WorldWideScience

Sample records for desulfurization systems final

  1. Adipic acid degradation mechanism in aqueous fgd (flue gas desulfurization) systems. Final report Oct 78-Apr 79

    Energy Technology Data Exchange (ETDEWEB)

    Meserole, F.B.; Lewis, D.L.; Nichols, A.W.; Rochelle, G.

    1979-09-01

    The report gives results of a field and laboratory study of the adipic acid degradation mechanism in aqueous flue gas desulfurization (FGD) systems. (Adding adipic acid to limestone-based, SO2 wet scrubbers increases SO2 removal and limestone utilization. However, as much as 80% of the adipic acid added to some systems is lost, supposedly through degradation.) The degradation is associated with the oxidation of sulfite, possibly through a free radical mechanism. At least one mechanism is an oxidative decarboxylation yielding valeric acid, butyric acid, glutaric acid, and CO2. The quantities of products measured during laboratory testing only account for approximately 30% of the adipic acid degraded.

  2. Economic assessment of advanced flue gas desulfurization processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bierman, G. R.; May, E. H.; Mirabelli, R. E.; Pow, C. N.; Scardino, C.; Wan, E. I.

    1981-09-01

    This report presents the results of a project sponsored by the Morgantown Energy Technology Center (METC). The purpose of the study was to perform an economic and market assessment of advanced flue gas desulfurization (FGD) processes for application to coal-fired electric utility plants. The time period considered in the study is 1981 through 1990, and costs are reported in 1980 dollars. The task was divided into the following four subtasks: (1) determine the factors affecting FGD cost evaluations; (2) select FGD processes to be cost-analyzed; (3) define the future electric utility FGD system market; and (4) perform cost analyses for the selected FGD processes. The study was initiated in September 1979, and separate reports were prepared for the first two subtasks. The results of the latter two subtasks appear only in this final reprot, since the end-date of those subtasks coincided with the end-date of the overall task. The Subtask 1 report, Criteria and Methods for Performing FGD Cost Evaluations, was completed in October 1980. A slightly modified and condensed version of that report appears as appendix B to this report. The Subtask 2 report, FGD Candidate Process Selection, was completed in January 1981, and the principal outputs of that subtask appear in Appendices C and D to this report.

  3. Full-scale utility FGD (flue gas desulfurization) system adipic acid demonstration program. Volume 2. Continuous emissions monitoring results. Final report Jun 80-Nov 82

    Energy Technology Data Exchange (ETDEWEB)

    Hargrove, O.W. Jr.; Colley, J.D.; Glover, R.L.; Owen, M.L.

    1983-06-01

    The report culminates a series of projects sponsored by the EPA, investigating the use of adipic acid as an additive to enhance SO/sub 2/ removal in aqueous flue gas desulfurization (FGD) systems, using limestone reagent. A 9-month program at the 194-MW Southwest Power Plant (SWPP) of City Utilities, Springfield, MO, demonstrated the effectiveness of adipic acid and dibasic acids (the latter, by-products of the production of adipic acid). The program examined the effect of adipic acid addition on a limestone FGD system under natural and forced-oxidation modes of operation.

  4. Full-scale utility FGD (flue gas desulfurization) system adipic acid demonstration program. Volume 1. Process results. Final report Jun 80-Nov 82

    Energy Technology Data Exchange (ETDEWEB)

    Hargrove, O.W. Jr; Colley, J.D.; Glover, R.L.; Owen, M.L.

    1983-06-01

    The report culminates a series of projects sponsored by the EPA, investigating the use of adipic acid as an additive to enhance SO/sub 2/ removal in aqueous flue gas desulfurization (FGD) systems, using limestone reagent. A 9-month program at the 194-MW Southwest Power Plant (SWPP) of City Utilities, Springfield, MO, demonstrated the effectiveness of adipic acid and dibasic acids (the latter, by-products of the production of adipic acid). The program examined the effect of adipic acid addition on a limestone FGD system under natural and forced-oxidation modes of operation.

  5. Flue gas desulfurization by rotating beds. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, N.; Keyvani, M.; Coskundeniz, A.

    1992-12-01

    The operating and mass transfer characteristics of rotating foam metal beds were studied to determine the potential for flue gas desulfurization. This is a final technical report on the work supported by DOE {number_sign}FG22-87-PC79924. The report is divided into two sections, Part 1 deals primarily with the operating characteristics of rotating beds, and Part 2 covers the mass transfer characteristics of S0{sub 2} absorption in water-lime slurries. Rotating foam metal beds are in essence packed towers operated in high gravitational fields. The foam metal bed is in the form of a cylindrical donut, or torus, and is rotated to produced the high centrifugal forces. The liquid phase enters the bed at the inner surface of the torus and is pulled by the field through the bed. Gas flows countercurrent to the liquid. The bed packing can have a very large specific surface areas and not flood. Possible benefits include much smaller height of a transfer unit resulting in smaller equipment and supporting structures, reduced solvent inventory, faster response with improved process control, reduced pressure drop, and shorter startup and shut-down times. This work is concerned broadly with the operating characteristics of rotating beds, the objectives being to (1) determine the pressure drop through the rotating bed; (2) determine the power required to operate the beds, (3) investigate the residence time distribution of the liquid phase in the beds; and (4) determine the mass transfer coefficients of S0{sub 2} absorption. Three packings of differing specific surface areas were studied, with areas ranging from 656 to 2952 m{sub 2}/m{sub 3}. Liquid flow rates to 36 kg/s*m{sub 2}, gas flow rate to 2.2 kg/s*m{sub 2}, and gravitational fields to 300 g were covered in this study.

  6. Molecular biological enhancement of coal desulfurization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Krawiec, S.

    1994-12-31

    During the period from 1986 through 1993 the prospect of bacterial desulfurization of fossil fuel was transformed from a theoretically appealing concept to a demonstrable laboratory phenomenon. Results from several laboratories confirmed that there was not one but, rather, several metabolic bases of selectively removing sulfur from the carbon frame of sulfur-containing organic compounds characteristic of fossil fuels. Results in this report relate solely to the so-called ``4S`` pathway (named for the four sulfur-containing compounds in the sequence: (l) dibenzothiophene [DBT] {yields} (2) dibenzothiophene sulfoxide [DBTO] {yields} (3) dibenzosulfone [DBTO{sup 2}] {yields} (4) dibenzosulfonate {yields} monohydroxybiphenyl [OH-BP] + SO{sub 4}{sup =}. [An additional desulfurized product, biphenyl, has been hypothesized and another, o,o{prime}-biphenyl, observed.]) The following subjects are discussed: isolating bacteria with a DbtS{sup +} phenotype; confirming the production of a desulfurized product; determining the identity of the isolates; determining the growth characteristics of the isolates in batch and continuous cultures; determining the kinetics and yields of product in batch and continuous cultures.

  7. Molecular biological enhancement of coal desulfurization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Krawiec, S.

    1995-01-01

    Fresh isolates of bacteria presumptively identified as R. erythropolis unequivocally have a DbtS{sup +} phenotype. The production of OH-BP from either DBT or DBTO{sub 2} was confirmed by difference spectroscopy, HPLC, and mass spectrometry. The temperature, pH, and means of supplying the thiophenic or sulfonic sole source of sulfur were optimized. The maximal rate of growth of the organism, its affinity for sulfone, and the extent to which substrate was converted to product were determined by using batch, fed batch, and continuous cultures. For strain N1-36, the maximum specific growth rate was 0.235 hr{sup -1} which corresponds to a minimal generation time of 2.95 hr. The K{sub s} was estimated to be 0.39 {mu}M. With 100 {mu}M DBT as the sole sulfur source, approximately 40 {mu}M OH-BP are produced (after 40 hr of growth); with 100 {mu}M DBTO{sub 2} as the sole sulfur source, approximately 70 {mu}M OH-BP are produced (after 40 hr of growth). The desulfurization activity is repressed by SO{sub 4}{sup =} OH-BP does not serve as a carbon source. The DbtS{sup +} phenotype of the R. erythropolis isolates is stable and discrete. The isolates selectively remove sulfur from DBT, a compound which models a refractory form of organic sulfur in compounds characteristic of fossil fuels. The desulfurization occurs with no oxidation of carbon-carbon bonds. The stability and specificity (along with genetic regulation) indicate that microbial desulfurization in a real phenomenon in which a noxious element is removed without significantly affecting the calorific value of the substrate. Additional characterization (and optimization) would provide the basis of a very important form of fossil fuel beneficiation.

  8. Increasing draft capability for retrofit flue gas desulfurization systems

    International Nuclear Information System (INIS)

    Petersen, R.D.; Basel, B.E.; Mosier, R.J.

    1992-01-01

    The retrofit installation of flue gas desulfurization (FGD) systems results in significantly higher draft losses for existing generating stations. Consequently, the means for increasing draft capability must be included in many FGD retrofit projects. Consideration is given to several alternatives for increasing draft capability. Alternatives are developed for new induced draft (ID) fans to replace the existing ID fans and for new booster fans to supplement the existing ID fans. Both centrifugal and axial fans are evaluated, as are different means of fan volume control. Each alternative is evaluated on the basis of technical merit and economics. Presented are the development of fan alternatives and results of the technical and economic evaluations

  9. Microbial communities associated with wet flue gas desulfurization systems

    Directory of Open Access Journals (Sweden)

    Bryan P. Brown

    2012-11-01

    Full Text Available Flue gas desulfurization (FGD systems are employed to remove SOx gasses that are produced by the combustion of coal for electric power generation, and consequently limit acid rain associated with these activities. Wet FGDs represent a physicochemically extreme environment due to the high operating temperatures and total dissolved solids of fluids in the interior of the FGD units. Despite the potential importance of microbial activities in the performance and operation of FGD systems, the microbial communities associated with them have not been evaluated. Microbial communities associated with distinct process points of FGD systems at several coal fired electricity generation facilities were evaluated using culture-dependent and –independent approaches. Due to the high solute concentrations and temperatures in the FGD absorber units, culturable halothermophilic/tolerant bacteria were more abundant in samples collected from within the absorber units than in samples collected from the makeup waters that are used to replenish fluids inside the absorber units. Evaluation of bacterial 16S rRNA genes recovered from scale deposits on the walls of absorber units revealed that the microbial communities associated with these deposits are primarily composed of thermophilic bacterial lineages. These findings suggest that unique microbial communities develop in FGD systems in response to physicochemical characteristics of the different process points within the systems. The activities of the thermophilic microbial communities that develop within scale deposits could play a role in the corrosion of steel structures in FGD systems.

  10. Microbial communities associated with wet flue gas desulfurization systems

    Science.gov (United States)

    Brown, Bryan P.; Brown, Shannon R.; Senko, John M.

    2012-01-01

    Flue gas desulfurization (FGD) systems are employed to remove SOx gasses that are produced by the combustion of coal for electric power generation, and consequently limit acid rain associated with these activities. Wet FGDs represent a physicochemically extreme environment due to the high operating temperatures and total dissolved solids (TDS) of fluids in the interior of the FGD units. Despite the potential importance of microbial activities in the performance and operation of FGD systems, the microbial communities associated with them have not been evaluated. Microbial communities associated with distinct process points of FGD systems at several coal-fired electricity generation facilities were evaluated using culture-dependent and -independent approaches. Due to the high solute concentrations and temperatures in the FGD absorber units, culturable halothermophilic/tolerant bacteria were more abundant in samples collected from within the absorber units than in samples collected from the makeup waters that are used to replenish fluids inside the absorber units. Evaluation of bacterial 16S rRNA genes recovered from scale deposits on the walls of absorber units revealed that the microbial communities associated with these deposits are primarily composed of thermophilic bacterial lineages. These findings suggest that unique microbial communities develop in FGD systems in response to physicochemical characteristics of the different process points within the systems. The activities of the thermophilic microbial communities that develop within scale deposits could play a role in the corrosion of steel structures in FGD systems. PMID:23226147

  11. Hot coal gas desulfurization with manganese-based sorbents. Final report, September 1992--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hepworth, M.T.; Slimane, R.B.

    1994-11-01

    The focus of much current work being performed by the Morgantown Energy Technology Center (METC) of the Department of Energy on hot coal-derived fuel gas desulfurization is in the use of zinc-based sorbents. METC has shown interest in formulating and testing manganese-based pellets as alternative effective sulfur sorbents in the 700 to 1200{degree}C temperature range. To substantiate the potential superiority of Mn-based pellets, a systematic approach toward the evaluation of the desulfurizing power of single-metal sorbents is developed based on thermodynamic considerations. This novel procedure considered several metal-based sorbents and singled out manganese oxide as a prime candidate sorbent capable of being utilized under a wide temperature range, irrespective of the reducing power (determined by CO{sub 2}/CO ratio) of the fuel gas. Then, the thermodynamic feasibility of using Mn-based pellets for the removal of H{sub 2}S from hot-coal derived fuel gases, and the subsequent oxidative regeneration of loaded (sulfided) pellets was established. It was concluded that MnO is the stable form of manganese for virtually all commercially available coal-derived fuel gases. In addition, the objective of reducing the H{sub 2}S concentration below 150 ppMv to satisfy the integrated gasification combined cycle system requirement was shown to be thermodynamically feasible. A novel process is developed for the manufacture of Mn-based spherical pellets which have the desired physical and chemical characteristics required.

  12. Thermostabilization of desulfurization enzymes from Rhodococcos sp. IGTS8. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane II

    2000-12-15

    The objective of this project was to develop thermophilic cultures capable of expressing the desulfurization (dsz) operon of Rhodococcus sp. IGTS8. The approaches taken in this project included the development of plasmid and integrative expression vectors that function well in Thermus thermophilus, the cloning of Rhodococcus dsz genes in Thermus expression vectors, and the isolation of bacterial cultures that express the dsz operon at thermophilic temperatures. This project has resulted in the development of plasmid and integrative expression vectors for use in T. thermophilus. The dsz genes have been expressed at moderately thermophilic temperatures (52 C) in Mycobacterium phlei and at temperatures as high as 72 C in T. thermophilus. The tools and methods developed in this project will be generally useful for the expression of heterologous genes in Thermus. Key developments in the project have been the isolation of a Mycobacterium phlei culture capable of expressing the desulfurization operon at 52 C, development of plasmid and integrative expression vectors for Thermus thermophilus, and the development of a host-vector system based on the malate dehydrogenase gene that allows plasmids to be stably maintained in T. thermophilus and provides a convenient reporter gene for the accurate quantification of gene expression. Publications have been prepared regarding each of these topics; these preprints are included.

  13. Advanced Flue Gas Desulfurization (AFGD) demonstration project: Volume 2, Project performance and economics. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-30

    The project objective is to demonstrate removal of 90--95% or more of the SO{sub 2} at approximately one-half the cost of conventional scrubbing technology; and to demonstrate significant reduction of space requirements. In this project, Pure Air has built a single SO{sub 2} absorber for a 528-MWe power plant. The absorber performs three functions in a single vessel: prequencher, absorber, and oxidation of sludge to gypsum. Additionally, the absorber is of a co- current design, in which the flue gas and scrubbing slurry move in the same direction and at a relatively high velocity compared to conventional scrubbers. These features all combine to yield a state- of-the-art SO{sub 2} absorber that is more compact and less expensive than conventional scrubbers. The project incorporated a number of technical features including the injection of pulverized limestone directly into the absorber, a device called an air rotary sparger located within the base of the absorber, and a novel wastewater evaporation system. The air rotary sparger combines the functions of agitation and air distribution into one piece of equipment to facilitate the oxidation of calcium sulfite to gypsum. Additionally, wastewater treatment is being demonstrated to minimize water disposal problems inherent in many high-chloride coals. Bituminous coals primarily from the Indiana, Illinois coal basin containing 2--4.5% sulfur were tested during the demonstration. The Advanced Flue Gas Desulfurization (AFGD) process has demonstrated removal of 95% or more of the SO{sub 2} while providing a commercial gypsum by-product in lieu of solid waste. A portion of the commercial gypsum is being agglomerated into a product known as PowerChip{reg_sign} gypsum which exhibits improved physical properties, easier flowability and more user friendly handling characteristics to enhance its transportation and marketability to gypsum end-users.

  14. Adipic acid-enhanced limestone flue gas desulfurization system commercial demonstration. [Missouri

    Energy Technology Data Exchange (ETDEWEB)

    Hargrove, O.W. Jr.; Colley, J.D.; Mobley, J.D.

    1981-01-01

    A full-scale demonstration carried out at Springfield, Mo City Utilities Southwest Power Plant in 1980-1981 on adipic acid enhanced limestone flue gas desulfurization system is reported. The major process findings during the demonstration are discussed. It is found that adipic acid is a viable means for improving SO/sub 2/ removal in scrubbers which are limited from a dissolved alkalinity standpoint. Dibasic acid (a mixture of glutaric, adipic, and succinic acids) is a technically viable alternative to adipic acid. 6 refs.

  15. Integrated Mg/TiO{sub 2}-ionic liquid system for deep desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yee Cia, E-mail: gabrielle.ciayin@gmail.com [Department of Chemical Engineering, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia); Kait, Chong Fai, E-mail: chongfaikait@petronas.com.my, E-mail: hayyiratulfatimah@yahoo.com, E-mail: cecili@petronas.com.my; Fatimah, Hayyiratul, E-mail: chongfaikait@petronas.com.my, E-mail: hayyiratulfatimah@yahoo.com, E-mail: cecili@petronas.com.my; Wilfred, Cecilia, E-mail: chongfaikait@petronas.com.my, E-mail: hayyiratulfatimah@yahoo.com, E-mail: cecili@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia)

    2014-10-24

    A series of Mg/TiO{sub 2} photocatalysts were prepared using wet impregnation method followed by calcination at 300, 400 and 500°C for 1 h. The photocatalysts were characterized using Thermal Gravimetric Analysis, Fourier-Transform Infrared Spectroscopy, X-Ray Diffraction, and Field Emission Scanning Electron Microscopy. The performance for deep desulfurization was investigated using model oil with 100 ppm sulfur (in the form of dibenzothiophene). The integrated system involves photocatalytic oxidation followed by ionic liquid-extraction processes. The best performing photocatalyst was 0.25wt% Mg loaded on titania calcined at 400°C (0.25Mg400), giving 98.5% conversion of dibenzothiophene to dibenzothiophene sulfone. The highest extraction efficiency of 97.8% was displayed by 1,2-diethylimidazolium diethylphosphate. The overall total sulfur removal was 96.3%.

  16. Summary and assessment of METC zinc ferrite hot coal gas desulfurization test program, final report: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Underkoffler, V.S.

    1986-12-01

    The Morgantown Energy Technology Center (METC) has conducted a test program to develop a zinc ferrite-based high temperature desulfurization process which could be applied to fuel gas entering downstream components such as molten carbonate fuel cells or gas turbines. As a result of prior METC work with iron oxide and zinc oxide sorbents, zinc ferrite evolved as a candidate with the potential for high capacity, low equilibrium levels of H/sub 2/S, and structural stability after multiple regenerations. The program consisted of laboratory-scale testing with a two-inch diameter reactor and simulated fixed-bed gasifier gas; bench-scale testing with a six-inch diameter reactor and actual gas from the METC 42-inch fixed bed gasifier; as well as laboratory-scale testing of zinc ferrite with simulated fluidized bed gasifier gas. Optimum operating parameters for zinc ferrite such as temperatures, gas compositions, and space velocities are discussed. From the test results, salient features of zinc ferrite were derived and discussed in regard to system implications, issues raised, and technical requirements. 47 refs., 53 figs., 41 tabs.

  17. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1991-05-16

    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  18. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L.

    1994-03-01

    The main objective of this research was to investigate microorganisms capable of fossil fuel flue gas desulfurization and denitrification. The study used municipal sewage sludge as a carbon and energy source for SO{sub 2}-reducing cultures. The individual tasks developed a consortium of sulfate-reducing bacteria, investigated the design parameters for a continuous process, preformed a cost analysis, and screened sulfate-reducing bacteria. In the investigation of microbial reduction of NO{sub x} to nitrogen, tasks included screening denitrifying bacteria for NO and NO{sub 2} activity, developing optimum NO-reducing cultures, and investigating design parameters for a continuous system. This final report reviews the work previous to the current project, describes project objectives and the specific work plan, and reports results from the work completed during the previous reporting periods.

  19. The adipic acid enhanced flue gas desulfurization process for industrial boilers. Volume 2. Technical assessment. Final report Feb 81-Feb 82

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, G.P.; Hargrove, O.W. Jr

    1982-11-01

    The report gives results of an evaluation of an adipic acid enhanced limestone flue gas desulfurization (FGD) system on industrial boilers at Rickenbacker Air National Guard Base. The SO/sub 2/ removal efficiency with the adipic acid averaged 94.3% over a 30-day period. This represents a significant improvement in the performance of the system using only limestone. Economic calculations for an industrial boiler adipic acid enhanced limestone FGD system indicate a slight reduction in both capital and operating expenses relative to a limestone-only system designed for 90% SO2 control of 3.5% sulfur coal. The costs are competitive with those of the dual alkali system. The successful demonstration of the adipic acid enhanced limestone system increases the number of demonstrated technologies available to a potential user.

  20. Studies involving high temperature desulfurization/regeneration reactions of metal oxides for fuel cell development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jalan, V.

    1983-10-01

    Research conducted at Giner, Inc. during 1981 to 1983 under the present contract has been a continuation of the investigation of a high temperature regenerable desulfurization process capable of reducing the sulfur content in coal gases from 200 ppM to 1 ppM. The overall objective has been the integration of a coal gasifier with a molten carbonate fuel cell, which requires that the sulfur content be below 1 ppM. Commercially available low temperature processes incur an excessive energy penalty. Results obtained with packed-bed and fluidized bed reactors have demonstrated that a CuO/ZnO mixed oxide sorbent is regenerable and capable of lowering the sulfur content (as H/sub 2/S and COS) from 200 ppM in simulated hot coal-derived gases to below 1 ppM level at 600 to 650/sup 0/C. Four potential sorbents (copper, tungsten oxide, vanadium oxide and zinc oxide) were initially selected for experimental use in hot regenerable desulfurization in the temperature range 500 to 650/sup 0/C. Based on engineering considerations, such as desulfurization capacity in per weight or volume of sorbents, a coprecipitated CuO/ZnO was selected for further study. A structural reorganization mechanism, unique to mixed oxides, was identified: the creation of relatively fine crystallites of the sulfided components (Cu/sub 2/S and ZnS) to counteract the loss of surface area due to sintering during regeneration. Studies with 9 to 26% water vapor in simulated coal gases show that sulfur levels below 1 ppM can be achieved in the temperature range of 500/sup 0/ to 650/sup 0/C. The ability of CuO/ZnO to remove COS, CS/sub 2/ and CH/sub 3/SH at these conditions has been demonstrated in this study. Also a previously proposed pore-plugging model was further developed with good success for data treatment of both packed bed and fluidized-bed reactors. 96 references, 42 figures, 21 tables.

  1. Summary and assessment of METC zinc ferrite hot coal gas desulfurization test program, final report: Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Underkoffler, V.S.

    1986-12-01

    The Morgantown Energy Technology Center (METC) has conducted a test program to develop a zinc ferrite-based high temperature desulfurization process which could be applied to fuel gas entering downstream components such as molten carbonate fuel cells or gas turbines. As a result of prior METC work with iron oxide and zinc oxide sorbents, zinc ferrite evolved as a candidate with the potential for high capacity, low equilibrium levels of H/sub 2/S, and structural stability after multiple regenerations. The program consisted of laboratory-scale testing with a two-inch diameter reactor and simulated fixed-bed gasifier gas; bench-scale testing with a six-inch diameter reactor and actual gas from the METC 42-inch fixed bed gasifier; as well as laboratory-scale testing of zinc ferrite with simulated fluidized bed gasifier gas. Data from sidestream testing are presented. 18 refs.

  2. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V. (DynaGen, Inc., Cambridge, MA (United States)); Marquis, J.K. (Boston Univ., MA (United States). School of Medicine)

    1989-11-07

    Our experimental approach focuses on the use of enzymes which catalyze the addition of oxygen to organic compounds. In tailoring the application of these enzymes to coal processing, we are particularly interested in ensuring that oxidation occurs at sulfur and not at carbon-carbon bonds. Previous studies with DBT have shown that the reaction most frequently observed in microbial oxidative pathways is one in which DBT is oxidized at ring carbons. These reactions, as we have said, are accompanied by a considerable decrease in the energy content of the compound. In addition, microbial pathways have been identified in which the sulfur atom is sequentially oxidized to sulfoxide, to sulfone, to sulfonate, and finally to sulfuric acid. In this case, the fuel value of the desulfurized compounds is largely retained. We are evaluating the potential of commercially available enzymes to selectively catalyze oxidation at sulfur.

  3. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1989-12-14

    Our experimental approach focuses on the use of enzymes which catalyze the addition of oxygen to organic compounds., In tailoring the application of these enzymes to coal processing, we are particularly interested in ensuring that oxidation occurs at sulfur and not at carbon-carbon bonds. Previous studies with DBT have shown that the reaction most frequently observed in microbial oxidative pathways is one in which DBT is oxidized at ring carbons. These reactions, as we have said, are accompanied by a considerable decrease in the energy content of the compound. In addition, microbial pathways have been identified in which the sulfur atom is sequentially oxidized to sulfoxide, to sulfone, to sulfonate, and finally to sulfuric acid. In this case, the fuel value of the desulfurized compounds is largely retained. We are evaluating the potential of commercially available enzymes to perform this function.

  4. The Biocatalytic Desulfurization Project

    Energy Technology Data Exchange (ETDEWEB)

    David Nunn; James Boltz; Philip M. DiGrazia; Larry Nace

    2006-03-03

    The material in this report summarizes the Diversa technical effort in development of a biocatalyst for the biodesulfurization of Petro Star diesel as well as an economic report of standalone and combined desulfurization options, prepared by Pelorus and Anvil, to support and inform the development of a commercially viable process. We will discuss goals of the projected as originally stated and their modification as guided by parallel efforts to evaluate commercialization economics and process parameters. We describe efforts to identify novel genes and hosts for the generation of an optimal biocatalyst, analysis of diesel fuels (untreated, chemically oxidized and hydrotreated) for organosulfur compound composition and directed evolution of enzymes central to the biodesulfurization pathway to optimize properties important for their use in a biocatalyst. Finally we will summarize the challenges and issues that are central to successful development of a viable biodesulfurization process.

  5. Mercury distribution in seawater discharged from a coal-fired power plant equipped with a seawater flue gas desulfurization system.

    Science.gov (United States)

    Liu, Xiyao; Sun, Lumin; Yuan, Dongxing; Yin, Liqian; Chen, Jinsheng; Liu, Yaoxing; Liu, Chengyu; Liang, Ying; Lin, Fangfang

    2011-09-01

    More and more coal-fired power plants equipped with seawater flue gas desulfurization systems have been built in coastal areas. They release large amount of mercury (Hg)-containing waste seawater into the adjacent seas. However, very limited impact studies have been carried out. Our research targeted the distribution of Hg in the seawater, sediment, biota, and atmosphere, and its environmental transportation. Seawater samples were collected from five sites: 1, sea areas adjacent to the power plant; 2, near discharge outlets; 3, the aeration pool of the power plant; and 4 and 5, two reference sites. The total gaseous Hg was determined in situ with a Tekran 2537B. Analyses of total Hg (TM) followed the USEPA methods. In most part of the study area, TM concentrations were close to the reference values and Hg transfer from the seawater into the sediment and biota was not obvious. However, in the aeration pool and near the waste discharge outlets, atmospheric and surface seawater concentrations of TM were much higher, compared with those at a reference site. The concentration ranges of total gaseous Hg and TM in seawater were 3.83-8.60 ng/m(3) and 79.0-198 ng/L near the discharge outlets, 7.23-13.5 ng/m(3) and 186-616 ng/L in the aeration pool, and 2.98-4.06 ng/m(3) and 0.47-1.87 ng/L at a reference point. This study suggested that the Hg in the flue gas desulfurization waste seawater was not only transported and diluted with sea currents, but also could possibly be transferred into the atmosphere from the aeration pool and from the discharge outlets.

  6. The adipic acid enhanced flue gas desulfurization process for industrial boilers. Volume 1. Field test results. Final report Feb 81-Feb 82

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, P.A.; Gerstle, R.W.; Henzel, D.S.; Mason, K.W.; Sabatini, S.R.

    1982-11-01

    The report gives results of an evaluation of the effect of adding adipic acid on the SO/sub 2/ removal of a wet limestone flue gas desulfurization (FGD) system on a coal-fired industrial boiler at Rickenbacker Air National Guard Base near Columbus, OH. Emission data were collected in accordance with the regulations for SO/sub 2/ compliance data specified in the Federal Register. The test results show that adding adipic acid to the limestone slurry significantly improved the SO/sub 2/ removal efficiency of the FGD system. Limited baseline data on operations with limestone only indicated a performance level of 55% SO/sub 2/ removal. With the addition of about 2200 ppm of adipic acid to the limestone scrubbing system, the unit's level of performance increased to an average of 94.3% SO/sub 2/ removal (within a standard deviation of 2.2%) during which boiler load was 70-130 million Btu/hr and gas throughput varied 300%.

  7. Permitting and solid waste management issues for the Bailly Station wet limestone Advanced Flue Gas Desulfurization (AFGD) system

    International Nuclear Information System (INIS)

    Bolinsky, F.T.; Ross, J.; Dennis, D.S.

    1991-01-01

    Pure Air (a general partnership between Air Products and Chemicals, Inc., and Mitsubishi Heavy Industries America, Inc.). is constructing a wet limestone co-current advanced flue gas desulfurization (AFGD) system that has technological and commercial advantages over conventional FGD systems in the United States. The AFGD system is being installed at the Northern Indiana Public Service Company's Bailly Generating Station near Gary, Indiana. The AFGD system is scheduled to be operational by the Summer, 1992. The AFGD system will remove at least 90 percent of the sulfur dioxide (SO 2 ) in the flue gas from Boilers 7 and 8 at the Station while burning 3.2 percent sulfur coal. Also as part of testing the AFGD system, 95 percent removal of SO 2 will be demonstrated on coals containing up to 4.5 percent sulfur. At the same time that SO 2 is removed from the flue gas, a gypsum by-product will be produced which will be used for wallboard manufacturing. Since the AFGD system is a pollution control device, one would expect its installation to be received favorably by the public and regulatory agencies. Although the project was well received by regulatory agencies, on public group (Save the Dunes Council) was initially concerned since the project is located adjacent to the Indiana Dunes National Lakeshore. The purpose of this paper is to describe the project team's experiences in obtaining permits/approvals from regulatory agencies and in dealing with the public. 1 ref., 1 fig., 2 tabs

  8. THE BIOCATALYTIC DESULFURIZATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Steven E. Bonde; David Nunn

    2003-01-01

    During the first quarter of the Biological Desulfurization project several activities were pursued. A project kickoff meeting was held at the Diversa facility in San Diego, CA. Activities that were in process before the meeting and begun afterwards by Diversa Corporation and Petro Star Inc. include: Technology transfer in the form of information generated by Enchira to Diversa, the purchase and installation of equipment by Diversa, development of synthetic methods and preparation of organo-sulfur substrates for use in determining enzyme activities, production of extract via Petro Star's CED process, detailed analysis of Petro Star Inc. diesel and CED extract, and several activities in molecular biology. Diversa Corporation, in the area of molecular biology, engaged in several activities in support of the task list of the contract. These included: construction of a genomic library; development and utilization of a sequence-based gene discovery effort; a parallel discovery approach based on functional expression of enzymes with the ability to oxidize organosulfur compounds. Biodesulfurization genes have already been identified and are being sequenced and subcloned for expression in heterologous biological hosts. Diversa has evaluated and adapted assays developed by Enchira used to assess the activities of DBT and DBTO{sub 2} monooxygenases. Finally, Diversa personnel have developed two novel selection/screen strategies for the improvement of biocatalyst strains by directed evolution.

  9. HIGH EFFICIENCY DESULFURIZATION OF SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Kwang-Bok Yi; Anirban Mukherjee; Elizabeth J. Podlaha; Douglas P. Harrison

    2004-03-01

    Mixed metal oxides containing ceria and zirconia have been studied as high temperature desulfurization sorbents with the objective of achieving the DOE Vision 21 target of 1 ppmv or less H{sub 2}S in the product gas. The research was justified by recent results in this laboratory that showed that reduced CeO{sub 2}, designated CeOn (1.5 < n < 2.0), is capable of achieving the 1 ppmv target in highly reducing gas atmospheres. The addition of ZrO{sub 2} has improved the performance of oxidation catalysts and three-way automotive catalysts containing CeO{sub 2}, and was postulated to have similar beneficial effects on CeO{sub 2} desulfurization sorbents. An electrochemical method for synthesizing CeO{sub 2}-ZrO{sub 2} mixtures was developed and the products were characterized by XRD and TEM during year 01. Nanocrystalline particles having a diameter of about 5 nm and containing from approximately 10 mol% to 80 mol% ZrO{sub 2} were prepared. XRD analysis showed the product to be a solid solution at low ZrO{sub 2} contents with a separate ZrO{sub 2} phase emerging at higher ZrO{sub 2} levels. Unfortunately, the quantity of CeO{sub 2}-ZrO{sub 2} that could be prepared electrochemically was too small to permit desulfurization testing. Also during year 01 a laboratory-scale fixed-bed reactor was constructed for desulfurization testing. All components of the reactor and analytical systems that were exposed to low concentrations of H{sub 2}S were constructed of quartz, Teflon, or silcosteel. Reactor product gas composition as a function of time was determined using a Varian 3800 gas chromatograph equipped with a pulsed flame photometric detector (PFPD) for measuring low H{sub 2}S concentrations from approximately 0.1 to 10 ppmv, and a thermal conductivity detector (TCD) for higher concentrations of H{sub 2}S. Larger quantities of CeO{sub 2}-ZrO{sub 2} mixtures from other sources, including mixtures prepared in this laboratory using a coprecipitation procedure, were obtained

  10. Integrated operation of a pressurized fixed-bed gasifier, hot gas desulfurization system, and turbine simulator

    Energy Technology Data Exchange (ETDEWEB)

    Bevan, S.; Ayala, R.E.; Feitelberg, A.; Furman, A.

    1995-11-01

    The overall objective of the General Electric Hot Gas Cleanup (HGCU) Program is to develop a commercially viable technology to remove sulfur, particulates, and halogens from a high-temperature fuel gas stream using a moving bed, regenerable mixed metal oxide sorbent based process. The HGCU Program is based on the design and demonstration of the HGCU system in a test facility made up of a pilot-scale fixed bed gasifier, a HGCU system, and a turbine simulator in Schenectady, NY, at the General Electric Research and Development Center. The objectives of the turbine simulator testing are (1) to demonstrate the suitability of fuel gas processed by the HGCU system for use in state-of-the-art gas turbines firing at 2,350 F rotor inlet temperature and (2) to quantify the combustion characteristics and emissions on low-Btu fuel gas. The turbine simulator program also includes the development and operation of experimental combustors based on the rich-quench-lean concept (RQL) to minimize the conversion of ammonia and other fuel-bound nitrogen species to NO{sub x} during combustion. The HGCU system and turbine simulator have been designed to process approximately 8,000 lb/hr of low heating value fuel gas produced by the GE fixed bed gasifier. The HGCU system has utilized several mixed metal oxide sorbents, including zinc ferrite, zinc titanate, and Z-Sorb, with the objective of demonstrating good sulfur removal and mechanical attrition resistance as well as economic cost characteristics. Demonstration of halogen removal and the characterization of alkali and trace metal concentrations in the fuel gas are subordinate objectives of the overall program. This report describes the results of several long-duration pilot tests.

  11. Desulfurization of Saudi Arabian crudes by oxidation-extraction method.

    Science.gov (United States)

    Al Otaibi, Raja L; Liu, Dong; Hou, Xulian; Song, Linhua; Li, Qingyin; Li, Mengfei; Almigrin, Hamid O; Yan, Zifeng

    The oxidation-extraction desulfurization of Saudi Arabian crudes was conducted with hydrogen peroxide-acetic acid oxidation system. The selection of extractant, the optimization of oxidation-extraction conditions, and the exploration of desulfurization mechanism were studied. As DMF was used as the extractant, the optimal desulfurization rate of 35.11 % and oil recovery of 95 % were obtained at 70 °C with the molar ratio of peracetic acid to sulfur of 8:1, the molar ratio of acetic acid to hydrogen peroxide of 2:1 and the volume ratio of extractant to oil of 1:1. The desulfurization effect of different fractions in the treated Saudi Arabian crudes was found to obey the following order: gasoline-diesel fraction >VGO fraction >VR fraction, due to different types and structures of sulfur compounds. The oil quality was less affected and most sulfides were mainly extracted via DMF.

  12. Mercury isotope signatures of seawater discharged from a coal-fired power plant equipped with a seawater flue gas desulfurization system.

    Science.gov (United States)

    Lin, Haiying; Peng, Jingji; Yuan, Dongxing; Lu, Bingyan; Lin, Kunning; Huang, Shuyuan

    2016-07-01

    Seawater flue gas desulfurization (SFGD) systems are commonly used to remove acidic SO2 from the flue gas with alkaline seawater in many coastal coal-fired power plants in China. However, large amount of mercury (Hg) originated from coal is also transferred into seawater during the desulfurization (De-SO2) process. This research investigated Hg isotopes in seawater discharged from a coastal plant equipped with a SFGD system for the first time. Suspended particles of inorganic minerals, carbon residuals and sulfides are enriched in heavy Hg isotopes during the De-SO2 process. δ(202)Hg of particulate mercury (PHg) gradually decreased from -0.30‰ to -1.53‰ in study sea area as the distance from the point of discharge increased. The results revealed that physical mixing of contaminated De-SO2 seawater and uncontaminated fresh seawater caused a change in isotopic composition of PHg isotopes in the discharging area; and suggested that both De-SO2 seawater and local background contributed to PHg. The impacted sea area predicted with isotopic tracing technique was much larger than that resulted from a simple comparison of pollutant concentration. It was the first attempt to apply mercury isotopic composition signatures with two-component mixing model to trace the mercury pollution and its influence in seawater. The results could be beneficial to the coal-fired plants with SFGD systems to assess and control Hg pollution in sea area. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. CONVERSION EXTRACTION DESULFURIZATION (CED) PHASE III

    Energy Technology Data Exchange (ETDEWEB)

    James Boltz

    2005-03-01

    This project was undertaken to refine the Conversion Extraction Desulfurization (CED) technology to efficiently and economically remove sulfur from diesel fuel to levels below 15-ppm. CED is considered a generic term covering all desulfurization processes that involve oxidation and extraction. The CED process first extracts a fraction of the sulfur from the diesel, then selectively oxidizes the remaining sulfur compounds, and finally extracts these oxidized materials. The Department of Energy (DOE) awarded Petro Star Inc. a contract to fund Phase III of the CED process development. Phase III consisted of testing a continuous-flow process, optimization of the process steps, design of a pilot plant, and completion of a market study for licensing the process. Petro Star and the Degussa Corporation in coordination with Koch Modular Process Systems (KMPS) tested six key process steps in a 7.6-centimeter (cm) (3.0-inch) inside diameter (ID) column at gas oil feed rates of 7.8 to 93.3 liters per hour (l/h) (2.1 to 24.6 gallons per hour). The team verified the technical feasibility with respect to hydraulics for each unit operation tested and successfully demonstrated pre-extraction and solvent recovery distillation. Test operations conducted at KMPS demonstrated that the oxidation reaction converted a maximum of 97% of the thiophenes. The CED Process Development Team demonstrated that CED technology is capable of reducing the sulfur content of light atmospheric gas oil from 5,000-ppm to less than 15-ppm within the laboratory scale. In continuous flow trials, the CED process consistently produced fuel with approximately 20-ppm of sulfur. The process economics study calculated an estimated process cost of $5.70 per product barrel. The Kline Company performed a marketing study to evaluate the possibility of licensing the CED technology. Kline concluded that only 13 refineries harbored opportunity for the CED process. The Kline study and the research team's discussions

  14. Reclamation of acid, toxic coal spoils using wet flue gas desulfurization by-product, fly ash and sewage sludge. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kost, D.A.; Vimmerstedt, J.P.; Stehouwer, R.C.

    1997-03-01

    Establishment of vegetation on acid abandoned minelands requires modification of soil physical and chemical conditions. Covering the acid minesoil with topsoil or borrow soil is a common practice but this method may be restricted by availability of borrow soil and cause damage to the borrow site. An alternative approach is to use waste materials as soil amendments. There is a long history of using sewage sludge and fly ash as amendments for acid minesoils. Flue gas desulfurization (FGD) by-products are newer materials that are also promising amendments. Most flue gas sludges are mixtures of Calcium sulfate (CaSO{sub 4}), calcium sulfite (CaSO{sub 3}), calcium carbonate (CaCO{sub 3}), calcium hydroxide [Ca(OH){sub 2}], and fly ash. Some scrubbing processes produce almost pure gypsum (CaSO{sub 4}2H{sub 2}O). The primary purpose of the project is to evaluate two wet FGD by-products for effects on vegetation establishment and surface and ground water quality on an acid minesoil. One by-product from the Conesville, OH power plant (American Electric Power Service Corporation) contains primarily calcium sulfite and fly ash. The other by-product (Mg-gypsum FGD) from an experimental scrubber at the Zimmer power plant (Cincinnati Gas and Electric Company) is primarily gypsum with 4% magnesium hydroxide. These materials were compared with borrow soil and sewage sludge as minesoil amendments. Combinations of each FGD sludge with sewage sludge were also tested. This report summarizes two years of measurements of chemical composition of runoff water, ground water at two depths in the subsoil, soil chemical properties, elemental composition and yield of herbaceous ground cover, and elemental composition, survival and height of trees planted on plots treated with the various amendments. The borrow soil is the control for comparison with the other treatments.

  15. Reclamation of acid, toxic coal spoils using wet flue gas desulfurization by-product, fly ash and sewage sludge. Final report

    International Nuclear Information System (INIS)

    Kost, D.A.; Vimmerstedt, J.P.; Stehouwer, R.C.

    1997-03-01

    Establishment of vegetation on acid abandoned minelands requires modification of soil physical and chemical conditions. Covering the acid minesoil with topsoil or borrow soil is a common practice but this method may be restricted by availability of borrow soil and cause damage to the borrow site. An alternative approach is to use waste materials as soil amendments. There is a long history of using sewage sludge and fly ash as amendments for acid minesoils. Flue gas desulfurization (FGD) by-products are newer materials that are also promising amendments. Most flue gas sludges are mixtures of Calcium sulfate (CaSO 4 ), calcium sulfite (CaSO 3 ), calcium carbonate (CaCO 3 ), calcium hydroxide [Ca(OH) 2 ], and fly ash. Some scrubbing processes produce almost pure gypsum (CaSO 4 2H 2 O). The primary purpose of the project is to evaluate two wet FGD by-products for effects on vegetation establishment and surface and ground water quality on an acid minesoil. One by-product from the Conesville, OH power plant (American Electric Power Service Corporation) contains primarily calcium sulfite and fly ash. The other by-product (Mg-gypsum FGD) from an experimental scrubber at the Zimmer power plant (Cincinnati Gas and Electric Company) is primarily gypsum with 4% magnesium hydroxide. These materials were compared with borrow soil and sewage sludge as minesoil amendments. Combinations of each FGD sludge with sewage sludge were also tested. This report summarizes two years of measurements of chemical composition of runoff water, ground water at two depths in the subsoil, soil chemical properties, elemental composition and yield of herbaceous ground cover, and elemental composition, survival and height of trees planted on plots treated with the various amendments. The borrow soil is the control for comparison with the other treatments

  16. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer.

    Science.gov (United States)

    Sun, Tonghua; Shen, Yafei; Jia, Jinping

    2014-02-18

    This paper proposes a novel self-developed JTS-01 desulfurizer and JZC-80 alkaline adsorbent for H2S removal and gas cleaning of the COREX coal gas in small-scale and commercial desulfurizing devices. JTS-01 desulfurizer was loaded with metal oxide (i.e., ferric oxides) catalysts on the surface of activated carbons (AC), and the catalyst capacity was improved dramatically by means of ultrasonically assisted impregnation. Consequently, the sulfur saturation capacity and sulfur capacity breakthrough increased by 30.3% and 27.9%, respectively. The whole desulfurizing process combined selective adsorption with catalytic oxidation. Moreover, JZC-80 adsorbent can effectively remove impurities such as HCl, HF, HCN, and ash in the COREX coal gas, stabilizing the system pressure drop. The JTS-01 desulfurizer and JZC-80 adsorbent have been successfully applied for the COREX coal gas cleaning in the commercial plant at Baosteel, Shanghai. The sulfur capacity of JTS-01 desulfurizer can reach more than 50% in industrial applications. Compared with the conventional dry desulfurization process, the modified AC desulfurizers have more merit, especially in terms of the JTS-01 desulfurizer with higher sulfur capacity and low pressure drop. Thus, this sorption enhanced catalytic desulfurization has promising prospects for H2S removal and other gas cleaning.

  17. Bio desulfurization of a system containing synthetic fuel by rhodococcus erythropolis ATCC 4277; Remocao de compostos sulfurosos de sitema bifasico contendo combustivel sintetico por Rhodococcus erythropolis ATCC 4277

    Energy Technology Data Exchange (ETDEWEB)

    Maass, Danielle; Souza, Antonio Augusto Ulson de; Souza, Selene Maria de Arruda Guelli Ulson de [Universidade Federal de Santa Catarina (UFSC), SC (Brazil)

    2012-07-01

    For decades the burning of fossil fuels released a lot of pollutants in the atmosphere. Among the most harmful is sulfur dioxide (SO{sub 2}), which reacts with the moisture in the air and turns into sulfuric acid, being the main cause of acid rain. Acid rain is very harmful to animal and plant kingdoms; accelerates the corrosion's processes of buildings and monuments, and causes serious health problems for humans. As a result, many countries have reformed their legislation to require the sale of fuels with very low sulfur content. The existing processes of desulfurization are not capable of removing sulfur so low. Therefore, there has developed a new process called bio desulfurization. In this process, the degradation of sulfur occurs through the action of microorganisms that act as catalysts. The bacterium Rhodococcus erythropolis has emerged as one of the most promising for bio desulfurization because it removes the sulfur without breaking the benzene rings, thereby maintaining the potential energy of the same. Using dibenzothiophene as a model of sulfur compounds, the products of the bio desulfurization process are 2- hydroxybiphenyl and sulfate. In this study we sought to examine the desulfurizing capacity of national Rhodococcus erythropolis strain ATCC4277 in a batch reactor using concentrations of organic phase (n-dodecane) of 20 and 80% (v/v). Rhodococcus erythropolis ATCC4277 was capable of degrading DBT in 93.3 and 98.0% in the presence of 20 and 80% (v/v) of synthetic fuel, respectively. (author)

  18. Desulfurization of Jordanian oil shale

    International Nuclear Information System (INIS)

    Abu-Jdayil, B. M.

    1990-01-01

    Oxy desulfurization process and caustic treatment were applied in this work to remove sulfur from Jordanian oil shale. The oxy desulfurization process has been studied in a batch process using a high pressure autoclave, with constant stirring speed, and oxygen and water were used as desulfurizing reagents. Temperature, oxygen pressure, batch time, and particle size were found to be important process variables, while solid/liquid ratio was found to have no significant effect on the desulfurization process. The response of different types of oil shale to this process varied, and the effect of the process variables on the removal of total sulfur, pyritic sulfur, organic sulfur, total carbon, and organic carbon were studied. An optimum condition for oxy desulfurization of El-Lajjun oil shale, which gave maximum sulfur removal with low loss of carbon, was determined from the results of this work. The continuous reaction model was found to be valid, and the rate of oxidation for El-Lajjun oil shale was of the first order with respect to total sulfur, organic sulfur, total carbon, and organic carbon. For pyritic sulfur oxidation, the shrinking core model was found to hold and the rate of reaction controlled by diffusion through product ash layer. An activation energy of total sulfur, organic sulfur, pyritic sulfur, total carbon, and organic carbon oxidation was calculated for the temperature range of 130 -190 degrees celsius. In caustic treatment process, aqueous sodium hydroxide at 160 degrees celsius was used to remove the sulfur from El-Lajjun oil shale. The variables tested (sodium hydroxide concentration and treatment time) were found to have a significant effect. The carbon losses in this process were less than in the oxy desulfurization process. 51 refs., 64 figs., 121 tabs. (A.M.H.)

  19. Desulfurization Sorbents for Transport-Bed Applications

    International Nuclear Information System (INIS)

    Gupta, Raghubir P.; Turk, Brian S.; Vierheilig, Albert A.

    1997-01-01

    This project extends the prior work on the development of fluidizable zinc titanate particles using a spray-drying technique to impart high reactivity and attrition resistance. The specific objectives are: (1) To develop highly reactive and attrition-resistant zinc titanate sorbents in 40- to 150-(micro)m particle size range for transport reactor applications; (2) To transfer sorbent production technology to private sector; and (3) To provide technical support to Sierra Pacific Clean Coal Technology Demonstration plant and FETC's Hot-Gas Desulfurization Process Development Unit (PDU), both employing a transport reactor system

  20. Final focus system for TLC

    International Nuclear Information System (INIS)

    Oide, K.

    1988-11-01

    A limit of the chromaticity correction for the final focus system of a TeV Linear Collider (TLC) is investigated. As the result, it becomes possible to increase the aperture of the final doublet with a small increase of the horizontal β function. The new optics design uses a final doublet of 0.5 mm half-aperture and 1.4 T pole-tip field. The length of the system is reduced from 400 m to 200 m by several optics changes. Tolerances for various machine errors with this optics are also studied. 5 refs., 7 figs., 2 tabs

  1. Microbial desulfurization of coal

    International Nuclear Information System (INIS)

    Bos, P.; Boogerd, F.C.; Kuenen, J.G.

    1992-01-01

    In recent years, studies have been initiated to explore the possibilities of the use of biological systems in coal technology. This chapter discusses the principles behind the bioprocessing of coal, the advantages and disadvantages, and the economic feasibility of the process. For large-scale, coal-using, energy-producing plants, stack gas cleaning should be the treatment of choice. Biodesulfurization is preferable with industrial, small-scale, energy-producing plants. Treatment of the stack gases of these plants is not advisable because of high investment costs. Finally, it should be realized that biodesulfurization produces a waste stream that needs further treatment. 91 refs

  2. THE BIOCATALYTIC DESULFURIZATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Scott Collins; David Nunn

    2003-10-01

    The analysis of Petro Star diesel sulfur species is complete and a report is attached. Further analytical efforts will concentrate on characterization of diesel fuel, hydrodesulfurized to varying degrees, in order to determine sulfur species that may be problematic to hydrogen treatment and represent potential target substrates for biodesulfurization in a combined HDS-BDS process. Quotes have been received and are being considered for the partial treatment of Petro Star Inc. marine diesel fuel. Direction of research is changing slightly; economic analysis of the hyphenated--BDSHDS, BDS-CED--has shown the highest probability of success to be with a BDS-HDS process where the biodesulfurization precedes hydrodesulfurization. Thus, the microorganisms will be tailored to focus on those compounds that tend to be recalcitrant to hydrodesulfurization and decrease the severity of the hydrodesulfurization step. A separate, detailed justification for this change is being prepared. Research activities have continued in the characterization of the desulfurization enzymes from multiple sources. Genes for all DszA, -B, -C and -D enzymes (and homologs) have been cloned and expressed. Activity determinations, on a variety of substituted benzothiophene and dibenzothiophene substrates, have been carried out and continue. In addition, chemical synthesis efforts have been carried out to generate additional substrates for analytical standards and activity determinations. The generation of a GSSM mutant library of the ''Rhodococcus IGTS8 dszA'' gene has been completed and development of protocols for a high throughput screen to expand substrate specificity are nearing completion. In an effort to obtain improved hosts as biocatalyst, one hundred-thirty ''Rhodococcus'' and related strains are being evaluated for growth characteristics and other criteria deemed important for an optimal biocatalyst strain. We have also begun an effort to generate

  3. HIGH EFFICIENCY DESULFURIZATION OF SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Anirban Mukherjee; Kwang-Bok Yi; Elizabeth J. Podlaha; Douglas P. Harrison

    2001-11-01

    Mixed metal oxides containing CeO{sub 2} and ZrO{sub 2} are being studied as high temperature desulfurization sorbents capable of achieving the DOE Vision 21 target of 1 ppmv of less H{sub 2}S. The research is justified by recent results in this laboratory that showed that reduced CeO{sub 2}, designated CeO{sub n} (1.5 < n < 2.0), is capable of achieving the 1 ppmv target in highly reducing gas atmospheres. The addition of ZrO{sub 2} has improved the performance of oxidation catalysts and three-way automotive catalysts containing CeO{sub 2}, and should have similar beneficial effects on CeO{sub 2} desulfurization sorbents. An electrochemical method for synthesizing CeO{sub 2}-ZrO{sub 2} has been developed and the products have been characterized by XRD and TEM during year 01. Nanocrystalline particles having a diameter of about 5 nm and containing from approximately 10 mol% to 80 mol% ZrO{sub 2} have been prepared. XRD showed the product to be a solid solution at low ZrO{sub 2} contents with a separate ZrO{sub 2} phase emerging at higher ZrO{sub 2} levels. Phase separation did not occur when the solid solutions were heat treated at 700 C. A flow reactor system constructed of quartz and teflon has been constructed, and a gas chromatograph equipped with a pulsed flame photometric detector (PFPD) suitable for measuring sub-ppmv levels of H{sub 2}S has been purchased with LSU matching funds. Preliminary desulfurization tests using commercial CeO{sub 2} and CeO{sub 2}-ZrO{sub 2} in highly reducing gas compositions has confirmed that CeO{sub 2}-ZrO{sub 2} is more effective than CeO{sub 2} in removing H{sub 2}S. At 700 C the product H{sub 2}S concentration using CeO{sub 2}-ZrO{sub 2} sorbent was near the 0.1 ppmv PFPD detection limit during the prebreakthrough period.

  4. Characteristics of dibenzothiophene desulfurization by Rhodococcus erythropolis R1 and its Dsz-negative mutant

    Directory of Open Access Journals (Sweden)

    Zahra Etemadifar

    2014-01-01

    Full Text Available Introduction: Biodesulfurization is used as a selective method for lowering the sulfur content of petroleum products. Materials and methods: A sulfur-oxidation bacterial strain named Rhodococcus erythropolis R1 (NCBI GenBank Accession No. GU570564 was used in this study for desulfurization of dibenzothiophene (DBT. Results: The induced culture of strain R1 was able to produce 2-hydroxybiphenyl (2- HBP from DBT followed 4S pathway without further degrading carbon backbone. This process confirmed by gas chromatography (GC analysis. The specific activity of DBT desulfurization by R1 was 45 µM (g dry wt-1 h-1. The addition of Tween 80 as surfactant and glycerol as carbon source determines a 100% rate of DBT-desulfurization during 3 days. The heavy plasmid detected in R1 strain carries dsz genes responsible for biodesulfurization of DBT that was shown by PCR reaction. The mutant strains which had lost this plasmid also had lost desulfurization phenotype. Both mutant and wild strain were sensitive to high concentration of 2-HBP and some antibiotics. Discussion and conclusion: Strain R1 desulfurize DBT through the sulfur-specific degradation pathway or 4S pathway with the selective cleavage of carbon-sulfur (C-S bonds without reducing the energy content. Addition of surfactant enhanced the desulfurization of DBT by increasing its bioavailability and also could improve the growth and desulfurization rate. The location of desulfurization genes was on a heavy plasmid in strain R1. Based on the results of this study, R. erythropolis R1 could serve as a model system for efficient biodesulfurization of petroleum oil without reducing the energy value.

  5. Review of desulfurization process for biogas purification

    Science.gov (United States)

    Xiao, Cong; Ma, Yunqian; Ji, Dandan; Zang, Lihua

    2017-12-01

    Hydrogen sulfide (H2S) is a toxic and odorous compound present in biogas produced by the anaerobic digestion of biosolids and other organic materials. Elimination of H2S is necessary as it is extremely hazardous to human health, poisonous to process catalysts and corrosive to equipment. The desulfurization technology is an important part for efficient utilization of biogas. In this paper, the traditional wet and dry desulfurization technology for biogas was reviewed, and the new research progress of biological desulfurization technologies are also introduced.

  6. Mathematical Model of Hot Metal Desulfurization by Powder Injection

    Directory of Open Access Journals (Sweden)

    Yolanda Cepeda Rodríguez

    2012-01-01

    Full Text Available Although there have been a numerous number of studies on mathematical model of hot metal desulfurization by deep injection of calcium carbide, the research field as a whole is not well integrated. This paper presents a model that takes into account the kinetics, thermodynamics, and transport processes to predict the sulfur levels in the hot metal throughout a blow. The model could be utilized to assess the influence of the treatment temperature, rate of injection, gas flow rate, and initial concentration of sulfur on the desulfurization kinetics. In the second part of this paper an analysis of the industrial data for injection of calcium carbide using this model is described. From a mathematical model that describes the characteristics of a system, it is possible to predict the behavior of the variables involved in the process, resulting in savings of time and money. Discretization is realized through the finite difference method combined with interpolation in the border domain by Taylor series.

  7. Biocatalytic desulfurization of petroleum and middle distillates

    International Nuclear Information System (INIS)

    Monticello, D.J.

    1993-01-01

    Biocatalytic Desulfurization (BDS) represents an alternative approach to the reduction of sulfur in fossil fuels. The objective is to use bacteria to selectively remove sulfur from petroleum and middle distillate fractions, without the concomitant release of carbon. Recently, bacteria have been developed which have the ability to desulfurize dibenzothiophene (DBT) and other organosulfur molecules. These bacteria are being developed for use in a biocatalyst-based desulfurization process. Analysis of preliminary conceptual engineering designs has shown that this process has the potential to complement conventional technology as a method to temper the sulfur levels in crude oil, or remove the recalcitrant sulfur in middle distillates to achieve the deep desulfurization mandated by State and Federal regulations. This paper describes the results of initial feasibility studies, sensitivity analyses and conceptual design work. Feasibility studies with various crude oils and middle distillates achieved unoptimized desulfurization levels of 40-80%. Sensitivity analyses indicate that total desulfurization costs of about $3.00 per barrel for crude oil and less than $2.00 per barrel for diesel are possible. Key criteria for commercial success of the process include the cost and half-life of the biocatalyst, residence time in the reactor, oil/water ratios required to extract the sulfur and the disposition of the separated sulfur products. 9 refs., 3 figs

  8. Oxidative desulfurization of tire pyrolysis oil

    Directory of Open Access Journals (Sweden)

    Ahmad Shahzad

    2016-01-01

    Full Text Available This paper presents a low cost method for the purification of oils obtained from the pyrolysis of used tires. Oxidative desulfurization is a promising route for purification of tire pyrolysis oils as hydro-desulfurization may not be affordable for small scale industries. Different additives and acids have been employed for the enhancement of properties of pyrolytic oils. The experimental conditions were kept identical throughout, i.e. atmospheric pressure and 50°C temperature for comparison of performance of various additives. The use of hydrogen peroxide-acetic acid mixture (10 wt.% was found more economical and effective in desulfurization and improvement of fuel properties of sample oils. The contribution of sulfuric acid in desulfurization and decreasing viscosity was also satisfactory but due to high price of concentrated sulfuric acid its use may not be economical. Calcium oxide and Fuller’s earth was not found to be effective in desulfurization. Results indicate that oxidative desulfurization could render tire pyrolysis oils suitable for blending as heating fuel.

  9. NONLINEAR DYNAMICAL SYSTEMS - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Philip Holmes

    2005-12-31

    This document is the final report on the work completed on DE-FG02-95ER25238 since the start of the second renewal period: Jan 1, 2001. It supplements the annual reports submitted in 2001 and 2002. In the renewal proposal I envisaged work in three main areas: Analytical and topological tools for studying flows and maps Low dimensional models of fluid flow Models of animal locomotion and I describe the progess made on each project.

  10. P-B Desulfurization: An Enabling Method for Protein Chemical Synthesis and Site-Specific Deuteration.

    Science.gov (United States)

    Jin, Kang; Li, Tianlu; Chow, Hoi Yee; Liu, Han; Li, Xuechen

    2017-11-13

    Cysteine-mediated native chemical ligation is a powerful method for protein chemical synthesis. Herein, we report an unprecedentedly mild system (TCEP/NaBH 4 or TCEP/LiBEt 3 H; TCEP=tris(2-carboxyethyl)phosphine) for chemoselective peptide desulfurization to achieve effective protein synthesis via the native chemical ligation-desulfurization approach. This method, termed P-B desulfurization, features usage of common reagents, simplicity of operation, robustness, high yields, clean conversion, and versatile functionality compatibility with complex peptides/proteins. In addition, this method can be used for incorporating deuterium into the peptides after cysteine desulfurization by running the reaction in D 2 O buffer. Moreover, this method enables the clean desulfurization of peptides carrying post-translational modifications, such as phosphorylation and crotonylation. The effectiveness of this method has been demonstrated by the synthesis of the cyclic peptides dichotomin C and E and synthetic proteins, including ubiquitin, γ-synuclein, and histone H2A. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Experimental lithium system. Final report

    International Nuclear Information System (INIS)

    Kolowith, R.; Berg, J.D.; Miller, W.C.

    1985-04-01

    A full-scale mockup of the Fusion Materials Irradiation Test (FMIT) Facility lithium system was built at the Hanford Engineering Development Laboratory (HEDL). This isothermal mockup, called the Experimental Lithium System (ELS), was prototypic of FMIT, excluding the accelerator and dump heat exchanger. This 3.8 m 3 lithium test loop achieved over 16,000 hours of safe and reliable operation. An extensive test program demonstrated satisfactory performance of the system components, including the HEDL-supplied electromagnetic lithium pump, the lithium jet target, the purification and characterization hardware, as well as the auxiliary argon and vacuum systems. Experience with the test loop provided important information on system operation, performance, and reliability. This report presents a complete overview of the entire Experimental Lithium System test program and also includes a summary of such areas as instrumentation, coolant chemistry, vapor/aerosol transport, and corrosion

  12. Practical use of dry desulfurization equipment using coal ash and effective use of used desulfurizer. Sekitanbai riyo kanshiki datsuryu sochi no jitsuyoka to shiyozumi datsuryuzai no yukoriyo ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T.; Ueno, T. (The Hokkaido Electric Power CO. Inc., Hokkaido (Japan))

    1992-01-30

    Practical use of dry desulfurization equipment using coal ash installed in Atsuma power plant no.1 is explained. Outline of dry desulferization process is consisted of basic principles and structure of the process which includes desulfurizer production equipment and absorption equipment. When compared with conventional wet process, equipments for waste water and for reheating of exhaust gas are not necessary, and operation maintenance has been more convenient with the simplification of the system and absorber has graded up the elimination function. Advantages of simplification of treatment of used desulfurizer, and absorption of sulfurdioxide by desulfurizer together with characteristics of desulfurizer production are given. As far as practical macineries are concerned, outline of instrument facilities, construction technology and results of experimental operation are reported. Effective Use of desulfurizer using deodorant and hedro treatment has been verified from ammonium absorption experiment and practical investigation results. However use of hedro material has required, conformity of surface caking technology, under water caking technology, under water covering technology and effect on under water living environment. 13 figs., 4 tabs.

  13. Evaluation of gasification and gas cleanup processes for use in molten carbonate fuel cell power plants. Final report. [Contains lists and evaluations of coal gasification and fuel gas desulfurization processes

    Energy Technology Data Exchange (ETDEWEB)

    Jablonski, G.; Hamm, J.R.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

    1982-01-01

    This report satisfies the requirements for DOE Contract AC21-81MC16220 to: List coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants; extensively characterize those coal gas cleanup systems rejected by DOE's MCFC contractors for their power plant systems by virtue of the resources required for those systems to be commercially developed; develop an analytical model to predict MCFC tolerance for particulates on the anode (fuel gas) side of the MCFC; develop an analytical model to predict MCFC anode side tolerance for chemical species, including sulfides, halogens, and trace heavy metals; choose from the candidate gasifier/cleanup systems those most suitable for MCFC-based power plants; choose a reference wet cleanup system; provide parametric analyses of the coal gasifiers and gas cleanup systems when integrated into a power plant incorporating MCFC units with suitable gas expansion turbines, steam turbines, heat exchangers, and heat recovery steam generators, using the Westinghouse proprietary AHEAD computer model; provide efficiency, investment, cost of electricity, operability, and environmental effect rankings of the system; and provide a final report incorporating the results of all of the above tasks. Section 7 of this final report provides general conclusions.

  14. Flue gas desulfurization by rotating beds

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, N.; Keyvani, M.; Coskundeniz, A.

    1992-01-01

    The operating and mass transfer characteristics of rotating foam metal beds were studied to determine the potential for flue gas desulfurization. This is a final technical report on the work supported by DOE [number sign]FG22-87-PC79924. The report is divided into two sections, Part 1 deals primarily with the operating characteristics of rotating beds, and Part 2 covers the mass transfer characteristics of S0[sub 2] absorption in water-lime slurries. Rotating foam metal beds are in essence packed towers operated in high gravitational fields. The foam metal bed is in the form of a cylindrical donut, or torus, and is rotated to produced the high centrifugal forces. The liquid phase enters the bed at the inner surface of the torus and is pulled by the field through the bed. Gas flows countercurrent to the liquid. The bed packing can have a very large specific surface areas and not flood. Possible benefits include much smaller height of a transfer unit resulting in smaller equipment and supporting structures, reduced solvent inventory, faster response with improved process control, reduced pressure drop, and shorter startup and shut-down times. This work is concerned broadly with the operating characteristics of rotating beds, the objectives being to (1) determine the pressure drop through the rotating bed; (2) determine the power required to operate the beds, (3) investigate the residence time distribution of the liquid phase in the beds; and (4) determine the mass transfer coefficients of S0[sub 2] absorption. Three packings of differing specific surface areas were studied, with areas ranging from 656 to 2952 m[sub 2]/m[sub 3]. Liquid flow rates to 36 kg/s*m[sub 2], gas flow rate to 2.2 kg/s*m[sub 2], and gravitational fields to 300 g were covered in this study.

  15. Bench-Scale Demonstration of Hot-Gas Desulfurization Technology

    International Nuclear Information System (INIS)

    Portzer, Jeffrey W.; Gangwal, Santosh K.

    1997-01-01

    Prior to the current project, development of the DSRP was done in a laboratory setting, using synthetic gas mixtures to simulate the regeneration off-gas and coal gas feeds. The objective of the current work is to further the development of zinc titanate fluidized-bed desulfurization (ZTFBD) and the DSRP for hot-gas cleanup by testing with actual coal gas. The objectives of this project are to: (1) Develop and test an integrated, skid-mounted, bench-scale ZTFBD/DSRP reactor system with a slipstream of actual coal gas; (2) Test the bench-scale DSRP over an extended period with a slipstream of actual coal gas to quantify the degradation in performance, if any, caused by the trace contaminants present in coal gas (including heavy metals, chlorides, fluorides, and ammonia); (3) Expose the DSRP catalyst to actual coal gas for extended periods and then test its activity in a laboratory reactor to quantify the degradation in performance, if any, caused by static exposure to the trace contaminants in coal gas; (4) Design and fabricate a six-fold larger-scale DSRP reactor system for future slipstream testing; (5) Further develop the fluidized-bed DSRP to handle high concentrations (up to 14 percent) of SO 2 that are likely to be encountered when pure air is used for regeneration of desulfurization sorbents; and (6) Conduct extended field testing of the 6X DSRP reactor with actual coal gas and high concentrations of SO 2 . The accomplishment of the first three objectives--testing the DSRP with actual coal gas, integration with hot-gas desulfurization, and catalyst exposure testing--was described previously (Portzer and Gangwal, 1994, 1995; Portzer et al., 1996). This paper summarizes the results of previous work and describes the current activities and plans to accomplish the remaining objectives

  16. THEORETICAL STUDY OF THE CATALYTIC DESULFURIZATION ...

    African Journals Online (AJOL)

    a

    In the present study we have submitted the dihydrothiiren (Figure 1b), the methylthiiren (Figure 1c) and the methyldihydrothiiren (Figure 1d) to the same process before proceeding to their desulfurization behaviour in order to propose the sulfur atom elimination mechanism while studying methyl group influence on the thiiren ...

  17. Effects of fluidized gas desulfurization (FGD) gypsum on non-target freshwater and sediment dwelling organims

    Science.gov (United States)

    Fluidized gas desulfurization gypsum is a popular agricultural soil amendment used to increase calcium and sulfur contents, and reduce aluminum toxicity. Due to its surface application in conservation tillage systems and high solubility, the soluble components of gypsum may be transferred with agri...

  18. Final focus systems for linear colliders

    International Nuclear Information System (INIS)

    Helm, R.; Irwing, J.

    1992-01-01

    Final focus systems for linear colliders present many exacting challenges in beam optics, component design, and beam quality. Efforts to resolve these problems as they relate to a new generation of linear colliders are under way at several laboratories around the world. We outline criteria for final focus systems and discuss the current state of understanding and resolution of the outstanding problems. We discuss tolerances on alignment, field quality and stability for optical elements, and the implications for beam parameters such as emittance, energy spread , bunch length, and stability in position and energy. Beam-based correction procedures, which in principle can alleviate many of the tolerances, are described. Preliminary results from the Final Focus Test Beam (FFTB) under construction at SLAC are given. Finally, we mention conclusions from operating experience at the Stanford Linear Collider (SLC). (Author) 16 refs., 4 tabs., 6 figs

  19. Final focus systems for linear colliders

    International Nuclear Information System (INIS)

    Helm, R.; Irwin, J.

    1992-08-01

    Final focus systems for linear colliders present many exacting challenges in beam optics, component design, and beam quality. Efforts to resolve these problems as they relate to a new generation of linear colliders are under way at several laboratories around the world. We will outline criteria for final focus systems and discuss the current state of understanding and resolution of the outstanding problems. We will discuss tolerances on alignment, field quality and stability for optical elements, and the implications for beam parameters such as emittance, energy spread, bunch length, and stability in position and energy. Beam-based correction procedures, which in principle can alleviate many of the tolerances, will be described. Preliminary results from the Final Focus Test Beam (FFTB) under construction at SLAC will be given. Finally, we mention conclusions from operating experience at the Stanford Linear Collider (SLC)

  20. Efficient Air Desulfurization Catalysts Derived from Pig Manure Liquefaction Char

    Directory of Open Access Journals (Sweden)

    Rajiv Wallace

    2017-11-01

    Full Text Available Biochar from the liquefaction of pig manure was used as a precursor of H2S desulfurization adsorbents. In its inorganic matter, it contains marked quantities of calcium, magnesium and iron, which are known as hydrogen sulfide oxidation catalysts. The char was used either as-received or mixed with 10% nanographite. The latter was added to increase both the content of the carbon phase and conductivity. ZnCl2 in two different ratios of char to an activation agent (1:1 and 1:2 was used to create the porosity in the carbon phase. The content of the later was between 18–45%. The activated samples adsorbed 144 mg/g H2S. Sulfur was the predominant product of reactive adsorption. Its deposition in the pore system and blockage of the most active pores ceased the materials’ activity. The presence of the catalytic phase was necessary but not sufficient to guarantee good performance. The developed porosity, which can store oxidation products in the resulting composite, is essential for the good performance of the desulfurization process. The surface of the composite with nanographite showed the highest catalytic activity, similar to that of the commercial Midas® carbon catalyst. The results obtained indicate that a high quality reactive adsorbent/catalyst for H2S removal can be obtained from pig manure liquefaction wastes.

  1. Desulfurization Activated Phosphorothioate DNAzyme for the Detection of Thallium.

    Science.gov (United States)

    Huang, Po-Jung Jimmy; Vazin, Mahsa; Liu, Juewen

    2015-10-20

    Thallium (Tl) is a highly toxic heavy metal situated between mercury and lead in the periodic table. While its neighbors have been thoroughly studied for DNA-based sensing, little is known about thallium detection. In this work, in vitro selection of RNA-cleaving DNAzymes is carried out using Tl(3+) as the target metal cofactor. Both normal DNA and phosphorothioate (PS)-modified DNA are tested for this purpose. While no Tl(3+)-dependent DNAzymes are obtained, a DNA oligonucleotide containing a single PS-modified RNA nucleotide is found to cleave by ∼7% by Tl(3+) at the RNA position. The remaining 93% are desulfurized. By hybridization of this PS-modified oligonucleotide with the Tm7 DNAzyme, the cleavage yield increases to ∼40% in the presence of Tl(3+) and Er(3+). Tm7 is an Er(3+)-dependent RNA-cleaving DNAzyme. It cleaves only the normal substrate but is completely inactive using the PS-modified substrate. Tl(3+) desulfurizes the PS substrate to the normal substrate to be cleaved by Tm7 and Er(3+). This system is engineered into a catalytic beacon for Tl(3+) with a detection limit of 1.5 nM, which is below its maximal contamination limit defined by the U.S. Environmental Protection Agency (10 nM).

  2. Experimental research on bypass evaporation tower technology for zero liquid discharge of desulfurization wastewater.

    Science.gov (United States)

    Ma, Shuangchen; Chai, Jin; Wu, Kai; Xiang, Yajun; Jia, Shaoguang; Li, Qingsong

    2018-03-20

    Zero liquid discharge (ZLD) of wastewater has become the trend of environmental governance after the implementation of 'The Action Plan for Prevention and Treatment of Water Pollution' in China, desulfurization wastewater has gained more attention due to its complex composition and heavy metals. However, current technologies for ZLD have some shortcomings such as high cost and insufficient processing capacity, ZLD cannot be achieved actually. This paper proposes a new evaporation drying technology. An independent bypass evaporation tower was built, part of the hot flue gas before the air preheater was introduced into the evaporation tower for desulfurization wastewater evaporation, and the generated dust after evaporation was discharged back to the flue duct before electrostatic precipitator. This paper reports on the performance of desulfurization wastewater evaporation and the characteristics of evaporation products in depth and makes a comprehensive discussion of the impact on the existing equipment based on the self-designed evaporation tower. Research suggests that this technology has high system reliability and little effect on subsequent equipment and provides theoretical and practical data. Due to environmental policies and huge market demand for ZLD of desulfurization wastewater, bypass evaporation tower technology has a great application prospect in the future.

  3. The extent of the influence and flux estimation of volatile mercury from the aeration pool in a typical coal-fired power plant equipped with a seawater flue gas desulfurization system

    International Nuclear Information System (INIS)

    Sun, Lumin; Feng, Lifeng; Yuan, Dongxing; Lin, Shanshan; Huang, Shuyuan; Gao, Liangming; Zhu, Yong

    2013-01-01

    Before being discharged, the waste seawater from the flue gas desulfurization system of coal-fired power plants contains a large amount of mercury, and is treated in aeration pools. During this aeration process, part of the mercury enters the atmosphere, but only very limited impact studies concerning this have been carried out. Taking a typical Xiamen power plant as an example, the present study targeted the elemental mercury emitted from the aeration pool. Concentrations of dissolved gaseous mercury as high as 1.14 ± 0.17 ng·L −1 were observed in the surface waste seawater in the aeration pool, and gaseous elemental mercury (GEM) as high as 10.94 ± 1.89 ng·m −3 was found in the air above the pool. To investigate the area affected by this GEM through air transfer, the total mercury in the dust and topsoil samples around the aeration pool were analyzed. Much higher values were found compared to those at a reference site. Environmental factors other than solar radiation had limited influence on the concentrations of the mercury species in the pool. A simulation device was built in our laboratory to study the flux of mercury from the aeration pool into the air. The results showed that more than 0.59 kg of mercury was released from the aeration pool every year, occupying 0.3% of the total mercury in the waste seawater. The transfer of mercury from water to air during the aeration pool and its environmental influence should not be ignored. - Highlights: ► High concentration of volatile mercury was observed in the aeration pool. ► More than 0.3% of total discharged Hg emitted from the pool into the air. ► Higher aeration rate resulted in more mercury emitted into the air. ► The dust and topsoil around the pool were polluted with the mercury

  4. Final focus system for high intensity beams

    Directory of Open Access Journals (Sweden)

    Enrique Henestroza

    2005-05-01

    Full Text Available The neutralized transport experiment (NTX at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final-focus systems for high perveance heavy ion beams. The final-focus scenario in a heavy ion fusion driver consists of several large aperture quadrupole magnets followed by a drift section in which the beam space charge is neutralized by a plasma. This beam is required to hit a millimeter-sized target spot at the end of the drift section. The objective of the NTX experiments and associated theory and simulations is to study the various physical mechanisms that determine the final spot size (radius r_{s} at a given distance (f from the end of the last quadrupole. In a fusion driver, f is the standoff distance required to keep the chamber wall and superconducting magnets properly protected. The NTX final quadrupole focusing system produces a converging beam at the entrance to the neutralized drift section where it focuses to a small spot. The final spot is determined by the conditions of the beam entering the quadrupole section, the beam dynamics in the magnetic lattice, and the plasma neutralization dynamics in the drift section. The main issues are the control of emittance growth due to high order fields from magnetic multipoles and image fields. In this paper, we will describe the theoretical and experimental aspects of the beam dynamics in the quadrupole lattice, and how these physical effects influence the final beam size. In particular, we present theoretical and experimental results on the dependence of final spot size on geometric aberrations and perveance.

  5. Liquefaction and desulfurization of coal using synthesis gas

    Science.gov (United States)

    Fu, Yuan C.

    1977-03-08

    A process for desulfurizing and liquefying coal by heating said coal at a temperature of 375.degree.-475.degree. C in the presence of a slurry liquid, hydrogen, carbon monoxide, steam, and a catalyst comprising a desulfurization catalyst and an alkali metal salt.

  6. Pressurized fluidized-bed hydroretorting of eastern oil shales. Volume 2, Task 3, Testing of process improvement concepts: Final report, September 1987--May 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This final report, Volume 2, on ``Process Improvement Concepts`` presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). Results of work on electroseparation of shale oil and fines conducted by IIT is included in this report, as well as work conducted by IGT to evaluate the restricted pipe discharge system. The work was conducted as part of the overall program on ``Pressurized Fluidized-Bed Hydroretorting of Eastern Oil Shales.``

  7. Magnesite base desulfurizer of metallurgical physical chemistry research

    Directory of Open Access Journals (Sweden)

    G. D. Liu

    2017-01-01

    Full Text Available This topic put carbon thermal vacuum method in combination with magnesium based desulfurization technology with magnesite reduction of magnesium vapor directly on hot metal desulphurization. This is a new type of desulfurization technology, the retrieval related literature at home and abroad was not reported in the recent ten years, according to the relationship between heat of desulfurizer preparation MgO style content can reach 50 %.It was found that the desulfurizer sample with 50 % MgO content was in accordance with the requirements, without adding flux, but its viscosity did not meet the requirements; adding 1 % flux (CaF2, the sample viscosity was significantly reduced, and about 1 400 °C sample viscosity suitable for hot metal pretreatment desulfurization.

  8. Effects of foaming and antifoaming agents on the performance of a wet flue gas desulfurization pilot plant

    DEFF Research Database (Denmark)

    Qin, Siqiang; Hansen, Brian Brun; Kiil, Søren

    2014-01-01

    Foaming is a common phenomenon in industrial processes, including wet flue gas desulfurization (FGD) plants. A systemic investigation of the influence of two foaming agents, sodium dodecyl sulphate (SDS) and egg white albumin (protein), and two commercial antifoams on a wet FGD pilot plant...... transferring small particles to the foam layer present on top of the slurry in the holding tank. The addition of 0.03 g antifoams/(L slurry) to SDS foam eliminated the foam, but the desulfurization degree remained low. Potential mechanisms for the observed behavior are analyzed. (c) 2014 American Institute...

  9. Microbiological desulfurization and conversion of coal

    International Nuclear Information System (INIS)

    Quigley, D.R.; Stoner, D.L.; Dugan, P.R.

    1991-01-01

    Bio processing of coal is a young and emerging technology. Until the early 1980's it consisted primarily of coal depyritization using Thiobacillus ferro oxidans to either oxidize pyritic sulfur or to alter particle wettability or floatation properties by binding to exposed pyrite inclusions. Since then, other major avenues of research have been pursued. One of these is the microbiologically mediated liquefaction of coal. Initial work indicated that microorganisms were able to transform low rank coal into a black liquid that was later identified as water solubilized by alkaline substances produced by the microbes and could be enhanced by the removal of multi valent cations from coal. Current work at the INEL involves of the identification and characterization of microorganisms that are able to alter the structure of polymeric desulfurization of coal. This work initially focused on the ability of microorganisms to oxidatively remove organic sulfur from model compounds that were representative of those sulfur containing moieties identified as being in coals (e.g., dibenzo thiophene). The work also focused on those organisms that were could remove the organic sulfur without degrading the carbon structure. While some organisms that are able to perform such these reactions will effectively remove organo sulfur from coal. These concerns stem from steric hindrance considerations and the thermodynamically unfavourable nature of reaction. Current work at the INEL involves the isolation and biochemical characterization of microorganisms that are able to desulfurize and solubilized coals that have high organic sulfur contents. (author)

  10. Final Report - Regulatory Considerations for Adaptive Systems

    Science.gov (United States)

    Wilkinson, Chris; Lynch, Jonathan; Bharadwaj, Raj

    2013-01-01

    This report documents the findings of a preliminary research study into new approaches to the software design assurance of adaptive systems. We suggest a methodology to overcome the software validation and verification difficulties posed by the underlying assumption of non-adaptive software in the requirementsbased- testing verification methods in RTCA/DO-178B and C. An analysis of the relevant RTCA/DO-178B and C objectives is presented showing the reasons for the difficulties that arise in showing satisfaction of the objectives and suggested additional means by which they could be satisfied. We suggest that the software design assurance problem for adaptive systems is principally one of developing correct and complete high level requirements and system level constraints that define the necessary system functional and safety properties to assure the safe use of adaptive systems. We show how analytical techniques such as model based design, mathematical modeling and formal or formal-like methods can be used to both validate the high level functional and safety requirements, establish necessary constraints and provide the verification evidence for the satisfaction of requirements and constraints that supplements conventional testing. Finally the report identifies the follow-on research topics needed to implement this methodology.

  11. Catalytic Emulsion Based on Janus Nanosheets for Ultra-Deep Desulfurization.

    Science.gov (United States)

    Xia, Lixin; Zhang, Hairan; Wei, Zhichao; Jiang, Yi; Zhang, Ling; Zhao, Jie; Zhang, Junhui; Dong, Li; Li, Erni; Ruhlmann, Laurent; Zhang, Qian

    2017-02-03

    Catalytic Janus nanosheets were synthesized by using an anion-exchange reaction between heteropolyacids (HPAs) and the modified ionic-liquid (IL) moieties of Janus nanosheets. Their morphology and surface properties were characterized by using SEM, energy-dispersive spectroscopy (EDS), FTIR spectroscopy, and X-ray photoelectron spectroscopy (XPS) studies. Because of their inherent Janus structure, the nanosheets exhibited good amphipathic character with ILs and oil to form a stable ILs-in-oil emulsion. Therefore, these Janus nanosheets can be used as both emulsifiers and catalysts to perform emulsive desulfurization. During this process, sulfur-containing compounds at the interface could be easily oxidized and efficiently removed from a model oil. Application of this Janus emulsion brings an efficient, useful, and green procedure to the desulfurization process. Compared with the desulfurization catalyzed by using HPAs in a conventional two-phase system, the sulfur removal of dibenzothiophene (DBT) achieved in a Janus emulsion system was improved from 68 to 97 % within 1.5 h. Moreover, this emulsion system could be demulsified easily by simple centrifugation to recover both the nanosheets and the ILs. Owing to the good structural stability of the Janus nanosheets, the sulfur removal efficiency of DBT could still reach 99.9 % after the catalytic nanosheets had been recycled at least six times. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Bioprocessing of crude oils and desulfurization using electro-spray reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, E.N.; Borole, A.P.

    1998-07-01

    Biological removal of organic sulfur from petroleum feedstocks offers an attractive alternative to conventional thermochemical treatment due to the mild operating conditions afforded by the biocatalyst. Electro-spray bioreactors were investigated for use in desulfurization due to their reported operational cost savings relative to mechanically agitated reactors and their capability of forming emulsions < 5 {micro}m. Here, the rates dibenzothiophene (DBT) oxidation to 2-hydroxybiphenyl (2-HBP) in hexadecane, by Rhodococcus sp. IGTS8 are compared in the two reactor systems. Desulfurization rates ranged from 1.0 and 5.0 mg 2-HBP/(dry g cells-h), independent of the reactor employed. The batch stirred reactor was capable of forming a very fine emulsion in the presence of the biocatalyst IGTS8, similar to that formed in the electro-spray reactors, presumably due to the fact that the biocatalyst produces its own surfactant. While electro-spray reactors did not prove to be advantageous for the IGTS8 desulfurization system, it may prove advantageous for systems which do not produce surface-active bioagents in addition to being mass transport limited.

  13. Numerical simulation and field test study of desulfurization wastewater evaporation treatment through flue gas.

    Science.gov (United States)

    Deng, Jia-Jia; Pan, Liang-Ming; Chen, De-Qi; Dong, Yu-Quan; Wang, Cheng-Mu; Liu, Hang; Kang, Mei-Qiang

    2014-01-01

    Aimed at cost saving and pollution reduction, a novel desulfurization wastewater evaporation treatment system (DWETS) for handling wet flue gas desulfurization (WFGD) wastewater of a coal-fired power plant was studied. The system's advantages include simple process, and less investment and space. The feasibility of this system has been proven and the appropriate position and number of nozzles, the spray droplet size and flue gas temperature limitation have been obtained by computational fluid dynamics (CFD) simulation. The simulation results show that a longer duct, smaller diameter and higher flue gas temperature could help to increase the evaporation rate. The optimal DWETS design of Shangdu plant is 100 μm droplet sprayed by two nozzles located at the long duct when the flue gas temperature is 130 °C. Field tests were carried out based on the simulation results. The effects of running DWETS on the downstream devices have been studied. The results show that DWETS has a positive impact on ash removal efficiency and does not have any negative impact on the electrostatic precipitator (ESP), flue gas heat exchanger and WFGD. The pH values of the slurry of WFGD slightly increase when the DWETS is running. The simulation and field test of the DWETS show that it is a feasible future technology for desulfurization wastewater treatment.

  14. Final Report: Hydrogen Storage System Cost Analysis

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian David [Strategic Analysis Inc., Arlington, VA (United States); Houchins, Cassidy [Strategic Analysis Inc., Arlington, VA (United States); Huya-Kouadio, Jennie Moton [Strategic Analysis Inc., Arlington, VA (United States); DeSantis, Daniel A. [Strategic Analysis Inc., Arlington, VA (United States)

    2016-09-30

    The Fuel Cell Technologies Office (FCTO) has identified hydrogen storage as a key enabling technology for advancing hydrogen and fuel cell power technologies in transportation, stationary, and portable applications. Consequently, FCTO has established targets to chart the progress of developing and demonstrating viable hydrogen storage technologies for transportation and stationary applications. This cost assessment project supports the overall FCTO goals by identifying the current technology system components, performance levels, and manufacturing/assembly techniques most likely to lead to the lowest system storage cost. Furthermore, the project forecasts the cost of these systems at a variety of annual manufacturing rates to allow comparison to the overall 2017 and “Ultimate” DOE cost targets. The cost breakdown of the system components and manufacturing steps can then be used to guide future research and development (R&D) decisions. The project was led by Strategic Analysis Inc. (SA) and aided by Rajesh Ahluwalia and Thanh Hua from Argonne National Laboratory (ANL) and Lin Simpson at the National Renewable Energy Laboratory (NREL). Since SA coordinated the project activities of all three organizations, this report includes a technical description of all project activity. This report represents a summary of contract activities and findings under SA’s five year contract to the US Department of Energy (Award No. DE-EE0005253) and constitutes the “Final Scientific Report” deliverable. Project publications and presentations are listed in the Appendix.

  15. Multiloop integral system test (MIST): Final report

    International Nuclear Information System (INIS)

    Gloudemans, J.R.

    1991-04-01

    The Multiloop Integral System Test (MIST) is part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock and Wilcox designed plants. MIST is sponsored by the US Nuclear Regulatory Commission, the Babcock ampersand Wilcox Owners Group, the Electric Power Research Institute, and Babcock and Wilcox. The unique features of the Babcock and Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral facilities to address the thermal-hydraulic SBLOCA questions. MIST was specifically designed and constructed for this program, and an existing facility -- the Once Through Integral System (OTIS) -- was also used. Data from MIST and OTIS are used to benchmark the adequacy of system codes, such as RELAP5 and TRAC, for predicting abnormal plant transients. The MIST program is reported in 11 volumes. Volumes 2 through 8 pertain to groups of Phase 3 tests by type; Volume 9 presents inter-group comparisons; Volume 10 provides comparisons between the RELAP5/MOD2 calculations and MIST observations, and Volume 11 (with addendum) presents the later Phase 4 tests. This is Volume 1 of the MIST final report, a summary of the entire MIST program. Major topics include, Test Advisory Group (TAG) issues, facility scaling and design, test matrix, observations, comparison of RELAP5 calculations to MIST observations, and MIST versus the TAG issues. MIST generated consistent integral-system data covering a wide range of transient interactions. MIST provided insight into integral system behavior and assisted the code effort. The MIST observations addressed each of the TAG issues. 11 refs., 29 figs., 9 tabs

  16. Desulfurizing Difluorination Reaction of Benzyl Sulfides Using IF5

    OpenAIRE

    Fukuhara, Tadahito; Hara, Shoji

    2009-01-01

    A desulfurizing difluorination reaction of benzyl sulfides having a functional group such as an ester, a ketone, a nitrile, or an amide was performed by a reaction with IF5. Consequently, gem-difluoro compounds could be obtained selectively.

  17. BWR consolidation system final design report

    International Nuclear Information System (INIS)

    Garner, G.L.; Kelly, M.J.; Larsen, W.R.

    1993-05-01

    Because of delays in the opening of a permanent geologic repository to accept spent fuel from nuclear reactor plants, several utilities are seeking additional off-site storage to avert premature shutdown. Fuel rod consolidation is a proven, viable option for pressurized water reactor (PWR) plants, but until now, no consolidation system addressed boiling water reactor (BWR) spent-fuel assemblies.The purpose of this project, jointly funded by the Empire State Electric Energy Research Company (ESEERCO) and the Electric Power Research Institute (EPRI), is to develop a system for consolidating BWR spent fuel assemblies. This design will provide more efficient storage in reactor spent-fuel pools. The design goal is a 2:1 consolidation of the fuel rods and a minimum 10:1 compaction of the non-fuel bearing components. in addition, the consolidation system must be operationally compatible with BWR reactor plants and be economically viable with other forms of supplementary on-site storage. The work began in Lynchburg, Virginia on May 6, 1991 and concluded on September 30, 1992 with the delivery of the final report. The design achieves all of the project goals. Furthermore, consolidation of BWR spent-fuel assemblies is feasible, compatible with reactor plant operations and potentially the lowest cost option for a utility seeking to add oil-site storage capacity

  18. Molten-Caustic-Leaching (Gravimelt) system integration project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    The objectives of this program were to design, construct, shakedown and operate an integrated MCL test circuit to demonstrate the technical capability of the process for producing a demineralized and desulfurized coal that meets New Source Performance Standards (NSPS), to test process conditions aimed at lower costs, and to deliver product coal. These objectives were met by the procurement, construction, and operation of the integrated test circuit. Shakedown and a 63-test process matrix resulted in the production of about 3,700 pounds of treated coal. Product MCL coal may be used to displace oil in some turbine and diesel engines and may be used in the retrofit of oil-fired boilers. Two high sulfur, high ash coals and one medium sulfur, high ash coal representative of the Eastern United States coal production were processed: Pittsburgh No. 8 (Powhatan No. 6 mine), Kentucky No. 9, and Pittsburgh No. 8 (Blacksville No. 2 mine). Although mild kiln operating conditions (325 to 415{degree}C and 1 to 2.3 hours residence time) and low caustic to coal ratios (1:1 to 3:1) were used, the combination of continuous operation and rigorous exclusion of air from the system allowed the production of MCL coal that had product sulfur content was well below NSPS standards, very low carbonate production, very little volatile losses, and low alkali retention by the product MCL coal. Optimization testing resulted in a product coal containing 0.2 to 0.4 percent sulfur (0.26 to 0.6 lbs SO{sub 2}/million Btu) and 0.15 to 0.5 percent ash with more than 90 percent organic sulfur removal, {approximately}95 percent SO{sub 2} reduction from run-of-mine coal, {approximately}91 percent SO{sub 2} reduction from precleaned process feed coal, and with heat content of about 14,000 Btu per pound.

  19. Producing ammonium sulfate from flue gas desulfurization by-products

    Science.gov (United States)

    Chou, I.-Ming; Bruinius, J.A.; Benig, V.; Chou, S.-F.J.; Carty, R.H.

    2005-01-01

    Emission control technologies using flue gas desulfurization (FGD) have been widely adopted by utilities burning high-sulfur fuels. However, these technologies require additional equipment, greater operating expenses, and increased costs for landfill disposal of the solid by-products produced. The financial burdens would be reduced if successful high-volume commercial applications of the FGD solid by-products were developed. In this study, the technical feasibility of producing ammonium sulfate from FGD residues by allowing it to react with ammonium carbonate in an aqueous solution was preliminarily assessed. Reaction temperatures of 60, 70, and 80??C and residence times of 4 and 6 hours were tested to determine the optimal conversion condition and final product evaluations. High yields (up to 83%) of ammonium sulfate with up to 99% purity were achieved under relatively mild conditions. The optimal conversion condition was observed at 60??C and a 4-hour residence time. The results of this study indicate the technical feasibility of producing ammonium sulfate fertilizer from an FGD by-product. Copyright ?? Taylor & Francis Inc.

  20. Anion-exchange resin-based desulfurization process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sheth, A C; Dharmapurikar, R; Strevel, S D

    1994-01-01

    The following investigations were performed: (1) batch mode screening of eleven(11) commercially available resins and selection of three candidate resins for further evaluation in a fixed-bed setup. (2) Process variables study using three candidate resins in the fixed-bed setup and selection of the ``best`` resin for process economics development. (3) Exhaustion efficiency and solution concentration were found to be inversely related necessitating a trade-off between the resin cost versus the cost of evaporation/concentration of ensuing effluents. (4) Higher concentration of the HCO{sub 3}{sup {minus}} form of active sites over less active CO{sub 3}{sup 2{minus}} form of sites in the resin was believed to be the main reason for the observed increase in the equilibrium capacity of the resin at an elevated static CO{sub 2}-pressure. This Increase in capacity was found to level off around 80--120 psig range. The increase in CO{sub 2}-pressure, however, did not appear to affect the overall ion-exchange kinetics. (5) In the fixed-bed mode, the solution concentration was found to affect the equilibrium capacity of candidate resins. Their relationship was well satisfied by the Langmuir type non-linear equilibrium isotherm. Alternatively, the effect of solution concentration on overall ion-exchange kinetics varied from resin to resin. (6) Product inhibition effect on the resin was observed as an initial increase followed by a significant decrease in the resin`s equilibrium capacity for SO{sub 4}{sup 2{minus}} as the HCO{sub 3}{sup {minus}}/SO{sub 4}{sup 2{minus}} molar ratio in the solution was increased from 0 to 1.0. This ratio, however, did not affect the overall ion-exchange kinetics.

  1. Coal desulfurization by bacterial treatment and column flotation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kawatra, S.K. [Michigan Technological Univ., Houghton, MI (United States)

    1994-06-01

    A review of the literature showed that bacterial leaching, using the microorganism Thiobacillus ferrooxidans, was a very effective technique for removing pyrite from coal, as it could dissolve even the finest pyrite particles without the need for expensive reagents or extreme processing conditions. Unfortunately, bacterial leaching is also rather slow, and so the initial goal of this research was to decrease the leaching time as much as possible. However, this still left the bacteria needing approximately a week to remove half of the pyritic sulfur, and so a faster technique was sought. Since it had been reported in the literature that T. ferrooxidans could be used to depress the flotation of pyrite during froth flotation of coal, this was investigated further. By studying the recovery mechanisms of coal-pyrite in froth flotation, it was found that pyrite was being recovered by entrainment and by locking to coal particles, not by true flotation of hydrophobic pyrite. Therefore, no pyrite depressant could be of any significant benefit for keeping pyrite out of the coal froth product, and it was much more important to prevent entrainment from occurring. Countercurrent flotation columns were invented to essentially eliminate entrainment effects, by washing the froth and reducing mixing of the froth and tailings products. Existing flotation columns tend to be quite simple, and in order to give reasonable product quality they must be very tall (typically 30--45 feet). As a result, they have difficulty in handling the high froth volumes which occur in coal flotation, and are awkward to install in existing plants. The bulk of this project therefore concentrated on developing an improved coal flotation column, and testing it under actual plant conditions.

  2. Biogas desulfurization with a new developed doped activated carbon. 20 month pilot test; Biogasfeinentschwefelung mittels neu entwickelter dotierter Aktivkohle. 20-monatiger Praxistest

    Energy Technology Data Exchange (ETDEWEB)

    Rossow, Silvana; Deerberg, Goerge; Goetze, Toralf; Kanswohl, Norbert; Nelles, Michael [Univ. Rostock (Germany). Lehrstuhl fuer Abfall- und Stoffstromwirtschaft

    2009-05-15

    Doped activated carbon is a special developed activated carbon for the desulfurization of technical gases. Based on its special adsorption properties, it is able to bond a large amount of hydrogen sulfide. By the special manufacturing method it was possible to optimize further the performance for the desulfurization of gases. In a biogas plant with an installed electric capacity of 2 MW the functionality of the doped activated carbon was proofed in a real biogas stream in a 20 month pilot test. The activated carbon was used in a special adsorption system that was tunes on the requirement of the activated carbon and on the site of installation. Because the biogas plant was in the starting period, all the time there were variable operation conditions. In spite of the variable conditions the doped activated carbon shows a permanent complete desulfurization, as in the executed laboratory experiments. By the use of the desulfurization system the concentration of hydrogen sulfide is decreased less than 1 ppm. The prejudices with are often caused by hydrogen sulphide could not identify until now. A positive evidence of the excellent desulfurization is the doubling of the oil lifetime of the block heating station. (orig.)

  3. Improving Enzyme Activity and Broadening Selectivity for Biological Desulfurization and Upgrading of Petroleum Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Abhijeet P. Borole; Choo Y. Hamilton; Karen Miller; Brian Davison; Matthew Grossman; Robert Shong

    2003-05-12

    The objective of this project was to develop improved biocatalysts for desulfurization and upgrading of petroleum feedstocks. The goal was to improve the activity and broaden the selectivity of desulfurization enzymes using directed evolution as a tool as well as to explore the impact of ring-opening on biological desulfurization

  4. Desulfurization performance of azole-based ionic liquids

    Directory of Open Access Journals (Sweden)

    Liubei CHENG

    2017-10-01

    Full Text Available In order to study the addition of functional groups in ionic liquid anion and cation to achieve better absorbing of SO2, the 1,1,3,3-tetramethylguanidine triazole ( is synthesized using 1,1,3,3-tetramethylguanidine and triazole as raw materials. The desulfurization performance of the synthesized is systematically studied. The desulfurization performance and desulfurization mechanism of the are discussed. The results show that the has good performance of desulfurization and regeneration. At the atmospheric pressure, 1 mol of the absorbs 2.964 mol of SO2 at 20 ℃. With the increase of temperature, the desulfurization capacity of the decreases gradually. The molar absorption ratio increases with the increase of SO2 partial pressure, and under the conditions of 130 ℃, the desorption rate of the ionic liquid after saturated adsorption reaches over 95%. The mechanism investigation results show that the interaction of SO2 and is the combination of chemical absorption and physical absorption. The results have a certain reference value to improve the efficiency of flue gas treatment.

  5. LANL environmental restoration site ranking system: System description. Final report

    International Nuclear Information System (INIS)

    Merkhofer, L.; Kann, A.; Voth, M.

    1992-01-01

    The basic structure of the LANL Environmental Restoration (ER) Site Ranking System and its use are described in this document. A related document, Instructions for Generating Inputs for the LANL ER Site Ranking System, contains detailed descriptions of the methods by which necessary inputs for the system will be generated. LANL has long recognized the need to provide a consistent basis for comparing the risks and other adverse consequences associated with the various waste problems at the Lab. The LANL ER Site Ranking System is being developed to help address this need. The specific purpose of the system is to help improve, defend, and explain prioritization decisions at the Potential Release Site (PRS) and Operable Unit (OU) level. The precise relationship of the Site Ranking System to the planning and overall budget processes is yet to be determined, as the system is still evolving. Generally speaking, the Site Ranking System will be used as a decision aid. That is, the system will be used to aid in the planning and budgetary decision-making process. It will never be used alone to make decisions. Like all models, the system can provide only a partial and approximate accounting of the factors important to budget and planning decisions. Decision makers at LANL will have to consider factors outside of the formal system when making final choices. Some of these other factors are regulatory requirements, DOE policy, and public concern. The main value of the site ranking system, therefore, is not the precise numbers it generates, but rather the general insights it provides

  6. LANL environmental restoration site ranking system: System description. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Merkhofer, L.; Kann, A.; Voth, M. [Applied Decision Analysis, Inc., Menlo Park, CA (United States)

    1992-10-13

    The basic structure of the LANL Environmental Restoration (ER) Site Ranking System and its use are described in this document. A related document, Instructions for Generating Inputs for the LANL ER Site Ranking System, contains detailed descriptions of the methods by which necessary inputs for the system will be generated. LANL has long recognized the need to provide a consistent basis for comparing the risks and other adverse consequences associated with the various waste problems at the Lab. The LANL ER Site Ranking System is being developed to help address this need. The specific purpose of the system is to help improve, defend, and explain prioritization decisions at the Potential Release Site (PRS) and Operable Unit (OU) level. The precise relationship of the Site Ranking System to the planning and overall budget processes is yet to be determined, as the system is still evolving. Generally speaking, the Site Ranking System will be used as a decision aid. That is, the system will be used to aid in the planning and budgetary decision-making process. It will never be used alone to make decisions. Like all models, the system can provide only a partial and approximate accounting of the factors important to budget and planning decisions. Decision makers at LANL will have to consider factors outside of the formal system when making final choices. Some of these other factors are regulatory requirements, DOE policy, and public concern. The main value of the site ranking system, therefore, is not the precise numbers it generates, but rather the general insights it provides.

  7. Liquid waste treatment system. Final report

    International Nuclear Information System (INIS)

    Baker, M.N.; Houston, H.M.

    1999-01-01

    Pretreatment of high-level liquid radioactive waste (HLW) at the West Valley Demonstration Project (WVDP) involved three distinct processing operations: decontamination of liquid HLW in the Supernatant Treatment System (STS); volume reduction of decontaminated liquid in the Liquid Waste Treatment System (LWTS); and encapsulation of resulting concentrates into an approved cement waste form in the Cement Solidification System (CSS). Together, these systems and operations made up the Integrated Radwaste Treatment System (IRTS)

  8. Chromatic correction for the final transport system

    International Nuclear Information System (INIS)

    Brown, K.L.; Peterson, J.M.

    1980-01-01

    The final transport and focusing of the heavy-ion beam onto the fusion pellet in vacuum is complicated by several non-linear effects - namely, chromatic (momentum dependent) effects, geometric aberrations, and space-charge forces. This paper gives an example of how the chromatic effects can be nullified, at least to second order. Whether third- or higher-order terms are important is not yet clear. Space-charge effects are important but are not considered here

  9. Desulfurization of Mexican heavy oil by sulfate-reducing bacteria.

    Science.gov (United States)

    Aragon, Perla E; Romero, Jorge; Negrete, Pilar; Sharma, Virender K

    2005-01-01

    Twenty-five mixed cultures of sulfate reducing bacteria (SRB) were isolated from sediment and anaerobic digestors samples, collected at southeast Gulf of Mexico, Pacific Ocean, and wastewater treatment plant, Mexico. The isolated SRB mixed cultures were tested for desulfurization of Mexican heavy oil. Desulfurization activity of SRB was not affected by high level of vanadium in heavy oil. Sediment samples gave better sulfur removal performance than anaerobic digestors samples. The difference in removal efficiency of the two samples is possibly related to the different quantity of SRB strains causing degradation of organic sulfur in heavy oil.

  10. Solar thermal repowering systems integration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dubberly, L. J.; Gormely, J. E.; McKenzie, A. W.

    1979-08-01

    This report is a solar repowering integration analysis which defines the balance-of-plant characteristics and costs associated with the solar thermal repowering of existing gas/oil-fired electric generating plants. Solar repowering interface requirements for water/steam and salt or sodium-cooled central receivers are defined for unit sizes ranging from 50 MWe non-reheat to 350 MWe reheat. Finally balance-of-plant cost estimates are presented for each of six combinations of plant type, receiver type and percent solar repowering.

  11. Solar heating system final design package

    Science.gov (United States)

    1979-01-01

    The system is composed of a warm air collector, a logic control unit and a universal switching and transport unit. The collector was originally conceived and designed as an integrated roof/wall system and therefore provides a dual function in the structure. The collector serves both as a solar energy conversion system and as a structural weather resistant skin. The control unit provides totally automatic control over the operation of the system. It receives input data from sensor probes in collectors, storage and living space. The logic was designed so as to make maximum use of solar energy and minimize use of conventional energy. The transport and switching unit is a high-efficiency air-handling system equipped with gear motor valves that respond to outputs from the control system. The fan unit was designed for maximum durability and efficiency in operation, and has permanently lubricated ball bearings and excellent air-handling efficiency.

  12. The stabilisation of final focus system

    Indian Academy of Sciences (India)

    [8] software package. 3. Demonstration system. A single laser system has been set up, which will allow testing of distance meters, for frequency scanning interferometry (FSI) and fixed frequency interferometry (FFI). So far only FSI tests have been performed. Figure 1. Arrangement of a proposed ATF network, for monitoring ...

  13. Proximity sensor system development. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Haley, D.C. [Oak Ridge National Lab., TN (United States); Pigoski, T.M. [Merrit Systems, Inc. (United States)

    1998-01-01

    Lockheed Martin Energy Research Corporation (LMERC) and Merritt Systems, Inc. (MSI) entered into a Cooperative Research and Development Agreement (CRADA) for the development and demonstration of a compact, modular proximity sensing system suitable for application to a wide class of manipulator systems operated in support of environmental restoration and waste management activities. In teleoperated modes, proximity sensing provides the manipulator operator continuous information regarding the proximity of the manipulator to objects in the workspace. In teleoperated and robotic modes, proximity sensing provides added safety through the implementation of active whole arm collision avoidance capabilities. Oak Ridge National Laboratory (ORNL), managed by LMERC for the United States Department of Energy (DOE), has developed an application specific integrated circuit (ASIC) design for the electronics required to support a modular whole arm proximity sensing system based on the use of capacitive sensors developed at Sandia National Laboratories. The use of ASIC technology greatly reduces the size of the electronics required to support the selected sensor types allowing deployment of many small sensor nodes over a large area of the manipulator surface to provide maximum sensor coverage. The ASIC design also provides a communication interface to support sensor commands from and sensor data transmission to a distributed processing system which allows modular implementation and operation of the sensor system. MSI is a commercial small business specializing in proximity sensing systems based upon infrared and acoustic sensors.

  14. Proximity sensor system development. CRADA final report

    International Nuclear Information System (INIS)

    Haley, D.C.; Pigoski, T.M.

    1998-01-01

    Lockheed Martin Energy Research Corporation (LMERC) and Merritt Systems, Inc. (MSI) entered into a Cooperative Research and Development Agreement (CRADA) for the development and demonstration of a compact, modular proximity sensing system suitable for application to a wide class of manipulator systems operated in support of environmental restoration and waste management activities. In teleoperated modes, proximity sensing provides the manipulator operator continuous information regarding the proximity of the manipulator to objects in the workspace. In teleoperated and robotic modes, proximity sensing provides added safety through the implementation of active whole arm collision avoidance capabilities. Oak Ridge National Laboratory (ORNL), managed by LMERC for the United States Department of Energy (DOE), has developed an application specific integrated circuit (ASIC) design for the electronics required to support a modular whole arm proximity sensing system based on the use of capacitive sensors developed at Sandia National Laboratories. The use of ASIC technology greatly reduces the size of the electronics required to support the selected sensor types allowing deployment of many small sensor nodes over a large area of the manipulator surface to provide maximum sensor coverage. The ASIC design also provides a communication interface to support sensor commands from and sensor data transmission to a distributed processing system which allows modular implementation and operation of the sensor system. MSI is a commercial small business specializing in proximity sensing systems based upon infrared and acoustic sensors

  15. Water-storage-tube systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hemker, P.

    1981-12-24

    Passive solar collection/storage/distribution systems were surveyed, designed, fabricated, and mechanically and thermally tested. The types studied were clear and opaque fiberglass tubes, metal tubes with plastic liners, and thermosyphoning tubes. (MHR)

  16. PV Systems Reliability Final Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lavrova, Olga [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flicker, Jack David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Armijo, Kenneth Miguel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gonzalez, Sigifredo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schindelholz, Eric John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorensen, Neil R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yang, Benjamin Bing-Yeh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The continued exponential growth of photovoltaic technologies paves a path to a solar-powered world, but requires continued progress toward low-cost, high-reliability, high-performance photovoltaic (PV) systems. High reliability is an essential element in achieving low-cost solar electricity by reducing operation and maintenance (O&M) costs and extending system lifetime and availability, but these attributes are difficult to verify at the time of installation. Utilities, financiers, homeowners, and planners are demanding this information in order to evaluate their financial risk as a prerequisite to large investments. Reliability research and development (R&D) is needed to build market confidence by improving product reliability and by improving predictions of system availability, O&M cost, and lifetime. This project is focused on understanding, predicting, and improving the reliability of PV systems. The two areas being pursued include PV arc-fault and ground fault issues, and inverter reliability.

  17. Solar radiation alert system : final report.

    Science.gov (United States)

    2009-03-01

    The Solar Radiation Alert (SRA) system continuously evaluates measurements of high-energy protons made by instruments on GOES satellites. If the measurements indicate a substantial elevation of effective dose rates at aircraft flight altitudes, the C...

  18. Analysis of Hybrid Hydrogen Systems: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

    2010-01-01

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

  19. Final report on the FMIT Control System

    International Nuclear Information System (INIS)

    Johnson, J.A.

    1985-01-01

    The computer control system for the Fusion Materials Irradiation Test Facility (FMIT) prototype accelerator was designed using distributed intelligence driven by a distributed database. The system consists of two minicomputers in the central control room and four microcomputers residing in CAMAC crates located near appropriate subsystems of the accelerator. The system uses single vendor hardware as much as practical in an attempt to minimize the maintenance problems. Local control consoles are an integral part of each node computer to provide subsystem check-out. The main console is located in the central control room and permits one-point operation of the complete control system. Automatic surveillance is provided for each data channel by the node computer with out-of-bounds alarms sent to the main console. Report by exception is used for data logging. This control system has been operational for two years. The computers are too heavily loaded and the operator response is slower than desired. A system upgrade to a faster local-area network has been undertaken and is scheduled to be operational by conference time

  20. National Geoscience Data Repository System. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schiffries, C.M.; Milling, M.E.

    1994-03-01

    The American Geological Institute (AGI) has completed the first phase of a study to assess the feasibility of establishing a National Geoscience Data Repository System to capture and preserve valuable geoscientific data. The study was initiated in response to the fact that billions of dollars worth of domestic geological and geophysical data are in jeopardy of being irrevocably lost or destroyed as a consequence of the ongoing downsizing of the US energy and minerals industry. This report focuses on two major issues. First, it documents the types and quantity of data available for contribution to a National Geoscience Data Repository System. Second, it documents the data needs and priorities of potential users of the system. A National Geoscience Data Repository System would serve as an important and valuable source of information for the entire geoscience community for a variety of applications, including environmental protection, water resource management, global change studies, and basic and applied research. The repository system would also contain critical data that would enable domestic energy and minerals companies to expand their exploration and production programs in the United States for improved recovery of domestic oil, gas, and mineral resources.

  1. Advanced Quasioptical Launcher System. Final Report

    International Nuclear Information System (INIS)

    Neilson, Jeffrey

    2010-01-01

    This program developed an analytical design tool for designing antenna and mirror systems to convert whispering gallery RF modes to Gaussian or HE11 modes. Whispering gallery modes are generated by gyrotrons used for electron cyclotron heating of fusion plasmas in tokamaks. These modes cannot be easily transmitted and must be converted to free space or waveguide modes compatible with transmission line systems.This program improved the capability of SURF3D/LOT, which was initially developed in a previous SBIR program. This suite of codes revolutionized quasi-optical launcher design, and this code, or equivalent codes, are now used worldwide. This program added functionality to SURF3D/LOT to allow creating of more compact launcher and mirror systems and provide direct coupling to corrugated waveguide within the vacuum envelope of the gyrotron. Analysis was also extended to include full-wave analysis of mirror transmission line systems. The code includes a graphical user interface and is available for advanced design of launcher systems.

  2. NKS MOMS. Final report. [Mobile Measurement Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nilssen, J. [Norwegian Radiation Protection Authority (NRPA) (Norway); Aage, H.K. [Danish Emergency Management Agency (DEMA) (Denmark); Palsson, S.E. [Icelandic Radiation Safety Authority (IRSA) (Iceland)

    2013-02-15

    Mobile car-borne measurement systems are an important asset in early phase emergency response in all Nordic countries. However, through the development of the systems in the different countries, there are considerable differences between the systems developed. This complicates Nordic cooperation and mutual assistance in emergency situations. This project aimed to facilitate harmonization of mobile measurement systems between the Nordic countries. The project focused on harmonizing data formats, information exchange and measurement strategies. Although the work done was funded by each member, the project established a good platform for cooperation which will hopefully continue beyond the scope of the project. A two-day seminar was held in May 2012, where all participants presented the current status (equipment, methods used etc.), in addition to invited speakers presenting development within the field of mobile detection and in situ measurements. Exchange of experiences and information on different measurement systems and practises in use was an important part of the seminar. The seminar was followed up by a small workshop during the REFOX exercise in Lund, Sweden, September 2012. Exchange of measurement data from the exercise was facilitated through a workspace proveded by NRPA as part of the MOMS project. The work done in this project will be presented at the NordEx12 seminar in March 2013. (Author)

  3. Sequencing Information Management System (SIMS). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fields, C.

    1996-02-15

    A feasibility study to develop a requirements analysis and functional specification for a data management system for large-scale DNA sequencing laboratories resulted in a functional specification for a Sequencing Information Management System (SIMS). This document reports the results of this feasibility study, and includes a functional specification for a SIMS relational schema. The SIMS is an integrated information management system that supports data acquisition, management, analysis, and distribution for DNA sequencing laboratories. The SIMS provides ad hoc query access to information on the sequencing process and its results, and partially automates the transfer of data between laboratory instruments, analysis programs, technical personnel, and managers. The SIMS user interfaces are designed for use by laboratory technicians, laboratory managers, and scientists. The SIMS is designed to run in a heterogeneous, multiplatform environment in a client/server mode. The SIMS communicates with external computational and data resources via the internet.

  4. Core-in-shell sorbent for hot coal gas desulfurization

    Science.gov (United States)

    Wheelock, Thomas D.; Akiti, Jr., Tetteh T.

    2004-02-10

    A core-in-shell sorbent is described herein. The core is reactive to the compounds of interest, and is preferably calcium-based, such as limestone for hot gas desulfurization. The shell is a porous protective layer, preferably inert, which allows the reactive core to remove the desired compounds while maintaining the desired physical characteristics to withstand the conditions of use.

  5. Comments on "Ceria-Zirconia High-Temperature Desulfurization Sorbents".

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Trnka, Otakar

    2006-01-01

    Roč. 45, č. 4 (2006), s. 1548-1549 ISSN 0888-5885 Institutional research plan: CEZ:AV0Z40720504 Keywords : hydrogen sulfide * desulfurization * cerium sorbent Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.518, year: 2006

  6. Theoretical study of the catalytic desulfurization mechanism of ...

    African Journals Online (AJOL)

    The desulfurization process of compounds implicates two steps. The first step is the adsorption process on the catalytic site and the second, the breaking of the carbon-heteroatom bond leading to the heteroatom elimination. The adsorption process of thiiren have been studied and published in previous works. The results ...

  7. Workshop on sulfur chemistry in flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, W.E. Jr.

    1980-05-01

    The Flue Gas Desulfurization Workshop was held at Morgantown, West Virginia, June 7-8, 1979. The presentations dealt with the chemistry of sulfur and calcium compounds in scrubbers. DOE and EPRI programs in this area are described. Ten papers have been entered individually into EDB and ERA. (LTN)

  8. Mechanical, Hygric and Thermal Properties of Flue Gas Desulfurization Gypsum

    Directory of Open Access Journals (Sweden)

    P. Tesárek

    2004-01-01

    Full Text Available The reference measurements of basic mechanical, thermal and hygric parameters of hardened flue gas desulfurization gypsum are carried out. Moisture diffusivity, water vapor diffusion coefficient, thermal conductivity, volumetric heat capacity and linear thermal expansion coefficient are determined with the primary aim of comparison with data obtained for various types of modified gypsum in the future. 

  9. Laser fusion system design study. Final report

    International Nuclear Information System (INIS)

    1975-01-01

    The following studies were completed: (1) The synthesis of a pointing/control system compatible with existing and advanced laser opto-mechanical configurations. (2) Attainment of the required pointing angle, longitudinal focus, and differential pathlength accuracies. (3) Maximum modularization of the sensor and gimbal assemblies to provide the required accuracies at minimum cost. Detailed information is given on each. (MOW)

  10. DISCUS Interactive System Users' Manual. Final Report.

    Science.gov (United States)

    Silver, Steven S.; Meredith, Joseph C.

    The results of the second 18 months (December 15, 1968-June 30, 1970) of effort toward developing an Information Processing Laboratory for research and education in library science is reported in six volumes. This volume contains: the basic on-line interchange, DISCUS operations, programming in DISCUS, concise DISCUS specifications, system author…

  11. Multimodal Trip Planner System final evaluation report.

    Science.gov (United States)

    2011-05-01

    This evaluation of the Multimodal Trip Planning System (MMTPS) is the culmination of a multi-year project evaluating the development and deployment of a multimodal trip planner in the Chicagoland area between 2004 and 2010. The report includes an ove...

  12. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, July 1 - September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    On September 30, 1996, the U.S. Department of Energy-Morgantown Energy Technology Center and Souther Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled ``Management of Dry Flue Gas Desulfurization By-Products in Underground Mines``. Under the agreement SIUC will develop and demonstrate two technologies for the placement of coal combustion by-products in abandoned underground coal mines, and will assess the environmental impact of these technologies for the management of coal combustion by-products. The two technologies for the underground placement that will be developed and demonstrated are: (1) pneumatic placement, using virtually dry materials, and (2) hydraulic placement, using a ``paste`` mixture of materials with about 70% solids. Phase II of the overall program began April 1, 1996. The principal objective of Phase II is to develop and fabricate the equipment for both the pneumatic and hydraulic placement technologies, and to conduct a surface demonstration-test of both technologies. During the current quarter the main thrust was to develop the equipment necessary for the program. Shop drawings were completed for the pneumatic placement equipment, and purchase orders issued for many of the component parts. The final pneumatic placement system will be assembled in the SIUC Carterville facility.

  13. Power system EMP protection. Final report

    International Nuclear Information System (INIS)

    Marable, J.H.; Barnes, P.R.; Nelson, D.B.

    1975-05-01

    Voltage transients induced in electric power lines and control circuits by the electromagnetic pulse (EMP) from high-altitude nuclear detonations may cause widespread power failure and damage in electric power systems. This report contains a parametric study of EMP power line surges and discusses protective measures to minimize their effects. Since EMP surges have considerably greater rates of rise than lightning surges, recommended standards and test procedures are given to assure that surge arresters protect equipment from damage by EMP. Expected disturbances and damage to power systems are reviewed, and actions are presented which distribution companies can take to counter them. These include backup communications methods, stockpiling of vulnerable parts, repair procedures, and dispatcher actions to prevent blackout from EMP-caused instabilities. A long-range program is presented for improving distributors' protection against EMP. This involves employee training, hardware protection for power and control circuits, and improvement of plans for emergency action. (U.S.)

  14. Photovoltaic systems concept study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1977-04-01

    The following appendices are included: economic theory, electric utilities, and peak load pricing; evaluating the total cost of an on-site solar energy system; derivation of PEPS cost model; PEPS economic analysis model; scenarios; the effect of governmental ''subsidies'' on the nuclear power industry; discussion of energy industry subsidies; extension of the Hottel-Whillier-Bliss model to the analysis of combined photovoltaic/thermal flat plate collectors; analysis of solar-augmented rock-bed/heat pump system; TRNSYS results for Washington, D.C. residence with air collectors, rock-bed storage, and parallel Airesearch heat pump; tabulation of electrical loads for Phoenix, Riverside, and Cleveland using a simplified hourly method; evaporative air coolers; cooling efficiency and electrical consumption; and Hoover Dam operation. (MHR)

  15. Integrated radwaste treatment system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baker, M.N.; Houston, H.M.

    1997-10-01

    In May 1988, the West Valley Demonstration Project (WVDP) began pretreating liquid high-level radioactive waste (HLW). This HLW was produced during spent nuclear fuel reprocessing operations that took place at the Western New York Nuclear Service Center from 1966 to 1972. Original reprocessing operations used plutonium/uranium extraction (PUREX) and thorium extraction (THOREX) processes to recover usable isotopes from spent nuclear fuel. The PUREX process produced a nitric acid-based waste stream, which was neutralized by adding sodium hydroxide to it. About two million liters of alkaline liquid HLW produced from PUREX neutralization were stored in an underground carbon steel tank identified as Tank 8D-2. The THOREX process, which was used to reprocess one core of mixed uranium-thorium fuel, resulted in about 31,000 liters of acidic waste. This acidic HLW was stored in an underground stainless steel tank identified as Tank 8D-4. Pretreatment of the HLW was carried out using the Integrated Radwaste Treatment System (IRTS), from May 1988 until May 1995. This system was designed to decontaminate the liquid HLW, remove salts from it, and encapsulate the resulting waste into a cement waste form that achieved US Nuclear Regulatory Commission (NRC) criteria for low-level waste (LLW) storage and disposal. A thorough discussion of IRTS operations, including all systems, subsystems, and components, is presented in US Department of Energy (DOE) Topical Report (DOE/NE/44139-68), Integrated Radwaste Treatment System Lessons Learned from 2 1/2 Years of Operation. This document also presents a detailed discussion of lessons learned during the first 2 1/2 years of IRTS operation. This report provides a general discussion of all phases of IRTS operation, and presents additional lessons learned during seven years of IRTS operation.

  16. FY2008 Calibration Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, Bret D.; Myers, Tanya L.; Broocks, Bryan T.

    2009-01-01

    The Calibrations project has been exploring alternative technologies for calibration of passive sensors in the infrared (IR) spectral region. In particular, we have investigated using quantum cascade lasers (QCLs) because these devices offer several advantages over conventional blackbodies such as reductions in size and weight while providing a spectral source in the IR with high output power. These devices can provide a rapid, multi-level radiance scheme to fit any nonlinear behavior as well as a spectral calibration that includes the fore-optics, which is currently not available for on-board calibration systems.

  17. Final Report of Strongly Interacting Fermion Systems

    International Nuclear Information System (INIS)

    Wilkins, J. W.

    2001-01-01

    There has been significant progress in three broad areas: (A) Optical properties, (B) Large-scale computations, and (C) Many-body systems. In this summary the emphasis is primarily on those papers that point to the research plans. At the same time, some important analytic work is not neglected, some of it even appearing in the description of large-scale Computations. Indeed one of the aims of such computations is to give new insights which lead to development of models capable of simple analytic or nearly analytic analysis

  18. Imaging systems for biomedical applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Radparvar, M.

    1995-06-06

    Many of the activities of the human body manifest themselves by the presence of a very weak magnetic field outside the body, a field that is so weak that an ultra-sensitive magnetic sensor is needed for specific biomagnetic measurements. Superconducting QUantum Interference Devices (SQUIDs) are extremely sensitive detectors of magnetic flux and have been used extensively to detect the human magnetocardiogram, and magnetoencephalogram. and other biomagnetic signals. In order to utilize a SQUID as a magnetometer, its transfer characteristics should be linearized. This linearization requires extensive peripheral electronics, thus limiting the number of SQUID magnetometer channels in a practical system. The proposed digital SQUID integrates the processing circuitry on the same cryogenic chip as the SQUID magnetometer and eliminates the sophisticated peripheral electronics. Such a system is compact and cost effective, and requires minimal support electronics. Under a DOE-sponsored SBIR program, we designed, simulated, laid out, fabricated, evaluated, and demonstrated a digital SQUID magnetometer. This report summarizes the accomplishments under this program and clearly demonstrates that all of the tasks proposed in the phase II application were successfully completed with confirmed experimental results.

  19. Fractionation of mercury stable isotopes during coal combustion and seawater flue gas desulfurization

    International Nuclear Information System (INIS)

    Huang, Shuyuan; Yuan, Dongxing; Lin, Haiying; Sun, Lumin; Lin, Shanshan

    2017-01-01

    In the current study, fractionation of mercury isotopes during coal combustion and seawater flue gas desulfurization (SFGD) in a coal-fired power plant using a SFGD system was investigated. Fourteen samples were collected from the power plant. The samples were pretreated with a combustion-trapping method and were analyzed with a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS). Compared with the raw coal, the bottom ash was enriched with lighter mercury isotopes with δ 202 Hg values ranging from −0.45 to −0.03‰. The fly ash was enriched with lighter mercury isotopes with δ 202 Hg values ranging from −1.49 to −0.73‰ for Chinese coal and from −1.47 to −0.62‰ for Indonesian coal. The δ 202 Hg of fresh seawater and desulfurized seawater was found to be −1.32 and −0.32‰ respectively. These δ 202 Hg values indicated that the desulfurized seawater was enriched with heavier mercury isotopes. Based upon the calculated results obtained from the mass balance equation, it was suggested that the stack emissions were enriched with lighter mercury isotopes. Mass independent fractionation was observed in most of the samples with a Δ 199 Hg/Δ 201 Hg ratio of approximately 0.96. The results help in improving the understanding of mercury isotope fractionation during coal combustion and SFGD, and are also useful in tracing the mercury emissions from coal fired power plants. - Highlights: • Spread of 1.5‰ was observed in δ 202 Hg values of raw coals and coal related samples. • The δ 202 Hg values were more negative in fly ash than those in the raw coal. • The flue gas had a significant Hg fractionation after desulfurization. • The stack emissions were enriched with lighter isotopes compared with the raw coal.

  20. CHEMICAL ANALYSES OF SODIUM SYSTEMS FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Greenhalgh, W. O.; Yunker, W. H.; Scott, F. A.

    1970-06-01

    BNWL-1407 summarizes information gained from the Chemical Analyses of Sodium Systems Program pursued by Battelle- Northwest over the period from July 1967 through June 1969. Tasks included feasibility studies for performing coulometric titration and polarographic determinations of oxygen in sodium, and the development of new separation techniques for sodium impurities and their subsequent analyses. The program was terminated ahead of schedule so firm conclusions were not obtained in all areas of the work. At least 40 coulometric titrations were carried out and special test cells were developed for coulometric application. Data indicated that polarographic measurements are theoretically feasible, but practical application of the method was not verified. An emission spectrographic procedure for trace metal impurities was developed and published. Trace metal analysis by a neutron activation technique was shown to be feasible; key to the success of the activation technique was the application of a new ion exchange resin which provided a sodium separation factor of 10{sup 11}. Preliminary studies on direct scavenging of trace metals produced no conclusive results.

  1. Condenser inleakage monitoring system development. Final report

    International Nuclear Information System (INIS)

    Kassen, W.R.; Putkey, T.A.; Sawochka, S.G.; Pearl, W.L.; Clouse, M.E.

    1982-09-01

    An instrument/hardware package for air and condenser cooling water inleakage location employing the helium and freon techniques was designed and fabricated. The package consists of design details for tracer gas distribution hardware, injection plenums, and a sample preconditioner and instrument module. Design of the package was based on an evaluation of helium and freon leak detectors and a survey of utility user's experience with the helium and freon techniques. The applicability of the instrument/hardware package to air and cooling water inleakage location was demonstrated at Pacific Gas and Electric Company's Moss Landing Station. The use of calibrated leaks indicated that cooling water leaks down to 1.5 x 10 -4 gpm (0.56 ml/min) and air leaks down to 0.05 cfm were readily detectable with the helium technique, whereas a 4 x 10 -4 gpm (1.5 ml/min) liquid leak was the readily detectable minimum via the freon technique. The field demonstration and in-house detector testing showed the helium technique to be preferable to the freon technique for inleakage location at PWRs, BWRs, and fossil-fueled systems

  2. Buried waste containment system materials. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Weidner, J.R.; Shaw, P.G.

    1997-10-01

    This report describes the results of a test program to validate the application of a latex-modified cement formulation for use with the Buried Waste Containment System (BWCS) process during a proof of principle (POP) demonstration. The test program included three objectives. One objective was to validate the barrier material mix formulation to be used with the BWCS equipment. A basic mix formula for initial trials was supplied by the cement and latex vendors. The suitability of the material for BWCS application was verified by laboratory testing at the Idaho National Engineering and Environmental Laboratory (INEEL). A second objective was to determine if the POP BWCS material emplacement process adversely affected the barrier material properties. This objective was met by measuring and comparing properties of material prepared in the INEEL Materials Testing Laboratory (MTL) with identical properties of material produced by the BWCS field tests. These measurements included hydraulic conductivity to determine if the material met the US Environmental Protection Agency (EPA) requirements for barriers used for hazardous waste sites, petrographic analysis to allow an assessment of barrier material separation and segregation during emplacement, and a set of mechanical property tests typical of concrete characterization. The third objective was to measure the hydraulic properties of barrier material containing a stop-start joint to determine if such a feature would meet the EPA requirements for hazardous waste site barriers.

  3. Transactive Campus Energy Systems: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Corbin, Charles D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Haack, Jereme N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hao, He [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, Woohyun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hostick, Donna J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Akyol, Bora A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Allwardt, Craig H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carpenter, Brandon J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Sen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Guopeng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lutes, Robert G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Makhmalbaf, Atefe [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ngo, Hung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Somasundaram, Sriram [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Underhill, Ronald M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-26

    Transactive energy refers to the combination of economic and control techniques to improve grid reliability and efficiency. The fundamental purpose of transactive energy management is to seamlessly coordinate the operation of large numbers of new intelligent assets—such as distributed solar, energy storage and responsive building loads—to provide the flexibility needed to operate the power grid reliably and at minimum cost, particularly one filled with intermittent renewable generation such as the Pacific Northwest. It addresses the key challenge of providing smooth, stable, and predictable “control” of these assets, despite the fact that most are neither owned nor directly controlled by the power grid. The Clean Energy and Transactive Campus (CETC) work described in this report was done as part of a Cooperative Research and Development Agreement (CRADA) between the U.S. Department of Energy’s Pacific Northwest National Laboratory (PNNL) and the Washington State Department of Commerce (Commerce) through the Clean Energy Fund (CEF). The project team consisted of PNNL, the University of Washington (UW) and Washington State University (WSU), to connect the PNNL, UW, and WSU campuses to form a multi-campus testbed for transaction-based energy management—transactive—solutions. Building on the foundational transactive system established by the Pacific Northwest Smart Grid Demonstration (PNWSGD), the purpose of the project was to construct the testbed as both a regional flexibility resource and as a platform for research and development (R&D) on buildings/grid integration and information-based energy efficiency. This report provides a summary of the various tasks performed under the CRADA.

  4. The completed design of the SLC Final Focus System

    International Nuclear Information System (INIS)

    Murray, J.J.; Brown, K.L.; Fieguth, T.

    1987-02-01

    The design of the SLC Final Focus System has evolved from its initial conceptual design into its final form. This final design is described including a review of the critical decisions influencing the adoption of particular features. The creation of a feasible design has required that these decisions be tempered by practical considerations such as site constraints, correction of optical errors caused by imperfections, and accommodations requested by engineers and particle detector physicists. As this is the first such system to be built, it is hoped that the experience gained will be useful for the design of future systems

  5. Kinetics of Mn-based sorbents for hot coal gas desulfurization. Quarterly progress report, July 15, 1995--September 15, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Hepworth, M.T.

    1995-09-15

    The Morgantown Energy Technology Center (METC) of the U.S. Department of Energy (DOE) is actively pursuing the development of reliable and cost-effective processes to clean coal gasifier gases for application to integrated gasification combined cycle (IGCC) and molten carbonate fuel cell (MCFC) power plants. A large portion of gas cleanup research has been directed towards hot gas desulfurization using Zn-based sorbents. However, zinc titinate sorbents undergo reduction to the metal at temperatures approaching 700{degrees}C. In addition, sulfate formation during regeneration leads to spalling of reactive 293 surfaces. Due to zinc-based sorbent performance, METC has shown interest in formulating and testing manganese-based sorbents. Westmoreland and Harrison evaluated numerous candidate sulfur sorbents and identified Mn as a good candidate. Later, Turkdogan and Olsson tested manganese-based sorbents which demonstrated superior desulfurization capacity under high temperatures, and reducing conditions. Recently, Ben-Slimane and Hepworth conducted several studies on formulating Mn-sorbents and desulfurizing a simulated fuel gas. Although thermodynamics predicts higher over-pressures with Mn verses Zn, under certain operating conditions Mn-based sorbents may obtain < 20 ppmv. In addition, the manganese-sulfur-oxygen (Mn-S-O) system does not reduce to the metal under even highly reducing gases at high temperatures (550-900{degrees}C). Currently, many proposed IGCC processes include a water quench prior to desulfurization. This is for two reasons; limitations in the process hardware (1000{degrees}C), and excessive Zn-based sorbent loss (about 700{degrees}C). With manganese the water quench is obviated due to sorbent loss, as Mn-based sorbents have been shown to retain reactivity under cycling testing at 900{degrees}C. This reduces system hardware, and increases thermal efficiency while decreasing the equilibrium H{sub 2}S over-pressure obtainable with a manganese sorbent.

  6. Laser fusion systems design study. Final technical report

    International Nuclear Information System (INIS)

    1975-06-01

    This document is an addendum to Perkin-Elmer Report No. 12486, Final Technical Report, Laser Fusion System Analysis. Contained herein are the budgetary cost estimates prepared for the baseline design described in the Final Technical Report. Cost tradeoffs performed during the study are covered. (U.S.)

  7. General method for final focus system design for circular colliders

    Directory of Open Access Journals (Sweden)

    Riccardo de Maria

    2008-03-01

    Full Text Available Colliders use final focus systems to reduce the transverse beam sizes at the interaction point in order to increase collision event rates. The maximum focal strength (gradient of the quadrupoles, and the maximum beam size in them, together limit the beam size reduction that is possible. The goal of a final focus system design is to find the best compromise between quadrupole aperture and quadrupole gradient, for the magnet technology that is used. This paper develops a design method that identifies the intrinsic limitations of a final focus system, validates the results of the method against realistic designs, and reports its application to the upgrade of the Large Hadron Collider final focus.

  8. Use of carbonate rocks for flue gas desulfurization: Reactive dissolution of limestone particles

    International Nuclear Information System (INIS)

    Blasio, Cataldo De; Mäkilä, Ermei; Westerlund, Tapio

    2012-01-01

    Sedimentary rocks, such as limestone, are widely utilized in flue gas desulfurization (FGD) processes because of their ability to form sulfur compounds. The most common system adopted for FGD is the wet scrubbing process, in which the dissolution rate of sedimentary rocks represents one of the most important factors. Evaluation of the dissolution and the reactivity of solid particles involved is therefore a key factor for FGD process design and plant operation. The rate of dissolution affects the cost of makeup and waste disposal. For this reason a method to test different qualities of raw materials can give us a better understanding of the desulfurization process and reasonable economical effects. In the present work the dissolution of carbonate rocks was investigated by utilizing hydrochloric acid and the mass transport phenomena involved in batch stirred tank reactors (BSTRs) were modeled. By evaluating the ratio of convective to diffusive mass transport and the ratio of momentum and mass diffusivity, it was possible to relate the quality of raw materials in terms of a defined Time Of Exposure (TOE). The model involved takes into account the variation of the particle size distribution derived from the allocation of the scattered light energy using the Fraunhofer diffraction theory. Improvements from previous studies were done .

  9. Natural desulfurization in coal-fired units using Greek lignite.

    Science.gov (United States)

    Konidaris, Dimitrios N

    2010-10-01

    This paper analyzes the natural desulfurization process taking place in coal-fired units using Greek lignite. The dry scrubbing capability of Greek lignite appears to be extremely high under special conditions, which can make it possible for the units to operate within the legislative limits of sulfur dioxide (SO2) emissions. According to this study on several lignite-fired power stations in northern Greece, it was found that sulfur oxide emissions depend on coal rank, sulfur content, and calorific value. On the other hand, SO2 emission is inversely proportional to the parameter gammaCO2(max), which is equal to the maximum carbon dioxide (CO2) content by volume of dry flue gas under stoichiometric combustion. The desulfurization efficiency is positively correlated to the molar ratio of decomposed calcium carbonate to sulfur and negatively correlated to the free calcium oxide content of fly ash.

  10. Enzymatic desulfurization of coal. Fifth quarterly report, June 16--September 15, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V. [DynaGen, Inc., Cambridge, MA (United States); Marquis, J.K. [Boston Univ., MA (United States). School of Medicine

    1989-11-07

    Our experimental approach focuses on the use of enzymes which catalyze the addition of oxygen to organic compounds. In tailoring the application of these enzymes to coal processing, we are particularly interested in ensuring that oxidation occurs at sulfur and not at carbon-carbon bonds. Previous studies with DBT have shown that the reaction most frequently observed in microbial oxidative pathways is one in which DBT is oxidized at ring carbons. These reactions, as we have said, are accompanied by a considerable decrease in the energy content of the compound. In addition, microbial pathways have been identified in which the sulfur atom is sequentially oxidized to sulfoxide, to sulfone, to sulfonate, and finally to sulfuric acid. In this case, the fuel value of the desulfurized compounds is largely retained. We are evaluating the potential of commercially available enzymes to selectively catalyze oxidation at sulfur.

  11. Enzymatic desulfurization of coal. Sixth quarterly report, September 16--December 15, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1989-12-14

    Our experimental approach focuses on the use of enzymes which catalyze the addition of oxygen to organic compounds., In tailoring the application of these enzymes to coal processing, we are particularly interested in ensuring that oxidation occurs at sulfur and not at carbon-carbon bonds. Previous studies with DBT have shown that the reaction most frequently observed in microbial oxidative pathways is one in which DBT is oxidized at ring carbons. These reactions, as we have said, are accompanied by a considerable decrease in the energy content of the compound. In addition, microbial pathways have been identified in which the sulfur atom is sequentially oxidized to sulfoxide, to sulfone, to sulfonate, and finally to sulfuric acid. In this case, the fuel value of the desulfurized compounds is largely retained. We are evaluating the potential of commercially available enzymes to perform this function.

  12. Model validation studies of solar systems, Phase III. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, L.J.; Winn, C.B.

    1978-12-01

    Results obtained from a validation study of the TRNSYS, SIMSHAC, and SOLCOST solar system simulation and design are presented. Also included are comparisons between the FCHART and SOLCOST solar system design programs and some changes that were made to the SOLCOST program. Finally, results obtained from the analysis of several solar radiation models are presented. Separate abstracts were prepared for ten papers.

  13. Use of Flue Gas Desulfurization (FGD) Gypsum as a Heavy Metal Stabilizer in Contaminated Soils

    Science.gov (United States)

    Flue Gas Desulfurization (FGD) gypsum is a synthetic by-product generated from the flue gas desulfurization process in coal power plants. It has several beneficial applications such as an ingredient in cement production, wallboard production and in agricultural practice as a soil...

  14. Inhibition of carbon disulfide on bio-desulfurization in the process of ...

    African Journals Online (AJOL)

    Biological desulfurization is a novel technology for the removal of hydrogen sulfide from some biogas or sour gas, in which there are always a certain amounts of carbon disulfide together with much hydrogen sulfide. Nowadays, carbon disulfide is found to have negative effect on the biological desulfurization, but seldom ...

  15. Progress on flue gas desulfurization and denitration with electron beam irradiation in CAEP

    International Nuclear Information System (INIS)

    Ren Min; Wang Baojian; Yang Ruizhuang; Huang Wenfeng; He Xiaohai; Mao Benjiang

    2005-01-01

    The first pilot plant with electron beam irradiation for desulfurization and denitration of flue gas in China and the experimental results based on the pilot plant are briefly introduced in this paper. The FGD (flue gas desulfurization) demonstration installation designed by CAEP (China Academy of Engineering Physics) in Beijing Jingfeng Thermal Powe Co., Ltd. is recommended. (author)

  16. Evaporation and crystallization of a droplet of desulfurization wastewater from a coal-fired power plant

    International Nuclear Information System (INIS)

    Liang, Zhengxing; Zhang, Li; Yang, Zhongqing; Qiang, Tang; Pu, Ge; Ran, Jingyu

    2017-01-01

    Highlights: • Evaporation and crystallization characteristics of the droplets of desulfurization wastewater. • TGA and DSC methods were used to investigate the evaporation and crystallization processes. • Evaporation and crystallization rates increase with the increase of temperature increasing rate. • Increasing volume of the droplet increases the evaporation rate, but decreases the crystallization rate. • Structure of the crystals changes significantly when the temperature increasing rate and the volume of the droplet change. - Abstract: Relationship between evaporation and crystallization characteristics of a droplet of desulfurization wastewater from a coal-fired power plant and some operating conditions was studied experimentally using a thermogravimetric analyzer (TGA) with differential scanning calorimetry (DSC) function and a scanning electron microscope (SEM). The results shows that, between 15 °C/min and 45 °C/min, a higher temperature increasing rate leads to higher evaporation and crystallization rates. The increment in the evaporation rate, caused by the same increment of temperature increasing rate, is larger, when the temperature increasing rate is lower. In addition, the final temperatures, ranging from 90 °C to 150 °C, have little impact on the evaporation and crystallization rates of the 0.5 μL droplet. Ultimately, for the droplets, ranging from 0.2 μL to 2.5 μL, evaporation rate increases with increasing volumes of the droplets, but the crystallization rate decreases. From the SEM results, it can be observed that the quantity of cracks on the surface of the crystals also declines with the increase in volumes. Furthermore, the Stefan flow becomes a significant and unneglectable factor in order to decrease the evaporation rate at the end of the evaporation period.

  17. Plant systems/components modularization study. Final report. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-01

    The final results are summarized of a Plant Systems/Components Modularization Study based on Stone and Webster's Pressurized Water Reactor Reference Design. The program has been modified to include evaluation of the most promising areas for modular consideration based on the level of the Sundesert Project engineering design completion and the feasibility of their incorporation into the plant construction effort.

  18. A conceptual design of Final Focus Systems for linear colliders

    International Nuclear Information System (INIS)

    Brown, K.L.

    1987-06-01

    Linear colliders are a relatively recent development in the evolution of particle accelerators. This report discusses some of the approaches that have been considered for the design of Final Focus Systems to demagnify the beam exiting from a linac to the small size suitable for collisions at the interaction point. The system receiving the most attention is the one adopted for the SLAC Linear Collider. However, the theory and optical techniques discussed should be applicable to the design efforts for future machines

  19. A RECIPE FOR LINEAR COLLIDER FINAL FOCUS SYSTEM DESIGN

    International Nuclear Information System (INIS)

    Seryi, Andrei

    2003-01-01

    The design of Final Focus systems for linear colliders is challenging because of the large demagnifications needed to produce nanometer-sized beams at the interaction point. Simple first- and second-order matrix matching have proven insufficient for this task, and minimization of third- and higher-order aberrations is essential. An appropriate strategy is required for the latter to be successful. A recipe for Final Focus design, and a set of computational tools used to implement this approach, are described herein. An example of the use of this procedure is given

  20. Plutonium Protection System (PPS). Volume 2. Hardware description. Final report

    International Nuclear Information System (INIS)

    Miyoshi, D.S.

    1979-05-01

    The Plutonium Protection System (PPS) is an integrated safeguards system developed by Sandia Laboratories for the Department of Energy, Office of Safeguards and Security. The system is designed to demonstrate and test concepts for the improved safeguarding of plutonium. Volume 2 of the PPS final report describes the hardware elements of the system. The major areas containing hardware elements are the vault, where plutonium is stored, the packaging room, where plutonium is packaged into Container Modules, the Security Operations Center, which controls movement of personnel, the Material Accountability Center, which maintains the system data base, and the Material Operations Center, which monitors the operating procedures in the system. References are made to documents in which details of the hardware items can be found

  1. Simulated coal gas MCFC power plant system verification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-30

    The objective of the main project is to identify the current developmental status of MCFC systems and address those technical issues that need to be resolved to move the technology from its current status to the demonstration stage in the shortest possible time. The specific objectives are separated into five major tasks as follows: Stack research; Power plant development; Test facilities development; Manufacturing facilities development; and Commercialization. This Final Report discusses the M-C power Corporation effort which is part of a general program for the development of commercial MCFC systems. This final report covers the entire subject of the Unocal 250-cell stack. Certain project activities have been funded by organizations other than DOE and are included in this report to provide a comprehensive overview of the work accomplished.

  2. Columbia River system operation review. Final environmental impact statement

    International Nuclear Information System (INIS)

    1995-11-01

    This Appendix C of the Final Environmental Impact Statement for the Columbia River System discusses impacts on andromous fish and juvenile fish transportation. The principal andromous fish in the Columbia basin include salmonid species (Chinook, coho, and sockeye salmon, and steelhead) and nonsalmoinid andromous species (sturgeon, lamprey, and shad). Major sections in this document include the following: background, scope and process; affected environment for salmon and steelhead, shaded, lamprey, sturgeon; study methods; description of alternatives: qualitative and quantitative findings

  3. Final report for TMX-U systems support

    International Nuclear Information System (INIS)

    1985-01-01

    This final report is for the TMX-U RF systems development subcontract with Lawrence Livermore National Laboratory (LLNL). This program was initiated on July 1, 1983 and extended through September 30, 1985. This program was concerned with the development of RF systems to meet the objectives of the TMX-U mirror program at LLNL. To accomplish this the following areas were studied during the course of this contract: (1) Ion Cyclotron Heating, (2) Electron Cyclotron Heating, (3) Drift Pumping, (4) Plasma Modeling, (5) Neutral Beam Heating, and (6) Neutral Gas transport and fueling. The key results of these activities are reported

  4. Anion-exchange resin-based desulfurization process

    Energy Technology Data Exchange (ETDEWEB)

    Sheth, A.C.; Strevel, S.D.; Dharmapurikar, R.

    1992-01-01

    Under the current grant, the University of Tennessee Space Institute (UTSI) will carry out the bench scale evaluation and further development of the anion-exchange resin-based desulfurization concept to desulfurize alkali metal sulfates. This concept has been developed and patented by UTSI under US Patent No. 4,917,874. The developmental program proposed under this DOE grant includes screening of commercially available resins to select three candidate resins for further study. These three resins will undergo a series of experiments designed to test the resins' performance under different process conditions (including the use of spent MHD seed material). The best of these resins will be used in optimizing the regeneration step and in testing the effects of performance enhancers. The process schematic developed from the results will be used to estimate the related economics. During this reporting period, October 1, 1991 to September 30, 1992, analysis of batch mode screening experiments was completed to select three candidate resins for process variables study in the fixed-bed set-up. This setup was modified and the experiments were carded out to evaluate effects of major process variables. The analysis of fixed-bed experiments is going on and we have also started simple batch mode experiments to identify desirable conditions for resin regeneration step. We have also started simple process engineering type calculations to determine the trade-off between the solution concentration and the resulting evaporation/concentration load.

  5. Advanced sulfur control concepts for hot-gas desulfurization technology

    International Nuclear Information System (INIS)

    Lopez Ortiz, A.; Harrison, D.P.; Groves, F.R.; White, J.D.; Zhang, S.; Huang, W.N.; Zeng, Y.

    1998-01-01

    This research project examined the feasibility of a second generation high-temperature coal gas desulfurization process in which elemental sulfur is produced directly during the sorbent regeneration phase. Two concepts were evaluated experimentally. In the first, FeS was regenerated in a H2O-O2 mixture. Large fractions of the sulfur were liberated in elemental form when the H2O-O2 ratio was large. However, the mole percent of elemental sulfur in the product was always quite small (<<1%) and a process based on this concept was judged to be impractical because of the low temperature and high energy requirements associated with condensing the sulfur. The second concept involved desulfurization using CeO2 and regeneration of the sulfided sorbent, Ce2O2S, using SO2 to produce elemental sulfur directly. No significant side reactions were observed and the reaction was found to be quite rapid over the temperature range of 500C to 700C. Elemental sulfur concentrations (as S2) as large as 20 mol% were produced. Limitations associated with the cerium sorbent process are concentrated in the desulfurization phase. High temperature and highly reducing coal gas such as produced in the Shell gasification process are required if high sulfur removal efficiencies are to be achieved. For example, the equilibrium H2S concentration at 800C from a Shell gas in contact with CeO2 is about 300 ppmv, well above the allowable IGCC specification. In this case, a two-stage desulfurization process using CeO2 for bulk H2S removal following by a zinc sorbent polishing step would be required. Under appropriate conditions, however, CeO2 can be reduced to non-stoichiometric CeOn (n<2) which has significantly greater affinity for H2S. Pre-breakthrough H2S concentrations in the range of 1 ppmv to 5 ppmv were measured in sulfidation tests using CeOn at 700C in highly reducing gases, as measured by equilibrium O2 concentration, comparable to the Shell gas. Good sorbent durability was indicated in a

  6. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT-GAS DESULFURIZATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    A. LOPEZ ORTIZ; D.P. HARRISON; F.R. GROVES; J.D. WHITE; S. ZHANG; W.-N. HUANG; Y. ZENG

    1998-10-31

    This research project examined the feasibility of a second generation high-temperature coal gas desulfurization process in which elemental sulfur is produced directly during the sorbent regeneration phase. Two concepts were evaluated experimentally. In the first, FeS was regenerated in a H2O-O2 mixture. Large fractions of the sulfur were liberated in elemental form when the H2O-O2 ratio was large. However, the mole percent of elemental sulfur in the product was always quite small (<<1%) and a process based on this concept was judged to be impractical because of the low temperature and high energy requirements associated with condensing the sulfur. The second concept involved desulfurization using CeO2 and regeneration of the sulfided sorbent, Ce2O2S, using SO2 to produce elemental sulfur directly. No significant side reactions were observed and the reaction was found to be quite rapid over the temperature range of 500°C to 700°C. Elemental sulfur concentrations (as S2) as large as 20 mol% were produced. Limitations associated with the cerium sorbent process are concentrated in the desulfurization phase. High temperature and highly reducing coal gas such as produced in the Shell gasification process are required if high sulfur removal efficiencies are to be achieved. For example, the equilibrium H2S concentration at 800°C from a Shell gas in contact with CeO2 is about 300 ppmv, well above the allowable IGCC specification. In this case, a two-stage desulfurization process using CeO2 for bulk H2S removal following by a zinc sorbent polishing step would be required. Under appropriate conditions, however, CeO2 can be reduced to non-stoichiometric CeOn (n<2) which has significantly greater affinity for H2S. Pre-breakthrough H2S concentrations in the range of 1 ppmv to 5 ppmv were measured in sulfidation tests using CeOn at 700°C in highly reducing gases, as measured by equilibrium O2 concentration, comparable to the Shell gas. Good sorbent durability was indicated in

  7. Method for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    Science.gov (United States)

    Grindley, Thomas

    1989-01-01

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600.degree. to 1800.degree. F. and are partially quenched with water to 1000.degree. to 1200.degree. F. before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime/limestone.

  8. Hot-Gas Desulfurization with Sulfur Recovery

    International Nuclear Information System (INIS)

    Portzer, Jeffrey W.; Damle, Ashok S.; Gangwal, Santosh K.

    1997-01-01

    The objective of this study is to develop a second generation HGD process that regenerates the sulfided sorbent directly to elemental sulfur using SO 2 , with minimal consumption of coal gas. The goal is to have better overall economics than DSRP when integrated with the overall IGCC system

  9. Optimized Ultrasound-Assisted Oxidative Desulfurization Process of Simulated Fuels over Activated Carbon-Supported Phosphotungstic Acid

    Directory of Open Access Journals (Sweden)

    Peniel Jean Gildo

    2018-01-01

    Full Text Available Recent technological advancements respond to the call to minimize/eliminate emissions to the atmosphere. However, on the average, fuel oils which is one of the major raw materials, is found to increase in sulfur concentration due to a phenomenon called thermal maturation. As such, a deeper desulfurization process is needed to obtain low/ultra-low sulfur fuel oils. In the present study, the ultrasound assisted oxidative desulfurization (UAOD processes using the H2O2 and HPW-AC oxidizing system applied to simulated fuel (~2800 ppm sulfur in the form of dibenzothiophene, benzothiophene, and thiophene dissolved in toluene, were optimized. After the pre-saturation of the HPW-AC with the simulated fuel, H2O2 was added just before the reaction was commenced under ultrasonic irradiation. After the application of both 2k-factorial design of experiment for screening and Face-Centered Design of Experiment for optimization, it was found that 25.52 wt% of H2O2 concentration, 983.9 mg of catalyst dose, 9.52 mL aqueous phase per 10 mL of the organic phase and 76.36 minutes of ultrasonication time would render 94.74% oxidation of the sulfur compounds in the simulated fuel. After the application of the optimized parameters to kerosene and employing a 4-cycle extraction using acetonitrile, 99% of the original sulfur content were removed from the kerosene using the UAOD optimized parameters. The desulfurization process resulted in a low-sulfur kerosene which retained its basic fuel properties such as density, viscosity and calorific value.

  10. Effect of trace metals and sulfite oxidation of adipic acid degradation in FGD systems. Final report Dec 81-May 82

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, J.B.; Terry, J.C.; Schubert, S.A.; Utley, B.L.

    1982-12-01

    The report gives results of the measurement of the adipic acid degradation rate in a bench-scale flue gas desulfurization (FGD) system, designed to simulate many of the important aspects of full-scale FGD systems. Results show that the adipic acid degradation rate depends on the sulfite oxidation rate, the adipic acid concentration, the presence of manganese in solution, and temperature. The degradation rate is also affected by pH, but only when manganese is present. Adipic acid degradation products identified in the liquid phase include valeric, butyric, propionic, succinic, and glutaric acids. When manganese was present, the predominant degradation products were succinic and glutaric acids. Analysis of solids from the bench scale tests shows large concentrations of coprecipitated adipic acid in low oxidation sulfite solids. By contrast, low quantities of coprecipitated adipic acid were found in high oxidation gypsum solids.

  11. Confined zone dispersion flue gas desulfurization demonstration

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This is the fifth quarterly report for this project. This project is divided into three phases. Phase 1, which has been completed, involved design, engineering, and procurement for the CZD system, duct and facility modifications, and supporting equipment. Phase 2, also completed, included equipment acquisition and installation, facility construction, startup, and operator training for parametric testing. Phase 3 broadly covers testing, operation and disposition, but only a portion of Phase 3 was included in Budget Period 1. That portion was concerned with parametric testing of the CZD system to establish the optimum conditions for an extended, one-year, continuous demonstration. As of December 31, 1991, the following goals have been achieved. (1) Nozzle Selection - A modified Spraying Systems Company (SSC) atomizing nozzle has been selected for the one-year continuous CZD demonstration. (2) SO[sub 2] and NO[sub x] Reduction - Preliminary confirmation of 50% SO[sub 2] reduction has been achieved, but the NO[sub x] reduction target cannot be confirmed at this time. (3) Lime Selection - Testing indicated an injection rate of 40 to 50 gallons per minute with a lime slurry concentration of 8 to 10% to achieve 50% SO[sub 2] reduction. There has been no selection of the lime to be used in the one year demonstration. (4) ESP Optimization - Tests conducted to date have shown that lime injection has a very beneficial effect on ESP performance, and little adjustment may be necessary. (5) SO[sub 2] Removal Costs - Testing has not revealed any significant departure from the bases on which Bechtel's original cost estimates (capital and operating) were prepared. Therefore, SO[sub 2] removal costs are still expected to be in the range of $300/ton or less.

  12. Research report of FY 1997 on the environmentally acceptable coal utilization system introduction support project. Demonstration project on simplified desulfurizers; 1997 nendo seika hokokusho. Kankyo chowagata sekitan riyo system donyu shien jigyo (kan`i datsuryu setsubi ni kakawaru jissho jigyo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    To reduce SOx with coal utilization, a desulfurizer is introduced in Thailand as diffusion activities in the demonstration program. The purpose is to reduce the environmental pollutants. For this desulfurizer, lime mud mainly composed of lime stone is used as an absorber. SO2 in the flue gas is absorbed by the slurry of lime mud, to form calcium sulfite. The calcium sulfite blown in the bottom of recycling tank is oxidized by oxygen in the air, to form gypsum. The gypsum is recovered as a by-product. In this fiscal year, a feeder of lime stone, spray nozzles, and various analysis apparatuses were supplied. Supervisors for electric instrumentation/control were also dispatched as well as for main body construction, to carry out the instrumentation setting works, check of sequences, and adjustment of apparatuses. After the test operation, supervisors for the demonstration operation were dispatched up to March 1998, to conduct the cooperation works between Japan and Thailand sides. Thus, successful and successive demonstration operation was confirmed. 21 figs., 6 tabs.

  13. Particle emission measurement campaign for biomass heating systems. Final report

    International Nuclear Information System (INIS)

    2009-10-01

    This study aims at assessing the energetic and environmental performance of operating biomass heating systems, more particularly with respect to regulatory and required limit values of particle emissions. The measurement campaign concerned 14 biomass heating installations of less than 4 MW equipped with either a cyclone-type de-duster, or a sleeve filter, or electro-filters. The report discusses the measured parameters (wood and ash analysis, atmospheric releases) and the applied methodology (sampling and measurements). It describes the methodology used to compute energetic and environmental performance (efficiency, load rate, emission factors), and finally discusses the obtained results

  14. Limestone FGD systems data book. Final report. [25 units: location, capacity, installation data, coal (calorific value, ash, sulfur content), particulate control system and design efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E.O.; Blythe, G.M.; Cannell, A.L.; Meadows, M.L.; Swenson, D.O.

    1983-03-01

    Selecting and installing a flue gas desulfurization (FGD) can be a difficult task for the utility engineer. Often, the technology is unfamiliar and the array of alternatives disconcerting. Approximately 33,000 MW of FGD systems are now operating and another 39,000 MW are planned or under construction. With the current EPA regulations requiring an FGD system on essentially every new coal-fired utility generating unit, the ability to decide on the most advantageous FGD system on technical, environmental, and economic bases is critical to the success of the unit and can result in substantial improvements in the reliability of the system. This manual presents discussions of the chemical processes involved in SO/sub 2/ removal using limestone, process control methods, mechanical component design, and methods of requesting and evaluating proposals. The discussion of mechanical components includes numerous examples of existing utility installations and problems.

  15. Coal desulfurization in a rotary kiln combustor

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, J.T. Jr.

    1990-08-15

    BCR National Laboratory (BCRNL) has initiated a project aimed at evaluating the technical and economic feasibility of using a rotary kiln, suitably modified, to burn Pennsylvania anthracite wastes, co-fired with high-sulfur bituminous coal. Limestone will be injected into the kiln for sulfur control, to determine whether high sulfur capture levels can be achieved with high sorbent utilization. The principal objectives of this work are: (1) to prove the feasibility of burning anthracite refuse, with co-firing of high-sulfur bituminous coal and with limestone injection for sulfur emissions control, in a rotary kiln fitted with a Universal Energy International (UEI) air injector system; (2) to determine the emissions levels of SO{sub x} and NO{sub x} and specifically to identify the Ca/S ratios that are required to meet New Source Performance Standards; (3) to evaluate the technical and economic merits of a commercial rotary kiln combustor in comparison to fluidized bed combustors; and, (4) to ascertain the need for further work, including additional combustion tests, prior to commercial application, and to recommend accordingly a detailed program towards this end.

  16. Numerical Investigation of Desulfurization Kinetics in Gas-Stirred Ladles by a Quick Modeling Analysis Approach

    Science.gov (United States)

    Cao, Qing; Nastac, Laurentiu; Pitts-Baggett, April; Yu, Qiulin

    2018-03-01

    A quick modeling analysis approach for predicting the slag-steel reaction and desulfurization kinetics in argon gas-stirred ladles has been developed in this study. The model consists of two uncoupled components: (i) a computational fluid dynamics (CFD) model for predicting the fluid flow and the characteristics of slag-steel interface, and (ii) a multicomponent reaction kinetics model for calculating the desulfurization evolution. The steel-slag interfacial area and mass transfer coefficients predicted by the CFD simulation are used as the processing data for the reaction model. Since the desulfurization predictions are uncoupled from the CFD simulation, the computational time of this uncoupled predictive approach is decreased by at least 100 times for each case study when compared with the CFD-reaction kinetics fully coupled model. The uncoupled modeling approach was validated by comparing the evolution of steel and slag compositions with the experimentally measured data during ladle metallurgical furnace (LMF) processing at Nucor Steel Tuscaloosa, Inc. Then, the validated approach was applied to investigate the effects of the initial steel and slag compositions, as well as different types of additions during the refining process on the desulfurization efficiency. The results revealed that the sulfur distribution ratio and the desulfurization reaction can be promoted by making Al and CaO additions during the refining process. It was also shown that by increasing the initial Al content in liquid steel, both Al oxidation and desulfurization rates rapidly increase. In addition, it was found that the variation of the initial Si content in steel has no significant influence on the desulfurization rate. Lastly, if the initial CaO content in slag is increased or the initial Al2O3 content is decreased in the fluid-slag compositional range, the desulfurization rate can be improved significantly during the LMF process.

  17. Marble waste characterization as a desulfurizing slag component for steel

    International Nuclear Information System (INIS)

    Coleti, J.L.; Grillo, F.F.; Tenorio, J.A.S.; De Oliveira, J.R.

    2014-01-01

    The current steel market requires from steel plants better quality of its products. As a result, steel plants need to search for improvements and costs reduction in its process. Hence, the residue of marble containing significant quantities of calcium and magnesium carbonates, raw materials of steel refining slag, was characterized in order to replace the conventional lime used. Therefore, it will be possible to reduce the cost and volume of waste produced by the ornamental rock industry. The following methods were applied to test the waste potential: SEM with EDS, x-ray diffraction, x-ray fluorescence (EDX), Thermogravimetry (TG) and analysis of surface area and particle size by the BET method using dispersion leisure. The results indicated the feasibility of waste as raw material in the composition of desulfurizing slags. (author)

  18. Simultaneous desulfurization and denitrification of flue gas by electron beam

    International Nuclear Information System (INIS)

    Baumann, W.; Jordan, S.; Maetzing, H.; Paur, H.R.; Schikarski, W.; Wiens, H.

    1987-05-01

    The simultaneous desulfurization and denitrification by the irradiation with 300 keV electrons in the presence of stoichiometric amounts of ammonia yields removal efficiencies of more than 90%. NO X -removal efficiencies depend on the absorbed dose, NO X -concentration and NH 3 -stoichiometry. SO 2 -removal proceeds by thermal and radiation induced mechanisms. The efficiency of the SO 2 -removal process is highest for low temperatures and high NH 3 -stoichiometries. By recycling of scrubbed gas into the reaction chamber (multiple irradiation) the efficiency of the process is increased by 50%. The product aerosol has mass median diameters of 2 and NO x removals in the absence of NH 3 are predicted with reasonable accuracy by the computer model. In the presence of NH 3 experimental data show higher SO 2 removal efficiencies than calculated. This is probably due to additional heterogeneous reactions on particles, which are not covered by the computer model. With 119 figs., 86 refs [de

  19. Anion-exchange resin-based desulfurization process

    Energy Technology Data Exchange (ETDEWEB)

    Sheth, A.C.; Strevel, S.D.

    1991-01-01

    The University of Tennessee Space Institute (UTSI) has a Department of Energy grant to further develop the Institute's anion-exchange resin-based flue gas, desulfurization concept. The developmental program proposed includes screening of commercially available resins to select three candidate resins for further study. These three resins will undergo a series of experiments designed to test the resins' performance under different process conditions (including the use of spent MHD seed material). The best of these resins will be used in optimizing the regeneration step and in testing the effects of performance enhancers. The process schematic developed from the results will be used to estimate the related economics.

  20. Manipulator-deployed laser decontamination system. Final report

    International Nuclear Information System (INIS)

    Littwin, Rene; Hurtado, Antonio; Lippmann, Wolfgang

    2011-09-01

    system can be used for the type of concrete commonly used in reactors. The functionality of the combined system (manipulator unit created by KIT and laser unit created by TU Dresden) was finally demonstrated under realistic conditions at TU Dresden in collaboration with KIT. The system could freely be moved and operated via remote control on a vertical test wall, which was specifically designed for purpose of this experiment. The laser ablation on a concrete surface could be successfully demonstrated in several experiments of laboratory scale under conditions typical for nu-clear power plants. Given these results, it can be concluded that the system is technologically applicable in upcoming decommissioning projects and that the project aim has been achieved.

  1. GRANULATION AND BRIQUETTING OF SOLID PRODUCTS FROM FLUE GAS DESULFURIZATION

    Directory of Open Access Journals (Sweden)

    Jan J. Hycnar

    2015-11-01

    Full Text Available Most flue gas desulfurization products can be characterized by significant solubility in water and dusting in dry state. These characteristics can cause a considerable pollution of air, water, and soil. Among many approaches to utilization of this waste, the process of agglomeration using granulation or briquetting has proved very effective. Using desulfurization products a new material of aggregate characteristics has been acquired, and this material is resistant to water and wind erosion as well as to the conditions of transportation and storage. The paper presents the results of industrial trials granulation and briquetting of calcium desulphurization products. The granulation of a mixture of phosphogypsum used with fly ash (in the share 1:5. The resulting granules characterized by a compressive strength of 41.6 MPa, the damping resistance of 70% and 14.2% abrasion. The granulate was used for the production of cement mix. The produced concrete mortar have a longer setting and hardening time, as compared to the traditional ash and gypsum mortar, and have a higher or comparable flexural and compressive strength during hardening. Briquetting trials made of a product called synthetic gypsum or rea-gypsum both in pure form and with the addition of 5% and 10% of the limestone dust. Briquettes have a high initial strength and resistance to abrasion. The values ​​of these parameters increased after 72 hours of seasoning. It was found that higher hardiness of briquettes with rea-gypsum was obtained with the impact of atmospheric conditions and higher resistance to elution of water-soluble components in comparison to ash briquettes.

  2. SOFC/TEG hybrid mCHP system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    2012-03-15

    The starting point for this project have been the challenge has been to develop a cost effective solution with long term stability. This is where a focused effort in a strong consortium covering material research, module development and manufacture as well as device design and optimization can make a real difference. In March 2010 the SOFTEG phase II project was initiated and a cooperation organization was established to implement the project as a development and demonstration project involving the staff from all project partners. The project is now completed with excellent and documented outcome. The final results by Alpcon have been demonstration as a TEG-based mCHP system calls CHP Dual Engine Power System, which will be applicable as both a standalone TEG-CHP hybrid system, but also as an auxiliary power unit and power booster for the SOFC system. However the SOFC system cannot cover the household's heat demand alone so it is necessary to combine a SOFC system together with a water heater/boiler system to cover the peak heat demand of a residential house or a complex building. The SOFTEG project partners achieved significant results that mainly can be outlined as following: 1) University of Aarhus has improved the thermal stability of ZnSb by optimizing the concentration of Nano composite material. 2) The grain size and its influence on the sintering process by spark plasma method are investigated by Aarhus University, but further work seems to be necessary. 3) The TE material is going to commercialization by Aarhus University. 4) Aalborg University has prepared simulation tools for complex thermoelectric simulation in non-steady state condition. 5) The new type DCDC interleaved converter using the MPPT system for optimal power tracing is designed, build and tested by Aalborg University in cooperation with Alpcon. This task is included overall system design, control system implementation and power electronic control design. 6) Full scale practical

  3. BUBBLES: an Automated Decision Support System for Final Approach Controllers

    Science.gov (United States)

    Chi, Zhizang

    1990-01-01

    With the assumptions that an explicit schedule exists for landings (and takeoffs) at each runway, that each aircraft has declared an IAS for final approach and will be obligated to fly it as accurately as possible, and that there is a continuous estimate of average windspeed on approach, the objective was to provide automated cues to assist controllers in the spacing of landing aircraft. The cues have two characteristics. First, they are adaptive to estimation errors in position and speed by the radar tracking process and piloting errors in the execution of turns and commanded speed reductions. Second, the cues are responsive to the desires of the human controller. Several diagrams are used to help explain the system.

  4. Health Resources Priority and Allocations System (HRPAS). Interim final rule.

    Science.gov (United States)

    2015-07-17

    This interim final rule establishes standards and procedures by which the U.S. Department of Health and Human Services (HHS) may require that certain contracts or orders that promote the national defense be given priority over other contracts or orders. This rule also sets new standards and procedures by which HHS may allocate materials, services, and facilities to promote the national defense. This rule will implement HHS's administration of priorities and allocations actions, and establish the Health Resources Priorities and Allocation System (HRPAS). The HRPAS will cover health resources pursuant to the authority under Section 101(c) of the Defense Production Act as delegated to HHS by Executive Order 13603. Priorities authorities (and other authorities delegated to the Secretary in E.O. 13603, but not covered by this regulation) may be re-delegated by the Secretary. The Secretary retains the authority for allocations.

  5. Final design of thermal diagnostic system in SPIDER ion source

    Energy Technology Data Exchange (ETDEWEB)

    Brombin, M., E-mail: matteo.brombin@igi.cnr.it; Dalla Palma, M.; Pasqualotto, R.; Pomaro, N. [Consorzio RFX, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2016-11-15

    The prototype radio frequency source of the ITER heating neutral beams will be first tested in SPIDER test facility to optimize H{sup −} production, cesium dynamics, and overall plasma characteristics. Several diagnostics will allow to fully characterise the beam in terms of uniformity and divergence and the source, besides supporting a safe and controlled operation. In particular, thermal measurements will be used for beam monitoring and system protection. SPIDER will be instrumented with mineral insulated cable thermocouples, both on the grids, on other components of the beam source, and on the rear side of the beam dump water cooled elements. This paper deals with the final design and the technical specification of the thermal sensor diagnostic for SPIDER. In particular the layout of the diagnostic, together with the sensors distribution in the different components, the cables routing and the conditioning and acquisition cubicles are described.

  6. Urban Integrated Industrial Cogeneration Systems Analysis. Phase II final report

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Through the Urban Integrated Industrial Cogeneration Systems Analysis (UIICSA), the City of Chicago embarked upon an ambitious effort to identify the measure the overall industrial cogeneration market in the city and to evaluate in detail the most promising market opportunities. This report discusses the background of the work completed during Phase II of the UIICSA and presents the results of economic feasibility studies conducted for three potential cogeneration sites in Chicago. Phase II focused on the feasibility of cogeneration at the three most promising sites: the Stockyards and Calumet industrial areas, and the Ford City commercial/industrial complex. Each feasibility case study considered the energy load requirements of the existing facilities at the site and the potential for attracting and serving new growth in the area. Alternative fuels and technologies, and ownership and financing options were also incorporated into the case studies. Finally, site specific considerations such as development incentives, zoning and building code restrictions and environmental requirements were investigated.

  7. Acoustic Resonance Spectroscopy (ARS) Munition Classification System enhancements. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vela, O.A.; Huggard, J.C.

    1997-09-18

    Acoustic Resonance Spectroscopy (ARS) is a non-destructive evaluation technology developed at the Los Alamos National Laboratory (LANL). This technology has resulted in three generations of instrumentation, funded by the Defense Special Weapons Agency (DSWA), specifically designed for field identification of chemical weapon (CW) munitions. Each generation of ARS instrumentation was developed with a specific user in mind. The ARS1OO was built for use by the U.N. Inspection Teams going into Iraq immediately after the Persian Gulf War. The ARS200 was built for use in the US-Russia Bilateral Chemical Weapons Treaty (the primary users for this system are the US Onsite Inspection Agency (OSIA) and their Russian counterparts). The ARS300 was built with the requirements of the Organization for the Prohibition of Chemical Weapons (OPCW) in mind. Each successive system is an improved version of the previous system based on learning the weaknesses of each and, coincidentally, on the fact that more time was available to do a requirements analysis and the necessary engineering development. The ARS300 is at a level of development that warrants transferring the technology to a commercial vendor. Since LANL will supply the computer software to the selected vendor, it is possible for LANL to continue to improve the decision algorithms, add features where necessary, and adjust the user interface before the final transfer occurs. This paper describes the current system, ARS system enhancements, and software enhancements. Appendices contain the Operations Manual (software Version 3.01), and two earlier reports on enhancements.

  8. Commercial thermal distribution systems, Final report for CIEE/CEC

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tengfang; Bechu, Olivier; Carrie, Remi; Dickerhoff, Darryl; Fisk, William; Franconi, Ellen; Kristiansen, Oyvind; Levinson, Ronnen; McWilliams, Jennifer; Wang, Duo; Modera, Mark; Webster, Tom; Ring, Erik; Zhang, Qiang; Huizenga, Charlie; Bauman, Fred; Arens, Ed

    1999-12-01

    According to the California Energy Commission (CEC 1998a), California commercial buildings account for 35% of statewide electricity consumption, and 16% of statewide gas consumption. Space conditioning accounts for roughly 16,000 GWh of electricity and 800 million therms of natural gas annually, and the vast majority of this space conditioning energy passes through thermal distribution systems in these buildings. In addition, 8600 GWh per year is consumed by fans and pumps in commercial buildings, most of which is used to move the thermal energy through these systems. Research work at Lawrence Berkeley National Laboratory (LBNL) has been ongoing over the past five years to investigate the energy efficiency of these thermal distribution systems, and to explore possibilities for improving that energy efficiency. Based upon that work, annual savings estimates of 1 kWh/ft{sup 2} for light commercial buildings, and 1-2 kWh/ft{sup 2} in large commercial buildings have been developed for the particular aspects of thermal distribution system performance being addressed by this project. Those savings estimates, combined with a distribution of the building stock based upon an extensive stock characterization study (Modera et al. 1999a), and technical penetration estimates, translate into statewide saving potentials of 2000 GWh/year and 75 million thermal/year, as well as an electricity peak reduction potential of 0.7 GW. The overall goal of this research program is to provide new technology and application knowledge that will allow the design, construction, and energy services industries to reduce the energy waste associated with thermal distribution systems in California commercial buildings. The specific goals of the LBNL efforts over the past year were: (1) to advance the state of knowledge about system performance and energy losses in commercial-building thermal distribution systems; (2) to evaluate the potential of reducing thermal losses through duct sealing, duct

  9. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, December 11, 1992--March 11, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L.

    1993-12-31

    This report describes the potential of sulfate reducing bacteria to fix sulfur derived from flue gas desulfurization. The first section reviews the problem, the second section reviews progress of this study to use desulfovibrio desulfuricans for this purpose. The final section related progress during the current reporting period. This latter section describes studies to immobilize the bacteria in co-culture with floc-forming anaerobes, use of sewage sludges in the culture media, and sulfate production from sulfur dioxide.

  10. Final focus system tuning studies towards Compact Linear Collider feasibility

    Directory of Open Access Journals (Sweden)

    E. Marin

    2018-01-01

    Full Text Available In this paper we present the latest results regarding the tuning study of the baseline design of the final focus system of the Compact Linear Collider (CLIC-FFS. CLIC aims to provide collisions to the experiments at a luminosity above 10^{34}  cm^{-2} s^{-1}. In order to deliver such luminosity in a single pass machine, the vertical beam size at the interaction point (IP is reduced to about 1 nm, which imposes unprecedented tuning difficulties to the system. In previous studies, 90% of the machines reached 90% of the nominal luminosity at the expense of 18 000 luminosity measurements, when considering beam position monitor errors and transverse misalignments of magnets for a single beam case. In the present study, additional static imperfections such as roll misalignments and strength errors are included. Moreover both e^{-} and e^{+} beamlines are properly simulated. A new tuning procedure based on linear and nonlinear knobs is implemented to effectively cure the most relevant beam size aberrations at the IP. The obtained results for single and double beam studies under solely static imperfections are presented.

  11. Electron Beam Final Focus System For Thomson Scattering At Elbe

    CERN Document Server

    Krämer, J.M.; Bødkera, F.; Irman, A.; Jochmann, A.; Kristensena, J.P.; Lehnert, U.; Michel, P.; Schramm, U.; 10.1016/j.nima.2015.10.067

    2016-01-01

    The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and diverg...

  12. Electron beam final focus system for Thomson scattering at ELBE

    CERN Document Server

    Krämer, J.M.; Bødker, F.; Irman, A.; .Jochmann A.; Kristensen, J.P.; Lehnert U., HZDR; Michel, P.; Schrammb, U.; 10.1016/j.nima.2015.10.067

    2016-01-01

    The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and diverg...

  13. Final focus system tuning studies towards Compact Linear Collider feasibility

    Science.gov (United States)

    Marin, E.; Latina, A.; Tomás, R.; Schulte, D.

    2018-01-01

    In this paper we present the latest results regarding the tuning study of the baseline design of the final focus system of the Compact Linear Collider (CLIC-FFS). CLIC aims to provide collisions to the experiments at a luminosity above 1034 c m-2 s-1 . In order to deliver such luminosity in a single pass machine, the vertical beam size at the interaction point (IP) is reduced to about 1 nm, which imposes unprecedented tuning difficulties to the system. In previous studies, 90% of the machines reached 90% of the nominal luminosity at the expense of 18 000 luminosity measurements, when considering beam position monitor errors and transverse misalignments of magnets for a single beam case. In the present study, additional static imperfections as, roll misalignments, strength v2.epss are included. Moreover both e- and e+ beamlines are properly simulated. A new tuning procedure based on linear and nonlinear knobs is implemented to effectively cure the most relevant beam size aberrations at the IP. The obtained results for single and double beam studies under solely static imperfections are presented.

  14. Study of variation grain size in desulfurization process of calcined petroleum coke

    Science.gov (United States)

    Pintowantoro, Sungging; Setiawan, Muhammad Arif; Abdul, Fakhreza

    2018-04-01

    Indonesia is a country with abundant natural resources, such as mineral mining and petroleum. In petroleum processing, crude oil can be processed into a source of fuel energy such as gasoline, diesel, oil, petroleum coke, and others. One of crude oil potentials in Indonesia is petroleum coke. Petroleum coke is a product from oil refining process. Sulfur reducing process in calcined petroleum cokes can be done by desulfurization process. The industries which have potential to become petroleum coke processing consumers are industries of aluminum smelting (anode, graphite block, carbon mortar), iron riser, calcined coke, foundry coke, etc. Sulfur reducing process in calcined petroleum coke can be done by thermal desulfurization process with alkaline substance NaOH. Desulfurization of petroleum coke process can be done in two ways, which are thermal desulfurization and hydrodesulphurization. This study aims to determine the effect of various grain size on sulfur, carbon, and chemical bond which contained by calcined petroleum coke. The raw material use calcined petroleum coke with 0.653% sulfur content. The grain size that used in this research is 50 mesh, then varied to 20 mesh and 100 mesh for each desulfurization process. Desulfurization are tested by ICP, UV-VIS, and FTIR to determine levels of sulfur, carbon, chemical bonding and sulfur dissolved water which contained in the residual washing of calcined petroleum coke. From various grain size that mentioned before, the optimal value is on 100 mesh grain size, where the sulfur content in petroleum coke is 0.24% and carbon content reaches the highest level of 97.8%. Meanwhile for grain size 100 mesh in the desulfurization process is enough to break the chemical bonds of organic sulfur in petroleum coke.

  15. Expanded studies of linear collider final focus systems at the Final Focus Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    Tenenbaum, Peter Gregory [Stanford Univ., CA (United States)

    1995-12-01

    In order to meet their luminosity goals, linear colliders operating in the center-of-mass energy range from 3,50 to 1,500 GeV will need to deliver beams which are as small as a few Manometers tall, with x:y aspect ratios as large as 100. The Final Focus Test Beam (FFTB) is a prototype for the final focus demanded by these colliders: its purpose is to provide demagnification equivalent to those in the future linear collider, which corresponds to a focused spot size in the FFTB of 1.7 microns (horizontal) by 60 manometers (vertical). In order to achieve the desired spot sizes, the FFTB beam optics must be tuned to eliminate aberrations and other errors, and to ensure that the optics conform to the desired final conditions and the measured initial conditions of the beam. Using a combination of incoming-beam diagnostics. beam-based local diagnostics, and global tuning algorithms, the FFTB beam size has been reduced to a stable final size of 1.7 microns by 70 manometers. In addition, the chromatic properties of the FFTB have been studied using two techniques and found to be acceptable. Descriptions of the hardware and techniques used in these studies are presented, along with results and suggestions for future research.

  16. Expanded studies of linear collider final focus systems at the Final Focus Test Beam

    International Nuclear Information System (INIS)

    Tenenbaum, P.G.

    1995-12-01

    In order to meet their luminosity goals, linear colliders operating in the center-of-mass energy range from 3,50 to 1,500 GeV will need to deliver beams which are as small as a few Manometers tall, with x:y aspect ratios as large as 100. The Final Focus Test Beam (FFTB) is a prototype for the final focus demanded by these colliders: its purpose is to provide demagnification equivalent to those in the future linear collider, which corresponds to a focused spot size in the FFTB of 1.7 microns (horizontal) by 60 manometers (vertical). In order to achieve the desired spot sizes, the FFTB beam optics must be tuned to eliminate aberrations and other errors, and to ensure that the optics conform to the desired final conditions and the measured initial conditions of the beam. Using a combination of incoming-beam diagnostics. beam-based local diagnostics, and global tuning algorithms, the FFTB beam size has been reduced to a stable final size of 1.7 microns by 70 manometers. In addition, the chromatic properties of the FFTB have been studied using two techniques and found to be acceptable. Descriptions of the hardware and techniques used in these studies are presented, along with results and suggestions for future research

  17. Evaluation of the polysubstituted pyridinium ionic liquid [hmmpy][Ntf2] as a suitable solvent for desulfurization: Phase equilibria

    International Nuclear Information System (INIS)

    Arce, Alberto; Francisco, Maria; Soto, Ana

    2010-01-01

    Suitability of a pyridinium ionic liquid as a solvent in desulfurization has been analyzed. (Liquid + liquid) equilibria for ternary systems composed by 1-hexyl-3,5-dimethyl pyridinium {bis[trifluoromethylsulfonyl]imide, thiophene, and three hydrocarbons representative of fuel (n-heptane, 2,2,4 trimethylpentane, and toluene) have been determined at T = 298.15 K and atmospheric pressure. High solubility of thiophene in the ionic liquid and also of toluene have been found, being this solvent practically immiscible with 2,2,4 trimethylpentane and heptane. Equilibrium data of these systems have been well correlated with UNIQUAC equations finding the highest deviations for the ternary system involving toluene. NRTL model drove to worse results being considered as not suitable model to correlate the experimental results.

  18. Astronaut Edwin E. Aldrin Undergoes Communications Systems Final Check

    Science.gov (United States)

    1969-01-01

    Dunned in his space suit, Lunar Module pilot Edwin E. Aldrin, Jr. does a final check of his communications system before the boarding of the Apollo 11 mission. Launched via a Saturn V launch vehicle, the first manned lunar mission launched from the Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. The 3-man crew aboard the flight consisted of astronauts Aldrin; Michael Collins, Command Module (CM) pilot; and Neil Armstrong, mission commander. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. Meanwhile, astronaut Collins piloted the CM in a parking orbit around the Moon. During a 2½ hour surface exploration, the crew collected 47 pounds of lunar surface material which was returned to Earth for analysis. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  19. Astronaut Neil A. Armstrong Undergoes Communications Systems Final Check

    Science.gov (United States)

    1969-01-01

    Dunned in his space suit, mission commander Neil A. Armstrong does a final check of his communications system before before the boarding of the Apollo 11 mission. Launched via a Saturn V launch vehicle, the first manned lunar mission launched from the Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. The 3-man crew aboard the flight consisted of astronauts Armstrong; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin, Jr., Lunar Module (LM) Pilot. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. Meanwhile, astronaut Collins piloted the CM in a parking orbit around the Moon. During a 2½ hour surface exploration, the crew collected 47 pounds of lunar surface material which was returned to Earth for analysis. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  20. Multi-objective optimization of oxidative desulfurization in a sono-photochemical airlift reactor.

    Science.gov (United States)

    Behin, Jamshid; Farhadian, Negin

    2017-09-01

    Response surface methodology (RSM) was employed to optimize ultrasound/ultraviolet-assisted oxidative desulfurization in an airlift reactor. Ultrasonic waves were incorporated in a novel-geometry reactor to investigate the synergistic effects of sono-chemistry and enhanced gas-liquid mass transfer. Non-hydrotreated kerosene containing sulfur and aromatic compounds was chosen as a case study. Experimental runs were conducted based on a face-centered central composite design and analyzed using RSM. The effects of two categorical factors, i.e., ultrasound and ultraviolet irradiation and two numerical factors, i.e., superficial gas velocity and oxidation time were investigated on two responses, i.e., desulfurization and de-aromatization yields. Two-factor interaction (2FI) polynomial model was developed for the responses and the desirability function associate with overlay graphs was applied to find optimum conditions. The results showed enhancement in desulfurization ability corresponds to more reduction in aromatic content of kerosene in each combination. Based on desirability approach and certain criteria considered for desulfurization/de-aromatization, the optimal desulfurization and de-aromatization yields of 91.7% and 48% were obtained in US/UV/O 3 /H 2 O 2 combination, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Simultaneous desulfurization and denitrification by microwave reactor with ammonium bicarbonate and zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Wei Zaishan [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)], E-mail: weizaishan98@163.com; Lin Zhehang; Niu Hejingying; He Haiming; Ji Yongfeng [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2009-03-15

    Microwave reactor with ammonium bicarbonate (NH{sub 4}HCO{sub 3}) and zeolite was set up to study the simultaneous removal of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from flue gas. The results showed that the microwave reactor filled with NH{sub 4}HCO{sub 3} and zeolite could reduce SO{sub 2} to sulfur with the best desulfurization efficiency of 99.1% and reduce NO{sub x} to nitrogen with the best NO{sub x} purifying efficiency of 86.5%. Microwave desulfurization and denitrification effect of the experiment using ammonium bicarbonate and zeolite together is much higher than that using ammonium bicarbonate or zeolite only. NO{sub x} concentration has little effect on denitrification but has no influence on desulfurization, SO{sub 2} concentration has no effect on denitrification. The optimal microwave power and empty bed residence time (EBRT) on simultaneous desulfurization and dentrification are 211-280 W and 0.315 s, respectively. The mechanism for microwave reduced desulfurization and denitrification can be described as the microwave-induced catalytic reduction reaction between SO{sub 2}, NO{sub x} and ammonium bicarbonate with zeolite being the catalyst and microwave absorbent.

  2. Bicarbonate-induced activation of H₂O₂ for metal-free oxidative desulfurization.

    Science.gov (United States)

    Bokare, Alok D; Choi, Wonyong

    2016-03-05

    Efficient oxidative desulfurization (ODS) of model oil containing dibenzothiophene (DBT) and aromatic thiophenic derivatives has been achieved at room temperature using hydrogen peroxide activation by inorganic bicarbonate (HCO3(-)). Using in-situ formation of peroxymonocarbonate as oxidant, the transformation of main model substrate DBT to corresponding DBT-sulfone was easily accomplished in biphasic reaction conditions. In the presence of water-acetonitrile polar phase, increasing the water content upto 50% decreased the extraction capacity more than 3 times, but ∼ 90% DBT oxidation was still achieved. The oxidizing capacity of bicarbonate catalyst was maintained during repeated ODS cycles, but DBT removal efficiency was critically dependent on the extraction capacity of the polar phase. Under heterogeneous reaction conditions, bicarbonate-modified ion-exchange resin achieved similar ODS activity compared to the homogeneous catalytic system. Additionally, the efficient formation of peroxymonocarbonate using gaseous CO2 precursor in alkaline conditions was also utilized for DBT oxidation. The present study proposes the NaHCO3/H2O2 catalytic system as an efficient and cheap metal-free alternative for the oxidative removal of aromatic sulfur compounds from fuel oil. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Use of Green Mussel Shell as a Desulfurizer in the Blending of Low Rank Coal-Biomass Briquette Combustion

    Directory of Open Access Journals (Sweden)

    Mahidin Mahidin

    2016-08-01

    Full Text Available Calcium oxide-based material is available abundantly and naturally. A potential resource of that material comes from marine mollusk shell such as clams, scallops, mussels, oysters, winkles and nerites. The CaO-based material has exhibited a good performance as the desulfurizer oradsorbent in coal combustion in order to reduce SO2 emission. In this study, pulverized green mussel shell, without calcination, was utilized as the desulfurizer in the briquette produced from a mixture of low rank coal and palm kernel shell (PKS, also known as bio-briquette. The ratio ofcoal to PKS in the briquette was 90:10 (wt/wt. The influence of green mussel shell contents and combustion temperature were examined to prove the possible use of that materialas a desulfurizer. The ratio of Ca to S (Ca = calcium content in desulfurizer; S = sulfur content in briquette werefixed at 1:1, 1.25:1, 1.5:1, 1.75:1, and 2:1 (mole/mole. The burning (or desulfurization temperature range was 300-500 °C; the reaction time was 720 seconds and the air flow rate was 1.2 L/min. The results showed that green mussel shell can be introduced as a desulfurizer in coal briquette or bio-briquette combustions. The desulfurization process using that desulfurizer exhibited the first order reaction and the highest average efficiency of 84.5%.

  4. Field Demonstration of Active Desiccant-Based Outdoor Air Preconditioning Systems, Final Report: Phase 3; FINAL

    International Nuclear Information System (INIS)

    Fischer, J.

    2001-01-01

    This report summarizes an investigation of the performance of two active desiccant cooling systems that were installed as pilot systems in two locations-a college dormitory and a research laboratory-during the fall of 1999. The laboratory system was assembled in the field from commercially available Trane air-handling modules combined with a standard total energy recovery module and a customized active desiccant wheel, both produced by SEMCO. The dormitory system was a factory-built, integrated system produced by SEMCO that included both active desiccant and sensible-only recovery wheels, a direct-fired gas regeneration section, and a pre-piped Trane heat pump condensing section. Both systems were equipped with direct digital control systems, complete with full instrumentation and remote monitoring capabilities. This report includes detailed descriptions of these two systems, installation details, samples of actual performance, and estimations of the energy savings realized. These pi lot sites represent a continuation of previous active desiccant product development research (Fischer, Hallstrom, and Sand 2000; Fischer 2000). Both systems performed as anticipated, were reliable, and required minimal maintenance. The dehumidification/total-energy-recovery hybrid approach was particularly effective in all respects. System performance showed remarkable improvement in latent load handling capability and operating efficiency compared with the original conventional cooling system and with the conventional system that remained in another, identical wing of the facility. The dehumidification capacity of the pilot systems was very high, the cost of operation was very low, and the system was cost-effective, offering a simple payback for these retrofit installations of approximately 5 to 6 years. Most important, the dormitory system resolved numerous indoor air quality problems in the dormitory by providing effective humidity control and increased, continuous ventilation air

  5. Desulfurization of petroleum induced by ionization radiation: benzothiophene behavior

    International Nuclear Information System (INIS)

    Andrade, Luana S.; Calvo, Wilson A.P.; Duarte, Celina L.

    2013-01-01

    Hydrodesulfurization (HDS) is currently the most common method used by refineries; this removes significantly sulfur compounds from petroleum fractions, however, is not highly effective for removing thiophene compounds such as benzothiophene, and generates high costs for the oil industry. Another factor, are the environmental laws, which over the years has become increasingly strict, especially regarding the sulfur content. This compound cause incalculable damage both to the industry and to the environment. Therefore new methods for petroleum desulfurization should be studied in order to minimize the impacts that these compounds cause. In the present study it was used ionizing radiation, a promising method of advanced oxidation in reducing sulfur compounds. The analysis were performed after purge and trap concentration of samples, followed by gas chromatography-mass spectrometry (GC-MS). Then benzothiophene samples with the same concentration from 27 mg.L -1 to 139 mg.L -1 were irradiated with different absorbed doses of radiation ranging from 1 kGy to 20 kGy in gamma irradiator Cobalt-60, Gammacell. These samples were analyzed by the same procedure used for the calibration curve, and the removals of benzothiophene after ionizing radiation treatment were calculated. It was observed that at higher doses there was a greater degradation of this compound and the formation of fragments, such as 1,2-dimethylbenzene and toluene, which may be removed by simple processes. (author)

  6. CFD and CHD in random packing columns with seawater desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Mei-Shan [Southeast Univ., Nanjing (China). College of Civil Engineering; Wang, Shi-He; Wang, Xiao-Ming [State Power Environmental Protection Research Institute, Nanjing (China); Guo, Ming-Chun [Shanghai Huolin engineering Plastics Co., Ltd., Shanghai (China)

    2013-07-01

    By the volume average method, gas-liquid two-phase flow CFD and CHT model is established to describe the random packing column in seawater desulfurization. By numerical calculation, the flow velocity, porosity distribution, pressure distribution and temperature distribution of seawater are obtained. Pressure loss and the outlet temperature of seawater are compared with experimental data, the prediction results and experimental results are well consistent, is exactly the same trend. Analyzing the results of calculation, a significant ''wall flow'' phenomena was found, and the reason of its formation is that the porosity of filler near the wall is significantly higher than in the middle region. Analyzing the distribution of seawater temperature, it is found that the distribution of seawater temperature is more uniform on the top of column, the seawater temperature near the wall fluctuated and were gradually more uniform towards the center of the column. Along the direction of the column from top to bottom, the seawater temperature gradually decreased, and the degree of fluctuations gradually reduced and basically does not change at half of the column, which indicated that the heat exchange between the gas and liquid has been basically completed.

  7. Optimisation of Experimental Conditions for Ex-Bed Desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, J. M.; Ruiz, E.; Otero, J.

    2010-12-22

    This report compiles the results of the work conducted by CIEMAT for Task 6.3 Sulfur and Nitrogen Compounds Abatement of the FLEXGAS project Near Zero Emission Advanced Fluidized Bed Gasification, which has been carried out with financial support from the Research Fund for Coal and Steel, RFCR-CT-2007-00005. The assignment of CIEMAT in Task 6.3 has dealt with the experimental study of ex-bed desulfurization at high temperature and high pressure. Based on a review of the state of the art, a zinc oxide sorbent was chosen as a promising candidate for bulk sulfur removal in highly reducing gases such as those from coal and waste oxygen gasification or for a polishing stage in low sulfur content gases, which is typically the case in biomass gasification gases. The work accomplished has included the study of the sulfidation and regeneration stages in order to determine successful operating conditions and the assessment of the long term performance of the sorbent over subsequent sulfidation and regeneration cycles. (Author) 36 refs.

  8. Development of advanced electromagnetic exploration system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    The electronics system design for both the transmitting system and the receiving system, the laboratory test results obtained on the system completed thus far, and the effort needed to complete the system are detailed. (MHR)

  9. A final focus system for the Next Linear Collider

    International Nuclear Information System (INIS)

    Zimmermann, F.; Brown, K.; Emma, P.; Helm, R.; Irwin, J.; Tenenbaum, P.; Wilson, P.

    1995-06-01

    The final focus of the Next Linear Collider (NLC) demagnifies electron and positron beams of 250--750 GeV energy down to a transverse size of about 2.5 x 350 nm 2 at the interaction point (IP). The basic layout, momentum bandwidth, vibration tolerances, wakefield effects, and the tunability of the proposed final focus design are discussed. Also a perspective is given on the crab cavity and on effects of the solenoid field in the interaction region

  10. Cold-side desulfurization by humidification of fly ash in CFB boilers

    Energy Technology Data Exchange (ETDEWEB)

    Curran, R.A.; Tang, J.T. [Foster Wheeler Energy Corp., Clinton, NJ (United States); Capan, S.F.; Fioriti, G.A.; Taylor, T.E. [Foster Wheeler Development Corp., Livingston, NJ (United States)

    1995-12-31

    It is expected that sulfur emission regulations for fluidized bed boilers will continue to become more stringent. By capturing sulfur in-situ with furnace limestone injection, circulating fluidized bed (CFB) boilers have been quite successful in achieving capture efficiencies of up to 93%. However, CFB operating experience has shown that extending sulfur capture beyond this level results in a diminishing return relationship and requires a substantial increase in limestone consumption, especially for fuels with a relatively low (< 1.0%) sulfur content. Such an increase in limestone consumption can have numerous effects upon boiler design and performance, including: increased ash handling system requirements; higher operating cost of increased limestone consumption; increased NO{sub x} emissions; a detrimental effect upon SNCR performance, higher pH of ash leachate; and lower boiler efficiency. For future power generation projects, which are predicted to require increasingly higher sulfur capture efficiencies, the combination of the above listed conditions could result in a CFB boiler being cost-prohibitive in comparison to a pulverized coal boiler for a given coal. Clearly, CFB boilers will require a refined operating strategy, together with a consideration of auxiliary desulfurization technology, in order to remain competitive in the future energy equipment market.

  11. LOFT integral test system final safety analysis report

    International Nuclear Information System (INIS)

    1974-03-01

    Safety analyses are presented for the following LOFT Reactor systems: engineering safety features; support buildings and facilities; instrumentation and controls; electrical systems; and auxiliary systems. (JWR)

  12. Application of Pt/CdS for the Photocatalytic Flue Gas Desulfurization

    Directory of Open Access Journals (Sweden)

    Xiulan Song

    2012-01-01

    Full Text Available A photocatalytic flue gas desulfurization technology was designed to control emissions of SO2 from the combustion of fossil fuels. With the photocatalytic technology, we cannot only achieve the purpose of solving the problem of SO2 emissions but also realize the desire of hydrogen production from water. CdS loaded with Pt were selected as the model photocatalyst for the photocatalytic flue gas desulfurization. The factors influencing the rate of hydrogen production and ammonia sulfite solution oxidation were detected.

  13. Performance of a Wet Flue Gas Desulfurization Pilot Plant under Oxy-Fuel Conditions

    DEFF Research Database (Denmark)

    Hansen, Brian Brun; Fogh, Folmer; Knudsen, Niels Ole

    2011-01-01

    vol %. In the same experiment, due to the higher residual limestone concentration, the degree of desulfurization increased from 91 to 94%. The addition of 10 mM adipic acid to the slurry was not sufficient to return the increased concentration of residual limestone to the base-case level......, but an additional increase in desulfurization degree, from 94 to 97%, was obtained. Using a holding tank pH 5.0 (no adipic acid) returned both parameters to the levels observed in the base-case experiment....

  14. Telephone Enrollment in the VA Healthcare System. Final rule.

    Science.gov (United States)

    2016-09-12

    The Department of Veterans Affairs (VA) adopts as final, without change, an interim final rule amending its medical regulations. Specifically, this rule allows veterans to complete applications for health care enrollment by providing application information, agreeing to VA's provisions regarding copayment liability and assignment of third-party insurance benefits, and attesting to the accuracy and authenticity of the information provided to a VA employee over the phone. This action makes it easier for veterans to apply to enroll and speeds VA processing of applications.

  15. Advanced Flue Gas Desulfurization (AFGD) Demonstration Project. Technical progress report No. 15, July 1, 1993--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    The goal of this project is to demonstrate that, by combining state-of-the-art technology, highly efficient plant operation and maintenance capabilities and by-product gypsum sales, significant reductions of SO{sub 2} emissions can be achieved at approximately one-half the life cycle cost of a conventional Flue Gas Desulfurization (FGD) system. Further, this emission reduction is achieved without generating solid waste and while minimizing liquid wastewater effluent. Basically, this project entails the design, construction and operation of a nominal 600 MWe AFGD facility to remove SO{sub 2} from coal-fired power plant flue gas at the Northern Indiana Public Service Company`s Bailly Generating Station.

  16. Catalytic oxidative desulfurization of liquid hydrocarbon fuels using air

    Science.gov (United States)

    Sundararaman, Ramanathan

    Conventional approaches to oxidative desulfurization of liquid hydrocarbons involve use of high-purity, expensive water soluble peroxide for oxidation of sulfur compounds followed by post-treatment for removal of oxidized sulfones by extraction. Both are associated with higher cost due to handling, storage of oxidants and yield loss with extraction and water separation, making the whole process more expensive. This thesis explores an oxidative desulfurization process using air as an oxidant followed by catalytic decomposition of sulfones thereby eliminating the aforementioned issues. Oxidation of sulfur compounds was realized by a two step process in which peroxides were first generated in-situ by catalytic air oxidation, followed by catalytic oxidation of S compounds using the peroxides generated in-situ completing the two step approach. By this technique it was feasible to oxidize over 90% of sulfur compounds present in real jet (520 ppmw S) and diesel (41 ppmw S) fuels. Screening of bulk and supported CuO based catalysts for peroxide generation using model aromatic compound representing diesel fuel showed that bulk CuO catalyst was more effective in producing peroxides with high yield and selectivity. Testing of three real diesel fuels obtained from different sources for air oxidation over bulk CuO catalyst showed different level of effectiveness for generating peroxides in-situ which was consistent with air oxidation of representative model aromatic compounds. Peroxides generated in-situ was then used as an oxidant to oxidize sulfur compounds present in the fuel over MoO3/SiO2 catalyst. 81% selectivity of peroxides for oxidation of sulfur compounds was observed on MoO3/SiO2 catalyst at 40 °C and under similar conditions MoO3/Al2O3 gave only 41% selectivity. This difference in selectivity might be related to the difference in the nature of active sites of MoO3 on SiO2 and Al2O 3 supports as suggested by H2-TPR and XRD analyses. Testing of supported and bulk Mg

  17. Final Report. Novel Behavior of Ferromagnet/Superconductor Hybrid Systems

    Energy Technology Data Exchange (ETDEWEB)

    Birge, Norman [Michigan State Univ., East Lansing, MI (United States)

    2016-09-26

    Final report for grant DE-FG02-06ER46341. This work has produced a most convincing experimental demonstration that spin-triplet supercurrent can appear in Josephson junctions containing ferromagnetic materials, even when the superconducting electrodes are conventional, spin-singlet superconductors.

  18. Gas desulfurization macrokinetics in the calcium oxide reaction

    International Nuclear Information System (INIS)

    Dragan, Simion; Dragan, Mihaela; Friedl, Anton; Harasek, Michael; Simniceanu, Ilie

    1999-01-01

    High amounts of sulfur dioxide (SO 2 ) are produced by burning of fossil fuels in air in excess, a pollutant agent which, once reaching the atmosphere, transforms in sulfuric acid . One solution of diminishing the SO 2 releases is injection of powder limestone in the oven. The reaction CaCO 3 = CaO + CO 2 gives rise to porous calcium oxide grains which react with SO 2 in the presence of oxygen. As a result, calcium sulphate is formed by the reaction CaO + SO 2 + 1/2O 2 = CaSO 4 . This technology is convenient for thermal power plants due to small investments and simple operation. However,the desulfurization degree is reduced and the process kinetics is still unelucidated. In this work, the kinetics of the second reaction is studied by thermogravimetry with CAHN TG-121 device. Conversion-time kinetic diagrams were generated for five granulometric classes of Ca CO 3 with an average diameter of 25-900 μm. The measurements were carried out at 973 K - 1173 K and gas flow speeds of 0.023 - 0.0277 m/s. The kinetic parameters of the external mass transfer, solid crust diffusion and chemical reaction were determined. The influence of external mass transfer in all operation conditions is insignificant. The influence of solid crust diffusion is dominant even for the smallest particles (25 μm). Therefore, the process is described by a combined macrokinetics reaction-diffusion model, where the resistance to the diffusion is about 80% of the total resistance. Complementary structure determinations using structural models are required for the solid undergoing the reaction in order to rigorously identify the enhancing factors of the process. (authors)

  19. NNWSI project information management system concepts evaluation report. Final report

    International Nuclear Information System (INIS)

    1986-08-01

    This report is intended as a first step in developing detailed information management system specifications for the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. The current state of information management at the NNWSI Project level is investigated and an information management system (IMS) is proposed. The IMS as it relates to aspects of Project and records management is discussed. Information management concepts and prospective IMS system components are investigated. Concepts and system components include: indexing, searching, retrieval, data base management system technology, computers, storage media, computer-assisted retrieval (CAR) of microfilm, electronic imaging-based systems, optical character recognition, and communications. Performance criteria and desirable system attributes applicable to the IMS are discussed. Six conceptual system approaches capable of satisfying the performance criteria are defined. System approaches include: fully centralized microfilm system based on CAR retrieval (Approach 1), partially distributed microfilm system based on CAR retrieval (Approach 2), fully distributed microfilm system based on CAR retrieval (Approach 3), fully centralized optical disk system based on electronic image and full-text retrieval (Approach 4), partially distributed optical system based on electron image and full-text retrieval (Approach 5), and fully distributed optical disk system based on electronic image and full-text retrieval (Approach 6). Technical and cost considerations associated with the six conceptual approaches are evaluated. Technical evaluation results indicate Approach 4 is the best conceptual approach, and cost evaluation results show no significant differences among approaches. On the basis of the evaluation, Approach 4 is recommended

  20. KNOBS (Knowledge-Based System) - The Final Report (1982).

    Science.gov (United States)

    1986-08-01

    Patterns............................ 52 page v. :~ * ; ~ ~ - ~ > . W~ \\’W KNOBS The Final Report Fiscal Year 1982 The Need for Ellipsis and Anaphora ...English phrasing of these rules starts with "If there exists a • .. " or "In the presence of a ... " Pragmatically , the "there exists" interpretation of a...for Ellipsis and Anaphora - Two airbases in the KNOBS data base are "Hahn" and "Ramstein." The user could ask (again, in this hypothetical command

  1. Final state multiplicity and particle correlation in small systems

    CERN Document Server

    Mariani, Valentina

    2017-01-01

    Final state variables and particle correlation will be discussed under a Multiple Parton Interaction (MPI) interpretation. The state of the art about the latest results on such variables will be provided. Furthermore the role played by event multiplicity in the deep understanding of particle correlation, in particular concerning the new results on the Long-Range Near Side two particle correlations by the CMS Collaboration, will bediscussed.

  2. Drainage facility management system : final report, June 2009.

    Science.gov (United States)

    2009-06-01

    This research project identified requirements for a drainage facility management system for the Oregon Department of Transportation. It also estimated the personnel resources needed to collect the inventory to populate such a system with data. A tota...

  3. Power plant system assessment. Final report. SP-100 Program

    International Nuclear Information System (INIS)

    Anderson, R.V.; Atkins, D.F.; Bost, D.S.

    1983-01-01

    The purpose of this assessment was to provide system-level insights into 100-kWe-class space reactor electric systems. Using these insights, Rockwell was to select and perform conceptual design studies on a ''most attractive'' system that met the preliminary design goals and requirements of the SP-100 Program. About 4 of the 6 months were used in the selection process. The remaining 2 months were used for the system conceptual design studies. Rockwell completed these studies at the end of FY 1983. This report summarizes the results of the power plant system assessment and describes our choice for the most attractive system - the Rockwell SR-100G System (Space Reactor, 100 kWe, Growth) - a lithium-cooled UN-fueled fast reactor/Brayton turboelectric converter system

  4. Organic Rankine Kilowatt Isotope Power System. Final phase I report

    International Nuclear Information System (INIS)

    1978-01-01

    On 1 August 1975 under Department of Energy Contract EN-77-C-02-4299, Sundstrand Energy Systems commenced development of a Kilowatt Isotope Power System (KIPS) directed toward satisfying the higher power requirements of satellites of the 1980s and beyond. The KIPS is a 238 PuO 2 fueled organic Rankine cycle turbine power system which will provide design output power in the range of 500 to 2000 W/sub (e)/ with a minimum of system changes. The principal objectives of the Phase 1 development effort were to: conceptually design a flight system; design a Ground Demonstration System (GDS) that is prototypic of the flight system in order to prove the feasibility of the flight system design; fabricate and assemble the GDS; and performance and endurance test the GDS using electric heaters in lieu of the isotope heat source. Results of the work performed under the Phase 1 contract to 1 July 1978 are presented

  5. Power plant system assessment. Final report. SP-100 Program

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.V.; Atkins, D.F.; Bost, D.S.; Berman, B.; Clinger, D.A.; Determan, W.R.; Drucker, G.S.; Glasgow, L.E.; Hartung, J.A.; Harty, R.B.

    1983-10-31

    The purpose of this assessment was to provide system-level insights into 100-kWe-class space reactor electric systems. Using these insights, Rockwell was to select and perform conceptual design studies on a ''most attractive'' system that met the preliminary design goals and requirements of the SP-100 Program. About 4 of the 6 months were used in the selection process. The remaining 2 months were used for the system conceptual design studies. Rockwell completed these studies at the end of FY 1983. This report summarizes the results of the power plant system assessment and describes our choice for the most attractive system - the Rockwell SR-100G System (Space Reactor, 100 kWe, Growth) - a lithium-cooled UN-fueled fast reactor/Brayton turboelectric converter system.

  6. Solar system installation at Louisville, Kentucky (final report)

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-07

    A contract was awarded in June 1976 for the installation of a solar space heating and domestic hot water system at 2400 Watteroon Trail, Louisville, Kentucky. The overall philosophy used was to install both a liquid and a hot air system retrofitted to the existing office and combined warehouse building. The 1080 sq ft office space is heated first and excess heat is dumped into the warehouse. The two systems offered a unique opportunity to measure the performance and compare results of both air and liquid at one site. The two systems are described in detail and information on the data acquisition system is included.

  7. IR laser ablative desulfurization of poly (1,4-phenylene sulfide)

    Czech Academy of Sciences Publication Activity Database

    Durani, S. M. A.; Khawaja, E. E.; Masoudi, H. M.; Bastl, Zdeněk; Šubrt, Jan; Galíková, Anna; Pola, Josef

    2005-01-01

    Roč. 73, č. 1 (2005), s. 145-149 ISSN 0165-2370 R&D Projects: GA ČR GA104/04/2028 Institutional research plan: CEZ:AV0Z40400503 Keywords : poly (1,4-phenylene sulfide) * laser ablation * desulfurization Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.265, year: 2005

  8. Desulfurization of Hydrocarbon Fuels at Ambient Conditions Using Supported Silver Oxide-Titania Sorbents

    Science.gov (United States)

    2010-12-13

    then be integrated to commercial refining operations or portable power applications using process simulation application such as Aspen . Such an...of sulfur in transportation fuels. Sulfur does not hamper the performance of internal combustion engines. However, the use of sulfur containing...cells and catalyst beds. Operability of a desulfurizer at ambient conditions without the requirement for hydrogen provides many advantages over

  9. Results using flue gas desulfurization gypsum in soilless substrates for greenhouse crops

    Science.gov (United States)

    Recent availability of Flue Gas Desulfurization gypsum (FGDG) has led to interested in its possible use in horticulture greenhouse production. Three studies were conducted to determine the effects of increasing rates of FGDG on six greenhouse crops. In the first study, substrates (6:1 pine bark:san...

  10. High Temperature Flue Gas Desulfurization In Moving Beds With Regenerable Copper Based Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Cengiz, P.A.; Ho, K.K.; Abbasian, J.; Lau, F.S.

    2002-09-20

    The objective of this study was to develop new and improved regenerable copper based sorbent for high temperature flue gas desulfurization in a moving bed application. The targeted areas of sorbent improvement included higher effective capacity, strength and long-term durability for improved process control and economic utilization of the sorbent.

  11. Synthesis, characterization and application of 1-butyl-3-methylimidazolium tetrafluoroborate for extractive desulfurization of liquid fuel

    Directory of Open Access Journals (Sweden)

    Swapnil A. Dharaskar

    2016-07-01

    Full Text Available In the present paper the experimental data of extractive desulfurization of liquid fuel using 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM]BF4 have been presented. The data of FTIR, 1H NMR and 13C NMR have been discussed for the molecular confirmation of synthesized [BMIM]BF4. Further, the thermal properties, conductivity, solubility, and viscosity analysis of the [BMIM]BF4 were carried out. The effects of reaction time, reaction temperature, sulfur compounds, and recycling of ionic liquid without regeneration on dibenzothiophene removal of liquid fuel were presented. In extractive desulfurization process, the removal of dibenzothiophene in n-dodecane was 73.02% for mass ratio of 1:1 in 30 min at 30 °C under the mild reaction conditions. The ionic liquids could be reused four times without a significant decrease in activity. Also, the desulfurizations of real fuels, multistage extraction were presented. The data and results provided in the present paper explore the significant insights of imidazoled ILs for extractive desulfurization of liquid fuels.

  12. Deep desulfurization of diesel via peroxide oxidation using phosphotungstic acid as phase transfer catalyst

    International Nuclear Information System (INIS)

    Sachdeva, T.O.; Pant, K.K.

    2010-01-01

    High sulfur level in diesel fuel has been identified as a major contributor to air pollutant in term of sulfur dioxide (SO x ) through diesel fueled vehicles. The main aim of the present work is to develop a promising methodology for ultra deep desulfurization of diesel fuel using oxidation followed by phase transfer of oxidized sulfur. Experiments were carried out in a batch reactor using n-decane as the model diesel compound and also using commercial diesel feedstock. To remove sulfur tetraoctylammonium bromide, phosphotungstic acid, and hydrogen peroxide were used as phase transfer agent, catalyst and oxidant respectively. The percent sulfur removal increases with increasing the initial concentration of sulfur in fuel and with increasing the reaction temperature. Similar trends were observed when commercial diesel was used to carry out desulfurization studies. The amphiphilic catalyst serves as a catalyst and also as an emulsifying agent to stabilize the emulsion droplets. The effects of temperature, agitation speed, quantity of catalyst and the phase transfer agent were studied to estimate the optimal conditions for the reactions. The sulfur removal from a commercial diesel by phase transfer catalysis has been found effective and removal efficiency was more than 98%. Kinetic experiments carried out for the desulfurization revealed that the sulfur removal results are best fitted to a pseudo first order kinetics and the apparent activation energy of desulfurization was 30.6 kJ/mol. (author)

  13. Mercury isotope fractionation during transfer from post-desulfurized seawater to air.

    Science.gov (United States)

    Huang, Shuyuan; Lin, Kunning; Yuan, Dongxing; Gao, Yaqin; Sun, Lumin

    2016-12-15

    Samples of dissolved gaseous mercury (DGM) in the post-desulfurized seawater discharged from a coal-fired power plant together with samples of gaseous elemental mercury (GEM) over the post-desulfurized seawater surface were collected and analyzed to study the mercury isotope fractionation during transfer from post-desulfurized seawater to air. Experimental results showed that when DGM in the seawater was converted to GEM in the air, the δ 202 Hg and Δ 199 Hg values were changed, ranging from -2.98 to -0.04‰ and from -0.31 to 0.64‰, respectively. Aeration played a key role in accelerating the transformation of DGM to GEM, and resulted in light mercury isotopes being more likely to be enriched in the GEM. The ratio Δ 199 Hg/Δ 201 Hg was 1.626 in all samples, suggesting that mercury mass independent fractionation occurred owing to the nuclear volume effect during the transformation. In addition, mass independent fractionation of mercury even isotopes was found in the GEM above the post-desulfurized seawater surface in the aeration pool. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Feasibility Study of Commercial Sorbent in Coal-derived Syngas Desulfurization Field.

    Czech Academy of Sciences Publication Activity Database

    Chien, H.-Y.; Chyou, Y.-P.; Svoboda, Karel

    2015-01-01

    Roč. 6, č. 4 (2015), s. 236-242 ISSN 2078-0737 R&D Projects: GA ČR GC14-09692J Grant - others:MOST(TW) NSC 103-2923-E-042A-001 -MY3 Institutional support: RVO:67985858 Keywords : gasification * desulfurization * sorbent Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  15. Technology verification phase. Dynamic isotope power system. Final report

    International Nuclear Information System (INIS)

    Halsey, D.G.

    1982-01-01

    The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight system design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance

  16. Technology verification phase. Dynamic isotope power system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Halsey, D.G.

    1982-03-10

    The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight system design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance. (LCL)

  17. Photovoltaic-system costing-methodology development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-07-01

    Presented are the results of a study to expand the use of standardized costing methodologies in the National Photovoltaics Program. The costing standards, which include SAMIS for manufacturing costs and M and D for marketing and distribution costs, have been applied to concentrator collectors and power-conditioning units. The M and D model was also computerized. Finally, a uniform construction cost-accounting structure was developed for use in photovoltaic test and application projects. The appendices contain example cases which demonstrate the use of the models.

  18. Method and apparatus for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    Science.gov (United States)

    Grindley, T.

    1988-04-05

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier is described. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600 to 1800 F and are partially quenched with water to 1000 to 1200 F before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime /limestone. 1 fig.

  19. GO evaluation of a PWR spray system. Final report

    International Nuclear Information System (INIS)

    Long, W.T.

    1975-08-01

    GO is a reliability analysis methodology developed over the years from 1960 to the present by Kaman Sciences Corporation, Colorado Springs, Colorado. In this report the GO methodology is presented and its application demonstrated by performing a reliability analysis of a conceptual PWR Containment Spray System. Certain numerical results obtained are compared with those of a prior fault tree analysis of the same system as documented in the 11 January 1973 draft report, A Fault Tree Evaluation of a PWR Spray System

  20. TAP II Processing System Final Report. Hardware Documentation

    Science.gov (United States)

    1977-05-01

    system operating instructions. Separate operacion and maintenance manuals are available for the HDDR elec- tronics and the recorders, the Analogic A...has been used on prior shipboard systems in conjunc- tion with the Lambda array. Emphasis is given in this manual to the new equipment and processing...S.E./8 Channel Diffetential t• Multiplexer FLOATING POINT SYSTEMS, DOCUMENTATION . jFPS-7309. AP-120B Internal Interface Manual FPS-7322 AP-120B

  1. New York integrated incident management system evaluation project final report

    Science.gov (United States)

    2007-03-23

    The Integrated Incident Management System (IIMS) enables incident response personnel to transmit data about an incident to other responders and dispatchers on a real-time basis. When an incident is entered into IIMS, the system uses GPS to identify t...

  2. Mirror fusion test facility magnet system. Final design report

    International Nuclear Information System (INIS)

    Henning, C.D.; Hodges, A.J.; VanSant, J.H.; Dalder, E.N.; Hinkle, R.E.; Horvath, J.A.; Scanlan, R.M.; Shimer, D.W.; Baldi, R.W.; Tatro, R.E.

    1980-01-01

    Information is given on each of the following topics: (1) magnet description, (2) superconducting manufacture, (3) mechanical behavior of conductor winding, (4) coil winding, (5) thermal analysis, (6) cryogenic system, (7) power supply system, (8) structural analysis, (9) structural finite element analysis refinement, (10) structural case fault analysis, and (11) structural metallurgy

  3. Economic incentives to wind systems commercialization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lotker, M.; Shaw, Jr, R. W.; Adolfson, W. F.; Bernardi, R. P.; Davidoff, P. H.; Eckhart, M. T.; Gunwaldsen, D. S.; Mettam, P. J.; Narayanan, P.; Sillin, J. O.

    1978-08-01

    This assessment of Economic Incentives to Wind Systems Commercialization is an analysis of the quantitative and qualitative impacts of a variety of Government funded economic incentives on Wind Energy Conversion Systems (WECS). The purpose of this study is to achieve better understanding of the relationship between implementation of specific economic incentives for WECS, and the factors surrounding WECS commercial introduction.

  4. Mirror fusion test facility magnet system. Final design report

    Energy Technology Data Exchange (ETDEWEB)

    Henning, C.D.; Hodges, A.J.; VanSant, J.H.; Dalder, E.N.; Hinkle, R.E.; Horvath, J.A.; Scanlan, R.M.; Shimer, D.W.; Baldi, R.W.; Tatro, R.E.

    1980-09-03

    Information is given on each of the following topics: (1) magnet description, (2) superconducting manufacture, (3) mechanical behavior of conductor winding, (4) coil winding, (5) thermal analysis, (6) cryogenic system, (7) power supply system, (8) structural analysis, (9) structural finite element analysis refinement, (10) structural case fault analysis, and (11) structural metallurgy. (MOW)

  5. OLAP: A Fast, Easy, Affordable Executive Information System--Finally!

    Science.gov (United States)

    Stewart, Henry M.

    1995-01-01

    The University of Rochester's experience with online analytical processing (OLAP), part of its executive information system, is reported. The server, a multiuser, local area network (LAN)-based database loaded from legacy systems or a data warehouse, can rapidly manipulate and display data, and allows quick creation and changing of analytical…

  6. Advanced Caution and Warning System, Final Report - 2011

    Science.gov (United States)

    Spirkovska, Lilly; Aaseng, Gordon; Iverson, David; McCann, Robert S.; Robinson, Peter; Dittemore, Gary; Liolios, Sotirios; Baskaran, Vijay; Johnson, Jeremy; Lee, Charles; hide

    2013-01-01

    The work described in this report is a continuation of the ACAWS work funded in fiscal year (FY) 2010 under the Exploration Technology Development Program (ETDP), Integrated Systems Health Management (ISHM) project. In FY 2010, we developed requirements for an ACAWS system and vetted the requirements with potential users via a concept demonstration system. In FY 2011, we developed a working prototype of aspects of that concept, with placeholders for technologies to be fully developed in future phases of the project. The objective is to develop general capability to assist operators with system health monitoring and failure diagnosis. Moreover, ACAWS was integrated with the Discrete Controls (DC) task of the Autonomous Systems and Avionics (ASA) project. The primary objective of DC is to demonstrate an electronic and interactive procedure display environment and multiple levels of automation (automatic execution by computer, execution by computer if the operator consents, and manual execution by the operator).

  7. Developing maintainability for fusion power systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Zahn, H.S.; Mantz, H.C.; Curtis, C.T.; Buchheit, R.J.; Green, W.M.; Zuckerman, D.S.

    1979-11-01

    The overall purpose of the study is to identify design features of fusion power reactors which contribute to the achievement of high levels of maintainability. Previous phases evaluated several commercial tokamak reactor design concepts. This final phase compares the maintainability of a tandem mirror reactor (TMR) commercial conceptual design with the most maintainable tokamak concept selected from earlier work. A series of maintainability design guidelines and desirable TMR design features are defined. The effects of scheduled and unscheduled maintenance for most of the reactor subsystems are defined. The comparison of the TMR and tokamak reactor maintenance costs and availabilities show that both reactors have similar costs for scheduled maintenance at 19.4 and 20.8 million dollars annually and similar scheduled downtime availability impacts, achieving approximate availabilities of 79% at optimized maintenance intervals and cost of electricity.

  8. Developing maintainability for fusion power systems. Final report

    International Nuclear Information System (INIS)

    Zahn, H.S.; Mantz, H.C.; Curtis, C.T.; Buchheit, R.J.; Green, W.M.; Zuckerman, D.S.

    1979-11-01

    The overall purpose of the study is to identify design features of fusion power reactors which contribute to the achievement of high levels of maintainability. Previous phases evaluated several commercial tokamak reactor design concepts. This final phase compares the maintainability of a tandem mirror reactor (TMR) commercial conceptual design with the most maintainable tokamak concept selected from earlier work. A series of maintainability design guidelines and desirable TMR design features are defined. The effects of scheduled and unscheduled maintenance for most of the reactor subsystems are defined. The comparison of the TMR and tokamak reactor maintenance costs and availabilities show that both reactors have similar costs for scheduled maintenance at 19.4 and 20.8 million dollars annually and similar scheduled downtime availability impacts, achieving approximate availabilities of 79% at optimized maintenance intervals and cost of electricity

  9. System study of alternative waste management techniques: Final report

    International Nuclear Information System (INIS)

    1986-01-01

    This report summarizes the important results achieved in conjunction with the Research and Development Priority ''Alternative Waste Management Techniques'' sponsored by the Federal Ministry of Research and Technology from 1981 to 1984. The subject of these studies was solely ''direct disposal'' of spent fuel elements. For this purpose a reference concept was selected from a variety of possible processes and engineered in detailed form by firms in the nuclear industry. Those who worked on the engineering concepts consider this waste management method technically feasible. Several disposal casks have been fabricated. The basic licensability of direct disposal can be evaluated on the basis of the documentation developed by the companies. The direct disposal method was compared with the ''integrated waste management concept'' using reference fuel cycles with respect to the following criteria: radiological safety and nuclear material safeguards and, in addition, economic and energy-policy aspects. It was found that with respect to radiological safety, including the long-term safety of the final repository, there are no significant differences between the two fuel cycles with and without reprocessing. With respect to the nuclear material safeguards of a final repository containing spent fuel elements, there are still a number of unanswered questions. From an economic standpoint, direct disposal will be more economical in the foreseeable future than integrated waste management. Quantification of the effects of one or the other waste management method on the national economy is not necessarily possible. Reprocessing is supported primarily by technological and energy-policy considerations. On the basis of the results, the conclusion is reached that reprocessing should be pursued further, but that at the same time direct disposal should be developed to the point of practical maturity

  10. Nuclear Power Safety Reporting System. Final evaluation results

    International Nuclear Information System (INIS)

    Finlayson, F.C.; Newton, R.D.

    1986-02-01

    This document presents the results of a study conducted by the US Nuclear Regulatory Commission of an unobtrusive, voluntary, anonymous third-party managed, nonpunitive human factors data gathering system (the Nuclear power Safety Reporting System - NPSRS) for the nuclear electric power production industry. The data to be gathered by the NPSRS are intended for use in identifying and quantifying the factors that contribute to the occurrence of significant safety incidents involving humans in nuclear power plants. The NPSRS has been designed to encourage participation in the System through guarantees of reporter anonymity provided by a third-party organization that would be responsible for NPSRS management. As additional motivation to reporters for contributing data to the NPSRS, conditional waivers of NRC disciplinary action would be provided to individuals. These conditional waivers of immunity would apply to potential violations of NRC regulations that might be disclosed through reports submitted to the System about inadvertent, noncriminal incidents in nuclear plants. This document summarizes the overall results of the study of the NPSRS concept. In it, a functional description of the NPSRS is presented together with a review and assessment of potential problem areas that might be met if the System were implemented. Conclusions and recommendations resulting from the study are also presented. A companion volume (NUREG/CR-4133, Nuclear Power Safety Reporting System: Implementation and Operational Specifications'') presented in detail the elements, requirements, forms, and procedures for implementing and operating the System. 13 refs

  11. Intergovernmental Advanced Stationary PEM Fuel Cell System Demonstration Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rich Chartrand

    2011-08-31

    A program to complete the design, construction and demonstration of a PEMFC system fuelled by Ethanol, LPG or NG for telecom applications was initiated in October 2007. Early in the program the economics for Ethanol were shown to be unfeasible and permission was given by DOE to focus on LPG only. The design and construction of a prototype unit was completed in Jun 2009 using commercially available PEM FC stack from Ballard Power Systems. During the course of testing, the high pressure drop of the stack was shown to be problematic in terms of control and stability of the reformer. Also, due to the power requirements for air compression the overall efficiency of the system was shown to be lower than a similar system using internally developed low pressure drop FC stack. In Q3 2009, the decision was made to change to the Plug power stack and a second prototype was built and tested. Overall net efficiency was shown to be 31.5% at 3 kW output. Total output of the system is 6 kW. Using the new stack hardware, material cost reduction of 63% was achieved over the previous Alpha design. During a November 2009 review meeting Plug Power proposed and was granted permission, to demonstrate the new, commercial version of Plug Power's telecom system at CERL. As this product was also being tested as part of a DOE Topic 7A program, this part of the program was transferred to the Topic 7A program. In Q32008, the scope of work of this program was expanded to include a National Grid demonstration project of a micro-CHP system using hightemperature PEM technology. The Gensys Blue system was cleared for unattended operation, grid connection, and power generation in Aug 2009 at Union College in NY state. The system continues to operate providing power and heat to Beuth House. The system is being continually evaluated and improvements to hardware and controls will be implemented as more is learned about the system's operation. The program is instrumental in improving the

  12. Automated personnel data base system specifications, Task V. Final report

    International Nuclear Information System (INIS)

    Bartley, H.J.; Bocast, A.K.; Deppner, F.O.; Harrison, O.J.; Kraas, I.W.

    1978-11-01

    The full title of this study is 'Development of Qualification Requirements, Training Programs, Career Plans, and Methodologies for Effective Management and Training of Inspection and Enforcement Personnel.' Task V required the development of an automated personnel data base system for NRC/IE. This system is identified as the NRC/IE Personnel, Assignment, Qualifications, and Training System (PAQTS). This Task V report provides the documentation for PAQTS including the Functional Requirements Document (FRD), the Data Requirements Document (DRD), the Hardware and Software Capabilities Assessment, and the Detailed Implementation Schedule. Specific recommendations to facilitate implementation of PAQTS are also included

  13. Retrospective (in-process) project evaluation system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-12-20

    The retrospective evaluation methodology, designed to measure the accomplishments of the Buildings and Community Systems projects that are either on-going or completed, is described. The Threshold Screening system and risk analysis methodologies are briefly described. The result of the addition of the retrospective (in-process) evaluation methodology to the threshold/risk analysis and resource allocation methodology is one system by which a project can be screened when it is proposed, monitored in its development, and evaluated at its completion. This report describes the methodology at this early point in its development.

  14. Laser fusion systems design study. Final technical report

    International Nuclear Information System (INIS)

    1975-06-01

    This study investigated: (1) the formulation and evaluation of an alignment system to accomplish pointing, focusing, centering and translation for the 20-arm SHIVA laser, (2) the formulation and evaluation of concepts for the correction of static phase distortions introduced by the accumulated optical elements in the laser chains, (3) the formulation and evaluation of concepts for the correction of optical path length differences between the arms of the SHIVA system, and (4) the conceptual design of appropriate control system hardware. (U.S.)

  15. Intelligent transportation systems business plan for Kentucky : final report.

    Science.gov (United States)

    2001-09-01

    This report presents a Business Plan for Intelligent Transportation Systems (ITS) in Kentucky. The purpose of the Business Plan is to define ITS projects that are planned for implementation from 2002 through 2007. The list of projects contained withi...

  16. Final report bridge design system analysis and modernization.

    Science.gov (United States)

    2016-09-27

    The Bridge Design System (BDS) is an in-house software program developed by the Michigan Department of Transportations : (MDOT) Bridge Design Unit. The BDS designs bridges according to the required specifications, and outputs corresponding design ...

  17. HARNESS: Heterogeneous Adaptable Reconfigurable Networked Systems. Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Fagg, G. E.

    2004-01-20

    HARNESS was proposed as a system that combined the best of emerging technologies found in current distributed computing research and commercial products into a very flexible, dynamically adaptable framework that could be used by applications to allow them to evolve and better handle their execution environment. The HARNESS system was designed using the considerable experience from previous projects such as PVM, MPI, IceT and Cumulvs. As such, the system was designed to avoid any of the common problems found with using these current systems, such as no single point of failure, ability to survive machine, node and software failures. Additional features included improved intercomponent connectivity, with full support for dynamic down loading of addition components at run-time thus reducing the stress on application developers to build in all the libraries they need in advance.

  18. Safety evaluation of the SCATS control system, final report.

    Science.gov (United States)

    2010-09-01

    Since 1992, traffic signals in Oakland County and a portion of Macomb and Wayne Counties of Michigan have been : converted to the Sydney Coordinated Adaptive Traffic System (SCATS). County traffic engineers have been : adjusting various SCATS paramet...

  19. Airport Movement Area Safety System (AMASS) Operational Test, Final Report

    National Research Council Canada - National Science Library

    Dellmyer, Dan

    2000-01-01

    ...) was to verify the Critical Operational Issues (COT). The AMASS is a runway collision alert system that provides tower air traffic controllers with automated conflict warnings and alerts to reduce the risks of runway collisions...

  20. Improved Controls for Fusion RF Systems. Final technical report

    International Nuclear Information System (INIS)

    Casey, Jeffrey A.

    2011-01-01

    We have addressed the specific requirements for the integrated systems controlling an array of klystrons used for Lower Hybrid Current Drive (LHCD). The immediate goal for our design was to modernize the transmitter protection system (TPS) for LHCD on the Alcator C-Mod tokamak at the MIT Plasma Science and Fusion Center (MIT-PSFC). Working with the Alcator C-Mod team, we have upgraded the design of these controls to retrofit for improvements in performance and safety, as well as to facilitate the upcoming expansion from 12 to 16 klystrons. The longer range goals to generalize the designs in such a way that they will be of benefit to other programs within the international fusion effort was met by designing a system which was flexible enough to address all the MIT system requirements, and modular enough to adapt to a large variety of other requirements with minimal reconfiguration

  1. Culvert information management system : demonstration project, final report, August 2009.

    Science.gov (United States)

    2009-08-01

    The overall objective of the research was to develop a pilot scale Culvert Information Management System (CIMS) that will : comply with both requirements stipulated by the Governmental Accounting Standards Board (GASB-34) and new federal : storm wate...

  2. Static Scale Conversion Weigh-In-Motion System; FINAL

    International Nuclear Information System (INIS)

    Beshears, D.L.

    2001-01-01

    In support of the Air Mobility Battle Lab (AMBL), the Defense Advanced Research Projects Agency (DARPA) Advanced Logistics Program and the U. S. Transportation Command (USTRANSCOM), the ultimate objective of this project is to develop and demonstrate a full-scale prototype static scale conversion weigh-in-motion/Profilometry (SSC-WIM/P) system to measure and record dimensional and weight information for the Department of Defense (DoD) equipment and cargo. The Oak Ridge National Laboratory (ORNL), along with the AMBL, and Intercomp, Inc. have developed a long-range plan for developing a dual-use system which can be used as a standard static scale or an accurate weigh-in-motion system. AMBL will work to define requirements for additional activities with U.S. Transportation Command, Air Mobility Command, and the Joint Warfighting Battle Lab for both the SSC-WIM/P and a portable Weigh-in-Motion System for individual units. The funding goal is to fully fund the development of two prototype test articles (a SSC-WIM kit, and a laser profilometer) and have at least one fully operational system by the early 2002 timeframe. The objective of this portion of the project will be to develop a SSC-WIM system, which at a later date can be fully integrated with a profilometry system; to fully characterize DOD wheeled vehicles and cargo (individual axle weights, total vehicle weight, center of balance, height, width and length measurements). The program will be completed in phases with the initial AMBL/DARPA funding being used to initiate the efforts while AMBL/USTC obtains funding to complete the first generation system effort. At the completion of an initial effort, the interface hardware and the data acquisition/analysis hardware will be developed, fabricated, and system principles and basic functionality evaluated, tested, and demonstrated. Additional funding, when made available, will allow the successful completion of a first generation prototype system. This effort will be

  3. Center for Advanced Biofuel Systems (CABS) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kutchan, Toni M. [Donald Danforth Plant Science Center, St. Louis, MO (United States)

    2015-12-02

    One of the great challenges facing current and future generations is how to meet growing energy demands in an environmentally sustainable manner. Renewable energy sources, including wind, geothermal, solar, hydroelectric, and biofuel energy systems, are rapidly being developed as sustainable alternatives to fossil fuels. Biofuels are particularly attractive to the U.S., given its vast agricultural resources. The first generation of biofuel systems was based on fermentation of sugars to produce ethanol, typically from food crops. Subsequent generations of biofuel systems, including those included in the CABS project, will build upon the experiences learned from those early research results and will have improved production efficiencies, reduced environmental impacts and decreased reliance on food crops. Thermodynamic models predict that the next generations of biofuel systems will yield three- to five-fold more recoverable energy products. To address the technological challenges necessary to develop enhanced biofuel systems, greater understanding of the non-equilibrium processes involved in solar energy conversion and the channeling of reduced carbon into biofuel products must be developed. The objective of the proposed Center for Advanced Biofuel Systems (CABS) was to increase the thermodynamic and kinetic efficiency of select plant- and algal-based fuel production systems using rational metabolic engineering approaches grounded in modern systems biology. The overall strategy was to increase the efficiency of solar energy conversion into oils and other specialty biofuel components by channeling metabolic flux toward products using advanced catalysts and sensible design:1) employing novel protein catalysts that increase the thermodynamic and kinetic efficiencies of photosynthesis and oil biosynthesis; 2) engineering metabolic networks to enhance acetyl-CoA production and its channeling towards lipid synthesis; and 3) engineering new metabolic networks for the

  4. Solar heating system installed at Jackson, Tennessee. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    The solar energy heating system installed at the Coca-Cola Bottling Works in Jackson, Tennessee is described. The system consists of 9480 square feet of Owens-Illinois evacuated tubular solar collectors with attached specular cylindrical reflectors and will provide space heating for the 70,000 square foot production building in the winter, and hot water for the bottle washing equipment the remainder of the year. Component specifications and engineering drawings are included. (WHK)

  5. Final Report for the Virtual Reliability Realization System LDRD

    Energy Technology Data Exchange (ETDEWEB)

    DELLIN, THEODORE A.; HENDERSON, CHRISTOPHER L.; O' TOOLE, EDWARD J.

    2000-12-01

    Current approaches to reliability are not adequate to keep pace with the need for faster, better and cheaper products and systems. This is especially true in high consequence of failure applications. The original proposal for the LDRD was to look at this challenge and see if there was a new paradigm that could make reliability predictions, along with a quantitative estimate of the risk in that prediction, in a way that was faster, better and cheaper. Such an approach would be based on the underlying science models that are the backbone of reliability predictions. The new paradigm would be implemented in two software tools: the Virtual Reliability Realization System (VRRS) and the Reliability Expert System (REX). The three-year LDRD was funded at a reduced level for the first year ($120K vs. $250K) and not renewed. Because of the reduced funding, we concentrated on the initial development of the expertise system. We developed an interactive semiconductor calculation tool needed for reliability analyses. We also were able to generate a basic functional system using Microsoft Siteserver Commerce Edition and Microsoft Sequel Server. The base system has the capability to store Office documents from multiple authors, and has the ability to track and charge for usage. The full outline of the knowledge model has been incorporated as well as examples of various types of content.

  6. Project on Alternative Systems Study - PASS. Final report

    International Nuclear Information System (INIS)

    1992-10-01

    Alternative repository systems for deep disposal of spent fuel and different types of canisters are studied regarding technical aspects in Project on Alternative System Study (PASS). The objective is to present a ranking of repository systems as well as of canister types for each system. The studies and compared systems are: KBS-3, Medium Long Tunnels (MLH), Long tunnels (VLH) and Deep Boreholes (VDH). For KBS-3 and MLH five canister types are compared (copper/steel, copper/lead, copper (HIP), steel/lead and steel), for VLH two types (copper/steel and steel), and for VDH three types (titanium/concrete with non-consolidated fuel assemblies, titanium/concrete with consolidated assemblies and copper (HIP) with non-consolidated assemblies). The comparison is separated into three sub-comparisons (Technology, Long-term performance and safety, and Costs), which eventually are merged into one ranking. With respect to canister alternatives the result is that the copper/steel canister is ranked first for KBS-3, MLH and VLH, while the titanium/concrete canister is ranked first for VDH (non-consolidated as well as consolidated assemblies. With these canister alternatives the merged ranking of repository systems results in placing KBS-3 slightly in front of MLH. VLH comes thereafter and VDH last. (32 refs.)

  7. Smart Infrared Inspection System Field Operational Test Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Siekmann, Adam [ORNL; Capps, Gary J [ORNL; Franzese, Oscar [ORNL; Lascurain, Mary Beth [ORNL

    2011-06-01

    The Smart InfraRed Inspection System (SIRIS) is a tool designed to assist inspectors in determining which vehicles passing through the SIRIS system are in need of further inspection by measuring the thermal data from the wheel components. As a vehicle enters the system, infrared cameras on the road measure temperatures of the brakes, tires, and wheel bearings on both wheel ends of commercial motor vehicles (CMVs) in motion. This thermal data is then presented to enforcement personal inside of the inspection station on a user friendly interface. Vehicles that are suspected to have a violation are automatically alerted to the enforcement staff. The main goal of the SIRIS field operational test (FOT) was to collect data to evaluate the performance of the prototype system and determine the viability of such a system being used for commercial motor vehicle enforcement. From March 2010 to September 2010, ORNL facilitated the SIRIS FOT at the Greene County Inspection Station (IS) in Greeneville, Tennessee. During the course of the FOT, 413 CMVs were given a North American Standard (NAS) Level-1 inspection. Of those 413 CMVs, 384 were subjected to a SIRIS screening. A total of 36 (9.38%) of the vehicles were flagged by SIRIS as having one or more thermal issues; with brakes issues making up 33 (91.67%) of those. Of the 36 vehicles flagged as having thermal issues, 31 (86.11%) were found to have a violation and 30 (83.33%) of those vehicles were placed out-of-service (OOS). Overall the enforcement personnel who have used SIRIS for screening purposes have had positive feedback on the potential of SIRIS. With improvements in detection algorithms and stability, the system will be beneficial to the CMV enforcement community and increase overall trooper productivity by accurately identifying a higher percentage of CMVs to be placed OOS with minimal error. No future evaluation of SIRIS has been deemed necessary and specifications for a production system will soon be drafted.

  8. Operations-oriented performance measures for freeway management systems : final report.

    Science.gov (United States)

    2008-12-01

    This report describes the second and final year activities of the project titled Using Operations-Oriented Performance Measures to Support Freeway Management Systems. Work activities included developing a prototype system architecture for testi...

  9. Global Navigation Satellite System (GNSS) Final Earth Rotation Product from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This derived product set consists of Global Navigation Satellite System Final Earth Rotation Product (ERP) from the NASA Crustal Dynamics Data Information System...

  10. Global Navigation Satellite System (GNSS) Final Clock Product Summary from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This derived product set consists of Global Navigation Satellite System Final Clock Product Summary from the NASA Crustal Dynamics Data Information System (CDDIS)....

  11. Green Lighting. Energy-efficient integrated lighting systems - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Linhart, F.; Scartezzini, J.-L.

    2009-10-15

    The objective of the Green Lighting project was to develop a High Performance Integrated Lighting System, based on advanced technologies for day- and electric lighting, achieving a Lighting Power Density (LPD) that does not exceed 3 W/m{sup 2}. The project has revealed that Anidolic Daylighting Systems (ADS) are an ideal basis for High Performance Integrated Lighting Systems. Not only are they able to provide adequate illumination (i.e. sufficiently high illuminance) in office rooms during large fractions of normal office hours, under various sky conditions and over the entire year, but they are also highly appreciated by office occupants at the condition that glare control mechanisms are available. Complementary electric lighting is, however, still necessary to back up the ADS at times when there is insufficient daylight flux available. It was shown during this project, that the most interesting trade-offs between energy-efficiency and visual comfort are obtained by using a combination of ceiling-mounted directly emitting luminaires with very high optical efficiencies for ambient lighting and portable desk lamps for temporary task lighting. The most appropriate lamps for the ceiling-mounted luminaires are currently highly efficient fluorescent tubes, but white LED tubes can be considered a realistic option for the future. The most suitable light sources for desk lamps for temporary task lighting are Compact Fluorescent Lamps (CFLs) and white LED light bulbs. Based on the above-mentioned technologies, a High Performance Integrated Lighting System with a very low LPD has been developed over the last three years. The system has been set up in an office room of the LESO solar experimental building located on the EPFL campus; it has been tested intensively during a Post-Occupancy Evaluation (POE) study involving twenty human subjects. This study has revealed that the subjects' performance and subjective visual comfort was improved by the new system, compared to

  12. Technical assessment of maglev system concepts. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lever, J.H.

    1998-10-01

    The Government Maglev System Assessment Team operated from 1991 to 1993 as part of the National Maglev Initiative. They assessed the technical viability of four US Maglev system concepts, using the French TGV high speed train and the German TR07 Maglev system as assessment baselines. Maglev in general offers advantages that include high speed potential, excellent system control, high capacity, low energy consumption, low maintenance, modest land requirements, low operating costs, and ability to meet a variety of transportation missions. Further, the US Maglev concepts could provide superior performance to TR07 for similar cost or similar performance for less cost. They also could achieve both lower trip times and lower energy consumption along typical US routes. These advantages result generally from the use of large gap magnetic suspensions, more powerful linear synchronous motors and tilting vehicles. Innovative concepts for motors, guideways, suspension, and superconducting magnets all contribute to a potential for superior long term performance of US Maglev systems compared with TGV and TR07.

  13. Total Energy Recovery System for Agribusiness. [Geothermally heated]. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Fogleman, S.F.; Fisher, L.A.; Black, A.R.; Singh, D.P.

    1977-05-01

    An engineering and economic study was made to determine a practical balance of selected agribusiness subsystems resulting in realistic estimated produce yields for a geothermally heated system known as the Total Energy Recovery System for Agribusiness. The subsystem cycles for an average application at an unspecified hydrothermal resources site in the western United States utilize waste and by-products from their companion cycles insofar as practicable. Based on conservative estimates of current controlled environment yields, produce wholesale market prices, production costs, and capital investment required, it appears that the family-operation-sized TERSA module presents the potential for marginal recovery of all capital investment costs. In addition to family- or small-cooperative-farming groups, TERSA has potential users in food-oriented corporations and large-cooperative-agribusiness operations. The following topics are considered in detail: greenhouse tomatoes and cucumbers; fish farming; mushroom culture; biogas generation; integration methodology; hydrothermal fluids and heat exchanger selection; and the system. 133 references. (MHR)

  14. Occupancy-counter-based control system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, G.; Hoagland, L. C.; Bowman, J. K.

    1979-07-01

    Excessive mechanical ventilation of commercial and institutional buildings can result in significant waste of energy required for space heating and cooling. Ventilation rates are typically set to satisfy building design occupancy levels, in accordance with local codes, even though the building may seldom or never experience design occupancy. A method of eliminating this waste to utilize an occupancy-based ventilation control system wherein a counting device records people entering and leaving the building, to maintain a continuous record of people inventory, and to regulate mechanical ventilation control dampers to supply only that amount of ventilation air required for current occupancy levels is described. A device of this type was installed and tested in a department store in Framingham, Massachusetts and fully instrumented and operated over a 14 month period. Test results on energy usage were correlated with weather severity in order to determine the savings resulting from use of the control system. This system provided a savings of 33% in gas usage during the winter period and a savings of 23% in electricity usage during the summer period. These savings would return the installed cost of the control system in about 1 1/2 years. Projections of the performance of this system in other climatic regions (Chicago, Los Angeles, Kansas City, Miami, Minneapolis) are also presented illustrating payback periods ranging from 1/3 year in Miami to 2 2/3 years in Los Angeles. Complete details of the occupancy based ventilation control system, the test site instrumentation and data gathering procedure, the test results and their interpretation are given. (MCW)

  15. Conceptual design of advanced central receiver power system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tracey, T. R.

    1978-09-01

    The design of a 300 MWe tower focus power plant which uses molten salt heat transfer fluids and sensible heat storage is described in detail. The system consists of nine heliostat fields with 7711 heliostats in each. Four cavity receivers are located at the top of a 155-meter tower. Tasks include: (1) review and analysis of preliminary specification; (2) parametric analysis; (3) selection of preferred configuration; (4) commercial plant conceptual design; (5) assessment of commercial-sized advanced central power system; (6) development plan; (7) program plan; (8) reports and data; (9) program management; (10) safety analysis; and (11) material study and test program. (WHK)

  16. Design and synthesis of reactive separation systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Doherty, M.F.

    1992-12-31

    During the last decade there has been a rapid upturn in interest in reactive distillation. The chemical process industry recognizes the favorable economics of carrying out reaction simultaneously with distillation for certain classes of reacting systems, and many new processes have been built based on this technology. Interest is also increasing by academics and software vendors. Systematic design methods for reactive distillation systems have only recently begun to emerge. In this report we survey the available design techniques and point out the contributions made by our group at the University of Massachusetts.

  17. Hot Coal Gas Desulfurization with manganese based sorbents. Quarterly report, August 1, 1993--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hepworth, M.T.

    1993-10-01

    The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies at the US Steel Fundamental Research Laboratories in Monroeville, PA, by E. T. Turkdogan indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This report documents progress in pelletizing and testing via thermogravimetric analysis of individual pellet formulations of manganese ore/alumina combinations and also manganese carbonate/alumina with two binders, dextrin and bentonite. Preliminary results indicate that the manganese carbonate material, being of higher purity than the manganese ore, has a higher degree of sulfur capacity and more rapid absorption kinetics. A 2-inch fixed-bed reactor has been fabricated and is now ready for subjecting pellets to cyclic loading and regeneration.

  18. Hot coal gas desulfurization with manganese-based sorbents. Annual report, September 1992--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hepworth, M.T.

    1993-12-01

    The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies at the US Steel Fundamental Research Laboratories in Monroeville, PA, by E. T. Turkdogan indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This Annual Topical Report documents progress in pelletizing and testing via thermo-gravimetric analysis of individual pellet formulations of manganese ore/ alumina combinations and also manganese carbonate/alumina with two binders, dextrin and bentonite. It includes the prior Quarterly Technical Reports which indicate that the manganese carbonate material, being of higher purity than the manganese ore, has a higher degree of sulfur capacity and more rapid absorption kinetics. A 2-inch fixed-bed reactor has been fabricated and is now ready for subjecting pellets to cyclic loading and regeneration.

  19. Enrichment and cultivation of a sulfide-oxidizing bacteria consortium for its deploying in full-scale biogas desulfurization

    International Nuclear Information System (INIS)

    González Sánchez, Armando; Flores Márquez, Trinidad Eliseo; Revah, Sergio; Morgan Sagastume, Juan Manuel

    2014-01-01

    Operational experiences and strategies to get suitable chemolithoautotrophic sulfide-oxidizing biomass from activated sludge wastewater treatment plant for its deploying in a full-scale biogas desulfurization plant are described. An economic nutrient source was applied to foster microbial selection and rapid growth. Respirometry was implemented on full-scale installations to monitor the ability of the specialized bacteria consortium to oxidize reduced sulfur i.e. H 2 S. During the deployment in the full-scale desulfurization reactor, intermittent sulfide feed from biogas scrubbing was performed to accelerate the startup the desulfurization process. - Highlights: • A simple method for reaching high amounts of specialized sulfide-oxidizing bacterial consortium from activated sludge was developed. • The full-scale desulfurization process can be continuously monitored by respirometry allowing fast decision making if problems arise. • The dissolved sulfide concentration was estimated with an empirical correlation between measurements of ORP, dissolved oxygen and pH

  20. Safe Active Scanning for Energy Delivery Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Helms, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Salazar, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scheibel, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Engels, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reiger, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-30

    The Department of Energy’s Cybersecurity for Energy Delivery Systems Program has funded Safe(r) Active Scanning for Energy Delivery Systems, led by Lawrence Livermore National Laboratory, to investigate and analyze the impacts of active scanning in the operational environment of energy delivery systems. In collaboration with Pacific Northwest National Laboratory and Idaho National Laboratory, active scans across three testbeds including 38 devices were performed. This report gives a summary of the initial literature survey performed on the SASEDS project as well as industry partner interview summaries and main findings from Phase 1 of the project. Additionally, the report goes into the details of scanning techniques, methodologies for testing, testbed descriptions, and scanning results, with appendices to elaborate on the specific scans that were performed. As a result of testing, a single device out of 38 exhibited problems when actively scanned, and a reboot was required to fix it. This single failure indicates that active scanning is not likely to have a detrimental effect on the safety and resilience of energy delivery systems. We provide a path forward for future research that could enable wide adoption of active scanning and lead utilities to incorporate active scanning as part of their default network security plans to discover and rectify rogue devices, adversaries, and services that may be on the network. This increased network visibility will allow operational technology cybersecurity practitioners to improve their situational awareness of networks and their vulnerabilities.

  1. Vocational Rehabilitation Services in a State Penitentiary System. Final Report.

    Science.gov (United States)

    Oklahoma State Penitentiary, Oklahoma City.

    The purpose of this project was to provide total rehabilitation services to a group of handicapped inmates of the State Penitentiary System in order to demonstrate the effectiveness of returning them to society as productive citizens. This was to be accomplished by evaluating the rehabilitation potential of inmates, providing psychological and…

  2. FY 2005 Quantum Cascade Laser Alignment System Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Tanya L.; Cannon, Bret D.; Wojcik, Michael D.; Broocks, Bryan T.; Stewart, Timothy L.; Hatchell, Brian K.

    2006-01-11

    The Alignment Lasers Task of Pacific Northwest National Laboratory's (PNNL's) Remote Spectroscopy Project (Project PL211I) is a co-funded project between DOE NA-22 and a Classified Client. This project, which began in the second half of FY03, involved building and delivering a Quantum Cascade (QC) Laser Alignment System to be used for testing the pupil alignment of an infrared sensor by measuring the response from four pairs of diametrically opposed QC lasers. PNNL delivered the system in FY04 and provided technical assistance in FY05 culminating into a successful demonstration of the system. This project evolved from the Laser Development Task of PL211I, which is involved in developing novel laser technology to support development of advanced chemical sensors for detecting the proliferation of nuclear weapons. The laser systems are based on quantum cascade (QC) lasers, a new semiconductor source in the infrared. QC lasers can be tailored to emit light throughout the infrared region (3.5 ? 17 ?m) and have high output power and stability. Thus, these lasers provide an infrared source with superb power and spectral stability enabling them to be used for applications such as alignment and calibration in addition to chemical sensing.

  3. BIOCONAID System (Bionic Control of Acceleration Induced Dimming). Final Report.

    Science.gov (United States)

    Rogers, Dana B.; And Others

    The system described represents a new technique for enhancing the fidelity of flight simulators during high acceleration maneuvers. This technique forces the simulator pilot into active participation and energy expenditure similar to the aircraft pilot undergoing actual accelerations. The Bionic Control of Acceleration Induced Dimming (BIOCONAID)…

  4. Glass markets information system; application summary reports. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The Glass Markets Information System Summary Reports is a compilation of over 70 possible applications for post-consumer recycled glass. The database includes descriptions of the applications, literature references, processing and quality requirements, and economic data as available. The database is intended for use by groups seeking ideas for economic development with recycled glass.

  5. Artificial intelligence technologies for power system operations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Talukdar, S.N.; Cardozo, E.

    1986-01-01

    Researchers in this study examined the potential of artificial intelligence (AI) technologies for improving problem-solving strategies in 16 power system operations. To demonstrate the use of AI in the area they considered most promising, contingency selection-security assessment, they also developed two programs - one to simulate network protection schemes, the other to diagnose faults.

  6. Safeguards systems concepts for nuclear material transportation. Final report

    International Nuclear Information System (INIS)

    Baldonado, O.C.; Kevany, M.; Rodney, D.; Pitts, D.; Mazur, M.

    1977-09-01

    The report describes the development of system concepts for the safeguarding of special strategic nuclear materials (SNM) against malevolent adversary action during the interfacility transport of the SNM. The methodology used includes techniques for defining, classifying, and analyzing adversary action sequences; defining safeguards system components; assessing the vulnerability of various safeguards systems and their component parts to the potential adversary action sequences, and conceptualizing system design requirements. The method of analysis is based primarily on a comparison of adversary actions with safeguards measures, to estimate vulnerability. Because of the paucity of the data available for assessing vulnerability, the Delphi approach was used to generate data: values were estimated in a structured exercise by a panel of experts in the safeguards and terrorist fields. It is concluded that the probability of successful attack against a truck/escort convoy manned by well-trained, well-armed personnel is low enough to discourage all but the strongest adversaries. Secrecy of operations and careful screening of personnel are very important. No reliance should be placed on current capabilities of local law enforcement agencies. The recommendation of the study is the use of road transport in the near future and air transport at a later time when the number of shipments reaches a level to justify it, and when present safety problems are resolved

  7. Schedule for Rating Disabilities; the Endocrine System. Final rule.

    Science.gov (United States)

    2017-11-02

    This document amends the Department of Veterans Affairs (VA) Schedule for Rating Disabilities (VASRD) by revising the portion of the Schedule that addresses endocrine conditions and disorders of the endocrine system. The effect of this action is to ensure that the VASRD uses current medical terminology and to provide detailed and updated criteria for evaluation of endocrine disorders.

  8. Survey of system responsibility in the Nordic countries. Final report

    International Nuclear Information System (INIS)

    2005-02-01

    In September 2004 the Nordic Council of Ministers asked Nordel to perform some tasks and present the results to the Council on 1 March 2005. One of the tasks is to survey how system responsibility is defined and executed in the different Nordic countries. According to the Nordic Council of Ministers, the survey shall illuminate similarities and differences between the countries and assess the reasons for the differences. Nordel is asked to present a joint view system responsibility in the Nordic countries. Among other things, the responsibility for the system operators and the participants in the market shall be defined. The definition shall also include the distribution of costs between costs for network business and costs for business in competition. This shall be done in a way that creates a common platform for the further harmonisation work and continuous positive development of the Nordic electricity market. It is also important to identify the need for changes in e.g. legislation and guidelines in the different countries as a consequence of an implementation of a common definition in the Nordic countries. Areas to be included in the task are among others, balance settlement, security of supply, congestion management and system services. (BA)

  9. Solar heating system installed at Stamford, CT. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    Information is provided on the solar heating system installed at the Lutz-Sotire Partnership Executive East Office Building, Stamford, Connecticut. The information consists of description of system and components, operation and maintenance manual, as-built drawings and manufacturer's component data. The solar system was designed to provide approximately 50 percent of the heating requirements. The solar facility has 2,561 sq. ft. of liquid flat plate collectors and a 6000 gallon, stone lined, well-insulated storage tank. Freeze protection is provided by a 50 percent glycol/water mixture in the collector loop. From the storage tank, solar heated water is fed into the building's distributed heat pump loop via a modulating three-way valve. If the storage tank temperature drops below 80/sup 0/F, the building loop may be supplied from the existing electrical hot water boilers. The Executive East Office Building is of moderate size, 25,000 sq. ft. of heated space in 2 1/2 stories. The solar system makes available for other users up to 150 KVA of existing electrical generating capacity.

  10. Communications and control for electric power systems: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kirkham, H.

    1998-04-01

    This report is a summary of some of the work done on the Communications and Control project, with particular emphasis on the achievements during the years 1986--1996. During those years, the project moved away from concern with dispersed storage and generation and its impact on power system operation (the team was responsible for studies in this area, and for making a power system simulator that included DSG), and became involved in more concrete work aimed at applying high-tech solutions to problems of power system communications and control. This report covers work done at JPL on the following topics: (1) the measurement of electric and magnetic fields, both ac and dc; (2) the use of optical power to supply low-power electronics; (3) the design of a fault-tolerant communication system designed for distribution automation; and (4) a digital phase locked loop that allows the use of low-power transmitting electronics to recreate a good-quality signal at the receiver. In a report of this kind, only the results and highlights of the work are described.

  11. Automated Energy Distribution and Reliability System (AEDR): Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Buche, D. L.

    2008-07-01

    This report describes Northern Indiana Public Service Co. project efforts to develop an automated energy distribution and reliability system. The purpose of this project was to implement a database-driven GIS solution that would manage all of the company's gas, electric, and landbase objects.

  12. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control. Topical report for Subtask 3.1, In-bed sulfur capture tests; Subtask 3.2, Electrostatic desulfurization; Subtask 3.3, Microbial desulfurization and denitrification

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Abbasian, J.; Akin, C.; Lau, F.S.; Maka, A.; Mensinger, M.C.; Punwani, D.V.; Rue, D.M. [Institute of Gas Technology, Chicago, IL (United States); Gidaspow, D.; Gupta, R.; Wasan, D.T. [Illinois Inst. of Tech., Chicago, IL (United States); Pfister, R.M.: Krieger, E.J. [Ohio State Univ., Columbus, OH (United States)

    1992-05-01

    This topical report on ``Sulfur Control`` presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite) for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT`s electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.

  13. Standard review plan for dry cask storage systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    The Standard Review Plan (SRP) For Dry Cask Storage Systems provides guidance to the Nuclear Regulatory Commission staff in the Spent Fuel Project Office for performing safety reviews of dry cask storage systems. The SRP is intended to ensure the quality and uniformity of the staff reviews, present a basis for the review scope, and clarification of the regulatory requirements. Part 72, Subpart B generally specifies the information needed in a license application for the independent storage of spent nuclear fuel and high level radioactive waste. Regulatory Guide 3.61 {open_quotes}Standard Format and Content for a Topical Safety Analysis Report for a Spent Fuel Dry Storage Cask{close_quotes} contains an outline of the specific information required by the staff. The SRP is divided into 14 sections which reflect the standard application format. Regulatory requirements, staff positions, industry codes and standards, acceptance criteria, and other information are discussed.

  14. Standard review plan for dry cask storage systems. Final report

    International Nuclear Information System (INIS)

    1997-01-01

    The Standard Review Plan (SRP) For Dry Cask Storage Systems provides guidance to the Nuclear Regulatory Commission staff in the Spent Fuel Project Office for performing safety reviews of dry cask storage systems. The SRP is intended to ensure the quality and uniformity of the staff reviews, present a basis for the review scope, and clarification of the regulatory requirements. Part 72, Subpart B generally specifies the information needed in a license application for the independent storage of spent nuclear fuel and high level radioactive waste. Regulatory Guide 3.61 open-quotes Standard Format and Content for a Topical Safety Analysis Report for a Spent Fuel Dry Storage Caskclose quotes contains an outline of the specific information required by the staff. The SRP is divided into 14 sections which reflect the standard application format. Regulatory requirements, staff positions, industry codes and standards, acceptance criteria, and other information are discussed

  15. Fundamental research of decision support systems: Final report

    International Nuclear Information System (INIS)

    Kurstedt, H.A. Jr.

    1986-01-01

    Through an iterative application of Decision Support Systems (DSS) apparatus and evolution of DSS concepts, we redefined DSS from a systems perspective. By focusing on successful DSS and the definition of success for the newly-defined DSS, we generated a paradigm for understanding, applying, and improving DSS. The significance of the research is that we now: (1) understand the various roles management tools play within the new DSS concept; (2) recognize the need for characterizing the domain of responsibility of a manager to obtain a successful DSS; and (3) have learned special characteristics of government agencies like Nuclear Materials (NM) to identify what features of the new DSS concept can be expected to improve performance

  16. Behavior-aware decision support systems : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Gary B.; Homer, Jack (Homer Consulting); Chenoweth, Brooke N.; Backus, George A.; Strip, David R.

    2007-11-01

    As Sandia National Laboratories serves its mission to provide support for the security-related interests of the United States, it is faced with considering the behavioral responses that drive problems, mitigate interventions, or lead to unintended consequences. The effort described here expands earlier works in using healthcare simulation to develop behavior-aware decision support systems. This report focuses on using qualitative choice techniques and enhancing two analysis models developed in a sister project.

  17. Final Technical Report "Multiscale Simulation Algorithms for Biochemical Systems"

    Energy Technology Data Exchange (ETDEWEB)

    Petzold, Linda R.

    2012-10-25

    Biochemical systems are inherently multiscale and stochastic. In microscopic systems formed by living cells, the small numbers of reactant molecules can result in dynamical behavior that is discrete and stochastic rather than continuous and deterministic. An analysis tool that respects these dynamical characteristics is the stochastic simulation algorithm (SSA, Gillespie, 1976), a numerical simulation procedure that is essentially exact for chemical systems that are spatially homogeneous or well stirred. Despite recent improvements, as a procedure that simulates every reaction event, the SSA is necessarily inefficient for most realistic problems. There are two main reasons for this, both arising from the multiscale nature of the underlying problem: (1) stiffness, i.e. the presence of multiple timescales, the fastest of which are stable; and (2) the need to include in the simulation both species that are present in relatively small quantities and should be modeled by a discrete stochastic process, and species that are present in larger quantities and are more efficiently modeled by a deterministic differential equation (or at some scale in between). This project has focused on the development of fast and adaptive algorithms, and the fun- damental theory upon which they must be based, for the multiscale simulation of biochemical systems. Areas addressed by this project include: (1) Theoretical and practical foundations for ac- celerated discrete stochastic simulation (tau-leaping); (2) Dealing with stiffness (fast reactions) in an efficient and well-justified manner in discrete stochastic simulation; (3) Development of adaptive multiscale algorithms for spatially homogeneous discrete stochastic simulation; (4) Development of high-performance SSA algorithms.

  18. Distributed Energy Neural Network Integration System: Year One Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Regan, T.; Sinnock, H.; Davis, A.

    2003-06-01

    This report describes the work of Orion Engineering Corp. to develop a DER household controller module and demonstrate the ability of a group of these controllers to operate through an intelligent, neighborhood controller. The controllers will provide a smart, technologically advanced, simple, efficient, and economic solution for aggregating a community of small distributed generators into a larger single, virtual generator capable of selling power or other services to a utility, independent system operator (ISO), or other entity in a coordinated manner.

  19. Energy implications of integrated solid waste management systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Little, R.E.; McClain, G.; Becker, M.; Ligon, P.; Shapiro, K.

    1994-07-01

    This study develops estimates of energy use and recovery from managing municipal solid waste (MSW) under various collection, processing, and disposal scenarios. We estimate use and recovery -- or energy balance -- resulting from MSW management activities such as waste collection, transport, processing, and disposal, as well as indirect use and recovery linked to secondary materials manufacturing using recycled materials. In our analysis, secondary materials manufacturing displaces virgin materials manufacturing for 13 representative products. Energy implications are expressed as coefficients that measure the net energy saving (or use) of displacing products made from virgin versus recycled materials. Using data developed for the 1992 New York City Master Plan as a starting point, we apply our method to an analysis of various collection systems and 30 types of facilities to illustrate bow energy balances shift as management systems are modified. In sum, all four scenarios show a positive energy balance indicating the energy and advantage of integrated systems versus reliance on one or few technology options. That is, energy produced or saved exceeds the energy used to operate the solid waste system. The largest energy use impacts are attributable to processing, including materials separation and composting. Collection and transportation energy are relatively minor contributors. The largest two contributors to net energy savings are waste combustion and energy saved by processing recycled versus virgin materials. An accompanying spatial analysis methodology allocates energy use and recovery to New York City, New York State outside the city, the U.S., and outside the U.S. Our analytical approach is embodied in a spreadsheet model that can be used by energy and solid waste analysts to estimate impacts of management scenarios at the state and substate level.

  20. Shale-oil-recovery systems incorporating ore beneficiation. Final report.

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, M.A.; Klumpar, I.V.; Peterson, C.R.; Ring, T.A.

    1982-10-01

    This study analyzed the recovery of oil from oil shale by use of proposed systems which incorporate beneficiation of the shale ore (that is concentration of the kerogen before the oil-recovery step). The objective was to identify systems which could be more attractive than conventional surface retorting of ore. No experimental work was carried out. The systems analyzed consisted of beneficiation methods which could increase kerogen concentrations by at least four-fold. Potentially attractive low-enrichment methods such as density separation were not examined. The technical alternatives considered were bounded by the secondary crusher as input and raw shale oil as output. A sequence of ball milling, froth flotation, and retorting concentrate is not attractive for Western shales compared to conventional ore retorting; transporting the concentrate to another location for retorting reduces air emissions in the ore region but cost reduction is questionable. The high capital and energy cost s results largely from the ball milling step which is very inefficient. Major improvements in comminution seem achievable through research and such improvements, plus confirmation of other assumptions, could make high-enrichment beneficiation competitive with conventional processing. 27 figures, 23 tables.

  1. Active system area networks for data intensive computations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-04-01

    The goal of the Active System Area Networks (ASAN) project is to develop hardware and software technologies for the implementation of active system area networks (ASANs). The use of the term ''active'' refers to the ability of the network interfaces to perform application-specific as well as system level computations in addition to their traditional role of data transfer. This project adopts the view that the network infrastructure should be an active computational entity capable of supporting certain classes of computations that would otherwise be performed on the host CPUs. The result is a unique network-wide programming model where computations are dynamically placed within the host CPUs or the NIs depending upon the quality of service demands and network/CPU resource availability. The projects seeks to demonstrate that such an approach is a better match for data intensive network-based applications and that the advent of low-cost powerful embedded processors and configurable hardware makes such an approach economically viable and desirable.

  2. New vision solar system mission study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mondt, J.F.; Zubrin, R.M.

    1996-03-01

    The vision for the future of the planetary exploration program includes the capability to deliver {open_quotes}constellations{close_quotes} or {open_quotes}fleets{close_quotes} of microspacecraft to a planetary destination. These fleets will act in a coordinated manner to gather science data from a variety of locations on or around the target body, thus providing detailed, global coverage without requiring development of a single large, complex and costly spacecraft. Such constellations of spacecraft, coupled with advanced information processing and visualization techniques and high-rate communications, could provide the basis for development of a {open_quotes}virtual{close_quotes} {open_quotes}presence{close_quotes} in the solar system. A goal could be the near real-time delivery of planetary images and video to a wide variety of users in the general public and the science community. This will be a major step in making the solar system accessible to the public and will help make solar system exploration a part of the human experience on Earth.

  3. Accelerating Acceptance of Fuel Cell Backup Power Systems - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Petrecky, James; Ashley, Christopher

    2014-07-21

    Since 2001, Plug Power has installed more than 800 stationary fuel cell systems worldwide. Plug Power’s prime power systems have produced approximately 6.5 million kilowatt hours of electricity and have accumulated more than 2.5 million operating hours. Intermittent, or backup, power products have been deployed with telecommunications carriers and government and utility customers in North and South America, Europe, the United Kingdom, Japan and South Africa. Some of the largest material handling operations in North America are currently using the company’s motive power units in fuel cell-powered forklifts for their warehouses, distribution centers and manufacturing facilities. The low-temperature GenSys fuel cell system provides remote, off-grid and primary power where grid power is unreliable or nonexistent. Built reliable and designed rugged, low- temperature GenSys delivers continuous or backup power through even the most extreme conditions. Coupled with high-efficiency ratings, low-temperature GenSys reduces operating costs making it an economical solution for prime power requirements. Currently, field trials at telecommunication and industrial sites across the globe are proving the advantages of fuel cells—lower maintenance, fuel costs and emissions, as well as longer life—compared with traditional internal combustion engines.

  4. Once-through integral system (OTIS): Final report

    International Nuclear Information System (INIS)

    Gloudemans, J.R.

    1986-09-01

    A scaled experimental facility, designated the once-through integral system (OTIS), was used to acquire post-small break loss-of-coolant accident (SBLOCA) data for benchmarking system codes. OTIS was also used to investigate the application of the Abnormal Transient Operating Guidelines (ATOG) used in the Babcock and Wilcox (B and W) designed nuclear steam supply system (NSSS) during the course of an SBLOCA. OTIS was a single-loop facility with a plant to model power scale factor of 1686. OTIS maintained the key elevations, approximate component volumes, and loop flow resistances, and simulated the major component phenomena of a B and W raised-loop nuclear plant. A test matrix consisting of 15 tests divided into four categories was performed. The largest group contained 10 tests and was defined to parametrically obtain an extensive set of plant-typical experimental data for code benchmarking. Parameters such as leak size, leak location, and high-pressure injection (HPI) shut-off head were individually varied. The remaining categories were specified to study the impact of the ATOGs (2 tests), to note the effect of guard heater operation on observed phenomena (2 tests), and to provide a data set for comparison with previous test experience (1 test). A summary of the test results and a detailed discussion of Test 220100 is presented. Test 220100 was the nominal or reference test for the parametric studies. This test was performed with a scaled 10-cm 2 leak located in the cold leg suction piping

  5. Evaluation of integrated wall systems incorporating electrochromic windows [Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sbar, Neil L.

    2001-03-30

    Billions of dollars are spent annually in the U.S. on energy lost through the use of inefficient windows. Even wall systems with advanced static glazings and moveable shading devices are not optimal because they can't effectively respond to changing solar conditions. Electrochromic (EC) smart windows can dynamically control the amount of solar light and heat entering a building. The energy saving performance of fully dynamic wall systems containing EC windows was compared with that of static systems using the DOE 2.1E building simulation program. Total costs for different scenarios were computed. SAGE demonstrated the capability to produce double pane EC windows in which the transmittance repeatedly varied between 2-58%. Relative impact of EC glazings in buildings compared to static is 10-20% energy savings across all climatic regions investigated. Significant life cycle cost savings are predicted for SAGE's EC windows when compared to conventional solar control windows over an estimated product lifetime of 20 years.

  6. NEXT GENERATION GAS TURBINE (NGGT) SYSTEMS STUDY; FINAL

    International Nuclear Information System (INIS)

    Unknown

    2001-01-01

    Building upon the 1999 AD Little Study, an expanded market analysis was performed by GE Power Systems in 2001 to quantify the potential demand for an NGGT product. This analysis concluded that improvements to the US energy situation might be best served in the near/mid term (2002-2009) by a ''Technology-Focused'' program rather than a specific ''Product-Focused'' program. Within this new program focus, GEPS performed a parametric screening study of options in the three broad candidate categories of gas turbines: aero-derivative, heavy duty, and a potential hybrid combining components of the other two categories. GEPS's goal was to determine the best candidate systems that could achieve the DOE PRDA expectations and GEPS's internal design criteria in the period specified for initial product introduction, circa 2005. Performance feasibility studies were conducted on candidate systems selected in the screening task, and critical technology areas were identified where further development would be required to meet the program goals. DOE PRDA operating parameters were found to be achievable by 2005 through evolutionary technology. As a result, the study was re-directed toward technology enhancements for interim product introductions and advanced/revolutionary technology for potential NGGT product configurations. Candidate technologies were identified, both evolutionary and revolutionary, with a potential for possible development products via growth step improvements. Benefits were analyzed from two perspectives: (1) What would be the attributes of the top candidate system assuming the relevant technologies were developed and available for an NGGT market opportunity in 2009/2010; and (2) What would be the expected level of public benefit, assuming relevant technologies were incorporated into existing new and current field products as they became available. Candidate systems incorporating these technologies were assessed as to how they could serve multiple applications

  7. Coal-fired high performance power generating system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  8. Columbia River system operation review. Final environmental impact statement

    International Nuclear Information System (INIS)

    1995-11-01

    The Columbia River and its tributaries are the primary water system in the Pacific Northwest, draining some 219,000 square miles in seven states and another 39,500 square miles in British Columbia. Beginning in the 1930's, the Columbia River has been significantly modified by construction of 30 major dams on the river and its tributaries, along with dozens of non-Federal projects. Construction and subsequent operation of these water development projects have contributed to eight primary uses of the river system, including navigation, flood control, irrigation, electric power generation, fish migration, fish and wildlife habitat, recreation, and water supply and quality considerations. Increasing stress on the water development of the Columbia River and its tributaries has led primary Federal agencies to undertake intensive analysis and evaluation of the operation of these projects. These agencies are the U.S. Army Corps of Engineers and the Bureau of Reclamation, who operate the large Federal dams on the river, and the Bonneville Power Administration who sells the power generated at the dams. This review, termed the System Operation Review (SOR), has as its ultimate goal to define a strategy for future operation of the major Columbia River projects which effectively considers the needs of all river uses. This volume, Appendix D: Cultural resources appendix, Technical imput includes the following: Development of geomorphology based framework for cultural resources management, Dworshak Reservoir, Idaho; Impact profiles for SOR reservoirs; comments from the following Native American tribes: Burns Paiute Tribe; Coville Confederated Tribes; Confederated Tribes of the Warm Springs Indian Reservation; Confederated Tribes and bands of the Yakama Indian Nation (comments); Nez Perce Tribe; Coeur D'Alene Tribe; Spokane Tribe of Indians; The confederated Tribes of the Umatilla Indian Reservation

  9. Optimization of storage in passive solar heating systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bahm, R.J.

    1980-05-01

    The search for a simple method of estimating the optimum amount of storage for passive solar space heating system designs and the results of that search are described. The project goals, and why the project is important are described. The major project results are presented in the order of their importance with respect to meeting the project goal. A narrative description of the project is given. Here the various approaches attempted are described, giving the reasons for failure in those areas that were not successful. The Appendices contain the bulk of data generated by this project. Most of the data is presented in graphical form. (MHR)

  10. Effect of potassium hydroxide activation in the desulfurization process of activated carbon prepared by sewage sludge and corn straw.

    Science.gov (United States)

    Zeng, Fan; Liao, Xiaofeng; Hu, Hui; Liao, Li

    2018-03-01

    Series sludge straw-based activated carbons were prepared by sewage sludge and corn straw with potassium hydroxide (KOH) activation, and the desulfurization performance of activated carbons was studied. To obtain the best desulfurization performance, the optimum ratio between the raw materials and the activator was investigated. The results showed that when the mass ratio of sewage sludge, corn straw, and KOH was 3:7:2, the activated carbon obtained the best breakthrough and saturation sulfur sorption capacities, which were 12.38 and 5.74 times, respectively, those of samples prepared by the nonactivated raw materials. The appropriate KOH could improve the microporosity and alkaline groups, meanwhile reducing the lactone groups, which were all beneficial to desulfurization performance. The chemical adsorption process of desulfurization can be simplified to four main steps, and the main desulfurization products are elemental sulfur and sulfate. Sewage sludge (SS) and corn straw (CS) both have great production and wide distribution and are readily available in China. Much attention has been paid on how to deal with them effectively. Based on the environment protection idea of waste treatment with waste and resource recycling, low-cost adsorbents were prepared by these processes. The proposed method can be expanded to the municipal solid waste recycling programs and renewable energy plan. Thus, proceeding with the study of preparing activated carbon by SS and straw as a carbon-based dry desulfurization agent could obtain huge social, economic, and environmental benefits.

  11. User effects on the transient system code calculations. Final report

    International Nuclear Information System (INIS)

    Aksan, S.N.; D'Auria, F.

    1995-01-01

    Large thermal-hydraulic system codes are widely used to perform safety and licensing analyses of nuclear power plants to optimize operational procedures and the plant design itself. Evaluation of the capabilities of these codes are accomplished by comparing the code predictions with the measured experimental data obtained from various types of separate effects and integral test facilities. In recent years, some attempts have been made to establish methodologies to evaluate the accuracy and the uncertainty of the code predictions and consequently judgement on the acceptability of the codes. In none of the methodologies has the influence of the code user on the calculated results been directly addressed. In this paper, the results of the investigations on the user effects for the thermal-hydraulic transient system codes is presented and discussed on the basis of some case studies. The general findings of the investigations show that in addition to user effects, there are other reasons that affect the results of the calculations and which are hidden under user effects. Both the hidden factors and the direct user effects are discussed in detail and general recommendations and conclusions are presented to control and limit them

  12. Columbia River System Operation Review final environmental impact statement. Summary

    International Nuclear Information System (INIS)

    1995-11-01

    The Columbia River System Operation Review (SOR) is being conducted jointly by the US Army Corps of Engineers, the Bureau of Reclamation, and the Bonneville Power Administration. This summary of the SOR story begins where the Draft EIS summary left off. It is divided into seven parts, each of which reports some aspect of the study's outcome: Part 1 is a history. The SOR was not a simple study on any level, and to understand the EIS alternatives, some background is necessary. Part 2 reports the major findings of the technical analysis of alternative system operating strategies, and presents the agencies' Preferred Alternative. Part 3 explains actions the agencies may take with respect to the Columbia River Regional Forum, the Pacific Northwest Coordination Agreement, and the Canadian Entitlement Allocation Agreements. Part 4 presents the Purpose and Need, elements at the core of any Federal EIS. It includes a map showing the Columbia River Basin and information on the affected Federal projects. Part 5 describes the substantial public participation and outreach that occurred during the SOR, and Part 6 summarizes efforts to incorporate the Tribal perspective into the study. Part 7 describes other activities that will be taking place in the next few years, which are related to and build upon the SOR

  13. Community Earth System Model (CESM) Tutorial 2016 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lamarque, Jean-Francois [Univ. Corporation for Atmospheric Research (UCAR) and National Center for Atmospheric Research (NCAR) and Climate and Global Dynamics Laboratory (CGD), Boulder, CO (United States)

    2017-05-09

    For the 2016 tutorial, NCAR/CGD requested a total budget of $70,000 split equally between DOE and NSF. The funds were used to support student participation (travel, lodging, per diem, etc.). Lectures and practical session support was primarily provided by local participants at no additional cost (see list below). The seventh annual Community Earth System Model (CESM) tutorial (2016) for students and early career scientists was held 8 – 12 August 2016. As has been the case over the last few years, this event was extremely successful and there was greater demand than could be met. There was continued interest in support of the NSF’s EaSM Infrastructure awards, to train these awardees in the application of the CESM. Based on suggestions from previous tutorial participants, the 2016 tutorial experience again provided direct connection to Yellowstone for each individual participant (rather than pairs), and used the NCAR Mesa Library. The 2016 tutorial included lectures on simulating the climate system and practical sessions on running CESM, modifying components, and analyzing data. These were targeted to the graduate student level. In addition, specific talks (“Application” talks) were introduced this year to provide participants with some in-depth knowledge of some specific aspects of CESM.

  14. Community-Level Impacts Projection System (CLIPS). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Monts, J.K.; Bareiss, E.R.

    1979-02-01

    The Community-Level Impacts Projection System includes a set of techniques for providing detailed advance information required for rational planning. The computerized system generates reports which enable the user: to describe the energy development activity in terms of its employment demands and spatial location; to estimate how many in-migrating workers will be required; to estimate the demographic characteristics of the in-migrating workers (e.g., how many elementary school children they will bring); to estimate how many additional secondary employment opportunities (e.g., employment in eating and drinking establishments and grocery stores) will be generated; to estimate what the local area's population levels in various age groups would be both with the project and without it; to estimate community population levels for both the impact case and the baseline case; and to estimate the approximate resource requirements and costs for providing additional municipal facilities and services (e.g., water treatment and distribution, wastewater treatment and collection, gas and electric distribution, police and fire protection, etc.)

  15. LIFAC sorbent injection desulfurization demonstration project. Final report, volume II: Project performance and economics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This publication discusses the demonstration of the LIFAC sorbent injection technology at Richmond Power and Light`s Whitewater Valley Unit No. 2, performed under the auspices of the U.S. Department of Energy`s (DOE) Clean Coal Technology Program. LIFAC is a sorbent injection technology capable of removing 75 to 85 percent of a power plant`s SO{sub 2} emissions using limestone at calcium to sulfur molar ratios of between 2 and 2.5 to 1. The site of the demonstration is a coal-fired electric utility power plant located in Richmond, Indiana. The project is being conducted by LIFAC North America (LIFAC NA), a joint venture partnership of Tampella Power Corporation and ICF Kaiser Engineers, in cooperation with DOE, RP&L, and Research Institute (EPRI), the State of Indiana, and Black Beauty Coal Company. The purpose of Public Design Report Volume 2: Project Performance and Economics is to consolidate, for public use, the technical efficiency and economy of the LIFAC Process. The report has been prepared pursuant to the Cooperative Agreement No. DE-FC22-90PC90548 between LIFAC NA and the U.S. Department of Energy.

  16. Photovoltaic systems technology. Final report; Untersuchungen zur photovoltaischen Anlagentechnik. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, A.; Hoenes, H.P.; Honstetter, K.O.; Jossen, A.; Lehner, G.; Karl, H.; Saupe, G.; Zahir, A.

    1994-07-01

    Different types of batteries as vented, valve regulated (gel typ and adsorbed) lead acid and NiCd ones are investigated. The batteries are operated according to typical solar condition. Development of a block oriented simulation software for simulation and optimization of photovoltaic systems. Both projects are passed on to the ZSW (Zentrum fuer Solar- und Wasserstoff-Forschung, Stuttgart-Ulm). The storage batteries are the weak points in a photovoltaic system. To obtain comparable results we operate all batteries under the same conditions. One aim among others was to qualify ageing effects and maintenance requirements. All batteries are connected to a computer controlled battery test stand. The behaviour of the batteries under investigation is very different. The valve regulated gel typ battery shows a good performance. All NiCd batteries under test show large capacity losses during the test. To optimize the life expectance a specific battery management is necessary for each typ. To satisfy all requirements of the batteries advanced battery control units are necessary. To determine the state of the batteries a battery model or special sensors have to be included in the system. In the report directions are given to solve some of these problems. (orig.) [Deutsch] Verschiedene Batterietypen (verschlossene, geschlossene Bleibatterien, Nickel-Kadmium-Batterien) wurden untersucht und einem solartypischen Dauertest unterzogen. Die Auswertung der Messdaten wurde durchgefuehrt. Ein Simulationsprogramm fuer photovoltaische Anlagen wurde entwickelt. Beide Projekte wurden von ZSW (Zentrum fuer Solarenergie- und Wasserstoff-Forschung, Stuttgart-Ulm) uebernommen. Das Verhalten von Batteriespeichern im solartypischen Betrieb soll charakterisiert und Betriebsstrategien abgeleitet werden, die eine moeglichst lange Lebensdauer der Batteriespeicher gewaehrleisten. Durch ausfuehrliche Simulationsrechnungen sollen photovoltaische Anlagen optimiert werden. Das Verhalten unter den

  17. Equilibrium system analysis in a tokamak ignition experiment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Carrera, R.; Weldon, W.F.; Woodson, H.H.

    1989-10-01

    The objective of the IGNITEX Project is to produce and control ignited plasmas for scientific study in the simplest and least expensive way possible. The original concept was proposed by both physics and engineering researchers along the following line of thought. Question: Is there any theoretically simple, compact and reliable way of achieving fusion ignition according to the results of the fusion research program for the last decades? Answer: Yes. An experiment to be carried out in an ohmically heated compact tokamak device with 20 T field on plasma axis. Question: Is there any practical way to carry out that experiment at low cost in the near term? Answer: Yes. Using a single-turn coil magnet system with homopolar power supplies.

  18. Development of an automated foam processing system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gallaher, J.B.

    1978-01-01

    Processing variables in the polyurethane foam encapsulation procedure on an electronic assembly timer occasionally yielded foam which was dimensionally unstable. This change in size was large enough that the affected timers would not meet gage requirements and had to be reworked. This instability was indicative of a marginal process. A thorough investigation of the problem determined that inadequate mixing of the two constituents of the foam was the cause. To eliminate the cause of the marginal process, requirements were defined which were used as guidelines in specifying the necessary equipment. This specification was then issued to suppliers for quotes. Once the quotes were received, the capabilities of the different foam processing systems were reviewed to assure conformity to the specification.

  19. Columbia River system operation review. Final environmental impact statement

    International Nuclear Information System (INIS)

    1995-11-01

    This study attempts to identify and analyze the impacts of the System Operating Strategy (SOS) alternatives on cultural resources. The impacts include effects on Native American traditional cultural values, properties and practices. They also include effects on archeological or historic properties meeting the criteria of the National Register of Historic Places. In addition to responding to the requirements of the National Environmental Policy Act (NEPA), this analysis addresses the requirements of the National Historic Preservation Act (NHPA), the Archeological Resources Protection Act (ARPA), the Native American Graves Protection and Repatriation Act (NAGPRA), the Native American Religious Freedom Act (NARFA), and other relevant legislation. To meet their legally mandated cultural resources requirements, the SOR agencies will develop agreements and Implementation Plans with the appropriate State Historic Preservation Officers (SHPOs), Tribes, and the Advisory Council on Historic Preservation (ACHP) detailing the measures necessary to best manage the resource. The planning and implementation activities will be staged over a number of years in consultation with affected Tribes

  20. Rooftop PV system. Final technical progress report, Phase II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    Under this four-year PV:BONUS Program, ECD and United Solar are developing and demonstrating two new lightweight flexible building integrated Photovoltaic (BIPV) modules specifically designed as exact replacements for conventional asphalt shingles and standing seam metal roofing. These modules can be economically and aesthetically integrated into new residential and commercial buildings, and address the even larger roofing replacement market. The modules are designed to be installed by roofing contractors without special training which minimizes the installation and balance of system costs. The modules will be fabricated from high-efficiency, multiple-junction a-Si alloy solar cells developed by ECD and United Solar. Under the Phase I Program, which ended in March 1994, we developed two different concept designs for rooftop PV modules: (1) the United Solar overlapping (asphalt shingle replacement) shingle-type modules and (2) the ECD metal roof-type modules. We also developed a plan for fabricating, testing and demonstrating these modules. Candidate demonstration sites for our rooftop PV modules were identified and preliminary engineering designs for these demonstrations were developed; a marketing study plan was also developed. The major objectives of the Phase II Program, which started in June 1994 was (1) to develop, test, and qualify these new rooftop modules; (2) to develop mechanical and electrical engineering specifications for the demonstration projects; and (3) to develop a marketing/commercialization plan.

  1. Development of an automated encapsulation system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gllaher, J.B.

    1977-07-01

    Early development failures in two types of high voltage electronic assemblies pointed out the inadequacies of the current encapsulation process. Voids in the mass encapsulant resulted in the destruction of the units during electrical testing in vacuum. An automated material processing system was conceived after a literature search and after new equipment with increased capabilities was observed in operation at GE's Neutron Devices Department in Florida. A prototype machine was designed and fabricated at Bendix implementing this concept. Environmental controls and new capabilities were incorporated to provide the complete process control necessary to assure void-free encapsulation of densely packaged electronic products. Machine performance was extensively evaluated to assure that all existing material specifications and quality control provisions would be met. Measurements of various material and machine characteristics showed that the operation not only is superior to the one presently being used but also provides the required additional capabilities. Material processing was also simplified which in turn made the encapsulation process more economical. In most cases, a 25 percent decrease in encapsulation costs can be anticipated.

  2. System composition and operation of exposure dose registration and control system (Final report)

    International Nuclear Information System (INIS)

    1978-01-01

    Since November, 1976, the committee concerning the investigation of exposure dose registration and control system for employees in nuclear industries has discussed on the exposure dose registration and control system, issued the interim report (outline) in April, 1977, and continued to investigate the details organizing the working group. Here, the final report is presented. It describes first on the definition of the terms used and the basic concept of the exposure dose registration and control system, in which the name of that organization is decided as ''Central Registration Office for Radiation Works'', Radiation Influence Association, the foundational juridical person. Next, the works to be performed in the Center and nuclear energy enterprises are explained. The items concerning the business management at the time of practical execution are the major part of the report, and are over 22 items. These include the registration business, the official reporting business, inquiry and answer business about career, change and revision, and computer processing system. As the temporary measures for transfer ring to the new system, 10 items are also provided. Supplementary explanation of 9 important items is given in the appendix. (Wakatsuki, Y.)

  3. National Geoscience Data Repository System: Phase 2 final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The American Geological Institute (AGI) has completed Phase 2 of a project to establish a National Geoscience Data Repository System (NGDRS). The project`s primary objectives are to preserve geoscience data in jeopardy of being destroyed and to make that data available to those who have a need to use it in future investigations. These data are available for donation to the public as a result of the downsizing that has occurred in the major petroleum and mining companies in the US for the past decade. In recent years, these companies have consolidated domestic operations, sold many of their domestic properties and relinquished many of their leases. The scientific data associated with those properties are no longer considered to be useful assets and are consequently in danger of being lost forever. The national repository project will make many of these data available to the geoscience community for the first time. Phase 2 encompasses the establishment of standards for indexing and cataloging of geoscience data and determination of the costs of transferring data from the private sector to public-sector data repositories. Pilot projects evaluated the feasibility of the project for transfer of different data types and creation of a Web-based metadata supercatalog and browser. Also as part of the project, a national directory of geoscience data repositories was compiled to assess what data are currently available in existing facilities. The next step, Phase 3, will focus on the initiation of transfer of geoscience data from the private sector to the public domain and development of the web-based Geotrek metadata supercatalog.

  4. Blade System Design Study. Part II, final project report (GEC).

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Dayton A. (DNV Global Energy Concepts Inc., Seattle, WA)

    2009-05-01

    As part of the U.S. Department of Energy's Low Wind Speed Turbine program, Global Energy Concepts LLC (GEC)1 has studied alternative composite materials for wind turbine blades in the multi-megawatt size range. This work in one of the Blade System Design Studies (BSDS) funded through Sandia National Laboratories. The BSDS program was conducted in two phases. In the Part I BSDS, GEC assessed candidate innovations in composite materials, manufacturing processes, and structural configurations. GEC also made recommendations for testing composite coupons, details, assemblies, and blade substructures to be carried out in the Part II study (BSDS-II). The BSDS-II contract period began in May 2003, and testing was initiated in June 2004. The current report summarizes the results from the BSDS-II test program. Composite materials evaluated include carbon fiber in both pre-impregnated and vacuum-assisted resin transfer molding (VARTM) forms. Initial thin-coupon static testing included a wide range of parameters, including variation in manufacturer, fiber tow size, fabric architecture, and resin type. A smaller set of these materials and process types was also evaluated in thin-coupon fatigue testing, and in ply-drop and ply-transition panels. The majority of materials used epoxy resin, with vinyl ester (VE) resin also used for selected cases. Late in the project, testing of unidirectional fiberglass was added to provide an updated baseline against which to evaluate the carbon material performance. Numerous unidirectional carbon fabrics were considered for evaluation with VARTM infusion. All but one fabric style considered suffered either from poor infusibility or waviness of fibers combined with poor compaction. The exception was a triaxial carbon-fiberglass fabric produced by SAERTEX. This fabric became the primary choice for infused articles throughout the test program. The generally positive results obtained in this program for the SAERTEX material have led to its

  5. 75 FR 11002 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Rule

    Science.gov (United States)

    2010-03-10

    ... Waste Management System; Identification and Listing of Hazardous Waste; Final Rule AGENCY: Environmental... and specific types of management of the petitioned waste, the quantities of waste generated, and waste... wastes. This final rule responds to a petition submitted by Valero to delist F037 waste. The F037 waste...

  6. Coal gas desulfurization by the ammonia method. Odsiarczanie gazu koksowniczego metoda amoniakalna

    Energy Technology Data Exchange (ETDEWEB)

    Gwiner, H. (Instytut Chemii Przerobki Wegla (Poland))

    1988-01-01

    Reviews principles of gas desulfurization by the ammonia method and the various processes used: the methods of Still, Koppers, DIAMOX, DESULF, Zyklopur (of Kohletechnik). Further processing of NH{sub 3} and H{sub 2}S obtained in the ammonia process is considered, i.e. production of ammonium sulphates, sulfuric acid, ammonia and elemental sulfur. Advantages of the ammonia method are described: no foreign chemicals used, low cost, no need for gas heating or open cooling towers and a high degree of desulfurization. Hydrogen sulfide content as low as 0.7-1 g/m{sup 3} is gained. Additional cleaning by gaseous ammonia or soda lye permits the hydrogen sulfide content to be reduced down to 0.2-0.5 g/m{sup 3}. 65 refs.

  7. Investigation of organic desulfurization additives affecting the calcium sulfate crystals formation

    Directory of Open Access Journals (Sweden)

    Lv Lina

    2017-01-01

    Full Text Available In the study, the optimal experimental conditions for gypsum crystals formation were 323 K, 300 rpm stirring speed. The major impurities of Mg2+, Al3+ and Fe3+ were found to inhibit calcium sulfate crystals formation. Fe3+ caused the strongest inhibition, followed by Mg2+ and Al3+. The influence of desulfurization additives on the gypsum crystals formation was explored with the properties of moisture content, particle size distribution and crystal morphology. The organic desulfurization additives of adipic acid, citric acid, sodium citrate and benzoic acid were investigated. Citric acid and sodium citrate were found to improve the quality of gypsum. Moisture contents were reduced by more than 50%, gypsum particle sizes were respectively enlarged by 9.1 and 22.8%, induction time extended from 4.3 (blank to 5.3 and 7.8 min, and crystal morphology trended to be thicker.

  8. Systems analysis for the development of small resource recovery systems: system performance data. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Crnkovich, P G; Helmstetter, A J

    1980-10-01

    The technologies that should be developed to make small-scale solid waste processing facilities attractive and viable for small municipalities with solid waste between 50 and 250 tons per day are identified. The resource recovery systems investigated were divided into three categories: thermal processng, mechanical separation, and biological processing. Thermal processing systems investigated are: excess-air incineration; starved-air incineration/gasification; and pyrolysis (indirect heating). Mechanical processing systems investigated are: coarse refuse derived fuel; materials separation; dust refuse derived fuel; densified refuse derived fuel; and fine refuse derived fuel. Mechanical processing components investigated include: receiving module; primary size reduction module; combustible separation module; refuse derived fuel preparation module; fuel densification; fuel storage module; ferrous separation; and building and facilities. Pretreatment processes and principle methods of bioconversion of MSW dealing with biological processing are investigated. (MCW)

  9. 76 FR 16534 - Hazardous Waste Management System Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2011-03-24

    ... Waste Management System Identification and Listing of Hazardous Waste; Final Exclusion AGENCY...) on a one-time basis from the lists of hazardous waste, a certain solid waste generated at its Mt... waste is [[Page 16535

  10. Global Navigation Satellite System (GNSS) Final Orbit/Reference Frame Product Summary from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This derived product set consists of Global Navigation Satellite System Final Orbit/Reference Frame Product Summary from the NASA Crustal Dynamics Data Information...

  11. Global Navigation Satellite System (GNSS) Final Orbit Product (daily files, generated weekly) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This derived product set consists of Global Navigation Satellite System Final Orbit Product (daily files, generated weekly) from the NASA Crustal Dynamics Data...

  12. Freight Advanced Traveler Information System (FRATIS) - Dallas-Fort Worth (DFW) prototype : final report.

    Science.gov (United States)

    This is the Final Report for the FRATIS Dallas-Fort Worth DFW prototype system. The FRATIS prototype in : DFW consisted of the following components: optimization algorithm, terminal wait time, route specific : navigation/traffic/weather, and advanced...

  13. Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology (Final Report)

    Science.gov (United States)

    EPA announced the release of the final report, Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology. This report describes new approaches that are faster, less resource intensive, and more robust that can help ...

  14. Desulfurization of chemical waste gases and flue gases with economic utilization of air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, K.; Wischnewski, W.

    1983-09-01

    The technological state of recovery of sulfur dioxide from waste and flue gases in the GDR is discussed. Two examples of plants are presented: a pyrosulfuric acid plant in Coswig, recovering sulfur dioxide from gases by absorption with sodium hydroxide, followed by catalytic oxidation to sulfur trioxide, and a plant for waste sulfuric acid recovery from paraffin refining, where the diluted waste acid is sprayed into a furnace and recovered by an ammonium-sulfite-bisulfite solution from the combustion gas (with 4 to 10% sulfur dioxide content). Investment and operation costs as well as profits of both plants are given. Methods employed for power plant flue gas desulfurization in major industrial countries are further assessed: about 90% of these methods uses wet flue gas scrubbing with lime. In the USA flue gas from 25,000 MW of power plant capacity is desulfurized. In the USSR, a 35,000 m/sup 3//h trial plant at Severo-Donetzk is operating using lime, alkali and magnesite. At the 150 MW Dorogobush power plant in the USSR a desulfurization plant using a cyclic ammonia process is under construction.

  15. Effect of flue gas desulfurization residue on plant establishment and soil and leachate quality

    Energy Technology Data Exchange (ETDEWEB)

    Punshon, T.; Adriano, D.C.; Weber, J.T. [University of Georgia, Savannah, GA (USA). Savannah River Ecology Lab.

    2001-06-01

    Effects on soil quality and crop establishment after incorporation of flue gas desulfurization by-product (FGD) into soil as an amendment was assessed in a mesocosm study. Mesocosm units received applications equivalent to 0, 2.5, 5.0, 7.5 and 10% FGD residue. Germination, biomass production, and elemental composition of corn, radish and cotton were determined. The quality of leachates and soil were also determined periodically. Flue gas desulfurization residue did not affect germination and all application rates stimulated aboveground biomass. Plants grown in FGD-amended soil contained significantly elevated tissue concentrations of As, B, Se, and Mo. The FGD residue elevated surface soil pH from 5.5 to 8.1. Leachate pH was unaffected by FGD, but salinity rose sharply with increasing application rates of FGD. Leachates contained higher concentrations of B, with small increases in Se and As. Flue gas desulfurization residue application caused an increase in total B, As, Mo, Se and extractable Ca in the soil, but decreased Mn and Zn. Using FGD residues could have beneficial effects on crop establishment without detrimental effects on soil or leachate quality, at an optimum rate of approximately 2.5%. This material could alleviate surface acidity, and B and Mo deficiencies in plants. 27 refs., 6 figs., 4 tabs.

  16. Desulfurization of petroleum by Co-60 gamma irradiation and analysis of products using GC-MS

    International Nuclear Information System (INIS)

    Mathuthu, M.; Tshivhase, V.M.; Olobatoke, R.Y.; Gaxela, N.N.

    2014-01-01

    Sulfur is an undesirable hetero-atom that has negative on motor engines if present in quantities between 50 and 180.000 ppm. Research has shown that sour petroleum can be 'sweetened' by gamma irradiation to de-sulfurize the crude oil. In this research we will report experimental results of desulfurizing petroleum locally procured. The objective is to improve the quality of product delivered to the motor market and also reduce the environmental pollution due to SO 2 emissions from engines. The gamma irradiated (de-sulfurized petroleum was chemically analyzed using GC-MS. The preliminary results show that the petroleum is polymerized by gamma radiation to higher molecular mass. The un-irradiated petroleum had a sulfur concentration of 3.24% and 0.020% wt after gamma irradiation. The sulfur content was reduced by a factor of about 160 when dose was increased from zero to 50 kGys. GC-MS Chromatographs are presented for the identified hydrocarbons after gamma irradiation. (authors)

  17. UAS C2 Radio System - Final Phase 1 Development and Testing

    Science.gov (United States)

    Kerczewski, Robert; Shalkhauser, Kurt

    2017-01-01

    Phase 1 of the Command and Control Communications (C2) Subproject of NASA's UAS Integration in the National Airspace System Project included the development and testing of prototype C2 radio systems. This information paper provides an overview of the functionality and testing of the fifth and final Phase 1 generation of the prototype radio system.

  18. Development of economical and high efficient desulfurization process using low rank coal; Teitankadotan wo mochiita ankana kokoritsu datsuryuho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Takarada, Y.; Kato, K.; Kuroda, M.; Nakagawa, N. [Gunma University, Gunma (Japan). Faculty of Engineering; Roman, M. [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)

    1997-02-01

    Experiment reveals the characteristics of low rank coal serving as a desulfurizing material in fluidized coal bed reactor with oxygen-containing functional groups exchanged with Ca ions. This effort aims at identifying inexpensive Ca materials and determining the desulfurizing characteristics of Ca-carrying brown coal. A slurry of cement sludge serving as a Ca source and low rank coal is agitated for the exchange of functional groups and Ca ions, and the desulfurizing characteristics of the Ca-carrying brown coal is determined. The Ca-carrying brown coal and high-sulfur coal char is mixed and incinerated in a fluidized bed reactor, and it is found that a desulfurization rate of 75% is achieved when the Ca/S ratio is 1 in the desulfurization of SO2. This rate is far higher than the rate obtained when limestone or cement sludge without preliminary treatment is used as a desulfurizer. Next, Ca-carrying brown coal and H2S are caused to react upon each other in a fixed bed reactor, and then it is found that desulfurization characteristics are not dependent on the diameter of the Ca-carrying brown coal grain, that the coal is different from limestone in that it stays quite active against H2S for long 40 minutes after the start of the reaction, and that CaO small in crystal diameter is dispersed in quantities into the char upon thermal disintegration of Ca-carrying brown coal to cause the coal to say quite active. 5 figs.

  19. Proteomics and Metabolomics Analyses to Elucidate the Desulfurization Pathway of Chelatococcus sp.

    Directory of Open Access Journals (Sweden)

    Naba K Bordoloi

    Full Text Available Desulfurization of dibenzothiophene (DBT and alkylated DBT derivatives present in transport fuel through specific cleavage of carbon-sulfur (C-S bonds by a newly isolated bacterium Chelatococcus sp. is reported for the first time. Gas chromatography-mass spectrometry (GC-MS analysis of the products of DBT degradation by Chelatococcus sp. showed the transient formation of 2-hydroxybiphenyl (2-HBP which was subsequently converted to 2-methoxybiphenyl (2-MBP by methylation at the hydroxyl group of 2-HBP. The relative ratio of 2-HBP and 2-MBP formed after 96 h of bacterial growth was determined at 4:1 suggesting partial conversion of 2-HBP or rapid degradation of 2-MBP. Nevertheless, the enzyme involved in this conversion process remains to be identified. This production of 2-MBP rather than 2-HBP from DBT desulfurization has a significant metabolic advantage for enhancing the growth and sulfur utilization from DBT by Chelatococcus sp. and it also reduces the environmental pollution by 2-HBP. Furthermore, desulfurization of DBT derivatives such as 4-M-DBT and 4, 6-DM-DBT by Chelatococcus sp. resulted in formation of 2-hydroxy-3-methyl-biphenyl and 2-hydroxy -3, 3/- dimethyl-biphenyl, respectively as end product. The GC and X-ray fluorescence studies revealed that Chelatococcus sp. after 24 h of treatment at 37°C reduced the total sulfur content of diesel fuel by 12% by per gram resting cells, without compromising the quality of fuel. The LC-MS/MS analysis of tryptic digested intracellular proteins of Chelatococcus sp. when grown in DBT demonstrated the biosynthesis of 4S pathway desulfurizing enzymes viz. monoxygenases (DszC, DszA, desulfinase (DszB, and an NADH-dependent flavin reductase (DszD. Besides, several other intracellular proteins of Chelatococcus sp. having diverse biological functions were also identified by LC-MS/MS analysis. Many of these enzymes are directly involved with desulfurization process whereas the other enzymes

  20. Technoeconomic Optimization of Waste Heat Driven Forward Osmosis for Flue Gas Desulfurization Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gingerich, Daniel B [Carnegie Mellon Univ., Pittsburgh, PA (United States); Bartholomew, Timothy V [Carnegie Mellon Univ., Pittsburgh, PA (United States); Mauter, Meagan S [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2017-06-26

    With the Environmental Protection Agency’s recent Effluent Limitation Guidelines for Steam Electric Generators, power plants are having to install and operate new wastewater technologies. Many plants are evaluating desalination technologies as possible compliance options. However, the desalination technologies under review that can reduce wastewater volume or treat to a zero-liquid discharges standard have a significant energy penalty to the plant. Waste heat, available from the exhaust gas or cooling water from coal-fired power plants, offers an opportunity to drive wastewater treatment using thermal desalination technologies. One such technology is forward osmosis (FO). Forward osmosis utilizes an osmotic pressure gradient to passively pull water from a saline or wastewater stream across a semi-permeable membrane and into a more concentrated draw solution. This diluted draw solution is then fed into a distillation column, where the addition of low temperature waste heat can drive the separation to produce a reconcentrated draw solution and treated water for internal plant reuse. The use of low-temperature waste heat decouples water treatment from electricity production and eliminates the link between reducing water pollution and increasing air emissions from auxiliary electricity generation. In order to evaluate the feasibility of waste heat driven FO, we first build a model of an FO system for flue gas desulfurization (FGD) wastewater treatment at coal-fired power plants. This model includes the FO membrane module, the distillation column for draw solution recovery, and waste heat recovery from the exhaust gas. We then add a costing model to account for capital and operating costs of the forward osmosis system. We use this techno-economic model to optimize waste heat driven FO for the treatment of FGD wastewater. We apply this model to three case studies: the National Energy Technology Laboratory (NETL) 550 MW model coal fired power plant without carbon

  1. Los Angeles-Gateway Freight Advanced Traveler Information System : final system design and architecture for FRATIS prototype.

    Science.gov (United States)

    2013-05-01

    This Final Architecture and Design report has been prepared to describe the structure and design of all the system : components for the LA-Gateway FRATIS Demonstration Project. More specifically, this document provides: : Detailed descriptions of...

  2. Comparison-Bot: an Automated Preliminary-Final Report Comparison System.

    Science.gov (United States)

    Kalaria, Amit D; Filice, Ross W

    2016-06-01

    Regular comparison of preliminary to final reports is a critical part of radiology resident and fellow education as prior research has documented substantial preliminary to final discrepancies. Unfortunately, there are many barriers to this comparison: high study volume; overnight rotations without an attending; the ability to finalize reports remotely; the subtle nature of many changes; and lack of easy access to the preliminary report after finalization. We developed a system that automatically compiles and emails a weekly summary of report differences for all residents and fellows. Trainees can also create a custom report using a date range of their choice and can view this data on a resident dashboard. Differences between preliminary and final reports are clearly highlighted with links to the associated study in Picture Archiving and Communication Systems (PACS) for efficient review and learning. Reports with more changes, particularly changes made in the impression, are highlighted to focus attention on those exams with substantive edits. Our system provides an easy way for trainees to review changes to preliminary reports with immediate access to the associated images, thereby improving their educational experience. Departmental surveys showed that our report difference summary is easy to understand and improves the educational experience of our trainees. Additionally, interesting descriptive statistics help us understand how reports are changed by trainee level, by attending, and by exam type. Finally, this system can be easily ported to other departments who have access to their Health Level 7 (HL7) data.

  3. Beam-based alignment and tuning procedures for e+e- collider final focus systems

    International Nuclear Information System (INIS)

    Bulos, F.; Burke, D.; Helm, R.; Irwin, J.; Odian, A.; Roy, G.; Ruth, R.; Yamamoto

    1991-01-01

    For future linear colliders, with very small emittances and beam sizes and demanding tolerances on final focus system alignment and magnet errors, it becomes increasingly important to use the beam as a diagnostic tool. The authors report here procedures they have identified and will be implemented in the Final Focus Test Beam at SLAC incorporating (1) quadrupole strength changes, (2) central orbit modifications, (3) spot size measurements, and (4) beam stability monitoring

  4. Beam-based alignment and tuning procedures for e+e- collider final focus systems

    International Nuclear Information System (INIS)

    Bulos, F.; Burke, D.; Helm, R.; Irwin, J.; Odian, A.; Roy, G.; Ruth, R.; Yamamoto, N.

    1991-05-01

    For future linear colliders, with very small emittances and beam sizes and demanding tolerances on final focus system alignment and magnet errors, it becomes increasingly important to use the beam as a diagnostic tool. We report here procedures we have identified and will be implemented in the Final Focus Test Beam at SLAC incorporating (1) quadrupole strength changes, (2) central orbit modifications, (3) spot size measurements, and (4) beam stability monitoring. 3 refs., 4 figs., 3 tabs

  5. Microwave-Assisted Adsorptive Desulfurization of Model Diesel Fuel Using Synthesized Microporous Rare Earth Metal-Doped Zeolite Y

    Directory of Open Access Journals (Sweden)

    N. Salahudeen

    2015-06-01

    Full Text Available The microwave-assisted adsorptive desulfurization of model fuel (thiophene in n-heptane was investigated using a synthesized rare earth metal-doped zeolite Y (RE Y. Crystallinity of the synthesized zeolite was 89.5%, the silicon/aluminium (Si/Al molar ratio was 5.2, the Brunauer–Emmett–Teller (BET surface area was 980.9 m2/g, and the pore volume and diameter was 0.3494 cm3/g and 1.425 nm, respectively. The results showed that the microwave reactor could be used to enhance the adsorptive desulfurization process with best efficiency of 75% at reaction conditions of 100 °C and 15 minutes. The high desulfurization effect was likely due to the higher efficiency impact of microwave energy in the interaction between sulfur in thiophene and HO-La(OSiAl.

  6. Advanced fuel gas desulfurization (AFGD) demonstration project. Technical progress report No. 19, July 1, 1994--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The {open_quotes}Advanced Flue Gas Desulfurization (AFGD) Demonstration Project{close_quotes} is a $150.5 million cooperative effort between the U.S. Department of Energy and Pure Air, a general partnership of Air Products and Chemicals, Inc. and Mitsubishi Heavy Industries America, Inc. The AFGD process is one of several alternatives to conventional flue gas desulfurization (FGD) being demonstrated under the Department of Energy`s Clean Coal Technology Demonstration Program. The AFGD demonstration project is located at the Northern Indiana Public Service Company`s Bailly Generating Station, about 12 miles northeast of Gary, Indiana.

  7. Sodic Soil Properties and Sunflower Growth as Affected by Byproducts of Flue Gas Desulfurization

    OpenAIRE

    Wang, Jinman; Bai, Zhongke; Yang, Peiling

    2012-01-01

    The main component of the byproducts of flue gas desulfurization (BFGD) is CaSO(4), which can be used to improve sodic soils. The effects of BFGD on sodic soil properties and sunflower growth were studied in a pot experiment. The experiment consisted of eight treatments, at four BFGD rates (0, 7.5, 15 and 22.5 t ha(-1)) and two leaching levels (750 and 1200 m(3) ha(-1)). The germination rate and yield of the sunflower increased, and the exchangeable sodium percentage (ESP), pH and total disso...

  8. Adsorptive desulfurization with CPO-27/MOF-74: an experimental and computational investigation.

    Science.gov (United States)

    Van de Voorde, Ben; Hezinová, Markéta; Lannoeye, Jeroen; Vandekerkhove, Annelies; Marszalek, Bartosz; Gil, Barbara; Beurroies, Isabelle; Nachtigall, Petr; De Vos, Dirk

    2015-04-28

    By combining experimental adsorption isotherms, microcalorimetric data, infrared spectroscopy and quantum chemical calculations the adsorption behaviour of the CPO-27/MOF-74 series (Ni, Co, Mg, Cu, and Zn) in the desulfurization of fuels is evaluated. The results show a clear influence of the metal ion on the adsorption capacity and affinity for S-heterocyclic compounds, with CPO-27(Ni) being the best performing material both in terms of capacity and affinity. The microcalorimetric data and infrared spectroscopy confirm the high affinity of CPO-27(Ni) for thiophene and similar compounds, while the computational data reveal that the origin of this outstanding adsorption performance is the strong sulfur-metal interaction.

  9. Comparative efficiency of final endodontic cleansing procedures in removing a radioactive albumin from root canal systems

    Energy Technology Data Exchange (ETDEWEB)

    Cecic, P.A.; Peters, D.D.; Grower, M.F.

    1984-09-01

    Fifty-six teeth were initially instrumented, with the use of seven irrigants or irrigant combinations, and filled with radioactive albumin. The study then showed the relative ability of three final endodontic procedures (copious reirrigation with saline solution, drying with paper points, and reassuring patency of the canal with the final instrument) to remove the albumin. Even after copious irrigation, each additional procedure removed statistically significant amounts of albumin. Alternating an organic solvent and an inorganic solvent did appear to leave the canal system in the optimal condition for final cleansing procedures. The study then correlated the relative efficiency of irrigation alone versus instrumentation plus irrigation in removing the remaining albumin from the canal systems. Reinstrumentation plus copious irrigation removed significantly more albumin than copious irrigation alone.

  10. 76 FR 72311 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2011-11-23

    ... Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion AGENCY...? C. What are the limits of this exclusion? D. How will Eastman Chemical manage the waste if it is... persistence in the environment once released from the waste, plausible and specific types of management of the...

  11. 75 FR 51678 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2010-08-23

    ... Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion AGENCY... once released from the waste, plausible and specific types of management of the petitioned waste, the... wastewater treatment biosludge generated by its Ingleside, Texas facility from the lists of hazardous wastes...

  12. 75 FR 51671 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2010-08-23

    ... Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion AGENCY... released from the waste, plausible and specific types of management of the petitioned waste, the quantities... Tokusen will be disposed at a RCRA Subtitle D landfill: The Waste Management Industrial Landfill, North...

  13. 77 FR 58315 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2012-09-20

    ... Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion AGENCY..., plausible and specific types of management of the petitioned waste, the quantities of waste generated, and...) Historical information on waste generation and management practices; and (2) Analytical results from five...

  14. 77 FR 56558 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Rule

    Science.gov (United States)

    2012-09-13

    ... Waste Management System; Identification and Listing of Hazardous Waste; Final Rule AGENCY: Environmental... INFORMATION CONTACT: Sharon Leitch, RCRA Waste Management and UST Section, Office of Site Remediation and... persistence in the environment once released from the waste, plausible and specific types of management of the...

  15. 76 FR 74709 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2011-12-01

    ... Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion AGENCY... hazardous waste. The centrifuge solids are derived from the management and treatment of several F- and K... management of the petitioned waste, the quantities of waste generated, and waste variability. EPA believes...

  16. 75 FR 60632 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Direct Final Rule

    Science.gov (United States)

    2010-10-01

    ... Waste Management System; Identification and Listing of Hazardous Waste; Direct Final Rule AGENCY... management and treatment of several F- and K-waste codes. These waste codes are F037, F038, K048, K049, K051... released from the waste, plausible and specific types of management of the petitioned waste, the quantities...

  17. Columbia River system operation review. Final environmental impact statement. Appendix J, recreation

    International Nuclear Information System (INIS)

    1995-11-01

    This Appendix J of the Final Environmental Impact Statement for the Columbia River System discusses impacts on the recreational activities in the region. Major sections include the following: scope and processes; recreation in the Columbia River Basin today - by type, location, participation, user characteristics, factors which affect usage, and managing agencies; recreation analysis procedures and methodology; and alternatives and their impacts

  18. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix J: Recreation.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.)

    1995-11-01

    This Appendix J of the Final Environmental Impact Statement for the Columbia River System discusses impacts on the recreational activities in the region. Major sections include the following: scope and processes; recreation in the Columbia River Basin today - by type, location, participation, user characteristics, factors which affect usage, and managing agencies; recreation analysis procedures and methodology; and alternatives and their impacts.

  19. Final focusing system for the second axis of the dual-axis radiographic hydrodynamic test facility

    International Nuclear Information System (INIS)

    Chen, Y.-J.; McCarrick, James F.; Paul, Arthur C.; Westenskow, Glen A.

    2002-01-01

    The DARHT-II final focusing system consists of a solenoid and a foil, which is used to confine backstreaming ions. The separation between the converter target and the foil needs to be small to minimize the ion focusing effects. The beam spot size on the foil has to be large enough to ensure survivability of the foil while it is being struck by four high current pulses over 2 microsecond period. We have investigated several final focusing lens and focusing schemes. The simulation results of the beam spot size on the target are presented

  20. Adipic acid enhanced limestone flue gas desulfurization process - an assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mobley, J.D.; Chang, J.C.S.

    1981-12-01

    Adipic acid, when used as an additive in a limestone FGD system, greatly increases both SO/sub 2/ removal and limestone utilization. Most existing limestone scrubbers would benefit from adipic acid addition without major process changes. No significant operating problems or adverse environmental impacts have been identified. The adipic acid enhanced system is economically attractive. Waste dibasic acids and glycolic acid appear to provide benefits similar to adipic acid at a lower cost.

  1. Land application uses for dry flue gas desulfurization by-products: Phase 3

    Energy Technology Data Exchange (ETDEWEB)

    Dick, W.; Bigham, J.; Forster, R.; Hitzhusen, F.; Lal, R.; Stehouwer, R.; Traina, S.; Wolfe, W.; Haefner, R.; Rowe, G.

    1999-01-31

    New flue gas desulfurization (FGD) scrubbing technologies create a dry, solid by-product material consisting of excess sorbent, reaction product that contains sulfate and sulfite, and coal fly ash. Generally, dry FGD by-products are treated as solid wastes and disposed in landfills. However, landfill sites are becoming scarce and tipping fees are constantly increasing. Provided the environmental impacts are socially and scientifically acceptable, beneficial uses via recycling can provide economic benefits to both the producer and the end user of the FGD. A study titled ''Land Application Uses for Dry Flue Gas Desulfurization By-Products'' was initiated in December, 1990 to develop and demonstrate large volume, beneficial uses of FGD by-products. Phase 1 and Phase 2 reports have been published by the Electric Power Research Institute (EPRI), Palo Alto, CA. Phase 3 objectives were to demonstrate, using field studies, the beneficial uses of FGD by-products (1) as an amendment material on agricultural lands and on abandoned surface coal mine land, (2) as an engineering material for soil stabilization and raid repair, and (3) to assess the environmental and economic impacts of such beneficial uses. Application of dry FGD by-product to three soils in place of agricultural limestone increased alfalfa (Medicago sativa L.) and corn (Zea may L.) yields. No detrimental effects on soil and plant quality were observed.

  2. Catalytic seawater flue gas desulfurization process: an experimental pilot plant study.

    Science.gov (United States)

    Barrero, F Vidal; Ollero, P; Ortiz, F J Gutiérrez; Villanueva, A

    2007-10-15

    In previous articles by the authors on seawater S(IV) oxidation kinetics, a significant catalytic effect was demonstrated by means of a commercially available activated carbon. The aims of this study carried out at pilot plant scale were to assess the use of high-efficiency structured packing and to validate the positive results obtained previously in laboratory studies. A comparison between a packed tower and a spray column was made by maintaining the same desulfurization efficiency. A 47% reduction in seawater flow can be obtained with a packed tower. This option seems to be more economical, with a reduction in operation costs of least of 33%. With the appropriate activated carbon, it is possible to reach a greater oxidation rate at a low pH level than by operating conventionally at a high pH level without a catalyst. A preliminary technical and financial comparison between the advanced seawater desulfurization process (equipped with a packed tower and a catalytic oxidation plant) and the conventional process (spray tower and noncatalytic oxidation) was carried out.

  3. Isolation and characterization of an interactive culture of two Paenibacillus species with moderately thermophilic desulfurization ability.

    Science.gov (United States)

    Wang, Jia; Davaadelger, Batzaya; Salazar, Joelle K; Butler, Robert R; Pombert, Jean-François; Kilbane, John J; Stark, Benjamin C

    2015-11-01

    To isolate and characterize novel thermophilic bacteria capable of biodesulfurization of petroleum. A culture containing two Paenibacillus spp. (denoted "32O-W" and "32O-Y") was isolated by repeated passage of a soil sample at up to 55 °C in medium containing dibenzothiophene (DBT) as sulfur source. Only 32O-Y metabolized DBT, apparently via the 4S pathway; maximum activity occurred from 40 to 45 °C, with some activity up to at least 50 °C. 32O-W enhanced DBT metabolism by 32O-Y (by 22-74 % at 40-50 °C). With sulfate as sulfur source, 32O-Y and 32O-W grew well up to 58 and 63 °C, respectively. Selection of a mixed culture of 32O-Y and 32O-W at 54 °C increased DBT metabolism 36-42 % from 40 to 45 °C. Genome sequencing identified desulfurization gene homologs in the strains consistent with their desulfurization properties. The 32O-Y/32O-W culture may be a useful starting point for development of an improved thermophilic petroleum biodesulfurization process.

  4. The Stability of Lubricant Oil Acidity of Biogas Fuelled Engine due to Biogas Desulfurization

    Science.gov (United States)

    Gde Tirta Nindhia, Tjokorda; Wayan Surata, I.; Wardana, Ari

    2017-05-01

    This research is established for the purpose of the understanding the stability of the acidity of lubricant oil in biogas fuelled engine due to the absence of hydrogen sulfide (H2S). As was recognized that other than Methane (CH4), there are also other gas impurities in the biogas such as carbon dioxide (CO2), hydrogen sulfide (H2S), moisture (H2O) and ammonia (NH3). Due to H2S contents in the biogas fuel, the engine was found failure. This is caused by corrosion in the combustion chamber due to increase of lubricant acidity. To overcome this problem in practical, the lubricant is increased the pH to basic level with the hope will be decrease to normal value after several time use. Other method is by installing pH measurement sensor in the engine lubricant so that when lubricant is known turn to be acid, then lubricant replacement should be done. In this research, the effect of biogas desulfurization down to zero level to the acidity of lubricant oil in the four stroke engine was carried out with the hope that neutral lubrication oil to be available during running the engine. The result indicates that by eliminating H2S due desulfurization process, effect on stability and neutrality of pH lubricant. By this method the engine safety can be obtained without often replacement the lubricant oil.

  5. Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance

    International Nuclear Information System (INIS)

    Zhang, Shuna; Zhang, Shujuan; Song, Limin; Wu, Xiaoqing; Fang, Sheng

    2014-01-01

    Graphical abstract: Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance. - Highlights: • Three-dimensional Ni 2 P has been prepared using foam nickel as a template. • The microstructures interconnected and formed sponge-like porous networks. • Three-dimensional Ni 2 P shows superior hydrodesulfurization activity. - Abstract: Three-dimensional microstructured nickel phosphide (Ni 2 P) was fabricated by the reaction between foam nickel (Ni) and phosphorus red. The as-prepared Ni 2 P samples, as interconnected networks, maintained the original mesh structure of foamed nickel. The crystal structure and morphology of the as-synthesized Ni 2 P were characterized by X-ray diffraction, scanning electron microscopy, automatic mercury porosimetry and X-ray photoelectron spectroscopy. The SEM study showed adjacent hollow branches were mutually interconnected to form sponge-like networks. The investigation on pore structure provided detailed information for the hollow microstructures. The growth mechanism for the three-dimensionally structured Ni 2 P was postulated and discussed in detail. To investigate its catalytic properties, SiO 2 supported three-dimensional Ni 2 P was prepared successfully and evaluated for the hydrodesulfurization (HDS) of dibenzothiophene (DBT). DBT molecules were mostly hydrogenated and then desulfurized by Ni 2 P/SiO 2

  6. The Influence of Micro-Oxygen Addition on Desulfurization Performance and Microbial Communities during Waste-Activated Sludge Digestion in a Rusty Scrap Iron-Loaded Anaerobic Digester

    Directory of Open Access Journals (Sweden)

    Renjun Ruan

    2017-02-01

    Full Text Available In this study, micro-oxygen was integrated into a rusty scrap iron (RSI-loaded anaerobic digester. Under an optimal RSI dosage of 20 g/L, increasing O2 levels were added stepwise in seven stages in a semi-continuous experiment. Results showed the average methane yield was 306 mL/g COD (chemical oxygen demand, and the hydrogen sulphide (H2S concentration was 1933 ppmv with RSI addition. O2 addition induced the microbial oxidation of sulphide by stimulating sulfur-oxidizing bacteria and chemical corrosion of iron, which promoted the generation of FeS and Fe2S3. In the 6th phase of the semi-continuous test, deep desulfurization was achieved without negatively impacting system performance. Average methane yield was 301.1 mL/g COD, and H2S concentration was 75 ppmv. Sulfur mass balance was described, with 84.0%, 11.90% and 0.21% of sulfur present in solid, liquid and gaseous phases, respectively. The Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE analysis revealed that RSI addition could enrich the diversity of hydrogenotrophic methanogens and iron-reducing bacteria to benefit methanogenesis and organic mineralization, and impoverish the methanotroph (Methylocella silvestris to reduce the consumption of methane. Micro-oxygen supplementation could enhance the diversity of iron-oxidizing bacteria arising from the improvement of Fe(II release rate and enrich the sulphur-oxidising bacteria to achieved desulfurization. These results demonstrated that RSI addition in combination with micro-oxygenation represents a promising method for simultaneously controlling biogas H2S concentration and improving digestion performance.

  7. Modeling and simulation of flue gas desulfurization using CaO/CaSO{sub 4}/Coal fly ash sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Christopher-Chia, K.C.; Lee, K.T.; Fernando, W.J.N.; Bhatia, S.; Mohamed, A.R. [Universiti Sains Malaysia, George Town (Malaysia). School of Chemical Engineering

    2005-06-01

    Modeling and simulation of flue gas desulfurization over sorbent synthesized from CaO/CaSO{sub 4}/coal fly ash in a fixed-bed reactor has been studied. A mathematical model was proposed based on the material balance for the gaseous and solid phase using partial differential equations to describe the adsorption of SO{sub 2} from a moving gas stream to the sorbent-bed of changing composition. The kinetic parameters of the mathematical model were obtained from a series of experimental desulfurization reactions carried out under isothermal conditions at various operating parameters; initial concentration of SO{sub 2} (500 ppm {le} Co {le} 2000 ppm), reaction temperature (333 K {le} T {le} 373 K) and relative humidity (40% {le} RH {le} 70%). The partial differential equations were solved using a finite difference method. The model was found to give a very good description of the experimental data with an error less than 10%. The validated model was then used to predict the reactor performance under different modes of operation. It was found that higher relative humidity in the feed gas and higher reaction temperature increases the desulfurization activity of the sorbent. On the other hand, higher initial concentrations of SO{sub 2} reduce the desulfurization activity of the sorbent.

  8. Evaluation of flue-gas desulfurization gypsum in poultry litter as a substrate component for greenhouse horticultural crops

    Science.gov (United States)

    A study was conducted to evaluate the growth response and consumer preference of three plant species to substrate blends containing flue gas desulfurization gypsum (FGDG). Substrate blends used in this study were derived from a previous experiment that evaluated the use of FGD Gas a bedding material...

  9. Study on the Evaluation of the Remnant Catalyst in the Desulfurization Reactor by Analyzing γ-Spectrum

    International Nuclear Information System (INIS)

    Jeon, Jong Kyu; Jung, Sung Hee; Kim, Jong Bum; Kim, Jin Seop

    2005-01-01

    Desulfurization of petroleum feedstocks is an important process with wide reaching implications for the petroleum industry and the environment. At this point of view, the diagnosis of desulfurizing process gives significant information to judge the optimal time to replace the spent catalyst by recognizing the efficiency and the amount used catalyst of the process. The evaluation of the catalyst lifetime in a desulfurizing process in a petrochemical plant has been carried out by chemical analysis of the specimen taken from the specific regions. However, it has a drawback that the estimation of the precise reaction zone is difficult and a number of gathering points for specimen are necessary. In addition, it is difficult to evaluate catalyst lifetime during the operation of the process because the collection of specimen is available after the shutdown of process. In order to evaluate its lifetime of on-line process, the introduction of application technology for the diagnosis of industrial process using gamma radiation was considered and a new measurement for the evaluation of reaction zone and density variation of catalyst in a desulfurizing vessel using scattered gamma radiation has been studied. Vertical density profile of packed materials in the reactor at various elevations can be plotted by detecting and analyzing scattered radiation, which shows different counts depending on the density of materials when traversing the reactor. The reaction zone between unused and used catalyst and relative amount of two materials can be evaluated by analysis of minute difference of scattered gamma radiation spectra at a specific energy region

  10. Mercury emission and plant uptake of trace elements during early stage of soil amendment using flue gas desulfurization materials.

    Science.gov (United States)

    A pilot-scale field study was carried out to investigate the distribution of Hg and other selected elements in the three potential mitigation pathways, i.e., emission to ambient air, uptake by surface vegetation (i.e., grass), and rainfall infiltration, after flue gas desulfurization (FGD) material ...

  11. Radiation damage and waste management options for the sombrero final focus system and neutron dumps

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, S.; Latkowski, J.F.; Meier, W.R. [Lawrence Livermore National Lab., CA (United States); Reyes, S. [Escuela Tecnica Superior de Ingenieros Industriales, Universidad Nacional de Educacion a Distancia and Instituto de Fusion Nuclear, Dept. Ingenieria Energetica, Bilbao (Spain)

    2000-07-01

    Previous studies of the safety and environmental aspects of the SOMBRERO inertial fusion energy (IFE) power plant design did not completely address the issues associated with the final focus system. While past work calculated neutron fluences for a grazing incidence metal mirror (GIMM) and a final focus mirror, scattering off of the final optical component was not included, and thus, fluences in the final focus mirror were significantly underestimated. In addition, past work did not consider neutron-induced gamma-rays. Finally, power plant lifetime waste volumes may have been underestimated as neutron activation of the neutron dumps and building structure were not addressed. In the present work, a modified version of the SOMBRERO target building is presented where a significantly larger open solid-angle fraction (5%) is used to enhance beam smoothing of a diode-pumped solid-state laser (DPSSL). The GIMMs are replaced with transmissive fused silica wedges and have been included in three-dimensional neutron and photon transport calculations. This work shows that a power plant with a large open solid-angle fraction, needed for beam smoothing with a DPSSL, is acceptable from tritium breeding, and neutron activation points-of-view. (authors)

  12. Marine Tactical Command and Control System (MTACCS) Field Development System-1 (FDS-1) assessment: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Avery, L.W.; Hunt, S.T.; Savage, S.F. (Pacific Northwest Lab., Richland, WA (United States)); McLaughlin, P.D.; Shepdard, A.P.; Worl, J.C. (Battelle Seattle Research Center, WA (United States))

    1992-04-01

    The United State Marine Corps (USMC) is continuing the development and fielding of the Marine Corps Tactical Command and Control System (MTACCS), a system which exists in varying states of development, fielding, or modernization. MTACCS is currently composed of the following components: Tactical Combat Operations System (TCO) for ground command and control (C2), Intelligence Analysis System (IAS) with a Genser terminal connected to a TCO workstation for intelligence C2, Marine Integrated Personnel System (MIPS) and a TCO workstation using the Marine Combat Personnel System (MCPERS) software for personnel C2, Marine Integrated Logistics System (MILOGS) which is composed of the Landing Force Asset Distribution System (LFADS), the Marine Air-Ground Task Force (MAGTF) II, and a TCO terminal using the Marine Combat Logistics System (MCLOG) for logistics C2, Marine Corps Fire Support System (MCFSS) for fire support C2, and Advanced Tactical Air Command Central (ATACC) and the Improved Direct Air Support Central for aviation C2.

  13. Radiation Hardened Telerobotic Dismantling System Development Final Report CRADA No. TC-1340-96

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lightman, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-27

    This project was a collaborative effort between the University of California, LLNL and RedZone Robotics, Inc. for the development of radiation-hardened telerobotic dismantling systems for use in applications such as nuclear facility remediation, nuclear accident response, and Chemobyltype remediation. The project supported the design, development, fabrication and testing of a Ukrainian robotic systems. The project was completed on time and within budget. All deliverables were completed. The final project deliverables were consistent with the plans developed in the original project with the exception that the fabricated systems remained in Ukraine.

  14. Columbia River system operation review: Final environmental impact statement. Main report exhibits

    International Nuclear Information System (INIS)

    1995-11-01

    This Volume is a part of the Final Environmental Impact Statement (EIS) for the Columbia River System. This volume contains technical exhibits of cultural resources and commentary on the (System Operation Review) SOR process. The Confederated Tribes of the Umatilla Indian Reservation comment is the majority of the material in the volume, in the Consultation Plan, Identification of trust resources; Criteria for the selection of a System Operating Strategy; comment on rights protection and implementation of Federal Trust responsibility; analysis of the draft EIS. Comment by other Native American Tribes and groups is also included: Confederated Tribes of the Colville Reservation; Kootenai Tribe of Idaho; Spokane Tribe of Indians; Coeur d' Alene tribe

  15. Columbia River System Operation Review : Final Environmental Impact Statement, Main Report Exhibits.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.)

    1995-11-01

    This Volume is a part of the Final Environmental Impact Statement (EIS) for the Columbia River System. This volume contains technical exhibits of cultural resources and commentary on the (System Operation Review) SOR process. The Confederated Tribes of the Umatilla Indian Reservation comment is the majority of the material in the volume, in the Consultation Plan, Identification of trust resources; Criteria for the selection of a System Operating Strategy; comment on rights protection and implementation of Federal Trust responsibility; analysis of the draft EIS. Comment by other Native American Tribes and groups is also included: Confederated Tribes of the Colville Reservation; Kootenai Tribe of Idaho; Spokane Tribe of Indians; Coeur d` Alene tribe.

  16. Research and development on super heat pump energy accumulation system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-06-01

    This is the final report on research and development of super heat pump energy accumulation system, which has been carried out from FY 1985 to 1992. It describes outline of the research and development program, R and D results, final evaluation methodology, evaluation of the R and D, proposals for the commercialization, and so on. The super high performance compression heat pumps are technically evaluated for highly efficient type (for heating, and cooling and heating), high temperature type (utilizing high temperature heat source, and low temperature heat source), working fluids (alcohol-based and nonalcohol-based), stainless steel plate fin type heat exchanger, EHD heat exchanger, and so on. The other techniques evaluated include those for chemical heat storage, combined systems, plant simulation, and systemization. The evaluation works are also directed to the economic and environmental aspects. Finally, the R and D themes are proposed to leap over various hurdles, e.g., reliability and economic viability, for the eventual commercialization of the energy accumulation system. (NEDO)

  17. FGD improves with adipic acid. [Flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, L.

    1982-07-01

    The addition of adipic acid to the limestone slurry in wet-scrubbing systems has been shown to enhance SO/sub 2/ collection and limestone utilisation whilst reducing operating costs. The results of demonstration tests carried out for the EPA on utility and industrial plants are presented.

  18. Conceptual design and systems analysis of photovoltaic systems. Volume II. Study results. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kirpich, A.

    1977-03-19

    This investigation of terrestrial PV systems considered the technical and economic feasibility for systems in three size categories: a small system of about 12 kW peak output for on-site residential use; a large 1500 MW central power plant contributing to the bulk energy of a utility system power grid; and an intermediate size system of about 250 kW for use on public or commercial buildings. In each category, conceptual designs were developed, performance was analyzed for a range of climatic regions, economic analyses were performed, and assessments were made of pertinent institutional issues. The report consists of three volumes. Volume I contains a Study Summary of the major study results. This volume contains the detailed results pertaining to on-site residential photovoltaic systems, central power plant photovoltaic systems, and intermediate size systems applied to commercial and public buildings. Volume III contains supporting appendix material. (WHK)

  19. Hybrid FRP-concrete bridge deck system final report I : development and system performance validation.

    Science.gov (United States)

    2009-10-01

    In this study, the concept of the hybrid FRP-concrete structural systems was applied to both bridge : superstructure and deck systems. Results from the both experimental and computational analysis for : both the hybrid bridge superstructure and deck ...

  20. Advanced Flue Gas Desulfurization (AFGD) Demonstration Project, A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2001-08-31

    The AFGD process as demonstrated by Pure Air at the Bailly Station offers a reliable and cost-effective means of achieving a high degree of SO{sub 2} emissions reduction when burning high-sulfur coals. Many innovative features have been successfully incorporated in this process, and it is ready for widespread commercial use. The system uses a single-loop cocurrent scrubbing process with in-situ oxidation to produce wallboard-grade gypsum instead of wet sludge. A novel wastewater evaporation system minimizes effluents. The advanced scrubbing process uses a common absorber to serve multiple boilers, thereby saving on capital through economies of scale. Major results of the project are: (1) SO{sub 2} removal of over 94 percent was achieved over the three-year demonstration period, with a system availability exceeding 99.5 percent; (2) a large, single absorber handled the combined flue gas of boilers generating 528 MWe of power, and no spares were required; (3) direct injection of pulverized limestone into the absorber was successful; (4) Wastewater evaporation eliminated the need for liquid waste disposal; and (5) the gypsum by-product was used directly for wallboard manufacture, eliminating the need to dispose of waste sludge.

  1. Heat pump centered integrated community energy systems: system development. Georgia Institute of Technology final report

    Energy Technology Data Exchange (ETDEWEB)

    Wade, D.W.; Trammell, B.C.; Dixit, B.S.; McCurry, D.C.; Rindt, B.A.

    1979-12-01

    Heat Pump Centered-Integrated Community Energy Systems (HP-ICES) show the promise of utilizing low-grade thermal energy for low-quality energy requirements such as space heating and cooling. The Heat Pump - Wastewater Heat Recovery (HP-WHR) scheme is one approach to an HP-ICES that proposes to reclaim low-grade thermal energy from a community's wastewater effluent. This report develops the concept of an HP-WHR system, evaluates the potential performance and economics of such a system, and examines the potential for application. A thermodynamic performance analysis of a hypothetical system projects an overall system Coefficient of Performance (C.O.P.) of from 2.181 to 2.264 for waste-water temperatures varying from 50/sup 0/F to 80/sup 0/F. Primary energy source savings from the nationwide implementation of this system is projected to be 6.0 QUADS-fuel oil, or 8.5 QUADS - natural gas, or 29.7 QUADS - coal for the period 1980 to 2000, depending upon the type and mix of conventional space conditioning systems which could be displaced with the HP-WHR system. Site-specific HP-WHR system designs are presented for two application communities in Georgia. Performance analyses for these systems project annual cycle system C.O.P.'s of 2.049 and 2.519. Economic analysis on the basis of a life cycle cost comparison shows one site-specific system design to be cost competitive in the immediate market with conventional residential and light commercial HVAC systems. The second site-specific system design is shown through a similar economic analysis to be more costly than conventional systems due mainly to the current low energy costs for natural gas. It is anticipated that, as energy costs escalate, this HP-WHR system will also approach the threshold of economic viability.

  2. Global Navigation Satellite System (GNSS) Final Clock Product (30 second resolution, daily files, generated weekly) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This derived product set consists of Global Navigation Satellite System Final Satellite and Receiver Clock Product (30-second granularity, daily files, generated...

  3. Global Navigation Satellite System (GNSS) Final Clock Product (5 minute resolution, daily files, generated weekly) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This derived product set consists of Global Navigation Satellite System Final Satellite and Receiver Clock Product (5-minute granularity, daily files, generated...

  4. Medicare program; prospective payment system and consolidated billing for skilled nursing facilities--update. Final rule.

    Science.gov (United States)

    2002-08-04

    This final rule updates the payment rates used under the prospective payment system (PPS) for skilled nursing facilities (SNFs), for fiscal year (FY) 2004. Annual updates to the PPS rates are required by section 1888(e) of the Social Security Act (the Act), as amended by the Medicare, Medicaid, and SCHIP Balanced Budget Refinement Act of 1999 (BBRA), and the Medicare, Medicaid, and SCHIP Benefits Improvement and Protection Act of 2000 (BIPA), relating to Medicare payments and consolidated billing for SNFs.

  5. Basic optics of the SLC [Stanford Linear Collider] Final Focus System

    International Nuclear Information System (INIS)

    Brown, K.L.

    1988-12-01

    In this report we discuss some general optics principles and scaling laws that have been useful in guiding the design and operation of the Final Focus System for the Stanford Linear Collider. Included are expressions for the minimum Β x * and Β y * that can be expected for the present SLC design at the interaction point as a function of beam emittance. 6 refs., 13 figs

  6. Solar heating system installed at Telex Communications, Inc. , Blue Earth, Minnesota. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McEver, William S.

    1979-10-26

    The final results are summarized of a contract for space heating a 97,000 square foot building which houses administrative offices, assembly areas and warehouse space. Information is also provided on system description, test data, major problems and resolutions, performance, operation and maintenance manual, manufacturer's literature, and as-built drawings. The system began delivering space heating in February 1978. The Telex solar system is composed of four main subsystems; they are the solar collectors, controls, thermal storage and heat distribution. The ITC/Solar Mark III collector was used. The collector array consists of 10 rows of 36 collectors each. The control subsystem controls the operation of the system pumps and control valves. Thermal storage for the system is provided by a 20,000 gallon water storage tank located inside the building. Heating is accomplished by water-to-air heat exchangers and controlled by thermostats.

  7. Columbia River System Operation Review final environmental impact statement. Appendix T: Comments and responses

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. This appendix documents the public and agency review of the SOR Draft EIS and how the SOR agencies used the review to formulate the FINAL EIS. The appendix includes a summary of the review process, a discussion of the nature of the comments, a list of all commentors, reproductions of comment letters, and responses to all comments. Changes in the EIS text in response to comments are noted in the responses

  8. Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts contained in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.

  9. Quantitative adaptation analytics for assessing dynamic systems of systems: LDRD Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, John H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). System Readiness & Sustainment Technologies (6133, M/S 1188); Miner, Nadine E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Military & Energy Systems Analysis (6114, M/S 1188); Wilson, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Resilience and Regulatory Effects (6921, M/S 1138); Le, Hai D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). System Readiness & Sustainment Technologies (6133, M/S 1188); Kao, Gio K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Networked System Survivability & Assurance (5629, M/S 0671); Melander, Darryl J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Software Systems R& D (9525, M/S 1188); Longsine, Dennis Earl [Sandia National Laboratories, Unknown, Unknown; Vander Meer, Jr., Robert C. [SAIC, Inc., Albuquerque, NM (United States)

    2015-01-01

    Our society is increasingly reliant on systems and interoperating collections of systems, known as systems of systems (SoS). These SoS are often subject to changing missions (e.g., nation- building, arms-control treaties), threats (e.g., asymmetric warfare, terrorism), natural environments (e.g., climate, weather, natural disasters) and budgets. How well can SoS adapt to these types of dynamic conditions? This report details the results of a three year Laboratory Directed Research and Development (LDRD) project aimed at developing metrics and methodologies for quantifying the adaptability of systems and SoS. Work products include: derivation of a set of adaptability metrics, a method for combining the metrics into a system of systems adaptability index (SoSAI) used to compare adaptability of SoS designs, development of a prototype dynamic SoS (proto-dSoS) simulation environment which provides the ability to investigate the validity of the adaptability metric set, and two test cases that evaluate the usefulness of a subset of the adaptability metrics and SoSAI for distinguishing good from poor adaptability in a SoS. Intellectual property results include three patents pending: A Method For Quantifying Relative System Adaptability, Method for Evaluating System Performance, and A Method for Determining Systems Re-Tasking.

  10. Apparatus for hot-gas desulfurization of fuel gases

    International Nuclear Information System (INIS)

    Bissett, L.A.

    1992-01-01

    This patent describes a system for removing sulfur species from a stream of fuel gas produced by the gasification of sulfur-containing fuel. It comprises a vertically oriented housing, a bed of particulate sulfur sorbent, means for directing a stream of sulfur-bearing fuel gas upwardly through the bed in the housing, vertically oriented first conduit means contacting an upper region of the bed, second conduit means in communication with the vertically oriented first conduit means at a location underlying the bed, means for introducing a steam of oxygen-containing gases into the second conduit means, separating means coupled to the second conduit means at the preselected location and third conduit means in communication with the separating means and a lower region in the bed for conveying the separated regenerated sorbent from the separating means into the lower region of the bed

  11. The proposed alignment system for the Final Focus Test Beam at SLAC

    International Nuclear Information System (INIS)

    Ruland, R.E.; Fischer, G.E.

    1990-09-01

    This report describes the current state of work in progress with respect to the geometry, alignment requirements, scenarios, and hardware for meeting the tolerances of the Final Focus Test Beam (FFTB) at SLAC. The methods and systems proposed acknowledge that component motion at the micron level, from whatever cause (ground motion, thermal effects, etc.) must be measured on-line and compensated for on relatively short time scales. To provide an integrated alignment/positioning package, some unique designs for reference systems, calibration of effect electric and magnetic centers, and component movers are introduced. 24 refs., 28 figs

  12. Experimental study and mechanism analysis of modified limestone by red mud for improving desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongtao; Han, Kuihua; Niu, Shengli; Lu, Chunmei; Liu, Mengqi; Li, Hui [Shandong Univ., Jinan (China). School of Energy and Power Engineering

    2013-07-01

    Red mud is a type of solid waste generated during alumina production from bauxite, and how to dispose and utilize red mud in a large scale is yet a question with no satisfied answer. This paper attempts to use red mud as a kind of additive to modify the limestone. The enhancement of the sulfation reaction of limestone by red mud (two kinds of Bayer process red mud and one kind of sintering process red mud) are studied by a tube furnace reactor. The calcination and sulfation process and kinetics are investigated in a thermogravimetric (TG) analyzer. The results show that red mud can effectively improve the desulfurization performance of limestone in the whole temperature range (1,073-1,373K). Sulfur capacity of limestone (means quality of SO{sub 2} which can be retained by 100mg of limestone) can be increased by 25.73, 7.17 and 15.31% while the utilization of calcium can be increased from 39.68 to 64.13%, 60.61 and 61.16% after modified by three kinds of red mud under calcium/metallic element (metallic element described here means all metallic elements which can play a catalytic effect on the sulfation process, including the Na, K, Fe, Ti) ratio being 15, at the temperature of 1,173K. The structure of limestone modified by red mud is interlaced and tridimensional which is conducive to the sulfation reaction. The phase composition analysis measured by XRD of modified limestone sulfated at high temperature shows that there are correspondingly more sulphates for silicate and aluminate complexes of calcium existing in the products. Temperature, calcium/metallic element ratio and particle diameter are important factors as for the sulfation reaction. The optimum results can be obtained as calcium/metallic element ratio being 15. Calcination characteristic of limestone modified by red mud shows a migration to lower temperature direction. The enhancement of sulfation by doping red mud is more pronounced once the product layer has been formed and consequently the promoting

  13. Electrodril system field test program. Phase II, task B: deep drilling system demonstration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-15

    The effort included the design, fabrication and Systems Verification Testing of the Deep Drilling System. The Systems Verification Test was conducted during October 1978 in a test well located on the premises of Brown Oil Tools Inc., Houston, Texas. In general, the Systems Verification test program was an unqualified success. All of the system elements of the Deep Drilling System were exercised and evaluated and in every instance the system can be declared ready for operational well demonstration. The motor/bit shaft combination operated very well and seal performance exceeds the design goals. The rig floor system performed better than expected. The power cable flexural characteristics are much better than anticipated and longitudinal stability is excellent. The prototype production connectors have functioned without failure. The cable reels and drive skid have also worked very well during the test program. The redesigned and expanded instrumentation subsystem also functioned very well. Some electronic component malfunctions were experienced during the early test stages, but they were isolated quickly and repaired. Subsequent downhole instrumentation deployments were successfully executed and downhole data was displayed both in the Electrodril instrumentation trailer and on the remote control and display unit.

  14. Final Report for File System Support for Burst Buffers on HPC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yu, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mohror, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-27

    Distributed burst buffers are a promising storage architecture for handling I/O workloads for exascale computing. As they are being deployed on more supercomputers, a file system that efficiently manages these burst buffers for fast I/O operations carries great consequence. Over the past year, FSU team has undertaken several efforts to design, prototype and evaluate distributed file systems for burst buffers on HPC systems. These include MetaKV: a Key-Value Store for Metadata Management of Distributed Burst Buffers, a user-level file system with multiple backends, and a specialized file system for large datasets of deep neural networks. Our progress for these respective efforts are elaborated further in this report.

  15. Biogeochemical oxidation of calcium sulfite hemihydrate to gypsum in flue gas desulfurization byproduct using sulfur-oxidizing bacteria.

    Science.gov (United States)

    Graves, Duane; Smith, Jacques J; Chen, Linxi; Kreinberg, Allison; Wallace, Brianna; White, Robby

    2017-10-01

    Flue gas desulfurization (FGD) is a well-established air treatment technology for coal and oil combustion gases that commonly uses lime or pulverized limestone aqueous slurries to precipitate sulfur dioxide (SO 2 ) as crystalline calcium salts. Under forced oxidation (excess oxygen) conditions, FGD byproduct contains almost entirely (>92%) gypsum (CaSO 4 ·2H 2 O), a useful and marketable commodity. In contrast, FGD byproduct formed in oxygen deficient oxidation systems contains a high percentage of hannebachite (CaSO 3 ·0.5H 2 O) to yield a material with no commercial value, poor dewatering characteristics, and that is typically disposed in landfills. Hannebachite in FGD byproduct can be chemically converted to gypsum; however, the conditions that support rapid formation of gypsum require large quantities of acids or oxidizers. This work describes a novel, patent pending application of microbial physiology where a natural consortium of sulfur-oxidizing bacteria (SOB) was used to convert hannebachite-enriched FGD byproduct into a commercially valuable, gypsum-enriched product (US Patent Assignment 503373611). To optimize the conversion of hannebachite into gypsum, physiological studies on the SOB were performed to define their growth characteristics. The SOB were found to be aerobic, mesophilic, neutrophilic, and dependent on a ready supply of ammonia. They were capable of converting hannebachite to gypsum at a rate of approximately five percent per day when the culture was applied to a 20 percent FGD byproduct slurry and SOB growth medium. 16S rDNA sequencing revealed that the SOB consortium contained a variety of different bacterial genera including both SOB and sulfate-reducing bacteria. Halothiobacillus, Thiovirga and Thiomonas were the dominant sulfur-oxidizing genera. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Basic concept of common reactor physics code systems. Final report of working party on common reactor physics code systems (CCS)

    International Nuclear Information System (INIS)

    2004-03-01

    A working party was organized for two years (2001-2002) on common reactor physics code systems under the Research Committee on Reactor Physics of JAERI. This final report is compilation of activity of the working party on common reactor physics code systems during two years. Objectives of the working party is to clarify basic concept of common reactor physics code systems to improve convenience of reactor physics code systems for reactor physics researchers in Japan on their various field of research and development activities. We have held four meetings during 2 years, investigated status of reactor physics code systems and innovative software technologies, and discussed basic concept of common reactor physics code systems. (author)

  17. THERMODYNAMIC AND KINETIC PARAMETERS OF MIXTURES DESULFURIZING THE MADE WITH CaO, MgO, SiO2 AND CaF2

    Directory of Open Access Journals (Sweden)

    Felipe Nylo de Aguiar

    2012-09-01

    Full Text Available This paper presents an analysis of the kinetics and thermodynamics of marble residue mixtures utilisation on desulfurization of pig iron. The desulfurization was carried out using lime, marble residue, fluorite and pig iron. Different mixtures of these materials were added into a bath of pig iron at 1,450°C. Metal samples were collected via vacuum samplers at times of 5, 10, 15, 20 and 30 minutes, in order to check the variation of sulfur content. Based on the results of chemical analysis of the metal and the desulfurizer mixture, the sulfide capacity of mixtures, the sulfur partition coefficient and the sulfur mass transport coefficient values were calculated.The results show the technical feasibility of using marble waste as desulfurizer agent.

  18. Rapid analysis of hay attributes using NIRS. Final report, Task II alfalfa supply system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-24

    This final report provides technical information on the development of a near infrared reflectance spectroscopy (NIRS) system for the analysis of alfalfa hay. The purpose of the system is to provide consistent quality for processing alfalfa stems for fuel and alfalfa leaf meal products for livestock feed. Project tasks were to: (1) develop an NIRS driven analytical system for analysis of alfalfa hay and processed alfalfa products; (2) assist in hiring a qualified NIRS technician and recommend changes in testing equipment necessary to provide accurate analysis; (3) calibrate the NIRS instrument for accurate analyses; and (4) develop prototype equipment and sampling procedures as a first step towards development of a totally automated sampling system that would rapidly sample and record incoming feedstock and outbound product. An accurate hay testing program was developed, along with calibration equations for analyzing alfalfa hay and sun-cured alfalfa pellets. A preliminary leaf steam calibration protocol was also developed. 7 refs., 11 figs., 10 tabs.

  19. Final design of a free-piston hydraulic advanced Stirling conversion system

    Science.gov (United States)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    1991-01-01

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  20. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project Subcommittee Final

    Science.gov (United States)

    Johnson, Chuck; Griner, James H.; Hayhurst, Kelly J.; Shively, Robert J.; Consiglio, Maria; Muller, Eric; Murphy, James; Kim, Sam

    2012-01-01

    UAS Integration in the NAS Project overview with details from each of the subprojects. Subprojects include: Communications, Certification, Integrated Test and Evaluation, Human Systems Integration, and Separation Assurance/Sense and Avoid Interoperability.

  1. Advanced Traveler Information Systems (ATIS) 2.0 Precursor System: Final Report

    Science.gov (United States)

    2018-03-01

    Advanced Traveler Information Systems (ATIS) have experienced significant growth since their initial inception in the 1990s. Technologies have continued to evolve at a rapid pace, enabling the integration of advanced solutions for traveler informatio...

  2. Analytical approach to chromatic correction in the final focus system of circular colliders

    Directory of Open Access Journals (Sweden)

    Yunhai Cai

    2016-11-01

    Full Text Available A conventional final focus system in particle accelerators is systematically analyzed. We find simple relations between the parameters of two focus modules in the final telescope. Using the relations, we derive the chromatic Courant-Snyder parameters for the telescope. The parameters are scaled approximately according to (L^{*}/β_{y}^{*}δ, where L^{*} is the distance from the interaction point to the first quadrupole, β_{y}^{*} the vertical beta function at the interaction point, and δ the relative momentum deviation. Most importantly, we show how to compensate its chromaticity order by order in δ by a traditional correction module flanked by an asymmetric pair of harmonic multipoles. The method enables a circular Higgs collider with 2% momentum aperture and illuminates a path forward to 4% in the future.

  3. Laser sampling system for an inductively-coupled atomic emission spectrometer. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-15

    A laser sampling system was attached to a Perkin Elmer Optima 3000 inductively-coupled plasma, atomic emission spectrometer that was already installed and operating in the Chemistry and Geochemistry Department at the Colorado School of Mines. The use of the spectrometer has been highly successful. Graduate students and faculty from at least four different departments across the CSM campus have used the instrument. The final report to NSF is appended to this final report. Appendices are included which summarize several projects utilizing this instrument: acquisition of an inductively-coupled plasma atomic emission spectrometer for the geochemistry program; hydrogen damage susceptibility assessment for high strength steel weldments through advanced hydrogen content analysis, 1996 and 1997 annual reports; and methods for determination of hydrogen distribution in high strength steel welds.

  4. Inertial confinement fusion driver enhancements: Final focusing systems and compact heavy-ion driver designs

    International Nuclear Information System (INIS)

    Bieri, R.L.

    1991-01-01

    Required elements of an inertial confinement fusion power plant are modeled and discussed. A detailed analysis of two critical elements of candidate drivers is done, and new component designs are proposed to increase the credibility and feasibility of each driver system. An analysis of neutron damage to the final elements of a laser focusing system is presented, and multilayer -- dielectric mirrors are shown to have damage lifetimes which axe too short to be useful in a commercial power plant. A new final-focusing system using grazing incidence metal mirrors to protect sensitive laser optics is designed and shown to be effective in extending the lifetime of the final focusing system. The reflectivities and damage limits of grazing incidence metal mirrors are examined in detail, and the required mirror sizes are shown to be compatible with the beam sizes and illumination geometries currently envisioned for laser drivers. A detailed design and analysis is also done for compact arrays of superconducting magnetic quadrupoles, which are needed in a multi-beam heavy-ion driver. The new array model is developed in more detail than some previous conceptual designs and models arrays which are more compact than arrays scaled from existing single -- quadrupole designs. The improved integrated model for compact arrays is used to compare the effects of various quadrupole array design choices on the size and cost of a heavy-ion driver. Array design choices which significantly affect the cost of a heavy-ion driver include the choice of superconducting material and the thickness of the collar used to support the winding stresses. The effect of these array design choices on driver size and cost is examined and the array model is used to estimate driver cost savings and performance improvements attainable with aggressive quadrupole array designs with high-performance superconductors

  5. Heat-Pump-Centered Integrated Community Energy Systems: system development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dubin, F S; Halfon, A; Herzog, P

    1979-08-01

    The ice-generating HP-ICES uses the heat of fusion of water as a heat source for the heat pump, thus converting the water into ice. The ice will be stored in a bin and used the following summer for cooling which, therefore, could be considered a by-product of heating. The annual overall Coefficient of Performance is expected to reach a value of 4.85 and related to source energy a value of 4.85 x 0.31 = 1.5. In a detailed case study on the Market Square project in Washington, D.C., it was found that for the HP-ICES the annual source energy input is about 60% and the life cycle annual average cost is 40% of the corresponding quantities for a conventional central system with equal heating and cooling capacity. The annual average operating and administration cost for the HP-ICES is less than 70% of the corresponding costs for the conventional system, while the first cost of the HP-ICES is about 70% larger than the first cost of the conventional system. With the values assumed for the discount rate, interest rate, etc., the return on investment was found to be about 15%, which gives a discounted payback period of about 6.7 years. For the Park Plaza in Boston, the annual source energy input for the HP-ICES is 35% and the energy cost is about 30% of the corresponding quantities for the conventional system. The annual average operating and administration cost for the HP-ICES is 4.5 times as great as the first cost for the conventional system. The return on investment is 13% and the payback is 8 years. These results show that the HP-ICES can be better both in energy usage and in life cycle cost than a conventional system of the same heating and cooling capacity, and holds great promise as an energy saving system.

  6. Desulfurization of coke by recycling coke oven gas during coking process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Tang, H.; Guo, Z. [Chinese Academy of Sciences, Beijing (China). Institute of Process Engineering

    2004-06-01

    The experiments were carried out to try to remove the inorganic sulfur and organic sulfur in the semi-coke at different gaseous mixtures and temperatures. The influence of recycling coke oven gas on the coke oven temperature was analysed and the distribution of recycling coke oven gas in the carbonization chamber was simulated. The result shows that increasing the hydrogen content favours the removal of both inorganic sulfur and organic sulfur. However, raising the temperature does not always benefit the desulfurization. It would have little influence on the coke oven temperature if the coke oven gas were preheated before the recycling. The optimal time to recycle the coke oven gas is when the pore distribution in the coke is becoming homogenous. 7 refs., 5 figs., 3 tabs.

  7. Method for the desulfurization of hot product gases from coal gasifier

    Science.gov (United States)

    Grindley, Thomas

    1988-01-01

    The gasification of sulfur-bearing coal produces a synthesis gas which contains a considerable concentration of sulfur compounds especially hydrogen sulfide that renders the synthesis gas environmentally unacceptable unless the concentration of the sulfur compounds is significantly reduced. To provide for such a reduction in the sulfur compounds a calcium compound is added to the gasifier with the coal to provide some sulfur absorption. The synthesis gas from the gasifier contains sulfur compounds and is passed through an external bed of a regenerable solid absorbent, preferably zinc ferrite, for essentially completed desulfurizing the hot synthesis gas. This absorbent is, in turn, periodically or continuously regenerated by passing a mixture of steam and air or oxygen through the bed for converting absorbed hydrogen sulfide to sulfur dioxide. The resulting tail gas containing sulfur dioxide and steam is injected into the gasifier where the sulfur dioxide is converted by the calcium compound into a stable form of sulfur such as calcium sulfate.

  8. Columbia River System Operation Review final environmental impact statement. Appendix I: Power

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. This appendix discusses the work performed by the SOR Power Work Group. The Power Work Group (PWG) had several major responsibilities: first, to determine the effects of each of the various system operating strategies (SOS) on the Northwest regional power system; second, given these effects, to determine what, if any, actions are required to meet forecasted regional energy consumption; and finally, to estimate the cost for serving the forecasted regional energy consumption. The Northwest regional power system consists of Federal and non-Federal hydroelectric power projects (hydropower or hydro projects) on the main stem of the Columbia and Snake Rivers, numerous smaller hydro projects on other river reaches, and a number of thermal plants (coal, nuclear and combustion turbines)

  9. Physical Characterization and Desulfurization of Biobriquette Using Calcium-Based Adsorbent

    Directory of Open Access Journals (Sweden)

    Mahidin Mahidin

    2013-03-01

    Full Text Available Combustion of coal and co-combustion of their co-fuel contribute to gas emissions. Among the gas emissions are SOx, NOx, CO and CO2. Introduction of calcium based adsorbent is addressed to absorb SO2 that release to the atmosphere during the combustion process. Objective of the research is at first to observe the physical characteristics of biobriquettes as a function of briquette compositions (coal to palm kernel shell ratios and Ca/S ratios (Ca in adsorbent and S in briquette using a natural adsorbent (shellfish waste. The second objective is to investigate desulfurization characteristics as a function of Ca/S ratios and desulfurization temperatures at coal to palm kernel shell ratio of 90:10 (wt %. Ratios of coal to palm kernel shell in this study are 90:10, 80:20, 70:30, 60:40 and 50:50; and Ca/S ratios are 1:1, 1.25:1, 1.5:1, 1.75:1 and 2:1. Binding agent used is the mixture of Jatropha curcas seeds and starch as much as 10% (wt. It was found that introducing the palm kernel shell and adsorbents in the coal briquette affect the water resistant and compressive strength. The highest water resistance and compressive strength were 5,165 second and 34 kg/cm2, respectively. The lowest SO2 level found in this study was 1 ppm for all Ca/S ratios, except for 1:1.

  10. Final Report - Spent Nuclear Fuel Retrieval System Manipulator System Cold Validation Testing

    Energy Technology Data Exchange (ETDEWEB)

    D.R. Jackson; G.R. Kiebel

    1999-08-24

    Manipulator system cold validation testing (CVT) was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin; clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge); remove the contents from the canisters; and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. The FRS is composed of three major subsystems. The Manipulator Subsystem provides remote handling of fuel, scrap, and debris; the In-Pool Equipment subsystem performs cleaning of fuel and provides a work surface for handling materials; and the Remote Viewing Subsystem provides for remote viewing of the work area by operators. There are two complete and identical FRS systems, one to be installed in the K-West basin and one to be installed in the K-East basin. Another partial system will be installed in a cold test facility to provide for operator training.

  11. Lunar electric power systems utilizing the SP-100 reactor coupled to dynamic conversion systems. Final report

    International Nuclear Information System (INIS)

    Harty, R.B.; Durand, R.E.

    1993-03-01

    An integration study was performed by Rocketdyne under contract to NASA-LeRC. The study was concerned with coupling an SP-0100 reactor to either a Brayton or Stirling power conversion system. The application was for a surface power system to supply power requirements to a lunar base. A power level of 550 kWe was selected based on the NASA Space Exploration Initiative 90-day study. Reliability studies were initially performed to determine optimum power conversion redundancy. This study resulted in selecting three operating engines and one stand-by unit. Integration design studies indicated that either the Brayton or Stirling power conversion systems could be integrated with the PS-100 reactor. The Stirling system had an integration advantage because of smaller piping size and fewer components. The Stirling engine, however, is more complex and heavier than the Brayton rotating unit, which tends to off-set the Stirling integration advantage. From a performance consideration, the Brayton had a 9 percent mass advantage, and the Stirling had a 50 percent radiator advantage

  12. Final Report - Spent Nuclear Fuel Retrieval System Manipulator System Cold Validation Testing

    International Nuclear Information System (INIS)

    D.R. Jackson; G.R. Kiebel

    1999-01-01

    Manipulator system cold validation testing (CVT) was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin; clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge); remove the contents from the canisters; and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. The FRS is composed of three major subsystems. The Manipulator Subsystem provides remote handling of fuel, scrap, and debris; the In-Pool Equipment subsystem performs cleaning of fuel and provides a work surface for handling materials; and the Remote Viewing Subsystem provides for remote viewing of the work area by operators. There are two complete and identical FRS systems, one to be installed in the K-West basin and one to be installed in the K-East basin. Another partial system will be installed in a cold test facility to provide for operator training

  13. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix O: Economic and Social Impact.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.)

    1995-11-01

    This Appendix O of the Final Environmental Impact Statement for the Columbia River System measures the economic and social effects of the alternative system operation strategies and includes both geographic and methodology components. Areas discussed in detail include the following: purpose, scope and process; an economic history of the Columbia River Basin and its use today including the Columbia River and Socio-economic development in the Northwest and Major uses of the River System; Analysis procedures and methodologies including national economic evaluation, the concepts, analysis of assumptions, analysis for specific river uses, water quality, Regional evaluation, analysis, and social impacts; alternatives and impacts including implementation costs, andromous fish, resident fish and wildlife, flood control, irrigation and municipal and industrial water supply, navigation impacts, power, recreation, annual costs, regional economic analysis. Extensive comparison of alternatives is included.

  14. Columbia River system operation review: Final environmental impact statement. Appendix O, economic and social impact

    International Nuclear Information System (INIS)

    1995-11-01

    This Appendix O of the Final Environmental Impact Statement for the Columbia River System measures the economic and social effects of the alternative system operation strategies and includes both geographic and methodology components. Areas discussed in detail include the following: purpose, scope and process; an economic history of the Columbia River Basin and its use today including the Columbia River and Socio-economic development in the Northwest and Major uses of the River System; Analysis procedures and methodologies including national economic evaluation, the concepts, analysis of assumptions, analysis for specific river uses, water quality, Regional evaluation, analysis, and social impacts; alternatives and impacts including implementation costs, andromous fish, resident fish and wildlife, flood control, irrigation and municipal and industrial water supply, navigation impacts, power, recreation, annual costs, regional economic analysis. Extensive comparison of alternatives is included

  15. Laser Shot Peening System Final Report CRADA No. TC-1369-96

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, B. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Harris, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-27

    This CRADA project was established with a primary goal to develop a laser shot peening system which could operate at production throughput rates and produce the desired depth and intensity of induced shots. The first objective was to understand all parameters required for acceptable peening, including pulse energy, pulse temporal format, pulse spatial format, sample configuration and tamping mechanism. The next objective was to demonstrate the technique on representative samples and then on representative parts. The final objective was to implement the technology into a meaningful industrial peen.

  16. Advanced turbine systems study system scoping and feasibility study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    United Technologies Research Center, Pratt & Whitney Commercial Engine Business, And Pratt & Whitney Government Engine and Space Propulsion has performed a preliminary analysis of an Advanced Turbine System (ATS) under Contract DE-AC21-92MC29247 with the Morgantown Energy Technology Center. The natural gas-fired reference system identified by the UTC team is the Humid Air Turbine (HAT) Cycle in which the gas turbine exhaust heat and heat rejected from the intercooler is used in a saturator to humidify the high pressure compressor discharge air. This results in a significant increase in flow through the turbine at no increase in compressor power. Using technology based on the PW FT4000, the industrial engine derivative of the PW4000, currently under development by PW, the system would have an output of approximately 209 MW and an efficiency of 55.3%. Through use of advanced cooling and materials technologies similar to those currently in the newest generation military aircraft engines, a growth version of this engine could attain approximately 295 MW output at an efficiency of 61.5%. There is the potential for even higher performance in the future as technology from aerospace R&D programs is adapted to aero-derivative industrial engines.

  17. Systems for apartment buildings heat pumps. Final report; System foer fastighetsvaermepumpar. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Aakervall, Daniel (WSP Environmental, Stockholm (Sweden)); Rogstam, Joergen; Grotherus, Maarten (Sveriges Energi- och Kylcentrum, Katrineholm (Sweden))

    2009-05-15

    A fast growing segment of the heat pump business is the apartment building applications. Historically the experience base related to such installations is limited. However, this application is more complex than the much more widely spread domestic applications. The core idea of the project was to generate and collect information to avoid mistakes and to encourage the heat pump technology. By interviewing the 'market' and compiling the information good recommendations has been achieved. It is of great importance to convey the best available recommendations to the installers on the market to avoid pit holes and highlight the opportunities for installers and end consumers. A website has been design and built, www.sfvp.se, which contains useful tools for installers and potential system customers. A number of calculation tools to estimate heat requirement, cost of different heating systems, primary energy need, LCC, etc. are all available. The core of the site is the database containing heat pump installations with related data of importance. The data available is such key data as performance figures, cost of installation, etc. Today 104 system installations are collected in the database and these are marked in a colour coding to indicate the quality of the input data. Installations verified with measurement are given higher significance. It has been an unexpected challenge to find documented systems, so one of the conclusions of the project is that there is a great need for further measurement on the field. More information should be directed to the customers to request such equipment when systems are installed. The database enables statistical analysis of the key figures and it can be seen that the average seasonal COP is 3.2 and there are small differences between exhaust air and ground source heat pumps. It should be emphasised that the number of installations do not give statistical confidence for all kinds of analysis yet. Field measurements in apartment

  18. Evaluation of Laser Stabilization and Imaging Systems for LCLS-II - Final Paper

    Energy Technology Data Exchange (ETDEWEB)

    Barry, Matthew [Auburn Univ., AL (United States)

    2015-08-20

    By combining the top performing commercial laser beam stabilization system with the most ideal optical imaging configuration, the beamline for the Linear Accelerator Coherent Light Source II (LCLS-II) will deliver the highest quality and most stable beam to the cathode. To determine the optimal combination, LCLS-II beamline conditions were replicated and the systems tested with a He-Ne laser. The Guidestar-II and MRC active laser beam stabilization systems were evaluated for their ideal positioning and stability. Both a two and four lens optical imaging configuration was then evaluated for beam imaging quality, magnification properties, and natural stability. In their best performances when tested over fifteen hours, Guidestar-II kept the beam stable over approximately 70-110um while the MRC system kept it stable over approximately 90-100um. During short periods of time, Guidestar-II kept the beam stable between 10-20um, but was more susceptible to drift over time, while the MRC system maintained the beam between 30-50um with less overall drift. The best optical imaging configuration proved to be a four lens system that images to the iris located in the cathode room and from there, imaged to the cathode. The magnification from the iris to the cathode was 2:1, within an acceptable tolerance to the expected 2.1:1 magnification. The two lens configuration was slightly more stable in small periods of time (less than 10 minutes) without the assistance of a stability system, approximately 55um compared to approximately 70um, but the four lens configurations beam image had a significantly flatter intensity distribution compared to the two lens configuration which had a Gaussian distribution. A final test still needs to be run with both stability systems running at the same time through the four lens system. With this data, the optimal laser beam stabilization system can be determined for the beamline of LCLS-II.

  19. Activation of noble metals on metal-carbide surfaces: novel catalysts for CO oxidation, desulfurization and hydrogenation reactions.

    Science.gov (United States)

    Rodriguez, José A; Illas, Francesc

    2012-01-14

    This perspective article focuses on the physical and chemical properties of highly active catalysts for CO oxidation, desulfurization and hydrogenation reactions generated by depositing noble metals on metal-carbide surfaces. To rationalize structure-reactivity relationships for these novel catalysts, well-defined systems are required. High-resolution photoemission, scanning tunneling microscopy (STM) and first-principles periodic density-functional (DF) calculations have been used to study the interaction of metals of Groups 9, 10 and 11 with MC(001) (M = Ti, Zr, V, Mo) surfaces. DF calculations give adsorption energies that range from 2 eV (Cu, Ag, Au) to 6 eV (Co, Rh, Ir). STM images show that Au, Cu, Ni and Pt grow on the carbide substrates forming two-dimensional islands at very low coverage, and three-dimensional islands at medium and large coverages. In many systems, the results of DF calculations point to the preferential formation of admetal-C bonds with significant electronic perturbations in the admetal. TiC(001) and ZrC(001) transfer some electron density to the admetals facilitating bonding of the adatom with electron-acceptor molecules (CO, O(2), C(2)H(4), SO(2), thiophene, etc.). For example, the Cu/TiC(001) and Au/TiC(001) systems are able to cleave both S-O bonds of SO(2) at a temperature as low as 150 K, displaying a reactivity much larger than that of TiC(001) or extended surfaces of bulk copper and gold. At temperatures below 200 K, Au/TiC is able to dissociate O(2) and perform the 2CO + O(2)→ 2CO(2) reaction. Furthermore, in spite of the very poor hydrodesulfurization performance of TiC(001) or Au(111), a Au/TiC(001) surface displays an activity for the hydrodesulfurization of thiophene higher than that of conventional Ni/MoS(x) catalysts. In general, the Au/TiC system is more chemically active than systems generated by depositing Au nanoparticles on oxide surfaces. Thus, metal carbides are excellent supports for enhancing the chemical

  20. Design optimization of the International Linear Collider Final Focus System with a long L*

    CERN Document Server

    Plassard, Fabien

    This Master's Thesis work has been done in the Aerospace Engineering master's programme framework and carried out at the European Organization for Nuclear Research (CERN). It was conducted under the 500 GeV e-e+ International Linear Collider (ILC) study and focused on the design and performance optimization of the Final Focus System (FFS). The purpose of the final focus system of the future linear colliders (ILC and CLIC) is to demagnify the beam to the required transverse size at the interaction point (IP). The FFS is designed for a flat-beam in a compact way based on a local chromaticity correction which corrects both horizontal and vertical chromaticities simultaneously. An alternative FFS configuration based on the traditional scheme with two dedicated chromatic correction sections for horizontal and vertical chromaticities and a long L * option has been developed. A longer free space between the last quadrupole and the IP allows to place the last quadrupole on a stable ground, with fewer engineering ...

  1. Medicare program; prospective payment system and consolidated billing for skilled nursing facilities for FY 2009. Final rule.

    Science.gov (United States)

    2008-08-08

    This final rule updates the payment rates used under the prospective payment system (PPS) for skilled nursing facilities (SNFs), for fiscal year (FY) 2009. It also discusses our ongoing analysis of nursing home staff time measurement data collected in the Staff Time and Resource Intensity Verification (STRIVE) project. Finally, this final rule makes technical corrections in the regulations text with respect to Medicare bad debt payments to SNFs and the reference to the definition of urban and rural as applied to SNFs.

  2. Medicare program; prospective payment system and consolidated billing for skilled nursing facilities for FY 2008. Final rule.

    Science.gov (United States)

    2007-08-03

    This final rule updates the payment rates used under the prospective payment system (PPS) for skilled nursing facilities (SNFs) for fiscal year (FY) 2008. In addition, this final rule revises and rebases the SNF market basket, and modifies the threshold for the adjustment to account for market basket forecast error. This final rule also responds to public comments submitted on the proposed rule and makes a technical correction in the regulations text.

  3. Final design of an air core, compulsator driven, 0.60 caliber railgun system

    International Nuclear Information System (INIS)

    Kitzmiller, J.R.; Faidley, R.W.; Fuller, R.L.; Headifen, G.R.; Pratap, S.B.; Spann, M.L.; Thelen, R.F.

    1991-01-01

    The Center for Electromechanics at The University of Texas at Austin (CEM-UT), is currently in the manufacturing phase of a laboratory based small caliber electromagnetic (EM) launcher and compulsator power supply. The objective of the 29-month program is to develop a compact, lightweight test bed capable of accelerating 32-g masses to 2 km/s at a rate of 10 Hz. Both the power supply and launcher feature significant component design advances which will allow the system to operate at considerably higher energy and power densities than previously demonstrated. The 750-kg compulsator will generate 2.2 kV and the Silicon- controlled rectifier (SCR) switch will commutate 386-kA pulses into the 1.6-m long, 0.60 caliber augmented solid armature railgun. This paper describes the final design and predicted operating characteristics of the compulsator system. Overall system performance parameters are reported, including results from the optimization code used to aid in the design of the compulsator system. A system design overview is presented with emphasis on new materials and state-of-the-art machine components to be used for the first time in a compulsator

  4. Final Report: Natural State Models of The Geysers Geothermal System, Sonoma County, California

    Energy Technology Data Exchange (ETDEWEB)

    T. H. Brikowski; D. L. Norton; D. D. Blackwell

    2001-12-31

    Final project report of natural state modeling effort for The Geysers geothermal field, California. Initial models examined the liquid-dominated state of the system, based on geologic constraints and calibrated to match observed whole rock delta-O18 isotope alteration. These models demonstrated that the early system was of generally low permeability (around 10{sup -12} m{sup 2}), with good hydraulic connectivity at depth (along the intrusive contact) and an intact caprock. Later effort in the project was directed at development of a two-phase, supercritical flow simulation package (EOS1sc) to accompany the Tough2 flow simulator. Geysers models made using this package show that ''simmering'', or the transient migration of vapor bubbles through the hydrothermal system, is the dominant transition state as the system progresses to vapor-dominated. Such a system is highly variable in space and time, making the rock record more difficult to interpret, since pressure-temperature indicators likely reflect only local, short duration conditions.

  5. Molecular dynamics simulations of the effect of NaCl-doping on the calcination characteristics in desulfurization processes

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, T.; Kurita, N.; Naruse, I. [Toyohashi University of Technology, Toyohashi (Japan)

    2003-03-01

    Desulfurization performance of wasted seashells was found to be over twice as high as that of limestone, which was currently used as a desulfurizer in fluidized bed coal combustors. NaCl-doping into limestone was also found to be effective in improving the desulfurization efficiency. From X-ray diffraction (XRD) analyses of calcined seashell, limestone and NaCl-doped limestone, on the other hand, not only the calcined seashell but also the NaCl-doped limestone had strong peaks of CaO crystal, and those two materials also had high desulfurization activity. This improvement was hypothesized to be due to NaCl causing a change in the crystal structure of CaO. In order to elucidate the effect of NaCl addition on the CaO crystal structure in the incineration of CaCO{sub 3} the change of structures was simulated by means of molecular dynamics simulations of CaO. In the simulation one molecule of NaCl was exchanged into one molecule of CaO. A pair correlation functions and the distances between Ca and O atoms, which were obtained by the simulations, were compared with those from the crystal CaO. NaCl-doping affected the crystalization temperature of CaO. The crystallization temperature increased due to adding a little bit of NaCl. From the result of the pair correlation functions obtained in NaCl-doped CaO, the difference of the potential energy of NaCl from that of CaO seemed to contribute to the crystallization of the bulk of CaO. The simulation and experimental results obtained suggested that NaCl-doping contributed to crystallizing the CaO molecules.

  6. Evaluation of Synthetic Gypsum Recovered via Wet Flue-Gas Desulfurization from Electric Power Plants for Use in Foundries

    Directory of Open Access Journals (Sweden)

    R. Biernacki

    2012-09-01

    Full Text Available This article investigates possible use of waste gypsum (synthetic, recovered via flue-gas desulfurization from coal-fired electric powerplants, in foundries. Energy sector, which in Eastern Europe is mostly composed from coal-fired electric power plants, is one of the largestproducers of sulfur dioxide (SO2.In order to protect the environment and reduce the amount of pollution flue-gas desulfurization (FGD is used to remove SO2 fromexhaust flue gases of fossil-fuel power plants. As a result of this process gypsum waste is produced that can be used in practicalapplications.Strength and permeability tests have been made and also in-depth analysis of energy consumption of production process to investigateways of preparing the synthetic gypsum for casting moulds application. This paper also assesses the chemical composition, strength andpermeability of moulds made with synthetic gypsum, in comparison with moulds made with traditional GoldStar XL gypsum and withceramic molds. Moreover examination of structure of synthetic gypsum, the investigations on derivatograph and calculations of energyconsumption during production process of synthetic gypsum in wet flue-gas desulfurization were made.After analysis of gathered data it’s possible to conclude that synthetic gypsum can be used as a material for casting mould. There is nosignificant decrease in key properties, and on the other hand there is many additional benefits including low energy consumption,decreased cost, and decreased environmental impact.

  7. Enhancing mercury removal across air pollution control devices for coal-fired power plants by desulfurization wastewater evaporation.

    Science.gov (United States)

    Bin, Hu; Yang, Yi; Cai, Liang; Yang, Linjun; Roszak, Szczepan

    2017-10-09

    Desulfurization wastewater evaporation technology is used to enhance the removal of gaseous mercury (Hg) in conventional air pollution control devices (APCDs) for coal-fired power plants. Studies have affirmed that gaseous Hg is oxidized and removed by selective catalytic reduction (SCR), an electrostatic precipitator (ESP) and wet flue gas desulfurization (WFGD) in a coal-fired thermal experiment platform with WFGD wastewater evaporation. Effects of desulfurization wastewater evaporation position, evaporation temperature and chlorine ion concentration on Hg oxidation were studied as well. The Hg 0 oxidation efficiency was increased ranging from 30% to 60%, and the gaseous Hg removal efficiency was 62.16% in APCDs when wastewater evaporated before SCR. However, the Hg 0 oxidation efficiency was 18.99% and the gaseous Hg removal efficiency was 40.19% in APCDs when wastewater evaporated before ESP. The results show that WFGD wastewater evaporation before SCR is beneficial to improve the efficiency of Hg oxidized and removed in APCDs. Because Hg 2+ can be easily removed in ACPDs and WFGD wastewater in power plants is enriched with chlorine ions, this method realizes WFGD wastewater zero discharge and simultaneously enhances Hg removal in APCDs.

  8. Systems for arctic spill response. Volume I. Final report, August 1977--March 1978

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, L.A.; Deslauriers, P.C.; DeBord, F.W.; Voelker, R.P.

    1978-03-01

    This final report summarizes the work accomplished under the program entitled 'Study to Define Arctic Pollution Response Systems and Develop Arctic Oil Pollution Response Project Plans.' The objective of the program was to determine the most cost effective, environmentally compatible, and technically feasible Coast Guard arctic pollution response system that can be used in projected oil spill scenarios to recover and dispose of spilled oil. The optimum arctic pollution response system was determined by establishing the cost and effectiveness of response for sixteen oil spill response situations, and developing six alternative Coast Guard arctic pollution response systems based on these situations. These six systems were developed with a recognition of three distinctly different types of operational requirements, those for thick stable ice, dynamic hummocky ice, and open water or light ice conditions. The optimum system was then identified as the result of a cost effectiveness analysis. The six arctic oil spill scenarios consisted of a gathering pipeline rupture in the nearshore Beaufort Sea, an oil well blowout from a very large reservoir in the nearshore Chukchi Sea, crude oil tanker casualties in Norton Sound and in the Navarin Basin region of the Bering Sea, an oil well blowout from an average sized reservoir in Bristol Bay, and a fuel oil spill resulting from the collision of a fuel oil barge in Unimak Pass. The optimum system provides for a 25% response level for the Norton Sound, Navarin Basin, Bristol Bay, and Unimak Pass scenarios, and a 50% response level for the Beaufort Sea and Chukchi Sea scenarios.

  9. Systems for arctic spill response. Volume II. Appendices. Final report, August 1977--March 1978

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, L.A.; Deslauriers, P.C.; DeBord, F.W.; Voelker, R.P.

    1978-03-01

    This final report summarizes the work accomplished under Phase I of the program entitled 'Study to Define Arctic Pollution Response Systems and Develop Arctic Oil Pollution Response Project Plans.' The objective of Phase I of the program was to determine the most cost effective, environmentally compatible, and technically feasible Coast Guard arctic pollution response system that can be used in projected oil spill scenarios to recover and dispose of spilled oil. The optimum arctic pollution response system was determined by establishing the cost and effectiveness of response for sixteen oil spill response situations, and developing six alternative Coast Guard arctic pollution response systems based on these situations. The optimum system was then identified as the result of a cost effectiveness analysis. The six arctic oil spill scenarios consisted of a gathering pipeline rupture in the nearshore Beaufort Sea, an oil well blowout from a very large reservoir in the nearshore Chukchi Sea, crude oil tanker casualties in Norton Sound and in the Navarin Basin region of the Bering Sea, an oil well blowout from an average sized reservoir in Bristol Bay, and a fuel oil spill resulting from the collision of a fuel oil barge in Unimak Pass. The optimum system provides for a 25% response level for the Norton Sound, Navarin Basin, Bristol Bay, and Unimak Pass scenarios, and a 50% response level for the Beaufort Sea and Chukchi Sea scenarios. Modifications in the optimum system required to extend its capability to subarctic applications in the Great Lakes, the northern rivers, and the northern coastal region were also identified.

  10. Columbia River System Operation Review final environmental impact statement. Appendix Q: Regional forum

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. The SOR is currently developing a System Operating Strategy (SOS) that will guide the physical operations of the Columbia River system. The SOR is also addressing the institutional arrangements that must be in place to make needed changes to the SOS in the future, or make interpretations of the strategy in the light of changing water conditions or river needs. For convenience, this future institutional arrangement is referred to as ''The Columbia River Regional Forum,'' or simply ''the Forum,'' even though the nature of this institution is still to be determined. This appendix and the Final Environmental Impact Statement (EIS) identify the Forum as an administrative process that will not result in impacts to the environment and will not require analysis in a NEPA context. The composition of and procedures followed by a decision making body cannot--in and of themselves--be used to predict a particular decision with definable impacts on the environment. Nevertheless, because of the relationship to the other SOR actions, the SOR lead agencies have prepared this Technical Appendix to provide opportunities for review and comment on the Forum alternatives

  11. Development and testing of commercial-scale, coal-fired combustion systems: Phase III. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Based on studies that indicated a large potential for significantly increased coal-firing in the commercial sector, the U.S. Department of Energy`s Pittsburgh Energy Technology Center (PETC) sponsored a multi-phase development effort for advanced coal combustion systems. This Final Report presents the results of the last phase (Phase III) of a project for the development of an advanced coal-fired system for the commercial sector of the economy. The project performance goals for the system included dual-fuel capability (i.e., coal as primary fuel and natural gas as secondary fuel), combustion efficiency exceeding 99 percent, thermal efficiency greater than 80 percent, turndown of at least 3:1, dust-free and semi-automatic dry ash removal, fully automatic start-up with system purge and ignition verification, emissions performance exceeding New Source Performance Standards (NSPS) and approaching those produced by oil-fired, Commercial-sized units, and reliability, safety, operability, maintainability, and service life comparable to oil-fired units. The program also involved a site demonstration at a large facility owned by Striegel Supply Company, a portion of which was leased to MTCI. The site, mostly warehouse space, was completely unheated and the advanced coal-fired combustion system was designed and sized to heat this space. Three different coals were used in the project, one low and one high sulfur pulverized Pittsburgh No. 8 coal, and a micronized low volatile, bituminous coal. The sorbents used were Pfizer dolomitic limestone and an Anvil lime. More than 100 hours of screening test`s were performed to characterize the system. The parameters examined included coal firing rate, excess air level, ash recycle rate, coal type, dolomitic limestone feed rate, and steam injection rate. These tests indicated that some additional modifications for coal burning in the system were required.

  12. Project Guarantee 1985. Final repository for high-level radioactive wastes: The system of safety barriers

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Final disposal of radioactive waste involves preventing the waste from returning from the repository location into the biosphere by means of successively arranged containment measures known as safety barriers. In the present volume NGB 85-04 of the series of reports for Project 'Guarantee' 1985, the safety barrier system for the type C repository for high-level waste is described. The barrier parameters which are relevant for safety analysis are quantified and associated error limits and data scatter are given. The aim of the report is to give a summary documentation of the safety analysis input data and their scientific background. For secure containment of radioactive waste safety barriers are used which effectively limit the release of radioactive material from the repository (release barriers) and effectively retard the entry of the original radioactive material into the biosphere (time barriers). Safety barriers take the form of both technically constructed containment measures and the siting of the repository in suitable geological formations. The technical safety barrier system in the case of high-level waste comprises: the waste solidification matrix (borosilicate glass), massive steel canisters, encasement of the waste canisters, encasement of the waste canisters in highly compacted bentonite, sealing of vacant storage space and access routes on repository closure. The natural geological safety barriers - the host rock and overlying formations provide sufficiently long deep groundwater flow times from the repository location to the earth's surface and for additional lengthening of radionuclide migration times by means of various chemical and physical retardation mechanisms. The stability of the geological formations is so great that hydrogeological system is protected for a sufficient length of time from deterioration caused, in particular, by erosion. Observations in the final section of the report indicate that input data for the type C repository safety

  13. Lower Flathead System Fisheries Study, Executive Summary, Volume I, 1983-1987 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Cross, David; DosSantos, Joseph M.

    1988-06-01

    This Executive Summary, Volume I, of the lower Flathead System Fisheries Study Final Report, was prepared to provide a study overview for persons who are not fisheries scientists. The contents provide an introduction to the study and its objectives, a short description of the study area, a discussion of the major findings and conclusions of the study, and the description of fisheries management alternatives available to managers of the lower Flathead system. Technical reports were prepared for those portions of the study dealing with the lower Flathead River and its tributaries, Volume II, and the South Bay of Flathead Lake, Volume III. The annual hydrographic regime of the Flathead system, consisting of upper rivers, lake and lower river, has been modified by the construction and operation of two major hydroelectric facilities, Hungry Horse Dam on the south fork Flathead River and Kerr Dam at the outlet of Flathead Lake. The modified hydrographic regime has resulted in significant impacts to kokanee (Oncorhynchus nerka) and several species of trout. Kerr Dam, closed in 1938, controls Flathead Lake levels between 878.7 m (2883 ft) and 881.8 m (2893 ft) and discharges into the lower Flathead River. Kerr Dam is a 63.4 m (208 ft) high concrete arch structure located 7.2 km (4.5 miles) downstream from the outlet of Flathead Lake. The facility is used by Montana Power Company primarily for system frequency load control with some use for low level base load. 77 refs., 5 figs.

  14. Reliability of steam-turbine rotors. Task 1. Lifetime prediction analysis system. Final report

    International Nuclear Information System (INIS)

    Nair, P.K.; Pennick, H.G.; Peters, J.E.; Wells, C.H.

    1982-12-01

    Task 1 of RP 502, Reliability of Steam Turbine Rotors, resulted in the development of a computerized lifetime prediction analysis system (STRAP) for the automatic evaluation of rotor integrity based upon the results of a boresonic examination of near-bore defects. Concurrently an advanced boresonic examination system (TREES), designed to acquire data automatically for lifetime analysis, was developed and delivered to the maintenance shop of a major utility. This system and a semi-automated, state-of-the-art system (BUCS) were evaluated on two retired rotors as part of the Task 2 effort. A modified nonproprietary version of STRAP, called SAFER, is now available for rotor lifetime prediction analysis. STRAP and SAFER share a common fracture analysis postprocessor for rapid evaluation of either conventional boresonic amplitude data or TREES cell data. The final version of this postprocessor contains general stress intensity correlations for elliptical cracks in a radial stress gradient and provision for elastic-plastic instability of the ligament between an imbedded crack and the bore surface. Both linear elastic and ligament rupture models were developed for rapid analysis of linkup within three-dimensional clusters of defects. Bore stress-rupture criteria are included, but a creep-fatigue crack growth data base is not available. Physical and mechanical properties of air-melt 1CrMoV forgings are built into the program; however, only bounding values of fracture toughness versus temperature are available. Owing to the lack of data regarding the probability of flaw detection for the boresonic systems and of quantitative verification of the flaw linkup analysis, automatic evlauation of boresonic results is not recommended, and the lifetime prediction system is currently restricted to conservative, deterministic analysis of specified flaw geometries

  15. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume VI

    International Nuclear Information System (INIS)

    1996-08-01

    The U.S. Department Of Energy and the Washington State Department of Ecology added Appendix L (Volume 6), Response to Public Comments, to the Tank Waste Remediation System (TWRS) Final Environmental Impact Statement (EIS) for the Hanford Site, Richland, Washington, to fully address and respond to public comments on the Draft EIS. In addition, DOE considered public comments, along with other factors such as programmatic need, short- and long-term impacts, technical feasibility, and cost, in arriving at DOE's preferred alternative. During the public comment period for the Draft EIS, more than 350 individuals, agencies, Tribal Nations, and organizations provided comments. This volume represents a broad spectrum of private citizens; businesses; local, State, and Federal officials; Tribal Nations; and public interest groups

  16. Modeling of integrated environmental control systems for coal-fired power plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

    1991-05-01

    The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to ``conventional`` technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

  17. Pierce-Wiggler electron beam system for 250 GHz GYRO-BWO: Final report

    International Nuclear Information System (INIS)

    Pirkle, D.R.; Alford, C.W.; Anderson, M.H.; Garcia, R.F.; Legarra, J.R.; Nordquist, A.L.

    1989-01-01

    This final report summarizes the design and performance of the VUW-8028 Pierce-Wiggler electron beam systems, which can be used to power high frequency gyro-BWO's. The operator's manual for this gyro-BWO beamstick is included as appendix A. Researchers at Lawrence Livermore National Laboratory (LLNL) are developing a gyro-BWO with a center frequency of 250 GHz, 6% bandwidth, and 10 kV peak output power. The gyro-BWO will be used to drive a free electron laser amplifier at LLNL. The electron beam requirements of the gyro-BWO application are: Small beam size, .100 inch at 2500 gauss axial magnetic field; a large fraction of the electron energy in rotational velocity; ability to vary the electrons' axial velocity easily, for electronic tuning; and low velocity spread i.e. little variation in the axial velocities of the electrons in the interaction region. 1 ref., 13 figs

  18. Grid-connected integrated community energy system. Phase II, Stage 2, final report. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-22

    The University of Minnesota Grid-ICES was divided into four identifiable programs in order to study the feasibility of each of the parts of the ICES independently. The total program involves cogeneration, fuel conversion, fuel substitution, and energy conservation by system change. This Phase II report substantiates the theory that the Basic Grid ICES is not only energy-effective, but it will become cost effective as unit operating costs adjust to supply and demand in the 1980's. The Basic Program involves the cogeneration of steam and electricity. The University of Minnesota has been following an orderly process of converting its Central Heating Plant from gas-oil to 100% coal since 1973. The first step in the transition is complete. The University is presently 100% on coal, and will begin the second step, the test burning of low Btu Western coal during the spring, summer, and fall, and high Btu Eastern coal during the high thermal winter period. The final step to 100% Western coal is planned to be completed by 1980. In conjunction with the final step a retired Northern States Power generating plant has been purchased and is in the process of being retrofitted for topping the existing plant steam output during the winter months. The Basic Plan of ICES involves the add-on work and expense of installing additional boiler capacity at Southeast Steam and non-condensing electric generating capability. This will permit the simultaneous generation of electricity and heat dependent upon the thermal requirements of the heating and cooling system in University buildings. This volume presents an overview of the Community and the ICES. (MCW)

  19. Drift compression and final focus systems for heavy ion inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    de Hoon, Michiel Jan Laurens [Univ. of California, Berkeley, CA (United States)

    2001-01-01

    Longitudinal compression of space-charge dominated beams can be achieved by imposing a head-to-tail velocity tilt on the beam. This tilt has to be carefully tailored, such that it is removed by the longitudinal space-charge repulsion by the time the beam reaches the end of the drift compression section. The transverse focusing lattice should be designed such that all parts of the beam stay approximately matched, while the beam smoothly expands transversely to the larger beam radius needed in the final focus system following drift compression. In this thesis, several drift compression systems were designed within these constraints, based on a given desired pulse shape at the end of drift compression systems were designed within these constraints, based on a given desired pulse shape at the end of drift compression. The occurrence of mismatches due to a rapidly increasing current was analyzed. In addition, the sensitivity of drift compression to errors in the initial velocity tilt and current profile was studied. These calculations were done using a new computer code that accurately calculates the longitudinal electric field in the space-charge dominated regime.

  20. Integrated emissions control system for residential CWS furnace. Final report, September 20, 1989--March 20, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W.; McLarnon, C.

    1993-03-01

    One of the major obstacles to the successful development and commercialization of a coal-fired residential furnace is the need for a reliable, cost-effective emission control system. Tecogen is developing a novel, integrated control system to control NO{sub x}SO{sub 2}, and particulate emissions. At the heart of this system is a unique emissions control reactor for the control of SO{sub 2}. This reactor provides high sorbent particle residence time within the reactor while doing so in a very compact geometry. Final cleanup of any fine particulates exiting the reactor including respirable-sized particulates, is completed with the use of high efficiency bag filters. Under a previous contract with PETC (Contract No. DE-AC22-87PC79650), Tecogen developed a residential-scale Coal Water Slurry (CWS) combustor to control NO{sub x}emission. This combustor makes use of centrifugal forces, set up by a predominantly tangential flow field, to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled in such a manner as to minimize NO{sub x} emission.

  1. Advanced turbine systems program -- Conceptual design and product development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-26

    This Final Technical Report presents the accomplishments on Phase 2 of the Advanced Turbine Systems (ATS). The ATS is an advanced, natural gas fired gas turbine system that will represent a major advance on currently available industrial gas turbines in the size range of 1--20 MW. This report covers a market-driven development. The Market Survey reported in Section 5 identified the customer`s performance needs. This market survey used analyses performed by Solar turbine Incorporated backed up by the analyses done by two consultants, Research Decision Consultants (RDC) and Onsite Energy Corporation (Onsite). This back-up was important because it is the belief of all parties that growth of the ATS will depend both on continued participation in Solar`s traditional oil and gas market but to a major extent on a new market. This new market is distributed electrical power generation. Difficult decisions have had to be made to meet the different demands of the two markets. Available resources, reasonable development schedules, avoidance of schedule or technology failures, probable acceptance by the marketplace, plus product cost, performance and environmental friendliness are a few of the complex factors influencing the selection of the Gas Fired Advanced Turbine System described in Section 3. Section 4 entitled ``Conversion to Coal`` was a task which addresses the possibility of a future interruption to an economic supply of natural gas. System definition and analysis is covered in Section 6. Two major objectives were met by this work. The first was identification of those critical technologies that can support overall attainment of the program goals. Separate technology or component programs were begun to identify and parameterize these technologies and are described in Section 7. The second objective was to prepare parametric analyses to assess performance sensitivity to operating variables and to select design approaches to meet the overall program goals.

  2. Columbia River system operation review: Final environmental impact statement. Appendix R, Pacific Northwest Coordination agreement (PNCA)

    International Nuclear Information System (INIS)

    1995-11-01

    Currently, the Federal government coordinates the planning and operation of the Federal Columbia River Power System (FCRPS) with projects owned and operated by the region's non-Federal hydrogenerating utilities pursuant to the Pacific North-west Coordination Agreement (PNCA). The Bureau of Reclamation (Reclamation), the Corps of Engineers (Corps), and the Bonneville Power Administration (BPA) are parties to the PNCA on behalf of the government of the United States. The PNCA is a complex agreement that provides an opportunity for the region's power producers to maximize the power system's reliability and economy while meeting their multiple-use objectives. The PNCA does not dictate the operation of the resources it coordinates. It is essentially an accounting mechanism that exchanges the power produced among the parties in order to improve the reliability of the system and reduce regional power costs. Project owners retain complete autonomy to operate as needed to meet their multiple-use requirements. The PNCA was executed in 1964 as an important component of regional plans to maximize the Northwest's hydro resource capability. Maximization also included the development of storage projects on the Columbia River in Canada pursuant to the terms of the 1964 Columbia River Treaty. Because of the link between power coordination and Treaty issues, the current parties to the PNCA, currently are contemplating entering into a replacement or renewed power coordination agreement. Because the power coordination agreement is a consensual arrangement, its ultimate provisions must be acceptable to all of its signatories. This Appendix R to the Final Environmental Impact Statement of the Columbia River System is a presentation of the Pacific North-west Coordination Agreement

  3. Columbia River System Operation Review : Final Environmental Impact Statement, Main Report.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.); United States. Bonneville Power Administration; United States. Army. Corps of Engineers. North Pacific Division; United States. Bureau of Reclamation. Pacific Northwest Region.

    1995-11-01

    The System Operation Review (SOR) Final EIS addresses four actions: (a) need to develop coordinated strategy for managing the multiple uses of the Federal Columbia River system (System Operating Strategy [SOS]); (b) need to provide interested parties other than management agencies with a long-term role in system planning (Forum); (c) need to renew or change current Canadian Entitlement Allocation Agreements (CEAA); and (d) need to renegotiate and renew the Pacific Northwest Coordination Agreement (PNCA). SOS alternatives analyzed are: (1) operation prior to Endangered Species Act listings of salmon stocks; (2) current operations (no action); (3) stable storage project operation; (4) natural river operation; (5) fixed drawdown; (6) operating strategies proposed by the U.S. Fish and Wildlife Service, National Marine Fisheries Service, State fisheries agencies, Native American tribes, and Federal operating agencies; and (7) Preferred Alternative. The seven Forum alternatives analyzed are: (1) decisionmaking by the SOR lead agencies (preferred alternative); (2) decisionmaking by SOR lead agencies and recommendations by an existing regional entity; (3) decisionmaking by SOR lead agencies and recommendations by a new regional entity; (4) decisionmaking by a Federal consultation forum; (5) decisionmaking by a new entity; (6) decisionmaking by one Federal operating agency; (7) decisionmaking by a Federal agency other than an operating agency. PNCA alternatives analyzed are: (1) no replacement contract; (2) contract to maximize regional power benefits; (3) roll over existing PNCA; (4) current PNCA with modified operating procedures (preferred alternative); (5) current PNCA with nonpower modifications. CEAA alternatives include: (1) no action (no replacement of current allocation agreements); (2) entitlement allocation: 55 percent Federal; 45 percent non-Federal; (3) entitlement allocation: 70 percent Federal, 30 percent non-Federal (preferred alternative); (4) no agreement.

  4. Columbia River system operation review: Final environmental impact statement. Main report

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) Final EIS addresses four actions: (a) need to develop coordinated strategy for managing the multiple uses of the Federal Columbia River system (System Operating Strategy [SOS]); (b) need to provide interested parties other than management agencies with a long-term role in system planning (Forum); (c) need to renew or change current Canadian Entitlement Allocation Agreements (CEAA); and (d) need to renegotiate and renew the Pacific Northwest Coordination Agreement (PNCA). SOS alternatives analyzed are: (1) operation prior to Endangered Species Act listings of salmon stocks; (2) current operations (no action); (3) stable storage project operation; (4) natural river operation; (5) fixed drawdown; (6) operating strategies proposed by the U.S. Fish and Wildlife Service, National Marine Fisheries Service, State fisheries agencies, Native American tribes, and Federal operating agencies; and (7) Preferred Alternative. The seven Forum alternatives analyzed are: (1) decisionmaking by the SOR lead agencies (preferred alternative); (2) decisionmaking by SOR lead agencies and recommendations by an existing regional entity; (3) decisionmaking by SOR lead agencies and recommendations by a new regional entity; (4) decisionmaking by a Federal consultation forum; (5) decisionmaking by a new entity; (6) decisionmaking by one Federal operating agency; (7) decisionmaking by a Federal agency other than an operating agency. PNCA alternatives analyzed are: (1) no replacement contract; (2) contract to maximize regional power benefits; (3) roll over existing PNCA; (4) current PNCA with modified operating procedures (preferred alternative); (5) current PNCA with nonpower modifications. CEAA alternatives include: (1) no action (no replacement of current allocation agreements); (2) entitlement allocation: 55 percent Federal; 45 percent non-Federal; (3) entitlement allocation: 70 percent Federal, 30 percent non-Federal (preferred alternative); (4) no agreement

  5. Sodic soil properties and sunflower growth as affected by byproducts of flue gas desulfurization.

    Science.gov (United States)

    Wang, Jinman; Bai, Zhongke; Yang, Peiling

    2012-01-01

    The main component of the byproducts of flue gas desulfurization (BFGD) is CaSO(4), which can be used to improve sodic soils. The effects of BFGD on sodic soil properties and sunflower growth were studied in a pot experiment. The experiment consisted of eight treatments, at four BFGD rates (0, 7.5, 15 and 22.5 t ha(-1)) and two leaching levels (750 and 1200 m(3) ha(-1)). The germination rate and yield of the sunflower increased, and the exchangeable sodium percentage (ESP), pH and total dissolved salts (TDS) in the soils decreased after the byproducts were applied. Excessive BFGD also affected sunflower germination and growth, and leaching improved reclamation efficiency. The physical and chemical properties of the reclaimed soils were best when the byproducts were applied at 7.5 t ha(-1) and water was supplied at 1200 m(3)·ha(-1). Under these conditions, the soil pH, ESP, and TDS decreased from 9.2, 63.5 and 0.65% to 7.8, 2.8 and 0.06%, and the germination rate and yield per sunflower reached 90% and 36.4 g, respectively. Salinity should be controlled by leaching when sodic soils are reclaimed with BFGD as sunflower growth is very sensitive to salinity during its seedling stage.

  6. Sodic soil properties and sunflower growth as affected by byproducts of flue gas desulfurization.

    Directory of Open Access Journals (Sweden)

    Jinman Wang

    Full Text Available The main component of the byproducts of flue gas desulfurization (BFGD is CaSO(4, which can be used to improve sodic soils. The effects of BFGD on sodic soil properties and sunflower growth were studied in a pot experiment. The experiment consisted of eight treatments, at four BFGD rates (0, 7.5, 15 and 22.5 t ha(-1 and two leaching levels (750 and 1200 m(3 ha(-1. The germination rate and yield of the sunflower increased, and the exchangeable sodium percentage (ESP, pH and total dissolved salts (TDS in the soils decreased after the byproducts were applied. Excessive BFGD also affected sunflower germination and growth, and leaching improved reclamation efficiency. The physical and chemical properties of the reclaimed soils were best when the byproducts were applied at 7.5 t ha(-1 and water was supplied at 1200 m(3·ha(-1. Under these conditions, the soil pH, ESP, and TDS decreased from 9.2, 63.5 and 0.65% to 7.8, 2.8 and 0.06%, and the germination rate and yield per sunflower reached 90% and 36.4 g, respectively. Salinity should be controlled by leaching when sodic soils are reclaimed with BFGD as sunflower growth is very sensitive to salinity during its seedling stage.

  7. Industrial application of gasoline aromatization and desulfurization technology in Hohhot refinery

    Directory of Open Access Journals (Sweden)

    Li Zixia

    2017-01-01

    Full Text Available Gasoline aromatization and desulfurization (GARDES technology is extensively used in refineries of Petrochina, aiming to produce high quality ultraclean fluid catalytic cracking (FCC gasoline. This article introduces the industrial application results on the hydrodesulfurization unit of the Hohhot refinery, which plays an important role in guiding next round gasoline upgrading. The characteristics and the principle of GARDES technology were elaborated by analyzing the distribution of sulfur and hydrocarbon compounds in the feed and product. The analysis results proved that the presence of broad ranged sulfur types in the feed can be removed at different stages. Olefin can be decreased by saturation and conversion into i-paraffins and aromatics. The sulfur content of the blend product can be limited under 10 mg/kg, showing GARDES technology has excellent sulfur removal ability. The olefin reduction can also satisfy the ever-increasing severe requirement about the olefin limitation, while the loss of research octane number (RON can be minimized to an acceptable level. Furthermore, according to the demand of gasoline upgrading, GARDES technology has great flexibility by adjusting operation condition without any further investment, which brings more economic benefits for refinery.

  8. FGD [flue gas desulfurization] gypsum in the United Germany: Trends of demand and supply

    International Nuclear Information System (INIS)

    Stein, V.

    1991-01-01

    1990 was the first year in which all flue gas desulfurization (FGD) units in West Germany suplied the gypsum industry in Germany and some other European countries with FGD-gypsum. The effect on the gypsum market was not as significant as anticipated, mainly due to wrong estimates based on the most conservative conditions assumed by the power stations in their applications for permission. These estimates generally assumed high sulfur coal at full load throughout the year, whereas most West German boilers fire low sulfur coal and run only at peak times, resulting in much less FGD gypsum on the market than the German gypsum industry had been prepared to use. The unification of Germany has changed the situation of the gypsum industry dramatically. Reserves of natural gypsum in the middle of Germany are now much more accessible, and a great number of lignite-fired power stations must be fitted with FGD equipment as soon as possible. At the same time, the market for gypsum building products will improve dramatically due to the poor condition of many buildings in east Germany, which will require rehabilitation. These circumstances imply a bright future for both natural and FGD-based gypsum in Germany. 8 refs., 5 figs

  9. Adsorptive Desulfurization of Model Gasoline by Using Different Zn Sources Exchanged NaY Zeolites

    Directory of Open Access Journals (Sweden)

    Jingwei Rui

    2017-02-01

    Full Text Available A series of Zn-modified NaY zeolites were prepared by the liquid-phase ion-exchange method with different Zn sources, including Zn(NO32, Zn(Ac2 and ZnSO4. The samples were tested as adsorbents for removing an organic sulfur compound from a model gasoline fuel containing 1000 ppmw sulfur. Zn(Ac2-Y exhibited the best performance for the desulfurization of gasoline at ambient conditions. Combined with the adsorbents’ characterization results, the higher adsorption capacity of Zn(Ac2-Y is associated with a higher ion-exchange degree. Further, the results demonstrated that the addition of 5 wt % toluene or 1-hexene to the diluted thiophene (TP solution in cyclohexane caused a large decrease in the removal of TP from the model gasoline fuel. This provides evidence about the competition through the π-complexation between TP and toluene for adsorption on the active sites. The acid-catalyzed alkylation by 1-hexene of TP and the generated complex mixture of bulky alkylthiophenes would adsorb on the surface active sites of the adsorbent and block the pores. The regenerated Zn(Ac2-Y adsorbent afforded 84.42% and 66.10% of the initial adsorption capacity after the first two regeneration cycles.

  10. Increasing the production of desulfurizing biocatalysts by means of fed - batch culture

    International Nuclear Information System (INIS)

    Berdugo, C I; Mena, J A; Acero, J R; Mogollon, L

    2001-01-01

    Over the past years, environmental regulations have driven a lot of effort for the development of new technologies for the upgrading of fossil fuels. Biotechnology offers an alternative way to process fossil fuels by means of a biodesulfurization technology where the production of the biocatalyst is one of the key topics. Traditionally, the production is carried out in batch culture where the maximum cellular concentration is restricted by inherent limitations of the culture type and the microorganism growth rate. This work addresses the production of two desulfurizing microorganisms: Rhodococcus erythropolis IGTS8 and gordona rubropertinctus ICP172 using fed-batch culture. Fed-batch cultures were conducted in a 12 L fermentor using ICP 4 medium containing glucose and DMSO as carbon and sulfur sources. As a result, cell concentration was increased 1.5 and 3 times with fed-batch cultures using constant and exponential flow respectively, achieving a maximum cell concentration of 7.3 g DCW/L of biocatalyst igts8 and 12.85 gGDCW/L of the new biocatalyst ICP172. Both biocatalysts presented biodesulfurization activity in a spiked matrix DBT/HXD and in diesel matrix with the detection of 2-HBP which is the end-product of DBT degradation pathway

  11. Synthesis of magnetic ordered mesoporous carbon (Fe-OMC) adsorbent and its evaluation for fuel desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Farzin Nejad, N., E-mail: Farzinnejadn@ripi.ir [Petroleum Refining Technology Development Division, Research Institute of Petroleum Industry, Tehran 14857-33111 (Iran, Islamic Republic of); Shams, E.; Amini, M.K. [Department of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2015-09-15

    In this work, magnetic ordered mesoporous carbon adsorbent was synthesized using soft templating method to adsorb sulfur from model oil (dibenzothiophene in n-hexane). Through this research, pluronic F-127, resorcinol-formaldehyde and hydrated iron nitrate were respectively used as soft template, carbon source and iron source. The adsorbent was characterized by X-ray diffraction, nitrogen adsorption–desorption isotherm and transmission electron microscopy. Nitrogen adsorption–desorption measurement revealed the high surface area (810 m{sup 2} g{sup −1}), maxima pore size of 3.3 nm and large pore volume (1.01 cm{sup 3} g{sup −1}) of the synthesized sample. The adsorbent showed a maximum adsorption capacity of 111 mg dibenzothiophene g{sup −1} of adsorbent. Sorption process was described by the pseudo-second-order rate equation and could be better fitted by the Freundlich model, showing the heterogeneous feature of the adsorption process. In addition, the adsorption capacity of regenerated adsorbent was 78.6% of the initial level, after five regeneration cycles. - Highlights: • Adsorptive desulfurization of model oil with magnetic ordered mesoporous carbon adsorbent, Fe-OMC, was studied. • Maximum adsorption capacity (q{sub max}) of Fe-OMC for DBT was found to be 111.1 mg g{sup −1}. • Freundlich isotherm best represents the equilibrium adsorption data. • Rate of DBT adsorption process onto Fe-OMC is controlled by at least two steps.

  12. Adsorptive desulfurization of model oil using untreated, acid activated and magnetite nanoparticle loaded bentonite as adsorbent

    Directory of Open Access Journals (Sweden)

    Muhammad Ishaq

    2017-02-01

    Full Text Available The present research work focuses on a novel ultraclean desulfurization process of model oil by the adsorption method using untreated, acid activated and magnetite nanoparticle loaded bentonite as adsorbent. The parameters investigated are effect of contact time, adsorbent dose, initial dibenzothiophene (DBT concentration and temperature. Experimental tests were conducted in batch process. Pseudo first and second order kinetic equations were used to examine the experimental data. It was found that pseudo second order kinetic equation described the data of the DBT adsorption onto all types of adsorbents very well. The isotherm data were analyzed using Langmuir and Freundlich isotherm models. The Langmuir isotherm model fits the data very well for the adsorption of DBT onto all three forms of adsorbents. The adsorption of DBT was also investigated at different adsorbent doses and was found that the percentage adsorption of DBT was increased with increasing the adsorbent dose, while the adsorption in mg/g was decreased with increasing the adsorbent dose. The prepared adsorbents were analyzed by scanning electron microscopy (SEM, energy dispersive X-ray spectrometry (EDX and X-ray diffraction (XRD.

  13. LIFAC flue gas desulfurization process an alternative SO{sub 2} control strategy

    Energy Technology Data Exchange (ETDEWEB)

    Patel, J.G. [Tampella Power Corp., Atlanta, GA (United States); Vilala, J. [Tampella Power Inc., Tampere (Finland)

    1995-12-01

    This paper discusses the results from two recently completed LIFAC flue gas desulfurization plants - 300 MW Shand lignite powered station owned by Saskatchewan Power Corporation and 60 MW Whitewater Valley high sulfur coal fired station owned by Richmond Powerand Light. LIFACis a dry FGD process in which limestone is injected into the upper regions of the boiler furnace and an activation reactor is used to humidify the unreacted limestone to achieve additional sulfur capture. The performance in both plants indicates that 70 to 80% sulfur is removed at a Ca/S ratio of 2. Cost performance data from these plants has shown that LI FAC both on construction cost and $/ton SO{sub 2} removed basis is very cost competitive compared to other SO{sub 2} control technologies. The Richmond plant has been realized under the auspices of the U.S. Department of Energy`s Clean Coal Technology program. The Shand plant is the first commercial installation in North America. The paper also discusses highlights of operating and maintenance experience, availability and handling of the solid waste product.

  14. FY98 final report for the expedited technology demonstration project: demonstration test results for the integrated MSO waste treatment system

    International Nuclear Information System (INIS)

    Adamson, M G; Hipple, D L; Hopper, R W; Hsu, P C.

    1998-01-01

    Molten Salt Oxidation (MSO) is a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility in which an integrated pilot-scale MSO treatment system is being tested and demonstrated. The system consists of a MSO vessel with a dedicated off-gas treatment system, a salt recycle system, feed preparation equipment, and a ceramic final waste forms immobilization system. This integrated system was designed and engineered based on operational experience with an engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. The MSO/off-gas system has been operational since December 1997. The salt recycle system and the ceramic final forms immobilization became operational in May and August, 1998, respectively. We have tested the MSO facility with various organic feeds, including chlorinated solvents, tributyl phosphate/kerosene, PCB-contaminated waste oils ampersand solvents, booties, plastic pellets, ion exchanged resins, activated carbon, radioactive-spiked organics, and well-characterized low-level liquid mixed wastes. MSO is shown to be a versatile technology for hazardous waste treatment and may be a solution to many waste disposal problems in DOE sites. This report presents the results obtained from operation of the integrated pilot-scale MSO treatment system through September 1998, and therefore represents a final report for fiscal year 1998 activities

  15. Medicare program; prospective payment system and consolidated billing for skilled nursing facilities for FY 2015. Final rule.

    Science.gov (United States)

    2014-08-05

    This final rule updates the payment rates used under the prospective payment system (PPS) for skilled nursing facilities (SNFs) for fiscal year (FY) 2015. In addition, it adopts the most recent Office of Management and Budget (OMB) statistical area delineations to identify a facility's urban or rural status for the purpose of determining which set of rate tables will apply to the facility, and to determine the SNF PPS wage index including a 1-year transition with a blended wage index for all providers for FY 2015. This final rule also contains a revision to policies related to the Change of Therapy (COT) Other Medicare Required Assessment (OMRA). This final rule includes a discussion of a provision related to the Affordable Care Act involving Civil Money Penalties. Finally, this final rule discusses the SNF therapy payment research currently underway within CMS, observed trends related to therapy utilization among SNF providers, and the agency's commitment to accelerating health information exchange in SNFs.

  16. Calibration, Projection, and Final Image Products of MESSENGER's Mercury Dual Imaging System

    Science.gov (United States)

    Denevi, Brett W.; Chabot, Nancy L.; Murchie, Scott L.; Becker, Kris J.; Blewett, David T.; Domingue, Deborah L.; Ernst, Carolyn M.; Hash, Christopher D.; Hawkins, S. Edward; Keller, Mary R.; Laslo, Nori R.; Nair, Hari; Robinson, Mark S.; Seelos, Frank P.; Stephens, Grant K.; Turner, F. Scott; Solomon, Sean C.

    2018-02-01

    We present an overview of the operations, calibration, geodetic control, photometric standardization, and processing of images from the Mercury Dual Imaging System (MDIS) acquired during the orbital phase of the MESSENGER spacecraft's mission at Mercury (18 March 2011-30 April 2015). We also provide a summary of all of the MDIS products that are available in NASA's Planetary Data System (PDS). Updates to the radiometric calibration included slight modification of the frame-transfer smear correction, updates to the flat fields of some wide-angle camera (WAC) filters, a new model for the temperature dependence of narrow-angle camera (NAC) and WAC sensitivity, and an empirical correction for temporal changes in WAC responsivity. Further, efforts to characterize scattered light in the WAC system are described, along with a mosaic-dependent correction for scattered light that was derived for two regional mosaics. Updates to the geometric calibration focused on the focal lengths and distortions of the NAC and all WAC filters, NAC-WAC alignment, and calibration of the MDIS pivot angle and base. Additionally, two control networks were derived so that the majority of MDIS images can be co-registered with sub-pixel accuracy; the larger of the two control networks was also used to create a global digital elevation model. Finally, we describe the image processing and photometric standardization parameters used in the creation of the MDIS advanced products in the PDS, which include seven large-scale mosaics, numerous targeted local mosaics, and a set of digital elevation models ranging in scale from local to global.

  17. FGD Additives to Segregate and Sequester Mercury in Solid Byproducts - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Searcy, K; Bltyhe, G M; Steen, W A

    2012-02-28

    Many mercury control strategies for U.S. coal-fired power generating plants involve co-benefit capture of oxidized mercury from flue gases treated by wet flue gas desulfurization (FGD) systems. For these processes to be effective at overall mercury control, the captured mercury must not be re-emitted to the atmosphere or into surface or ground water. The project sought to identify scrubber additives and FGD operating conditions under which mercury re-emissions would decrease and mercury would remain in the liquor and be blown down from the system in the chloride purge stream. After exiting the FGD system, mercury would react with precipitating agents to form stable solid byproducts and would be removed in a dewatering step. The FGD gypsum solids, free of most of the mercury, could then be disposed or processed for reuse as wallboard or in other beneficial reuse. The project comprised extensive bench-scale FGD scrubber tests in Phases I and II. During Phase II, the approaches developed at the bench scale were tested at the pilot scale. Laboratory wastewater treatment tests measured the performance of precipitating agents in removing mercury from the chloride purge stream. Finally, the economic viability of the approaches tested was evaluated.

  18. Medicare program; prospective payment system and consolidated billing for skilled nursing facilities for FY 2012. Final rule.

    Science.gov (United States)

    2011-08-08

    This final rule updates the payment rates used under the prospective payment system for skilled nursing facilities (SNFs) for fiscal year 2012. In addition, it recalibrates the case-mix indexes so that they more accurately reflect parity in expenditures between RUG-IV and the previous case-mix classification system. It also includes a discussion of a Non-Therapy Ancillary component currently under development within CMS. In addition, this final rule discusses the impact of certain provisions of the Affordable Care Act, and reduces the SNF market basket percentage by the multi-factor productivity adjustment. This rule also implements certain changes relating to the payment of group therapy services and implements new resident assessment policies. Finally, this rule announces that the proposed provisions regarding the ownership disclosure requirements set forth in section 6101 of the Affordable Care Act will be finalized at a later date.

  19. Development of a Microcomputer/Videodisc Aided Math Instructional Management System for Mildly Handicapped Children. Final Report.

    Science.gov (United States)

    Hofmeister, Alan M.

    This final report describes activities and accomplishments of a project which developed, implemented, and evaluated the effectiveness of a microcomputer/videodisc math instructional management system for grades K-4. The system was designed to operate on an APPLE II microcomputer, videodisc player, and input-output devices. It included three…

  20. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume I

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 1 of the Final Environmental Impact Statement, analyzes the potential environmental consequences related to the Hanford Site Tank Waste Remediation System (TWRS) alternatives for management and disposal of radioactive, hazardous, and mixed waste, and the management and disposal of approximately 1,930 cesium and strontium capsules located at the Hanford Site. This waste is currently or projected to be stored in 177 underground storage tanks and approximately 60 miscellaneous underground storage tanks. This document analyzes the following alternatives for remediating the tank waste: No Action, Long-Term Management, In Situ Fill and Cap, In Situ Vitrification, Ex Situ Intermediate Separations, Ex Situ No Separations, Ex Situ Extensive Separations, Ex Situ/In Situ Combination 1, and Ex Situ/In Situ Combination 2. This document also addresses a Phased Implementation alternative (the DOE and Ecology preferred alternative for remediation of tank waste). Alternatives analyzed for the cesium and strontium capsules include: No Action, Onsite Disposal, Overpack and Ship, and Vitrify with Tank Waste. The DOE and Ecology preferred alternative for the cesium and strontium capsules is the No Action alternative

  1. Advanced turbine systems sensors and controls needs assessment study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.L.; Fry, D.N.; McEvers, J.A.

    1997-02-01

    The Instrumentation and Controls Division of the Oak Ridge National Laboratory performed an assessment of the sensors and controls needs for land-based advanced gas turbines being designed as a part of the Department of Energy`s (DOE`s) Advanced Turbine Systems (ATS) Program for both utility and industrial applications. The assessment included visits to five turbine manufacturers. During these visits, in-depth discussions were held with design and manufacturing staff to obtain their views regarding the need for new sensors and controls for their advanced turbine designs. The Unsteady Combustion Facilities at the Morgantown Energy Technology Center was visited to assess the need for new sensors for gas turbine combustion research. Finally, a workshop was conducted at the South Carolina Energy Research and Development Center which provided a forum for industry, laboratory, and university engineers to discuss and prioritize sensor and control needs. The assessment identified more than 50 different measurement, control, and monitoring needs for advanced turbines that cannot currently be met from commercial sources. While all the identified needs are important, some are absolutely critical to the success of the ATS Program.

  2. New imaging systems in nuclear medicine. Final report, January 1, 1993--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The aim of this program has been to improve the performance of positron emission tomography (PET) to achieve high resolution with high sensitivity. Towards this aim, the authors have carried out the following studies: (1) explored new techniques for detection of annihilation radiation including new detector materials and system geometries, specific areas that they have studied include--exploration of factors related to resolution and sensitivity of PET instrumentation including geometry, detection materials and coding, and the exploration of technique to improve the image quality by use of depth of interaction and increased sampling; (2) complete much of the final testing of PCR-II, an analog-coded cylindrical positron tomograph, developed and constructed during the current funding period; (3) developed the design of a positron microtomograph with mm resolution for quantitative studies in small animals, a single slice version of this device has been designed and studied by use of computer simulation; (4) continued and expanded the program of biological studies in animal models. Current studies have included imaging of animal models of Parkinson`s and Huntington`s disease and cancer. These studies have included new radiopharmaceuticals and techniques involving molecular biology.

  3. Traceability and communication of requirements in digital I and C systems development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sivertsen, T.; Fredriksen, Rune; Thunem, A.P.J. [Inst. for Energy Technology, Halden (Norway); Holmberg, J.E.; Valkonen, J.; Ventae, O. [VTT (Finland); Andersson, J.O. [Ringhals AB (Sweden)

    2005-10-01

    The overall objective of the TACO project has been to improve the knowledge on principles and best practices related to the traceability and communication of requirements in digital I and C systems development. On the basis of experiences in the Nordic countries, the project has aimed at identifying the best practices and most important criteria for ensuring effective communication in relation to requirements elicitation and analysis, understandability of requirements to all parties, and traceability of requirements through the different design phases. It is expected that the project will provide important input to the development of guidelines and establishment of recommended practices related to these activities. The report provides a summary of the project activities and deliverables, discusses possible application areas, and provides a link to its utilization in the project 'Management of Requirements in NPP Modernization Projects' (NKS-R-2005-47). In the preparation of the final report, a number of application areas have been identified where the TACO deliverables, first of all the TACO Shell and the TACO Traceability Model, can be utilized. The report aims at facilitating such utilization, by defining the context and main issues, explaining the main aspects of the deliverables, discussing the challenges experienced in the different application domains with respect requirements management, traceability and communication and how can the TACO results contribute to solving these challenges. (au)

  4. Traceability and communication of requirements in digital I and C systems development. Final report

    International Nuclear Information System (INIS)

    Sivertsen, T.; Fredriksen, Rune; Thunem, A.P.J.; Holmberg, J.E.; Valkonen, J.; Ventae, O.; Andersson, J.O.

    2005-10-01

    The overall objective of the TACO project has been to improve the knowledge on principles and best practices related to the traceability and communication of requirements in digital I and C systems development. On the basis of experiences in the Nordic countries, the project has aimed at identifying the best practices and most important criteria for ensuring effective communication in relation to requirements elicitation and analysis, understandability of requirements to all parties, and traceability of requirements through the different design phases. It is expected that the project will provide important input to the development of guidelines and establishment of recommended practices related to these activities. The report provides a summary of the project activities and deliverables, discusses possible application areas, and provides a link to its utilization in the project 'Management of Requirements in NPP Modernization Projects' (NKS-R-2005-47). In the preparation of the final report, a number of application areas have been identified where the TACO deliverables, first of all the TACO Shell and the TACO Traceability Model, can be utilized. The report aims at facilitating such utilization, by defining the context and main issues, explaining the main aspects of the deliverables, discussing the challenges experienced in the different application domains with respect requirements management, traceability and communication and how can the TACO results contribute to solving these challenges. (au)

  5. Rapid Surface Sampling and Archival Record (RSSAR) system. Final report, October 1995 - May 1997

    International Nuclear Information System (INIS)

    1998-01-01

    This report describes the results of Phase 2 efforts to develop a Rapid Surface Sampling and Archival Record (RSSAR) System for the detection of semivolatile organic contaminants on concrete, transite, and metal surfaces. The characterization of equipment and building surfaces for the presence of contaminants as part of building decontamination and decommissioning activities is an immensely large task of concern to both government and industry. Because of the high cost of hazardous waste disposal, old, contaminated buildings cannot simply be demolished and scrapped. Contaminated and clean materials must be clearly identified and segregated so that the clean material can be recycled or reused, if possible, or disposed of more cheaply as nonhazardous waste. DOE has a number of sites requiring surface characterization. These sites are large, contain very heterogeneous patterns of contamination (requiring high sampling density), and will thus necessitate an enormous number of samples to be taken and analyzed. Characterization of building and equipment surfaces will be needed during initial investigations, during cleanup operations, and during the final confirmation process, increasing the total number of samples well beyond that needed for initial characterization. This multiplicity of information places a premium on the ability to handle and track data as efficiently as possible

  6. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume II

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 2, provides the inventory of waste addressed in this Final Environmental Impact Statement (EIS) for the Tank Waste Remediation System, Hanford Site, Richland, Washington. The inventories consist of waste from the following four groups: (1) Tank waste; (2) Cesium (Cs) and Strontium (Sr) capsules; (3) Inactive miscellaneous underground storage tanks (MUSTs); and (4) Anticipated future tank waste additions. The major component by volume of the overall waste is the tank waste inventory (including future tank waste additions). This component accounts for more than 99 percent of the total waste volume and approximately 70 percent of the radiological activity of the four waste groups identified previously. Tank waste data are available on a tank-by-tank basis, but the accuracy of these data is suspect because they primarily are based on historical records of transfers between tanks rather than statistically based sampling and analyses programs. However, while the inventory of any specific tank may be suspect, the overall inventory for all of the tanks combined is considered more accurate. The tank waste inventory data are provided as the estimated overall chemical masses and radioactivity levels for the single-shell tanks (SSTs) and double-shell tanks (DSTs). The tank waste inventory data are broken down into tank groupings or source areas that were developed for analyzing groundwater impacts

  7. New imaging systems in nuclear medicine. Final report, January 1, 1993--December 31, 1995

    International Nuclear Information System (INIS)

    1995-01-01

    The aim of this program has been to improve the performance of positron emission tomography (PET) to achieve high resolution with high sensitivity. Towards this aim, the authors have carried out the following studies: (1) explored new techniques for detection of annihilation radiation including new detector materials and system geometries, specific areas that they have studied include--exploration of factors related to resolution and sensitivity of PET instrumentation including geometry, detection materials and coding, and the exploration of technique to improve the image quality by use of depth of interaction and increased sampling; (2) complete much of the final testing of PCR-II, an analog-coded cylindrical positron tomograph, developed and constructed during the current funding period; (3) developed the design of a positron microtomograph with mm resolution for quantitative studies in small animals, a single slice version of this device has been designed and studied by use of computer simulation; (4) continued and expanded the program of biological studies in animal models. Current studies have included imaging of animal models of Parkinson's and Huntington's disease and cancer. These studies have included new radiopharmaceuticals and techniques involving molecular biology

  8. Rapid Surface Sampling and Archival Record (RSSAR) system. Final report, October 1995--May 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This report describes the results of Phase 2 efforts to develop a Rapid Surface Sampling and Archival Record (RSSAR) System for the detection of semivolatile organic contaminants on concrete, transite, and metal surfaces. The characterization of equipment and building surfaces for the presence of contaminants as part of building decontamination and decommissioning activities is an immensely large task of concern to both government and industry. Because of the high cost of hazardous waste disposal, old, contaminated buildings cannot simply be demolished and scrapped. Contaminated and clean materials must be clearly identified and segregated so that the clean material can be recycled or reused, if possible, or disposed of more cheaply as nonhazardous waste. DOE has a number of sites requiring surface characterization. These sites are large, contain very heterogeneous patterns of contamination (requiring high sampling density), and will thus necessitate an enormous number of samples to be taken and analyzed. Characterization of building and equipment surfaces will be needed during initial investigations, during cleanup operations, and during the final confirmation process, increasing the total number of samples well beyond that needed for initial characterization. This multiplicity of information places a premium on the ability to handle and track data as efficiently as possible.

  9. Developing validation strategies for the financial-reporting system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-06

    This report is the result of an 8-month project performed for the Office of Energy Information Validation (OEIV) in the Department of Energy. Its primary purpose has been to develop alternative techniques for validating the Financial Reporting System (FRS). In order to accomplish this objective, several activities were performed. First, the data needs of prospective FRS users were related to the information available from the FRS to determine how well the FRS data meet users' needs. The two most common desired changes in the FRS among the users were: more segmented data and more geographic detail. Two additional desired changes were: clarification or alteration in definitions of such terms as domestic, operating income, and funds (as in sources and use of statement), and require ARAMCO to submit FRS data or require the participating members to make necessary reconciliations on their income statements. Next, several key validation issues pertinent to the meaningfulness and usefulness of FRS data were examined. This task dealt directly with the problem of using accounting data for economic analyses. Finally, specific guidelines for validating the flow of data from a respondent to the FRS data base were developed. Utilizing the framework within which OEIV must operate, and based on their legislative mandate, empirical techniques were outlined in detail for the accomplishment of verification auditing, consistency/reasonableness auditing, and field auditing.

  10. Solar energy grid integration systems : final report of the Florida Solar Energy Center Team.

    Energy Technology Data Exchange (ETDEWEB)

    Ropp, Michael (Northern Plains Power Technologies, Brookings, SD); Gonzalez, Sigifredo; Schaffer, Alan (Lakeland Electric Utilities, Lakeland, FL); Katz, Stanley (Satcon Technology Corporation, Boston, MA); Perkinson, Jim (Satcon Technology Corporation, Boston, MA); Bower, Ward Isaac; Prestero, Mark (Satcon Technology Corporation, Boston, MA); Casey, Leo (Satcon Technology Corporation, Boston, MA); Moaveni, Houtan (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Click, David (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Davis, Kristopher (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Reedy, Robert (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Kuszmaul, Scott S.; Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali

    2012-03-01

    Initiated in 2008, the Solar Energy Grid Integration Systems (SEGIS) program is a partnership involving the U.S. DOE, Sandia National Laboratories, private sector companies, electric utilities, and universities. Projects supported under the program have focused on the complete-system development of solar technologies, with the dual goal of expanding utility-scale penetration and addressing new challenges of connecting large-scale solar installations in higher penetrations to the electric grid. The Florida Solar Energy Center (FSEC), its partners, and Sandia National Laboratories have successfully collaborated to complete the work under the third and final stage of the SEGIS initiative. The SEGIS program was a three-year, three-stage project that include conceptual design and market analysis in Stage 1, prototype development and testing in Stage 2, and moving toward commercialization in Stage 3. Under this program, the FSEC SEGIS team developed a comprehensive vision that has guided technology development that sets one methodology for merging photovoltaic (PV) and smart-grid technologies. The FSEC team's objective in the SEGIS project is to remove barriers to large-scale general integration of PV and to enhance the value proposition of photovoltaic energy by enabling PV to act as much as possible as if it were at the very least equivalent to a conventional utility power plant. It was immediately apparent that the advanced power electronics of these advanced inverters will go far beyond conventional power plants, making high penetrations of PV not just acceptable, but desirable. This report summarizes a three-year effort to develop, validate and commercialize Grid-Smart Inverters for wider photovoltaic utilization, particularly in the utility sector.

  11. FY 93 thermal loading systems study final report: Volume 1. Revision 1

    International Nuclear Information System (INIS)

    Saterlie, S.F.; Thomson, B.H.

    1994-01-01

    The ability to meet the overall performance requirements for the proposed Mined Geology Disposal System at Yucca Mountain, Nevada requires the two major subsystem (natural barriers and engineered barriers) to positively contribute to containment and radionuclide isolation. In addition to the postclosure performance the proposed repository must meet preclosure requirements of safety, retrievability, and operability. Cost and schedule were also considered. The thermal loading strategy chosen may significantly affect both the postclosure and preclosure performance of the proposed repository. Although the current Site Characterization Plan reference case is 57 kilowatts (kW)/acre, other thermal loading strategies (different areal mass loadings) have been proposed which possess both advantages and disadvantages. The objectives of the FY 1993 Thermal Loading Study were to (1) place bounds on the thermal loading which would establish the loading regime that is ''too hot'' and the loading regime that is ''too cold'', to (2) ''grade'' or evaluate the performance, as a function of thermal loading, of the repository to contain high level wastes against performance criteria and to (3) evaluate the performance of the various options with respect to cost, safety, and operability. Additionally, the effort was to (4) identify important uncertainties that need to be resolved by tests and/or analyses in order to complete a performance assessment on the effects of thermal loading. The FY 1993 Thermal Loading Study was conducted from December 1, 1992 to December 30, 1993 and this final report provides the findings of the study. Volume 1 contains the Introduction; Performance requirements; Input and assumptions; Near-field thermal analysis; Far-field thermal analysis; Cost analysis; Other considerations; System analysis; Additional thermal analysis; and Conclusions and recommendations. 71 refs., 54 figs

  12. Final design of the generic upper port plug structure for ITER diagnostic systems

    NARCIS (Netherlands)

    Pak, S.; Feder, R.; Giacomin, T.; Guirao, J.; Iglesias, S.; Josseaume, F.; Kalish, M.; Loesser, D.; Maquet, P.; Ronden, D.; Ordieres, J.; Panizo, M.; Pitcher, S.; M. Portalès,; Proust, M.; Serikov, A.; Suarez, A.; Tanchuk, V.; Udintsev, V.; Vacas, C.; Walsh, M.; Zhai, Y.

    2016-01-01

    The generic upper port plug (GUPP) structure in ITER is a 6 m long metal box which deploys diagnostic components into the vacuum vessel. This structure is commonly used for all the diagnostic upper ports. The final design of the GUPP structure, which has successfully passed the final design review

  13. C-Band Airport Surface Communications System Standards Development. Phase II Final Report. Volume 2: Test Bed Performance Evaluation and Final AeroMACS Recommendations

    Science.gov (United States)

    Hall, Edward; Magner, James

    2011-01-01

    This report is provided as part of ITT s NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: New ATM Requirements-Future Communications, C-Band and L-Band Communications Standard Development and was based on direction provided by FAA project-level agreements for New ATM Requirements-Future Communications. Task 7 included two subtasks. Subtask 7-1 addressed C-band (5091- to 5150-MHz) airport surface data communications standards development, systems engineering, test bed and prototype development, and tests and demonstrations to establish operational capability for the Aeronautical Mobile Airport Communications System (AeroMACS). Subtask 7-2 focused on systems engineering and development support of the L-band digital aeronautical communications system (L-DACS). Subtask 7-1 consisted of two phases. Phase I included development of AeroMACS concepts of use, requirements, architecture, and initial high-level safety risk assessment. Phase II builds on Phase I results and is presented in two volumes. Volume I is devoted to concepts of use, system requirements, and architecture, including AeroMACS design considerations. Volume II (this document) describes an AeroMACS prototype evaluation and presents final AeroMACS recommendations. This report also describes airport categorization and channelization methodologies. The purposes of the airport categorization task were (1) to facilitate initial AeroMACS architecture designs and enable budgetary projections by creating a set of airport categories based on common airport characteristics and design objectives, and (2) to offer high-level guidance to potential AeroMACS technology and policy development sponsors and service providers. A channelization plan methodology was developed because a common global methodology is needed to assure seamless interoperability among diverse AeroMACS services potentially supplied by multiple service providers.

  14. Intensification of oxidative desulfurization of gas oil by ultrasound irradiation: Optimization using Box–Behnken design (BBD)

    International Nuclear Information System (INIS)

    Jalali, Mohammad Reza; Sobati, Mohammad Amin

    2017-01-01

    Highlights: • Ultrasound-assisted oxidative desulfurization (UAOD) of gas oil was studied. • The influences of the different operating parameters were investigated. • Response surface methodology (RSM) was used to find the best operating parameters. • An accurate correlation was developed for the sulfur removal. • Ultrasound-assisted desulfurization process was compared with conventional process. - Abstract: In the present work, ultrasound assisted oxidative desulfurization (UAOD) of gas oil as the feedstock with sulfur content of 2210 ppmw was investigated using a mixture of hydrogen peroxide and formic acid as the oxidant and catalyst, respectively. The influences of main process variables such as sonication time (2–30 min), oxidation temperature (40–70 °C), hydrogen peroxide to sulfur molar ratio (10–50), formic acid to oxidant molar ratio (2–4), ultrasound power per gas oil volume (5.56–8.89 W/mL), and number of extraction stages (1–4) on the sulfur removal of gas oil were investigated. Response surface methodology (RSM) based on Box–Behnken design (BBD) and single-factor experiments were employed. The best performance of UAOD process for gas oil was achieved at 50 °C of reaction temperature, oxidant to sulfur molar ratio of 46.36, formic acid to oxidant molar ratio of 3.22, sonication time of 19.81 min, and 7.78 W/mL as the ultrasound power per gas oil volume. The sulfur removal of UAOD process was evaluated after oxidation under the abovementioned conditions followed by (a) one stage extraction and (b) four stages extraction using acetonitrile as solvent. The observed sulfur removal was 87 for case (a) and 96.2% for case (b). The UAOD process was also compared with conventional ODS process. Considerable improvement on the sulfur removal was observed specially in lower reaction time in the case of using ultrasound irradiation in comparison with conventional mixing.

  15. Proceedings of the COST 75 final seminar on advanced weather radar systems; Beitraege des Instituts zum COST 75 final seminar on advanced weather radar systems

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, R.; Flender, F.; Hagen, M.; Hoeller, H.; Keil, C.; Meischner, P.

    1998-07-01

    Across Europe more than 110 weather radars are in operation. More than 60 of them are Doppler radars and this number is increasing steadily. Doppler systems are becoming an operational standard. Most systems operate in C-band, with the exception of the Spanish radar network which is composed of S-band Doppler radars. Radar product composites are available for Scandinavia and Central Europe. National networks exist for the UK, France and Spain. Europe further is fortunate to have 8 polarimetric Doppler radars used mainly for research. In Italy some of those systems are used also for operational nowcasting applications for dedicated customers. The Chilbolton multiparameter Doppler radar operates at S-band. (orig.)

  16. Final environmental statement. Final addendum to Part II: Manufacture of floating nuclear power plants by Offshore Power Systems. DOCKET-STN--50-437

    International Nuclear Information System (INIS)

    1978-06-01

    This Addendum to Part II of the Final Environmental Statement related to manufacture of floating nuclear power plants by Offshore Power Systems (OPS), NUREG-0056, issued September 1976, was prepared by the U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Reactor Regulation. The staff's basic evaluation is presented in NUREG-0056. The current Addendum provides further consideration of a number of topics discussed in NUREG-0056, particularly additional consideration of shore zone siting at estuarine and ocean regions. This Summary and Conclusions recapitulates and is cumulative for Part II of the FES and the current Addendum. Augmentations to the Summary and Conclusions presented in Part II of the FES and arising from the evaluations contained in this Addendum are italicized

  17. Medicare program; prospective payment system and consolidated billing for skilled nursing facilities--HCFA. Interim final rule with comment period.

    Science.gov (United States)

    1998-05-12

    This interim final rule implements provisions in section 4432 of the Balanced Budget Act of 1997 related to Medicare payment for skilled nursing facility services. These include the implementation of a Medicare prospective payment system for skilled nursing facilities, consolidated billing, and a number of related changes. The prospective payment system described in this rule replaces the retrospective reasonable cost-based system currently utilized by Medicare for payment of skilled nursing facility services under Part A of the program.

  18. Anion-exchange resin-based desulfurization process. Quarterly technical progress report, October 1, 1991--December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Sheth, A.C.; Strevel, S.D.

    1991-12-31

    The University of Tennessee Space Institute (UTSI) has a Department of Energy grant to further develop the Institute`s anion-exchange resin-based flue gas, desulfurization concept. The developmental program proposed includes screening of commercially available resins to select three candidate resins for further study. These three resins will undergo a series of experiments designed to test the resins` performance under different process conditions (including the use of spent MHD seed material). The best of these resins will be used in optimizing the regeneration step and in testing the effects of performance enhancers. The process schematic developed from the results will be used to estimate the related economics.

  19. Characterizing toxic emissions from a coal-fired power plant demonstrating the AFGD ICCT Project and a plant utilizing a dry scrubber/baghouse system: Bailly Station Units 7 and 8 and AFGD ICCT Project. Final report. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dismukes, E.B.

    1994-10-20

    This report describes results of assessment of the risk of emissions of hazardous air pollutants at one of the electric power stations, Bailly Station, which is also the site of a Clean Coal Technology project demonstrating the Pure Air Advanced Flue Gas Desulfurization process (wet limestone). This station represents the configuration of no NO{sub x} reduction, particulate control with electrostatic precipitators, and SO{sub 2} control with a wet scrubber. The test was conducted September 3--6, 1993. Sixteen trace metals were determined along with 5 major metals. Other inorganic substances and organic compounds were also determined.

  20. Electric utility engineer`s FGD manual -- Volume 2: Major mechanical equipment; FGD proposal evaluations; Use of FGDPRISM in FGD system modification, proposal, evaluation, and design; FGD system case study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-04

    Part 2 of this manual provides the electric utility engineer with detailed technical information on some of the major mechanical equipment used in the FGD system. The objectives of Part 2 are the following: to provide the electric utility engineer with information on equipment that may be unfamiliar to him, including ball mills, vacuum filters, and mist eliminators; and to identify the unique technique considerations imposed by an FGD system on more familiar electric utility equipment such as fans, gas dampers, piping, valves, and pumps. Part 3 provides an overview of the recommended procedures for evaluating proposals received from FGD system vendors. The objectives are to provide procedures for evaluating the technical aspects of proposals, and to provide procedures for determining the total costs of proposals considering both initial capital costs and annual operating and maintenance costs. The primary objective of Part 4 of this manual is to provide the utility engineer who has a special interest in the capabilities of FGDPRISM [Flue Gas Desulfurization PRocess Integration and Simulation Model] with more detailed discussions of its uses, requirements, and limitations. Part 5 is a case study in using this manual in the preparation of a purchase specification and in the evaluation of proposals received from vendors. The objectives are to demonstrate how the information contained in Parts 1 and 2 can be used to improve the technical content of an FGD system purchase specification; to demonstrate how the techniques presented in Part 3 can be used to evaluate proposals received in response to the purchase specification; and to illustrate how the FGDPRISM computer program can be used to establish design parameters for the specification and evaluate vendor designs.

  1. Medicare program; prospective payment system and consolidated billing for skilled nursing facilities for FY 2014. Final rule.

    Science.gov (United States)

    2013-08-06

    This final rule updates the payment rates used under the prospective payment system for skilled nursing facilities (SNFs) for fiscal year (FY) 2014. In addition, it revises and rebases the SNF market basket, revises and updates the labor related share, and makes certain technical and conforming revisions in the regulations text. This final rule also includes a policy for reporting the SNF market basket forecast error in certain limited circumstances and adds a new item to the Minimum Data Set (MDS), Version 3.0 for reporting the number of distinct therapy days. Finally, this final rule adopts a change to the diagnosis code used to determine which residents will receive the AIDS add-on payment, effective for services provided on or after the October 1, 2014 implementation date for conversion to ICD-10-CM.

  2. Preparation of flexible zinc oxide/carbon nanofiber webs for mid-temperature desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soojung; Bajaj, Bharat [Carbon Convergence Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101, Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905 (Korea, Republic of); Byun, Chang Ki; Kwon, Soon-Jin [Department of Chemical Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Joh, Han-Ik [Carbon Convergence Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101, Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905 (Korea, Republic of); Yi, Kwang Bok, E-mail: cosy32@cnu.ac.kr [Department of Chemical Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Lee, Sungho, E-mail: sunghol@kist.re.kr [Carbon Convergence Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101, Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905 (Korea, Republic of); Department of Nano Material Engineering, University of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2014-11-30

    Graphical abstract: - Highlights: • Polyacrylonitrile (PAN) and zinc precursor were electrospun and heat-treated for preparing zinc oxide (ZnO) modified carbon nanofibers (CNF). • A facile synthesis of composite webs resulted in uniformly loaded ZnO on the surface of CNFs. • The composites showed significant hydrogen sulfide adsorption efficiency at 300 °C. • The flexible webs can be applied for mid-temperature desulfurization. - Abstract: Polyacrylonitrile (PAN) derived carbon nanofiber (CNF) webs loaded with zinc oxide (ZnO) were synthesized using electrospinning and heat treatment at 600 °C. Uniformly dispersed ZnO nanoparticles, clarified by X-ray diffraction and scanning electron microscopy, were observed on the surface of the nanofiber composites containing 13.6–29.5 wt% of ZnO. The further addition of ZnO up to 34.2 wt% caused agglomeration with a size of 50–80 nm. Higher ZnO contents led the concentrated ZnO nanoparticles on the surface of the nanofibers rather than uniform dispersion along the cross-section of the fiber. The flexible composite webs were crushed and tested for hydrogen sulfide (H{sub 2}S) adsorption at 300 °C. Breakthrough experiments with the ZnO/CNF composite containing 25.7 wt% of ZnO for H{sub 2}S adsorption showed three times higher ZnO utilization efficiency compared to pure ZnO nano powders, attributed to chemisorption of the larger surface area of well dispersed ZnO particles on nanofibers and physical adsorption of CNF.

  3. A NOVEL VAPOR-PHASE PROCESS FOR DEEP DESULFURIZATION OF NAPHTHA/DIESEL

    Energy Technology Data Exchange (ETDEWEB)

    B.S. Turk; R.P. Gupta; S.K. Gangwal

    2003-06-30

    Tier 2 regulations issued by the U.S. Environmental Protection Agency (EPA) require a substantial reduction in the sulfur content of gasoline. Similar regulations have been enacted for the sulfur level in on-road diesel and recently off-road diesel. The removal of this sulfur with existing and installed technology faces technical and economic challenges. These challenges created the opportunity for new emerging technologies. Research Triangle Institute (RTI) with subcontract support from Kellogg Brown & Root, Inc., (KBR) used this opportunity to develop RTI's transport reactor naphtha desulfurization (TReND) process. Starting with a simple conceptual process design and some laboratory results that showed promise, RTI initiated an accelerated research program for sorbent development, process development, and marketing and commercialization. Sorbent development has resulted in the identification of an active and attrition resistant sorbent that has been prepared in commercial equipment in 100 lb batches. Process development has demonstrated both the sulfur removal performance and regeneration potential of this sorbent. Process development has scaled up testing from small laboratory to pilot plant transport reactor testing. Testing in the transport reactor pilot plant has demonstrated the attrition resistance, selective sulfur removal activity, and regeneration activity of this sorbent material. Marketing and commercialization activities have shown with the existing information that the process has significant capital and operating cost benefits over existing and other emerging technologies. The market assessment and analysis provided valuable feedback about the testing and performance requirements for the technical development program. This market analysis also provided a list of potential candidates for hosting a demonstration unit. Although the narrow window of opportunity generated by the new sulfur regulations and the conservative nature of the refining

  4. Influence of Flue Gas Desulfurization Gypsum Amendments on Heavy Metal Distribution in Reclaimed Sodic Soils

    Science.gov (United States)

    Chen, Qun; Wang, Shujuan; Li, Yan; Zhang, Ning; Zhao, Bo; Zhuo, Yuqun; Chen, Changhe

    2015-01-01

    Abstract Although flue gas desulfurization (FGD) gypsum has become an effective soil amendment for sodic soil reclamation, it carries extra heavy metal contamination into the soil environment. The fate of heavy metals introduced by FGD gypsum in sodic or saline–alkali soils is still unclear. This work aims to investigate the effects of FGD gypsum addition on the heavy metal distributions in a sodic soil. Original soil samples were collected from typical sodic land in north China. Soil column leaching tests were conducted to investigate the influence of FGD gypsum addition on the soil properties, especially on distribution profiles of the heavy metals (Pb, Cd, Cr, As, and Hg) in the soil layers. Results showed that pH, electrical conductivity, and exchangeable sodium percentage in amended soils were significantly reduced from 10.2 to 8.46, 1.8 to 0.2 dS/m, and 18.14% to 1.28%, respectively. As and Hg concentrations in the soils were found to be positively correlated with FGD gypsum added. The amount of Hg in the leachate was positively correlated with FGD gypsum application ratio, whereas a negative correlation was observed between the Pb concentration in the leachate and the FGD gypsum ratio. Results revealed that heavy metal concentrations in soils complied well with Environmental Quality Standard for Soils in China (GB15618-1995). This work helps to understand the fate of FGD gypsum-introduced heavy metals in sodic soils and provides a baseline for further environmental risk assessment associated with applying FGD gypsum for sodic soil remediation. PMID:26064038

  5. Land application uses for dry flue gas desulfurization by-products. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Dick, W.; Bigham, J.; Forster, R.; Hitzhusen, F.; Lal, R.; Stehouwer, R.; Traina, S.; Wolfe, W.; Haefner, R.; Rowe, G.

    1999-01-31

    Flue gas desulfurization (FGD) scrubbing technologies create several types of by-products. This project focused primarily on by-product materials obtained from what are commonly called ''dry scrubbers'' which produce a dry, solid material consisting of excess sorbent, reaction product that contains sulfate and sulfite, and coal fly ash. Prior to this project, dry FGD by-products were generally treated as solid wastes and disposed in landfills. However, landfill sites are becoming scarce and tipping fees are constantly increasing; The major objective of this project was to develop beneficial uses, via recycling, capable of providing economic benefits to both the producer and the end user of the FGD by-product. It is equally important, however, that the environmental impacts be carefully assessed so that the new uses developed are not only technically feasible but socially acceptable. Specific objectives developed for this project were derived over an 18-month period during extensive discussions with personnel from industry, regulatory agencies and research institutions. These were stated as follows: Objective 1: To characterize the material generated by dry FGD processes. Objective 2: To demonstrate the utilization of dry FGD by-product as a soil amendment on agricultural lands and on abandoned and active surface coal mines in Ohio. Objective 3: To demonstrate the use of dry FGD by-product as an engineering material for soil stabilization. Objective 4: To determine the quantities of dry FGD by-product that can be utilized in each of these applications. Objective 5. To determine the environmental and economic impacts of utilizing the material. Objective 6. To calibrate environmental, engineering, and economic models that can be used to determine the applicability and costs of utilizing these processes at other sites.

  6. South Florida freight advanced traveler information system : demonstration team final report.

    Science.gov (United States)

    2015-05-01

    This Demonstration Team Final Report has been prepared to provide an overview of the conduct and qualitative : findings of the South Florida FRATIS development and testing program. More specifically, this document provides: : A description of the...

  7. Los Angeles - Gateway Freight Advanced Traveler Information System : demonstration team final report.

    Science.gov (United States)

    2015-02-01

    This Demonstration Team Final Report has been prepared to provide an overview of the conduct and qualitative : findings of the LA-Gateway FRATIS development and testing program. More specifically, this document provides: : A description of the te...

  8. System-Cost-Optimized Smart EVSE for Residential Application: Final Technical Report including Manufacturing Plan

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Charles [Delta Products, Triangle Park, NC (United States)

    2015-05-15

    In the 2nd quarter of 2012, a program was formally initiated at Delta Products to develop smart-grid-enabled Electric Vehicle Supply Equipment (EVSE) product for residential use. The project was funded in part by the U.S. Department of Energy (DOE), under award DE-OE0000590. Delta products was the prime contractor to DOE during the three year duration of the project. In addition to Delta Products, several additional supplier-partners were engaged in this research and development (R&D) program, including Detroit Edison DTE, Mercedes Benz Research and Development North America, and kVA. This report summarizes the program and describes the key research outcomes of the program. A technical history of the project activities is provided, which describes the key steps taken in the research and the findings made at successive stages in the multi-stage work. The evolution of an EVSE prototype system is described in detail, culminating in prototypes shipped to Department of Energy Laboratories for final qualification. After the program history is reviewed, the key attributes of the resulting EVSE are described in terms of functionality, performance, and cost. The results clearly demonstrate the ability of this EVSE to meet or exceed DOE's targets for this program, including: construction of a working product-intent prototype of a smart-grid-enabled EVSE, with suitable connectivity to grid management and home-energy management systems, revenue-grade metering, and related technical functions; and cost reduction of 50% or more compared to typical market priced EVSEs at the time of DOE's funding opportunity announcement (FOA), which was released in mid 2011. In addition to meeting all the program goals, the program was completed within the original budget and timeline established at the time of the award. The summary program budget and timeline, comparing plan versus actual values, is provided for reference, along with several supporting explanatory notes. Technical

  9. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Gary [RTI International, Research Triangle Park, NC (United States); Albritton, John [RTI International, Research Triangle Park, NC (United States); Denton, David [RTI International, Research Triangle Park, NC (United States); Turk, Brian [RTI International, Research Triangle Park, NC (United States); Gupta, Raghubir [RTI International, Research Triangle Park, NC (United States)

    2018-01-31

    In September 2010, RTI and the DOE/NETL signed a cooperative agreement (DE-FE000489) to design, build, and operate a pre-commercial syngas cleaning system that would capture up to 90% of the CO2 in the syngas slipstream, and demonstrate the ability to reduce syngas contaminants to meet DOE’s specifications for chemical production application. This pre-commercial syngas cleaning system is operated at Tampa Electric Company’s (TEC) 250-MWe integrated gasification combined cycle (IGCC) plant at Polk Power Station (PPS), located near Tampa, Florida. The syngas cleaning system consists of the following units: Warm Gas Desulfurization Process (WDP) - this unit processes a syngas flow equivalent of 50 MWe of power (50 MWe equivalent corresponds to about 2.0 MM scfh of syngas on dry basis) to produce a desulfurized syngas with a total sulfur (H2S+COS) concentration ~ 10 ppmv. Water Gas Shift (WGS) Reactor - this unit converts sufficient CO into CO2 to enable 90% capture of the CO2 in the syngas slipstream. This reactor uses conventional commercial shift catalyst technologies. Low Temperature Gas Cooling (LTGC) - this unit cools the syngas for the low temperature activated MDEA process and separates any condensed water. Activated MDEA Process (aMDEA) - this unit employs a non-selective separation for the CO2 and H2S present in the raw syngas stream. Because of the selective sulfur removal by the upstream WDP unit, the CO2 capture target of 90% CO2 can be achieved with the added benefit that total sulfur concentration in the CO2 product is < 100 ppmv. An additional advantage of the activated MDEA process is that the non-selective sulfur removal from the treated syngas reduces sulfur in the treated gas to very low sub-ppmv concentrations, which are required for chemical production applications. Testing to date of this pre-commercial syngas cleaning system has shown that the

  10. The Bilingual Academic Services and Integrated Career Systems (Project BASICS). 1990-91 Final Evaluation Profile. OREA Report.

    Science.gov (United States)

    New York City Board of Education, Brooklyn, NY. Office of Research, Evaluation, and Assessment.

    This document contains the final evaluation profile for the Bilingual Academic Services and Integrated Career Systems (Project BASICS). A brief extract presents an overview of salient points of the project: funding cycle; enrollment figures; background of students served; admission criteria; and programming features, strengths, and limitations,…

  11. Value engineering and cost effectiveness of various fiber reinforced polymer (FRP) repair systems : final report, June 2007.

    Science.gov (United States)

    2007-06-01

    This report is an extension to the final report for NCDOT project 2004-15 Value Engineering and Cost-Effectiveness of : Various Fiber Reinforced Polymers (FRP) Repair Systems, submitted in June 2005. In that report, seventeen 30-ft long : prest...

  12. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    Science.gov (United States)

    Mukerjee, Subhasish [Pittsford, NY; Haltiner, Jr., Karl J; Weissman, Jeffrey G [West Henrietta, NY

    2012-03-06

    A system for adding sulfur to a fuel cell stack, having a reformer adapted to reform a hydrocarbon fuel stream containing sulfur contaminants, thereby providing a reformate stream having sulfur; a sulfur trap fluidly coupled downstream of the reformer for removing sulfur from the reformate stream, thereby providing a desulfurized reformate stream; and a metering device in fluid communication with the reformate stream upstream of the sulfur trap and with the desulfurized reformate stream downstream of the sulfur trap. The metering device is adapted to bypass a portion of the reformate stream to mix with the desulfurized reformate stream, thereby producing a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  13. Anion-exchange resin-based desulfurization process. Annual technical progress report, October 1, 1991--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Sheth, A.C.; Strevel, S.D.; Dharmapurikar, R.

    1992-12-31

    Under the current grant, the University of Tennessee Space Institute (UTSI) will carry out the bench scale evaluation and further development of the anion-exchange resin-based desulfurization concept to desulfurize alkali metal sulfates. This concept has been developed and patented by UTSI under US Patent No. 4,917,874. The developmental program proposed under this DOE grant includes screening of commercially available resins to select three candidate resins for further study. These three resins will undergo a series of experiments designed to test the resins` performance under different process conditions (including the use of spent MHD seed material). The best of these resins will be used in optimizing the regeneration step and in testing the effects of performance enhancers. The process schematic developed from the results will be used to estimate the related economics. During this reporting period, October 1, 1991 to September 30, 1992, analysis of batch mode screening experiments was completed to select three candidate resins for process variables study in the fixed-bed set-up. This setup was modified and the experiments were carded out to evaluate effects of major process variables. The analysis of fixed-bed experiments is going on and we have also started simple batch mode experiments to identify desirable conditions for resin regeneration step. We have also started simple process engineering type calculations to determine the trade-off between the solution concentration and the resulting evaporation/concentration load.

  14. Preparation of Active Absorbent for Flue Gas Desulfurization From Coal Bottom Ash: Effect of Absorbent Preparation Variables

    Directory of Open Access Journals (Sweden)

    Chang Chin Li, Lee Keat Teong, Subhash Bhatia and Abdul Rahman Mohamed

    2012-08-01

    Full Text Available An active absorbent for flue gas desulfurization was prepared from coal bottom ash, calcium oxide (CaO and calcium sulfate by hydro-thermal process. The absorbent was examined for its micro-structural properties. The experiments conducted were based on Design Of Experiments (DOE according to 23 factorial design. The effect of various absorbent preparation variables such as ratio of CaO to bottom ash (A, hydration temperature (B and hydration period (C towards the BET (Brunauer-Emmett-Teller specific surface area of the absorbent were studied. At a CaO to bottom ash ratio = 2, hydration temperature = 200 ?C and hydration period = 10 hrs, absorbent with a surface area of 90.1 m2/g was obtained. Based on the analysis of the factorial design, it was concluded that factor A and C as well as the interaction of factors ABC and BC are the significant factors that effect the BET surface area of the absorbent. A linear mathematical model that describes the relation between the independent variables and interaction between variables towards the BET specific surface area of the absorbent was also developed. Analysis of variance (ANOVA showed that the model was significant at 1% level.Key Words: Absorbent, Bottom Ash, Design Of Experiments, Desulfurization, Surface Area.

  15. The control of H2S in biogas using iron ores as in situ desulfurizers during anaerobic digestion process.

    Science.gov (United States)

    Zhou, Qiying; Jiang, Xia; Li, Xi; Jiang, Wenju

    2016-09-01

    In this study, five kinds of iron ores, limonite, hematite, manganese ore, magnetite and lava rock, were used as the in situ desulfurizers in the anaerobic digestion reactors to investigate their effects on controlling H2S in biogas. The results show that the addition of the five iron ores could significantly control the content of H2S in biogas, with the best performance for limonite. As limonite dosages increase (10-60 g/L), the contents of H2S in biogas were evidently decreased in the digesters with different initial sulfate concentrations (0-1000 mg/L). After the anaerobic digestion, the removed sulfur was mostly deposited on the surface of limonite. A possible mechanism of H2S control in biogas by limonite was proposed preliminarily, including adsorption, FeS precipitation, and Fe (III) oxidation. The results demonstrated that limonite was a promising in situ desulfurizer for controlling H2S in biogas with low cost and high efficiency.

  16. Linking Biological Responses of Terrestrial N Eutrophication to the Final Ecosystem Goods and Services Classification System

    Science.gov (United States)

    Bell, M. D.; Clark, C.; Blett, T.

    2015-12-01

    The response of a biological indicator to N deposition can indicate that an ecosystem has surpassed a critical load and is at risk of significant change. The importance of this exceedance is often difficult to digest by policy makers and public audiences if the change is not linked to a familiar ecosystem endpoint. A workshop was held to bring together scientists, resource managers, and policy makers with expertise in ecosystem functioning, critical loads, and economics in an effort to identify the ecosystem services impacted by air pollution. This was completed within the framework of the Final Ecosystem Goods and Services (FEGS) Classification System to produce a product that identified distinct interactions between society and the effects of nitrogen pollution. From each change in a biological indicator, we created multiple ecological production functions to identify the cascading effects of the change to a measureable ecosystem service that a user interacts with either by enjoying, consuming, or appreciating the good or service, or using it as an input in the human economy. This FEGS metric was then linked to a beneficiary group that interacts with the service. Chains detailing the links from the biological indicator to the beneficiary group were created for aquatic and terrestrial acidification and eutrophication at the workshop, and here we present a subset of the workshop results by highlighting for 9 different ecosystems affected by terrestrial eutrophication. A total of 213 chains that linked to 37 unique FEGS metrics and impacted 15 beneficiary groups were identified based on nitrogen deposition mediated changes to biological indicators. The chains within each ecosystem were combined in flow charts to show the complex, overlapping relationships among biological indicators, ecosystem services, and beneficiary groups. Strength of relationship values were calculated for each chain based on support for the link in the scientific literature. We produced the

  17. Integrated Surveillance for the Next Generation Air Transportation System. Final Report of the Integrated Surveillance Study Team

    Science.gov (United States)

    2008-10-31

    Charles A. Leader, JPDO Director November 21, 2008 i FINAL REPORT OF THE INTEGRATED SURVEILLANCE STUDY TEAM ii TABLE... eam stration ation S ding System e ittee on System EP ion Program RS tine Weather Reports formance Standards C D DO Domestic Outreach...Col John Anderson ODNI Mark Andrews DOC/NOAA and JPDO Weather Working Group (ISST L ad) es Ray r Division ric Operations Division

  18. Studies of spatial and temporal disorder in macroscopic systems. Final report, April 1, 1993--May 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Howes, F.A.; Stein, D.L.

    1998-06-01

    This document constitutes the final report of research conducted under the DOE grant {open_quotes}Studies of Spatial and Temporal Disorder in Macroscopic Systems{close_quotes}. There are three sections to this report, each describing research in a different general area, and a bibliography consisting of published journal articles reporting that research. The three sections are: the weak-noise characteristic boundary exit problem; spin glasses and other systems with quenched disorder; and dynamical problems arising from protein biophysics.

  19. Utility FGD Survey, January--December 1989. Volume 2, Design performance data for operating FGD systems, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. [IT Corp., Cincinnati, OH (United States)

    1992-03-01

    The Utility flue gas desulfurization (FGD) Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company.

  20. A review on prospects and challenges of biological H2S removal from biogas with focus on biotrickling filtration and microaerobic desulfurization

    DEFF Research Database (Denmark)

    Khoshnevisan, Benyamin; Tsapekos, Panagiotis; Alfaro, Natalia

    2017-01-01

    is required to avoid damages to combustion equipment and prevent the formation of sulfur dioxide (SO2) which is an acid rain precursor. It has been well documented that physical, thermal, and chemical desulfurization approaches suffer from high operation costs as well as waste production needing...

  1. Effect of Methanethiol Concentration on Sulfur Production in Biological Desulfurization Systems under Haloalkaline Conditions

    NARCIS (Netherlands)

    Roman, P.; Veltman, R.; Bijmans, M.F.M.; Keesman, K.J.; Janssen, A.J.H.

    2015-01-01

    Bioremoval of H2S from gas streams became popular in recent years because of high process efficiency and low operational costs. To expand the scope of these processes to gas streams containing volatile organic sulfur compounds, like thiols, it is necessary to provide new insights into their impact

  2. Universal real-time highway information system development program : final report phase II.

    Science.gov (United States)

    2009-01-01

    The final phase of a two phase effort was undertaken to establish data forms and communication protocols to provide the New York State Department of Transportation access to the unique highway data resource, HIVIS developed in the initial phase of th...

  3. Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS): Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    de Boer, Gijs [Univ. of Colorado, Boulder, CO (United States); Lawrence, Dale [Univ. of Colorado, Boulder, CO (United States); Palo, Scott [Univ. of Colorado, Boulder, CO (United States); Argrow, Brian [Univ. of Colorado, Boulder, CO (United States); LoDolce, Gabriel [Univ. of Colorado, Boulder, CO (United States); Curry, Nathan [Univ. of Colorado, Boulder, CO (United States); Weibel, Douglas [Univ. of Colorado, Boulder, CO (United States); Finamore, William [Univ. of Colorado, Boulder, CO (United States); D' Amore, Phillip [Univ. of Colorado, Boulder, CO (United States); Borenstein, Steven [Univ. of Colorado, Boulder, CO (United States); Nichols, Tevis [Univ. of Colorado, Boulder, CO (United States); Elston, Jack [Blackswift Technologies, Boulder, CO (United States); Ivey, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bendure, Albert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schmid, Beat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Long, Charles [Univ. of Colorado, Boulder, CO (United States); Telg, Hagen [Univ. of Colorado, Boulder, CO (United States); Gao, Ru-Shan [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); Hock, Terry [National Center for Atmospheric Research, Boulder, CO (United States); Bland, Geoff [NASA Ames Research Center (ARC), Moffett Field, Mountain View, CA (United States)

    2017-03-29

    This final technical report details activities undertaken as part of the referenced project. Included is information on the preparation of aircraft for deployment to Alaska, summaries of the three deployments covered under this project, and a brief description of the dataset and science directions pursued. Additionally, we provide information on lessons learned, publications, and presentations resulting from this work.

  4. The ITER ECH & CD Upper Launcher: Steps towards final design of the first confinement system

    NARCIS (Netherlands)

    Spaeh, P.; Aiello, G.; Bertizzolo, R.; Chavan, R.; Gessner, R.; Goodman, T.; Grossetti, G.; Henderson, M.; Krause, A.; Landis, J. D.; Meier, A.; Ronden, D.; Saibene, G.; Scherer, T.; Schreck, S.; Serikov, A.; Strauss, D.; Vaccaro, A.; Weinhorst, B.

    2013-01-01

    The ITER Electron Cyclotron Heating and Current Drive (ECH&CD) Upper Launcher, whose preliminary design was approved in 2009, is on its way towards the final design. The design work is being done by a consortium of several European research institutes in tight collaboration with F4E. The main

  5. DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-09-27

    The mission of the Earth System Grid Federation (ESGF) is to provide the worldwide climate-research community with access to the data, information, model codes, analysis tools, and intercomparison capabilities required to make sense of enormous climate data sets. Its specific goals are to (1) provide an easy-to-use and secure web-based data access environment for data sets; (2) add value to individual data sets by presenting them in the context of other data sets and tools for comparative analysis; (3) address the specific requirements of participating organizations with respect to bandwidth, access restrictions, and replication; (4) ensure that the data are readily accessible through the analysis and visualization tools used by the climate research community; and (5) transfer infrastructure advances to other domain areas. For the ESGF, the U.S. Department of Energy's (DOE's) Earth System Grid Center for Enabling Technologies (ESG-CET) team has led international development and delivered a production environment for managing and accessing ultra-scale climate data. This production environment includes multiple national and international climate projects (such as the Community Earth System Model and the Coupled Model Intercomparison Project), ocean model data (such as the Parallel Ocean Program), observation data (Atmospheric Radiation Measurement Best Estimate, Carbon Dioxide Information and Analysis Center, Atmospheric Infrared Sounder, etc.), and analysis and visualization tools, all serving a diverse user community. These data holdings and services are distributed across multiple ESG-CET sites (such as ANL, LANL, LBNL/NERSC, LLNL/PCMDI, NCAR, and ORNL) and at unfunded partner sites, such as the Australian National University National Computational Infrastructure, the British Atmospheric Data Centre, the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, the Max Planck Institute for Meteorology, the German Climate

  6. Utility FGD survey, January--December 1989. Volume 2, Design performance data for operating FGD systems: Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. [IT Corp., Cincinnati, OH (United States)

    1992-03-01

    This is Volume 2 part 2, of the Utility flue gas desulfurization (FGD) Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. This volume particularly contains basic design and performance data.

  7. Advanced LED warning system for rural intersections : phase 2 (ALERT-2) : final report.

    Science.gov (United States)

    2014-02-01

    This report presents findings of the second phase of the Advanced LED Warning System for Rural : Intersections (ALERT) project. Since it is the next generation of the same system, the second phase : system is referred to as the ALERT-2 system while t...

  8. Development Of Nutrient And Water Recycling Capabilities In Algae Biofuels Production Systems. Final Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, Tryg [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States). Civil and Environmental Engineering Dept.; Spierling, Ruth [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Poole, Kyle [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Blackwell, Shelley [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Crowe, Braden [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Hutton, Matt [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Lehr, Corinne [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States). Dept. of Chemistry and Biochemistry

    2018-01-25

    The objective of this project was to develop and demonstrate methods of recycling of water and nutrients for algal biofuels production. Recycling was accomplished both internal to the system and, in a broader sense, through import and reuse of municipal wastewater. Such an integrated system with wastewater input had not been demonstrated previously, and the performance was unknown, particularly in terms of influence of recycling on algal productivity and the practical extent of nutrient recovery from biomass residuals. Through long-term laboratory and pilot research, the project resulted in the following: 1. Bench-scale pretreatment of algal biomass did not sufficiently increase methane yield of nutrient solubilization during anaerobic digestion to warrant incorporation of pre-treatment into the pilot plant. The trial pretreatments were high-pressure orifice homogenization, sonication, and two types of heat treatment. 2. Solubilization of biomass particulate nutrients by lab anaerobic digesters ranged from 20% to nearly 60% for N and 40-65% for P. Subsequent aerobic degradation of the anaerobically digested biomass simulated raceways receiving whole digestate and resulted in an additional 20-55% N solubilization and additional 20% P solubilization. 3. Comparisons of laboratory and pilot digesters showed that laboratory units were reasonable proxies for pilot-scale. 4. Pilot-scale anaerobic digesters were designed, installed, and operated to digest algal biomass. Nutrient re-solubilization by the digesters was monitored and whole digestate was successfully used as a fertilizer in pilot algae raceways. 5. Unheated, unmixed digesters achieved greater methane yield and nutrient solubilization than heated, mixed digesters, presumably due to longer the solids residence times in unmixed digesters. The unmixed, unheated pilot digesters yielded 0.16 LCH4/g volatile solids (VS) introduced with 0.15 g VS/L-d organic loading and 16oC average temperature. A

  9. Final Environmental Assessment for a Solar Power System at Davis-Monthan Air Force Tucson, Arizona

    Science.gov (United States)

    2009-09-01

    southwestern boundary of the Base with the property line on the west and a dirt road on the east within the proposed West Airfield Parcel. The site...direct rail connection to the Base (Davis-Monthan AFB 2006a). There are officially designated bike paths on the Base, as FINAL ENVIRONMENTAL...permit a vacant lo~ or an urban or suburbm open area, to be driven over or used by motor vehicles, trucks, cars, cycles, . bikes , or buggies, or by

  10. Magnet alignment tolerances in the SLC final focus system determined by Lie algebra techniques

    International Nuclear Information System (INIS)

    Zimmermann, F.

    1995-01-01

    Using Lie algebra techniques, static alignment tolerances are derived for all quadrupole and sextupole magnets in the 1994 SLC final focus. Three different effects are identified which limit the tolerable quadrupole misalignment. The largest amplitude of an offset-compensating closed orbit bump and the maximum allowed displacement between beam orbit and magnet center are evaluated for each sextupole. Multiparticle tracking supplements and confirms the analytical results. (orig.)

  11. Final design report for the sludge handling system SNF subproject A13B [SEC 1 THRU 3

    International Nuclear Information System (INIS)

    MCSHANE, D.S.

    2003-01-01

    This Final Design Report (FDR) presents a review of the definitive design of the Sludge Handling System (SHS), Spent Nuclear Fuel (SNF) Sub-project A. 13(b). The information presented in this document, and the Sludge Handling System Compliance Matrix (HNF 8767), demonstrates compliance with HNF-6579, Baseline Design Criteria for the Sludge Handling System. The SHS project provides the equipment necessary to receive, store, and maintain radioactive sludge at T Plant where the sludge will be stored until it can be treated to meet disposal site requirements. In keeping with the principles of ALARA, the systems supplied are designed to operate remotely. The sludge storage systems are designed to meet Toxic Substances Control Act (TSCA) requirements. In addition to the new equipment necessary to safely receive and store sludge, other existing T Plant systems were modified

  12. The hetero-poly-compound [Co{sub 3}Co{sub 2}Mo{sub 10}O{sub 38}H{sub 4}], a new precursor for the hydro-desulfurization catalysis: comparison of the catalytic performances on aluminium oxide, titanium oxide and zirconium oxide; L'heteropolycompose [CO{sub 3}CO{sub 2}Mo{sub 10}O{sub 38}H{sub 4}], un nouveau precurseur pour la catalyse d'hydrodesulfuration: comparaison des performances catalytiques sur alumine, oxydes de titane et de zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Mazurelle, J.; Lamonier, C.; Payen, E. [Universite des Sciences et Technologies de Lille (USTL), Lab. de Catalyse de Lille, 59 - Villeneuve d' Ascq (France); Mazurelle, J.; Guillaume, D. [Institut Francais du Petrole. Centre d' Etude et de Developpement Industriel de Solaize, 69 - Vernaison (France)

    2004-07-01

    The aim of this work is to improve the performances of the hydro-desulfurization (HDS) catalysts. An hetero-poly-compound (HPC), cobalt salt of the anion [CO{sub 2}Mo{sub 10}O{sub 38}H{sub 4}]{sup 6-} has then been prepared. This catalyst is more active in the hydro-desulfurization of thiophene than the known classical systems. This work has been extended to other supports, titanium oxide and zirconium oxide. The first results obtained show that the introduction of molybdenum and cobalt via the HPC leads, with the same amount of metallic elements, to solids which are more active than those of the conventional preparation. (O.M.)

  13. Dynamic mobility applications open source application development portal : Task 4 : system requirements specifications : final report.

    Science.gov (United States)

    2016-10-12

    This document describes the System Requirements Specifications (SyRS) of the Dynamic Mobility Applications (DMA) Open Source Application Development Portal (OSADP) system in details according to IEEE-Std. 1233-1998. The requirement statements discuss...

  14. Quantitative X-ray diffraction and fluorescence analysis of paint pigment systems : final report.

    Science.gov (United States)

    1978-01-01

    This study attempted to correlate measured X-ray intensities with concentrations of each member of paint pigment systems, thereby establishing calibration curves for the quantitative analyses of such systems.

  15. Commercial Skills Test Information Management System final report and self-sustainability plan : [technology brief].

    Science.gov (United States)

    2014-04-01

    The Commercial Skills Test Information Management System (CSTIMS) was developed to address the fraudulent issuance of commercial drivers licenses (CDLs) across the United States. CSTIMS was developed as a Web-based, software-as-a-service system to...

  16. Innovative Distributed Power Grid Interconnection and Control Systems: Final Report, December 11, 2000 - August 30, 2005

    Energy Technology Data Exchange (ETDEWEB)

    DePodesta, K.; Birlingmair, D.; West, R.

    2006-03-01

    The contract goal was to further advance distributed generation in the marketplace by making installations more cost-effective and compatible with existing systems. This was achieved by developing innovative grid interconnection and control systems.

  17. Cold Vacuum Drying facility personnel monitoring system design description (SYS 12); FINAL

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) instrument air (IA) system that provides instrument quality air to the CVDF. The IA system provides the instrument quality air used in the process, HVAC, and HVAC instruments. The IA system provides the process skids with air to aid in the purging of the annulus of the transport cask. The IA system provides air for the solenoid-operated valves and damper position controls for isolation, volume, and backdraft in the HVAC system. The IA system provides air for monitoring and control of the HVAC system, process instruments, gas-operated valves, and solenoid-operated instruments. The IA system also delivers air for operating hand tools in each of the process bays

  18. Dynamic isotope power system (DIPS) applications study. Volume I. Summary. Final report

    International Nuclear Information System (INIS)

    1979-11-01

    The Nuclear Integrated Multimission Spacecraft (NIMS) is designed for communications, surveillance, navigation and meteorelogical missions. This study assesses th attributes of the Dynamic Isotope Power System (DIPS) for this spacecraft. These attributes include cost, system and mission compatibility, and survivability

  19. A Framework for a General Purpose Intelligent Control System for Particle Accelerators. Phase II Final Report

    International Nuclear Information System (INIS)

    Westervelt, Robert; Klein, William; Kroupa, Michael; Olsson, Eric; Rothrock, Rick

    1999-01-01

    Vista Control Systems, Inc. has developed a portable system for intelligent accelerator control. The design is general in scope and is thus configurable to a wide range of accelerator facilities and control problems. The control system employs a multi-layer organization in which knowledge-based decision making is used to dynamically configure lower level optimization and control algorithms

  20. 75 FR 61509 - Notice of Issuance of Final Determination Concerning Solar Photovoltaic Panel Systems

    Science.gov (United States)

    2010-10-05

    ... Determination Concerning Solar Photovoltaic Panel Systems AGENCY: U.S. Customs and Border Protection, Department... Procurement; Title III, Trade Agreements Act of 1979; Country of Origin of solar photovoltaic panel system... solar photovoltaic (``PV'') panel systems contain both U.S. and foreign-origin raw materials and...