisotropic gap. The analysis of the present NMR data provides evidence for strong-coupling d-wave superconductivity in NpPd 5 Al 2 .

  8. Optimization and automation of quantitative NMR data extraction.

    Science.gov (United States)

    Bernstein, Michael A; Sýkora, Stan; Peng, Chen; Barba, Agustín; Cobas, Carlos

    2013-06-18

    NMR is routinely used to quantitate chemical species. The necessary experimental procedures to acquire quantitative data are well-known, but relatively little attention has been applied to data processing and analysis. We describe here a robust expert system that can be used to automatically choose the best signals in a sample for overall concentration determination and determine analyte concentration using all accepted methods. The algorithm is based on the complete deconvolution of the spectrum which makes it tolerant of cases where signals are very close to one another and includes robust methods for the automatic classification of NMR resonances and molecule-to-spectrum multiplets assignments. With the functionality in place and optimized, it is then a relatively simple matter to apply the same workflow to data in a fully automatic way. The procedure is desirable for both its inherent performance and applicability to NMR data acquired for very large sample sets.

  9. NMR-based milk metabolomics

    DEFF Research Database (Denmark)

    Sundekilde, Ulrik; Larsen, Lotte Bach; Bertram, Hanne Christine S.

    2013-01-01

    and processing capabilities of bovine milk is closely associated to milk composition. Metabolomics is ideal in the study of the low-molecular-weight compounds in milk, and this review focuses on the recent nuclear magnetic resonance (NMR)-based metabolomics trends in milk research, including applications linking...... compounds. Furthermore, metabolomics applications elucidating how the differential regulated genes affects milk composition are also reported. This review will highlight the recent advances in NMR-based metabolomics on milk, as well as give a brief summary of when NMR spectroscopy can be useful for gaining...

  10. Inverse problem for in vivo NMR spatial localization

    International Nuclear Information System (INIS)

    Hasenfeld, A.C.

    1985-11-01

    The basic physical problem of NMR spatial localization is considered. To study diseased sites, one must solve the problem of adequately localizing the NMR signal. We formulate this as an inverse problem. As the NMR Bloch equations determine the motion of nuclear spins in applied magnetic fields, a theoretical study is undertaken to answer the question of how to design magnetic field configurations to achieve these localized excited spin populations. Because of physical constraints in the production of the relevant radiofrequency fields, the problem factors into a temporal one and a spatial one. We formulate the temporal problem as a nonlinear transformation, called the Bloch Transform, from the rf input to the magnetization response. In trying to invert this transformation, both linear (for the Fourier Transform) and nonlinear (for the Bloch Transform) modes of radiofrequency excitation are constructed. The spatial problem is essentially a statics problem for the Maxwell equations of electromagnetism, as the wavelengths of the radiation considered are on the order of ten meters, and so propagation effects are negligible. In the general case, analytic solutions are unavailable, and so the methods of computer simulation are used to map the rf field spatial profiles. Numerical experiments are also performed to verify the theoretical analysis, and experimental confirmation of the theory is carried out on the 0.5 Tesla IBM/Oxford Imaging Spectrometer at the LBL NMR Medical Imaging Facility. While no explicit inverse is constructed to ''solve'' this problem, the combined theoretical/numerical analysis is validated experimentally, justifying the approximations made. 56 refs., 31 figs

  11. Inverse problem for in vivo NMR spatial localization

    Energy Technology Data Exchange (ETDEWEB)

    Hasenfeld, A.C.

    1985-11-01

    The basic physical problem of NMR spatial localization is considered. To study diseased sites, one must solve the problem of adequately localizing the NMR signal. We formulate this as an inverse problem. As the NMR Bloch equations determine the motion of nuclear spins in applied magnetic fields, a theoretical study is undertaken to answer the question of how to design magnetic field configurations to achieve these localized excited spin populations. Because of physical constraints in the production of the relevant radiofrequency fields, the problem factors into a temporal one and a spatial one. We formulate the temporal problem as a nonlinear transformation, called the Bloch Transform, from the rf input to the magnetization response. In trying to invert this transformation, both linear (for the Fourier Transform) and nonlinear (for the Bloch Transform) modes of radiofrequency excitation are constructed. The spatial problem is essentially a statics problem for the Maxwell equations of electromagnetism, as the wavelengths of the radiation considered are on the order of ten meters, and so propagation effects are negligible. In the general case, analytic solutions are unavailable, and so the methods of computer simulation are used to map the rf field spatial profiles. Numerical experiments are also performed to verify the theoretical analysis, and experimental confirmation of the theory is carried out on the 0.5 Tesla IBM/Oxford Imaging Spectrometer at the LBL NMR Medical Imaging Facility. While no explicit inverse is constructed to ''solve'' this problem, the combined theoretical/numerical analysis is validated experimentally, justifying the approximations made. 56 refs., 31 figs.

  12. PR-CALC: A Program for the Reconstruction of NMR Spectra from Projections

    International Nuclear Information System (INIS)

    Coggins, Brian E.; Zhou Pei

    2006-01-01

    Projection-reconstruction NMR (PR-NMR) has attracted growing attention as a method for collecting multidimensional NMR data rapidly. The PR-NMR procedure involves measuring lower-dimensional projections of a higher-dimensional spectrum, which are then used for the mathematical reconstruction of the full spectrum. We describe here the program PR-CALC, for the reconstruction of NMR spectra from projection data. This program implements a number of reconstruction algorithms, highly optimized to achieve maximal performance, and manages the reconstruction process automatically, producing either full spectra or subsets, such as regions or slices, as requested. The ability to obtain subsets allows large spectra to be analyzed by reconstructing and examining only those subsets containing peaks, offering considerable savings in processing time and storage space. PR-CALC is straightforward to use, and integrates directly into the conventional pipeline for data processing and analysis. It was written in standard C+ + and should run on any platform. The organization is flexible, and permits easy extension of capabilities, as well as reuse in new software. PR-CALC should facilitate the widespread utilization of PR-NMR in biomedical research

  13. High-field {sup 1}H NMR microscopy for fundamental biophysical research; Hochfeld {sup 1}H-NMR-Mikroskopie zur biophysikalischen Grundlagenforschung

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, D.

    2003-08-08

    This work has a biophysical background and uses different examples to demonstrate the practical applicability of NMR-Microscopy in the medical and biological sector. Therefore, the different projects are feasibility studies which are used to compare the possibilities and advantages of NMR-Microscopy with other, established examination techniques. In detail, using MR-Microscopy, different living and fixed biological samples have been visualized non-invasively with high spatial resolution. The specific purpose of the studies ranged from the visualization of the invasion of tumor-spheroids into cell aggregates using T2 parameter maps (time constant of the spin-spin relaxation) to the three-dimensional display of the honey bee brain in the intact head capsule and the non-invasive visualization of the anatomy of prenatal dolphins. For all these projects, the non-invasive character of MR-experiments was of utmost importance. The tumor invasion was not to be disturbed by the measurements, the bee brain should be visualized as close to its true natural shape as possible and the examined dolphins represent rare museum specimens which should not be destroyed. The different samples were all imaged with the best possible spatial resolution which was either limited by the necessary signal-to-noise ratio (SNR) or the available scan time. In order to resolve single details and fine structures in the images, it was necessary to optimize the SNR as well as the contrast-to-noise ratio. To guarantee the necessary SNR, the measurements were performed on high field MR-spectrometers with resonance frequencies of 500 and 750 MHz.

  14. Low field pulsed NMR- a mass screening tool in agricultural research

    International Nuclear Information System (INIS)

    Tiwari, P.N.

    1994-01-01

    One of the main requirements in agricultural research is to analyse large number of samples for their one or more chemical constituents and physical properties. In plant breeding programmes and germplasm evaluation, it is necessary that the analysis is fast as many samples are to be analysed. Pulsed nuclear magnetic resonance (NMR) is a potential tool for developing rapid and nondestructive method of analysis. Various applications of low resolution pulsed NMR in agricultural research, which are generally used as screening method are briefly described. 25 refs., 2 figs., 2 tabs

  15. Automated Solid Phase Extraction (SPE) LC/NMR Applied to the Structural Analysis of Extractable Compounds from a Pharmaceutical Packaging Material of Construction.

    Science.gov (United States)

    Norwood, Daniel L; Mullis, James O; Davis, Mark; Pennino, Scott; Egert, Thomas; Gonnella, Nina C

    2013-01-01

    The structural analysis (i.e., identification) of organic chemical entities leached into drug product formulations has traditionally been accomplished with techniques involving the combination of chromatography with mass spectrometry. These include gas chromatography/mass spectrometry (GC/MS) for volatile and semi-volatile compounds, and various forms of liquid chromatography/mass spectrometry (LC/MS or HPLC/MS) for semi-volatile and relatively non-volatile compounds. GC/MS and LC/MS techniques are complementary for structural analysis of leachables and potentially leachable organic compounds produced via laboratory extraction of pharmaceutical container closure/delivery system components and corresponding materials of construction. Both hyphenated analytical techniques possess the separating capability, compound specific detection attributes, and sensitivity required to effectively analyze complex mixtures of trace level organic compounds. However, hyphenated techniques based on mass spectrometry are limited by the inability to determine complete bond connectivity, the inability to distinguish between many types of structural isomers, and the inability to unambiguously determine aromatic substitution patterns. Nuclear magnetic resonance spectroscopy (NMR) does not have these limitations; hence it can serve as a complement to mass spectrometry. However, NMR technology is inherently insensitive and its ability to interface with chromatography has been historically challenging. This article describes the application of NMR coupled with liquid chromatography and automated solid phase extraction (SPE-LC/NMR) to the structural analysis of extractable organic compounds from a pharmaceutical packaging material of construction. The SPE-LC/NMR technology combined with micro-cryoprobe technology afforded the sensitivity and sample mass required for full structure elucidation. Optimization of the SPE-LC/NMR analytical method was achieved using a series of model compounds

  16. Uncovering Key Structural Features of an Enantioselective Peptide-Catalyzed Acylation Utilizing Advanced NMR Techniques

    Czech Academy of Sciences Publication Activity Database

    Procházková, Eliška; Kolmer, A.; Ilgen, J.; Schwab, M.; Kaltschnee, L.; Fredersdorf, M.; Schmidts, V.; Wende, R. C.; Schreiner, P. R.; Thiele, C. M.

    2016-01-01

    Roč. 55, č. 51 (2016), s. 15754-15759 ISSN 1433-7851 Institutional support: RVO:61388963 Keywords : conformational analysis * enantioselective acylations * NMR spectroscopy * pure shift NMR * RDCs Subject RIV: CC - Organic Chemistry Impact factor: 11.994, year: 2016

  17. Theoretical NMR and conformational analysis of solvated oximes for organophosphates-inhibited acetylcholinesterase reactivation

    Science.gov (United States)

    da Silva, Jorge Alberto Valle; Modesto-Costa, Lucas; de Koning, Martijn C.; Borges, Itamar; França, Tanos Celmar Costa

    2018-01-01

    In this work, quaternary and non-quaternary oximes designed to bind at the peripheral site of acetylcholinesterase previously inhibited by organophosphates were investigated theoretically. Some of those oximes have a large number of degrees of freedom, thus requiring an accurate method to obtain molecular geometries. For this reason, the density functional theory (DFT) was employed to refine their molecular geometries after conformational analysis and to compare their 1H and 13C nuclear magnetic resonance (NMR) theoretical signals in gas-phase and in solvent. A good agreement with experimental data was achieved and the same theoretical approach was employed to obtain the geometries in water environment for further studies.

  18. TG/DTG, FT-ICR Mass Spectrometry, and NMR Spectroscopy Study of Heavy Fuel Oil

    KAUST Repository

    Elbaz, Ayman M.

    2015-11-12

    There is an increasing interest in the comprehensive study of heavy fuel oil (HFO) due to its growing use in furnaces, boilers, marines, and recently in gas turbines. In this work, the thermal combustion characteristics and chemical composition of HFO were investigated using a range of techniques. Thermogravimetric analysis (TGA) was conducted to study the nonisothermal HFO combustion behavior. Chemical characterization of HFO was accomplished using various standard methods in addition to direct infusion atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry (APCI-FTICR MS), high resolution 1H nuclear magnetic resonance (NMR), 13C NMR, and two-dimensional heteronuclear multiple bond correlation (HMBC) spectroscopy. By analyzing thermogravimetry and differential thermogravimetry (TG/DTG) results, three different reaction regions were identified in the combustion of HFO with air, specifically, low temperature oxidation region (LTO), fuel deposition (FD), and high temperature oxidation (HTO) region. At the high end of the LTO region, a mass transfer resistance (skin effect) was evident. Kinetic analysis in LTO and HTO regions was conducted using two different kinetic models to calculate the apparent activation energy. In both models, HTO activation energies are higher than those for LTO. The FT-ICR MS technique resolved thousands of aromatic and sulfur containing compounds in the HFO sample and provided compositional details for individual molecules of three major class species. The major classes of compounds included species with one sulfur atom (S1), with two sulfur atoms (S2), and purely hydrocarbons (HC). The DBE (double bond equivalent) abundance plots established for S1 and HC provided additional information on their distributions in the HFO sample. The 1H NMR and 13C NMR results revealed that nearly 59% of the 1H nuclei were distributed as paraffinic CH2 and 5% were in aromatic groups. Nearly 21% of 13C nuclei were

  19. NMR imaging of cerebral infarction

    International Nuclear Information System (INIS)

    Takusagawa, Yoshihiko; Yamaoka, Naoki; Doi, Kazuaki; Okada, Keisei

    1987-01-01

    One hundred and five patients with cerebral infarction were studied by nuclear magnetic resonance (NMR) CT (resistive type of magnet with strength of 0.1 tesla) and X-ray CT. Pulse sequences used saturation recovery (Tr = 600 mSec), Inversion recovery (Tr = 500 mSec, Td = 300 mSec) and spin echo (Tr = 1500 mSec, Te = 40, 80, 120, 160 mSec). Fifteen cases were examined by NMR-CT within 24 hours from onset. Proton NMR imaging could not detect cerebral ischemia as early as 2 hours after onset, but except could detect the lesions in Se image the area of cerebral infarct 3 hours after onset. After 5 hours from onset image changes in SE were evident and corresponded to the area of cerebral infarct, but image changes in IR could not fully delineate the infarcted area. NMR images of 41 year-old woman with cerebral embolism by MCA trunck occlusion associated with mitral stenosis were presented, and NMR-CT was examined 10 hours, 9th and 43th days after episode of MCA occlusion. Sixty patents (64 times) with lacunar infarction were studied by NMR-CT and X-ray CT. The inversion recovery images were used mainly for detection of lesions and comparison with X-ray CT. In 160 lesions which were detected by NMR-CT or X-ray CT, could 156 lesions be detected by NMR-CT and 78 lesions by X-ray CT. Inversion recovery images were more useful for detection of lacunes than X-ray CT. Calculated T1 and T2 values prolonged with time course from onset. (author)

  20. Two-Phase Extraction for Comprehensive Analysis of the Plant Metabolome by NMR.

    Science.gov (United States)

    Schripsema, Jan; Dagnino, Denise

    2018-01-01

    Metabolomics is the area of research, which strives to obtain complete metabolic fingerprints, to detect differences between them, and to provide hypothesis to explain those differences [1]. But obtaining complete metabolic fingerprints is not an easy task. Metabolite extraction is a key step during this process, and much research has been devoted to finding the best solvent mixture to extract as much metabolites as possible.Here a procedure is described for analysis of both polar and apolar metabolites using a two-phase extraction system. D 2 O and CDCl 3 are the solvents of choice, and their major advantage is that, for the identification of the compounds, standard databases can be used because D 2 O and CDCl 3 are the solvents most commonly used for pure compound NMR spectra. The procedure enables the absolute quantification of components via the addition of suitable internal standards. The extracts are also suitable for further analysis with other systems like LC-MS or GC-MS.

  1. Assessment of preparation methods for organic phosphorus analysis in phosphorus-polluted Fe/Al-rich Haihe river sediments using solution 31P-NMR.

    Directory of Open Access Journals (Sweden)

    Wenqiang Zhang

    Full Text Available Fe/Al-rich river sediments that were highly polluted with phosphorus (P were used in tests to determine the optimum preparation techniques for measuring organic P (Po using solution (31P nuclear magnetic resonance spectroscopy ((31P-NMR. The optimum pre-treatment, extraction time, sediment to solution ratio and sodium hydroxide-ethylenediaminetetraacetic acid (NaOH-EDTA extractant solution composition were determined. The total P and Po recovery rates were higher from freeze- and air-dried samples than from fresh samples. An extraction time of 16 h was adequate for extracting Po, and a shorter or longer extraction time led to lower recoveries of total P and Po, or led to the degradation of Po. An ideal P recovery rate and good-quality NMR spectra were obtained at a sediment:solution ratio of 1:10, showing that this ratio is ideal for extracting Po. An extractant solution of 0.25 M NaOH and 50 mM EDTA was found to be more appropriate than either NaOH on its own, or a more concentrated NaOH-EDTA mixture for (31P-NMR analysis, as this combination minimized interference from paramagnetic ions and was appropriate for the detected range of Po concentrations. The most appropriate preparation method for Po analysis, therefore, was to extract the freeze-dried and ground sediment sample with a 0.25 M NaOH and 50 mM EDTA solution at a sediment:solution ratio of 1:10, for 16 h, by shaking. As lyophilization of the NaOH-EDTA extracts proved to be an optimal pre-concentration method for Po analysis in the river sediment, the extract was lyophilized as soon as possible, and analyzed by (31P-NMR.

  2. Identifying Stereoisomers by ab-initio Calculation of Secondary Isotope Shifts on NMR Chemical Shieldings

    Directory of Open Access Journals (Sweden)

    Karl-Heinz Böhm

    2014-04-01

    Full Text Available We present ab-initio calculations of secondary isotope effects on NMR chemical shieldings. The change of the NMR chemical shift of a certain nucleus that is observed if another nucleus is replaced by a different isotope can be calculated by computing vibrational corrections on the NMR parameters using electronic structure methods. We demonstrate that the accuracy of the computational results is sufficient to even distinguish different conformers. For this purpose, benchmark calculations for fluoro(2-2Hethane in gauche and antiperiplanar conformation are carried out at the HF, MP2 and CCSD(T level of theory using basis sets ranging from double- to quadruple-zeta quality. The methodology is applied to the secondary isotope shifts for 2-fluoronorbornane in order to resolve an ambiguity in the literature on the assignment of endo- and exo-2-fluoronorbornanes with deuterium substituents in endo-3 and exo-3 positions, also yielding insight into mechanistic details of the corresponding synthesis.

  3. Identifying stereoisomers by ab-initio calculation of secondary isotope shifts on NMR chemical shieldings.

    Science.gov (United States)

    Böhm, Karl-Heinz; Banert, Klaus; Auer, Alexander A

    2014-04-23

    We present ab-initio calculations of secondary isotope effects on NMR chemical shieldings. The change of the NMR chemical shift of a certain nucleus that is observed if another nucleus is replaced by a different isotope can be calculated by computing vibrational corrections on the NMR parameters using electronic structure methods. We demonstrate that the accuracy of the computational results is sufficient to even distinguish different conformers. For this purpose, benchmark calculations for fluoro(2-2H)ethane in gauche and antiperiplanar conformation are carried out at the HF, MP2 and CCSD(T) level of theory using basis sets ranging from double- to quadruple-zeta quality. The methodology is applied to the secondary isotope shifts for 2-fluoronorbornane in order to resolve an ambiguity in the literature on the assignment of endo- and exo-2-fluoronorbornanes with deuterium substituents in endo-3 and exo-3 positions, also yielding insight into mechanistic details of the corresponding synthesis.

  4. Simultaneous Gaussian and exponential inversion for improved analysis of shales by NMR relaxometry

    Science.gov (United States)

    Washburn, Kathryn E.; Anderssen, Endre; Vogt, Sarah J.; Seymour, Joseph D.; Birdwell, Justin E.; Kirkland, Catherine M.; Codd, Sarah L.

    2015-01-01

    Nuclear magnetic resonance (NMR) relaxometry is commonly used to provide lithology-independent porosity and pore-size estimates for petroleum resource evaluation based on fluid-phase signals. However in shales, substantial hydrogen content is associated with solid and fluid signals and both may be detected. Depending on the motional regime, the signal from the solids may be best described using either exponential or Gaussian decay functions. When the inverse Laplace transform, the standard method for analysis of NMR relaxometry results, is applied to data containing Gaussian decays, this can lead to physically unrealistic responses such as signal or porosity overcall and relaxation times that are too short to be determined using the applied instrument settings. We apply a new simultaneous Gaussian-Exponential (SGE) inversion method to simulated data and measured results obtained on a variety of oil shale samples. The SGE inversion produces more physically realistic results than the inverse Laplace transform and displays more consistent relaxation behavior at high magnetic field strengths. Residuals for the SGE inversion are consistently lower than for the inverse Laplace method and signal overcall at short T2 times is mitigated. Beyond geological samples, the method can also be applied in other fields where the sample relaxation consists of both Gaussian and exponential decays, for example in material, medical and food sciences.

  5. Simultaneous Gaussian and exponential inversion for improved analysis of shales by NMR relaxometry

    Science.gov (United States)

    Washburn, Kathryn E.; Anderssen, Endre; Vogt, Sarah J.; Seymour, Joseph D.; Birdwell, Justin E.; Kirkland, Catherine M.; Codd, Sarah L.

    2014-01-01

    Nuclear magnetic resonance (NMR) relaxometry is commonly used to provide lithology-independent porosity and pore-size estimates for petroleum resource evaluation based on fluid-phase signals. However in shales, substantial hydrogen content is associated with solid and fluid signals and both may be detected. Depending on the motional regime, the signal from the solids may be best described using either exponential or Gaussian decay functions. When the inverse Laplace transform, the standard method for analysis of NMR relaxometry results, is applied to data containing Gaussian decays, this can lead to physically unrealistic responses such as signal or porosity overcall and relaxation times that are too short to be determined using the applied instrument settings. We apply a new simultaneous Gaussian-Exponential (SGE) inversion method to simulated data and measured results obtained on a variety of oil shale samples. The SGE inversion produces more physically realistic results than the inverse Laplace transform and displays more consistent relaxation behavior at high magnetic field strengths. Residuals for the SGE inversion are consistently lower than for the inverse Laplace method and signal overcall at short T2 times is mitigated. Beyond geological samples, the method can also be applied in other fields where the sample relaxation consists of both Gaussian and exponential decays, for example in material, medical and food sciences.

  6. Chemical analysis of bleach and hydroxide-based solutions after decontamination of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX).

    Science.gov (United States)

    Hopkins, F B; Gravett, M R; Self, A J; Wang, M; Chua, Hoe-Chee; Hoe-Chee, C; Lee, H S Nancy; Sim, N Lee Hoi; Jones, J T A; Timperley, C M; Riches, J R

    2014-08-01

    Detailed chemical analysis of solutions used to decontaminate chemical warfare agents can be used to support verification and forensic attribution. Decontamination solutions are amongst the most difficult matrices for chemical analysis because of their corrosive and potentially emulsion-based nature. Consequently, there are relatively few publications that report their detailed chemical analysis. This paper describes the application of modern analytical techniques to the analysis of decontamination solutions following decontamination of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). We confirm the formation of N,N-diisopropylformamide and N,N-diisopropylamine following decontamination of VX with hypochlorite-based solution, whereas they were not detected in extracts of hydroxide-based decontamination solutions by nuclear magnetic resonance (NMR) spectroscopy or gas chromatography-mass spectrometry. We report the electron ionisation and chemical ionisation mass spectroscopic details, retention indices, and NMR spectra of N,N-diisopropylformamide and N,N-diisopropylamine, as well as analytical methods suitable for their analysis and identification in solvent extracts and decontamination residues.

  7. Metabolic Profiling of Food Protective Cultures by in vitro NMR Spectroscopy

    DEFF Research Database (Denmark)

    Ebrahimi, Parvaneh

    Food spoilage is of major concern to the food industry, because it leads to considerable economic losses, a deteriorated environmental food-print, and to possible public health hazards. In order to limit food spoilage, research on the preservation of food products has always received particular......-called protective cultures) has unexploited potential to inhibit the growth of pathogenic microorganisms and enhance the shelf life of the final food product. In order to apply biopreservation in food products effectively, detailed knowledge on the metabolism of protective cultures is required. The present Ph......D project is mainly focused on the application of in vitro NMR spectroscopy for studying the metabolism of protective cultures. As an important part of this work, an analytical protocol was developed for realtime in vitro NMR measurements of bacterial fermentation, which includes guidelines from the sample...

  8. β-NMR sample optimization

    CERN Document Server

    Zakoucka, Eva

    2013-01-01

    During my summer student programme I was working on sample optimization for a new β-NMR project at the ISOLDE facility. The β-NMR technique is well-established in solid-state physics and just recently it is being introduced for applications in biochemistry and life sciences. The β-NMR collaboration will be applying for beam time to the INTC committee in September for three nuclei: Cu, Zn and Mg. Sample optimization for Mg was already performed last year during the summer student programme. Therefore sample optimization for Cu and Zn had to be completed as well for the project proposal. My part in the project was to perform thorough literature research on techniques studying Cu and Zn complexes in native conditions, search for relevant binding candidates for Cu and Zn applicable for ß-NMR and eventually evaluate selected binding candidates using UV-VIS spectrometry.

  9. Quantification of radiation induced crosslinking in a commercial, toughened silicone rubber, TR-55, by 1H MQ-NMR

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, R; Chinn, S; Alviso, C; Harvey, C A; Giuliani, J; Wilson, T; Cohenour, R

    2008-11-10

    Radiation induced degradation in a commercial, filled silicone composite has been studied by SPME/GC-MS, DMA, DSC, swelling, and Multiple Quantum NMR. Analysis of volatile and semivolatile species indicates degradation via decomposition of the peroxide curing catalyst and radiation induced backbiting reactions. DMA, swelling, and spin-echo NMR analysis indicate a increase in crosslink density of near 100% upon exposure to a cumulative dose of 250 kGray. Analysis of the sol-fraction via Charlseby-Pinner analysis indicates a ratio of chain scission to crosslinking yields of 0.38, consistent with the dominance of the crosslinking observed by DMA, swelling and spin-echo NMR and the chain scissioning reactions observed by MS analysis. Multiple Quantum NMR has revealed a bimodal distribution of residual dipolar couplings near 1 krad/sec and 5 krad/sec in an approximately 90:10 ratio, consistent with bulk network chains and chains associated with the filler surface. Upon exposure to radiation, the mean {Omega}{sub d} for both domains and the width of both domains both increased. The MQ NMR analysis provided increase insight into the effects of ionizing radiation on the network structure of silicone polymers.

  10. NMR determination of solvent dependent behavior and XRD structural properties of 4-carboxy phenylboronic acid: A DFT supported study

    Science.gov (United States)

    Dikmen, Gökhan; Alver, Özgür; Parlak, Cemal

    2018-04-01

    Solvent dependent structural properties of 4-carboxy phenylboronic acid (4-cpba) were investigated by X-ray diffraction (XRD) and nuclear magnetic resonance (NMR) spectroscopic methods. The molecular structure and geometric parameters were determined by some computational methods such as B3LYP/6-31 + G(3df,p), HF/aug-cc-pvtz and MP2/6-31G(d). Detailed elucidation of the structural and spectroscopic properties of 4-cpba was carried out with 1H, HETCOR and DOSY NMR experiments. Solvent effects on the structural properties were monitored on the changes of 1H NMR spectra by using various solvents and it was observed that 4-cpba shows serious structural preferences depending on the solvent used.

  11. Recent topics in NMR imaging and MRI

    International Nuclear Information System (INIS)

    Watanabe, Tokuko

    2002-01-01

    NMR and NMR imaging (MRI) are finding increasing use not only in the clinical and medical fields, but also in material, physicochemical, biological, geological, industrial and environmental applications. This short review is limited to two topics: new techniques and pulse sequences and their application to non-clinical fields that may have clinical application; and new trends in MR contrast agents. The former topic addresses pulse sequence and data analysis; dynamics such as diffusion, flow, velocity and velocimetry; chemometrics; pharmacological agents; and chemotherapy; the latter topic addresses contrast agents (CA) sensitive to biochemical activity; CA based on water exchange; molecular interactions and stability of CA; characteristics of emerging CA; superparamagnetic CA; and macromolecular CA. (author)

  12. Portable, low-cost NMR with laser-lathe lithography produced microcoils.

    Science.gov (United States)

    Demas, Vasiliki; Herberg, Julie L; Malba, Vince; Bernhardt, Anthony; Evans, Lee; Harvey, Christopher; Chinn, Sarah C; Maxwell, Robert S; Reimer, Jeffrey

    2007-11-01

    Nuclear Magnetic Resonance (NMR) is unsurpassed in its ability to non-destructively probe chemical identity. Portable, low-cost NMR sensors would enable on-site identification of potentially hazardous substances, as well as the study of samples in a variety of industrial applications. Recent developments in RF microcoil construction (i.e. coils much smaller than the standard 5mm NMR RF coils), have dramatically increased NMR sensitivity and decreased the limits-of-detection (LOD). We are using advances in laser pantographic microfabrication techniques, unique to LLNL, to produce RF microcoils for field deployable, high sensitivity NMR-based detectors. This same fabrication technique can be used to produce imaging coils for MRI as well as for standard hardware shimming or "ex-situ" shimming of field inhomogeneities typically associated with inexpensive magnets. This paper describes a portable NMR system based on the use of a 2 kg hand-held permanent magnet, laser-fabricated microcoils, and a compact spectrometer. The main limitations for such a system are the low resolution and sensitivity associated with the low field values and quality of small permanent magnets, as well as the lack of large amounts of sample of interest in most cases. The focus of the paper is on the setting up of this system, initial results, sensitivity measurements, discussion of the limitations and future plans. The results, even though preliminary, are promising and provide the foundation for developing a portable, inexpensive NMR system for chemical analysis. Such a system will be ideal for chemical identification of trace substances on site.

  13. Microprocessorized NMR measurement

    International Nuclear Information System (INIS)

    Rijllart, A.

    1984-01-01

    An MC68000 CAMAC microprocessor system for fast and accurate NMR signal measurement will be presented. A stand-alone CAMAC microprocessor system (MC68000 STAC) with a special purpose interface sweeps a digital frequency synthesizer and digitizes the NMR signal with a 16-bit ADC of 17 μs conversion time. It averages the NMR signal data over many sweeps and then transfers it through CAMAC to a computer for calculation of the signal parameters. The computer has full software control over the timing and sweep settings of this signal averager, and thus allows optimization of noise suppression. Several of these processor systems can be installed in the same crate for parallel processing, and the flexibility of the STAC also allows easy adaptation to other applications such as transient recording or phase-sensitive detection. (orig.)

  14. Fourier transform n.m.r. spectroscopy

    International Nuclear Information System (INIS)

    Shaw, D.

    1976-01-01

    This book is orientated to techniques rather than applications. The basic theory of n.m.r. is dealt with in a unified approach to the Fourier theory. The middle section of the book concentrates on the practical aspects of Fourier n.m.r., both instrumental and experimental. The final chapters briefly cover general application of n.m.r., but concentrate strongly on those areas where Fourier n.m.r. can give information which is not available by conventional techniques

  15. Tannin structural elucidation and quantitative ³¹P NMR analysis. 2. Hydrolyzable tannins and proanthocyanidins.

    Science.gov (United States)

    Melone, Federica; Saladino, Raffaele; Lange, Heiko; Crestini, Claudia

    2013-10-02

    An unprecedented analytical method that allows simultaneous structural and quantitative characterization of all functional groups present in tannins is reported. In situ labeling of all labile H groups (aliphatic and phenolic hydroxyls and carboxylic acids) with a phosphorus-containing reagent (Cl-TMDP) followed by quantitative ³¹P NMR acquisition constitutes a novel fast and reliable analytical tool for the analysis of tannins and proanthocyanidins with significant implications for the fields of food and feed analyses, tannery, and the development of natural polyphenolics containing products.

  16. Discrimination of sugarcane according to cultivar by 1H NMR and chemometric analyses

    Energy Technology Data Exchange (ETDEWEB)

    Alves Filho, Elenilson G.; Silva, Lorena M.A.; Choze, Rafael; Liao, Luciano M. [Laboratorio de Ressonancia Magnetica Nuclear, Instituto de Quimica, Universidade Federal de Goias (UFG), Goiania, GO (Brazil); Honda, Neli K.; Alcantara, Glaucia B. [Departamento de Quimica, Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil)

    2012-07-01

    Several technologies for the development of new sugarcane cultivars have mainly focused on the increase in productivity and greater disease resistance. Sugarcane cultivars are usually identified by the organography of the leaves and stems, the analysis of peroxidase and esterase isoenzyme activities and the total soluble protein as well as soluble solid content. Nuclear magnetic resonance (NMR) associated with chemometric analysis has proven to be a valuable tool for cultivar assessment. Thus, this article describes the potential of chemometric analysis applied to 1H high resolution magic angle spinning (HRMAS) and NMR in solution for the investigation of sugarcane cultivars. For this purpose, leaves from eight different cultivars of sugarcane were investigated by {sup 1}H NMR spectroscopy in combination with chemometric analysis. The approach shows to be a useful tool for the distinction and classification of different sugarcane cultivars as well as to access the differences on its chemical composition. (author)

  17. NMR spectroscopy applied to the eye: Drugs and metabolic studies

    Energy Technology Data Exchange (ETDEWEB)

    Saether, Oddbjoern

    2005-07-01

    NMR spectroscopy has been extensively applied in biomedical research during the last decades. It has proved to be an analytical tool of great value. From being mainly used in chemistry, technological developments have expanded the application of NMR spectroscopy to a great wealth of disciplines. With this method, biochemical information can be obtained by analysing tissue extracts. Moreover, NMR spectroscopy is increasingly employed for pharmacokinetic studies and analysis of biofluids. Technological progress has provided increased sensitivity and resolution in the spectra, which enable even more of the complexity of biological samples to be elucidated. With the implementation of high-resolution magic angle spinning (HR-MAS) NMR spectroscopy in biomedicine, intact tissue samples or biopsies can be investigated. Thus, NMR spectroscopy has an ever-increasing impact in metabolic screening of human samples and in animal models, and methods are also increasingly realised in vivo. The present work, NMR spectroscopy applied to eye research, consists of two main parts. Firstly, the feasibility to monitor fluorinated ophthalmic drugs directly in the eye was assessed. Secondly, HR-MAS H1 NMR spectroscopy was applied for metabolic profiling of the anterior eye segment, specifically to analyse metabolic changes in intact corneal and lenticular samples after cataractogenic insults. This work included metabonomics with the application of pattern recognition methods to analyse HR-MAS spectra of eye tissues. Optimisation strategies were explored for F19 NMR detection of fluorinated drugs in a phantom eye. S/N gains in F19 NMR spectroscopy were achieved by implementing time-share H1 decoupling at 2.35 T. The method is advantageous for compounds displaying broad spectral coupling patterns, though detection of drugs at concentrations encountered in the anterior eye segment after topical application was not feasible. Higher magnetic fields and technological improvements could enable

  18. NMR spectroscopy applied to the eye: Drugs and metabolic studies

    International Nuclear Information System (INIS)

    Saether, Oddbjoern

    2005-01-01

    NMR spectroscopy has been extensively applied in biomedical research during the last decades. It has proved to be an analytical tool of great value. From being mainly used in chemistry, technological developments have expanded the application of NMR spectroscopy to a great wealth of disciplines. With this method, biochemical information can be obtained by analysing tissue extracts. Moreover, NMR spectroscopy is increasingly employed for pharmacokinetic studies and analysis of biofluids. Technological progress has provided increased sensitivity and resolution in the spectra, which enable even more of the complexity of biological samples to be elucidated. With the implementation of high-resolution magic angle spinning (HR-MAS) NMR spectroscopy in biomedicine, intact tissue samples or biopsies can be investigated. Thus, NMR spectroscopy has an ever-increasing impact in metabolic screening of human samples and in animal models, and methods are also increasingly realised in vivo. The present work, NMR spectroscopy applied to eye research, consists of two main parts. Firstly, the feasibility to monitor fluorinated ophthalmic drugs directly in the eye was assessed. Secondly, HR-MAS H1 NMR spectroscopy was applied for metabolic profiling of the anterior eye segment, specifically to analyse metabolic changes in intact corneal and lenticular samples after cataractogenic insults. This work included metabonomics with the application of pattern recognition methods to analyse HR-MAS spectra of eye tissues. Optimisation strategies were explored for F19 NMR detection of fluorinated drugs in a phantom eye. S/N gains in F19 NMR spectroscopy were achieved by implementing time-share H1 decoupling at 2.35 T. The method is advantageous for compounds displaying broad spectral coupling patterns, though detection of drugs at concentrations encountered in the anterior eye segment after topical application was not feasible. Higher magnetic fields and technological improvements could enable

  19. An introduction to biological NMR spectroscopy

    International Nuclear Information System (INIS)

    Marion, Dominique

    2013-01-01

    NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP). (authors)

  20. New strategy for stable-isotope-aided, multidimensional NMR spectroscopy of DNA oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Okira; Tate, Shin-Ichi; Kainosho, Masatsune [Tokyo Metropolitan Univ., Tokyo (Japan)

    1994-12-01

    Nuclear Magnetic Resonance (NMR) is the most efficient method for determining the solution structures of biomolecules. By applying multidimensional heteronuclear NMR techniques to {sup 13}C/{sup 15}N-labeled proteins, we can determine the solution structures of proteins with molecular mass of 20 to 30kDa at an accuracy similar to that of x-ray crystallography. Improvements in NMR instrumentation and techniques as well as the development of protein engineering methods for labeling proteins have rapidly advanced multidimensional heteronuclear NMR of proteins. In contrast, multidimensional heteronuclear NMR studies of nucleic acids is less advanced because there were no efficient methods for preparing large amounts of labeled DNA/RNA oligomers. In this report, we focused on the chemical synthesis of DNA oligomers labeled at specific residue(s). RNA oligomers with specific labels, which are difficult to synthesize by the enzyme method, can be synthesized by the chemical method. The specific labels are useful for conformational analysis of larger molecules such as protein-nucleic acid complexes.

  1. Optical pumping and xenon NMR

    International Nuclear Information System (INIS)

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping 129 Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the 131 Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen

  2. Micropore analysis of polymer networks by gas sorption and 129Xe NMR spectroscopy: toward a better understanding of intrinsic microporosity.

    Science.gov (United States)

    Weber, Jens; Schmidt, Johannes; Thomas, Arne; Böhlmann, Winfried

    2010-10-05

    The microporosity of two microporous polymer networks is investigated in detail. Both networks are based on a central spirobifluorene motif but have different linker groups, namely, imide and thiophene units. The microporosity of the networks is based on the "polymers of intrinsic microporosity (PIM)" design strategy. Nitrogen, argon, and carbon dioxide were used as sorbates in order to analyze the microporosity in greater detail. The gas sorption data was analyzed with respect to important parameters such as specific surface area, pore volume, and pore size (distribution). It is shown that the results can be strongly model dependent and swelling effects have to be regarded. (129)Xe NMR was used as an independent technique for the estimation of the average pore size of the polymer networks. The results indicate that both networks are mainly ultramicroporous (pore sizes microporous matter might have a different micropore size in the solvent swollen/filled state that in the dry state.

  3. Characterization of functional polymers by NMR

    International Nuclear Information System (INIS)

    Neto, Oscar H.S. A.S.; San Gil, Rosane A.S.; Nakayama, T.; Costa Neto, Claudio

    1993-01-01

    Several synthetic polymers are used in the chemical analysis of complexes mixtures aiming to extract certain specific functional groups for further identification. This work describes the utilization of NMR in the characterization of one of the above mentioned compounds which will be used as reagent for the synthesis of another compound of the same type, which will be further used in the chemical analysis of alcohols and phenols. The methodology is described. The results are described and discussed

  4. Functional studies using NMR

    International Nuclear Information System (INIS)

    McCready, V.R.; Leach, M.; Ell, P.J.

    1987-01-01

    This volume is based on a series of lectures delivered at a one-day teaching symposium on functional and metabolic aspects of NMR measurements held at the Middlesex Hospital Medical School on 1st September 1985 as a part of the European Nuclear Medicine Society Congress. Currently the major emphasis in medical NMR in vivo is on its potential to image and display abnormalities in conventional radiological images, providing increased contrast between normal and abnormal tissue, improved definition of vasculature, and possibly an increased potential for differential diagnosis. Although these areas are undeniably of major importance, it is probable that NMR will continue to complement conventional measurement methods. The major potential benefits to be derived from in vivo NMR measurements are likely to arise from its use as an instrument for functional and metabolic studies in both clinical research and in the everyday management of patients. It is to this area that this volume is directed

  5. Structure resolution of Ba5Al3F19 and Iivestigation of fluorine ion dynamics by synchrotron powder diffraction, variable-temperature solid-state NMR, and quantum computations

    International Nuclear Information System (INIS)

    Martineau, C.; Fayon, F.; Suchomel, M.R.; Allix, M.; Massiot, D.; Taulelle, F.

    2011-01-01

    The room temperature structure of Ba 5 Al 3 F 19 has been solved using electron microscopy and synchrotron powder diffraction data. One-dimensional (1D) 27 Al and ultrafast magic-angle-spinning (MAS) 19 F NMR spectra have been recorded and are in agreement with the proposed structural model for Ba 5 Al 3 F 19 . The 19 F isotropic chemical shift and 27 Al quadrupolar parameters have been calculated using the CASTEP code from the experimental and density functional theory geometry-optimized structures. After optimization, the calculated NMR parameters of both the 19 F and 27 Al nuclei show improved consistency with the experimental values, demonstrating that the geometry optimization step is necessary to obtain more accurate and reliable structural data. This also enables a complete and unambiguous assignment of the 19 F MAS NMR spectrum of Ba 5 Al 3 F 19 . Variable-temperature 1D MAS 19 F NMR experiments have been carried out, showing the occurrence of fluorine ion mobility. Complementary insights were obtained from both two-dimensional (2D) exchange and 2D double-quantum dipolar recoupling NMR experiments, and a detailed analysis of the anionic motion in Ba 5 Al 3 F 19 is proposed, including the distinction between reorientational processes and chemical exchange involving bond breaking and re-formation.

  6. A robust algorithm for optimizing protein structures with NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Berjanskii, Mark; Arndt, David; Liang, Yongjie; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-11-15

    Over the past decade, a number of methods have been developed to determine the approximate structure of proteins using minimal NMR experimental information such as chemical shifts alone, sparse NOEs alone or a combination of comparative modeling data and chemical shifts. However, there have been relatively few methods that allow these approximate models to be substantively refined or improved using the available NMR chemical shift data. Here, we present a novel method, called Chemical Shift driven Genetic Algorithm for biased Molecular Dynamics (CS-GAMDy), for the robust optimization of protein structures using experimental NMR chemical shifts. The method incorporates knowledge-based scoring functions and structural information derived from NMR chemical shifts via a unique combination of multi-objective MD biasing, a genetic algorithm, and the widely used XPLOR molecular modelling language. Using this approach, we demonstrate that CS-GAMDy is able to refine and/or fold models that are as much as 10 Å (RMSD) away from the correct structure using only NMR chemical shift data. CS-GAMDy is also able to refine of a wide range of approximate or mildly erroneous protein structures to more closely match the known/correct structure and the known/correct chemical shifts. We believe CS-GAMDy will allow protein models generated by sparse restraint or chemical-shift-only methods to achieve sufficiently high quality to be considered fully refined and “PDB worthy”. The CS-GAMDy algorithm is explained in detail and its performance is compared over a range of refinement scenarios with several commonly used protein structure refinement protocols. The program has been designed to be easily installed and easily used and is available at http://www.gamdy.ca http://www.gamdy.ca.

  7. Occurrence, biological activities and 13C NMR data of amides from Piper (Piperaceae)

    International Nuclear Information System (INIS)

    Nascimento, Jeferson C. do; Paula, Vanderlucia F. de; David, Jorge M.; David, Juceni P.

    2012-01-01

    This manuscript describes an update review with up to 285 references concerning the occurrence of amides from a variety of species of the genus Piper (Piperaceae). Besides addressing occurrence, this review also describes the biological activities attributed to extracts and pure compounds, a compiled 13 C NMR data set, the main correlations between structural and NMR spectroscopic data of these compounds, and employment of hyphened techniques such as LC-MS, GC-MS and NMR for analysis of amides from biological samples and crude Piper extracts. (author)

  8. High field 27Al MAS NMR and TPD studies of active sites in ethanol dehydration using thermally treated transitional aluminas as catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Zhi; Xu, Suochang; Kwak, Ja Hun; Hu, Mary Y.; Wan, Chuan; Zhao, Zhenchao; Szanyi, Janos; Bao, Xinhe; Han, Xiuwen; Wang, Yong; Peden, Charles H. F.

    2016-04-01

    Gamma-, sigma- and theta-Al2O3 are well known metastable “transitional” alumina structural polymorphs. Upon heating, Al2O3 transitions to the so-called and Al2O3 polymorphs and finally forms the thermally stable Al2O3. The poorly developed crystallinity and co-existence of the , , and Al2O3 prior to forming all Al2O3, making it difficult to characterize the structures as well as to quantify the various phases of the transition alumina. As a result, there are significant controversies in the literatures. In this work, a detailed NMR analysis was carried out at high magnetic field on three special aluminum oxide samples where the, , , Al2O3 phases are made dominant, respectively, by controlling the synthesis conditions. The goal is to simplify, including making unambiguous, spectral assignments in 27Al MAS NMR spectra of transition alumina that have not yet been commonly agreed previously. Specifically, quantitative 1D 27Al MAS NMR was used to quantify the ratios of the different alumina structural units, 2D MQMAS 27Al MAS was used for obtaining the highest spectral resolution to guide the analysis of the 1D spectrum, and a saturation pulse sequence was integrated into the 1D NMR to select the amorphous structures, including obtain spectra where the penta-coordinate sites are observed with enhanced relative intensity. Collectively, this study uniquely assigns Al-peaks (both octahedral and tetrahedral) to the Al2O3 and the Al2O3 phases and offers a new way of understanding, including quantifying, the different structural units and sites in transition alumina samples.

  9. Applications of high resolution NMR to geochemistry: crystalline, glass, and molten silicates

    International Nuclear Information System (INIS)

    Schneider, E.

    1985-11-01

    The nuclear spin interactions and the associated quantum mechanical dynamics which are present in solid state NMR are introduced. A brief overview of aluminosilicate structure is presented and crystalline structure is then reviewed, with emphasis on the contributions made by 29 Si NMR spectroscopy. The local structure of glass aluminosilicates as observed by NMR, is presented with analysis of the information content of 29 Si spectra. A high-temperature (to 1300 0 C) NMR spectroscopic investigation of the local environment and dynamics of molecular motion in molten aluminosilicates is described. A comparison is made of silicate liquid, glass, and crystalline local structure. The atomic and molecular motions present in a melt are investigated through relaxation time (T 1 and T 2 ) measurements as a function of composition and temperature for 23 Na and 29 Si

  10. Development of new probes for NMR based analysis of biomolecules' cellular functions

    International Nuclear Information System (INIS)

    Fernandes, Laetitia

    2015-01-01

    Most NMR studies are carried out in vitro, but the structure and dynamics of some biomolecules inside cells differ from those in vitro. It thus becomes interesting to analyze biomolecules such as proteins in their natural environment: the cell. Recent progress of in cell NMR allowed to better understand the behaviour of proteins: their dynamics and their interactions with other biomolecules in the cell. But the low concentration of proteins leads to low signal intensity. Moreover, the viscosity of the environment induces faster transverse relaxation, resulting in line broadening for proteins signals. The use of the Long-Lived States and Coherencies (LLS and LLC, respectively) as well as dissolution Dynamic Nuclear Polarization (dissolution-DNP) can improve NMR observations in cells. LLS were used to understand and characterize the structure of the N-terminal domain of c-Src, which is intrinsically disordered. To follow the phosphorylation of proteins, a first preliminary study of a 21-aa peptides derived from IKBa electroporated into HepG2 cell lines was carried out. (author)

  11. Functional group analysis by H NMR/chemical derivatization for the characterization of organic aerosol from the SMOCC field campaign

    Directory of Open Access Journals (Sweden)

    E. Tagliavini

    2006-01-01

    Full Text Available Water soluble organic compounds (WSOC in aerosol samples collected in the Amazon Basin in a period encompassing the middle/late dry season and the beginning of the wet season, were investigated by H NMR spectroscopy. HiVol filter samples (PM2.5 and PM>2.5 and size-segregated samples from multistage impactor were subjected to H NMR characterization. The H NMR methodology, recently developed for the analysis of organic aerosol samples, has been improved by exploiting chemical methylation of carboxylic groups with diazomethane, which allows the direct determination of the carboxylic acid content of WSOC. The content of carboxylic carbons for the different periods and sizes ranged from 12% to 20% of total measured carbon depending on the season and aerosol size, with higher contents for the fine particles in the transition and wet periods with respect to the dry period. A comprehensive picture is presented of WSOC functional groups in aerosol samples representative of the biomass burning period, as well as of transition and semi-clean atmospheric conditions. A difference in composition between fine (PM2.5 and coarse (PM>2.5 size fractions emerged from the NMR data, the former showing higher alkylic content, the latter being largely dominated by R-O-H (or R-O-R' functional groups. Very small particles (<0.14 μm, however, present higher alkyl-chain content and less oxygenated carbons than larger fine particles (0.42–1.2 μm. More limited variations were found between the average compositions in the different periods of the campaign.

  12. A novel in situ electrochemical NMR cell with a palisade gold film electrode

    Science.gov (United States)

    Ni, Zu-Rong; Cui, Xiao-Hong; Cao, Shuo-Hui; Chen, Zhong

    2017-08-01

    In situ electrochemical nuclear magnetic resonance (EC-NMR) has attracted considerable attention because of its ability to directly observe real-time electrochemical processes. Therefore, minimizing the incompatibility between the electrochemical device and NMR detection has become an important challenge. A circular thin metal film deposited on the outer surface of a glass tube with a thickness considerably less than the metal skin depth is considered to be the ideal working electrode. In this study, we demonstrate that such a thin film electrode still has a great influence on the radio frequency field homogeneity in the detective zone of the NMR spectrometer probe and provide theoretical and experimental confirmation of its electromagnetic shielding. Furthermore, we propose a novel palisade gold film device to act as the working electrode. The NMR nutation behavior of protons shows that the uniformity of the radio frequency field is greatly improved, increasing the sensitivity in NMR detection. Another advantage of the proposed device is that an external reference standard adapted to the reaction compound can be inserted as a probe to determine the fluctuation of the physico-chemical environment and achieve high-accuracy quantitative NMR analysis. A three-chamber electrochemical device based on the palisade gold film design was successfully fabricated and the in situ electrochemical NMR performance was validated in a standard 5 mm NMR probe by acquiring voltammograms and high-resolution NMR spectra to characterize the electrochemically generated species. The evolution of in situ EC-NMR spectrum monitoring of the redox transformation between p-benzoquinone and hydroquinone demonstrates the ability of the EC-NMR device to simultaneously quantitatively determine the reactants and elucidate the reaction mechanism at the molecular level.

  13. A novel in situ electrochemical NMR cell with a palisade gold film electrode

    Directory of Open Access Journals (Sweden)

    Zu-Rong Ni

    2017-08-01

    Full Text Available In situ electrochemical nuclear magnetic resonance (EC-NMR has attracted considerable attention because of its ability to directly observe real-time electrochemical processes. Therefore, minimizing the incompatibility between the electrochemical device and NMR detection has become an important challenge. A circular thin metal film deposited on the outer surface of a glass tube with a thickness considerably less than the metal skin depth is considered to be the ideal working electrode. In this study, we demonstrate that such a thin film electrode still has a great influence on the radio frequency field homogeneity in the detective zone of the NMR spectrometer probe and provide theoretical and experimental confirmation of its electromagnetic shielding. Furthermore, we propose a novel palisade gold film device to act as the working electrode. The NMR nutation behavior of protons shows that the uniformity of the radio frequency field is greatly improved, increasing the sensitivity in NMR detection. Another advantage of the proposed device is that an external reference standard adapted to the reaction compound can be inserted as a probe to determine the fluctuation of the physico-chemical environment and achieve high-accuracy quantitative NMR analysis. A three-chamber electrochemical device based on the palisade gold film design was successfully fabricated and the in situ electrochemical NMR performance was validated in a standard 5 mm NMR probe by acquiring voltammograms and high-resolution NMR spectra to characterize the electrochemically generated species. The evolution of in situ EC-NMR spectrum monitoring of the redox transformation between p-benzoquinone and hydroquinone demonstrates the ability of the EC-NMR device to simultaneously quantitatively determine the reactants and elucidate the reaction mechanism at the molecular level.

  14. NMR metabolomics for assessment of exercise effects with mouse biofluids

    Energy Technology Data Exchange (ETDEWEB)

    Le Moyec, Laurence; Mille-Hamard, Laurence; Breuneval, Carole; Petot, Helene; Billat, Veronique L. [Universite Evry Val d' Essonne, UBIAE INSERM U902, Evry Cedex (France); Triba, Mohamed N. [Universite Paris 13, CSPBAT UMR 7244, Bobigny (France)

    2012-08-15

    Exercise modulates the metabolome in urine or blood as demonstrated previously for humans and animal models. Using nuclear magnetic resonance (NMR) metabolomics, the present study compares the metabolic consequences of an exhaustive exercise at peak velocity (Vp) and at critical velocity (Vc) on mice. Since small-volume samples (blood and urine) were collected, dilution was necessary to acquire NMR spectra. Consequently, specific processing methods were applied before statistical analysis. According to the type of exercise (control group, Vp group and Vc group), 26 male mice were divided into three groups. Mice were sacrificed 2 h after the end of exercise, and urine and blood samples were drawn from each mouse. Proton NMR spectra were acquired with urine and deproteinized blood. The NMR data were aligned with the icoshift method and normalised using the probabilistic quotient method. Finally, data were analysed with the orthogonal projection of latent-structure analysis. The spectra obtained with deproteinized blood can neither discriminate the control mice from exercised mice nor discriminate according to the duration of the exercise. With urine samples, a significant statistical model can be estimated when comparing the control mice to both groups, Vc and Vp. The best model is obtained according to the exercise duration with all mice. Taking into account the spectral regions having the highest correlations, the discriminant metabolites are allantoin, inosine and branched-chain amino acids. In conclusion, metabolomic profiles assessed with NMR are highly dependent on the exercise. These results show that urine samples are more informative than blood samples and that the duration of the exercise is a more important parameter to influence the metabolomic status than the exercise velocity. (orig.)

  15. Interface card for NMR data acquisition; Cartao de aquisicao de dados para RMN

    Energy Technology Data Exchange (ETDEWEB)

    Torre Neto, Andre; Colnago, Luiz Alberto [Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA), Sao Carlos, SP (Brazil). Nucleo de Pesquisa e Desenvolvimento de Instrumentacao Agropecuaria

    1992-12-31

    A NMR spectrometer constructed by NPDIA is being used for analysis of seed oil contents in projects of oil seeds improvement. Some improvements have been introduced in this spectrometer, and this work presents an IBM-Pc compatible interface card. This interface has some characteristics which are exclusive for NMR 6 refs., 3 figs.

  16. NMR characterization of polymers: Review and update

    Science.gov (United States)

    NMR spectroscopy is a major technique for the characterization and analysis of polymers. A large number of methodologies have been developed in both the liquid and the solid state, and the literature has grown considerably (1-5). The field now covers a broad spectrum of activities, including polym...

  17. Lectures on pulsed NMR

    International Nuclear Information System (INIS)

    Pines, A.

    1986-09-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 55 figs

  18. Non-invasive NMR stratigraphy of a multi-layered artefact: an ancient detached mural painting.

    Science.gov (United States)

    Di Tullio, Valeria; Capitani, Donatella; Presciutti, Federica; Gentile, Gennaro; Brunetti, Brunetto Giovanni; Proietti, Noemi

    2013-10-01

    NMR stratigraphy was used to investigate in situ, non-destructively and non-invasively, the stratigraphy of hydrogen-rich layers of an ancient Nubian detached mural painting. Because of the detachment procedure, a complex multi-layered artefact was obtained, where, besides layers of the original mural painting, also the materials used during the procedure all became constitutive parts of the artefact. NMR measurements in situ enabled monitoring of the state of conservation of the artefact and planning of minimum representative sampling to validate results obtained in situ by solid-state NMR analysis of the samples. This analysis enabled chemical characterization of all organic materials. Use of reference compounds and prepared specimens assisted data interpretation.

  19. NMR studies of isotopically labeled RNA

    Energy Technology Data Exchange (ETDEWEB)

    Pardi, A. [Univ. of Colorado, Boulder, CO (United States)

    1994-12-01

    In summary, the ability to generate NMR quantities of {sup 15}N and {sup 13}C-labeled RNAs has led to the development of heteronuclear multi-dimensional NMR techniques for simplifying the resonance assignment and structure determination of RNAs. These methods for synthesizing isotopically labeled RNAs are only several years old, and thus there are still relatively few applications of heteronuclear multi-dimensional NMR techniques to RNA. However, given the critical role that RNAs play in cellular function, one can expect to see an increasing number of NMR structural studies of biologically active RNAs.

  20. 1H-NMR, 1H-NMR T2-edited, and 2D-NMR in bipolar disorder metabolic profiling.

    Science.gov (United States)

    Sethi, Sumit; Pedrini, Mariana; Rizzo, Lucas B; Zeni-Graiff, Maiara; Mas, Caroline Dal; Cassinelli, Ana Cláudia; Noto, Mariane N; Asevedo, Elson; Cordeiro, Quirino; Pontes, João G M; Brasil, Antonio J M; Lacerda, Acioly; Hayashi, Mirian A F; Poppi, Ronei; Tasic, Ljubica; Brietzke, Elisa

    2017-12-01

    The objective of this study was to identify molecular alterations in the human blood serum related to bipolar disorder, using nuclear magnetic resonance (NMR) spectroscopy and chemometrics. Metabolomic profiling, employing 1 H-NMR, 1 H-NMR T 2 -edited, and 2D-NMR spectroscopy and chemometrics of human blood serum samples from patients with bipolar disorder (n = 26) compared with healthy volunteers (n = 50) was performed. The investigated groups presented distinct metabolic profiles, in which the main differential metabolites found in the serum sample of bipolar disorder patients compared with those from controls were lipids, lipid metabolism-related molecules (choline, myo-inositol), and some amino acids (N-acetyl-L-phenyl alanine, N-acetyl-L-aspartyl-L-glutamic acid, L-glutamine). In addition, amygdalin, α-ketoglutaric acid, and lipoamide, among other compounds, were also present or were significantly altered in the serum of bipolar disorder patients. The data presented herein suggest that some of these metabolites differentially distributed between the groups studied may be directly related to the bipolar disorder pathophysiology. The strategy employed here showed significant potential for exploring pathophysiological features and molecular pathways involved in bipolar disorder. Thus, our findings may contribute to pave the way for future studies aiming at identifying important potential biomarkers for bipolar disorder diagnosis or progression follow-up.

  1. Occurrence, biological activities and 13C NMR data of amides from Piper (Piperaceae

    Directory of Open Access Journals (Sweden)

    Jeferson C. do Nascimento

    2012-01-01

    Full Text Available This manuscript describes an update review with up to 285 references concerning the occurrence of amides from a variety of species of the genus Piper (Piperaceae. Besides addressing occurrence, this review also describes the biological activities attributed to extracts and pure compounds, a compiled 13C NMR data set, the main correlations between structural and NMR spectroscopic data of these compounds, and employment of hyphened techniques such as LC-MS, GC-MS and NMR for analysis of amides from biological samples and crude Piper extracts.

  2. Fragment-Linking Approach Using (19)F NMR Spectroscopy To Obtain Highly Potent and Selective Inhibitors of β-Secretase.

    Science.gov (United States)

    Jordan, John B; Whittington, Douglas A; Bartberger, Michael D; Sickmier, E Allen; Chen, Kui; Cheng, Yuan; Judd, Ted

    2016-04-28

    Fragment-based drug discovery (FBDD) has become a widely used tool in small-molecule drug discovery efforts. One of the most commonly used biophysical methods in detecting weak binding of fragments is nuclear magnetic resonance (NMR) spectroscopy. In particular, FBDD performed with (19)F NMR-based methods has been shown to provide several advantages over (1)H NMR using traditional magnetization-transfer and/or two-dimensional methods. Here, we demonstrate the utility and power of (19)F-based fragment screening by detailing the identification of a second-site fragment through (19)F NMR screening that binds to a specific pocket of the aspartic acid protease, β-secretase (BACE-1). The identification of this second-site fragment allowed the undertaking of a fragment-linking approach, which ultimately yielded a molecule exhibiting a more than 360-fold increase in potency while maintaining reasonable ligand efficiency and gaining much improved selectivity over cathepsin-D (CatD). X-ray crystallographic studies of the molecules demonstrated that the linked fragments exhibited binding modes consistent with those predicted from the targeted screening approach, through-space NMR data, and molecular modeling.

  3. Lectures on pulsed NMR

    International Nuclear Information System (INIS)

    Pines, A.

    1988-08-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 32 refs., 56 figs

  4. Validation of quantitative 1H NMR method for the analysis of pharmaceutical formulations

    International Nuclear Information System (INIS)

    Santos, Maiara da S.

    2013-01-01

    The need for effective and reliable quality control in products from pharmaceutical industries renders the analyses of their active ingredients and constituents of great importance. This study presents the theoretical basis of ¹H NMR for quantitative analyses and an example of the method validation according to Resolution RE N. 899 by the Brazilian National Health Surveillance Agency (ANVISA), in which the compound paracetamol was the active ingredient. All evaluated parameters (selectivity, linearity, accuracy, repeatability and robustness) showed satisfactory results. It was concluded that a single NMR measurement provides structural and quantitative information of active components and excipients in the sample. (author)

  5. Genotype evaluation of cowpea seeds (Vigna unguiculata) using 1H qNMR combined with exploratory tools and solid-state NMR.

    Science.gov (United States)

    Alves Filho, Elenilson G; Silva, Lorena M A; Teofilo, Elizita M; Larsen, Flemming H; de Brito, Edy S

    2017-01-01

    The ultimate aim of this study was to apply a non-targeted chemometric analysis (principal component analysis and hierarchical clustering analysis using the heat map approach) of NMR data to investigate the variability of organic compounds in nine genotype cowpea seeds, without any complex pre-treatment. In general, both exploratory tools show that Tvu 233, CE-584, and Setentão genotypes presented higher amount mainly of raffinose and Tvu 382 presented the highest content of choline and least content of raffinose. The evaluation of the aromatic region showed the Setentão genotype with highest content of niacin/vitamin B3 whereas Tvu 382 with lowest amount. To investigate rigid and mobile components in the seeds cotyledon, 13 C CP and SP/MAS solid-state NMR experiments were performed. The cotyledon of the cowpea comprised a rigid part consisting of starch as well as a soft portion made of starch, fatty acids, and protein. The variable contact time experiment suggests the presence of lipid-amylose complexes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Characterization of organic matter in sediment cores of the Todos os Santos Bay, Bahia, Brazil, by elemental analysis and 13C NMR

    International Nuclear Information System (INIS)

    Costa, A.B.; Novotny, E.H.; Bloise, A.C.; Azevedo, E.R. de; Bonagamba, T.J.; Zucchi, M.R.; Santos, V.L.C.S.; Azevedo, A.E.G.

    2011-01-01

    Highlights: → The impact of human activity on the sediments of Todos os Santos Bay in Brazil was evaluated by EA and 13 C NMR. → This article reports a study of six sediment cores collected at different depths and regions. → The elemental profiles of cores suggest an abrupt change in the sedimentation regime, corresponds to about 50 years ago, coinciding with the implantation of major onshore industrial projects. → The results presented illustrate several important aspects of environmental impact of human activity on this bay. - Abstract: The impact of human activity on the sediments of Todos os Santos Bay in Brazil was evaluated by elemental analysis and 13 C Nuclear Magnetic Resonance ( 13 C NMR). This article reports a study of six sediment cores collected at different depths and regions of Todos os Santos Bay. The elemental profiles of cores collected on the eastern side of Frades Island suggest an abrupt change in the sedimentation regime. Autoregressive Integrated Moving Average (ARIMA) analysis corroborates this result. The range of depths of the cores corresponds to about 50 years ago, coinciding with the implantation of major onshore industrial projects in the region. Principal Component Analysis of the 13 C NMR spectra clearly differentiates sediment samples closer to the Subae estuary, which have high contents of terrestrial organic matter, from those closer to a local oil refinery. The results presented in this article illustrate several important aspects of environmental impact of human activity on this bay.

  7. Analysis of local influences in structural details of the bridges

    Directory of Open Access Journals (Sweden)

    Adam RUDZIK

    2015-03-01

    Full Text Available The article analyses the problems of local influences in structural details of bridges as the critical locations, whose damages or excessive force may directly affect the safety of users. These analyses are shown on selected examples. Presented is the example of local changes in the forms of proper vibrations in the node of the truss bridge that can be used in expert issues concerning the causes of damages. The second example are the changes in stresses in the stay cable anchorage element including the nonlinear material models. Models of this type can be successfully used by engineers as they allow for analysis of selected structural details without the need for detailed mapping of the entire structure, but only a selected section.

  8. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    1999-01-01

    High Resolution NMR provides a broad treatment of the principles and theory of nuclear magnetic resonance (NMR) as it is used in the chemical sciences. It is written at an "intermediate" level, with mathematics used to augment, rather than replace, clear verbal descriptions of the phenomena. The book is intended to allow a graduate student, advanced undergraduate, or researcher to understand NMR at a fundamental level, and to see illustrations of the applications of NMR to the determination of the structure of small organic molecules and macromolecules, including proteins. Emphasis is on the study of NMR in liquids, but the treatment also includes high resolution NMR in the solid state and the principles of NMR imaging and localized spectroscopy. Careful attention is given to developing and interrelating four approaches - steady state energy levels, the rotating vector picture, the density matrix, and the product operator formalism. The presentation is based on the assumption that the reader has an acquaintan...

  9. Solid state 13C NMR analysis of shales and coals from Laramide Basins. Final report, March 1, 1995--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Miknis, F.P.; Jiao, Z.S.; Zhao, Hanqing; Surdam, R.C.

    1998-12-31

    This Western Research Institute (WRI) jointly sponsored research (JSR) project augmented and complemented research conducted by the University of Wyoming Institute For Energy Research for the Gas Research Institute. The project, {open_quotes}A New Innovative Exploitation Strategy for Gas Accumulations Within Pressure Compartments,{close_quotes} was a continuation of a project funded by the GRI Pressure Compartmentalization Program that began in 1990. That project, {open_quotes}Analysis of Pressure Chambers and Seals in the Powder River Basin, Wyoming and Montana,{close_quotes} characterized a new class of hydrocarbon traps, the discovery of which can provide an impetus to revitalize the domestic petroleum industry. In support of the UW Institute For Energy Research`s program on pressure compartmentalization, solid-state {sup 13}C NMR measurements were made on sets of shales and coals from different Laramide basins in North America. NMR measurements were made on samples taken from different formations and depths of burial in the Alberta, Bighorn, Denver, San Juan, Washakie, and Wind River basins. The carbon aromaticity determined by NMR was shown to increase with depth of burial and increased maturation. In general, the NMR data were in agreement with other maturational indicators, such as vitrinite reflectance, illite/smectite ratio, and production indices. NMR measurements were also obtained on residues from hydrous pyrolysis experiments on Almond and Lance Formation coals from the Washakie Basin. These data were used in conjunction with mass and elemental balance data to obtain information about the extent of carbon aromatization that occurs during artificial maturation. The data indicated that 41 and 50% of the original aliphatic carbon in the Almond and Lance coals, respectively, aromatized during hydrous pyrolysis.

  10. NMRFx Processor: a cross-platform NMR data processing program

    International Nuclear Information System (INIS)

    Norris, Michael; Fetler, Bayard; Marchant, Jan; Johnson, Bruce A.

    2016-01-01

    NMRFx Processor is a new program for the processing of NMR data. Written in the Java programming language, NMRFx Processor is a cross-platform application and runs on Linux, Mac OS X and Windows operating systems. The application can be run in both a graphical user interface (GUI) mode and from the command line. Processing scripts are written in the Python programming language and executed so that the low-level Java commands are automatically run in parallel on computers with multiple cores or CPUs. Processing scripts can be generated automatically from the parameters of NMR experiments or interactively constructed in the GUI. A wide variety of processing operations are provided, including methods for processing of non-uniformly sampled datasets using iterative soft thresholding. The interactive GUI also enables the use of the program as an educational tool for teaching basic and advanced techniques in NMR data analysis.

  11. NMRFx Processor: a cross-platform NMR data processing program

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Michael; Fetler, Bayard [One Moon Scientific, Inc. (United States); Marchant, Jan [University of Maryland Baltimore County, Howard Hughes Medical Institute (United States); Johnson, Bruce A., E-mail: bruce.johnson@asrc.cuny.edu [One Moon Scientific, Inc. (United States)

    2016-08-15

    NMRFx Processor is a new program for the processing of NMR data. Written in the Java programming language, NMRFx Processor is a cross-platform application and runs on Linux, Mac OS X and Windows operating systems. The application can be run in both a graphical user interface (GUI) mode and from the command line. Processing scripts are written in the Python programming language and executed so that the low-level Java commands are automatically run in parallel on computers with multiple cores or CPUs. Processing scripts can be generated automatically from the parameters of NMR experiments or interactively constructed in the GUI. A wide variety of processing operations are provided, including methods for processing of non-uniformly sampled datasets using iterative soft thresholding. The interactive GUI also enables the use of the program as an educational tool for teaching basic and advanced techniques in NMR data analysis.

  12. An in-depth analysis of the biological functional studies based on the NMR M2 channel structure of influenza A virus

    International Nuclear Information System (INIS)

    Huang Ribo; Du Qishi; Wang Chenghua; Chou, K.-C.

    2008-01-01

    The long-sought three-dimensional structure of the M2 proton channel of influenza A virus was successfully determined recently by the high-resolution NMR [J.R. Schnell, J.J. Chou, Structure and mechanism of the M2 proton channel of influenza A virus, Nature 451 (2008) 591-595]. Such a milestone work has provided a solid structural basis for studying drug-resistance problems. However, the action mechanism revealed from the NMR structure is completely different from the traditional view and hence prone to be misinterpreted as 'conflicting' with some previous biological functional studies. To clarify this kind of confusion, an in-depth analysis was performed for these functional studies, particularly for the mutations D44N, D44A and N44D on position 44, and the mutations on positions 27-38. The analyzed results have provided not only compelling evidences to further validate the NMR structure but also very useful clues for dealing with the drug-resistance problems and developing new effective drugs against H5N1 avian influenza virus, an impending threat to human beings.

  13. High quality NMR structures: a new force field with implicit water and membrane solvation for Xplor-NIH

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Ye [Sanford-Burnham-Prebys Medical Discovery Institute (United States); Schwieters, Charles D. [National Institutes of Health, Center for Information Technology (United States); Opella, Stanley J. [University of California San Diego, Department of Chemistry and Biochemistry (United States); Marassi, Francesca M., E-mail: fmarassi@sbmri.org [Sanford-Burnham-Prebys Medical Discovery Institute (United States)

    2017-01-15

    Structure determination of proteins by NMR is unique in its ability to measure restraints, very accurately, in environments and under conditions that closely mimic those encountered in vivo. For example, advances in solid-state NMR methods enable structure determination of membrane proteins in detergent-free lipid bilayers, and of large soluble proteins prepared by sedimentation, while parallel advances in solution NMR methods and optimization of detergent-free lipid nanodiscs are rapidly pushing the envelope of the size limit for both soluble and membrane proteins. These experimental advantages, however, are partially squandered during structure calculation, because the commonly used force fields are purely repulsive and neglect solvation, Van der Waals forces and electrostatic energy. Here we describe a new force field, and updated energy functions, for protein structure calculations with EEFx implicit solvation, electrostatics, and Van der Waals Lennard-Jones forces, in the widely used program Xplor-NIH. The new force field is based primarily on CHARMM22, facilitating calculations with a wider range of biomolecules. The new EEFx energy function has been rewritten to enable OpenMP parallelism, and optimized to enhance computation efficiency. It implements solvation, electrostatics, and Van der Waals energy terms together, thus ensuring more consistent and efficient computation of the complete nonbonded energy lists. Updates in the related python module allow detailed analysis of the interaction energies and associated parameters. The new force field and energy function work with both soluble proteins and membrane proteins, including those with cofactors or engineered tags, and are very effective in situations where there are sparse experimental restraints. Results obtained for NMR-restrained calculations with a set of five soluble proteins and five membrane proteins show that structures calculated with EEFx have significant improvements in accuracy, precision

  14. NMR characterization of hydrocarbon adsorption on calcite surfaces: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Bevilaqua, Rochele C. A.; Miranda, Caetano R. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Rigo, Vagner A. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Universidade Tecnológica Federal do Paraná, UTFPR, Cornélio Procópio, PR (Brazil); Veríssimo-Alves, Marcos [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Departamento de Física, ICEx, Universidade Federal Fluminense, UFF, Volta Redonda, RJ (Brazil)

    2014-11-28

    The electronic and coordination environment of minerals surfaces, as calcite, are very difficult to characterize experimentally. This is mainly due to the fact that there are relatively few spectroscopic techniques able to detect Ca{sup 2+}. Since calcite is a major constituent of sedimentary rocks in oil reservoir, a more detailed characterization of the interaction between hydrocarbon molecules and mineral surfaces is highly desirable. Here we perform a first principles study on the adsorption of hydrocarbon molecules on calcite surface (CaCO{sub 3} (101{sup ¯}4)). The simulations were based on Density Functional Theory with Solid State Nuclear Magnetic Resonance (SS-NMR) calculations. The Gauge-Including Projector Augmented Wave method was used to compute mainly SS-NMR parameters for {sup 43}Ca, {sup 13}C, and {sup 17}O in calcite surface. It was possible to assign the peaks in the theoretical NMR spectra for all structures studied. Besides showing different chemical shifts for atoms located on different environments (bulk and surface) for calcite, the results also display changes on the chemical shift, mainly for Ca sites, when the hydrocarbon molecules are present. Even though the interaction of the benzene molecule with the calcite surface is weak, there is a clearly distinguishable displacement of the signal of the Ca sites over which the hydrocarbon molecule is located. A similar effect is also observed for hexane adsorption. Through NMR spectroscopy, we show that aromatic and alkane hydrocarbon molecules adsorbed on carbonate surfaces can be differentiated.

  15. An instrument control and data analysis program for NMR imaging and spectroscopy

    International Nuclear Information System (INIS)

    Roos, M.S.; Mushlin, R.A.; Veklerov, E.; Port, J.D.; Ladd, C.; Harrison, C.G.

    1988-01-01

    We describe a software environment created to support real-time instrument control and signal acquisition as well as array-processor based signal and image processing in up to five dimensions. The environment is configured for NMR imaging and in vivo spectroscopy. It is designed to provide flexible tools for implementing novel NMR experiments in the research laboratory. Data acquisition and processing operations are programmed in macros which are loaded in assembled from to minimize instruction overhead. Data arrays are dynamically allocated for efficient use of memory and can be mapped directly into disk files. The command set includes primitives for real-time control of data acquisition, scalar arithmetic, string manipulation, branching, a file system and vector operations carried out by an array processor. 6 figs

  16. Applications of high resolution NMR to geochemistry: crystalline, glass, and molten silicates

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E.

    1985-11-01

    The nuclear spin interactions and the associated quantum mechanical dynamics which are present in solid state NMR are introduced. A brief overview of aluminosilicate structure is presented and crystalline structure is then reviewed, with emphasis on the contributions made by /sup 29/Si NMR spectroscopy. The local structure of glass aluminosilicates as observed by NMR, is presented with analysis of the information content of /sup 29/Si spectra. A high-temperature (to 1300/sup 0/C) NMR spectroscopic investigation of the local environment and dynamics of molecular motion in molten aluminosilicates is described. A comparison is made of silicate liquid, glass, and crystalline local structure. The atomic and molecular motions present in a melt are investigated through relaxation time (T/sub 1/ and T/sub 2/) measurements as a function of composition and temperature for /sup 23/Na and /sup 29/Si.

  17. The NMR probe of high-Tc materials and correlated electron systems

    CERN Document Server

    Walstedt, Russell E

    2018-01-01

    This new edition updates readers in three areas of NMR studies, namely, recent developments in high-Tc materials, heavy fermion systems and actinide oxides are presented.  The NMR probe has yielded a vast array of data for solid state materials, corresponding to different compounds, ionic sites, and nuclear species, as well as to a wide variety of experimental conditions. The last two parts of the book are completely new in this edition, while the first part has seen major updates. This edition features the latest developments for high-Tc materials, especially the advances in the area of pseudogap studies are reviewed.  An in depth overview of heavy fermion systems is presented in the second part,  notably Kondo lattices, quantum critical points and unconventional superconductivity are areas of intense research recently and are covered extensively. Finally, valuable information from NMR studies with actinide oxides will be provided. Ongoing analysis and discussion of NMR data have resulted in a wealth o...

  18. Two-dimensional NMR spectroscopy links structural moieties of soil organic matter to the temperature sensitivity of its decomposition

    Science.gov (United States)

    Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Schleucher, Jürgen

    2015-04-01

    be recognized. It was hence possible to follow the fate of specific structural moieties in soils. We observed differences between litter and soil samples, and were able to relate them to the decomposition of identifiable moieties. Using multivariate data analysis, we aimed at linking the detailed chemical fingerprints of SOM to turnover rates in a soil incubation experiment. With the multivariate models, we were able to relate signal patterns in the 2D spectra and intensities of identifiable molecular moieties to variability in the temperature response of organic matter decomposition, as assessed by Q10. In conclusion, the characterization of SOM composition at the molecular level by solution-state 2D NMR spectroscopy is highly promising; it offers unprecedented possibilities to link SOM molecular composition to ecosystem processes, and their responses to environmental changes.

  19. NMR and TRLFS studies of Ln(iii) and An(iii) C5-BPP complexes† †Electronic supplementary information (ESI) available: LIFDI-MS spectra and additional NMR spectra. See DOI: 10.1039/c4sc03103b

    Science.gov (United States)

    Beele, Björn B.; Geist, Andreas; Müllich, Udo; Kaden, Peter; Panak, Petra J.

    2015-01-01

    C5-BPP is a highly efficient N-donor ligand for the separation of trivalent actinides, An(iii), from trivalent lanthanides, Ln(iii). The molecular origin of the selectivity of C5-BPP and many other N-donor ligands of the BTP-type is still not entirely understood. We present here the first NMR studies on C5-BPP Ln(iii) and An(iii) complexes. C5-BPP is synthesized with 10% 15N labeling and characterized by NMR and LIFDI-MS methods. 15N NMR spectroscopy gives a detailed insight into the bonding of C5-BPP with lanthanides and Am(iii) as a representative for trivalent actinide cations, revealing significant differences in 15N chemical shift for coordinating nitrogen atoms compared to Ln(iii) complexes. The temperature dependence of NMR chemical shifts observed for the Am(iii) complex indicates a weak paramagnetism. This as well as the observed large chemical shift for coordinating nitrogen atoms show that metal–ligand bonding in Am(C5-BPP)3 has a larger share of covalence than in lanthanide complexes, confirming earlier studies. The Am(C5-BPP)3 NMR sample is furthermore spiked with Cm(iii) and characterized by time-resolved laser fluorescence spectroscopy (TRLFS), yielding important information on the speciation of trace amounts of minor complex species. PMID:29560242

  20. International symposium on NMR spectroscopy

    International Nuclear Information System (INIS)

    The publication consists of 32 papers and presentations from the field of NMR spectroscopy applications submitted to the International Symposium on NMR Spectroscopy held at Smolenice between 29 Sep and 3 Oct, 1980. (B.S.)

  1. Analysis of monoglycerides, diglycerides, sterols, and free fatty acids in coconut (Cocos nucifera L.) oil by 31P NMR spectroscopy.

    Science.gov (United States)

    Dayrit, Fabian M; Buenafe, Olivia Erin M; Chainani, Edward T; de Vera, Ian Mitchelle S

    2008-07-23

    Phosphorus-31 nuclear magnetic resonance spectroscopy ( (31)P NMR) was used to differentiate virgin coconut oil (VCO) from refined, bleached, deodorized coconut oil (RCO). Monoglycerides (MGs), diglycerides (DGs), sterols, and free fatty acids (FFAs) in VCO and RCO were converted into dioxaphospholane derivatives and analyzed by (31)P NMR. On the average, 1-MG was found to be higher in VCO (0.027%) than RCO (0.019%). 2-MG was not detected in any of the samples down to a detection limit of 0.014%. On the average, total DGs were lower in VCO (1.55%) than RCO (4.10%). When plotted in terms of the ratio [1,2-DG/total DGs] versus total DGs, VCO and RCO samples grouped separately. Total sterols were higher in VCO (0.096%) compared with RCO (0.032%), and the FFA content was 8 times higher in VCO than RCO (0.127% vs 0.015%). FFA determination by (31)P NMR and titration gave comparable results. Principal components analysis shows that the 1,2-DG, 1,3-DG, and FFAs are the most important parameters for differentiating VCO from RCO.

  2. Structure Elucidation of Unknown Metabolites in Metabolomics by Combined NMR and MS/MS Prediction.

    Science.gov (United States)

    Boiteau, Rene M; Hoyt, David W; Nicora, Carrie D; Kinmonth-Schultz, Hannah A; Ward, Joy K; Bingol, Kerem

    2018-01-17

    We introduce a cheminformatics approach that combines highly selective and orthogonal structure elucidation parameters; accurate mass, MS/MS (MS²), and NMR into a single analysis platform to accurately identify unknown metabolites in untargeted studies. The approach starts with an unknown LC-MS feature, and then combines the experimental MS/MS and NMR information of the unknown to effectively filter out the false positive candidate structures based on their predicted MS/MS and NMR spectra. We demonstrate the approach on a model mixture, and then we identify an uncatalogued secondary metabolite in Arabidopsis thaliana . The NMR/MS² approach is well suited to the discovery of new metabolites in plant extracts, microbes, soils, dissolved organic matter, food extracts, biofuels, and biomedical samples, facilitating the identification of metabolites that are not present in experimental NMR and MS metabolomics databases.

  3. NMR and pattern recognition methods in metabolomics: From data acquisition to biomarker discovery: A review

    International Nuclear Information System (INIS)

    Smolinska, Agnieszka; Blanchet, Lionel; Buydens, Lutgarde M.C.; Wijmenga, Sybren S.

    2012-01-01

    Highlights: ► Procedures for acquisition of different biofluids by NMR. ► Recent developments in metabolic profiling of different biofluids by NMR are presented. ► The crucial steps involved in data preprocessing and multivariate chemometric analysis are reviewed. ► Emphasis is given on recent findings on Multiple Sclerosis via NMR and pattern recognition methods. - Abstract: Metabolomics is the discipline where endogenous and exogenous metabolites are assessed, identified and quantified in different biological samples. Metabolites are crucial components of biological system and highly informative about its functional state, due to their closeness to functional endpoints and to the organism's phenotypes. Nuclear Magnetic Resonance (NMR) spectroscopy, next to Mass Spectrometry (MS), is one of the main metabolomics analytical platforms. The technological developments in the field of NMR spectroscopy have enabled the identification and quantitative measurement of the many metabolites in a single sample of biofluids in a non-targeted and non-destructive manner. Combination of NMR spectra of biofluids and pattern recognition methods has driven forward the application of metabolomics in the field of biomarker discovery. The importance of metabolomics in diagnostics, e.g. in identifying biomarkers or defining pathological status, has been growing exponentially as evidenced by the number of published papers. In this review, we describe the developments in data acquisition and multivariate analysis of NMR-based metabolomics data, with particular emphasis on the metabolomics of Cerebrospinal Fluid (CSF) and biomarker discovery in Multiple Sclerosis (MScl).

  4. Oriented solid-state NMR spectrosocpy

    DEFF Research Database (Denmark)

    Bertelsen, Kresten

    This thesis is concerned with driving forward oriented solid-state NMR spectroscopy as a viable technique for studying peptides in membrane bilayers. I will show that structural heterogeneity is an intrinsic part of the peptide/lipid system and that NMR can be used to characterize static...... and dynamic structural features of the peptides and its local surroundings. In fact one need to take into account the dynamical features of the system in order to correctly predict the structure from oriented solid-state NMR spectra.      ...

  5. Determining the optimal size of small molecule mixtures for high throughput NMR screening

    International Nuclear Information System (INIS)

    Mercier, Kelly A.; Powers, Robert

    2005-01-01

    High-throughput screening (HTS) using NMR spectroscopy has become a common component of the drug discovery effort and is widely used throughout the pharmaceutical industry. NMR provides additional information about the nature of small molecule-protein interactions compared to traditional HTS methods. In order to achieve comparable efficiency, small molecules are often screened as mixtures in NMR-based assays. Nevertheless, an analysis of the efficiency of mixtures and a corresponding determination of the optimum mixture size (OMS) that minimizes the amount of material and instrumentation time required for an NMR screen has been lacking. A model for calculating OMS based on the application of the hypergeometric distribution function to determine the probability of a 'hit' for various mixture sizes and hit rates is presented. An alternative method for the deconvolution of large screening mixtures is also discussed. These methods have been applied in a high-throughput NMR screening assay using a small, directed library

  6. Genotype evaluation of cowpea seeds (Vigna unguiculata) using 1H qNMR combined with exploratory tools and solid-state NMR

    DEFF Research Database (Denmark)

    Alves Filho, Elenilson G.; Silva, Lorena M. A.; Teofilo, Elizita M.

    2017-01-01

    The ultimate aim of this study was to apply a non-targeted chemometric analysis (principal component analysis and hierarchical clustering analysis using the heat map approach) of NMR data to investigate the variability of organic compounds in nine genotype cowpea seeds, without any complex pre-tr...

  7. Continuous Flow 1H and 13C NMR Spectroscopy in Microfluidic Stripline NMR Chips

    NARCIS (Netherlands)

    Oosthoek-de Vries, Anna Jo; Bart, Jacob; Tiggelaar, Roald M.; Janssen, Johannes W.G.; van Bentum, Jan (P.J.M.); Gardeniers, Han J.G.E.; Kentgens, Arno P.M.

    2017-01-01

    Microfluidic stripline NMR technology not only allows for NMR experiments to be performed on small sample volumes in the submicroliter range, but also experiments can easily be performed in continuous flow because of the stripline's favorable geometry. In this study we demonstrate the possibility of

  8. Multicomponent analysis of fat- and water-soluble vitamins and auxiliary substances in multivitamin preparations by qNMR.

    Science.gov (United States)

    Eiff, Julia; Monakhova, Yulia B; Diehl, Bernd W K

    2015-04-01

    A nuclear magnetic resonance (NMR) spectroscopic method was tested to control 12 vitamins and accompanying substances in multivitamin preparations. The limits of detection (LODs) and limits of quantification (LOQs) varied in the 9.0-77.0 mg/kg and in the 34.5-93.5 mg/kg range, respectively. The coefficients of variation (CVs) ranged between 0.9% and 12%. The (1)H NMR spectra showed linearity for the 140-260 mg sample weight (R(2) > 0.918). The NMR spectra of multivitamin preparations showed the presence of different degradation products of ascorbic acid. The NMR method was applied to 13 different multivitamin preparations including tablets, capsules, and effervescent tablets with average recovery rates between 85% and 132%. A number of accompanying substances (citric acid, mannitol, saccharin, cyclamate, sum of steviol glycosides, and butylhydroxytoluene) were additionally identified and quantified. NMR was found to be suitable for the simultaneous qualitative measurement of water- and fat-soluble vitamins and accompanying substances and shows some promise for quantitative determination of at least 5 vitamins (B1, B3, B5, B6, and E) in multivitamin preparations.

  9. Occurrence, biological activities and {sup 13}C NMR data of amides from Piper (Piperaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Jeferson C. do; Paula, Vanderlucia F. de [Universidade Estadual do Sudoeste da Bahia, Jequie, BA (Brazil). Dept. de Quimica e Exatas; David, Jorge M. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica; David, Juceni P., E-mail: jmdavid@ufba.br [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Fac. de Farmacia

    2012-07-01

    This manuscript describes an update review with up to 285 references concerning the occurrence of amides from a variety of species of the genus Piper (Piperaceae). Besides addressing occurrence, this review also describes the biological activities attributed to extracts and pure compounds, a compiled {sup 13}C NMR data set, the main correlations between structural and NMR spectroscopic data of these compounds, and employment of hyphened techniques such as LC-MS, GC-MS and NMR for analysis of amides from biological samples and crude Piper extracts. (author)

  10. Uniform procedure of 1H NMR analysis of rat urine and toxicometabonomics Part II : Comparison of NMR profiles classification of hepatotoxicity

    NARCIS (Netherlands)

    Schoonen, W.G.E.J.; Kloks, C.P.A.M.; Ploemen, J.-P.H.T.M.; Smit, M.J.; Zandberg, P.; Horbach, G.J.; Mellema, J.-R.; Zuylen, C.T. van; Tas, A.C.; Nesselrooij, J.H.J. van; Vogels, J.T.W.E.

    2007-01-01

    A procedure of nuclear magnetic resonance (NMR) urinalysis using pattern recognition is proposed for early detection of toxicity of investigational compounds in rats. The method is applied to detect toxicity upon administration of 13 toxic reference compounds and one nontoxic control compound

  11. Ratiometric analysis in hyperpolarized NMR (I): test of the two-site exchange model and the quantification of reaction rate constants.

    Science.gov (United States)

    Li, Lin Z; Kadlececk, Stephen; Xu, He N; Daye, Dania; Pullinger, Benjamin; Profka, Harrilla; Chodosh, Lewis; Rizi, Rahim

    2013-10-01

    Conventional methods for the analysis of in vivo hyperpolarized (13) C NMR data from the lactate dehydrogenase (LDH) reaction usually make assumptions on the stability of rate constants and/or the validity of the two-site exchange model. In this study, we developed a framework to test the validity of the assumption of stable reaction rate constants and the two-site exchange model in vivo via ratiometric fitting of the time courses of the signal ratio L(t)/P(t). Our analysis provided evidence that the LDH enzymatic kinetics observed by hyperpolarized NMR are in near-equilibrium and satisfy the two-site exchange model for only a specific time window. In addition, we quantified both the forward and reverse exchange rate constants of the LDH reaction for the transgenic and mouse xenograft models of breast cancer using the ratio fitting method developed, which includes only two modeling parameters and is less sensitive to the influence of instrument settings/protocols, such as flip angles, degree of polarization and tracer dosage. We further compared the ratio fitting method with a conventional two-site exchange modeling method, i.e. the differential equation fitting method, using both the experimental and simulated hyperpolarized NMR data. The ratio fitting method appeared to fit better than the differential equation fitting method for the reverse rate constant on the mouse tumor data, with less relative errors on average, whereas the differential equation fitting method also resulted in a negative reverse rate constant for one tumor. The simulation results indicated that the accuracy of both methods depends on the width of the transport function, noise level and rate constant ratio; one method may be more accurate than the other based on the experimental/biological conditions aforementioned. We were able to categorize our tumor models into specific conditions of the computer simulation and to estimate the errors of rate quantification. We also discussed possible

  12. Solid state NMR sequential resonance assignments and conformational analysis of the 2x10.4 kDa dimeric form of the Bacillus subtilis protein Crh

    Energy Technology Data Exchange (ETDEWEB)

    Boeckmann, Anja [Institut de Biologie et Chimie des Proteines, C.N.R.S UMR 5086 (France)], E-mail: a.bockmann@ibcp.fr; Lange, Adam [Max-Planck-Institute for Biophysical Chemistry, Solid-state NMR (Germany); Galinier, Anne [Institut de Biologie Structurale et Microbiologie, C.N.R.S UPR 9043 (France); Luca, Sorin [Max-Planck-Institute for Biophysical Chemistry, Solid-state NMR (Germany); Giraud, Nicolas; Juy, Michel [Institut de Biologie et Chimie des Proteines, C.N.R.S UMR 5086 (France); Heise, Henrike [Max-Planck-Institute for Biophysical Chemistry, Solid-state NMR (Germany); Montserret, Roland; Penin, Francois [Institut de Biologie et Chimie des Proteines, C.N.R.S UMR 5086 (France); Baldus, Marc [Max-Planck-Institute for Biophysical Chemistry, Solid-state NMR (Germany)], E-mail: maba@mpibpc.mpg.de

    2003-12-15

    Solid state NMR sample preparation and resonance assignments of the U-[{sup 13}C,{sup 15}N] 2x10.4 kDa dimeric form of the regulatory protein Crh in microcrystalline, PEG precipitated form are presented. Intra- and interresidue correlations using dipolar polarization transfer methods led to nearly complete sequential assignments of the protein, and to 88% of all {sup 15}N, {sup 13}C chemical shifts. For several residues, the resonance assignments differ significantly from those reported for the monomeric form analyzed by solution state NMR. Dihedral angles obtained from a TALOS-based statistical analysis suggest that the microcrystalline arrangement of Crh must be similar to the domain-swapped dimeric structure of a single crystal form recently solved using X-ray crystallography. For a limited number of protein residues, a remarkable doubling of the observed NMR resonances is observed indicative of local static or dynamic conformational disorder. Our study reports resonance assignments for the largest protein investigated by solid state NMR so far and describes the conformational dimeric variant of Crh with previously unknown chemical shifts.

  13. Metabonomic study of human serum in gallbladder cancer by 1H NMR spectroscopy

    International Nuclear Information System (INIS)

    Sonkar, Kanchan; Sinha, Neeraj; Behari, Anu; Kapoor, V.K.

    2012-01-01

    Gallbladder carcinoma (GBC) is one of the most lethal malignancies of upper gastrointestinal tract and it has the highest mortality rate in Chile and India. It has a very high incidence rates in northern India therefore it is also called as an Indian disease. There are several factors which play important role in development of gallbladder cancer including long-standing stones in gallbladder and alterations in composition of bile. Studies on gallstones and gallbladder tissues revealed that benign group can easily be discriminated from malignant group. Many proteomic studies have been performed for different cancers and several responsible serum protein markers have been identified but there is no such metabonomics study that shows the presence of any biomarker associated with gallbladder carcinoma. Identification of such biomarker would help immensely in the diagnostic of GBC. For this study we have collected blood samples (70; including patients from Chronic Cholecystitis (CC), XanthoGranulomatous Cholecystitis (XGC) and Gallbladder Cancer (GBC)) post-operatively (immediately after surgery) from patient undergoing cholecystectomy in Department of Surgical Gastroenterology, SGPGIMS. Control samples were also collected from 20 volunteers after 12 hrs of fasting. 4 ml of blood sample was collected and was allowed to clot in plastic tube for 30 min at room temperature in incubator. The serum was collected by centrifugation and samples were stored at -80 deg C till NMR experiments. 400 μL of serum was used for recording NMR spectra. NMR spectra were recorded at Bruker Avance 800 MHz spectrometer using CPMG pulse sequence with water presaturation. Control serum shows presence of various amino acids and low molecular weight metabolites. Detailed multivariate analysis along with markers found in serum associated with GBC will be presented. (author)

  14. Annual reports on NMR spectroscopy

    CERN Document Server

    Webb, Graham A; McCarthy, M J

    1995-01-01

    Over recent years, no other technique has grown to such importance as that of NMR spectroscopy. It is used in all branches of science where precise structural determination is required and where the nature of interactions and reactions in solution is being studied. Annual Reports on NMR Spectroscopy has established itself as a means for the specialist and non-specialist alike to become familiar with new applications of the technique in all branches of chemistry, including biochemistry, and pharmaceutics. This volume focuses on theoretical aspects of NMR nuclear shielding and on applications of

  15. Non-Uniform Sampling and J-UNIO Automation for Efficient Protein NMR Structure Determination.

    Science.gov (United States)

    Didenko, Tatiana; Proudfoot, Andrew; Dutta, Samit Kumar; Serrano, Pedro; Wüthrich, Kurt

    2015-08-24

    High-resolution structure determination of small proteins in solution is one of the big assets of NMR spectroscopy in structural biology. Improvements in the efficiency of NMR structure determination by advances in NMR experiments and automation of data handling therefore attracts continued interest. Here, non-uniform sampling (NUS) of 3D heteronuclear-resolved [(1)H,(1)H]-NOESY data yielded two- to three-fold savings of instrument time for structure determinations of soluble proteins. With the 152-residue protein NP_372339.1 from Staphylococcus aureus and the 71-residue protein NP_346341.1 from Streptococcus pneumonia we show that high-quality structures can be obtained with NUS NMR data, which are equally well amenable to robust automated analysis as the corresponding uniformly sampled data. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The use of IRMS, (1)H NMR and chemical analysis to characterise Italian and imported Tunisian olive oils.

    Science.gov (United States)

    Camin, Federica; Pavone, Anita; Bontempo, Luana; Wehrens, Ron; Paolini, Mauro; Faberi, Angelo; Marianella, Rosa Maria; Capitani, Donatella; Vista, Silvia; Mannina, Luisa

    2016-04-01

    Isotope Ratio Mass Spectrometry (IRMS), (1)H Nuclear Magnetic Resonance ((1)H NMR), conventional chemical analysis and chemometric elaboration were used to assess quality and to define and confirm the geographical origin of 177 Italian PDO (Protected Denomination of Origin) olive oils and 86 samples imported from Tunisia. Italian olive oils were richer in squalene and unsaturated fatty acids, whereas Tunisian olive oils showed higher δ(18)O, δ(2)H, linoleic acid, saturated fatty acids β-sitosterol, sn-1 and 3 diglyceride values. Furthermore, all the Tunisian samples imported were of poor quality, with a K232 and/or acidity values above the limits established for extra virgin olive oils. By combining isotopic composition with (1)H NMR data using a multivariate statistical approach, a statistical model able to discriminate olive oil from Italy and those imported from Tunisia was obtained, with an optimal differentiation ability arriving at around 98%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Spectroscopic data of Labdane Diterpenes: a theoretical analysis via NMR and DFT

    International Nuclear Information System (INIS)

    Souza, Fabrine S. de; Silva, Silvana de O.; Alves, Cláudio N.; Guilhon, Giselle M.S.P.

    2015-01-01

    Labdane diterpenes exhibit important bioactivities such as cardiovascular effects in rats as well as effects in the treatment of autoimmune diseases and Alzheimer syndrome. Recently, the labdane diterpenes ent-13-epi-manoil oxide, ribenone and ribenol were isolated from Croton palanostigma. The computational method DFT/B3LYP/cc-pVDZ was used to optimize the structures of these diterpenes and to calculate infrared data. Chemical shifts (δ H and δ C ) of the minimum energy structures (local minimum) were calculated and compared with the experimental data. Comparison of the NMR data by simple linear regression (SLR) showed satisfactory statistical results with a correlation coefficient (R 2 ) and predictive ability (Q 2 ) of over 98%. The predicted NMR data were used to confirm the δ H values that have not been published. (author)

  18. NMR shielding calculations across the periodic table: diamagnetic uranium compounds. 2. Ligand and metal NMR.

    Science.gov (United States)

    Schreckenbach, Georg

    2002-12-16

    In this and a previous article (J. Phys. Chem. A 2000, 104, 8244), the range of application for relativistic density functional theory (DFT) is extended to the calculation of nuclear magnetic resonance (NMR) shieldings and chemical shifts in diamagnetic actinide compounds. Two relativistic DFT methods are used, ZORA ("zeroth-order regular approximation") and the quasirelativistic (QR) method. In the given second paper, NMR shieldings and chemical shifts are calculated and discussed for a wide range of compounds. The molecules studied comprise uranyl complexes, [UO(2)L(n)](+/-)(q); UF(6); inorganic UF(6) derivatives, UF(6-n)Cl(n), n = 0-6; and organometallic UF(6) derivatives, UF(6-n)(OCH(3))(n), n = 0-5. Uranyl complexes include [UO(2)F(4)](2-), [UO(2)Cl(4)](2-), [UO(2)(OH)(4)](2-), [UO(2)(CO(3))(3)](4-), and [UO(2)(H(2)O)(5)](2+). For the ligand NMR, moderate (e.g., (19)F NMR chemical shifts in UF(6-n)Cl(n)) to excellent agreement [e.g., (19)F chemical shift tensor in UF(6) or (1)H NMR in UF(6-n)(OCH(3))(n)] has been found between theory and experiment. The methods have been used to calculate the experimentally unknown (235)U NMR chemical shifts. A large chemical shift range of at least 21,000 ppm has been predicted for the (235)U nucleus. ZORA spin-orbit appears to be the most accurate method for predicting actinide metal chemical shifts. Trends in the (235)U NMR chemical shifts of UF(6-n)L(n) molecules are analyzed and explained in terms of the calculated electronic structure. It is argued that the energy separation and interaction between occupied and virtual orbitals with f-character are the determining factors.

  19. Functional Group and Structural Characterization of Unmodified and Functionalized Lignin by Titration, Elemental Analysis, 1H NMR and FTIR Techniques

    Directory of Open Access Journals (Sweden)

    Ramin Bairami Habashi

    2017-11-01

    Full Text Available Lignin is the second most abundant polymer in the world after cellulose. Therefore, characterization of the structure and functional groups of lignin in order to assess its potential applications in various technical fields has become a necessity. One of the major problems related to the characterization of lignin is the lack of well-defined protocols and standards. In this paper, systematic studies have been done to characterize the structure and functional groups of lignin quantitatively using different techniques such as elemental analysis, titration and 1H NMR and FTIR techniques. Lignin as a black liquor was obtained from Choka Paper Factory and it was purified before any test. The lignin was reacted with α-bromoisobutyryl bromide to calculate the number of hydroxyl and methoxyl moles. Using 1H NMR spectroscopic method on α-bromoisobutyrylated lignin (BiBL in the presence of a given amount of N,N-dimethylformamide (DMF as an internal standard, the number of moles of hydroxyl and methoxyl groups per gram of lignin was found to be 6.44 mmol/g and 6.64 mmol/g, respectively. Using aqueous titration, the number of moles of phenolic hydroxyl groups and carboxyl groups of the lignin were calculated as 3.13 mmol/g and 2.84 mmol/g, respectively. The findings obtained by 1H NMR and elemental analysis indicated to phenyl propane unit of the lignin with C9 structural formula as C9 HAl 3.84HAr2.19S0.2O0.8(OH1.38(OCH31.42. Due to poor solubility of the lignin in tetrahydrofuran (THF, acetylated lignin was used in the GPC analysis, by which number-average molecular weight  of the lignin was calculated as 992 g/mol.

  20. Automation of peak-tracking analysis of stepwise perturbed NMR spectra

    Energy Technology Data Exchange (ETDEWEB)

    Banelli, Tommaso; Vuano, Marco [Università di Udine, Dipartimento di Area Medica (Italy); Fogolari, Federico [INBB (Italy); Fusiello, Andrea [Università di Udine, Dipartimento Politecnico di Ingegneria e Architettura (Italy); Esposito, Gennaro [INBB (Italy); Corazza, Alessandra, E-mail: alessandra.corazza@uniud.it [Università di Udine, Dipartimento di Area Medica (Italy)

    2017-02-15

    We describe a new algorithmic approach able to automatically pick and track the NMR resonances of a large number of 2D NMR spectra acquired during a stepwise variation of a physical parameter. The method has been named Trace in Track (TinT), referring to the idea that a gaussian decomposition traces peaks within the tracks recognised through 3D mathematical morphology. It is capable of determining the evolution of the chemical shifts, intensity and linewidths of each tracked peak.The performances obtained in term of track reconstruction and correct assignment on realistic synthetic spectra were high above 90% when a noise level similar to that of experimental data were considered. TinT was applied successfully to several protein systems during a temperature ramp in isotope exchange experiments. A comparison with a state-of-the-art algorithm showed promising results for great numbers of spectra and low signal to noise ratios, when the graduality of the perturbation is appropriate. TinT can be applied to different kinds of high throughput chemical shift mapping experiments, with quasi-continuous variations, in which a quantitative automated recognition is crucial.

  1. Structural analysis of the exopolysaccharide produced by Streptococcus thermophilus ST1 solely by NMR spectroscopy

    International Nuclear Information System (INIS)

    Saewen, Elin; Huttunen, Eine; Zhang Xue; Yang Zhennai; Widmalm, Goeran

    2010-01-01

    The use of lactic acid bacteria in fermentation of milk results in favorable physical and rheological properties due to in situ exopolysaccharide (EPS) production. The EPS from S. thermophilus ST1 produces highly viscous aqueous solutions and its structure has been investigated by NMR spectroscopy. Notably, all aspects of the elucidation of its primary structure including component analysis and absolute configuration of the constituent monosaccharides were carried out by NMR spectroscopy. An array of techniques was utilized including, inter alia, PANSY and NOESY-HSQC TILT experiments. The EPS is composed of hexasaccharide repeating units with the following structure: → 3)[α-d-Glcp-(1 → 4)]-β-d-Galp-(1 → 4)-β-d-Glcp-(1 → 4)[β-d-Galf-(1 → 6)]-β-d-Glcp-(1 → 6)-β-d-Glcp-(1 → , in which the residues in square brackets are terminal groups substituting backbone sugar residues that consequently are branch-points in the repeating unit of the polymer. Thus, the EPS consists of a backbone of four sugar residues with two terminal sugar residues making up two side-chains of the repeating unit. The molecular mass of the polymer was determined using translational diffusion experiments which resulted in M w = 62 kDa, corresponding to 64 repeating units in the EPS.

  2. Solid-state NMR spectroscopy on complex biomolecules

    NARCIS (Netherlands)

    Renault, M.A.M.; Cukkemane, A.A.; Baldus, M.

    2010-01-01

    Biomolecular applications of NMR spectroscopy are often merely associated with soluble molecules or magnetic resonance imaging. However, since the late 1970s, solid-state NMR (ssNMR) spectroscopy has demonstrated its ability to provide atomic-level insight into complex biomolecular systems ranging

  3. Quantitative Analysis of Chemically Modified Starches by 1H-NMR Spectroscopy

    NARCIS (Netherlands)

    Graaf, R.A. de; Lammers, G.; Janssen, L.P.B.M.; Beenackers, A.A.C.M.

    1995-01-01

    A quantitative 1H-NMR method for the determination of the Molar Substitution (MS) of acetylated and hydroxypropylated starches was developed and tested for MS ranging from 0.09 to 0.5. Results were checked using the Johnson method and a titration method for hydroxypropylated and acetylated starch,

  4. Quantitative analysis of chemically modified starches by H-1-NMR spectroscopy

    NARCIS (Netherlands)

    de Graaf, R.A.; Lammers, G; Janssen, L.P.B.M.; Beenackers, A.A C M

    1995-01-01

    A quantitative H-1-NMR method for the determination of the Molar Substitution (MS) of acetylated and hydroxypropylated starches was developed and tested for MS ranging from 0.09 to 0.5. Results were checked using the Johnson method and a titration method for hydroxypropylated and acetylated starch,

  5. NMR characteristics of rat mammary tumors

    International Nuclear Information System (INIS)

    Osbakken, M.; Kreider, J.; Taczanowsky, P.

    1984-01-01

    12 rats were injected intradermally with 13762A rat mammary adenocarcinoma (1 x 10/sup 6/ cells). 3 rats died before completion of the study and 2 rat had tumor regression; the first 3 were excluded from data analysis. NMR imaging with a 1.5K gauss resistive magnet at 2, 3, 4, and 5 weeks after injection demonstrated increasing tumor mass. Saturation recovery (SR), inversion recovery (IR), and spin echo (SE) pulse sequence images and T/sub 1/ calculation were done for tumor characterization. (Tumor size was too small to identify at 2 weeks.) 3 rats were sacrificed after the last 3 imaging periods for histological studies, done to distinguish solid tumor mass from necrosis. Planimetry of tumor areas showed that as tumors grew in size, the ratio of necrotic area to area of solid tumor increased (week 3 = .3 +- .11; week 4 = .45 +- .07; week 5 = .51 +- 05); simultaneous calculated T/sub 1/ values also increased (week 3 = .35 +- .15; week 4 = .45 +- .06; week 5 = .42 +- 03). Qualitative NMR image T/sub 1/ values also increased as evidenced by progression of SR and IR tumor image intensity from very bright compared to the rest of the body at week 3 to less intense than other structures at week 5. These findings indicate that change in T/sub 1/ may be secondary to the pathophysiological change in the tumor (the increasing in necrosis, associated with increased free water). Thus, the range of T/sub 1/ values obtained in tumors in this study (and in previous studies) may be due to change in tumor physiology and anatomy. Careful correlation of histological with NMR data may allow ultimate use of NMR relaxation characteristics for determination of the physiological state of tumors

  6. Structural Investigations of Portland Cement Components, Hydration, and Effects of Admixtures by Solid-State NMR Spectroscopy

    DEFF Research Database (Denmark)

    Skibsted, Jørgen Bengaard; Andersen, Morten D.; Jakobsen, Hans Jørgen

    2006-01-01

    for the C-S-H phase formed during hydration. It will be demonstrated that Al3+ and flouride guest-ions in the anhydrous and hydrated calcium silicates can be studied in detail by 27Al and 19F MAS NMR, thereby providing information on the local structure and the mechanisms for incorporation of these ions......Solid-state, magic-angle spinning (MAS) NMR spectroscopy represents a valuable tool for structural investigations on the nanoscale of the most important phases in anhydrous and hydrated Portland cements and of various admixtures. This is primarily due to the fact that the method reflects the first......- and second-coordination spheres of the spin nucleus under investigation while it is less sensitive to long-range order. Thus, crystalline as well as amorphous phases can be detected in a quantitative manner by solid-state NMR. In particular the structure of the calcium-silicate-hydrate (C-S-H) phase have...

  7. INFOS: spectrum fitting software for NMR analysis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Albert A., E-mail: alsi@nmr.phys.chem.ethz.ch [ETH Zürich, Physical Chemistry (Switzerland)

    2017-02-15

    Software for fitting of NMR spectra in MATLAB is presented. Spectra are fitted in the frequency domain, using Fourier transformed lineshapes, which are derived using the experimental acquisition and processing parameters. This yields more accurate fits compared to common fitting methods that use Lorentzian or Gaussian functions. Furthermore, a very time-efficient algorithm for calculating and fitting spectra has been developed. The software also performs initial peak picking, followed by subsequent fitting and refinement of the peak list, by iteratively adding and removing peaks to improve the overall fit. Estimation of error on fitting parameters is performed using a Monte-Carlo approach. Many fitting options allow the software to be flexible enough for a wide array of applications, while still being straightforward to set up with minimal user input.

  8. Quartz Crystal Temperature Sensor for MAS NMR

    Science.gov (United States)

    Simon, Gerald

    1997-10-01

    Quartz crystal temperature sensors (QCTS) were tested for the first time as wireless thermometers in NMR MAS rotors utilizing the NMR RF technique itself for exiting and receiving electro-mechanical quartz resonances. This new tool in MAS NMR has a high sensitivity, linearity, and precision. When compared to the frequently used calibration of the variable temperature in the NMR system by a solid state NMR chemical shift thermometer (CST), such as lead nitrate, QCTS shows a number of advantages. It is an inert thermometer in close contact with solid samples operating parallel to the NMR experiment. QCTS can be manufactured for any frequency to be near a NMR frequency of interest (typically 1 to 2 MHz below or above). Due to the strong response of the crystal, signal detection is possible without changing the tuning of the MAS probe. The NMR signal is not influenced due to the relative sharp crystal resonance, restricted excitation by finite pulses, high probeQvalues, and commonly used audio filters. The quadratic dependence of the temperature increase on spinning speed is the same for the QCTS and for the CST lead nitrate and is discussed in terms of frictional heat in accordance with the literature about lead nitrate and with the results of a simple rotor speed jump experiment with differently radial located lead nitrate in the rotor.

  9. 33S NMR cryogenic probe for taurine detection

    Science.gov (United States)

    Hobo, Fumio; Takahashi, Masato; Maeda, Hideaki

    2009-03-01

    With the goal of a S33 nuclear magnetic resonance (NMR) probe applicable to in vivo NMR on taurine-biological samples, we have developed the S33 NMR cryogenic probe, which is applicable to taurine solutions. The NMR sensitivity gain relative to a conventional broadband probe is as large as 3.5. This work suggests that improvements in the preamplifier could allow NMR measurements on 100 μM taurine solutions, which is the level of sensitivity necessary for biological samples.

  10. NMR and pattern recognition methods in metabolomics: From data acquisition to biomarker discovery: A review

    Energy Technology Data Exchange (ETDEWEB)

    Smolinska, Agnieszka, E-mail: A.Smolinska@science.ru.nl [Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen (Netherlands); Blanchet, Lionel [Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen (Netherlands); Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Buydens, Lutgarde M.C.; Wijmenga, Sybren S. [Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen (Netherlands)

    2012-10-31

    Highlights: Black-Right-Pointing-Pointer Procedures for acquisition of different biofluids by NMR. Black-Right-Pointing-Pointer Recent developments in metabolic profiling of different biofluids by NMR are presented. Black-Right-Pointing-Pointer The crucial steps involved in data preprocessing and multivariate chemometric analysis are reviewed. Black-Right-Pointing-Pointer Emphasis is given on recent findings on Multiple Sclerosis via NMR and pattern recognition methods. - Abstract: Metabolomics is the discipline where endogenous and exogenous metabolites are assessed, identified and quantified in different biological samples. Metabolites are crucial components of biological system and highly informative about its functional state, due to their closeness to functional endpoints and to the organism's phenotypes. Nuclear Magnetic Resonance (NMR) spectroscopy, next to Mass Spectrometry (MS), is one of the main metabolomics analytical platforms. The technological developments in the field of NMR spectroscopy have enabled the identification and quantitative measurement of the many metabolites in a single sample of biofluids in a non-targeted and non-destructive manner. Combination of NMR spectra of biofluids and pattern recognition methods has driven forward the application of metabolomics in the field of biomarker discovery. The importance of metabolomics in diagnostics, e.g. in identifying biomarkers or defining pathological status, has been growing exponentially as evidenced by the number of published papers. In this review, we describe the developments in data acquisition and multivariate analysis of NMR-based metabolomics data, with particular emphasis on the metabolomics of Cerebrospinal Fluid (CSF) and biomarker discovery in Multiple Sclerosis (MScl).

  11. A solid-phase extraction procedure coupled to 1H NMR, with chemometric analysis, to seek reliable markers of the botanical origin of honey

    International Nuclear Information System (INIS)

    Beretta, Giangiacomo; Caneva, Enrico; Regazzoni, Luca; Bakhtyari, Nazanin Golbamaki; Maffei Facino, Roberto

    2008-01-01

    The aim of this work was to establish an analytical method for identifying the botanical origin of honey, as an alternative to conventional melissopalynological, organoleptic and instrumental methods (gas-chromatography coupled to mass spectrometry (GC-MS), high-performance liquid chromatography HPLC). The procedure is based on the 1 H nuclear magnetic resonance (NMR) profile coupled, when necessary, with electrospray ionisation-mass spectrometry (ESI-MS) and two-dimensional NMR analyses of solid-phase extraction (SPE)-purified honey samples, followed by chemometric analyses. Extracts of 44 commercial Italian honeys from 20 different botanical sources were analyzed. Honeydew, chestnut and linden honeys showed constant, specific, well-resolved resonances, suitable for use as markers of origin. Honeydew honey contained the typical resonances of an aliphatic component, very likely deriving from the plant phloem sap or excreted into it by sap-sucking aphids. Chestnut honey contained the typical signals of kynurenic acid and some structurally related metabolite. In linden honey the 1 H NMR profile gave strong signals attributable to the mono-terpene derivative cyclohexa-1,3-diene-1-carboxylic acid (CDCA) and to its 1-O-β-gentiobiosyl ester (CDCA-GBE). These markers were not detectable in the other honeys, except for the less common nectar honey from rosa mosqueta. We compared and analyzed the data by multivariate techniques. Principal component analysis found different clusters of honeys based on the presence of these specific markers. The results, although obviously only preliminary, suggest that the 1 H NMR profile (with HPLC-MS analysis when necessary) can be used as a reference framework for identifying the botanical origin of honey

  12. Solid state multinuclear NMR. A versatile tool for studying the reactivity of solid systems

    Energy Technology Data Exchange (ETDEWEB)

    MacKenzie, Kenneth J.D. [MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O. Box 600, Wellington (New Zealand)

    2004-08-31

    Traditionally, X-ray powder diffraction has been a favoured method for studying chemical reactions in the solid state, but the increasing importance of energy-efficient synthesis methods for solids (e.g. sol-gel synthesis, mechanochemical synthesis) has led to the need for an analytical method not dependent on long-range structural periodicity. Multinuclear solid state nuclear magnetic resonance (NMR) represents a technique which is equally applicable to amorphous or crystalline solids, and is now used in increasing numbers of solid state studies.This paper briefly outlines the principles and practical details of this powerful technique and gives examples of its use in solid-state chemistry, particularly in very recent studies of mechanochemical synthesis of advanced sialon ceramics. The temperature at which these technically important silicon aluminium oxynitride compounds are formed can be significantly lowered by high-energy grinding of their components to produce X-ray amorphous precursors. Solid-state NMR has been used to provide detailed information which could not have been obtained by any other means about the chemical environment of the Si and Al atoms in these amorphous precursors, and the various atomic movements undergone as they crystallise to the final product.

  13. Solution NMR Spectroscopy in Target-Based Drug Discovery.

    Science.gov (United States)

    Li, Yan; Kang, Congbao

    2017-08-23

    Solution NMR spectroscopy is a powerful tool to study protein structures and dynamics under physiological conditions. This technique is particularly useful in target-based drug discovery projects as it provides protein-ligand binding information in solution. Accumulated studies have shown that NMR will play more and more important roles in multiple steps of the drug discovery process. In a fragment-based drug discovery process, ligand-observed and protein-observed NMR spectroscopy can be applied to screen fragments with low binding affinities. The screened fragments can be further optimized into drug-like molecules. In combination with other biophysical techniques, NMR will guide structure-based drug discovery. In this review, we describe the possible roles of NMR spectroscopy in drug discovery. We also illustrate the challenges encountered in the drug discovery process. We include several examples demonstrating the roles of NMR in target-based drug discoveries such as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. We also speculate the possible roles of NMR in target engagement based on recent processes in in-cell NMR spectroscopy.

  14. Dynamic domains of amyloid fibrils can be site-specifically assigned with proton detected 3D NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Falk, Alexander S.; Siemer, Ansgar B., E-mail: asiemer@usc.edu [Keck School of Medicine of USC, Department of Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute (United States)

    2016-11-15

    Several amyloid fibrils have cores framed by highly dynamic, intrinsically disordered, domains that can play important roles for function and toxicity. To study these domains in detail using solid-state NMR spectroscopy, site-specific resonance assignments are required. Although the rapid dynamics of these domains lead to considerable averaging of orientation-dependent NMR interactions and thereby line-narrowing, the proton linewidths observed in these samples is far larger than what is regularly observed in solution. Here, we show that it is nevertheless possible to record 3D HNCO, HNCA, and HNcoCA spectra on these intrinsically disordered domains and to obtain site-specific assignments.

  15. Dynamic domains of amyloid fibrils can be site-specifically assigned with proton detected 3D NMR spectroscopy

    International Nuclear Information System (INIS)

    Falk, Alexander S.; Siemer, Ansgar B.

    2016-01-01

    Several amyloid fibrils have cores framed by highly dynamic, intrinsically disordered, domains that can play important roles for function and toxicity. To study these domains in detail using solid-state NMR spectroscopy, site-specific resonance assignments are required. Although the rapid dynamics of these domains lead to considerable averaging of orientation-dependent NMR interactions and thereby line-narrowing, the proton linewidths observed in these samples is far larger than what is regularly observed in solution. Here, we show that it is nevertheless possible to record 3D HNCO, HNCA, and HNcoCA spectra on these intrinsically disordered domains and to obtain site-specific assignments.

  16. Detailed analysis of the KAERI nTOF facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Woon; Lee, Young Ouk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-06-15

    A project for building a neutron time-of-flight (nTOF) facility is progressing. We expect that the construction will start in early 2016. Before that, a detailed simulation based on the current architectural drawings was performed to optimize the performance of our facility. Currently, several parts had been modified or changed from the original design to reflect requirements such as the layout of the electron beam line, shape of the vacuum chamber producing a neutron beam, and the underground layout of the nTOF facility. Detailed analysis for these modifications has been done with MCNP simulation. An overview of our photo-neutron source and KAERI nTOF facility were introduced. The numerical simulations for heat deposition, source term, and radiation shielding of KAERI nTOF facility were performed and the results are discussed. We are expecting that the construction of the KAERI nTOF facility will start in early 2016, and these results will be used as basic data.

  17. 1H NMR and PCA-based analysis revealed variety dependent changes in phenolic contents of apple fruit after drying.

    Science.gov (United States)

    Francini, Alessandra; Romeo, Stefania; Cifelli, Mario; Gori, Daniele; Domenici, Valentina; Sebastiani, Luca

    2017-04-15

    Dry and fresh apples have been studied monitoring their polyphenolic profiles through 1 H NMR, antioxidant capacity and total polyphenol content. Six ancient and underutilized apple varieties (Mantovana, Mora, Nesta, Cipolla, Ruggina, Sassola) and a commercial one (Golden Delicious) were dried with an air-drying system at 45°C for 19h. Although some of their polyphenol constituents were lost during drying, the antioxidant capacity of some apple varieties remained higher compared to Golden Delicious. This result is very important for ancient and underutilized varieties that are not consumed on large scale as fresh product since they have low attractiveness, due to their ugly appearance. Combining quantitative NMR spectroscopy with principal component analysis we have identified and quantified several polyphenols (such as catechin, epicathechin, and chlorogenic acid) that are important to establish the nutraceutical value of the different investigated apple varieties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. NPK NMR Sensor: Online Monitoring of Nitrogen, Phosphorus, and Potassium in Animal Slurry.

    Science.gov (United States)

    Sørensen, Morten K; Jensen, Ole; Bakharev, Oleg N; Nyord, Tavs; Nielsen, Niels Chr

    2015-07-07

    Knowledge of the actual content of nitrogen, phosphorus, and potassium (NPK) in animal slurry is highly important to optimize crop production and avoid environmental pollution when slurry is spread on agricultural fields. Here, we present a mobile, low-field nuclear magnetic resonance (NMR) sensor suitable for online monitoring of the NPK content in animal slurry as an alternative to crude estimates or tedious nonspecific, off-site laboratory analysis. The sensor is based on (14)N, (17)O, (31)P, and (39)K NMR in a digital NMR instrument equipped with a 1.5 T Halbach magnet for direct detection of ammonium N, total P, and K and indirect evaluation of the organic N content, covering all practical components of NPK in animal slurry. In correlation studies, the obtained NMR measurements show good agreement with reference measurements from commercial laboratories.

  19. NMR imaging of osteoarticular pathology

    International Nuclear Information System (INIS)

    Frocrain, L.; Duvauferrier, R.; Gagey, N.

    1987-01-01

    NMR imaging is assuming an increasingly important role in the diagnosis of osteo-articular disorders. Semiological descriptions of the mean pathological disorders of the locomotor system are presented. Some investigation strategies are proposed to compare NMR imaging with other imaging techniques in various pathological states [fr

  20. Characterization of natural bentonite by NMR; Caracterizacao de bentonitas naturais por ressonancia magnetica nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Sidnei Q.M.; Dieguez, Lidia C [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia; Menezes, Sonia M.C. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; San Gil, Rosane A.S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica

    1994-12-31

    Solid state NMR as well as several other instrumental chemical analysis techniques were used in order to characterize two natural occurring bentonite. The methodology is described. The NMR spectra, together with the other used techniques suggest that the observed differences are due to iron inclusions in tetrahedral and octahedral sites 5 refs., 3 figs., 5 tabs.

  1. Analysis of ZDDP Content and Thermal Decomposition in Motor Oils Using NAA and NMR

    Science.gov (United States)

    Ferguson, S.; Johnson, J.; Gonzales, D.; Hobbs, C.; Allen, C.; Williams, S.

    Zinc dialkyldithiophosphates (ZDDPs) are one of the most common anti-wear additives present in commercially-available motor oils. The ZDDP concentrations of motor oils are most commonly determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES). As part of an undergraduate research project, we have determined the Zn concentrations of eight commercially-available motor oils and one oil additive using neutron activation analysis (NAA), which has potential for greater accuracy and less sensitivity to matrix effects as compared to ICP-AES. The 31P nuclear magnetic resonance (31P-NMR) spectra were also obtained for several oil additive samples which have been heated to various temperatures in order to study the thermal decomposition of ZDDPs.

  2. Nontargeted nuclear magnetic resonance (NMR) analysis to detect hazardous substances including methanol in unrecorded alcohol from Novosibirsk, Russia

    OpenAIRE

    Hausler, Thomas; Okaru,  Alex O.; Neufeld, Maria; Rehm, Jürgen; Kuballa, Thomas; Luy, Burkhard; Lachenmeier, Dirk W.

    2016-01-01

    Nuclear magnetic resonance (NMR) spectroscopy was applied to the analysis of alcoholic products in the context of health and safety control. A total of 86 samples of unrecorded alcohol were collected in Novosibirsk and nearby cities in Russia. Sampling was based on interviews with alcohol dependent patients, and unrecorded alcohol thus defined included illegally or informally produced alcoholic products (e.g., counterfeit or home-made alcoholic beverages) or surrogate alcohol in the form of c...

  3. Fluid typing and tortuosity analysis with NMR-DE techniques in volcaniclastic reservoirs, Patagonia/Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Bustos, Ulises Daniel [Schlumberger Argentina S.A., Buenos Aires (Argentina); Breda, Eduardo Walter [Repsol YPF Comodoro Rivadavia, Chubut (Argentina)

    2004-07-01

    Alternative hydrocarbon-detection techniques are used to differentiate water from hydrocarbon where resistivity-based methods are difficult to apply, such as freshwater reservoirs and complex lithologies. One of these areas is represented by the complex volcaniclastic freshwater reservoirs in the Golfo San Jorge basin, Patagonia Argentina, where water and oil have often identical response on conventional logs. Some advances in hydrocarbon identification based on nuclear magnetic resonance (NMR) techniques were achieved in long T1 environments (very light oils, gas) in the Golfo San Jorge basin by previous NMR fluid typing methods. However, since medium to heavy oils are commonly present in these intervals, hydrocarbon detection by such techniques cannot be properly achieved. In addition, restricted diffusion phenomena recognized in these intervals, constitute further complications in fluid typing since its presence have similar response than native oil. To address this problem, a fluid characterization method using NMR Diffusion-Editing techniques and processing/interpretation with D-T2 maps in a suite of NMR measurements was applied. The technique allowed the detection and evaluation of restricted diffusion in these reservoirs, enabling better hydrocarbon characterization in a broad viscosity range (from light to heavy). The method also improved the petrophysical evaluation because restricted diffusion is related to tortuosity in the reservoir. Since the application of this innovative reservoir evaluation method, fluid prognosis vs well completion results was increased from around 68% to around 88% in Golfo San Jorge basin. Moreover, in some of these areas rates above 95% were recently achieved in 2004. (author)

  4. Study on the Effects of Oligo chitosan and Bioliquifert on Two Rice Mutants, NMR 151 and NMR 152

    International Nuclear Information System (INIS)

    Shakinah Salleh; Faiz Ahmad; Sobri Hussein

    2016-01-01

    Nuclear Malaysia has successfully developed two new rice mutants namely NMR 151 and NMR 152. In addition, Nuclear Malaysia has also successfully developed Oligo chitosan and liquid bio fertilizer (Bioliquifert). Oligo chitosan acts as elicitor that has been proven to be very effective in controlling disease infections and improving yield productivity. Bioliquifert on the other hand is a mixture of microbes containing major nutrient-providing microorganisms. The objective of this study is to observe the effects of Oligo chitosan and Bioliquifert on rice mutants, NMR 151 and NMR 152. The treatment was applied on 14 day old seedlings of MR 219, NMR 151 and NMR 152 sowed in 20 cm pots containing silty clay from the paddy soil of Tanjung Karang, Selangor. The seedlings were then placed in the greenhouse at Nuclear Malaysia until it reaches 110 days old. Study was conducted in a Complete Randomized Design (CRD) with 3 replications was used and each replication consisted of three plants. All treatments received compound and single dressing fertilizer as recommended by National Rice Production Package except for Treatment 2 and 3, in which Treatment 2 received Oligo chitosan and Bioliquifert while Treatment 3 only received Bioliquifert. Results on plant height, number of tiller and plant fresh weight are not significantly different for all cultivar except for seed dry weight of NMR 152 and MR 219. (author)

  5. Determination of partition coefficients using 1 H NMR spectroscopy and time domain complete reduction to amplitude-frequency table (CRAFT) analysis.

    Science.gov (United States)

    Soulsby, David; Chica, Jeryl A M

    2017-08-01

    We have developed a simple, direct and novel method for the determination of partition coefficients and partitioning behavior using 1 H NMR spectroscopy combined with time domain complete reduction to amplitude-frequency tables (CRAFT). After partitioning into water and 1-octanol using standard methods, aliquots from each layer are directly analyzed using either proton or selective excitation NMR experiments. Signal amplitudes for each compound from each layer are then extracted directly from the time domain data in an automated fashion and analyzed using the CRAFT software. From these amplitudes, log P and log D 7.4 values can be calculated directly. Phase, baseline and internal standard issues, which can be problematic when Fourier transformed data are used, are unimportant when using time domain data. Furthermore, analytes can contain impurities because only a single resonance is examined and need not be UV active. Using this approach, we examined a variety of pharmaceutically relevant compounds and determined partition coefficients that are in excellent agreement with literature values. To demonstrate the utility of this approach, we also examined salicylic acid in more detail demonstrating an aggregation effect as a function of sample loading and partition coefficient behavior as a function of pH value. This method provides a valuable addition to the medicinal chemist toolbox for determining these important constants. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Magnetic field dependence observed by 27 Al NMR of species contained in alumina colloidal dispersions

    International Nuclear Information System (INIS)

    Morgado Junior, Edisson; Menezes, Sonia M.C.; San Gil, Rosane

    1995-01-01

    The behaviour of some aluminium species front a magnetic field have been investigated by 27 Al NMR analysis, this method was used for characterization of an octahedric aluminium specie from sols prepared by bohemite acid peptization. X-ray diffraction data have identified the mineral structure. The results have been shown and discussed, and NMR spectra were also presented and studied. Concluding this work, the nature of a colloidal specie of alumina was clarified through the dependence research of magnetic field by 27 Al NMR

  7. An experimental validation of a Bayesian model for quantification in NMR spectroscopy

    Science.gov (United States)

    Matviychuk, Yevgen; von Harbou, Erik; Holland, Daniel J.

    2017-12-01

    The traditional peak integration method for quantitative analysis in nuclear magnetic resonance (NMR) spectroscopy is inherently limited by its ability to resolve overlapping peaks and is susceptible to noise. The alternative model-based approaches not only extend quantification capabilities to these challenging examples but also provide a means for automation of the entire process of NMR data analysis. In this paper, we present a general model for an NMR signal that, in a principled way, takes into account the effects of chemical shifts, relaxation, lineshape imperfections, phasing, and baseline distortions. We test the model using both simulations and experiments, concentrating on simple spectra with well-resolved peaks where we expect conventional analysis to be effective. Our results of quantifying mixture compositions compare favorably with the established methods. At high SNR (> 40dB), all approaches usually achieve for these test systems an absolute accuracy of at least 0.01mol /mol for the concentrations of all species. Our model-based approach is successful even for SNR < 20dB ; it achieves 0.05 - 0.1mol /mol accuracy in cases where precise phasing is practically impossible due to high levels of noise in the data.

  8. HPLC, NMR and MALDI-TOF MS analysis of condensed tannins from Lithocarpus glaber leaves with potent free radical scavenging activity.

    Science.gov (United States)

    Zhang, Liang Liang; Lin, Yi Ming

    2008-12-04

    Using acid-catalyzed degradation in the presence of cysteamine, the condensed tannins from Lithocarpus glaber leaves were characterized, following thiolysis, by means of reversed-phase HPLC, 13C-NMR and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analyses. The thiolysis reaction products showed the presence of the procyanidin (PC) and prodelphinidin (PD) structures. The 13C-NMR spectrum revealed that the condensed tannins were comprised of PD (72.4%) and PC (27.6%), and with a greater content of cis configuration rather than the trans configuration of C2-C3. The MALDI-TOF MS analysis proved the presence of PD units, and the maximum degree of polymerization (DP) was an undecamer. The antioxidant activity of condensed tannins from L. glaber leaves was evaluated by using a free radical scavenging activity assay.

  9. An Inversion Recovery NMR Kinetics Experiment

    OpenAIRE

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this article will enable instructors to use inversion recovery as a laboratory activity in applied NMR classes and provide research students with a conveni...

  10. Software Defined Radio (SDR) and Direct Digital Synthesizer (DDS) for NMR/MRI Instruments at Low-Field

    Science.gov (United States)

    Asfour, Aktham; Raoof, Kosai; Yonnet, Jean-Paul

    2013-01-01

    A proof-of-concept of the use of a fully digital radiofrequency (RF) electronics for the design of dedicated Nuclear Magnetic Resonance (NMR) systems at low-field (0.1 T) is presented. This digital electronics is based on the use of three key elements: a Direct Digital Synthesizer (DDS) for pulse generation, a Software Defined Radio (SDR) for a digital receiving of NMR signals and a Digital Signal Processor (DSP) for system control and for the generation of the gradient signals (pulse programmer). The SDR includes a direct analog-to-digital conversion and a Digital Down Conversion (digital quadrature demodulation, decimation filtering, processing gain…). The various aspects of the concept and of the realization are addressed with some details. These include both hardware design and software considerations. One of the underlying ideas is to enable such NMR systems to “enjoy” from existing advanced technology that have been realized in other research areas, especially in telecommunication domain. Another goal is to make these systems easy to build and replicate so as to help research groups in realizing dedicated NMR desktops for a large palette of new applications. We also would like to give readers an idea of the current trends in this field. The performances of the developed electronics are discussed throughout the paper. First FID (Free Induction Decay) signals are also presented. Some development perspectives of our work in the area of low-field NMR/MRI will be finally addressed. PMID:24287540

  11. Software Defined Radio (SDR and Direct Digital Synthesizer (DDS for NMR/MRI Instruments at Low-Field

    Directory of Open Access Journals (Sweden)

    Aktham Asfour

    2013-11-01

    Full Text Available A proof-of-concept of the use of a fully digital radiofrequency (RF electronics for the design of dedicated Nuclear Magnetic Resonance (NMR systems at low-field (0.1 T is presented. This digital electronics is based on the use of three key elements: a Direct Digital Synthesizer (DDS for pulse generation, a Software Defined Radio (SDR for a digital receiving of NMR signals and a Digital Signal Processor (DSP for system control and for the generation of the gradient signals (pulse programmer. The SDR includes a direct analog-to-digital conversion and a Digital Down Conversion (digital quadrature demodulation, decimation filtering, processing gain…. The various aspects of the concept and of the realization are addressed with some details. These include both hardware design and software considerations. One of the underlying ideas is to enable such NMR systems to “enjoy” from existing advanced technology that have been realized in other research areas, especially in telecommunication domain. Another goal is to make these systems easy to build and replicate so as to help research groups in realizing dedicated NMR desktops for a large palette of new applications. We also would like to give readers an idea of the current trends in this field. The performances of the developed electronics are discussed throughout the paper. First FID (Free Induction Decay signals are also presented. Some development perspectives of our work in the area of low-field NMR/MRI will be finally addressed.

  12. Fourier transform NMR

    International Nuclear Information System (INIS)

    Hallenga, K.

    1991-01-01

    This paper discusses the concept of Fourier transformation one of the many precious legacies of the French mathematician Jean Baptiste Joseph Fourier, essential for understanding the link between continuous-wave (CW) and Fourier transform (FT) NMR. Although in modern FT NMR the methods used to obtain a frequency spectrum from the time-domain signal may vary greatly, from the efficient Cooley-Tukey algorithm to very elaborate iterative least-square methods based other maximum entropy method or on linear prediction, the principles for Fourier transformation are unchanged and give invaluable insight into the interconnection of many pairs of physical entities called Fourier pairs

  13. Nuclear magnetic resonance apparatus having semitoroidal RF coil for use in topical NMR and NMR imaging

    International Nuclear Information System (INIS)

    Fukushima, E.; Assink, R.A.; Roeder, S.B.W.; Gibson, A.A.V.

    1984-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, to enable NMR measurements to be taken from selected regions inside an object, particularly human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other electric field interactions. The coil may be combined with a like orthogonal coil and suitably driven to provide a circularly polarised field; or it may be used in conjunction with a concentrically nested smaller semitoroidal coil to move the maximum field further from the coil assembly. (author)

  14. Untargeted NMR Spectroscopic Analysis of the Metabolic Variety of New Apple Cultivars

    Directory of Open Access Journals (Sweden)

    Philipp Eisenmann

    2016-09-01

    Full Text Available Metabolome analyses by NMR spectroscopy can be used in quality control by generating unique fingerprints of different species. Hundreds of components and their variation between different samples can be analyzed in a few minutes/hours with high accuracy and low cost of sample preparation. Here, apple peel and pulp extracts of a variety of apple cultivars were studied to assess their suitability to discriminate between the different varieties. The cultivars comprised mainly newly bred varieties or ones that were brought onto the market in recent years. Multivariate analyses of peel and pulp extracts were able to unambiguously identify all cultivars, with peel extracts showing a higher discriminative power. The latter was increased if the highly concentrated sugar metabolites were omitted from the analysis. Whereas sugar concentrations lay within a narrow range, polyphenols, discussed as potential health promoting substances, and acids varied remarkably between the cultivars.

  15. Sensitivity of 1H NMR analysis of rat urine in relation to toxicometabonomics. Part I: Dose-dependent toxic fffects of Bromobenzene and paracetamol

    NARCIS (Netherlands)

    Schoonen, W.G.E.J.; Kloks, C.P.A.M.; Ploemen, J.P.H.T.M.; Horbach, G.J.; Smit, M.J.; Zandberg, P.; Mellema, J.R.; Zuylen, C.T. van; Tas, A.C.; Nesselrooij, J.H.J. van; Vogels, J.T.W.E.

    2007-01-01

    1H nuclear magnetic resonance (NMR) spectroscopy of rat urine in combination with pattern recognition analysis was evaluated for early noninvasive detection of toxicity of investigational chemical entities. Bromobenzene (B) and paracetamol (P) were administered at five single oral dosages between 2

  16. Using 2D NMR to determine the degree of branching of complicated hyperbranched polymers

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Degree of branching (DB) is a crucial structure parameter of hyperbranched polymers, which can be determined by 1H NMR, quantitative 13C NMR, degradative method, etc. However, for complicated hy-perbranched polymers, intricate structure and severe overlap of spectral signals hinder the determina-tion of DB using traditional methods. In this work, the architecture of complicated hyperbranched polymers has been elucidated with the help of 2D NMR techniques. Using such a method, overlapped NMR signals can be well separated into a two-dimensional space, and additional structural information is also available. Correspondingly, quantitative analysis for complicated systems can be realized. De-termination of DBs for three types of complicated hyperbranched polymers synthesized from step-polymerization, self-condensation vinyl polymerization and self-condensation ring-opening po-lymerization is shown as examples.

  17. Effect of magnetic field strength on NMR-based metabonomic human urine data. Comparative study of 250, 400, 500, and 800 MHz

    DEFF Research Database (Denmark)

    Bertram, Hanne Christine; Malmendal, Anders; Petersen, Bent O.

    2007-01-01

    Metabonomic analysis of urine utilizing high-resolution NMR spectroscopy and chemometric techniques has proven valuable in characterizing the biochemical response to an intervention. To assess the effect of magnetic field strength on information contained in NMR-based metabonomic data sets, 1H NMR...

  18. 13C and 29Si NMR as a probe to investigate polysiloxanes used in dental applications

    International Nuclear Information System (INIS)

    Silva, Naira Machado da; Tavares, Maria Ines B.

    2001-01-01

    The properties of dental mould polymeric materials are strongly influenced by the chemical structure of both the polymer and the catalyst used in the crosslink reaction between them. In order to characterize and suggest some modifications on the materials interfacial interactions, mixtures of Polymer-catalyst were prepared. The polymer and the catalyst chemical structures were obtained by 13 C, 1 H and 129 Si NMR analysis in solution state. From the solution NMR results it was obtained the structure of the polymer and the catalyst and also the kind of the crosslink reaction taken. The CPMAS 1 '3C NMR analysis in the solid state were used to identify chemical structure of the polymeric dental moulded sample. (author)

  19. Ring current shifts in {sup 19}F-NMR of membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dongsheng, E-mail: liudsh@shanghaitech.edu.cn; Wüthrich, Kurt, E-mail: kwuthrich@shanghaitech.edu.cn [ShanghaiTech University, iHuman Institute (China)

    2016-05-15

    Fluorine-19 NMR markers are attractive reporter groups for use in studies of complex biomacromolecular systems, in particular also for studies of function-related conformational equilibria and rate processes in membrane proteins. Advantages of {sup 19}F-NMR probes include high sensitivity of the {sup 19}F chemical shifts to variations in the non-covalent environment. Nonetheless, in studies of G protein-coupled receptors (GPCR) we encountered situations where {sup 19}F chemical shifts were not responsive to conformational changes that had been implicated by other methods. This prompted us to examine possible effects of aromatic ring current fields on the chemical shifts of {sup 19}F-NMR probes used in GPCRs. Analysis of previously reported {sup 19}F-NMR data on the β{sub 2}-adrenergic receptor and mammalian rhodopsin showed that all {sup 19}F-labeling sites which manifested conformational changes are located near aromatic residues. Although ring current effects are small when compared to other known non-covalent effects on {sup 19}F chemical shifts, there is thus an indication that their contributions are significant when studying activation processes in GPCRs, since the observed activation-related {sup 19}F-NMR chemical shifts are comparable in size to the calculated ring current shifts. Considering the impact of ring current shifts may thus be helpful in identifying promising indigenous or engineered labeling sites for future {sup 19}F-NMR studies of GPCR activation, and novel information may be obtained on the nature of conformational rearrangements near the {sup 19}F-labels. It will then also be interesting to see if the presently indicated role of ring current shifts in membrane protein studies with {sup 19}F-NMR markers can be substantiated by a more extensive data base resulting from future studies.

  20. Permeability in Rotliegend gas sandstones to gas and brine as predicted from NMR, mercury injection and image analysis

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Fabricius, Ida Lykke; Fisher, Quentin

    2015-01-01

    Permeability characterisation of low permeability, clay-rich gas sandstones is part of production forecasting and reservoir management. The physically based Kozeny (1927) equation linking permeability with porosity and pore size is derived for a porous medium with a homogeneous pore size, whereas...... the pore sizes in tight sandstones can range from nm to μm. Nuclear magnetic resonance (NMR) transverse relaxation was used to estimate a pore size distribution for 63 samples of Rotliegend sandstone. The surface relaxation parameter required to relate NMR to pore size is estimated by combination of NMR...

  1. NMR imaging

    International Nuclear Information System (INIS)

    Ouchi, Toshihiro; Steiner, R.E.

    1984-01-01

    Three epidermoid and two dermoid tumours, pathologically proven, were examined by NMR and CT scans. Although most brain tumours have a low signal with a long T 1 , a dermoid cyst and one of the two components of the other dermoid tumour had a high signal and therefore a short T 1 . All three epidermoid tumours had a low signal and a long T 1 . Because of the high level contrast between some of the tumours and cerebrospinal fluid, NMR is helpful to detect the lesion. Neither of the liquid fluid levels in the tumour cysts or floating fat in the subarachnoid space was recognized in one patients, but the fine leakage of the content from the epidermoid cyst into the lateral ventricle was detected on a saturation recovery 1000 image in one case. (author)

  2. The "long tail" of the protein tumbling correlation function: observation by (1)H NMR relaxometry in a wide frequency and concentration range.

    Science.gov (United States)

    Roos, Matthias; Hofmann, Marius; Link, Susanne; Ott, Maria; Balbach, Jochen; Rössler, Ernst; Saalwächter, Kay; Krushelnitsky, Alexey

    2015-12-01

    Inter-protein interactions in solution affect the auto-correlation function of Brownian tumbling not only in terms of a simple increase of the correlation time, they also lead to the appearance of a weak slow component ("long tail") of the correlation function due to a slowly changing local anisotropy of the microenvironment. The conventional protocol of correlation time estimation from the relaxation rate ratio R1/R2 assumes a single-component tumbling correlation function, and thus can provide incorrect results as soon as the "long tail" is of relevance. This effect, however, has been underestimated in many instances. In this work we present a detailed systematic study of the tumbling correlation function of two proteins, lysozyme and bovine serum albumin, at different concentrations and temperatures using proton field-cycling relaxometry combined with R1ρ and R2 measurements. Unlike high-field NMR relaxation methods, these techniques enable a detailed study of dynamics on a time scale longer than the normal protein tumbling correlation time and, thus, a reliable estimate of the parameters of the "long tail". In this work we analyze the concentration dependence of the intensity and correlation time of the slow component and perform simulations of high-field (15)N NMR relaxation data demonstrating the importance of taking the "long tail" in the analysis into account.

  3. Solid-state 27Al and 29Si NMR characterization of hydrates formed in calcium aluminate-silica fume mixtures

    International Nuclear Information System (INIS)

    Pena, P.; Rivas Mercury, J.M.; Aza, A.H. de; Turrillas, X.; Sobrados, I.; Sanz, J.

    2008-01-01

    Partially deuterated Ca 3 Al 2 (SiO 4 ) y (OH) 12-4y -Al(OH) 3 mixtures, prepared by hydration of Ca 3 Al 2 O 6 (C 3 A), Ca 12 Al 14 O 33 (C 12 A 7 ) and CaAl 2 O 4 (CA) phases in the presence of silica fume, have been characterized by 29 Si and 27 Al magic-angle spinning-nuclear magnetic resonance (MAS-NMR) spectroscopies. NMR spectroscopy was used to characterize anhydrous and fully hydrated samples. In hydrated compounds, Ca 3 Al 2 (OH) 12 and Al(OH) 3 phases were detected. From the quantitative analysis of 27 Al NMR signals, the Al(OH) 3 /Ca 3 Al 2 (OH) 12 ratio was deduced. The incorporation of Si into the katoite structure, Ca 3 Al 2 (SiO 4 ) 3-x (OH) 4x , was followed by 27 Al and 29 Si NMR spectroscopies. Si/OH ratios were determined from the quantitative analysis of 27 Al MAS-NMR components associated with Al(OH) 6 and Al(OSi)(OH) 5 environments. The 29 Si NMR spectroscopy was also used to quantify the unreacted silica and amorphous calcium aluminosilicate hydrates formed, C-S-H and C-A-S-H for short. From 29 Si NMR spectra, the amount of Si incorporated into different phases was estimated. Si and Al concentrations, deduced by NMR, transmission electron microscopy, energy dispersive spectrometry, and Rietveld analysis of both X-ray and neutron data, indicate that only a part of available Si is incorporated in katoite structures. - Graphical abstract: Transmission electron micrograph of CaAl 2 O 4 -microsilica mixture hydrated at 90 deg. C for 31 days showing a cubic Ca 3 Al 2.0±0.2 (SiO 4 ) 0.9±0.2 (OH) 1.8 crystal surrounded by unreacted amorphous silica spheres

  4. Solid-state 27Al and 29Si NMR investigations on Si-substituted hydrogarnets

    International Nuclear Information System (INIS)

    Rivas Mercury, J.M.; Pena, P.; Aza, A.H. de; Turrillas, X.; Sobrados, I.; Sanz, J.

    2007-01-01

    Partially deuterated Ca 3 Al 2 (SiO 4 ) 3-x (OH) 4x hydrates prepared by a reaction in the presence of D 2 O of synthetic tricalcium aluminate with different amounts of amorphous silica were characterized by 29 Si and 27 Al magic-angle spinning nuclear magnetic resonance (NMR) spectroscopy. The 29 Si NMR spectroscopy was used for quantifying the non-reacted silica and the resulting hydrated products. The incorporation of Si into Ca 3 Al 2 (SiO 4 ) 3-x (OH) 4x was followed by 27 Al NMR spectroscopy: Si:OH ratios were determined quantitatively from octahedral Al signals ascribed to Al(OH) 6 and Al(OSi)(OH) 5 environments. The NMR data obtained were consistent with the concentrations of the Al and Si species deduced from transmission electron microscopy energy-dispersive spectrometry and Rietveld analysis of both X-ray and neutron diffraction data

  5. The NMR probe of high-Tc materials and correlated electron systems. 2. ed.

    International Nuclear Information System (INIS)

    Walstedt, Russell E.

    2018-01-01

    This new edition updates readers in three areas of NMR studies, namely, recent developments in high-T c materials, heavy fermion systems and actinide oxides are presented. The NMR probe has yielded a vast array of data for solid state materials, corresponding to different compounds, ionic sites, and nuclear species, as well as to a wide variety of experimental conditions. The last two parts of the book are completely new in this edition, while the first part has seen major updates. This edition features the latest developments for high-T c materials, especially the advances in the area of pseudogap studies are reviewed. An in depth overview of heavy fermion systems is presented in the second part, notably Kondo lattices, quantum critical points and unconventional superconductivity are areas of intense research recently and are covered extensively. Finally, valuable information from NMR studies with actinide oxides will be provided. Ongoing analysis and discussion of NMR data have resulted in a wealth of important insights into the physics of these exotic systems. The aims of this monograph are manifold. First, it reviews NMR methodology as it has been applied to the different studies. This is addressed to NMR practitioners and to physics laypersons alike. Next, it presents a review of NMR measurements and the wide variety of phenomena which they represent. The third phase is to recount the theoretical model calculations and other proposals which have been put forward to account for these data.

  6. NMR characterization of weak interactions between RhoGDI2 and fragment screening hits.

    Science.gov (United States)

    Liu, Jiuyang; Gao, Jia; Li, Fudong; Ma, Rongsheng; Wei, Qingtao; Wang, Aidong; Wu, Jihui; Ruan, Ke

    2017-01-01

    The delineation of intrinsically weak interactions between novel targets and fragment screening hits has long limited the pace of hit-to-lead evolution. Rho guanine-nucleotide dissociation inhibitor 2 (RhoGDI2) is a novel target that lacks any chemical probes for the treatment of tumor metastasis. Protein-observed and ligand-observed NMR spectroscopy was used to characterize the weak interactions between RhoGDI2 and fragment screening hits. We identified three hits of RhoGDI2 using streamlined NMR fragment-based screening. The binding site residues were assigned using non-uniformly sampled C α - and H α -based three dimensional NMR spectra. The molecular docking to the proposed geranylgeranyl binding pocket of RhoGDI2 was guided by NMR restraints of chemical shift perturbations and ligand-observed transferred paramagnetic relaxation enhancement. We further validated the weak RhoGDI2-hit interactions using mutagenesis and structure-affinity analysis. Weak interactions between RhoGDI2 and fragment screening hits were delineated using an integrated NMR approach. Binders to RhoGDI2 as a potential anti-cancer target have been first reported, and their weak interactions were depicted using NMR spectroscopy. Our work highlights the powerfulness and the versatility of the integrative NMR techniques to provide valuable structural insight into the intrinsically weak interactions between RhoGDI2 and the fragment screening hits, which could hardly be conceived using other biochemical techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Investigation of sea microorganisms of the genus Alteromonas by 31P-NMR of high resolution

    International Nuclear Information System (INIS)

    Ivanova, E.P.; Isakov, V.V.; Mikhajlov, V.V.; Sokolova, S.V.; Gorshkova, N.M.; Fedosov, Yu.V.; Kiprianova, E.A.

    1993-01-01

    Comparative analysis of the 31 P-NMR spectra of intact cells of bacteria belonging to the genus Alteromonas, the producers of alkaline phosphatase was carried out. Differences in the content of phosphate-containing compounds were detected in individual species of the genus Alteromonas. By comparing the data on 31 P-NMR spectra, the electron micrographs and phosphatase activities, the possibility of revealing the presence of capsules was shown. Peculiar features of the 31 P-NMR spectra of alteromonades, as compared with other taxonomic groups of microorganisms, have been discussed

  8. Study of crude and plasma-treated heavy oil by low- and high-field 1H NMR

    Energy Technology Data Exchange (ETDEWEB)

    Honorato, Hercilio D. A.; Silva, Renzo C.; Junior, Valdemar Lacerda; Castro, Eustaquio V. R. de; Freitas, Jair C. C. [Research and Methodology Development Laboratory for Crude Oil Analysis - LabPetro, Department of Chemistry, Federal University of Espirito Santo (Brazil)], email: jairccfreitas@yahoo.com.br; Piumbini, Cleiton K.; Cunha, Alfredo G.; Emmerich, Francisco G. [Department of Physics, Federal University of Espirito Santo (Brazil); Souza, Andre A. de; Bonagamba, Tito J. [Institute of Physics of Sao Carlos, University of Sao Paulo (Brazil)

    2010-07-01

    This document is intended to describe the combination of H low-field NMR and thermogravimetry (TG), rheological measurement and H high-field NMR to assess the physical and chemical changes that can occur in a heavy crude oil from treatment in a plasma reactor. This research was done using a heavy crude oil, API gravity of 10.1, which was treated in a double dielectric barrier (DDB) plasma reactor using different plasma gases: natural gas (NG), C02 or H2. The low-field HNMR experiments were conducted in a Maran Ultra spectrometer, from Oxford Instruments, at 27.5? C. After rheological analysis, a reduction in the viscosity of the plasma-treated oils in comparison to that of the crude oil was observed. Finally, it was confirmed that the use of H low-field NMR relaxometry and H high-field NMR spectroscopy allowed a separate analysis of the effects of the plasma treatment on the water and oil fractions to be made.

  9. Use of NMR and NMR Prediction Software to Identify Components in Red Bull Energy Drinks

    Science.gov (United States)

    Simpson, Andre J.; Shirzadi, Azadeh; Burrow, Timothy E.; Dicks, Andrew P.; Lefebvre, Brent; Corrin, Tricia

    2009-01-01

    A laboratory experiment designed as part of an upper-level undergraduate analytical chemistry course is described. Students investigate two popular soft drinks (Red Bull Energy Drink and sugar-free Red Bull Energy Drink) by NMR spectroscopy. With assistance of modern NMR prediction software they identify and quantify major components in each…

  10. NMR study of Albemoschus esculentus characterization

    International Nuclear Information System (INIS)

    Bathista, A.L.B.S; Silva, E.O.; Nogueira, Jose de S.; Tavares, M.I.B.

    2001-01-01

    The investigation of the main compounds presented in the Albemoschus esculentus has been carried out employing nuclear magnetic resonance spectroscopy (NMR), using solution and solid state NMR when it one was necessary. The evaluation of NMR data allowed us to characterize the main type of components presented in this kind of sample. It was necessary to use a total information from solid state NMR and also the solution response. From these information we could get that four main components were presented in this sample. One in the shell, that is cellulose, another one between the shell and seeds that is a polysaccharide and in the seed two components were found one is a starch and the second one is an oil, a triacylglycerol. These components are responsible by its physical chemistry properties. (author)

  11. NMR spectroscopy of coal pyrolysis products

    Energy Technology Data Exchange (ETDEWEB)

    Polonov, V.M.; Kalabin, G.A.; Kushnarev, D.F.; Shevchenko, G.G.

    1985-12-01

    The authors consider the scope for using H 1 and C 13 NMR spectroscopy to describe the products from coal pyrolysis and hydrogenization. The accuracy of the structural information provided by the best NMR methods is also considered. The stuctural parameters derived from H 1 and C 13 NMR spectra are presented. Results demonstrate the high accuracy and sensitivity of the structural information provided by H 1 AND C 13 NMR spectra for coal products. There are substantial structural differences between the soluble products from medium-temperature coking of Cheremkhov coal and high-speed pyrolysis of Kan-Acha coal, and also differences in behavior during hydrogenation. These differences are related to the structure of the organic matter in the initial coal and to differences in the pyrolysis mechanisms.

  12. Structural analysis of the exopolysaccharide produced by Streptococcus thermophilus ST1 solely by NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Saewen, Elin [Arrhenius Laboratory, Stockholm University, Department of Organic Chemistry (Sweden); Huttunen, Eine; Zhang Xue [University of Helsinki, Department of Food Technology (Finland); Yang Zhennai [Northeast Agricultural Research Center of China, Center of Agro-food Technology (China); Widmalm, Goeran, E-mail: gw@organ.su.s [Arrhenius Laboratory, Stockholm University, Department of Organic Chemistry (Sweden)

    2010-06-15

    The use of lactic acid bacteria in fermentation of milk results in favorable physical and rheological properties due to in situ exopolysaccharide (EPS) production. The EPS from S. thermophilus ST1 produces highly viscous aqueous solutions and its structure has been investigated by NMR spectroscopy. Notably, all aspects of the elucidation of its primary structure including component analysis and absolute configuration of the constituent monosaccharides were carried out by NMR spectroscopy. An array of techniques was utilized including, inter alia, PANSY and NOESY-HSQC TILT experiments. The EPS is composed of hexasaccharide repeating units with the following structure: {yields} 3)[{alpha}-d-Glcp-(1 {yields} 4)]-{beta}-d-Galp-(1 {yields} 4)-{beta}-d-Glcp-(1 {yields} 4)[{beta}-d-Galf-(1 {yields} 6)]-{beta}-d-Glcp-(1 {yields} 6)-{beta}-d-Glcp-(1 {sup {yields}}, in which the residues in square brackets are terminal groups substituting backbone sugar residues that consequently are branch-points in the repeating unit of the polymer. Thus, the EPS consists of a backbone of four sugar residues with two terminal sugar residues making up two side-chains of the repeating unit. The molecular mass of the polymer was determined using translational diffusion experiments which resulted in M{sub w} = 62 kDa, corresponding to 64 repeating units in the EPS.

  13. A solid-phase extraction procedure coupled to {sup 1}H NMR, with chemometric analysis, to seek reliable markers of the botanical origin of honey

    Energy Technology Data Exchange (ETDEWEB)

    Beretta, Giangiacomo [Istituto di Chimica Farmaceutica e Tossicologica ' Pietro Pratesi' , Faculty of Pharmacy, University of Milan, via Mangiagalli 25, 20133 Milan (Italy)], E-mail: giangiacomo.beretta@unimi.it; Caneva, Enrico [Ciga - Centro Interdipartimentale Grandi Apparecchiature, University of Milan, via Golgi 19, 20133 Milan (Italy); Regazzoni, Luca; Bakhtyari, Nazanin Golbamaki; Maffei Facino, Roberto [Istituto di Chimica Farmaceutica e Tossicologica ' Pietro Pratesi' , Faculty of Pharmacy, University of Milan, via Mangiagalli 25, 20133 Milan (Italy)

    2008-07-14

    The aim of this work was to establish an analytical method for identifying the botanical origin of honey, as an alternative to conventional melissopalynological, organoleptic and instrumental methods (gas-chromatography coupled to mass spectrometry (GC-MS), high-performance liquid chromatography HPLC). The procedure is based on the {sup 1}H nuclear magnetic resonance (NMR) profile coupled, when necessary, with electrospray ionisation-mass spectrometry (ESI-MS) and two-dimensional NMR analyses of solid-phase extraction (SPE)-purified honey samples, followed by chemometric analyses. Extracts of 44 commercial Italian honeys from 20 different botanical sources were analyzed. Honeydew, chestnut and linden honeys showed constant, specific, well-resolved resonances, suitable for use as markers of origin. Honeydew honey contained the typical resonances of an aliphatic component, very likely deriving from the plant phloem sap or excreted into it by sap-sucking aphids. Chestnut honey contained the typical signals of kynurenic acid and some structurally related metabolite. In linden honey the {sup 1}H NMR profile gave strong signals attributable to the mono-terpene derivative cyclohexa-1,3-diene-1-carboxylic acid (CDCA) and to its 1-O-{beta}-gentiobiosyl ester (CDCA-GBE). These markers were not detectable in the other honeys, except for the less common nectar honey from rosa mosqueta. We compared and analyzed the data by multivariate techniques. Principal component analysis found different clusters of honeys based on the presence of these specific markers. The results, although obviously only preliminary, suggest that the {sup 1}H NMR profile (with HPLC-MS analysis when necessary) can be used as a reference framework for identifying the botanical origin of honey.

  14. sup 1 sup 1 B nutation NMR study of powdered borosilicates

    CERN Document Server

    Woo, A J; Han, D Y

    1998-01-01

    In this work, we applied the 1D sup 1 sup 1 B nutation NMR method for the analysis of the local structural environments in powdered borosilicates (SiO sub 2 -B sub 2 O sub 3). Spin dynamics during a rf irradiation for spin I=3/2 was analytically calculated with a density matrix formalism. Spectral simulation programs were written in MATLAB on a PC. Two borosilicates prepared by the sol-gel process at different stabilization temperature were used for the 1D sup 1 sup 1 B nutation NMR experiment. The sup 1 sup 1 B NMR parameters, quadrupole coupling constants (e sup 2 qQ/h) and asymmetry parameters (eta), for each borosilicate were extracted from the nonlinear least-squares fitting. The effects of heat treatments on the local structures of boron sites in borosilicates were discussed.

  15. High-field 1H NMR microscopy for fundamental biophysical research

    International Nuclear Information System (INIS)

    Haddad, D.

    2003-01-01

    This work has a biophysical background and uses different examples to demonstrate the practical applicability of NMR-Microscopy in the medical and biological sector. Therefore, the different projects are feasibility studies which are used to compare the possibilities and advantages of NMR-Microscopy with other, established examination techniques. In detail, using MR-Microscopy, different living and fixed biological samples have been visualized non-invasively with high spatial resolution. The specific purpose of the studies ranged from the visualization of the invasion of tumor-spheroids into cell aggregates using T2 parameter maps (time constant of the spin-spin relaxation) to the three-dimensional display of the honey bee brain in the intact head capsule and the non-invasive visualization of the anatomy of prenatal dolphins. For all these projects, the non-invasive character of MR-experiments was of utmost importance. The tumor invasion was not to be disturbed by the measurements, the bee brain should be visualized as close to its true natural shape as possible and the examined dolphins represent rare museum specimens which should not be destroyed. The different samples were all imaged with the best possible spatial resolution which was either limited by the necessary signal-to-noise ratio (SNR) or the available scan time. In order to resolve single details and fine structures in the images, it was necessary to optimize the SNR as well as the contrast-to-noise ratio. To guarantee the necessary SNR, the measurements were performed on high field MR-spectrometers with resonance frequencies of 500 and 750 MHz

  16. NMR spectroscopy and drug development

    International Nuclear Information System (INIS)

    Craik, D.; Munro, S.

    1990-01-01

    The use of nuclear magnetic resonance (NMR) spectroscopy for structural and conformational studies on drug molecules, the three-dimensional investigation of proteins structure and their interactions with ligands are discussed. In-vivo NMR studies of the effects of drugs on metabolism in perfused organs and whole animals are also briefly presented. 5 refs., ills

  17. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy; Bontemps, P.; Rikken, Geert L J A

    2011-01-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  18. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy

    2011-09-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  19. Computational Diffusion Magnetic Resonance Imaging Based on Time-Dependent Bloch NMR Flow Equation and Bessel Functions.

    Science.gov (United States)

    Awojoyogbe, Bamidele O; Dada, Michael O; Onwu, Samuel O; Ige, Taofeeq A; Akinwande, Ninuola I

    2016-04-01

    Magnetic resonance imaging (MRI) uses a powerful magnetic field along with radio waves and a computer to produce highly detailed "slice-by-slice" pictures of virtually all internal structures of matter. The results enable physicians to examine parts of the body in minute detail and identify diseases in ways that are not possible with other techniques. For example, MRI is one of the few imaging tools that can see through bones, making it an excellent tool for examining the brain and other soft tissues. Pulsed-field gradient experiments provide a straightforward means of obtaining information on the translational motion of nuclear spins. However, the interpretation of the data is complicated by the effects of restricting geometries as in the case of most cancerous tissues and the mathematical concept required to account for this becomes very difficult. Most diffusion magnetic resonance techniques are based on the Stejskal-Tanner formulation usually derived from the Bloch-Torrey partial differential equation by including additional terms to accommodate the diffusion effect. Despite the early success of this technique, it has been shown that it has important limitations, the most of which occurs when there is orientation heterogeneity of the fibers in the voxel of interest (VOI). Overcoming this difficulty requires the specification of diffusion coefficients as function of spatial coordinate(s) and such a phenomenon is an indication of non-uniform compartmental conditions which can be analyzed accurately by solving the time-dependent Bloch NMR flow equation analytically. In this study, a mathematical formulation of magnetic resonance flow sequence in restricted geometry is developed based on a general second order partial differential equation derived directly from the fundamental Bloch NMR flow equations. The NMR signal is obtained completely in terms of NMR experimental parameters. The process is described based on Bessel functions and properties that can make it

  20. 1H NMR quantification in very dilute toxin solutions: application to anatoxin-a analysis.

    Science.gov (United States)

    Dagnino, Denise; Schripsema, Jan

    2005-08-01

    A complete procedure is described for the extraction, detection and quantification of anatoxin-a in biological samples. Anatoxin-a is extracted from biomass by a routine acid base extraction. The extract is analysed by GC-MS, without the need of derivatization, with a detection limit of 0.5 ng. A method was developed for the accurate quantification of anatoxin-a in the standard solution to be used for the calibration of the GC analysis. 1H NMR allowed the accurate quantification of microgram quantities of anatoxin-a. The accurate quantification of compounds in standard solutions is rarely discussed, but for compounds like anatoxin-a (toxins with prices in the range of a million dollar a gram), of which generally only milligram quantities or less are available, this factor in the quantitative analysis is certainly not trivial. The method that was developed can easily be adapted for the accurate quantification of other toxins in very dilute solutions.