WorldWideScience

Sample records for desulfurization process annual

  1. Process for desulfurizing hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1937-04-12

    A process is described for the desulfurization of a mixture of hydrocarbons, and in particular hydrocarbons containing less than 7 atoms of carbon and sulfur compounds of the type of sulfur carbonyl, characterized by the fact that the mixture, preferably in the liquid phase, is brought in contact with a solution of caustic alkali, essentially anhydrous or preferably with a solution of alkali hydroxide in an organic hydroxy nonacid solvent, for example, an alcohol, or with an alkaline alcoholate, under conditions suitable to the formation of hydrogen sulfide which produces a hydrocarbon mixture free from sulfur compounds of the sulfur carbonyl type but containing hydrogen sulfide, and that it is treated, following mixing, having beem submitted to the first treatment, by means of aqueous alkaline hydroxide to eliminate the hydrogen sulfide.

  2. Process for desulfurizing shale oil, etc

    Energy Technology Data Exchange (ETDEWEB)

    Escherich, F

    1922-12-17

    A process is described for the desulfurizing of shale oil or tar, with recovery of valuable oils and hydrocarbons, characterized in that the raw material is heated in an autoclave to a pressure of 100 atmospheres or more.

  3. Review of desulfurization process for biogas purification

    Science.gov (United States)

    Xiao, Cong; Ma, Yunqian; Ji, Dandan; Zang, Lihua

    2017-12-01

    Hydrogen sulfide (H2S) is a toxic and odorous compound present in biogas produced by the anaerobic digestion of biosolids and other organic materials. Elimination of H2S is necessary as it is extremely hazardous to human health, poisonous to process catalysts and corrosive to equipment. The desulfurization technology is an important part for efficient utilization of biogas. In this paper, the traditional wet and dry desulfurization technology for biogas was reviewed, and the new research progress of biological desulfurization technologies are also introduced.

  4. Boosting the IGCLC process efficiency by optimizing the desulfurization step

    International Nuclear Information System (INIS)

    Hamers, H.P.; Romano, M.C.; Spallina, V.; Chiesa, P.; Gallucci, F.; Sint Annaland, M. van

    2015-01-01

    Highlights: • Pre-CLC hot gas desulfurization and post-CLC desulfurization are assessed. • Process efficiency increases by 0.5–1% points with alternative desulfurization methods. • Alternative desulfurization methods are more beneficial for CFB configurations. - Abstract: In this paper the influence of the desulfurization method on the process efficiency of an integrated gasification chemical-looping combustion (IGCLC) systems is investigated for both packed beds and circulating fluidized bed CLC systems. Both reactor types have been integrated in an IGCLC power plant, in which three desulfurization methods have been compared: conventional cold gas desulfurization with Selexol (CGD), hot gas desulfurization with ZnO (HGD) and flue gas desulfurization after the CLC reactors (post-CLC). For CLC with packed bed reactors, the efficiency gain of the alternative desulfurization methods is about 0.5–0.7% points. This is relatively small, because of the relatively large amount of steam that has to be mixed with the fuel to avoid carbon deposition on the oxygen carrier. The HGD and post-CLC configurations do not contain a saturator and therefore more steam has to be mixed with a negative influence on the process efficiency. Carbon deposition is not an issue for circulating fluidized bed systems and therefore a somewhat higher efficiency gain of 0.8–1.0% point can be reached for this reactor system, assuming that complete fuel conversion can be reached and no sulfur species are formed on the solid, which is however thermodynamically possible for iron and manganese based oxygen carriers. From this study, it can be concluded that the adaptation of the desulfurization method results in higher process efficiencies, especially for the circulating fluidized bed system, while the number of operating units is reduced.

  5. Process for desulfurizing petroleum feedstocks

    Science.gov (United States)

    Gordon, John Howard; Alvare, Javier

    2014-06-10

    A process for upgrading an oil feedstock includes reacting the oil feedstock with a quantity of an alkali metal, wherein the reaction produces solid materials and liquid materials. The solid materials are separated from the liquid materials. The solid materials may be washed and heat treated by heating the materials to a temperature above 400.degree. C. The heat treating occurs in an atmosphere that has low oxygen and water content. Once heat treated, the solid materials are added to a solution comprising a polar solvent, where sulfide, hydrogen sulfide or polysulfide anions dissolve. The solution comprising polar solvent is then added to an electrolytic cell, which during operation, produces alkali metal and sulfur.

  6. Desulfurization of AL-Ahdab Crude Oil using Oxidative Processes

    OpenAIRE

    Neran Khalel Ibrahim; Saja Mohsen Jabbar

    2015-01-01

    Two different oxidative desulfurization strategies based on oxidation/adsorption or oxidation/extraction were evaluated for the desulfurization of AL-Ahdab (AHD) sour crude oil (3.9wt% sulfur content). In the oxidation process, a homogenous oxidizing agent comprising of hydrogen peroxide and formic acid was used. Activated carbons were used as sorbent/catalyst in the oxidation/adsorption process while acetonitrile was used as an extraction solvent in the oxidation/extraction process. For the ...

  7. Desulfurization of AL-Ahdab Crude Oil using Oxidative Processes

    Directory of Open Access Journals (Sweden)

    Neran Khalel Ibrahim

    2015-07-01

    Full Text Available Two different oxidative desulfurization strategies based on oxidation/adsorption or oxidation/extraction were evaluated for the desulfurization of AL-Ahdab (AHD sour crude oil (3.9wt% sulfur content. In the oxidation process, a homogenous oxidizing agent comprising of hydrogen peroxide and formic acid was used. Activated carbons were used as sorbent/catalyst in the oxidation/adsorption process while acetonitrile was used as an extraction solvent in the oxidation/extraction process. For the oxidation/adsorption scheme, the experimental results indicated that the oxidation desulfurization efficiency was enhanced on using activated carbon as catalyst/sorbent. The effects of the operating conditions (contact time, temperature, mixing speed and sorbent dose on the desulfurization efficiency were examined. The desulfurization efficiency measured at the best operating conditions(optimum conditions: 60 , 500rpm, 60min contact time and sorbent dose of 0.7g AC/100 ml AHD crude, was 32.8% corresponding to a sulfur content of 2.6 wt%. Applying the same optimum operating conditions and at 3:1 solvent/oil ratio, the oxidation/extraction method gave comparable desulfurization efficiency of 31.5%.

  8. Shell launches its Claus off-gas desulfurization process

    Energy Technology Data Exchange (ETDEWEB)

    Groenendaal, W; van Meurs, H C.A.

    1972-01-01

    The Shell Flue Gas Desulfurization (SFGD) Process was developed for removal of sulfur oxides from flue gases originating from oil-fired boilers or furnaces. It can also be used to remove sulfur dioxide from Claus sulfur recovery tail gases if they are combined with boiler/furnace flue gases. For Claus tail gas only, the Shell Claus off-gas desulfurization process was developed. Claus unit operation and desulfurization by low temperature Claus processes and conversion/concentration processes are discussed. The new Shell process consists of a conversion/concentration process involving a reduction section and an amine absorption section. In the reduction section, all sulfur compounds and free sulfur are completely reduced to hydrogen sulfide with hydrogen, or hydrogen plus carbon monoxide, over a cobalt/molybdenum-on-alumina catalyst at a temperature of about 300/sup 0/C. Extensive bench scale studies on the reduction system have been carried out. A life test of more than 4000 hr showed a stable activity of the reduction catalyst, which means that in commercial units, very long catalyst lives can be expected. The commercial feasibility of the reduction section was further demonstrated in the Godorf refinery of Deutsche Shell AG. More than 80 absorption units using alkanolamine (AIDP) solutions have been installed. Bench scale studies of the ADIP absorption units were compared to commercial experience.The total capital investment of the new Shell process is 0.7, 2.0, and 3.2 $ times 10 to the 6th power for 100, 500, and 1000 tons of sulfur/sd capacity Claus units, respectively. The total operating costs for these units are, respectively, 610, 1930 and 3310 $/stream day. The capital investment corresponds to about 75% of the capital investment of the preceding Claus unit.

  9. Desulfurization of organic sulfur from lignite by an electron transfer process

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A. [Selcuk University, Konya (Turkey). Dept. for Chemical Engineering

    2006-10-15

    This study is an attempt to desulfurize organic sulfur from lignite samples with ferrocyanide ion as the electron transferring agent. Effect of temperature, particle size and concentration of ferrocyanide ion on desulfurization from the lignite samples has been investigated. The desulfurization process has been found to be continuous and gradually increases with increase of temperature from 298 to 368 K. The particle size has no significant impact on sulfur removal from the lignite samples. Particle size has no profound impact on the amount of sulfur removal. The desulfurization reaction has been found to be dependent on the concentration of potassium ferrocyanide. Gradual increase in the concentration of potassium ferrocyanide raised the magnitude of desulfurization, but at a higher concentration, the variation is not significant.

  10. Two-Phase Phenomena In Wet Flue Gas Desulfurization Process

    International Nuclear Information System (INIS)

    Minzer, U.; Moses, E.J.; Toren, M.; Blumenfeld, Y.

    1998-01-01

    In order to reduce sulfur oxides discharge, Israel Electric Corporation (IEC) is building a wet Flue Gas Desulfurization (FGD) facility at Rutenberg B power station. The primary objective of IEC is to minimize the occurrence of stack liquid discharge and avoid the discharge of large droplets, in order to prevent acid rain around the stack. Liquid discharge from the stack is the integrated outcome of two-phase processes, which are discussed in this work. In order to estimate droplets discharge the present investigation employs analytical models, empirical tests, and numerical calculations of two-phase phenomena. The two-phase phenomena are coupled and therefore cannot be investigated separately. The present work concerns the application of Computational Fluid Dynamic (CFD) as an engineering complementary tool in the IEC investigation

  11. Applying ACF to desulfurization process from flue gas

    International Nuclear Information System (INIS)

    Liu Yi; Zhang Zhigang; Tang Qiang; Cao Zidong

    2004-01-01

    Inasmuch as the status of environmental pollution caused by SO 2 is more and more serious and the policy of environmental protection is executed more and more strictly, desulfurization from flue gas (FGD) is introduced to a wide-spread field of national economy. By a comparison with lime-limestone method, the application of adsorption method in FGD is more effective in desulfurization and more adapted to the situation of our country in respect of its more valuable byproduct. However, the technique of adsorption method is limited by the large amount of adsorbent used. In this paper, activated carbon fiber (ACF) is proposed as a new type of adsorbent to apply in FGD. A series of experiments have been made in order to compare the performances between ACF and granular activated carbon (GAC) which has been mostly used. Experiments show that under the same working conditions ACF's adsorption capacity is 16.6 times as high as that of GAC, mass loss rate is 1/12 of GAC's, desorption efficiency of ACF can reach 99.9%. The theory of micropore adsorption dynamics is adopted to analyze the characteristics of both adsorbents. It is indicated that adsorbability and perfectibility of desorption are tightly related to the distribution of pores and the surface micromechanism of adsorbent surface. The accessibility of pores for specified adsorptive and the effects of capillary condensation are crucial factors to influence the process of FGD. According to the research of different adsorbents, conclusion can be drawn that ACF is a kind of good material with a strong selectivity for SO 2 . Compared with the traditional methods of FGD, the use of ACF can greatly economize the consumption of adsorbent and obviously reduce the introduction of new adsorbent, and at the same time keep down the equipment investment and operating cost. (authors)

  12. Economic assessment of advanced flue gas desulfurization processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bierman, G. R.; May, E. H.; Mirabelli, R. E.; Pow, C. N.; Scardino, C.; Wan, E. I.

    1981-09-01

    This report presents the results of a project sponsored by the Morgantown Energy Technology Center (METC). The purpose of the study was to perform an economic and market assessment of advanced flue gas desulfurization (FGD) processes for application to coal-fired electric utility plants. The time period considered in the study is 1981 through 1990, and costs are reported in 1980 dollars. The task was divided into the following four subtasks: (1) determine the factors affecting FGD cost evaluations; (2) select FGD processes to be cost-analyzed; (3) define the future electric utility FGD system market; and (4) perform cost analyses for the selected FGD processes. The study was initiated in September 1979, and separate reports were prepared for the first two subtasks. The results of the latter two subtasks appear only in this final reprot, since the end-date of those subtasks coincided with the end-date of the overall task. The Subtask 1 report, Criteria and Methods for Performing FGD Cost Evaluations, was completed in October 1980. A slightly modified and condensed version of that report appears as appendix B to this report. The Subtask 2 report, FGD Candidate Process Selection, was completed in January 1981, and the principal outputs of that subtask appear in Appendices C and D to this report.

  13. Study of variation grain size in desulfurization process of calcined petroleum coke

    Science.gov (United States)

    Pintowantoro, Sungging; Setiawan, Muhammad Arif; Abdul, Fakhreza

    2018-04-01

    Indonesia is a country with abundant natural resources, such as mineral mining and petroleum. In petroleum processing, crude oil can be processed into a source of fuel energy such as gasoline, diesel, oil, petroleum coke, and others. One of crude oil potentials in Indonesia is petroleum coke. Petroleum coke is a product from oil refining process. Sulfur reducing process in calcined petroleum cokes can be done by desulfurization process. The industries which have potential to become petroleum coke processing consumers are industries of aluminum smelting (anode, graphite block, carbon mortar), iron riser, calcined coke, foundry coke, etc. Sulfur reducing process in calcined petroleum coke can be done by thermal desulfurization process with alkaline substance NaOH. Desulfurization of petroleum coke process can be done in two ways, which are thermal desulfurization and hydrodesulphurization. This study aims to determine the effect of various grain size on sulfur, carbon, and chemical bond which contained by calcined petroleum coke. The raw material use calcined petroleum coke with 0.653% sulfur content. The grain size that used in this research is 50 mesh, then varied to 20 mesh and 100 mesh for each desulfurization process. Desulfurization are tested by ICP, UV-VIS, and FTIR to determine levels of sulfur, carbon, chemical bonding and sulfur dissolved water which contained in the residual washing of calcined petroleum coke. From various grain size that mentioned before, the optimal value is on 100 mesh grain size, where the sulfur content in petroleum coke is 0.24% and carbon content reaches the highest level of 97.8%. Meanwhile for grain size 100 mesh in the desulfurization process is enough to break the chemical bonds of organic sulfur in petroleum coke.

  14. A novel semidry flue gas desulfurization process with the magnetically fluidized bed reactor

    International Nuclear Information System (INIS)

    Zhang Qi; Gui Keting

    2009-01-01

    The magnetically fluidized bed (MFB) was used as the reactor in a novel semidry flue gas desulfurization (FGD) process to achieve high desulfurization efficiency. Experiments in a laboratory-scale apparatus were conducted to reveal the effects of approach to adiabatic saturation temperature, Ca/S molar ratio and applied magnetic field intensity on SO 2 removal. Results showed that SO 2 removal efficiency can be obviously enhanced by decreasing approach to adiabatic saturation temperature, increasing Ca/S molar ratio, or increasing applied magnetic field intensity. At a magnetic field intensity of 300 Oe and a Ca/S molar ratio of 1.0, the desulfurization efficiency (excluding desulfurization efficiency in the fabric filter) was over 80%, while spent sorbent appeared in the form of dry powder. With the SEM, XRD and EDX research, it can be found that the increase of DC magnetic field intensity can make the surface morphology on the surface of the ferromagnetic particles loose and enhance the oxidation of S(IV), hence reducing the liquid phase mass transfer resistance of the slurry droplets and increasing desulfurization reaction rate, respectively. Therefore, the desulfurization efficiency increased obviously with the increase of DC field intensity.

  15. A three-phase comprehensive mathematical model of desulfurization in electroslag remelting process

    International Nuclear Information System (INIS)

    Wang, Qiang; Li, Guangqiang; He, Zhu; Li, Baokuan

    2017-01-01

    Highlights: • First developed a three-phase coupled model of desulfurization in ESR process. • The MHD thermal flow in the reactor was clarified. • Distributions of sulfur concentration in the three phases were demonstrated. • An experiment was carried out to validate the simulation. - Abstract: A three-phase comprehensive mathematical model has been established to study the desulfurization behavior in electroslag remelting (ESR) process. The solutions of the mass, momentum, energy, and species conservation equations were simultaneously calculated by the finite volume method. The Joule heating and Lorentz force were fully coupled through solving the Maxwell’s equations with the assistance of the magnetic potential vector. The movements of the air-slag and slag-metal interfaces were described by the volume of fluid (VOF) approach. In order to include the influences of the air, the slag and the electric current on the desulfurization, a thermodynamic and kinetic module was introduced. An experiment was conducted to validate the model. The completely comparison between the measured and simulated data indicates that the model can describe the desulfurization behavior in the ESR process with an acceptable accuracy. The sulfur in the metal would be transferred into the slag under the combined effect of the slag treatment and the electrochemical reaction, and is primarily achieved in the period of the droplet formation. The sulfur in the slag then could be transferred into the air because of the oxidation. The maximum calculated removal ratio in the whole process is around 88%.

  16. Removal of Sulfur from CaF2 Containing Desulfurization Slag Exhausted from Secondary Steelmaking Process by Oxidation

    Science.gov (United States)

    Hiraki, Takehito; Kobayashi, Junichi; Urushibata, Satomi; Matsubae, Kazuyo; Nagasaka, Tetsuya

    2012-08-01

    The oxidation behavior of sulfur in desulfurization slag generated from the secondary steelmaking process with air has been investigated in the temperature range of 973 K to 1373 K (700 °C to 1100 °C). Although a high removal rate of sulfur is not achieved at temperatures lower than 1273 K (1000 °C) because of the formation of CaSO4, most of the sulfur is rapidly removed from slag as SO2 gas in the 1273 K to 1373 K (700 °C to 1100 °C) range. This finding indicates that the desulfurization slag generated from the secondary steelmaking process can be reused as a desulfurized flux through air oxidation, making it possible to reduce significantly the amount of desulfurization slag for disposal.

  17. Effect of potassium hydroxide activation in the desulfurization process of activated carbon prepared by sewage sludge and corn straw.

    Science.gov (United States)

    Zeng, Fan; Liao, Xiaofeng; Hu, Hui; Liao, Li

    2018-03-01

    Series sludge straw-based activated carbons were prepared by sewage sludge and corn straw with potassium hydroxide (KOH) activation, and the desulfurization performance of activated carbons was studied. To obtain the best desulfurization performance, the optimum ratio between the raw materials and the activator was investigated. The results showed that when the mass ratio of sewage sludge, corn straw, and KOH was 3:7:2, the activated carbon obtained the best breakthrough and saturation sulfur sorption capacities, which were 12.38 and 5.74 times, respectively, those of samples prepared by the nonactivated raw materials. The appropriate KOH could improve the microporosity and alkaline groups, meanwhile reducing the lactone groups, which were all beneficial to desulfurization performance. The chemical adsorption process of desulfurization can be simplified to four main steps, and the main desulfurization products are elemental sulfur and sulfate. Sewage sludge (SS) and corn straw (CS) both have great production and wide distribution and are readily available in China. Much attention has been paid on how to deal with them effectively. Based on the environment protection idea of waste treatment with waste and resource recycling, low-cost adsorbents were prepared by these processes. The proposed method can be expanded to the municipal solid waste recycling programs and renewable energy plan. Thus, proceeding with the study of preparing activated carbon by SS and straw as a carbon-based dry desulfurization agent could obtain huge social, economic, and environmental benefits.

  18. Using stable isotopes to monitor forms of sulfur during desulfurization processes: A quick screening method

    Science.gov (United States)

    Liu, Chao-Li; Hackley, Keith C.; Coleman, D.D.; Kruse, C.W.

    1987-01-01

    A method using stable isotope ratio analysis to monitor the reactivity of sulfur forms in coal during thermal and chemical desulfurization processes has been developed at the Illinois State Geological Survey. The method is based upon the fact that a significant difference exists in some coals between the 34S/32S ratios of the pyritic and organic sulfur. A screening method for determining the suitability of coal samples for use in isotope ratio analysis is described. Making these special coals available from coal sample programs would assist research groups in sorting out the complex sulfur chemistry which accompanies thermal and chemical processing of high sulfur coals. ?? 1987.

  19. A complementary and synergistic effect of Fe-Zn binary metal oxide in the process of high-temperature fuel gas desulfurization

    Institute of Scientific and Technical Information of China (English)

    翁斯灏; 吴幼青

    1996-01-01

    57Fe Mossbauer spectroscopy was used to investigate the evolution of Fe-Zn binary metal oxide sorbent in the process of high-temperature fuel gas desulfurization. The results of phase analyses show that Fe-Zn binary metal oxide sorbent is rapidly reduced in hot fuel gas and decomposed to new phases of highly dispersed microcrystalline elemental iron and zinc oxide, both of which become the active desulfurization constituents. A complementary and synergistic effect between active iron acting as a high sulfur capacity constituent and active zinc oxide acting as a deep refining desulfurization constituent exists in this type of sorbent for hot fuel gas desulfurization.

  20. Anion-exchange resin-based desulfurization process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sheth, A C; Dharmapurikar, R; Strevel, S D

    1994-01-01

    The following investigations were performed: (1) batch mode screening of eleven(11) commercially available resins and selection of three candidate resins for further evaluation in a fixed-bed setup. (2) Process variables study using three candidate resins in the fixed-bed setup and selection of the ``best`` resin for process economics development. (3) Exhaustion efficiency and solution concentration were found to be inversely related necessitating a trade-off between the resin cost versus the cost of evaporation/concentration of ensuing effluents. (4) Higher concentration of the HCO{sub 3}{sup {minus}} form of active sites over less active CO{sub 3}{sup 2{minus}} form of sites in the resin was believed to be the main reason for the observed increase in the equilibrium capacity of the resin at an elevated static CO{sub 2}-pressure. This Increase in capacity was found to level off around 80--120 psig range. The increase in CO{sub 2}-pressure, however, did not appear to affect the overall ion-exchange kinetics. (5) In the fixed-bed mode, the solution concentration was found to affect the equilibrium capacity of candidate resins. Their relationship was well satisfied by the Langmuir type non-linear equilibrium isotherm. Alternatively, the effect of solution concentration on overall ion-exchange kinetics varied from resin to resin. (6) Product inhibition effect on the resin was observed as an initial increase followed by a significant decrease in the resin`s equilibrium capacity for SO{sub 4}{sup 2{minus}} as the HCO{sub 3}{sup {minus}}/SO{sub 4}{sup 2{minus}} molar ratio in the solution was increased from 0 to 1.0. This ratio, however, did not affect the overall ion-exchange kinetics.

  1. The Flakt-Hydro process: flue gas desulfurization by use of seawater

    Energy Technology Data Exchange (ETDEWEB)

    Xia, W.Z. [ABB China Limited, Shanghai (China)

    1999-07-01

    ABB's seawater scrubbing process (the Flakt-Hydro process) for flue gas desulfurization has recently triggered interest among power producers because of its simple operating principle and high reliability. The process uses seawater to absorb and neutralize sulfur dioxide in flue gases. The absorbed gas is oxidized and returned to the ocean in the form it originated in the first place, namely as dissolved sulfate salts. The process uses the seawater downstream of the power plant condensers. This paper gives an introduction to the basic principle of the process and presents some of the recent power plant applications, namely at the Paiton Private Power Project; Phase 1 (2 x 670 MWe) in Indonesia and at the Shenzhen West Power Plant, Unit 2 (300 MWe) in China.

  2. Optimization of Deep Oxidative Desulfurization Process Using Ionic Liquid and Potassium Monopersulfate

    Directory of Open Access Journals (Sweden)

    Yinke Zhang

    2018-01-01

    Full Text Available Response surface methodology (RSM was selected to optimize a desulfurization process with metal based ionic liquids ([Bmim]Cl/CoCl2 and potassium monopersulfate (PMS together to remove benzothiophene (BT from octane (simulating oil. The four experimental conditions of PMS dosage, [Bmim]Cl/CoCl2 dosage, temperature, and reaction time were investigated. The results showed that the quadratic relationship was built up between BT removal and four experimental variables with 0.9898 fitting coefficient. The optimal conditions were 1.6 g (20 wt% PMS solution, 3.2 g [Bmim]Cl/CoCl2, 46°C, and 23 min, which were obtained based on RSM and experimental results. Under the optimal condition, predicted sulfur removal rate and experimental sulfur removal rate were 96.7% and 95.4%, respectively. The sequence of four experimental conditions on desulfurization followed the order temperature > time > [Bmim]Cl/CoCl2 dosage > PMS solution dosage.

  3. Inhibition of carbon disulfide on bio-desulfurization in the process of ...

    African Journals Online (AJOL)

    Biological desulfurization is a novel technology for the removal of hydrogen sulfide from some biogas or sour gas, in which there are always a certain amounts of carbon disulfide together with much hydrogen sulfide. Nowadays, carbon disulfide is found to have negative effect on the biological desulfurization, but seldom ...

  4. Deep desulfurization of middle distillates. Process adaptation to oil fractions' compositions

    Energy Technology Data Exchange (ETDEWEB)

    Pedernera, Esteban; Reimert, Rainer; Nguyen, Ngoc Luan; Van Buren, Vincent [Division of Fuel Technology, Universitat Karlsruhe TH, Engler-Bunte-Ring 1, 76131 Karlsruhe (Germany)

    2003-04-30

    The influence of oil fractions' compositions on the conversion of sulfurous components was investigated in a trickle-bed reactor in laboratory scale. A commercially available NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst was used throughout the investigations. Experimental results including sulfur conversion of different oil fractions and residence time distributions under reacting conditions are presented. The hydrogen consumption is ascribed to the conversion of sulfur and of nitrogen, to the hydrogenation of aromatics and to hydrocracking based on a simulation applying ASPEN Plus. Various configurations of the desulfurization process are evaluated but no advantage is found by separate treatment of individual oil fractions. In addition, experiments were carried out to determine liquid distribution and wetting efficiency in a catalyst bed by using magnetic resonance imaging (MRI) technique.

  5. A novel [Bmim]PW/HMS catalyst with high catalytic performance for the oxidative desulfurization process

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Ling; Luo, Guangqing; Kang, Lihua; Zhu, Mingyuan; Dai, Bin [Shihezi University, Shihezi (China)

    2013-02-15

    To effectively reduce the sulfur content in model fuel, [Bmim]PW/HMS catalyst was synthesized through impregnating the hexagonal mesoporous silica (HMS) support by phosphotungstic acid (HPW) and ionic liquid [Bmim] HSO{sub 4}. Physical structure characterizations of the catalysts showed that HMS retained mesoporous structure, and [Bmim] PW was well dispersed on the support of HMS. The catalytic activity of the [Bmim]PW/HMS was evaluated in the oxidative desulfurization process, and the optimal reaction conditions including loading of the catalysts, reaction temperature, catalyst amount, O/S (H{sub 2}O{sub 2}/sulfur) molar ratio and agitation speed were investigated. Under the optimal reaction conditions, the conversion of benzothiophene (BT), dibenzothiophene (DBT) and 4, 6-dimethyldibenzothiophene (4, 6-DMDBT) could reach 79%, 98%, 88%, respectively.

  6. A novel [Bmim]PW/HMS catalyst with high catalytic performance for the oxidative desulfurization process

    International Nuclear Information System (INIS)

    Tang, Ling; Luo, Guangqing; Kang, Lihua; Zhu, Mingyuan; Dai, Bin

    2013-01-01

    To effectively reduce the sulfur content in model fuel, [Bmim]PW/HMS catalyst was synthesized through impregnating the hexagonal mesoporous silica (HMS) support by phosphotungstic acid (HPW) and ionic liquid [Bmim] HSO 4 . Physical structure characterizations of the catalysts showed that HMS retained mesoporous structure, and [Bmim] PW was well dispersed on the support of HMS. The catalytic activity of the [Bmim]PW/HMS was evaluated in the oxidative desulfurization process, and the optimal reaction conditions including loading of the catalysts, reaction temperature, catalyst amount, O/S (H 2 O 2 /sulfur) molar ratio and agitation speed were investigated. Under the optimal reaction conditions, the conversion of benzothiophene (BT), dibenzothiophene (DBT) and 4, 6-dimethyldibenzothiophene (4, 6-DMDBT) could reach 79%, 98%, 88%, respectively

  7. A realistic approach to modeling an in-duct desulfurization process based on an experimental pilot plant study

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, F.J.G.; Ollero, P. [University of Seville, Seville (Spain)

    2008-07-15

    This paper has been written to provide a realistic approach to modeling an in-duct desulfurization process and because of the disagreement between the results predicted by published kinetic models of the reaction between hydrated lime and SO{sub 2} at low temperature and the experimental results obtained in pilot plants where this process takes place. Results were obtained from an experimental program carried out in a 3-MWe pilot plant. Additionally, five kinetic models, from the literature, of the reaction of sulfation of Ca(OH){sub 2} at low temperatures were assessed by simulation and indicate that the desulfurization efficiencies predicted by them are clearly lower than those experimentally obtained in our own pilot plant as well as others. Next, a general model was fitted by minimizing the difference between the calculated and the experimental results from the pilot plant, using Matlab{sup TM}. The parameters were reduced as much as possible, to only two. Finally, after implementing this model in a simulation tool of the in-duct sorbent injection process, it was validated and it was shown to yield a realistic approach useful for both analyzing results and aiding in the design of an in-duct desulfurization process.

  8. Utilization of a by-product produced from oxidative desulfurization process over Cs-mesoporous silica catalysts.

    Science.gov (United States)

    Kim, Hyeonjoo; Jeong, Kwang-Eun; Jeong, Soon-Yong; Park, Young-Kwon; Kim, Do Heui; Jeon, Jong-Ki

    2011-02-01

    We investigated the use of Cs-mesoporous silica catalysts to upgrade a by-product of oxidative desulfurization (ODS). Cs-mesoporous silica catalysts were characterized through N2 adsorption, XRD, CO2-temperature-programmed desorption, and XRF. Cs-mesoporous silica prepared by the direct incorporation method showed higher catalytic performance than a Cs/MCM-41 catalyst by impregnation method for the catalytic decomposition of sulfone compounds produced from ODS process.

  9. Process of desulfurizing dephenolating, and cracking raw pitch obtained by dry distilling lignite, shale, etc

    Energy Technology Data Exchange (ETDEWEB)

    1932-12-21

    A process is described of desulfurizing, dephenelating, and cracking the dry pitch obtained by dry distillation of lignite, bituminous shale, asphaltic rocks, and peat and fossil coals, that is characterized by the raw material being distilled in a retort together with calcium oxide, the vapors escaping from the still being compelled to pass through a catalyst tube containing calcium oxide mixed with other metallic oxide, the catalyst being helped by suitable heating to a temperature higher than that of the retort mentioned. For the purpose of lessening the quantity of phenolic groups contained in the raw tar to eliminate a great part of the sulfur belonging to the thiophenols and hydrogen sulfide without removing the organic radical to which they are attached, to accomplish a pyrogenic dissociation at the temperature of distillation of the pitch by means of using bone acid (phosphoric) to obtain a greater yield of light hydrocarbon from heavy hydrocarbons. Another purpose is the elimination of sulfur and thiophene and whatever neutral sulfur is contained in the primary pitch, by means of iron sulfate and copper in the anhydrous state or by means of other sulfates whose metals have the ability to form sulfides with sulfur.

  10. LIFAC flue gas desulfurization process an alternative SO{sub 2} control strategy

    Energy Technology Data Exchange (ETDEWEB)

    Patel, J.G. [Tampella Power Corp., Atlanta, GA (United States); Vilala, J. [Tampella Power Inc., Tampere (Finland)

    1995-12-01

    This paper discusses the results from two recently completed LIFAC flue gas desulfurization plants - 300 MW Shand lignite powered station owned by Saskatchewan Power Corporation and 60 MW Whitewater Valley high sulfur coal fired station owned by Richmond Powerand Light. LIFACis a dry FGD process in which limestone is injected into the upper regions of the boiler furnace and an activation reactor is used to humidify the unreacted limestone to achieve additional sulfur capture. The performance in both plants indicates that 70 to 80% sulfur is removed at a Ca/S ratio of 2. Cost performance data from these plants has shown that LI FAC both on construction cost and $/ton SO{sub 2} removed basis is very cost competitive compared to other SO{sub 2} control technologies. The Richmond plant has been realized under the auspices of the U.S. Department of Energy`s Clean Coal Technology program. The Shand plant is the first commercial installation in North America. The paper also discusses highlights of operating and maintenance experience, availability and handling of the solid waste product.

  11. Investigations in physical mechanism of the oxidative desulfurization process assisted simultaneously by phase transfer agent and ultrasound.

    Science.gov (United States)

    Bhasarkar, Jaykumar B; Chakma, Sankar; Moholkar, Vijayanand S

    2015-05-01

    This paper attempts to discern the physical mechanism of the oxidative desulfurization process simultaneously assisted by ultrasound and phase transfer agent (PTA). With different experimental protocols, an attempt is made to deduce individual beneficial effects of PTA and ultrasound on the oxidative desulfurization system, and also the synergy between the effects of PTA and ultrasound. Effect of PTA is more marked for mechanically stirred system due to mass transfer limitations, while intense emulsification due to ultrasound helps overcome the mass transfer limitations and reduces the extent of enhancement of oxidation by PTA. Despite application of PTA and ultrasound, the intrinsic factors and properties of the reactants such as polarity (and hence partition coefficient) and diffusivity have a crucial effect on the extent of oxidation. The intrinsic reactivity of the oxidant also plays a vital role, as seen from the extent of oxidation achieved with performic acid and peracetic acid. The interfacial transport of oxidant in the form of oxidant-PTA complex reduces the undesired consumption of oxidant by the reducing species formed during transient cavitation in organic medium, which helps effective utilization of oxidant towards desulfurization. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Optimized Ultrasound-Assisted Oxidative Desulfurization Process of Simulated Fuels over Activated Carbon-Supported Phosphotungstic Acid

    Directory of Open Access Journals (Sweden)

    Peniel Jean Gildo

    2018-01-01

    Full Text Available Recent technological advancements respond to the call to minimize/eliminate emissions to the atmosphere. However, on the average, fuel oils which is one of the major raw materials, is found to increase in sulfur concentration due to a phenomenon called thermal maturation. As such, a deeper desulfurization process is needed to obtain low/ultra-low sulfur fuel oils. In the present study, the ultrasound assisted oxidative desulfurization (UAOD processes using the H2O2 and HPW-AC oxidizing system applied to simulated fuel (~2800 ppm sulfur in the form of dibenzothiophene, benzothiophene, and thiophene dissolved in toluene, were optimized. After the pre-saturation of the HPW-AC with the simulated fuel, H2O2 was added just before the reaction was commenced under ultrasonic irradiation. After the application of both 2k-factorial design of experiment for screening and Face-Centered Design of Experiment for optimization, it was found that 25.52 wt% of H2O2 concentration, 983.9 mg of catalyst dose, 9.52 mL aqueous phase per 10 mL of the organic phase and 76.36 minutes of ultrasonication time would render 94.74% oxidation of the sulfur compounds in the simulated fuel. After the application of the optimized parameters to kerosene and employing a 4-cycle extraction using acetonitrile, 99% of the original sulfur content were removed from the kerosene using the UAOD optimized parameters. The desulfurization process resulted in a low-sulfur kerosene which retained its basic fuel properties such as density, viscosity and calorific value.

  13. Desulfurization of fuels with ionic liquids by extraction and oxidative extraction processes

    OpenAIRE

    Rodríguez Cabo, Borja

    2014-01-01

    The excessive emission of pollutants to the atmosphere has been a problem during the last few decades due to, among other reasons, the massive use of transports. In order to avoid this problem, many methods are being investigated as an alternative to the classical hydrodesulfurization technique, such as adsorption, biodesulfurization, extraction and oxidation. The extractive desulfurization is one of the most promising alternatives. Moreover, its enhancement with selective oxidation of sulfur...

  14. Ultrasound-assisted oxidative desulfurization process of liquid fuel by phosphotungstic acid encapsulated in a interpenetrating amine-functionalized Zn(II)-based MOF as catalyst.

    Science.gov (United States)

    Afzalinia, Ahmad; Mirzaie, Abbas; Nikseresht, Ahmad; Musabeygi, Tahereh

    2017-01-01

    In this work, ultrasound-assisted oxidative desulfurization (UAOD) of liquid fuels performed with a novel heterogeneous highly dispersed Keggin-type phosphotungstic acid (H 3 PW 12 O 40 , PTA) catalyst that encapsulated into an amino-functionalized MOF (TMU-17-NH 2 ). The prepared composite exhibits high catalytic activity and reusability in oxidative desulfurization of model fuel. Ultrasound-assisted oxidative desulfurization (UAOD) is a new way to performed oxidation reaction of sulfur-contain compounds rapidly, economically, environment-friendly and safely, under mild conditions. Ultrasound waves can be apply as an efficient tool to decrease the reaction time and improves oxidative desulfurization system performance. PTA@TMU-17-NH 2 could be completely performed desulfurization of the model oil by 20mg of catalyst, O/S molar ratio of 1:1 in presence of MeCN as extraction solvent. The obtained results indicated that the conversions of DBT to DBTO 2 achieve 98% after 15min in ambient temperature. In this work, we prepared TMU-17-NH 2 and PTA/TMU-17-NH 2 composite by ultrasound irradiation for first time and employed in UAOD process. Prepared catalyst exhibit an excellent reusability without PTA leaching and loss of activity. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1991-05-16

    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  16. Management of dry flue gas desulfurization by-products in underground mines. Annual report, October 1994--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Chugh, Y.P.; Dutta, D.; Esling, S. [and others

    1995-10-01

    On September 30, 1993, the U.S. Department of Energy-Morgantown Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues (CCBs) in abandoned coal mines, and will assess the environmental impact of such underground CCB placement. This report describes progress in the following areas: environmental characterization, mix development and geotechnical characterization, material handling and system economics, underground placement, and field demonstration.

  17. Carbon behavior in the cyclic operation of dry desulfurization process for oxy-fuel integrated gasification combined cycle power generation

    International Nuclear Information System (INIS)

    Kobayashi, Makoto; Akiho, Hiroyuki

    2016-01-01

    Highlights: • Power plant with semi-closed gas turbine and O_2–CO_2 coal gasifier was studied. • Dry gas sulfur removal sorbent was improved for durability to carbon deposition. • The improved sorbent showed very low amount of deposited carbon during operation. • The sorbent is regenerable to be used repeatedly in the cyclic operation. • The sorbent exhibited high sulfur-removal performance in the cyclic operation. - Abstract: The dry sulfur-removal process is essential to provide suitable syngas treatment for the oxy-fuel integrated gasification combined cycle power generation plant. It is required that the dry sulfur-removal process to be durable to the carbon deposition due to syngas containing high concentration of carbon monoxide in addition to achieve sufficient performance for sulfur removal. Zinc ferrite sorbent is the most promising candidate for the dry sulfur-removal process. The sorbent was improved to enhance durability to the carbon deposition by modifying preparation. The improved sorbent was prepared from sulfates as the raw materials of zinc ferrite, while the former sorbent was using nitrates as the raw materials. The improved sorbent as well as the former sorbent were evaluated on the performance and carbon deposition tendency in oxy-fuel syngas condition in a fixed bed reactor at elevated pressure and temperature. The results expressed that the improved sorbent has higher desulfurization performance and durability to carbon deposition in the condition expected for cyclic operation of the sulfur-removal process in comparison with the former sorbent. The improved sorbent possessed the superior desulfurization performance as well as the capability for inhibit carbon deposition in the oxy-fuel syngas conditions. The results confirmed the enhanced feasibility of the dry sulfur-removal process by utilizing the improved sorbent.

  18. Desulfurization of Jordanian oil shale

    International Nuclear Information System (INIS)

    Abu-Jdayil, B. M.

    1990-01-01

    Oxy desulfurization process and caustic treatment were applied in this work to remove sulfur from Jordanian oil shale. The oxy desulfurization process has been studied in a batch process using a high pressure autoclave, with constant stirring speed, and oxygen and water were used as desulfurizing reagents. Temperature, oxygen pressure, batch time, and particle size were found to be important process variables, while solid/liquid ratio was found to have no significant effect on the desulfurization process. The response of different types of oil shale to this process varied, and the effect of the process variables on the removal of total sulfur, pyritic sulfur, organic sulfur, total carbon, and organic carbon were studied. An optimum condition for oxy desulfurization of El-Lajjun oil shale, which gave maximum sulfur removal with low loss of carbon, was determined from the results of this work. The continuous reaction model was found to be valid, and the rate of oxidation for El-Lajjun oil shale was of the first order with respect to total sulfur, organic sulfur, total carbon, and organic carbon. For pyritic sulfur oxidation, the shrinking core model was found to hold and the rate of reaction controlled by diffusion through product ash layer. An activation energy of total sulfur, organic sulfur, pyritic sulfur, total carbon, and organic carbon oxidation was calculated for the temperature range of 130 -190 degrees celsius. In caustic treatment process, aqueous sodium hydroxide at 160 degrees celsius was used to remove the sulfur from El-Lajjun oil shale. The variables tested (sodium hydroxide concentration and treatment time) were found to have a significant effect. The carbon losses in this process were less than in the oxy desulfurization process. 51 refs., 64 figs., 121 tabs. (A.M.H.)

  19. GeoChip-based analysis of the microbial community functional structures in simultaneous desulfurization and denitrification process.

    Science.gov (United States)

    Yu, Hao; Chen, Chuan; Ma, Jincai; Liu, Wenzong; Zhou, Jizhong; Lee, Duu-Jong; Ren, Nanqi; Wang, Aijie

    2014-07-01

    The elemental sulfur (S°) recovery was evaluated in the presence of nitrate in two development models of simultaneous desulfurization and denitrification (SDD) process. At the loading rates of 0.9 kg S/(m³·day) for sulfide and 0.4 kg N/(m³·day) for nitrate, S° conversion rate was 91.1% in denitrifying sulfide removal (DSR) model which was higher than in integrated simultaneous desulfurization and denitrification (ISDD) model (25.6%). A comprehensive analysis of functional diversity, structure and metabolic potential of microbial communities was examined in two models by using functional gene array (GeoChip 2.0). GeoChip data indicated that diversity indices, community structure, and abundance of functional genes were distinct between two models. Diversity indices (Simpson's diversity index (1/D) and Shannon-Weaver index (H')) of all detected genes showed that with elevated influent loading rate, the functional diversity decreased in ISDD model but increased in DSR model. In contrast to ISDD model, the overall abundance of dsr genes was lower in DSR model, while some functional genes targeting from nitrate-reducing sulfide-oxidizing bacteria (NR-SOB), such as Thiobacillus denitrificans, Sulfurimonas denitrificans, and Paracoccus pantotrophus were more abundant in DSR model which were highly associated with the change of S(0) conversion rate obtained in two models. The results obtained in this study provide additional insights into the microbial metabolic mechanisms involved in ISDD and DSR models, which in turn will improve the overall performance of SDD process. Copyright © 2014. Published by Elsevier B.V.

  20. ABB wet flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Niijhawan, P.

    1994-12-31

    The wet limestone process for flue gas desulfurization (FGD) is outlined. The following topics are discussed: wet flue gas desulfurization, wet FGD characteristics, wet scrubbers, ABB wet FGD experience, wet FGD forced oxidation, advanced limestone FGD systems, key design elements, open spray tower design, spray tower vs. packed tower, important performance parameters, SO{sub 2} removal efficiency, influence by L/G, limestone utilization, wet FGD commercial database, particulate removal efficiencies, materials of construction, nozzle layout, spray nozzles, recycle pumps, mist elimination, horizontal flow demister, mist eliminator washing, reagent preparation system, spray tower FGDS power consumption, flue gas reheat options, byproduct conditioning system, and wet limestone system.

  1. Continuous-flow ultrasound assisted oxidative desulfurization (UAOD) process: An efficient diesel treatment by injection of the aqueous phase.

    Science.gov (United States)

    Rahimi, Masoud; Shahhosseini, Shahrokh; Movahedirad, Salman

    2017-11-01

    A new continuous-flow ultrasound assisted oxidative desulfurization (UAOD) process was developed in order to decrease energy and aqueous phase consumption. In this process the aqueous phase is injected below the horn tip leading to enhanced mixing of the phases. Diesel fuel as the oil phase with sulfur content of 1550ppmw and an appropriate mixture of hydrogen peroxide and formic acid as the aqueous phase were used. At the first step, the optimized condition for the sulfur removal has been obtained in the batch mode operation. Hence, the effect of more important oxidation parameters; oxidant-to-sulfur molar ratio, acid-to-sulfur molar ratio and sonication time were investigated. Then the optimized conditions were obtained using Response Surface Methodology (RSM) technique. Afterwards, some experiments corresponding to the best batch condition and also with objective of minimizing the residence time and aqueous phase to fuel volume ratio have been conducted in a newly designed double-compartment reactor with injection of the aqueous phase to evaluate the process in a continuous flow operation. In addition, the effect of nozzle diameter has been examined. Significant improvement on the sulfur removal was observed specially in lower sonication time in the case of dispersion method in comparison with the conventional contact between two phases. Ultimately, the flow pattern induced by ultrasonic device, and also injection of the aqueous phase were analyzed quantitatively and qualitatively by capturing the sequential images. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Development of economical and high efficient desulfurization process using low rank coal; Teitankadotan wo mochiita ankana kokoritsu datsuryuho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Takarada, Y; Kato, K; Kuroda, M; Nakagawa, N [Gunma University, Gunma (Japan). Faculty of Engineering; Roman, M [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)

    1997-02-01

    Experiment reveals the characteristics of low rank coal serving as a desulfurizing material in fluidized coal bed reactor with oxygen-containing functional groups exchanged with Ca ions. This effort aims at identifying inexpensive Ca materials and determining the desulfurizing characteristics of Ca-carrying brown coal. A slurry of cement sludge serving as a Ca source and low rank coal is agitated for the exchange of functional groups and Ca ions, and the desulfurizing characteristics of the Ca-carrying brown coal is determined. The Ca-carrying brown coal and high-sulfur coal char is mixed and incinerated in a fluidized bed reactor, and it is found that a desulfurization rate of 75% is achieved when the Ca/S ratio is 1 in the desulfurization of SO2. This rate is far higher than the rate obtained when limestone or cement sludge without preliminary treatment is used as a desulfurizer. Next, Ca-carrying brown coal and H2S are caused to react upon each other in a fixed bed reactor, and then it is found that desulfurization characteristics are not dependent on the diameter of the Ca-carrying brown coal grain, that the coal is different from limestone in that it stays quite active against H2S for long 40 minutes after the start of the reaction, and that CaO small in crystal diameter is dispersed in quantities into the char upon thermal disintegration of Ca-carrying brown coal to cause the coal to say quite active. 5 figs.

  3. Biological (flue) gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Buisman, C.J.N.; Dijkman, H. [PAQUES, Balk (Netherlands); Prins, W.L.; Verbraak, P. [Biostar CV, Balk (Netherlands); Den Hartog, A.J. [Hoogovens Groep BV, IJmuiden (Netherlands)

    1995-12-31

    Biotechnological research has been carried out to find new micro-organisms and processes to make useful products, and to reveal new ways and biotechnological mechanisms to produce elemental sulfur in waste water treatment. Biotechnological development work has been carried out and the first commercial installation (on 300 m{sup 3}/hr scale) to produce sulfur from polluted waste water was started up in 1992. The importance of this recent research and development in the area of waste water treatment was recognized. In an intensive cooperation between Hoogovens Technical Services and PACQUES the concept for a totally new Biological Flue Gas Desulfurization process (BIO-FGD), producing sulfur as by-product, was invented. It consists of the combination of a sodium scrubber with two biological reactors resulting in a very attractive new concept for a gas cleaning process. A description of the process is given and the pilot plant results are outlined. 4 figs., 5 refs.

  4. Biological flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Buisman, C.J.N.; Dijkman, H.; Wijte, G.; Prins, W.L.; Verbraak, P.; Hartog, H.A.J. den [Paper B.V. Blak (Netherlands)

    1995-08-01

    A new biological flue gas desulfurization process (BIO-FGD) producing sulphur as a by-product was invented by Paques BV and Hoogens Technical Services in 1993. Sulphur dioxide is absorbed from flue gas using a combination of a sodium based scrubber and two biological reactors, an anaerobic and an aerobic biological reactor. The article describes the process and its evaluation in a pilot plant at 2 MW scale, designed to remove 6 kg/hr SO{sub 2} of the 2 million m{sup 3}/hr of flue gas produced at the 600 MW coal fired power station Amer-8 situated in Geertruidenberg in the south of the Netherlands. Research so far has proved the process works successfully and at low cost. A second pilot plant due to start-up in May 1995 will provide data on scale up and further information on sulphur recovery. 5 refs., 5 figs.

  5. The Biocatalytic Desulfurization Project

    Energy Technology Data Exchange (ETDEWEB)

    David Nunn; James Boltz; Philip M. DiGrazia; Larry Nace

    2006-03-03

    The material in this report summarizes the Diversa technical effort in development of a biocatalyst for the biodesulfurization of Petro Star diesel as well as an economic report of standalone and combined desulfurization options, prepared by Pelorus and Anvil, to support and inform the development of a commercially viable process. We will discuss goals of the projected as originally stated and their modification as guided by parallel efforts to evaluate commercialization economics and process parameters. We describe efforts to identify novel genes and hosts for the generation of an optimal biocatalyst, analysis of diesel fuels (untreated, chemically oxidized and hydrotreated) for organosulfur compound composition and directed evolution of enzymes central to the biodesulfurization pathway to optimize properties important for their use in a biocatalyst. Finally we will summarize the challenges and issues that are central to successful development of a viable biodesulfurization process.

  6. Biocatalytic desulfurization of petroleum and middle distillates

    International Nuclear Information System (INIS)

    Monticello, D.J.

    1993-01-01

    Biocatalytic Desulfurization (BDS) represents an alternative approach to the reduction of sulfur in fossil fuels. The objective is to use bacteria to selectively remove sulfur from petroleum and middle distillate fractions, without the concomitant release of carbon. Recently, bacteria have been developed which have the ability to desulfurize dibenzothiophene (DBT) and other organosulfur molecules. These bacteria are being developed for use in a biocatalyst-based desulfurization process. Analysis of preliminary conceptual engineering designs has shown that this process has the potential to complement conventional technology as a method to temper the sulfur levels in crude oil, or remove the recalcitrant sulfur in middle distillates to achieve the deep desulfurization mandated by State and Federal regulations. This paper describes the results of initial feasibility studies, sensitivity analyses and conceptual design work. Feasibility studies with various crude oils and middle distillates achieved unoptimized desulfurization levels of 40-80%. Sensitivity analyses indicate that total desulfurization costs of about $3.00 per barrel for crude oil and less than $2.00 per barrel for diesel are possible. Key criteria for commercial success of the process include the cost and half-life of the biocatalyst, residence time in the reactor, oil/water ratios required to extract the sulfur and the disposition of the separated sulfur products. 9 refs., 3 figs

  7. Molecular dynamics simulations of the effect of NaCl-doping on the calcination characteristics in desulfurization processes

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, T.; Kurita, N.; Naruse, I. [Toyohashi University of Technology, Toyohashi (Japan)

    2003-03-01

    Desulfurization performance of wasted seashells was found to be over twice as high as that of limestone, which was currently used as a desulfurizer in fluidized bed coal combustors. NaCl-doping into limestone was also found to be effective in improving the desulfurization efficiency. From X-ray diffraction (XRD) analyses of calcined seashell, limestone and NaCl-doped limestone, on the other hand, not only the calcined seashell but also the NaCl-doped limestone had strong peaks of CaO crystal, and those two materials also had high desulfurization activity. This improvement was hypothesized to be due to NaCl causing a change in the crystal structure of CaO. In order to elucidate the effect of NaCl addition on the CaO crystal structure in the incineration of CaCO{sub 3} the change of structures was simulated by means of molecular dynamics simulations of CaO. In the simulation one molecule of NaCl was exchanged into one molecule of CaO. A pair correlation functions and the distances between Ca and O atoms, which were obtained by the simulations, were compared with those from the crystal CaO. NaCl-doping affected the crystalization temperature of CaO. The crystallization temperature increased due to adding a little bit of NaCl. From the result of the pair correlation functions obtained in NaCl-doped CaO, the difference of the potential energy of NaCl from that of CaO seemed to contribute to the crystallization of the bulk of CaO. The simulation and experimental results obtained suggested that NaCl-doping contributed to crystallizing the CaO molecules.

  8. Characterization of desulfurization, denitrogenation and process sulfur transfer during hydropyrolysis of Chinese high sulfur coals

    Energy Technology Data Exchange (ETDEWEB)

    Sun Chenggong; Li Baoqing [Chinese Academy of Sciences, Taiyuan (China). State Key Lab. of Coal Conversion; Snape, C.E. [Strathclyde Univ., Glasgow (United Kingdom). Dept. of Pure and Applied Chemistry

    1997-12-31

    The process desulphurization and denitrogenation of Chinese high sulfur coals and the characteristics of sulfur transformation during non-catalytic hydropyrolysis were investigated by a 10 g fixed-bed reactor and a small-scaled reactor with online spectrometry respectively. It was indicated that more than 70% of the total sulfur of the two high sulfur coals and almost all pyritic sulfur are removed as H{sub 2}S, leaving the char and tar products with much less sulfur distribution. The liability of sulfur transformation to tar products is closely related to the thiophenic structure forms rather than sulfidic forms. At the same time, the formation of trace amount of sulfur dioxide indicates the presence of inherent sulfur oxidation reactions inside coal frame structures even under H{sub 2} pressure. (orig.)

  9. Liquefaction and desulfurization of coal using synthesis gas

    Science.gov (United States)

    Fu, Yuan C.

    1977-03-08

    A process for desulfurizing and liquefying coal by heating said coal at a temperature of 375.degree.-475.degree. C in the presence of a slurry liquid, hydrogen, carbon monoxide, steam, and a catalyst comprising a desulfurization catalyst and an alkali metal salt.

  10. Preparation and characterization of nanocomposite of graphitic carbon nitride and TiO2 as a porous support for nano catalyst for desulfurization process

    Directory of Open Access Journals (Sweden)

    Ezzat Rafiee

    2017-12-01

    Full Text Available A novel heterogeneous nanocatalyst H3PW12O40/TiO2/g-C3N4 (PW/TiO2/CN was successfully synthesized by immobilization of PW on TiO2/CN nanocomposite, and characterized by SEM, BET, FT-IR, XRD, EDX, TEM and ICP. Catalytic performance of the as-prepared catalyst was investigated for the selective oxidation of sulfides to sulfoxides and sulfones in the presence of H2O2 as oxidant with good conversion and high selectivity. The main factors influencing the ability for selective oxidation of sulfides were studied, including reaction temperature, amounts of the catalyst, H2O2 and type of the reaction solvent. Catalytic oxidation of the different model oils containing dibenzothiophene (DBT, benzothiophene (BT and thiophene (T into corresponding sulfone was also studied. Effects of different extractive solvents, aromatics, alkenes and nitrogen compounds on the oxidative desulfurization processes (ODS were also studied. In addition, reducing the level of sulfur content in real oil was investigated. The recyclability of the PW/TiO2/CN nanocatalyst for various cycles without a significant loss of activity was proved. The heterogeneity of the as-prepared catalyst was confirmed by leaching tests. Keywords: Graphitic carbon nitride, Extraction, Tetrabutyl titanate, Heteropoly acid, Oxidative desulfurization, Oil

  11. The Study of the Desulfurization Process of Oil and Oil Products of "Zhanazhol" Oil Field Using the Approaches of Green Chemistry

    OpenAIRE

    Zhaksyntay K. Kairbekov; Zhannur K. Myltykbaeva; Nazym T. Smagulova; Dariya K. Kanseitova

    2015-01-01

    In this paper we studied sono catalytic oxidative desulfurization of oil and diesel fraction from “Zhanazhol” oil deposits. We have established that the combined effect of the ultrasonic field and oxidant (ozone-air mixture) in the presence of the catalyst on the oil is potentially very effective method of desulfurization of oil and oil products. This method allows increasing the degree of desulfurization of oil by 62%.

  12. Methods for dry desulfurization of flue gas

    International Nuclear Information System (INIS)

    Bjondahl, F.

    2002-01-01

    In this report different types of dry desulfurization processes are de-scribed. These processes are utilized for the removal of SO 2 from flue gases. Basic process descriptions, information on different sorbent types and their properties and some comments based on the authors own experience are included. Information on disposal or use of the end product from these processes is also provided. (orig.)

  13. Novel polyoxometalate silica nano-sized spheres: efficient catalysts for olefin oxidation and the deep desulfurization process.

    Science.gov (United States)

    Nogueira, Lucie S; Ribeiro, Susana; Granadeiro, Carlos M; Pereira, Eulália; Feio, Gabriel; Cunha-Silva, Luís; Balula, Salete S

    2014-07-07

    A novel method to prepare silica nano-sized particles incorporating polyoxometalates was developed leading to a new efficient heterogeneous oxidative catalyst. Zinc-substituted polyoxotungstate [PW11Zn(H2O)O39](5-) (PW11Zn) was encapsulated into silica nanoparticles using a cross-linked organic-inorganic core, performed through successive spontaneous reactions in water. The potassium salt of PW11Zn and the composite formed, PW11Zn-APTES@SiO2, were characterized by a myriad of solid-state methods such as FT-IR, FT-Raman, (31)P and (13)C CP/MAS solid-state NMR, elemental analysis and SEM-EDS, confirming the integrity of the PW11Zn structure immobilized in the silica nanoparticles. The new composite has shown to be a versatile catalyst for the oxidation of olefins and also to catalyze the desulfurization of a model oil using H2O2 as the oxidant and acetonitrile as the solvent. The novel composite material was capable of being recycled without significant loss of activity and maintaining its structural stability for consecutive desulfurization and olefin oxidative cycles.

  14. The control of H2S in biogas using iron ores as in situ desulfurizers during anaerobic digestion process.

    Science.gov (United States)

    Zhou, Qiying; Jiang, Xia; Li, Xi; Jiang, Wenju

    2016-09-01

    In this study, five kinds of iron ores, limonite, hematite, manganese ore, magnetite and lava rock, were used as the in situ desulfurizers in the anaerobic digestion reactors to investigate their effects on controlling H2S in biogas. The results show that the addition of the five iron ores could significantly control the content of H2S in biogas, with the best performance for limonite. As limonite dosages increase (10-60 g/L), the contents of H2S in biogas were evidently decreased in the digesters with different initial sulfate concentrations (0-1000 mg/L). After the anaerobic digestion, the removed sulfur was mostly deposited on the surface of limonite. A possible mechanism of H2S control in biogas by limonite was proposed preliminarily, including adsorption, FeS precipitation, and Fe (III) oxidation. The results demonstrated that limonite was a promising in situ desulfurizer for controlling H2S in biogas with low cost and high efficiency.

  15. THE BIOCATALYTIC DESULFURIZATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Steven E. Bonde; David Nunn

    2003-01-01

    During the first quarter of the Biological Desulfurization project several activities were pursued. A project kickoff meeting was held at the Diversa facility in San Diego, CA. Activities that were in process before the meeting and begun afterwards by Diversa Corporation and Petro Star Inc. include: Technology transfer in the form of information generated by Enchira to Diversa, the purchase and installation of equipment by Diversa, development of synthetic methods and preparation of organo-sulfur substrates for use in determining enzyme activities, production of extract via Petro Star's CED process, detailed analysis of Petro Star Inc. diesel and CED extract, and several activities in molecular biology. Diversa Corporation, in the area of molecular biology, engaged in several activities in support of the task list of the contract. These included: construction of a genomic library; development and utilization of a sequence-based gene discovery effort; a parallel discovery approach based on functional expression of enzymes with the ability to oxidize organosulfur compounds. Biodesulfurization genes have already been identified and are being sequenced and subcloned for expression in heterologous biological hosts. Diversa has evaluated and adapted assays developed by Enchira used to assess the activities of DBT and DBTO{sub 2} monooxygenases. Finally, Diversa personnel have developed two novel selection/screen strategies for the improvement of biocatalyst strains by directed evolution.

  16. Fundamental studies of desulfurization processes: reaction of methanethiol on ZnO and Cs/ZnO

    Science.gov (United States)

    Dvorak, Joseph; Jirsak, Tomas; Rodriguez, José A.

    2001-05-01

    The reaction of methanethiol on ZnO and Cs promoted ZnO surfaces has been studied with synchrotron based photoemission and thermal desorption spectroscopy. On ZnO, methanethiol undergoes selective reaction to produce carbon monoxide (37-58%), methane (23-38%), formaldehyde (12-15%), ethane (1-11%), and a mixture of ethylene and acetylene (3-13%). At low temperatures (cleavage occurs to yield methyl intermediate and atomic S. Carbon is removed from the surface as gaseous products above 500 K, and atomic sulfur remains bound to the zinc sites of the surface. Submonolayer amounts of cesium do not have a significant promotional effect on C-S bond cleavage, whereas Cs multilayers are found to significantly lower the activation barrier for C-S bond cleavage. This study illustrates the chemistry associated with the desulfurization of thiols on a catalytically relevant oxide surface.

  17. Desulfurization of organic sulfur from a subbituminous coal by electron-transfer process with K{sub 4}(Fe(CN){sub 6})

    Energy Technology Data Exchange (ETDEWEB)

    Dipu Borah [Pragjyotika J College, Titabar (India). Department of Chemistry

    2006-02-01

    The desulfurization reaction involving direct electron transfer from potassium ferrocyanide, K{sub 4}(Fe(CN){sub 6}), successfully removed organic sulfur from a subbituminous coal. The temperature variation of desulfurization revealed that increase of temperature enhanced the level of sulfur removal. Moreover, the desulfurization reaction was found to be dependent on the concentration of K{sub 4}(Fe(CN){sub 6}). Gradual increase in the concentration of K{sub 4}(Fe(CN){sub 6}) raised the magnitude of desulfurization, but at higher concentration the variation was not significant. The removal of organic sulfur from unoxidized coal slightly increased with reduced particle size. Desulfurization from oxidized coals (prepared by aerial oxidation) revealed a higher level of sulfur removal in comparison to unoxidized coal. Highest desulfurization of 36.4 wt % was obtained at 90{sup o}C and 0.1 M concentration of K{sub 4}(Fe(CN){sub 6}) in the 100-mesh size oxidized coal prepared at 200{sup o}C. Model sulfur compound study revealed that aliphatic types of sulfur compounds are primarily responsible for desulfurization. Because of higher stability, thiophene and condensed thiophene-type of compounds perhaps remained unaffected by the electron-transfer agent. Infrared study revealed the formation of oxidized sulfur compounds (sulfoxide, sulfone, sulfonic acid, etc.) in the oxidized coals. The desulfurization reaction in different systems is well-represented by the pseudo-first-order kinetic model. Application of the transition state theory indicated that the desulfurization reaction proceeds with the absorption of heat (endothermic reaction) and is nonspontaneous in nature. 53 refs., 6 figs., 3 tabs.

  18. Desulfurization of Diesel Fuel by Oxidation and Solvent Extraction

    OpenAIRE

    Wadood Taher Mohammed; Raghad Fareed Kassim Almilly; Sheam Bahjat Abdulkareem Al-Ali

    2015-01-01

    This research presents a study in ultra-desulfurization of diesel fuel produced from conventional hydro desulfurization process, using oxidation and solvent extraction techniques. Dibenzothiophene (DBT) was the organosulfur compound that had been detected in sulfur removal. The oxidation process used hydrogen peroxide as an oxidant and acetic acid as homogeneous catalyst . The solvent extraction process used acetonitrile (ACN) and N-methyl – 2 - pyrrolidone (NMP) as extractants . Also the ef...

  19. A Green Desulfurization Technique: Utilization of Flue Gas SO2 to Produce H2 via a Photoelectrochemical Process Based on Mo-Doped BiVO4

    Directory of Open Access Journals (Sweden)

    Jin Han

    2017-12-01

    Full Text Available A green photoelectrochemical (PEC process with simultaneous SO2 removal and H2 production has attracted an increasing attention. The proposed process uses flue gas SO2 to improve H2 production. The improvement of the efficiency of this process is necessary before it can become industrial viable. Herein, we reported a Mo modified BiVO4 photocatalysts for a simultaneous SO2 removal and H2 production. And the PEC performance could be significantly improved with doping and flue gas removal. The evolution rate of H2 and removal of SO2 could be enhanced by almost three times after Mo doping as compared with pristine BiVO4. The enhanced H2 production and SO2 removal is attributed to the improved bulk charge carrier transportation after Mo doping, and greatly enhanced oxidation reaction kinetics on the photoanode due to the formation of SO32− after SO2 absorption by the electrolyte. Due to the utilization of SO2 to improve the production of H2, the proposed PEC process may become a profitable desulfurization technique.

  20. A green desulfurization technique: utilization of flue gas SO2 to produce H2 via a photoelectrochemical process based on Mo-doped BiVO4

    Science.gov (United States)

    Han, Jin; Li, Kejian; Cheng, Hanyun; Zhang, Liwu

    2017-12-01

    A green photoelectrochemical (PEC) process with simultaneous SO2 removal and H2 production has attracted an increasing attention. The proposed process uses flue gas SO2 to improve H2 production. The improvement of the efficiency of this process is necessary before it can become industrial viable. Herein, we reported a Mo modified BiVO4 photocatalysts for a simultaneous SO2 removal and H2 production. And the PEC performance could be significantly improved with doping and flue gas removal. The evolution rate of H2 and removal of SO2 could be enhanced by almost 3 times after Mo doping as compared with pristine BiVO4. The enhanced H2 production and SO2 removal is attributed to the improved bulk charge carrier transportation after Mo doping, and greatly enhanced oxidation reaction kinetics on the photoanode due to the formation of SO32- after SO2 absorption by the electrolyte. Due to the utilization of SO2 to improve the production of H2, the proposed PEC process may become a profitable desulfurization technique.

  1. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, March 11, 1993--June 11, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L.

    1993-11-01

    There are two basic approaches to addressing the problem of SO{sub 2} and NO{sub x} emissions: (1) desulfurize (and denitrogenate) the feedstock prior to or during combustion; or (2) scrub the resultant SO{sub 2} and oxides of nitrogen from the boiler flue gases. The flue gas processing alternative has been addressed in this project via microbial reduction of SO{sub 2} and NO{sub x} by sulfate-reducing bacteria

  2. THE BIOCATALYTIC DESULFURIZATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Scott Collins; David Nunn

    2003-10-01

    The analysis of Petro Star diesel sulfur species is complete and a report is attached. Further analytical efforts will concentrate on characterization of diesel fuel, hydrodesulfurized to varying degrees, in order to determine sulfur species that may be problematic to hydrogen treatment and represent potential target substrates for biodesulfurization in a combined HDS-BDS process. Quotes have been received and are being considered for the partial treatment of Petro Star Inc. marine diesel fuel. Direction of research is changing slightly; economic analysis of the hyphenated--BDSHDS, BDS-CED--has shown the highest probability of success to be with a BDS-HDS process where the biodesulfurization precedes hydrodesulfurization. Thus, the microorganisms will be tailored to focus on those compounds that tend to be recalcitrant to hydrodesulfurization and decrease the severity of the hydrodesulfurization step. A separate, detailed justification for this change is being prepared. Research activities have continued in the characterization of the desulfurization enzymes from multiple sources. Genes for all DszA, -B, -C and -D enzymes (and homologs) have been cloned and expressed. Activity determinations, on a variety of substituted benzothiophene and dibenzothiophene substrates, have been carried out and continue. In addition, chemical synthesis efforts have been carried out to generate additional substrates for analytical standards and activity determinations. The generation of a GSSM mutant library of the ''Rhodococcus IGTS8 dszA'' gene has been completed and development of protocols for a high throughput screen to expand substrate specificity are nearing completion. In an effort to obtain improved hosts as biocatalyst, one hundred-thirty ''Rhodococcus'' and related strains are being evaluated for growth characteristics and other criteria deemed important for an optimal biocatalyst strain. We have also begun an effort to generate

  3. FY1995 development of economical and high efficient desulfurization process using low rank coal; 1995 nendo teitankadotan wo mochiita ankana kokoritsu datsuryuho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The objective of this study is to develop a new efficient desulfurization technique using a Ca ion-exchanged coal prepared from low rank coal and calcium raw material as a SO{sub 2} sorbent. Ion-exchange of calcium was carried out by soaking and mixing brown coal particles in milk of lime or slurry of industrial waste from concrete manufacture process. About 10wt% of Ca was easily incorporated into Yallourn coal. The ion-exchanged Ca was transformed to ultra-fine CaO particles upon pyrolysis of coal. The reactivity of CaO produced from Ca-exchanged coal to SO{sub 2} was extraordinary high and the CaO utilization of above 90% was easily achieved, while the conversion of natural limestone was less than 30% under the similar experimental conditions. High activity of Ca-exchanged coal was appreciably observed in a pressurized fluidized bed combustor. Ca-exchanged coal was quite effective for the removal of hydrogen sulfide. (NEDO)

  4. Investigation of process variables and intensification effects of ultrasound applied in oxidative desulfurization of model diesel over MoO3/Al2O3 catalyst.

    Science.gov (United States)

    Akbari, Azam; Omidkhah, Mohammadreza; Darian, Jafar Towfighi

    2014-03-01

    A new heterogeneous sonocatalytic system consisting of a MoO3/Al2O3 catalyst and H2O2 combined with ultrasonication was studied to improve and accelerate the oxidation of model sulfur compounds of diesel, resulting in a significant enhancement in the process efficiency. The influence of ultrasound on properties, activity and stability of the catalyst was studied in detail by means of GC-FID, PSD, SEM and BET techniques. Above 98% conversion of DBT in model diesel containing 1000 μg/g sulfur was obtained by new ultrasound-assisted desulfurization at H2O2/sulfur molar ratio of 3, temperature of 318 K and catalyst dosage of 30 g/L after 30 min reaction, contrary to the 55% conversion obtained during the silent process. This improvement was considerably affected by operation parameters and catalyst properties. The effects of main process variables were investigated using response surface methodology in silent process compared to ultrasonication. Ultrasound provided a good dispersion of catalyst and oxidant by breakage of hydrogen bonding and deagglomeration of them in the oil phase. Deposition of impurities on the catalyst surface caused a quick deactivation in silent experiments resulting only 5% of DBT oxidation after 6 cycles of silent reaction by recycled catalyst. Above 95% of DBT was oxidized after 6 ultrasound-assisted cycles showing a great improvement in stability by cleaning the surface during ultrasonication. A considerable particle size reduction was also observed after 3 h sonication that could provide more dispersion of catalyst in model fuel.

  5. Use of Flue Gas Desulfurization (FGD) Gypsum as a Heavy Metal Stabilizer in Contaminated Soils

    Science.gov (United States)

    Flue Gas Desulfurization (FGD) gypsum is a synthetic by-product generated from the flue gas desulfurization process in coal power plants. It has several beneficial applications such as an ingredient in cement production, wallboard production and in agricultural practice as a soil...

  6. System evaluation and microbial analysis of a sulfur cycle-based wastewater treatment process for Co-treatment of simple wet flue gas desulfurization wastes with freshwater sewage.

    Science.gov (United States)

    Qian, Jin; Liu, Rulong; Wei, Li; Lu, Hui; Chen, Guang-Hao

    2015-09-01

    A sulfur cycle-based wastewater treatment process, namely the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated process (SANI(®) process) has been recently developed for organics and nitrogen removal with 90% sludge minimization and 35% energy reduction in the biological treatment of saline sewage from seawater toilet flushing practice in Hong Kong. In this study, sulfate- and sulfite-rich wastes from simple wet flue gas desulfurization (WFGD) were considered as a potential low-cost sulfur source to achieve beneficial co-treatment with non-saline (freshwater) sewage in continental areas, through a Mixed Denitrification (MD)-SANI process trialed with synthetic mixture of simple WFGD wastes and freshwater sewage. The system showed 80% COD removal efficiency (specific COD removal rate of 0.26 kg COD/kg VSS/d) at an optimal pH of 7.5 and complete denitrification through MD (specific nitrogen removal rate of 0.33 kg N/kg VSS/d). Among the electron donors in MD, organics and thiosulfate could induce a much higher denitrifying activity than sulfide in terms of both NO3(-) reduction and NO2(-) reduction, suggesting a much higher nitrogen removal rate in organics-, thiosulfate- and sulfide-based MD in MD-SANI compared to sulfide alone-based autotrophic denitrification in conventional SANI(®). Diverse sulfate/sulfite-reducing bacteria (SRB) genera dominated in the bacterial community of sulfate/sulfite-reducing up-flow sludge bed (SRUSB) sludge without methane producing bacteria detected. Desulfomicrobium-like species possibly for sulfite reduction and Desulfobulbus-like species possibly for sulfate reduction are the two dominant groups with respective abundance of 24.03 and 14.91% in the SRB genera. Diverse denitrifying genera were identified in the bacterial community of anoxic up-flow sludge bed (AnUSB) sludge and the Thauera- and Thiobacillus-like species were the major taxa. These results well explained the successful operation of the lab

  7. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer.

    Science.gov (United States)

    Sun, Tonghua; Shen, Yafei; Jia, Jinping

    2014-02-18

    This paper proposes a novel self-developed JTS-01 desulfurizer and JZC-80 alkaline adsorbent for H2S removal and gas cleaning of the COREX coal gas in small-scale and commercial desulfurizing devices. JTS-01 desulfurizer was loaded with metal oxide (i.e., ferric oxides) catalysts on the surface of activated carbons (AC), and the catalyst capacity was improved dramatically by means of ultrasonically assisted impregnation. Consequently, the sulfur saturation capacity and sulfur capacity breakthrough increased by 30.3% and 27.9%, respectively. The whole desulfurizing process combined selective adsorption with catalytic oxidation. Moreover, JZC-80 adsorbent can effectively remove impurities such as HCl, HF, HCN, and ash in the COREX coal gas, stabilizing the system pressure drop. The JTS-01 desulfurizer and JZC-80 adsorbent have been successfully applied for the COREX coal gas cleaning in the commercial plant at Baosteel, Shanghai. The sulfur capacity of JTS-01 desulfurizer can reach more than 50% in industrial applications. Compared with the conventional dry desulfurization process, the modified AC desulfurizers have more merit, especially in terms of the JTS-01 desulfurizer with higher sulfur capacity and low pressure drop. Thus, this sorption enhanced catalytic desulfurization has promising prospects for H2S removal and other gas cleaning.

  8. Exhaust circulation into dry gas desulfurization process to prevent carbon deposition in an Oxy-fuel IGCC power generation

    International Nuclear Information System (INIS)

    Kobayashi, Makoto; Nakao, Yoshinobu; Oki, Yuso

    2014-01-01

    Highlights: • Power plant with semi-closed gas turbine and O 2 –CO 2 coal gasifier was studied. • We adopt dry gas sulfur removal process to establish the system. • The exhaust gas circulation remarkably prevented carbon deposition. • Efficiency loss for exhaust gas circulation is quite small. • Appropriate operating condition of sulfur removal process is revealed. - Abstract: Semi-closed cycle operation of gas turbine fueled by oxygen–CO 2 blown coal gasification provides efficient power generation with CO 2 separation feature by excluding pre-combustion type CO 2 capture that usually brings large efficiency loss. The plant efficiency at transmission end is estimated as 44% at lower heating value (LHV) providing compressed CO 2 with concentration of 93 vol%. This power generation system will solve the contradiction between economical resource utilization and reduction of CO 2 emission from coal-fired power plant. The system requires appropriate sulfur reduction process to protect gas turbine from corrosion and environment from sulfur emission. We adopt dry gas sulfur removal process to establish the system where apprehension about the detrimental carbon deposition from coal gas. The effect of circulation of a portion of exhaust gas to the process on the retardation of carbon deposition was examined at various gas compositions. The circulation remarkably prevented carbon deposition in the sulfur removal sorbent. The impact of the circulation on the thermal efficiency is smaller than the other auxiliary power consumption. Thus, the circulation is appropriate operation for the power generation

  9. Formulation and development of a methodology for selecting desulfurization processes, applicable to diluted sulfurous emissions from copper. Preparation of the engineering for a draft project using electron beam process, selected with this methodology

    International Nuclear Information System (INIS)

    Aros M, Patricia.

    1997-01-01

    A comparative study of clean desulfurization technologies was prepared. Sulfur abatement processes from S O 2 gas streams were analyzed in 21 processes grouped into 8 different types. Since there are a large number of potentially applicable processes, this thesis presents a process selection methodology based on a technical/economic analysis series, which produces a ranking by scores. Visual Basic 3.0 software was used to develop the program, which can be installed in any computer and uses Windows 95. Based on these results in Chilean Nuclear Energy Commission decided to present a draft project for electron beam technology. The full design and calculation for the humidifying and cooling tower was prepared together with the design of the remaining equipment for size, in order to estimate probable costs. The pre-feasibility evaluation determined that the process would generate profits, when the selling price of ammonium sulfate - which is a byproduct of the process that is used as fertilizer - is above US$ 110/ton. The process cost is heavily influenced by the capital cost of storage facilities, since a long term supply for ammonia reagent is needed. This product is imported in Chile and it is currently an expensive reagent. (author). 33 app., 7 tabs

  10. Effective identification of (NH4)2CO3 and NH4HCO3 concentrations in NaHCO3 regeneration process from desulfurized waste.

    Science.gov (United States)

    Govindan, Muthuraman; Karunakaran, Kannan; Nallasamy, Palanisami; Moon, Il Shik

    2015-01-01

    This work describes the quantitative analysis of (NH4)2CO3 and NH4HCO3 using a simple solution phase titration method. Back titration results at various (NH4)2CO3-NH4HCO3 ratios demonstrated that 6:4 ratio caused a 3% error in their differentiation, but very high errors were found at other ratios. A similar trend was observed for the double indicator method, especially when strong acid HCl was used as a titrant, where still less errors (2.5%) at a middle ratio of (NH4)2CO3-NH4HCO3 was found. Remaining ratios with low (NH4)2CO3 (2:8, 4:6) show high +ve error (found concentration is less) and high (NH4)2CO3 (7:3, 8:2, and 9:1) show high -ve error (found concentration is higher) and vice versa for NH4HCO3. In replacement titration using Na2SO4, at both higher end ratios of (NH4)2CO3-NH4HCO3 (2:8 and 9:1), both -ve and +ve errors were minimized to 75% by partial equilibrium arrest between (NH4)2CO3 and NH2COONH4, instead of more than 100% observed in back titration and only double indicator methods. In the presence of (NH4)2SO4 both -ve and +ve error% are completely reduced to 3±1 at ratios 2:8, 4:6, and 6:4 of (NH4)2CO3-NH4HCO3, which demonstrates that the equilibrium transformation between NH2COONH4 and (NH4)2CO3 is completely controlled. The titration conducted at lower temperature (5 °C) in the presence of (NH4)2SO4 at higher ratios of (NH4)2CO3-NH4HCO3 (7:3, 8:2,and 9:1) shows complete minimization of both -ve and +ve errors to 2±1%, which explains the complete arresting of equilibrium transformation. Finally, the developed method shows 2±1% error in differentiation of CO3(2-) and HCO3(-) in the regeneration process of NaHCO3 from crude desulfurized sample. The developed method is more promising to differentiate CO3(2-) and HCO3(-) in industrial applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Gas process technology for fuel cells. Desulfurization and other key problems; Gasprozesstechnik fuer Brennstoffzellen. Entschwefelung und andere Kernfragen

    Energy Technology Data Exchange (ETDEWEB)

    Heinzel, A.; Kalk, T.; Kvasnicka, A.; Roes, J.; Steffen, M.; Witzany, R. [Duisburg-Essen Univ., (Germany). ZBT Duisburg

    2008-07-01

    Fuel cells as Micro-CHP units for residential energy supply are one important technology option to improve energy efficiency and reduce emissions. Starting from natural gas as energy carrier, hydrogen is generated by catalytic processes. Prototypes are operated in field test in the meanwhile, but there are still important technical and scientific questions to deal with, as there are e.g. the desulfurisation of natural gas, the optimisation of heat integration in order to improve the efficiency of the complete system, the realisation of a closed water loop and last but not least the formation and impact of ammonia. At the same time, cost aspects and production technology have to be considered. (orig.)

  12. Desulfurization Sorbents for Transport-Bed Applications

    International Nuclear Information System (INIS)

    Gupta, Raghubir P.; Turk, Brian S.; Vierheilig, Albert A.

    1997-01-01

    This project extends the prior work on the development of fluidizable zinc titanate particles using a spray-drying technique to impart high reactivity and attrition resistance. The specific objectives are: (1) To develop highly reactive and attrition-resistant zinc titanate sorbents in 40- to 150-(micro)m particle size range for transport reactor applications; (2) To transfer sorbent production technology to private sector; and (3) To provide technical support to Sierra Pacific Clean Coal Technology Demonstration plant and FETC's Hot-Gas Desulfurization Process Development Unit (PDU), both employing a transport reactor system

  13. Ultrasound-Assisted Oxidative Desulfurization of Diesel

    Directory of Open Access Journals (Sweden)

    Niran K. Ibrahim

    2016-11-01

    Full Text Available Due to the dramatic environmental impact of sulfur emissions associated with the exhaust of diesel engines, last environmental regulations for ultra-low-sulfur diesel require a very deep desulfurization (up to 15 ppm, which cannot be met by the conventional hydrodesulfurization units alone. The proposed method involves a batch ultrasound-assisted oxidative desulfurization (UAODS of a previously hydrotreated diesel (containing 480 ppm sulfur so as to convert the residual sulfur-bearing compounds into their corresponding highly polar oxides, which can be eliminated easily by extraction with a certain highly polar solvent. The oxidizing system utilized was H2O2 as an oxidant, CH3COOH as a promoter, with FeSO4 as a catalyst; whereas acetonitrile was used as extractant. The major influential parameters related to UAODS process have been investigated, namely: ratio of oxidant/fuel, ratio of the promoter/oxidant, dose of catalyst, reaction temperature, and intensity of ultrasonic waves. Kinetics of the reaction has been also studied; it was observed that the UAODS of diesel fuels fitted pseudo-first-order kinetics under the best experimental conditions, whereas values of the apparent rate constant and activation energy were 0.373 min-1 and 24 KJ/mol, respectively. The oxidation treatment, in combination with ultrasonic irradiation, revealed a synergistic effect for diesel desulfurization. The experimental results showed that sulfur removal efficiency could amount to 98% at mild operating conditions (70 ○C and 1 bar. This indicates that the process is efficient and promising for the production of ultra-low-sulfur diesel fuels.

  14. Method for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    Science.gov (United States)

    Grindley, Thomas

    1989-01-01

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600.degree. to 1800.degree. F. and are partially quenched with water to 1000.degree. to 1200.degree. F. before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime/limestone.

  15. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L.

    1994-03-01

    The main objective of this research was to investigate microorganisms capable of fossil fuel flue gas desulfurization and denitrification. The study used municipal sewage sludge as a carbon and energy source for SO{sub 2}-reducing cultures. The individual tasks developed a consortium of sulfate-reducing bacteria, investigated the design parameters for a continuous process, preformed a cost analysis, and screened sulfate-reducing bacteria. In the investigation of microbial reduction of NO{sub x} to nitrogen, tasks included screening denitrifying bacteria for NO and NO{sub 2} activity, developing optimum NO-reducing cultures, and investigating design parameters for a continuous system. This final report reviews the work previous to the current project, describes project objectives and the specific work plan, and reports results from the work completed during the previous reporting periods.

  16. Microbiological desulfurization and conversion of coal

    International Nuclear Information System (INIS)

    Quigley, D.R.; Stoner, D.L.; Dugan, P.R.

    1991-01-01

    Bio processing of coal is a young and emerging technology. Until the early 1980's it consisted primarily of coal depyritization using Thiobacillus ferro oxidans to either oxidize pyritic sulfur or to alter particle wettability or floatation properties by binding to exposed pyrite inclusions. Since then, other major avenues of research have been pursued. One of these is the microbiologically mediated liquefaction of coal. Initial work indicated that microorganisms were able to transform low rank coal into a black liquid that was later identified as water solubilized by alkaline substances produced by the microbes and could be enhanced by the removal of multi valent cations from coal. Current work at the INEL involves of the identification and characterization of microorganisms that are able to alter the structure of polymeric desulfurization of coal. This work initially focused on the ability of microorganisms to oxidatively remove organic sulfur from model compounds that were representative of those sulfur containing moieties identified as being in coals (e.g., dibenzo thiophene). The work also focused on those organisms that were could remove the organic sulfur without degrading the carbon structure. While some organisms that are able to perform such these reactions will effectively remove organo sulfur from coal. These concerns stem from steric hindrance considerations and the thermodynamically unfavourable nature of reaction. Current work at the INEL involves the isolation and biochemical characterization of microorganisms that are able to desulfurize and solubilized coals that have high organic sulfur contents. (author)

  17. Novel Methods for Desulfurization of Fuel Oils

    OpenAIRE

    H. Hosseini

    2012-01-01

    Because of the requirement for low sulfur content of fuel oils, it is necessary to develop alternative methods for desulfurization of heavy fuel oil. Due to the disadvantages of HDS technologies such as costs, safety and green environment, new methods have been developed. Among these methods is ultrasoundassisted oxidative desulfurization. Using ultrasound-assisted oxidative desulfurization, compounds such as benzothiophene and dibenzothiophene can be oxidized. As an alterna...

  18. Rare earth oxides in gaseous desulfurization

    International Nuclear Information System (INIS)

    Kay, D.A.R.; Wilson, W.G.

    1988-01-01

    Phase stability diagrams are used to predict the abilities of lanthanum and cerium oxides to desulfurize coal gasification products in the temperature range 800-1000 C. Results of desulfurization studies in laboratory fixed bed reactors illustrate the effects of sorbent preparation, input gas quality and temperature, on the desulfurization reaction: 2CeO( 2 - x )(s) + H 2 S(g) + (1-2x)H 2 = Ce 2 O 2 S(s) + 2(1 - x)H 2 O(g). The results of desulfurization/oxidation regeneration cycles are also reported

  19. DEEP DESULFURIZATION OF DIESEL FUELS BY A NOVEL INTEGRATED APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    Xiaoliang Ma; Michael Sprague; Lu Sun; Chunshan Song

    2002-10-01

    In order to reduce the sulfur level in liquid hydrocarbon fuels for environmental protection and fuel cell applications, deep desulfurization of a model diesel fuel and a real diesel fuel was conducted by our SARS (selective adsorption for removing sulfur) process using the adsorbent A-2. Effect of temperature on the desulfurization process was examined. Adsorption desulfurization at ambient temperature, 24 h{sup -1} of LHSV over A-2 is efficient to remove dibenzothiophene (DBT) in the model diesel fuel, but difficult to remove 4-methyldibenzothiophene (4-MDBT) and 4,6-dimethyl-dibenzothiophene (4,6-DMDBT). Adsorption desulfurization at 150 C over A-2 can efficiently remove DBT, 4-MDBT and 4,6-DMDBT in the model diesel fuel. The sulfur content in the model diesel fuel can be reduced to less than 1 ppmw at 150 C without using hydrogen gas. The adsorption capacity corresponding to the break-through point is 6.9 milligram of sulfur per gram of A-2 (mg-S/g-A-2), and the saturate capacity is 13.7 mg-S/g-A-2. Adsorption desulfurization of a commercial diesel fuel with a total sulfur level of 47 ppmw was also performed at ambient temperature and 24 h{sup -1} of LHSV over the adsorbent A-2. The results show that only part of the sulfur compounds existing in the low sulfur diesel can be removed by adsorption over A-2 at such operating conditions, because (1) the all sulfur compounds in the low sulfur diesel are the refractory sulfur compounds that have one or two alkyl groups at the 4- and/or 6-positions of DBT, which inhibit the approach of the sulfur atom to the adsorption site; (2) some compounds coexisting in the commercial low sulfur diesel probably inhibit the interaction between the sulfur compounds and the adsorbent. Further work in determining the optimum operating conditions and screening better adsorbent is desired.

  20. Experimental study of desulfurization of Zhong Liang Shau high sulfur coal by flotation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Z.; Huang, B.; Cao, J. [China University of Mining and Technology (China). Beijing Graduate School

    1994-12-01

    Emission of large amount of SO{sub 2} from combustion of high sulfur coal causes serious environmental pollution. Pre-combustion desulfurization of high sulfur coal has become a necessity. This paper reports test results of fine coal desulfurization with different flotation technology and the effect of pyrite depressant. Test work showed that when the coal sample from Zhong Liang Shau was processed with a Free Jet Flotation Column its pyritic sulfur content was reduced from 3.08% to 0.84%, with 72.22% recovery of combustible matter in clean coal. The concept of Desulfurization Efficiency Index E{sub ds} for comprehensive evaluation of desulfurization process is proposed, which is defined as the product of the ratio of sulfur content reduction of clean coal and the recovery of combustible matters. 6 refs., 4 figs., 3 tabs.

  1. Numerical Investigation of Desulfurization Kinetics in Gas-Stirred Ladles by a Quick Modeling Analysis Approach

    Science.gov (United States)

    Cao, Qing; Nastac, Laurentiu; Pitts-Baggett, April; Yu, Qiulin

    2018-03-01

    A quick modeling analysis approach for predicting the slag-steel reaction and desulfurization kinetics in argon gas-stirred ladles has been developed in this study. The model consists of two uncoupled components: (i) a computational fluid dynamics (CFD) model for predicting the fluid flow and the characteristics of slag-steel interface, and (ii) a multicomponent reaction kinetics model for calculating the desulfurization evolution. The steel-slag interfacial area and mass transfer coefficients predicted by the CFD simulation are used as the processing data for the reaction model. Since the desulfurization predictions are uncoupled from the CFD simulation, the computational time of this uncoupled predictive approach is decreased by at least 100 times for each case study when compared with the CFD-reaction kinetics fully coupled model. The uncoupled modeling approach was validated by comparing the evolution of steel and slag compositions with the experimentally measured data during ladle metallurgical furnace (LMF) processing at Nucor Steel Tuscaloosa, Inc. Then, the validated approach was applied to investigate the effects of the initial steel and slag compositions, as well as different types of additions during the refining process on the desulfurization efficiency. The results revealed that the sulfur distribution ratio and the desulfurization reaction can be promoted by making Al and CaO additions during the refining process. It was also shown that by increasing the initial Al content in liquid steel, both Al oxidation and desulfurization rates rapidly increase. In addition, it was found that the variation of the initial Si content in steel has no significant influence on the desulfurization rate. Lastly, if the initial CaO content in slag is increased or the initial Al2O3 content is decreased in the fluid-slag compositional range, the desulfurization rate can be improved significantly during the LMF process.

  2. Numerical Investigation of Desulfurization Kinetics in Gas-Stirred Ladles by a Quick Modeling Analysis Approach

    Science.gov (United States)

    Cao, Qing; Nastac, Laurentiu; Pitts-Baggett, April; Yu, Qiulin

    2018-06-01

    A quick modeling analysis approach for predicting the slag-steel reaction and desulfurization kinetics in argon gas-stirred ladles has been developed in this study. The model consists of two uncoupled components: (i) a computational fluid dynamics (CFD) model for predicting the fluid flow and the characteristics of slag-steel interface, and (ii) a multicomponent reaction kinetics model for calculating the desulfurization evolution. The steel-slag interfacial area and mass transfer coefficients predicted by the CFD simulation are used as the processing data for the reaction model. Since the desulfurization predictions are uncoupled from the CFD simulation, the computational time of this uncoupled predictive approach is decreased by at least 100 times for each case study when compared with the CFD-reaction kinetics fully coupled model. The uncoupled modeling approach was validated by comparing the evolution of steel and slag compositions with the experimentally measured data during ladle metallurgical furnace (LMF) processing at Nucor Steel Tuscaloosa, Inc. Then, the validated approach was applied to investigate the effects of the initial steel and slag compositions, as well as different types of additions during the refining process on the desulfurization efficiency. The results revealed that the sulfur distribution ratio and the desulfurization reaction can be promoted by making Al and CaO additions during the refining process. It was also shown that by increasing the initial Al content in liquid steel, both Al oxidation and desulfurization rates rapidly increase. In addition, it was found that the variation of the initial Si content in steel has no significant influence on the desulfurization rate. Lastly, if the initial CaO content in slag is increased or the initial Al2O3 content is decreased in the fluid-slag compositional range, the desulfurization rate can be improved significantly during the LMF process.

  3. Synthesis and application of different phthalocyanine molecular sieve catalyst for oxidative desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Na; Li, Siwen; Wang, Jinyi; Zhang, Ronglan [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Material Science, Northwest University, Xi’an 710069, Shaanxi (China); Composites Research Institute, Weinan Normal University, Weinan 714000 (China); Gao, Ruimin [Research Institute of Shaanxi Yanchang Petroleum Group Corp. Ltd., Xi’an 710075 (China); Composites Research Institute, Weinan Normal University, Weinan 714000 (China); Zhao, Jianshe, E-mail: jszhao@nwu.edu.cn [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Material Science, Northwest University, Xi’an 710069, Shaanxi (China); Composites Research Institute, Weinan Normal University, Weinan 714000 (China); Wang, Junlong [Research Institute of Shaanxi Yanchang Petroleum Group Corp. Ltd., Xi’an 710075 (China); Composites Research Institute, Weinan Normal University, Weinan 714000 (China)

    2015-05-15

    M{sub 2}(PcAN){sub 2} (M=Fe, Co, Ni, Cu, Zn and Mn) anchored onto W-HZSM-5 (M{sub 2}(PcAN){sub 2}–W-HZSM-5) or the M{sub 2}(PcTN){sub 2} doping W-HZSM-5 (M{sub 2}(PcTN){sub 2}/W-HZSM-5) were prepared and their catalytic performances were tested for oxidative desulfurization in the presence of oxygen. Thiophene (T), benzothiophene (BT), and dibenzothiophene (DBT) were considered as sulfur compounds. Among zeolite-based catalysts, the Cu{sub 2}(PcAN){sub 2}–W-HZSM-5 and Cu{sub 2}(PcTN){sub 2}/W-HZSM-5 showed superior desulfurization performance and the activity of selectivity followed the order: T>BT>DBT. The effects of phthalocyanine concentration were studied by UV–Vis and calcination temperature was obtained by TG-DSC for Cu{sub 2}(PcTN){sub 2}/W-HZSM-5. Catalysts were characterized by EA, IR, XRD, SEM, TEM, ICP, and N{sub 2} adsorption. Reaction time, temperature and the amount of catalyst were investigated as the important parameters for optimization of the reaction. Furthermore, a possible process of oxidative desulfurization and the reaction products were proposed. - Graphical abstract: The ODS reaction schematic shows the reaction mechanism of ultra-deep desulfurization. The sulfur compounds are oxidized to their corresponding sulfoxides or sulfones through the use of oxygen and catalysts. The reaction process of ultra-deep desulfurization. - Highlights: • A kind of novel catalyst for deep desulfurization was synthesized. • Cu{sub 2}(PcAN){sub 2}–W-HZSM-5 exhibits excellent catalytic performance for desulfurization. • The reaction conditions that affect desulfurization efficiency are investigated. • The reaction process of model sulfur compounds is proposed.

  4. Synthesis and application of different phthalocyanine molecular sieve catalyst for oxidative desulfurization

    International Nuclear Information System (INIS)

    Zhao, Na; Li, Siwen; Wang, Jinyi; Zhang, Ronglan; Gao, Ruimin; Zhao, Jianshe; Wang, Junlong

    2015-01-01

    M 2 (PcAN) 2 (M=Fe, Co, Ni, Cu, Zn and Mn) anchored onto W-HZSM-5 (M 2 (PcAN) 2 –W-HZSM-5) or the M 2 (PcTN) 2 doping W-HZSM-5 (M 2 (PcTN) 2 /W-HZSM-5) were prepared and their catalytic performances were tested for oxidative desulfurization in the presence of oxygen. Thiophene (T), benzothiophene (BT), and dibenzothiophene (DBT) were considered as sulfur compounds. Among zeolite-based catalysts, the Cu 2 (PcAN) 2 –W-HZSM-5 and Cu 2 (PcTN) 2 /W-HZSM-5 showed superior desulfurization performance and the activity of selectivity followed the order: T>BT>DBT. The effects of phthalocyanine concentration were studied by UV–Vis and calcination temperature was obtained by TG-DSC for Cu 2 (PcTN) 2 /W-HZSM-5. Catalysts were characterized by EA, IR, XRD, SEM, TEM, ICP, and N 2 adsorption. Reaction time, temperature and the amount of catalyst were investigated as the important parameters for optimization of the reaction. Furthermore, a possible process of oxidative desulfurization and the reaction products were proposed. - Graphical abstract: The ODS reaction schematic shows the reaction mechanism of ultra-deep desulfurization. The sulfur compounds are oxidized to their corresponding sulfoxides or sulfones through the use of oxygen and catalysts. The reaction process of ultra-deep desulfurization. - Highlights: • A kind of novel catalyst for deep desulfurization was synthesized. • Cu 2 (PcAN) 2 –W-HZSM-5 exhibits excellent catalytic performance for desulfurization. • The reaction conditions that affect desulfurization efficiency are investigated. • The reaction process of model sulfur compounds is proposed

  5. Use of Green Mussel Shell as a Desulfurizer in the Blending of Low Rank Coal-Biomass Briquette Combustion

    Directory of Open Access Journals (Sweden)

    Mahidin Mahidin

    2016-08-01

    Full Text Available Calcium oxide-based material is available abundantly and naturally. A potential resource of that material comes from marine mollusk shell such as clams, scallops, mussels, oysters, winkles and nerites. The CaO-based material has exhibited a good performance as the desulfurizer oradsorbent in coal combustion in order to reduce SO2 emission. In this study, pulverized green mussel shell, without calcination, was utilized as the desulfurizer in the briquette produced from a mixture of low rank coal and palm kernel shell (PKS, also known as bio-briquette. The ratio ofcoal to PKS in the briquette was 90:10 (wt/wt. The influence of green mussel shell contents and combustion temperature were examined to prove the possible use of that materialas a desulfurizer. The ratio of Ca to S (Ca = calcium content in desulfurizer; S = sulfur content in briquette werefixed at 1:1, 1.25:1, 1.5:1, 1.75:1, and 2:1 (mole/mole. The burning (or desulfurization temperature range was 300-500 °C; the reaction time was 720 seconds and the air flow rate was 1.2 L/min. The results showed that green mussel shell can be introduced as a desulfurizer in coal briquette or bio-briquette combustions. The desulfurization process using that desulfurizer exhibited the first order reaction and the highest average efficiency of 84.5%.

  6. Flue gas desulfurization: Physicochemical and biotechnological approaches

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, R.A.; Biswas, R.; Chakrabarti, T.; Devotta, S. [National Environmental Engineering Research Institute, Nagpur (India)

    2005-07-01

    Various flue gas desulfurization processes - physicochemical, biological, and chemobiological - for the reduction of emission of SO{sub 2} with recovery of an economic by-product have been reviewed. The physicochemical processes have been categorized as 'once-through' and 'regenerable.' The prominent once-through technologies include wet and dry scrubbing. The wet scrubbing technologies include wet limestone, lime-inhibited oxidation, limestone forced oxidation, and magnesium-enhanced lime and sodium scrubbing. The dry scrubbing constitutes lime spray drying, furnace sorbent injection, economizer sorbent injection, duct sorbent injection, HYPAS sorbent injection, and circulating fluidized bed treatment process. The regenerable wet and dry processes include the Wellman Lord's process, citrate process, sodium carbonate eutectic process, magnesium oxide process, amine process, aqueous ammonia process, Berglau Forchung's process, and Shell's process. Besides these, the recently developed technologies such as the COBRA process, the OSCAR process, and the emerging biotechnological and chemobiological processes are also discussed. A detailed outline of the chemistry, the advantages and disadvantages, and the future research and development needs for each of these commercially viable processes is also discussed.

  7. 20 CFR 422.114 - Annual wage reporting process.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Annual wage reporting process. 422.114 Section 422.114 Employees' Benefits SOCIAL SECURITY ADMINISTRATION ORGANIZATION AND PROCEDURES General... employer's magnetic media wage reports have no social security numbers or incorrect employee names or...

  8. Economic analysis of ultrasound-assisted oxidative desulfurization

    OpenAIRE

    Anderson, K.; Atkins, M.P.; Borges, P; Chan, Z.P.; Rafeen, M.S.; Sebran, N.H.; van der Pool, E; Vleeming, J.H.

    2017-01-01

    Oxidative desulfurization is a method of removing sulfur from diesel fuel that has the potential to compete with conventional hydrodesulfurization processes in refineries. Ultrasound has been shown to greatly increase peroxide oxidation rates of sulfur compounds and can thereby enhance the technology. Through the use of conceptual design modeling, this article critically assesses a range of novel process options. Calculations show that the rate enhancement achieved by ultrasound can translate...

  9. Advanced sulfur control concepts for hot gas desulfurization technology

    International Nuclear Information System (INIS)

    1998-01-01

    The objective of this project is to develop a hot-gas desulfurization process scheme for control of H 2 S in HTHP coal gas that can be more simply and economically integrated with known regenerable sorbents in DOE/METC-sponsored work than current leading hot-gas desulfurization technologies. In addition to being more economical, the process scheme to be developed must yield an elemental sulfur byproduct. The Direct Sulfur Recovery Process (DSRP), a leading process for producing an elemental sulfur byproduct in hot-gas desulfurization systems, incurs a coal gas use penalty, because coal gas is required to reduce the SO 2 in regeneration off-gas to elemental sulfur. Alternative regeneration schemes, which avoid coal gas use and produce elemental sulfur, will be evaluated. These include (i) regeneration of sulfided sorbent using SO 2 ; (ii) partial oxidation of sulfided sorbent in an O 2 starved environment; and (iii) regeneration of sulfided sorbent using steam to produce H 2 S followed by direct oxidation of H 2 S to elemental sulfur. Known regenerable sorbents will be modified to improve the feasibility of the above alternative regeneration approaches. Performance characteristics of the modified sorbents and processes will be obtained through lab- and bench-scale testing. Technical and economic evaluation of the most promising processes concept(s) will be carried out

  10. CONVERSION EXTRACTION DESULFURIZATION (CED) PHASE III

    Energy Technology Data Exchange (ETDEWEB)

    James Boltz

    2005-03-01

    This project was undertaken to refine the Conversion Extraction Desulfurization (CED) technology to efficiently and economically remove sulfur from diesel fuel to levels below 15-ppm. CED is considered a generic term covering all desulfurization processes that involve oxidation and extraction. The CED process first extracts a fraction of the sulfur from the diesel, then selectively oxidizes the remaining sulfur compounds, and finally extracts these oxidized materials. The Department of Energy (DOE) awarded Petro Star Inc. a contract to fund Phase III of the CED process development. Phase III consisted of testing a continuous-flow process, optimization of the process steps, design of a pilot plant, and completion of a market study for licensing the process. Petro Star and the Degussa Corporation in coordination with Koch Modular Process Systems (KMPS) tested six key process steps in a 7.6-centimeter (cm) (3.0-inch) inside diameter (ID) column at gas oil feed rates of 7.8 to 93.3 liters per hour (l/h) (2.1 to 24.6 gallons per hour). The team verified the technical feasibility with respect to hydraulics for each unit operation tested and successfully demonstrated pre-extraction and solvent recovery distillation. Test operations conducted at KMPS demonstrated that the oxidation reaction converted a maximum of 97% of the thiophenes. The CED Process Development Team demonstrated that CED technology is capable of reducing the sulfur content of light atmospheric gas oil from 5,000-ppm to less than 15-ppm within the laboratory scale. In continuous flow trials, the CED process consistently produced fuel with approximately 20-ppm of sulfur. The process economics study calculated an estimated process cost of $5.70 per product barrel. The Kline Company performed a marketing study to evaluate the possibility of licensing the CED technology. Kline concluded that only 13 refineries harbored opportunity for the CED process. The Kline study and the research team's discussions

  11. Developing clean fuels: Novel techniques for desulfurization

    Science.gov (United States)

    Nehlsen, James P.

    The removal of sulfur compounds from petroleum is crucial to producing clean burning fuels. Sulfur compounds poison emission control catalysts and are the source of acid rain. New federal regulations require the removal of sulfur in both gasoline and diesel to very low levels, forcing existing technologies to be pushed into inefficient operating regimes. New technology is required to efficiently produce low sulfur fuels. Two processes for the removal of sulfur compounds from petroleum have been developed: the removal of alkanethiols by heterogeneous reaction with metal oxides; and oxidative desulfurization of sulfides and thiophene by reaction with sulfuric acid. Alkanethiols, common in hydrotreated gasoline, can be selectively removed and recovered from a hydrocarbon stream by heterogeneous reaction with oxides of Pb, Hg(II), and Ba. The choice of reactive metal oxides may be predicted from simple thermodynamic considerations. The reaction is found to be autocatalytic, first order in water, and zero order in thiol in the presence of excess oxide. The thiols are recovered by reactive extraction with dilute oxidizing acid. The potential for using polymer membrane hydrogenation reactors (PEMHRs) to perform hydrogenation reactions such as hydrodesulfurization is explored by hydrogenating ketones and olefins over Pt and Au group metals. The dependence of reaction rate on current density suggests that the first hydrogen addition to the olefin is the rate limiting step, rather than the adsorption of hydrogen, for all of the metals tested. PEMHRs proved unsuccessful in hydrogenating sulfur compounds to perform HDS. For the removal of sulfides, a two-phase reactor is used in which concentrated sulfuric acid oxidizes aromatic and aliphatic sulfides present in a hydrocarbon solvent, generating sulfoxides and other sulfonated species. The polar oxidized species are extracted into the acid phase, effectively desulfurizing the hydrocarbon. A reaction scheme is proposed for this

  12. Catalysts for petroleum desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, A.; Diemann, E.; Baumann, F.W.

    1988-01-01

    In order to obtain marketable products from low-quality oils, efficient hydrogenation processes are required for removing sulfur (hydrodesulfurization, HDS), nitrogen (hydrodenitrification, HDN), and oxygen (hydrodeoxygenation, HDO), which would poison the noble metal catalysts of the downstream petrochemical processes. Hydrogenation will produce low-sulfur, low-nitrogen fuels and thus contribute to the reduction of SO/sub 2/ and NO/sub x/ emissions which is long overdue from the ecological point of view (forest decline, acidification of surface bodies of water, etc.).

  13. Natural desulfurization in coal-fired units using Greek lignite.

    Science.gov (United States)

    Konidaris, Dimitrios N

    2010-10-01

    This paper analyzes the natural desulfurization process taking place in coal-fired units using Greek lignite. The dry scrubbing capability of Greek lignite appears to be extremely high under special conditions, which can make it possible for the units to operate within the legislative limits of sulfur dioxide (SO2) emissions. According to this study on several lignite-fired power stations in northern Greece, it was found that sulfur oxide emissions depend on coal rank, sulfur content, and calorific value. On the other hand, SO2 emission is inversely proportional to the parameter gammaCO2(max), which is equal to the maximum carbon dioxide (CO2) content by volume of dry flue gas under stoichiometric combustion. The desulfurization efficiency is positively correlated to the molar ratio of decomposed calcium carbonate to sulfur and negatively correlated to the free calcium oxide content of fly ash.

  14. 3D CFD Modeling of the LMF System: Desulfurization Kinetics

    Science.gov (United States)

    Cao, Qing; Pitts, April; Zhang, Daojie; Nastac, Laurentiu; Williams, Robert

    A fully transient 3D CFD modeling approach capable of predicting the three phase (gas, slag and steel) fluid flow characteristics and behavior of the slag/steel interface in the argon gas bottom stirred ladle with two off-centered porous plugs (Ladle Metallurgical Furnace or LMF) has been recently developed. The model predicts reasonably well the fluid flow characteristics in the LMF system and the observed size of the slag eyes for both the high-stirring and low-stirring conditions. A desulfurization reaction kinetics model considering metal/slag interface characteristics is developed in conjunction with the CFD modeling approach. The model is applied in this study to determine the effects of processing time, and gas flow rate on the efficiency of desulfurization in the studied LMF system.

  15. Microbial desulfurization of coal

    International Nuclear Information System (INIS)

    Bos, P.; Boogerd, F.C.; Kuenen, J.G.

    1992-01-01

    In recent years, studies have been initiated to explore the possibilities of the use of biological systems in coal technology. This chapter discusses the principles behind the bioprocessing of coal, the advantages and disadvantages, and the economic feasibility of the process. For large-scale, coal-using, energy-producing plants, stack gas cleaning should be the treatment of choice. Biodesulfurization is preferable with industrial, small-scale, energy-producing plants. Treatment of the stack gases of these plants is not advisable because of high investment costs. Finally, it should be realized that biodesulfurization produces a waste stream that needs further treatment. 91 refs

  16. Superoxide radical and UV irradiation in ultrasound assisted oxidative desulfurization (UAOD): A potential alternative for greener fuels

    Science.gov (United States)

    Chan, Ngo Yeung

    This study is aimed at improving the current ultrasound assisted oxidative desulfurization (UAOD) process by utilizing superoxide radical as oxidant. Research was also conducted to investigate the feasibility of ultraviolet (UV) irradiation-assisted desulfurization. These modifications can enhance the process with the following achievements: (1) Meet the upcoming sulfur standards on various fuels including diesel fuel oils and residual oils; (2) More efficient oxidant with significantly lower consumption in accordance with stoichiometry; (3) Energy saving by 90%; (4) Greater selectivity in petroleum composition. Currently, the UAOD process and subsequent modifications developed in University of Southern California by Professor Yen's research group have demonstrated high desulfurization efficiencies towards various fuels with the application of 30% wt. hydrogen peroxide as oxidant. The UAOD process has demonstrated more than 50% desulfurization of refractory organic sulfur compounds with the use of Venturella type catalysts. Application of quaternary ammonium fluoride as phase transfer catalyst has significantly improved the desulfurization efficiency to 95%. Recent modifications incorporating ionic liquids have shown that the modified UAOD process can produce ultra-low sulfur, or near-zero sulfur diesels under mild conditions with 70°C and atmospheric pressure. Nevertheless, the UAOD process is considered not to be particularly efficient with respect to oxidant and energy consumption. Batch studies have demonstrated that the UAOD process requires 100 fold more oxidant than the stoichiometic requirement to achieve high desulfurization yield. The expected high costs of purchasing, shipping and storage of the oxidant would reduce the practicability of the process. The excess use of oxidant is not economically desirable, and it also causes environmental and safety issues. Post treatments would be necessary to stabilize the unspent oxidant residual to prevent the waste

  17. Effect of Silicon on Desulfurization of Aluminum-killed Steels

    Science.gov (United States)

    Roy, Debdutta

    controlled by mass transfer in the metal and slag phase mass transfer has a minor effect on the overall desulfurization kinetics. The model results are in agreement with the experimental data for the change in sulfur, silicon and aluminum contents with time which renders credibility to the underlying hypothesis of the kinetic model. Although the change of sulfur content with time is not very sensitive to the activity data source, the change of aluminum and silicon contents with time depend on the activity data source. The experimental results demonstrate that if the silicon content in the steel is high enough, the silicon can reduce the alumina from the slag and thus the steel melt will pick up aluminum. This can cause significant savings in aluminum consumption. For most of the slag compositions used in the experiments, the overall mass transfer is only limited by the steel phase and the slag phase mass transfer can be neglected for most practical cases. Mass balance calculations in the experiments support the basis of the model and also show that with respect to aluminum consumption, silica reduction is the main aluminum consuming (or production) reaction and the desulfurization reaction is only a secondary consumer of aluminum. Results from the plant trials conducted to test the effect of silicon on ladle desulfurization show that the rate and extent of desulfurization increase with the increase of the initial Si content, so in the ladle refining process, adding all the silicon in the beginning with the aluminum and the fluxes will be beneficial and could save considerable processing time at the ladle. The aluminum consumption for the heats with silicon added in the beginning (both in terms of the Al added to the steel and as slag deoxidants) is considerably lower compared to the cases where the silicon is added at the end. However, on a relative cost term, aluminum and silicon are similarly priced so substitution would not offer a major cost advantage.

  18. Oxidative desulfurization: kinetic modelling.

    Science.gov (United States)

    Dhir, S; Uppaluri, R; Purkait, M K

    2009-01-30

    Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H(2)O(2) over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel.

  19. Oxidative desulfurization: Kinetic modelling

    International Nuclear Information System (INIS)

    Dhir, S.; Uppaluri, R.; Purkait, M.K.

    2009-01-01

    Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H 2 O 2 over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel

  20. Method and apparatus for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    Science.gov (United States)

    Grindley, T.

    1988-04-05

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier is described. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600 to 1800 F and are partially quenched with water to 1000 to 1200 F before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime /limestone. 1 fig.

  1. Radiation-induced desulfurization of Arabian crude oil and straight-run diesel

    International Nuclear Information System (INIS)

    Basfar, A.A.; Mohamed, K.A.

    2011-01-01

    Radiation-induced desulfurization of four types of Arabian crude oils (heavy, medium, light and extra light) and straight-run diesel (SRD) was investigated over the range of 10-200 kGy. Results show that gamma radiation processing at absorbed doses up to 200 kGy without further treatment is not sufficient for desulfurization. However, the combination of gamma-irradiation with other physical/chemical processes (i.e. L/L extraction, adsorption and oxidation) may be capable of removing considerable levels of sulfur compounds in the investigated products. Currently, this approach of combined radiation/physical/chemical processes is under investigation. The findings of these attempts will be reported in the future. - Highlights: → Irradiation effect on desulfurization in Arabian crude oils and straight-run diesel was investigated. → No noticeable changes in sulfur content after irradiation up to 200 kGy were observed. → Stricter regulations on sulfur levels in fuels motivate search for improved desulfurization processes. → Limited investigations on radiation-induced desulfurization of oil products are conducted.

  2. Oxidative desulfurization of tire pyrolysis oil

    OpenAIRE

    Ahmad Shahzad; Ahmad Muhammad Imran; Naeem Khawar; Humayun Muhammad; Sebt-E-Zaeem; Faheem Farrukh

    2016-01-01

    This paper presents a low cost method for the purification of oils obtained from the pyrolysis of used tires. Oxidative desulfurization is a promising route for purification of tire pyrolysis oils as hydro-desulfurization may not be affordable for small scale industries. Different additives and acids have been employed for the enhancement of properties of pyrolytic oils. The experimental conditions were kept identical throughout, i.e. atmospheric pressure a...

  3. Ultrasound-Assisted Oxidative Desulfurization of Diesel

    OpenAIRE

    Niran K. Ibrahim; Walla A. Noori; Jaffar M. Khasbag

    2016-01-01

    Due to the dramatic environmental impact of sulfur emissions associated with the exhaust of diesel engines, last environmental regulations for ultra-low-sulfur diesel require a very deep desulfurization (up to 15 ppm), which cannot be met by the conventional hydrodesulfurization units alone. The proposed method involves a batch ultrasound-assisted oxidative desulfurization (UAODS) of a previously hydrotreated diesel (containing 480 ppm sulfur) so as to convert the residual sulfur-bearing comp...

  4. Oxidative desulfurization of tire pyrolysis oil

    Directory of Open Access Journals (Sweden)

    Ahmad Shahzad

    2016-01-01

    Full Text Available This paper presents a low cost method for the purification of oils obtained from the pyrolysis of used tires. Oxidative desulfurization is a promising route for purification of tire pyrolysis oils as hydro-desulfurization may not be affordable for small scale industries. Different additives and acids have been employed for the enhancement of properties of pyrolytic oils. The experimental conditions were kept identical throughout, i.e. atmospheric pressure and 50°C temperature for comparison of performance of various additives. The use of hydrogen peroxide-acetic acid mixture (10 wt.% was found more economical and effective in desulfurization and improvement of fuel properties of sample oils. The contribution of sulfuric acid in desulfurization and decreasing viscosity was also satisfactory but due to high price of concentrated sulfuric acid its use may not be economical. Calcium oxide and Fuller’s earth was not found to be effective in desulfurization. Results indicate that oxidative desulfurization could render tire pyrolysis oils suitable for blending as heating fuel.

  5. Experimental Study on Hot Metal Desulfurization Using Sintered Red Mud-Based Flux

    Science.gov (United States)

    Li, Fengshan; Zhang, Yanling; Guo, Zhancheng

    2017-09-01

    This research presents the results of laboratory and pilot-scale tests conducted on the use of sintered red mud (RM)-based flux in the hot metal desulfurization (HMD) process. Al2O3/Na2O in RM can decrease the melting point of lime-based slag and can work as a flux in the HMD process. Good slag fluidity was observed throughout the process, and high desulfurization rates ( 80%) with a low final S content (pilot-scale test results indicated that a desulfurization rate as high as 91% and a S content <0.0099% could be acquired when RM:lime = 1:1, verifying the feasibility of using sintered RM-based flux in HMD. The data obtained provide important information for promoting the large-scale application of sintered RM in steelmaking.

  6. Enrichment and cultivation of a sulfide-oxidizing bacteria consortium for its deploying in full-scale biogas desulfurization

    International Nuclear Information System (INIS)

    González Sánchez, Armando; Flores Márquez, Trinidad Eliseo; Revah, Sergio; Morgan Sagastume, Juan Manuel

    2014-01-01

    Operational experiences and strategies to get suitable chemolithoautotrophic sulfide-oxidizing biomass from activated sludge wastewater treatment plant for its deploying in a full-scale biogas desulfurization plant are described. An economic nutrient source was applied to foster microbial selection and rapid growth. Respirometry was implemented on full-scale installations to monitor the ability of the specialized bacteria consortium to oxidize reduced sulfur i.e. H 2 S. During the deployment in the full-scale desulfurization reactor, intermittent sulfide feed from biogas scrubbing was performed to accelerate the startup the desulfurization process. - Highlights: • A simple method for reaching high amounts of specialized sulfide-oxidizing bacterial consortium from activated sludge was developed. • The full-scale desulfurization process can be continuously monitored by respirometry allowing fast decision making if problems arise. • The dissolved sulfide concentration was estimated with an empirical correlation between measurements of ORP, dissolved oxygen and pH

  7. The rationalization of desulfurization by on-line analysis

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Y; Kohmura, S; Taketomi, H; Matsumura, S; Sasaki, Y

    1986-01-01

    Nippon Kokan uses the Takahax and Sulfiban processes for the desulfurization of coke oven gas. The authors outline the Sulfiban Process and describe a recently developed system for the on-line determination of H/sub 2/S in coke oven gas, and of CO/sub 2/ and monoethanolamine (MEA) in the wash oil. This new on-line analysis system has proved effective in rationalizing the Sulfiban Process via lower MEA production costs and decreased power consumption. The introduction of a computerized control system is now being studied. 7 figs., 4 tabs.

  8. Practical use of dry desulfurization equipment using coal ash and effective use of used desulfurizer. Sekitanbai riyo kanshiki datsuryu sochi no jitsuyoka to shiyozumi datsuryuzai no yukoriyo ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T.; Ueno, T. (The Hokkaido Electric Power CO. Inc., Hokkaido (Japan))

    1992-01-30

    Practical use of dry desulfurization equipment using coal ash installed in Atsuma power plant no.1 is explained. Outline of dry desulferization process is consisted of basic principles and structure of the process which includes desulfurizer production equipment and absorption equipment. When compared with conventional wet process, equipments for waste water and for reheating of exhaust gas are not necessary, and operation maintenance has been more convenient with the simplification of the system and absorber has graded up the elimination function. Advantages of simplification of treatment of used desulfurizer, and absorption of sulfurdioxide by desulfurizer together with characteristics of desulfurizer production are given. As far as practical macineries are concerned, outline of instrument facilities, construction technology and results of experimental operation are reported. Effective Use of desulfurizer using deodorant and hedro treatment has been verified from ammonium absorption experiment and practical investigation results. However use of hedro material has required, conformity of surface caking technology, under water caking technology, under water covering technology and effect on under water living environment. 13 figs., 4 tabs.

  9. Reusing pretreated desulfurization slag to improve clinkerization and clinker grindability for energy conservation in cement manufacture.

    Science.gov (United States)

    Chen, Ying-Liang; Chang, Juu-En; Shih, Pai-Haung; Ko, Ming-Sheng; Chang, Yi-Kuo; Chiang, Li-Choung

    2010-09-01

    The purpose of this study was to combine the physical pretreatments of grinding, sieving, and magnetic-separation processes to reclaim iron-rich materials from the desulfurization slag, and to use the remainder for cement clinker production. The iron-rich materials can be separated out efficiently by grinding for 30 min and sieving with a 0.3 mm mesh. The non-magnetic fraction of the particles smaller than 0.3 mm was in the majority, and proved to be suitable for use as a cement raw material. The raw mixes prepared with a pretreated desulfurization slag had a relatively high reactivity, and the temperature at which alite forms was significantly reduced during the clinkerization process. The clinkers produced with 10% desulfurization slag had a high level of alite and good grindability. Generally, the improvements in clinkerization and clinker grindability are beneficial to energy conservation in cement manufacture. 2010 Elsevier Ltd. All rights reserved.

  10. Démonstration du procédé IFP de désulfuration des fumées de centrales Demonstration of the Ifp Stack-Gas Desulfurization Process

    Directory of Open Access Journals (Sweden)

    Busson C.

    2006-11-01

    Full Text Available Les produits pétroliers et le charbon continueront à couvrir les besoins énergétiques pendant plusieurs décennies. La pollution par le SOZ, provenant de la combustion de ces combustibles fossiles, devient une préoccupation pour la population et les Pouvoirs publics. La désulfuration des fumées de combustion devrait, à plus ou moins longue échéance, se développer. L'Institut Français du Pétrole (IFP, mettant à profit ses travaux dans le domaine de la désulfuration, a développé un procédé de traitement des fumées. L'IFP, en collaboration avec Électricité de France (EDF, a effectué en 1976 une opération de démonstration à une échelle pilote (30 MW dans la Centrale de Champagne-sur-Oise. Le procédé consiste à éliminer le S02 des fumées par lavage avec une solution ammoniacale, à produire du soufre à partir de la liqueur obtenue et à recycler l'ammoniaque dans l'étape de lavage. Après quelques modifications d'ordre technologique, l'unité de démonstration a fonctionné d'une manière continue pendant une période de trois mois, correspondant à l'objectif fixé. Les résultats obtenus permettent, actuellement, d'envisager une application de cette technique à une échelle de 250 MW. Oil and coal productswill continue to fulfill energy needs for several more decades. Pollution by SO2 coming from the combustion of such fossil fuels is becoming a preoccupation for the population and the public authorities. The desulfurization of combustion fumes should continue ta develop in the more or less long run. Institut Français du Pétrole (IFP has taken advantage of its research in the fixed of desulfurization to develop a stock-gas treating process. In collaboration with Électricite de Fronce (EDF, IFP carried out a demonsiration operation in 1976 on a pilot-plant scale (30MW in a power plant at Champagne-sur-Oise. The process consists in removing S02 from stock gases by scrubbing them with an ammonia solution

  11. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT-GAS DESULFURIZATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    A. LOPEZ ORTIZ; D.P. HARRISON; F.R. GROVES; J.D. WHITE; S. ZHANG; W.-N. HUANG; Y. ZENG

    1998-10-31

    This research project examined the feasibility of a second generation high-temperature coal gas desulfurization process in which elemental sulfur is produced directly during the sorbent regeneration phase. Two concepts were evaluated experimentally. In the first, FeS was regenerated in a H2O-O2 mixture. Large fractions of the sulfur were liberated in elemental form when the H2O-O2 ratio was large. However, the mole percent of elemental sulfur in the product was always quite small (<<1%) and a process based on this concept was judged to be impractical because of the low temperature and high energy requirements associated with condensing the sulfur. The second concept involved desulfurization using CeO2 and regeneration of the sulfided sorbent, Ce2O2S, using SO2 to produce elemental sulfur directly. No significant side reactions were observed and the reaction was found to be quite rapid over the temperature range of 500°C to 700°C. Elemental sulfur concentrations (as S2) as large as 20 mol% were produced. Limitations associated with the cerium sorbent process are concentrated in the desulfurization phase. High temperature and highly reducing coal gas such as produced in the Shell gasification process are required if high sulfur removal efficiencies are to be achieved. For example, the equilibrium H2S concentration at 800°C from a Shell gas in contact with CeO2 is about 300 ppmv, well above the allowable IGCC specification. In this case, a two-stage desulfurization process using CeO2 for bulk H2S removal following by a zinc sorbent polishing step would be required. Under appropriate conditions, however, CeO2 can be reduced to non-stoichiometric CeOn (n<2) which has significantly greater affinity for H2S. Pre-breakthrough H2S concentrations in the range of 1 ppmv to 5 ppmv were measured in sulfidation tests using CeOn at 700°C in highly reducing gases, as measured by equilibrium O2 concentration, comparable to the Shell gas. Good sorbent durability was indicated in

  12. Advanced sulfur control concepts for hot-gas desulfurization technology

    International Nuclear Information System (INIS)

    Lopez Ortiz, A.; Harrison, D.P.; Groves, F.R.; White, J.D.; Zhang, S.; Huang, W.N.; Zeng, Y.

    1998-01-01

    This research project examined the feasibility of a second generation high-temperature coal gas desulfurization process in which elemental sulfur is produced directly during the sorbent regeneration phase. Two concepts were evaluated experimentally. In the first, FeS was regenerated in a H2O-O2 mixture. Large fractions of the sulfur were liberated in elemental form when the H2O-O2 ratio was large. However, the mole percent of elemental sulfur in the product was always quite small (<<1%) and a process based on this concept was judged to be impractical because of the low temperature and high energy requirements associated with condensing the sulfur. The second concept involved desulfurization using CeO2 and regeneration of the sulfided sorbent, Ce2O2S, using SO2 to produce elemental sulfur directly. No significant side reactions were observed and the reaction was found to be quite rapid over the temperature range of 500C to 700C. Elemental sulfur concentrations (as S2) as large as 20 mol% were produced. Limitations associated with the cerium sorbent process are concentrated in the desulfurization phase. High temperature and highly reducing coal gas such as produced in the Shell gasification process are required if high sulfur removal efficiencies are to be achieved. For example, the equilibrium H2S concentration at 800C from a Shell gas in contact with CeO2 is about 300 ppmv, well above the allowable IGCC specification. In this case, a two-stage desulfurization process using CeO2 for bulk H2S removal following by a zinc sorbent polishing step would be required. Under appropriate conditions, however, CeO2 can be reduced to non-stoichiometric CeOn (n<2) which has significantly greater affinity for H2S. Pre-breakthrough H2S concentrations in the range of 1 ppmv to 5 ppmv were measured in sulfidation tests using CeOn at 700C in highly reducing gases, as measured by equilibrium O2 concentration, comparable to the Shell gas. Good sorbent durability was indicated in a

  13. Ultrasound-assisted oxidative desulfurization of bitumen

    Science.gov (United States)

    Kamal, Wan Mohamad Ikhwan bin Wan; Okawa, Hirokazu; Kato, Takahiro; Sugawara, Katsuyasu

    2017-07-01

    Bitumen contains a high percentage of sulfur (about 4.6 wt %). A hydrodesulfurization method is used to remove sulfur from bitumen. The drawback of this method is the requirement for a high temperature of >300 °C. Most of the sulfur in bitumen exists as thiophene. Oxidative desulfurization (ODS), involving oxidizing sulfur using H2O2, then removing it using NaOH, allows the removal of sulfur in thiophene at low temperatures. We removed sulfur from bitumen using ODS treatment under ultrasound irradiation, and 52% of sulfur was successfully removed. Additionally, the physical action of ultrasound assisted the desulfurization of bitumen, even at low H2O2 concentrations.

  14. Desulfurization technology in the blast furnace raceway by MgO-SiO{sub 2} flux injection

    Energy Technology Data Exchange (ETDEWEB)

    Orimoto, T.; Noda, T.; Ichida, M.; Nagasaka, T. [Hokkai Iron & Coke Corporation, Hokkaido (Japan)

    2008-07-01

    This paper presents a study on desulfurization technology in the steel industry, with attention focused on the removal of sulfur that forms acid rain, which has been creating various global problems. The study was confined to the technology that injects a mixture of serpentine and pulverized coals. Thermodynamically, a magnesium gas producing reaction occurs when magnesium oxide is turned into a hot strongly reducing atmosphere and the resulting magnesium gas forms magnesium sulfide by reaction with the sulfur in the molten iron. By dividing this desulfurization process into a magnesium gas producing reaction and a desulfurization reaction by the magnesium gas, the desulfurization effect of the magnesium oxide flux was confirmed through laboratory experiment. A thermodynamic study on the desulfurization reaction in which SiO gas resulting from the reduction of SiO{sub 2} produces a silicon sulfide gas by reaction with the sulfur in the molten iron revealed that the possibility of desulfurization of the molten iron by the silicon sulfide gas is not negligible.

  15. Desulfurization technologies for flue gases from power stations, technological and financial characteristics

    International Nuclear Information System (INIS)

    Naumoski, Koce

    1997-01-01

    Harms on life environment, caused by aero pollution, for the last decades enforced fast development of technologies for filtration of gases that come from thermal power plants and other objects. SO 2 , that appear as one of outputs of fossil fuels combustion, and also processing of sulphide ore, is a main component of acid rains. Acid rains represent one of the most risky factors, responsible for dryne of woods and changing of flora and fauna on land and in water. Starting from 1931 year when on the thermal power plant BATTERSEA STATION, property of London Power, first scrubbers were monnted for filtration of flue gases of SO 2 , and up till today, many procedures are developed for desulfurization of flue gases. For easier coping with numerous technologies for desulfurization , various classifications were made. By state of aggregation of the absorption agent , the technologies for desulfurization of gases are divided in wet , semidry and dry procedures. Wet procedures are technologies with highness rate of desulfurization of 90-95 % and most flexible of the quality of fuel whose flue gases are filtered. Presently they have high price of 90-220 $/kw installed power. According to American sources, their price at the world market is forecasted that till 2000 year will reach price of 100 $/kw. Dry technologies for desulfurization of flue gases are last technologies. The rate of desulfurization is 50-60 % and its prise is 76 -113 $/kw. Their negative side is high variable costs 250 - 388 $/ ton SO 2 (at wet procedures variable costs 76 - 157 $/ton SO 2 ). Semidry technologies by financial and technological characteristics are wet and dry procedures. (Author)

  16. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, December 11, 1992--March 11, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L.

    1993-12-31

    This report describes the potential of sulfate reducing bacteria to fix sulfur derived from flue gas desulfurization. The first section reviews the problem, the second section reviews progress of this study to use desulfovibrio desulfuricans for this purpose. The final section related progress during the current reporting period. This latter section describes studies to immobilize the bacteria in co-culture with floc-forming anaerobes, use of sewage sludges in the culture media, and sulfate production from sulfur dioxide.

  17. Production and performance of desulfurized rubber asphalt binder

    Directory of Open Access Journals (Sweden)

    Yanping Sheng

    2017-05-01

    Full Text Available Asphalt rubber binder typically exhibits disadvantages like segregation and high viscosity; however, this can be improved by the incorporation of desulfurized rubber powder. This study examined the swelling principle of desulfurized rubber asphalt (DRA. In addition, it evaluated the performance of DRA fabricated with various rubber powder contents under different shear conditions and development time. Superpave binders tests, including Brookfield viscosity, dynamic shear rheometer (DSR and bending beam rheometer (BBR tests, were applied on three control binders (i.e., neat, 20 mesh asphalt rubber binder, 40 mesh asphalt rubber binder and a DRA binder. Binder testing results indicated that rubber powder swelled into the base binder and resulted in enhanced stability. Optimum performance of the DRA binder was achieved by adding 20% (by weight of rubber powder into the base binder at shear rate, shear temperature, shear time and development time of 7000 r/min, 170 °C, 60 min and 45 min, respectively. Modified ranges of production conditions were also provided to widen the application of DRA in field construction. It appeared that DRA binder benefited from the recovered plasticity and viscosity of the rubber and consequently, exhibited superior performance over the neat and conventional asphalt rubber binders. Preliminary mixture evaluation was also conducted and the DRA binder was found to significantly improve the mixture resistance to permanent deformation and water damage. Overall, the DAR binder is encouraged to be used as a modified binder for flexible pavements. Keywords: Desulfurized rubber asphalt, Swelling model, Production process, Asphalt performance, Rubber asphalt

  18. Desulfurization of Diesel Fuel by Oxidation and Solvent Extraction

    Directory of Open Access Journals (Sweden)

    Wadood Taher Mohammed

    2015-02-01

    Full Text Available This research presents a study in ultra-desulfurization of diesel fuel produced from conventional hydro desulfurization process, using oxidation and solvent extraction techniques. Dibenzothiophene (DBT was the organosulfur compound that had been detected in sulfur removal. The oxidation process used hydrogen peroxide as an oxidant and acetic acid as homogeneous catalyst . The solvent extraction process used acetonitrile (ACN and N-methyl – 2 - pyrrolidone (NMP as extractants . Also the effect of five parameters (stirring speed :150 , 250 , 350 , and 450 rpm, temperature (30 , 40 , 45 , and 50 oC, oxidant/simulated diesel fuel ratio (0.5 , 0.75 , 1 , and 1.5 , catalyst/oxidant ratio(0.125,0.25,0.5,and0.75 , and solvent/simulated diesel fuel ratio(0.5,0.6,0.75,and1 were examined as well as solvent type. The results exhibit that the highest removal of sulfur is 98.5% using NMP solvent while it is 95.8% for ACN solvent. The set of conditions that show the highest sulfur removal is: stirring speed of 350 rpm , temperature 50oC , oxidant/simulated diesel fuel ratio 1 , catalyst/oxidant ratio 0.5 , solvent/simulated diesel fuel ratio 1. These best conditions were applied upon real diesel fuel (produced from Al-Dora refinerywith 1000 ppm sulfur content . It was found that sulfur removal was 64.4% using ACN solvent and 75% using NMP solvent.

  19. A modeling and experimental study of flue gas desulfurization in a dense phase tower

    International Nuclear Information System (INIS)

    Chang, Guanqin; Song, Cunyi; Wang, Li

    2011-01-01

    We used a dense phase tower as the reactor in a novel semi-dry flue gas desulfurization process to achieve a high desulfurization efficiency of over 95% when the Ca/S molar ratio reaches 1.3. Pilot-scale experiments were conducted for choosing the parameters of the full-scale reactor. Results show that with an increase in the flue gas flow rate the rate of the pressure drop in the dense phase tower also increases, however, the rate of the temperature drop decreases in the non-load hot gas. We chose a water flow rate of 0.6 kg/min to minimize the approach to adiabatic saturation temperature difference and maximize the desulfurization efficiency. To study the flue gas characteristics under different processing parameters, we simulated the desulfurization process in the reactor. The simulated data matched very well with the experimental data. We also found that with an increase in the Ca/S molar ratio, the differences between the simulation and experimental data tend to decrease; conversely, an increase in the flue gas flow rate increases the difference; this may be associated with the surface reactions caused by collision, coalescence and fragmentation between the dispersed phases.

  20. The desulfurization mechanism of iron-manganese compound oxide desulfurizer for removal of COS from coal gas

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fang-fang; Zhao Hai; Zhang De-xiang; Gao Jin-sheng [East China University of Science and Technology. Shanghai (China). School of Resource and Environmental Engineering

    2008-02-15

    The sorbent, atmospheric and components of outlet gas were analyzed by mass spectra, XRD, SEM, EDS etc. Desulfurisation performance of sorbents is good at 240 - 400 {sup o}C, atmospheric pressure and space speed of 500 - 2,000 h {sup -1}. The possible mechanism of desulfurisation reactions was obtained by analyzing the reduction- adsorption-sulfidation process. Carbon oxysulfide (COS) was converted to H{sub 2}S by hydrogen in strongly reducing atmosphere firstly. Then H{sub 2}S was adsorbed on the surface of desulfurizers, reacted with active component and transformed metal sulfides and water. Efficiency of removal of carbonyl sulfur is better in an atmosphere without carbonaceous oxide than in one with it, under test conditions. The existence of carbonaceous oxide restrains hydrogenation and the hydrolytic process of COS, which leads to a higher concentration of COS in the outlet. It is shown that chemical conversion is the main pathway in the reaction system of COS. Hydrogenation is the main process in the removal of COS from syngas. COS is preferentially catalyzed with active components n desulfurization sorbents, and generates H{sub 2}S which is subsequently absorbed. 13 refs., 4 figs., 2 tabs.

  1. Synthesis and application of different phthalocyanine molecular sieve catalyst for oxidative desulfurization

    Science.gov (United States)

    Zhao, Na; Li, Siwen; Wang, Jinyi; Zhang, Ronglan; Gao, Ruimin; Zhao, Jianshe; Wang, Junlong

    2015-05-01

    M2(PcAN)2 (M=Fe, Co, Ni, Cu, Zn and Mn) anchored onto W-HZSM-5 (M2(PcAN)2-W-HZSM-5) or the M2(PcTN)2 doping W-HZSM-5 (M2(PcTN)2/W-HZSM-5) were prepared and their catalytic performances were tested for oxidative desulfurization in the presence of oxygen. Thiophene (T), benzothiophene (BT), and dibenzothiophene (DBT) were considered as sulfur compounds. Among zeolite-based catalysts, the Cu2(PcAN)2-W-HZSM-5 and Cu2(PcTN)2/W-HZSM-5 showed superior desulfurization performance and the activity of selectivity followed the order: T>BT>DBT. The effects of phthalocyanine concentration were studied by UV-Vis and calcination temperature was obtained by TG-DSC for Cu2(PcTN)2/W-HZSM-5. Catalysts were characterized by EA, IR, XRD, SEM, TEM, ICP, and N2 adsorption. Reaction time, temperature and the amount of catalyst were investigated as the important parameters for optimization of the reaction. Furthermore, a possible process of oxidative desulfurization and the reaction products were proposed. The reaction process of ultra-deep desulfurization.

  2. Efficient Air Desulfurization Catalysts Derived from Pig Manure Liquefaction Char

    Directory of Open Access Journals (Sweden)

    Rajiv Wallace

    2017-11-01

    Full Text Available Biochar from the liquefaction of pig manure was used as a precursor of H2S desulfurization adsorbents. In its inorganic matter, it contains marked quantities of calcium, magnesium and iron, which are known as hydrogen sulfide oxidation catalysts. The char was used either as-received or mixed with 10% nanographite. The latter was added to increase both the content of the carbon phase and conductivity. ZnCl2 in two different ratios of char to an activation agent (1:1 and 1:2 was used to create the porosity in the carbon phase. The content of the later was between 18–45%. The activated samples adsorbed 144 mg/g H2S. Sulfur was the predominant product of reactive adsorption. Its deposition in the pore system and blockage of the most active pores ceased the materials’ activity. The presence of the catalytic phase was necessary but not sufficient to guarantee good performance. The developed porosity, which can store oxidation products in the resulting composite, is essential for the good performance of the desulfurization process. The surface of the composite with nanographite showed the highest catalytic activity, similar to that of the commercial Midas® carbon catalyst. The results obtained indicate that a high quality reactive adsorbent/catalyst for H2S removal can be obtained from pig manure liquefaction wastes.

  3. Synthesis, characterization and application of 1-butyl-3-methylimidazolium tetrafluoroborate for extractive desulfurization of liquid fuel

    Directory of Open Access Journals (Sweden)

    Swapnil A. Dharaskar

    2016-07-01

    Full Text Available In the present paper the experimental data of extractive desulfurization of liquid fuel using 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM]BF4 have been presented. The data of FTIR, 1H NMR and 13C NMR have been discussed for the molecular confirmation of synthesized [BMIM]BF4. Further, the thermal properties, conductivity, solubility, and viscosity analysis of the [BMIM]BF4 were carried out. The effects of reaction time, reaction temperature, sulfur compounds, and recycling of ionic liquid without regeneration on dibenzothiophene removal of liquid fuel were presented. In extractive desulfurization process, the removal of dibenzothiophene in n-dodecane was 73.02% for mass ratio of 1:1 in 30 min at 30 °C under the mild reaction conditions. The ionic liquids could be reused four times without a significant decrease in activity. Also, the desulfurizations of real fuels, multistage extraction were presented. The data and results provided in the present paper explore the significant insights of imidazoled ILs for extractive desulfurization of liquid fuels.

  4. Experimental research on bypass evaporation tower technology for zero liquid discharge of desulfurization wastewater.

    Science.gov (United States)

    Ma, Shuangchen; Chai, Jin; Wu, Kai; Xiang, Yajun; Jia, Shaoguang; Li, Qingsong

    2018-03-20

    Zero liquid discharge (ZLD) of wastewater has become the trend of environmental governance after the implementation of 'The Action Plan for Prevention and Treatment of Water Pollution' in China, desulfurization wastewater has gained more attention due to its complex composition and heavy metals. However, current technologies for ZLD have some shortcomings such as high cost and insufficient processing capacity, ZLD cannot be achieved actually. This paper proposes a new evaporation drying technology. An independent bypass evaporation tower was built, part of the hot flue gas before the air preheater was introduced into the evaporation tower for desulfurization wastewater evaporation, and the generated dust after evaporation was discharged back to the flue duct before electrostatic precipitator. This paper reports on the performance of desulfurization wastewater evaporation and the characteristics of evaporation products in depth and makes a comprehensive discussion of the impact on the existing equipment based on the self-designed evaporation tower. Research suggests that this technology has high system reliability and little effect on subsequent equipment and provides theoretical and practical data. Due to environmental policies and huge market demand for ZLD of desulfurization wastewater, bypass evaporation tower technology has a great application prospect in the future.

  5. Design considerations for wet flue gas desulfurization systems - wet scrubber hardware issues

    Energy Technology Data Exchange (ETDEWEB)

    Hurwitz, H.

    1994-12-31

    About 20 years ago the first wet flue gas desulfurization systems installed on coal fired utility boilers in the United States were experiencing extreme operating problems. In addition to their failure to achieve the necessary SO{sub 2} removal efficiencies, these FGD systems required a major investment in maintenance, both material and labor, just to remain operational. These first generation systems demonstrated that a lack of understanding of the chemistry and operating conditions of wet flue gas desulfurization can lead to diastrous results. As the air pollution control industry developed, both in the United States and in Japan, a second generation of FGD systems was introduced. These designs incorporated major improvements in both system chemistry control and in the equipment utilized in the process. Indeed, the successful introduction of utility gas desulfurization systems in Germany was possible only through the transfer of the technology improvements developed in the US and in Japan. Today, technology has evolved to a third generation of wet flue gas desulfurication systems and these systems are now offered worldwide through a series of international licensing agreements. The rapid economic growth and development in Asia and the Pacific Rim combined with existing problems in ambient air quality in these same geographic areas, has resulted in the use of advanced air pollution control systems; including flue gas desulfurization both for new utility units and for many retrofit projects. To meet the requirements of the utility industry, FGD systems must meet high standards of reliability, operability and performance. Key components in achieving these objectives are: FGD System reliability/operability/performance; FGD system supplier qualifications; process design; equipment selection. This paper will discuss each of the essential factors with a concentration on the equipment selection and wet scrubber hardware issues.

  6. Study of slag-refractory system in iron desulfurization process by isopleths from Ca O-Si O{sub 2}-Al{sub 2} O{sub 3} equilibrium diagram; Analise da interacao escoria de dessulfuracao de gusa - refratario do carro-torpedo a partir de projecao vertical no diagrama de equilibrio CaO-SiO{sub 2}-Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Marco Antonio; Tenorio, Jorge Alberto Soares [Sao Paulo Univ., SP (Brazil). Escola Politecnica

    1996-12-31

    The sulfur withdrawal from liquid iron to compatible levels in steels plant processes capability is an important task of high quality rolled products fabrication. Mixture of lime forms a family of desulfurization agent frequently used, mainly their lower cost if injected in iron to reach not so lower levels of desulfurization. The use of this desulfurization agents produces approximately 7.0 Kg/t of slag, that results between 10 to 30 Kg/t of total slag. This slag interacts with the refractory lining of torpedo car, normally high alumina. In the present case it was analyzed an interaction between a slag formed by the use of the agent plus a blast furnace slag with a high alumina tar bonded lining. Isopleths of Ca O-Si O{sub 2}-Al{sub 2} O{sub 3} equilibrium diagram were constructed to represent the slag-refractory interaction. The results show that the use of the agent formed by lime and aluminium by-product is more deleterious to studied lining, what confirm the observations carried out in industrial plant. (author) 11 refs., 9 figs., 3 tabs.

  7. Fiscal 2000 project of inviting proposals for international joint research - invitation for international proposal (Power generation No.1). Achievement report on development of novel high-performance dry type desulfurization agent made from coal ash; 2000 nendo kokusai kyodo kenkyu teian kobo jigyo - kokusai teian kobo (hatsuden No.1). Sekitanbai wo genryo to suru shinki koseino kanshiki datsuryuzai no kaihatsu to riyo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Efforts are made to develop a technology of using quicklime instead of slaked lime for a reduction in desulfurization cost, based on the technology of the coal ash utilizing dry type desulfurization device operating on coal ash, slaked lime, and gypsum, as hardened by hydration. Activities are conducted in the three fields of (1) basic study, (2) desulfurization agent bench-scale manufacturing test, and (3) study for putting the technology to practical application. In field (1), the basics are studied of the lime slaking process in the manufacture of a dry type desulfurization agent from quicklime, the mechanism is elucidated of the generation of active desulfurization substances, and effective utilization is studied of the desulfurization agent after use. In field (3), conceptual designs are prepared, cost efficiency of desulfurization systems are evaluated, simplified absorption systems are studied, and the trends of dry type desulfurization systems are surveyed. The cost of desulfurization under development is equivalent to that of the wet type method (limestone-gypsum system) when the used desulfurization agent is discarded, and is approximately 60% of the wet type method when the whole amount is effectively utilized. (NEDO)

  8. Ultrasonic coal-wash for de-ashing and de-sulfurization. Experimental investigation and mechanistic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ambedkar, B. [Indian Institute of Technology Madras, Chennai (India). Dept. of Chemical Engineering

    2012-07-01

    This study focuses on the physical aspects of ultrasonic de-ashing and de-sulfurization, such as cavitation, streaming and their combined effects. Ambedkar Balraj proposes an ultrasound-assisted coal particle breakage mechanism and explores aqueous and solvent-based ultrasonic techniques for de-ashing and de-sulfurization. Ambedkar designs a Taguchi L-27 fractional-factorial matrix to assess the individual effects of key process variables. In this volume he also describes process optimization and scale-up strategies. The author provides a mechanism-based model for ultrasonic reagent-based coal de-sulfurization, proposes a flow diagram for ultrasonic methods of high-throughput coal-wash and discusses the benefits of ultrasonic coal-wash. Coal will continue to be a major fuel source for the foreseeable future and this study helps improve its use by minimising ash and sulfur impurities.

  9. Thermodynamic assessment of IGCC power plants with hot fuel gas desulfurization

    International Nuclear Information System (INIS)

    Giuffrida, Antonio; Romano, Matteo C.; Lozza, Giovanni G.

    2010-01-01

    In IGCC power plants, hot gas desulfurization (HGD) represents an attractive solution to simplify syngas treatments and to improve the efficiency, potentially reducing the final cost of electricity. In the present study, the various consequences of the introduction of a HGD station in the power plant are discussed and evaluated, in comparison with conventional near-ambient temperature clean-up. Attention is paid to the potential improvements of the overall energy balance of the complete power station, along with the requirements of the sorbent regeneration process, to the influence of the desulfurization temperature and to the different solutions needed to control the NO x emissions (altered by the presence of HGD). The net performance of complete IGCC power plants (with HGD or with conventional desulfurization) were predicted, with reference to status-of-the-art solutions based on an entrained flow, dry-feed, oxygen-blown gasifier and on an advanced, FB-class combined cycle. The net efficiency experiences about 2.5% point improvement with HGD, even if a small reduction in the power output was predicted, when using the same combustion turbine. An exhaustive sensitivity analysis was carried out to evaluate the effects of different working conditions at the HGD station, e.g. desulfurization temperature and oxygen content in the gaseous stream for sorbent regeneration. According to the obtained results, these parameters have a weak influence on the efficiency. In particular, a very elevated desulfurization temperature (above 400-500 o C) does not provide decisive thermodynamic advantages. Therefore, the HGD unit optimization can be driven by technical and economical aspects and by emission abatement requirements. For instance, utilization of nitrogen for HGD sorbent regeneration (rather than for syngas dilution) and higher fuel temperature may improve the NO formation. Hence, different strategies to achieve acceptable NO x emissions (e.g. steam dilution) and their

  10. Extractive de-sulfurization and de-ashing of high sulfur coals by oxidation with ionic liquids

    International Nuclear Information System (INIS)

    Saikia, Binoy K.; Khound, Kakoli; Baruah, Bimala P.

    2014-01-01

    Highlights: • Extractive de-sulfurization and de-ashing process for cleaning high sulfur coals. • The process removes inorganic as well as organic sulfur components from high sulfur coals. • The process has less risk to chemists and other surroundings. - Abstract: The environmental consequences of energy production from coals are well known, and are driving the development of desulfurization technologies. In this investigation, ionic liquids were examined for extractive desulfurization and de-ashing in industrially important high sulfur sub-bituminous Indian coals. The ionic liquids, namely, 1-n-butyl-3-methylimidazolium tetrafluoroborate (IL1) and 1-n-butyl 3-methylimidazolium chloride (IL2) were employed for desulfurization of a few Indian coal samples in presence of HCOOH/H 2 O 2 and V 2 O 5 . Results show the maximum removal of 50.20% of the total sulfur, 48.00% of the organic sulfur, and 70.37 wt% of the ash in this process. The ionic liquids were recovered and subsequently used for further desulfurization. FT-IR spectra reveal the transformation of organic sulfur functionalities into the sulfoxides (S=O) and sulfones (-SO 2 ) due to the oxidative reactions. The sulfate, pyrite and sulfides (aryls) signals in the near edge X-ray absorption fine structure (NEXAFS) of the oxidized coal samples showed sulfur transformation during the desulfurization process. The study demonstrates the removal of significant amount of inorganic as well as organic sulfur (aryls) components from the original high sulfur coal samples to make them cleaner

  11. Simultaneous desulfurization and denitrification of flue gas by electron beam

    International Nuclear Information System (INIS)

    Baumann, W.; Jordan, S.; Maetzing, H.; Paur, H.R.; Schikarski, W.; Wiens, H.

    1987-05-01

    The simultaneous desulfurization and denitrification by the irradiation with 300 keV electrons in the presence of stoichiometric amounts of ammonia yields removal efficiencies of more than 90%. NO X -removal efficiencies depend on the absorbed dose, NO X -concentration and NH 3 -stoichiometry. SO 2 -removal proceeds by thermal and radiation induced mechanisms. The efficiency of the SO 2 -removal process is highest for low temperatures and high NH 3 -stoichiometries. By recycling of scrubbed gas into the reaction chamber (multiple irradiation) the efficiency of the process is increased by 50%. The product aerosol has mass median diameters of 2 and NO x removals in the absence of NH 3 are predicted with reasonable accuracy by the computer model. In the presence of NH 3 experimental data show higher SO 2 removal efficiencies than calculated. This is probably due to additional heterogeneous reactions on particles, which are not covered by the computer model. With 119 figs., 86 refs [de

  12. Radiation methods for demercaptanization and desulfurization of oil products

    International Nuclear Information System (INIS)

    Zaykina, R.F.; Zaykin, Yu.A.; Mamonova, T.B.; Nadirov, N.K.

    2002-01-01

    A two-stage method for the desulfurization of oil is presented. The first stage strongly oxidizes sulfuric material to do away with its chemical aggressiveness and promote its removal. Desulfurization of the overall product is reached at the second stage by means of conventional methods

  13. Radiation methods for demercaptanization and desulfurization of oil products

    Science.gov (United States)

    Zaykina, R. F.; Zaykin, Yu. A.; Mamonova, T. B.; Nadirov, N. K.

    2002-03-01

    A two-stage method for the desulfurization of oil is presented. The first stage strongly oxidizes sulfuric material to do away with its chemical aggressiveness and promote its removal. Desulfurization of the overall product is reached at the second stage by means of conventional methods.

  14. Magnesite base desulfurizer of metallurgical physical chemistry research

    Directory of Open Access Journals (Sweden)

    G. D. Liu

    2017-01-01

    Full Text Available This topic put carbon thermal vacuum method in combination with magnesium based desulfurization technology with magnesite reduction of magnesium vapor directly on hot metal desulphurization. This is a new type of desulfurization technology, the retrieval related literature at home and abroad was not reported in the recent ten years, according to the relationship between heat of desulfurizer preparation MgO style content can reach 50 %.It was found that the desulfurizer sample with 50 % MgO content was in accordance with the requirements, without adding flux, but its viscosity did not meet the requirements; adding 1 % flux (CaF2, the sample viscosity was significantly reduced, and about 1 400 °C sample viscosity suitable for hot metal pretreatment desulfurization.

  15. Radiation-induced desulfurization of Arabian crude oil and straight-run diesel

    Science.gov (United States)

    Basfar, A. A.; Mohamed, K. A.

    2011-11-01

    Radiation-induced desulfurization of four types of Arabian crude oils (heavy, medium, light and extra light) and straight-run diesel (SRD) was investigated over the range of 10-200 kGy. Results show that gamma radiation processing at absorbed doses up to 200 kGy without further treatment is not sufficient for desulfurization. However, the combination of gamma-irradiation with other physical/chemical processes (i.e. L/L extraction, adsorption and oxidation) may be capable of removing considerable levels of sulfur compounds in the investigated products. Currently, this approach of combined radiation/physical/chemical processes is under investigation. The findings of these attempts will be reported in the future.

  16. Semi-dry flue gas desulfurization using Ca(OH)2 in a fluidized bed reactor with bed materials

    International Nuclear Information System (INIS)

    Park, Young Oak; Roh, Hak Jae; Oh, Chang Sup; Kim, Yong Ha

    2010-01-01

    The main objective of present work is to reduce sulfur dioxide emission from power plant for the environment protection. The fluidized bed (FB) was used as the reactor with bed materials in a new semi-dry flue gas desulfurization (FGD) process to achieve high desulfurization efficiency (>98%). Fine powder of Ca(OH) 2 as sorbent and water were continuously fed separately to the bed reactor where bed materials (2 mm glass beads) were fluidized vigorously with flue gas (flow 720 Nm 3 / hr) using bench scale plant of stainless steel column. We have investigated different effects of water injection flow rate, Ca/ S molar ratio and weight of bed materials on SO 2 removal. The increments in the Ca/ S molar ratio and water injection flow rate have been resulted higher desulfurization efficiency with certain disadvantages such as higher sorbent cost and lower temperature of the treated flue gas, respectively. (author)

  17. Marble waste characterization as a desulfurizing slag component for steel

    International Nuclear Information System (INIS)

    Coleti, J.L.; Grillo, F.F.; Tenorio, J.A.S.; De Oliveira, J.R.

    2014-01-01

    The current steel market requires from steel plants better quality of its products. As a result, steel plants need to search for improvements and costs reduction in its process. Hence, the residue of marble containing significant quantities of calcium and magnesium carbonates, raw materials of steel refining slag, was characterized in order to replace the conventional lime used. Therefore, it will be possible to reduce the cost and volume of waste produced by the ornamental rock industry. The following methods were applied to test the waste potential: SEM with EDS, x-ray diffraction, x-ray fluorescence (EDX), Thermogravimetry (TG) and analysis of surface area and particle size by the BET method using dispersion leisure. The results indicated the feasibility of waste as raw material in the composition of desulfurizing slags. (author)

  18. Advanced fuel gas desulfurization (AFGD) demonstration project. Technical progress report No. 19, July 1, 1994--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The {open_quotes}Advanced Flue Gas Desulfurization (AFGD) Demonstration Project{close_quotes} is a $150.5 million cooperative effort between the U.S. Department of Energy and Pure Air, a general partnership of Air Products and Chemicals, Inc. and Mitsubishi Heavy Industries America, Inc. The AFGD process is one of several alternatives to conventional flue gas desulfurization (FGD) being demonstrated under the Department of Energy`s Clean Coal Technology Demonstration Program. The AFGD demonstration project is located at the Northern Indiana Public Service Company`s Bailly Generating Station, about 12 miles northeast of Gary, Indiana.

  19. Sixth annual coal preparation, utilization, and environmental control contractors conference

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    A conference was held on coal preparation, utilization and environmental control. Topics included: combustion of fuel slurries; combustor performance; desulfurization chemically and by biodegradation; coal cleaning; pollution control of sulfur oxides and nitrogen oxides; particulate control; and flue gas desulfurization. Individual projects are processed separately for the databases. (CBS).

  20. GRANULATION AND BRIQUETTING OF SOLID PRODUCTS FROM FLUE GAS DESULFURIZATION

    Directory of Open Access Journals (Sweden)

    Jan J. Hycnar

    2015-11-01

    Full Text Available Most flue gas desulfurization products can be characterized by significant solubility in water and dusting in dry state. These characteristics can cause a considerable pollution of air, water, and soil. Among many approaches to utilization of this waste, the process of agglomeration using granulation or briquetting has proved very effective. Using desulfurization products a new material of aggregate characteristics has been acquired, and this material is resistant to water and wind erosion as well as to the conditions of transportation and storage. The paper presents the results of industrial trials granulation and briquetting of calcium desulphurization products. The granulation of a mixture of phosphogypsum used with fly ash (in the share 1:5. The resulting granules characterized by a compressive strength of 41.6 MPa, the damping resistance of 70% and 14.2% abrasion. The granulate was used for the production of cement mix. The produced concrete mortar have a longer setting and hardening time, as compared to the traditional ash and gypsum mortar, and have a higher or comparable flexural and compressive strength during hardening. Briquetting trials made of a product called synthetic gypsum or rea-gypsum both in pure form and with the addition of 5% and 10% of the limestone dust. Briquettes have a high initial strength and resistance to abrasion. The values ​​of these parameters increased after 72 hours of seasoning. It was found that higher hardiness of briquettes with rea-gypsum was obtained with the impact of atmospheric conditions and higher resistance to elution of water-soluble components in comparison to ash briquettes.

  1. Effects of foaming and antifoaming agents on the performance of a wet flue gas desulfurization pilot plant

    DEFF Research Database (Denmark)

    Qin, Siqiang; Hansen, Brian Brun; Kiil, Søren

    2014-01-01

    Foaming is a common phenomenon in industrial processes, including wet flue gas desulfurization (FGD) plants. A systemic investigation of the influence of two foaming agents, sodium dodecyl sulphate (SDS) and egg white albumin (protein), and two commercial antifoams on a wet FGD pilot plant...

  2. Deep desulfurization of hydrocarbon fuels

    Science.gov (United States)

    Song, Chunshan [State College, PA; Ma, Xiaoliang [State College, PA; Sprague, Michael J [Calgary, CA; Subramani, Velu [State College, PA

    2012-04-17

    The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

  3. The Desulfurization of Magnetite Ore by Flotation with a Mixture of Xanthate and Dixanthogen

    Directory of Open Access Journals (Sweden)

    Jun Yu

    2016-07-01

    Full Text Available The contamination of sulfur emanating from pyrrhotite in magnetite concentrates has been a problem in iron ore processing. This study utilized froth flotation to float pyrrhotite away from magnetite using collectors of xanthate and dixanthogen. It was found that xanthate or dixanthogen alone could not achieve selective separation between pyrrhotite and magnetite in flotation. A high loss of magnetite was obtained with xanthate, while a low desulfurization degree was obtained with dixanthogen. It was interesting that a high desulfurization ratio was achieved with little loss of magnetite when xanthate was mixed with dixanthogen as the collector. The synergistic effect of the mixed collector on pyrrhotite was studied by electrokinectic studies and FTIR measurements. It was found that xanthate was the anchor on pyrrhotite and determined its selectivity against magnetite, while dixanthogen associated with xanthate, enhancing its hydrophobicity. This study provides new insights into the separation of iron minerals.

  4. Food Processing and Agriculture. Wisconsin Annual Farm Labor Report, 1968.

    Science.gov (United States)

    Wisconsin State Employment Service, Madison.

    A yearly report on the migrant farm worker situation in Wisconsin evaluates the year 1968 in relation to past years and makes projections for the future. Comparisons are made of trends in year-round employment practices, seasonal food processing, the cherry industry, and the cucumber industry. The report includes a discussion on the social aspects…

  5. Deep desulfurization of jet fuel for applications in mobile fuel cell systems; Tiefentschwefelung von Flugturbinenkraftstoffen fuer die Anwendung in mobilen Brennstoffzellensystemen

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yong

    2012-07-01

    Fuel cell powered APUs are promising for the on-board electricity supply in heavy vehicles, aircraft and ships because of their high efficiency and low emission of pollutants. The catalytical reforming with subsequent gas processing units is applied to operate the fuel cell system with onboard available fuels. Within the reformer the liquid fuel is converted into a hydrogen-rich synthesis gas in the presence of metal catalysts. However, an on-board desulfurization of fuels is required to avoid the deactivation of catalysts in the fuel processing unit as well as in the fuel cell. The present work aims at developing a technically feasible deep desulfurization process for fuel cell powered APUs with theoretical and experimental study as well as procedural analysis. The focus of the work is on the desulfurization of jet fuels in liquid phase, since the reformer currently developed in IEK-3 is designed for aviation applications of fuel cell APUs and it can only be operated by liquid jet fuels. In addition, the desulfurization of marine gas oil was investigated to fulfill the sulfur requirement of the fuels for the application of fuel cell A PUs for inland navigation. In the petroleum industry, low-sulfur fuels are often obtained by hydrodesulfurization and the S-Zorb Process. However, these conventional methods are highly inconvenient for reducing sulfur compounds to the desired level in a mobile fuel cell system, since improvements of the desulfurization efficiency are limited by increasingly severe operating conditions and escalating costs. Moreover, the hydrodesulfurization and the S-Zorb Process are not suitable for mobile applications, since hydrogen recycling is required, which is not possible with H{sub 2} syngas. To this end, a large number of processes discussed in the literature were assessed with regard to their application in fuel cell APUs. Three potentially suitable processes were selected: pervaporation, adsorption, and hydrodesulfurization with pre

  6. UTILITY OF ANNUAL FINANCIAL STATEMENTS IN THE MANAGEMENT PROCESS

    Directory of Open Access Journals (Sweden)

    PUICAN LILIANA

    2015-07-01

    Full Text Available Process knowledge of the financial situation of the economic entity presupposes the use of analysis and synthesis, as indispensable tools of investigation. Financial management of the economic entity have to belong to the basic role in strategic financial decisions that would solve the problem of effective management of the process optimal growth, balanced and proportionate entity. That is why it becomes necessary and imperative objective analysis of the implications of the current financial management in economic entities familiarize managers with the basic tools with which they operate, acquiring knowledge about planning and financial control, evaluation techniques of investment projects, about how to conduct financial and economic diagnosis and management control of the entity, the key issues in its orientation towards performance.

  7. HIGH EFFICIENCY DESULFURIZATION OF SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Kwang-Bok Yi; Anirban Mukherjee; Elizabeth J. Podlaha; Douglas P. Harrison

    2004-03-01

    Mixed metal oxides containing ceria and zirconia have been studied as high temperature desulfurization sorbents with the objective of achieving the DOE Vision 21 target of 1 ppmv or less H{sub 2}S in the product gas. The research was justified by recent results in this laboratory that showed that reduced CeO{sub 2}, designated CeOn (1.5 < n < 2.0), is capable of achieving the 1 ppmv target in highly reducing gas atmospheres. The addition of ZrO{sub 2} has improved the performance of oxidation catalysts and three-way automotive catalysts containing CeO{sub 2}, and was postulated to have similar beneficial effects on CeO{sub 2} desulfurization sorbents. An electrochemical method for synthesizing CeO{sub 2}-ZrO{sub 2} mixtures was developed and the products were characterized by XRD and TEM during year 01. Nanocrystalline particles having a diameter of about 5 nm and containing from approximately 10 mol% to 80 mol% ZrO{sub 2} were prepared. XRD analysis showed the product to be a solid solution at low ZrO{sub 2} contents with a separate ZrO{sub 2} phase emerging at higher ZrO{sub 2} levels. Unfortunately, the quantity of CeO{sub 2}-ZrO{sub 2} that could be prepared electrochemically was too small to permit desulfurization testing. Also during year 01 a laboratory-scale fixed-bed reactor was constructed for desulfurization testing. All components of the reactor and analytical systems that were exposed to low concentrations of H{sub 2}S were constructed of quartz, Teflon, or silcosteel. Reactor product gas composition as a function of time was determined using a Varian 3800 gas chromatograph equipped with a pulsed flame photometric detector (PFPD) for measuring low H{sub 2}S concentrations from approximately 0.1 to 10 ppmv, and a thermal conductivity detector (TCD) for higher concentrations of H{sub 2}S. Larger quantities of CeO{sub 2}-ZrO{sub 2} mixtures from other sources, including mixtures prepared in this laboratory using a coprecipitation procedure, were obtained

  8. Bio desulfurization of a system containing synthetic fuel by rhodococcus erythropolis ATCC 4277; Remocao de compostos sulfurosos de sitema bifasico contendo combustivel sintetico por Rhodococcus erythropolis ATCC 4277

    Energy Technology Data Exchange (ETDEWEB)

    Maass, Danielle; Souza, Antonio Augusto Ulson de; Souza, Selene Maria de Arruda Guelli Ulson de [Universidade Federal de Santa Catarina (UFSC), SC (Brazil)

    2012-07-01

    For decades the burning of fossil fuels released a lot of pollutants in the atmosphere. Among the most harmful is sulfur dioxide (SO{sub 2}), which reacts with the moisture in the air and turns into sulfuric acid, being the main cause of acid rain. Acid rain is very harmful to animal and plant kingdoms; accelerates the corrosion's processes of buildings and monuments, and causes serious health problems for humans. As a result, many countries have reformed their legislation to require the sale of fuels with very low sulfur content. The existing processes of desulfurization are not capable of removing sulfur so low. Therefore, there has developed a new process called bio desulfurization. In this process, the degradation of sulfur occurs through the action of microorganisms that act as catalysts. The bacterium Rhodococcus erythropolis has emerged as one of the most promising for bio desulfurization because it removes the sulfur without breaking the benzene rings, thereby maintaining the potential energy of the same. Using dibenzothiophene as a model of sulfur compounds, the products of the bio desulfurization process are 2- hydroxybiphenyl and sulfate. In this study we sought to examine the desulfurizing capacity of national Rhodococcus erythropolis strain ATCC4277 in a batch reactor using concentrations of organic phase (n-dodecane) of 20 and 80% (v/v). Rhodococcus erythropolis ATCC4277 was capable of degrading DBT in 93.3 and 98.0% in the presence of 20 and 80% (v/v) of synthetic fuel, respectively. (author)

  9. Long-term Trend and Fractal of Annual Runoff Process in Mainstream of Tarim River

    Institute of Scientific and Technical Information of China (English)

    XU Jianhua; CHEN Yaning; LI Weihong; DONG Shan

    2008-01-01

    Based on the time series data from the Aral hydrological station for the period of 1958-2005, the paper re-veals the long-term trend and fractal of the annual runoff process in the mainstream of the Tarim River by using thewavelet analysis method and the fractal theory. The main conclusions are as follows: 1) From a large time scale pointof view, i.e. the time scale of 16 (24) years, the annual runoff basically shows a slightly decreasing trend as a wholefrom 1958 to 2005. If the time scale is reduced to 8 (23) or 4 (22) years, the annual runoff still displays the basic trendas the large time scale, but it has fluctuated more obviously during the period. 2) The correlation dimension for theannual runoff process is 3.4307, non-integral, which indicates that the process has both fractal and chaotic characteris-tics. The correlation dimension is above 3, which means that at least four independent variables are needed to describethe dynamics of the annual runoff process. 3) The Hurst exponent for the first period (1958-1973) is 0.5036, whichequals 0.5 approximately and indicates that the annual runoff process is in chaos. The Hurst exponents for the second(1974-1989) and third (1990-2005) periods are both greater than 0.50, which indicate that the annual runoff processshowed a long-enduring characteristic in the two periods. The Hurst exponent for the period from 1990 to 2005 indi-cates that the annual runoffwill show a slightly increasing trend in the 16 years after 2005.

  10. HIGH EFFICIENCY DESULFURIZATION OF SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Anirban Mukherjee; Kwang-Bok Yi; Elizabeth J. Podlaha; Douglas P. Harrison

    2001-11-01

    Mixed metal oxides containing CeO{sub 2} and ZrO{sub 2} are being studied as high temperature desulfurization sorbents capable of achieving the DOE Vision 21 target of 1 ppmv of less H{sub 2}S. The research is justified by recent results in this laboratory that showed that reduced CeO{sub 2}, designated CeO{sub n} (1.5 < n < 2.0), is capable of achieving the 1 ppmv target in highly reducing gas atmospheres. The addition of ZrO{sub 2} has improved the performance of oxidation catalysts and three-way automotive catalysts containing CeO{sub 2}, and should have similar beneficial effects on CeO{sub 2} desulfurization sorbents. An electrochemical method for synthesizing CeO{sub 2}-ZrO{sub 2} has been developed and the products have been characterized by XRD and TEM during year 01. Nanocrystalline particles having a diameter of about 5 nm and containing from approximately 10 mol% to 80 mol% ZrO{sub 2} have been prepared. XRD showed the product to be a solid solution at low ZrO{sub 2} contents with a separate ZrO{sub 2} phase emerging at higher ZrO{sub 2} levels. Phase separation did not occur when the solid solutions were heat treated at 700 C. A flow reactor system constructed of quartz and teflon has been constructed, and a gas chromatograph equipped with a pulsed flame photometric detector (PFPD) suitable for measuring sub-ppmv levels of H{sub 2}S has been purchased with LSU matching funds. Preliminary desulfurization tests using commercial CeO{sub 2} and CeO{sub 2}-ZrO{sub 2} in highly reducing gas compositions has confirmed that CeO{sub 2}-ZrO{sub 2} is more effective than CeO{sub 2} in removing H{sub 2}S. At 700 C the product H{sub 2}S concentration using CeO{sub 2}-ZrO{sub 2} sorbent was near the 0.1 ppmv PFPD detection limit during the prebreakthrough period.

  11. Desulfurization of chalcopyrite and molybdenite by atomic hydrogen

    International Nuclear Information System (INIS)

    Bagdasaryan, V.R.; Kosoyan, A.Zh.; Niazyan, O.M.

    1989-01-01

    Molybdenite (MoS 2 ) desulfurization by monatomic hydrogen in 625-800 K range was studied using helium as diluent gas. Desulfurization degree at 680 K equals 9%. Temperature growth elevates sulfur content in molybdenite. The effect of initial molybdenite enrichment with temperature growth up to 800 K is probably caused by removal of reduced molybdenum capable to form oxide in the presence of traces of oxygen contained in inert diluent gas

  12. Desulfurization of chemical waste gases and flue gases with economic utilization of air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, K.; Wischnewski, W.

    1983-09-01

    The technological state of recovery of sulfur dioxide from waste and flue gases in the GDR is discussed. Two examples of plants are presented: a pyrosulfuric acid plant in Coswig, recovering sulfur dioxide from gases by absorption with sodium hydroxide, followed by catalytic oxidation to sulfur trioxide, and a plant for waste sulfuric acid recovery from paraffin refining, where the diluted waste acid is sprayed into a furnace and recovered by an ammonium-sulfite-bisulfite solution from the combustion gas (with 4 to 10% sulfur dioxide content). Investment and operation costs as well as profits of both plants are given. Methods employed for power plant flue gas desulfurization in major industrial countries are further assessed: about 90% of these methods uses wet flue gas scrubbing with lime. In the USA flue gas from 25,000 MW of power plant capacity is desulfurized. In the USSR, a 35,000 m/sup 3//h trial plant at Severo-Donetzk is operating using lime, alkali and magnesite. At the 150 MW Dorogobush power plant in the USSR a desulfurization plant using a cyclic ammonia process is under construction.

  13. Numerical simulation and field test study of desulfurization wastewater evaporation treatment through flue gas.

    Science.gov (United States)

    Deng, Jia-Jia; Pan, Liang-Ming; Chen, De-Qi; Dong, Yu-Quan; Wang, Cheng-Mu; Liu, Hang; Kang, Mei-Qiang

    2014-01-01

    Aimed at cost saving and pollution reduction, a novel desulfurization wastewater evaporation treatment system (DWETS) for handling wet flue gas desulfurization (WFGD) wastewater of a coal-fired power plant was studied. The system's advantages include simple process, and less investment and space. The feasibility of this system has been proven and the appropriate position and number of nozzles, the spray droplet size and flue gas temperature limitation have been obtained by computational fluid dynamics (CFD) simulation. The simulation results show that a longer duct, smaller diameter and higher flue gas temperature could help to increase the evaporation rate. The optimal DWETS design of Shangdu plant is 100 μm droplet sprayed by two nozzles located at the long duct when the flue gas temperature is 130 °C. Field tests were carried out based on the simulation results. The effects of running DWETS on the downstream devices have been studied. The results show that DWETS has a positive impact on ash removal efficiency and does not have any negative impact on the electrostatic precipitator (ESP), flue gas heat exchanger and WFGD. The pH values of the slurry of WFGD slightly increase when the DWETS is running. The simulation and field test of the DWETS show that it is a feasible future technology for desulfurization wastewater treatment.

  14. Effects of nano-TiO2 on combustion and desulfurization

    International Nuclear Information System (INIS)

    Zhao, Yi; Wang, Shuqin; Shen, Yanmei; Lu, Xiaojuan

    2013-01-01

    Nanosized titanium oxide powder was prepared via the sol–gel process and characterized by transmission electron microscope. The effects of nano-TiO 2 on combustion characteristics of lignite, desulfurization in combustion and the properties of ashes were investigated. The calorific value of coals and the fusion point of the coal ashes were measured by calorimeter and ash fusion point determination meter; the components of coal ashes and the contents of combustible matters in ash were determined by chemical methods; the pore-size distribution and specific surface area of the coal ash were analyzed by surface area analyzer. A thermogravimetric analyzer was used to investigate the effect of nano-TiO 2 on combustion. The results showed that the calorific value of the coal and the fusion temperature of the coal ash were lowered by adding CaO, while on the other hand adding nano-TiO 2 to coal increased the calorific value and the melting temperature effectively. Meanwhile, the coal combustion efficiency and desulfurization in combustion could be effectively improved by the co-action of TiO 2 . - Highlights: • The burn-off rate of coals was raised and the combustible contents were reduced by adding nano-TiO 2 . • The desulfurization in combustion can be achieved by adding CaO, but the combustion efficiency was inhibited. • Nano-TiO 2 can promote the transfer rate of oxygen from gas phase to the surface of char

  15. Effects of magnetic fields on improving mass transfer in flue gas desulfurization using a fluidized bed

    Science.gov (United States)

    Zhang, Qi; Gui, Keting; Wang, Xiaobo

    2016-02-01

    The effects of magnetic fields on improving the mass transfer in flue gas desulfurization using a fluidized bed are investigated in the paper. In this research, the magnetically fluidized bed (MFB) is used as the reactor in which ferromagnetic particles are fluidized with simulated flue gas under the influence of an external magnetic field. Lime slurry is continuously sprayed into the reactor. As a consequence, the desulfurization reaction and the slurry drying process take place simultaneously in the MFB. In this paper, the effects of ferromagnetic particles and external magnetic fields on the desulphurization efficiency are studied and compared with that of quartz particles as the fluidized particles. Experimental results show that the ferromagnetic particles not only act as a platform for lime slurry to precipitate on like quartz particles, but also take part in the desulfurization reaction. The results also show that the specific surface area of ferromagnetic particles after reaction is enlarged as the magnetic intensity increases, and the external magnetic field promotes the oxidation of S(IV), improving the mass transfer between sulphur and its sorbent. Hence, the efficiency of desulphurization under the effects of external magnetic fields is higher than that in general fluidized beds.

  16. Improving the desulfurization performance of CaCO3 with sodium humate

    Science.gov (United States)

    Feng, Run; Sun, Zhiguo; Zhang, Wenqing; Huang, Hao; Hu, Haihang; Zhang, Li; Xie, Hongyong

    2018-02-01

    The influence of these factors on desulphurization efficiency was studied by changing the amount of calcium carbonate, the concentration of sulfur dioxide, the liquid flow rate of absorbent and the air flow rate, the optimum working condition was determined by the research of limestone-gypsum desulphurization process commonly used in industry. By changing the amount of calcium carbonate, we conclude that the volume of water in the desulfurization efficiency does not increase with the adding amount of calcium carbonate. The optimum conditions were determined : at the condicion of the concentration of 500ppm of sulfur dioxide, 10g calcium carbonate, 150L/h liquid flow and the minimum air flow rate of 6.75m3/h, the highest desulfurization efficiency was close to 100% when sodium humate was not added, but the holding time was only about 5 minutes. After adding 3g of humic acid, the desulfurization efficiency was improved obviously, and the instantaneous efficiency of 100% lasting for about 40 minutes. It can be seen that, calcium carbonate in the addition of humic acid sodium can significantly improve the absorption of calcium carbonate performance of SO2.

  17. Method of treating final products from flue gas desulfurization

    International Nuclear Information System (INIS)

    Bloss, W.; Mohn, U.

    1984-01-01

    A method of treating final products from a flue gas desulfurization. The flue gas desulfurization is carried out by the absorption of sulfur oxide in a spray dryer with a suspension which contains lime, or in a reactor with a dry, fine-grained, absorbent which contains lime. Prior to desulfurization, the fly ash carried along by the flue gas which is to be desulfurized is separated entirely, partially, or not at all from the flue gas, and the final products from the flue gas desulfurization, prior to any further treatment thereof, amount to 1-99% by weight, preferably 1-70% by weight, of fly ash, and 1-99% by weight, preferably 30-99% by weight, of the sum of the desulfurization products, preferably calcium sulfite hemihydrate, and/or calcium sulfite, and/or calcium sulfate dyhydrate, and/or calcium sulfate hemihydrate, and/or calcium sulfate, as well as residue of the absorbent. The reduction of the amount of calcium sulfite is implemented by a dry oxidation with air

  18. Revegetation of flue gas desulfurization sludge pond disposal sites

    International Nuclear Information System (INIS)

    Artiola, J.F.

    1994-12-01

    A comprehensive search of published literature was conducted to summarize research undertaken to date on revegetation of flue gas desulfurization (FGD) waste disposal ponds. A review of the physical and chemical properties of FGD sludges and wastes with similar characteristics is also included in order to determine the advantages and limitations of FGD sludge for plant growth. No specific guidelines have been developed for the revegetation of FGD sludge disposal sites. Survey studies showed that the wide-ranging composition of FGD wastes was determined primarily by the sulfur dioxide and other flue gas scrubbing processes used at powerplants. Sulfate rich (>90%CaSO 4 ) FGD sludges are physically and chemically more stable, and thus more amenable to revegetation. Because of lack of macronutrients and extremely limited microbial activity, FBD sludge ponds presented a poor plant growth environment without amendment. Studies showed the natural process of inoculation of the FGD sludge with soil microbes that promote plant growth be can after disposal but proceeded slowly. Revegetation studies reviewed showed that FGD sludges amended with soils supported a wider variety of plant species better and longer than abandoned FGD ponds. Two major types of plants have been successful in revegetation of FGD waste ponds and similar wastes: salt-tolerant plants and aquatic plants. A comprehensive list of plant species with potential for regetation of FGD sludge disposal pond sites is presented along with successful revegetation techniques

  19. 1. annual workshop proceedings of integrated project fundamental processes of radionuclide migration IP Funmig

    International Nuclear Information System (INIS)

    Reiller, P.; Buckau, G.; Kienzler, B.; Duro, L.; Martell, M.

    2006-01-01

    These are the proceedings of the 1. Annual Workshop Proceedings of the Integrated Project FUNMIG (fundamental processes of radionuclide migration). The Annual Workshop was hosted by CEA and held in Saclay, 28 November - 1 December 2005. The project started January 2005 and has a duration of four years. The project makes use of annual workshops bringing the project partners together and inviting external groups to participate and contribute. Consequently, the present proceedings will be followed by another three proceedings from the forthcoming annual workshops to be held the end of 2006, 2007 and 2008. The 2. Annual Workshop will be hosted by SKB and be held in Stockholm, 21-23 November 2006. The proceedings serve several purposes. The key purpose is to document and make available to a broad scientific community the outcome of this project. A considerable part of the project activity reporting is also done through the proceedings. For this reason the first parts of the proceedings are structured around the workshop and the project. A large part of the proceedings, however, also contain individual scientific contributions by the project partners as well as external contributors. Information about the project can be found under www.funmig.com. (authors)

  20. An oxidative desulfurization method using ultrasound/Fenton's reagent for obtaining low and/or ultra-low sulfur diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yongchuan; Qi, Yutai [Department of Applied Chemistry, School of Science, Harbin Institute of Technology, Harbin 115001 (China); Zhao, Dezhi [Department of Petroleum Chemical Engineering, Liaoning Shihua University, Fushun 113001 (China); Zhang, Huicheng [Fushun Research Institute of Petroleum and Petrochemicals of SINOPEC Corp., Fushun 113001 (China)

    2008-10-15

    The total development trend in the world is towards continuously lower of sulfur content as a quality standard of diesel fuels. Integrating of an oxidative desulfurization unit with a conventional hydrotreating unit can bring benefits to producing low and/or ultra-low sulfur diesel fuels. Using the hydrotreated Middle East diesel fuel as a feedstock, four processes of the oxidative desulfurization have been studied: a hydrogen peroxide-acetic acid system and a Fenton's reagent system both without/with ultrasound. Results showed that the oxidative desulfurization reaction mechanics fitted apparent first-order kinetics. The addition of Fenton's reagent could enhance the oxidative desulfurization efficiency for diesel fuels and sono-oxidation treatment in combination with Fenton's reagent shows a good synergistic effect. Under our best operating condition for the oxidative desulfurization: temperature 313 K, ultrasonic power 200 W, ultrasonic frequency 28 kHz, Fe{sup 2+}/H{sub 2}O{sub 2} 0.05 mol/mol, pH 2.10 in aqueous phase and reaction time 15 min, the sulfur content in the diesel fuels was decreased from 568.75 {mu}g/g to 9.50 {mu}g/g. (author)

  1. Desulfurization performance of azole-based ionic liquids

    Directory of Open Access Journals (Sweden)

    Liubei CHENG

    2017-10-01

    Full Text Available In order to study the addition of functional groups in ionic liquid anion and cation to achieve better absorbing of SO2, the 1,1,3,3-tetramethylguanidine triazole ( is synthesized using 1,1,3,3-tetramethylguanidine and triazole as raw materials. The desulfurization performance of the synthesized is systematically studied. The desulfurization performance and desulfurization mechanism of the are discussed. The results show that the has good performance of desulfurization and regeneration. At the atmospheric pressure, 1 mol of the absorbs 2.964 mol of SO2 at 20 ℃. With the increase of temperature, the desulfurization capacity of the decreases gradually. The molar absorption ratio increases with the increase of SO2 partial pressure, and under the conditions of 130 ℃, the desorption rate of the ionic liquid after saturated adsorption reaches over 95%. The mechanism investigation results show that the interaction of SO2 and is the combination of chemical absorption and physical absorption. The results have a certain reference value to improve the efficiency of flue gas treatment.

  2. Desulfurization of petroleum induced by ionization radiation: benzothiophene behavior

    International Nuclear Information System (INIS)

    Andrade, Luana S.; Calvo, Wilson A.P.; Duarte, Celina L.

    2013-01-01

    Hydrodesulfurization (HDS) is currently the most common method used by refineries; this removes significantly sulfur compounds from petroleum fractions, however, is not highly effective for removing thiophene compounds such as benzothiophene, and generates high costs for the oil industry. Another factor, are the environmental laws, which over the years has become increasingly strict, especially regarding the sulfur content. This compound cause incalculable damage both to the industry and to the environment. Therefore new methods for petroleum desulfurization should be studied in order to minimize the impacts that these compounds cause. In the present study it was used ionizing radiation, a promising method of advanced oxidation in reducing sulfur compounds. The analysis were performed after purge and trap concentration of samples, followed by gas chromatography-mass spectrometry (GC-MS). Then benzothiophene samples with the same concentration from 27 mg.L -1 to 139 mg.L -1 were irradiated with different absorbed doses of radiation ranging from 1 kGy to 20 kGy in gamma irradiator Cobalt-60, Gammacell. These samples were analyzed by the same procedure used for the calibration curve, and the removals of benzothiophene after ionizing radiation treatment were calculated. It was observed that at higher doses there was a greater degradation of this compound and the formation of fragments, such as 1,2-dimethylbenzene and toluene, which may be removed by simple processes. (author)

  3. NIRE annual report 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The National Institute for Resources and Environment (NIRE) has a R & D concept of `ecotechnology` that aims to protect the environment from degradation whilst promoting sustainable development. This annual report presents summaries of 32 recent research efforts on such topics as: emission control of sulfur and nitrogen oxides from advanced coal combustors; catalysts for diesel NO{sub x} removal; measuring dust from stationary sources; software for life cycle assessment; marine disposal of CO{sub 2}; emissions of greenhouse gases from coal mines in Japan; structural changes in coal particles during gasification; solubilization and desulfurization of high sulfur coal with trifluoromethane sulfuroic acid; and oxidation mechanisms of H{sub 2}S.

  4. Economic analysis of solar industrial process heat systems: A methodology to determine annual required revenue and internal rate of return

    Science.gov (United States)

    Dickinson, W. C.; Brown, K. C.

    1981-08-01

    An economic evaluation of solar industrial process heat systems, is developed to determine the annual required revenue and the internal rate of return. First, a format is provided to estimate the solar system's installed cost, annual operating and maintenance expenses, and net annual solar energy delivered to the industrial process. The annual required revenue and the price of solar is calculated. The economic attractiveness of the potential solar investment can be determined by comparing the price of solar energy with the price of fossilfuel, both expressed in levelized terms. This requires calcuation of the internal rate of return on the solar investment or, in certain cases, the growth rate of return.

  5. Pb(II) removal from aqueous solution by a low-cost adsorbent dry desulfurization slag

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiong; You, Ruirong [College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108 (China); Clark, Malcolm [Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Lismore, NSW 2480 (Australia); Yu, Yan, E-mail: yuyan_1972@126.com [College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108 (China)

    2014-09-30

    Highlights: • Dry desulfurization slag, solid waste, was an efficient adsorbent for lead removal. • The adsorption of Pb{sup 2+} onto dry desulfurization slag was generally monolayer. • The rate limiting step in the adsorption process of Pb{sup 2+} was chemisorption. • Pb{sup 2+} was absorbed onto the surface of the sample adsorbent only. • The adsorbent was low-cost and could be recycled. - Abstract: A collectable and non-sintered material prepared as hollow cylindrical shaped pellet from dry desulfurization slag (FGD ash) and ordinary Portland cement (OPC) for wastewater treatments is tested. The characteristic results of powder X-ray diffraction (XRD) and infrared absorption spectroscopy (IR) show that –OH, CO{sub 3}{sup 2−}, SO{sub 3}{sup 2−} and SO{sub 4}{sup 2−} are the possible functional groups responsible for Pb uptake. Adsorption data indicate that Pb removal is pH dependent and optimal at pH 6, with a very rapid initial removal that reaches equilibrium in about 90 min. A maximum removal of 99.2% is seen for 5 mg/L (pH of 6); higher initial Pb concentrations reduce overall removal efficiencies, but generate higher surface loadings. Adsorption process correlates well with both Langmuir and Freundlich models, although the Langmuir isotherm is more favored, providing a maximum adsorption capacity (Qm) of 130.2 mg/g (13 wt%). Pseudo-second order rate kinetic model best describes the Pb removal, and calculated R{sub L} values between 0 and 1, indicate a favored adsorption process that is chemisorption limited. SEM and EDAX analysis of the surface and fracture surface show that Pb occurs as surface precipitates and that Pb is not distributed to the inner core of the pellet. This study demonstrates that dry FGD ash could be successfully used for wastewater Pb removal.

  6. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Jha, M.C.; Berggren, M.H.

    1989-05-02

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  7. GE`s worldwide experience with IFO based gypsum producing flue gas desulfurization systems

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, A. [GE Environmental Systems, Lebanon, PA (United States)

    1994-12-31

    The In-Situ Forced Oxidation (IFO) process to produce gypsum in a commercial scale flue gas desulfurization (FGD) system was first demonstrated by GE Environmental Systems in 1980 at the Monticello Generating Station of Texas Utilities. Since then, the IFO technology developed and demonstrated by GE has become the industry standard and is used extensively on a world-wide basis to produce both commercial and disposable-grade gypsum. The paper gives an overview of the development, demonstration, commercial design and current status of the IFO technology.

  8. Synthesis and characterization of porous metal oxides and desulfurization studies of sulfur containing compounds

    Science.gov (United States)

    Garces Trujillo, Hector Fabian

    This thesis contains two parts: 1) synthesis and characterization of porous metal oxides that include zinc oxide and a porous mixed-valent manganese oxide with an amorphous structure (AMO) 2) the desulfurization studies for the removal of sulfur compounds. Zinc oxide with different nano-scale morphologies may result in various porosities with different adsorption capabilities. A tunable shape microwave synthesis of ZnO nano-spheres in a co-solvent mixture is presented. The ZnO nano-sphere material is investigated as a desulfurizing sorbent in a fixed bed reactor in the temperature range 200 to 400 °C and compared with ZnO nanorods and platelet-like morphologies. Fresh and sulfided materials were characterized by X-ray diffraction (XRD), BET specific surface area, pore volume, scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (SEM/EDX), Raman spectroscopy, and thermogravimetric analysis (TGA). The tunable shape microwave synthesis of ZnO presents a high sulfur sorption capacity at temperatures as low as 200 °C which accounts for a three and four fold enhancement over the other preparations presented in this work, and reached 76 % of the theoretical sulfur capacity (TSC) at 300 °C. Another ZnO material with a bimodal micro- and mesopore size distribution investigated as a desulfurizing sorbent presents a sorption capacity that reaches 87% of the theoretical value for desulfurization at 400 °C at breakthrough time. A deactivation model that considers the activity of the solid reactant was used to fit the experimental data. Good agreement between the experimental breakthrough curves and the model predictions are obtained. Manganese oxides are a type of metal oxide materials commonly used in catalytic applications. Little is known about the adsorption capabilities for the removal of sulfur compounds. One of these manganese oxides; amorphous manganese oxide (AMO) is highly promising material for low temperature sorption processes. Amorphous

  9. Quantification of annual wildfire risk; A spatio-temporal point process approach.

    Directory of Open Access Journals (Sweden)

    Paula Pereira

    2013-10-01

    Full Text Available Policy responses for local and global firemanagement depend heavily on the proper understanding of the fire extent as well as its spatio-temporal variation across any given study area. Annual fire risk maps are important tools for such policy responses, supporting strategic decisions such as location-allocation of equipment and human resources. Here, we define risk of fire in the narrow sense as the probability of its occurrence without addressing the loss component. In this paper, we study the spatio-temporal point patterns of wildfires and model them by a log Gaussian Cox processes. Themean of predictive distribution of randomintensity function is used in the narrow sense, as the annual fire risk map for next year.

  10. Evaluation of Synthetic Gypsum Recovered via Wet Flue-Gas Desulfurization from Electric Power Plants for Use in Foundries

    Directory of Open Access Journals (Sweden)

    R. Biernacki

    2012-09-01

    Full Text Available This article investigates possible use of waste gypsum (synthetic, recovered via flue-gas desulfurization from coal-fired electric powerplants, in foundries. Energy sector, which in Eastern Europe is mostly composed from coal-fired electric power plants, is one of the largestproducers of sulfur dioxide (SO2.In order to protect the environment and reduce the amount of pollution flue-gas desulfurization (FGD is used to remove SO2 fromexhaust flue gases of fossil-fuel power plants. As a result of this process gypsum waste is produced that can be used in practicalapplications.Strength and permeability tests have been made and also in-depth analysis of energy consumption of production process to investigateways of preparing the synthetic gypsum for casting moulds application. This paper also assesses the chemical composition, strength andpermeability of moulds made with synthetic gypsum, in comparison with moulds made with traditional GoldStar XL gypsum and withceramic molds. Moreover examination of structure of synthetic gypsum, the investigations on derivatograph and calculations of energyconsumption during production process of synthetic gypsum in wet flue-gas desulfurization were made.After analysis of gathered data it’s possible to conclude that synthetic gypsum can be used as a material for casting mould. There is nosignificant decrease in key properties, and on the other hand there is many additional benefits including low energy consumption,decreased cost, and decreased environmental impact.

  11. Aerobic desulfurization of biogas by acidic biotrickling filtration in a randomly packed reactor

    International Nuclear Information System (INIS)

    Montebello, Andrea M.; Mora, Mabel; López, Luis R.; Bezerra, Tercia; Gamisans, Xavier; Lafuente, Javier; Baeza, Mireia; Gabriel, David

    2014-01-01

    Highlights: • Desulfurization of high loads of H 2 S is feasible by acidic biotrickling filtration. • Robustness of the process is demonstrated in the long-term (550 d). • Biosulfur to sulfate oxidation under H 2 S starvation was successfully performed. • Lower sulfate production found at acidic pH compared to that at neutral pH. • Plastic material is recommended for long-term acidic biotrickling filtration. - Abstract: Biotrickling filters for biogas desulfurization still must prove their stability and robustness in the long run under extreme conditions. Long-term desulfurization of high loads of H 2 S under acidic pH was studied in a lab-scale aerobic biotrickling filter packed with metallic Pall rings. Reference operating conditions at steady-state corresponded to an empty bed residence time (EBRT) of 130 s, H 2 S loading rate of 52 g S–H 2 S m −3 h −1 and pH 2.50–2.75. The EBRT reduction showed that the critical EBRT was 75 s and the maximum EC 100 g S–H 2 S m −3 h −1 . Stepwise increases of the inlet H 2 S concentration up to 10,000 ppm v lead to a maximum EC of 220 g S–H 2 S m −3 h −1 . The H 2 S removal profile along the filter bed indicated that the first third of the filter bed was responsible for 70–80% of the total H 2 S removal. The oxidation rate of solid sulfur accumulated inside the bioreactor during periodical H 2 S starvation episodes was verified under acidic operating conditions. The performance under acidic pH was comparable to that under neutral pH in terms of H 2 S removal capacity. However, bioleaching of the metallic packing used as support and chemical precipitation of sulfide/sulfur salts occurred

  12. Copper-catalyzed oxidative desulfurization-oxygenation of thiocarbonyl compounds using molecular oxygen: an efficient method for the preparation of oxygen isotopically labeled carbonyl compounds.

    Science.gov (United States)

    Shibahara, Fumitoshi; Suenami, Aiko; Yoshida, Atsunori; Murai, Toshiaki

    2007-06-21

    A novel copper-catalyzed oxidative desulfurization reaction of thiocarbonyl compounds, using molecular oxygen as an oxidant and leading to formation of carbonyl compounds, has been developed, and the utility of the process is demonstrated by its application to the preparation of a carbonyl-18O labeled sialic acid derivative.

  13. MARKETING OF BYPRODUCT GYPSUM FROM FLUE GAS DESULFURIZATION

    Science.gov (United States)

    The report gives results of an evaluation of the 1985 marketing potential of byproduct gypsum from utility flue gas desulfurization (FGD), for the area east of the Rocky Mountains, using the calculated gypsum production rates of 14 selected power plants. The 114 cement plants and...

  14. Workshop on sulfur chemistry in flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, W.E. Jr.

    1980-05-01

    The Flue Gas Desulfurization Workshop was held at Morgantown, West Virginia, June 7-8, 1979. The presentations dealt with the chemistry of sulfur and calcium compounds in scrubbers. DOE and EPRI programs in this area are described. Ten papers have been entered individually into EDB and ERA. (LTN)

  15. Comments on "Ceria-Zirconia High-Temperature Desulfurization Sorbents".

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Trnka, Otakar

    2006-01-01

    Roč. 45, č. 4 (2006), s. 1548-1549 ISSN 0888-5885 Institutional research plan: CEZ:AV0Z40720504 Keywords : hydrogen sulfide * desulfurization * cerium sorbent Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.518, year: 2006

  16. Mechanical, Hygric and Thermal Properties of Flue Gas Desulfurization Gypsum

    Directory of Open Access Journals (Sweden)

    P. Tesárek

    2004-01-01

    Full Text Available The reference measurements of basic mechanical, thermal and hygric parameters of hardened flue gas desulfurization gypsum are carried out. Moisture diffusivity, water vapor diffusion coefficient, thermal conductivity, volumetric heat capacity and linear thermal expansion coefficient are determined with the primary aim of comparison with data obtained for various types of modified gypsum in the future. 

  17. Desulfurization of waste gases of the incinerator after petroleum refining

    International Nuclear Information System (INIS)

    Samesova, D.; Ladomersky, J.

    2001-01-01

    Desulfurization of waste gases of the incinerator after petroleum refining was developed. Mixing of wastes with lime (10% of additive of total volume of waste) was proved before introduction into incinerator. Concentrations of CO, CO 2 , O 2 , NO 2 , SO 2 and temperature of combustion products were measured by automatic analyser

  18. Desulfurization kinetics of molten copper by gas bubbling

    Science.gov (United States)

    Fukunaka, Y.; Nishikawa, K.; Sohn, H. S.; Asaki, Z.

    1991-02-01

    Molten copper with 0.74 wt pct sulfur content was desulfurized at 1523 K by bubbling Ar-O2 gas through a submerged nozzle. The reaction rate was significantly influenced not only by the oxygen partial pressure but also by the gas flow rate. Little evolution of SO2 gas was observed in the initial 10 seconds of the oxidation; however, this was followed by a period of high evolution rate of SO2 gas. The partial pressure of SO2 gas decreased with further progress of the desulfurization. The effect of the immersion depth of the submerged nozzle was negligible. The overall reaction is decomposed to two elementary reactions: the desulfurization and the dissolution rate of oxygen. The assumptions were made that these reactions are at equilibrium and that the reaction rates are controlled by mass transfer rates within and around the gas bubble. The time variations of sulfur and oxygen contents in the melt and the SO2 partial pressure in the off-gas under various bubbling conditions were well explained by the mathematical model combined with the reported thermodynamic data of these reactions. Based on the present model, it was anticipated that the oxidation rate around a single gas bubble was mainly determined by the rate of gas-phase mass transfer, but all oxygen gas blown into the melt was virtually consumed to the desulfurization and dissolution reactions before it escaped from the melt surface.

  19. Core-in-shell sorbent for hot coal gas desulfurization

    Science.gov (United States)

    Wheelock, Thomas D.; Akiti, Jr., Tetteh T.

    2004-02-10

    A core-in-shell sorbent is described herein. The core is reactive to the compounds of interest, and is preferably calcium-based, such as limestone for hot gas desulfurization. The shell is a porous protective layer, preferably inert, which allows the reactive core to remove the desired compounds while maintaining the desired physical characteristics to withstand the conditions of use.

  20. Nano-magnetic particles as multifunctional microreactor for deep desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xinai; Yao, Dongdong [Engineering Research Center of Historical and Cultural Heritage Protection, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi' an 710062 (China); Li, Hong [College of Environment and Chemical Engineering, Xi' an Polytechnic University, Xi' an 710048 (China); Yang, Juxiang [Department of Chemistry, Xi' an University of Arts and Science, Xi' an 710065 (China); Hu, Daodao, E-mail: daodaohu@snnu.edu.cn [Engineering Research Center of Historical and Cultural Heritage Protection, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi' an 710062 (China)

    2012-02-29

    Highlights: Black-Right-Pointing-Pointer An easy-separated amphiphilic catalyst with small size was prepared for deep desulfurization. Black-Right-Pointing-Pointer The effects of several factors on desulfurization reactivity were systematically investigated. Black-Right-Pointing-Pointer The catalyst demonstrates high performance in the deep desulfurization. Black-Right-Pointing-Pointer The material could make integration of micro-reactor and micro-extractor into one system. - Abstract: Oxidation of dibenzothiophene with hydrogen peroxide using a recyclable amphiphilic catalyst has been studied. The catalyst was synthesized by surfacely covering magnetic silica nanospheres (MSN) with the complexes between 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride (AEM) and phosphotungstic acid (PTA). The morphology and components of the composite material were characterized by TEM, EDX, XPS, FT-IR, and VSM, respectively. The effects of several factors on desulfurization reactivity were systematically investigated. The results showed that the composite nanospheres have core/shell structure with the properties of amphiphilicity and superparamagnetism. The composite nanospheres have high catalytic activity in the oxidation of dibenzothiophene to corresponding sulfones by hydrogen peroxide under mild reaction conditions. The sulfur level could be lowered from 487 ppm to less than 0.8 ppm under optimal conditions. Additionally, the amphiphilic catalyst and the oxidized product could be simultaneously separated from medium by external magnetism, and the recovered composite material could be recycled for three times with almost constant activity.

  1. Nano-magnetic particles as multifunctional microreactor for deep desulfurization

    International Nuclear Information System (INIS)

    Cui, Xinai; Yao, Dongdong; Li, Hong; Yang, Juxiang; Hu, Daodao

    2012-01-01

    Highlights: ► An easy-separated amphiphilic catalyst with small size was prepared for deep desulfurization. ► The effects of several factors on desulfurization reactivity were systematically investigated. ► The catalyst demonstrates high performance in the deep desulfurization. ► The material could make integration of micro-reactor and micro-extractor into one system. - Abstract: Oxidation of dibenzothiophene with hydrogen peroxide using a recyclable amphiphilic catalyst has been studied. The catalyst was synthesized by surfacely covering magnetic silica nanospheres (MSN) with the complexes between 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride (AEM) and phosphotungstic acid (PTA). The morphology and components of the composite material were characterized by TEM, EDX, XPS, FT-IR, and VSM, respectively. The effects of several factors on desulfurization reactivity were systematically investigated. The results showed that the composite nanospheres have core/shell structure with the properties of amphiphilicity and superparamagnetism. The composite nanospheres have high catalytic activity in the oxidation of dibenzothiophene to corresponding sulfones by hydrogen peroxide under mild reaction conditions. The sulfur level could be lowered from 487 ppm to less than 0.8 ppm under optimal conditions. Additionally, the amphiphilic catalyst and the oxidized product could be simultaneously separated from medium by external magnetism, and the recovered composite material could be recycled for three times with almost constant activity.

  2. Catalytic oxidative desulfurization of liquid hydrocarbon fuels using air

    Science.gov (United States)

    Sundararaman, Ramanathan

    Conventional approaches to oxidative desulfurization of liquid hydrocarbons involve use of high-purity, expensive water soluble peroxide for oxidation of sulfur compounds followed by post-treatment for removal of oxidized sulfones by extraction. Both are associated with higher cost due to handling, storage of oxidants and yield loss with extraction and water separation, making the whole process more expensive. This thesis explores an oxidative desulfurization process using air as an oxidant followed by catalytic decomposition of sulfones thereby eliminating the aforementioned issues. Oxidation of sulfur compounds was realized by a two step process in which peroxides were first generated in-situ by catalytic air oxidation, followed by catalytic oxidation of S compounds using the peroxides generated in-situ completing the two step approach. By this technique it was feasible to oxidize over 90% of sulfur compounds present in real jet (520 ppmw S) and diesel (41 ppmw S) fuels. Screening of bulk and supported CuO based catalysts for peroxide generation using model aromatic compound representing diesel fuel showed that bulk CuO catalyst was more effective in producing peroxides with high yield and selectivity. Testing of three real diesel fuels obtained from different sources for air oxidation over bulk CuO catalyst showed different level of effectiveness for generating peroxides in-situ which was consistent with air oxidation of representative model aromatic compounds. Peroxides generated in-situ was then used as an oxidant to oxidize sulfur compounds present in the fuel over MoO3/SiO2 catalyst. 81% selectivity of peroxides for oxidation of sulfur compounds was observed on MoO3/SiO2 catalyst at 40 °C and under similar conditions MoO3/Al2O3 gave only 41% selectivity. This difference in selectivity might be related to the difference in the nature of active sites of MoO3 on SiO2 and Al2O 3 supports as suggested by H2-TPR and XRD analyses. Testing of supported and bulk Mg

  3. Preparation of AAO-CeO2 nanotubes and their application in electrochemical oxidation desulfurization of diesel

    Science.gov (United States)

    Du, Xiaoqing; Yang, Yumeng; Yi, Chenxi; Chen, Yu; Cai, Chao; Zhang, Zhao

    2017-02-01

    The coaxial arrays of AAO-CeO2 NTs have been successfully galvanostatically deposited on an anode, characterized and adopted as a catalyst for removing organic sulfurs from diesel. The influence of the main electrochemical oxidation factors on the efficiency of desulfurization have also been investigated. The results show that the fabrication process of AAO-CeO2 NTs is accompanied by the formation of a new phase, namely Al3Ce, and the main oxidation products of the diesel are soluble inorganic sulphides, especially Ce2(SO4)3. When compared with dibenzothiophene and 4, 6-dimethyldibenzothiophene, benzothiophene is much more easily removed, with a removal efficiency that reaches 87.2%. Finally, a possible electrochemical oxidation desulfurization pathway for diesel is proposed.

  4. Ultrasound-assisted oxidative desulfurization of liquid fuels and its industrial application.

    Science.gov (United States)

    Wu, Zhilin; Ondruschka, Bernd

    2010-08-01

    Latest environmental regulations require a very deep desulfurization to meet the ultra-low sulfur diesel (ULSD, 15 ppm sulfur) specifications. Due to the disadvantages of hydrotreating technology on the slashing production conditions, costs and safety as well as environmental protection, the ultrasound-assisted oxidative desulfurization (UAOD) as an alternative technology has been developed. UAOD process selectively oxidizes sulfur in common thiophenes in diesel to sulfoxides and sulfones which can be removed via selective adsorption or extractant. SulphCo has successfully used a 5000 barrel/day mobile "Sonocracking" unit to duplicate on a commercial scale its proprietary process that applies ultrasonics at relatively low temperatures and pressures. The UAOD technology estimate capital costs less than half the cost of a new high-pressure hydrotreater. The physical and chemical mechanisms of UAOD process are illustrated, and the effective factors, such as ultrasonic frequency and power, oxidants, catalysts, phase-transfer agent, extractant and adsorbent, on reaction kinetics and product recovery are discussed in this review. Copyright 2009 Elsevier B.V. All rights reserved.

  5. Bio-desulfurization technology in Japan; Wagakuni ni okeru baio datsuryu gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Maruhashi, K. [Petroleum Energy Center, Tokyo (Japan)

    2000-05-01

    A bio-reaction of microbes (catalytic reaction by an enzyme) is characterized in that the reaction is carried out at a normal temperature and under a normal pressure and has particularly high specificity with respect to substrate (reactant). It is considered that a low loading process of environment harmony type can be constructed by applying the bio-reaction in petroleum refinery process. CO{sub 2} exhaust and energy consumption in the bio-desulfurization (BDS) is estimated to be 70 to 80% lower than those in hydrodesulfurization (HDS). The bio-technologies that can be applied to the petroleum refinery process include, for example, desulfurization, demetallation, dewaxing, denitration, cracking and so on. In this paper, the present state of bio-desulphurization technology is introduced. Particularly, as the research results in Japan, acquirement of mesophile R.erythropolis KA2-5-1 strain, thermophile Paenibacillus sp. A11-2 strain whose optimum temperature is 50 degrees C, BT degradation fungus Rhodococcus sp. T09 and the like are introduced. (NEDO)

  6. Multiphase Modeling of Bottom-Stirred Ladle for Prediction of Slag-Steel Interface and Estimation of Desulfurization Behavior

    Science.gov (United States)

    Singh, Umesh; Anapagaddi, Ravikiran; Mangal, Saurabh; Padmanabhan, Kuppuswamy Anantha; Singh, Amarendra Kumar

    2016-06-01

    Ladle furnace is a key unit in which various phenomena such as deoxidation, desulfurization, inclusion removal, and homogenization of alloy composition and temperature take place. Therefore, the processes present in the ladle play an important role in determining the quality of steel. Prediction of flow behavior of the phases present in the ladle furnace is needed to understand the phenomena that take place there and accordingly control the process parameters. In this study, first a mathematical model is developed to analyze the transient three-phase flow present. Argon gas bottom-stirred ladle with off-centered plugs has been used in this study. Volume of fluid method is used in a computational fluid dynamics (CFD) model to capture the behavior of slag, steel, and argon interfaces. The results are validated with data from literature. Eye opening and slag-steel interfacial area are calculated for different operating conditions and are compared with experimental and simulated results cited in literature. Desulfurization rate is then predicted using chemical kinetic equations, interfacial area, calculated from CFD model, and thermodynamic data, obtained from the Thermo-Calc software. Using the model, it is demonstrated that the double plug purging is more suitable than the single plug purging for the same level of total flow. The advantage is more distinct at higher flow rates as it leads higher interfacial area, needed for desulfurization and smaller eye openings (lower oxygen/nitrogen pickup).

  7. Experimental study on desulfurization efficiency and gas-liquid mass transfer in a new liquid-screen desulfurization system

    International Nuclear Information System (INIS)

    Sun, Zhongwei; Wang, Shengwei; Zhou, Qulan; Hui, Shi'en

    2010-01-01

    This paper presents a new liquid-screen gas-liquid two-phase flow pattern with discarded carbide slag as the liquid sorbent of sulfur dioxide (SO 2 ) in a wet flue gas desulfurization (WFGD) system. On the basis of experimental data, the correlations of the desulfurization efficiency with flue gas flow rate, slurry flow rate, pH value of slurry and liquid-gas ratio were investigated. A non-dimensional empirical model was developed which correlates the mass transfer coefficient with the liquid Reynolds number, gas Reynolds number and liquid-gas ratio (L/G) based on the available experimental data. The kinetic reaction between the SO 2 and the carbide slag depends on the pressure distribution in this desulfurizing tower, gas liquid flow field, flue gas component, pH value of slurry and liquid-gas ratio mainly. The transient gas-liquid mass transfer involving with chemical reaction was quantified by measuring the inlet and outlet SO 2 concentrations of flue gas as well as the characteristics of the liquid-screen two-phase flow. The mass transfer model provides a necessary quantitative understanding of the hydration kinetics of sulfur dioxide in the liquid-screen flue gas desulfurization system using discarded carbide slag which is essential for the practical application. (author)

  8. Investigation of the Geokinetics horizontal in situ oil-shale-retorting process. Fourth annual report, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.L. (ed.)

    1981-03-01

    The Geokinetics in situ shale oil project is a cooperative venture between Geokinetics Inc. and the US Department of Energy. The objective is to develop a true in situ process for recovering shale oil using a fire front moving in a horizontal direction. The project is being conducted at a field site, Kamp Kerogen, located 70 miles south of Vernal, Utah. This Fourth Annual Report covers work completed during the calendar year 1980. During 1980 one full-size retort was blasted. Two retorts, blasted the previous year, were burned. A total of 4891 barrels of oil was produced during the year.

  9. Ultrasound-assisted oxidative desulfurization and denitrogenation of liquid hydrocarbon fuels: A critical review.

    Science.gov (United States)

    Ja'fari, Mahsa; Ebrahimi, Seyedeh Leila; Khosravi-Nikou, Mohammad Reza

    2018-01-01

    Nowadays, a continuously worldwide concern for development of process to produce ultra-low sulfur and nitrogen fuels have been emerged. Typical hydrodesulfurization and hydrodenitrogenation technology deals with important difficulties such as high pressure and temperature operating condition, failure to treat some recalcitrant compounds and limitations to meet the stringent environmental regulations. In contrary an advanced oxidation process that is ultrasound assisted oxidative desulfurization and denitrogenation satisfies latest environmental regulations in much milder conditions with more efficiency. The present work deals with a comprehensive review on findings and development in the ultrasound assisted oxidative desulfurization and denitrogenation (UAOD) during the last decades. The role of individual parameters namely temperature, residence time, ultrasound power and frequency, pH, initial concentration and types of sulfur and nitrogen compounds on the efficiency are described. What's more another treatment properties that is role of phase transfer agent (PTA) and solvents of extraction step, reaction kinetics, mechanism of the ultrasound, fuel properties and recovery in UAOD are reviewed. Finally, the required future works to mature this technology are suggested. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Desulfurization of 2-thiouracil nucleosides: conformational studies of 4-pyrimidinone nucleosides.

    Science.gov (United States)

    Kraszewska, Karina; Kaczyńska, Iwona; Jankowski, Stefan; Karolak-Wojciechowska, Janina; Sochacka, Elzbieta

    2011-04-01

    4-Pyrimidinone ribofuranoside (H(2)o(4)U) and 4-pyrimidinone 2'-deoxyribofuranoside (dH(2)o(4)U) were synthesized by the oxidative desulfurization of parent 2-thiouracil nucleosides with m-chloroperbenzoic acid. The crystal structures of H(2)o(4)U and dH(2)o(4)U and their conformations in solution were determined and compared with corresponding 2-thiouracil and uracil nucleosides. The absence of a large 2-thiocarbonyl/2-carbonyl group in the nucleobase moiety results in C2'-endo puckering of the ribofuranose ring (S conformer) in the crystal structure of H(2)o(4)U, which is not typical of RNA nucleosides. Interestingly, the hydrogen bonding network in the crystals of dH(2)o(4)U stabilizes the sugar moiety conformation in the C3'-endo form (N conformer), rarely found in DNA nucleosides. In aqueous solution, dH(2)o(4)U reveals a similar population of the C2'-endo conformation (65%) to that of 2'-deoxy-2-thiouridine (62%), while the 62% population of the S conformer for H(2)o(4)U is significantly different from that of the parent 2-thiouridine, for which the N conformer is dominant (71%). Such a difference may be of biological importance, as the desulfurization process of natural tRNA 2-thiouridines may occur under conditions of oxidative stress in the cell and may influence the decoding process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Mixing-assisted oxidative desulfurization of model sulfur compounds using polyoxometalate/H2O2 catalytic system

    Directory of Open Access Journals (Sweden)

    Angelo Earvin Sy Choi

    2016-07-01

    Full Text Available Desulfurization of fossil fuel derived oil is needed in order to comply with environmental regulations. Dibenzothiophene and benzothiophene are among the predominant sulfur compound present in raw diesel oil. In this study, mixing-assisted oxidative desulfurization of dibenzothiophene and benzothiophene were carried out using polyoxometalate/H2O2 systems and a phase transfer agent. The effects of reaction time (2–30 min and temperature (30–70 °C were examined in the oxidation of model sulfur compounds mixed in toluene. A pseudo first-order reaction kinetic model and the Arrhenius equation were utilized in order to evaluate the kinetic rate constant and activation energy of each catalyst tested in the desulfurization process. Results showed the order of catalytic activity and activation energy of the different polyoxometalate catalysts to be H3PW12O40 > H3PM12O40 > H4SiW12O40 for both dibenzothiophene and benzothiophene.

  12. Deep extractive and oxidative desulfurization of dibenzothiophene with C5H9NO·SnCl2 coordinated ionic liquid.

    Science.gov (United States)

    Li, Fa-tang; Kou, Cheng-guang; Sun, Zhi-min; Hao, Ying-juan; Liu, Rui-hong; Zhao, Di-shun

    2012-02-29

    A new C5H9NO·SnCl2 coordinated ionic liquid (IL) was prepared by reacting N-methyl-pyrrolidone with anhydrous SnCl2. Desulfurization of dibenzothiophene (DBT) via extraction and oxidation with C5H9NO·SnCl2 IL as extractant, H2O2 and equal mol of CH3COOH as oxidants was investigated. The Nernst partition coefficients k(N) of C5H9NO·SnCl2 IL for the DBT in n-octane was above 5.0, showing its excellent extraction ability. During the oxidative desulfurization process, the optimal molar ratio of H2O2/DBT was six. Sulfur removal of DBT in n-octane was 94.8% in 30 min at 30 °C under the conditions of H2O2/DBT molar ratio of six and V (IL):V (oil)=1:3. Moreover, the sulfur removal increased with increasing temperature because of the high reaction rate constant, low viscosity, and high solubility of dibenzothiophene-sulfone in the IL. The kinetics of oxidative desulfurization of DBT was also investigated, and the apparent activation energy was found to be 32.5 kJ/mol. The IL could be recycled six times without a significant decrease in activity. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. A fiber optics system for monitoring utilization of ZnO adsorbent beds during desulfurization for logistic fuel cell applications

    Science.gov (United States)

    Sujan, Achintya; Yang, Hongyun; Dimick, Paul; Tatarchuk, Bruce J.

    2016-05-01

    An in-situ fiber optic based technique for direct measurement of capacity utilization of ZnO adsorbent beds by monitoring bed color changes during desulfurization for fuel cell systems is presented. Adsorbents composed of bulk metal oxides (ZnO) and supported metal oxides (ZnO/SiO2 and Cusbnd ZnO/SiO2) for H2S removal at 22 °C are examined. Adsorbent bed utilization at breakthrough is determined by the optical sensor as the maximum derivative of area under UV-vis spectrum from 250 to 800 nm observed as a function of service time. Since the response time of the sensor due to bed color change is close to bed breakthrough time, a series of probes along the bed predicts utilization of the portion of bed prior to H2S breakthrough. The efficacy of the optical sensor is evaluated as a function of inlet H2S concentration, H2S flow rate and desulfurization in presence of CO, CO2 and moisture in feed. A 6 mm optical probe is employed to measure utilization of a 3/16 inch ZnO extrudate bed for H2S removal. It is envisioned that with the application of the optical sensor, desulfurization can be carried out at high adsorbent utilization and low operational costs during on-board miniaturized fuel processing for logistic fuel cell power systems.

  14. Oxidative desulfurization of fuel oil by pyridinium-based ionic liquids.

    Science.gov (United States)

    Zhao, Dishun; Wang, Yanan; Duan, Erhong

    2009-10-28

    In this work, an N-butyl-pyridinium-based ionic liquid [BPy]BF(4) was prepared. The effect of extraction desulfurization on model oil with thiophene and dibenzothiophene (DBT) was investigated. Ionic liquids and hydrogen peroxide (30%) were tested in extraction-oxidation desulfurization of model oil. The results show that the ionic liquid [BPy]BF(4) has a better desulfurization effect. The best technological conditions are: V(IL)/V(Oil) /V(H(2)O(2)) = 1:1:0.4, temperature 55 degrees C, the time 30 min. The ratio of desulfurization to thiophene and DBT reached 78.5% and 84.3% respectively, which is much higher than extraction desulfurization with simple ionic liquids. Under these conditions, the effect of desulfurization on gasoline was also investigated. The used ionic liquids can be recycled up to four times after regeneration.

  15. Oxidative Desulfurization of Fuel Oil by Pyridinium-Based Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Erhong Duan

    2009-10-01

    Full Text Available In this work, an N-butyl-pyridinium-based ionic liquid [BPy]BF4 was prepared. The effect of extraction desulfurization on model oil with thiophene and dibenzothiophene (DBT was investigated. Ionic liquids and hydrogen peroxide (30% were tested in extraction-oxidation desulfurization of model oil. The results show that the ionic liquid [BPy]BF4 has a better desulfurization effect. The best technological conditions are: V(IL/V(Oil /V(H2O2 = 1:1:0.4, temperature 55 °C, the time 30 min. The ratio of desulfurization to thiophene and DBT reached 78.5% and 84.3% respectively, which is much higher than extraction desulfurization with simple ionic liquids. Under these conditions, the effect of desulfurization on gasoline was also investigated. The used ionic liquids can be recycled up to four times after regeneration.

  16. The Stability of Lubricant Oil Acidity of Biogas Fuelled Engine due to Biogas Desulfurization

    Science.gov (United States)

    Gde Tirta Nindhia, Tjokorda; Wayan Surata, I.; Wardana, Ari

    2017-05-01

    This research is established for the purpose of the understanding the stability of the acidity of lubricant oil in biogas fuelled engine due to the absence of hydrogen sulfide (H2S). As was recognized that other than Methane (CH4), there are also other gas impurities in the biogas such as carbon dioxide (CO2), hydrogen sulfide (H2S), moisture (H2O) and ammonia (NH3). Due to H2S contents in the biogas fuel, the engine was found failure. This is caused by corrosion in the combustion chamber due to increase of lubricant acidity. To overcome this problem in practical, the lubricant is increased the pH to basic level with the hope will be decrease to normal value after several time use. Other method is by installing pH measurement sensor in the engine lubricant so that when lubricant is known turn to be acid, then lubricant replacement should be done. In this research, the effect of biogas desulfurization down to zero level to the acidity of lubricant oil in the four stroke engine was carried out with the hope that neutral lubrication oil to be available during running the engine. The result indicates that by eliminating H2S due desulfurization process, effect on stability and neutrality of pH lubricant. By this method the engine safety can be obtained without often replacement the lubricant oil.

  17. Hot coal gas desulfurization with manganese-based sorbents. Final report, September 1992--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hepworth, M.T.; Slimane, R.B.

    1994-11-01

    The focus of much current work being performed by the Morgantown Energy Technology Center (METC) of the Department of Energy on hot coal-derived fuel gas desulfurization is in the use of zinc-based sorbents. METC has shown interest in formulating and testing manganese-based pellets as alternative effective sulfur sorbents in the 700 to 1200{degree}C temperature range. To substantiate the potential superiority of Mn-based pellets, a systematic approach toward the evaluation of the desulfurizing power of single-metal sorbents is developed based on thermodynamic considerations. This novel procedure considered several metal-based sorbents and singled out manganese oxide as a prime candidate sorbent capable of being utilized under a wide temperature range, irrespective of the reducing power (determined by CO{sub 2}/CO ratio) of the fuel gas. Then, the thermodynamic feasibility of using Mn-based pellets for the removal of H{sub 2}S from hot-coal derived fuel gases, and the subsequent oxidative regeneration of loaded (sulfided) pellets was established. It was concluded that MnO is the stable form of manganese for virtually all commercially available coal-derived fuel gases. In addition, the objective of reducing the H{sub 2}S concentration below 150 ppMv to satisfy the integrated gasification combined cycle system requirement was shown to be thermodynamically feasible. A novel process is developed for the manufacture of Mn-based spherical pellets which have the desired physical and chemical characteristics required.

  18. Oxidative Desulfurization of Gasoline by Ionic Liquids Coupled with Extraction by Organic Solvents

    OpenAIRE

    Abro, Rashid; Gao, Shurong; Chen, Xiaochun; Yu, Guangren; Abdeltawab, Ahmed A.; Al-Deyab, Salem S.

    2016-01-01

    In this work, desulfurization of real fluidized catalytic cracking (FCC) gasoline was investigated in dual steps; first in oxidative desulfurization (ODS) using imidazolium and pyrrolidonium based Brønsted acidic ionic liquids (ILs) as solvent and catalyst and hydrogen peroxide as oxidant. In second step, extractive desulfurization took place using organic solvents of furfural, furfural alcohol and ethylene glycol. Variety of factors such as temperature, time, mass ratio of oil/ILs and regene...

  19. A process-level attribution of the annual cycle of surface temperature over the Maritime Continent

    Science.gov (United States)

    Li, Yana; Yang, Song; Deng, Yi; Hu, Xiaoming; Cai, Ming

    2017-12-01

    The annual cycle of the surface temperature over the Maritime Continent (MC) is characterized by two periods of rapid warming in March-April and September-October, respectively, and a period of rapid cooling in June-July. Based upon an analysis of energy balance within individual atmosphere-surface columns, the seasonal variations of surface temperature in the MC are partitioned into partial temperature changes associated with various radiative and non-radiative (dynamical) processes. The seasonal variations in direct solar forcing and surface latent heat flux show the largest positive contributions to the annual cycle of MC surface temperature while the changes in oceanic dynamics (including ocean heat content change) work against the temperature changes related to the annual cycle. The rapid warming in March-April is mainly a result of the changes in atmospheric quick processes and ocean-atmosphere coupling such as water vapor, surface latent heat flux, clouds, and atmospheric dynamics while the contributions from direct solar forcing and oceanic dynamics are negative. This feature is in contrast to that associated with the warming in September-October, which is driven mainly by the changes in solar forcing with a certain amount of contributions from water vapor and latent heat flux change. More contribution from atmospheric quick processes and ocean-atmosphere coupling in March-April coincides with the sudden northward movement of deep convection belt, while less contribution from these quick processes and coupling is accompanied with the convection belt slowly moving southward. The main contributors to the rapid cooling in June-July are the same as those to the rapid warming in March-April, and the cooling is also negatively contributed by direct solar forcing and oceanic dynamics. The changes in water vapor in all three periods contribute positively to the change in total temperature and they are associated with the change in the location of the center of

  20. Proceedings of the Efficient Separations and Processing Cross-Cutting Program Annual Technical Exchange Meeting

    International Nuclear Information System (INIS)

    1995-01-01

    This document contains summaries of technology development presented at the 1995 Efficient Separations and Processing Cross-Cutting Program (ESP) Annual Technical Exchange Meeting. The ESP is sponsored by the US Department of Energy's Office of Environmental Management (EM), Office of Technology Development. The meeting is held annually to promote a free exchange of ideas among technology developers, potential users (for example, EM focus areas), and other interested parties within EM. During this meeting, developers of ESP-funded technologies describe the problems and needs addressed by their technologies; the technical approach, accomplishments, and resolution of issues; the strategy and schedule for commercialization; and evolving potential applications. Presenters are asked to address the following areas: Target waste management problem, waste stream, or data need; scientific background and technical approach; technical accomplishments and resolution of technical issues; schedule and strategy for commercializing and implementing the technology or acquiring needed data; potential alternate applications of the technology or data, including outside of DOE/EM. The meeting is not a program review of the individual tasks or subtasks; but instead focuses on the technical aspects and implementation of ESP-sponsored technology or data. The meeting is also attended by members of the ESP Technical Review Team, who have the opportunity at that time to review the ESP as a whole

  1. Simple biogas desulfurization by microaeration - Full scale experience.

    Science.gov (United States)

    Jeníček, P; Horejš, J; Pokorná-Krayzelová, L; Bindzar, J; Bartáček, J

    2017-08-01

    Hydrogen sulfide in biogas is common problem during anaerobic treatment of wastewater with high sulfate concentration (breweries, distilleries, etc.) and needs to be removed before biogas utilization. Physico-chemical desulfurization methods are energetically demanding and expensive compare to biochemical methods. Microaeration, i.e. dosing of small amount of air, is suitable and cost effective biochemical method of sulfide oxidation to elemental sulfur. It has been widely used in biogas plants, but its application in anaerobic reactors for wastewater treatment has been rarely studied or tested. The lack of full-scale experience with microaeration in wastewater treatment plants has been overcome by evaluating the results of seven microaerobic digesters in central Europe. The desulfurization efficiency has been more than 90% in most of the cases. Moreover, microaeration improved the degradability of COD and volatile suspended solids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Flue gas desulfurization gypsum and fly ash

    International Nuclear Information System (INIS)

    1992-05-01

    The Cumberland Fossil Plant (CUF) is located in Stewart County, Tennessee, and began commercial operation in 1972. This is the Tennessee Valley Authority's newest fossil (coal-burning) steam electric generating plant. Under current operating conditions, the plant burns approximately seven million tons of coal annually. By-products from the combustion of coal are fly ash, approximately 428,000 tons annually, and bottom ash, approximately 115,000 tons annually. Based on historical load and projected ash production rates, a study was initially undertaken to identify feasible alternatives for marketing, utilization and disposal of ash by-products. The preferred alternative to ensure that facilities are planned for all by-products which will potentially be generated at CUF is to plan facilities to handle wet FGD gypsum and dry fly ash. A number of different sites were evaluated for their suitability for development as FGD gypsum and ash storage facilities. LAW Engineering was contracted to conduct onsite explorations of sites to develop information on the general mature of subsurface soil, rock and groundwater conditions in the site areas. Surveys were also conducted on each site to assess the presence of endangered and threatened species, wetlands and floodplains, archaeological and cultural resources, prime farmland and other site characteristics which must be considered from an environmental perspective

  3. Peroxide-mediated desulfurization of phosphorothioate oligonucleotides and its prevention.

    Science.gov (United States)

    Krotz, Achim H; Mehta, Rahul C; Hardee, Gregory E

    2005-02-01

    Desulfurization at the internucleotide phosphorothioate linkage of antisense oligonucleotides (ASOs) in dermatological formulations has been investigated using strong ion exchange chromatography and mass spectroscopy. The formation of phosphate diester linkages appeared to arise from a reaction between the phosphorothioate oligonucleotide and a potent oxidizing agent. Screening of excipients used in the formulation indicated that the cause of desulfurization was related to the presence of polyethylene glycol-derived nonionic surfactants MYRJ 52 or BRIJ 58. Autoxidation of the polyethylene glycol chain is suggested as the probable origin for the observed incompatibility. The ability of various antioxidants to prevent oxidative degradation of ASO-1 in simple test systems and in oil-in-water emulsions is described. It is found that in test systems both lipophilic and hydrophilic antioxidants are effective. However, in cream formulation (oil-in-water emulsions) of ASO-1 the addition of hydrophilic antioxidants L-cysteine or DL-alpha-lipoic acid has been shown to be superior in protecting the oligonucleotide from desulfurization upon storage. Copyright 2004 Wiley-Liss, Inc.

  4. Intensification of oxidative desulfurization of gas oil by ultrasound irradiation: Optimization using Box–Behnken design (BBD)

    International Nuclear Information System (INIS)

    Jalali, Mohammad Reza; Sobati, Mohammad Amin

    2017-01-01

    Highlights: • Ultrasound-assisted oxidative desulfurization (UAOD) of gas oil was studied. • The influences of the different operating parameters were investigated. • Response surface methodology (RSM) was used to find the best operating parameters. • An accurate correlation was developed for the sulfur removal. • Ultrasound-assisted desulfurization process was compared with conventional process. - Abstract: In the present work, ultrasound assisted oxidative desulfurization (UAOD) of gas oil as the feedstock with sulfur content of 2210 ppmw was investigated using a mixture of hydrogen peroxide and formic acid as the oxidant and catalyst, respectively. The influences of main process variables such as sonication time (2–30 min), oxidation temperature (40–70 °C), hydrogen peroxide to sulfur molar ratio (10–50), formic acid to oxidant molar ratio (2–4), ultrasound power per gas oil volume (5.56–8.89 W/mL), and number of extraction stages (1–4) on the sulfur removal of gas oil were investigated. Response surface methodology (RSM) based on Box–Behnken design (BBD) and single-factor experiments were employed. The best performance of UAOD process for gas oil was achieved at 50 °C of reaction temperature, oxidant to sulfur molar ratio of 46.36, formic acid to oxidant molar ratio of 3.22, sonication time of 19.81 min, and 7.78 W/mL as the ultrasound power per gas oil volume. The sulfur removal of UAOD process was evaluated after oxidation under the abovementioned conditions followed by (a) one stage extraction and (b) four stages extraction using acetonitrile as solvent. The observed sulfur removal was 87 for case (a) and 96.2% for case (b). The UAOD process was also compared with conventional ODS process. Considerable improvement on the sulfur removal was observed specially in lower reaction time in the case of using ultrasound irradiation in comparison with conventional mixing.

  5. Experimental study and mechanism analysis of modified limestone by red mud for improving desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongtao; Han, Kuihua; Niu, Shengli; Lu, Chunmei; Liu, Mengqi; Li, Hui [Shandong Univ., Jinan (China). School of Energy and Power Engineering

    2013-07-01

    Red mud is a type of solid waste generated during alumina production from bauxite, and how to dispose and utilize red mud in a large scale is yet a question with no satisfied answer. This paper attempts to use red mud as a kind of additive to modify the limestone. The enhancement of the sulfation reaction of limestone by red mud (two kinds of Bayer process red mud and one kind of sintering process red mud) are studied by a tube furnace reactor. The calcination and sulfation process and kinetics are investigated in a thermogravimetric (TG) analyzer. The results show that red mud can effectively improve the desulfurization performance of limestone in the whole temperature range (1,073-1,373K). Sulfur capacity of limestone (means quality of SO{sub 2} which can be retained by 100mg of limestone) can be increased by 25.73, 7.17 and 15.31% while the utilization of calcium can be increased from 39.68 to 64.13%, 60.61 and 61.16% after modified by three kinds of red mud under calcium/metallic element (metallic element described here means all metallic elements which can play a catalytic effect on the sulfation process, including the Na, K, Fe, Ti) ratio being 15, at the temperature of 1,173K. The structure of limestone modified by red mud is interlaced and tridimensional which is conducive to the sulfation reaction. The phase composition analysis measured by XRD of modified limestone sulfated at high temperature shows that there are correspondingly more sulphates for silicate and aluminate complexes of calcium existing in the products. Temperature, calcium/metallic element ratio and particle diameter are important factors as for the sulfation reaction. The optimum results can be obtained as calcium/metallic element ratio being 15. Calcination characteristic of limestone modified by red mud shows a migration to lower temperature direction. The enhancement of sulfation by doping red mud is more pronounced once the product layer has been formed and consequently the promoting

  6. Application of wasted sea-shell to desulfurizer in fluidized bed coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Naruse, Ichiro; Saito, Katsuhiro; Murakami, Takahiro

    1999-07-01

    Almost all wasted seashells consist of CaCo{sub 3}, and are similar to limestone. It would be proposed that the seashell could be applied as a desulfurizer. In this study, desulfurization characteristics of the seashell are fundamentally studied by using a thermobalance and a bubbling fluidized coal combustor with comparing the results obtained by limestone as a reference. Under the constant calcination temperature, the desulfurization efficiency for the seashells attains more than about 70% after the desulfurization period of 30 h. For the limestones, on the other hand, the desulfurization efficiency becomes only 38%. Under practical conditions of fluidized bed coal combustion, the desulfurization efficiency for the seashells also indicates higher value than that for the limestones. The desulfurization efficiency depends on the pore size distribution of CaO rather than its specific surface area. The mean pore size of the calcined seashell is about 10 times as large as that of the calcined limestones. from Scanning Electro-Microscope (SEM) photos of the surface of CaCO{sub 3}, CaO and the sulfurized particles of the seashells the large pores can be observed. In measuring cross-sectional distribution of sulfur inside the particles by using an Energy Dispersed X-ray (EDX) system, the sulfur in the sulfurized particle of limestone is only trapped near the particle surface. For the seashells, whereas, the sulfur is distributed over the whole body of particle. Desulfurization efficiency for the limestone, into which some alkali metal compounds are added, increases with increasing the concentration of alkali metal compounds added. In order of increasing effect the key elemental species to enhance the desulfurization activities are Cl, Na and K. Alkali metal compounds can enhance the desulfurization activities, due to solution of CaO in molten NaCl. This is one of the reasons why the desulfurization efficiency for the seashells improves.

  7. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, September 11, 1992--December 11, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L.

    1992-12-31

    With the continual increase in the utilization of high sulfur and high nitrogen containing fossil fuels, the release of airborne pollutants into the environment has become a critical problem. The fuel sulfur is converted to SO{sub 2} during combustion. Fuel nitrogen and a fraction of the nitrogen from the combustion air are converted to nitric oxide and nitrogen dioxide, NO{sub x}. For the past five years Combustion Engineering (now Asea Brown Boveri or ABB) and, since 1986, the University of Tulsa (TU) have been investigating the oxidation of H{sub 2}S by the facultatively anaerobic and autotrophic bacterium Thiobacillus denitrificans and have developed a process, concept for the microbial removal of H{sub 2}S from a gas stream the simultaneous removal of SO{sub 2} and NO by D. desulfuricans and T. denitrificans co-cultures and cultures-in-series was demonstrated. These systems could not be sustained due to NO inhibition of D. desulfuricans. However, a preliminary economic analysis has shown that microbial reduction of SO{sub 2} to H{sub 2}S with subsequent conversion to elemental sulfur by the Claus process is both technically and economically feasible if a less expensive carbon and/or energy source can be found. It has also been demonstrated that T. denitrificans can be grown anaerobically on NO(g) as a terminal electron acceptor with reduction to elemental nitrogen. Microbial reduction of NO{sub x} is a viable process concept for the disposal of concentrated streams of NO{sub x} as may be produced by certain regenerable processes for the removal of SO{sub 2} and NO{sub x} from flue gas.

  8. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by- product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, June 11, 1992--September 11, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L.

    1992-12-31

    Based on the work described simultaneous SO{sub 2}/No{sub x} removal from flue gas based on direct contact of the gas with SRB and T. denitrificans co-cultures or cultures-in-series has been eliminated as a viable process concept at this time. The technical reasons are as follows: (1) NO inhibition of SO{sub 2} reduction by D. desulfuricans - Although the NO concentrations used in the experiments described above are somewhat higher than that found in a typical flue gas, it is quite possible that at lower NO concentrations (or partial pressures) the inhibiting effects will simply take longer to become apparent. (2) Nitrate suppression of NO removal - As noted previously, the cultivation of T. denitrificans in a microbial flue gas treatment system (either one or two stages) would require sulfide-limiting conditions. Therefore, the electron acceptor must be in excess, requiring nitrate in the T. denitrificans process culture. As shown in experiments described above, nitrate significantly suppresses the removal of NO from a feed gas making simultaneous SO{sub 2}/NO{sub x} removal impractical by microbial means. (3) O{sub 2} inhibition of SO{sub 2} and NO reduction - It has been demonstrated that D. desulfuricans working cultures are tolerant of up to 1.7% O{sub 2} in the feed gas. However, further increases in the O{sub 2} partial pressure in the feed gas resulted in O{sub 2} inhibition of SO{sub 2} reduction. These inhibiting levels of O{sub 2} are comparable to those concentrations found in flue gases (3). Therefore, in any process in which raw flue gas contacts a D. desulfuricans culture marginal stability at best can be expected.

  9. Microbial reduction of SO[sub 2] and NO[sub x] as a means of by- product recovery/disposal from regenerable processes for the desulfurization of flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L.

    1992-01-01

    Based on the work described simultaneous SO[sub 2]/No[sub x] removal from flue gas based on direct contact of the gas with SRB and T. denitrificans co-cultures or cultures-in-series has been eliminated as a viable process concept at this time. The technical reasons are as follows: (1) NO inhibition of SO[sub 2] reduction by D. desulfuricans - Although the NO concentrations used in the experiments described above are somewhat higher than that found in a typical flue gas, it is quite possible that at lower NO concentrations (or partial pressures) the inhibiting effects will simply take longer to become apparent. (2) Nitrate suppression of NO removal - As noted previously, the cultivation of T. denitrificans in a microbial flue gas treatment system (either one or two stages) would require sulfide-limiting conditions. Therefore, the electron acceptor must be in excess, requiring nitrate in the T. denitrificans process culture. As shown in experiments described above, nitrate significantly suppresses the removal of NO from a feed gas making simultaneous SO[sub 2]/NO[sub x] removal impractical by microbial means. (3) O[sub 2] inhibition of SO[sub 2] and NO reduction - It has been demonstrated that D. desulfuricans working cultures are tolerant of up to 1.7% O[sub 2] in the feed gas. However, further increases in the O[sub 2] partial pressure in the feed gas resulted in O[sub 2] inhibition of SO[sub 2] reduction. These inhibiting levels of O[sub 2] are comparable to those concentrations found in flue gases (3). Therefore, in any process in which raw flue gas contacts a D. desulfuricans culture marginal stability at best can be expected.

  10. Progress on flue gas desulfurization and denitration with electron beam irradiation in CAEP

    International Nuclear Information System (INIS)

    Ren Min; Wang Baojian; Yang Ruizhuang; Huang Wenfeng; He Xiaohai; Mao Benjiang

    2005-01-01

    The first pilot plant with electron beam irradiation for desulfurization and denitration of flue gas in China and the experimental results based on the pilot plant are briefly introduced in this paper. The FGD (flue gas desulfurization) demonstration installation designed by CAEP (China Academy of Engineering Physics) in Beijing Jingfeng Thermal Powe Co., Ltd. is recommended. (author)

  11. Deep catalytic oxidative desulfurization (ODS) of dibenzothiophene (DBT) with oxalate-based deep eutectic solvents (DESs).

    Science.gov (United States)

    Lü, Hongying; Li, Pengcheng; Deng, Changliang; Ren, Wanzhong; Wang, Shunan; Liu, Pan; Zhang, Han

    2015-07-07

    An oxalate-based DES with a tetrabutyl ammonium chloride and oxalate acid molar ratio of 1/2 (TBO1 : 2) exhibited high activity in oxidative desulfurization (ODS) of dibenzothiophene (DBT) under mild reaction conditions. It is potentially a promising and highly environmentally friendly approach for desulfurization of fuels.

  12. Selected papers from the Fourth Annual q-bio Conference on Cellular Information Processing.

    Science.gov (United States)

    Nemenman, Ilya; Faeder, James R; Hlavacek, William S; Jiang, Yi; Wall, Michael E; Zilman, Anton

    2011-10-01

    This special issue consists of 11 original papers that elaborate on work presented at the Fourth Annual q-bio Conference on Cellular Information Processing, which was held on the campus of St John's College in Santa Fe, New Mexico, USA, 11-14 August 2010. Now in its fourth year, the q-bio conference has changed considerably over time. It is now well established and a major event in systems biology. The 2010 conference saw attendees from all continents (except Antarctica!) sharing novel results and participating in lively discussions at both the oral and poster sessions. The conference was oversubscribed and grew to 27 contributed talks, 16 poster spotlights and 137 contributed posters. We deliberately decreased the number of invited speakers to 21 to leave more space for contributed presentations, and the attendee feedback confirmed that the choice was a success. Although the q-bio conference has grown and matured, it has remained true to the original goal of being an intimate and dynamic event that brings together modeling, theory and quantitative experimentation for the study of cell regulation and information processing. Funded in part by a grant from NIGMS and by DOE funds through the Los Alamos National Laboratory Directed Research and Development program, the conference has continued to exhibit youth and vigor by attracting (and partially supporting) over 100 undergraduate, graduate and postdoctoral researchers. The associated q-bio summer school, which precedes the conference each year, further emphasizes the development of junior scientists and makes q-bio a singular event in its impact on the future of quantitative biology. In addition to an increased international presence, the conference has notably diversified its demographic representation within the USA, including increased participation from the southeastern corner of the country. One big change in the conference this year is our new publication partner, Physical Biology. Although we are very

  13. Integrated Mg/TiO{sub 2}-ionic liquid system for deep desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yee Cia, E-mail: gabrielle.ciayin@gmail.com [Department of Chemical Engineering, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia); Kait, Chong Fai, E-mail: chongfaikait@petronas.com.my, E-mail: hayyiratulfatimah@yahoo.com, E-mail: cecili@petronas.com.my; Fatimah, Hayyiratul, E-mail: chongfaikait@petronas.com.my, E-mail: hayyiratulfatimah@yahoo.com, E-mail: cecili@petronas.com.my; Wilfred, Cecilia, E-mail: chongfaikait@petronas.com.my, E-mail: hayyiratulfatimah@yahoo.com, E-mail: cecili@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia)

    2014-10-24

    A series of Mg/TiO{sub 2} photocatalysts were prepared using wet impregnation method followed by calcination at 300, 400 and 500°C for 1 h. The photocatalysts were characterized using Thermal Gravimetric Analysis, Fourier-Transform Infrared Spectroscopy, X-Ray Diffraction, and Field Emission Scanning Electron Microscopy. The performance for deep desulfurization was investigated using model oil with 100 ppm sulfur (in the form of dibenzothiophene). The integrated system involves photocatalytic oxidation followed by ionic liquid-extraction processes. The best performing photocatalyst was 0.25wt% Mg loaded on titania calcined at 400°C (0.25Mg400), giving 98.5% conversion of dibenzothiophene to dibenzothiophene sulfone. The highest extraction efficiency of 97.8% was displayed by 1,2-diethylimidazolium diethylphosphate. The overall total sulfur removal was 96.3%.

  14. Electrochemical flue gas desulfurization: Reactions in a pyrosulfate-based electrolyte

    International Nuclear Information System (INIS)

    Scott, K.; Fannon, T.; Winnick, J.

    1988-01-01

    A new electrolyte has been found suitable for use in an electrochemical membrane cell for flue gas desulfurization (FGD). The electrolyte is primarily K/sub 2/S/sub 2/O/sub 7/ and K/sub 2/SO/sub 4/ with V/sub 2/O/sub 5/ as oxidation enhancer. This electrolyte has a melting point near 300/sup 0/C which is compatible with flue gas exiting the economizer of coal-burning power plants. Standard electrochemical tests have revealed high exchange current densities around 30 mA/cm/sup 2/, in the free electrolyte. Sulfur dioxide is found to be removed from simulated flue gas in a multiple-step process, the first of which is electrochemical reduction of pyrosulfate

  15. Oxidative desulfurization of diesel with TBHP/isobutyl aldehyde/air oxidation system

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Wei; Wang, Chengyong; Lin, Peng; Lu, Xiaoping [Institute of Sonochemical Engineering, Nanjing University of Technology, Nanjing 210009, Jiangsu (China)

    2011-01-15

    Oxidative desulfurization of hydrogenation diesel (40 mL) was studied using air as oxidant, tert-butyl hydroperoxide (TBHP) as radical initiator at ambient pressure and moderate temperature in the presence of isobutyl aldehyde. TBHP could accelerate the production of carbonyl radical and its peroxidation. When the molar fraction of TBHP was 5 mmol, the conversion of DBT could reach 96.1% in the present of 20 mmol isobutyl aldehyde and air, which was more than that of 85.5% without initiator. The air was an effective oxidant and acetonitrile was an optimal solvent in this process. The sulfur content of the hydrogenation diesel could be reduced from 403 to 13 ppm (96.8% removed) under the synergistic effect of air, TBHP and isobutyl aldehyde. (author)

  16. Integrated Mg/TiO2-ionic liquid system for deep desulfurization

    Science.gov (United States)

    Yin, Yee Cia; Kait, Chong Fai; Fatimah, Hayyiratul; Wilfred, Cecilia

    2014-10-01

    A series of Mg/TiO2 photocatalysts were prepared using wet impregnation method followed by calcination at 300, 400 and 500°C for 1 h. The photocatalysts were characterized using Thermal Gravimetric Analysis, Fourier-Transform Infrared Spectroscopy, X-Ray Diffraction, and Field Emission Scanning Electron Microscopy. The performance for deep desulfurization was investigated using model oil with 100 ppm sulfur (in the form of dibenzothiophene). The integrated system involves photocatalytic oxidation followed by ionic liquid-extraction processes. The best performing photocatalyst was 0.25wt% Mg loaded on titania calcined at 400°C (0.25Mg400), giving 98.5% conversion of dibenzothiophene to dibenzothiophene sulfone. The highest extraction efficiency of 97.8% was displayed by 1,2-diethylimidazolium diethylphosphate. The overall total sulfur removal was 96.3%.

  17. Sulfur transformations related to revegetation of flue gas desulfurization sludge disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Barlas, S.A.; Artiola, J.F.; Salo, L.F.; Goodrich-Mahoney, J.W. [University of Arizona, Tucson, AZ (United States). Dept. of Soil, Water and Environmental Sciences

    1999-10-01

    This study investigated factors controlling redox conditions in flue gas desulfurization (FGD) sludge and identified ways to minimize the production of phytotoxic reduced sulfur species at FGD sludge disposal sites. The oxidation of reduced FGD sludge (Eh-385 mV) appears to be a two-step process mostly controlled by water content. Eighty percent of total sulfide in reduced sludge was oxidized within 20 h of exposure to air with constant water evaporation. When organic carbon (OC) was added to saturated oxidized sludge, the Eh dropped exponentially. Sulfate reduction began at an Eh of about -75 mV and reached a maximum at -265 to -320 mV. Water content, degree of mixing, concentration of OC, and temperature control the rate and extent of reduction of FGD sludge. This suggests that water saturation and OC inputs to revegetated disposal sites should be controlled, especially during warm temperatures, to prevent production of phytotoxic levels of sulfides.

  18. Integrated Mg/TiO2-ionic liquid system for deep desulfurization

    International Nuclear Information System (INIS)

    Yin, Yee Cia; Kait, Chong Fai; Fatimah, Hayyiratul; Wilfred, Cecilia

    2014-01-01

    A series of Mg/TiO 2 photocatalysts were prepared using wet impregnation method followed by calcination at 300, 400 and 500°C for 1 h. The photocatalysts were characterized using Thermal Gravimetric Analysis, Fourier-Transform Infrared Spectroscopy, X-Ray Diffraction, and Field Emission Scanning Electron Microscopy. The performance for deep desulfurization was investigated using model oil with 100 ppm sulfur (in the form of dibenzothiophene). The integrated system involves photocatalytic oxidation followed by ionic liquid-extraction processes. The best performing photocatalyst was 0.25wt% Mg loaded on titania calcined at 400°C (0.25Mg400), giving 98.5% conversion of dibenzothiophene to dibenzothiophene sulfone. The highest extraction efficiency of 97.8% was displayed by 1,2-diethylimidazolium diethylphosphate. The overall total sulfur removal was 96.3%

  19. Aerobic desulfurization of biogas by acidic biotrickling filtration in a randomly packed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Montebello, Andrea M.; Mora, Mabel; López, Luis R.; Bezerra, Tercia [Department of Chemical Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Gamisans, Xavier [Department of Mining Engineering and Natural Resources, Universitat Politècnica de Catalunya, Bases de Manresa 61-73, 08240 Manresa (Spain); Lafuente, Javier [Department of Chemical Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Baeza, Mireia [Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Gabriel, David, E-mail: david.gabriel@uab.cat [Department of Chemical Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)

    2014-09-15

    Highlights: • Desulfurization of high loads of H{sub 2}S is feasible by acidic biotrickling filtration. • Robustness of the process is demonstrated in the long-term (550 d). • Biosulfur to sulfate oxidation under H{sub 2}S starvation was successfully performed. • Lower sulfate production found at acidic pH compared to that at neutral pH. • Plastic material is recommended for long-term acidic biotrickling filtration. - Abstract: Biotrickling filters for biogas desulfurization still must prove their stability and robustness in the long run under extreme conditions. Long-term desulfurization of high loads of H{sub 2}S under acidic pH was studied in a lab-scale aerobic biotrickling filter packed with metallic Pall rings. Reference operating conditions at steady-state corresponded to an empty bed residence time (EBRT) of 130 s, H{sub 2}S loading rate of 52 g S–H{sub 2}S m{sup −3} h{sup −1} and pH 2.50–2.75. The EBRT reduction showed that the critical EBRT was 75 s and the maximum EC 100 g S–H{sub 2}S m{sup −3} h{sup −1}. Stepwise increases of the inlet H{sub 2}S concentration up to 10,000 ppm{sub v} lead to a maximum EC of 220 g S–H{sub 2}S m{sup −3} h{sup −1}. The H{sub 2}S removal profile along the filter bed indicated that the first third of the filter bed was responsible for 70–80% of the total H{sub 2}S removal. The oxidation rate of solid sulfur accumulated inside the bioreactor during periodical H{sub 2}S starvation episodes was verified under acidic operating conditions. The performance under acidic pH was comparable to that under neutral pH in terms of H{sub 2}S removal capacity. However, bioleaching of the metallic packing used as support and chemical precipitation of sulfide/sulfur salts occurred.

  20. Hydrothermal processing of Hanford tank waste. Organic destruction technology development task annual report -- FY 1993

    International Nuclear Information System (INIS)

    Orth, R.J.; Schmidt, A.J.; Zacher, A.H.

    1993-09-01

    Low-temperature hydrothermal processing (HTP) is a thermal-chemical autogenous processing method that can be used to destroy organics and ferrocyanide in Hanford tank waste at temperatures from 250 C to 400 C. With HTP, organics react with oxidants, such as nitrite and nitrate, already present in the waste. Ferrocyanides and free cyanide will hydrolyze at similar temperatures and may also react with nitrates or other oxidants in the waste. No air or oxygen or additional chemicals need to be added to the autogenous HTP system. However, enhanced kinetics may be realized by air addition, and, if desired, chemical reductants can be added to the system to facilitate complete nitrate/nitrate destruction. Tank waste can be processed in a plug-flow, tubular reactor, or a continuous-stirred tank reactor system designed to accommodate the temperature, pressure, gas generation, and heat release associated with decomposition of the reactive species. The work described in this annual report was conducted in FY 1993 for the Organic Destruction Technology Development Task of Hanford's Tank Waste Remediation System (TWRS). This task is part of an overall program to develop organic destruction technologies originally funded by TWRS to meet tank safety and waste form disposal criteria and condition the feed for further pretreatment. During FY 1993 the project completed seven experimental test plans, a 30-hr pilot-scale continuous run, over 200 hr of continuous bench-scale HTP testing, and 20 batch HTP tests; two contracts were established with commercial vendors, and a commercial laboratory reactor was procured and installed in a glovebox for HTP testing with actual Hanford tank waste

  1. On the high-temperature desulfurization of coal gas: The development of a regenerable absorbent

    Energy Technology Data Exchange (ETDEWEB)

    Van Yperen, Renee

    1994-05-18

    There is actually no solid absorbent based on bulk metal oxides available that meets the conditions for application in high-temperature desulfurization processes. This research was aimed to develop an absorbent that fulfills all the specifications for employment in hot-gas clean up. Chapter 2 deals with the development of amorphous aluminium phosphate as a support material. The influence of the preparation conditions onto the specific surface area, pore structure, thermal and chemical stability, and acidity of amorphous aluminium phosphate was investigated. The application of iron oxide onto amorphous aluminium phosphate by means of deposition-precipitation from a homogeneous solution is discussed in chapter 3. The influence of amorphous aluminium phosphate onto the stability, activity, and capacity of the iron oxide is described in detail. Chapter 4 surveys the activity and capacity of several active materials in the absorption of hydrogen sulphide. It is shown that the most promising active material is a mixture of iron oxide and molybdenum oxide. In chapter 5 the properties of iron-molybdenum mixed oxide absorbents are discussed. The effect of the iron to molybdenum ratio onto the formation of iron-(III)-sulphates and the stability of the molybdenum compound is examined. Chapter 6 deals with the preparation of iron-molybdenum mixed oxide absorbents by means of impregnation of modified pre-shaped alumina support bodies. In chapter 7 the effect of the hydrogen and carbon monoxide concentration and in chapter 8 the effect of the water concentration in the coal gas on the activity and the capacity of the iron-molybdenum mixed oxide absorbents is described. Regeneration of the loaded absorbents is an important part of the desulfurization process, dealt with in chapter 9. A number of regeneration procedures have been tested. (Abstract Truncated)

  2. Bench-Scale Demonstration of Hot-Gas Desulfurization Technology

    International Nuclear Information System (INIS)

    Portzer, Jeffrey W.; Gangwal, Santosh K.

    1997-01-01

    Prior to the current project, development of the DSRP was done in a laboratory setting, using synthetic gas mixtures to simulate the regeneration off-gas and coal gas feeds. The objective of the current work is to further the development of zinc titanate fluidized-bed desulfurization (ZTFBD) and the DSRP for hot-gas cleanup by testing with actual coal gas. The objectives of this project are to: (1) Develop and test an integrated, skid-mounted, bench-scale ZTFBD/DSRP reactor system with a slipstream of actual coal gas; (2) Test the bench-scale DSRP over an extended period with a slipstream of actual coal gas to quantify the degradation in performance, if any, caused by the trace contaminants present in coal gas (including heavy metals, chlorides, fluorides, and ammonia); (3) Expose the DSRP catalyst to actual coal gas for extended periods and then test its activity in a laboratory reactor to quantify the degradation in performance, if any, caused by static exposure to the trace contaminants in coal gas; (4) Design and fabricate a six-fold larger-scale DSRP reactor system for future slipstream testing; (5) Further develop the fluidized-bed DSRP to handle high concentrations (up to 14 percent) of SO 2 that are likely to be encountered when pure air is used for regeneration of desulfurization sorbents; and (6) Conduct extended field testing of the 6X DSRP reactor with actual coal gas and high concentrations of SO 2 . The accomplishment of the first three objectives--testing the DSRP with actual coal gas, integration with hot-gas desulfurization, and catalyst exposure testing--was described previously (Portzer and Gangwal, 1994, 1995; Portzer et al., 1996). This paper summarizes the results of previous work and describes the current activities and plans to accomplish the remaining objectives

  3. The Economic Cost of China's New De-sulfur Policy During Her Gradual Accession to WTO: The Case of Industrial SO2 Emission

    OpenAIRE

    Jie He

    2004-01-01

    To understand the potential impacts of China's accession to WTO in her new de-sulfur policy (gradual reduction of 10% of annual SO2 emission by 2005 with respect to that of 2000), we construct a CGE model in which SO2 emission is directly linked to energy input consumption in production. The model equally considers the substitution possibility between energies of different SO2 effluent ratio by including energy as traditional production factor as labor and capital in the constant elasticity o...

  4. 42 CFR 137.401 - What role does Tribal consultation play in the IHS annual budget request process?

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false What role does Tribal consultation play in the IHS annual budget request process? 137.401 Section 137.401 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF...-GOVERNANCE Secretarial Responsibilities Budget Request § 137.401 What role does Tribal consultation play in...

  5. Increasing draft capability for retrofit flue gas desulfurization systems

    International Nuclear Information System (INIS)

    Petersen, R.D.; Basel, B.E.; Mosier, R.J.

    1992-01-01

    The retrofit installation of flue gas desulfurization (FGD) systems results in significantly higher draft losses for existing generating stations. Consequently, the means for increasing draft capability must be included in many FGD retrofit projects. Consideration is given to several alternatives for increasing draft capability. Alternatives are developed for new induced draft (ID) fans to replace the existing ID fans and for new booster fans to supplement the existing ID fans. Both centrifugal and axial fans are evaluated, as are different means of fan volume control. Each alternative is evaluated on the basis of technical merit and economics. Presented are the development of fan alternatives and results of the technical and economic evaluations

  6. Novel Oxidative Desulfurization of a Model Fuel with H2O2 Catalyzed by AlPMo12O40 under Phase Transfer Catalyst-Free Conditions

    OpenAIRE

    José da Silva, Márcio; Faria dos Santos, Lidiane

    2013-01-01

    A novel process was developed for oxidative desulfurization (ODS) in the absence of a phase transfer catalyst (PTC) using only Keggin heteropolyacids and their aluminum salts as catalysts. Reactions were performed in biphasic mixtures of isooctane/acetonitrile, with dibenzothiophene (DBT) as a model sulfur compound and hydrogen peroxide as the oxidant. Remarkably, only the AlPMo12O40-catalyzed reactions resulted in complete oxidation of DBT into DBT sulfone, which was totally extracted by ace...

  7. Evaporation and crystallization of a droplet of desulfurization wastewater from a coal-fired power plant

    International Nuclear Information System (INIS)

    Liang, Zhengxing; Zhang, Li; Yang, Zhongqing; Qiang, Tang; Pu, Ge; Ran, Jingyu

    2017-01-01

    Highlights: • Evaporation and crystallization characteristics of the droplets of desulfurization wastewater. • TGA and DSC methods were used to investigate the evaporation and crystallization processes. • Evaporation and crystallization rates increase with the increase of temperature increasing rate. • Increasing volume of the droplet increases the evaporation rate, but decreases the crystallization rate. • Structure of the crystals changes significantly when the temperature increasing rate and the volume of the droplet change. - Abstract: Relationship between evaporation and crystallization characteristics of a droplet of desulfurization wastewater from a coal-fired power plant and some operating conditions was studied experimentally using a thermogravimetric analyzer (TGA) with differential scanning calorimetry (DSC) function and a scanning electron microscope (SEM). The results shows that, between 15 °C/min and 45 °C/min, a higher temperature increasing rate leads to higher evaporation and crystallization rates. The increment in the evaporation rate, caused by the same increment of temperature increasing rate, is larger, when the temperature increasing rate is lower. In addition, the final temperatures, ranging from 90 °C to 150 °C, have little impact on the evaporation and crystallization rates of the 0.5 μL droplet. Ultimately, for the droplets, ranging from 0.2 μL to 2.5 μL, evaporation rate increases with increasing volumes of the droplets, but the crystallization rate decreases. From the SEM results, it can be observed that the quantity of cracks on the surface of the crystals also declines with the increase in volumes. Furthermore, the Stefan flow becomes a significant and unneglectable factor in order to decrease the evaporation rate at the end of the evaporation period.

  8. Hot-Gas Desulfurization with Sulfur Recovery

    International Nuclear Information System (INIS)

    Portzer, Jeffrey W.; Damle, Ashok S.; Gangwal, Santosh K.

    1997-01-01

    The objective of this study is to develop a second generation HGD process that regenerates the sulfided sorbent directly to elemental sulfur using SO 2 , with minimal consumption of coal gas. The goal is to have better overall economics than DSRP when integrated with the overall IGCC system

  9. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    International Nuclear Information System (INIS)

    Unknown

    2000-01-01

    The U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn(sub 2)TiO(sub 4) or ZnTiO(sub 3)), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO(sub 2)), is currently one of the leading sorbents. Overall chemical reactions with Zn(sub 2)TiO(sub 4) during the desulfurization (sulfidation)-regeneration cycle are shown. The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO(sub 2)

  10. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    International Nuclear Information System (INIS)

    Unknown

    1999-01-01

    The U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn(sub 2)TiO(sub 4) or ZnTiO(sub 3)), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO(sub 2)), is currently one of the leading sorbents. Overall chemical reactions with Zn(sub 2)TiO(sub 4) during the desulfurization (sulfidation)-regeneration cycle are shown. The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO(sub 2)

  11. Desulfurization Activated Phosphorothioate DNAzyme for the Detection of Thallium.

    Science.gov (United States)

    Huang, Po-Jung Jimmy; Vazin, Mahsa; Liu, Juewen

    2015-10-20

    Thallium (Tl) is a highly toxic heavy metal situated between mercury and lead in the periodic table. While its neighbors have been thoroughly studied for DNA-based sensing, little is known about thallium detection. In this work, in vitro selection of RNA-cleaving DNAzymes is carried out using Tl(3+) as the target metal cofactor. Both normal DNA and phosphorothioate (PS)-modified DNA are tested for this purpose. While no Tl(3+)-dependent DNAzymes are obtained, a DNA oligonucleotide containing a single PS-modified RNA nucleotide is found to cleave by ∼7% by Tl(3+) at the RNA position. The remaining 93% are desulfurized. By hybridization of this PS-modified oligonucleotide with the Tm7 DNAzyme, the cleavage yield increases to ∼40% in the presence of Tl(3+) and Er(3+). Tm7 is an Er(3+)-dependent RNA-cleaving DNAzyme. It cleaves only the normal substrate but is completely inactive using the PS-modified substrate. Tl(3+) desulfurizes the PS substrate to the normal substrate to be cleaved by Tm7 and Er(3+). This system is engineered into a catalytic beacon for Tl(3+) with a detection limit of 1.5 nM, which is below its maximal contamination limit defined by the U.S. Environmental Protection Agency (10 nM).

  12. Development of a portable, modular unit for the optimization of ultrasound-assisted oxidative desulfurization of diesel

    Science.gov (United States)

    Wan, Meng-Wei

    Due to the stringent rules requiring ultra-low sulfur content in diesel fuels, it is necessary to develop alternative methods of desulfurization of fossil fuel derived oil, such as diesel. Current technology is not sufficient to solve this problem. Ultrasound applied to oxidative desulfurization which combined three complementary techniques: ultrasonication, phase transfer catalysis (PTC) and transition metal catalyzed oxidation, has accomplished high sulfur removal in a short contact time at ambient temperature and atmospheric pressure. This research has successfully demonstrated that the higher oxidation efficiency of BT to BTO and free of any by-products by using tetraoctylammonium fluoride as phase transfer agent. The oxidation rate of BT to BTO increased with increasing the carbon chain length of QAS cations. Under the same length of carbon chain, the oxidation rate of BT to BTO increased with decreasing the molecular size of QAS anions. Moreover, for diesel fuels containing various levels of sulfur content, UAOD process followed by solvent extraction has demonstrated that the sulfur reduction can reach above 95 % removal efficiency or final sulfur content below 15 ppm in mild condition. For large-scale commercial production, this research has successfully developed and operated a continuous desulfurization unit, which consists of a sonoractor, an RF amplifier, a function generator, a pretreatment tank, and a pipeline system. A single unit only needed 2' x 4' x 1' space for installation. The results indicated that the remarkable 92% removal efficiency for the sulfur in marine logistic diesel, even at a treatment rate as high as 25 lb/hour which is approximately 2 barrels per day. Therefore, this sonoreactor demonstrated the feasibility of large-scale operation even in a relatively small installation with low capital investment and maintenance cost. It also ensures the safety considerations by operating with diluted hydrogen peroxide under ambient temperature

  13. Effect of gasoline composition on oxidative desulfurization using a phosphotungstic acid/activated carbon catalyst with hydrogen peroxide

    International Nuclear Information System (INIS)

    Xiao, Jing; Wu, Luoming; Wu, Ying; Liu, Bing; Dai, Lu; Li, Zhong; Xia, Qibin; Xi, Hongxia

    2014-01-01

    Highlights: • Concerned with the question why ODS catalyst is not effective for real gasoline. • Reported the strong inhibiting effect of gasoline composition on ODS for the 1st time. • ODS reactivity is suggested to be determined by partial charge on S atom of thiophene. • Proposed approaches to improve ODS selectivity for real gasoline desulfurization. - Abstract: This work is concerned with the question of why oxidative desulfurization (ODS) catalyst that show good catalytic performance for ODS of model gasoline thiophenic compounds is not effective for real gasoline. For the first time, the effects of gasoline composition on ODS using a phosphotungstic acid/activated carbon (HPW/AC) catalyst with H 2 O 2 were investigated. ODS of thiophene, one of the most difficult thiophenic compounds to be oxidized, was studied in a model fuel system, where a high thiophene conversion rate of 90% could be reached in 2 h at 90 °C. However, when applying the ODS to a real gasoline, the ODS conversion rate decreased to only 32%, suggesting a strong inhibiting effect of gasoline composition on ODS. The ODS studies in different model fuels suggested that the inhibiting effect can be ascribed to the competitive adsorption and oxidation with the presence of the alkenes and alkylated aromatic hydrocarbons in real gasoline. The active pi-electrons in alkenes and alkyl groups in alkylated aromatic hydrocarbons may react with polyoxoperoxo species or peroxo-metallate complexes formed by phosphotungstic acid–H 2 O 2 interaction. Additionally, it was indicated that the ODS selectivity followed the order of benzothiophene > trimethylthiophene > dimethylthiophene ∼ methylthiophene > thiophene, suggesting the partial charge on the electron-rich sulfur atom may play a decisive role for its oxidation reactivity. To mitigate the inhibiting effect of gasoline composition on ODS, we propose (a) implementation of selective separation–oxidation processes; (b) choice of suitable

  14. Oxidative Desulfurization of Fuel Oil by Pyridinium-Based Ionic Liquids

    OpenAIRE

    Erhong Duan; Dishun Zhao; Yanan Wang

    2009-01-01

    In this work, an N-butyl-pyridinium-based ionic liquid [BPy]BF4 was prepared. The effect of extraction desulfurization on model oil with thiophene and dibenzothiophene (DBT) was investigated. Ionic liquids and hydrogen peroxide (30%) were tested in extraction-oxidation desulfurization of model oil. The results show that the ionic liquid [BPy]BF4 has a better desulfurization effect. The best technological conditions are: V(IL)/V(Oil) /V(H2O2) = 1:1:0.4, temperature 55 °C, the time 30 min. The ...

  15. The effect of annealing and desulfurization on oxide spallation of turbine airfoil material

    International Nuclear Information System (INIS)

    Briant, C.L.; Murphy, W.H.; Schaeffer, J.C.

    1995-01-01

    In this paper the authors report a study that addresses the sulfur-induced spallation theory. Previous work has shown that a high temperature anneal in hydrogen desulfurizes nickel-base alloys and greatly improves their resistance to oxide spallation. The authors will show that such an anneal can be applied successfully to a Ni-base airfoil material. Both Auger segregation experiments and chemical analyses show that this anneal desulfurizes the material, at least in the absence of yttrium. However, the results suggest that factors other than desulfurization may be contributing to the improvement in spallation resistance produced by the anneal

  16. Carbonate Minerals with Magnesium in Triassic Terebratula Limestone in the Term of Limestone with Magnesium Application as a Sorbent in Desulfurization of Flue Gases

    Science.gov (United States)

    Stanienda-Pilecki, Katarzyna

    2017-09-01

    This article presents the results of studies of Triassic (Muschelkalk) carbonate rock samples of the Terebratula Beds taken from the area of the Polish part of the Germanic Basin. It is the area of Opole Silesia. The rocks were studied in the term of possibility of limestone with magnesium application in desulfurization of flue gases executed in power plants. Characteristic features of especially carbonate phases including magnesium-low-Mg calcite, high-Mg calcite, dolomite and huntite were presented in the article. They were studied to show that the presence of carbonate phases with magnesium, especially high-Mg calcite makes the desulfurization process more effective. Selected rock samples were examined using a microscope with polarized, transmitted light, X-ray diffraction, microprobe measurements and FTIR spectroscopy. The results of studies show a domination of low magnesium calcite in the limestones of the Terebratula Beds. In some samples dolomite and lower amounts of high-Mg calcite occurred. Moreover, huntite was identified. The studies were very important, because carbonate phases like high-Mg calcite and huntite which occurred in rocks of the Triassic Terebratula Beds were not investigated in details by other scientists but they presence in limestone sorbent could influence the effectiveness of desulfurization process.

  17. Abstracts of the CGU Annual Scientific Meeting : Geospatial Processes : Integrating Pedosphere, Lithosphere and Hydrosphere

    International Nuclear Information System (INIS)

    Krebes, E.S.; Buttle, J.

    2006-01-01

    This annual scientific meeting of the Canadian Geophysical Union (CGU) was held jointly with the annual meeting of the Canadian Society of Soil Science (CSSS). The CGU sessions addressed topical issues such as hydrology; geoelectromagnetics; geodesy and geodynamics; earthquakes and natural hazards; environment and climate systems; geocomputations and visualization; glaciology; and general geophysics. The CSSS sessions addressed topical issues such as soil water; problem soils; northern issues; climate change; nutrient management; forest soils and management; land reclamation and remediation; and general soil science. The conference featured 311 oral presentations, of which 19 have been catalogued separately for inclusion in this database

  18. The EM SSAB Annual Work Plan Process: Focusing Board Efforts and Resources - 13667

    Energy Technology Data Exchange (ETDEWEB)

    Young, Ralph [Paducah Citizens Advisory Board (United States)

    2013-07-01

    One of the most daunting tasks for any new member of a local board of the Environmental Management Site Specific Advisory Board (EM SSAB) is to try to understand the scope of the clean-up activities going on at the site. In most cases, there are at least two or three major cleanup activities in progress as well as monitoring of past projects. When planning for future projects is added to the mix, the list of projects can be long. With the clean-up activities involving all major environmental media - air, water, soils, and groundwater, new EM SSAB members can find themselves totally overwhelmed and ineffective. Helping new members get over this initial hurdle is a major objective of EM and all local boards of the EM SSAB. Even as members start to understand the size and scope of the projects at a site, they can still be frustrated at the length of time it takes to see results and get projects completed. Many project and clean-up timelines for most of the sites go beyond 10 years, so it's not unusual for an EM SSAB member to see the completion of only 1 or 2 projects over the course of their 6-year term on the board. This paper explores the annual work planning process of the EM SSAB local boards, one tool that can be used to educate EM SSAB members into seeing the broader picture for the site. EM SSAB local work plans divide the site into projects focused on a specific environmental issue or media such as groundwater and/or waste disposal options. Projects are further broken down into smaller segments by highlighting major milestones. Using these metrics, local boards of the EM SSAB can start to quantify the effectiveness of the project in achieving the ultimate goal of site clean-up. These metrics can also trigger board advice and recommendations for EM. At the beginning of each fiscal year, the EM SSAB work plan provides a road map with quantifiable checkpoints for activities throughout the year. When the work plans are integrated with site

  19. (18)O(2) label mechanism of sulfur generation and characterization in properties over mesoporous Sm-based sorbents for hot coal gas desulfurization.

    Science.gov (United States)

    Liu, B S; Wan, Z Y; Wang, F; Zhan, Y P; Tian, M; Cheung, A S C

    2014-02-28

    Using a sol-gel method, SmMeOx/MCM-41 or SBA-15 (Me=Fe, Co and Zn) and corresponding unsupported sorbents were prepared. The desulfurization performance of these sorbents was evaluated over a fixed-bed reactor and the effects of reaction temperature, feed and sorbent composition on desulfurization performance were studied. Samarium-based sorbents used to remove H2S from hot coal gas were reported for the first time. The results of successive sulfidation/regeneration cycles revealed that SmFeO3/SBA-15 sorbent was suitable for desulfurization of hot coal gas in the chemical industry. The formation of elemental sulfur during both sulfidation and regeneration processes depended strongly on the catalytic action of Sm2O2S species, which was confirmed for the first time via high sensitive time of flight mass spectrometer (TOF-MS) using 6%vol(18)O2/Ar regeneration gas and can reduce markedly procedural complexity. The sorbents were characterized using N2-adsorption, high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), temperature-programmed reduction of H2 (H2-TPR), thermogravimetry (TG) and time-of-flight mass spectrometry (TOF-MS) techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Desulfurization of dibenzothiophene by Corynebacterium sp. strain SY1

    International Nuclear Information System (INIS)

    Omori, Toshio; Monna, L.; Saiki, Yuko; Kodama, Tohru

    1992-01-01

    Strain SY1, identified as a Corynebacterium sp., was isolated on the basis of the ability to utilize dibenzothiophene (DBT) as a sole source of sulfur. Strain SY1 could utilize a wide range of organic and inorganic sulfur compounds, such as DBT sulfone, dimethyl sulfide, dimethyl sulfoxide, dimethyl sulfone, CS 2 , FeS 2 , and even elemental sulfur. Strain SY1 metabolized DBT to dibenzothiophene-5-oxide, DBT sulfone, and 2-hydroxybiphenyl, which was subsequently nitrated to produce at least two different hydroxynitrobiphenyls during cultivation. These metabolites were separated by silica gel column chromatography and identified by nuclear magnetic resonance, UV, and mass spectral techniques. Resting cells of SY1 desulfurized toluenesulfonic acid and released sulfite anion. On the basis of these results, a new DBT degradation pathway is proposed

  1. Desulfurization and denitrogenation of coal during multi-stage hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, N.; Li, W.; Li, B. [Chinese Academy of Sciences, Taiyuan (China). State Key Lab of Coal Conversion

    2001-02-01

    The elemental composition of char of high sulfur Hongmiao coal in multi-stage hydropyrolysis (MHyPy) with different heating rates were analysed and compared with that from normal hydropyrolysis (HyPy). The results illustrated that the sulfur removal in MHyPy was greater than that in HyPy, and more sulfur was evolved as the easily recycled gas H{sub 2}S. Similar with the situation of sulfur, more nitrogen transferred to the gas phase easily to be dealt with and the clean char was obtained. During MHyPy the extent of desulfurization and denitrogenation was more remarkable at high rate than that at slow heating rate. 8 refs., 2 figs., 2 tabs.

  2. Inter-annual variability of exchange processes at the outer Black Sea shelf

    Science.gov (United States)

    Shapiro, Georgy; Wobus, Fred; Yuan, Dongliang; Wang, Zheng

    2014-05-01

    The advection of cold water below the surface mixed layer has a significant role in shaping the properties of the Cold Intermediate Layer (CIL) in the Black Sea, and thus the horizontal redistribution of nutrients. The minimal temperature of the CIL in the southwest deep region of the sea in summer was shown to be lower than the winter surface temperature at the same location, indicating the horizontal advective nature of CIL formation in the area (Kolesnikov, 1953). In addition to advection in the deep area of the sea, the transport of cold waters from the northwest Black Sea shelf across the shelf break in winter was shown to contribute to the formation of the CIL (Filippov, 1968; Staneva and Stanev, 1997). However less is known of the exchanges between the CIL waters and the outer shelf areas in summer, when a surface mixed layer and the underlying seasonal thermocline are formed. Ivanov et al. (1997) suggested that the cross frontal exchange within the CIL is strongly inhibited, so that CIL waters formed in the deep sea (i.e. offshore of the Rim Current) do not replenish the CIL waters onshore of the Rim Current (also known as near-bottom shelf waters, or BSW), due to strong cross frontal gradients in potential vorticity (PV). To the contrary, Shapiro et al. (2011) analysed in-situ observations over the period of 1950-2001 and showed a high correlation between the CIL temperatures in the open sea and outer shelf. However, the statistical methods alone were not able to clearly establish the relation between the cause and the consequences. In this study we use a 3D numerical model of the Black Sea (NEMO-SHELF-BLS) to quantify the exchange of CIL waters between the open sea and the outer northwest Black Sea shelf and to assess its significance for the replenishment of BSW on the outer shelf. The model has a resolution of 1/16º latitude × 1/12º longitude and 33 levels in the vertical. In order to represent near-bottom processes better, the model uses a hybrid

  3. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Berggren, M.H.; Jha, M.C.

    1989-10-01

    AMAX Research Development Center (AMAX R D) investigated methods for enhancing the reactivity and durability of zinc ferrite desulfurization sorbents. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For this program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and oxidation. Two base case sorbents, a spherical pellet and a cylindrical extrude used in related METC-sponsored projects, were used to provide a basis for the aimed enhancement in durability and reactivity. Sorbent performance was judged on the basis of physical properties, single particle kinetic studies based on thermogravimetric (TGA) techniques, and multicycle bench-scale testing of sorbents. A sorbent grading system was utilized to quantify the characteristics of the new sorbents prepared during the program. Significant enhancements in both reactivity and durability were achieved for the spherical pellet shape over the base case formulation. Overall improvements to reactivity and durability were also made to the cylindrical extrude shape. The primary variables which were investigated during the program included iron oxide type, zinc oxide:iron oxide ratio, inorganic binder concentration, organic binder concentration, and induration conditions. The effects of some variables were small or inconclusive. Based on TGA studies and bench-scale tests, induration conditions were found to be very significant.

  4. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    International Nuclear Information System (INIS)

    Unknown

    1999-01-01

    The U.S. Department of Energy (DOE), Federal Energy Technology Center (FETC), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn(sub 2) TiO(sub 4) or ZnTiO(sub 3)), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO(sub 2)), is currently one of the leading sorbents. Overall chemical reactions with Zn(sub 2) TiO(sub 4) during the desulfurization (sulfidation)-regeneration cycle are shown below: Sulfidation: Zn(sub 2) TiO(sub 4)+ 2H(sub 2)S(yields) 2ZnS+ TiO(sub 2)+ 2H(sub 2)O; Regeneration: 2ZnS+ TiO(sub 2)+ 3O(sub 2)(yields) Zn(sub 2) TiO(sub 4)+ 2SO(sub 2) The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO(sub 2)

  5. Thermochemical water-splitting cycle, bench-scale investigations and process engineering. Annual report, October 1, 1978-September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Caprioglio, G.; McCorkle, K.H.; Besenbruch, G.E.; Rode, J.S.

    1980-03-01

    A program to investigate thermochemical water splitting has been under way at General Atomic Company (GA) since October 1972. This document is an annual progress report of Department of Energy (DOE) sponsored process development work on the GA sulfur-iodine thermochemical water splitting cycle. The work consisted of laboratory bench-scale investigations, demonstration of the process in a closed-loop cycle demonstrator, and process engineering design studies. A bench-scale system, consisting of three subunits, has been designed to study the cycle under continuous flow conditions. The designs of subunit I, which models the main solution reaction and product separation, and subunit II, which models the concentration and decomposition of sulfuric acid, were presented in an earlier annual report. The design of subunit III, which models the purification and decomposition of hydrogen iodide, is given in this report. Progress on the installation and operation of subunits I and II is described. A closed-loop cycle demonstrator was installed and operated based on a DOE request. Operation of the GA sulfur-iodine cycle was demonstrated in this system under recycle conditions. The process engineering addresses the flowsheet design of a large-scale production process consisting of four chemical sections (I through IV) and one helium heat supply section (V). The completed designs for sections I through V are presented. The thermal efficiency of the process calculated from the present flowsheet is 47%.

  6. Preparation of Active Absorbent for Flue Gas Desulfurization From Coal Bottom Ash: Effect of Absorbent Preparation Variables

    Directory of Open Access Journals (Sweden)

    Chang Chin Li, Lee Keat Teong, Subhash Bhatia and Abdul Rahman Mohamed

    2012-08-01

    Full Text Available An active absorbent for flue gas desulfurization was prepared from coal bottom ash, calcium oxide (CaO and calcium sulfate by hydro-thermal process. The absorbent was examined for its micro-structural properties. The experiments conducted were based on Design Of Experiments (DOE according to 23 factorial design. The effect of various absorbent preparation variables such as ratio of CaO to bottom ash (A, hydration temperature (B and hydration period (C towards the BET (Brunauer-Emmett-Teller specific surface area of the absorbent were studied. At a CaO to bottom ash ratio = 2, hydration temperature = 200 ?C and hydration period = 10 hrs, absorbent with a surface area of 90.1 m2/g was obtained. Based on the analysis of the factorial design, it was concluded that factor A and C as well as the interaction of factors ABC and BC are the significant factors that effect the BET surface area of the absorbent. A linear mathematical model that describes the relation between the independent variables and interaction between variables towards the BET specific surface area of the absorbent was also developed. Analysis of variance (ANOVA showed that the model was significant at 1% level.Key Words: Absorbent, Bottom Ash, Design Of Experiments, Desulfurization, Surface Area.

  7. Efficient H2O2/CH3COOH oxidative desulfurization/denitrification of liquid fuels in sonochemical flow-reactors.

    Science.gov (United States)

    Calcio Gaudino, Emanuela; Carnaroglio, Diego; Boffa, Luisa; Cravotto, Giancarlo; Moreira, Elizabeth M; Nunes, Matheus A G; Dressler, Valderi L; Flores, Erico M M

    2014-01-01

    The oxidative desulfurization/denitrification of liquid fuels has been widely investigated as an alternative or complement to common catalytic hydrorefining. In this process, all oxidation reactions occur in the heterogeneous phase (the oil and the polar phase containing the oxidant) and therefore the optimization of mass and heat transfer is of crucial importance to enhancing the oxidation rate. This goal can be achieved by performing the reaction in suitable ultrasound (US) reactors. In fact, flow and loop US reactors stand out above classic batch US reactors thanks to their greater efficiency and flexibility as well as lower energy consumption. This paper describes an efficient sonochemical oxidation with H2O2/CH3COOH at flow rates ranging from 60 to 800 ml/min of both a model compound, dibenzotiophene (DBT), and of a mild hydro-treated diesel feedstock. Four different commercially available US loop reactors (single and multi-probe) were tested, two of which were developed in the authors' laboratory. Full DBT oxidation and efficient diesel feedstock desulfurization/denitrification were observed after the separation of the polar oxidized S/N-containing compounds (S≤5 ppmw, N≤1 ppmw). Our studies confirm that high-throughput US applications benefit greatly from flow-reactors. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Retrofit flue gas desulfurization system at Indianapolis Power and Light Co. Petersburg Station Units 1 and 2

    International Nuclear Information System (INIS)

    Watson, W.K.; Wolsiffer, S.R.; Youmans, J.; Martin, J.E.; Wedig, C.P.

    1992-01-01

    This paper briefly describes the status of the retrofit wet limestone flue gas desulfurization system (FGDS) project at Indianapolis Power and Light Company (IPL), Petersburg Units 1 and 2. This project was initiated by IPL in response to the Clean Air Act of 1990 and is intended to treat the flue gas from two base load units with a combined capacity of approximately 700 MW gross electrical output. IPL is the owner and operator of the Petersburg Station located in southwestern Indiana. Stone and Webster Engineering Corporation (Stone and Webster) is the Engineer and Constructor for the project. Radian Corporation is a subcontractor to Stone and Webster in the area of flue gas desulfurization (FGD) process. General Electric Environmental Systems, Inc. (GEESI) is the supplier of the FGDS. The project is organized as a team with each company providing services. The supplier of the new stack is scheduled to be selected and join the team in early 1992. Other material suppliers and field contractors will be selected in 1992

  9. 湿法脱硫运行情况总结%Operation Summary of Wet Desulfurization Unit

    Institute of Scientific and Technical Information of China (English)

    杨文斌

    2013-01-01

    因栲胶法脱硫效果差,采用添加NDC脱硫剂进行改进,改进后,脱硫效果好,但存在变脱效果差,副盐高等问题。针对这些问题,提出改进方法。%The tanin extract desulfurization unit runs poorly in our company , after dosing NDC desulfurization agent , the desulfurization effects are good . But the problems of the shift gas poor desulfurization and the high secondary salt content have not been solved , some improving methods are put forward .

  10. Synthesis of magnetic ordered mesoporous carbon (Fe-OMC) adsorbent and its evaluation for fuel desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Farzin Nejad, N., E-mail: Farzinnejadn@ripi.ir [Petroleum Refining Technology Development Division, Research Institute of Petroleum Industry, Tehran 14857-33111 (Iran, Islamic Republic of); Shams, E.; Amini, M.K. [Department of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2015-09-15

    In this work, magnetic ordered mesoporous carbon adsorbent was synthesized using soft templating method to adsorb sulfur from model oil (dibenzothiophene in n-hexane). Through this research, pluronic F-127, resorcinol-formaldehyde and hydrated iron nitrate were respectively used as soft template, carbon source and iron source. The adsorbent was characterized by X-ray diffraction, nitrogen adsorption–desorption isotherm and transmission electron microscopy. Nitrogen adsorption–desorption measurement revealed the high surface area (810 m{sup 2} g{sup −1}), maxima pore size of 3.3 nm and large pore volume (1.01 cm{sup 3} g{sup −1}) of the synthesized sample. The adsorbent showed a maximum adsorption capacity of 111 mg dibenzothiophene g{sup −1} of adsorbent. Sorption process was described by the pseudo-second-order rate equation and could be better fitted by the Freundlich model, showing the heterogeneous feature of the adsorption process. In addition, the adsorption capacity of regenerated adsorbent was 78.6% of the initial level, after five regeneration cycles. - Highlights: • Adsorptive desulfurization of model oil with magnetic ordered mesoporous carbon adsorbent, Fe-OMC, was studied. • Maximum adsorption capacity (q{sub max}) of Fe-OMC for DBT was found to be 111.1 mg g{sup −1}. • Freundlich isotherm best represents the equilibrium adsorption data. • Rate of DBT adsorption process onto Fe-OMC is controlled by at least two steps.

  11. Synthesis of magnetic ordered mesoporous carbon (Fe-OMC) adsorbent and its evaluation for fuel desulfurization

    International Nuclear Information System (INIS)

    Farzin Nejad, N.; Shams, E.; Amini, M.K.

    2015-01-01

    In this work, magnetic ordered mesoporous carbon adsorbent was synthesized using soft templating method to adsorb sulfur from model oil (dibenzothiophene in n-hexane). Through this research, pluronic F-127, resorcinol-formaldehyde and hydrated iron nitrate were respectively used as soft template, carbon source and iron source. The adsorbent was characterized by X-ray diffraction, nitrogen adsorption–desorption isotherm and transmission electron microscopy. Nitrogen adsorption–desorption measurement revealed the high surface area (810 m 2 g −1 ), maxima pore size of 3.3 nm and large pore volume (1.01 cm 3 g −1 ) of the synthesized sample. The adsorbent showed a maximum adsorption capacity of 111 mg dibenzothiophene g −1 of adsorbent. Sorption process was described by the pseudo-second-order rate equation and could be better fitted by the Freundlich model, showing the heterogeneous feature of the adsorption process. In addition, the adsorption capacity of regenerated adsorbent was 78.6% of the initial level, after five regeneration cycles. - Highlights: • Adsorptive desulfurization of model oil with magnetic ordered mesoporous carbon adsorbent, Fe-OMC, was studied. • Maximum adsorption capacity (q max ) of Fe-OMC for DBT was found to be 111.1 mg g −1 . • Freundlich isotherm best represents the equilibrium adsorption data. • Rate of DBT adsorption process onto Fe-OMC is controlled by at least two steps

  12. Large-Scale Processes Associated with Inter-Decadal and Inter-Annual Early Spring Rainfall Variability in Taiwan

    Directory of Open Access Journals (Sweden)

    Jau-Ming Chen

    2016-02-01

    Full Text Available Early spring (March - April rainfall in Taiwan exhibits evident and distinct inter-annual and inter-decadal variability. The inter-annual varibility has a positive correlation with the El Niño/Southern Oscillation while the inter-decadal variability features a phase change beginning in the late 1970s, coherent with the major phase change in the Pacific decadal oscillation. Rainfall variability in both timescales is regulated by large-scale processes showing consistent dynamic features. Rainfall increases are associated with positive sea surface temperature (SST anomalies in the tropical eastern Pacific and negative SST anomalies in the tropical central Pacific. An anomalous lower-level divergent center appears in the tropical central Pacific. Via a Rossby-wave-like response, an anomalous lower-level anticyclone appears to the southeast of Taiwan over the Philippine Sea-tropical western Pacific region, which is accompanied by an anomalous cyclone to the north-northeast of Taiwan. Both circulation anomalies induce anomalous southwesterly flows to enhance moisture flux from the South China Sea onto Taiwan, resulting in significant moisture convergence nearby Taiwan. With enhanced moisture supplied by anomalous southwesterly flows, significant rainfall increases occur in both inter-annual and inter-decadal timescales in early spring rainfall on Taiwan.

  13. Adsorptive desulfurization of model oil using untreated, acid activated and magnetite nanoparticle loaded bentonite as adsorbent

    Directory of Open Access Journals (Sweden)

    Muhammad Ishaq

    2017-02-01

    Full Text Available The present research work focuses on a novel ultraclean desulfurization process of model oil by the adsorption method using untreated, acid activated and magnetite nanoparticle loaded bentonite as adsorbent. The parameters investigated are effect of contact time, adsorbent dose, initial dibenzothiophene (DBT concentration and temperature. Experimental tests were conducted in batch process. Pseudo first and second order kinetic equations were used to examine the experimental data. It was found that pseudo second order kinetic equation described the data of the DBT adsorption onto all types of adsorbents very well. The isotherm data were analyzed using Langmuir and Freundlich isotherm models. The Langmuir isotherm model fits the data very well for the adsorption of DBT onto all three forms of adsorbents. The adsorption of DBT was also investigated at different adsorbent doses and was found that the percentage adsorption of DBT was increased with increasing the adsorbent dose, while the adsorption in mg/g was decreased with increasing the adsorbent dose. The prepared adsorbents were analyzed by scanning electron microscopy (SEM, energy dispersive X-ray spectrometry (EDX and X-ray diffraction (XRD.

  14. Removal of fine particles in wet flue gas desulfurization system by heterogeneous condensation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L.J.; Bao, J.J.; Yan, J.P.; Liu, J.H.; Song, S.J.; Fan, F.X. [Southeast University, Nanjing (China). School of Energy & Environment

    2010-01-01

    A novel process to remove fine particles with high efficiency by heterogeneous condensation in a wet flue gas desulfurization (WFGD) system is presented. A supersaturated vapor phase, necessary for condensational growth of fine particles, was achieved in the SO{sub 2} absorption zone and at the top of the wet FGD scrubber by adding steam in the gas inlet and above the scrubbing liquid inlet of the scrubber, respectively. The condensational grown droplets were then removed by the scrubbing liquid and a high-efficiency demister. The results show that the effectiveness of the WFGD system for removal of fine particles is related to the SO{sub 2} absorbent employed. When using CaCO{sub 3} and NH{sub 3} {center_dot} H{sub 2}O to remove SO{sub 2} from flue gas, the fine particle removal efficiencies are lower than those for Na2CO{sub 3} and water, and the morphology and elemental composition of fine particles are changed. This effect can be attributed to the formation of aerosol particles in the limestone and ammonia-based FGD processes. The performance of the WFGD system for removal of fine particles can be significantly improved for both steam addition cases, for which the removal efficiency increases with increasing amount of added steam. A high liquid to gas ratio is beneficial for efficient removal of fine particles by heterogeneous condensation of water vapor.

  15. On the potential of absorption and reactive adsorption for desulfurization of ultra low-sulfur commercial diesel in the liquid phase in the presence of fuel additive and bio-diesel

    Energy Technology Data Exchange (ETDEWEB)

    Pieterse, J.A.Z.; Van Eijk, S.; Van Dijk, H.A.J.; Van den Brink, R.W. [Energy research Center of the Netherlands, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2011-03-15

    Sorption of sulfur components in the liquid phase was used to desulfurize ultra low sulfur diesel (ULSD) to below 1 ppmw S. Several concepts of sorption were considered by using both physisorption and chemisorption materials and conditions. Adsorption assisted by reaction with Ni sorbent was found to be most successful. Using a pre-commercial diesel representing a mature diesel on all aspects except for the absence of fuel stabilizers and bio-diesel, a sulfur breakthrough capacity of 2 mg S/g could be achieved using a Ni-sorbent at an acceptable LHSV of 0.7 h{sup -1} on average. However, successive experiments indicated that the desulfurization capacity depended strongly on the presence of fuel-additive and bio-diesel in commercial ULSD. The presence of the cetane improver 2-ethylhexylnitrate (2EHN) was shown to decrease the sulfur capacity by roughly 50%. The presence of bio-diesel (fatty acid methyl ester, abbreviated to FAME) was shown to completely disable the desulfurization process. This was confirmed by comparing BP Ultimate diesel with FAME (obtained in 2008) and without FAME (obtained in 2006). From this evaluation it turned out that the targeted breakthrough capacity of 1 mg S/g sorbent was within reach for commercial ULSD until late 2006 when adding bio-diesel to ULSD became common practice in Europe. Several attempts to remove the additives prior to desulfurization by using copper loaded zeolites, active carbon and silica gel proved unsuccessful to bring the sulfur adsorption capacity for current diesel to the level observed for 2EHN and FAME-free diesel. It is concluded that sorption in the liquid phase does not yet represent a viable desulfurization technology for ultra-low sulfur diesel.

  16. Simultaneous desulfurization and denitrification by microwave reactor with ammonium bicarbonate and zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Wei Zaishan [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)], E-mail: weizaishan98@163.com; Lin Zhehang; Niu Hejingying; He Haiming; Ji Yongfeng [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2009-03-15

    Microwave reactor with ammonium bicarbonate (NH{sub 4}HCO{sub 3}) and zeolite was set up to study the simultaneous removal of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from flue gas. The results showed that the microwave reactor filled with NH{sub 4}HCO{sub 3} and zeolite could reduce SO{sub 2} to sulfur with the best desulfurization efficiency of 99.1% and reduce NO{sub x} to nitrogen with the best NO{sub x} purifying efficiency of 86.5%. Microwave desulfurization and denitrification effect of the experiment using ammonium bicarbonate and zeolite together is much higher than that using ammonium bicarbonate or zeolite only. NO{sub x} concentration has little effect on denitrification but has no influence on desulfurization, SO{sub 2} concentration has no effect on denitrification. The optimal microwave power and empty bed residence time (EBRT) on simultaneous desulfurization and dentrification are 211-280 W and 0.315 s, respectively. The mechanism for microwave reduced desulfurization and denitrification can be described as the microwave-induced catalytic reduction reaction between SO{sub 2}, NO{sub x} and ammonium bicarbonate with zeolite being the catalyst and microwave absorbent.

  17. Multi-objective optimization of oxidative desulfurization in a sono-photochemical airlift reactor.

    Science.gov (United States)

    Behin, Jamshid; Farhadian, Negin

    2017-09-01

    Response surface methodology (RSM) was employed to optimize ultrasound/ultraviolet-assisted oxidative desulfurization in an airlift reactor. Ultrasonic waves were incorporated in a novel-geometry reactor to investigate the synergistic effects of sono-chemistry and enhanced gas-liquid mass transfer. Non-hydrotreated kerosene containing sulfur and aromatic compounds was chosen as a case study. Experimental runs were conducted based on a face-centered central composite design and analyzed using RSM. The effects of two categorical factors, i.e., ultrasound and ultraviolet irradiation and two numerical factors, i.e., superficial gas velocity and oxidation time were investigated on two responses, i.e., desulfurization and de-aromatization yields. Two-factor interaction (2FI) polynomial model was developed for the responses and the desirability function associate with overlay graphs was applied to find optimum conditions. The results showed enhancement in desulfurization ability corresponds to more reduction in aromatic content of kerosene in each combination. Based on desirability approach and certain criteria considered for desulfurization/de-aromatization, the optimal desulfurization and de-aromatization yields of 91.7% and 48% were obtained in US/UV/O 3 /H 2 O 2 combination, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Simultaneous desulfurization and denitrification by microwave reactor with ammonium bicarbonate and zeolite

    International Nuclear Information System (INIS)

    Wei Zaishan; Lin Zhehang; Niu Hejingying; He Haiming; Ji Yongfeng

    2009-01-01

    Microwave reactor with ammonium bicarbonate (NH 4 HCO 3 ) and zeolite was set up to study the simultaneous removal of sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ) from flue gas. The results showed that the microwave reactor filled with NH 4 HCO 3 and zeolite could reduce SO 2 to sulfur with the best desulfurization efficiency of 99.1% and reduce NO x to nitrogen with the best NO x purifying efficiency of 86.5%. Microwave desulfurization and denitrification effect of the experiment using ammonium bicarbonate and zeolite together is much higher than that using ammonium bicarbonate or zeolite only. NO x concentration has little effect on denitrification but has no influence on desulfurization, SO 2 concentration has no effect on denitrification. The optimal microwave power and empty bed residence time (EBRT) on simultaneous desulfurization and dentrification are 211-280 W and 0.315 s, respectively. The mechanism for microwave reduced desulfurization and denitrification can be described as the microwave-induced catalytic reduction reaction between SO 2 , NO x and ammonium bicarbonate with zeolite being the catalyst and microwave absorbent

  19. Increasing the production of desulfurizing biocatalysts by means of fed - batch culture

    International Nuclear Information System (INIS)

    Berdugo, C I; Mena, J A; Acero, J R; Mogollon, L

    2001-01-01

    Over the past years, environmental regulations have driven a lot of effort for the development of new technologies for the upgrading of fossil fuels. Biotechnology offers an alternative way to process fossil fuels by means of a biodesulfurization technology where the production of the biocatalyst is one of the key topics. Traditionally, the production is carried out in batch culture where the maximum cellular concentration is restricted by inherent limitations of the culture type and the microorganism growth rate. This work addresses the production of two desulfurizing microorganisms: Rhodococcus erythropolis IGTS8 and gordona rubropertinctus ICP172 using fed-batch culture. Fed-batch cultures were conducted in a 12 L fermentor using ICP 4 medium containing glucose and DMSO as carbon and sulfur sources. As a result, cell concentration was increased 1.5 and 3 times with fed-batch cultures using constant and exponential flow respectively, achieving a maximum cell concentration of 7.3 g DCW/L of biocatalyst igts8 and 12.85 gGDCW/L of the new biocatalyst ICP172. Both biocatalysts presented biodesulfurization activity in a spiked matrix DBT/HXD and in diesel matrix with the detection of 2-HBP which is the end-product of DBT degradation pathway

  20. Preparation of ionic liquid-modified SBA-15 doped with molybdovanadophosphoric acid for oxidative desulfurization

    International Nuclear Information System (INIS)

    Zhuang, Jiang Zhou; Jin, Xiao Yin; Shen, Xian Lin; Tan, Jun Jun; Nie, Long Hui; Xiang, Jian; Hu, Bing

    2015-01-01

    A series of catalysts, ionic liquid-modified SBA-15 (denoted ILSBA) doped with H 5 PMo 10 V 2 O 40 (HPMoV 2 ) have been synthesized and characterized by XRD, FT-IR, 1 H NMR, TG-DTA, and TEM. The catalyst was used for the removal of dibenzothiophene (DBT) in model oil combined with hydrogen peroxide (the oxidant) and acetonitrile (the phase-transfer agent). It was observed that the sulfur content of DBT can be reduced from 500 to 2 ppm by adjusting the amount of catalyst, the reaction temperatures and the reaction time. Besides, the catalyst activity for different sulfur compounds showed a huge difference which may be mainly affected by the electron densities of sulfur atom. Moreover, the catalyst can be recycled seven times without a significant loss in activity, which could be ascribed to the strong electrostatic interaction between ILSBA and HPMoV 2 . In addition, a postulated mechanism was proposed to reveal the oxidative desulfurization process

  1. Preparation of ionic liquid-modified SBA-15 doped with molybdovanadophosphoric acid for oxidative desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Jiang Zhou; Jin, Xiao Yin; Shen, Xian Lin; Tan, Jun Jun; Nie, Long Hui; Xiang, Jian; Hu, Bing [Dept. of chool of Chemistry and Chemical Engineering, Hubei University of Technology, Wuhan (China)

    2015-07-15

    A series of catalysts, ionic liquid-modified SBA-15 (denoted ILSBA) doped with H{sub 5}PMo{sub 10}V{sub 2}O{sub 40} (HPMoV{sub 2}) have been synthesized and characterized by XRD, FT-IR, {sup 1}H NMR, TG-DTA, and TEM. The catalyst was used for the removal of dibenzothiophene (DBT) in model oil combined with hydrogen peroxide (the oxidant) and acetonitrile (the phase-transfer agent). It was observed that the sulfur content of DBT can be reduced from 500 to 2 ppm by adjusting the amount of catalyst, the reaction temperatures and the reaction time. Besides, the catalyst activity for different sulfur compounds showed a huge difference which may be mainly affected by the electron densities of sulfur atom. Moreover, the catalyst can be recycled seven times without a significant loss in activity, which could be ascribed to the strong electrostatic interaction between ILSBA and HPMoV{sub 2}. In addition, a postulated mechanism was proposed to reveal the oxidative desulfurization process.

  2. Desulfurization of coal by pyrolysis and hydropyrolysis with addition of KOH/NaOH

    Energy Technology Data Exchange (ETDEWEB)

    Quanrun Liu; Haoquan Hu; Shengwei Zhu; Qiang Zhou; Wenying Li; Xianyong Wei; Kechang Xie [Dalian University of Technology, Dalian (China). Institute of Coal Chemical Engineering

    2005-08-01

    In this paper, a two-step desulfurization process for high-sulfur coal was investigated. Two Chinese coals with the addition of 10 wt % potassium hydroxide or sodium hydroxide were pyrolyzed under an atmosphere of nitrogen or hydrogen in a fixed-bed reactor at 600{sup o}C, and then the obtained chars were washed with hot water. The results indicated that, without the addition of an alkali component, the sulfur removal of these two coals by pyrolysis and hydropyrolysis is {approximately}40%-50% and the sulfur content of chars is reduced only slightly, in comparison with the original coals; with the addition of 10 wt % potassium hydroxide or sodium hydroxide into the original coals and the chars being washed with hot water, the sulfur removal is {approximately}70%-80% and the sulfur content in chars is reduced dramatically. The combustion behavior of chars was also investigated, using thermogravimetric analysis. The results showed that those chars that had an added alkali component and were subjected to water-washing were more reactive and can be burned more easily than those without added alkali, which was also confirmed by a kinetics analysis of char combustion. 21 refs., 3 figs., 6 tabs.

  3. Simulation of the operation of an industrial wet flue gas desulfurization system

    International Nuclear Information System (INIS)

    Kallinikos, L.E.; Farsari, E.I.; Spartinos, D.N.; Papayannakos, N.G.

    2010-01-01

    In this work the simulation of a wet flue gas desulfurization (FGD) unit with spray tower of a power plant is presented, aiming at an efficient follow-up and the optimization of the FGD system operation. The dynamic model developed to simulate the performance of the system has been validated with operation data collected over a long period of time. All the partaking physical and chemical processes like the limestone dissolution, the crystallization of calcium sulfite and gypsum and the oxidation of sulfite ions have been taken into account for the development of the simulation model while the gas absorption by the liquid droplets was based on the two-film theory. The effect of the mean diameter of the slurry droplets on the performance of the system was examined, as it was used as an index factor of the normal operation of the system. The operation limits of the system were investigated on the basis of the model developed. It is concluded that the model is capable of simulating the system for significantly different SO 2 loads and that the absorption rate of SO 2 is strongly affected by the liquid dispersion in the tower. (author)

  4. Reactive Adsorption Desulfurization by Nanocrystalline ZnO/Zeolite A Molecular Sieves

    Directory of Open Access Journals (Sweden)

    Nada Sadoon Ahmedzeki

    2017-09-01

    Full Text Available Nanocrystalline ZnO/Zeolite type A composite was prepared by simple method of operation by . the precipitation of zinc oxide and loading on zeolite 5A in one step. Characterization was made by X-ray diffraction (XRD, X-ray fluorescence(XRF, N2 adsorption- desorption for BET surface area, and Atomic force microscopy (AFM. Results showed that zinc oxide was loaded on zeolite as noticed by the characteristic peaks and was of nano scale having an average diameter of 88.57nm. The percentage loading of ZnO on zeolite A was 28.37% and the surface area was 222m2/g. The activity of the prepared catalyst was examined in the desulfurization of double hydrogenated diesel fuel. The process was investigated in a controlled autoclave with temperature range studied 100220 oC. Results indicated an oxidation of thiophenic compounds on the surface of the catalyst coupled with adsorption. About 35% reduction was obtained and the capacity was 10.56 mg S/g catalyst.

  5. Investigation on gasoline deep desulfurization for fuel cell applications

    International Nuclear Information System (INIS)

    Zhang, J.C.; Song, L.F.; Hu, J.Y.; Ong, S.L.; Ng, W.J.; Lee, L.Y.; Wang, Y.H.; Zhao, J.G.; Ma, R.Y.

    2005-01-01

    The effect of adding some amounts of cerium into Zn-Fe-O/Al 2 O 3 sorbent on its performance of removal of organic sulfur compounds from gasoline by adsorption was studied in this paper. It showed that the ideal compositions for the preparation of Zn-Fe-Ce-O/Al 2 O 3 consisted of 4.54 wt.% ZnO, 2.25 wt.% Fe 2 O 3 and 2.5 wt.% CeO 2 , respectively, shortened as AZFC 0.52 . Further study indicated that this sorbent could be well regenerated at 250 deg. C with gas mixtures containing 6.0 vol.% steam + air and 2400 ml h -1 ml -1 gas space velocity. At those regenerated conditions and 60 deg. C adsorption temperature, the AZFC 0.52 sorbent had better desulfurization stability, which was confirmed by typical characterization results using BET, XRD and SEM apparatus. This implied that the AZFC 0.52 sorbent could be an ideal sorbent for removal of organic sulfur compounds from gasoline

  6. Speciation of Raney Copper Oxide during High-Temperature Desulfurization

    International Nuclear Information System (INIS)

    Wang, T. C.; Chen, C. Y.; Huang, H.-L.; Wang, H. Paul; Wei Yuling

    2007-01-01

    Speciation of copper in the Raney copper oxides (R-CuO) during high-temperature desulfurization has been studied by X-ray absorption spectroscopy. The preedge XANES spectra (8975-8979 eV) of R-CuO exhibit a very weak 1s-to-3d transition forbidden by the selection rule in the case of the perfect octahedral symmetry. A shoulder at 8985-8988 eV and an intense band at 8994-9002 eV can be attributed to the 1s-to-4p transition that indicates the existence of the Cu(II) species. The preedge band at 8981-8984 eV can be attributed to the dipole-allowed 1s-to-4p transition of Cu(I), suggesting an existence of Cu2S during sulfurization. An enhanced absorbance at 9003 eV shows that Cu(0) species may be formed in the sulfurized R-CuO. The main copper species in regenerated R-CuO are CuO (96%) and Cu2S (4%)

  7. Producing ammonium sulfate from flue gas desulfurization by-products

    Science.gov (United States)

    Chou, I.-Ming; Bruinius, J.A.; Benig, V.; Chou, S.-F.J.; Carty, R.H.

    2005-01-01

    Emission control technologies using flue gas desulfurization (FGD) have been widely adopted by utilities burning high-sulfur fuels. However, these technologies require additional equipment, greater operating expenses, and increased costs for landfill disposal of the solid by-products produced. The financial burdens would be reduced if successful high-volume commercial applications of the FGD solid by-products were developed. In this study, the technical feasibility of producing ammonium sulfate from FGD residues by allowing it to react with ammonium carbonate in an aqueous solution was preliminarily assessed. Reaction temperatures of 60, 70, and 80??C and residence times of 4 and 6 hours were tested to determine the optimal conversion condition and final product evaluations. High yields (up to 83%) of ammonium sulfate with up to 99% purity were achieved under relatively mild conditions. The optimal conversion condition was observed at 60??C and a 4-hour residence time. The results of this study indicate the technical feasibility of producing ammonium sulfate fertilizer from an FGD by-product. Copyright ?? Taylor & Francis Inc.

  8. Optimisation of Experimental Conditions for Ex-Bed Desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, J. M.; Ruiz, E.; Otero, J.

    2010-12-22

    This report compiles the results of the work conducted by CIEMAT for Task 6.3 Sulfur and Nitrogen Compounds Abatement of the FLEXGAS project Near Zero Emission Advanced Fluidized Bed Gasification, which has been carried out with financial support from the Research Fund for Coal and Steel, RFCR-CT-2007-00005. The assignment of CIEMAT in Task 6.3 has dealt with the experimental study of ex-bed desulfurization at high temperature and high pressure. Based on a review of the state of the art, a zinc oxide sorbent was chosen as a promising candidate for bulk sulfur removal in highly reducing gases such as those from coal and waste oxygen gasification or for a polishing stage in low sulfur content gases, which is typically the case in biomass gasification gases. The work accomplished has included the study of the sulfidation and regeneration stages in order to determine successful operating conditions and the assessment of the long term performance of the sorbent over subsequent sulfidation and regeneration cycles. (Author) 36 refs.

  9. Results of the desulfurization programme at coal-fired power plants operated by CEZ a.s

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The Czech utility CEZ, which is the major power plant operator in the Czech Republic, is running an extensive coal-fired power plant desulfurization programme to improve the environmental situation in the region. Flue gas desulfurization is achieved in 2 ways: by augmenting the existing units with desulfurization equipment, and by replacing old boilers with new, fluidized-bed combustion facilities. Both wet limestone scrubbing and the dry limestone method are applied. A survey of the power plants, desulfurized power, desulfurization equipment suppliers, and contract prices is presented in a tabular form. Plots showing the contribution of CEZ's power plants to sulfur dioxide emissions in the Czech Republic are reproduced. (P.A.). 1 tab., 3 figs

  10. Metals Processing Laboratory Users (MPLUS) Facility Annual Report FY 2002 (October 1, 2001-September 30, 2002)

    Energy Technology Data Exchange (ETDEWEB)

    Angelini, P

    2004-04-27

    The Metals Processing Laboratory Users Facility (MPLUS) is a Department of Energy (DOE), Energy Efficiency and Renewable Energy, Industrial Technologies Program, user facility designated to assist researchers in key industries, universities, and federal laboratories in improving energy efficiency, improving environmental aspects, and increasing competitiveness. The goal of MPLUS is to provide access to the specialized technical expertise and equipment needed to solve metals processing issues that limit the development and implementation of emerging metals processing technologies. The scope of work can also extend to other types of materials. MPLUS has four primary user centers: (1) Processing--casting, powder metallurgy, deformation processing (including extrusion, forging, rolling), melting, thermomechanical processing, and high-density infrared processing; (2) Joining--welding, monitoring and control, solidification, brazing, and bonding; (3) Characterization--corrosion, mechanical properties, fracture mechanics, microstructure, nondestructive examination, computer-controlled dilatometry, and emissivity; and (4) Materials/Process Modeling--mathematical design and analyses, high-performance computing, process modeling, solidification/deformation, microstructure evolution, thermodynamic and kinetic, and materials databases A fully integrated approach provides researchers with unique opportunities to address technologically related issues to solve metals processing problems and probe new technologies. Access is also available to 16 additional Oak Ridge National Laboratory (ORNL) user facilities ranging from state-of-the-art materials characterization capabilities, and high-performance computing to manufacturing technologies. MPLUS can be accessed through a standardized user-submitted proposal and a user agreement. Nonproprietary (open) or proprietary proposals can be submitted. For open research and development, access to capabilities is provided free of charge

  11. Metals Processing Laboratory Users (MPLUS) Facility Annual Report: October 1, 2000 through September 30, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Angelini, P

    2004-04-27

    The Metals Processing Laboratory Users Facility (MPLUS) is a Department of Energy (DOE), Energy Efficiency and Renewable Energy, Industrial Technologies Program user facility designated to assist researchers in key industries, universities, and federal laboratories in improving energy efficiency, improving environmental aspects, and increasing competitiveness. The goal of MPLUS is to provide access to the specialized technical expertise and equipment needed to solve metals processing issues that limit the development and implementation of emerging metals processing technologies. The scope of work can also extend to other types of materials. MPLUS has four primary User Centers including: (1) Processing--casting, powder metallurgy, deformation processing including (extrusion, forging, rolling), melting, thermomechanical processing, high density infrared processing; (2) Joining--welding, monitoring and control, solidification, brazing, bonding; (3) Characterization--corrosion, mechanical properties, fracture mechanics, microstructure, nondestructive examination, computer-controlled dilatometry, and emissivity; (4) Materials/Process Modeling--mathematical design and analyses, high performance computing, process modeling, solidification/deformation, microstructure evolution, thermodynamic and kinetic, and materials data bases. A fully integrated approach provides researchers with unique opportunities to address technologically related issues to solve metals processing problems and probe new technologies. Access is also available to 16 additional Oak Ridge National Laboratory (ORNL) user facilities ranging from state of the art materials characterization capabilities, high performance computing, to manufacturing technologies. MPLUS can be accessed through a standardized User-submitted Proposal and a User Agreement. Nonproprietary (open) or proprietary proposals can be submitted. For open research and development, access to capabilities is provides free of charge while

  12. Enhancement of Oxidative Desulfurization Performance over UiO-66(Zr) by Titanium Ion Exchange.

    Science.gov (United States)

    Ye, Gan; Qi, Hui; Li, Xiaolin; Leng, Kunyue; Sun, Yinyong; Xu, Wei

    2017-07-19

    Oxidative desulfurization is considered to be one of the most promising methods for producing ultra-low-sulfur fuels because it can effectively remove refractory sulfur-containing aromatic compounds under mild conditions. In this work, the oxidative desulfurization performance over UiO-66(Zr) is greatly enhanced by Ti ion exchange. This strategy is not only efficient for UiO-66(Zr) with crystal defects but also for UiO-66(Zr) with high crystallinity. In particular, the performance of UiO-66(Zr) with high crystallinity in the oxidative desulfurization of dibenzothiophene can be improved more than 11-fold, which can be mainly attributed to the introduction of active Ti sites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Ultrasound-assisted oxidative desulfurization of bunker-C oil using tert-butyl hydroperoxide.

    Science.gov (United States)

    Tang, Qiong; Lin, Song; Cheng, Ying; Liu, Sujun; Xiong, Jun-Ru

    2013-09-01

    This work investigated the ultrasonic assisted oxidative desulfurization of bunker-C oil with TBHP/MoO3 system. The operational parameters for the desulfurization procedure such as ultrasonic irradiation time, ultrasonic wave amplitude, catalyst initial concentration and oxidation agent initial concentration were studied. The experimental results show that the present oxidation system was very efficient for the desulfurization of bunker-C oil and ~35% sulfur was removed which was dependent on operational parameters. The application of ultrasonic irradiation allowed sulfur removal in a shorter time. The stronger the solvent polarity is, the higher the sulfur removal rate, but the recovery rate of oil is lower. The sulfur compounds in bunker-C oil reacted with TBHP to produce corresponding sulfoxide, and further oxidation produced the corresponding sulfone. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Fission in R-processes Elements (FIRE) - Annual Report: Fiscal Year 2017

    Energy Technology Data Exchange (ETDEWEB)

    Schunck, Nicolas [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-18

    The goal of the FIRE topical collaboration in nuclear theory is to determine the astrophysical conditions of the rapid neutron capture process (r-process), which is responsible for the formation of heavy elements. This will be achieved by including in r-process simulations the most advanced models of fission (spontaneous, neutron-induced, beta-delayed) that have been developed at LLNL and LANL. The collaboration is composed of LLNL (lead) and LANL for work on nuclear data (ground-state properties, fission, beta-decay), BNL for nuclear data management, and the university of Notre Dame and North Carolina State University for r-process simulations. Under DOE/NNSA agreement, both universities receive funds from the DOE Office of Science, while national laboratories receive funds directly from NA221.

  15. Scaled physical model studies of the steam drive process. First annual report, September 1977-September 1978

    Energy Technology Data Exchange (ETDEWEB)

    Doscher, T M

    1980-12-01

    Scaling laws of the heat transport mechanism in steam displacement processes are developed based upon an integral energy balance equation. Unlike the differential approach adopted by previous workers, the above scaling laws do not necessitate the use of any empirical correction factor as has been done in previous scaling calculations. The results provide a complete and consistent scale-down of the energy transport behavior, which is the critical mechanism for the success of a steam injection process. In the course of the study, the scaling problems associated with relative permeability and capillary pressure are also discussed. A method which has often been used in scaling nonthermal displacement processes is applied to reduce errors due to scaling in relative permeability. Both dimensional and inspectional analyses are applied to illustrate their use in steam processes. Scale-up laws appeared in the literature and those used in this study are compared and numerical examples are given.

  16. UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL MANAGEMENT WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2008

    Energy Technology Data Exchange (ETDEWEB)

    Bush, S.

    2009-11-05

    The Office of Waste Processing identifies and reduces engineering and technical risks and uncertainties of the waste processing programs and projects of the Department of Energy's Environmental Management (EM) mission through the timely development of solutions to technical issues. The risks, and actions taken to mitigate those risks, are determined through technology readiness assessments, program reviews, technology information exchanges, external technical reviews, technical assistance, and targeted technology development and deployment. The Office of Waste Processing works with other DOE Headquarters offices and project and field organizations to proactively evaluate technical needs, identify multi-site solutions, and improve the technology and engineering associated with project and contract management. Participants in this program are empowered with the authority, resources, and training to implement their defined priorities, roles, and responsibilities. The Office of Waste Processing Multi-Year Program Plan (MYPP) supports the goals and objectives of the U.S. Department of Energy (DOE) - Office of Environmental Management Engineering and Technology Roadmap by providing direction for technology enhancement, development, and demonstration that will lead to a reduction of technical risks and uncertainties in EM waste processing activities. The MYPP summarizes the program areas and the scope of activities within each program area proposed for the next five years to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. Waste Processing Program activities within the Roadmap and the MYPP are described in these seven program areas: (1) Improved Waste Storage Technology; (2) Reliable and Efficient Waste Retrieval Technologies; (3) Enhanced Tank Closure Processes; (4) Next-Generation Pretreatment Solutions; (5

  17. United States Department Of Energy Office Of Environmental Management Waste Processing Annual Technology Development Report 2008

    International Nuclear Information System (INIS)

    Bush, S.

    2009-01-01

    The Office of Waste Processing identifies and reduces engineering and technical risks and uncertainties of the waste processing programs and projects of the Department of Energy's Environmental Management (EM) mission through the timely development of solutions to technical issues. The risks, and actions taken to mitigate those risks, are determined through technology readiness assessments, program reviews, technology information exchanges, external technical reviews, technical assistance, and targeted technology development and deployment. The Office of Waste Processing works with other DOE Headquarters offices and project and field organizations to proactively evaluate technical needs, identify multi-site solutions, and improve the technology and engineering associated with project and contract management. Participants in this program are empowered with the authority, resources, and training to implement their defined priorities, roles, and responsibilities. The Office of Waste Processing Multi-Year Program Plan (MYPP) supports the goals and objectives of the U.S. Department of Energy (DOE) - Office of Environmental Management Engineering and Technology Roadmap by providing direction for technology enhancement, development, and demonstration that will lead to a reduction of technical risks and uncertainties in EM waste processing activities. The MYPP summarizes the program areas and the scope of activities within each program area proposed for the next five years to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. Waste Processing Program activities within the Roadmap and the MYPP are described in these seven program areas: (1) Improved Waste Storage Technology; (2) Reliable and Efficient Waste Retrieval Technologies; (3) Enhanced Tank Closure Processes; (4) Next-Generation Pretreatment Solutions; (5

  18. Colloidal agglomerates in tank sludge: Impact on waste processing. 1997 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Virden, J.W.

    1997-06-01

    'Disposal of millions of gallons of existing radioactive wastes is a major remediation problem for the Department of Energy (DOE). Although radionuclides are the most hazardous waste con- stituents. the components of greatest concern from a waste processing standpoint are insoluble sludges consisting of submicron colloidal particles. Depending on processing conditions, these colloidal particles can form agglomerate networks that could clog transfer lines or interfere with solid-liquid separations such as settle-decant operations. Under different conditions, the particles can be dispersed to form very fine suspended particles that will not create sediment in settle- decant steps and that can foul and contaminate downstream treatment components including ion exchangers or filtrations systems. Given the wide range of tank chemistries present at Hanford and other DOE sites, it is impractical to measure the properties of all potential processing conditions to design effective treatment procedures. Instead. a framework needs to be established to allow sludge property trends to be predicted on a sound scientific basis. The scientific principles of greatest utility in characterizing, understanding, and controlling the physical properties of sludge fall in the realm of colloid chemistry. The objectives of this work are to accomplish the following: understand the factors controlling the nature and extent of colloidal agglomeration under expected waste processing conditions determine how agglomeration phenomena influence physical properties relevant to waste processing including rheology, sedimentation. and filtration develop strategies for optimizing processing conditions via control of agglomeration phenomena.'

  19. Colloidal agglomerates in tank sludge: Impact on waste processing. 1997 annual progress report

    International Nuclear Information System (INIS)

    Virden, J.W.

    1997-01-01

    'Disposal of millions of gallons of existing radioactive wastes is a major remediation problem for the Department of Energy (DOE). Although radionuclides are the most hazardous waste constituents. the components of greatest concern from a waste processing standpoint are insoluble sludges consisting of submicron colloidal particles. Depending on processing conditions, these colloidal particles can form agglomerate networks that could clog transfer lines or interfere with solid-liquid separations such as settle-decant operations. Under different conditions, the particles can be dispersed to form very fine suspended particles that will not create sediment in settle- decant steps and that can foul and contaminate downstream treatment components including ion exchangers or filtrations systems. Given the wide range of tank chemistries present at Hanford and other DOE sites, it is impractical to measure the properties of all potential processing conditions to design effective treatment procedures. Instead. a framework needs to be established to allow sludge property trends to be predicted on a sound scientific basis. The scientific principles of greatest utility in characterizing, understanding, and controlling the physical properties of sludge fall in the realm of colloid chemistry. The objectives of this work are to accomplish the following: understand the factors controlling the nature and extent of colloidal agglomeration under expected waste processing conditions determine how agglomeration phenomena influence physical properties relevant to waste processing including rheology, sedimentation. and filtration develop strategies for optimizing processing conditions via control of agglomeration phenomena.'

  20. Aqueous electrochemical mechanisms in actinide residue processing. 1998 annual progress report

    International Nuclear Information System (INIS)

    Blanchard, D.L. Jr.; Burns, C.J.; Morris, D.E.; Smith, W.H.

    1998-01-01

    'New and/or improved solutions to the stabilization and volume reduction of nuclear materials processing residues are urgently needed. Mediated electrochemical oxidation/reduction (MEO/R) processes are one such approach for incinerator ash, combustibles, and other solid residues. However, questions remain concerning the mechanisms of these processes, and how they might be optimized. In addition, further research is merited to extend their range of applicability. Recent advances in the study of heterogeneous electron transfer in solid substrates have opened the door for the re-examination of electron transfer processes associated with redox mediated actinide dissolution. The authors develop a deeper understanding of the thermodynamic and mechanistic aspects of heterogeneous electron transfer that lie at the heart of these MEO/R processes. They will also develop and test new approaches based on the results of these fundamental studies using actual residue materials. Key aspects of this proposal include: (1) determination of the potential windows for oxidation/reduction of colloidal actinide oxides and actinide-bearing oxide and organic substrates and the e transfer kinetic parameters that govern the current--overpotential characteristics; (2) development of adaptations of mediation schemes and application of co-mediation reagents for oxidative and reductive dissolution based on complexation of the surface-bound or solid-phase actinides and/or the dissolved redox mediator;and (3) execution of bench-scale tests of new MEO/R schemes on actual residue materials.'

  1. Effect of Rhodococcus sp. on desulfurization, swelling and extraction of coal

    Energy Technology Data Exchange (ETDEWEB)

    Wang De-qiang; Shui Heng-fu [University of Technology of Anhui, Maanshang (China). School of Chemical Engineering

    2006-08-15

    Bio-desulfurization of coal by rhodococcus sp. was studied. Some kinds of coal were swelled with different organic solvents, and then the swelled coals were treated by rhodococcus sp. The results show that the ratios of desulfurization of coals increase after they are swelled, especially swelled with NMP, the ratio is more than 80%. The swelling and extraction of coal were also studied after the coal had been treated by rhodococcus sp. The results show that the ratios of swelling increase more than 65%, but the extraction yield decreases for the coal treated by rhodococcus sp. 11 refs., 5 tabs.

  2. Subsequent flue gas desulfurization of coal-fired power plant units

    International Nuclear Information System (INIS)

    Willibal, U.; Braun, Gy.

    1998-01-01

    The presently operating coal-fired power plant in Hungary do not satisfy the pollution criteria prescribed by the European Union norms. The main polluting agent is the sulfur dioxide emitted by some of the power plants in Hungary in quantities over the limit standards. The power plant units that are in good operating state could be made competitive by using subsequent desulfurization measures. Various flue gas desulfurization technologies are presented through examples that can be applied to existing coal-fired power plants. (R.P.)

  3. Hydrothermal Synthesis of MoO2 and Supported MoO2 Cata-lysts for Oxidative Desulfurization of Dibenzothiophene

    Institute of Scientific and Technical Information of China (English)

    Wang Danhong; Zhang Jianyong; Liu Ni; Zhao Xin; Zhang Minghui

    2014-01-01

    A novel method for obtaining spherical MoO2 nanoparticles and SiO2-Al2O3 supported MoO2 by hydrothermal reduction of Mo (VI) species was studied. The obtained MoO2 catalysts show very high catalytic activity in the oxidative desulfurization (ODS) process. The effect of hydrothermal temperature and crystallization temperature on ODS activity was investigated. The ODS activity of supported MoO2 catalysts with various MoO2 contents were also investigated. The mecha-nism for formation of MoO2 involving oxalic acid was proposed.

  4. Implementing a Standardised Annual Programme Review Process in a Third-Level Institution

    Science.gov (United States)

    Wickham, Sheelagh; Brady, Malcolm; Ingle, Sarah; McMullan, Caroline; Nic Giolla Mhichíl, Mairéad; Walshe, Ray

    2017-01-01

    Purpose: Ideally, quality should be, and is, an integral element of education, yet capturing and articulating quality is not simple. Programme quality reviews in third-level education can demonstrate quality and identify areas for improvement, offering many potential benefits. However, details on the process of quality programme review are limited…

  5. Semi-annual report of the chemical process division of CDTN - July to December 1988

    International Nuclear Information System (INIS)

    Lima Soares, M.L. de.

    1989-01-01

    The main activities developed by the Chemical Process Division of CDTN are described, including the reconversion of UF 6 to UO 2 , the separation and purification of rare earths and the solvent extraction with pulse column. (C.G.C.) [pt

  6. Qualitative Information in Annual Reports & the Detection of Corporate Fraud: A Natural Language Processing Perspective

    Science.gov (United States)

    Goel, Sunita

    2009-01-01

    High profile cases of fraudulent financial reporting such as those that occurred at Enron and WorldCom have shaken public confidence in the U.S. financial reporting process and have raised serious concerns about the roles of auditors, regulators, and analysts in financial reporting. In order to address these concerns and restore public confidence,…

  7. 2000 Annual report NATO/CCMS Pilot Study, Clean Products and Processes (Phase I)

    DEFF Research Database (Denmark)

    Wenzel, Henrik; Molin, Christine; Hauschild, Michael Zwicky

    2001-01-01

    The NATO/Committee on the Challenges of Modern Society third Pilot Study meeting on Clean Products and Processes was held in Copenhagen, Denmark on May 7-12, 2000. This meeting maintained the momentum generated during the of the first two years of the pilot study, focusing on progress made on sev...... homepage....

  8. UNITED STATES DEPARTMENT OF ENERGY WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2007

    Energy Technology Data Exchange (ETDEWEB)

    Bush, S

    2008-08-12

    The Office of Environmental Management's (EM) Roadmap, U.S. Department of Energy--Office of Environmental Management Engineering & Technology Roadmap (Roadmap), defines the Department's intent to reduce the technical risk and uncertainty in its cleanup programs. The unique nature of many of the remaining facilities will require a strong and responsive engineering and technology program to improve worker and public safety, and reduce costs and environmental impacts while completing the cleanup program. The technical risks and uncertainties associated with cleanup program were identified through: (1) project risk assessments, (2) programmatic external technical reviews and technology readiness assessments, and (3) direct site input. In order to address these needs, the technical risks and uncertainties were compiled and divided into the program areas of: Waste Processing, Groundwater and Soil Remediation, and Deactivation and Decommissioning (D&D). Strategic initiatives were then developed within each program area to address the technical risks and uncertainties in that program area. These strategic initiatives were subsequently incorporated into the Roadmap, where they form the strategic framework of the EM Engineering & Technology Program. The EM-21 Multi-Year Program Plan (MYPP) supports the goals and objectives of the Roadmap by providing direction for technology enhancement, development, and demonstrations that will lead to a reduction of technical uncertainties in EM waste processing activities. The current MYPP summarizes the strategic initiatives and the scope of the activities within each initiative that are proposed for the next five years (FY2008-2012) to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. As a result of the importance of reducing technical risk and uncertainty in the EM Waste

  9. Tritium processing and containment technology for fusion reactors. Annual report, July 1975--June 1976

    International Nuclear Information System (INIS)

    Maroni, V.A.; Calaway, W.F.; Misra, B.; Van Deventer, E.H.; Weston, J.R.; Yonco, R.M.; Cafasso, F.A.; Burris, L.

    1976-01-01

    The hydrogen permeabilities of selected metals, alloys, and multiplex preparations that are of interest to fusion reactor technology are being characterized. A high-vacuum hydrogen-permeation apparatus has been constructed for this purpose. A program of studies has been initiated to develop design details for the tritium-handling systems of near-term fusion reactors. This program has resulted in a better definition of reactor-fuel-cycle and enrichment requirements and has helped to identify major research and development problems in the tritium-handling area. The design and construction of a 50-gallon lithium-processing test loop (LPTL) is well under way. Studies in support of this project are providing important guidance in the selection of hardware for the LPTL and in the design of a molten-salt processing test section

  10. Annual meeting on nuclear technology 1980. Technical meeting: Shock wave propagation processes

    International Nuclear Information System (INIS)

    1980-01-01

    The papers deal with shock wave propagation processes in LWR-type reactors (licencing procedure) in cases of ruptures in vessels, in pipes and high-pressure valves, in case of loss of coolant accidents with dynamic structure coupling or fluid structure interactions in the reactor core jacket and the fuel rods, as well as with the stresses placed on reactor pressure vessel fittings by depressurization waves. (DG) [de

  11. A model for dry sodium bicarbonate duct injection flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Changfa Wu; Soon-Jai Khang; Tim C. Keener; Sang-Kwun Lee [University of Cincinnati, Cincinnati, OH (United States). Department of Chemical Engineering

    2004-03-01

    A mathematical model is developed for simulation of dry sodium bicarbonate (NaHCO{sub 3}) duct injection for the removal of sulfur dioxide (SO{sub 2}) in flue gases across a fabric filter (baghouse). The model employs parallel reaction kinetics and assumes that the sodium bicarbonate injection process can be separated into two stages. The first stage is a transport duct section where NaHCO{sub 3} particles are injected into the sulfur dioxide laden gas stream. The second stage is the fabric filter section where sodium sorbents are collected and behave as a variable depth fixed bed reactor. The process simulation for the efficiency of desulfurization in flue gas is performed and evaluated for a variety of operating conditions. It is found that the removal of SO{sub 2} within the duct section is small and negligible for most practical conditions, with a contribution normally less than 5% of total SO{sub 2} removal. The major removal of SO{sub 2} occurs across the filter cake, which accumulates the sorbent particles on the fabric filter. These particles are periodically disposed as the filter is cleaned. The major factors for the process are temperature, particle size and SO{sub 2} gas concentration for all operating conditions. At low temperatures, the removal of SO{sub 2} increases as temperature increases, but the removal decreases at higher temperatures due to the impact of the thermal decomposition reaction of NaHCO{sub 3} on SO{sub 2} removal. It was found that the temperature for the highest removal of SO{sub 2} is within the range of 127-150{sup o}C and the removal efficiency also depends on particle size.

  12. Mixing processes in high-level waste tanks. 1998 annual progress report

    International Nuclear Information System (INIS)

    Peterson, P.F.

    1998-01-01

    Flammable gases can be generated in DOE high-level waste tanks, including radiolytic hydrogen, and during cesium precipitation from salt solutions, benzene. Under normal operating conditions the potential for deflagration or detonation from these gases is precluded by purging and ventilation systems, which remove the flammable gases and maintain a well-mixed condition in the tanks. Upon failure of the ventilation system, due to seismic or other events, however, it has proven more difficult to make strong arguments for well-mixed conditions, due to the potential for density-induced stratification which can potentially sequester fuel or oxidizer at concentrations significantly higher than average. This has complicated the task of defining the safety basis for tank operation. Waste-tank mixing processes have considerable overlap with similar large-enclosure mixing processes that occur in enclosure fires and nuclear reactor containments. Significant differences also exist, so that modeling techniques that have been developed previously can not be directly applied to waste tanks. In particular, mixing of air introduced through tank roof penetrations by buoyancy and pressure driven exchange flows, mixed convection induced by an injected high-velocity purge jet interacting with buoyancy driven flow, and onset and breakdown of stable stratification under the influence of an injected jet have not been adequately studied but are important in assessing the potential for accumulation of high-concentration pockets of fuel and oxygen. Treating these phenomena requires a combination of experiments and the development of new, more general computational models than those that have been developed for enclosure fires. U.C. Berkeley is now completing the second year of its three-year project that started in September, 1996. Excellent progress has been made in several important areas related to waste-tank ventilation and mixing processes.'

  13. Advanced biochemical processes for geothermal brines FY 1998 annual operating plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    As part of the overall Geothermal Energy Research which is aimed at the development of economical geothermal resources production systems, the aim of the Advanced Biochemical Processes for Geothermal Brines (ABPGB) effort is the development of economic and environmentally acceptable methods for disposal of geothermal wastes and conversion of by-products to useful forms. Methods are being developed for dissolution, separation and immobilization of geothermal wastes suitable for disposal, usable in inert construction materials, suitable for reinjection into the reservoir formation, or used for recovery of valuable metals.

  14. Effects of microbial processes on gas generation under expected WIPP repository conditions: Annual report through 1992

    International Nuclear Information System (INIS)

    Francis, A.J.; Gillow, J.B.

    1993-09-01

    Microbial processes involved in gas generation from degradation of the organic constituents of transuranic waste under conditions expected at the Waste Isolation Pilot Plant (WIPP) repository are being investigated at Brookhaven National Laboratory. These laboratory studies are part of the Sandia National Laboratories -- WIPP Gas Generation Program. Gas generation due to microbial degradation of representative cellulosic waste was investigated in short-term ( 6 months) experiments by incubating representative paper (filter paper, paper towels, and tissue) in WIPP brine under initially aerobic (air) and anaerobic (nitrogen) conditions. Samples from the WIPP surficial environment and underground workings harbor gas-producing halophilic microorganisms, the activities of which were studied in short-term experiments. The microorganisms metabolized a variety of organic compounds including cellulose under aerobic, anaerobic, and denitrifying conditions. In long-term experiments, the effects of added nutrients (trace amounts of ammonium nitrate, phosphate, and yeast extract), no nutrients, and nutrients plus excess nitrate on gas production from cellulose degradation

  15. Solvent refined coal (SRC) process. Annual technical progress report, January 1979-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This report discusses the effects on SRC yields of seven process variables (reactor temperature, SRT, hydrogen partial pressure, recycle ash and coal concentrations, gas velocity and coal type) predicted by second-order regression models developed from a data base containing pilot plant data with both Kentucky and Powhatan coals. The only effect of coal type in the model is a shift in each yield by a constant factor. Although some differences were found between the models developed from the Kentucky data base (1) (which we call Kentucky models) and the pooled coal models, the general conclusions of the previous report are confirmed by the new models and the assumption of similar behavior of the two coals appears to be justified. In some respects the dependence of the yields (MAF coal basis) on variables such as pressure and temperature are clearer than in the previous models. The principal trends which emerge are discussed.

  16. Collisional processes of interest in MFE plasma research. Annual report, October 1, 1985-July 31, 1986

    International Nuclear Information System (INIS)

    Olson, R.E.

    1986-01-01

    Research on this grant can be divided into two general topics: (1) determination of electron capture cross sections between impurity ions and hydrogen atoms needed for diagnostic studies of magnetic fusion plasmas, and (2) studies into reactions important in neutral beam ion source work. For topic (1) during last year, we completed cross section calculations for B 3+ and Be 2+ on H using the molecular state approach for energies between 50 eV/u and 10 keV/u. At higher energies, 40 keV/u to 140 keV/u, we have completed classical trajectory Monte Carlo calculations to determine the nl electron capture cross sections for He 2+ , C 6+ , N 7+ and O 8+ on H collisions. For ion source work, topic (2), collisional studies were completed for negative ion formation in the process H + Na → H - + Na +

  17. Scale-up of miscible flood processes for heterogeneous reservoirs. Second annual report

    Energy Technology Data Exchange (ETDEWEB)

    Orr, F.M. Jr.

    1995-03-01

    Progress is reported for a comprehensive investigation of the scaling behavior of gas injection processes in heterogeneous reservoirs. The interplay of phase behavior, viscous fingering, gravity segregation, capillary imbibition and drainage, and reservoir heterogeneity is examined in a series of simulations and experiments. Use of streamtube to model multiphase flow is demonstrated to be a fast and accurate approach for displacements that are dominated by reservoir heterogeneity. The streamtube technique is particularly powerful for multiphase compositional displacements because it represents the effects of phase behavior with a one-dimensional flow and represents the effects of heterogeneity through the locations of streamtubes. A new approach for fast calculations of critical tie-lines directly from criticality conditions is reported. A global triangular structure solution for four-component flow systems, whose tie-lies meet at the edge of a quaternary phase diagram or lie in planes is presented. Also demonstrated is the extension of this solution to multicomponent systems under the same assumptions. The interplay of gravity, capillary and viscous forces on final residual oil saturation is examined experimentally and theoretically. The analysis of vertical equilibrium conditions for three-phase gravity drainage shows that almost all oil can be recovered from the top part of a reservoir. The prediction of spreading and stability of thin film is performed to investigate three-phase gravity drainage mechanisms. Finally, experimental results from gravity drainage of crude oil in the presence of CO{sub 2} suggest that gravity drainage could be an efficient oil recovery process for vertically fractured reservoirs.

  18. Investigation of test methods, material properties, and processes for solar cell encapsulants. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Willis, P. B.; Baum, B.

    1979-06-01

    The goal of this program is to identify, evaluate, and recommend encapsulant materials and processes for the production of cost-effective, long-life solar cell modules. During the past year, the technical activities emphasized the reformulation of a commercial grade of ethylene/vinyl acetate copolymer for use as a pottant in solar cell module manufacture. After experimenting with a variety of techniques, a vacuum-bag process was developed and found to be an excellent encapsulation method. Adhesive strengths and primers for the bonding of ethylene/vinyl acetate to superstrate and substrate materials was assessed with encouraging results. The weathering effects on ten other polymers exposed to twelve months of weathering in Arizona, Florida, and under EMMAQUA were evaluated by determination of tensile strengths, elongations, optical transmission, etc. As may be expected, the best overall retention of mechanical properties is found for the fluorocarbon polymers, especially FEP. Hard coatings containing ultraviolet absorbers were investigated for the purpose of providing a soil resistant surface and additional weathering stability to the soft EVA pottant. Corrosion studies using a standard salt spray test were used to determine the degree of protection offered to a variety of metals by encapsulation in EVA pottant. A survey of scrim materials was also conducted. These open hole weaves are intended for use as spacers between the cell and substrate to provide a mechanical barrier, improve insulation resistance and prevent migration of the pigmented pottant over the cell surface. A mechanical engineering analysis of composite structural materials for use as substrates was performed. Results are presented in detail. (WHK)

  19. ENHANCED CONTROL OF MERCURY BY WET FLUE GAS DESULFURIZATION SYSTEMS; FINAL

    International Nuclear Information System (INIS)

    Unknown

    2001-01-01

    The U.S. Department of Energy and EPRI co-funded this project to improve the control of mercury emissions from coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems. The project has investigated catalytic oxidation of vapor-phase elemental mercury to a form that is more effectively captured in wet FGD systems. If successfully developed, the process could be applicable to over 90,000 MW of utility generating capacity with existing FGD systems, and to future FGD installations. Field tests were conducted to determine whether candidate catalyst materials remain active towards mercury oxidation after extended flue gas exposure. Catalyst life will have a large impact on the cost effectiveness of this potential process. A mobile catalyst test unit was used to test the activity of four different catalyst materials for a period of up to six months each at three utility sites. Catalyst testing was completed at the first site, which fires Texas lignite, in December 1998; at the second test site, which fires a Powder River Basin subbituminous coal, in November 1999; and at the third site, which fires a medium- to high-sulfur bituminous coal, in January 2001. Results of testing at each of the three sites were reported in previous technical notes. At Site 1, catalysts were tested only as powders dispersed in sand bed reactors. At Sites 2 and 3, catalysts were tested in two forms, including powders dispersed in sand and in commercially available forms such as extruded pellets and coated honeycomb structures. This final report summarizes and presents results from all three sites, for the various catalyst forms tested. Field testing was supported by laboratory tests to screen catalysts for activity at specific flue gas compositions, to investigate catalyst deactivation mechanisms and methods for regenerating spent catalysts. Laboratory results are also summarized and discussed in this report

  20. Land application uses for dry flue gas desulfurization by-products. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Dick, W.; Bigham, J.; Forster, R.; Hitzhusen, F.; Lal, R.; Stehouwer, R.; Traina, S.; Wolfe, W.; Haefner, R.; Rowe, G.

    1999-01-31

    Flue gas desulfurization (FGD) scrubbing technologies create several types of by-products. This project focused primarily on by-product materials obtained from what are commonly called ''dry scrubbers'' which produce a dry, solid material consisting of excess sorbent, reaction product that contains sulfate and sulfite, and coal fly ash. Prior to this project, dry FGD by-products were generally treated as solid wastes and disposed in landfills. However, landfill sites are becoming scarce and tipping fees are constantly increasing; The major objective of this project was to develop beneficial uses, via recycling, capable of providing economic benefits to both the producer and the end user of the FGD by-product. It is equally important, however, that the environmental impacts be carefully assessed so that the new uses developed are not only technically feasible but socially acceptable. Specific objectives developed for this project were derived over an 18-month period during extensive discussions with personnel from industry, regulatory agencies and research institutions. These were stated as follows: Objective 1: To characterize the material generated by dry FGD processes. Objective 2: To demonstrate the utilization of dry FGD by-product as a soil amendment on agricultural lands and on abandoned and active surface coal mines in Ohio. Objective 3: To demonstrate the use of dry FGD by-product as an engineering material for soil stabilization. Objective 4: To determine the quantities of dry FGD by-product that can be utilized in each of these applications. Objective 5. To determine the environmental and economic impacts of utilizing the material. Objective 6. To calibrate environmental, engineering, and economic models that can be used to determine the applicability and costs of utilizing these processes at other sites.

  1. Testing CO2 Sequestration in an Alkaline Soil Treated with Flue Gas Desulfurization Gypsum (FGDG)

    Science.gov (United States)

    Han, Y.; Tokunaga, T. K.

    2012-12-01

    Identifying effective and economical methods for increasing carbon storage in soils is of interest for reducing soil CO2 fluxes to the atmosphere in order to partially offset anthropogenic CO2 contributions to climate change This study investigates an alternative strategy for increasing carbon retention in soils by accelerating calcite (CaCO3) precipitation and promoting soil organic carbon (SOC) complexation on mineral surfaces. The addition of calcium ion to soils with pH > 8, often found in arid and semi-arid regions, may accelerate the slow process of calcite precipitation. Increased ionic strength from addition of a soluble Ca source also suppresses microbial activity which oxidizes SOC to gaseous CO2. Through obtaining C mass balances in soil profiles, this study is quantifying the efficiency of gypsum amendments for mitigating C losses to the atmosphere. The objective of this study is to identify conditions in which inorganic and organic C sequestration is practical in semi-arid and arid soils by gypsum treatment. As an inexpensive calcium source, we proposed to use flue gas desulfurization gypsum (FGDG), a byproduct of fossil fuel burning electric power plants. To test the hypothesis, laboratory column experiments have been conducted in calcite-buffered soil with addition of gypsum and FGDG. The results of several months of column monitoring are demonstrating that gypsum-treated soil have lowered amounts of soil organic carbon loss and increased inorganic carbon (calcite) production. The excess generation of FGDG relative to industrial and agricultural needs, FGDG, is currently regarded as waste. Thus application of FGDG application in some soils may be an effective and economical means for fixing CO2 in soil organic and inorganic carbon forms.Soil carbon cycle, with proposed increased C retention by calcite precipitation and by SOC binding onto soil mineral surfaces, with both processes driven by calcium released from gypsum dissolution.

  2. Results using flue gas desulfurization gypsum in soilless substrates for greenhouse crops

    Science.gov (United States)

    Recent availability of Flue Gas Desulfurization gypsum (FGDG) has led to interested in its possible use in horticulture greenhouse production. Three studies were conducted to determine the effects of increasing rates of FGDG on six greenhouse crops. In the first study, substrates (6:1 pine bark:san...

  3. Highly flexible sub-1 nm tungsten oxide nanobelts as efficient desulfurization catalysts.

    Science.gov (United States)

    He, Jie; Liu, Huiling; Xu, Biao; Wang, Xun

    2015-03-01

    Ultrathin tungsten oxide nanobelts are successfully synthesized via a facile solvothermal method. Sub-1 nm thickness and hydrophobic surface property endow the nanobelts with flexibility, viscosity, gelation, and good catalytic performance in oxidative desulfurization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Oxidative desulfurization of dibenzothiophene from model oil using ionic liquids as extracting agent

    Science.gov (United States)

    Taha, Mohd F.; Atikah, N.; Chong, F. K.; Shaharun, Maizatul S.

    2012-09-01

    The oxidative desulfurization of dibenzothiophene (DBT) from model oil (in n-dodecane) was carried out using ionic liquid as the extractant and catalyst, and hydrogen peroxide (H2O2) in combination with acetic acid (CH3COOH) and sulphuric acid (H2SO4) as the oxidant. The ionic liquids used were 1-butyl-3-methylimidazolium octyl sulphate ([Bmim][OcSO4]) and 1-butyl-3-methylimidazolium acetate ([Bmim][Ac]). The effect of the amounts of H2O2 on oxidative desulphurization of model oil was first investigated without the usage of ionic liquids at room temperature. The results indicate that greater amount of H2O2 give higher desulfurization and the maximum desulfurization in this study, i.e. 34 %, was occurred when the molar ratio of H2O2 to sulfur was 5:1. With the usage of ionic liquid and the molar ratio of 5:1 (H2O2:sulfur), the efficiency of DBT removal from model oil was increased significantly in terms of percent removal and removal time. Ionic liquid of [Bmim][OcSO4] performed better than [Bmim][Ac] with 72 % DBT removal. When molar ratio of H2O2 to sulphur was 5:1, volume ratio of ionic liquid to model oil was 1:1 and mixing time was 60 min at room temperature. The results indicate the potential of ionic liquids as the extractant and catalyst for oxidative desulfurization of hydrocarbon fuels.

  5. Polymeric carbon nitride nanomesh as an efficient and durable metal-free catalyst for oxidative desulfurization.

    Science.gov (United States)

    Shen, Lijuan; Lei, Ganchang; Fang, Yuanxing; Cao, Yanning; Wang, Xinchen; Jiang, Lilong

    2018-03-06

    We report the first use of polymeric carbon nitride (CN) for the catalytic selective oxidation of H 2 S. The as-prepared CN with unique ultrathin "nanomeshes" structure exhibits excellent H 2 S conversion and high S selectivity. In particular, the CN nanomesh also displays better durability in the desulfurization reaction than traditional catalysts, such as carbon- and iron-based materials.

  6. Deep desulfurization of diesel via peroxide oxidation using phosphotungstic acid as phase transfer catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sachdeva, T.O.; Pant, K.K. [Department of Chemical Engineering, Indian Institute of Technology, Delhi, New Delhi, 110016 (India)

    2010-09-15

    High sulfur level in diesel fuel has been identified as a major contributor to air pollutant in term of sulfur dioxide (SO{sub x}) through diesel fueled vehicles. The main aim of the present work is to develop a promising methodology for ultra deep desulfurization of diesel fuel using oxidation followed by phase transfer of oxidized sulfur. Experiments were carried out in a batch reactor using n-decane as the model diesel compound and also using commercial diesel feedstock. To remove sulfur tetraoctylammonium bromide, phosphotungstic acid, and hydrogen peroxide were used as phase transfer agent, catalyst and oxidant respectively. The percent sulfur removal increases with increasing the initial concentration of sulfur in fuel and with increasing the reaction temperature. Similar trends were observed when commercial diesel was used to carry out desulfurization studies. The amphiphilic catalyst serves as a catalyst and also as an emulsifying agent to stabilize the emulsion droplets. The effects of temperature, agitation speed, quantity of catalyst and the phase transfer agent were studied to estimate the optimal conditions for the reactions. The sulfur removal from a commercial diesel by phase transfer catalysis has been found effective and removal efficiency was more than 98%. Kinetic experiments carried out for the desulfurization revealed that the sulfur removal results are best fitted to a pseudo first order kinetics and the apparent activation energy of desulfurization was 30.6 kJ/mol. (author)

  7. Deep desulfurization of diesel via peroxide oxidation using phosphotungstic acid as phase transfer catalyst

    International Nuclear Information System (INIS)

    Sachdeva, T.O.; Pant, K.K.

    2010-01-01

    High sulfur level in diesel fuel has been identified as a major contributor to air pollutant in term of sulfur dioxide (SO x ) through diesel fueled vehicles. The main aim of the present work is to develop a promising methodology for ultra deep desulfurization of diesel fuel using oxidation followed by phase transfer of oxidized sulfur. Experiments were carried out in a batch reactor using n-decane as the model diesel compound and also using commercial diesel feedstock. To remove sulfur tetraoctylammonium bromide, phosphotungstic acid, and hydrogen peroxide were used as phase transfer agent, catalyst and oxidant respectively. The percent sulfur removal increases with increasing the initial concentration of sulfur in fuel and with increasing the reaction temperature. Similar trends were observed when commercial diesel was used to carry out desulfurization studies. The amphiphilic catalyst serves as a catalyst and also as an emulsifying agent to stabilize the emulsion droplets. The effects of temperature, agitation speed, quantity of catalyst and the phase transfer agent were studied to estimate the optimal conditions for the reactions. The sulfur removal from a commercial diesel by phase transfer catalysis has been found effective and removal efficiency was more than 98%. Kinetic experiments carried out for the desulfurization revealed that the sulfur removal results are best fitted to a pseudo first order kinetics and the apparent activation energy of desulfurization was 30.6 kJ/mol. (author)

  8. Thermal preparation effects on the x-ray diffractograms of compounds produced during flue gas desulfurization

    International Nuclear Information System (INIS)

    Wertz, D.L.; Burns, K.H.; Keeton, R.W.

    1995-01-01

    The diffractograms of syn-gypsum and of flue gas desulfurization products indicate that CaSO 4 · 2H 2 O is converted to other phase(s) when heated to 100 degrees C. Syn-hannebachite CaSO 3 ·0.5H 2 O is unaffected by similar thermal treatment. 6 refs., 3 figs

  9. Desulfurization and denitrogenation in copyrolysis of coal with hydrogen-rich gases

    Energy Technology Data Exchange (ETDEWEB)

    Liao, H.; Li, B.; Zhang, B. [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

    1999-06-01

    Desulfurization and denitrogenation were systematically investigated by analyzing the chars and tars from copyrolysis of Yanzhou high sulfur bituminous coal with coke-oven gas (COG), synthesis gas (SG) and hydrogen. The results indicated that under the conditions of 3MPa, up to 650{degree}C with a heating rate of 10{degree}C/min, the desulfurization of coal pyrolysis with COG, SG and hydrogen were almost equal (about 80%, w%, ad), the order of denitrogenation were: hydrogen (41%) {gt} SG(35%) {gt} COG(30%). The distributions of sulfur in char, oil and gas was very similar under the three reactive gases, i.e., about 205 in char, 105 in tar and 70% (diff.) in gas, respectively. Compared with hydropyrolysis at the same hydrogen partial pressure, the desulfurization of coal pyrolysis with coke oven gas was increased by about 4.5%, while the denitrogenation was decreased by about 3.5%. There is an important desulfurization advantage for hydropyrolysis using COG and SG instead of pure hydrogen. Compared with the copyrolysis of coal with COG, Yanzhou coal pyrolysis under SG can achieve the same level of desufurization but higher denitrogenation. 11 refs., 3 figs., 4 tabs.

  10. COMPARISON OF WEST GERMAN AND U.S. FLUE GAS DESULFURIZATION AND SELECTIVE CATALYTIC REDUCTION COSTS

    Science.gov (United States)

    The report documents a comparison of the actual cost retrofitting flue gas desulfurization (FGD) and selective catalytic reduction (SCR) on Federal Republic of German (FRG) boilers to cost estimating procedures used in the U.S. to estimate the retrofit of these controls on U.S. b...

  11. Feasibility Study of Commercial Sorbent in Coal-derived Syngas Desulfurization Field.

    Czech Academy of Sciences Publication Activity Database

    Chien, H.-Y.; Chyou, Y.-P.; Svoboda, Karel

    2015-01-01

    Roč. 6, č. 4 (2015), s. 236-242 ISSN 2078-0737 R&D Projects: GA ČR GC14-09692J Grant - others:MOST(TW) NSC 103-2923-E-042A-001 -MY3 Institutional support: RVO:67985858 Keywords : gasification * desulfurization * sorbent Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  12. L-proline-based deep eutectic solvents (DESs) for deep catalytic oxidative desulfurization (ODS) of diesel.

    Science.gov (United States)

    Hao, Lingwan; Wang, Meiri; Shan, Wenjuan; Deng, Changliang; Ren, Wanzhong; Shi, Zhouzhou; Lü, Hongying

    2017-10-05

    A series of L-proline-based DESs was prepared through an atom economic reaction between L-proline (L-Pro) and four different kinds of organic acids. The DESs were characterized by Fourier transform infrared spectroscopy (FT-IR), H nuclear magnetic resonance ( 1 HNMR), cyclic voltammogram (CV) and the Hammett method. The synthesized DESs were used for the oxidative desulfurization and the L-Pro/p-toluenesultonic acid (L-Pro/p-TsOH) system shows the highest catalytic activity that the removal of dibenzothiophene (DBT) reached 99% at 60°C in 2h, which may involve the dual activation of the L-Pro/p-TsOH. The acidity of four different L-proline-based DESs was measured and the results show that it could not simply conclude that the correlation between the acidity of DESs and desulfurization capability was positive or negative. The electrochemical measurements evidences and recycling experiment indicate a good stability performance of L-Pro/p-TsOH in desulfurization. This work will provide a novel and potential method for the deep oxidation desulfurization. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Mercury isotope fractionation during transfer from post-desulfurized seawater to air.

    Science.gov (United States)

    Huang, Shuyuan; Lin, Kunning; Yuan, Dongxing; Gao, Yaqin; Sun, Lumin

    2016-12-15

    Samples of dissolved gaseous mercury (DGM) in the post-desulfurized seawater discharged from a coal-fired power plant together with samples of gaseous elemental mercury (GEM) over the post-desulfurized seawater surface were collected and analyzed to study the mercury isotope fractionation during transfer from post-desulfurized seawater to air. Experimental results showed that when DGM in the seawater was converted to GEM in the air, the δ 202 Hg and Δ 199 Hg values were changed, ranging from -2.98 to -0.04‰ and from -0.31 to 0.64‰, respectively. Aeration played a key role in accelerating the transformation of DGM to GEM, and resulted in light mercury isotopes being more likely to be enriched in the GEM. The ratio Δ 199 Hg/Δ 201 Hg was 1.626 in all samples, suggesting that mercury mass independent fractionation occurred owing to the nuclear volume effect during the transformation. In addition, mass independent fractionation of mercury even isotopes was found in the GEM above the post-desulfurized seawater surface in the aeration pool. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Flue gas desulfurization gypsum: Its effectiveness as an alternative bedding material for broiler production

    Science.gov (United States)

    Flue gas desulfurization gypsum (FGDG) may be a viable low-cost alternative bedding material for broiler production. In order to evaluate FGD gypsum’s viability, three consecutive trials were conducted to determine its influence on live performance (body weight, feed consumption, feed efficiency, an...

  15. Cavitational hydrothermal oxidation: A new remediation process. Annual progress report, September 1996--August 1997

    Energy Technology Data Exchange (ETDEWEB)

    Suslick, K.S.

    1997-11-21

    'During the past year, the authors have continued to make substantial scientific progress on the understanding of cavitation phenomena in aqueous media and applications of cavitation to remediation processes. The efforts have focused on three separate areas: sonoluminescence as a probe of conditions created during cavitational collapse in aqueous media, the use of cavitation for remediation of contaminated water, and an addition of the use of ultrasound in the synthesis of novel heterogeneous catalysts for hydrodehalogenation of halocarbons under mild conditions. In order to gain further understanding of the conditions present during cavitation, the author has continued his studies of sonoluminescence. He has made recent breakthroughs in the use of emission spectroscopy for temperature and pressure measurement of cavitation events, which he expects to publish shortly. He has been able to measure for the first time the temperature of cavitation in water during multi-bubble cavitation in the presence of aromatic hydrocarbons. The emission from excited states of C{sub 2} in water gives temperatures that are consistent with adiabatic compressional heating, with maximum temperatures of 4,300 K. Prior measurements of cavitation temperatures in low vapor pressure nonaqueous media gave somewhat higher temperatures of 5,000 K. This work lays permanently to rest exotic mechanisms for cavitational chemistry, at least for cavitation fields.'

  16. Cavitational hydrothermal oxidation: A new remediation process. 1998 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Suslick, K.S.

    1998-06-01

    'The primary goal is to develop a quantitative understanding of cavitation phenomena in aqueous media and the development of applications of cavitation to remediation processes. Efforts have focused on three separate areas: sonoluminescence as a probe of conditions created during cavitational collapse in aqueous media, the use of cavitation for remediation of contaminated water, and an addition of the use of ultrasound in the synthesis of novel heterogeneous catalysts for hydrodehalogenation of halocarbons under mild conditions. This report summarizes work after one year of a three year project. In order to gain further understanding of the conditions present during cavitation, the author has continued his studies of sonoluminescence. He has made recent breakthroughs in the use of emission spectroscopy for temperature and pressure measurement of cavitation events, which he expects to publish shortly. He has been able to measure for the first time the temperature of cavitation in water during multi-bubble cavitation in the presence of aromatic hydrocarbons. The emission from excited states of C{sub 2} in water gives temperatures that are consistent with adiabatic compressional heating, with maximum temperatures of 4,300 K. Prior measurements of cavitation temperatures in low vapor pressure nonaqueous media gave somewhat higher temperatures of 5,000 K. This work lays permanently to rest exotic mechanisms for cavitational chemistry, at least for cavitation fields.'

  17. Cavitational hydrothermal oxidation: A new remediation process. 1998 annual progress report

    International Nuclear Information System (INIS)

    Suslick, K.S.

    1998-01-01

    'The primary goal is to develop a quantitative understanding of cavitation phenomena in aqueous media and the development of applications of cavitation to remediation processes. Efforts have focused on three separate areas: sonoluminescence as a probe of conditions created during cavitational collapse in aqueous media, the use of cavitation for remediation of contaminated water, and an addition of the use of ultrasound in the synthesis of novel heterogeneous catalysts for hydrodehalogenation of halocarbons under mild conditions. This report summarizes work after one year of a three year project. In order to gain further understanding of the conditions present during cavitation, the author has continued his studies of sonoluminescence. He has made recent breakthroughs in the use of emission spectroscopy for temperature and pressure measurement of cavitation events, which he expects to publish shortly. He has been able to measure for the first time the temperature of cavitation in water during multi-bubble cavitation in the presence of aromatic hydrocarbons. The emission from excited states of C 2 in water gives temperatures that are consistent with adiabatic compressional heating, with maximum temperatures of 4,300 K. Prior measurements of cavitation temperatures in low vapor pressure nonaqueous media gave somewhat higher temperatures of 5,000 K. This work lays permanently to rest exotic mechanisms for cavitational chemistry, at least for cavitation fields.'

  18. Cavitational hydrothermal oxidation: A new remediation process. Annual progress report, September 1996 - August 1997

    International Nuclear Information System (INIS)

    Suslick, K.S.

    1997-01-01

    'During the past year, the authors have continued to make substantial scientific progress on the understanding of cavitation phenomena in aqueous media and applications of cavitation to remediation processes. The efforts have focused on three separate areas: sonoluminescence as a probe of conditions created during cavitational collapse in aqueous media, the use of cavitation for remediation of contaminated water, and an addition of the use of ultrasound in the synthesis of novel heterogeneous catalysts for hydrodehalogenation of halocarbons under mild conditions. In order to gain further understanding of the conditions present during cavitation, the author has continued his studies of sonoluminescence. He has made recent breakthroughs in the use of emission spectroscopy for temperature and pressure measurement of cavitation events, which he expects to publish shortly. He has been able to measure for the first time the temperature of cavitation in water during multi-bubble cavitation in the presence of aromatic hydrocarbons. The emission from excited states of C 2 in water gives temperatures that are consistent with adiabatic compressional heating, with maximum temperatures of 4,300 K. Prior measurements of cavitation temperatures in low vapor pressure nonaqueous media gave somewhat higher temperatures of 5,000 K. This work lays permanently to rest exotic mechanisms for cavitational chemistry, at least for cavitation fields.'

  19. Scale-up of miscible flood processes for heterogeneous reservoirs. 1993 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Orr, F.M. Jr.

    1994-05-01

    Progress is reported for a comprehensive investigation of the scaling behavior of gas injection processes in heterogeneous reservoirs. The interplay of phase behavior, viscous fingering, gravity segregation, capillary imbibition and drainage, and reservoir heterogeneity is examined in a series of simulations and experiments. Compositional and first-contact miscable simulations of viscous fingering and gravity segregation are compared to show that the two techniques can give very different results. Also, analyzed are two-dimensional and three-dimensional flows in which gravity segregation and viscous fingering interact. The simulations show that 2D and 3D flows can differ significantly. A comparison of analytical solutions for three-component two-phase flow with experimental results for oil/water/alcohol systems is reported. While the experiments and theory show reasonable agreement, some differences remain to be explained. The scaling behavior of the interaction of gravity segregation and capillary forces is investigated through simulations and through scaling arguments based on analysis of the differential equations. The simulations show that standard approaches do not agree well with results of low IFT displacements. The scaling analyses, however, reveal flow regimes where capillary, gravity, or viscous forces dominate the flow.

  20. Investigation of test methods, material properties, and processes for solar cell encapsulants. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Willis, P. B.; Baum, B.; Schnitzer, H. S.

    1980-07-01

    The goal of this program is to identify, evaluate, and recommend encapsulant materials and processes for the production of cost-effective, long-life solar cell modules. Technical activities during the past year have covered a number of topics and have emphasized the development of solar module encapsulation technology that employs ethylene/vinyl acetate, copolymer (EVA) as the pottant. These activities have included: (1) continued production of encapsulation grade EVA in sheet form to meet the needs of the photovoltaic industry; (2) investigations of three non-blocking techniques for EVA sheet; (3) performed an economic analysis of the high volume production of each pottant in order to estimate the large volume selling price (EVA, EPDM, aliphatic urethane, PVC plastisol, and butyl acrylate); (4) initiated an experimental corrosion protection program to determine if metal components could be successfully protected by encapsulation; (5) began an investigation to determine the maximum temperature which can be tolerated by the candidate pottant material in the event of hot spot heating or other temperature override; (6) continuation of surveys of potentially useful outer cover materials; and (7) continued with the accelerated artificial weathering of candidate encapsulation materials. Study results are presented. (WHK)

  1. Collisional processes of interest in MFE plasma research. Annual report, October 1, 1983-September 30, 1984

    International Nuclear Information System (INIS)

    Olson, R.E.

    1984-01-01

    Research on this contract can be divided into two general topics: (1) D - formation collision processes; and (2) the determination of scattering cross sections used to diagnose properties of magnetically-confined plasmas. For topic (1) during last year, we completed theoretical calculations on D - negative ion formation from collisions of D atoms with Na and Cs targets. On the topic of research into polarized sources of H or He, we completed cross section studies of metastable He production in electron capture collisions of He + with Li and Na and of nuclear spin exchange collisions between H and the alkali metals. For diagnostic efforts, electron capture cross sections were determined for Al 2+ and Al 3+ colliding with H for the EBT program and C 4+ , C 6+ , Ar 8+ colliding with He for helium ash studies. Work is proceeding on laser-assisted collisions to enhance D - negative ion yields and the effects of l-mixing in collisions of He + (nl) with plasma constituents

  2. A recyclable ionic liquid-oxomolybdenum(vi) catalytic system for the oxidative desulfurization of model and real diesel fuel.

    Science.gov (United States)

    Julião, Diana; Gomes, Ana C; Pillinger, Martyn; Valença, Rita; Ribeiro, Jorge C; Gonçalves, Isabel S; Balula, Salete S

    2016-10-14

    The oxidative desulfurization of model and real diesel has been studied using the complex [MoO2Cl2(4,4'-di-tert-butyl-2,2'-bipyridine)] as (pre)catalyst, aq. H2O2 as oxidant, and an ionic liquid as extraction solvent. Under moderate conditions (50 °C) and short reaction times (desulfurization and ECODS steps, 76% sulfur removal was achieved for a real diesel (Sinitial = 2300 ppm). For both the model and real diesels, the catalyst/IL phase could be easily recycled and reused with no loss of desulfurization efficiency.

  3. Automated Thermal Image Processing for Detection and Classification of Birds and Bats - FY2012 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Duberstein, Corey A.; Matzner, Shari; Cullinan, Valerie I.; Virden, Daniel J.; Myers, Joshua R.; Maxwell, Adam R.

    2012-09-01

    Surveying wildlife at risk from offshore wind energy development is difficult and expensive. Infrared video can be used to record birds and bats that pass through the camera view, but it is also time consuming and expensive to review video and determine what was recorded. We proposed to conduct algorithm and software development to identify and to differentiate thermally detected targets of interest that would allow automated processing of thermal image data to enumerate birds, bats, and insects. During FY2012 we developed computer code within MATLAB to identify objects recorded in video and extract attribute information that describes the objects recorded. We tested the efficiency of track identification using observer-based counts of tracks within segments of sample video. We examined object attributes, modeled the effects of random variability on attributes, and produced data smoothing techniques to limit random variation within attribute data. We also began drafting and testing methodology to identify objects recorded on video. We also recorded approximately 10 hours of infrared video of various marine birds, passerine birds, and bats near the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) at Sequim, Washington. A total of 6 hours of bird video was captured overlooking Sequim Bay over a series of weeks. An additional 2 hours of video of birds was also captured during two weeks overlooking Dungeness Bay within the Strait of Juan de Fuca. Bats and passerine birds (swallows) were also recorded at dusk on the MSL campus during nine evenings. An observer noted the identity of objects viewed through the camera concurrently with recording. These video files will provide the information necessary to produce and test software developed during FY2013. The annotation will also form the basis for creation of a method to reliably identify recorded objects.

  4. Acid-base behavior in hydrothermal processing of wastes. 1997 annual progress report

    International Nuclear Information System (INIS)

    1997-01-01

    'A major obstacle to the development of hydrothermal technology for treating DOE wastes has been a lack of scientific knowledge of solution chemistry, thermodynamics and transport phenomena. The progress over the last year is highlighted in the following four abstracts from manuscripts which have been submitted to journals. The authors also have made considerable progress on a spectroscopic study of the acid-base equilibria of Cr(VI). They have utilized novel spectroscopic indicators to study acid-base equilibria up to 380 C. Until now, very few systems have been studied at such high temperatures, although this information is vital for hydrothermal processing of wastes. The pH values of aqueous solutions of boric acid and KOH were measured with the optical indicator 2-naphthol at temperatures from 300 to 380 C. The equilibrium constant Kb-l for the reaction B(OH)3 + OH - = B(OH) -4 was determined from the pH measurements and correlated with a modified Born model. The titration curve for the addition of HCl to sodium borate exhibits strong acid-strong base behavior even at 350 C and 24.1 MPa. At these conditions, aqueous solutions of sodium borate buffer the pH at 9.6 t 0.25. submitted to Ind. Eng. Chem. Res. Acetic Acid and HCl Acid-base titrations for the KOH-acetic acid or NH 3 -acetic acid systems were monitored with the optical indicator 2-naphthoic acid at 350 C and 34 MPa, and those for the HCl;Cl- system with acridine at 380 C and up to 34 MPa (5,000 psia ). KOH remains a much stronger base than NH,OH at high temperature. From 298 K to the critical temperature of water, the dissociation constant for HCl decreases by 13 orders of magnitude, and thus, the basicity of Cl - becomes significant. Consequently, the addition of NaCl to HCl raises the pH. The pH titration curves may be predicted with reasonable accuracy from the relevant equilibrium constants and Pitzer''s formulation of the Debye- Htickel equation for the activity coefficients.'

  5. Advanced Flue Gas Desulfurization (AFGD) demonstration project: Volume 2, Project performance and economics. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-30

    The project objective is to demonstrate removal of 90--95% or more of the SO{sub 2} at approximately one-half the cost of conventional scrubbing technology; and to demonstrate significant reduction of space requirements. In this project, Pure Air has built a single SO{sub 2} absorber for a 528-MWe power plant. The absorber performs three functions in a single vessel: prequencher, absorber, and oxidation of sludge to gypsum. Additionally, the absorber is of a co- current design, in which the flue gas and scrubbing slurry move in the same direction and at a relatively high velocity compared to conventional scrubbers. These features all combine to yield a state- of-the-art SO{sub 2} absorber that is more compact and less expensive than conventional scrubbers. The project incorporated a number of technical features including the injection of pulverized limestone directly into the absorber, a device called an air rotary sparger located within the base of the absorber, and a novel wastewater evaporation system. The air rotary sparger combines the functions of agitation and air distribution into one piece of equipment to facilitate the oxidation of calcium sulfite to gypsum. Additionally, wastewater treatment is being demonstrated to minimize water disposal problems inherent in many high-chloride coals. Bituminous coals primarily from the Indiana, Illinois coal basin containing 2--4.5% sulfur were tested during the demonstration. The Advanced Flue Gas Desulfurization (AFGD) process has demonstrated removal of 95% or more of the SO{sub 2} while providing a commercial gypsum by-product in lieu of solid waste. A portion of the commercial gypsum is being agglomerated into a product known as PowerChip{reg_sign} gypsum which exhibits improved physical properties, easier flowability and more user friendly handling characteristics to enhance its transportation and marketability to gypsum end-users.

  6. Metals in Soil and Runoff from a Piedmont Hay Field Amended with Broiler Litter and Flue Gas Desulfurization Gypsum.

    Science.gov (United States)

    Schomberg, Harry H; Endale, Dinku M; Jenkins, Michael B; Chaney, Rufus L; Franklin, Dorcas H

    2018-03-01

    Flue gas desulfurization gypsum (FGDG) from coal-fired power plants is readily available for agricultural use in many US regions. Broiler litter (BL) provides plant available N, P, and K but can be a source of unwanted As, Cu, and Zn. As a source of Ca and S, FGDG can reduce losses of P and other elements in runoff from BL-amended areas. Rainfall simulation plots (2.0 m) were established on a Piedmont Cecil soil growing 'Coastal' bermudagrass ( L.) for hay. Accumulation and transport of As, Cu, Cd, Cr, Hg, Pb, and Zn were evaluated after annual BL applications (13.5 Mg ha) with four FGDG rates (0, 2.2, 4.5, 9.0 Mg ha) and two FGDG treatments (0 and 9 Mg ha) without BL. Runoff As concentrations were sixfold greater with BL than without ( ≤ 0.01) and were similar to BL with FGDG at 2.2, 4.5 or 9.0 Mg ha ( ≤ 0.10). Runoff concentrations of target elements did not increase where FGDG was applied alone. After three annual applications of FGDG and BL, soil concentrations of As, Cr, Pb, Hg, and Cu were well below levels of environmental concern. Our findings indicate that runoff losses of As from BL application are not reduced with FGDG but support other research indicating no identifiable environmental risks from FGDG beneficial use in agricultural systems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Research program for environmentally-friendly coal utilization system. Follow-up project for simplified desulfurizers (Weifang Chemical Industry Works); Kankyo chowagata sekitan riyo system donyu shien jigyo. Kan`i datsuryu setsubi ni kakawaru follow up jigyo (Weifang kakosho)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    To suppress the emission of environmental pollutants from coal utilization in China and to contribute to stable security of Japan`s energy, demonstration of clean coal technology and consolidation of diffusion base to be introduced into China have been promoted. Demonstration program for diffusing simplified desulfurizers has been promoted. For accelerating the achievement, experts of desulfurizers were delegated to Weifang Chemical Industry Works, to support the program. Exhaust gas is introduced from boiler via water spray dust remover, suction fan and centralized stack into absorption tower of the simplified wet-type desulfurizer. In the ascending process, the exhaust gas contacts with absorbent, to remove SO2 and dust. The absorbent is blasted up through the spray nozzle. The absorbent is oxidized by the air into sulfate ion in the liquid chamber at the lower part of tower, and neutralized by hydrated lime to form gypsum. Through the continuous operation for two years, understandings were remarkably increased. However, good treatment of the tax system is required for further diffusion. Though there are no problems for ordinary start and stop, emergency operation is insufficient. There are some problems in the maintenance due to the delay of finding failures. 16 figs., 1 tab.

  8. Nitrogen soil emissions and belowground plant processes in Mediterranean annual pastures are altered by ozone exposure and N-inputs

    Science.gov (United States)

    Sánchez-Martín, L.; Bermejo-Bermejo, V.; García-Torres, L.; Alonso, R.; de la Cruz, A.; Calvete-Sogo, H.; Vallejo, A.

    2017-09-01

    Increasing tropospheric ozone (O3) and atmospheric nitrogen (N) deposition alter the structure and composition of pastures. These changes could affect N and C compounds in the soil that in turn can influence soil microbial activity and processes involved in the emission of N oxides, methane (CH4) and carbon dioxide (CO2), but these effects have been scarcely studied. Through an open top chamber (OTC) field experiment, the combined effects of both pollutants on soil gas emissions from an annual experimental Mediterranean community were assessed. Four O3 treatments and three different N input levels were considered. Fluxes of nitric (NO) and nitrous (N2O) oxide, CH4 and CO2 were analysed as well as soil mineral N and dissolved organic carbon. Belowground plant parameters like root biomass and root C and N content were also sampled. Ozone strongly increased soil N2O emissions, doubling the cumulative emission through the growing cycle in the highest O3 treatment, while N-inputs enhanced more slightly NO; CH4 and CO2 where not affected. Both N-gases had a clear seasonality, peaking at the start and at the end of the season when pasture physiological activity is minimal; thus, higher microorganism activity occurred when pasture had a low nutrient demand. The O3-induced peak of N2O under low N availability at the end of the growing season was counterbalanced by the high N inputs. These effects were related to the O3 x N significant interaction found for the root-N content in the grass and the enhanced senescence of the community. Results indicate the importance of the belowground processes, where competition between plants and microorganisms for the available soil N is a key factor, for understanding the ecosystem responses to O3 and N.

  9. Mechanistic studies of chemical looping desulfurization of Mn-based oxides using in situ X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    König, C.F.J.; Nachtegaal, M.; Seemann, M.; Clemens, F.; Garderen, N. van; Biollaz, S.M.A.; Schildhauer, T.J.

    2014-01-01

    Highlights: • Mn sorbents remove H 2 S from hot syngas in chemical looping desulfurization process. • State of Mn followed by in situ X-ray absorption spectroscopy and mass spectrometry. • Two-step mechanism explains the formation of SO 2 under reducing conditions. - Abstract: Cleaning of producer gas from biomass gasification is required for further processing, e.g. to avoid catalyst poisoning in subsequent conversion steps. High-temperature gas cleaning, of which sulfur removal is an important part, is a promising way to improve the overall efficiency of biomass conversion. In a high temperature “chemical looping desulfurization” process, a sorbent material, here manganese oxide, is cycled between producer gas from the gasifier to remove sulfur species, and an oxidizing atmosphere, in which the sulfur species are released as SO 2 . Alternatively, the use of such material as reactive bed material could be integrated into an allothermal dual fluidized bed gasifier. In a laboratory reactor, we subjected manganese-based materials to a periodically changing gas atmosphere, simulating a “chemical looping desulfurization” reactor. The “fuel reactor” gas contained H 2 , CO, CH 4 and H 2 S, similar as in the producer gas, and the “oxidizing reactor” contained diluted O 2 . Mass spectrometry showed that most of the H 2 S is taken up by the sample in the “fuel reactor” part, while also some unwanted SO 2 is generated in the “fuel reactor” part. Most of the sulfur is released in the oxidizing reactor. Simultaneous in situ X-ray absorption spectroscopy (XAS) of the Mn materials during different stages of the chemical looping desulfurization process showed that the initial Mn 3 O 4 is transformed in the presence of H 2 S to MnS via a MnO intermediate in the fuel reactor. Oxygen from the reduction of Mn 3 O 4 oxidizes some H 2 S to the undesired SO 2 in the fuel reactor. Upon exposure to O 2 , MnS is again oxidized to Mn 3 O 4 via MnO, releasing SO

  10. Simultaneous desulfurization and denitrification of flue gas by ·OH radicals produced from O2+ and water vapor in a duct.

    Science.gov (United States)

    Bai, Mindi; Zhang, Zhitao; Bai, Mindong

    2012-09-18

    In the present study, simultaneous flue gas desulfurization and denitrification are achieved with ·OH radicals generated from O(2)(+) reacting with water vapor in a duct. The O(2)(+) ions are generated by a strong ionization dielectric barrier discharge and then injected into the duct. Compared with conventional gas discharge treatment, the present method does not need a plasma reaction reactor, additional catalysts, reductants, or oxidants. The main recovered products are the liquids H(2)SO(4) and HNO(3), which can be used in many processes. Removal rates of 97% for NO and 82% for SO(2) are obtained under the following optimal experimental conditions: molar ratio of reactive oxygen species (O(2)(+), O(3)) to SO(2) and NO, 5; inlet flue gas temperature, 65 °C; reaction time, 0.94 s; and H(2)O volume fraction, 8%. Production of O(2)(+) and the plasma reaction mechanisms are discussed, and the recovered acid is characterized. The experimental results show that the present method performs better for denitrification than for desulfurization. Compared with conventional air discharge flue gas treatments, the present method has lower initial investment and operating costs, and the equipment is more compact.

  11. Structure, process, and annual ICU mortality across 69 centers: United States Critical Illness and Injury Trials Group Critical Illness Outcomes Study.

    Science.gov (United States)

    Checkley, William; Martin, Greg S; Brown, Samuel M; Chang, Steven Y; Dabbagh, Ousama; Fremont, Richard D; Girard, Timothy D; Rice, Todd W; Howell, Michael D; Johnson, Steven B; O'Brien, James; Park, Pauline K; Pastores, Stephen M; Patil, Namrata T; Pietropaoli, Anthony P; Putman, Maryann; Rotello, Leo; Siner, Jonathan; Sajid, Sahul; Murphy, David J; Sevransky, Jonathan E

    2014-02-01

    Hospital-level variations in structure and process may affect clinical outcomes in ICUs. We sought to characterize the organizational structure, processes of care, use of protocols, and standardized outcomes in a large sample of U.S. ICUs. We surveyed 69 ICUs about organization, size, volume, staffing, processes of care, use of protocols, and annual ICU mortality. ICUs participating in the United States Critical Illness and Injury Trials Group Critical Illness Outcomes Study. Sixty-nine intensivists completed the survey. We characterized structure and process variables across ICUs, investigated relationships between these variables and annual ICU mortality, and adjusted for illness severity using Acute Physiology and Chronic Health Evaluation II. Ninety-four ICU directors were invited to participate in the study and 69 ICUs (73%) were enrolled, of which 25 (36%) were medical, 24 (35%) were surgical, and 20 (29%) were of mixed type, and 64 (93%) were located in teaching hospitals with a median number of five trainees per ICU. Average annual ICU mortality was 10.8%, average Acute Physiology and Chronic Health Evaluation II score was 19.3, 58% were closed units, and 41% had a 24-hour in-house intensivist. In multivariable linear regression adjusted for Acute Physiology and Chronic Health Evaluation II and multiple ICU structure and process factors, annual ICU mortality was lower in surgical ICUs than in medical ICUs (5.6% lower [95% CI, 2.4-8.8%]) or mixed ICUs (4.5% lower [95% CI, 0.4-8.7%]). We also found a lower annual ICU mortality among ICUs that had a daily plan of care review (5.8% lower [95% CI, 1.6-10.0%]) and a lower bed-to-nurse ratio (1.8% lower when the ratio decreased from 2:1 to 1.5:1 [95% CI, 0.25-3.4%]). In contrast, 24-hour intensivist coverage (p = 0.89) and closed ICU status (p = 0.16) were not associated with a lower annual ICU mortality. In a sample of 69 ICUs, a daily plan of care review and a lower bed-to-nurse ratio were both associated with a

  12. Gas-exfoliated porous monolayer boron nitride for enhanced aerobic oxidative desulfurization performance

    Science.gov (United States)

    Wu, Yingcheng; Wu, Peiwen; Chao, Yanhong; He, Jing; Li, Hongping; Lu, Linjie; Jiang, Wei; Zhang, Beibei; Li, Huaming; Zhu, Wenshuai

    2018-01-01

    Hexagonal boron nitride has been regarded to be an efficient catalyst in aerobic oxidation fields, but limited by the less-exposed active sites. In this contribution, we proposed a simple green liquid nitrogen gas exfoliation strategy for preparation of porous monolayer nanosheets (BN-1). Owing to the reduced layer numbers, decreased lateral sizes and artificially-constructed pores, increased exposure of active sites was expected, further contributed to an enhanced aerobic oxidative desulfurization (ODS) performance up to ˜98% of sulfur removal, achieving ultra-deep desulfurization. This work not only introduced an excellent catalyst for aerobic ODS, but also provided a strategy for construction of some other highly-efficient monolayer two-dimensional materials for enhanced catalytic performance.

  13. Photooxidative desulfurization for diesel using Fe / N - TiO2 photocatalyst

    Science.gov (United States)

    Khan, Muhammad Saqib; Kait, Chong Fai; Mutalib, Mohd Ibrahim Abdul

    2014-10-01

    A series of N - TiO2 with different mol% N was synthesized via sol-gel method and characterized using thermal gravimetric analyzer and raman spectroscopy. 0.2 wt% Fe was incorporated onto the calcined (200°C) N - TiO2 followed by calcination at 200°C, 250°C and 300°C. Photooxidative desulfurization was conducted in the presence of 0.2wt% Fe / N - TiO2 with different mol% N with and without oxidant (H2O2). Oxidative desulfurization was only achieved when H2O2 was used while without H2O2 no major effect on the sulfur removal. 0.2Fe -30N - H2O2 photocatalysts showed best performance at all calcination temperatures as compared to other mol% N - H2O2 photocatalysts. 16.45% sulfur removal was achieved using photocatalysts calcined at 300 °C.

  14. Investigation of organic desulfurization additives affecting the calcium sulfate crystals formation

    Directory of Open Access Journals (Sweden)

    Lv Lina

    2017-01-01

    Full Text Available In the study, the optimal experimental conditions for gypsum crystals formation were 323 K, 300 rpm stirring speed. The major impurities of Mg2+, Al3+ and Fe3+ were found to inhibit calcium sulfate crystals formation. Fe3+ caused the strongest inhibition, followed by Mg2+ and Al3+. The influence of desulfurization additives on the gypsum crystals formation was explored with the properties of moisture content, particle size distribution and crystal morphology. The organic desulfurization additives of adipic acid, citric acid, sodium citrate and benzoic acid were investigated. Citric acid and sodium citrate were found to improve the quality of gypsum. Moisture contents were reduced by more than 50%, gypsum particle sizes were respectively enlarged by 9.1 and 22.8%, induction time extended from 4.3 (blank to 5.3 and 7.8 min, and crystal morphology trended to be thicker.

  15. PREFACE: Selected papers from the Fourth Annual q-bio Conference on Cellular Information Processing Selected papers from the Fourth Annual q-bio Conference on Cellular Information Processing

    Science.gov (United States)

    Nemenman, Ilya; Faeder, James R.; Hlavacek, William S.; Jiang, Yi; Wall, Michael E.; Zilman, Anton

    2011-10-01

    Summary This special issue consists of 11 original papers that elaborate on work presented at the Fourth Annual q-bio Conference on Cellular Information Processing, which was held on the campus of St John's College in Santa Fe, New Mexico, USA, 11-14 August 2010. Now in its fourth year, the q-bio conference has changed considerably over time. It is now well established and a major event in systems biology. The 2010 conference saw attendees from all continents (except Antarctica!) sharing novel results and participating in lively discussions at both the oral and poster sessions. The conference was oversubscribed and grew to 27 contributed talks, 16 poster spotlights and 137 contributed posters. We deliberately decreased the number of invited speakers to 21 to leave more space for contributed presentations, and the attendee feedback confirmed that the choice was a success. Although the q-bio conference has grown and matured, it has remained true to the original goal of being an intimate and dynamic event that brings together modeling, theory and quantitative experimentation for the study of cell regulation and information processing. Funded in part by a grant from NIGMS and by DOE funds through the Los Alamos National Laboratory Directed Research and Development program, the conference has continued to exhibit youth and vigor by attracting (and partially supporting) over 100 undergraduate, graduate and postdoctoral researchers. The associated q-bio summer school, which precedes the conference each year, further emphasizes the development of junior scientists and makes q-bio a singular event in its impact on the future of quantitative biology. In addition to an increased international presence, the conference has notably diversified its demographic representation within the USA, including increased participation from the southeastern corner of the country. One big change in the conference this year is our new publication partner, Physical Biology. Although we are very

  16. Active-alkali metal promoted reductive desulfurization of dibenzothiophene and its hindered analogues

    OpenAIRE

    Pittalis, Mario; Azzena, Ugo Gavino; Carraro, Massimo; Pisano, Luisa

    2013-01-01

    Reductive desulfurisation of organic compounds is of importance both in organic synthesis and in industry. Benzo- and dibenzothiophenes are between the most abundant sulphur containing impurities in crude oils, and their desulfurization is a mandatory issue in the production of non polluting fuels. Following our interest in the development of efficient alkali metal-mediated synthetic procedures and alternative protocols for the chemical transformation of widespread environmental contaminants ...

  17. o-Iodoxybenzoic acid mediated oxidative desulfurization initiated domino reactions for synthesis of azoles.

    Science.gov (United States)

    Chaudhari, Pramod S; Pathare, Sagar P; Akamanchi, Krishnacharaya G

    2012-04-20

    A systematic exploration of thiophilic ability of o-iodoxybenzoic acid (IBX) for oxidative desulfurization to trigger domino reactions leading to new methodologies for synthesis of different azoles is described. A variety of highly substituted oxadiazoles, thiadiazoles, triazoles, and tetrazoles have been successfully synthesized in good to excellent yields, starting from readily accessible thiosemicarbazides, bis-diarylthiourea, 1,3-disubtituted thiourea, and thioamides. © 2012 American Chemical Society

  18. Low temperature oxidative desulfurization with hierarchically mesoporous titaniumsilicate Ti-SBA-2 single crystals.

    Science.gov (United States)

    Shi, Chengxiang; Wang, Wenxuan; Liu, Ni; Xu, Xueyan; Wang, Danhong; Zhang, Minghui; Sun, Pingchuan; Chen, Tiehong

    2015-07-21

    Hierarchically porous Ti-SBA-2 with high framework Ti content (up to 5 wt%) was firstly synthesized by employing organic mesomorphous complexes of a cationic surfactant (CTAB) and an anionic polyelectrolyte (PAA) as templates. The material exhibited excellent performance in oxidative desulfurization of diesel fuel at low temperature (40 °C or 25 °C) due to the unique hierarchically porous structure and high framework Ti content.

  19. Deep-desulfurization of the petroleum diesel using the heterogeneous carboxyl functionalized poly-ionic liquid

    OpenAIRE

    Kamlesh Rudreshwar Balinge; Avinash Ganesh Khiratkar; Manikandan Krishnamurthy; Dipesh S. Patle; Cheralathan K. K.; Pundlik Rambhau Bhagat

    2016-01-01

    Acidic carboxyl functionalized poly(ionic liquid) (CFPIL) has been synthesized and characterized by various techniques like FT-NMR, Fourier transform infrared spectroscopy (FTIR). In this work, deep oxidative desulfurization of model oil (thiophene dissolved in iso-octane) by CFPIL catalyst was carried out in presence of 30 wt% H2O2 solution as an oxidant. The effects of the hydrogen peroxide, amount of CFPIL, temperature-time and recyclability are scrutinized systematically. It was found tha...

  20. Oxidative desulfurization of model diesel via dual activation by a protic ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Lü, Hongying, E-mail: hylv@ytu.edu.cn; Wang, Shunan; Deng, Changliang; Ren, Wanzhong; Guo, Baocun

    2014-08-30

    Highlights: • A protic ionic liquid, [Hnmp]HCOO, was used as in ODS. • The mechanism of ODS was involved in dual activation by the PIL. • The [Hnmp]HCOO exhibited high catalytic activity in ODS. • The amounts of PILs and oxidant dosage play vital roles in desulfurization system. • This system can be recycled five times with an unnoticeable decrease in activity. - Abstract: A novel and green carboxylate-anion-based protic ionic liquid (PIL), [Hnmp]HCOO, was prepared through a simple and atom economic neutralization reaction between N-methyl-2-pyrrolidonium (NMP) and formic acids. Both FT-IR spectra and {sup 1}H NMR confirmed its simple salt structure. [Hnmp]HCOO exhibited so high catalytic activity that the dibenzothiophene (DBT) removal reached 99% at 50 °C in 3 h under conditions of V{sub PIL}/V{sub model} {sub oil} = 1:10 and H{sub 2}O{sub 2}/DBT (O/S, molar ratio) = 5. The catalytic oxidation reactivity of S-compounds was found to be in the order of DBT > 4,6-dimethyldibenzothiophene (4,6-DMDBT) > benzothiophene (BT). The investigation on mechanism showed that oxidative desulfurization was realized through dual activation of PIL. Moreover, [Hnmp]HCOO can be recycled for five times with an unnoticeable decrease in desulfurization activity.

  1. Oxidative desulfurization of model diesel via dual activation by a protic ionic liquid

    International Nuclear Information System (INIS)

    Lü, Hongying; Wang, Shunan; Deng, Changliang; Ren, Wanzhong; Guo, Baocun

    2014-01-01

    Highlights: • A protic ionic liquid, [Hnmp]HCOO, was used as in ODS. • The mechanism of ODS was involved in dual activation by the PIL. • The [Hnmp]HCOO exhibited high catalytic activity in ODS. • The amounts of PILs and oxidant dosage play vital roles in desulfurization system. • This system can be recycled five times with an unnoticeable decrease in activity. - Abstract: A novel and green carboxylate-anion-based protic ionic liquid (PIL), [Hnmp]HCOO, was prepared through a simple and atom economic neutralization reaction between N-methyl-2-pyrrolidonium (NMP) and formic acids. Both FT-IR spectra and 1 H NMR confirmed its simple salt structure. [Hnmp]HCOO exhibited so high catalytic activity that the dibenzothiophene (DBT) removal reached 99% at 50 °C in 3 h under conditions of V PIL /V model oil = 1:10 and H 2 O 2 /DBT (O/S, molar ratio) = 5. The catalytic oxidation reactivity of S-compounds was found to be in the order of DBT > 4,6-dimethyldibenzothiophene (4,6-DMDBT) > benzothiophene (BT). The investigation on mechanism showed that oxidative desulfurization was realized through dual activation of PIL. Moreover, [Hnmp]HCOO can be recycled for five times with an unnoticeable decrease in desulfurization activity

  2. Oxidative desulfurization of diesel fuel using amphiphilic quaternary ammonium phosphomolybdate catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jianghua; Wang, Guanghui; Zeng, Danlin; Tang, Yan [College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan 430081 (China); Wang, Meng; Li, Yanjun [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

    2009-12-15

    Phosphomolybdic acid (HPMo) modified respectively with tetramethyl ammonium chloride (TMAC), dodecyl trimethyl ammonium chloride (DTAC) and hexadecyl trimethyl ammonium chloride (HTAC) as the catalysts were prepared and characterized by FT-IR, XRD and SEM. The catalysts were evaluated for the oxidative desulfurization of benzothiophene (BT), dibenzothiophene (DBT) and straight-run diesel using hydrogen peroxide as an oxidant. Results show that all of the catalysts keep the Keggin structures and are finely dispersed with mixing of quaternary ammonium salts. Hexadecyl chains are more favorable to wrap up DBT to the catalytic center and form stable emulsion system with higher conversion rates of DBT. The shorter dodecyl chains can wrap up BT more suitably and bring smaller steric hindrance, which display higher conversion rates of BT. The oxidative reactions fit apparent first-order kinetics, and the apparent activation energies of DBT are much lower than those of BT. The desulfurization rate of straight-run diesel can be up to 84.4% with the recovery rate of 98.1% catalyzed by [HPMo][HTAC]{sub 2} in 2 h. When increasing the extraction times, the desulfurization rates increase, but the recovery rates of diesel decrease significantly. (author)

  3. Enhanced pervaporative desulfurization by polydimethylsiloxane membranes embedded with silver/silica core-shell microspheres

    International Nuclear Information System (INIS)

    Cao Ruijian; Zhang Xiongfei; Wu Hong; Wang Jingtao; Liu Xiaofei; Jiang Zhongyi

    2011-01-01

    Pervaporative desulfurization based on membrane technology provides a promising alternative for removal of sulfur substances (as represented by thiophene) in fluid catalytic cracking (FCC) gasoline. The present study focused on the performance enhancement of polydimethylsiloxane (PDMS) membrane by incorporation of core-shell structured silver/silica microspheres. A silane coupling agent, N-[3-(trimethoxysily)propyl]-ethylenediamine (TSD), was used to chelate the Ag + via its amino groups and attach the silver seeds onto the silica surface via condensation of its methoxyl groups. The resultant microspheres were characterized by Zeta-positron annihilation lifetime spectroscopy (ZetaPALS), inductively coupled plasmaoptical emission spectrophotometer (ICP), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The Ag + /SiO 2 -PDMS composite membranes were prepared by blending PDMS with the as-synthesized silver/silica microspheres. PALS analysis was used to correlate the apparent fractional free volume with permeation flux. The sorption selectivity towards thiophene was enhanced after incorporation of silver/silica microspheres due to the π-complexation between the silver on the microsphere surface and the thiophene molecules. The pervaporative desulfurization performance of the composite membrane was investigated using thiophene/n-octane mixture as a model gasoline. The composite membrane exhibited an optimum desulfurization performance with a permeation flux of 7.76 kg/(m 2 h) and an enrichment factor of 4.3 at the doping content of 5%.

  4. Desulfurization of petroleum by Co-60 gamma irradiation and analysis of products using GC-MS

    International Nuclear Information System (INIS)

    Mathuthu, M.; Tshivhase, V.M.; Olobatoke, R.Y.; Gaxela, N.N.

    2014-01-01

    Sulfur is an undesirable hetero-atom that has negative on motor engines if present in quantities between 50 and 180.000 ppm. Research has shown that sour petroleum can be 'sweetened' by gamma irradiation to de-sulfurize the crude oil. In this research we will report experimental results of desulfurizing petroleum locally procured. The objective is to improve the quality of product delivered to the motor market and also reduce the environmental pollution due to SO 2 emissions from engines. The gamma irradiated (de-sulfurized petroleum was chemically analyzed using GC-MS. The preliminary results show that the petroleum is polymerized by gamma radiation to higher molecular mass. The un-irradiated petroleum had a sulfur concentration of 3.24% and 0.020% wt after gamma irradiation. The sulfur content was reduced by a factor of about 160 when dose was increased from zero to 50 kGys. GC-MS Chromatographs are presented for the identified hydrocarbons after gamma irradiation. (authors)

  5. Preparation of WO3/g-C3N4 composites and their application in oxidative desulfurization

    International Nuclear Information System (INIS)

    Zhao, Rongxiang; Li, Xiuping; Su, Jianxun; Gao, Xiaohan

    2017-01-01

    Highlights: • The WO 3 /g-C 3 N 4 was successfully synthesized through simple calcination. • The process is simple and the cost raw materials is cheap. • The WO 3 /g-C 3 N 4 firstly applied to ODS. • The desulpurization rate of WO 3 /g-C 3 N 4 may attach to 91.2%. • Five recycles of WO 3 /g-C 3 N 4 still attach to 89.5% due to heterogeneous catalysis. - Abstract: WO 3 /graphitic carbon nitride (g-C 3 N 4 ) composites were successfully synthesized through direct calcining of a mixture of WO 3 and g-C 3 N 4 at 400 °C for 2 h. The WO 3 was prepared by calcination of phosphotungstic acid at 550 °C for 4 h, and the g-C 3 N 4 was obtained by calcination of melamine at 520 °C for 4 h. The WO 3 /g-C 3 N 4 composites were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), and Brunner−Emmett−Teller analysis (BET). The WO 3 /g-C 3 N 4 composites exhibited stronger XRD peaks of WO 3 and g-C 3 N 4 than the WO 3 and pure g-C 3 N 4 . In addition, two WO 3 peaks at 25.7° and 26.6° emerged for the 36% −WO 3 /g-C 3 N 4 composite. This finding indicated that WO 3 was highly dispersed on the surface of the g-C 3 N 4 nanosheets and interacted with the nanosheets, which resulted in the appearance of (012) and (022) planes of WO 3 . The WO 3 /g-C 3 N 4 composite also exhibited a larger specific surface area and higher degree of crystallization than WO 3 or pure g-C 3 N 4 , which resulted in high catalytic activity of the catalyst. Desulfurization experiments demonstrated that the desulfurization rate of dibenzothiophene (DBT) in model oil reached 91.2% under optimal conditions. Moreover, the activity of the catalyst was not significantly decreased after five recycles.

  6. 15 CFR 713.2 - Annual declaration requirements for plant sites that produce, process or consume Schedule 2...

    Science.gov (United States)

    2010-01-01

    ... an earlier year (i.e., during the course of any other calendar year within the past three calendar... calendar years. For example, for the 2004 annual declaration on past activities period, if you determine... (question 2-3.1), production data for calendar year 2004. You would declare “0” production because you did...

  7. [Effects of desulfurization waste on calcium distribution, Ca(2+)-ATPase activity, and antioxidant characteristics of rice leaf under alkali stress].

    Science.gov (United States)

    Mao, Gui-Lian; Xu, Xing; Zeng, Jin; Yue, Zi-Hui; Yang, Shu-Juan

    2012-02-01

    To approach the action mechanisms of desulfurization waste on alleviating alkali stress-induced injury of rice, a pot experiment was conducted to study the variations of leaf total calcium content, calcium distribution, plasma membrane Ca(2+)-ATPase activity, and reactive oxygen content of rice seedlings under alkali stress after the application of desulfurization waste. In the control, a few calcium particulates scattered in the cell wall and chloroplasts, while applying desulfurization waste or CaSO4 increased the calcium particulates in the plasma membrane, intercellular space, cell wall, and vacuole significantly. With the increasing application rate of desulfurization waste or CaSO4, the leaf total calcium content increased, Ca(2+)-ATPase activity in plasma membrane and tonoplast presented an increasing trend, plasma membrane relative permeability, MDA content, and O2 production rate decreased, and SOD and POD activities increased. The desulfurization waste could relieve the alkali stress to rice in some extent, and the main reactive compound in the waste could be CaSO4.

  8. Utilization of desulfurization gypsum to producing SO{sub 2} and CaO in multi-stage fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Zhu; Wang, Tao; Yang, Hairui; Zhang, Hai; Zhang, Zuyi [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Ministry of Education, Beijing (China). Key Lab. for Thermal Science and Power Engineering

    2013-07-01

    With emission control becomes more and more stringent, flue gas desulphurization (FGD) is commonly employed for desulfurization. However, the product of FGD, gypsum, causes the unexpected environmental problems. How to utilize the byproduct of FGD effectively and economically is a challenging task. This paper proposed the new technical process to produce SO{sub 2} and CaO by reducing the gypsum in multi-stage fluidized bed reactor with different atmosphere. In addition, some preliminary experiments were carried out in PTGA. The results show that CO concentration has little effect on the initial decomposing temperature, but affect the decomposing rate of phosphogypsum obviously. The decomposing product composed of CaS and CaO simultaneously. The ratio of the two products was determined by CO concentration. Lower CO content benefits to produce more CO product and more SO{sub 2}. The decomposition reaction of phosphogypsum in reducing atmosphere is parallel competition reaction. Therefore, it is necessary to eliminate the effect of CaS and other byproduct efficiently by the new technology, which utilize multi-atmosphere in multistage fluidized bed reactors.

  9. Preparation And Characterization of Cu-Fe/ TiO2 Photocatalyst for Visible Light Deep Desulfurization

    International Nuclear Information System (INIS)

    Hayyiratul Fatimah Mohd Zaid; Kait, C.F.; Mohamed Ibrahim Abdul Mutalib

    2016-01-01

    A photooxidative system for deep desulfurization of model diesel fuel was explored. Nanoparticles of anatase titania (TiO 2 ) were synthesized via sol-gel hydrothermal method. The TiO 2 was further modified with bimetallic Cu-Fe using wet-impregnation method followed by calcination process in order to extend the activity region of the photocatalyst to visible-light. A series of bimetallic 2.2 wt % Cu-Fe/ TiO 2 photocatalysts with different Cu:Fe mass compositions were characterized for their physical, chemical and optical properties using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), diffuse reflectance UV-visible spectroscopy (DR-UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR) and Brunauer-Emmet-Teller (BET) surface area analysis. The performance of the photocatalysts was evaluated for photooxidation of dibenzothiophene (DBT) as the sulfur species from model oil in the presence of hydrogen peroxide, H 2 O 2 under 500 W visible light illumination. The highest sulfur conversion of 82.36 % was observed for photocatalyst with 10:1Cu:Fe mass composition. (author)

  10. Molecular dynamics simulations on desulfurization of n-octane/thiophene mixture using silica filled polydimethylsiloxane nanocomposite membranes

    International Nuclear Information System (INIS)

    Shariatinia, Zahra; Jalali, Azin Mazloom; Taromi, Faramarz Afshar

    2016-01-01

    Molecular dynamics (MD) simulations were performed at 298.15 K and 1 atm in order to study microstructure and transport behaviors of polydimethylsiloxane (PDMS) membranes containing 0%–8% SiO 2 nanoparticles used for the separation of thiophene from n-octane. It was found that the fractional free volume (FFV) of 0% SiO 2 was the highest (47.24%) among five nanocomposite membranes and addition of 2%–8% silica nanoparticles led to dramatic decrease in the FFV of the cells. The x-ray diffraction (XRD) patterns of all membranes showed that they had a semi-crystalline structure containing a broad peak around 15°–18°. The radial distribution function (RDF) analysis proved that the smallest C(CH 2 -octane)–O(SiO 2 ), C(PDMS)–O(SiO 2 ) and H(thiophene)–O(SiO 2 ) distances were present in 4% SiO 2 membrane reflecting the silica–octane, silica–polymer and silica–thiophene interactions were the strongest in this membrane. The mean squared displacement (MSD) and diffusion coefficients of n-octane were both small in the 6% silica membrane but they were high for thiophene suggesting this membrane was the most suitable for the desulfurization process and separation of thiophene from n-octane. (paper)

  11. Fabrication of magnetically responsive HKUST-1/Fe3O4 composites by dry gel conversion for deep desulfurization and denitrogenation.

    Science.gov (United States)

    Tan, Peng; Xie, Xiao-Yan; Liu, Xiao-Qin; Pan, Ting; Gu, Chen; Chen, Peng-Fei; Zhou, Jia-Yu; Pan, Yichang; Sun, Lin-Bing

    2017-01-05

    Selective adsorption by use of metal-organic frameworks (MOFs) is an effective method for purification of hydrocarbon fuels. In consideration that the adsorption processes proceed in liquid phases, separation and recycling of adsorbents should be greatly facilitated if MOFs were endowed with magnetism. In the present study, we reported for the first time a dry gel conversion (DGC) strategy to fabricate magnetically responsive MOFs as adsorbents for deep desulfurization and denitrogenation. The solvent is separated from the solid materials in the DGC strategy, and vapor is generated at elevated temperatures to induce the growth of MOFs around magnetic Fe 3 O 4 nanoparticles. This strategy can greatly simplify the complicated procedures of the well-known layer-by-layer method and avoid the blockage of pores confronted by introducing magnetic Fe 3 O 4 nanoparticles to the pores of MOFs. Our results show that the adsorbents are capable of efficiently removing aromatic sulfur and nitrogen compounds from model fuels, for example removing 0.62mmolg -1 S and 0.89mmolg -1 N of thiophene and indole, respectively. In addition, the adsorbents are facile to separate from liquid phases by use of an external field. After 6 cycles, the adsorbents still show a good adsorption capacity that is comparable to the fresh one. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Basic Properties of Flue-Gas Desulfurization Gypsum

    Directory of Open Access Journals (Sweden)

    Kovacs Ferenc

    2003-03-01

    Full Text Available Several hundred thousand of FGD gypsum is produced annually at the Matra Power Plant (Hungary as a byproduct of generating electricity and protecting the environment. Chemical and mechanical characteristics of this material were studied of the Department of Mining and Geotechnical Engineering, University of Miskolc (Hungary. The material in question was found dead gypsum which can be calcined easily to obtain a relatively high-strength (15-25 MPa and clean binding material. Furthermore, grain composites were made of it by adding fly ash, which the power plant can provide the expected producers with, thus decreasing the energy consumption of calcining and utilizing a small part of coal combustion wastes.

  13. 1. annual workshop proceedings of integrated project fundamental processes of radionuclide migration IP Funmig; Rapport du 1. workshop annuel du projet integre fundamental processes of radionuclide migration (IP Funmig)

    Energy Technology Data Exchange (ETDEWEB)

    Reiller, P [CEA Saclay, Dept. de Physico-Chimie (DPC), 91 - Gif sur Yvette (France); Buckau, G; Kienzler, B [Institut fur Nukleare Entsorgung (INE), Karlsruhe (Germany); Duro, L; Martell, M [Enviros (Spain)

    2006-07-01

    These are the proceedings of the 1. Annual Workshop Proceedings of the Integrated Project FUNMIG (fundamental processes of radionuclide migration). The Annual Workshop was hosted by CEA and held in Saclay, 28 November - 1 December 2005. The project started January 2005 and has a duration of four years. The project makes use of annual workshops bringing the project partners together and inviting external groups to participate and contribute. Consequently, the present proceedings will be followed by another three proceedings from the forthcoming annual workshops to be held the end of 2006, 2007 and 2008. The 2. Annual Workshop will be hosted by SKB and be held in Stockholm, 21-23 November 2006. The proceedings serve several purposes. The key purpose is to document and make available to a broad scientific community the outcome of this project. A considerable part of the project activity reporting is also done through the proceedings. For this reason the first parts of the proceedings are structured around the workshop and the project. A large part of the proceedings, however, also contain individual scientific contributions by the project partners as well as external contributors. Information about the project can be found under www.funmig.com. (authors)

  14. Behaviour of CaO coating of gas atomized Mg powders using mechanical milling process

    International Nuclear Information System (INIS)

    Kim, Sun-Mi; Kim, Yong Hwan; Kim, Young Do; Kim, Taek-Soo

    2011-01-01

    Highlights: → This work is very new, since behaviour of CaO coating with milling time as desulfurizer is not frequently reported. → The manuscript reports the new manner of Mg powders desulfurizer development by the innovative process. - Abstract: In order to synthesize a thermally stable Mg powder as a desulfurizer of iron, pure Mg was gas atomized to powders and coated by CaO powders, to produce a thermally stable desulfurizer using a mechanical milling process. Since the effect of desulfurization is dependent on the degree of surface modification, coating behaviours such as the size, morphology and layer thickness were investigated as a function of milling condition. As the milling conducted from 10 min to 30 min, 1 h, 3 h, 6 h, 12 h, CaO particles began to stick on the surface of Mg powders. The layer of CaO formed from 1 h milling was about 17 μm thick and gradually thickened to be 28 μm, 32 μm and 37 μm with increasing the milling time to 3 h, 6 h and 12 h, respectively. The shape of coated powder became more spherical after 1 h milling, being mostly spherical after 6 h. Desulfurization rate and uniformity were evaluated for the various thickness of the coating layer.

  15. Marble waste characterization as a desulfurizing slag component for steel; Caracterizacao do residuo de marmore como componente de escorias dessulfurantes para aco

    Energy Technology Data Exchange (ETDEWEB)

    Coleti, J.L.; Grillo, F.F.; Tenorio, J.A.S. [Universidade de Sao Paulo (USP), SP (Brazil); De Oliveira, J.R. [Instituto Federal do Espirito Santo (IFES), ES (Brazil)

    2014-07-01

    The current steel market requires from steel plants better quality of its products. As a result, steel plants need to search for improvements and costs reduction in its process. Hence, the residue of marble containing significant quantities of calcium and magnesium carbonates, raw materials of steel refining slag, was characterized in order to replace the conventional lime used. Therefore, it will be possible to reduce the cost and volume of waste produced by the ornamental rock industry. The following methods were applied to test the waste potential: SEM with EDS, x-ray diffraction, x-ray fluorescence (EDX), Thermogravimetry (TG) and analysis of surface area and particle size by the BET method using dispersion leisure. The results indicated the feasibility of waste as raw material in the composition of desulfurizing slags. (author)

  16. Annual Report 1978

    International Nuclear Information System (INIS)

    1979-01-01

    The annual report gives the specific scientific results in the fields of nuclear and radiation physics, radiation chemistry, radiochemistry and data processing with a list of publications. (orig.) [de

  17. Mercury isotope signatures of seawater discharged from a coal-fired power plant equipped with a seawater flue gas desulfurization system.

    Science.gov (United States)

    Lin, Haiying; Peng, Jingji; Yuan, Dongxing; Lu, Bingyan; Lin, Kunning; Huang, Shuyuan

    2016-07-01

    Seawater flue gas desulfurization (SFGD) systems are commonly used to remove acidic SO2 from the flue gas with alkaline seawater in many coastal coal-fired power plants in China. However, large amount of mercury (Hg) originated from coal is also transferred into seawater during the desulfurization (De-SO2) process. This research investigated Hg isotopes in seawater discharged from a coastal plant equipped with a SFGD system for the first time. Suspended particles of inorganic minerals, carbon residuals and sulfides are enriched in heavy Hg isotopes during the De-SO2 process. δ(202)Hg of particulate mercury (PHg) gradually decreased from -0.30‰ to -1.53‰ in study sea area as the distance from the point of discharge increased. The results revealed that physical mixing of contaminated De-SO2 seawater and uncontaminated fresh seawater caused a change in isotopic composition of PHg isotopes in the discharging area; and suggested that both De-SO2 seawater and local background contributed to PHg. The impacted sea area predicted with isotopic tracing technique was much larger than that resulted from a simple comparison of pollutant concentration. It was the first attempt to apply mercury isotopic composition signatures with two-component mixing model to trace the mercury pollution and its influence in seawater. The results could be beneficial to the coal-fired plants with SFGD systems to assess and control Hg pollution in sea area. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Volume 1, Bench-scale testing and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jha, M.C.; Berggren, M.H.

    1989-05-02

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  19. Mixing-assisted oxidative desulfurization of model sulfur compounds using polyoxometalate/H2O2 catalytic system

    OpenAIRE

    Angelo Earvin Sy Choi; Susan Roces; Nathaniel Dugos; Meng-Wei Wan

    2016-01-01

    Desulfurization of fossil fuel derived oil is needed in order to comply with environmental regulations. Dibenzothiophene and benzothiophene are among the predominant sulfur compound present in raw diesel oil. In this study, mixing-assisted oxidative desulfurization of dibenzothiophene and benzothiophene were carried out using polyoxometalate/H2O2 systems and a phase transfer agent. The effects of reaction time (2–30 min) and temperature (30–70 °C) were examined in the oxidation of model sulfu...

  20. Highly stable and regenerable Mn-based/SBA-15 sorbents for desulfurization of hot coal gas

    International Nuclear Information System (INIS)

    Zhang, F.M.; Liu, B.S.; Zhang, Y.; Guo, Y.H.; Wan, Z.Y.; Subhan, Fazle

    2012-01-01

    Highlights: ► A series of mesoporous Cu x Mn y O z /SBA-15 sorbents were fabricated for hot coal gas desulfurization. ► 1Cu9Mn/SBA-15 sorbent with high breakthrough sulfur capacity is high stable and regenerable. ► Utilization of SBA-15 constrained the sintering and pulverization of sorbents. - Abstract: A series of mesoporous xCuyMn/SBA-15 sorbents with different Cu/Mn atomic ratios were prepared by wet impregnation method and their desulfurization performance in hot coal gas was investigated in a fixed-bed quartz reactor in the range of 700–850 °C. The successive nine desulfurization–regeneration cycles at 800 °C revealed that 1Cu9Mn/SBA-15 presented high performance with durable regeneration ability due to the high dispersion of Mn 2 O 3 particles incorporated with a certain amount of copper oxides. The breakthrough sulfur capacity of 1Cu9Mn/SBA-15 observed 800 °C is 13.8 g S/100 g sorbents, which is remarkably higher than these of 40 wt%LaFeO 3 /SBA-15 (4.8 g S/100 g sorbents) and 50 wt%LaFe 2 O x /MCM-41 (5.58 g S/100 g sorbents) used only at 500–550 °C. This suggested that the loading of Mn 2 O 3 active species with high thermal stability to SBA-15 support significantly increased sulfur capacity at relatively higher sulfidation temperature. The fresh and used xCuyMn/SBA-15 sorbents were characterized by means of BET, XRD, XPS, XAES, TG/DSC and HRTEM techniques, confirmed that the structure of the sorbents remained intact before and after hot coal gas desulfurization.

  1. Design and experimental study on desulphurization process of ship exhaust

    Science.gov (United States)

    Han, Mingyang; Hao, Shan; Zhou, Junbo; Gao, Liping

    2018-02-01

    This desulfurization process involves removing sulfur oxides with seawater or alkaline aqueous solutions and then treating the effluent by aeration and pH adjustment before discharging it into the ocean. In the desulfurization system, the spray tower is the key equipment and the venturi tubes are the pretreatment device. The two stages of plates are designed to fully absorb sulfur oxides in exhaust gases. The spiral nozzles atomize and evenly spray the desulfurizers into the tower. This study experimentally investigated the effectiveness of this desulfurization process and the factors influencing it under laboratory conditions, with a diesel engine exhaust used to represent ship exhaust. The experimental results show that this process can effectively absorb the SO2 in the exhaust. When the exhaust flow rate was 25 m3/h and the desulfurizer flow rate was 4 L/min, the sulfur removal efficiency (SRE) reached 99.7%. The flow rate, alkalinity, and temperature of seawater were found to have significant effects on the SRE. Adjusting seawater flow rate (SWR) and alkalinity within certain ranges can substantially improve the SRE.

  2. Oxidative desulfurization of fuels catalyzed by Fenton-like ionic liquids at room temperature.

    Science.gov (United States)

    Jiang, Yunqing; Zhu, Wenshuai; Li, Huaming; Yin, Sheng; Liu, Hua; Xie, Qingjie

    2011-03-21

    Oxidation of the sulfur-containing compounds benzothiophene (BT), dibenzothiophene (DBT), and 4,6-dimethyldibenzothiophene (4,6-DMDBT) has been studied in a desulfurization system composed of model oil, hydrogen peroxide, and different types of ionic liquids [(C(8)H(17))(3)CH(3)N]Cl/FeCl(3), [(C(8)H(17))(3)CH(3)N]Cl/CuCl(2), [(C(8)H(17))(3)CH(3)N]Cl/ZnCl(2), [(C(8)H(17))(3)CH(3)N]Cl/SnCl(2), [(C(4)H(9))(3)CH(3)N]Cl/FeCl(3), [C(10)H(21)(CH(3))(3)N]Cl/FeCl(3), [(C(10)H(21))(2)(CH(3))(2)N]Cl/FeCl(3). Deep desulfurization is achieved in the Fenton-like ionic liquid [(C(8)H(17))(3)CH(3)N]Cl/FeCl(3) at 25 °C for 1 h. The desulfurization of DBT reaches 97.9%, in consuming very low amount of [(C(8)H(17))(3)CH(3)N]Cl/FeCl(3) (only 0.702 mmol). The reaction conditions, for example, the amount of [(C(8)H(17))(3)CH(3)N]Cl/FeCl(3) or H(2)O(2), the temperature, and the molar ratio of FeCl(3) to [(C(8)H(17))(3)CH(3)N]Cl, are investigated for this system. The oxidation reactivity of the different sulfur-containing compounds is found to decrease in the order of DBT>BT>4,6-DMDBT. The desulfurization system can be recycled six times without significant decrease in activity. The sulfur level of FCC gasoline could be reduced from 360 ppm to 110 ppm. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Oxidative desulfurization of thiophene on TiO2/ZSM-12 zeolite

    OpenAIRE

    Santos,Marília Ramalho Figueiredo dos; Pedrosa,Anne Michelle Garrido; Souza,Marcelo José Barros de

    2016-01-01

    In this work the hydrothermal synthesis of ZSM-12 zeolite was performed, varying the MTEACl/SiO2 ratio, where the synthesis temperature was 140 ºC and the crystallization time was 144 hours. The catalysts were characterized by XRD, FTIR and TG. TiO2/ZSM-12 catalysts were used with titanium ions concentrations of 5, 10 and 15%. The oxidative desulfurization (ODS) reactions were performed using a model mixture containing n-heptane as solvent and thiophene as sulfur compound, H2O2 as an oxidizin...

  4. Fractionation of mercury stable isotopes during coal combustion and seawater flue gas desulfurization

    International Nuclear Information System (INIS)

    Huang, Shuyuan; Yuan, Dongxing; Lin, Haiying; Sun, Lumin; Lin, Shanshan

    2017-01-01

    In the current study, fractionation of mercury isotopes during coal combustion and seawater flue gas desulfurization (SFGD) in a coal-fired power plant using a SFGD system was investigated. Fourteen samples were collected from the power plant. The samples were pretreated with a combustion-trapping method and were analyzed with a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS). Compared with the raw coal, the bottom ash was enriched with lighter mercury isotopes with δ 202 Hg values ranging from −0.45 to −0.03‰. The fly ash was enriched with lighter mercury isotopes with δ 202 Hg values ranging from −1.49 to −0.73‰ for Chinese coal and from −1.47 to −0.62‰ for Indonesian coal. The δ 202 Hg of fresh seawater and desulfurized seawater was found to be −1.32 and −0.32‰ respectively. These δ 202 Hg values indicated that the desulfurized seawater was enriched with heavier mercury isotopes. Based upon the calculated results obtained from the mass balance equation, it was suggested that the stack emissions were enriched with lighter mercury isotopes. Mass independent fractionation was observed in most of the samples with a Δ 199 Hg/Δ 201 Hg ratio of approximately 0.96. The results help in improving the understanding of mercury isotope fractionation during coal combustion and SFGD, and are also useful in tracing the mercury emissions from coal fired power plants. - Highlights: • Spread of 1.5‰ was observed in δ 202 Hg values of raw coals and coal related samples. • The δ 202 Hg values were more negative in fly ash than those in the raw coal. • The flue gas had a significant Hg fractionation after desulfurization. • The stack emissions were enriched with lighter isotopes compared with the raw coal.

  5. The design of the extraction window of high power electron accelerator used in flue gas desulfurization

    International Nuclear Information System (INIS)

    He Tongqi; Chinese Academy of Sciences, Shanghai; Hu Wei; Sun Guangkui; Shi Weiguo; Li Minxi; Zhang Yutian; Pu Gengqiang

    2007-01-01

    Recently, the pollution caused by industrial exhaust gas, especially, the air pollution and acid rain resulting from the sulfur of exhaust gas, is increasingly drawing people's attention. The flue gas desulfurization by electron beam produced by high-power electron accelerator has the characteristics of high efficiency and non-secondary contamination. As one of the most pivotal part of accelerator, the service lifetime of this extraction window directly effects the stable operation of the device. In this paper, a brief review is given to summarize the advantages, material selecting, structure, replacing, maintaining of the extraction window of high-power electron accelerator developed by SINAP. (authors)

  6. Adsorptive desulfurization with CPO-27/MOF-74: an experimental and computational investigation.

    Science.gov (United States)

    Van de Voorde, Ben; Hezinová, Markéta; Lannoeye, Jeroen; Vandekerkhove, Annelies; Marszalek, Bartosz; Gil, Barbara; Beurroies, Isabelle; Nachtigall, Petr; De Vos, Dirk

    2015-04-28

    By combining experimental adsorption isotherms, microcalorimetric data, infrared spectroscopy and quantum chemical calculations the adsorption behaviour of the CPO-27/MOF-74 series (Ni, Co, Mg, Cu, and Zn) in the desulfurization of fuels is evaluated. The results show a clear influence of the metal ion on the adsorption capacity and affinity for S-heterocyclic compounds, with CPO-27(Ni) being the best performing material both in terms of capacity and affinity. The microcalorimetric data and infrared spectroscopy confirm the high affinity of CPO-27(Ni) for thiophene and similar compounds, while the computational data reveal that the origin of this outstanding adsorption performance is the strong sulfur-metal interaction.

  7. Advances on simultaneous desulfurization and denitrification using activated carbon irradiated by microwaves.

    Science.gov (United States)

    Ma, Shuang-Chen; Gao, Li; Ma, Jing-Xiang; Jin, Xin; Yao, Juan-Juan; Zhao, Yi

    2012-06-01

    This paper describes the research background and chemistry of desulfurization and denitrification technology using microwave irradiation. Microwave-induced catalysis combined with activated carbon adsorption and reduction can reduce nitric oxide to nitrogen and sulfur dioxide to sulfur from flue gas effectively. This paper also highlights the main drawbacks of this technology and discusses future development trends. It is reported that the removal of sulfur dioxide and nitric oxide using microwave irradiation has broad prospects for development in the field of air pollution control.

  8. Numerical Simulation of Desulfurization Behavior in Gas-Stirred Systems Based on Computation Fluid Dynamics-Simultaneous Reaction Model (CFD-SRM) Coupled Model

    Science.gov (United States)

    Lou, Wentao; Zhu, Miaoyong

    2014-10-01

    A computation fluid dynamics-simultaneous reaction model (CFD-SRM) coupled model has been proposed to describe the desulfurization behavior in a gas-stirred ladle. For the desulfurization thermodynamics, different models were investigated to determine sulfide capacity and oxygen activity. For the desulfurization kinetic, the effect of bubbly plume flow, as well as oxygen absorption and oxidation reactions in slag eyes are considered. The thermodynamic and kinetic modification coefficients are proposed to fit the measured data, respectively. Finally, the effects of slag basicity and gas flow rate on the desulfurization efficiency are investigated. The results show that as the interfacial reactions (Al2O3)-(FeO)-(SiO2)-(MnO)-[S]-[O] simultaneous kinetic equilibrium is adopted to determine the oxygen activity, and the Young's model with the modification coefficient R th of 1.5 is adopted to determine slag sulfide capacity, the predicted sulfur distribution ratio LS agrees well with the measured data. With an increase of the gas blowing time, the predicted desulfurization rate gradually decreased, and when the modification parameter R k is 0.8, the predicted sulfur content changing with time in ladle agrees well with the measured data. If the oxygen absorption and oxidation reactions in slag eyes are not considered in this model, then the sulfur removal rate in the ladle would be overestimated, and this trend would become more obvious with an increase of the gas flow rate and decrease of the slag layer height. With the slag basicity increasing, the total desulfurization ratio increases; however, the total desulfurization ratio changes weakly as the slag basicity exceeds 7. With the increase of the gas flow rate, the desulfurization ratio first increases and then decreases. When the gas flow rate is 200 NL/min, the desulfurization ratio reaches a maximum value in an 80-ton gas-stirred ladle.

  9. Desulfurization of the exhaust gas with zeolite synthesized from diatomaceous earth

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, M

    1975-07-01

    Both A type and X type zeolites were prepared from diatomaceous earth and tested for use in flue gas desulfurization. Several diatomaceous earths of known chemical compositions were mixed to obtain a desired molar ratio of silicates, whose maturation was achieved in two steps; room temperature maturation and reflux maturation by heating. If the second maturation was carried out for more than 12 hr, the X type zeolite formation was low. At the best conditions, 80% pure zeolite could be prepared for both types according to their x-ray diffraction spectra. The synthesized x type zeolite adsorbed sulfur dioxide more efficiently than A type zeolite. When a simulated flue gas containing 680 to 840 ppM sulfur dioxide was passed at a flow rate of 9.0 Nl/min through a 250 g zeolite column, the column breaking time (time required for the SO/sub 2/ concentration of the column effluent to reach 10% of the initial SO/sub 2/ concentration) was 5.3 hr, while that for the commercial zeolite and activated carbon was 6.8 hr and 8.0 hr, respectively. If the flue gas contained more than 1% moisture, the adsorbed water reacted with SO/sub 2/ and the zeolite crystal tended to break down. The use of zeolite for flue gas desulfurization was more costly than the use of activated carbon.

  10. Thermostabilization of desulfurization enzymes from Rhodococcos sp. IGTS8. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane II

    2000-12-15

    The objective of this project was to develop thermophilic cultures capable of expressing the desulfurization (dsz) operon of Rhodococcus sp. IGTS8. The approaches taken in this project included the development of plasmid and integrative expression vectors that function well in Thermus thermophilus, the cloning of Rhodococcus dsz genes in Thermus expression vectors, and the isolation of bacterial cultures that express the dsz operon at thermophilic temperatures. This project has resulted in the development of plasmid and integrative expression vectors for use in T. thermophilus. The dsz genes have been expressed at moderately thermophilic temperatures (52 C) in Mycobacterium phlei and at temperatures as high as 72 C in T. thermophilus. The tools and methods developed in this project will be generally useful for the expression of heterologous genes in Thermus. Key developments in the project have been the isolation of a Mycobacterium phlei culture capable of expressing the desulfurization operon at 52 C, development of plasmid and integrative expression vectors for Thermus thermophilus, and the development of a host-vector system based on the malate dehydrogenase gene that allows plasmids to be stably maintained in T. thermophilus and provides a convenient reporter gene for the accurate quantification of gene expression. Publications have been prepared regarding each of these topics; these preprints are included.

  11. Photocatalytic oxidative desulfurization of dibenzothiophene catalyzed by amorphous TiO2 in ionic liquid

    International Nuclear Information System (INIS)

    Zhu, Wenshuai; Xu, Yehai; Li, Huaming; Dai, Bilian; Xu, Hui; Wang, Chao; Chao, Yanhong; Liu, Hui

    2014-01-01

    Three types of TiO 2 were synthesized by a hydrolysis and calcination method. The catalysts were characterized by X-ray powder diffraction (XRD), diffuse reflectance spectrum (DRS), Raman spectra, and X-ray photoelectron spectroscopy (XPS). The XRD and Raman spectra indicated that amorphous TiO 2 was successfully obtained at 100 .deg. C. The results indicated that amorphous TiO 2 achieved the highest efficiency of desulfurization. The photocatalytic oxidation of dibenzothiophene (DBT), benzothiophene (BT), 4,6-dimethyldibenzothiophene (4,6-DMDBT) and dodecanethiol (RSH) in model oil was studied at room temperature (30 .deg. C) with three catalysts. The system contained amorphous TiO 2 , H 2 O 2 , and [Bmim]BF 4 ionic liquid, ultraviolet (UV), which played vitally important roles in the photocatalytic oxidative desulfurization. Especially, the molar ratio of H 2 O 2 and sulfur (O/S) was only 2 : 1, which corresponded to the stoichiometric reaction. The sulfur removal of DBT-containing model oil with amorphous TiO 2 could reach 96.6%, which was apparently superior to a system with anatase TiO 2 (23.6%) or with anatase - rutile TiO 2 (18.2%). The system could be recycled seven times without a signicant decrease in photocatalytic activity

  12. Oxidative desulfurization of model diesel via dual activation by a protic ionic liquid.

    Science.gov (United States)

    Lü, Hongying; Wang, Shunan; Deng, Changliang; Ren, Wanzhong; Guo, Baocun

    2014-08-30

    A novel and green carboxylate-anion-based protic ionic liquid (PIL), [Hnmp]HCOO, was prepared through a simple and atom economic neutralization reaction between N-methyl-2-pyrrolidonium (NMP) and formic acids. Both FT-IR spectra and (1)H NMR confirmed its simple salt structure. [Hnmp]HCOO exhibited so high catalytic activity that the dibenzothiophene (DBT) removal reached 99% at 50°C in 3h under conditions of VPIL/Vmodel oil=1:10 and H2O2/DBT (O/S, molar ratio)=5. The catalytic oxidation reactivity of S-compounds was found to be in the order of DBT>4,6-dimethyldibenzothiophene (4,6-DMDBT)>benzothiophene (BT). The investigation on mechanism showed that oxidative desulfurization was realized through dual activation of PIL. Moreover, [Hnmp]HCOO can be recycled for five times with an unnoticeable decrease in desulfurization activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Photocatalytic oxidative desulfurization of dibenzothiophene catalyzed by amorphous TiO{sub 2} in ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenshuai; Xu, Yehai; Li, Huaming; Dai, Bilian; Xu, Hui; Wang, Chao; Chao, Yanhong; Liu, Hui [Jiangsu University, Zhenjiang (China)

    2014-02-15

    Three types of TiO{sub 2} were synthesized by a hydrolysis and calcination method. The catalysts were characterized by X-ray powder diffraction (XRD), diffuse reflectance spectrum (DRS), Raman spectra, and X-ray photoelectron spectroscopy (XPS). The XRD and Raman spectra indicated that amorphous TiO{sub 2} was successfully obtained at 100 .deg. C. The results indicated that amorphous TiO{sub 2} achieved the highest efficiency of desulfurization. The photocatalytic oxidation of dibenzothiophene (DBT), benzothiophene (BT), 4,6-dimethyldibenzothiophene (4,6-DMDBT) and dodecanethiol (RSH) in model oil was studied at room temperature (30 .deg. C) with three catalysts. The system contained amorphous TiO{sub 2}, H{sub 2}O{sub 2}, and [Bmim]BF{sub 4} ionic liquid, ultraviolet (UV), which played vitally important roles in the photocatalytic oxidative desulfurization. Especially, the molar ratio of H{sub 2}O{sub 2} and sulfur (O/S) was only 2 : 1, which corresponded to the stoichiometric reaction. The sulfur removal of DBT-containing model oil with amorphous TiO{sub 2} could reach 96.6%, which was apparently superior to a system with anatase TiO{sub 2} (23.6%) or with anatase - rutile TiO{sub 2} (18.2%). The system could be recycled seven times without a signicant decrease in photocatalytic activity.

  14. Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance

    International Nuclear Information System (INIS)

    Zhang, Shuna; Zhang, Shujuan; Song, Limin; Wu, Xiaoqing; Fang, Sheng

    2014-01-01

    Graphical abstract: Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance. - Highlights: • Three-dimensional Ni 2 P has been prepared using foam nickel as a template. • The microstructures interconnected and formed sponge-like porous networks. • Three-dimensional Ni 2 P shows superior hydrodesulfurization activity. - Abstract: Three-dimensional microstructured nickel phosphide (Ni 2 P) was fabricated by the reaction between foam nickel (Ni) and phosphorus red. The as-prepared Ni 2 P samples, as interconnected networks, maintained the original mesh structure of foamed nickel. The crystal structure and morphology of the as-synthesized Ni 2 P were characterized by X-ray diffraction, scanning electron microscopy, automatic mercury porosimetry and X-ray photoelectron spectroscopy. The SEM study showed adjacent hollow branches were mutually interconnected to form sponge-like networks. The investigation on pore structure provided detailed information for the hollow microstructures. The growth mechanism for the three-dimensionally structured Ni 2 P was postulated and discussed in detail. To investigate its catalytic properties, SiO 2 supported three-dimensional Ni 2 P was prepared successfully and evaluated for the hydrodesulfurization (HDS) of dibenzothiophene (DBT). DBT molecules were mostly hydrogenated and then desulfurized by Ni 2 P/SiO 2

  15. Land application uses for dry flue gas desulfurization by-products: Phase 3

    Energy Technology Data Exchange (ETDEWEB)

    Dick, W.; Bigham, J.; Forster, R.; Hitzhusen, F.; Lal, R.; Stehouwer, R.; Traina, S.; Wolfe, W.; Haefner, R.; Rowe, G.

    1999-01-31

    New flue gas desulfurization (FGD) scrubbing technologies create a dry, solid by-product material consisting of excess sorbent, reaction product that contains sulfate and sulfite, and coal fly ash. Generally, dry FGD by-products are treated as solid wastes and disposed in landfills. However, landfill sites are becoming scarce and tipping fees are constantly increasing. Provided the environmental impacts are socially and scientifically acceptable, beneficial uses via recycling can provide economic benefits to both the producer and the end user of the FGD. A study titled ''Land Application Uses for Dry Flue Gas Desulfurization By-Products'' was initiated in December, 1990 to develop and demonstrate large volume, beneficial uses of FGD by-products. Phase 1 and Phase 2 reports have been published by the Electric Power Research Institute (EPRI), Palo Alto, CA. Phase 3 objectives were to demonstrate, using field studies, the beneficial uses of FGD by-products (1) as an amendment material on agricultural lands and on abandoned surface coal mine land, (2) as an engineering material for soil stabilization and raid repair, and (3) to assess the environmental and economic impacts of such beneficial uses. Application of dry FGD by-product to three soils in place of agricultural limestone increased alfalfa (Medicago sativa L.) and corn (Zea may L.) yields. No detrimental effects on soil and plant quality were observed.

  16. Potential Agricultural Uses of Flue Gas Desulfurization Gypsum in the Northern Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    DeSutter, T.M.; Cihacek, L.J. [North Dakota State University, Fargo, ND (United States). Department of Soil Science

    2009-07-15

    Flue gas desulfurization gypsum (FGDG) is a byproduct from the combustion of coal for electrical energy production. Currently, FGDG is being produced by 15 electrical generating stations in Alabama, Florida, Indiana, Iowa, Kentucky, Ohio, North Carolina, South Carolina, Tennessee, Texas, and Wisconsin. Much of this byproduct is used in the manufacturing of wallboard. The National Network for Use of FGDG in Agriculture was initiated to explore alternative uses of this byproduct. In the northern Great Plains (North Dakota, South Dakota, and Montana), FGDG has the potential to be used as a Ca or S fertilizer, as an acid soil ameliorant, and for reclaiming or mitigating sodium-affected soils. Greater than 1.4 million Mg of FGDG could initially be used in these states for these purposes. Flue gas desulfurization gypsum can be an agriculturally important resource for helping to increase the usefulness of problem soils and to increase crop and rangeland production. Conducting beneficial use audits would increase the public awareness of this product and help identify to coal combustion electrical generating stations the agriculturally beneficial outlets for this byproduct.

  17. Effect of byproducts of flue gas desulfurization on the soluble salts composition and chemical properties of sodic soils.

    Directory of Open Access Journals (Sweden)

    Jinman Wang

    Full Text Available The byproducts of flue gas desulfurization (BFGD are a useful external source of Ca(2+ for the reclamation of sodic soils because they are comparatively cheap, generally available and have high gypsum content. The ion solution composition of sodic soils also plays an important role in the reclamation process. The effect of BFGD on the soluble salts composition and chemical properties of sodic soils were studied in a soil column experiment. The experiment consisted of four treatments using two different sodic soils (sodic soil I and sodic soil II and two BFGD rates. After the application of BFGD and leaching, the soil soluble salts were transformed from sodic salts containing Na2CO3 and NaHCO3 to neutral salts containing NaCl and Na2SO4. The sodium adsorption ratio (SAR, pH and electrical conductivity (EC decreased at all soil depths, and more significantly in the top soil depth. At a depth of 0-40 cm in both sodic soil I and sodic soil II, the SAR, EC and pH were less than 13, 4 dS m(-1 and 8.5, respectively. The changes in the chemical properties of the sodic soils reflected the changes in the ion composition of soluble salts. Leaching played a key role in the reclamation process and the reclamation effect was positively associated with the amount of leaching. The soil salts did not accumulate in the top soil layer, but there was a slight increase in the middle and bottom soil depths. The results demonstrate that the reclamation of sodic soils using BFGD is promising.

  18. Post-Lamination Manufacturing Process Automation for Photovoltaic Modules; Annual Technical Progress Report: 15 June 1999--14 July 2000

    Energy Technology Data Exchange (ETDEWEB)

    Nowlan, M. J.; Murach, J. M.; Sutherland, S. F.; Lewis, E. R.; Hogan, S. J.

    2000-09-29

    Spire is addressing the PVMaT project goals of photovoltaic (PV) module cost reduction and improved module manufacturing process technology. New cost-effective automation processes are being developed for post-lamination PV module assembly, where post-lamination is defined as the processes after the solar cells are encapsulated. These processes apply to both crystalline and thin-film solar cell modules. Four main process areas are being addressed: (1) Module buffer storage and handling between steps; (2) Module edge trimming, edge sealing, and framing; (3) Junction-box installation; and (4) Testing for module performance, electrical isolation, and ground-path continuity.

  19. Effect of the type of ammonium salt on the extractive desulfurization of fuels using deep eutectic solvents

    NARCIS (Netherlands)

    Warrag, Samah E.E.; Adeyemi, Idowu; Rodriguez, Nerea R.; Nashef, Inas M.; van Sint Annaland, Martin; Kroon, Maaike C.; Peters, Cor J.

    2018-01-01

    In a previous work, we proved that the deep eutectic solvents (DESs) consisting of mixtures of tetraalkylammonium salts with polyols are promising candidates for oil desulfurization based on the obtained liquid-liquid equilibrium (LLE) data. In this study, the capability of DESs containing other

  20. Impact of Leaching Conditions on Constituents Release from Flue Gas Desulfurization Gypsum (FGDG) and FGDG-Soil Mixture

    Science.gov (United States)

    The interest in using Flue Gas Desulfurization Gypsum(FGDG) has increased recently. This study evaluates the leaching characteristics of trace elements in "modern" FGDG (produced after fly ash removal) and FGDG-mixed soil (SF) under different environmental conditions using rece...

  1. Metals in soil and runoff from a piedmont hayfield amended with broiler litter and flue gas desulfurization gypsum

    Science.gov (United States)

    Flue gas desulfurization gypsum (FGDG) from coal-fired power plants is available for agricultural use in many US regions. Broiler litter (BL) provides plant available N, P, and K but may be a source of unwanted arsenic (As), copper (Cu), and zinc (Zn). FGDG provides Ca and S and can reduce runoff lo...

  2. A green surfactant-assisted synthesis of hierarchical TS-1 zeolites with excellent catalytic properties for oxidative desulfurization.

    Science.gov (United States)

    Du, Shuting; Li, Fen; Sun, Qiming; Wang, Ning; Jia, Mingjun; Yu, Jihong

    2016-02-25

    Hierarchical TS-1 zeolites with uniform intracrystalline mesopores have been successfully synthesized through the hydrothermal method by using the green and cheap surfactant Triton X-100 as the mesoporous template. The resultant materials exhibit remarkably enhanced catalytic activity in oxidative desulfurization reactions compared to the conventional TS-1 zeolite.

  3. A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization.

    Science.gov (United States)

    Wu, Peiwen; Zhu, Wenshuai; Chao, Yanhong; Zhang, Jinshui; Zhang, Pengfei; Zhu, Huiyuan; Li, Changfeng; Chen, Zhigang; Li, Huaming; Dai, Sheng

    2016-01-04

    Hexagonal boron nitride nanosheets (h-BNNs) with rather high specific surface area (SSA) are important two-dimensional layer-structured materials. Here, a solvent-mediated synthesis of h-BNNs revealed a template-free lattice plane control strategy that induced high SSA nanoporous structured h-BNNs with outstanding aerobic oxidative desulfurization performance.

  4. Deep desulfurization by amphiphilic lanthanide-containing polyoxometalates in ionic-liquid emulsion systems under mild conditions.

    Science.gov (United States)

    Xu, Junhua; Zhao, Shen; Ji, Yuanchun; Song, Yu-Fei

    2013-01-07

    Amphiphilic lanthanide-containing polyoxometalates (POMs) were prepared by surfactant encapsulation. Investigation of these lanthanide-containing POMs in oxidative desulfurization (ODS) showed that highly efficient deep desulfurization could be achieved in only 14 min with 100% conversion of dibenzothiophene under mild conditions by using (DDA)(9)LaW(10)/[omim]PF(6) (DDA=dimethyldioctadecylammonium, omim=1-octyl-3-methyl-imidazolium) in the presence of H(2) O(2) . Furthermore, deep desulfurization proceeds smoothly in model oil with an S content as low as 50 ppm. A scaled-up experiment in which the volume of model oil was increased from 5 to 1000 mL with S content of 1000 ppm indicated that about 99% sulfur removal can be achieved in 40 mins in an ionic-liquid emulsion system. To the best of our knowledge, the (DDA)(9)LaW(10)/[omim]PF(6) catalyst system with H(2)O(2) as oxidant is one of the most efficient desulfurization systems reported so far. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Mercury emission and plant uptake of trace elements during early stage of soil amendment using flue gas desulfurization materials.

    Science.gov (United States)

    A pilot-scale field study was carried out to investigate the distribution of Hg and other selected elements in the three potential mitigation pathways, i.e., emission to ambient air, uptake by surface vegetation (i.e., grass), and rainfall infiltration, after flue gas desulfurization (FGD) material ...

  6. Development of an Estimating Procedure for the Annual PLAN Process - with Special Emphasis on the Estimating Group

    International Nuclear Information System (INIS)

    Lichtenberg, Steen

    2003-01-01

    This research study deals with the PLAN 2000 procedure. This complex annual estimating procedure is based on the Swedish law on financing, 1992:1537. It requires the Swedish Nuclear Power inspectorate, SKI, to submit to the Government a fully supported annual proposal for the following year's unit fee for nuclear generated electricity to be paid by the owners of the Swedish nuclear power plants. The function of this Fund, KAF, is to finance the future Swedish decommissioning programme. The underlying reason for the study is current criticism of the existing procedure, not least of the composition and working conditions of the analysis group. The purpose of the study is to improve the procedure. The aim is (1) to maximise the realism and neutrality of the necessary estimates in order to allow the KAF Fund to grow steadily at the current rate to the desired target size, allowing it to pay all relevant costs associated with this large decommissioning programme; (2) to do this with a controlled degree of safety; (3) to improve the transparency of the whole procedure in order to avoid any distrust of the procedure and its results. The scope covers all technical and statistical issues; and to some degree also the directly related organisational aspects, notably in respect of the present law and its administration. However, some details are dealt with which seem contrary to the aim of the law. Since 1996, SKI has delegated to the Swedish Nuclear Fuel and Waste Management Co., SKB, the task of performing the basic part of the necessary annual estimating procedure. SKI has then evaluated and supplemented the base estimate before the drafting of the final proposals for the Government and the Board of the Fund, KAFS. Some basic requirements are crucial to the quality of the result of the study: (1) full identification of all potential sources of major uncertainty and the subsequent correct handling of these, (2) balanced and unbiased quantitative evaluation of uncertain

  7. Integrating mental health into adolescent annual visits: impact of previsit comprehensive screening on within-visit processes.

    Science.gov (United States)

    Gadomski, Anne M; Fothergill, Kate E; Larson, Susan; Wissow, Lawrence S; Winegrad, Heather; Nagykaldi, Zsolt J; Olson, Ardis L; Roter, Debra L

    2015-03-01

    To evaluate how a comprehensive, computerized, self-administered adolescent screener, the DartScreen, affects within-visit patient-doctor interactions such as data gathering, advice giving, counseling, and discussion of mental health issues. Patient-doctor interaction was compared between visits without screening and those with the DartScreen completed before the visit. Teens, aged 15-19 years scheduled for an annual visit, were recruited at one urban and one rural pediatric primary care clinic. The doctor acted as his/her own control, first using his/her usual routine for five to six adolescent annual visits. Then, the DartScreen was introduced for five visits where at the beginning of the visit, the doctor received a summary report of the screening results. All visits were audio recorded and analyzed using the Roter interaction analysis system. Doctor and teen dialogue and topics discussed were compared between the two groups. Seven midcareer doctors and 72 adolescents participated; 37 visits without DartScreen and 35 with DartScreen were audio recorded. The Roter interaction analysis system defined medically related data gathering (mean, 36.8 vs. 32.7 statements; p = .03) and counseling (mean, 36.8 vs. 32.7 statements; p = .01) decreased with DartScreen; however, doctor responsiveness and engagement improved with DartScreen (mean, 4.8 vs. 5.1 statements; p = .00). Teens completing the DartScreen offered more psychosocial information (mean, 18.5 vs. 10.6 statements; p = .01), and mental health was discussed more after the DartScreen (mean, 93.7 vs. 43.5 statements; p = .03). Discussion of somatic and substance abuse topics did not change. Doctors reported that screening improved visit organization and efficiency. Use of the screener increased discussion of mental health but not at the expense of other adolescent health topics. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  8. The Akzo-Fina cold flow improvement process

    Energy Technology Data Exchange (ETDEWEB)

    Free, H.W.H.; Schockaert, T.; Sonnemans, J.W.M. (Akzo Chemicals B.V., Amersfoort (Netherlands). Hydroprocessing Catalysts)

    1993-09-01

    The Akzo-Fina CFI process is a very flexible process in which improvement of cold flow properties, desulfurization and hydroconversion are achieved. One of the main characteristics is the dewaxing obtained by the selective hydrocracking of normal paraffins combined with hydro-desulfurization and hydroconversion. Since its introduction in 1988, five licenses have been sold. The units currently run for heavy gasoil upgrading show an excellent performance and reach pour point improvements of over 50[degree]C, long cycle lengths and product sulfur levels well below 0.05 wt%. 2 figs., 2 tabs.

  9. Extension of the possibilities for disposal of the flue gas desulfurization (FGD) gypsum by the development of a process for the production of FGD gypsum. Final report. Erweiterung der Entsorgungsmoeglichkeiten von REA-Gips durch Entwicklung eines Verfahrens zur Herstellung von REA-Anhydrit aus REA-Gips. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Limmer, B.; Hueller, R.

    1990-01-01

    In the course of this research project a completly new transformation of FGD-gypsum into FGD-anhydrite has been studied. The reaction is catalysed by small quantities of sulphuric acid resulting in a FGD-anhydrite without combined water and with an orthorhombic crystal lattice. The course of reaction was thoroughly investigated by laboratory test and hypothesis have been put forward. The process engineering has been developed from laboratory to pilot plant scale. The FGD-anhydrite is technologically a novel product. The idea was to create it for cement industry as well as to put it on the filler market as a raw product. In principle, FGD-anhdrite will be suitable for the use in the cement industry due to its characteristics. However, it is not interesting for this market in this moment. With respect to the filler industry, this application will enable a further-reaching usability of the FGD-gypsum than the traditional scope of the gypsum industry. First experiments show that the specific properties of processed FGD-anhydrite may qualify it as a high-grade filler. (orig.) With 18 refs., 21 tabs., 41 figs.

  10. Continuous desulfurization and bacterial community structure of an integrated bioreactor developed to treat SO2 from a gas stream.

    Science.gov (United States)

    Lin, Jian; Li, Lin; Ding, Wenjie; Zhang, Jingying; Liu, Junxin

    2015-11-01

    Sulfide dioxide (SO2) is often released during the combustion processes of fossil fuels. An integrated bioreactor with two sections, namely, a suspended zone (SZ) and immobilized zone (IZ), was applied to treat SO2 for 6months. Sampling ports were set in both sections to investigate the performance and microbial characteristics of the integrated bioreactor. SO2 was effectively removed by the synergistic effect of the SZ and IZ, and more than 85% removal efficiency was achieved at steady state. The average elimination capacity of SO2 in the bioreactor was 2.80g/(m(3)·hr) for the SZ and 1.50g/(m(3)·hr) for the IZ. Most SO2 was eliminated in the SZ. The liquid level of the SZ and the water content ratio of the packing material in the IZ affected SO2 removal efficiency. The SZ served a key function not only in SO2 elimination, but also in moisture maintenance for the IZ. The desired water content in IZ could be feasibly maintained without any additional pre-humidification facilities. Clone libraries of 16S rDNA directly amplified from the DNA of each sample were constructed and sequenced to analyze the community composition and diversity in the individual zones. The desulfurization bacteria dominated both zones. Paenibacillus sp. was present in both zones, whereas Ralstonia sp. existed only in the SZ. The transfer of SO2 to the SZ involved dissolution in the nutrient solution and biodegradation by the sulfur-oxidizing bacteria. This work presents a potential biological treatment method for waste gases containing hydrophilic compounds. Copyright © 2015. Published by Elsevier B.V.

  11. Oxidative desulfurization of Cayirhan lignites by permanganate solution

    Energy Technology Data Exchange (ETDEWEB)

    Guru, M.; Tuzun, F.N.; Murathan, A.S.; Asan, A.; Kiyak, T. [Gazi University, Ankara (Turkey). Dept. for Chemical Engineering

    2008-07-01

    Unless important developments record new and renewable energy sources, the role of fossil fuels as an energy resource goes on. It is possible to detect sulfur, heavy metals, and tracer elements such as arsenic and selenium by decreasing calorific value of coals. Sulfur oxides, which are the main pollutants in atmosphere, are irritative to humans and plants, and erosion occurs on buildings. Although there are high lignite reservoirs, high sulfur content limits the efficient use of them. In this research, it is aimed to convert combustible sulfur in coal to non-combustible sulfur form in the ash by oxidizing it with permanganate solution. During this research, the effect of two different parameters of potassium permanganate concentration, processing time, and mean particle size were investigated at constant room temperature and shaking rate. The conversion of combustible sulfur to non-combustible sulfur form was achieved optimally with 0.14 M potassium permanganate solution, 0.1 mm mean particle size at 16 h of treatment time, and the combustible sulfur amount was decreased by 46.37% compared to undoped conditions.

  12. The production of chemicals from food processing wastes using a novel fermenter separator. Annual progress report, January 1993--March 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dale, M.C.; Venkatesh, K.V.; Choi, H.; Salicetti-Piazza, L.; Borgos-Rubio, N.; Okos, M.R.; Wankat, P.C.

    1994-03-15

    The basic objective of this project is to convert waste streams from the food processing industry to usable fuels and chemicals using novel bioreactors. These bioreactors should allow economical utilization of waste (whey, waste sugars, waste starch, bottling wastes, candy wastes, molasses, and cellulosic wastes) by the production of ethanol, acetone/butanol, organic acids (acetic, lactic, and gluconic), yeast diacetyl flavor, and antifungal compounds. Continuous processes incorporating various processing improvements such as simultaneous product separation and immobilized cells are being developed to allow commercial scale utilization of waste stream. The production of ethanol by a continuous reactor-separator is the process closest to commercialization with a 7,500 liter pilot plant presently sited at an Iowa site to convert whey lactose to ethanol. Accomplishments during 1993 include installation and start-up of a 7,500 liter ICRS for ethanol production at an industry site in Iowa; Donation and installation of a 200 liter yeast pilot Plant to the project from Kenyon Enterprises; Modeling and testing of a low energy system for recovery of ethanol from vapor is using a solvent absorption/extractive distillation system; Simultaneous saccharification/fermentation of raw corn grits and starch in a stirred reactor/separator; Testing of the ability of `koji` process to ferment raw corn grits in a `no-cook` process.

  13. THERMODYNAMIC AND KINETIC PARAMETERS OF MIXTURES DESULFURIZING THE MADE WITH CaO, MgO, SiO2 AND CaF2

    Directory of Open Access Journals (Sweden)

    Felipe Nylo de Aguiar

    2012-09-01

    Full Text Available This paper presents an analysis of the kinetics and thermodynamics of marble residue mixtures utilisation on desulfurization of pig iron. The desulfurization was carried out using lime, marble residue, fluorite and pig iron. Different mixtures of these materials were added into a bath of pig iron at 1,450°C. Metal samples were collected via vacuum samplers at times of 5, 10, 15, 20 and 30 minutes, in order to check the variation of sulfur content. Based on the results of chemical analysis of the metal and the desulfurizer mixture, the sulfide capacity of mixtures, the sulfur partition coefficient and the sulfur mass transport coefficient values were calculated.The results show the technical feasibility of using marble waste as desulfurizer agent.

  14. Effects of aqueous effluents from in situ fossil fuel processing technologies on aquatic systems. Annual progress report, January 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, H.L.

    1980-01-04

    This is the third annual progress report for a continuing EPA-DOE jointly funded project to evaluate the effects of aqueous effluents from in situ fossil-fuel processing technologies on aquatic biota. The project is organized into four project tasks: (1) literature review; (2) process water screening; (3) methods development; and (4) recommendations. Our Bibliography of aquatic ecosystem effects, analytical methods and treatment technologies for organic compounds in advanced fossil-fuel processing effluents was submitted to the EPA for publication. The bibliography contains 1314 citations indexed by chemicals, keywords, taxa and authors. We estimate that the second bibliography volume will contain approximately 1500 citations and be completed in February. We compiled results from several laboratories of inorganic characterizations of 19 process waters: 55 simulated in situ oil-shale retort waters; and Hanna-3, Hanna-4B 01W and Lawrence Livermore Hoe Creek underground coal gasification condenser waters. These process waters were then compared to a published summary of the analyses from 18 simulated in situ oil-shale retort waters. We completed this year 96-h flow-through toxicity bioassays with fathead minnows and rainbow trout and 48-h flow-through bioassays with Daphnia pulicaria exposed to 5 oil-shale process waters, 1 tar-sand process water, 2 underground coal gasification condenser waters, 1 post-gasification backflood condenser water, as well as 2 bioassays with fossil-fuel process water constituents. The LC/sub 50/ toxicity values for these respective species when exposed to these waters are given in detail. (LTN)

  15. Application of Two Cobalt-Based Metal-Organic Frameworks as Oxidative Desulfurization Catalysts.

    Science.gov (United States)

    Masoomi, Mohammad Yaser; Bagheri, Minoo; Morsali, Ali

    2015-12-07

    Two new porous cobalt-based metal-organic frameworks, [Co6(oba)5(OH)2(H2O)2(DMF)4]n · 5DMF (TMU-10) and [Co3(oba)3(O) (Py)0.5] n · 4DMF · Py (TMU-12) have been synthesized by solvothermal method using a nonlinear dicarboxylate ligand. Under mild reaction conditions, these compounds exhibited good catalytic activity and reusability in oxidative desulfurization (ODS) reaction of model oil which was prepared by dissolving dibenzothiophene (DBT) in n-hexane. FT-IR and Mass analysis showed that the main product of DBT oxidation is its corresponding sulfone, which was adsorbed on the surfaces of catalysts. The activation energy was obtained as 13.4 kJ/mol.

  16. PET-modified red mud as catalysts for oxidative desulfurization reactions.

    Science.gov (United States)

    do Prado, Nayara T; Heitmann, Ana P; Mansur, Herman S; Mansur, Alexandra A; Oliveira, Luiz C A; de Castro, Cinthia S

    2017-07-01

    This work describes the synthesis of catalysts based on red mud/polyethylene terephthalate (PET) composites and their subsequent heat treatment under N 2 atmosphere. The materials were characterized by scanning electron microscopy (SEM), temperature programmed reduction (TPR), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric (TG) analysis and N 2 adsorption/desorption. The catalysts were evaluated in the oxidative desulfurization reaction of dibenzothiophene (DBT) in a biphasic system. The results indicated that the PET impregnation on red mud increased the affinity of the catalyst with the nonpolar phase (fuel), in which the contaminant was dissolved, allowing a higher conversion (up to 80%) and selectivity to the corresponding dibenzothiophene sulfone. The sulfone compound is more polar than DBT and diffused into the polar solvent as indicated by the data obtained via gas chromatography-mass spectrometry (GC-MS). Copyright © 2017. Published by Elsevier B.V.

  17. Mechanism of extractive/oxidative desulfurization using the ionic liquid inimidazole acetate: a computational study.

    Science.gov (United States)

    Wang, Hanlu; Xu, Mingsheng; Zhou, Rujin

    2017-02-01

    The dual role of the ionic liquid 1-butyl-3-methyl-imidazolium trifluoroacetic acid ([C 4 mim]TFA) as an extractant for thiophene (TH) and a catalyst for the oxidation of TH was explored at the molecular level by performing density functional theory (DFT) calculations. The calculated interaction energies demonstrated why [C 4 mim]TFA is a better extractant for thiophene sulfone (THO 2 ) than for TH. Two pathways were proposed for the oxidation of TH to THO 2 with [C 4 mim]TFA acting as a catalyst. In the dominant pathway, a peracid is formed which then oxidizes TH to the sulfoxide and sulfones. The presence of [C 4 mim]TFA was found to greatly reduce the barrier to the oxidative desulfurization (ODS) of TH using H 2 O 2 as an oxidant. Graphical Abstract Possible reaction mechanisms of TH with the aid of [C4mim]TFAᅟ.

  18. Novel cleavage and oligomerization reactions of nickel (o) complexes. Application to homogeneous deoxygenation and desulfurization

    International Nuclear Information System (INIS)

    Eisch, J.J.; Im, K.R.

    1979-01-01

    The ease of interaction of Ni(0) complexes with organic substrates has been shown to depend upon both the ligands on nickel and the solvent. The presence of α,α'-bipyridyl with the Ni(0) complex and the alkyne led to the isolation of a nickelacyclopropene, an observation in accord with the recently proposed metallocyclic pathway for the Ni(0)-catalyzed trimerization of alkynes. Allylic and benzylic ethers and epoxides have been observed to undergo oxidative insertion of Ni(0) into their C-O bonds with solvent (TMEDA > THF (tetrahydrofuran) > Et 2 O > C 6 H 6 ) and ligand (Et 3 P (tripthyl phosphine) > Ph 3 P (triphenyl phosphine); α,α'-bipy > COD) effects consistent with an electron-transfer attack by Ni(0). With such sulfur heterocycles as dibenzothiophene, phenoxathiin, phenothiazine, and thianthrene, a 1:1 admixture of (COD) 2 Ni with α,α'-bipyridyl gave as the principal product the desulfurized, ring-contracted cyclic product

  19. Amelioration of alkali soil using flue gas desulfurization byproducts: productivity and environmental quality

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.J.; Chen, C.H.; Xu, X.C.; Li, Y.J. [Tsing Hua University, Beijing (China). Ministry of Education

    2008-01-15

    In this study, flue gas desulfurization (FGD) byproducts are used to ameliorate alkali soil. The average application rates for soils with low exchangeable sodium percentage (ESP), mid ESP, and high ESP are 20.9, 30.6, and 59.3 Mg ha{sup -1} respectively. The experimental results obtained for 3 consecutive years reveal that the emergence ratios and yields of the crops were 1.1-7.6 times and 1.1-13.9 times those of the untreated control, respectively. The concentrations of Cr, Pb, Cd, As, and Hg in the treated soils are far below the background values stipulated by the Environmental Quality Standard for Soils (GB 15618-1995). Their concentrations in the seeds of corn and alfalfa grown in the treated soils are far below the tolerance limits regulated by National Food Standards of China. The results of this research demonstrate that the amelioration of alkali soils using FGD byproducts is promising.

  20. Evidences for CYP3A4 autoactivation in the desulfuration of dimethoate by the human liver.

    Science.gov (United States)

    Buratti, Franca M; Testai, Emanuela

    2007-11-20

    Dimethoate (DIM) is an organophosphorothionate (OPT) pesticide used worldwide as a systemic insecticide and acaricide. It is characterized by low-to-moderate acute mammalian toxicity; similarly to the other OPT pesticides, its mode of action is mediated by the inhibition of acetylcholinesterase (AChE), exerted by its toxic metabolite dimethoate-oxon or omethoate (OME), which is also used as a direct acting pesticide. Human hepatic DIM bioactivation to the toxic metabolite OME has been characterized by using c-DNA expressed human CYPs and human liver microsomes (HLM) also in the presence of CYP-specific chemical inhibitors, with a method based on AChE inhibition. The obtained kinetic parameters and AChE IC(50) have been compared with those previously obtained with other OPTs, indicating a lower efficiency in DIM desulfuration reaction and a lower potency in inhibiting AChE. Results showed that, similarly to the other OPTs tested so far, at low DIM concentration OME formation is mainly catalysed by CYP1A2, while the role of 3A4 is relevant at high DIM levels. Differently from the other OPTs, DIM desulfuration reaction showed an atypical kinetic profile, likely due to CYP3A4 autoactivation. The sigmoidicity degree of the activity curve increased with the level of CYP3A4 in HLM or disappeared in the presence of a CYP3A4 chemical inhibitor. This atypical kinetic behaviour can be considered one of the possible explanations for the recent findings that among patients hospitalized following OPT intoxication, DIM ingestion gave different symptoms and more severe poisoning (23.1% of fatal cases versus total) than chlorpyrifos (8% of deaths), which has a lower LD(50) value. Since DIM-poisoned patients poorly responded to pralidoxime, the possibility to use CYP3A4 inhibitors could be considered as a complementary treatment.

  1. High-Temperature Desulfurization of Heavy Fuel-Derived Reformate Gas Streams for SOFC Applications

    Science.gov (United States)

    Flytzani-Stephanopoulos, Maria; Surgenor, Angela D.

    2007-01-01

    Desulfurization of the hot reformate gas produced by catalytic partial oxidation or autothermal reforming of heavy fuels, such as JP-8 and jet fuels, is required prior to using the gas in a solid oxide fuel cell (SOFC). Development of suitable sorbent materials involves the identification of sorbents with favorable sulfidation equilibria, good kinetics, and high structural stability and regenerability at the SOFC operating temperatures (650 to 800 C). Over the last two decades, a major barrier to the development of regenerable desulfurization sorbents has been the gradual loss of sorbent performance in cyclic sulfidation and regeneration at such high temperatures. Mixed oxide compositions based on ceria were examined in this work as regenerable sorbents in simulated reformate gas mixtures and temperatures greater than 650 C. Regeneration was carried out with dilute oxygen streams. We have shown that under oxidative regeneration conditions, high regeneration space velocities (greater than 80,000 h(sup -1)) can be used to suppress sulfate formation and shorten the total time required for sorbent regeneration. A major finding of this work is that the surface of ceria and lanthanan sorbents can be sulfided and regenerated completely, independent of the underlying bulk sorbent. This is due to reversible adsorption of H2S on the surface of these sorbents even at temperatures as high as 800 C. La-rich cerium oxide formulations are excellent for application to regenerative H2S removal from reformate gas streams at 650 to 800 C. These results create new opportunities for compact sorber/regenerator reactor designs to meet the requirements of solid oxide fuel cell systems at any scale.

  2. Enhanced sludge processing of HLW: Hydrothermal oxidation of chromium, technetium, and complexants by nitrate. 1998 annual progress report

    International Nuclear Information System (INIS)

    Buelow, S.J.; Robinson, J.M.

    1998-01-01

    'The objective of this project is to develop the scientific basis for hydrothermal separation of chromium from High Level Waste (HLW) sludges. The worked is aimed at attaining a fundamental understanding of chromium speciation, oxidation/reduction and dissolution kinetics, reaction mechanisms, and transport properties under hydrothermal conditions in both simple and complex salt solutions that will ultimately lead to an efficient chromium leaching process. This report summarizes the research over the first 1.5 years of a 3 year project. The authors have examined the dissolution of chromium hydroxide using different oxidants as a function of temperature and alkalinity. The results and possible applications to HLW sludges are discussed'

  3. Annual Research Review: An expanded account of information-processing mechanisms in risk for child and adolescent anxiety and depression.

    Science.gov (United States)

    Lau, Jennifer Y F; Waters, Allison M

    2017-04-01

    Anxiety and depression occurring during childhood and adolescence are common and costly. While early-emerging anxiety and depression can arise through a complex interplay of 'distal' factors such as genetic and environmental influences, temperamental characteristics and brain circuitry, the more proximal mechanisms that transfer risks on symptoms are poorly delineated. Information-processing biases, which differentiate youth with and without anxiety and/or depression, could act as proximal mechanisms that mediate more distal risks on symptoms. This article reviews the literature on information-processing biases, their associations with anxiety and depression symptoms in youth and with other distal risk factors, to provide direction for further research. Based on strategic searches of the literature, we consider how youth with and without anxiety and/or depression vary in how they deploy attention to social-affective stimuli, discriminate between threat and safety cues, retain memories of negative events and appraise ambiguous information. We discuss how these information-processing biases are similarly or differentially expressed on anxiety and depression and whether these biases are linked to genetic and environmental factors, temperamental characteristics and patterns of brain circuitry functioning implicated in anxiety and depression. Biases in attention and appraisal characterise both youth anxiety and depression but with some differences in how these are expressed for each symptom type. Difficulties in threat-safety cue discrimination characterise anxiety and are understudied in depression, while biases in the retrieval of negative and overgeneral memories have been observed in depression but are understudied in anxiety. Information-processing biases have been studied in relation to some distal factors but not systematically, so relationships remain inconclusive. Biases in attention, threat-safety cue discrimination, memory and appraisal may characterise

  4. Analysis of Flue Gas Desulfurization (FGD) Processes for Potential Use on Army Coal-Fired Boilers

    Science.gov (United States)

    1980-09-01

    SYSTEMS ALKALI- LIME/LIMESTONE AMMONIA SCRUBBING LIME OR LIMESTONE HC SCRUBBER INJECTION DRY SYSTEMS NAHCOLITE INJECTION BOILER INJECTION...requirements, and flexibility. Single-alkali flue gas scrubbers are gas-Hquid contacting devices that use the chemical reactions between soluble alkali... scrubbers are gas-liquid contacting devices that use the chemical reactions between limestone (mostly CaC03) and SOp to remove the oxides of sulfur from

  5. Development of Automated Production Line Processes for Solar Brightfield Modules: Annual Technical Progress Report, 1 January 2003 -- 30 June 2004

    Energy Technology Data Exchange (ETDEWEB)

    Nowlan, M. J.; Murach, J. M.; Sutherland, S. F.; Miller, D. C.; Moore, S. B.; Hogan, S. J.

    2005-06-01

    This report describes how Spire Corporation is addressing the PV Manufacturing R&D project goals of improving photovoltaic (PV) manufacturing processes and products while reducing costs and providing a technology foundation that supports significant manufacturing scale-up. To accomplish this, we are focusing our efforts on the design of a large-area utility-scale module and the development of the necessary manufacturing techniques and equipment to manufacture such a module in a high-volume production environment. A three-phase program is under way for developing and demonstrating new automated systems for fabricating very large PV modules ideal for use in multi-megawatt grid-connected applications. We designed a large-area 800 W module and we are developing associated module production equipment that will minimize the total installed system cost for utility-scale PV arrays. Unique features of the module design include a cantilevered glass superstrate to reduce the glass thickness a nd internally laminated bypass diodes that simplify internal busing and junction-box designs. Other program activities include the development of automation for solar cell string inspections, string busing, materials lay-up, and lamination; enhancements to the lamination process; and performance testing of large-area modules.

  6. Investigation of the chemical pathway of gaseous nitrogen dioxide formation during flue gas desulfurization with dry sodium bicarbonate injection

    Science.gov (United States)

    Stein, Antoinette Weil

    The chemical reaction pathway for the viable flue gas desulfurization process, dry sodium bicarbonate injection, was investigated to mitigate undesirable plume discoloration. Based on a foundation of past findings, a simplified three-step reaction pathway was hypothesized for the formation of the plume-discoloring constituent, NO2. As the first step, it was hypothesized that sodium sulfite formed by sodium bicarbonate reaction with flue gas SO 2. As the second step, it was hypothesized that sodium nitrate formed by sodium sulfite reaction with flue gas NO. And as the third step, it was hypothesized that NO2 and sodium sulfate formed by sodium nitrate reaction with SO2. The second and third hypothesized steps were experimentally investigated using an isothermal fixed bed reactor. As reported in the past, technical grade sodium sulfite was found to be un-reactive with NO and O2. Freshly prepared sodium sulfite, maintained unexposed to moist air, was shown to react with NO and O2 resulting in a mixture of sodium nitrite and sodium nitrate together with a significant temperature rise. This reaction was found to proceed only when oxygen was present in the flue gas. As reported in the past, technical grade sodium nitrate was shown to be un-reactive with SO2. But freshly formed sodium nitrate kept unexposed to humidity was found to be reactive with SO2 and O 2 resulting in the formation of NO2 and sodium sulfate polymorphic Form I. The NO2 formation by this reaction was shown to be temperature dependent with maximum formation at 175°C. Plume mitigation methods were studied based on the validated three-step reaction pathway. Mitigation of NO2 was exhibited by limiting oxygen concentration in the flue gas to a level below 5%. It was also shown that significant NO2 mitigation was achieved by operating below 110°C or above 250°C. An innovative NO2 mitigation method was patented as a result of the findings of this study. The patented process incorporated a process step of

  7. Silver nanocrystal-decorated polyoxometalate single-walled nanotubes as nanoreactors for desulfurization catalysis at room temperature.

    Science.gov (United States)

    Zhang, Hao; Xu, Xiaobin; Lin, Haifeng; Ud Din, Muhammad Aizaz; Wang, Haiqing; Wang, Xun

    2017-09-14

    Ultrathin nanocrystals generally provide a remarkable catalytic performance due to their high specific surface area and exposure of certain active sites. However, deactivation caused by growth and gathering limits the catalytic application of ultrathin nanocrystals. Here we report Ag nanocrystal-decorated polyoxometalate (Ag-POM) single-walled nanotubes assembled via a concise, surfactant-free soaking method as a new kind of well-defined core-sheath nanoreactor. The diameter of Ag nanocrystals inside polyoxometalate nanotubes can be controlled via simply adjusting the reactant concentration. Ag-POM provided outstanding oxidative desulfurization (ODS) catalytic performance for aromatic sulfocompounds at room temperature. It was suggested that Ag nanocrystals decorated on the inner surface played a key role in adjusting the electronic distribution and enhancing the catalytic activity. The as-prepared Ag-POM nanotubes are promising candidate catalysts with enhanced performance for practical catalytic applications in the gasoline desulfurization industry.

  8. 2. Annual Workshop Proceedings of the Integrated Project 'Fundamental Processes of Radionuclide Migration' - 6. EC FP IP FUNMIG

    International Nuclear Information System (INIS)

    Buckau, Gunnar; Kienzler, Bernhard; Duro, Lara; Montoya, Vanessa

    2007-06-01

    This Workshop combined various types of activities and meetings with the following objectives: Inform about the scientific progress; Inform about the administrative status; Inform/agree upon forthcoming reporting; Discuss various topics of interest (for example, various aspects of Integration ); Inform about and discuss training; Agree upon the forthcoming work program. Emphasis was on scientific-technical topics with administrative issues kept to the minimum necessary. The proceedings are divided into the following sections: Research, Technology and Development Components activity overviews, with summaries where scientific highlights were presented. These were: RTDC1: Influence of inorganic carbon of Ni(II) and Co(II) sorption on Na-illite and Opalinus clay; Adsorption of humics to iron oxides and its effects on ion adsorption. RTDC2: Sorption of Uranium onto granite and altered material from Aespoe HRL; Sorption and reduction of uranyl by Fe(II) minerals; Mobility of uranium during the reductive dissolution of iron oxides by sulfide; U(VI/IV) adsorption mechanism on biotite surfaces and clarification of the influence of redox reactions on the U(VI) adsorption. RTDC3: Interlayer hydration H 2 O 'paradigm' (mono-porosity model); Porosity/mineral distribution characterisation (mm-cm scale), GIS system for CO x 'transport pertinent' data sets. A topical session was held around subjects associated with performance assessment/the Safety Case, especially relevant for geologic disposal in crystalline rock. The topics were: Role of biogeochemical processes on radionuclide migration; Characterization of geochemical conditions in crystalline rock/ Process identification and verification by real system analysis; Fluid flow system characterization in crystalline rock (Effects of the heterogeneity and up-scaling). Individual Scientific and Technical Contributions, containing reviewed scientific and technical manuscripts: European OBservatory for Long-term Governance on

  9. 2. Annual Workshop Proceedings of the Integrated Project 'Fundamental Processes of Radionuclide Migration' - 6. EC FP IP FUNMIG

    Energy Technology Data Exchange (ETDEWEB)

    Buckau, Gunnar; Kienzler, Bernhard [FZK - Inst. fuer Nukleare Entsorgung, Ka rlsruhe (Germany); Duro, Lara; Montoya, Vanessa [Enviros Spain S.L., Barcelona (Spai n)

    2007-06-15

    This Workshop combined various types of activities and meetings with the following objectives: Inform about the scientific progress; Inform about the administrative status; Inform/agree upon forthcoming reporting; Discuss various topics of interest (for example, various aspects of Integration ); Inform about and discuss training; Agree upon the forthcoming work program. Emphasis was on scientific-technical topics with administrative issues kept to the minimum necessary. The proceedings are divided into the following sections: Research, Technology and Development Components activity overviews, with summaries where scientific highlights were presented. These were: RTDC1: Influence of inorganic carbon of Ni(II) and Co(II) sorption on Na-illite and Opalinus clay; Adsorption of humics to iron oxides and its effects on ion adsorption. RTDC2: Sorption of Uranium onto granite and altered material from Aespoe HRL; Sorption and reduction of uranyl by Fe(II) minerals; Mobility of uranium during the reductive dissolution of iron oxides by sulfide; U(VI/IV) adsorption mechanism on biotite surfaces and clarification of the influence of redox reactions on the U(VI) adsorption. RTDC3: Interlayer hydration H{sub 2}O 'paradigm' (mono-porosity model); Porosity/mineral distribution characterisation (mm-cm scale), GIS system for CO{sub x} 'transport pertinent' data sets. A topical session was held around subjects associated with performance assessment/the Safety Case, especially relevant for geologic disposal in crystalline rock. The topics were: Role of biogeochemical processes on radionuclide migration; Characterization of geochemical conditions in crystalline rock/ Process identification and verification by real system analysis; Fluid flow system characterization in crystalline rock (Effects of the heterogeneity and up-scaling). Individual Scientific and Technical Contributions, containing reviewed scientific and technical manuscripts: European OBservatory for Long-term Governance

  10. Processing of high level waste: Spectroscopic characterization of redox reactions in supercritical water. 1998 annual progress report

    International Nuclear Information System (INIS)

    Arrington, C.A. Jr.

    1998-01-01

    'The author is engaged in a collaborative research effort with Los Alamos staff scientists Steven Buelow, Jeanne Robinson, and Bernie Foy all staff members in group CST-6. The work proposed by these LANL staff scientists is directed towards the destruction of complexants and oxidation of chromium and technetium by hydrothermal processing in near critical or supercritical aqueous solutions. The work addresses two areas of investigation related to ongoing efforts at LANL: (1) kinetic studies of oxidation-reduction reactions in supercritical water; (2) measurement of physical properties of ionic solutes in supercritical water. All of the work during this first year was carried out at Los Alamos National Lab. During the Summer program at LANL all equipment and supplies were provided through Dr. Buelow''s program at LANL. The author has now set up a Raman spectroscopy lab at Furman. Using departmental funds he purchased an optical bench, a laser, and a CCD detector, and a grant from the Dreyfus Foundation assisted in the purchase of a Raman spectrometer. He is now able to carry out experiments using the Raman system at Furman. The plan is to continue the Summer collaboration at LANL and carry out experiments at Furman during the academic year.'

  11. Selective desulfurization of cysteine in the presence of Cys(Acm) in polypeptides obtained by native chemical ligation.

    Science.gov (United States)

    Pentelute, Brad L; Kent, Stephen B H

    2007-02-15

    Increased versatility for the synthesis of proteins and peptides by native chemical ligation requires the ability to ligate at positions other than Cys. Here, we report that Raney nickel can be used under standard conditions for the selective desulfurization of Cys in the presence of Cys(Acm). This simple and practical tactic enables the more common Xaa-Ala junctions to be used as ligation sites for the chemical synthesis of Cys-containing peptides and proteins. [reaction: see text].

  12. Kinetics and mechanisms of metal retention/release in geochemical processes in soil. 1998 annual progress report

    International Nuclear Information System (INIS)

    Taylor, R.W.

    1998-01-01

    'The long-term fate of toxic metals in soils cannot be precisely predicted, and often remediation recommendations and techniques may be ineffective or unnecessary. This work will generate basic knowledge on the kinetics and mechanism(s) of heavy metal retention/release by soil mineral colloids. The information should assist in improving remediation strategies for toxic heavy metal contaminated soils. The objectives are: (1) To determine the effects of residence time on the mechanisms of Cr(VI), Cu(II), Co(II), Cd(II), Pb(II), and Ni(II) sorption/release on Fe and Al oxide and clay mineral surfaces using kinetic studies coupled to extended x-ray absorption fine structure (EXAFS) spectroscopy and fourier transform infrared (FTIR) spectroscopy. (2) To study the effect of temperature, pH, and phosphate on metal sorption by oxides, and derive thermodynamic parameters to describe the sorption process. As of June, 16, 1997 several clay minerals were tested for their efficiency of removing Cr from aqueous systems. The materials tested--smectite, vermiculites, illites, and kaolinite--represent the natural clay minerals that are abundant in soils and sediments. The clays were used in either their original or reduced (reduced with sodium dithionite) forms. The experimental result indicate that the reduced clays acted as an efficient remover of Cr(VI) from an aqueous system. The XANES spectra of Cr-treated clays provided evidence that the clays reduced Cr(VI) to Cr(III) and immobilized Cr in the clays at the same time. Sodium dithionite applied directly into aqueous systems reduced Cr(VI) to Cr(III), but could not immobilize Cr even in the presence of the clays. The Cr(VI) removal capacity varied with the clay mineral type and the structural Fe content. For the clays used in this study, the removal capacity follows the orders of smectites > vermiculites and illites > kaolinite. Within the same type of clay minerals, reduction of Cr(VI) is highly related to the ferrous iron

  13. CO{sub 2} Huff-n-Puff process in a light oil shallow shelf carbonate reservoir. 1994 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Wehner, S.C.

    1995-05-01

    It is anticipated that this project will show that the application of the CO{sub 2} Huff-n-Puff process in shallow shelf carbonates can be economically implemented to recover appreciable volumes of light oil. The goals of the project are the development of guidelines for cost-effective selection of candidate reservoirs and wells, along with estimating recovery potential. The selected site for the demonstration project is the Central Vacuum Unit waterflood in Lea County, New Mexico. Work is nearing completion on the reservoir characterization components of the project. The near-term emphasis is to, (1) provide an accurate distribution of original oil-in-place on a waterflood pattern entity level, (2) evaluate past recovery efficiencies, (3) perform parametric simulations, and (4) forecast performance for a site specific field demonstration of the proposed technology. Macro zonation now exists throughout the study area and cross-sections are available. The Oil-Water Contact has been defined. Laboratory capillary pressure data was used to define the initial water saturations within the pay horizon. The reservoir`s porosity distribution has been enhanced with the assistance of geostatistical software. Three-Dimensional kriging created the spatial distributions of porosity at interwell locations. Artificial intelligence software was utilized to relate core permeability to core porosity, which in turn was applied to the 3-D geostatistical porosity gridding. An Equation-of-State has been developed and refined for upcoming compositional simulation exercises. Options for local grid-refinement in the model are under consideration. These tasks will be completed by mid-1995, prior to initiating the field demonstrations in the second budget period.

  14. Energetic Materials - Technology, Manufacturing and Processing, 27th International Annual Conference of ICT June 25 - June 28, 1996 Karisruhe, Federal Republic of Germany

    National Research Council Canada - National Science Library

    1997-01-01

    .... The 27th International ICT Annual Conference centers at the discussion of the art in research and development of modern rocket propellants, explosives, gun propellants and pyrotechnics emphasizing...

  15. Enhancing mercury removal across air pollution control devices for coal-fired power plants by desulfurization wastewater evaporation.

    Science.gov (United States)

    Bin, Hu; Yang, Yi; Cai, Liang; Yang, Linjun; Roszak, Szczepan

    2017-10-09

    Desulfurization wastewater evaporation technology is used to enhance the removal of gaseous mercury (Hg) in conventional air pollution control devices (APCDs) for coal-fired power plants. Studies have affirmed that gaseous Hg is oxidized and removed by selective catalytic reduction (SCR), an electrostatic precipitator (ESP) and wet flue gas desulfurization (WFGD) in a coal-fired thermal experiment platform with WFGD wastewater evaporation. Effects of desulfurization wastewater evaporation position, evaporation temperature and chlorine ion concentration on Hg oxidation were studied as well. The Hg 0 oxidation efficiency was increased ranging from 30% to 60%, and the gaseous Hg removal efficiency was 62.16% in APCDs when wastewater evaporated before SCR. However, the Hg 0 oxidation efficiency was 18.99% and the gaseous Hg removal efficiency was 40.19% in APCDs when wastewater evaporated before ESP. The results show that WFGD wastewater evaporation before SCR is beneficial to improve the efficiency of Hg oxidized and removed in APCDs. Because Hg 2+ can be easily removed in ACPDs and WFGD wastewater in power plants is enriched with chlorine ions, this method realizes WFGD wastewater zero discharge and simultaneously enhances Hg removal in APCDs.

  16. 1998 Annual Study Report. Standardization of manufacturing process systems; 1998 nendo seika hokokusho. Seisan process system no hyojunka (STEP kiban kikaku no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The standards for exchanging and sharing product model data are being internationalized, mainly by ISO-10303 (STEP). The current specifications are not fully developed to include all of the functions needed by the industrial circles, e.g., the functions capable of expressing dynamic product models useful for design alterations and manufacturing processes. In order to solve these problems, and, in particular, to propose the specifications which meet the functions required by the domestic industries, the necessary conditions which the STEP basic specifications should satisfy are investigate to propose the Japan-developed international specifications. One of the major results of the efforts in this year is development of the functional model (I-AAM) which allows to analyze the functions to be proposed for the specifications for the mechanical production processes in the Japanese industries. The necessary data model candidates can be selected by the aid of the model. The efforts will be further continued in and after the next year, based on the results obtained in this year, to eventually develop the specifications which can be registered by NWI. (NEDO)

  17. Annual Report 1985

    International Nuclear Information System (INIS)

    Muenze, R.

    1986-06-01

    This annual report covers the work carried out at the Radioisotope Department, ZfK Rossendorf, during the year 1985. It contains 12 contributions related to the development of processes for generating radioisotopes, 23 contributions related to the synthesis of radioactive compounds, and 26 contributions related to the characterization of radioactive compounds. All contributions are published in summary form only and are individually processed for the INIS database. Additionally, a list is given of publications and lectures issued between January and December 1985

  18. 2012 CPES Annual Report

    OpenAIRE

    Virginia Tech. Center for Power Electronics Systems

    2012-01-01

    The Center for Power Electronics Systems at Virginia Tech is a research center dedicated to improving electrical power processing and distribution that impact systems of all sizes – from battery – operated electronics to vehicles to regional and national electrical distribution systems. Our mission is to provide leadership through global collaborative research and education for creating advanced electric power processing systems of the highest value to society. CPES, with annual research expe...

  19. NERSC 2001 Annual Report; ANNUAL

    International Nuclear Information System (INIS)

    Hules, John

    2001-01-01

    The National Energy Research Scientific Computing Center (NERSC) is the primary computational resource for scientific research funded by the DOE Office of Science. The Annual Report for FY2001 includes a summary of recent computational science conducted on NERSC systems (with abstracts of significant and representative projects); information about NERSC's current systems and services; descriptions of Berkeley Lab's current research and development projects in applied mathematics, computer science, and computational science; and a brief summary of NERSC's Strategic Plan for 2002-2005

  20. Biogas desulfurization with a new developed doped activated carbon. 20 month pilot test; Biogasfeinentschwefelung mittels neu entwickelter dotierter Aktivkohle. 20-monatiger Praxistest

    Energy Technology Data Exchange (ETDEWEB)

    Rossow, Silvana; Deerberg, Goerge; Goetze, Toralf; Kanswohl, Norbert; Nelles, Michael [Univ. Rostock (Germany). Lehrstuhl fuer Abfall- und Stoffstromwirtschaft

    2009-05-15

    Doped activated carbon is a special developed activated carbon for the desulfurization of technical gases. Based on its special adsorption properties, it is able to bond a large amount of hydrogen sulfide. By the special manufacturing method it was possible to optimize further the performance for the desulfurization of gases. In a biogas plant with an installed electric capacity of 2 MW the functionality of the doped activated carbon was proofed in a real biogas stream in a 20 month pilot test. The activated carbon was used in a special adsorption system that was tunes on the requirement of the activated carbon and on the site of installation. Because the biogas plant was in the starting period, all the time there were variable operation conditions. In spite of the variable conditions the doped activated carbon shows a permanent complete desulfurization, as in the executed laboratory experiments. By the use of the desulfurization system the concentration of hydrogen sulfide is decreased less than 1 ppm. The prejudices with are often caused by hydrogen sulphide could not identify until now. A positive evidence of the excellent desulfurization is the doubling of the oil lifetime of the block heating station. (orig.)

  1. Scientific annual report 1980 DESY

    International Nuclear Information System (INIS)

    This annual report contains a survey about the organization of DESY, a description of the different experiments performed at DESY and the developments in accelerator technology and data processing, as well as a list of publications and speeches. (HSI) [de

  2. Impact of operating state changes on the behaviour of mercury in wet fuel gas desulfurization plants; Auswirkung von Betriebszustandsaenderungen auf das Verhalten von Quecksilber in nassen Rauchgasentschwefelungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Heidel, Barna; Farr, Silvio; Brechtel Kevin [Institut fuer Feuerungs- und Kraftwerkstechnik (IFK), Universitaet Stuttgart (Germany); Scheffknecht, Guenter [EnBW Kraftwerke AG, Stuttgart (Germany); Thorwarth, Harald

    2011-07-01

    During the combustion of coal, mercury is released in its elemental form and is oxidized by existing flue gas purification plants. Changing operating conditions may result in a re-emission of elemental mercury. With regard to future demands, knowledge of the operation stability is necessary in order to prevent re-emissions from wet flue gas desulphurisation plants. With this in mind, the authors of the contribution under consideration investigate the behaviour of sulfur dioxide and mercury at laboratory scale and pilot plant scale. At first, the effects of load changes, the starting and stopping of flue gas desulfurization systems and the fuel switch on the deposition of sulfur dioxide and mercury are presented. Furthermore, the changes in the suspension solution with regard to the composition, the pH value and the redox potential will be described. In addition, operating conditions resulting in the re-emission of elemental mercury are discussed in detail. Finally, measures such as the change in the L/G value, the adjustment of the addition of air oxidation as well as the possibility of an early process adaptation and their influences on the re-emission of elemental mercury are considered.

  3. Adsorptive Desulfurization of Model Gasoline by Using Different Zn Sources Exchanged NaY Zeolites

    Directory of Open Access Journals (Sweden)

    Jingwei Rui

    2017-02-01

    Full Text Available A series of Zn-modified NaY zeolites were prepared by the liquid-phase ion-exchange method with different Zn sources, including Zn(NO32, Zn(Ac2 and ZnSO4. The samples were tested as adsorbents for removing an organic sulfur compound from a model gasoline fuel containing 1000 ppmw sulfur. Zn(Ac2-Y exhibited the best performance for the desulfurization of gasoline at ambient conditions. Combined with the adsorbents’ characterization results, the higher adsorption capacity of Zn(Ac2-Y is associated with a higher ion-exchange degree. Further, the results demonstrated that the addition of 5 wt % toluene or 1-hexene to the diluted thiophene (TP solution in cyclohexane caused a large decrease in the removal of TP from the model gasoline fuel. This provides evidence about the competition through the π-complexation between TP and toluene for adsorption on the active sites. The acid-catalyzed alkylation by 1-hexene of TP and the generated complex mixture of bulky alkylthiophenes would adsorb on the surface active sites of the adsorbent and block the pores. The regenerated Zn(Ac2-Y adsorbent afforded 84.42% and 66.10% of the initial adsorption capacity after the first two regeneration cycles.

  4. Research improvement in Zn-based sorbent for hot gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    X. Bu; Y. Ying; C. Zhang; W. Peng [China Coal Research Institute (CCRI), Beijing (China). Beijing Research Institute of Coal Chemistry

    2005-07-01

    Two Zn-based sorbents, named as L-991 and L-992, used for hot gas desulfurization were developed. The L-992, which was prepared by changing the Zn/Ti ratio and adding a certain proportion of Cu and Mn metal oxide, acquired better performance than L-991. The suitable desulfurisation temperature was 600-700{sup o}C for the L-991 and 600-800{sup o}C for the L-992. The sulfur capacity was about 16 g/100 g and 19-21 g/100 g of L-991 and L-992 respectively. After 17 multi-cycles sulfidation/regeneration tests, the sulfur capacity of the L-991 decreased greatly, while that of the L-992 still remained at 17 g/100 g. Both the sorbents showed orderly crystalline orientation and the particle size did not change. Sulfidation and regeneration tests were done both on lab micro-fixed bed reactor and SMOVEN equipment. During the continuous tests, the H{sub 2}S concentration can be reduced from about 10 g/m{sup 3} to less than 20 mg/m{sup 3}, the H{sub 2}S removal efficiency being {gt} 99%. 14 refs., 9 figs., 2 tabs.

  5. Oxidative desulfurization-fluorination of thioethers. Application for the synthesis of fluorinated nitrogen containing building blocks.

    Science.gov (United States)

    Hugenberg, Verena; Fröhlich, Roland; Haufe, Günter

    2010-12-21

    An oxidative desulfurization-fluorination protocol has been used to synthesize (2S)-2-(difluoromethyl)-N-tosylpyrrolidine (6a) and (2S)-2-(trifluoromethyl)-N-tosylpyrrolidine (7a) from the (2S)-prolinol-derived (2S)-2-(4-chlorophenylthiomethyl)-N-tosylpyrrolidine (9) or (2S)-2-(dithian-2-yl)-N-tosylpyrrolidine (5). Efforts to prepare 3,3-difluoroalanine similarly from an N-protected S-aryl-cysteine ester 17 gave only traces of the target compound 18. Instead, an unique N-(α,α-difluorobenzyl)-N-α',α'-dibromoglycine ester 19 was formed by an unprecedented sequence of reaction steps. A plausible mechanism is suggested involving a sulfur-assisted deoxygenation-difluorination of an imino oxygen and a haloform reaction like carbon-carbon bond fission as key-steps. Efforts to prepare (2S)-2-(fluoromethyl)-N-tosylpyrrolidine (12) from (2S)-N-tosylprolinol (3) by treatment with Fluolead™ (1-tert-butyl-4-trifluorosulfanyl-3,5-dimethylbenzene) gave only 5% of the target compound, but 95% of (3R)-3-fluoro-N-tosylpiperidine (11a) by ring enlargement.

  6. Influence of surface phenomena in oxidative desulfurization with WOx/ZrO2 catalysts

    Science.gov (United States)

    Torres-García, E.; Canizal, G.; Velumani, S.; Ramírez-Verduzco, L. F.; Murrieta-Guevara, F.; Ascencio, J. A.

    2004-12-01

    Oil refinery related catalysis, particularly hydro desulfurization is viewed as a mature technology, but still we view that more efforts have to be made to boost the efficiency of the existing catalysts. So in this article we report the use of WOx/ZrO2 catalysts for the oxidation of dibenzothiophene (DBT) as a more effective material in nanometer scales. The WOx/ZrO2 samples were prepared by solid impregnation of ZrO2-x(OH)2x with ammonium metatungstate solution maintaining the pH at 10. Detailed structural and surface morphological analyses were carried out using Raman spectroscopy and Atomic force microscopy. In order to understand the catalytic activity which is largely influenced by the surface morphology, an interpretation based on the experimental results is given. The results showed an important correlation between the catalytic efficiency with the morphology of the surface which is identified as arrays of planes with steps of around 10 nm with the structures showing faceting with a preferential angle of 90°. It was established that when the number of W atoms in the surface increase the catalytic efficiency also increases. Thus we conclude that the material efficiency as a catalyst is directly related with the surface structure.

  7. Oxidative Desulfurization of Dibenzothiophene Using Dawson Type Heteropoly Compounds/Tantalum as Catalyst

    Directory of Open Access Journals (Sweden)

    Risfidian Mohadi

    2016-03-01

    Full Text Available Catalyst (NH46[b-P2W18O62]/Ta has been synthesized by simple wet impregnation at 30-40 °C under atmospheric conditions using Dawson type polyoxometalate (NH46[b-P2W18O62] and tantalum. The catalyst was characterized by FTIR spectrophotometer, XRD, SEM, and N2 adsorption desorption methods. FTIR spectrum of (NH46[b-P2W18O62]/Ta showed that Dawson type polyoxometalate (NH46[b-P2W18O62] and Ta was successfully impregnated which was indicated by vibration spectrum at wavenumber of 900-1100 cm-1 for polyoxometalate and 550 cm-1 for Ta. The surface area of the (NH46[b-P2W18O62]/Ta after impregnation was higher than (NH46[b-P2W18O62]•nH2O and its morphology was found to be uniform. The catalytic activity of (NH46[b-P2W18O62]/Ta toward desulfurization of dibenzothiophene was three times higher than the original catalyst of (NH46[b-P2W18O62]•nH2O without impregnation. The catalytic regeneration test of catalyst (NH46[b-P2W18O62]/Ta showed that the catalytic activity for first regeneration of catalyst has similar catalytic activity with the fresh catalyst without loss of catalytic activity indicated by almost similar percent conversion.

  8. A polyoxometalate-encapsulating cationic metal-organic framework as a heterogeneous catalyst for desulfurization.

    Science.gov (United States)

    Hao, Xiu-Li; Ma, Yuan-Yuan; Zang, Hong-Ying; Wang, Yong-Hui; Li, Yang-Guang; Wang, En-Bo

    2015-02-23

    A new cationic triazole-based metal-organic framework encapsulating Keggin-type polyoxometalates, with the molecular formula [Co(BBPTZ)3][HPMo12O40]⋅24 H2O [compound 1; BBPTZ = 4,4'-bis(1,2,4-triazol-1-ylmethyl)biphenyl] is hydrothermally synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X-ray diffraction, and single-crystal X-ray diffraction. The structure of compound 1 contains a non-interpenetrated 3D CdSO4 (cds)-type framework with two types of channels that are interconnected with each other; straight channels that are occupied by the Keggin-type POM anions, and wavelike channels that contain lattice water molecules. The catalytic activity of compound 1 in the oxidative desulfurization reaction indicates that it is not only an effective and size-selective heterogeneous catalyst, but it also exhibits distinct structural stability in the catalytic reaction system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Attapulgite-CeO2/MoS2 ternary nanocomposite for photocatalytic oxidative desulfurization

    Science.gov (United States)

    Li, Xiazhang; Zhang, Zuosong; Yao, Chao; Lu, Xiaowang; Zhao, Xiaobing; Ni, Chaoying

    2016-02-01

    Novel attapulgite(ATP)-CeO2/MoS2 ternary nanocomposites were synthesized by microwave assisted assembly method. The structures of the nanocomposites were characterized by XRD, FT-IR, UV-vis, XPS and in situ TEM. The photocatalytic activities of ATP-CeO2/MoS2 composites were investigated by degradating dibenzothiophene (DBT) in gasoline under visible light irradiation. The effect of the mass ratio of CeO2 to MoS2 on photocatalytic activity was investigated. The results indicate that the three-dimensional network structure is firmly constructed by ATP skeleton, CeO2 particles and MoS2 nanosheet which effectively increase the surface area of the composites and promote the separation of electrons and holes by resulting electronic transmission channels of multi-channel in space. The degradation rate of DBT can reach 95% under 3 h irradiation when the mass ratio of CeO2/MoS2 is 4/10. A plausible mechanism for the photocatalytic oxidative desulfurization of this nanocomposite is put forward.

  10. Ultra-deep desulfurization via reactive adsorption on peroxophosphomolybdate/agarose hybrids.

    Science.gov (United States)

    Xu, Jian; Li, Huacheng; Wang, Shengtian; Luo, Fang; Liu, Yunyu; Wang, Xiaohong; Jiang, Zijiang

    2014-09-01

    A catalyst system composed of peroxophosphomolybdates as catalytic center and agarose as matrix material had been designed. The [C16H33N(CH3)3]3[PO4{MoO(O2)2}4]/agarose (C16PMo(O2)2/agarose) hybrid was found to be active for oxidation desulfurization (ODS) of dibenzothiophene (DBT) or real fuel into corresponding sulfone by H2O2 as an oxidant, while the sulfur content could be reduced to 5ppm. The higher activity comes from its components including [PO4{MoO(O2)2}4] catalytic sites, the hydrophobic quaternary ammonium cation affinity to low polarity substrates, and agarose matrix affinity to H2O2 and sulfone. During the oxidative reaction, the mass transfer resistance between H2O2 and organic sulfurs could be decreased and the reaction rate could increase by the assistance of agarose and hydrophobic tails of [C16H33N(CH3)3]3[PO4{MoO(O2)2}4]. Meanwhile, the oxidative products could be adsorbed by agarose matrix to give clean fuel avoiding the post-treatment. In addition, the hybrid was easily regenerated to be reused. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Heterogeneous oxidative desulfurization of diesel fuel catalyzed by mesoporous polyoxometallate-based polymeric hybrid.

    Science.gov (United States)

    Yang, Huawei; Jiang, Bin; Sun, Yongli; Zhang, Luhong; Huang, Zhaohe; Sun, Zhaoning; Yang, Na

    2017-07-05

    In this work, the simple preparation of novel polymer supported polyoxometallates (POMs) catalysts has been reported. Soluble task-specific cross-linked poly (ionic liquid) (PIL) was prepared with N,​N-​dimethyl-​dodecyl-​(4-​vinylbenzyl) ammonium chloride and divinylbenzene as co-monomers. The as-prepared cationic PILs were assembled with different commercial POMs to form the interlinked mesoporous catalysts, and the formation mechanism was provided. The catalytic oxidation activities of the catalysts were closely related to the formation pathway of their corresponding peroxide active species. The catalyst with H 2 W 12 O 42 10- as counterion, which exhibited the best activity in the oxidation of benzothiophene (BT) and dibenzothiophene (DBT) to sulfones in model oil with hydrogen peroxide (H 2 O 2 , 30wt%) as oxidant, was characterized by different techniques and systematically studied for its sulfur removal performance. As for the oxidative desulfurization of a real diesel, it was observed that almost all of the original sulfur compounds could be completely converted, and the catalyst could be reused for at least eight cycles without noticeable changes in both catalytic activity and chemical structure. In the end, a catalytic mechanism was put forward with the assistant of Raman analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Bicarbonate-induced activation of H₂O₂ for metal-free oxidative desulfurization.

    Science.gov (United States)

    Bokare, Alok D; Choi, Wonyong

    2016-03-05

    Efficient oxidative desulfurization (ODS) of model oil containing dibenzothiophene (DBT) and aromatic thiophenic derivatives has been achieved at room temperature using hydrogen peroxide activation by inorganic bicarbonate (HCO3(-)). Using in-situ formation of peroxymonocarbonate as oxidant, the transformation of main model substrate DBT to corresponding DBT-sulfone was easily accomplished in biphasic reaction conditions. In the presence of water-acetonitrile polar phase, increasing the water content upto 50% decreased the extraction capacity more than 3 times, but ∼ 90% DBT oxidation was still achieved. The oxidizing capacity of bicarbonate catalyst was maintained during repeated ODS cycles, but DBT removal efficiency was critically dependent on the extraction capacity of the polar phase. Under heterogeneous reaction conditions, bicarbonate-modified ion-exchange resin achieved similar ODS activity compared to the homogeneous catalytic system. Additionally, the efficient formation of peroxymonocarbonate using gaseous CO2 precursor in alkaline conditions was also utilized for DBT oxidation. The present study proposes the NaHCO3/H2O2 catalytic system as an efficient and cheap metal-free alternative for the oxidative removal of aromatic sulfur compounds from fuel oil. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Desulfurization reaction of high sulfur content flue gas treated by electron beam

    International Nuclear Information System (INIS)

    Hirosawa, Shojiro; Suzuki, Ryoji; Aoki, Shinji; Kojima, Takuji; Hashimoto, Shoji

    2002-01-01

    Experiments of flue gas treatment by electron beam were carried out, using simulated ligniteburning flue gas containing SO 2 (5500 ppm), NO (390 ppm) and H 2 O (22%). Removal efficiency of SO 2 was more than 90% at a dose of 1-2 kGy. It shows applicability of electron beam for treatment of lignite-burning flue gas. Another removal reaction besides the radiation-induced radical reaction and the thermal reaction occurring without irradiation was suggested by the facts that removal of SO 2 by the radical reaction is only a few hundreds of ppm and the removal amounts by thermal reaction under irradiation is lower than a half of total desulfurization. The mechanism similar to thermal reaction was proposed, assuming simultaneous uptake reaction of SO 2 and NH 3 on the surface of liquid aerosol. It was suggested that ammonium nitrate having deliquescence relative humidity (DRH) of 60% at 25 deg C plays an important role in producing liquid aerosols. Decrease of DRH of ammonium nitrate with elevating temperature and with formation of double salt of ammonium sulfate results in enhancement of formation of liquid aerosols. (author)

  14. Screening of active metals for reactive adsorption desulfurization adsorbent using density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Zhao, Liang, E-mail: liangzhao@cup.edu.cn; Xu, Chunming; Wang, Yuxian; Gao, Jinsen

    2017-03-31

    Highlights: • Electronic characteristics determined adsorption characteristics of transition metals. • Cobalt has the similar adsorption ability of thiophene as nickel. • Adsorption capacity of Cr and Mo was extremely fierce, while Cu has the potential ability for adsorbing thiophene. • The preference adsorption site for thiophene was hollow site on all the seven surface. - Abstract: To explore characteristics of active metals for reactive adsorption desulfurization (RADS) technology, the adsorption of thiophene on M (100) (M = Cr, Mo, Co, Ni, Cu, Au, and Ag) surfaces was systematically studied by density functional theory with vdW correction (DFT + D3). We found that, in all case, the most stable molecular adsorption site was the hollow site and adsorptive capabilities of thiophene followed the order: Cr > Mo > Co ≈ Ni > Cu > Au ≈ Ag. By analyzing the nature of binding between thiophene and corresponding metals and the electronic structure of metals, the excessive activities of Cr and Mo were found to have a negative regeneration, the passive activities of Au and Ag were found to have an inactive adsorption for RADS adsorbent alone, while Ni and Co have appropriate characteristics as the active metals for RADS, followed by Cu.

  15. Industrial application of gasoline aromatization and desulfurization technology in Hohhot refinery

    Directory of Open Access Journals (Sweden)

    Li Zixia

    2017-01-01

    Full Text Available Gasoline aromatization and desulfurization (GARDES technology is extensively used in refineries of Petrochina, aiming to produce high quality ultraclean fluid catalytic cracking (FCC gasoline. This article introduces the industrial application results on the hydrodesulfurization unit of the Hohhot refinery, which plays an important role in guiding next round gasoline upgrading. The characteristics and the principle of GARDES technology were elaborated by analyzing the distribution of sulfur and hydrocarbon compounds in the feed and product. The analysis results proved that the presence of broad ranged sulfur types in the feed can be removed at different stages. Olefin can be decreased by saturation and conversion into i-paraffins and aromatics. The sulfur content of the blend product can be limited under 10 mg/kg, showing GARDES technology has excellent sulfur removal ability. The olefin reduction can also satisfy the ever-increasing severe requirement about the olefin limitation, while the loss of research octane number (RON can be minimized to an acceptable level. Furthermore, according to the demand of gasoline upgrading, GARDES technology has great flexibility by adjusting operation condition without any further investment, which brings more economic benefits for refinery.

  16. Selected species and amendments for revegetating saline flue gas desulfurization sludge: greenhouse study

    Energy Technology Data Exchange (ETDEWEB)

    Salo, L.F.; Artiola, J.F.; Goodrich-Mahoney, J.W. [University of Arizona, Tuscon, AZ (United States). Dept. of Soil, Water and Environmental Science

    1997-07-01

    Codisposing low-volume wastes from electrical generating stations with flue gas desulfurization (FGD) scrubber sludge simplifies waste disposal but produces a saline waste that presents unique challenges to revegetation. This greenhouse study identified plants and amendments for revegetating a saline FGD sludge disposal pond in eastern Arizona. Survival and growth of 16 sown accessions plus two vegetatively propagated accessions of inland saltgrass were investigated in saline FGD sludge. Amendments used included two soils from the disposal site, Claysprings gravelly clay and Sheppard sand, composted steer manure, and N-P-K fertilizers. Sols and manure were added at 2:1 sludge/amendment (v/v). Plants were irrigated with a 1:1 mixture of disposal pond water and untreated well water. One accession of inland saltgrass, two cultivars of tall wheatgrass, Altai wildrye tall fescue and alkali sacaton show promise for revegetating saline FGD sludge disposal sites. Survival rates were the same in unamended sludge and in sludge amended with the clay soil or with N-P-K fertilizer. Plant dry matter produced was the same in unamended sludge and in sludge amended with either of the soils or with N-P-K. Although survival rates were significantly lower with manure than with any other amendment, growth was significantly greater by all measurements, due to the high fertility of this treatment. 34 refs., 5 tabs.

  17. Evaluation of revegetation techniques of a saline flue gas desulfurization sludge pond

    Energy Technology Data Exchange (ETDEWEB)

    Salo, L.F.; Artiola, J.F.; Goodrich-Mahoney, J.W. [University of Arizona, Tucson, AZ (United States). Renewable National Resources

    1999-01-01

    Codisposal of flue gas desulfurization (FGD) sludge with low-volume generating station waste simplifies disposal but creates a saline, high boron (B) waste that may be difficult to revegetate after site closure. Studies on a delta of waste material in a codisposal pond at the coal-fired Coronado Generating Station in eastern Arizona evaluated management techniques, amendments, and plants for revegetating this material. One study investigated leaching and ridging techniques and a second evaluated amendment with manure, wood shavings, and fly ash, Four salt-tolerant grass species and four saltbushes (A triplex spp,) were evaluated in the two studies. Criteria for success were high survival rates and growth, as measured by grass height and shrub height x width. Leaching salts and B from the waste was not necessary for establishment and growth of transplanted shrubs and grasses. Ridging was not a successful technique, due to limited moisture and high levels of salinity and B on these structures. Gardner saltbush (A, gardneri (Moq.) D, Dietr.) and a fourwing saltbush (A. canescens (Pursh) Nutt,) accession from the site were the most successful shrubs and alkali sactonn (Sporobolus airoides (Torr,) Torr. `Saltalk`) was the most successful grass at this disposal pond. Amendment with manure, wood shavings, or fly ash did not increase plant survival. Growth of grasses was improved with all amendments and was greatest with manure, but growth of shrubs was not improved with any amendment. 33 refs., 8 tabs.

  18. Effects of based Ca O and aluminum ash desulfurization agent on wearing of torpedo car refractories; Acao de agente dessulfurante a base de CaO + Al `ash`sobre o desgaste de refratario de carro torpedo

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Sidiney Nascimento; Marques, Oscar Rosa; Delgado, Paulo Roberto Senna [Companhia Siderurgica Nacional, Volta Redonda, RJ (Brazil); Longo, Elson; Varela, Jose Arana [Sao Carlos Univ., SP (Brazil). Dept. de Quimica; Justus, Sergio Murilo [Universidade Estadual de Ponta Grossa, PR (Brazil). Dept. de Engenharia de Materiais

    1996-12-31

    The introduction oa a new desulfurization agent, at Companhia Siderurgica Nacional (CSN) based Ca O and aluminum ash, have been strongly altered the work conditions of slag line refractories of torpedo car. The wearing mechanism of Al{sub 2} O{sub 3}.Si C.C refractories of torpedo car slag line is as follows: graphite and silicon carbide oxidation by the gas present in torpedo car atmosphere and sodium oxide from process slag; as result from these oxidation reactions, there is a increasing of refractory permeability, simultaneously the silica precipitation in the refractory matrix; the refractory matrix, rich in mullite, strongly reacts with the calcium oxide from slag and silica excess, precipitated from oxidation reactions; as consequence, the formation of low melting point phases occurs which accelerates the wearing of material. (author) 12 refs., 6 figs., 8 tabs.

  19. Utilisation des écumes de sucrerie pour la désulfuration des fumées Using Sugar Factory Carbonatation Lime for Flue-Gas Desulfurization

    Directory of Open Access Journals (Sweden)

    Dolignier J. C.

    2006-12-01

    Full Text Available Des études ont été réalisées par l'Institut français du pétrole et Babcock Entreprise pour montrer que l'écume de sucrerie pouvait être utilisée comme agent de désulfuration dans la chaudière Aude, un nouvel équipement de combustion permettant l'emploi de combustibles à haute teneur en soufre. Les tests ont été effectués en laboratoire et sur une chaudière semi-industrielle de 10 MW. L'écume de sucrerie donne des rendements de désulfuration supérieurs à ceux obtenus avec des calcaires naturels finement broyés. De plus, l'azote contenu dans l'écume permet de réduire les émissions de NOx selon le mécanisme de la réduction sélective non catalytique. Les utilisateurs de combustibles à haute teneur en soufre, qui devront faire face à une législation de plus en plus sévère, pourraient réduire leur coût annuel d'absorbants en utilisant l'écume de sucrerie. Par ailleurs, les producteurs de sucre auraient l'opportunité de mettre en place une nouvelle filière de valorisation pour leurs écumes. La teneur en eau élevée de l'écume n'autorise pas un transport sur de longues distances et des calculs ont été effectués pour définir la distance à partir de laquelle l'écume devient moins rentable que le calcaire. Studies have been carried out by the Institut français du pétrole and Babcock Entreprise to demonstrate that sugar factory carbonatation lime can be used as a desulfurization agent in the Aude boiler, which is a new combustion apparatus designed to use high sulfur fuels. Tests have been conducted both in the laboratory and on a near-industrial-scale 10 MW boiler. Sugar factory carbonatation lime provides greater desulfurization efficiency than that obtained using finely crushed natural limestone. Furthermore, the nitrogen contained in the carbonatation lime reduces NOx, emissions through selective non-catalytic reduction. Those who use high sulfur content fuels, and who are faced with increasingly

  20. Annual report

    International Nuclear Information System (INIS)

    1986-01-01

    This is the thirty-ninth annual report of the Atomic Energy Control Board. The period covered by this report is the year ending March 31, 1986. The Atomic Energy Control Board (AECB) was established in 1946, by the Atomic Energy Control Act (AEC Act), (Revised Statues of Canada (R.S.C.) 1970 cA19). It is a departmental corporation (Schedule B) within the meaning and purpose of the Financial Administration Act. The AECB controls the development, application and use of atomic energy in Canada, and participates on behalf of Canada in international measures of control. The AECB is also repsonsible for the administration of the Nuclear Liability Act, (R.S.C. 1970 c29 1st Supp) as amended, including the designation of nuclear installations and the prescription of basic insurance to be carried by the operators of such nuclear installations. The AECB reports to Parliament through a designated Minister, currently the Minister of Energy, Mines and Resources

  1. IKF - annual report 1982

    International Nuclear Information System (INIS)

    Schmidt-Boecking, H.; Steuer, E.

    This annual report contains extended abstracts about the work performed in the named institute during 1982 together with a list of publications. The work concerns nuclear structure and nuclear reactions, high-energetic heavy ion physics, heavy ion-atom collisions, nuclear solidstate physics, solid-state particle detectors, the application of nuclear methods and mass spectroscopy, ion source development, instrumental development and data processing, interdisciplinary cooperation, as well as the Van de Graaf accelerator facilities. (HSI) [de

  2. GSF - annual report 1976

    International Nuclear Information System (INIS)

    1976-01-01

    The annual report of the GSF for 1976 describes in brief contributions and surveys the activities of the institutes for biology, microbiology, radiation botany, biochemistry, hematology, medical data processing, ecological chemistry, radiation protection, radiohydrometry, underground disposal, as well as the activities of associated departments and activities of the special departments for algae R+D, for toxicology, for coherent optics and of the physical-technical department. (HK) [de

  3. Annual report 1979

    International Nuclear Information System (INIS)

    1980-01-01

    The 1979 annual report of HMI presents information on the major scientific findings of this year in the fields of nuclear and radiation physics, radiation chemistry, radiochemistry, data processing and electronics as well as on the scientific cooperation with universities, institutions, and the industry. The general development of HMI, its structure and organisation are reviewed. A detailed list of publications and lectures (also by foreign guests of HMI) in the various fields of research is given. (RB) [de

  4. Prediction of desulfurization in torpedo gas from laboratory scale simulation; Previsao da dessulfuracao do gusa em carro-torpedo a partir de simulacoes em escala de laboratorio

    Energy Technology Data Exchange (ETDEWEB)

    Souza Costa, Sergio L. de [USIMINAS, Ipatinga, MG (Brazil). Centro de Pesquisa e Desenvolvimento; Figueira, Renato M. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Escola de Engenharia

    1996-12-31

    A general criterion for laboratory scale data transposing to industrial practice, based on Navier-Stokes equation is developed. The criterion is a dimensional relation between the rate of energy dissipation, dimensions such as the height and diameter of the reactor and the inertial forces. The criterion was used to predict the evolution of the pig iron desulfurization reaction in torpedo car from results obtained in laboratory scale. The agreement between values predicted from laboratory experiments and data generated from actual industrial desulfurization operation is excellent. (author) 10 refs., 5 figs., 7 tabs.

  5. Catalytic oxidative desulfurization of diesel utilizing hydrogen peroxide and functionalized-activated carbon in a biphasic diesel-acetonitrile system

    Energy Technology Data Exchange (ETDEWEB)

    Haw, Kok-Giap; Bakar, Wan Azelee Wan Abu; Ali, Rusmidah; Chong, Jiunn-Fat [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Kadir, Abdul Aziz Abdul [Department of Petroleum Engineering, Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2010-09-15

    This paper presents the development of granular functionalized-activated carbon as catalysts in the catalytic oxidative desulfurization (Cat-ODS) of commercial Malaysian diesel using hydrogen peroxide as oxidant. Granular functionalized-activated carbon was prepared from oil palm shell using phosphoric acid activation method and carbonized at 500 C and 700 C for 1 h. The activated carbons were characterized using various analytical techniques to study the chemistry underlying the preparation and calcination treatment. Nitrogen adsorption/desorption isotherms exhibited the characteristic of microporous structure with some contribution of mesopore property. The Fourier Transform Infrared Spectroscopy results showed that higher activation temperature leads to fewer surface functional groups due to thermal decomposition. Micrograph from Field Emission Scanning Electron Microscope showed that activation at 700 C creates orderly and well developed pores. Furthermore, X-ray Diffraction patterns revealed that pyrolysis has converted crystalline cellulose structure of oil palm shell to amorphous carbon structure. The influence of the reaction temperature, the oxidation duration, the solvent, and the oxidant/sulfur molar ratio were examined. The rates of the catalytic oxidative desulfurization reaction were found to increase with the temperature, and H{sub 2}O{sub 2}/S molar ratio. Under the best operating condition for the catalytic oxidative desulfurization: temperature 50 C, atmospheric pressure, 0.5 g activated carbon, 3 mol ratio of hydrogen peroxide to sulfur, 2 mol ratio of acetic acid to sulfur, 3 oxidation cycles with 1 h for each cycle using acetonitrile as extraction solvent, the sulfur content in diesel was reduced from 2189 ppm to 190 ppm with 91.3% of total sulfur removed. (author)

  6. Indium-Catalyzed Reductive Dithioacetalization of Carboxylic Acids with Dithiols: Scope, Limitations, and Application to Oxidative Desulfurization.

    Science.gov (United States)

    Nishino, Kota; Minato, Kohei; Miyazaki, Takahiro; Ogiwara, Yohei; Sakai, Norio

    2017-04-07

    In this study an InI 3 -TMDS (1,1,3,3-tetramethyldisiloxane) reducing system effectively catalyzed the reductive dithioacetalization of a variety of aromatic and aliphatic carboxylic acids with 1,2-ethanedithiol or 1,3-propanedithiol leading to the one-pot preparation of either 1,3-dithiolane derivatives or a 1,3-dithiane derivative. Also, the intact indium catalyst continuously catalyzed the subsequent oxidative desulfurization of an in situ formed 1,3-dithiolane derivative, which led to the preparation of the corresponding aldehydes.

  7. Phosphotungstic acid encapsulated in the mesocages of amine-functionalized metal-organic frameworks for catalytic oxidative desulfurization.

    Science.gov (United States)

    Wang, Xu-Sheng; Huang, Yuan-Biao; Lin, Zu-Jin; Cao, Rong

    2014-08-21

    Highly dispersed Keggin-type phosphotungstic acid (H3PW12O40, PTA) encapsulated in the mesocages of amine-functionalized metal-organic frameworks MIL-101(Cr)-NH2 has been prepared by an anion-exchange method. PTA anions (PW12O40(3-)) are stabilized in the mesocages via the electrostatic interaction with amino groups of the MIL-101(Cr)-NH2. The obtained catalyst (denoted PTA@MIL-101(Cr)-NH2) exhibits high catalytic activity in the extractive and catalytic oxidative desulfurization (ECODS) system under mild conditions. Moreover, it can be easily recovered and recycled several times without leaching and loss of activity.

  8. Design and simulation of a 1.2 MeV electron accelerator used for desulfuration and denitrogenation

    International Nuclear Information System (INIS)

    Zhou Jun; Zhu Dajun; Liu Shenggang

    2005-01-01

    This paper presents the structural design and functional analysis of a new kind of 1.2 MeV industrial electron accelerator. PIC (Particle-In-Cell) method is used to simulate this accelerator and to optimize the design, the results show that the optics property of this accelerator has been improved. This electron accelerator is used for desulfuration and denitrogenation in environmental industry. This application purifies flue gases of the thermal power station from Sulphurous oxide and Nitrogen oxide in order to reduce the pollution in the air. (author)

  9. Effects of surface acidities of MCM-41 modified with MoO{sub 3} on adsorptive desulfurization of gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Shao Xinchao, E-mail: sxc86@yahoo.cn [Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning ShiHua University, Fushun 113001 (China); Zhang Xiaotong; Yu Wenguang; Wu Yuye [Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning ShiHua University, Fushun 113001 (China); Qin Yucai [Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning ShiHua University, Fushun 113001 (China); College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 257061 (China); Sun Zhaolin [Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning ShiHua University, Fushun 113001 (China); School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Song Lijuan, E-mail: lsong56@263.net [Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning ShiHua University, Fushun 113001 (China) and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 257061 (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The MoO{sub 3}-MCM-41 samples prepared by spontaneous monolayer dispersion and impregnation with a different MoO{sub 3} filling have been studied. Black-Right-Pointing-Pointer The relative concentration of hydroxyl groups present on before and after containing MoO{sub 3} samples was monitored by in situ FTIR to speculate the bonding style of MoO{sub 3} and MCM-41. Black-Right-Pointing-Pointer The surface acidities of the MoO{sub 3}-MCM-41 adsorbents were investigated systematically and correlated with the desulfurization performance. - Abstract: A series of MCM-41 samples containing molybdenum oxide as active species in the mesoporous channels loaded by spontaneous monolayer dispersion (SMD) and impregnation (IM) have been prepared and characterized using XRD, N{sub 2} adsorption-desorption analysis, Fourier transform infrared spectroscopy (FTIR) and intelligent gravimetric analyzer (IGA). The relative number of hydroxy on the adsorbents was investigated by in situ FTIR. Surface acidities of the adsorbents were studied by infrared spectroscopy of adsorbed pyridine and correlated with reactivity for adsorptive desulfurization. The IGA technique was employed to investigate adsorption behavior of thiophene and benzene on the adsorbents at 303 K. It is shown that MoO{sub 3} can be highly dispersed up to 0.2 g g{sup -1} in the MCM-41 channels by the SMD strategy with the ordered mesoporous structure of the MoMM samples remaining intact. The ordered mesostructure of MCM-41 is, however, destroyed at higher MoO{sub 3} contents of 0.26 and 0.32 g g{sup -1} with particle sizes of 1.2 nm and 3.6 nm, respectively, observed. For the MoMI(0.2) sample prepared by the IM method, the aggregation of the MoO{sub 3} particles takes place with a particle size of 6.5 nm obtained. The results are also revealed that the dispersion extent of the MoO{sub 3} species is related to the abundant surface hydroxy of MCM-41. The host species and guest

  10. Effects of surface acidities of MCM-41 modified with MoO3 on adsorptive desulfurization of gasoline

    International Nuclear Information System (INIS)

    Shao Xinchao; Zhang Xiaotong; Yu Wenguang; Wu Yuye; Qin Yucai; Sun Zhaolin; Song Lijuan

    2012-01-01

    Highlights: ► The MoO 3 -MCM-41 samples prepared by spontaneous monolayer dispersion and impregnation with a different MoO 3 filling have been studied. ► The relative concentration of hydroxyl groups present on before and after containing MoO 3 samples was monitored by in situ FTIR to speculate the bonding style of MoO 3 and MCM-41. ► The surface acidities of the MoO 3 -MCM-41 adsorbents were investigated systematically and correlated with the desulfurization performance. - Abstract: A series of MCM-41 samples containing molybdenum oxide as active species in the mesoporous channels loaded by spontaneous monolayer dispersion (SMD) and impregnation (IM) have been prepared and characterized using XRD, N 2 adsorption–desorption analysis, Fourier transform infrared spectroscopy (FTIR) and intelligent gravimetric analyzer (IGA). The relative number of hydroxy on the adsorbents was investigated by in situ FTIR. Surface acidities of the adsorbents were studied by infrared spectroscopy of adsorbed pyridine and correlated with reactivity for adsorptive desulfurization. The IGA technique was employed to investigate adsorption behavior of thiophene and benzene on the adsorbents at 303 K. It is shown that MoO 3 can be highly dispersed up to 0.2 g g −1 in the MCM-41 channels by the SMD strategy with the ordered mesoporous structure of the MoMM samples remaining intact. The ordered mesostructure of MCM-41 is, however, destroyed at higher MoO 3 contents of 0.26 and 0.32 g g −1 with particle sizes of 1.2 nm and 3.6 nm, respectively, observed. For the MoMI(0.2) sample prepared by the IM method, the aggregation of the MoO 3 particles takes place with a particle size of 6.5 nm obtained. The results are also revealed that the dispersion extent of the MoO 3 species is related to the abundant surface hydroxy of MCM-41. The host species and guest species undergo solid-state reaction to form Si-O-Mo bonds in the mixtures which enhance both the Lewis acid and Brönsted acid of

  11. Influence of Flue Gas Desulfurization Gypsum Amendments on Heavy Metal Distribution in Reclaimed Sodic Soils

    Science.gov (United States)

    Chen, Qun; Wang, Shujuan; Li, Yan; Zhang, Ning; Zhao, Bo; Zhuo, Yuqun; Chen, Changhe

    2015-01-01

    Abstract Although flue gas desulfurization (FGD) gypsum has become an effective soil amendment for sodic soil reclamation, it carries extra heavy metal contamination into the soil environment. The fate of heavy metals introduced by FGD gypsum in sodic or saline–alkali soils is still unclear. This work aims to investigate the effects of FGD gypsum addition on the heavy metal distributions in a sodic soil. Original soil samples were collected from typical sodic land in north China. Soil column leaching tests were conducted to investigate the influence of FGD gypsum addition on the soil properties, especially on distribution profiles of the heavy metals (Pb, Cd, Cr, As, and Hg) in the soil layers. Results showed that pH, electrical conductivity, and exchangeable sodium percentage in amended soils were significantly reduced from 10.2 to 8.46, 1.8 to 0.2 dS/m, and 18.14% to 1.28%, respectively. As and Hg concentrations in the soils were found to be positively correlated with FGD gypsum added. The amount of Hg in the leachate was positively correlated with FGD gypsum application ratio, whereas a negative correlation was observed between the Pb concentration in the leachate and the FGD gypsum ratio. Results revealed that heavy metal concentrations in soils complied well with Environmental Quality Standard for Soils in China (GB15618-1995). This work helps to understand the fate of FGD gypsum-introduced heavy metals in sodic soils and provides a baseline for further environmental risk assessment associated with applying FGD gypsum for sodic soil remediation. PMID:26064038

  12. Influence of Flue Gas Desulfurization Gypsum Amendments on Heavy Metal Distribution in Reclaimed Sodic Soils.

    Science.gov (United States)

    Chen, Qun; Wang, Shujuan; Li, Yan; Zhang, Ning; Zhao, Bo; Zhuo, Yuqun; Chen, Changhe

    2015-06-01

    Although flue gas desulfurization (FGD) gypsum has become an effective soil amendment for sodic soil reclamation, it carries extra heavy metal contamination into the soil environment. The fate of heavy metals introduced by FGD gypsum in sodic or saline-alkali soils is still unclear. This work aims to investigate the effects of FGD gypsum addition on the heavy metal distributions in a sodic soil. Original soil samples were collected from typical sodic land in north China. Soil column leaching tests were conducted to investigate the influence of FGD gypsum addition on the soil properties, especially on distribution profiles of the heavy metals (Pb, Cd, Cr, As, and Hg) in the soil layers. Results showed that pH, electrical conductivity, and exchangeable sodium percentage in amended soils were significantly reduced from 10.2 to 8.46, 1.8 to 0.2 dS/m, and 18.14% to 1.28%, respectively. As and Hg concentrations in the soils were found to be positively correlated with FGD gypsum added. The amount of Hg in the leachate was positively correlated with FGD gypsum application ratio, whereas a negative correlation was observed between the Pb concentration in the leachate and the FGD gypsum ratio. Results revealed that heavy metal concentrations in soils complied well with Environmental Quality Standard for Soils in China (GB15618-1995). This work helps to understand the fate of FGD gypsum-introduced heavy metals in sodic soils and provides a baseline for further environmental risk assessment associated with applying FGD gypsum for sodic soil remediation.

  13. Dry flue gas desulfurization byproducts as amendments for reclamation of acid mine spoil

    International Nuclear Information System (INIS)

    Dick, W.A.; Stehouwer, R.C.; Beeghly, J.H.; Bigham, J.M.; Lal, R.

    1994-01-01

    Development of beneficial reuses of highly alkaline, dry flue gas desulfurization (FGD) byproducts can impact the economics of adopting these FGD technologies for retrofit on existing powerplants. Greenhouse studies were conducted to evaluate the use of two dry FGD byproducts for reclamation of acid mine spoil (pH, 3.1 to 5.8). Treatment rates of FGD ranges from 0% to 32% by dry weight and most treatments also included 6% by dry weight of sewage sludge. Fescue (Festuca arundinacea Schreb.) was harvested monthly for a total of six harvests. Plant tissue composition and root growth were determined after the sixth harvest. Leachate analyses and pH determination of mixes were done at the beginning and end of the experiments. Both FGD byproducts were effective in raising the spoil pH and in improving fescue growth. At the highest FGD application rate, fescue growth decreased from the optimum due to high pH and reduced rooting volume caused by cementation reactions between the FGD and spoil. Trace elements, with the exception of B, were decreased in the fescue tissue when FGD was applied. Leachate pH, electrical conductivity, dissolved organic carbon, Ca, Mg, and S tended to increase with increased FGD application rate; Al, Fe, Mn, and Zn decreased. pH was the most important variable controlling the concentrations of these elements in the leachate. Concentrations of elements of environmental concern were near or below drinking water standard levels. These results indicate that FGD applied at rates equivalent to spoil neutralization needs can aid in the revegetation of acid spoil revegetation with little potential for introduction of toxic elements into the leachate water or into the food chain

  14. Annual report 1974

    International Nuclear Information System (INIS)

    1974-01-01

    In this annual report, the Institut fuer Kernphysik of the university of Frankfurt/Main gives a survey on its scientific activities in the year 1974. Research activities in this period comprised the following fields: nuclear reactions and nuclear structure, heavy ion physics, atomic collision processes, neutron diffractometry and spectroscopy, solid state particle trace detectors, methods of nuclear analysis and mass spectroscopy, ion source development, electronics and data processing, and radiation protection. Furthermore, some application-oriented interdisciplinary research projects were started. (orig./AK) [de

  15. Annual recertification: fun? Wow!

    Science.gov (United States)

    Amos, A

    1994-01-01

    Learning is critical to fostering a knowledge base required for maintaining currency and furthering professional development. In the ever-changing field of nephrology, most skills practised in nursing are considered to be sanctioned medical acts or added nursing skills. Therefore, annual recertification of the skills designated as sanctioned medical acts is an expectation of the College of Nurses of Ontario. The Wellesley Hospital policy indicates one time only or annual approval of the added nursing skills. The article will discuss the use of games as a creative, non-threatening educational tool in the recertification/re-approval process currently in place at The Wellesley Hospital, renal programs. In the past two years, several games or alternative teaching strategies have been utilized to assist the staff in preparing for recertification. This paper will examine the advantages and disadvantages of utilizing alternative teaching formats. Commentary regarding the response of staff nurses, nursing management and education will be highlighted.

  16. Quarterly, Bi-annual and Annual Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Quarterly, Bi-annual and Annual Reports are periodic reports issued for public release. For the deep set fishery these reports are issued quarterly and anually....

  17. Radiation policy monitoring. Annual report, 2004. Emissions and doses from processing industries; Emissies en doses door procesindustrie. Jaarrapport 2004. Beleidsmonitoring straling

    Energy Technology Data Exchange (ETDEWEB)

    Eleveld, H.; Tanzi, C.P.; Van Dijk, J.W.E.

    2005-07-01

    The radiation dose for the Dutch population due to discharges and emissions from processing industries has decreased substantially since 1994. However, the processing industry still makes the largest industrial contribution to the radiation dose. Nuclear installations and medical institutions contribute much less. There was a considerable decrease up to 2000, when two fertilizer enterprises stopped their activities in the Netherlands. Although the reported discharges of radioactive substances to water show a sharp decrease, the collective dose due to emissions to air has shown slight increases since 2001. The policy to reduce discharges in water has led to enterprises investing in wastewater treatment systems. Enterprises also take the radiological consequences into account when purchasing raw materials containing natural occurring radioactive material. The cost of the raw material obviously also influences the decision. Occupational exposure in processing plants was investigated using the data of the National Dose Registration and Information System (NDRIS). Often, employees' inhalation doses can amount to over 1 mSv per annum (i.e. 40% of the average annual radiation dose per capita of the Dutch population), but the dose limit of 6 mSv was not exceeded in any of the cases. We have developed and applied the chain model for regular emissions for assessing the radiation dose. Current dose assessments based on the chain model were found to fit with dose assessments based on measurements. The yearly variation in meteorological factors can affect the radiation dose for members of the public for 25% at locations close to the source when compared to calculations based on decade averaged meteorology. [Dutch] Voor de Nederlandse bevolking is de stralingsdosis door lozingen van radioactieve stoffen door de procesindustrie fors afgenomen tussen 1994 en 2000. Vooral de gerapporteerde lozingen in water vertonen een sterke daling, mede door sluitingen van twee

  18. Radiation policy monitoring. Annual report 2004. Emissions and doses from processing industries; Emissies en doses door procesindustrie. Jaarrapport 2004. Beleidsmonitoring straling

    Energy Technology Data Exchange (ETDEWEB)

    Eleveld, H.; Tanzi, C.P.; Van Dijk, J.W.E. [Nuclear Research and consultancy Group NRG, Petten (Netherlands)

    2005-07-01

    The radiation dose for the Dutch population due to discharges and emissions from processing industries has decreased substantially since 1994. However, the processing industry still makes the largest industrial contribution to the radiation dose. Nuclear installations and medical institutions contribute much less. There was a considerable decrease up to 2000, when two fertilizer enterprises stopped their activities in the Netherlands. Although the reported discharges of radioactive substances to water show a sharp decrease, the collective dose due to emissions to air has shown slight increases since 2001. The policy to reduce discharges in water has led to enterprises investing in wastewater treatment systems. Enterprises also take the radiological consequences into account when purchasing raw materials containing natural occurring radioactive material. The cost of the raw material obviously also influences the decision. Occupational exposure in processing plants was investigated using the data of the National Dose Registration and Information System (NDRIS). Often, employees' inhalation doses can amount to over 1 mSv per annum (i.e. 40% of the average annual radiation dose per capita of the Dutch population), but the dose limit of 6 mSv was not exceeded in any of the cases. We have developed and applied the chain model for regular emissions for assessing the radiation dose. Current dose assessments based on the chain model were found to fit with dose assessments based on measurements. The yearly variation in meteorological factors can affect the radiation dose for members of the public for 25% at locations close to the source when compared to calculations based on decennial averaged meteorology. [Dutch] Voor de Nederlandse bevolking is de stralingsdosis door lozingen van radioactieve stoffen door de procesindustrie fors afgenomen tussen 1994 en 2000. Vooral de gerapporteerde lozingen in water vertonen een sterke daling, mede door sluitingen van twee

  19. Removal of hazardous gaseous pollutants from industrial flue gases by a novel multi-stage fluidized bed desulfurizer.

    Science.gov (United States)

    Mohanty, C R; Adapala, Sivaji; Meikap, B C

    2009-06-15

    Sulfur dioxide and other sulfur compounds are generated as primary pollutants from the major industries such as sulfuric acid plants, cupper smelters, catalytic cracking units, etc. and cause acid rain. To remove the SO(2) from waste flue gas a three-stage counter-current multi-stage fluidized bed adsorber was developed as desulfurization equipment and operated in continuous bubbling fluidization regime for the two-phase system. This paper represents the desulfurization of gas mixtures by chemical sorption of sulfur dioxide on porous granular calcium oxide particles in the reactor at ambient temperature. The advantages of the multi-stage fluidized bed reactor are of high mass transfer and high gas-solid residence time that can enhance the removal of acid gas at low temperature by dry method. Experiments were carried out in the bubbling fluidization regime supported by visual observation. The effects of the operating parameters such as sorbent (lime) flow rate, superficial gas velocity, and the weir height on SO(2) removal efficiency in the multistage fluidized bed are reported. The results have indicated that the removal efficiency of the sulfur dioxide was found to be 65% at high solid flow rate (2.0 kg/h) corresponding to lower gas velocity (0.265 m/s), wier height of 70 mm and SO(2) concentration of 500 ppm at room temperature.

  20. Oxidative desulfurization of benzothiophene and thiophene with WOx/ZrO2 catalysts: Effect of calcination temperature of catalysts

    International Nuclear Information System (INIS)

    Hasan, Zubair; Jeon, Jaewoo; Jhung, Sung Hwa

    2012-01-01

    Highlights: ► Oxidative desulfurization was studied with WO x /ZrO 2 calcined at different temp. ► The importance of the phases of zirconia and tungsten oxide was suggested. ► The catalyst was analyzed thoroughly with Raman and XRD techniques. ► The importance of electron density on S was confirmed with the kinetics of oxidation. - Abstract: Oxidative desulfurization (ODS) of model fuel containing benzothiophene (BT) or thiophene (Th) has been carried out with WO x /ZrO 2 catalyst, which was calcined at various temperatures. Based on the conversion of BT in the model fuel, it can be shown that the optimum calcination temperature of WO x /ZrO 2 catalyst is around 700 °C. The most active catalyst is composed of tetragonal zirconia (ZrO 2 ) with well dispersed polyoxotungstate species and it is necessary to minimize the contents of the crystalline WO 3 and monoclinic ZrO 2 for a high BT conversion. The oxidation rate was interpreted with the first-order kinetics, and it demonstrated the importance of electron density since the kinetic constant for BT was higher than that for Th even though the BT is larger than Th in size. A WO x /ZrO 2 catalyst, treated suitably, can be used as a reusable active catalyst in the ODS.

  1. Processes and problems of ammonia elimination

    Energy Technology Data Exchange (ETDEWEB)

    Tippmer, K

    1974-01-01

    In many cases a conversion of ammonia in coke oven gases to ammonium sulfate (fertilizer) is not useful. It must then be eliminated by oxidation to nitrogen and water or catalytically to N2 and hydrogen. Several processes are available for this which are combined with the simultaneous removal of hydrogen sulfide. The absorption of NH3 with NH3 incineration with and without heat utilization, the NH3 absorption with catalytic cracking of NH3, H2S and NH3 scrubbing with NH3 incineration and production of sulfuric acid (78 or 96 percent), as well as H2S and NH3 scrubbing with catalytic cracking of NH3 and production of pure sulfur are discussed in great detail. A cost comparison of these methods is provided. Lowest investments are required for an NH3 scrubbing process with elimination of NH3 but without desulfurization. Expenditures for an NH3 scrubber with desulfurization of the coke oven gas to about 1.5 g H2S/cu m and NH3 incineration with production of 78 percent H2SO4 are lower than those for the production of 96 percent H2SO4. For the latter there is more demand, however. Desulfurization to about 0.7 g H2S/cu m is only slightly more expensive. The process producing sulfur in combination with an H2S oxidation method requires somewhat lower investment costs.

  2. A review on prospects and challenges of biological H2S removal from biogas with focus on biotrickling filtration and microaerobic desulfurization

    DEFF Research Database (Denmark)

    Khoshnevisan, Benyamin; Tsapekos, Panagiotis; Alfaro, Natalia

    2017-01-01

    The production of biogas from sulfate-rich materials under anaerobic digestion results in the formation of hydrogen sulfide (H2S). The recommended level of H2S in the produced biogas for direct combustion purposes is in the range of 0.02 to 0.05% w/w (200 to 500 ppm), therefore, desulfurization i...

  3. Deep Desulfurization of Diesel Fuels with Plasma/Air as Oxidizing Medium, Diperiodatocuprate (III) as Catalyzer and Ionic Liquid as Extraction Solvent

    Science.gov (United States)

    Ban, Lili; Liu, Ping; Ma, Cunhua; Dai, Bin

    2013-12-01

    In this paper, the oxidative desulfurization (ODS) system is directly applied to deal with the catalytic oxidation of sulfur compounds of sulfur-containing model oil by dielectric barrier discharge (DBD) plasma in the presence of air plus an extraction step with the oxidation-treated fuel put over ionic liquid [BMIM]FeCl4 (1-butyl-3-methylimidazolium tetrachloroferrate). This new system exhibited an excellent desulfurization effect. The sulfur content of DBT in diesel oil decreased from 200 ppm to 4.92 ppm (S removal rate up to 97.5%) under the following optimal reaction conditions: air flow rate (ν) of 60 mL/min, amplitude of applied voltage (U) on DBD of 16 kV, input frequency (f) of 79 kHz, catalyst amount (ω) of 1.25 wt%, reaction time (t) of 10 min. Moreover, a high desulfurization rate was obtained during oxidation of benzothiophene (BT) or 4,6-DMDBT (4,6-dimethyl-dibenzothiophene) under the aforementioned conditions. The oxidation reactivity of different S compounds was decreased in the order of DBT, 4,6-DMDBT and BT. The remarkable advantage of the novel ODS system is that the desulfurization condition applies in the presence of air at ambient conditions without peroxides, aqueous solvent or biphasic oil-aqueous solution system.

  4. Deep Desulfurization of Diesel Fuels with Plasma/Air as Oxidizing Medium, Diperiodatocuprate (III) as Catalyzer and Ionic Liquid as Extraction Solvent

    International Nuclear Information System (INIS)

    Ban Lili; Liu Ping; Ma Cunhua; Dai Bin

    2013-01-01

    In this paper, the oxidative desulfurization (ODS) system is directly applied to deal with the catalytic oxidation of sulfur compounds of sulfur-containing model oil by dielectric barrier discharge (DBD) plasma in the presence of air plus an extraction step with the oxidation-treated fuel put over ionic liquid [BMIM]FeCl 4 (1-butyl-3-methylimidazolium tetrachloroferrate). This new system exhibited an excellent desulfurization effect. The sulfur content of DBT in diesel oil decreased from 200 ppm to 4.92 ppm (S removal rate up to 97.5%) under the following optimal reaction conditions: air flow rate (ν) of 60 mL/min, amplitude of applied voltage (U) on DBD of 16 kV, input frequency (f) of 79 kHz, catalyst amount (ω) of 1.25 wt%, reaction time (t) of 10 min. Moreover, a high desulfurization rate was obtained during oxidation of benzothiophene (BT) or 4,6-DMDBT (4,6-dimethyl-dibenzothiophene) under the aforementioned conditions. The oxidation reactivity of different S compounds was decreased in the order of DBT, 4,6-DMDBT and BT. The remarkable advantage of the novel ODS system is that the desulfurization condition applies in the presence of air at ambient conditions without peroxides, aqueous solvent or biphasic oil-aqueous solution system. (plasma technology)

  5. A non-chemically selective top-down approach towards the preparation of hierarchical TS-1 zeolites with improved oxidative desulfurization catalytic performance.

    Science.gov (United States)

    Du, Shuting; Chen, Xiaoxin; Sun, Qiming; Wang, Ning; Jia, Mingjun; Valtchev, Valentin; Yu, Jihong

    2016-02-28

    Hierarchical TS-1 zeolites with secondary macropores have been successfully prepared by using two different fluoride-containing chemical etching post-treated routes. Hierarchical TS-1 zeolites exhibited a chemical composition similar to that of the parent material and showed remarkably enhanced catalytic activity in oxidative desulfurization reaction.

  6. Technoeconomic Optimization of Waste Heat Driven Forward Osmosis for Flue Gas Desulfurization Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gingerich, Daniel B [Carnegie Mellon Univ., Pittsburgh, PA (United States); Bartholomew, Timothy V [Carnegie Mellon Univ., Pittsburgh, PA (United States); Mauter, Meagan S [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2017-06-26

    With the Environmental Protection Agency’s recent Effluent Limitation Guidelines for Steam Electric Generators, power plants are having to install and operate new wastewater technologies. Many plants are evaluating desalination technologies as possible compliance options. However, the desalination technologies under review that can reduce wastewater volume or treat to a zero-liquid discharges standard have a significant energy penalty to the plant. Waste heat, available from the exhaust gas or cooling water from coal-fired power plants, offers an opportunity to drive wastewater treatment using thermal desalination technologies. One such technology is forward osmosis (FO). Forward osmosis utilizes an osmotic pressure gradient to passively pull water from a saline or wastewater stream across a semi-permeable membrane and into a more concentrated draw solution. This diluted draw solution is then fed into a distillation column, where the addition of low temperature waste heat can drive the separation to produce a reconcentrated draw solution and treated water for internal plant reuse. The use of low-temperature waste heat decouples water treatment from electricity production and eliminates the link between reducing water pollution and increasing air emissions from auxiliary electricity generation. In order to evaluate the feasibility of waste heat driven FO, we first build a model of an FO system for flue gas desulfurization (FGD) wastewater treatment at coal-fired power plants. This model includes the FO membrane module, the distillation column for draw solution recovery, and waste heat recovery from the exhaust gas. We then add a costing model to account for capital and operating costs of the forward osmosis system. We use this techno-economic model to optimize waste heat driven FO for the treatment of FGD wastewater. We apply this model to three case studies: the National Energy Technology Laboratory (NETL) 550 MW model coal fired power plant without carbon

  7. Reclamation of acid, toxic coal spoils using wet flue gas desulfurization by-product, fly ash and sewage sludge. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kost, D.A.; Vimmerstedt, J.P.; Stehouwer, R.C.

    1997-03-01

    Establishment of vegetation on acid abandoned minelands requires modification of soil physical and chemical conditions. Covering the acid minesoil with topsoil or borrow soil is a common practice but this method may be restricted by availability of borrow soil and cause damage to the borrow site. An alternative approach is to use waste materials as soil amendments. There is a long history of using sewage sludge and fly ash as amendments for acid minesoils. Flue gas desulfurization (FGD) by-products are newer materials that are also promising amendments. Most flue gas sludges are mixtures of Calcium sulfate (CaSO{sub 4}), calcium sulfite (CaSO{sub 3}), calcium carbonate (CaCO{sub 3}), calcium hydroxide [Ca(OH){sub 2}], and fly ash. Some scrubbing processes produce almost pure gypsum (CaSO{sub 4}2H{sub 2}O). The primary purpose of the project is to evaluate two wet FGD by-products for effects on vegetation establishment and surface and ground water quality on an acid minesoil. One by-product from the Conesville, OH power plant (American Electric Power Service Corporation) contains primarily calcium sulfite and fly ash. The other by-product (Mg-gypsum FGD) from an experimental scrubber at the Zimmer power plant (Cincinnati Gas and Electric Company) is primarily gypsum with 4% magnesium hydroxide. These materials were compared with borrow soil and sewage sludge as minesoil amendments. Combinations of each FGD sludge with sewage sludge were also tested. This report summarizes two years of measurements of chemical composition of runoff water, ground water at two depths in the subsoil, soil chemical properties, elemental composition and yield of herbaceous ground cover, and elemental composition, survival and height of trees planted on plots treated with the various amendments. The borrow soil is the control for comparison with the other treatments.

  8. Effect of the Z- and Macro-R-Group on the Thermal Desulfurization of Polymers Synthesized with Acid/Base "Switchable" Dithiocarbamate RAFT Agents.

    Science.gov (United States)

    Stace, Sarah J; Fellows, Christopher M; Moad, Graeme; Keddie, Daniel J

    2018-05-11

    Thermolysis is examined as a method for complete desulfurization of reversible addition-fragmentation chain transfer (RAFT)-synthesized polymers prepared with acid/base "switchable" N-methyl-N-pyridyldithiocarbamates [RS 2 CZ or RS 2 CZH + ]. Macro-RAFT agents from more activated monomers (MAMs) (i.e., styrene (St), N-isopropylacrylamide (NIPAm), and methyl methacrylate (MMA)) with RS 2 CZH + and less activated monomers (LAMs) (i.e., vinyl acetate (VAc) and N-vinylpyrolidone (NVP)) with RS 2 CZ are prepared by RAFT polymerization and analyzed by thermogravimetric analysis. In all cases, a mass loss consistent with loss of the end group (ZCS 2 H) is observed at temperatures lower than, and largely discrete from, that required for further degradation of the polymer. The temperatures for end group loss and the new end groups formed are strongly dependent on the identity of the R(P) n and the state of the pyridyl Z group; increasing in the series poly(MMA) < poly(St) ∼ poly(NIPAm) < poly(VAc) ∼ poly(NVP) for S 2 CZ and poly(MMA) < poly(St) ∼ poly(NIPAm) for S 2 CZH + . Clean end group removal is possible for poly(St) and poly(NVP). For poly(NIPAm), the thiocarbonyl chain end is removed, but the end group identity is less certain. For poly(MMA) and poly(VAc), some degradation of the polymer accompanies end group loss under the conditions used and further refinement of the process is required. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Reclamation of acid, toxic coal spoils using wet flue gas desulfurization by-product, fly ash and sewage sludge. Final report

    International Nuclear Information System (INIS)

    Kost, D.A.; Vimmerstedt, J.P.; Stehouwer, R.C.

    1997-03-01

    Establishment of vegetation on acid abandoned minelands requires modification of soil physical and chemical conditions. Covering the acid minesoil with topsoil or borrow soil is a common practice but this method may be restricted by availability of borrow soil and cause damage to the borrow site. An alternative approach is to use waste materials as soil amendments. There is a long history of using sewage sludge and fly ash as amendments for acid minesoils. Flue gas desulfurization (FGD) by-products are newer materials that are also promising amendments. Most flue gas sludges are mixtures of Calcium sulfate (CaSO 4 ), calcium sulfite (CaSO 3 ), calcium carbonate (CaCO 3 ), calcium hydroxide [Ca(OH) 2 ], and fly ash. Some scrubbing processes produce almost pure gypsum (CaSO 4 2H 2 O). The primary purpose of the project is to evaluate two wet FGD by-products for effects on vegetation establishment and surface and ground water quality on an acid minesoil. One by-product from the Conesville, OH power plant (American Electric Power Service Corporation) contains primarily calcium sulfite and fly ash. The other by-product (Mg-gypsum FGD) from an experimental scrubber at the Zimmer power plant (Cincinnati Gas and Electric Company) is primarily gypsum with 4% magnesium hydroxide. These materials were compared with borrow soil and sewage sludge as minesoil amendments. Combinations of each FGD sludge with sewage sludge were also tested. This report summarizes two years of measurements of chemical composition of runoff water, ground water at two depths in the subsoil, soil chemical properties, elemental composition and yield of herbaceous ground cover, and elemental composition, survival and height of trees planted on plots treated with the various amendments. The borrow soil is the control for comparison with the other treatments

  10. Annual Report 2006

    Energy Technology Data Exchange (ETDEWEB)

    Michalik, J; Smulek, W; Godlewska-Para, E [eds.

    2007-07-01

    The Annual Report of the Institute of Nuclear Chemistry and Technology (Warsaw, Poland) describes achievements of the Institute in 2006 obtained in seven fields: (1) radiation chemistry and technology, (2) radiochemistry and coordination chemistry, (3) radiobiology, (4) application of nuclear methods in material and process engineering, (5) design of instruments based on nuclear techniques, (6) trace analysis and radioanalytical techniques, (7) environmental research. In total - 83 detailed papers prepared by the Institute workers and collaborating scientists are presented. General information on the Institute status, personnel activity, international cooperation and publications are presented.

  11. Annual report 1980

    International Nuclear Information System (INIS)

    1981-01-01

    This annual report contains extended abstracts about the research done at the named institute. These abstracts concern the development of accelerators and ion sources, the construction of the magnetic spectrograph and radiation detectors, the investigation of solids and microstructures by nuclear methods, the development of electronic circuits, the advances in data processing, the study of heavy ion reactions, nuclear structure, and reaction mechanisms, the research on atomic physics and the interaction of charged particles with matter, the studies in medium and high energy physics, the theoretical studies of nuclear structure, and the research in cosmochemistry. Furthermore a list of publications is added. (orig./HSI) [de

  12. 1996 annual report

    International Nuclear Information System (INIS)

    1996-01-01

    This 1996 issue of the annual report of the French Commissariat a l'Energie Atomique (CEA) gives a general overview of CEA organization, activities, human resources, international relations and external communication with some budgetary informations. The main activities described concern the national defence, the fuel cycle, the nuclear reactors, the condensed matter and life sciences, the advanced technologies, the protection and transfer of knowledge and technologies, the environmental activities, the management and processing of nuclear wastes, the nuclear protection and safety, the technical and scientific information, the teaching and training, the scientific prizes, the committees, councils and commissions. (J.S.)

  13. Annual report 1979

    International Nuclear Information System (INIS)

    1980-01-01

    This annual report contains extended abstracts about the research done at the named institute. These abstracts concern the development of accelerators and ion sources, the construction of the magnetic spectrograph and radiation detectors, the investigation of solids and microstructures by nuclear methods, the development of electronic circuits, the advances in data processing, the study of heavy ion reactions, nuclear structure, and reaction mechanisms, the research on atomic physics and the interaction of charged particles with matter, the studies in medium and high energy physics, the theoretical studies of nuclear structure, and the research in cosmochemistry. Furthermore a list of publications is added. (orig./HSI) [de

  14. Annual Report 2006

    International Nuclear Information System (INIS)

    Michalik, J.; Smulek, W.; Godlewska-Para, E.

    2007-01-01

    The Annual Report of the Institute of Nuclear Chemistry and Technology (Warsaw, Poland) describes achievements of the Institute in 2006 obtained in seven fields: (1) radiation chemistry and technology, (2) radiochemistry and coordination chemistry, (3) radiobiology, (4) application of nuclear methods in material and process engineering, (5) design of instruments based on nuclear techniques, (6) trace analysis and radioanalytical techniques, (7) environmental research. In total - 83 detailed papers prepared by the Institute workers and collaborating scientists are presented. General information on the Institute status, personnel activity, international cooperation and publications are presented

  15. 1992 Annual report

    International Nuclear Information System (INIS)

    1993-01-01

    Annual report of the Institut de Physique Nucleaire at Orsay (France). The main themes are presented. Concerning experimental research: nuclear structure, ground states and low energy excited states, high excitation energy nuclear states, nuclear matter and nucleus-nucleus collision, intermediate energy nuclear physics, radiochemistry, inter-disciplinary research, scientific information and communication; concerning theoretical physics: particles and fields (formal aspects and hadronic physics), chaotic systems and semi-classical methods, few body problems, nucleus-nucleus scattering, nucleus spectroscopy and clusters, statistical physics and condensed matter; concerning general activities and technological research: accelerators, detectors, applications in cryogenics, data processing, Isolde and Orion equipment

  16. Annual Report 2008

    International Nuclear Information System (INIS)

    Michalik, J.; Smulek, W.; Godlewska-Para, E.

    2009-01-01

    The Annual Report of the Institute of Nuclear Chemistry and Technology (Warsaw, Poland) describes achievements of the Institute in 2008 obtained in six fields: (1) radiation chemistry and physics, radiation technologies, (2) radiochemistry, stable isotopes, nuclear analytical methods, general chemistry, (3) radiobiology, (4) nuclear technologies and methods: process engineering, (5) nuclear technologies and methods: material engineering, structural studies, diagnostics, (6) nucleonic control systems and accelerators. In total - 76 detailed papers prepared by the Institute workers and collaborating scientists are presented. General information on the Institute status, personnel activity, international cooperation and publications are also given

  17. Annual Report 2007

    International Nuclear Information System (INIS)

    Michalik, J.; Smulek, W.; Godlewska-Para, E.

    2008-01-01

    The Annual Report of the Institute of Nuclear Chemistry and Technology (Warsaw, Poland) describes achievements of the Institute in 2007 obtained in seven fields: (1) radiation chemistry and physics, radiation technologies; (2) radiochemistry, stable isotopes, nuclear analytical methods, general chemistry; (3) radiobiology; (4) nuclear technologies and methods: process engineering; (5) nuclear technologies and methods: material engineering, structural studies, diagnostics; (6) nuclear technologies and methods: nucleonic control systems and accelerators. In total - 76 detailed papers prepared by the Institute workers and collaborating scientists are presented. General information on the Institute status, personnel activity, international cooperation and publications are also given

  18. IKF annual report 1983

    International Nuclear Information System (INIS)

    Schmidt-Boecking, H.

    1983-01-01

    This annual report contains extended abstracts about the scientific work performed at the named institute descriptions of the operation of the Van-de-Graaf accelerator facilities of this institute and the work of the technical establishments, as well as a list of publications. The scientific work concerns nuclear structure and nuclear reactions, high energy heavy ion physics, atomic physics with fast ions, nuclear solid state physics, solid-state track detectors, applications of nuclear methods in solid state physics, ion source developments, apparative developments and data processing, as well as interdisciplinary collaborations. See hints under the relevant topics. (HSI) [de

  19. Annual Report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Michalik, J; Smulek, W; Godlewska-Para, E [eds.

    2008-07-01

    The Annual Report of the Institute of Nuclear Chemistry and Technology (Warsaw, Poland) describes achievements of the Institute in 2007 obtained in seven fields: (1) radiation chemistry and physics, radiation technologies; (2) radiochemistry, stable isotopes, nuclear analytical methods, general chemistry; (3) radiobiology; (4) nuclear technologies and methods: process engineering; (5) nuclear technologies and methods: material engineering, structural studies, diagnostics; (6) nuclear technologies and methods: nucleonic control systems and accelerators. In total - 76 detailed papers prepared by the Institute workers and collaborating scientists are presented. General information on the Institute status, personnel activity, international cooperation and publications are also given.

  20. Annual report 1981

    International Nuclear Information System (INIS)

    1982-01-01

    This annual report contains extended abstracts about the research done at the named institute. These abstracts concern the development of accelerators and ion sources, the construction of the magnetic spectrograph and radiation detectors, the investigation of solids and microstructures by nuclear methods, the development of electronic circuits, the advances in data processing, the study of heavy ion reactions, nuclear structure, and reaction mechanisms, the research on atomic physics and the interaction of charged particles with matter, the studies of in medium and high energy physics, the theoretical studies of nuclear structure and the research in cosmophysics. Furthermore a list of publications is added. (orig./HSI) [de

  1. FY 1998 annual summary report on photon measuring/processing techniques. Development of the techniques for high-efficiency production processes; 1998 nendo foton keisoku kako gijutsu seika hokokusho. Kokoritsu seisan process gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The objectives are set to develop the techniques for energy-efficient laser-aided processing; techniques for high-precision, real-time measurement to improve quality control for production processes and increase their efficiency; and the techniques for generating/controlling photon of high efficiency and quality as the laser beam sources therefor, in order to promote energy saving at and improve efficiency of production processes consuming large quantities of energy, e.g., welding, joining, surface treatment and production of fine particles. The R and D themes are microscopic processing technology: simulation technology for laser welding phenomena; microscopic processing technology: synthesis of technology for quantum dot functional structures; in-situ status measuring technology: fine particle elements and size measurement technology; high-power all-solid-state laser technology: efficient rod type LD-pumping laser modules and pumping chamber of a slab-type laser; tightly-focusing all-solid-state laser technology: improvement of E/O efficiency of laser diode, high-quality nonlinear crystal growth technology and fabrication technology for nonlinear crystal; and comprehensive investigation of photonics engineering: high-efficiency harmonic generation technology. (NEDO)

  2. Kinetics and mechanism of synthetic CoS oxidation process

    Directory of Open Access Journals (Sweden)

    Štrbac N.

    2006-01-01

    Full Text Available The results of investigation of kinetics and mechanism for synthetic a-CoS oxidation process are presented in this paper. Based on experimental data obtained using DTA and XRD analysis and constructed PSD diagrams for Co-S-O system, mechanism of synthetic a-CoS oxidation process is suggested. Characteristic kinetic parameters were obtained for experimental isothermal investigations of desulfurization degree using Sharp method.

  3. Species Differences in the Oxidative Desulfurization of a Thiouracil-Based Irreversible Myeloperoxidase Inactivator by Flavin-Containing Monooxygenase Enzymes.

    Science.gov (United States)

    Eng, Heather; Sharma, Raman; Wolford, Angela; Di, Li; Ruggeri, Roger B; Buckbinder, Leonard; Conn, Edward L; Dalvie, Deepak K; Kalgutkar, Amit S

    2016-08-01

    N1-Substituted-6-arylthiouracils, represented by compound 1 [6-(2,4-dimethoxyphenyl)-1-(2-hydroxyethyl)-2-thioxo-2,3-dihydropyrimidin-4(1H)-one], are a novel class of selective irreversible inhibitors of human myeloperoxidase. The present account is a summary of our in vitro studies on the facile oxidative desulfurization in compound 1 to a cyclic ether metabolite M1 [5-(2,4-dimethoxyphenyl)-2,3-dihydro-7H-oxazolo[3,2-a]pyrimidin-7-one] in NADPH-supplemented rats (t1/2 [half-life = mean ± S.D.] = 8.6 ± 0.4 minutes) and dog liver microsomes (t1/2 = 11.2 ± 0.4 minutes), but not in human liver microsomes (t1/2 > 120 minutes). The in vitro metabolic instability also manifested in moderate-to-high plasma clearances of the parent compound in rats and dogs with significant concentrations of M1 detected in circulation. Mild heat deactivation of liver microsomes or coincubation with the flavin-containing monooxygenase (FMO) inhibitor imipramine significantly diminished M1 formation. In contrast, oxidative metabolism of compound 1 to M1 was not inhibited by the pan cytochrome P450 inactivator 1-aminobenzotriazole. Incubations with recombinant FMO isoforms (FMO1, FMO3, and FMO5) revealed that FMO1 principally catalyzed the conversion of compound 1 to M1. FMO1 is not expressed in adult human liver, which rationalizes the species difference in oxidative desulfurization. Oxidation by FMO1 followed Michaelis-Menten kinetics with Michaelis-Menten constant, maximum rate of oxidative desulfurization, and intrinsic clearance values of 209 μM, 20.4 nmol/min/mg protein, and 82.7 μl/min/mg protein, respectively. Addition of excess glutathione essentially eliminated the conversion of compound 1 to M1 in NADPH-supplemented rat and dog liver microsomes, which suggests that the initial FMO1-mediated S-oxygenation of compound 1 yields a sulfenic acid intermediate capable of redox cycling to the parent compound in a glutathione-dependent fashion or undergoing further oxidation to a more

  4. Preparation of WO{sub 3}/g-C{sub 3}N{sub 4} composites and their application in oxidative desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Rongxiang, E-mail: zylhzrx@126.com; Li, Xiuping, E-mail: lilili_171717@126.com; Su, Jianxun; Gao, Xiaohan

    2017-01-15

    Highlights: • The WO{sub 3}/g-C{sub 3}N{sub 4} was successfully synthesized through simple calcination. • The process is simple and the cost raw materials is cheap. • The WO{sub 3}/g-C{sub 3}N{sub 4} firstly applied to ODS. • The desulpurization rate of WO{sub 3}/g-C{sub 3}N{sub 4} may attach to 91.2%. • Five recycles of WO{sub 3}/g-C{sub 3}N{sub 4} still attach to 89.5% due to heterogeneous catalysis. - Abstract: WO{sub 3}/graphitic carbon nitride (g-C{sub 3}N{sub 4}) composites were successfully synthesized through direct calcining of a mixture of WO{sub 3} and g-C{sub 3}N{sub 4} at 400 °C for 2 h. The WO{sub 3} was prepared by calcination of phosphotungstic acid at 550 °C for 4 h, and the g-C{sub 3}N{sub 4} was obtained by calcination of melamine at 520 °C for 4 h. The WO{sub 3}/g-C{sub 3}N{sub 4} composites were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), and Brunner−Emmett−Teller analysis (BET). The WO{sub 3}/g-C{sub 3}N{sub 4} composites exhibited stronger XRD peaks of WO{sub 3} and g-C{sub 3}N{sub 4} than the WO{sub 3} and pure g-C{sub 3}N{sub 4}. In addition, two WO{sub 3} peaks at 25.7° and 26.6° emerged for the 36% −WO{sub 3}/g-C{sub 3}N{sub 4} composite. This finding indicated that WO{sub 3} was highly dispersed on the surface of the g-C{sub 3}N{sub 4} nanosheets and interacted with the nanosheets, which resulted in the appearance of (012) and (022) planes of WO{sub 3}. The WO{sub 3}/g-C{sub 3}N{sub 4} composite also exhibited a larger specific surface area and higher degree of crystallization than WO{sub 3} or pure g-C{sub 3}N{sub 4}, which resulted in high catalytic activity of the catalyst. Desulfurization experiments demonstrated that the desulfurization rate of dibenzothiophene (DBT) in model oil reached 91.2% under optimal conditions. Moreover, the activity of the catalyst was not significantly decreased after five recycles.

  5. Annual report, 1982

    International Nuclear Information System (INIS)

    1983-01-01

    In 1982 Eldorado Nuclear Ltd. acquired important new sources of uranium in the Wollaston Lake area of northern Saskatchewan by purchasing the shares of Gulf Minerals Canada Ltd. and Uranerz Canada Ltd. Eldorado Nuclear Ltd. is now sole owner of the Rabbit Lake properties, consisting of more than 30 million kg of U 3 O 8 and a mill with a capacity of 2.5 million kg annually. Production records were set at the Port Hope, Ontario, uranium processing plant, and processing capacity continued to expand there and at the new Blind River, Ontario, refinery. The uneconomic Beaverlodge mine in northern Saskatchewan was closed as scheduled. The company participated in the development of the Key Lake project in northern Saskatchewan. This high-grade, open pit mine has reserves containing more than 80 million kg of U 3 O 8 , and will have a production capacity of 5.4 million kg annually when production begins in 1983. Company assets were increased from $618.4 million in 1981 to $875.6 million in 1982; and corporate structure was re-organized to integrate newly-acquired operations. Earnings for 1982 were $4 million

  6. Evaluation of the polysubstituted pyridinium ionic liquid [hmmpy][Ntf2] as a suitable solvent for desulfurization: Phase equilibria

    International Nuclear Information System (INIS)

    Arce, Alberto; Francisco, Maria; Soto, Ana

    2010-01-01

    Suitability of a pyridinium ionic liquid as a solvent in desulfurization has been analyzed. (Liquid + liquid) equilibria for ternary systems composed by 1-hexyl-3,5-dimethyl pyridinium {bis[trifluoromethylsulfonyl]imide, thiophene, and three hydrocarbons representative of fuel (n-heptane, 2,2,4 trimethylpentane, and toluene) have been determined at T = 298.15 K and atmospheric pressure. High solubility of thiophene in the ionic liquid and also of toluene have been found, being this solvent practically immiscible with 2,2,4 trimethylpentane and heptane. Equilibrium data of these systems have been well correlated with UNIQUAC equations finding the highest deviations for the ternary system involving toluene. NRTL model drove to worse results being considered as not suitable model to correlate the experimental results.

  7. Advanced Flue Gas Desulfurization (AFGD) Demonstration Project. Technical progress report No. 15, July 1, 1993--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    The goal of this project is to demonstrate that, by combining state-of-the-art technology, highly efficient plant operation and maintenance capabilities and by-product gypsum sales, significant reductions of SO{sub 2} emissions can be achieved at approximately one-half the life cycle cost of a conventional Flue Gas Desulfurization (FGD) system. Further, this emission reduction is achieved without generating solid waste and while minimizing liquid wastewater effluent. Basically, this project entails the design, construction and operation of a nominal 600 MWe AFGD facility to remove SO{sub 2} from coal-fired power plant flue gas at the Northern Indiana Public Service Company`s Bailly Generating Station.

  8. Desulfurization of fuel oils using an advanced oxidation method; Desulfuracion de combustibles usando un metodo de oxidacion avanzada

    Energy Technology Data Exchange (ETDEWEB)

    Flores Velazquez, Roberto; Rodas Grapain, Arturo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2008-07-01

    In the present work, the oxidative desulfurization of fuel oils assisted by ultrasound was analyzed. It was studied the effect of hydrogen peroxide concentration, the fuel oil to aqueous solution volumetric ratio, and type of catalyst. The Fenton-like catalysts studied were ferric chloride and copper sulfate. [Spanish] En esta investigacion se analiza la desulfuracion oxidativa de combustoleo asistida con ultrasonido. Tambien se estudia el efecto de la concentracion de peroxido de hidrogeno (H{sub 2}O{sub 2}), la relacion volumetrica combustoleo/solucion acuosa y el tipo de catalizador. Los catalizadores tipo Fenton que se estudiaron fueron el cloruro ferrico (FeCl{sub 3}) y el sulfato de cobre (CuSO{sub 4}).

  9. Integrated photooxidative extractive deep desulfurization using metal doped TiO2 and eutectic based ionic liquid

    Science.gov (United States)

    Zaid, Hayyiratul Fatimah Mohd; Kait, Chong Fai; Mutalib, Mohamed Ibrahim Abdul

    2016-11-01

    A series of metal doped TiO2 namely Fe/TiO2, Cu/TiO2 and Cu-Fe/TiO2 were synthesized and characterized, to be used as a photocatalyst in the integrated photooxidative extractive deep desulfurization for model oil (dodecane) and diesel fuel. The order of the photocatalytic activity was Cu-Fe/TiO2 followed by Cu/TiO2 and then Fe/TiO2. Cu-Fe/TiO2 was an effective photocatalyst for sulfur conversion at ambient atmospheric pressure. Hydrogen peroxide was used as the source of oxidant and eutectic-based ionic liquid as the extractant. Sulfur conversion in model oil reached 100%. Removal of sulfur from model oil was done by two times extraction with a removal of 97.06% in the first run and 2.94% in the second run.

  10. Attapulgite-CeO{sub 2}/MoS{sub 2} ternary nanocomposite for photocatalytic oxidative desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiazhang, E-mail: lixiazhang509@163.com [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou 215009 (China); W.M.Keck Center for Advanced Microscopy and Microanalysis, University of Delaware, Newark, DE 19716 (United States); Zhang, Zuosong [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Yao, Chao [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Lu, Xiaowang [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Zhao, Xiaobing [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou 215009 (China); Ni, Chaoying [W.M.Keck Center for Advanced Microscopy and Microanalysis, University of Delaware, Newark, DE 19716 (United States)

    2016-02-28

    Graphical abstract: - Highlights: • Novel attapulgite(ATP)-CeO{sub 2}/MoS{sub 2} ternary nanocomposites were fabricated. • ATP possessed outstanding adsorption property and enhanced the stability of the network structure. • CeO{sub 2}/MoS{sub 2} couples facilitated the separation of photo-induced electrons and holes. • Mass ratio of CeO{sub 2}/MoS{sub 2} influenced the photocatalytic oxidation desulfurization. - Abstract: Novel attapulgite(ATP)-CeO{sub 2}/MoS{sub 2} ternary nanocomposites were synthesized by microwave assisted assembly method. The structures of the nanocomposites were characterized by XRD, FT-IR, UV–vis, XPS and in situ TEM. The photocatalytic activities of ATP-CeO{sub 2}/MoS{sub 2} composites were investigated by degradating dibenzothiophene (DBT) in gasoline under visible light irradiation. The effect of the mass ratio of CeO{sub 2} to MoS{sub 2} on photocatalytic activity was investigated. The results indicate that the three-dimensional network structure is firmly constructed by ATP skeleton, CeO{sub 2} particles and MoS{sub 2} nanosheet which effectively increase the surface area of the composites and promote the separation of electrons and holes by resulting electronic transmission channels of multi-channel in space. The degradation rate of DBT can reach 95% under 3 h irradiation when the mass ratio of CeO{sub 2}/MoS{sub 2} is 4/10. A plausible mechanism for the photocatalytic oxidative desulfurization of this nanocomposite is put forward.

  11. Desulfurization from thiophene by SO(4)(2-)/ZrO(2) catalytic oxidation at room temperature and atmospheric pressure.

    Science.gov (United States)

    Wang, Bo; Zhu, Jianpeng; Ma, Hongzhu

    2009-05-15

    Thiophene, due to its poison, together with its combustion products which causes air pollution and highly toxic characteristic itself, attracted more and more attention to remove from gasoline and some high concentration systems. As the purpose of achieving the novel method of de-thiophene assisted by SO(4)(2-)/ZrO(2) (SZ), three reactions about thiophene in different atmosphere at room temperature and atmospheric pressure were investigated. SO(4)(2-)/ZrO(2) catalyst were synthesized and characterized by X-ray photoelectron spectroscopy (XPS), Fourier transformation infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscope (SEM). The products were detected by gas chromatography-mass spectrometry (GC-MS). XP spectra show that ozone-catalyst system (SZO) have two forms of sulfur element (S(6+) and S(2-)) on the catalyst surface, which distinguished from that of air-catalyst system (SZA) and blank-catalyst system (SZB) (S(6+)). And the results of GC-MS exhibited that some new compounds has been produced under this extremely mild condition. Especially, many kinds of sulfur compounds containing oxygen, that is easier to be extracted by oxidative desulfurization (ODS), have been detected in the SZA-1.5h and SZB-3h system. In addition, some long chain hydrocarbons have also been detected. While in SZO-0.5h system, only long chain hydrocarbons were found. The results show that total efficiency of desulfurization from thiophene with ozone near to 100% can be obtained with the SO(4)(2-)/ZrO(2) catalytic oxidation reaction.

  12. Preparation of WO3/g-C3N4 composites and their application in oxidative desulfurization

    Science.gov (United States)

    Zhao, Rongxiang; Li, Xiuping; Su, Jianxun; Gao, Xiaohan

    2017-01-01

    WO3/graphitic carbon nitride (g-C3N4) composites were successfully synthesized through direct calcining of a mixture of WO3 and g-C3N4 at 400 °C for 2 h. The WO3 was prepared by calcination of phosphotungstic acid at 550 °C for 4 h, and the g-C3N4 was obtained by calcination of melamine at 520 °C for 4 h. The WO3/g-C3N4 composites were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), and Brunner-Emmett-Teller analysis (BET). The WO3/g-C3N4 composites exhibited stronger XRD peaks of WO3 and g-C3N4 than the WO3 and pure g-C3N4. In addition, two WO3 peaks at 25.7° and 26.6° emerged for the 36% -WO3/g-C3N4 composite. This finding indicated that WO3 was highly dispersed on the surface of the g-C3N4 nanosheets and interacted with the nanosheets, which resulted in the appearance of (012) and (022) planes of WO3. The WO3/g-C3N4 composite also exhibited a larger specific surface area and higher degree of crystallization than WO3 or pure g-C3N4, which resulted in high catalytic activity of the catalyst. Desulfurization experiments demonstrated that the desulfurization rate of dibenzothiophene (DBT) in model oil reached 91.2% under optimal conditions. Moreover, the activity of the catalyst was not significantly decreased after five recycles.

  13. Desulfurization from thiophene by SO42-/ZrO2 catalytic oxidation at room temperature and atmospheric pressure

    International Nuclear Information System (INIS)

    Wang Bo; Zhu Jianpeng; Ma Hongzhu

    2009-01-01

    Thiophene, due to its poison, together with its combustion products which causes air pollution and highly toxic characteristic itself, attracted more and more attention to remove from gasoline and some high concentration systems. As the purpose of achieving the novel method of de-thiophene assisted by SO 4 2- /ZrO 2 (SZ), three reactions about thiophene in different atmosphere at room temperature and atmospheric pressure were investigated. SO 4 2- /ZrO 2 catalyst were synthesized and characterized by X-ray photoelectron spectroscopy (XPS), Fourier transformation infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscope (SEM). The products were detected by gas chromatography-mass spectrometry (GC-MS). XP spectra show that ozone-catalyst system (SZO) have two forms of sulfur element (S 6+ and S 2- ) on the catalyst surface, which distinguished from that of air-catalyst system (SZA) and blank-catalyst system (SZB) (S 6+ ). And the results of GC-MS exhibited that some new compounds has been produced under this extremely mild condition. Especially, many kinds of sulfur compounds containing oxygen, that is easier to be extracted by oxidative desulfurization (ODS), have been detected in the SZA-1.5 h and SZB-3 h system. In addition, some long chain hydrocarbons have also been detected. While in SZO-0.5 h system, only long chain hydrocarbons were found. The results show that total efficiency of desulfurization from thiophene with ozone near to 100% can be obtained with the SO 4 2- /ZrO 2 catalytic oxidation reaction

  14. Recovery of SO2 and MgO from By-Products of MgO Wet Flue Gas Desulfurization.

    Science.gov (United States)

    Yan, Liyun; Lu, Xiaofeng; Wang, Quanhai; Guo, Qiang

    2014-11-01

    An industrial demonstration unit using natural gas as a heat source was built to calcine the by-products of MgO wet flue gas desulfurization from power plants; influencing factors on the SO 2 content in calciner gas were comprehensively analyzed; and an advantageous recycling condition of MgO and SO 2 from by-products was summarized. Results showed that the SO 2 content in the calciner gas was increased by more than 10 times under a lower excess air coefficient, a higher feed rate, a lower crystal water in by-products, and a higher feed port position. For the tests conducted under the excess air coefficient above and below one, the effect of the furnace temperature on the SO 2 content in the calciner gas was reversed. Results of activity analysis indicate that particles of MgO generated under the calcination temperature of 900-1,000°C had a high activity. In contrast, due to the slight sintering, MgO generated under the calcination temperature of 1,100°C had a low activity. To recycle SO 2 as well as MgO, a temperature range of 900-927°C for TE103 is proposed. These studies will prompt the desulfurization market diversification, reduce the sulfur's dependence on imports for making sulfuric acid, be meaningful to balance the usage of the natural resource in China, and be regarded as a reference for the development of this technology for other similar developing countries.

  15. Effects of pore sizes and oxygen-containing functional groups on desulfurization activity of Fe/NAC prepared by ultrasonic-assisted impregnation

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Song [College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan (China); Guo, Jia-Xiu, E-mail: guojiaxiu@scu.edu.cn [College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan (China); National Engineering Technology Research Center for Flue Gas Desulfurization, Chengdu 610065, Sichuan (China); Sichuan Provincial Environmental Protection Environmental Catalysis and Materials Engineering Technology Center, Chengdu 610065, Sichuan (China); Liu, Xiao-Li [National Engineering Technology Research Center for Flue Gas Desulfurization, Chengdu 610065, Sichuan (China); Wang, Xue-Jiao [College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan (China); Yin, Hua-Qiang [College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan (China); National Engineering Technology Research Center for Flue Gas Desulfurization, Chengdu 610065, Sichuan (China); Sichuan Provincial Environmental Protection Environmental Catalysis and Materials Engineering Technology Center, Chengdu 610065, Sichuan (China); Luo, De-Ming [National Engineering Technology Research Center for Flue Gas Desulfurization, Chengdu 610065, Sichuan (China)

    2016-01-01

    Graphical abstract: - Highlights: • Fe/NAC-60 exhibits the best desulfurization activity. • Different oscillation time can change surface area and pore volume of catalysts. • Ultrasonic oscillation increases Fe dispersion on carrier and effective pores. • Pore sizes play a crucial role during the SO{sub 2} removal. - Abstract: A series of Fe-loaded activated carbons treated by HNO{sub 3} (Fe/NAC) were prepared by incipient impregnation method with or without ultrasonic assistance and characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy with energy disperse spectroscope (SEM-EDS), transmission electron microscopy (TEM) and N{sub 2} adsorption/desorption. The desulfurization activities were evaluated at a fixed bed reactor under a mixed gas simulated from flue gas. The results showed that desulfurization activity from excellent to poor is as follows: Fe/NAC-60 > Fe/NAC-80 > Fe/NAC-30 > Fe/NAC-15 > Fe/NAC-0 > Fe/NAC-100 > NAC. Fe/NAC-60 exhibits the best desulfurization activity and has breakthrough sulfur capacity of 319 mg/g and breakthrough time of 540 min. The introduction of ultrasonic oscillation does not change the form of Fe oxides on activated carbon but can change the dispersion and relative contents of Fe{sub 3}O{sub 4}. The types of oxygen-containing functional groups have no obvious change for all samples but the texture properties show some differences when they are oscillated for different times. The fresh Fe/NAC-60 has a surface area of 1045 m{sup 2}/g and total pore volume of 0.961 cm{sup 3}/g with micropore volume of 0.437 cm{sup 3}/g and is larger than Fe/NAC-0 (823 m{sup 2}/g, 0.733 and 0.342 cm{sup 3}/g). After desulfurization, surface area and pore volume of all samples decrease significantly, and those of the exhausted Fe/NAC-60 decrease to 233 m{sup 2}/g and 0.481 cm{sup 3}/g, indicating that some byproducts deposit on surface to cover pores. Pore size distribution

  16. Effects of pore sizes and oxygen-containing functional groups on desulfurization activity of Fe/NAC prepared by ultrasonic-assisted impregnation

    International Nuclear Information System (INIS)

    Shu, Song; Guo, Jia-Xiu; Liu, Xiao-Li; Wang, Xue-Jiao; Yin, Hua-Qiang; Luo, De-Ming

    2016-01-01

    Graphical abstract: - Highlights: • Fe/NAC-60 exhibits the best desulfurization activity. • Different oscillation time can change surface area and pore volume of catalysts. • Ultrasonic oscillation increases Fe dispersion on carrier and effective pores. • Pore sizes play a crucial role during the SO 2 removal. - Abstract: A series of Fe-loaded activated carbons treated by HNO 3 (Fe/NAC) were prepared by incipient impregnation method with or without ultrasonic assistance and characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy with energy disperse spectroscope (SEM-EDS), transmission electron microscopy (TEM) and N 2 adsorption/desorption. The desulfurization activities were evaluated at a fixed bed reactor under a mixed gas simulated from flue gas. The results showed that desulfurization activity from excellent to poor is as follows: Fe/NAC-60 > Fe/NAC-80 > Fe/NAC-30 > Fe/NAC-15 > Fe/NAC-0 > Fe/NAC-100 > NAC. Fe/NAC-60 exhibits the best desulfurization activity and has breakthrough sulfur capacity of 319 mg/g and breakthrough time of 540 min. The introduction of ultrasonic oscillation does not change the form of Fe oxides on activated carbon but can change the dispersion and relative contents of Fe 3 O 4 . The types of oxygen-containing functional groups have no obvious change for all samples but the texture properties show some differences when they are oscillated for different times. The fresh Fe/NAC-60 has a surface area of 1045 m 2 /g and total pore volume of 0.961 cm 3 /g with micropore volume of 0.437 cm 3 /g and is larger than Fe/NAC-0 (823 m 2 /g, 0.733 and 0.342 cm 3 /g). After desulfurization, surface area and pore volume of all samples decrease significantly, and those of the exhausted Fe/NAC-60 decrease to 233 m 2 /g and 0.481 cm 3 /g, indicating that some byproducts deposit on surface to cover pores. Pore size distribution influences SO 2 adsorption, and fresh Fe/NAC-60 has

  17. Annual plan, December 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This annual plan is being provided as required under Section 'D' of the Alberta Energy and Utilities Board Information Letter IL 90-8. The objective is to provide the Board, NOVA Gas Transmission (NGTL) customers and other interested parties with a comprehensive overview of NOVA Gas Transmission's pipeline system expansion plans for the gas year 2000/ 2001, and the winter season of the 2001/2002 gas year. The plan includes descriptions of NGTL's design assumptions and criteria, as well as long term outlook for field deliverability, productive capability, gas deliveries, proposed facility additions, capital expenditures, revenue requirements and firm service demand rates. Major factors affecting the facility requirements for the period under consideration are a decrease in the maximum day delivery volume at the Empress border point, an increase in intra-Alberta maximum day delivery volumes and associated decline in productive capability. Chapter One of the Plan describes the the Annual Plan process itself; Chapter Two is devoted to a discussion of facilities design methodology; Chapter Three deals with economic assumptions; Chapter Four describes design flow, while Chapters Five and Six outline the mainline , meter stations, laterals, and lateral loops facility requirements. Chapter Seven provides and overview of the capital and financial forecasts. tabs., figs.

  18. Synthesis of 2-azaindolizines by using an iodine-mediated oxidative desulfurization promoted cyclization of N-2-pyridylmethyl thioamides and an investigation of their photophysical properties.

    Science.gov (United States)

    Shibahara, Fumitoshi; Kitagawa, Asumi; Yamaguchi, Eiji; Murai, Toshiaki

    2006-11-23

    Iodine-mediated, oxidative desulfurization promoted cyclization of N-2-pyridylmethyl thioamides serves as an efficient and versatile method for the preparation of 2-azaindolizines (imidazo[1,5-a]pyridines) and rare 2-azaindolizine sulfur-bridged dimers. The 2-azaindolizines prepared in this manner are readily converted to a variety of fluorescent compounds by using transition-metal-catalyzed cross-coupling reactions. [reaction: see text].

  19. A briefing paper for the status of the flue gas desulfurization system at Indianapolis Power ampersand Light Company Petersburg Station Units 1 and 2

    International Nuclear Information System (INIS)

    Rutledge, C.K.; Wolsiffer, S.R.; Gray, S.M.; Martin, J.E.; Wedig, C.P.

    1992-01-01

    This paper presents a brief description of the status of the retrofit wet limestone flue gas desulfurization system project at Indianapolis Power ampersand Light Company (IPL) Petersburg Units 1 and 2. This project was initiated by IPL in response to the Clean Air Act of 1990 and is intended to treat the flue gas from two base load units with a combined capacity of approximately 700 MW gross electrical output

  20. Microbial Desulfurization of a Crude Oil Middle-Distillate Fraction: Analysis of the Extent of Sulfur Removal and the Effect of Removal on Remaining Sulfur

    Science.gov (United States)

    Grossman, M. J.; Lee, M. K.; Prince, R. C.; Garrett, K. K.; George, G. N.; Pickering, I. J.

    1999-01-01

    Rhodococcus sp. strain ECRD-1 was evaluated for its ability to desulfurize a 232 to 343°C middle-distillate (diesel range) fraction of Oregon basin (OB) crude oil. OB oil was provided as the sole source of sulfur in batch cultures, and the extent of desulfurization and the chemical fate of the residual sulfur in the oil after treatment were determined. Gas chromatography (GC), flame ionization detection, and GC sulfur chemiluminesce detection analysis were used to qualitatively evaluate the effect of Rhodococcus sp. strain ECRD-1 treatment on the hydrocarbon and sulfur content of the oil, respectively. Total sulfur was determined by combustion of samples and measurement of released sulfur dioxide by infrared absorption. Up to 30% of the total sulfur in the middle distillate cut was removed, and compounds across the entire boiling range of the oil were affected. Sulfur K-edge X-ray absorption-edge spectroscopy was used to examine the chemical state of the sulfur remaining in the treated OB oil. Approximately equal amounts of thiophenic and sulfidic sulfur compounds were removed by ECRD-1 treatment, and over 50% of the sulfur remaining after treatment was in an oxidized form. The presence of partially oxidized sulfur compounds indicates that these compounds were en route to desulfurization. Overall, more than two-thirds of the sulfur had been removed or oxidized by the microbial treatment. PMID:9872778