WorldWideScience

Sample records for designs maintain structural

  1. Maintainability design guide

    International Nuclear Information System (INIS)

    Pack, R.W.

    1985-01-01

    The Human Factors Design Guide for Maintainability provides guidance for systematically incorporating good human factors techniques into the design of power plants. The guide describes a means of developing a comprehensive program plan to ensure compliance with the human factors approaches specified by the utility. The guide also provides specific recommendations for design practices, with examples, bases, and references. The recommendations are formatted for easy use by nuclear power plant design teams and by utility personnel involved in specification and design review. The guide was developed under EPRI research project RP2166-4 and is currently being published

  2. Reliability based structural design

    NARCIS (Netherlands)

    Vrouwenvelder, A.C.W.M.

    2014-01-01

    According to ISO 2394, structures shall be designed, constructed and maintained in such a way that they are suited for their use during the design working life in an economic way. To fulfil this requirement one needs insight into the risk and reliability under expected and non-expected actions. A

  3. Challenges of designing fusion reactors for remote maintainability

    International Nuclear Information System (INIS)

    Mason, L.S.

    1981-01-01

    One of the major problems faced by the fusion community is the development of the high level of reliability required to assure that fusion will be a viable commercial power source. Much of the responsibility for solving this problem falls directly on the designer in developing concepts that have a high level of maintainability. The problems are both near-term, in developing maintainability for next generation engineering oriented reactors; and long range, in developing full maintainability for the more commercial concepts with their required high level of on-line time. The near-time challenge will include development of unqiue design concepts to perform inspection, maintenance, replacement, and testing under the stringent conditions imposed by the next generation engineering oriented machines. The long range challenge will focus on basic design concepts that will enable the full mainatability required by commerical fusion

  4. Maintainability design and evaluation of mechanical systems based on tribology

    International Nuclear Information System (INIS)

    Wani, M.F.; Gandhi, O.P.

    2002-01-01

    Maintainability of mechanical systems based on tribology is suggested and evaluated in this paper. Tribo-features of mechanical systems, which characterise maintainability are identified and are modelled in terms of tribo-maintainability digraph. The nodes in the digraph represent the tribo-features and edges represent the degree of influence among the features. A matrix, one to one representation of the digraph, is defined to develop system maintainability expression (SPF-t) based on the tribology. It is also useful in comparing the various design alternatives from tribo-maintainability point of view. Maintainability is evaluated from the tribo-maintainability index, obtained from SPF-t (i.e. permanent of the matrix) by substituting the numerical values of the features and their interdependence. A higher value of the index implies better maintainability of the systems. The proposed methodology also guides designers in enhancing the maintainability of a system by appropriately incorporating tribo-features. An example to illustrate the methodology is also presented

  5. Challenges of designing fusion reactors for remote maintainability

    International Nuclear Information System (INIS)

    Masson, L.S.

    1981-01-01

    One of the major problems faced by the fusion community is the development of the high level of reliability required to assure that fusion will be a viable commercial power source. Much of the responsibility for solving this problem falls directly on the designer in developing concepts that have a high level of maintainability for the next generation engineering oriented reactors; and long range, in developing full maintainability for the more complicated commercial concepts with their required high level of on-line time. The near-term challenge will include development of unique design concepts to perform inspection, maintenance, replacement, and testing under the stringent conditions imposed by the next generation engineering oriented machines. The long range challenge will focus on basic design concepts that will enable the full maintainability required by commercial fusion. In addition to the purely technical challenges, the fusion community is also faced with the problem of developing programmatic means to assure that reactor maintenance issues are given proper and timely emphasis as the nuclear phase of fusion is approached

  6. Using Vector Projection Method to evaluate maintainability of mechanical system in design review

    International Nuclear Information System (INIS)

    Chen Lu; Cai Jianguo

    2003-01-01

    Maintainability of a mechanical system is one of the system design parameters that has a great impact in terms of ease of maintenance. In this article, based on the definition of the terms of maintenance and maintainability, an important tool of Design for Maintenance is developed as a way to improve maintainability through design. A set of standard and organized guidelines is provided and maintainability factors in terms of physical design, logistics support and ergonomics are identified. As a specific application of design review, a methodology so called Vector Projection Method is developed to evaluate the maintainability of the mechanical system. Lastly, an example is discussed

  7. Maintainability design criteria for packaging of spacecraft replaceable electronic equipment.

    Science.gov (United States)

    Kappler, J. R.; Folsom, A. B.

    1972-01-01

    Maintainability must be designed into long-duration spacecraft and equipment to provide the required high probability of mission success with the least cost and weight. The ability to perform repairs quickly and easily in a space environment can be achieved by imposing specific maintainability design criteria on spacecraft equipment design and installation. A study was funded to investigate and define design criteria for electronic equipment that would permit rapid removal and replacement in a space environment. The results of the study are discussed together with subsequent simulated zero-g demonstration tests of a mockup with new concepts for packaging.

  8. Advanced composite structures. [metal matrix composites - structural design criteria for spacecraft construction materials

    Science.gov (United States)

    1974-01-01

    A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.

  9. Structural optimization via a design space hierarchy

    Science.gov (United States)

    Vanderplaats, G. N.

    1976-01-01

    Mathematical programming techniques provide a general approach to automated structural design. An iterative method is proposed in which design is treated as a hierarchy of subproblems, one being locally constrained and the other being locally unconstrained. It is assumed that the design space is locally convex in the case of good initial designs and that the objective and constraint functions are continuous, with continuous first derivatives. A general design algorithm is outlined for finding a move direction which will decrease the value of the objective function while maintaining a feasible design. The case of one-dimensional search in a two-variable design space is discussed. Possible applications are discussed. A major feature of the proposed algorithm is its application to problems which are inherently ill-conditioned, such as design of structures for optimum geometry.

  10. Airfoil design: Finding the balance between design lift and structural stiffness

    DEFF Research Database (Denmark)

    Bak, Christian; Gaudern, Nicholas; Zahle, Frederik

    2014-01-01

    When upscaling wind turbine blades there is an increasing need for high levels of structural efficiency. In this paper the relationships between the aerodynamic characteristics; design lift and lift-drag ratio; and the structural characteristics were investigated. Using a unified optimization setup......, the design lift coefficient increases if the box length reduces and at the same time the relative thickness increases. Even though the conclusions are specific to the airfoil design approach used, the study indicated that an increased design lift required slightly higher relative thickness compared...... to airfoils with lower design lift to maintain the flapwise stiffness. Also, the study indicated that the lift-drag ratio as a function of flapwise stiffness was relatively independent of the airfoil design with a tendency that the lift-drag ratio decreased for large box lengths. The above conclusions were...

  11. Integrated structural design of nuclear power plants for high seismic areas

    International Nuclear Information System (INIS)

    Rieck, P.J.

    1979-01-01

    A design approach which structurally interconnects NPP buildings to be located in high seismic areas is described. The design evolution of a typical 600 MWe steel cylindrical containment PWR is described as the plant is structurally upgraded for higher seismic requirements, while maintaining the original plant layout. The plant design is presented as having separate reactor building and auxiliary structures for a low seismic area (0.20 g) and is structurally combined at the foundation for location in a higher seismic area (0.30 g). The evolution is completed by a fully integrated design which structurally connects the reactor building and auxiliary structures at superstructure elevations as well as foundation levels for location in very severe seismic risk areas (0.50 g). (orig.)

  12. Design of the core support and restraint structures for FFTF and CRBRP

    International Nuclear Information System (INIS)

    Sutton, H.G.; Rylatt, J.A.

    1977-12-01

    This paper presents and compares the design and fabrication of the FFTF and CRBRP reactor structures which support and restrain the reactor core assemblies. The fabrication of the core support structure (CSS) for the FFTF reactor was completed October 1972 and this paper discusses how the fabrication problems encountered with the FFTF were avoided in the subsequent design of the CRBR CSS. The radial core restraint structure of the FFTF was designed and fabricated such that an active system could replace the present passive system which is segmented and relies on the CSS core barrel for total structure integrity to maintain core geometry. The CRBR core restraint structure is designed for passive restraint only, and this paper discusses how the combined strengths of the restraint structure former rings and the CSS core barrel are utilized to maintain core geometry. Whereas the CSS for the FFTF interfaces directly with the reactor core assemblies, the CRBR CSS does not. A comparison is made on how intermediate structures in CRBR (inlet modules) provide the necessary design interfaces for supporting and providing flow distribution to the reactor core assemblies. A discussion is given on how the CRBR CSS satisfied the design requirements of the Equipment Specification, including thermal transient, dynamic and seismic loadings, and results of flow distribution testing that supported the CRBR design effort. The approach taken to simplify fabrication of the CRBR components, and a novel 20 inch deep narrow gap weld joint in the CSS are described

  13. Airfoil design: Finding the balance between design lift and structural stiffness

    International Nuclear Information System (INIS)

    Bak, Christian; Gaudern, Nicholas; Zahle, Frederik; Vronsky, Tomas

    2014-01-01

    When upscaling wind turbine blades there is an increasing need for high levels of structural efficiency. In this paper the relationships between the aerodynamic characteristics; design lift and lift-drag ratio; and the structural characteristics were investigated. Using a unified optimization setup, airfoils were designed with relative thicknesses between 18% and 36%, a structural box height of 85% of the relative thickness, and varying box widths in chordwise direction between 20% and 40% of the chord length. The results from these airfoil designs showed that for a given flapwise stiffness, the design lift coefficient increases if the box length reduces and at the same time the relative thickness increases. Even though the conclusions are specific to the airfoil design approach used, the study indicated that an increased design lift required slightly higher relative thickness compared to airfoils with lower design lift to maintain the flapwise stiffness. Also, the study indicated that the lift-drag ratio as a function of flapwise stiffness was relatively independent of the airfoil design with a tendency that the lift-drag ratio decreased for large box lengths. The above conclusions were supported by an analysis of the three airfoil families Riso-C2, DU and FFA, where the lift-drag ratio as a function of flapwise stiffness was decreasing, but relatively independent of the airfoil design, and the design lift coefficient was varying depending on the design philosophy. To make the analysis complete also design lift and lift- drag ratio as a function of edgewise and torsional stiffness were shown

  14. Cryogenic structural material and design of support structures for the Large Helical Device

    International Nuclear Information System (INIS)

    Nishimura, Arata; Imagawa, Shinsaku; Tamura, Hitoshi

    1997-01-01

    This paper describes a short history of material selection for the cryogenic support structures for the Large Helical Device (LHD) which has superconducting coils. Since the support structures are cooled down to 4.4 K together with the coils, SUS 316 was chosen because of its stable austenitic phase, sufficient mechanical properties at cryogenic temperature and good weldability. Also, outlines of the design and fabrication processes of the support structures are summarized. On the design of the support structures, a deformation analysis was carried out to maintain the proper magnetic field during operation. Afterwards, a stress analysis was performed. During machining and assembling, tolerance was noticed to keep coil positions accurate. Special welding grooves and fabrication processes were considered and achieved successfully. Finally, a cryogenic supporting post which sustains the cryogenic structures and superconducting coils is presented. CFRP was used in this specially developed supporting post to reduce the heat conduction from ambient 300 K structures. (author)

  15. Evaluation of earthquake resistance design for underground structures of nuclear power plant, (1)

    International Nuclear Information System (INIS)

    Tohma, Junichi; Kokusho, Kenji; Iwatate, Takahiro; Ohtomo, Keizo

    1986-01-01

    As to earthquake resistant design of underground civil engineering structures related with emergency cooling water system of nuclear power plant, it is required these structures must maintain the function of great important their own facilities during earthquakes, especially for design earthquake motion. In this study, shaft pipline, pit and duct for cooling sea water facilities were chosen as typical underground structures, and the authors deal with the seismic design method for calculation of the principal sectional force in these structures generated by design earthquake motion. Especially, comparative investigations concerned with response displacement method versus dynamic analysis methods (lumped mass analysis and finite element analysis) are discussed. (author)

  16. Evaluation of Design Models of Process Equipment for Use in PRIDE: Remote Operability and Maintainability

    International Nuclear Information System (INIS)

    Kim, Ki Ho; Kim, Sung Hyun; Yu, Seung Nam; Lee, Jong Kwang; Park, Byung Suk; Han, Jong Hui; Cho, Il Je; Lee, Han Soo

    2012-01-01

    Process equipment for pyroprocessing are being developed at KAERI (Korea Atomic Energy Research Institute). Those equipment should be operated and maintained in a fully remote manner in the argon gas filled cell of PRIDE (PyRoprocess Integrated inactive DEmonstration facility) at KAERI because direct human access to the in-cell is not possible during an operation due to the high toxicity of the argon gas. To make such process equipment remotely operable and maintainable, their design developments have been tested and evaluated in a simulator before they are constructed. A simulator as a means of evaluating the remote operability and maintainability of the design models of process equipment for pyroprocessing is described, and results of the design models tested and evaluated in a simulator are presented

  17. Development of risk benefit structural design method for innovative reactor plants

    International Nuclear Information System (INIS)

    Yoshio Kamishima; Tai Asayama; Yukio Takahashi; Masanori Tashimo; Hideo Machida; Yomomi Otani; Yasuharu Chuman

    2005-01-01

    The development of innovative nuclear plants where the energy in the future is carried out in Japan. The design method based on a risk benefit of having maintained mitigation of a risk and the improvement in economy is called for, in order to realize the national innovative nuclear plants. Main key technologies of the risk benefit structural design method are crack propagation evaluation technology and structural reliability evaluation technology. This research aims at pulling up these two technologies on an engineering practical use level. In this paper, requirements from the design of typical innovative nuclear plants and research plan are shown.(authors)

  18. A Novel Design Framework for Structures/Materials with Enhanced Mechanical Performance

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2018-04-01

    Full Text Available Structure/material requires simultaneous consideration of both its design and manufacturing processes to dramatically enhance its manufacturability, assembly and maintainability. In this work, a novel design framework for structural/material with a desired mechanical performance and compelling topological design properties achieved using origami techniques is presented. The framework comprises four procedures, including topological design, unfold, reduction manufacturing, and fold. The topological design method, i.e., the solid isotropic material penalization (SIMP method, serves to optimize the structure in order to achieve the preferred mechanical characteristics, and the origami technique is exploited to allow the structure to be rapidly and easily fabricated. Topological design and unfold procedures can be conveniently completed in a computer; then, reduction manufacturing, i.e., cutting, is performed to remove materials from the unfolded flat plate; the final structure is obtained by folding out the plate from the previous procedure. A series of cantilevers, consisting of origami parallel creases and Miura-ori (usually regarded as a metamaterial and made of paperboard, are designed with the least weight and the required stiffness by using the proposed framework. The findings here furnish an alternative design framework for engineering structures that could be better than the 3D-printing technique, especially for large structures made of thin metal materials.

  19. A Novel Design Framework for Structures/Materials with Enhanced Mechanical Performance

    Science.gov (United States)

    Liu, Jie; Fan, Xiaonan; Wen, Guilin; Qing, Qixiang; Wang, Hongxin; Zhao, Gang

    2018-01-01

    Structure/material requires simultaneous consideration of both its design and manufacturing processes to dramatically enhance its manufacturability, assembly and maintainability. In this work, a novel design framework for structural/material with a desired mechanical performance and compelling topological design properties achieved using origami techniques is presented. The framework comprises four procedures, including topological design, unfold, reduction manufacturing, and fold. The topological design method, i.e., the solid isotropic material penalization (SIMP) method, serves to optimize the structure in order to achieve the preferred mechanical characteristics, and the origami technique is exploited to allow the structure to be rapidly and easily fabricated. Topological design and unfold procedures can be conveniently completed in a computer; then, reduction manufacturing, i.e., cutting, is performed to remove materials from the unfolded flat plate; the final structure is obtained by folding out the plate from the previous procedure. A series of cantilevers, consisting of origami parallel creases and Miura-ori (usually regarded as a metamaterial) and made of paperboard, are designed with the least weight and the required stiffness by using the proposed framework. The findings here furnish an alternative design framework for engineering structures that could be better than the 3D-printing technique, especially for large structures made of thin metal materials. PMID:29642555

  20. A Novel Design Framework for Structures/Materials with Enhanced Mechanical Performance.

    Science.gov (United States)

    Liu, Jie; Fan, Xiaonan; Wen, Guilin; Qing, Qixiang; Wang, Hongxin; Zhao, Gang

    2018-04-09

    Abstract : Structure/material requires simultaneous consideration of both its design and manufacturing processes to dramatically enhance its manufacturability, assembly and maintainability. In this work, a novel design framework for structural/material with a desired mechanical performance and compelling topological design properties achieved using origami techniques is presented. The framework comprises four procedures, including topological design, unfold, reduction manufacturing, and fold. The topological design method, i.e., the solid isotropic material penalization (SIMP) method, serves to optimize the structure in order to achieve the preferred mechanical characteristics, and the origami technique is exploited to allow the structure to be rapidly and easily fabricated. Topological design and unfold procedures can be conveniently completed in a computer; then, reduction manufacturing, i.e., cutting, is performed to remove materials from the unfolded flat plate; the final structure is obtained by folding out the plate from the previous procedure. A series of cantilevers, consisting of origami parallel creases and Miura-ori (usually regarded as a metamaterial) and made of paperboard, are designed with the least weight and the required stiffness by using the proposed framework. The findings here furnish an alternative design framework for engineering structures that could be better than the 3D-printing technique, especially for large structures made of thin metal materials.

  1. Increasing the reliability, availability, and maintainability of the AP600 by design

    International Nuclear Information System (INIS)

    Trombola, D.; Meyer, C.

    1993-01-01

    The AP600 design is based on providing a safe, simple, standardized, and economically competitive design with a high degree of operability and ease of maintenance. Design features such as component selection, layout, and standardization increase the probability that targeted repair times are achieved. Design requirements from the utility industry and industry design practices have established criteria for: layout, changeout and replacement of parts and components; access for major pieces of equipment; and vehicle passage. These features coupled with a solid reliability assurance and maintenance program will help the AP600 meet its objectives for operation and maintenance. The AP600 draws on the operating experience and lessons learned from the utility community through design workshops and design review interaction, as well as operating plant data from sources several sources. Internally, the AP600 program incorporates the resources of Westinghouse NSD (Nuclear Service Division), which for decades has provided refueling, steam generator, reactor coolant pump, and other operating plant services. Since the early phases of the design process, the AP600 Program has executed a comprehensive reliability, availability, and maintainability program (RAM) which dealt primarily with assessing and improving plant availability. In conjunction with this program a Probabilistic Risk Assessment (PRA) was performed and submitted to the NRC with the Standard Safety Analysis Report (SSAR) in June 1992. This paper describes how AP600 ensures that the plant has design features to enhance reliability, availability, and maintainability. The RAM program that brings the plant through the design certification phase is described

  2. Human factors design guidelines for maintainability of Department of Energy nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bongarra, J.P. Jr.; VanCott, H.P.; Pain, R.F.; Peterson, L.R.; Wallace, R.I.

    1985-06-18

    Intent of these guidelines is to provide design and design review teams of DOE nuclear facilities with human factors principles to enhance the design and aid in the inspection of DOE nuclear facilities, systems, and equipment. These guidelines are concerned with design features of DOE nuclear facilities which can potentially affect preventive and corrective maintenance of systems within DOE nuclear facilities. Maintenance includes inspecting, checking, troubleshooting, adjusting, replacing, repairing, and servicing activities. Other factors which influence maintainability such as repair and maintenance suport facilities, maintenance information, and various aspects of the environment are also addressed.

  3. Human factors design guidelines for maintainability of Department of Energy nuclear facilities

    International Nuclear Information System (INIS)

    Bongarra, J.P. Jr.; VanCott, H.P.; Pain, R.F.; Peterson, L.R.; Wallace, R.I.

    1985-01-01

    Intent of these guidelines is to provide design and design review teams of DOE nuclear facilities with human factors principles to enhance the design and aid in the inspection of DOE nuclear facilities, systems, and equipment. These guidelines are concerned with design features of DOE nuclear facilities which can potentially affect preventive and corrective maintenance of systems within DOE nuclear facilities. Maintenance includes inspecting, checking, troubleshooting, adjusting, replacing, repairing, and servicing activities. Other factors which influence maintainability such as repair and maintenance suport facilities, maintenance information, and various aspects of the environment are also addressed

  4. Internal Structural Design of the Common Research Model Wing Box for Aeroelastic Tailoring

    Science.gov (United States)

    Jutte, Christine V.; Stanford, Bret K.; Wieseman, Carol D.

    2015-01-01

    This work explores the use of alternative internal structural designs within a full-scale wing box structure for aeroelastic tailoring, with a focus on curvilinear spars, ribs, and stringers. The baseline wing model is a fully-populated, cantilevered wing box structure of the Common Research Model (CRM). Metrics of interest include the wing weight, the onset of dynamic flutter, and the static aeroelastic stresses. Twelve parametric studies alter the number of internal structural members along with their location, orientation, and curvature. Additional evaluation metrics are considered to identify design trends that lead to lighter-weight, aeroelastically stable wing designs. The best designs of the individual studies are compared and discussed, with a focus on weight reduction and flutter resistance. The largest weight reductions were obtained by removing the inner spar, and performance was maintained by shifting stringers forward and/or using curvilinear ribs: 5.6% weight reduction, a 13.9% improvement in flutter speed, but a 3.0% increase in stress levels. Flutter resistance was also maintained using straight-rotated ribs although the design had a 4.2% lower flutter speed than the curved ribs of similar weight and stress levels were higher. For some configurations, the differences between curved and straight ribs were smaller, which provides motivation for future optimization-based studies to fully exploit the trade-offs.

  5. Ergonomics Contribution in Maintainability

    Science.gov (United States)

    Teymourian, Kiumars; Seneviratne, Dammika; Galar, Diego

    2017-09-01

    The objective of this paper is to describe an ergonomics contribution in maintainability. The economical designs, inputs and training helps to increase the maintainability indicators for industrial devices. This analysis can be helpful, among other cases, to compare systems, to achieve a better design regarding maintainability requirements, to improve this maintainability under specific industrial environment and to foresee maintainability problems due to eventual changes in a device operation conditions. With this purpose, this work first introduces the notion of ergonomics and human factors, maintainability and the implementation of assessment of human postures, including some important postures to perform maintenance activities. A simulation approach is used to identify the critical posture of the maintenance personnel and implements the defined postures with minimal loads on the personnel who use the equipment in a practical scenario. The simulation inputs are given to the designers to improve the workplace/equipment in order to high level of maintainability. Finally, the work concludes summarizing the more significant aspects and suggesting future research.

  6. Object-Based Dense Matching Method for Maintaining Structure Characteristics of Linear Buildings.

    Science.gov (United States)

    Su, Nan; Yan, Yiming; Qiu, Mingjie; Zhao, Chunhui; Wang, Liguo

    2018-03-29

    In this paper, we proposed a novel object-based dense matching method specially for the high-precision disparity map of building objects in urban areas, which can maintain accurate object structure characteristics. The proposed framework mainly includes three stages. Firstly, an improved edge line extraction method is proposed for the edge segments to fit closely to building outlines. Secondly, a fusion method is proposed for the outlines under the constraint of straight lines, which can maintain the building structural attribute with parallel or vertical edges, which is very useful for the dense matching method. Finally, we proposed an edge constraint and outline compensation (ECAOC) dense matching method to maintain building object structural characteristics in the disparity map. In the proposed method, the improved edge lines are used to optimize matching search scope and matching template window, and the high-precision building outlines are used to compensate the shape feature of building objects. Our method can greatly increase the matching accuracy of building objects in urban areas, especially at building edges. For the outline extraction experiments, our fusion method verifies the superiority and robustness on panchromatic images of different satellites and different resolutions. For the dense matching experiments, our ECOAC method shows great advantages for matching accuracy of building objects in urban areas compared with three other methods.

  7. Object-Based Dense Matching Method for Maintaining Structure Characteristics of Linear Buildings

    Directory of Open Access Journals (Sweden)

    Nan Su

    2018-03-01

    Full Text Available In this paper, we proposed a novel object-based dense matching method specially for the high-precision disparity map of building objects in urban areas, which can maintain accurate object structure characteristics. The proposed framework mainly includes three stages. Firstly, an improved edge line extraction method is proposed for the edge segments to fit closely to building outlines. Secondly, a fusion method is proposed for the outlines under the constraint of straight lines, which can maintain the building structural attribute with parallel or vertical edges, which is very useful for the dense matching method. Finally, we proposed an edge constraint and outline compensation (ECAOC dense matching method to maintain building object structural characteristics in the disparity map. In the proposed method, the improved edge lines are used to optimize matching search scope and matching template window, and the high-precision building outlines are used to compensate the shape feature of building objects. Our method can greatly increase the matching accuracy of building objects in urban areas, especially at building edges. For the outline extraction experiments, our fusion method verifies the superiority and robustness on panchromatic images of different satellites and different resolutions. For the dense matching experiments, our ECOAC method shows great advantages for matching accuracy of building objects in urban areas compared with three other methods.

  8. A controlled experiment on the impact of software structure on maintainability

    Science.gov (United States)

    Rombach, Dieter H.

    1987-01-01

    The impact of software structure on maintainability aspects including comprehensibility, locality, modifiability, and reusability in a distributed system environment is studied in a controlled maintenance experiment involving six medium-size distributed software systems implemented in LADY (language for distributed systems) and six in an extended version of sequential PASCAL. For all maintenance aspects except reusability, the results were quantitatively given in terms of complexity metrics which could be automated. The results showed LADY to be better suited to the development of maintainable software than the extension of sequential PASCAL. The strong typing combined with high parametrization of units is suggested to improve the reusability of units in LADY.

  9. Interactive computer graphics and its role in control system design of large space structures

    Science.gov (United States)

    Reddy, A. S. S. R.

    1985-01-01

    This paper attempts to show the relevance of interactive computer graphics in the design of control systems to maintain attitude and shape of large space structures to accomplish the required mission objectives. The typical phases of control system design, starting from the physical model such as modeling the dynamics, modal analysis, and control system design methodology are reviewed and the need of the interactive computer graphics is demonstrated. Typical constituent parts of large space structures such as free-free beams and free-free plates are used to demonstrate the complexity of the control system design and the effectiveness of the interactive computer graphics.

  10. Scientific method by argumentation design: learning process for maintaining student’s retention

    Science.gov (United States)

    Siswanto; Yusiran; Asriyadin; Gumilar, S.; Subali, B.

    2018-03-01

    The purpose of this research describes the effect of scientific methods designed by argumentation in maintaining retention of pre-service physics teachers (students) in mechanical concept. This learning consists of five stages including the first two stages namely observing and questioning. While the next three stages of reasoning, trying, and communicating are made of argumentation design. To know the effectiveness of treatment, students are given pre-test and post-test in one time. On the other hand, students were given advanced post-test to know the durability of retention as many as four times in four months. The results show that there was mean difference between pre-test and post-test based on the Wilcoxon test (z = -3.4, p=0.001). While the effectiveness of treatment is in the high category based on normalized gain values ( = 0.86). Meanwhile, mean difference of all post-test is significantly different based on Analysis of Varian (F = 365.63, p = 0.00). However, in the fourth month, students retention rates began to stabilize based on Tuckey’s HSD (p=0.074) for comparison of mean difference between fourth and fifth post-test. Overall, learning designed can maintain students retention within 4 months after the learning finish.

  11. Maintaining Curriculum Consistency of Technical and Vocational Educational Programs through Teacher Design Teams

    NARCIS (Netherlands)

    Albashiry, Nabeel; Voogt, Joke; Pieters, Julius Marie

    2016-01-01

    Maintaining the quality and relevance of Technical Vocational Education and Training (TVET) curricula is a great challenge for TVET institutions in developing countries. One major challenge lies in the lack of curriculum design expertise of TVET academics. The purpose of this multiplecase study is

  12. Evolution of design concepts for remotely maintainable equipment racks

    International Nuclear Information System (INIS)

    Peishel, F.L.; Mouring, R.W.; Schrock, S.L.

    1986-01-01

    Equipment racks have been used to support process equipment in radioactive facilities for many years. Improvements in the design of these racks have evolved relatively slowly primarily as a result of limitations in the capabilities of maintenance equipment; that is, tasks could only be approached from above using bridge cranes with viewing primarily through periscopes. In recent years, however, technological advances have been made by the Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory (ORNL) in bridge-mounted servomanipulators with onboard auxiliary hoists and television viewing systems. These advances permit full cell coverage by the manipulator arms which, in turn, allow maintenance tasks to be approached horizontally as well as from above. Maintainable equipment items can be stacked vertically on a rack because total overhead access is less important and maintenance tasks that would not have been attempted in the past can now be performed. These advances permit greater flexibility in the design and cell layout of the racks and lead to concepts that could significantly increase the availability of a facility. The evolution of rack design and a description of the alternative concepts based on present maintenance systems capabilities are presented in this paper. 13 refs., 11 figs

  13. The E-ELT project: the telescope main structure detailed design study

    Science.gov (United States)

    Marchiori, Gianpietro; Busatta, Andrea; Ghedin, Leonardo; De Lorenzi, Simone

    2012-09-01

    The European Extremely Large Telescope (E-ELT) is the biggest telescope in the world. Within the Detailed Design activities, ESO has awarded EIE GROUP (European Industrial Engineering) a contract for the Design of the Main Structure to the point where the concept of the telescope has been consolidated, from a construction point of view. All the Design activities have been developed in order to create an integrated system in terms of functionality and performance, while the engineering activities have been performed with the aim of obtaining a telescope that can be built, transported, integrated, with a reduced maintainability.

  14. Evaluation of a web-based lifestyle coach designed to maintain a healthy bodyweight

    NARCIS (Netherlands)

    Kelders, Saskia Marion; van Gemert-Pijnen, Julia E.W.C.; Werkman, Andrea; Seydel, E.R.

    2010-01-01

    We evaluated a web-based intervention, the Healthy Weight Assistant (HWA), which was designed to help people with a healthy bodyweight, or those who are slightly overweight, to achieve and maintain a healthy weight. Four evaluation methods were used: (1) pre- and post-test questionnaires; (2) real

  15. Evaluation of a web-based lifestyle coach designed to maintain a healthy bodyweight.

    Science.gov (United States)

    Kelders, Saskia M; van Gemert-Pijnen, Julia E W C; Werkman, Andrea; Seydel, Erwin R

    2010-01-01

    We evaluated a web-based intervention, the Healthy Weight Assistant (HWA), which was designed to help people with a healthy bodyweight, or those who are slightly overweight, to achieve and maintain a healthy weight. Four evaluation methods were used: (1) pre- and post-test questionnaires; (2) real time usability-tests; (3) log-file analysis; (4) qualitative analysis of forum posts, email messages and free-text responses in the questionnaires. A total of 703 respondents received access to the HWA. Six weeks after receiving access, 431 respondents completed a second questionnaire. The enthusiastic responses showed that many people were interested in using an interactive online application to support achieving and maintaining a healthy weight. The preliminary results suggest that improvements with respect to motivation may lead to large effects, yet require only small changes in the design of the HWA. Sending automatic tailored reminders may enhance motivation to keep using the application. Motivation to change behaviour may be enhanced by emphasizing goal setting and visualizing progress.

  16. Optimal design of a maintainable cold-standby system

    Energy Technology Data Exchange (ETDEWEB)

    Yu Haiyang [Universite de technologie de Troyes, ISTIT, Rue Marie Curie, BP 2060, 10010 TROYES (France)]. E-mail: Haiyang.YU@utt.fr; Yalaoui, Farouk [Universite de technologie de Troyes, ISTIT, Rue Marie Curie, BP 2060, 10010 TROYES (France); Chatelet, Eric [Universite de technologie de Troyes, ISTIT, Rue Marie Curie, BP 2060, 10010 TROYES (France); Chu Chengbin [Universite de technologie de Troyes, ISTIT, Rue Marie Curie, BP 2060, 10010 TROYES (France); Management School, Hefei University of Technology, Hefei (China)

    2007-01-15

    This paper considers a framework to optimally design a maintainable cold-standby system. Not only the maintenance policy is to be determined, but also the reliability character of the components will be taken into account. Hence, the mean time to failure of the components and the policy time of good-as-new maintenances are proposed as decision variables. Following probability analyses, the system cost rate and the system availability are formulated as the optimization object and the constraint, respectively. Then, this optimization problem is directly resolved by recognizing its underlying properties. Moreover, the resolving procedure is found to be independent of the failure distributions of the components and the forms of the system cost, which is illustrated through a numerical example. As a conclusion, an exact method is successfully established to minimize the cost rate of a cold-standby system with the given maintenance facility.

  17. Optimal design of a maintainable cold-standby system

    International Nuclear Information System (INIS)

    Yu Haiyang; Yalaoui, Farouk; Chatelet, Eric; Chu Chengbin

    2007-01-01

    This paper considers a framework to optimally design a maintainable cold-standby system. Not only the maintenance policy is to be determined, but also the reliability character of the components will be taken into account. Hence, the mean time to failure of the components and the policy time of good-as-new maintenances are proposed as decision variables. Following probability analyses, the system cost rate and the system availability are formulated as the optimization object and the constraint, respectively. Then, this optimization problem is directly resolved by recognizing its underlying properties. Moreover, the resolving procedure is found to be independent of the failure distributions of the components and the forms of the system cost, which is illustrated through a numerical example. As a conclusion, an exact method is successfully established to minimize the cost rate of a cold-standby system with the given maintenance facility

  18. Design of a far infrared interferometer diagnostic support structure

    International Nuclear Information System (INIS)

    Brooksby, C.A.; Rice, B.W.; Peebles, W.A.

    1987-10-01

    The Far Infrared Interferometer (FIR) diagnostic will operate in the 119 to 400 micron range to measure the plasma electron density on the Microwave Tokamak Experiment (MTX) being set up at LLNL. This diagnostic is a multi-channel system which incorporates a long elliptically shaped beam that passes through the plasma and is imaged onto an array of 14 detectors that are located on a table above the machine. The reference beam is brought around the machine and mixed with the plasma beam onto the detectors. The density is measured by a phase shift between these beams and is, therefore, very sensitive to path length changes between the two beam paths due to motion of the support structure. The design goal for allowable phase shifts caused by changes in the path length due to structure movement is 1/50th of a wavelength (2.4 to 8 microns). The structure needs to maintain this stability during the 0.5 second plasma shot. The structure is approximately 5 meters tall to support the optics table above the machine. In order to reduce the structure motion to the required level the forces acting on it were evaluated. The forces evaluated were eddy currents from the pulsed electromagnetic fields, the ambient ground motion, and the floor movement as the magnets are pulsed. The designs for similar diagnostic interferometers on other tokamaks were also reviewed to evaluate the forces and motions that might cause such small deflections in the support structure. Our structure is somewhat unique in that it is designed for operation in relatively large pulsed magnetic fields (100 to 7000 gauss) arising from the air core transformer of MTX. The design chosen incorporates a very rigid structure with high resistive and non-conductive materials. The choice of materials selected is discussed with reference to their response to expected forces. 14 refs., 10 figs

  19. Teacher collaborative curriculum design in technical vocational colleges: a strategy for maintaining curriculum consistency?

    NARCIS (Netherlands)

    Albashiry, N.M.; Voogt, J.M.; Pieters, J.M.

    2015-01-01

    The Technical Vocational Education and Training (TVET) curriculum requires continuous renewal and constant involvement of stakeholders in the redesign process. Due to a lack of curriculum design expertise, TVET institutions in developing contexts encounter challenges maintaining and advancing the

  20. Blended Design Approach of Long Span Structure and Malay Traditional Architecture

    Science.gov (United States)

    Sundari, Titin

    2017-12-01

    The growing population in the world is so fast, which is followed by the increasing need of some new and large activities. Architects face the problem on how to facilitate buildings with various activities such as for large meeting, conference, indoors gymnasium and sports, and many others. The long span structure of building is one of the solutions to solve that problem. Generally, large buildings which implemented this structure will look as a technological, modern and futuristic ones or even neo futuristic performance. But on the other hand, many people still want to enjoy the specific and unique senses of local traditional architecture. So is the Malay people who want an easy pleasant large facilities which can be fulfilled by implementing modern long span building structure technology. In the same time, their unique sense of Malay traditional architecture can still be maintained. To overcome this double problems of design, it needs a blended design approach of long span structure and Malay Traditional Architecture.

  1. Structural design of nuclear reactor machinery and equipment

    International Nuclear Information System (INIS)

    Hara, Hideki

    1992-01-01

    Since the machinery, equipment and piping which compose nuclear power station facilities are diverse, when those are designed, consideration is given sufficiently to the objective of use and the importance of the object machinery and equipment so that those can maintain the soundness over the design life. In this report, on the contents and the design standard in the design techniques for nuclear reactor machinery and equipment, the way of thinking is shown, taking an example of reactor pressure vessel which is stipulated as the vessel kind 1 in the 'Technical standard of structures and others regarding nuclear facilities for electric power generation', Notice No. 501 of the Ministry of International Trade and Industry. The reactor pressure vessel of 1350 MWe improved type BWR (ABWR) is used under the condition of 87.9 kg/cm 2 and 302 degC, and the inside diameter is about 7.2 m, the inside height is about 21 m, and the wall thickness is about 170 mm. The design standard for reactor pressure vessels and its way of thinking, breakdown prevention design and the design techniques for reactor pressure vessels are described. (K.I.)

  2. Structural design by CAD system

    International Nuclear Information System (INIS)

    Kim, Jhin Wung; Shim, Jae Ku; Kim, Sun Hoon; Kim, Dae Hong; Lee, Kyung Jin; Choi, Kyu Sup; Choi, In Kil; Lee, Dong Yong

    1988-12-01

    CAD systems are now widely used for the design of many engineering problems involving static, dynamic and thermal stress analyses of structures. In order to apply CAD systems to the structural analysis and design, the function of hardwares and softwares necessary for the CAD systems must be understood. The purpose of this study is to introduce the basic elements that are indispensible in the application of CAD systems to the analysis and design of structures and to give a thorough understanding of CAD systems to design engineers, so as to participate in the further technological developments of CAD systems. Due to the complexity and variety of the shape and size of the nowa-days structures, the need of new design technologies is growing for more efficient, accurate and economical design of structures. The application of CAD systems to structural engineering fields enables to improve structural engineering analysis and design technologies and also to obtain the standardization of the design process. An active introduction of rapidly developing CAD technologies will contribute to analyzing and designing structures more efficiently and reliably. Based on this report of the current status of the application of CAD systems to the structural analysis and design, the next goal is to develop the expert system which enables to perform the design of structures by CAD systems from the preliminary conceptual design to the final detail drawings automatically. (Author)

  3. Maintaining the design integrity of nuclear installations throughout their operating life. INSAG-19. A report by the International Nuclear Safety Advisory Group

    International Nuclear Information System (INIS)

    2003-01-01

    A nuclear power plant design is the product of the activities of many organizations, and changes to that design will occur continuously over the plant's lifetime. Reactor plants are designed to operate for a long period of time, typically 40 years, which may be extended for several decades. This period of time spans several working lifetimes of the staff of the plant, and its length represents a very specific challenge to safety and to the corporate asset management of the enterprise. It also implies that the vendor structure required to support the plant can be expected to change substantially during the plant's lifetime. this INSAG report discusses the problem of maintaining the integrity of design of a nuclear power plant over its entire lifetime in order to achieve a continuous high level of safety. A nuclear power plant design is the product of the activities of many organizations, and changes to that design will occur continuously over the plant's operating lifetime. Reactor plants are designed to operate for a long period of time, typically 40 years, which may be extended for several decades. This period of time spans several working lifetimes of the staff of the plant, and its length represents a very specific challenge to safety and to the corporate asset management of the enterprise. It also implies that the vendor structure required to support the plant can be expected to change substantially during the plant's lifetime. The purpose of this report is to identify the issues and some of the principles that should be addressed, discuss some of the solutions to the problem, and highlight the specific responsibilities of designers, operators and regulators. The issues and principles discussed here are also applicable to other nuclear installations (for example, research reactors and fuel cycle facilities). This INSAG report is directed at senior executives who are responsible for: the overall safety of nuclear installations; the operation, maintenance and

  4. Structural Design Feasibility Study for the Global Climate Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lewin,K.F.; Nagy, J.

    2008-12-01

    Neon, Inc. is proposing to establish a Global Change Experiment (GCE) Facility to increase our understanding of how ecological systems differ in their vulnerability to changes in climate and other relevant global change drivers, as well as provide the mechanistic basis for forecasting ecological change in the future. The experimental design was initially envisioned to consist of two complementary components; (A) a multi-factor experiment manipulating CO{sub 2}, temperature and water availability and (B) a water balance experiment. As the design analysis and cost estimates progressed, it became clear that (1) the technical difficulties of obtaining tight temperature control and maintaining elevated atmospheric carbon dioxide levels within an enclosure were greater than had been expected and (2) the envisioned study would not fit into the expected budget envelope if this was done in a partially or completely enclosed structure. After discussions between NEON management, the GCE science team, and Keith Lewin, NEON, Inc. requested Keith Lewin to expand the scope of this design study to include open-field exposure systems. In order to develop the GCE design to the point where it can be presented within a proposal for funding, a feasibility study of climate manipulation structures must be conducted to determine design approaches and rough cost estimates, and to identify advantages and disadvantages of these approaches including the associated experimental artifacts. NEON, Inc requested this design study in order to develop concepts for the climate manipulation structures to support the NEON Global Climate Experiment. This study summarizes the design concepts considered for constructing and operating the GCE Facility and their associated construction, maintenance and operations costs. Comparisons and comments about experimental artifacts, construction challenges and operational uncertainties are provided to assist in selecting the final facility design. The overall goal

  5. Integrated design course of applied optics focusing on operating and maintaining abilities

    Science.gov (United States)

    Xu, Zhongjie; Ning, Yu; Jiang, Tian; Cheng, Xiangai

    2017-08-01

    The abilities of operating and maintaining optical instruments are crucial in modern society. Besides the basic knowledge in optics, the optics courses in the National University of Defense Technology also focus on the training on handling typical optical equipment. As the link between classroom courses on applied optics and the field trips, the integrated design course of applied optics aims to give the students a better understanding on several instantly used optical equipment, such as hand-held telescope and periscope, etc. The basic concepts of optical system design are also emphasized as well. The course is arranged rightly after the classroom course of applied optics and composed of experimental and design tasks. The experimental tasks include the measurements of aberrations and major parameters of a primitive telescope, while in the design parts, the students are asked to design a Keplerian telescope. The whole course gives a deepened understandings on the concepts, assembling, and operating of telescopes. The students are also encouraged to extend their interests on other typical optical instruments.

  6. Printing Smart Designs of Light Emitting Devices with Maintained Textile Properties

    Directory of Open Access Journals (Sweden)

    Inge Verboven

    2018-02-01

    Full Text Available To maintain typical textile properties, smart designs of light emitting devices are printed directly onto textile substrates. A first approach shows improved designs for alternating current powder electroluminescence (ACPEL devices. A configuration with the following build-up, starting from the textile substrate, was applied using the screen printing technique: silver (10 µm/barium titanate (10 µm/zinc-oxide (10 µm and poly(3,4-ethylenedioxythiophenepoly(styrenesulfonate (10 µm. Textile properties such as flexibility, drapability and air permeability are preserved by implementing a pixel-like design of the printed layers. Another route is the application of organic light emitting devices (OLEDs fabricated out of following layers, also starting from the textile substrate: polyurethane or acrylate (10–20 µm as smoothing layer/silver (200 nm/poly(3,4-ethylenedioxythiophenepoly(styrenesulfonate (35 nm/super yellow (80 nm/calcium/aluminum (12/17 nm. Their very thin nm-range layer thickness, preserving the flexibility and drapability of the substrate, and their low working voltage, makes these devices the possible future in light-emitting wearables.

  7. Design of data structures for mergeable trees

    DEFF Research Database (Denmark)

    Georgiadis, Loukas; Tarjan, Robert Endre; Werneck, Renato Fonseca F.

    2006-01-01

    merge operation can change many arcs. In spite of this, we develop a data structure that supports merges and all other standard tree operations in O(log2 n) amortized time on an n-node forest. For the special case that occurs in the motivating application, in which arbitrary arc deletions...... are not allowed, we give a data structure with an O(log n) amortized time bound per operation, which is asymptotically optimal. The analysis of both algorithms is not straightforward and requires ideas not previously used in the study of dynamic trees. We explore the design space of algorithms for the problem......Motivated by an application in computational topology, we consider a novel variant of the problem of efficiently maintaining dynamic rooted trees. This variant allows an operation that merges two tree paths. In contrast to the standard problem, in which only one tree arc at a time changes, a single...

  8. Integrated Structural Design Education

    DEFF Research Database (Denmark)

    Bjerregaard Jensen, Lotte; Almegaard, Henrik

    2011-01-01

    to EU legislation. And a successful engineering student must be prepared to work in the open-ended, multidisciplinary environment necessary to produce structures which comply with EIA demands. This paper describes an innovative course developed at the Technical University of Denmark which integrates...... landscaping and structural design. The integrated courses create a setting for learning about the design of large-scale structures and involve geometry, statics, computer simulation, graphical design and landscape architecture. Together, they educate engineers who can take part in the early design phases...... of a project, function well in design teams, and comply with EU EIA demands....

  9. Linear collider RF structure design using ARGUS

    International Nuclear Information System (INIS)

    Kwok Ko

    1991-01-01

    In a linear collider, both the driving system (klystrons) and the accelerating system (linac) consists of RF structures that are inherently three-dimensional. These structures which are responsible for power input/output, have to satisfy many requirements in order that instabilities, beam or RF related, are to be avoided. At the same time, system efficiencies have to be maintained at optimal to minimize cost. Theoretical analysis on these geometrically complex structures are difficult and until recently, numerical solutions have been limited. At SLAC, there has been a continuing and close collaboration among accelerator physicists, engineers and numericists to integrate supercomputing into the design procedure which involves 3-D RF structures. The outcome is very encouraging. Using the 3-D/electromagnetic code ARGUS (developed by SAIC) on the Cray computers at NERSC in conjunction with supporting theories, a wide variety of critical components have been simulated and evaluated. Aside from structures related to the linear collider, the list also includes the RF cavity for the proposed Boson Factory and the anode circuit for the Cross-Field Amplifier, once considered as an alternative to the klystron as a possible power source. This presentation will focus on two specific structures: (1) the klystron output cavity; and (2) the linac input coupler. As the results demonstrate, supercomputing is fast becoming a viable technology that could conceivably replace actual cold-testing in the near future

  10. Structured Analog CMOS Design

    CERN Document Server

    Stefanovic, Danica

    2008-01-01

    Structured Analog CMOS Design describes a structured analog design approach that makes it possible to simplify complex analog design problems and develop a design strategy that can be used for the design of large number of analog cells. It intentionally avoids treating the analog design as a mathematical problem, developing a design procedure based on the understanding of device physics and approximations that give insight into parameter interdependences. The proposed transistor-level design procedure is based on the EKV modeling approach and relies on the device inversion level as a fundament

  11. Optimum design of steel structures

    CERN Document Server

    Farkas, József

    2013-01-01

    This book helps designers and manufacturers to select and develop the most suitable and competitive steel structures, which are safe, fit for production and economic. An optimum design system is used to find the best characteristics of structural models, which guarantee the fulfilment of design and fabrication requirements and minimize the cost function. Realistic numerical models are used as main components of industrial steel structures. Chapter 1 containts some experiences with the optimum design of steel structures Chapter 2 treats some newer mathematical optimization methods. Chapter 3 gives formulae for fabrication times and costs. Chapters 4 deals with beams and columns. Summarizes the Eurocode rules for design. Chapter 5 deals with the design of tubular trusses. Chapter 6 gives the design of frame structures and fire-resistant design rules for a frame. In Chapters 7 some minimum cost design problems of stiffened and cellular plates and shells are worked out for cases of different stiffenings and loads...

  12. Structured Design Language for Computer Programs

    Science.gov (United States)

    Pace, Walter H., Jr.

    1986-01-01

    Box language used at all stages of program development. Developed to provide improved productivity in designing, coding, and maintaining computer programs. BOX system written in FORTRAN 77 for batch execution.

  13. Printing Smart Designs of Light Emitting Devices with Maintained Textile Properties †

    Science.gov (United States)

    Verboven, Inge; Stryckers, Jeroen; Mecnika, Viktorija; Vandevenne, Glen; Jose, Manoj

    2018-01-01

    To maintain typical textile properties, smart designs of light emitting devices are printed directly onto textile substrates. A first approach shows improved designs for alternating current powder electroluminescence (ACPEL) devices. A configuration with the following build-up, starting from the textile substrate, was applied using the screen printing technique: silver (10 µm)/barium titanate (10 µm)/zinc-oxide (10 µm) and poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (10 µm). Textile properties such as flexibility, drapability and air permeability are preserved by implementing a pixel-like design of the printed layers. Another route is the application of organic light emitting devices (OLEDs) fabricated out of following layers, also starting from the textile substrate: polyurethane or acrylate (10–20 µm) as smoothing layer/silver (200 nm)/poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (35 nm)/super yellow (80 nm)/calcium/aluminum (12/17 nm). Their very thin nm-range layer thickness, preserving the flexibility and drapability of the substrate, and their low working voltage, makes these devices the possible future in light-emitting wearables. PMID:29438276

  14. Reliability Based Ship Structural Design

    DEFF Research Database (Denmark)

    Dogliani, M.; Østergaard, C.; Parmentier, G.

    1996-01-01

    This paper deals with the development of different methods that allow the reliability-based design of ship structures to be transferred from the area of research to the systematic application in current design. It summarises the achievements of a three-year collaborative research project dealing...... with developments of models of load effects and of structural collapse adopted in reliability formulations which aim at calibrating partial safety factors for ship structural design. New probabilistic models of still-water load effects are developed both for tankers and for containerships. New results are presented...... structure of several tankers and containerships. The results of the reliability analysis were the basis for the definition of a target safety level which was used to asses the partial safety factors suitable for in a new design rules format to be adopted in modern ship structural design. Finally...

  15. Structure-based, rational design of T cell receptors

    Directory of Open Access Journals (Sweden)

    Vincent eZoete

    2013-09-01

    Full Text Available Adoptive cell transfer using engineered T cells is emerging as a promising treatment for metastatic melanoma. Such an approach allows one to introduce TCR modifications that, while maintaining the specificity for the targeted antigen, can enhance the binding and kinetic parameters for the interaction pMHC. Using the well-characterized 2C TCR/SIYR/H-2K(b structure as a model system, we demonstrated that a binding free energy decomposition based on the MM-GBSA approach provides a detailed and reliable description of the TCR/pMHC interactions at the structural and thermodynamic levels. Starting from this result, we developed a new structure-based approach, to rationally design new TCR sequences, and applied it to the BC1 TCR targeting the HLA-A2 restricted NY-ESO-1157-165 cancer-testis epitope. 54% of the designed sequence replacements exhibited improved pMHC-binding as compared to the native TCR, with up to 150 fold increase in affinity, while preserving specificity. Genetically-engineered CD8+ T cells expressing these modified TCRs showed an improved functional activity compared to those expressing BC1 TCR. We measured maximum levels of activities for TCRs within the upper limit of natural affinity. Beyond the affinity threshold at KD < 1 μM we observed an attenuation in cellular function. We have also developed a homology modeling-based approach, TCRep 3D, to obtain accurate structural models of any TCR-pMHC complexes. We have complemented the approach with a simplified rigid method to predict the TCR orientation over pMHC. These methods potentially extend the use of our TCR engineering method to entire TCR repertoires for which no X-ray structure is available. We have also performed a steered molecular dynamics study of the unbinding of the TCR-pMHC complex to get a better understanding of how TCRs interact with pMHCs. This entire rational TCR design pipeline is now being used to produce rationally optimized TCRs for adoptive cell therapies of

  16. Genetic algorithms for optimal design and control of adaptive structures

    CERN Document Server

    Ribeiro, R; Dias-Rodrigues, J; Vaz, M

    2000-01-01

    Future High Energy Physics experiments require the use of light and stable structures to support their most precise radiation detection elements. These large structures must be light, highly stable, stiff and radiation tolerant in an environment where external vibrations, high radiation levels, material aging, temperature and humidity gradients are not negligible. Unforeseen factors and the unknown result of the coupling of environmental conditions, together with external vibrations, may affect the position stability of the detectors and their support structures compromising their physics performance. Careful optimization of static and dynamic behavior must be an essential part of the engineering design. Genetic Algorithms ( GA) belong to the group of probabilistic algorithms, combining elements of direct and stochastic search. They are more robust than existing directed search methods with the advantage of maintaining a population of potential solutions. There is a class of optimization problems for which Ge...

  17. Earthquake design for controlled structures

    Directory of Open Access Journals (Sweden)

    Nikos G. Pnevmatikos

    2017-04-01

    Full Text Available An alternative design philosophy, for structures equipped with control devices, capable to resist an expected earthquake while remaining in the elastic range, is described. The idea is that a portion of the earthquake loading is under¬taken by the control system and the remaining by the structure which is designed to resist elastically. The earthquake forces assuming elastic behavior (elastic forces and elastoplastic behavior (design forces are first calculated ac¬cording to the codes. The required control forces are calculated as the difference from elastic to design forces. The maximum value of capacity of control devices is then compared to the required control force. If the capacity of the control devices is larger than the required control force then the control devices are accepted and installed in the structure and the structure is designed according to the design forces. If the capacity is smaller than the required control force then a scale factor, α, reducing the elastic forces to new design forces is calculated. The structure is redesigned and devices are installed. The proposed procedure ensures that the structure behaves elastically (without damage for the expected earthquake at no additional cost, excluding that of buying and installing the control devices.

  18. Aerospace structural design process improvement using systematic evolutionary structural modeling

    Science.gov (United States)

    Taylor, Robert Michael

    2000-10-01

    A multidisciplinary team tasked with an aircraft design problem must understand the problem requirements and metrics to produce a successful design. This understanding entails not only knowledge of what these requirements and metrics are, but also how they interact, which are most important (to the customer as well as to aircraft performance), and who in the organization can provide pertinent knowledge for each. In recent years, product development researchers and organizations have developed and successfully applied a variety of tools such as Quality Function Deployment (QFD) to coordinate multidisciplinary team members. The effectiveness of these methods, however, depends on the quality and fidelity of the information that team members can input. In conceptual aircraft design, structural information is of lower quality compared to aerodynamics or performance because it is based on experience rather than theory. This dissertation shows how advanced structural design tools can be used in a multidisciplinary team setting to improve structural information generation and communication through a systematic evolution of structural detail. When applied to conceptual design, finite element-based structural design tools elevate structural information to the same level as other computationally supported disciplines. This improved ability to generate and communicate structural information enables a design team to better identify and meet structural design requirements, consider producibility issues earlier, and evaluate structural concepts. A design process experiment of a wing structural layout in collaboration with an industrial partner illustrates and validates the approach.

  19. Developing maintainability for fusion power systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Zahn, H.S.; Mantz, H.C.; Curtis, C.T.; Buchheit, R.J.; Green, W.M.; Zuckerman, D.S.

    1979-11-01

    The overall purpose of the study is to identify design features of fusion power reactors which contribute to the achievement of high levels of maintainability. Previous phases evaluated several commercial tokamak reactor design concepts. This final phase compares the maintainability of a tandem mirror reactor (TMR) commercial conceptual design with the most maintainable tokamak concept selected from earlier work. A series of maintainability design guidelines and desirable TMR design features are defined. The effects of scheduled and unscheduled maintenance for most of the reactor subsystems are defined. The comparison of the TMR and tokamak reactor maintenance costs and availabilities show that both reactors have similar costs for scheduled maintenance at 19.4 and 20.8 million dollars annually and similar scheduled downtime availability impacts, achieving approximate availabilities of 79% at optimized maintenance intervals and cost of electricity.

  20. Developing maintainability for fusion power systems. Final report

    International Nuclear Information System (INIS)

    Zahn, H.S.; Mantz, H.C.; Curtis, C.T.; Buchheit, R.J.; Green, W.M.; Zuckerman, D.S.

    1979-11-01

    The overall purpose of the study is to identify design features of fusion power reactors which contribute to the achievement of high levels of maintainability. Previous phases evaluated several commercial tokamak reactor design concepts. This final phase compares the maintainability of a tandem mirror reactor (TMR) commercial conceptual design with the most maintainable tokamak concept selected from earlier work. A series of maintainability design guidelines and desirable TMR design features are defined. The effects of scheduled and unscheduled maintenance for most of the reactor subsystems are defined. The comparison of the TMR and tokamak reactor maintenance costs and availabilities show that both reactors have similar costs for scheduled maintenance at 19.4 and 20.8 million dollars annually and similar scheduled downtime availability impacts, achieving approximate availabilities of 79% at optimized maintenance intervals and cost of electricity

  1. Mechanical Design of an Alternate Structure for LARP Nb$_{3}$Sn Quadrupole Magnets for LHC

    CERN Document Server

    Anerella, M; Kovach, P; Schmalzle, J; Wanderer, P; Ambrosio, G; Lamm, M J; Caspi, S; Felice, H; Ferracin, P; Sabbi, G L

    2011-01-01

    An alternative structure for the 120 mm Nb$_{3}$Sn quadrupole magnet is presently under development for use in the upgrade for LHC at CERN. The design aims to build existing technology developed in LARP with the LQ and HQ magnets and to further optimize the features required for operation in the accelerator. The structure includes features for maintaining mechanical alignment of the coils to achieve the required field quality. It also includes a helium containment vessel and provisions for cooling with 1.9 K helium. The development effort includes the assembly of a six inch model to verify required coil load is achieved. Status of the R&D effort and an update on the magnet design, including its incorporation into the design of a complete one meter cold mass is presented.

  2. High-precision optical systems with inexpensive hardware: a unified alignment and structural design approach

    Science.gov (United States)

    Winrow, Edward G.; Chavez, Victor H.

    2011-09-01

    High-precision opto-mechanical structures have historically been plagued by high costs for both hardware and the associated alignment and assembly process. This problem is especially true for space applications where only a few production units are produced. A methodology for optical alignment and optical structure design is presented which shifts the mechanism of maintaining precision from tightly toleranced, machined flight hardware to reusable, modular tooling. Using the proposed methodology, optical alignment error sources are reduced by the direct alignment of optics through their surface retroreflections (pips) as seen through a theodolite. Optical alignment adjustments are actualized through motorized, sub-micron precision actuators in 5 degrees of freedom. Optical structure hardware costs are reduced through the use of simple shapes (tubes, plates) and repeated components. This approach produces significantly cheaper hardware and more efficient assembly without sacrificing alignment precision or optical structure stability. The design, alignment plan and assembly of a 4" aperture, carbon fiber composite, Schmidt-Cassegrain concept telescope is presented.

  3. 46 CFR 177.300 - Structural design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Structural design. 177.300 Section 177.300 Shipping...) CONSTRUCTION AND ARRANGEMENT Hull Structure § 177.300 Structural design. Except as otherwise allowed by this subpart, a vessel must comply with the structural design requirements of one of the standards listed below...

  4. 46 CFR 116.300 - Structural design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Structural design. 116.300 Section 116.300 Shipping... Structure § 116.300 Structural design. Except as otherwise allowed by this subpart, a vessel must comply with the structural design requirements of one of the standards listed below for the hull material of...

  5. Maintainability considerations for the central cell in WITAMIR-I, a conceptual design of a tandem mirror fusion power reactor

    International Nuclear Information System (INIS)

    Sviatoslavsky, I.N.

    1980-10-01

    The concepts for maintaining the central cell reactor components for WITAMIR-I are described. WITAMIR-I is a conceptual tandem mirror fusion power reactor utilizing thermal barriers designed by the University of Wisconsin-Madison. Unique solutions to the difficult problems of routine blanket replacement and maintenance are proposed. Solutions are also proposed for maintaining the central cell coils and the shield

  6. Maintaining the design Integrity of nuclear installations throughout their operating life. INSAG-19. A report by the International Nuclear Safety Advisory Group (Russian Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    A nuclear power plant design is the product of the activities of many organizations, and changes to that design will occur continuously over the plant's lifetime. Reactor plants are designed to operate for a long period of time, typically 40 years, which may be extended for several decades. This period of time spans several working lifetimes of the staff of the plant, and its length represents a very specific challenge to safety and to the corporate asset management of the enterprise. It also implies that the vendor structure required to support the plant can be expected to change substantially during the plant's lifetime. this INSAG report discusses the problem of maintaining the integrity of design of a nuclear power plant over its entire lifetime in order to achieve a continuous high level of safety. A nuclear power plant design is the product of the activities of many organizations, and changes to that design will occur continuously over the plant's operating lifetime. Reactor plants are designed to operate for a long period of time, typically 40 years, which may be extended for several decades. This period of time spans several working lifetimes of the staff of the plant, and its length represents a very specific challenge to safety and to the corporate asset management of the enterprise. It also implies that the vendor structure required to support the plant can be expected to change substantially during the plant's lifetime. The purpose of this report is to identify the issues and some of the principles that should be addressed, discuss some of the solutions to the problem, and highlight the specific responsibilities of designers, operators and regulators. The issues and principles discussed here are also applicable to other nuclear installations (for example, research reactors and fuel cycle facilities). This INSAG report is directed at senior executives who are responsible for: the overall safety of nuclear installations; the operation

  7. Evolving Reliability and Maintainability Allocations for NASA Ground Systems

    Science.gov (United States)

    Munoz, Gisela; Toon, T.; Toon, J.; Conner, A.; Adams, T.; Miranda, D.

    2016-01-01

    This paper describes the methodology and value of modifying allocations to reliability and maintainability requirements for the NASA Ground Systems Development and Operations (GSDO) programs subsystems. As systems progressed through their design life cycle and hardware data became available, it became necessary to reexamine the previously derived allocations. This iterative process provided an opportunity for the reliability engineering team to reevaluate allocations as systems moved beyond their conceptual and preliminary design phases. These new allocations are based on updated designs and maintainability characteristics of the components. It was found that trade-offs in reliability and maintainability were essential to ensuring the integrity of the reliability and maintainability analysis. This paper discusses the results of reliability and maintainability reallocations made for the GSDO subsystems as the program nears the end of its design phase.

  8. Model reduction in integrated controls-structures design

    Science.gov (United States)

    Maghami, Peiman G.

    1993-01-01

    It is the objective of this paper to present a model reduction technique developed for the integrated controls-structures design of flexible structures. Integrated controls-structures design problems are typically posed as nonlinear mathematical programming problems, where the design variables consist of both structural and control parameters. In the solution process, both structural and control design variables are constantly changing; therefore, the dynamic characteristics of the structure are also changing. This presents a problem in obtaining a reduced-order model for active control design and analysis which will be valid for all design points within the design space. In other words, the frequency and number of the significant modes of the structure (modes that should be included) may vary considerably throughout the design process. This is also true as the locations and/or masses of the sensors and actuators change. Moreover, since the number of design evaluations in the integrated design process could easily run into thousands, any feasible order-reduction method should not require model reduction analysis at every design iteration. In this paper a novel and efficient technique for model reduction in the integrated controls-structures design process, which addresses these issues, is presented.

  9. Human-factors methods for assessing and enhancing power-plant maintainability

    International Nuclear Information System (INIS)

    Seminara, J.L.

    1982-05-01

    EPRI Final Report NP-1567, dated February 1981, presented the results of a human factors review of plant maintainability at nine power plants (five nuclear and four fossil). This investigation revealed a wide range of plant and equipment design features that can potentially compromise the effectiveness, safety, and productivity of maintenance personnel. The present study is an extension of the earlier work. It provides those utilities that did not participate in the original study with the methodological tools to conduct a review of maintenance provisions, facilities, and practices. This report describes and provides a self-review checklist; a structured interview; a task analysis approach; methods for reviewing maintenance errors or accidents; and recommended survey techniques for evaluating such factors as noise, illumination, and communications. Application of the human factors methods described in this report should reveal avenues for enhancing existing power plants from the maintainability and availability standpoints. This document may also serve a useful purpose for designers or reviewers of new plant designs or near-operational plants presently being constructed

  10. Structural design of nuclear power plant using stiffened steel plate concrete structure

    International Nuclear Information System (INIS)

    Moon, Ilhwan; Kim, Sungmin; Mun, Taeyoup; Kim, Keunkyeong; Sun, Wonsang

    2009-01-01

    Nuclear power is an alternative energy source that is conducive to mitigate the environmental strains. The countries having nuclear power plants are encouraging research and development sector to find ways to construct safer and more economically feasible nuclear power plants. Modularization using Steel Plate Concrete(SC) structure has been proposed as a solution to these efforts. A study of structural modules using SC structure has been performed for shortening of construction period and enhancement of structural safety of NPP structures in Korea. As a result of the research, the design code and design techniques based on limit state design method has been developed. The design code has been developed through various structural tests and theoretical studies, and it has been modified by application design of SC structure for NPP buildings. The code consists of unstiffened SC wall design, stiffened SC wall design, Half-SC slab design, stud design, connection design and so on. The stiffened steel plate concrete(SSC) wall is SC structure whose steel plates with ribs are composed on both sides of the concrete wall, and this structure was developed for improved constructability and safety of SC structure. This paper explains a design application of SC structure for a sample building specially devised to reflect all of major structural properties of main buildings of APR1400. In addition, Stiffening effect of SSC structure is evaluated and structural efficiency of SSC structure is verified in comparison with that of unstiffened SC structure. (author)

  11. Nuclear power plant design characteristics. Structure of nuclear power plant design characteristics in the IAEA Power Reactor Information System (PRIS)

    International Nuclear Information System (INIS)

    2007-03-01

    One of the IAEA's priorities has been to maintain the Power Reactor Information System (PRIS) database as a viable and useful source of information on nuclear reactors worldwide. To satisfy the needs of PRIS users as much as possible, the PRIS database has included also a set of nuclear power plant (NPP) design characteristics. Accordingly, the PRIS Technical Meeting, organized in Vienna 4-7 October 2004, initiated a thorough revision of the design data area of the PRIS database to establish the actual status of the data and make improvements. The revision first concentrated on a detailed review of the design data completion and the composition of the design characteristics. Based on the results of the review, a modified set and structure of the unit design characteristics for the PRIS database has been developed. The main objective of the development has been to cover all significant plant systems adequately and provide an even more comprehensive overview of NPP unit designs stored in the PRIS database

  12. Design study of an IHX support structure for a POOL-TYPE Sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Park, Chang Gyu; Kim, Jong Bum; Lee, Jae Han

    2009-01-01

    The IHX (Intermediate Heat eXchanger) for a pool-type SFR (Sodium-cooled Fast Reactor) system transfers heat from the primary high temperature sodium to the intermediate cold temperature sodium. The upper structure of the IHX is a coaxial structure designed to form a flow path for both the secondary high temperature and low temperature sodium. The coaxial structure of the IHX consists of a central downcomer and riser for the incoming and outgoing intermediate sodium, respectively. The IHX of a pool-type SFR is supported at the upper surface of the reactor head with an IHX support structure that connects the IHX riser cylinder to the reactor head. The reactor head is generally maintained at the low temperature regime, but the riser cylinder is exposed in the elevated temperature region. The resultant complicated temperature distribution of the co-axial structure including the IHX support structure may induce a severe thermal stress distribution. In this study, the structural feasibility of the current upper support structure concept is investigated through a preliminary stress analysis and an alternative design concept to accommodate the IHTS (Intermediate Heat Transport System) piping expansion loads and severe thermal stress is proposed. Through the structural analysis it is found that the alternative design concept is effective in reducing the thermal stress and acquiring structural integrity

  13. AECL's reliability and maintainability program

    International Nuclear Information System (INIS)

    Wolfe, W.A.; Nieuwhof, G.W.E.

    1976-05-01

    AECL's reliability and maintainability program for nuclear generating stations is described. How the various resources of the company are organized to design and construct stations that operate reliably and safely is shown. Reliability and maintainability includes not only special mathematically oriented techniques, but also the technical skills and organizational abilities of the company. (author)

  14. Structural design of DEALS magnet

    International Nuclear Information System (INIS)

    Bezler, P.; Hsieh, S.Y.; Balderes, T.; Brown, T.; Bundy, J.

    1979-01-01

    A design for the extraneous magnet structure to support all the magnet loads was developed. The structure consists of two demountable structural systems designed to support the in-plane and out-of-plane loads, respectively. The in-plane loads are resisted by a cold central bucking cylinder and pin connected, plate-beam structural members following the outer periphery of each coil. The out-of-plane, torsional loads are resisted by the concerted action of the central bucking column and a continuous plate structure interconnecting all the coils. The adequacy of the structures were assessed by application of finite element analysis methods. The design study proved the feasibility of resisting the magnetic loadings with a demountable support structure extraneous to the superconducting coil. The resulting magnet system, although estimated to be higher in cost than a continuous coil, incorporates a means for complete coil replacement in a time scale commensurate with conventional nuclear power plant repairs and without the dismantling of the toroidal blanket and plasma shell systems

  15. Structural design of the toroidal configuration of the HTS SMES cooling system

    International Nuclear Information System (INIS)

    Yeom, H.K.; Koh, D.Y.; Ko, J.S.; Kim, H.B.; Hong, Y.J.; Kim, S.H.; Seong, K.C.

    2011-01-01

    The superconducting magnetic energy storage (SMES) system is working on around 30 K, because the magnet is made of high temperature superconductor. To maintain the cryogenic temperature, the superconducting coil is cooled by cryogen, helium gas or liquid neon. But there are some weak points in the cryogen cooling system. For example periodic charge of the cryogen and size is big and so on. So, we have designed the conduction cooling system for toroidal configuration HTS SMES. The toroidal type HTS SMES has some merits, so it is very small magnetic field leakage, and magnetic field applied perpendicular to the tape surface can be reduced. Our system has 28 numbers of HTS double pancake coils and they are arrayed toroidal configuration. The toroidal inner radius is 162 mm, and outer radius is 599 mm, and height is about 162 mm. In this study, we have designed the cooling structure and analyzed temperature distribution of cooling path, thermal stress and deformation of the cooling structure.

  16. A mechanical design principle for tissue structure and function in the airway tree.

    Science.gov (United States)

    LaPrad, Adam S; Lutchen, Kenneth R; Suki, Béla

    2013-01-01

    With every breath, the dynamically changing mechanical pressures must work in unison with the cells and soft tissue structures of the lung to permit air to efficiently traverse the airway tree and undergo gas exchange in the alveoli. The influence of mechanics on cell and tissue function is becoming apparent, raising the question: how does the airway tree co-exist within its mechanical environment to maintain normal cell function throughout its branching structure of diminishing dimensions? We introduce a new mechanical design principle for the conducting airway tree in which mechanotransduction at the level of cells is driven to orchestrate airway wall structural changes that can best maintain a preferred mechanical microenvironment. To support this principle, we report in vitro radius-transmural pressure relations for a range of airway radii obtained from healthy bovine lungs and model the data using a strain energy function together with a thick-walled cylinder description. From this framework, we estimate circumferential stresses and incremental Young's moduli throughout the airway tree. Our results indicate that the conducting airways consistently operate within a preferred mechanical homeostatic state, termed mechanical homeostasis, that is characterized by a narrow range of circumferential stresses and Young's moduli. This mechanical homeostatic state is maintained for all airways throughout the tree via airway wall dimensional and mechanical relationships. As a consequence, cells within the airway walls throughout the airway tree experience similar oscillatory strains during breathing that are much smaller than previously thought. Finally, we discuss the potential implications of how the maintenance of mechanical homeostasis, while facilitating healthy tissue-level alterations necessary for maturation, may lead to airway wall structural changes capable of chronic asthma.

  17. A mechanical design principle for tissue structure and function in the airway tree.

    Directory of Open Access Journals (Sweden)

    Adam S LaPrad

    Full Text Available With every breath, the dynamically changing mechanical pressures must work in unison with the cells and soft tissue structures of the lung to permit air to efficiently traverse the airway tree and undergo gas exchange in the alveoli. The influence of mechanics on cell and tissue function is becoming apparent, raising the question: how does the airway tree co-exist within its mechanical environment to maintain normal cell function throughout its branching structure of diminishing dimensions? We introduce a new mechanical design principle for the conducting airway tree in which mechanotransduction at the level of cells is driven to orchestrate airway wall structural changes that can best maintain a preferred mechanical microenvironment. To support this principle, we report in vitro radius-transmural pressure relations for a range of airway radii obtained from healthy bovine lungs and model the data using a strain energy function together with a thick-walled cylinder description. From this framework, we estimate circumferential stresses and incremental Young's moduli throughout the airway tree. Our results indicate that the conducting airways consistently operate within a preferred mechanical homeostatic state, termed mechanical homeostasis, that is characterized by a narrow range of circumferential stresses and Young's moduli. This mechanical homeostatic state is maintained for all airways throughout the tree via airway wall dimensional and mechanical relationships. As a consequence, cells within the airway walls throughout the airway tree experience similar oscillatory strains during breathing that are much smaller than previously thought. Finally, we discuss the potential implications of how the maintenance of mechanical homeostasis, while facilitating healthy tissue-level alterations necessary for maturation, may lead to airway wall structural changes capable of chronic asthma.

  18. Structural integrity of graphite core support structures of HTTR

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Iyoku, Tatsuo; Toyota, Junji; Sato, Sadao; Shiozawa, Shusaku

    1990-02-01

    The graphite core support structures (GCSSs) of the HTTR (High Temperature Engineering Test Reactor) are an arrangement of graphite blocks and posts that support the core and provide a lower plenum and a hot-leg path for the primary coolant. The GCSSs are designed not to be replaced by new items during plant life time (about twenty years). To maintain structural integrity of the GCSSs, conservative design has been made sufficiently on the basis of structural tests. The present study confirmed that reactor safety was still maintained even if failure and destruction of the GCSSs is supposed to occur. The GCSSs are fabricated under strict quality control and the observation and surveillance programs are planed to examine the structual integrity of the GCSSs during an operation. This paper describes the concept of design and quality control and summarizes structural tests, observation and surveillance programs. (author)

  19. Design of Qualitative HRA Database Structure

    International Nuclear Information System (INIS)

    Kim, Seunghwan; Kim, Yochan; Choi, Sun Yeong; Park, Jinkyun; Jung, Wondea

    2015-01-01

    HRA DB is to collect and store the data in a database form to manage and maintain them from the perspective of human reliability analysis. All information on the human errors taken by operators in the power plant should be systematically collected and documented in its management. KAERI is developing the simulator-based HRA data handbook. In this study, the information required to store and manage the data necessary to perform an HRA as to store the HRA data to be stored in the handbook is identified and summarized. Especially this study is to summarize the collection and classification of qualitative data as the raw data to organize the data required to draw the HEP and its DB process. Qualitative HRA DB is a storehouse of all sub-information needed to receive the human error probability for Pasa. In this study, the requirements for structural design and implementation of qualitative HRA DB must be implemented for HRA DB were summarized. The follow-up study of the quantitative HRA DB implementation should be followed to draw the substantial HEP

  20. Software design implementation document for TRAC-M data structures

    Energy Technology Data Exchange (ETDEWEB)

    Jolly-Woodruff, S. [Ogden Environmental and Energy Services (United States); Mahaffy, J. [Pennsylvania State Univ., University Park, PA (United States); Giguere, P.; Dearing, J.; Boyack, B. [Los Alamos National Lab., NM (United States)

    1997-07-01

    The Transient Reactor Analysis Code (TRAC)-M system-wide and component data structures are to be reimplemented by using the new features of Fortran 90 (F90). There will be no changes to the conceptual design, data flow, or computational flow with respect to the current TRAC-P, except that readability, maintainability, and extensibility will be improved. However, the task described here is a basic step that does not meet all future needs of the code, especially regarding extensibility. TRAC-M will be fully functional and will produce null computational changes with respect to TRAC-P, Version 5.4.25; computational efficiency will not be degraded significantly. The existing component and functional modularity and possibilities for coarse-grained parallelism will be retained.

  1. Software design implementation document for TRAC-M data structures

    International Nuclear Information System (INIS)

    Jolly-Woodruff, S.; Mahaffy, J.; Giguere, P.; Dearing, J.; Boyack, B.

    1997-07-01

    The Transient Reactor Analysis Code (TRAC)-M system-wide and component data structures are to be reimplemented by using the new features of Fortran 90 (F90). There will be no changes to the conceptual design, data flow, or computational flow with respect to the current TRAC-P, except that readability, maintainability, and extensibility will be improved. However, the task described here is a basic step that does not meet all future needs of the code, especially regarding extensibility. TRAC-M will be fully functional and will produce null computational changes with respect to TRAC-P, Version 5.4.25; computational efficiency will not be degraded significantly. The existing component and functional modularity and possibilities for coarse-grained parallelism will be retained

  2. Structural design of Kaohsiung Stadium, Taiwan

    Science.gov (United States)

    Watanabe, Hideyuki; Tanno, Yoshiro; Nakai, Masayoshi; Ohshima, Takashi; Suguichi, Akihiro; Lee, William H.; Wang, Jensen

    2013-01-01

    This paper presents an outline description of the structural design of the main stadium for the World Games held in Kaohsiung City, Taiwan, in 2009. Three new design concepts, unseen in previous stadiums, were proposed and realized: “an open stadium”, “an urban park”, and “a spiral continuous form”. Based on the open stadium concept, simple cantilever trusses in the roof structure were arranged in a delicate rhythm, and a so-called oscillating hoop of steel tubes was wound around the top and bottom surfaces of a group of cantilever trusses to form a continuous spiral form. Also, at the same time by clearly grouping the structural elements of the roof structure, the dramatic effect of the urban park was highlighted by unifying the landscape and the spectator seating area to form the stadium facade. This paper specifically reports on the overview of the building, concepts of structural design, structural analysis of the roof, roof design, foundation design, and an outline of the construction.

  3. Design and analysis of composite structures with applications to aerospace structures

    CERN Document Server

    Kassapoglou, Christos

    2010-01-01

    Design and Analysis of Composite Structures enables graduate students and engineers to generate meaningful and robust designs of complex composite structures. Combining analysis and design methods for structural components, the book begins with simple topics such as skins and stiffeners and progresses through to entire components of fuselages and wings. Starting with basic mathematical derivation followed by simplifications used in real-world design, Design and Analysis of Composite Structures presents the level of accuracy and range of applicability of each method. Examples taken from ac

  4. Development of piping support structure design software based on PDMS

    International Nuclear Information System (INIS)

    Tang Yongtao; Guan Hui; Su Rongfu; Huang Wei; Mao Huihui

    2014-01-01

    In order to enhance the efficiency of nuclear power process system piping support design, the veracity of interface with support, piping and anchor, and decrease the clash between supports and other disciplines, developed piping support structure design software NPHS based on PDMS independently. That achieved the seamless integration of PDMS and NPHS by method of embedded development, reduce the size of program code, improve the running efficiency; That predigested the 3D modeling and information storage for support parts, that increased the support database opening and maintenance using the special mechanism and configuration of database. The support modeling efficiency due to setting of the connection key point of support parts is improved. Practices in several real nuclear power projects proved that NPHS software is provided with such outstanding performances: quick running, strong stability, accurate data, easy to operate and maintain, and output results satisfied the engineering requirements. (authors)

  5. Structure-Based Design of Novel HIV-1 Protease Inhibitors to Combat Drug Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh,A.; Sridhar, P.; Leshchenko, S.; Hussain, A.; Li, J.; Kovalevsky, A.; Walters, D.; Wedelind, J.; Grum-Tokars, V.; et al.

    2006-01-01

    Structure-based design and synthesis of novel HIV protease inhibitors are described. The inhibitors are designed specifically to interact with the backbone of HIV protease active site to combat drug resistance. Inhibitor 3 has exhibited exceedingly potent enzyme inhibitory and antiviral potency. Furthermore, this inhibitor maintains impressive potency against a wide spectrum of HIV including a variety of multi-PI-resistant clinical strains. The inhibitors incorporated a stereochemically defined 5-hexahydrocyclopenta[b]furanyl urethane as the P2-ligand into the (R)-(hydroxyethylamino)sulfonamide isostere. Optically active (3aS,5R,6aR)-5-hydroxy-hexahydrocyclopenta[b]furan was prepared by an enzymatic asymmetrization of meso-diacetate with acetyl cholinesterase, radical cyclization, and Lewis acid-catalyzed anomeric reduction as the key steps. A protein-ligand X-ray crystal structure of inhibitor 3-bound HIV-1 protease (1.35 Angstroms resolution) revealed extensive interactions in the HIV protease active site including strong hydrogen bonding interactions with the backbone. This design strategy may lead to novel inhibitors that can combat drug resistance.

  6. Codes maintained by the LAACG [Los Alamos Accelerator Code Group] at the NMFECC

    International Nuclear Information System (INIS)

    Wallace, R.; Barts, T.

    1990-01-01

    The Los Alamos Accelerator Code Group (LAACG) maintains two groups of design codes at the National Magnetic Fusion Energy Computing Center (NMFECC). These codes, principally electromagnetic field solvers, are used for the analysis and design of electromagnetic components for accelerators, e.g., magnets, rf structures, pickups, etc. In this paper, the status and future of the installed codes will be discussed with emphasis on an experimental version of one set of codes, POISSON/SUPERFISH

  7. Parametric Fires for Structural Design

    DEFF Research Database (Denmark)

    Hertz, Kristian

    2012-01-01

    The authorities, the construction association, and a number of companies in Denmark have supported the author writing a guide for design of building structures for parametric fires. The guide is published by the ministry as a supplement to the building regulations. However, consultants and contra......The authorities, the construction association, and a number of companies in Denmark have supported the author writing a guide for design of building structures for parametric fires. The guide is published by the ministry as a supplement to the building regulations. However, consultants...... and contractors have asked for a reference in English in order to make the guide-lines and the background for them available internationally. The paper therefore presents recommendations from the design guide especially concerning how to assess parametric design fires based on the opening factor method for large...... compartments. Findings leading to the guide-lines are discussed, and it is indicated what a safe design fire model means for structural design and how it differs from a safe design fire model for evacuation. Furthermore, the paper includes some experiences from the application of the design guide in practise...

  8. Constructability and maintainability

    International Nuclear Information System (INIS)

    Hart, R.S.

    1985-01-01

    A set of principles for minimizing the construction schedule was established at the outset of the CANDU 300 programme. Consideration of these principles and other factors led to the development of the unique CANDU 300 station layout. The paper discusses the CANDU 300 station layout and construction methods. In summary, the station layout provides 360 deg. construction access to all buildings, separation of nuclear and non-nuclear systems, precise and minimal physical interfaces between buildings, accommodation of many contractors and construction activities without interference, and maximum flexibility in terms of constructional, financial and supply arrangements. The CANDU 300 further employs modularization, shop fabrication and advanced instrumentation (multiplexers, remote processors, data highways) to minimize construction time. Many of the CANDU 300 features that enhance constructability also contribute to maintainability. These include the 360 deg. access to all principal buildings, the uncluttered and spacious building layouts, the simplification of systems and the high level of modularization. The CANDU 300 has also been designed to facilitate the replacement of all key components, thereby offering an essentially unlimited station life. A prime example is a reduction in the fuel channel inlet end-fitting diameter such that the fuel channels can be shop assembled and easily replaced after the initial 40 years of operation, without an extended unit outage. Maintainability within the reactor building has been given particular attention in the CANDU 300 design; key features of other CANDU reactors (the ability to replace a heat transport system pump motor at power, for example) have been incorporated, while accessibility and maintainability of all systems and components have been enhanced. These and other aspects of maintainability are discussed. (author)

  9. Study of structural reliability of existing concrete structures

    Science.gov (United States)

    Druķis, P.; Gaile, L.; Valtere, K.; Pakrastiņš, L.; Goremikins, V.

    2017-10-01

    Structural reliability of buildings has become an important issue after the collapse of a shopping center in Riga 21.11.2013, caused the death of 54 people. The reliability of a building is the practice of designing, constructing, operating, maintaining and removing buildings in ways that ensure maintained health, ward suffered injuries or death due to use of the building. Evaluation and improvement of existing buildings is becoming more and more important. For a large part of existing buildings, the design life has been reached or will be reached in the near future. The structures of these buildings need to be reassessed in order to find out whether the safety requirements are met. The safety requirements provided by the Eurocodes are a starting point for the assessment of safety. However, it would be uneconomical to require all existing buildings and structures to comply fully with these new codes and corresponding safety levels, therefore the assessment of existing buildings differs with each design situation. This case study describes the simple and practical procedure of determination of minimal reliability index β of existing concrete structures designed by different codes than Eurocodes and allows to reassess the actual reliability level of different structural elements of existing buildings under design load.

  10. ASTROS: A multidisciplinary automated structural design tool

    Science.gov (United States)

    Neill, D. J.

    1989-01-01

    ASTROS (Automated Structural Optimization System) is a finite-element-based multidisciplinary structural optimization procedure developed under Air Force sponsorship to perform automated preliminary structural design. The design task is the determination of the structural sizes that provide an optimal structure while satisfying numerous constraints from many disciplines. In addition to its automated design features, ASTROS provides a general transient and frequency response capability, as well as a special feature to perform a transient analysis of a vehicle subjected to a nuclear blast. The motivation for the development of a single multidisciplinary design tool is that such a tool can provide improved structural designs in less time than is currently needed. The role of such a tool is even more apparent as modern materials come into widespread use. Balancing conflicting requirements for the structure's strength and stiffness while exploiting the benefits of material anisotropy is perhaps an impossible task without assistance from an automated design tool. Finally, the use of a single tool can bring the design task into better focus among design team members, thereby improving their insight into the overall task.

  11. Designed beta-boomerang antiendotoxic and antimicrobial peptides: structures and activities in lipopolysaccharide.

    Science.gov (United States)

    Bhunia, Anirban; Mohanram, Harini; Domadia, Prerna N; Torres, Jaume; Bhattacharjya, Surajit

    2009-08-14

    Lipopolysaccharide (LPS), an integral part of the outer membrane of Gram-negative bacteria, is involved in a variety of biological processes including inflammation, septic shock, and resistance to host-defense molecules. LPS also provides an environment for folding of outer membrane proteins. In this work, we describe the structure-activity correlation of a series of 12-residue peptides in LPS. NMR structures of the peptides derived in complex with LPS reveal boomerang-like beta-strand conformations that are stabilized by intimate packing between the two aromatic residues located at the 4 and 9 positions. This structural feature renders these peptides with a high ability to neutralize endotoxicity, >80% at 10 nM concentration, of LPS. Replacements of these aromatic residues either with Ala or with Leu destabilizes the boomerang structure with the concomitant loss of antiendotoxic and antimicrobial activities. Furthermore, the aromatic packing stabilizing the beta-boomerang structure in LPS is found to be maintained even in a truncated octapeptide, defining a structured LPS binding motif. The mode of action of the active designed peptides correlates well with their ability to perturb LPS micelle structures. Fourier transform infrared spectroscopy studies of the peptides delineate beta-type conformations and immobilization of phosphate head groups of LPS. Trp fluorescence studies demonstrated selective interactions with LPS and the depth of insertion into the LPS bilayer. Our results demonstrate the requirement of LPS-specific structures of peptides for endotoxin neutralizations. In addition, we propose that structures of these peptides may be employed to design proteins for the outer membrane.

  12. Development of mechanical structure design technology for LMR

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Bong; Lee, Jae Han; Joo, Young Sang [and others

    2000-05-01

    In this project, fundamentals for conceptual design of mechanical structure system for LMR are independently established. The research contents are as follow; at first, conceptual design for SSC, design integration of interfaces, design consistency to keep functions and interfaces by developing arrangement of reactor system and 3 dimensional concept drawings, development and revision of preliminary design requirements and structural design basis, and evaluation of structural integrity for SSC following structural design criteria to check the conceptual design to be proper, at second, development of high temperature structure design and analysis technology and establishment of high temperature structural analysis codes and scheme, development of seismic isolation design concept to reduce seismic design loads to SCC and establishment of seismic analysis codes and scheme.

  13. Development of mechanical structure design technology for LMR

    International Nuclear Information System (INIS)

    Yoo, Bong; Lee, Jae Han; Joo, Young Sang

    2000-05-01

    In this project, fundamentals for conceptual design of mechanical structure system for LMR are independently established. The research contents are as follow; at first, conceptual design for SSC, design integration of interfaces, design consistency to keep functions and interfaces by developing arrangement of reactor system and 3 dimensional concept drawings, development and revision of preliminary design requirements and structural design basis, and evaluation of structural integrity for SSC following structural design criteria to check the conceptual design to be proper, at second, development of high temperature structure design and analysis technology and establishment of high temperature structural analysis codes and scheme, development of seismic isolation design concept to reduce seismic design loads to SCC and establishment of seismic analysis codes and scheme

  14. Design of the upper internals structure for the Clinch River Breeder Reactor Plant

    International Nuclear Information System (INIS)

    Thompson, D.C.; Novendstern, E.H.

    1977-01-01

    The Upper Internals Structure (UIS) is located above the core and is supported from the head at four locations. It is designed to perform the following primary functions: provide secondary core holddown in the event of a malfunction of the core hydraulic holddown system; provide support for routing all in-vessel instrumentation to core assemblies; maintain alignment between the core assemblies, the UIS and the closure head; provide guidance and crossflow protection for the control rod drivelines; and mix/duct flow to the upper region of the vessel outlet plenum to minimize rapid temperature changes to components during a reactor trip transient. In accomplishing these functions, the UIS will experience a sodium environment with temperatures up to 1200 0 F (649 0 C), and as many as 7 x 10 8 cycles of fluid temperature fluctuations up to 250 0 F (121 0 C) at full power operation. It must be designed to survive these conditions in combination with seismic and flow-induced vibration loadings for its 30 year design life. The design program of designing to controlled functional requirements and design conditions is discussed. Included is a description of the significant parts of the design and the approach used to balance the requirement of tight joints. The thermal and hydraulic environment including the results of a comprehensive test program are discussed. The test program results establish the basis of the thermal boundary used in the structural evaluation, and the UIS vibration characteristics. A summary of the areas which have required design changes is included with a summary of the structural evaluation of these changes

  15. Hybrid Tower, Designing Soft Structures

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette; Tamke, Martin; Holden Deleuran, Anders

    2015-01-01

    and constraint solvers and more rigorous Finite Element methods supporting respectively design analysis and form finding and performance evaluation and verification. The second investigation describes the inter-scalar feedback loops between design at the macro scale (overall structural behaviour), meso scale...... (membrane reinforcement strategy) and micro scale (design of bespoke textile membrane). The paper concludes with a post construction analysis. Comparing structural and environmental data, the predicted and the actual performance of tower are evaluated and discussed....

  16. Design and characterization of 16-mode PANDA polarization-maintaining few-mode ring-core fiber for spatial division multiplexing

    Science.gov (United States)

    Cao, Yuan; Zhao, Yongli; Yu, Xiaosong; Han, Jiawei; Zhang, Jie

    2017-11-01

    A PANDA polarization-maintaining few-mode ring-core fiber (PM-FM-RCF) structure with two air holes around the ring core is proposed. The relative mode multiplicity factor (RMMF) is defined to evaluate the spatial efficiency of the designed PM-FM-RCF. The performance analysis and comparison of the proposed PANDA PM-FM-RCFs considering three different types of step-index profiles are detailed. Through modal characteristic analysis and numerical simulation, the PM-FM-RCF with a lower refractive index difference (Δnoi=1.5%) between the ring core and the inner central circle can support up to 16 polarization modes with large RMMF at C-band, which shows the optimum modal properties compared with the PM-FM-RCF with higher Δnoi. All the supported polarization modes are effectively separated from their adjacent polarization modes with effective refractive index differences (Δn) larger than 10-4, which also show relatively small chromatic dispersion (-20 to 25 ps/nm/km), low attenuation (<1.4 dB/km), and small bending radius (˜8 mm) over the C-band. The designed PM-FM-RCF can be compatible with standard single-mode fibers and applied in multiple-input multiple-output-free spatial division multiplexing optical networks for short-reach optical interconnection.

  17. Comparative design of structures concepts and methodologies

    CERN Document Server

    Lin, Shaopei

    2016-01-01

    This book presents comparative design as an approach to the conceptual design of structures. Primarily focusing on reasonable structural performance, sustainable development and architectural aesthetics, it features detailed studies of structural performance through the composition and de-composition of these elements for a variety of structures, such as high-rise buildings, long-span crossings and spatial structures. The latter part of the book addresses the theoretical basis and practical implementation of knowledge engineering in structural design, and a case-based fuzzy reasoning method is introduced to illustrate the concept and method of intelligent design. The book is intended for civil engineers, structural designers and architects, as well as senior undergraduate and graduate students in civil engineering and architecture. Shaopei Lin and Zhen Huang are both Professors at the Department of Civil Engineering, Shanghai Jiao Tong University, China.

  18. Reliability based Design of Coastal Structures

    DEFF Research Database (Denmark)

    Burcharth, H. F.

    2003-01-01

    Conventional design practice for coastal structures is deterministic in nature and is based on the concept of a design load which should not exceed the resistance (carrying capacity) of the structure. The design load is usually defined on a probabilistic basis as a characteristic value of the load......, for example the expectation (mean) value of the 100-year return period event. However, this selection is often made without consideration of the involved uncertainties. In most cases the resistance is defined in terms of the load that causes a certain design impact or damage to the structure...

  19. Design of the support structure, drive pedestal, and controls for a solar concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, V.R.; Ford, J.L.; Anderson, A.E. (WG Associates, Dallas, TX (United States))

    1991-08-01

    The glass/metal McDonnell-Douglas dish is the state-of-the-art of parabolic dish concentrators. Because of the perceived high production cost of this concentrator, the Department of Energy's Solar Thermal Program is developing stretch-membrane technology for large (75 kWt) solar concentrators for integration with receivers and engines in 25 kWe dish-Stirling systems. The objective of this development effort is to reduce the cost of the concentrator while maintaining the high levels of performance characteristic of glass-metal dishes. Under contract to Sandia National Laboratories, Science Applications International Corporation, Solar Kinetics Inc. and WG Associates are developing a faceted stretched-membrane heliostat technology. This design will result in a low-risk, near-term concentrator for dish-Stirling systems. WG Associates has designed the support structure, drives and tracking controls for this dish. The structure is configured to support 12 stretched-membrane, 3.5-meter diameter facets in a shaped dish configuration. The dish design is sized to power a dish-Stirling system capable of producing 25 kW (electric). In the design of the structure, trade-off studies were conducted to determine the best'' facet arrangement, dish contour, dish focal length, tracking control and walk-off protection. As part of the design, in-depth analyses were performed to evaluate pointing accuracy, compliance with AISC steel design codes, and the economics of fabrication and installation. Detailed fabrication and installation drawings were produced, and initial production cost estimates for the dish were developed. These issues, and the final dish design, are presented in this report. 7 refs., 33 figs., 18 tabs.

  20. Load requirements for maintaining structural integrity of Hanford single-shell tanks during waste feed delivery and retrieval activities

    International Nuclear Information System (INIS)

    JULYK, L.J.

    1999-01-01

    This document provides structural load requirements and their basis for maintaining the structural integrity of the Hanford Single-Shell Tanks during waste feed delivery and retrieval activities. The requirements are based on a review of previous requirements and their basis documents as well as load histories with particular emphasis on the proposed lead transfer feed tanks for the privatized vitrification plant

  1. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles, summary. [aircraft design of aircraft fuel systems

    Science.gov (United States)

    Pirrello, C. J.; Baker, A. H.; Stone, J. E.

    1976-01-01

    A detailed analytical study was made to investigate the effects of fuselage cross section (circular and elliptical) and the structural arrangement (integral and nonintegral tanks) on aircraft performance. The vehicle was a 200 passenger, liquid hydrogen fueled Mach 6 transport designed to meet a range goal of 9.26 Mn (5000 NM). A variety of trade studies were conducted in the area of configuration arrangement, structural design, and active cooling design in order to maximize the performance of each of three point design aircraft: (1) circular wing-body with nonintegral tanks, (2) circular wing-body with integral tanks and (3) elliptical blended wing-body with integral tanks. Aircraft range and weight were used as the basis for comparison. The resulting design and performance characteristics show that the blended body integral tank aircraft weights the least and has the greatest range capability, however, producibility and maintainability factors favor nonintegral tank concepts.

  2. Design optimisation of the ATLAS Barrel Toroid structure - the warm structure

    International Nuclear Information System (INIS)

    Daeel, A.; Desvard, J-P.; Pabot, Y.; Sun, Z.; Hille, H. van; Vedrine, P.

    2001-01-01

    The magnetic bending of muon tracks for the ATLAS Muon Spectrometer is provided by the large air-core toroid magnets. The Barrel Toroid structure, named the warm structure, is an open structure inside which the muon chambers are installed. The physics performance of the muon spectrometer imposes stringent requirements on the design of the warm structure. It should support the muon chambers with required precision and stability, the deformation of the structure must be minimised. At the same time, the quantities of the materials used in the structure must also be minimised. Through extensive structural analyses, the design optimisation has been achieved to fit with the physics requirements. This paper gives an overview on the design considerations of the warm structure

  3. Structural modules in AP1000 plant design

    International Nuclear Information System (INIS)

    Prasad, N.; Tunon-Sanjur, L.

    2007-01-01

    Structural modules are extensively used in AP1000 plant design. The shop manufacturing of modules components improves the quality and reliability of plant structures. The application of modules has a positive impact on construction schedules, and results in substantial savings in the construction cost. This paper describes various types of structural modules used for AP1000 plant structures. CA structural wall modules are steel plate modules with concrete placed, on or within the module, after module installation. The layout and design of the largest CA wall modules, CA01 and CA20, is described in detail. General discussion of structural floor modules, such as the composite and finned floors, is also included. Steel form CB modules (liners) consist of plate reinforced with angle stiffeners and tee sections. The angles and the tee sections are on the concrete side of the plate. Design of CB20 has been included as an example of CB type modules. Design codes and structural concepts related to module designs are discussed. (authors)

  4. Design Guidelines for Low Crested Structures

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Lamberti, Alberto

    2004-01-01

    1998-2002. The Guidelines comprise engineering aspects related to morphological impact and structure stability, biological aspects related to ecological impact, and socio-economical aspects related to the implementation of LCS-schemes. The guidelines are limited to submerged and regularly overtopped......The paper presents an overview of the design guidelines for low crested structures (LCS's) to be applied in coastal protection schemes. The design guidelines are formulated as a part of the research project: Environmental Design of Low Crested Coastal Defence Structures (DELOS) within the EC 5FP...

  5. HTGR fuel element structural design consideration

    International Nuclear Information System (INIS)

    Alloway, R.; Gorholt, W.; Ho, F.; Vollman, R.; Yu, H.

    1987-01-01

    The structural design of the large HTGR prismatic core fuel elements involve the interaction of four engineering disciplines: nuclear physics, thermo-hydraulics, structural and material science. Fuel element stress analysis techniques and the development of structural criteria are discussed in the context of an overview of the entire design process. The core of the proposed 2240 MW(t) HTGR is described as an example where the design process was used. Probabilistic stress analysis techniques coupled with probabilistic risk analysis (PRA) to develop structural criteria to account for uncertainty are described. The PRA provides a means for ensuring that the proposed structural criteria are consistant with plant investment and safety risk goals. The evaluation of cracked fuel elements removed from the Fort St. Vrain reactor in the U.S.A. is discussed in the context of stress analysis uncertainty and structural criteria development. (author)

  6. HTGR fuel element structural design considerations

    International Nuclear Information System (INIS)

    Alloway, R.; Gorholt, W.; Ho, F.; Vollman, R.; Yu, H.

    1986-09-01

    The structural design of the large HTGR prismatic core fuel elements involve the interaction of four engineering disciplines: nuclear physics, thermo-hydraulics, structural and material science. Fuel element stress analysis techniques and the development of structural criteria are discussed in the context of an overview of the entire design process. The core of the proposed 2240 MW(t) HTGR is described as an example where the design process was used. Probabalistic stress analysis techniques coupled with probabalistic risk analysis (PRA) to develop structural criteria to account for uncertainty are described. The PRA provides a means for ensuring that the proposed structural criteria are consistent with plant investment and safety risk goals. The evaluation of cracked fuel elements removed from the Fort St. Vrain reactor in the USA is discussed in the context of stress analysis uncertainty and structural criteria development

  7. An expert system for integrated structural analysis and design optimization for aerospace structures

    Science.gov (United States)

    1992-04-01

    The results of a research study on the development of an expert system for integrated structural analysis and design optimization is presented. An Object Representation Language (ORL) was developed first in conjunction with a rule-based system. This ORL/AI shell was then used to develop expert systems to provide assistance with a variety of structural analysis and design optimization tasks, in conjunction with procedural modules for finite element structural analysis and design optimization. The main goal of the research study was to provide expertise, judgment, and reasoning capabilities in the aerospace structural design process. This will allow engineers performing structural analysis and design, even without extensive experience in the field, to develop error-free, efficient and reliable structural designs very rapidly and cost-effectively. This would not only improve the productivity of design engineers and analysts, but also significantly reduce time to completion of structural design. An extensive literature survey in the field of structural analysis, design optimization, artificial intelligence, and database management systems and their application to the structural design process was first performed. A feasibility study was then performed, and the architecture and the conceptual design for the integrated 'intelligent' structural analysis and design optimization software was then developed. An Object Representation Language (ORL), in conjunction with a rule-based system, was then developed using C++. Such an approach would improve the expressiveness for knowledge representation (especially for structural analysis and design applications), provide ability to build very large and practical expert systems, and provide an efficient way for storing knowledge. Functional specifications for the expert systems were then developed. The ORL/AI shell was then used to develop a variety of modules of expert systems for a variety of modeling, finite element analysis, and

  8. Design optimization applied in structural dynamics

    NARCIS (Netherlands)

    Akcay-Perdahcioglu, Didem; de Boer, Andries; van der Hoogt, Peter; Tiskarna, T

    2007-01-01

    This paper introduces the design optimization strategies, especially for structures which have dynamic constraints. Design optimization involves first the modeling and then the optimization of the problem. Utilizing the Finite Element (FE) model of a structure directly in an optimization process

  9. Fire Safety Design of Wood Structures

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2006-01-01

    Lecture Notes on Fire Safety Design of Wood Structures including charring of wood and load bearing capacity of beams, columns, and connections.......Lecture Notes on Fire Safety Design of Wood Structures including charring of wood and load bearing capacity of beams, columns, and connections....

  10. Problems of structural mechanics in nuclear design

    International Nuclear Information System (INIS)

    Patwardhan, V.M.; Kakodkar, Anil

    1975-01-01

    A very careful and detailed stress analysis of nuclear presure vessels and components is essential for ensuring the safety and integrity of nuclear power plants. The nuclear designer, therefore, relies heavily on structural mechanics for application of the most advanced stress analysis techniques to practical design problems. The paper reviews the inter-relation between structural mechanics and nuclear design and discusses a few of the specific structural mechanics problems faced by the nuclear designers in the Department of Atomic Energy, India. (author)

  11. Valve maintainability in CANDU-PHW nuclear generating stations

    International Nuclear Information System (INIS)

    Pothier, N.E.; Crago, W.A.

    1977-09-01

    Design, application, layout and administrative factors which affect valve maintainability in CANDU-PHW power reactors are identified and discussed. Some of these are illustrated by examples based on prototype reactor operation experience. Valve maintainability improvements resulting from laboratory development and maintainability analysis, have been incorporated in commercial CANDU-PHW nuclear generating stations. These, also, are discussed and illustrated. (author)

  12. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function

    Directory of Open Access Journals (Sweden)

    Magdalena Boer

    2016-02-01

    Full Text Available The complex structure of human skin and its physicochemical properties turn it into an efficient outermost defence line against exogenous factors, and help maintain homeostasis of the human body. This role is played by the epidermal barrier with its major part – stratum corneum. The condition of the epidermal barrier depends on individual and environmental factors. The most important biophysical parameters characterizing the status of this barrier are the skin pH, epidermal hydration, transepidermal water loss and sebum excretion. The knowledge of biophysical skin processes may be useful for the implementation of prophylactic actions whose aim is to restore the barrier function.

  13. Ultra-Structure database design methodology for managing systems biology data and analyses

    Directory of Open Access Journals (Sweden)

    Hemminger Bradley M

    2009-08-01

    Full Text Available Abstract Background Modern, high-throughput biological experiments generate copious, heterogeneous, interconnected data sets. Research is dynamic, with frequently changing protocols, techniques, instruments, and file formats. Because of these factors, systems designed to manage and integrate modern biological data sets often end up as large, unwieldy databases that become difficult to maintain or evolve. The novel rule-based approach of the Ultra-Structure design methodology presents a potential solution to this problem. By representing both data and processes as formal rules within a database, an Ultra-Structure system constitutes a flexible framework that enables users to explicitly store domain knowledge in both a machine- and human-readable form. End users themselves can change the system's capabilities without programmer intervention, simply by altering database contents; no computer code or schemas need be modified. This provides flexibility in adapting to change, and allows integration of disparate, heterogenous data sets within a small core set of database tables, facilitating joint analysis and visualization without becoming unwieldy. Here, we examine the application of Ultra-Structure to our ongoing research program for the integration of large proteomic and genomic data sets (proteogenomic mapping. Results We transitioned our proteogenomic mapping information system from a traditional entity-relationship design to one based on Ultra-Structure. Our system integrates tandem mass spectrum data, genomic annotation sets, and spectrum/peptide mappings, all within a small, general framework implemented within a standard relational database system. General software procedures driven by user-modifiable rules can perform tasks such as logical deduction and location-based computations. The system is not tied specifically to proteogenomic research, but is rather designed to accommodate virtually any kind of biological research. Conclusion We find

  14. Structural elements design manual

    CERN Document Server

    Draycott, Trevor

    2012-01-01

    Gives clear explanations of the logical design sequence for structural elements. The Structural Engineer says: `The book explains, in simple terms, and with many examples, Code of Practice methods for sizing structural sections in timber, concrete,masonry and steel. It is the combination into one book of section sizing methods in each of these materials that makes this text so useful....Students will find this an essential support text to the Codes of Practice in their study of element sizing'.

  15. Structural Analysis in a Conceptual Design Framework

    Science.gov (United States)

    Padula, Sharon L.; Robinson, Jay H.; Eldred, Lloyd B.

    2012-01-01

    Supersonic aircraft designers must shape the outer mold line of the aircraft to improve multiple objectives, such as mission performance, cruise efficiency, and sonic-boom signatures. Conceptual designers have demonstrated an ability to assess these objectives for a large number of candidate designs. Other critical objectives and constraints, such as weight, fuel volume, aeroelastic effects, and structural soundness, are more difficult to address during the conceptual design process. The present research adds both static structural analysis and sizing to an existing conceptual design framework. The ultimate goal is to include structural analysis in the multidisciplinary optimization of a supersonic aircraft. Progress towards that goal is discussed and demonstrated.

  16. Design optimization of jacket structures for mass production

    DEFF Research Database (Denmark)

    Sandal, Kasper

    This thesis presents models and applications for structural optimization of jacket structures for offshore wind turbines. The motivation is that automatic design procedures can be used to obtain more cost efficient designs, and thus reduce the levelized cost of energy from offshore wind. A struct......This thesis presents models and applications for structural optimization of jacket structures for offshore wind turbines. The motivation is that automatic design procedures can be used to obtain more cost efficient designs, and thus reduce the levelized cost of energy from offshore wind....... A structural finite element model is developed specifically for the analysis and optimization of jacket structures. The model uses Timoshenko beam elements, and assumes thin walled tubular beams and a linear elastic structural response. The finite element model is implemented in a Matlab package called JADOP...... (Jacket Design Optimization), and the static and dynamic structural response is verified with the commercial finite element software Abaqus. A parametric mesh of the offshore wind turbine structure makes it relatively easy to represent various structures from the literature, as well as exploring...

  17. Automated analysis and design of complex structures

    International Nuclear Information System (INIS)

    Wilson, E.L.

    1977-01-01

    The present application of optimum design appears to be restricted to components of the structure rather than to the total structural system. Since design normally involved many analysis of the system any improvement in the efficiency of the basic methods of analysis will allow more complicated systems to be designed by optimum methods. The evaluation of the risk and reliability of a structural system can be extremely important. Reliability studies have been made of many non-structural systems for which the individual components have been extensively tested and the service environment is known. For such systems the reliability studies are valid. For most structural systems, however, the properties of the components can only be estimated and statistical data associated with the potential loads is often minimum. Also, a potentially critical loading condition may be completely neglected in the study. For these reasons and the previous problems associated with the reliability of both linear and nonlinear analysis computer programs it appears to be premature to place a significant value on such studies for complex structures. With these comments as background the purpose of this paper is to discuss the following: the relationship of analysis to design; new methods of analysis; new of improved finite elements; effect of minicomputer on structural analysis methods; the use of system of microprocessors for nonlinear structural analysis; the role of interacting graphics systems in future analysis and design. This discussion will focus on the impact of new, inexpensive computer hardware on design and analysis methods

  18. Design and fabrication of topologically optimized structures;

    DEFF Research Database (Denmark)

    Feringa, Jelle; Søndergaard, Asbjørn

    2012-01-01

    Integral structural optimization and fabrication seeks the synthesis of two original approaches; that of topological optimization (TO) and robotic hotwire cutting (HWC) (Mcgee 2011). TO allows for the reduction of up to 70% of the volume of concrete to support a given structure (Sondergaard...... & Dombernowsky 2011). A strength of the method is that it allows to come up with structural designs that lie beyond the grasp of traditional means of design. A design space is a discretized volume, delimiting where the optimization will take place. The number of cells used to discretize the design space thus...

  19. Giga-voxel computational morphogenesis for structural design

    Science.gov (United States)

    Aage, Niels; Andreassen, Erik; Lazarov, Boyan S.; Sigmund, Ole

    2017-10-01

    In the design of industrial products ranging from hearing aids to automobiles and aeroplanes, material is distributed so as to maximize the performance and minimize the cost. Historically, human intuition and insight have driven the evolution of mechanical design, recently assisted by computer-aided design approaches. The computer-aided approach known as topology optimization enables unrestricted design freedom and shows great promise with regard to weight savings, but its applicability has so far been limited to the design of single components or simple structures, owing to the resolution limits of current optimization methods. Here we report a computational morphogenesis tool, implemented on a supercomputer, that produces designs with giga-voxel resolution—more than two orders of magnitude higher than previously reported. Such resolution provides insights into the optimal distribution of material within a structure that were hitherto unachievable owing to the challenges of scaling up existing modelling and optimization frameworks. As an example, we apply the tool to the design of the internal structure of a full-scale aeroplane wing. The optimized full-wing design has unprecedented structural detail at length scales ranging from tens of metres to millimetres and, intriguingly, shows remarkable similarity to naturally occurring bone structures in, for example, bird beaks. We estimate that our optimized design corresponds to a reduction in mass of 2-5 per cent compared to currently used aeroplane wing designs, which translates into a reduction in fuel consumption of about 40-200 tonnes per year per aeroplane. Our morphogenesis process is generally applicable, not only to mechanical design, but also to flow systems, antennas, nano-optics and micro-systems.

  20. Maintaining consistency in distributed systems

    Science.gov (United States)

    Birman, Kenneth P.

    1991-01-01

    In systems designed as assemblies of independently developed components, concurrent access to data or data structures normally arises within individual programs, and is controlled using mutual exclusion constructs, such as semaphores and monitors. Where data is persistent and/or sets of operation are related to one another, transactions or linearizability may be more appropriate. Systems that incorporate cooperative styles of distributed execution often replicate or distribute data within groups of components. In these cases, group oriented consistency properties must be maintained, and tools based on the virtual synchrony execution model greatly simplify the task confronting an application developer. All three styles of distributed computing are likely to be seen in future systems - often, within the same application. This leads us to propose an integrated approach that permits applications that use virtual synchrony with concurrent objects that respect a linearizability constraint, and vice versa. Transactional subsystems are treated as a special case of linearizability.

  1. Study on Detailing Design of Precast Concrete Frame Structure

    Science.gov (United States)

    Lida, Tian; Liming, Li; Kang, Liu; Jiao, Geng; Ming, Li

    2018-03-01

    Taking a certain precast concrete frame structure as an example, this paper introduces the general procedures and key points in detailing design of emulative cast-in-place prefabricated structure from the aspects of structural scheme, precast element layout, shop drawing design and BIM 3D modelling. This paper gives a practical solution for the detailing design of precast concrete frame structure under structural design codes in China.

  2. Design bases - Concrete structures

    International Nuclear Information System (INIS)

    Diaz-Llanos Ros, M.

    1993-01-01

    The most suitable title for Section 2 is 'Design Bases', which covers not only calculation but also the following areas: - Structural design concepts. - Project criteria. - Material specifications. These concepts are developed in more detail in the following sections. The numbering in this document is neither complete nor hierarchical since, for easier cross referencing, it corresponds to the paragraphs of Eurocode 2 Part 1 (hereinafter 'EUR-2') which are commented on. (author)

  3. Integrated topology and shape optimization in structural design

    Science.gov (United States)

    Bremicker, M.; Chirehdast, M.; Kikuchi, N.; Papalambros, P. Y.

    1990-01-01

    Structural optimization procedures usually start from a given design topology and vary its proportions or boundary shapes to achieve optimality under various constraints. Two different categories of structural optimization are distinguished in the literature, namely sizing and shape optimization. A major restriction in both cases is that the design topology is considered fixed and given. Questions concerning the general layout of a design (such as whether a truss or a solid structure should be used) as well as more detailed topology features (e.g., the number and connectivities of bars in a truss or the number of holes in a solid) have to be resolved by design experience before formulating the structural optimization model. Design quality of an optimized structure still depends strongly on engineering intuition. This article presents a novel approach for initiating formal structural optimization at an earlier stage, where the design topology is rigorously generated in addition to selecting shape and size dimensions. A three-phase design process is discussed: an optimal initial topology is created by a homogenization method as a gray level image, which is then transformed to a realizable design using computer vision techniques; this design is then parameterized and treated in detail by sizing and shape optimization. A fully automated process is described for trusses. Optimization of two dimensional solid structures is also discussed. Several application-oriented examples illustrate the usefulness of the proposed methodology.

  4. Reliability-Based Design of Coastal Structures

    DEFF Research Database (Denmark)

    Burcharth, H. F.

    1997-01-01

    The objective of this paper is to introduce the application of reliability theory for conceptual design and evaluation of coastal structures. It is without the scope to discuss the validity and quality of the various design formulae available for coastal structures. The contents of the paper is a....... Proceedings Conference of Port and Coastal Engineering in developing countries. Rio de Janeiro, Brazil, 1995....

  5. Optimal design of lossy bandgap structures

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    2004-01-01

    The method of topology optimization is used to design structures for wave propagation with one lossy material component. Optimized designs for scalar elastic waves are presented for mininimum wave transmission as well as for maximum wave energy dissipation. The structures that are obtained...... are of the 1D or 2D bandgap type depending on the objective and the material parameters....

  6. Design of a high-efficiency seven-port beam splitter using a dual duty cycle grating structure.

    Science.gov (United States)

    Wen, Fung Jacky; Chung, Po Sheun

    2011-07-01

    In this paper, we propose a compact seven-port beam splitter which is constructed using only a single-layer high-density grating with a dual duty cycle structure. The properties of this grating are investigated by a simplified modal method. The diffraction efficiency can be achieved around 10% more than conventional Dammann gratings while the uniformity can still be maintained at less than 1%. The effect of deviations from the design parameters on the performance of the grating is also presented.

  7. CONFOUNDING STRUCTURE OF TWO-LEVEL NONREGULAR FACTORIAL DESIGNS

    Institute of Scientific and Technical Information of China (English)

    Ren Junbai

    2012-01-01

    In design theory,the alias structure of regular fractional factorial designs is elegantly described with group theory.However,this approach cannot be applied to nonregular designs directly. For an arbitrary nonregular design,a natural question is how to describe the confounding relations between its effects,is there any inner structure similar to regular designs? The aim of this article is to answer this basic question.Using coefficients of indicator function,confounding structure of nonregular fractional factorial designs is obtained as linear constrains on the values of effects.A method to estimate the sparse significant effects in an arbitrary nonregular design is given through an example.

  8. Protein Data Bank Japan (PDBj): maintaining a structural data archive and resource description framework format.

    Science.gov (United States)

    Kinjo, Akira R; Suzuki, Hirofumi; Yamashita, Reiko; Ikegawa, Yasuyo; Kudou, Takahiro; Igarashi, Reiko; Kengaku, Yumiko; Cho, Hasumi; Standley, Daron M; Nakagawa, Atsushi; Nakamura, Haruki

    2012-01-01

    The Protein Data Bank Japan (PDBj, http://pdbj.org) is a member of the worldwide Protein Data Bank (wwPDB) and accepts and processes the deposited data of experimentally determined macromolecular structures. While maintaining the archive in collaboration with other wwPDB partners, PDBj also provides a wide range of services and tools for analyzing structures and functions of proteins, which are summarized in this article. To enhance the interoperability of the PDB data, we have recently developed PDB/RDF, PDB data in the Resource Description Framework (RDF) format, along with its ontology in the Web Ontology Language (OWL) based on the PDB mmCIF Exchange Dictionary. Being in the standard format for the Semantic Web, the PDB/RDF data provide a means to integrate the PDB with other biological information resources.

  9. Marshal: Maintaining Evolving Models, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SIFT proposes to design and develop the Marshal system, a mixed-initiative tool for maintaining task models over the course of evolving missions. Marshal-enabled...

  10. Reliability-Based Robust Design Optimization of Structures Considering Uncertainty in Design Variables

    Directory of Open Access Journals (Sweden)

    Shujuan Wang

    2015-01-01

    Full Text Available This paper investigates the structural design optimization to cover both the reliability and robustness under uncertainty in design variables. The main objective is to improve the efficiency of the optimization process. To address this problem, a hybrid reliability-based robust design optimization (RRDO method is proposed. Prior to the design optimization, the Sobol sensitivity analysis is used for selecting key design variables and providing response variance as well, resulting in significantly reduced computational complexity. The single-loop algorithm is employed to guarantee the structural reliability, allowing fast optimization process. In the case of robust design, the weighting factor balances the response performance and variance with respect to the uncertainty in design variables. The main contribution of this paper is that the proposed method applies the RRDO strategy with the usage of global approximation and the Sobol sensitivity analysis, leading to the reduced computational cost. A structural example is given to illustrate the performance of the proposed method.

  11. Probabilistic Design of Wind Turbine Structures: Design Studies and Sensitivities to Model Parameters

    DEFF Research Database (Denmark)

    NJOMO WANDJI, Wilfried

    : decrease of conservatism level, improvement of design procedures, and development of innovative structural systems that suit well for large wind turbines. The increasing size of the structure introduces new problems that were not present for small structures. These problems include: (i) the preparation...... substructures. In addition to being aggressive, conditions for offshore environments and the associated models are highly uncertain. Appropriate statistical methodologies should be used in order to design robust structures, which are structures whose engineering performance is not significantly affected....... These research areas are differentially implemented through tasks on various wind turbine structures (shaft, jacket, semi-floater, monopile, and grouted joint). In particular the following research questions are answered: How are extreme and fatigue loads on a given structure influenced by the design of other...

  12. Structural elements design manual working with Eurocodes

    CERN Document Server

    Draycott, Trevor

    2009-01-01

    Structural Elements Design Manual: Working With Eurocodes is the structural engineers 'companion volume' to the four Eurocodes on the structural use of timber, concrete, masonry and steelwork. For the student at higher technician or first degree level it provides a single source of information on the behaviour and practical design of the main elements of the building structure. With plenty of worked examples and diagrams, it is a useful textbook not only for students of structural and civil engineering, but also for those on courses in related subjects such as

  13. Reliability and maintainability

    International Nuclear Information System (INIS)

    1994-01-01

    Several communications in this conference are concerned with nuclear plant reliability and maintainability; their titles are: maintenance optimization of stand-by Diesels of 900 MW nuclear power plants; CLAIRE: an event-based simulation tool for software testing; reliability as one important issue within the periodic safety review of nuclear power plants; design of nuclear building ventilation by the means of functional analysis; operation characteristic analysis for a power industry plant park, as a function of influence parameters

  14. Applications of Silicon-on-Insulator Photonic Crystal Structures in Miniature Spectrometer Designs

    Science.gov (United States)

    Gao, Boshen

    Optical spectroscopy is one of the most important fundamental scientific techniques. It has been widely adopted in physics, chemistry, biology, medicine and many other research fields. However, the size and weight of a spectrometer as well as the difficulty to align and maintain it have long limited spectroscopy to be a laboratory-only procedure. With the recent advancement in semiconductor electronics and photonics, miniaturized spectrometers have been introduced to complete many tasks in daily life where mobility and portability are necessary. This thesis focuses on the study of several photonic crystal (PC) nano-structures potentially suitable for miniaturized on-chip spectrometer designs. Chapter 1 briefly introduces the concept of PCs and their band structures. By analyzing the band structure, the origin of the superprism effect is explained. Defect-based PC nano-cavities are also discussed, as well as a type of coupled cavity waveguides (CCW) composed of PC nano-cavities. Chapter 2 is devoted to the optimization of a flat-band superprism structure for spectroscopy application using numerical simulations. Chapter 3 reports a fabricated broad-band superprism and the experimental characterization of its wavelength resolving performance. In chapter 4, the idea of composing a miniature spectrometer based on a single tunable PC nano-cavity is proposed. The rest of this chapter discusses the experimental study of this design. Chapter 5 examines the slow-light performance of a CCW and discusses its potential application in slow-light interferometry. Chapter 6 serves as a conclusion of this thesis and proposes directions for possible future work to follow up.

  15. Human factors review of power plant maintainability

    International Nuclear Information System (INIS)

    Seminara, J.L.; Parsons, S.O.; Schmidt, W.J.; Gonzalez, W.R.; Dove, L.E.

    1980-10-01

    Human factors engineering is an interdisciplinary science and technology concerned with shaping the design of machines, facilities, and operational environments to promote safe, efficient, and reliable performance on the part of operators and maintainers of equipment systems. The human factors aspects of five nuclear power plants and four fossil fuel plants were evaluated using such methods as a checklist guided observation system, structured interviews with maintenance personnel, direct observations of maintenance tasks, reviews of procedures, and analyses of maintenance errors or accidents by means of the critical incident technique. The study revealed a wide variety of human factors problem areas, most of which are extensively photodocumented. The study recommends that a more systematic and formal approach be adopted to ensure that future power plants are human engineered to the needs of maintenance personnel

  16. Engineering Design of KSTAR tokamak main structure

    International Nuclear Information System (INIS)

    Im, K.H.; Cho, S.; Her, N.I.

    2001-01-01

    The main components of the KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak including vacuum vessel, plasma facing components, cryostat, thermal shield and magnet supporting structure are in the final stage of engineering design. Hundai Heavy Industries (HHI) has been involved in the engineering design of these components. The current configuration and the final engineering design results for the KSTAR main structure are presented. (author)

  17. Designing visual appearance using a structured surface

    DEFF Research Database (Denmark)

    Johansen, Villads Egede; Thamdrup, Lasse Højlund; Smitrup, Christian

    2015-01-01

    followed by numerical and experimental verification. The approach comprises verifying all design and fabrication steps required to produce a desired appearance. We expect that the procedure in the future will yield structurally colored surfaces with appealing prescribed visual appearances.......We present an approach for designing nanostructured surfaces with prescribed visual appearances, starting at design analysis and ending with a fabricated sample. The method is applied to a silicon wafer structured using deep ultraviolet lithography and dry etching and includes preliminary design...

  18. Structural design systems using knowledge-based techniques

    International Nuclear Information System (INIS)

    Orsborn, K.

    1993-01-01

    Engineering information management and the corresponding information systems are of a strategic importance for industrial enterprises. This thesis treats the interdisciplinary field of designing computing systems for structural design and analysis using knowledge-based techniques. Specific conceptual models have been designed for representing the structure and the process of objects and activities in a structural design and analysis domain. In this thesis, it is shown how domain knowledge can be structured along several classification principles in order to reduce complexity and increase flexibility. By increasing the conceptual level of the problem description and representation of the domain knowledge in a declarative form, it is possible to enhance the development, maintenance and use of software for mechanical engineering. This will result in a corresponding increase of the efficiency of the mechanical engineering design process. These ideas together with the rule-based control point out the leverage of declarative knowledge representation within this domain. Used appropriately, a declarative knowledge representation preserves information better, is more problem-oriented and change-tolerant than procedural representations. 74 refs

  19. Probabilistic Design of Offshore Structural Systems

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    1988-01-01

    Probabilistic design of structural systems is considered in this paper. The reliability is estimated using first-order reliability methods (FORM). The design problem is formulated as the optimization problem to minimize a given cost function such that the reliability of the single elements...... satisfies given requirements or such that the systems reliability satisfies a given requirement. Based on a sensitivity analysis optimization procedures to solve the optimization problems are presented. Two of these procedures solve the system reliability-based optimization problem sequentially using quasi......-analytical derivatives. Finally an example of probabilistic design of an offshore structure is considered....

  20. Probabilistic Design of Offshore Structural Systems

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    Probabilistic design of structural systems is considered in this paper. The reliability is estimated using first-order reliability methods (FORM). The design problem is formulated as the optimization problem to minimize a given cost function such that the reliability of the single elements...... satisfies given requirements or such that the systems reliability satisfies a given requirement. Based on a sensitivity analysis optimization procedures to solve the optimization problems are presented. Two of these procedures solve the system reliability-based optimization problem sequentially using quasi......-analytical derivatives. Finally an example of probabilistic design of an offshore structure is considered....

  1. Kinematics, structural mechanics, and design of origami structures with smooth folds

    Science.gov (United States)

    Peraza Hernandez, Edwin Alexander

    Origami provides novel approaches to the fabrication, assembly, and functionality of engineering structures in various fields such as aerospace, robotics, etc. With the increase in complexity of the geometry and materials for origami structures that provide engineering utility, computational models and design methods for such structures have become essential. Currently available models and design methods for origami structures are generally limited to the idealization of the folds as creases of zeroth-order geometric continuity. Such an idealization is not proper for origami structures having non-negligible thickness or maximum curvature at the folds restricted by material limitations. Thus, for general structures, creased folds of merely zeroth-order geometric continuity are not appropriate representations of structural response and a new approach is needed. The first contribution of this dissertation is a model for the kinematics of origami structures having realistic folds of non-zero surface area and exhibiting higher-order geometric continuity, here termed smooth folds. The geometry of the smooth folds and the constraints on their associated kinematic variables are presented. A numerical implementation of the model allowing for kinematic simulation of structures having arbitrary fold patterns is also described. Examples illustrating the capability of the model to capture realistic structural folding response are provided. Subsequently, a method for solving the origami design problem of determining the geometry of a single planar sheet and its pattern of smooth folds that morphs into a given three-dimensional goal shape, discretized as a polygonal mesh, is presented. The design parameterization of the planar sheet and the constraints that allow for a valid pattern of smooth folds and approximation of the goal shape in a known folded configuration are presented. Various testing examples considering goal shapes of diverse geometries are provided. Afterwards, a

  2. Automated analysis and design of complex structures

    International Nuclear Information System (INIS)

    Wilson, E.L.

    1977-01-01

    This paper discusses the following: 1. The relationship of analysis to design. 2. New methods of analysis. 3. Improved finite elements. 4. Effect of minicomputer on structural analysis methods. 5. The use of system of microprocessors for nonlinear structural analysis. 6. The role of interacting graphics systems in future analysis and design. The discussion focusses on the impact of new inexpensive computer hardware on design and analysis methods. (Auth.)

  3. Targeted Structural Optimization with Additive Manufacturing of Metals

    Science.gov (United States)

    Burt, Adam; Hull, Patrick

    2015-01-01

    The recent advances in additive manufacturing (AM) of metals have now improved the state-of-the-art such that traditionally non-producible parts can be readily produced in a cost-effective way. Because of these advances in manufacturing technology, structural optimization techniques are well positioned to supplement and advance this new technology. The goal of this project is to develop a structural design, analysis, and optimization framework combined with AM to significantly light-weight the interior of metallic structures while maintaining the selected structural properties of the original solid. This is a new state-of-the-art capability to significantly reduce mass, while maintaining the structural integrity of the original design, something that can only be done with AM. In addition, this framework will couple the design, analysis, and fabrication process, meaning that what has been designed directly represents the produced part, thus closing the loop on the design cycle and removing human iteration between design and fabrication. This fundamental concept has applications from light-weighting launch vehicle components to in situ resource fabrication.

  4. Reliability Evaluation and Probabilistic Design of Coastal Structures

    DEFF Research Database (Denmark)

    Burcharth, H. F.

    1993-01-01

    Conventional design practice for coastal structures is deterministic in nature and is based on the concept of a design load, which should not exceed the resistance (carrying capacity) of the structure. The design load is usually defined on a probabilistic basis as a characteristic value of the load......, e.g. the expectation (mean) value of the lOO-year return period event, however, often without consideration of the involved uncertainties. The resistance is in most cases defined in terms of the load which causes a certain design impact or damage to the structure and is not given as an ultimate...... force or deformation. This is because most of the available design formulae only give the relationship between wave characteristics and structural response, e.g. in terms of run-up, overtopping, armour layer damage etc. An example is the Hudson formula for armour layer stability. Almost all such design...

  5. New clic-g structure design

    CERN Document Server

    AUTHOR|(CDS)2082335

    2016-01-01

    The baseline design of the Compact Linear Collider main linac accelerating structure is called ‘CLIC-G’. It is described in the CLIC Conceptual Design Report (CDR) [1]. As shown in Fig. 1, a regular cell of the structure has four waveguides to damp unwanted high-order-modes (HOMs). These waveguides are dimensioned to cut off the fundamental working frequency in order to prevent the degradation of the fundamental mode Q-factor. The cell geometry and HOM damping loads had been extensively optimized in order to maximize the RF-to-beam efficiency, to minimize the cost, and to meet the beam dynamics and the high gradient RF constraints [2

  6. Maintaining ancient organelles: mitochondrial biogenesis and maturation.

    Science.gov (United States)

    Vega, Rick B; Horton, Julie L; Kelly, Daniel P

    2015-05-22

    The ultrastructure of the cardiac myocyte is remarkable for the high density of mitochondria tightly packed between sarcomeres. This structural organization is designed to provide energy in the form of ATP to fuel normal pump function of the heart. A complex system comprised of regulatory factors and energy metabolic machinery, encoded by both mitochondrial and nuclear genomes, is required for the coordinate control of cardiac mitochondrial biogenesis, maturation, and high-capacity function. This process involves the action of a transcriptional regulatory network that builds and maintains the mitochondrial genome and drives the expression of the energy transduction machinery. This finely tuned system is responsive to developmental and physiological cues, as well as changes in fuel substrate availability. Deficiency of components critical for mitochondrial energy production frequently manifests as a cardiomyopathic phenotype, underscoring the requirement to maintain high respiration rates in the heart. Although a precise causative role is not clear, there is increasing evidence that perturbations in this regulatory system occur in the hypertrophied and failing heart. This review summarizes current knowledge and highlights recent advances in our understanding of the transcriptional regulatory factors and signaling networks that serve to regulate mitochondrial biogenesis and function in the mammalian heart. © 2015 American Heart Association, Inc.

  7. Designing complex systems - a structured activity

    NARCIS (Netherlands)

    van der Veer, Gerrit C.; van Vliet, Johannes C.; Lenting, Bert; Olson, Gary M.; Schuon, Sue

    1995-01-01

    This paper concerns the development of complex systems from the point of view of design as a structure of activities, related both to the clients and the users. Several modeling approaches will be adopted for different aspects of design, and several views on design will be integrated. The proposed

  8. Materializing a responsive interior: designing minimum energy structures

    DEFF Research Database (Denmark)

    Mossé, Aurélie; Kofod, Guggi; Ramsgaard Thomsen, Mette

    2011-01-01

    This paper discusses a series of design-led experiments investigating future possibilities for architectural materialization relying on minimum energy structures as an example of adaptive structure. The structures have been made as laminates of elastic membrane under high tension with flexible...... (Lendlein, Kelch 2002) or light (van Oosten, Bastiaansen et al. 2009). All in all, this approach could form a whole new design paradigm, in which efficient 2D-manufacturing can lead to highly flexible, low weight and adaptable 3D-structures. This is illustrated by the design and manufacture of electro...

  9. Design and reliability, availability, maintainability, and safety analysis of a high availability quadruple vital computer system

    Institute of Scientific and Technical Information of China (English)

    Ping TAN; Wei-ting HE; Jia LIN; Hong-ming ZHAO; Jian CHU

    2011-01-01

    With the development of high-speed railways in China,more than 2000 high-speed trains will be put into use.Safety and efficiency of railway transportation is increasingly important.We have designed a high availability quadruple vital computer (HAQVC) system based on the analysis of the architecture of the traditional double 2-out-of-2 system and 2-out-of-3 system.The HAQVC system is a system with high availability and safety,with prominent characteristics such as fire-new internal architecture,high efficiency,reliable data interaction mechanism,and operation state change mechanism.The hardware of the vital CPU is based on ARM7 with the real-time embedded safe operation system (ES-OS).The Markov modeling method is designed to evaluate the reliability,availability,maintainability,and safety (RAMS) of the system.In this paper,we demonstrate that the HAQVC system is more reliable than the all voting triple modular redundancy (AVTMR) system and double 2-out-of-2 system.Thus,the design can be used for a specific application system,such as an airplane or high-speed railway system.

  10. Analysis and design of SSC underground structures

    International Nuclear Information System (INIS)

    Clark, G.T.

    1993-01-01

    This paper describes the analysis and design of underground structures for the Superconducting Super Collider (SSC) Project. A brief overview of the SSC Project and the types of underground structures are presented. Engineering properties and non-linear behavior of the geologic materials are reviewed. The three-dimensional sequential finite element rock-structure interaction analysis techniques developed by the author are presented and discussed. Several examples of how the method works, specific advantages, and constraints are presented. Finally, the structural designs that resulted from the sequential interaction analysis are presented

  11. Design and Optimization of a Turbine Intake Structure

    Directory of Open Access Journals (Sweden)

    P. Fošumpaur

    2005-01-01

    Full Text Available The appropriate design of the turbine intake structure of a hydropower plant is based on assumptions about its suitable function, and the design will increase the total efficiency of operation. This paper deals with optimal design of the turbine structure of run-of-river hydropower plants. The study focuses mainly on optimization of the hydropower plant location with respect to the original river banks, and on the optimal design of a separating pier between the weir and the power plant. The optimal design of the turbine intake was determined with the use of 2-D mathematical modelling. A case study is performed for the optimal design of a turbine intake structure on the Nemen river in Belarus. 

  12. Design of joints in steel and composite structures Eurocode 3 : design of steel structures : part 1-8 : design of joints, Eurocode 4 : design of composite steel and concrete structures : part 1-1 : general rules and rules for buildings

    CERN Document Server

    Jaspart, Jean-Pierre

    2016-01-01

    This book details the basic concepts and the design rules included in Eurocode 3 Design of steel structures Part 1-8 Design of joints. Joints in composite construction are also addressed through references to Eurocode 4 Design of composite steel and concrete structures Part 1-1 General rules and rules for buildings. Attention has to be duly paid to the joints when designing a steel or composite structure, in terms of the global safety of the construction, and also in terms of the overall cost, including fabrication, transportation and erection. Therefore, in this book, the design of the joints themselves is widely detailed, and aspects of selection of joint configuration and integration of the joints into the analysis and the design process of the whole construction are also fully covered. Connections using mechanical fasteners, welded connections, simple joints, moment-resisting joints and lattice girder joints are considered. Various joint configurations are treated, including beam-to-column, beam-to-beam, ...

  13. Tolerance-based Structural Design of Tubular-Structure Loading Equipments

    Directory of Open Access Journals (Sweden)

    Jiping Lu

    2011-05-01

    is worked out under different ball screws, trapezoidal screw threads, worm and worm gears. To meet the requirement of tolerance in tubular-structure assembly, mechanisms for all motions are defined. The design of loading equipment is tested and assessed by experiments, and the result shows the design is highly qualified for its assembly.

  14. Structural Pain Compensating Flight Control

    Science.gov (United States)

    Miller, Chris J.

    2014-01-01

    The problem of control command and maneuver induced structural loads is an important aspect of any control system design. Designers must design the aircraft structure and the control architecture to achieve desired piloted control responses while limiting the imparted structural loads. The classical approach is to build the structure with high margins, restrict control surface commands to known good combinations, and train pilots to follow procedural maneuvering limitations. With recent advances in structural sensing and the continued desire to improve safety and vehicle fuel efficiency, it is both possible and desirable to develop control architectures that enable lighter vehicle weights while maintaining and improving protection against structural damage.

  15. Design and Comparative Study of O3/P2 Hybrid Structures for Room Temperature Sodium-Ion Batteries.

    Science.gov (United States)

    Qi, Xingguo; Liu, Lilu; Song, Ningning; Gao, Fei; Yang, Kai; Lu, Yaxiang; Yang, Haitao; Hu, Yong-Sheng; Cheng, Zhao-Hua; Chen, Liquan

    2017-11-22

    Rechargeable sodium-ion batteries have drawn increasing attention as candidates for the post lithium-ion batteries in large-scale energy storage systems. Layered oxides are the most promising cathode materials and their pure phases (e.g., P2, O3) have been widely investigated. Here we report a series of cathode materials with O3/P2 hybrid phase for sodium-ion batteries, which possesses advantages of both P2 and O3 structures. The designed material, Na 0.78 Ni 0.2 Fe 0.38 Mn 0.42 O 2 , can deliver a capacity of 86 mAh g -1 with great rate capability and cycling performance. 66% capacity is still maintained when the current rate reaches as high as 10C, and the capacity retention is 90% after 1500 cycles. Moreover, in situ XRD was performed to examine the structure change during electrochemical testing in different voltage ranges, and the results demonstrate 4 V as the optimized upper voltage limit, with which smaller polarization, better structural stability, and better cycling performance are achieved. The results obtained here provide new insights in designing cathode materials with optimal structure and improved performance for sodium-ion batteries.

  16. A hybrid design methodology for structuring an Integrated Environmental Management System (IEMS) for shipping business.

    Science.gov (United States)

    Celik, Metin

    2009-03-01

    The International Safety Management (ISM) Code defines a broad framework for the safe management and operation of merchant ships, maintaining high standards of safety and environmental protection. On the other hand, ISO 14001:2004 provides a generic, worldwide environmental management standard that has been utilized by several industries. Both the ISM Code and ISO 14001:2004 have the practical goal of establishing a sustainable Integrated Environmental Management System (IEMS) for shipping businesses. This paper presents a hybrid design methodology that shows how requirements from both standards can be combined into a single execution scheme. Specifically, the Analytic Hierarchy Process (AHP) and Fuzzy Axiomatic Design (FAD) are used to structure an IEMS for ship management companies. This research provides decision aid to maritime executives in order to enhance the environmental performance in the shipping industry.

  17. Seismic analysis and design of NPP structures

    International Nuclear Information System (INIS)

    de Carvalho Santos, S.H.; da Silva, R.E.

    1989-01-01

    Numerical methods for static and dynamic analysis of structures, as well as for the design of individual structural elements under the applied loads are under continuous development, being very sophisticated methods nowadays available for the engineering practice. Nevertheless, this sophistication will be useless if some important aspects necessary to assure full compatability between analysis and design are disregarded. Some of these aspects are discussed herein. This paper presents an integrated approach for the seismic analysis and design of NPP structures: the development of models for the seismic analysis, the distribution of the global seismic forces among the seismic-resistant elements and the criteria for the design of the individual elements for combined static and dynamic forces are the main topics to be discussed herein. The proposed methodology is illustrated. Some examples taken from the project practice are presented for illustration the exposed concepts

  18. Improved tank car design development : ongoing studies on sandwich structures

    Science.gov (United States)

    2009-03-02

    The Government and industry have a common interest in : improving the safety performance of railroad tank cars carrying : hazardous materials. Research is ongoing to develop strategies : to maintain the structural integrity of railroad tank cars carr...

  19. Some trends in aircraft design: Structures

    Science.gov (United States)

    Brooks, G. W.

    1975-01-01

    Trends and programs currently underway on the national scene to improve the structural interface in the aircraft design process are discussed. The National Aeronautics and Space Administration shares a partnership with the educational and industrial community in the development of the tools, the criteria, and the data base essential to produce high-performance and cost-effective vehicles. Several thrusts to build the technology in materials, structural concepts, analytical programs, and integrated design procedures essential for performing the trade-offs required to fashion competitive vehicles are presented. The application of advanced fibrous composites, improved methods for structural analysis, and continued attention to important peripheral problems of aeroelastic and thermal stability are among the topics considered.

  20. Thermal Hydraulic Design of PWT Accelerating Structures

    CERN Document Server

    Yu, David; Chen Ping; Lundquist, Martin; Luo, Yan

    2005-01-01

    Microwave power losses on the surfaces of accelerating structures will transform to heat which will deform the structures if it is not removed in time. Thermal hydraulic design of the disk and cooling rods of a Plane Wave Transformer (PWT) structure is presented. Experiments to measure the hydraulic (pressure vs flow rate) and cooling (heat removed vs flow rate) properties of the PWT disk are performed, and results compared with simulations using Mathcad models and the COSMOSM code. Both experimental and simulation results showed that the heat deposited on the structure could be removed effectively using specially designed water-cooling circuits and the temperature of the structure could be controlled within the range required.

  1. Bridgescaping - Contextual Structural Design

    DEFF Research Database (Denmark)

    Bjerregaard Jensen, Lotte; Almegaard, Henrik

    2011-01-01

    Large-scale infrastructural projects such as bridges used to be the monopoly of engineers. They were designed as – often very beautiful – expressions of how forces work in a structure, guided by the nature of materials and a rational construction process. However, in recent decades politicians an...

  2. Dynamic analysis and design of offshore structures

    CERN Document Server

    Chandrasekaran, Srinivasan

    2015-01-01

    This book  attempts to provide readers with an overall idea of various types of offshore platform geometries. It covers the various environmental loads encountered by these structures, a detailed description of the fundamentals of structural dynamics in a class-room style, estimate of damping in offshore structures and their applications in the preliminary analysis and design. Basic concepts of structural dynamics are emphasized through simple illustrative examples and exercises. Design methodologies and guidelines, which are FORM based concepts are explained through a few applied example structures. Each chapter also has tutorials and exercises for self-learning. A dedicated chapter on stochastic dynamics will help the students to extend the basic concepts of structural dynamics to this advanced domain of research. Hydrodynamic response of offshore structures with perforated members is one of the recent research applications, which is found to be one of the effective manner of retrofitting offshore structur...

  3. Reliability and maintainability data acquisition in equipment development tests

    International Nuclear Information System (INIS)

    Haire, M.J.; Gift, E.H.

    1983-10-01

    The need for collection of reliability, maintainability, and availability data adds a new dimension to the data acquisition requirements of equipment development tests. This report describes the reliability and maintainability data that are considered necessary to ensure that sufficient and high quality data exist for a comprehensive, quantitative evaluation of equipment and system availability. These necessary data are presented as a set of data collection forms. Three data acquisition forms are discussed: an inventory and technical data form, which is filed by the design engineer when the design is finished or the equipment is received; an event report form, which is completed by the senior test operator at each shutdown; and a maintainability report, which is a collaborative effort between senior operators and lead engineers and is completed on restart. In addition, elements of a reliability, maintainability evaluation program are described. Emphasis is placed on the role of data, its storage, and use in such a program

  4. Design of Multistable Origami Structures

    Science.gov (United States)

    Gillman, Andrew; Fuchi, Kazuko; Bazzan, Giorgio; Reich, Gregory; Alyanak, Edward; Buskohl, Philip

    Origami is being transformed from an art to a mathematically robust method for device design in a variety of scientific applications. These structures often require multiple stable configurations, e.g. efficient well-controlled deployment. However, the discovery of origami structures with mechanical instabilities is challenging given the complex geometric nonlinearities and the large design space to investigate. To address this challenge, we have developed a topology optimization framework for discovering origami fold patterns that realize stable and metastable positions. The objective function targets both the desired stable positions and nonlinear loading profiles of specific vertices in the origami structure. Multistable compliant structures have been shown to offer advantages in their stability and efficiency, and certain origami fold patterns exhibit multistable behavior. Building on this previous work of single vertex multistability analysis, e.g. waterbomb origami pattern, we are expanding the solution set of multistable mechanisms to include multiple vertices and a broader set of reference configurations. Collectively, these results enable an initial classification of geometry-induced mechanical instabilities that can be programmed into active material systems. This work was supported by the Air Force Office of Scientific Research.

  5. High temperature structure design for FBRs and analysis technology

    International Nuclear Information System (INIS)

    Iwata, Koji

    1986-01-01

    In the case of FBRs, the operation temperature exceeds 500 deg C, therefore, the design taking the inelastic characteristics of structural materials, such as plasticity and creep, into account is required, and the high grade and detailed evaluation of design is demanded. This new high temperature structure design technology has been advanced in respective countries taking up experimental, prototype and demonstration reactors as the targets. The development of FBRs in Japan was begun with the experimental reactor 'Joyo' which has been operated since 1977, and now, the prototype FBR 'Monju' of 280 MWe is under construction, which is expected to attain the criticality in 1992. In order to realize FBRs which can compete with LWRs through the construction of a demonstration FBR, the construction of large scale plants and the heightening of the economy and reliability are necessary. The features and the role of FBR structural design, the method of high temperature structure design and the trend of its standardization, the trend of the structural analysis technology for FBRs such as inelastic analysis, buckling analysis and fluid and structure coupled vibration analysis, the present status of structural analysis programs, and the subjects for the future of high temperature structure design are explained. (Kako, I.)

  6. Large coil program support structure conceptual design

    International Nuclear Information System (INIS)

    Litherland, P.S.

    1977-01-01

    The purpose of the Large Coil Program (LCP) is to perform tests on both pool boiling and force cooled superconducting toroidal field coils. The tests will attempt to approximate conditions anticipated in an ignition tokamak. The test requirements resulted in a coil support design which accommodates up to six (6) test coils and is mounted to a structure capable of resisting coil interactions. The steps leading to the present LCP coil support structure design, details on selected structural components, and the basic assembly sequence are discussed

  7. Structural design considerations for a radwaste processing facility

    International Nuclear Information System (INIS)

    Foelber, S.C.; Sabbe, M.A.

    1985-01-01

    The structural engineer needs to consider several criteria when designing a radioactive-waste processing facility in order to properly balance the requirements of safety and economy. This paper addresses the design criteria and structural design of a vitrification building and the special equipment and supports associated with remote process operations. In addition, approaches to construction, and the role of scale models to aid in engineering design and construction are discussed. 5 figures

  8. Intelligent structures and design of energy related facilities

    International Nuclear Information System (INIS)

    Namba, Haruyuki

    1994-01-01

    Possibility of applying intelligent structural concepts to civil design of energy plants is discussed. Intelligent structures, which are now common in aerospace engineering field, are also referred to as adaptive structures or smart structures depending on cases. Among various existing concepts, reconfigurable structures, precise shape control, structural monitoring using smart materials of optical fiber sensors, and relation with recent innovative communication technologies are focused from civil engineering point of view. Application of such new technologies will help to enhance design of energy related plants, which include multiplex functions which need to be very reliable and safe. (author)

  9. Guest-responsive structural adaptation of a rationally-designed ...

    Indian Academy of Sciences (India)

    adaptability of the TB core to undergo subtle structural changes in response to the guest that is included. The structural ... we report the design, synthesis and inclusion behaviour of a novel ..... Based on a rational design, we have shown from ...

  10. Design of an X-band accelerating structure using a newly developed structural optimization procedure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaoxia [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Fang, Wencheng; Gu, Qiang [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhao, Zhentang, E-mail: zhaozhentang@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2017-05-11

    An X-band high gradient accelerating structure is a challenging technology for implementation in advanced electron linear accelerator facilities. The present work discusses the design of an X-band accelerating structure for dedicated application to a compact hard X-ray free electron laser facility at the Shanghai Institute of Applied Physics, and numerous design optimizations are conducted with consideration for radio frequency (RF) breakdown, RF efficiency, short-range wakefields, and dipole/quadrupole field modes, to ensure good beam quality and a high accelerating gradient. The designed X-band accelerating structure is a constant gradient structure with a 4π/5 operating mode and input and output dual-feed couplers in a racetrack shape. The design process employs a newly developed effective optimization procedure for optimization of the X-band accelerating structure. In addition, the specific design of couplers providing high beam quality by eliminating dipole field components and reducing quadrupole field components is discussed in detail.

  11. Impact design of reinforced concrete fuel storage structures

    International Nuclear Information System (INIS)

    Nickell, R.E.; Rashid, Y.R.; Williams, R.F.

    1987-01-01

    We characterize the loading experienced by reinforced concrete slabs, as the result of a drop or a tip-over of a dry storage cask, and we provide simple design charts and formulas by which the margin of safety of such slabs can be readily demonstrated. These charts are based on the calculation of crack patterns in the concrete and yielding in the reinforcement as the pad is loaded by the dropping or tip-over of a dry storage cask to a point of collapse. This ultimate-strength design approach is appropriate for unlikely loading events provided that adequate margin against slab collapse is maintained. (orig./HP)

  12. Inelastic design of nuclear reactor structures and its implications on design of critical equipment

    International Nuclear Information System (INIS)

    Newmark, N.M.

    1977-01-01

    In considering the response of a nuclear reactor structure to seismic motions, one must take account of the implications of various levels of damage, short of impairment of safety, and definitely short of collapse, of the structure. Some structural elements of nuclear power plants must perforce remain elastic or nearly elastic in order to perform their allocated safety function. However, in many instances, a purely linear elastic analysis may be unreasonably conservative when one considers that even up to the near yield point range, there are nonlinearities of sufficient amount to reduce required design levels considerably. Moreover, limited yielding of a structure may reduce the response of equipment located in the structure below those levels of response that would be excited were the structure to remain elastic. Energy absorption in the inelastic range is most conveniently treated by use of the so-called 'ductility factor' introduced by the author for design of structures and equipment to resist explosion and blast forces. In general, for small excursions into the inelastic range, especially when the latter can be approximated by an elasto-plastic resistance curve, the design response spectrum is decreased by a simply determined factor that is related to the ductility factor. Many important parts of equipment of a nuclear power plant facility are attached to the principal parts of the structure and respond in a manner determined by the structural response as well as by the general ground motion to which the structure is subjected. This matter involves some difficulty in analysis, but appropriate calculational techniques and design methods are available. A suitable design simplification is one in which the response of the attachment is related to the modal responses of the structure. This equipment response is affected by the relative mass of the attachment and the structure

  13. Preliminary conceptual design and analysis on KALIMER reactor structures

    International Nuclear Information System (INIS)

    Kim, Jong Bum

    1996-10-01

    The objectives of this study are to perform preliminary conceptual design and structural analyses for KALIMER (Korea Advanced Liquid Metal Reactor) reactor structures to assess the design feasibility and to identify detailed analysis requirements. KALIMER thermal hydraulic system analysis results and neutronic analysis results are not available at present, only-limited preliminary structural analyses have been performed with the assumptions on the thermal loads. The responses of reactor vessel and reactor internal structures were based on the temperature difference of core inlet and outlet and on engineering judgments. Thermal stresses from the assumed temperatures were calculated using ANSYS code through parametric finite element heat transfer and elastic stress analyses. While, based on the results of preliminary conceptual design and structural analyses, the ASME Code limits for the reactor structures were satisfied for the pressure boundary, the needs for inelastic analyses were indicated for evaluation of design adequacy of the support barrel and the thermal liner. To reduce thermal striping effects in the bottom are of UIS due to up-flowing sodium form reactor core, installation of Inconel-718 liner to the bottom area was proposed, and to mitigate thermal shock loads, additional stainless steel liner was also suggested. The design feasibilities of these were validated through simplified preliminary analyses. In conceptual design phase, the implementation of these results will be made for the design of the reactor structures and the reactor internal structures in conjunction with the thermal hydraulic, neutronic, and seismic analyses results. 4 tabs., 24 figs., 4 refs. (Author)

  14. Comparison of Traditional Design Nonlinear Programming Optimization and Stochastic Methods for Structural Design

    Science.gov (United States)

    Patnaik, Surya N.; Pai, Shantaram S.; Coroneos, Rula M.

    2010-01-01

    Structural design generated by traditional method, optimization method and the stochastic design concept are compared. In the traditional method, the constraints are manipulated to obtain the design and weight is back calculated. In design optimization, the weight of a structure becomes the merit function with constraints imposed on failure modes and an optimization algorithm is used to generate the solution. Stochastic design concept accounts for uncertainties in loads, material properties, and other parameters and solution is obtained by solving a design optimization problem for a specified reliability. Acceptable solutions were produced by all the three methods. The variation in the weight calculated by the methods was modest. Some variation was noticed in designs calculated by the methods. The variation may be attributed to structural indeterminacy. It is prudent to develop design by all three methods prior to its fabrication. The traditional design method can be improved when the simplified sensitivities of the behavior constraint is used. Such sensitivity can reduce design calculations and may have a potential to unify the traditional and optimization methods. Weight versus reliabilitytraced out an inverted-S-shaped graph. The center of the graph corresponded to mean valued design. A heavy design with weight approaching infinity could be produced for a near-zero rate of failure. Weight can be reduced to a small value for a most failure-prone design. Probabilistic modeling of load and material properties remained a challenge.

  15. Designing of Metallic Photonic Structures and Applications

    International Nuclear Information System (INIS)

    Yong-Sung Kim

    2006-01-01

    In this thesis our main interest has been to investigate metallic photonic crystal and its applications. We explained how to solve a periodic photonic structure with transfer matrix method and when and how to use modal expansion method. Two different coating methods were introduced, modifying a photonic structure's intrinsic optical properties and rigorous calculation results are presented. Two applications of metallic photonic structures are introduced. For thermal emitter, we showed how to design and find optimal structure. For conversion efficiency increasing filter, we calculated its efficiency and the way to design it. We presented the relation between emitting light spectrum and absorption and showed the material and structural dependency of the absorption spectrum. By choosing a proper base material and structural parameters, we can design a selective emitter at a certain region we are interested in. We have developed a theoretical model to analyze a blackbody filament enclosed by a metallic mesh which can increase the efficiency of converting a blackbody radiation to visible light. With this model we found that a square lattice metallic mesh enclosing a filament might increase the efficiency of incandescent lighting sources. Filling fraction and thickness dependency were examined and presented. Combining these two parameters is essential to achieve the maximum output result

  16. Design and Manufacturing of Composite Tower Structure for Wind Turbine Equipment

    Science.gov (United States)

    Park, Hyunbum

    2018-02-01

    This study proposes the composite tower design process for large wind turbine equipment. In this work, structural design of tower and analysis using finite element method was performed. After structural design, prototype blade manufacturing and test was performed. The used material is a glass fiber and epoxy resin composite. And also, sand was used in the middle part. The optimized structural design and analysis was performed. The parameter for optimized structural design is weight reduction and safety of structure. Finally, structure of tower will be confirmed by structural test.

  17. Design and Analysis of Muon Beam Stop Support Structures

    Energy Technology Data Exchange (ETDEWEB)

    Okafor, Udenna [Northern Illinois Univ., DeKalb, IL (United States)

    2015-01-01

    The primary objective of this thesis is to design and analyze support structures to be used in the installation, test and final positioning of the MBS throughout the life of the Mu2e experiment. There several requirements for the MBS imposed by both the scope of the experiment and, other components within the DS bore. The functions of the MBS are: 1. To limit the induced rates in the Tracker, the Calorimeter and the Cosmic Ray Veto due to backsplash-and-secondary interactions, and 2. To reduce radiation levels external to the Detector solenoid. The structures used in supporting the MBS will also adhere to requirements imposed by its functions. These requirements are critical to the support structures and affect design decisions. Other requirements critical to the design are imposed by the weight, positional tolerance and assembly procedure of the MBS, and also, the magnetic field and vacuum dose rate of the DS bore. A detailed breakdown of how each requirement affects the structural design can be found in chapter 2. Chapter 3 describes the design of each support structure and its attachment to the MBS while chapter 4 describes the results from structural analysis of the support structures. Chapter 5 describes evaluation for the design through testing and calculations while the conclusion in chapter 6 reports the current status at the time of this thesis submission with a plan for future work to be completed until final design and installation.

  18. Structural design for aircraft impact loading

    International Nuclear Information System (INIS)

    Schmidt, R.; Heckhausen, H.; Chen, C.; Rieck, P.J.; Lemons, G.W.

    1977-01-01

    The Soft Shell-Hardcore approach to nuclear power plant auxiliary structure design was developed to attenuate the crash effects of impacting aircraft. This report is an initial investigation into defining the important structural features involved that would allow the Soft Shell-Hardcore design to successfully sustain the postulated aircraft impact. Also specified for purposes of this study are aircraft impact locations and the type and velocity of impacting aircraft. The purpose of this initial investigation is to determine the feasibility of the two 0.5 m thick walls of the Soft Shell with the simplest possible mathematical model

  19. Reliability-Based Optimal Design for Very Large Floating Structure

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shu-hua(张淑华); FUJIKUBO Masahiko

    2003-01-01

    Costs and losses induced by possible future extreme environmental conditions and difficulties in repairing post-yielding damage strongly suggest the need for proper consideration in design rather than just life loss prevention. This can be addressed through the development of design methodology that balances the initial cost of the very large floating structure (VLFS) against the expected potential losses resulting from future extreme wave-induced structural damage. Here, the development of a methodology for determining optimal, cost-effective design will be presented and applied to a VLFS located in the Tokyo bay. Optimal design criteria are determined based on the total expected life-cycle cost and acceptable damage probability and curvature of the structure, and a set of sizes of the structure are obtained. The methodology and applications require expressions of the initial cost and the expected life-cycle damage cost as functions of the optimal design variables. This study includes the methodology, total life-cycle cost function, structural damage modeling, and reliability analysis.

  20. Integral Design workshops: organization, structure and testing

    OpenAIRE

    Zeiler, W Wim; Savanovic, P Perica

    2010-01-01

    The purpose of this paper is to achieve an understanding of design activities in the context of building design. The starting point is an overview of design research and design methodology. From the insights gained by this analysis of design in this specific context, we present an 'organization structure and design' workshop approach for collaborative multi-discipline design management. The workshops set-up, used to implement and to test the approach, are presented as well as the experiences ...

  1. Automated simulation and study of spatial-structural design processes

    NARCIS (Netherlands)

    Davila Delgado, J.M.; Hofmeyer, H.; Stouffs, R.; Sariyildiz, S.

    2013-01-01

    A so-called "Design Process Investigation toolbox" (DPI toolbox), has been developed. It is a set of computational tools that simulate spatial-structural design processes. Its objectives are to study spatial-structural design processes and to support the involved actors. Two case-studies are

  2. Magnetic shielding structure optimization design for wireless power transmission coil

    Science.gov (United States)

    Dai, Zhongyu; Wang, Junhua; Long, Mengjiao; Huang, Hong; Sun, Mingui

    2017-09-01

    In order to improve the performance of the wireless power transmission (WPT) system, a novel design scheme with magnetic shielding structure on the WPT coil is presented in this paper. This new type of shielding structure has great advantages on magnetic flux leakage reduction and magnetic field concentration. On the basis of theoretical calculation of coil magnetic flux linkage and characteristic analysis as well as practical application feasibility consideration, a complete magnetic shielding structure was designed and the whole design procedure was represented in detail. The simulation results show that the coil with the designed shielding structure has the maximum energy transmission efficiency. Compared with the traditional shielding structure, the weight of the new design is significantly decreased by about 41%. Finally, according to the designed shielding structure, the corresponding experiment platform is built to verify the correctness and superiority of the proposed scheme.

  3. Optimum design of band-gap beam structures

    DEFF Research Database (Denmark)

    Olhoff, Niels; Niu, Bin; Cheng, Gengdong

    2012-01-01

    The design of band-gap structures receives increasing attention for many applications in mitigation of undesirable vibration and noise emission levels. A band-gap structure usually consists of a periodic distribution of elastic materials or segments, where the propagation of waves is impeded...... or significantly suppressed for a range of external excitation frequencies. Maximization of the band-gap is therefore an obvious objective for optimum design. This problem is sometimes formulated by optimizing a parameterized design model which assumes multiple periodicity in the design. However, it is shown...... in the present paper that such an a priori assumption is not necessary since, in general, just the maximization of the gap between two consecutive natural frequencies leads to significant design periodicity. The aim of this paper is to maximize frequency gaps by shape optimization of transversely vibrating...

  4. Development of Mechanical Structure Design Technology for LMR

    International Nuclear Information System (INIS)

    Lee, Jae Han; Joo, Young Sang; Lee, Hyeong Yeon

    2007-03-01

    Structural integrity and design simplifications were secured on reactor core support system, upper internal structure and core catcher of KALIMER-600. The evaluation on the suitability of high temperature and seismic design of reactor structures, and the structural integrity evaluation on reactor components and high temperature pipings are performed. The interfaces between the components and ISI accessibility are checked. Lightening of reactor building by 7%, the seismic design for 0.3g seismic loads and improvement of reactor structural design concept for KALIMER-600 have been carried out. Remote inspection technique using ultrasonic wave guide sensor was acquired as a visualization method for reactor internals under opaque sodium environments. The basic guideline on high temperature structure assessment as an assessment procedure on high temperature inelastic behaviour has been completed. In high temperature creep-fatigue test, totally 500 cycles (totally 700 hold time) were carried on cylindrical test and IHTS co-axial pipe test models. The behaviors of creep-fatigue damage and creep-fatigue crack behaviour were investigated, and the DB on the structural test were established. The seismic response tests on 19-sub assembly validation test model in air and in water were carried out, and its multi-purpose characteristics and reliability on the SAC-CORE3.0 code developed for core seismic response analysis were validated

  5. Structural analysis at aircraft conceptual design stage

    Science.gov (United States)

    Mansouri, Reza

    In the past 50 years, computers have helped by augmenting human efforts with tremendous pace. The aircraft industry is not an exception. Aircraft industry is more than ever dependent on computing because of a high level of complexity and the increasing need for excellence to survive a highly competitive marketplace. Designers choose computers to perform almost every analysis task. But while doing so, existing effective, accurate and easy to use classical analytical methods are often forgotten, which can be very useful especially in the early phases of the aircraft design where concept generation and evaluation demands physical visibility of design parameters to make decisions [39, 2004]. Structural analysis methods have been used by human beings since the very early civilization. Centuries before computers were invented; the pyramids were designed and constructed by Egyptians around 2000 B.C, the Parthenon was built by the Greeks, around 240 B.C, Dujiangyan was built by the Chinese. Persepolis, Hagia Sophia, Taj Mahal, Eiffel tower are only few more examples of historical buildings, bridges and monuments that were constructed before we had any advancement made in computer aided engineering. Aircraft industry is no exception either. In the first half of the 20th century, engineers used classical method and designed civil transport aircraft such as Ford Tri Motor (1926), Lockheed Vega (1927), Lockheed 9 Orion (1931), Douglas DC-3 (1935), Douglas DC-4/C-54 Skymaster (1938), Boeing 307 (1938) and Boeing 314 Clipper (1939) and managed to become airborne without difficulty. Evidencing, while advanced numerical methods such as the finite element analysis is one of the most effective structural analysis methods; classical structural analysis methods can also be as useful especially during the early phase of a fixed wing aircraft design where major decisions are made and concept generation and evaluation demands physical visibility of design parameters to make decisions

  6. Structural Biology and Molecular Modeling in the Design of Novel DPP-4 Inhibitors

    Science.gov (United States)

    Scapin, Giovanna

    Inhibition of dipeptidyl peptidase IV (DPP-4) is a promising new approach for the treatment of type 2 diabetes. DPP-4 is the enzyme responsible for inactivating the incretin hormones glucagon-like peptide 1 (GLP-1) and glucose dependent insulinotropic polypeptide (GIP), two hormones that play important roles in glucose homeostasis. The potent, orally bioavailable and highly selective small molecule DPP-4 inhibitor sitagliptin has been approved by the FDA as novel drug for the treatment of type 2 diabetes. The comparison between the binding mode of sitagliptin (a β-amino acid) and that of a second class of inhibitors (α-amino acid-based) initially led to the successful identification and design of structurally diverse and highly potent DPP-4 inhibitors. Further analysis of the crystal structure of sitagliptin bound to DPP-4 suggested that the central β-amino butanoyl moiety could be replaced by a rigid group. This was confirmed by molecular modeling, and the resulting cyclohexylamine analogs were synthesized and found to be potent DPP-4 inhibitors. However, the triazolopyrazine was predicted to be distorted in order to fit in the binding pocket, and the crystal structure showed that multiple conformations exist for this moiety. Additional molecular modeling studies were then used to improve potency of the cyclohexylamine series. In addition, a 3-D QSAR method was used to gain insight for reducing off-target DPP-8/9 activities. Novel compounds were thus synthesized and found to be potent DPP-4 inhibitors. Two compounds in particular were designed to be highly selective against off-target "DPP-4 Activity- and/or Structure Homologues" (DASH) enzymes while maintaining potency against DPP-4.

  7. Phononic band gap structures as optimal designs

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this paper we use topology optimization to design phononic band gap structures. We consider 2D structures subjected to periodic loading and obtain the distribution of two materials with high contrast in material properties that gives the minimal vibrational response of the structure. Both in...

  8. Optimal Design of Composite Structures Under Manufacturing Constraints

    DEFF Research Database (Denmark)

    Marmaras, Konstantinos

    determination of the appropriate laminate thickness and the material choice in the structure. The optimal design problems that arise are stated as nonconvex mixed integer programming problems. We resort to different reformulation techniques to state the optimization problems as either linear or nonlinear convex....... The continuous relaxation of the mixed integer programming problems is being solved by an implementation of a primal–dual interior point method for nonlinear programming that updates the barrier parameter adaptively. The method is chosen for its excellent convergence properties and the ability of the method...... design phase results in structures with better structural performance reducing the need of manually post–processing the found designs....

  9. Structural Design Optimization On Thermally Induced Vibration

    International Nuclear Information System (INIS)

    Gu, Yuanxian; Chen, Biaosong; Zhang, Hongwu; Zhao, Guozhong

    2002-01-01

    The numerical method of design optimization for structural thermally induced vibration is originally studied in this paper and implemented in application software JIFEX. The direct and adjoint methods of sensitivity analysis for thermal induced vibration coupled with both linear and nonlinear transient heat conduction is firstly proposed. Based on the finite element method, the structural linear dynamics is treated simultaneously with coupled linear and nonlinear transient heat structural linear dynamics is treated simultaneously with coupled linear and nonlinear transient heat conduction. In the thermal analysis model, the nonlinear heat conduction considered is result from the radiation and temperature-dependent materials. The sensitivity analysis of transient linear and nonlinear heat conduction is performed with the precise time integration method. And then, the sensitivity analysis of structural transient dynamics is performed by the Newmark method. Both the direct method and the adjoint method are employed to derive the sensitivity equations of thermal vibration, and there are two adjoint vectors of structure and heat conduction respectively. The coupling effect of heat conduction on thermal vibration in the sensitivity analysis is particularly investigated. With coupling sensitivity analysis, the optimization model is constructed and solved by the sequential linear programming or sequential quadratic programming algorithm. The methods proposed have been implemented in the application software JIFEX of structural design optimization, and numerical examples are given to illustrate the methods and usage of structural design optimization on thermally induced vibration

  10. A rational evaluation of structural design loads

    International Nuclear Information System (INIS)

    Tasaka, S.

    1993-01-01

    The reliability-based seismic design of structures is a design method ensuring that the structural seismic capacity is not less than the maximum seismic load or load effect for a prescribed value of the reliability index, wherein the design reference period, n, is used to specify the n-year maximum load. In the conventional Load and Resistance Factor Design (LRFD) method the design load is commonly determined on the basis of the n-year maximum the probability distribution of which may be given in some different ways. However, in contrast with the structural capacity the n-year maximum load usually involves much larger variabilities. The effort to decrease the variability would, hence, be effective for the purpose of avoiding nuclear power plant (NPP) structures having unnecessarily large capacities. A possible way to do this is to consider the joint probability distribution of the n-year 1st and 2nd maxima of the seismic load derived from the formula of extreme order statistics. Since the reliability index is conventionally associated with the n-year 1st maximum, the conditional probability distribution rather than the joint one of the n-year 1st maximum given a value of the n-year 2nd one will be considered. Three conditional extreme value distributions, which correspond to the usual extreme value distributions of Types I, II and III, and their statistical moments up to the second order are presented. Within the framework of the first-order second moment method, the conditional statistical moments are utilized to calculate the reliability index as well as the design value of the seismic load. The seismic load considered herein is represented by the peak ground acceleration (PGA) in n years. The present scheme is applied to evaluate the design PGA's at II sites in Japan where samples of the annual 1st and 2nd PGA's have been obtained by using historical seismic data. In this application the following two points are of our interest: (a) Define the reliability

  11. Structural design of SBWR reactor building complex using microcomputers

    International Nuclear Information System (INIS)

    Mandagi, K.; Rajagopal, R.S.; Sawhney, P.S.; Gou, P.F.

    1993-01-01

    The design concept of Simplified Boiling Water Reactor (SBWR) plant is based on simplicity and passive features to enhance safety and reliability, improve performance, and increase economic viability. The SBWR utilizes passive systems such as Gravity Driven Core-Cooling System (GDCS) and Passive Containment Cooling System (PCCS). To suit these design features the Reactor Building (RB) complex of the SBWR is configured as an integrated structure consisting of a cylindrical Reinforced Concrete Containment Vessel (RCCV) surrounded by square reinforced concrete safety envelope and outer box structures, all sharing a common reinforced concrete basemat. This paper describes the structural analysis and design aspects of the RB complex. A 3D STARDYNE finite element model has been developed for the structural analysis of the complex using a PC Compaq 486/33L microcomputer. The structural analysis is performed for service and factored load conditions for the applicable loading combinations. The dynamic responses of containment structures due to pool hydrodynamic loads have been calculated by an axisymmetric shell model using COSMOS/M program. The RCCV is designed in accordance with ASME Section 3, Division 2 Code. The rest of the RB which is classified as Seismic Category 1 structure is designed in accordance with the ACI 349 Code. This paper shows that microcomputers can be efficiently used for the analysis and design of large and complex structures such as RCCV and Reactor Building complex. The use of microcomputers can result in significant savings in the computational cost compared with that of mainframe computers

  12. Different design approaches to structural fire safety

    DEFF Research Database (Denmark)

    Giuliani, Luisa; Budny, I.

    2013-01-01

    -priori evaluate which design is the safest or the most economical one: a punctual analysis of the different aspects and a comparison of the resulting designs is therefore of interest and is presented in this paper with reference to the case study considered.The third approach refers instead to a performance......-based fire design of the structure(PBFD), where safety goals are explicitly defined and a deeper knowledge of the structural response to fire effects can be achieved, for example with the avail of finite element analyses (FEA). On the other hand, designers can’t follow established procedures when undertaking...... such advanced investigations, which are generally quite complex ones, due to the presence of material degradation and large displacements induced by fire, as well as the possible triggering of local mechanism in the system. An example of advanced investigations for fire design is given in the paper...

  13. Design of marine structures with improved safety for environment

    International Nuclear Information System (INIS)

    Klanac, Alan; Varsta, Petri

    2011-01-01

    The paper describes a method for design of marine structures with increased safety for environment, considering also the required investment costs as well as the aspects of risk distribution onto the maritime stakeholders. Practically, the paper seeks to answer what is the optimal amount that should be invested into certain safety measure for any given vessel. Due to the uneven distribution of risk, as well as the differing impact of costs emerging from safety improvements, stakeholders experience conflicting ranking of alternatives. To solve this multi-stakeholder decision-making problem, in which each stakeholder is a decision-maker, the method applies concepts of group decision-making theory, namely the Game Theory. The method fosters axiomatic definition of the optimum solution, arguing that the solution, or the final selected design, should satisfy the non-dominance, efficiency, and fairness. These three are thoroughly discussed in terms of structural design, especially the latter. Considering the coupling of environmental risk and structural design, the method also builds on the preference structure of four maritime stakeholders: yards, owners, oil receivers and the public, who either share the risks or directly influence structural design. Method is presented on a practical study of structural design of a tanker with a crashworthy side structure that is capable of reducing the risk of collision. The outcome of this study outlines a number of possibilities for successful improvement of tanker safety that can benefit, concurrently, all maritime stakeholders.

  14. CRBR reactor structures design. BRC meeting presentation

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1975-01-01

    Some of the more important developments in LMFBR structures design technology are described and the application of the technology to design of the CRBR reactor components is illustrated. The LMFBR is both a high-temperature and a high-ΔT machine. High-temperature operation (up to 1100 0 F) requires that the designer consider the effects of thermal creep as a deformation mechanism and stress rupture as a failure mode. The large ΔT across the core coupled with a low core thermal inertia and the high conductivity of the sodium coolant combine to produce severe temperature gradients during a reactor scram. Structures designed to operate in this environment must be both light and stiff to minimize transient thermal stresses and prevent unacceptable flow-induced vibrations. Thermal shields may be required to protect the load-bearing structure. At CRBR core-component goal fluence levels, the predicted magnitude of core-component dimensional changes due to irradiation swelling and creep is very large compared with the more familiar dimensional changes associated with thermal expansion and thermal creep. The design of the core components, and in particular the core restraint system, is dominated by the need to accommodate the effects of irradiation swelling, creep and du []tility loss considerations. (auth)

  15. Integrated seismic design of structure and control systems

    CERN Document Server

    Castaldo, Paolo

    2014-01-01

    The structural optimization procedure presented in this book makes it possible to achieve seismic protection through integrated structural/control system design. In particular, it is explained how slender structural systems with a high seismic performance can be achieved through inclusion of viscous and viscoelastic dampers as an integral part of the system. Readers are provided with essential introductory information on passive structural control and passive energy dissipation systems. Dynamic analyses of both single and multiple degree of freedom systems are performed in order to verify the achievement of pre-assigned performance targets, and it is explained how the optimal integrated design methodology, also relevant to retrofitting of existing buildings, should be applied. The book illustrates how structural control research is opening up new possibilities in structural forms and configurations without compromising structural performance.

  16. On the design and structural analysis of jet engine fan blade structures

    Science.gov (United States)

    Amoo, Leye M.

    2013-07-01

    Progress in the design and structural analysis of commercial jet engine fan blades is reviewed and presented. This article is motivated by the key role fan blades play in the performance of advanced gas turbine jet engines. The fundamentals of the associated physics are emphasized. Recent developments and advancements have led to an increase and improvement in fan blade structural durability, stability and reliability. This article is intended as a high level review of the fan blade environment and current state of structural design to aid further research in developing new and innovative fan blade technologies.

  17. Fatigue design of steel and composite structures Eurocode 3 : design of steel structures, part 1-9 fatigue ; Eurocode 4 : design of composite steel and concrete structures

    CERN Document Server

    Nussbaumer, Alain; Davaine, Laurence

    2012-01-01

    This volume addresses the specific subject of fatigue, a subject not familiar to many engineers, but still relevant for proper and good design of numerous steel structures. It explains all issues related to the subject: Basis of fatigue design, reliability and various verification formats, determination of stresses and stress ranges, fatigue strength, application range and limitations. It contains detailed examples of applications of the concepts, computation methods and verifications.

  18. Structuring Principles for the Designer

    DEFF Research Database (Denmark)

    Miller, Thomas Dedenroth; Pedersen, Per Erik Elgård

    1998-01-01

    This paper suggests a list of structuring principles that support the designer in making alternative concepts for product architectures. Different architectures may support different points of diversification in the product life-cycle. The aim is to balance reuse of resources and reduction...

  19. Designing for nuclear power plant maintainability and operability

    International Nuclear Information System (INIS)

    Pedersen, T.J.

    1998-01-01

    Experience has shown that maintenance and operability aspects must be addressed in the design work. ABB Atom has since long an ambition of achieving optimised, overall plant designs, and efficient feedback of growing operating experience has stepwise eliminated shortcomings, and yielded better and better plant operating performances. The records of the plants of the latest design versions are very good; four units in Sweden have operated at an energy availability of 90.1%, and the two Olkiluoto units in Finland at a load factor of 92.7%, over the last decade. The occupational radiation exposures have also been at a low level. The possibilities for implementing 'lessons learned' in existing plants are obviously limited by practical constraints. In Finland and Sweden, significant modernisations are still underway, however, involving replacement of mechanical equipment, and upgrading and backfitting of I and C systems on a large scale, in most of the plants. The BWR 90 design focuses on meeting requirements from utilities as well as new regulatory requirements, with a particular emphasis on the consequences of severe accidents; there shall be no large releases to the environment. Other design improvements involve: all-digital I and C systems and enhanced human factors engineering to improve work environment for operators, optimisation of buildings and containment to decrease construction time and costs, and selection of materials as well as maintenance of operating procedures to reduce radiation exposures even further. The BWR 90 design was offered to Finland in the early 1990s, but development work continues. It has been selected by a number of European utilities for assessing its conformance with the European Utility Requirements (EUR), aiming at a specific EUR Volume 3 for the BWR 90. Some characteristics of the ABB BWRs, with emphasis on features of importance for achieving improved economy and enhanced safety, are described below. (author)

  20. Structure variations of pumpkin balloon

    Science.gov (United States)

    Yajima, N.; Izutsu, N.; Honda, H.

    2004-01-01

    A lobed pumpkin balloon by 3-D gore design concept is recognized as a basic form for a super-pressure balloon. This paper deals with extensions of this design concept for other large pressurized membrane structures, such as a stratospheric airship and a balloon of which volume is controllable. The structural modifications are performed by means of additional ropes, belts or a strut. When the original pumpkin shape is modified by these systems, the superior characteristics of the 3-D gore design, incorporating large bulges with a small local radius and unidirectional film tension, should be maintained. Improved design methods which are adequate for the above subjects will be discussed in detail. Application for ground structures are also mentioned.

  1. A Case Study on Hydrodynamic Modeling and Design Improvement Evaluation to Manage Debris and Sediment Interference at a Water Intake Structure

    Science.gov (United States)

    Crissman, B. J.; Cunderlik, J. M.; Wong, R. P. L.; Pinero, A.

    2017-12-01

    Waterford 3 nuclear plant, located in Killona, Louisiana, provides approximately 10% of the state's electricity need. Located along the south bank of the Mississippi River, two miles upstream of the Bonnet Carre Spillway, the plant's single pass through cooling system continuously draws up to 1,000,000 gpm water from the river. On behalf of Entergy Louisiana, the project team evaluated options to improve the aging water intake structure with chronic debris and sediment entrainment issues. The highly complex and dynamic environment in the river coupled with regulatory constraints limited available improvement options: varying river stages allow debris to overflow the intake structure, but the maximum new wall height is restricted to minimize aesthetic intrusion and alteration to levee tie-back; bow waves push debris into the downstream intake wall, but the wall needs to maintain an opening to flush debris out from the intake structure; the river delivers significant sediment load, but any proposed intake structure cannot significantly alter existing bathymetry; EPA Clean Water Act Section 316(b) limited maximum velocity at the intake structure to 0.5 fps for entrainment prevention. To expedite alternative evaluation while providing sufficient data to inform management decision, instead of developing physical models, the project team developed a two-tier approach utilizing the TELEMAC hydrodynamic program to prepare screening analysis in 2D modeling and final evaluation in 3D modeling. The model was built upon the USACE ERDC ADH model, calibrated with river gauge data and peer reviewed by ERDC. TELEMAC, developed by EDF, provides novel features for modeling improvement options, including the recommended design concept, which is a hydraulically optimized intake geometry configured to maintain uniform intake flow while streamlining river flowline for debris and sediment deflection. The design includes submerged inlets with upstream and downstream walls to block

  2. Probabilistic design of fibre concrete structures

    Science.gov (United States)

    Pukl, R.; Novák, D.; Sajdlová, T.; Lehký, D.; Červenka, J.; Červenka, V.

    2017-09-01

    Advanced computer simulation is recently well-established methodology for evaluation of resistance of concrete engineering structures. The nonlinear finite element analysis enables to realistically predict structural damage, peak load, failure, post-peak response, development of cracks in concrete, yielding of reinforcement, concrete crushing or shear failure. The nonlinear material models can cover various types of concrete and reinforced concrete: ordinary concrete, plain or reinforced, without or with prestressing, fibre concrete, (ultra) high performance concrete, lightweight concrete, etc. Advanced material models taking into account fibre concrete properties such as shape of tensile softening branch, high toughness and ductility are described in the paper. Since the variability of the fibre concrete material properties is rather high, the probabilistic analysis seems to be the most appropriate format for structural design and evaluation of structural performance, reliability and safety. The presented combination of the nonlinear analysis with advanced probabilistic methods allows evaluation of structural safety characterized by failure probability or by reliability index respectively. Authors offer a methodology and computer tools for realistic safety assessment of concrete structures; the utilized approach is based on randomization of the nonlinear finite element analysis of the structural model. Uncertainty of the material properties or their randomness obtained from material tests are accounted in the random distribution. Furthermore, degradation of the reinforced concrete materials such as carbonation of concrete, corrosion of reinforcement, etc. can be accounted in order to analyze life-cycle structural performance and to enable prediction of the structural reliability and safety in time development. The results can serve as a rational basis for design of fibre concrete engineering structures based on advanced nonlinear computer analysis. The presented

  3. Design study on quasi-constant gradient accelerator structure

    International Nuclear Information System (INIS)

    Wang, J.W.; Littmann, B.W.

    1991-09-01

    In order to obtain high luminosity, the Next Linear Collider will operate in multibunch mode with ten or more bunches per bunch train. This leads to the need for detuning and/or damping of higher modes to control multibunch beam breakup. Continued studies of wake fields for a detuned structure with a Gaussian distribution of dipole modes showed encouraging results, and a detuned structure model has been tested experimentally. It is desirable to study the design method for this type of structure, which has a quasi-constant accelerating gradient. This note gives a brief summary of the design procedure. Also, the RF parameters of the structure are evaluated to compare with conventional constant gradient and constant impedance structures

  4. Mechanical Design Features of PGSFR NSSS

    International Nuclear Information System (INIS)

    Park, Chang-Gyu; Koo, Gyeong-Hoi; Cho, Jae-Hun; Kim, Sung-Kyun

    2016-01-01

    The NSSS(Nuclear Steam Supply System) is composed of PHTS(Primary Heat Transport System), IHTS (Intermediate Heat Transport System), and SGS(Steam Generation System). And, DHRS(Decay Heat Removal System) adopts both the active and passive systems for diversity. The structures including components and piping should be designed to ensure the structural integrity for their design life against mechanical and operational loads. In this study, the mechanical design features for the structures and components that make up PGSFR NSSS are described. The mechanical design features of structures and components for a PGSFR NSSS are described. The structures are being designed to maintain the structural integrity for their design lifetime by considering the high temperature operating condition. The decay heat removal system(DHRS) removes all reactor decay heat in two ways; active type(ADHRS) and passive type(PDHRS). ADHRS consists of DHX, blower, FHX, circulation pump, and expansion tank. But PDHRS consists of DHX, AHX, and expansion tank. FHX is a finned-tube-type sodium-to-air heat exchanger whereas AHX is a helical-type sodium-to-air heat exchanger

  5. Mechanical Design Features of PGSFR NSSS

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang-Gyu; Koo, Gyeong-Hoi; Cho, Jae-Hun; Kim, Sung-Kyun [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The NSSS(Nuclear Steam Supply System) is composed of PHTS(Primary Heat Transport System), IHTS (Intermediate Heat Transport System), and SGS(Steam Generation System). And, DHRS(Decay Heat Removal System) adopts both the active and passive systems for diversity. The structures including components and piping should be designed to ensure the structural integrity for their design life against mechanical and operational loads. In this study, the mechanical design features for the structures and components that make up PGSFR NSSS are described. The mechanical design features of structures and components for a PGSFR NSSS are described. The structures are being designed to maintain the structural integrity for their design lifetime by considering the high temperature operating condition. The decay heat removal system(DHRS) removes all reactor decay heat in two ways; active type(ADHRS) and passive type(PDHRS). ADHRS consists of DHX, blower, FHX, circulation pump, and expansion tank. But PDHRS consists of DHX, AHX, and expansion tank. FHX is a finned-tube-type sodium-to-air heat exchanger whereas AHX is a helical-type sodium-to-air heat exchanger.

  6. Structure design of an innovative adaptive variable camber wing

    Directory of Open Access Journals (Sweden)

    Zhao An-Min

    2018-01-01

    Full Text Available In this paper, an innovative double rib sheet structure is proposed, which can replace the traditional rigid hinge joint with the surface contact. On the one hand, the variable camber wing structural design not only can improve the capacity to sustain more load but also will not increase the overall weight of the wing. On the other hand, it is a simple mechanical structure design to achieve the total wing camber change. Then the numerical simulation results show that the maximum stress at the connect of the wing rib is 88.2MPa, and the double ribs sheet engineering design meet the structural strength requirements. In addition, to make a fair comparison, the parameters of variable camber are fully referenced to the Talon Unmanned Aerial Vehicle (UAV. The results reveal that the total variable camber wing can further enhance aircraft flight efficiency by 29.4%. The design of the whole variable camber wing structure proposed in this paper has high engineering value and feasibility.

  7. Enabling Rapid and Robust Structural Analysis During Conceptual Design

    Science.gov (United States)

    Eldred, Lloyd B.; Padula, Sharon L.; Li, Wu

    2015-01-01

    This paper describes a multi-year effort to add a structural analysis subprocess to a supersonic aircraft conceptual design process. The desired capabilities include parametric geometry, automatic finite element mesh generation, static and aeroelastic analysis, and structural sizing. The paper discusses implementation details of the new subprocess, captures lessons learned, and suggests future improvements. The subprocess quickly compares concepts and robustly handles large changes in wing or fuselage geometry. The subprocess can rank concepts with regard to their structural feasibility and can identify promising regions of the design space. The automated structural analysis subprocess is deemed robust and rapid enough to be included in multidisciplinary conceptual design and optimization studies.

  8. Computational RNA secondary structure design: empirical complexity and improved methods

    Directory of Open Access Journals (Sweden)

    Condon Anne

    2007-01-01

    Full Text Available Abstract Background We investigate the empirical complexity of the RNA secondary structure design problem, that is, the scaling of the typical difficulty of the design task for various classes of RNA structures as the size of the target structure is increased. The purpose of this work is to understand better the factors that make RNA structures hard to design for existing, high-performance algorithms. Such understanding provides the basis for improving the performance of one of the best algorithms for this problem, RNA-SSD, and for characterising its limitations. Results To gain insights into the practical complexity of the problem, we present a scaling analysis on random and biologically motivated structures using an improved version of the RNA-SSD algorithm, and also the RNAinverse algorithm from the Vienna package. Since primary structure constraints are relevant for designing RNA structures, we also investigate the correlation between the number and the location of the primary structure constraints when designing structures and the performance of the RNA-SSD algorithm. The scaling analysis on random and biologically motivated structures supports the hypothesis that the running time of both algorithms scales polynomially with the size of the structure. We also found that the algorithms are in general faster when constraints are placed only on paired bases in the structure. Furthermore, we prove that, according to the standard thermodynamic model, for some structures that the RNA-SSD algorithm was unable to design, there exists no sequence whose minimum free energy structure is the target structure. Conclusion Our analysis helps to better understand the strengths and limitations of both the RNA-SSD and RNAinverse algorithms, and suggests ways in which the performance of these algorithms can be further improved.

  9. Robust structural design against self-excited vibrations

    CERN Document Server

    Spelsberg-Korspeter, Gottfried

    2013-01-01

    This book studies methods for a robust design of rotors against self-excited vibrations. The occurrence of self-excited vibrations in engineering applications if often unwanted and in many cases difficult to model. Thinking of complex systems such as machines with many components and mechanical contacts, it is important to have guidelines for design so that the functionality is robust against small imperfections. This book discusses the question on how to design a structure such that unwanted self-excited vibrations do not occur. It shows theoretically and practically that the old design rule to avoid multiple eigenvalues points toward the right direction and have optimized structures accordingly. This extends results for the well-known flutter problem in which equations of motion with constant coefficients occur to the case of a linear conservative system with arbitrary time periodic perturbations.

  10. STRUCTURAL AND DESIGN SPECIFICS OF SPACE GRID SYSTEMS

    Directory of Open Access Journals (Sweden)

    G. M. Gasii

    2017-01-01

    Full Text Available The aim of the study is to identify main trends in the development of space grid structures. In order to reach the purpose it is necessary to conduct a review of the known structural concepts, nodal connections and specifics of the space grid structures and to make conclusions on feasibility improvement of the considered structural concepts that make it possible to develop new solutions without disadvantages residing in the analogues. Analysis of papers written by foreign and national scientists and devoted to theoretical, numerical and experimental studies of stress-strain state, influence of different factors on it and geometrical optimization and designing of space grid structures has been conducted in order to achieve the objectives. Space grid structures and, in particular, flat double-layer grid and most frequent nodes have been studied in the paper. The paper contains a short review of the history on development of space grid structures. It has been found that a rapid development of structural designs was caused by scientific and technical progress and, in particular, improvement of physical and mechanical properties of materials, development of calculation methods, application of software systems for simulating behavior of the structure under load, which significantly increased the calculation accuracy and reduced complexity of design. It has been also established that main parameters that have influence on effectiveness of a structural design are geometric dimensions of its modular elements, ratio of its depth to the span. The world experience on development of connection components has been studied in the paper. The paper presents general classification of nodal connections. Main advantages and disadvantages of existing space grid structures are highlighted and it allows to determine possible methods for their improvement. Theoretical research has permitted to establish that the main direction of spatial grid structures improvement

  11. A cryogenic optical feedthrough using polarization maintaining fibers.

    Science.gov (United States)

    Nelson, M J; Collins, C J; Speake, C C

    2016-03-01

    Polarization maintaining optical fibers can be used to transmit linearly polarized light over long distances but their use in cryogenic environments has been limited by their sensitivity to temperature changes and associated mechanical stress. We investigate experimentally how thermal stresses affect the polarization maintaining fibers and model the observations with Jones matrices. We describe the design, construction, and testing of a feedthrough and fiber termination assembly that uses polarization maintaining fiber to transmit light from a 633 nm HeNe laser at room temperature to a homodyne polarization-based interferometer in a cryogenic vacuum. We report on the efficiency of the polarization maintaining properties of the feedthrough assembly. We also report that, at cryogenic temperatures, the interferometer can achieve a sensitivity of 8 × 10(-10) rad/√Hz at 0.05 Hz using this feedthrough.

  12. Structural and piping issues in the design certification of advanced reactors

    International Nuclear Information System (INIS)

    Ali, S.A.; Terao, D.; Bagchi, G.

    1996-01-01

    The purpose of this paper is to discuss the design certification of structures and piping for evolutionary and passive advanced light water reactors. Advanced reactor designs are based on a set of assumed site-related parameters that are selected to envelop a majority of potential nuclear power plant sites. Multiple time histories are used as the seismic design basis in order to cover the majority of potential sites in the US. Additionally, design are established to ensure that surface motions at a particular site will not exceed the enveloped standard design surface motions. State-of-the-art soil-structure interaction (SSI) analyses have been performed for the advanced reactors, which include structure-to-structure interaction for all seismic Category 1 structures. Advanced technology has been utilized to exclude the dynamic effects of pipe rupture from structural design by demonstrating that the probability of pipe rupture is extremely low. For piping design, the advanced reactor vendors have developed design acceptance criteria (DAC) which provides the piping design analysis methods, design procedures, and acceptance criteria. In SECY-93-087 the NRC staff recommended that the Commission approve the approach to eliminate the OBE from the design of structures and piping in advanced reactors and provided guidance which identifies the necessary changes to existing seismic design criteria. The supplemental criteria address fatigue, seismic anchor motion, and piping stress limits when the OBE is eliminated

  13. Human factors review of power plant maintainability. Final report

    International Nuclear Information System (INIS)

    Seminara, J.L.; Parsons, S.O.

    1981-02-01

    Human factors engineering is an interdisciplinary science and technology concerned with shaping the design of machines, facilities, and operational environments to promote safe, efficient, and reliable performance on the part of operators and maintainers of equipment systems. The human factors aspects of five nuclear power plants and four fossil fuel plants were evaluated using such methods as a check list guided observation system, structured interviews with maintenance personnel, direct observation of maintenance tasks, reviews of procedures, and analyses of maintenance errors or accidents by means of the critical incident technique. The study revealed a wide variety of human factors problem areas, most of which are extensively photodocumented. The study recommends that a more systematic and formal approach to ensure that future power plants are human engineered to the needs of maintenance personnel

  14. Integrated Reliability-Based Optimal Design of Structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1987-01-01

    In conventional optimal design of structural systems the weight or the initial cost of the structure is usually used as objective function. Further, the constraints require that the stresses and/or strains at some critical points have to be less than some given values. Finally, all variables......-based optimal design is discussed. Next, an optimal inspection and repair strategy for existing structural systems is presented. An optimization problem is formulated , where the objective is to minimize the expected total future cost of inspection and repair subject to the constraint that the reliability...... value. The reliability can be measured from an element and/or a systems point of view. A number of methods to solve reliability-based optimization problems has been suggested, see e.g. Frangopol [I]. Murotsu et al. (2], Thoft-Christensen & Sørensen (3] and Sørensen (4). For structures where...

  15. Design Report for ACP Hot Cell Rear Door

    Energy Technology Data Exchange (ETDEWEB)

    Ku, J. H.; Kwon, K. C.; Choung, W. M.; Cho, I. J.; Kook, D. H.; Lee, W. K.; You, G. S.; Lee, E. P.; Park, S. W

    2005-12-15

    A hot-cell facility was constructed at the IMEF building for the demonstrate ACP process. ACP hot-cell consists of process cell and maintenance cell, and each cell has rear door. Since this facility was constructed at basement floor, all process materials, equipment and radioactive materials are take in and out through the rear door. Also, this door can be an access route of workers for the maintenance works. Therefore ACP hot-cell rear doors must maintain the radiation shielding, sealing, mechanical and structural safety. This report presents design criteria, design contents of each part and driving part. It was confirmed that the rear doors sufficiently maintain the safety through the structural analysis and shielding analysis. Also, it was confirmed that the rear doors were constructed as designed by the gamma scanning test after the installation.

  16. Design Report for ACP Hot Cell Rear Door

    International Nuclear Information System (INIS)

    Ku, J. H.; Kwon, K. C.; Choung, W. M.; Cho, I. J.; Kook, D. H.; Lee, W. K.; You, G. S.; Lee, E. P.; Park, S. W.

    2005-12-01

    A hot-cell facility was constructed at the IMEF building for the demonstrate ACP process. ACP hot-cell consists of process cell and maintenance cell, and each cell has rear door. Since this facility was constructed at basement floor, all process materials, equipment and radioactive materials are take in and out through the rear door. Also, this door can be an access route of workers for the maintenance works. Therefore ACP hot-cell rear doors must maintain the radiation shielding, sealing, mechanical and structural safety. This report presents design criteria, design contents of each part and driving part. It was confirmed that the rear doors sufficiently maintain the safety through the structural analysis and shielding analysis. Also, it was confirmed that the rear doors were constructed as designed by the gamma scanning test after the installation

  17. Configuration and structural design of Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Brown, T.G.

    1985-01-01

    Viewgraphs are presented on the configuration and structural design of the Compact Ignition Tokamak, originally presented to the US/Japan Workshop on Next Step Machine Design. Items discussed in this presentation include: PPPL 0424 ref design; MIT LITE ref design; IGNITOR 1.01 M ref design; and IGNITOR 1.08 M press configuration

  18. Robust Structured Control Design via LMI Optimization

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Stoustrup, Jakob

    2011-01-01

    This paper presents a new procedure for discrete-time robust structured control design. Parameter-dependent nonconvex conditions for stabilizable and induced L2-norm performance controllers are solved by an iterative linear matrix inequalities (LMI) optimization. A wide class of controller...... structures including decentralized of any order, fixed-order dynamic output feedback, static output feedback can be designed robust to polytopic uncertainties. Stability is proven by a parameter-dependent Lyapunov function. Numerical examples on robust stability margins shows that the proposed procedure can...

  19. A Story-Telling Approach for a Software Engineering Course Design

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    2009-01-01

    Advanced programming and software engineering techniques are challenging to learn due to their inherent complexity. However, to the average student they are even more challenging because they have never experienced the context in which the techniques are appropriate. For instance, why learn design...... patterns to increase maintainability when student exercises are never maintained? In this paper, we outline the contextual problems that software engineering teaching has to deal with and present a story telling approach for course design as a remedy. We outline the stories that over the last five years...... have structured lecturing and mandatory exercises for our advanced programming/software engineering course, and present benefits, liabilities, and experiences with the approach comparing it to the normal, topic structured, course design....

  20. Conceptual Design Tool for Concrete Shell Structures

    DEFF Research Database (Denmark)

    Holst, Malene Kirstine; Kirkegaard, Poul Henning

    2011-01-01

    This paper focuses on conceptual tools for concrete shell structures when working within the span of performance-based design and computational morphogenesis. The designer, referred to as the Architect-Engineer, works through several iterations parallel with aesthetic, functional and technical re...

  1. Structure design of primary heat-exchanger for the MHWRR

    International Nuclear Information System (INIS)

    Li Yanshui; Cao Zhibin

    1999-01-01

    Primary heat-exchanger is one of the key equipment in the Multi-application Heavy Water Research Reactor (MHWRR). Its structure design ought to meet as much possible as the demands for safety, feasibility and economy. To reduce the liquid resistance, the locating structure between inner tube and outer tube is distributed spirally. The edge of outer tube is processed in the shape of hexahedron and then splice-welded into honeycomb structure thereby the heat-exchanger has the smallest outer diameter compared with that with the same heat-exchanging area according to 'Normal Design', 'Anabasis Design' is applied to the design for parts with Safety Class I, to ensure safety of the heat-exchanger

  2. Design and manufacturing of the CFRP lightweight telescope structure

    Science.gov (United States)

    Stoeffler, Guenter; Kaindl, Rainer

    2000-06-01

    Design of earthbound telescopes is normally based on conventional steel constructions. Several years ago thermostable CFRP Telescope and reflector structures were developed and manufacturing for harsh terrestrial environments. The airborne SOFIA TA requires beyond thermostability an excessive stiffness to mass ratio for the structure fulfilling performance and not to exceed mass limitations by the aircraft Boeing 747 SP. Additional integration into A/C drives design of structure subassemblies. Thickness of CFRP Laminates, either filament wound or prepreg manufactured need special attention and techniques to gain high material quality according to aerospace requirements. Sequential shop assembly of the structure subassemblies minimizes risk for assembling TA. Design goals, optimization of layout and manufacturing techniques and results are presented.

  3. Structural concepts and details for seismic design

    International Nuclear Information System (INIS)

    Johnson, M.W.; Smietana, E.A.; Murray, R.C.

    1991-01-01

    As a part of the DOE Natural Phenomena Hazards Program, a new manual has been developed, entitled UCRL-CR-106554, open-quotes Structural Concepts and Details for Seismic Design.close quotes This manual describes and illustrates good practice for seismic-resistant design

  4. Designing socio-technical systems : Structures and processes

    NARCIS (Netherlands)

    Bots, P.W.G.; Van Daalen, C.

    2012-01-01

    The Systems Engineering, Policy Analysis and Management (SEPAM) MSc curriculum taught at Delft University of Technology focuses on the design of socio-technical systems (STS). We teach our students to structure design activities by considering what we call the TIP aspects: Technical systems,

  5. Techniques for the design of highly damped structures

    International Nuclear Information System (INIS)

    Nelson, F.C.

    1975-01-01

    This paper discusses several techniques for the design of highly damped structures, techniques which have proven successful for large scale, low frequency steel and concrete structures which are typical of nuclear power reactors and their components. The ability to augment structural damping can be useful in increasing the seismic withstandability of structures. Seismic excitation is broadband in its frequency content and will excite many strutural resonances. Broadband damping will limit these resonant responses and thereby reduce the seismic load on structures and their components. This paper discusses three techniques: the design of structural joints and interfaces to promote damping; the use of layers of viscoelastic material; and the employment of damping links. The emphasis is on explaining the ways in which these techniques work and in describing the ways in which they have been used. (Auth.)

  6. Multidisciplinary Design and Optimization Framework for Aircraft Box Structures

    NARCIS (Netherlands)

    Van Dijk, R.E.C.; Zhao, X.; Wang, H.; Van Dalen, F.

    2012-01-01

    Competitive aircraft box structures are a perfect compromise between weight and price. The conceptual design process of these structures is a typical Multidisciplinary Design and Optimization effort, normally conducted by human engineers. The iterative nature of MDO turns development into a long and

  7. Seismic design and performance of nuclear safety related RC structures based on new seismic design principle

    International Nuclear Information System (INIS)

    Murugan, R.; Sivathanu Pillai, C.; Chattopadhyaya, S.; Sundaramurthy, C.

    2011-01-01

    Full text: Seismic design of safety related Reinforced Concrete (RC) structures of Nuclear power plants (NPP) in India as per the present AERB codal procedures tries to ensure predominantly elastic behaviour under OBE so that the features of Nuclear Power Plant (NPP) necessary for continued safe operation are designed to remain functional and prevent accident (collapse) of NPP under SSE for which certain Structures, Systems and Components (SSCs) those are necessary to ensure the capability to shut down the reactor safely, are designed to remain functional. While the seismic design principles of non safety related structures as per Indian code (IS 1893-2002) are ensuring elastic behaviour under DBE and inelastic behaviour under MCE by utilizing ductility and energy dissipation capacity of the structure effectively. The design principle of AERB code is ensuring elastic behaviour under OBE and is not enlightening much inference about the overall structural behaviour under SSE (only ensuring the capability of certain SSCs required for safe shutdown of reactor). Various buildings and structures of Indian Nuclear power plant are classified from the basis of associated safety functions in a descending order in according with their roles in preventions and mitigation of an accident or support functions for prevention. This paper covers a comprehensive seismic analysis and design methodology based on the AERB codal provisions followed for safety related RC structure taking Diesel Generator Building of PFBR as a case study and study and investigates its performance under OBE and SSE by carrying out Non-linear static Pushover analysis. Based on the analysis, observed variations, recommendations are given for getting the desired performance level so as to implement performance based design in the future NPP design

  8. Module-based structure design of wheeled mobile robot

    Directory of Open Access Journals (Sweden)

    Z. Luo

    2018-02-01

    Full Text Available This paper proposes an innovative and systematic approach for synthesizing mechanical structures of wheeled mobile robots. The principle and terminologies used for the proposed synthesis method are presented by adopting the concept of modular design, isomorphic and non-isomorphic, and set theory with its associated combinatorial mathematics. The modular-based innovative synthesis and design of wheeled robots were conducted at two levels. Firstly at the module level, by creative design and analysing the structures of classic wheeled robots, a wheel module set containing four types of wheel mechanisms, a suspension module set consisting of five types of suspension frames and a chassis module set composed of five types of rigid or articulated chassis were designed and generalized. Secondly at the synthesis level, two kinds of structure synthesis modes, namely the isomorphic-combination mode and the non-isomorphic combination mode were proposed to synthesize mechanical structures of wheeled robots; which led to 241 structures for wheeled mobile robots including 236 novel ones. Further, mathematical models and a software platform were developed to provide appropriate and intuitive tools for simulating and evaluating performance of the wheeled robots that were proposed in this paper. Eventually, physical prototypes of sample wheeled robots/rovers were developed and tested so as to prove and validate the principle and methodology presented in this paper.

  9. Coevolutionary and genetic algorithm based building spatial and structural design

    NARCIS (Netherlands)

    Hofmeyer, H.; Davila Delgado, J.M.

    2015-01-01

    In this article, two methods to develop and optimize accompanying building spatial and structural designs are compared. The first, a coevolutionary method, applies deterministic procedures, inspired by realistic design processes, to cyclically add a suitable structural design to the input of a

  10. Structural design and dynamic analysis of underground nuclear reactor containments

    International Nuclear Information System (INIS)

    Kierans, T.W.; Reddy, D.V.; Heale, D.G.

    1975-01-01

    Present actual experience in the structural design of undeground containments is limited to only four rather small reactors all located in Europe. Thus proposals for future underground reactors depend on the transposition of applicable design specifications, constraints and criteria from existing surface nuclear power plants to underground, and the use of many years of experience in the structural design of large underground cavities and cavity complexes for other purposes such as mining, hydropower stations etc. An application of such considerations in a recent input for the Underground Containment sub-section of the Seismic Task Group Report to the ASCE Committee for Nuclear Structures and Materials is presented as follows: underground concept considerations, siting criteria and structural selection, structural types, analytical and semi-analytical approaches, design and other miscellaneous considerations

  11. Matrix Transfer Function Design for Flexible Structures: An Application

    Science.gov (United States)

    Brennan, T. J.; Compito, A. V.; Doran, A. L.; Gustafson, C. L.; Wong, C. L.

    1985-01-01

    The application of matrix transfer function design techniques to the problem of disturbance rejection on a flexible space structure is demonstrated. The design approach is based on parameterizing a class of stabilizing compensators for the plant and formulating the design specifications as a constrained minimization problem in terms of these parameters. The solution yields a matrix transfer function representation of the compensator. A state space realization of the compensator is constructed to investigate performance and stability on the nominal and perturbed models. The application is made to the ACOSSA (Active Control of Space Structures) optical structure.

  12. Computer-aided design of DNA origami structures.

    Science.gov (United States)

    Selnihhin, Denis; Andersen, Ebbe Sloth

    2015-01-01

    The DNA origami method enables the creation of complex nanoscale objects that can be used to organize molecular components and to function as reconfigurable mechanical devices. Of relevance to synthetic biology, DNA origami structures can be delivered to cells where they can perform complicated sense-and-act tasks, and can be used as scaffolds to organize enzymes for enhanced synthesis. The design of DNA origami structures is a complicated matter and is most efficiently done using dedicated software packages. This chapter describes a procedure for designing DNA origami structures using a combination of state-of-the-art software tools. First, we introduce the basic method for calculating crossover positions between DNA helices and the standard crossover patterns for flat, square, and honeycomb DNA origami lattices. Second, we provide a step-by-step tutorial for the design of a simple DNA origami biosensor device, from schematic idea to blueprint creation and to 3D modeling and animation, and explain how careful modeling can facilitate later experimentation in the laboratory.

  13. Development of expert system for structural design of FBR components

    International Nuclear Information System (INIS)

    Ueda, Hiroyoshi; Uno, Masayoshi; Ogawa, Hiroshi; Shimakawa, Takashi; Yoshimura, Shinobu; Yagawa, Genki.

    1995-01-01

    The characteristics of structural design processes for nuclear components can be summarized as follows : (1) Many engineers belonging to different fields are working in parallel, exchanging a huge amount of data and information. (2) A final solution is determined after a number of iterative design processes. (3) Solutions have to be examined many times based on sophisticated design codes. (4) Sophisticated calculation methods such as the finite element method are frequently utilized, and experts' knowledge on such analyses plays important roles in the design process. Taking these issues into consideration, a new expert system for structural design is developed in the present study. Here, the object-oriented data flow mechanism and the blackboard model are utilized to systematize structural design processes in a computer. An automated finite element calculation module is implemented, and experts' knowledge is stored in knowledge base. In addition, a new algorithm is employed to automatically draw the design window, which is defined as an area of permissible solutions in a design parameter space. The developed system is successfully applied to obtain the design windows of four components selected from the demonstration FBR structures. (author)

  14. Structural evaluation report of piping and support structure for design-changed hot-water layer system

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo

    1998-05-01

    After hot-water layer system had been installed, the verification tests to reduce the radiation level at the top of reactor pool were performed many times. The major goal of this report is to assess the structural integrity on the piping and the support structures of design-changed hot-water layer system. The piping stress analysis was performed by using ADLPIPE program for the pump suction line and the pump discharge line subjected to dead weight, pressure, thermal expansion and seismic loadings. The stress analysis of the support structure was carried out using the reaction forces obtained from the piping stress analysis. The results of structural evaluation for the pipings and the support structures showed that the structural acceptance criteria were satisfied, in compliance with ASME, subsection ND for the piping and subsection NF for the support structures. Therefore based on the results of the analysis and the design, the structural integrity on the piping and the support structures of design-changed hot-water system was proved. (author). 9 refs., 9 tabs., 14 figs

  15. Probability based load combinations for design of category I structures

    International Nuclear Information System (INIS)

    Reich, M.; Hwang, H.

    1985-01-01

    This paper discusses a reliability analysis method and a procedure for developing the load combination design criteria for category I structures. For safety evaluation of category I concrete structures under various static and dynamic loads, a probability-based reliability analysis method has been developed. This reliability analysis method is also used as a tool for determining the load factors for design of category I structures. In this paper, the load combinations for design of concrete containments, corresponding to a target limit state probability of 1.0 x 10 -6 in 4 years, are described. A comparison of containments designed using the ASME code and the proposed design criteria is also presented

  16. Integrated structure/control design - Present methodology and future opportunities

    Science.gov (United States)

    Weisshaar, T. A.; Newsom, J. R.; Zeiler, T. A.; Gilbert, M. G.

    1986-01-01

    Attention is given to current methodology applied to the integration of the optimal design process for structures and controls. Multilevel linear decomposition techniques proved to be most effective in organizing the computational efforts necessary for ISCD (integrated structures and control design) tasks. With the development of large orbiting space structures and actively controlled, high performance aircraft, there will be more situations in which this concept can be applied.

  17. Structure study and design of Qinshan NPP PCCV

    International Nuclear Information System (INIS)

    Xia Zufeng; Xu Yongzhi; Wang Tianzhen; Wu Jibiao

    1993-02-01

    The design process of Qinshan NPP (nuclear power plant) PCCV (prestressed concrete containment vessel) is summarized. The tendon test, structural description, design bases and analysis method are introduced. The arrangement for preventing concrete from cracking and design features of post-tensioning system and steel liner are presented. The results of model test and non-linear analysis for ultimate load in Qinshan NPP PCCV are also given. Through the integrity test of PCCV, it shows that the test values are in agreement with predicted values, the structure is excellent and the performance of leak tightness conforms to the safety requirements

  18. Design and Experimental Verification of Deployable/Inflatable Ultra-Lightweight Structures

    Science.gov (United States)

    Pai, P. Frank

    2004-01-01

    Because launch cost of a space structural system is often proportional to the launch volume and mass and there is no significant gravity in space, NASA's space exploration programs and various science missions have stimulated extensive use of ultra-lightweight deployable/inflatable structures. These structures are named here as Highly Flexible Structures (HFSs) because they are designed to undergo large displacements, rotations, and/or buckling without plastic deformation under normal operation conditions. Except recent applications to space structural systems, HFSs have been used in many mechanical systems, civil structures, aerospace vehicles, home appliances, and medical devices to satisfy space limitations, provide special mechanisms, and/or reduce structural weight. The extensive use of HFSs in today's structural engineering reveals the need of a design and analysis software and a database system with design guidelines for practicing engineers to perform computer-aided design and rapid prototyping of HFSs. Also to prepare engineering students for future structural engineering requires a new and easy-to- understand method of presenting the complex mathematics of the modeling and analysis of HFSs. However, because of the high flexibility of HFSs, many unique challenging problems in the modeling, design and analysis of HFSs need to be studied. The current state of research on HFSs needs advances in the following areas: (1) modeling of large rotations using appropriate strain measures, (2) modeling of cross-section warpings of structures, (3) how to account for both large rotations and cross- section warpings in 2D (two-dimensional) and 1D structural theories, (4) modeling of thickness thinning of membranes due to inflation pressure, pretension, and temperature change, (5) prediction of inflated shapes and wrinkles of inflatable structures, (6) development of efficient numerical methods for nonlinear static and dynamic analyses, and (7) filling the gap between

  19. Local panels and maintainability human factors assessment for AP1000 nuclear power plant

    International Nuclear Information System (INIS)

    Li, Zhonghai; Reed, Julie I.

    2011-01-01

    A document entitled 'AP1000 Local Panels and Maintainability Human Factors Design Guidelines' was produced to aid the designers to specifically include human factors (HF) considerations in the design, operation, and maintenance of local control stations and plant equipment. To ensure that the applicable HF design guidelines are appropriately applied to the design of local panels and maintenance activities, and identify any HF improvement opportunities that can readily be implemented at the design stage, a HF assessment of maintenance activities and local plant operations is underway. This assessment gives priority to local control stations and equipment which have been identified as having a potential impact on safety. This includes risk-significant systems, structures and components (SSCs) identified through the probabilistic risk assessment (PRA), and local operator actions as required by the Emergency Operating Procedures (EOPs). Local actions, maintenance activities and associated operator interfaces are reviewed against the relevant HF guidelines. The results of the assessment include a description of the component, associated local actions and/or required maintenance activities, good design features and/or potential issues, and recommendations for change or improvement. These results are communicated to responsible design engineers who evaluate the impact to plant design and implement design changes, if deemed necessary. (author)

  20. Rigid-plastic seismic design of reinforced concrete structures

    DEFF Research Database (Denmark)

    Costa, Joao Domingues; Bento, R.; Levtchitch, V.

    2007-01-01

    structural strength with respect to a pre-defined performance parameter using a rigid-plastic response spectrum, which is characteristic of the ground motion alone. The maximum strength demand at any point is solely dependent on the intensity of the ground motion, which facilitates the task of distributing......In this paper a new seismic design procedure for Reinforced Concrete (R/C) structures is proposed-the Rigid-Plastic Seismic Design (RPSD) method. This is a design procedure based on Non-Linear Time-History Analysis (NLTHA) for systems expected to perform in the non-linear range during a lifetime...... earthquake event. The theoretical background is the Theory of Plasticity (Rigid-Plastic Structures). Firstly, a collapse mechanism is chosen and the corresponding stress field is made safe outside the regions where plastic behaviour takes place. It is shown that this allows the determination of the required...

  1. A structural keystone for drug design

    Directory of Open Access Journals (Sweden)

    Rother Kristian

    2006-06-01

    Full Text Available 3D-structures of proteins and potential ligands are the cornerstones of rational drug design. The first brick to build upon is selecting a protein target and finding out whether biologically active compounds are known. Both tasks require more information than the structures themselves provide. For this purpose we have built a web resource bridging protein and ligand databases. It consists of three parts: i A data warehouse on annotation of protein structures that integrates many well-known databases such as Swiss-Prot, SCOP, ENZYME and others. ii A conformational library of structures of approved drugs. iii A conformational library of ligands from the PDB, linking the realms of proteins and small molecules.

  2. Analysis of the optimal design strategy of a magnetorheological smart structure

    International Nuclear Information System (INIS)

    Yang Likang; Duan Fubin; Eriksson, Anders

    2008-01-01

    The exploration of magnetorheological (MR) fluid applications involves many fields. During the phase of theory analysis and experimental investigations, most of the research has been in developing primary products, and the design method is becoming important in MR device design. To establish general design guidelines, not with the usual MR smart structure design method which just complies with the presented yield stress of smart materials, in this paper, an MR smart structure design method is presented according to the whole requirement of smart structure characteristics. In other words, the smart structure design method does not just execute its optimization according to the presented MR fluid features, and it can customize or select the properties of MR fluid obeying the whole system requirements. Besides the usual magnetic circuit design analysis, the MR fluid physical content, such as the volume fraction of particles, was incorporated into the design parameters of the products. At the same time, by utilizing the structural parameters, the response time of MR devices was considered by analyzing the time constant of electromagnetic coils inside the MR devices too. Additionally, the power consumption relevant to transient useful power was analyzed for structure design. Finally, based on the computation of the magnetic field in a finite element (COMSOL multiphysics), all these factors were illustrated in an MR fluid valve based on the results of a magnetic circuit design

  3. Concurrent semantics for structured design methods

    OpenAIRE

    Nixon, Patrick

    1996-01-01

    Also in Jelly, I., Gordon, I., & Groll, P. Software Engineering for Parallel and Distributed Systems. London: Chapman Hall. Design methods can be ambiguous due to di#11;erent interpretations of symbols or concepts. This paper presents a formal semantics for the Ward/Mellor Structured Analysis Method for Real Time systems. These semantics ensures that an unambiguous meaning can be attributed to a particular design. Speci#12;cally, it ensures that concurrent and real-time propert...

  4. Research on the Multilayer Free Damping Structure Design

    Directory of Open Access Journals (Sweden)

    Jie Meng

    2018-01-01

    Full Text Available The aim of this paper is to put forward a design model for multilayer free damping structures. It sets up a mathematical model and deduces the formula for its structural loss factor η and analyzes the change rules of η along with the change rate of the elastic modulus ratio q1, the change rate of the loss factors of damping materials q2, and the change rate of the layer thickness ratio q3 under the condition with the layer thickness ratio h2=1,3,5,10 by software MATLAB. Based on three specific damping structures, the mathematical model is verified through ABAQUS. With the given structural loss factor (η≥2 and the layer number (n=3,4,5,6, 34 kinds of multilayer free damping structures are then presented. The study is meant to provide a more flexible and more diverse design solution for multilayer free damping structures.

  5. Gamma oscillation maintains stimulus structure-dependent synchronization in cat visual cortex.

    Science.gov (United States)

    Samonds, Jason M; Bonds, A B

    2005-01-01

    Visual cortical cells demonstrate both oscillation and synchronization, although the underlying causes and functional significance of these behaviors remain uncertain. We simultaneously recorded single-unit activity with microelectrode arrays in supragranular layers of area 17 of cats paralyzed and anesthetized with propofol and N(2)O. Rate-normalized autocorrelograms of 24 cells reveal bursting (100%) and gamma oscillation (63%). Renewal density analysis, used to explore the source of oscillation, suggests a contribution from extrinsic influences such as feedback. However, a bursting refractory period, presumably membrane-based, could also encourage oscillatory firing. When we investigated the source of synchronization for 60 cell pairs we found only moderate correlation of synchrony with bursts and oscillation. We did, nonetheless, discover a possible functional role for oscillation. In all cases of cross-correlograms that exhibited oscillation, the strength of the synchrony was maintained throughout the stimulation period. When no oscillation was apparent, 75% of the cell pairs showed decay in their synchronization. The synchrony between cells is strongly dependent on similar response onset latencies. We therefore propose that structured input, which yields tight organization of latency, is a more likely candidate for the source of synchronization than oscillation. The reliable synchrony at response onset could be driven by spatial and temporal correlation of the stimulus that is preserved through the earlier stages of the visual system. Oscillation then contributes to maintenance of the synchrony to enhance reliable transmission of the information for higher cognitive processing.

  6. Conceptual design and structural analysis of the CFETR cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen, E-mail: wangzhen@ipp.ac.cn; Yang, Qingxi; Xu, Hao

    2015-04-15

    Highlights: • The CFETR cryostat is a large vacuum container surrounding the tokamak basic machine. • Two conceptual design schemes of CFETR cryostat were proposed. • A series of structural analyses were performed for cryostat cylinder. • The design of base section is feasible for cryostat. - Abstract: CFETR (China Fusion Engineering Test Reactor) is a new tokamak device, one important component of which is cryostat and it is now under designing by China national integration design group. The CFETR cryostat is a large single-wall vacuum-tight container surrounding the tokamak basic machine, which consists of top dome-shape lid, two cylindrical sections with circumferential stiffening ribs and bottom flat head. It shall provide a vacuum environment (10{sup −4} Pa) for the operation of the superconducting coils and all the loads that derive from cryostat itself and inner components should be transferred to the floor of tokamak pit. In this paper, two schemes of cryostat were proposed and then the structural analyses including seismic response analysis, elastic stress analysis and buckling analysis were performed to validate the conceptual design of CFETR cryostat. Based on the analysis results, it can be inferred that the cryostat II has a higher stiffness and stability. The structure of cryostat I needs to be improved against buckling and it is more difficult to manufacture for cryostat II due to its complex curved surface compared with cryostat I. Finally, the structural analysis for base section was performed and the design of main support was proved to be feasible. The design of CFETR cryostat has not been finalized and structural optimization still need to be proceeded based on the analysis results.

  7. Conceptual design and structural analysis of the CFETR cryostat

    International Nuclear Information System (INIS)

    Wang, Zhen; Yang, Qingxi; Xu, Hao

    2015-01-01

    Highlights: • The CFETR cryostat is a large vacuum container surrounding the tokamak basic machine. • Two conceptual design schemes of CFETR cryostat were proposed. • A series of structural analyses were performed for cryostat cylinder. • The design of base section is feasible for cryostat. - Abstract: CFETR (China Fusion Engineering Test Reactor) is a new tokamak device, one important component of which is cryostat and it is now under designing by China national integration design group. The CFETR cryostat is a large single-wall vacuum-tight container surrounding the tokamak basic machine, which consists of top dome-shape lid, two cylindrical sections with circumferential stiffening ribs and bottom flat head. It shall provide a vacuum environment (10 −4 Pa) for the operation of the superconducting coils and all the loads that derive from cryostat itself and inner components should be transferred to the floor of tokamak pit. In this paper, two schemes of cryostat were proposed and then the structural analyses including seismic response analysis, elastic stress analysis and buckling analysis were performed to validate the conceptual design of CFETR cryostat. Based on the analysis results, it can be inferred that the cryostat II has a higher stiffness and stability. The structure of cryostat I needs to be improved against buckling and it is more difficult to manufacture for cryostat II due to its complex curved surface compared with cryostat I. Finally, the structural analysis for base section was performed and the design of main support was proved to be feasible. The design of CFETR cryostat has not been finalized and structural optimization still need to be proceeded based on the analysis results

  8. Optimized emission in nanorod arrays through quasi-aperiodic inverse design.

    Science.gov (United States)

    Anderson, P Duke; Povinelli, Michelle L

    2015-06-01

    We investigate a new class of quasi-aperiodic nanorod structures for the enhancement of incoherent light emission. We identify one optimized structure using an inverse design algorithm and the finite-difference time-domain method. We carry out emission calculations on both the optimized structure as well as a simple periodic array. The optimized structure achieves nearly perfect light extraction while maintaining a high spontaneous emission rate. Overall, the optimized structure can achieve a 20%-42% increase in external quantum efficiency relative to a simple periodic design, depending on material quality.

  9. Nonlinear Shaping Architecture Designed with Using Evolutionary Structural Optimization Tools

    Science.gov (United States)

    Januszkiewicz, Krystyna; Banachowicz, Marta

    2017-10-01

    The paper explores the possibilities of using Structural Optimization Tools (ESO) digital tools in an integrated structural and architectural design in response to the current needs geared towards sustainability, combining ecological and economic efficiency. The first part of the paper defines the Evolutionary Structural Optimization tools, which were developed specifically for engineering purposes using finite element analysis as a framework. The development of ESO has led to several incarnations, which are all briefly discussed (Additive ESO, Bi-directional ESO, Extended ESO). The second part presents result of using these tools in structural and architectural design. Actual building projects which involve optimization as a part of the original design process will be presented (Crematorium in Kakamigahara Gifu, Japan, 2006 SANAA“s Learning Centre, EPFL in Lausanne, Switzerland 2008 among others). The conclusion emphasizes that the structural engineering and architectural design mean directing attention to the solutions which are used by Nature, designing works optimally shaped and forming their own environments. Architectural forms never constitute the optimum shape derived through a form-finding process driven only by structural optimization, but rather embody and integrate a multitude of parameters. It might be assumed that there is a similarity between these processes in nature and the presented design methods. Contemporary digital methods make the simulation of such processes possible, and thus enable us to refer back to the empirical methods of previous generations.

  10. Seamless service: maintaining momentum.

    Science.gov (United States)

    Grinstead, N; Timoney, R

    1994-01-01

    Describes the process used by the Mater Infirmorum Hospital in Belfast in 1992-1994 to achieve high quality care (Seamless Service), motivate staff to deliver and measure performance. Aims of the project include focusing the organization on the customer, improving teamwork and motivation at all levels. After comprehensive data collection from GPs, patients and staff management forums developed a full TQM strategy to gain support and maintain momentum including innovative staff events (every staff member was given the opportunity to attend) where multilevel, multidisciplinary workshops enabled staff to design customer care standards, develop teams and lead customer-driven change.

  11. Design and analysis of a lightweight prestressed antenna back-up structure

    Science.gov (United States)

    Ma, Zengxiang; Yang, Dehua; Cheng, Jingquan

    2010-07-01

    The planned Square Kilometer Array (SKA) includes three thousand 15m antennas. The radio flux density from the sun is stronger, so that a solar array, such as Frequency-Agile Solar Radiotelescope (FASR) with hundreds of dishes can have smaller dish size. Therefore, light weight, low cost dish design is of vital importance. The reflecting surface supported by an antenna back-up structure, generally, should have an RMS surface error less than λ/20 (λ. is the operating wavelength). For resisting gravitational, wind, and ice-snow loadings, an antenna dish also requires reasonable mode frequencies. In this paper, different low cost small or medium back-up structure designs are discussed, including double-layer truss design and prestressed dish design. Based on discussion, an innovative light weight, prestressed back-up structure is proposed for small or medium aperture antennas. Example of a small 4.5m aperture dish design working below 3GHz is presented. This design is a one-layer prestressed truss structure with low weight, ease installation, and low manufacture cost. Structural analysis and modal extraction results show the structure is much stiffer than the same structure without prestressed loading.

  12. Structural evaluation in the design of electrorefiner

    International Nuclear Information System (INIS)

    Wu, Ting-shu; Blomquist, C.A.; Herceg, J.E.

    1995-01-01

    The electrorefiner is one piece of the process equipment for the Integral Fast Reactor (IFR) program. Its principal components include a primary vessel, a heater assembly, a support-structure assembly, a cover assembly, four electrode assemblies, four elevator and rotator assemblies, and a cover-gas system. In addition, there are various miscellaneous tools and fixtures. The electrorefiner is to be installed within an existing enclosed cell. Design requirements dictate that all equipment within the cell should not be anchored. To assess the integrity of the electrorefiner during operational and seismic loads, extensive structural analyses have been performed. This paper presents some of the major structural evaluations for the electrorefiner and its auxiliary equipment. Results show that the design code requirements are satisfied, and the integrity of the electrorefiner will not be jeopardized during operational and seismic loadings

  13. Structured self-management education maintained over two years in insufficiently controlled type 2 diabetes patients: the ERMIES randomised trial in Reunion Island

    Directory of Open Access Journals (Sweden)

    Debussche Xavier

    2012-08-01

    Full Text Available Abstract Background Self-management education programs can reduce the complications and mortality in type 2 diabetes. The need to structure these programs for outpatient and community care with a vision for long-term maintenance has been recognised. In Reunion Island, an area affected by epidemiological and nutritional transition, diabetes affects 18% of the adult population over 30 years, with major social disparities, poor glycaemic control and frequent cardiovascular complications. Methods/Design ERMIES is a randomised controlled trial designed to test the efficacy of a long-term (2 years structured group self management educational intervention in improving blood glucose in non-recent, insufficiently controlled diabetes. After an initial structured educational cycle carried out blind for the intervention arm, patients will be randomised in two parallel group arms of 120 subjects: structured on-going group with educational intervention maintained over two years, versus only initial education. Education sessions are organised through a regional diabetes management network, and performed by trained registered nurses at close quarters. The educational approach is theoretically based (socio-constructivism, social contextualisation, empowerment, action planning and reproducible, thanks to curricula and handouts for educators and learners. The subjects will be recruited from five hospital outpatient settings all over Reunion Island. The main eligibility criteria include: age ≥18 years, type 2 diabetes treated for more than one year, HbA1c ≥ 7.5% for ≥3 months, without any severe evolving complication (ischaemic or proliferative retinopathy, severe renal insufficiency, coronaropathy or evolving foot lesion, and absence of any major physical or cognitive handicap. The primary outcome measure is HbA1c evolution between inclusion and 2 years. The secondary outcome measures include anthropometric indicators, blood pressure, lipids

  14. Merging building maintainability and sustainability assessment: A multicriteria decision making approach

    Science.gov (United States)

    Asmone, A. S.; Chew, M. Y. L.

    2018-02-01

    Accurately predicting maintainability has been a challenge due to the complex nature of buildings, yet it is an important research area with a rising necessity. This paper explores the use of multicriteria decision making approach for merging maintainability and sustainability elements into building grading systems to attain long-term sustainability in the building industry. The paper conducts a systematic literature review on multicriteria decision analysis approach and builds on the existing knowledge of maintainability to achieve this. A conceptual framework is developed to bridge the gap between building operations and maintenance with green facilities management by forecasting green maintainability at the design stage.

  15. Development of a design basis tornado and structural design criteria for the Nevada Test Site, Nevada. Final report

    International Nuclear Information System (INIS)

    McDonald, J.R.; Minor, J.E.; Mehta, K.C.

    1975-06-01

    In order to evaluate the ability of critical facilities at the Nevada Test Site to withstand the possible damaging effects of extreme winds and tornadoes, parameters for the effects of tornadoes and extreme winds and structural design criteria for the design and evaluation of structures were developed. The meteorological investigations conducted are summarized, and techniques used for developing the combined tornado and extreme wind risk model are discussed. The guidelines for structural design include methods for calculating pressure distributions on walls and roofs of structures and methods for accommodating impact loads from wind-driven missiles. Calculations for determining the design loads for an example structure are included

  16. LOADS INTERACTION DOMAINS METHODOLOGY FOR THE DESIGN OF STEEL GREENHOUSE STRUCTURES

    Directory of Open Access Journals (Sweden)

    Sergio Castellano

    2007-03-01

    Full Text Available Aim of this research is to develop a design methodology which correlates main structural design parameters, whose production is characterised by high levels of standardization, such as the height of gutter or the distance between frames, with actions on the greenhouse. The methodology, based on the use of charts and abacus, permits a clear and a direct interpretation of the structural response to design load combinations and allows the design of structural improvements with the aim of the optimization of the ratio benefits (structural strength/costs. The study of structural interaction domains allowed a clear and a direct interpretation of the structural response to design load combinations. The diagrams highlight not only if the structure fulfils the standard requirements but also the safety levels with respect to design load combinations and allow the structural designer how to operate in order to optimize the structural response with standard requirements achieving the best ratio benefits (structural safety/ costs. The methodology was developed basing on criteria assigned by EN13031 on two different kinds of greenhouse structures: an arched greenhouse with a film plastic covering and a duo pitched roof greenhouse cover with rigid plastic membranes. Structural interaction domains for arched greenhouse showed a better capability of the structure to resist to vertical loads then to horizontal one. Moreover, the climatic load distribution on the structure assigned by EN13031 is such that the combination of climatic actions is less dangerous for the structure then their individual application. Whilst, duo pitched roof steel greenhouse interaction domains, showed a better capability of the structure to resist to vertical loads then to horizontal one and that, in any case, the serviceability limit states analysis is more strict then the ULS one. The shape of structural domains highlighted that the combination of actions is more dangerous for the

  17. Hiding the weakness: structural robustness using origami design

    Science.gov (United States)

    Liu, Bin; Santangelo, Christian; Cohen, Itai

    2015-03-01

    A non-deformable structure is typically associated with infinitely stiff materials that resist distortion. In this work, we designed a structure with a region that will not deform even though it is made of arbitrarily compliant materials. More specifically, we show that a foldable sheet with a circular hole in the middle can be deformed externally with the internal geometry of the hole unaffected. Instead of strengthening the local stiffness, we fine tune the crease patterns so that all the soft modes that can potentially deform the internal geometry are not accessible through strain on the external boundary. The inner structure is thus protected by the topological mechanics, based on the detailed geometry of how the vertices in the foldable sheet are connected. In this way, we isolate the structural robustness from the mechanical properties of the materials, which introduces an extra degree of freedom for structural design.

  18. Practical design of magnetostatic structure using numerical simulation

    CERN Document Server

    Wang, Qiuliang

    2013-01-01

    Covers the practical numerical method for the analysis and design of magnets Extensively covers the magnet design and computation aspects from theories to practical applications, emphasizing design methods of practical structures such as superconducting, electromagnetic and permanent magnet for use in various scientific instruments, industrial processing, biomedicine and special electrical equipments. The computations cover a wide range of numerical techniques and analytical derivation to efficiently provide solutions to complicated problems that are often encountered in practice, where simple analytical calculations are no longer adequate. Chapters include: Introduction of Magnet Technology, Magnetostatic Equation for the Magnet Structure, Finite Element Analysis for Magnetostatic Field, Integral Method for Magnetostatic Field, Numerical Method of Solenoid Coils Design, Series Analysis of Axially Symmetric Magnetic Field, Magnets with High Magnetic Field and High Homogeneity, Permanent Magnet and its App...

  19. Fully probabilistic design: the way for optimizing of concrete structures

    Directory of Open Access Journals (Sweden)

    I. Laníková

    Full Text Available Some standards for the design of concrete structures (e.g. EC2 and the original ČSN 73 1201-86 allow a structure to be designed by several methods. This contribution documents the fact that even if a structure does not comply with the partial reliability factor method, according to EC2, it can satisfy the conditions during the application of the fully probabilistic approach when using the same standard. From an example of the reliability of a prestressed spun concrete pole designed by the partial factor method and fully probabilistic approach according to the Eurocode it is evident that an expert should apply a more precise (though unfortunately more complicated method in the limiting cases. The Monte Carlo method, modified by the Latin Hypercube Sampling (LHS method, has been used for the calculation of reliability. Ultimate and serviceability limit states were checked for the partial factor method and fully probabilistic design. As a result of fully probabilistic design it is possible to obtain a more efficient design for a structure.

  20. Insert Design and Manufacturing for Foam-Core Composite Sandwich Structures

    Science.gov (United States)

    Lares, Alan

    Sandwich structures have been used in the aerospace industry for many years. The high strength to weight ratios that are possible with sandwich constructions makes them desirable for airframe applications. While sandwich structures are effective at handling distributed loads such as aerodynamic forces, they are prone to damage from concentrated loads at joints or due to impact. This is due to the relatively thin face-sheets and soft core materials typically found in sandwich structures. Carleton University's Uninhabited Aerial Vehicle (UAV) Project Team has designed and manufactured a UAV (GeoSury II Prototype) which features an all composite sandwich structure fuselage structure. The purpose of the aircraft is to conduct geomagnetic surveys. The GeoSury II Prototype serves as the test bed for many areas of research in advancing UAV technologies. Those areas of research include: low cost composite materials manufacturing, geomagnetic data acquisition, obstacle detection, autonomous operations and magnetic signature control. In this thesis work a methodology for designing and manufacturing inserts for foam-core sandwich structures was developed. The results of this research work enables a designer wishing to design a foam-core sandwich airframe structure, a means of quickly manufacturing optimized inserts for the safe introduction of discrete loads into the airframe. The previous GeoSury II Prototype insert designs (v.1 & v.2) were performance tested to establish a benchmark with which to compare future insert designs. Several designs and materials were considered for the new v.3 inserts. A plug and sleeve design was selected, due to its ability to effectively transfer the required loads to the sandwich structure. The insert material was chosen to be epoxy, reinforced with chopped carbon fibre. This material was chosen for its combination of strength, low mass and also compatibility with the face-sheet material. The v.3 insert assembly is 60% lighter than the

  1. Structural test of the parameterized-backbone method for protein design.

    Science.gov (United States)

    Plecs, Joseph J; Harbury, Pehr B; Kim, Peter S; Alber, Tom

    2004-09-03

    Designing new protein folds requires a method for simultaneously optimizing the conformation of the backbone and the side-chains. One approach to this problem is the use of a parameterized backbone, which allows the systematic exploration of families of structures. We report the crystal structure of RH3, a right-handed, three-helix coiled coil that was designed using a parameterized backbone and detailed modeling of core packing. This crystal structure was determined using another rationally designed feature, a metal-binding site that permitted experimental phasing of the X-ray data. RH3 adopted the intended fold, which has not been observed previously in biological proteins. Unanticipated structural asymmetry in the trimer was a principal source of variation within the RH3 structure. The sequence of RH3 differs from that of a previously characterized right-handed tetramer, RH4, at only one position in each 11 amino acid sequence repeat. This close similarity indicates that the design method is sensitive to the core packing interactions that specify the protein structure. Comparison of the structures of RH3 and RH4 indicates that both steric overlap and cavity formation provide strong driving forces for oligomer specificity.

  2. Models and Methods for Structural Topology Optimization with Discrete Design Variables

    DEFF Research Database (Denmark)

    Stolpe, Mathias

    in the conceptual design phase to find innovative designs. The strength of topology optimization is the capability of determining both the optimal shape and the topology of the structure. In some cases also the optimal material properties can be determined. Optimal structural design problems are modeled...... such as bridges, airplanes, wind turbines, cars, etc. Topology optimization is a collection of theory, mathematical models, and numerical methods and is often used in the conceptual design phase to find innovative designs. The strength of topology optimization is the capability of determining both the optimal......Structural topology optimization is a multi-disciplinary research field covering optimal design of load carrying mechanical structures such as bridges, airplanes, wind turbines, cars, etc. Topology optimization is a collection of theory, mathematical models, and numerical methods and is often used...

  3. Structural Integrity Evaluation of Containment Vessel under Severe Accident for PGSFR

    International Nuclear Information System (INIS)

    Lee, Seong-Hyeon; Koo, Gyeong-Hoi; Kim, Sung-Kyun

    2016-01-01

    This paper provides structural integrity evaluation results of CV of the PGSFR(Prototype Gen-IV Sodium Fast Reactor) under severe accident through transient analysis. The evaluation was carried out according to ASME B and PV Code Sec. III-Subsection NH rule. Structural integrity of CV was evaluated through transient analysis of structure in case of severe accident. Stress evaluation results for selected evaluation sections satisfy design criteria of ASME B and PV Code Sec. III Subsection NH. The transient load condition of normal operation will considered in the future work. The purpose of RVCS is to maintain the integrity of concrete structure during normal power operation. Therefore RVCS should be designed to keep the temperature of concrete surface under design limit and to minimize heat loss through CV(Containment Vessel). And in case of severe accident, the integrity of reactor structure and concrete structure should be maintained. Therefore RVCS should be designed to satisfy ASME Level D service limits. When RVCS works with breakdown of DHRS after severe accident, the temperature change of inner and outer surface of CV over time can affect structural integrity of CV. To verify the structural integrity, it is necessary to perform transient analysis of CV structure under changing temperature over time

  4. Design of sodium cooled reactor systems and components for maintainability

    International Nuclear Information System (INIS)

    Carr, R.W.; Charnock, H.O.; McBride, J.P.

    1978-09-01

    Special maintenability problems associated with the design and operation of sodium cooled reactor plants are discussed. Some examples of both good and bad design practice are introduced from the design of the FFTF plant and other plants. Subjects include design for drainage, cleaning, decontamination, access, component removal, component disassembly and reassembly, remote tooling, jigs, fixtures, and design for minimizing radiation exposure of maintenance personnel. Check lists are included

  5. Recommendations to the NRC on human engineering guidelines for nuclear power plant maintainability

    Energy Technology Data Exchange (ETDEWEB)

    Badalamente, R.V.; Fecht, B.A.; Blahnik, D.E.; Eklund, J.D.; Hartley, C.S.

    1986-03-01

    This document contains human engineering guidelines which can enhance the maintainability of nuclear power plants. The guidelines have been derived from general human engineering design principles, criteria, and data. The guidelines may be applied to existing plants as well as to plants under construction. They apply to nuclear power plant systems, equipment and facilities, as well as to maintenance tools and equipment. The guidelines are grouped into seven categories: accessibility and workspace, physical environment, loads and forces, maintenance facilities, maintenance tools and equipment, operating equipment design, and information needs. Each chapter of the document details specific maintainability problems encountered at nuclear power plants, the safety impact of these problems, and the specific maintainability design guidelines whose application can serve to avoid these problems in new or existing plants.

  6. Recommendations to the NRC on human engineering guidelines for nuclear power plant maintainability

    International Nuclear Information System (INIS)

    Badalamente, R.V.; Fecht, B.A.; Blahnik, D.E.; Eklund, J.D.; Hartley, C.S.

    1986-03-01

    This document contains human engineering guidelines which can enhance the maintainability of nuclear power plants. The guidelines have been derived from general human engineering design principles, criteria, and data. The guidelines may be applied to existing plants as well as to plants under construction. They apply to nuclear power plant systems, equipment and facilities, as well as to maintenance tools and equipment. The guidelines are grouped into seven categories: accessibility and workspace, physical environment, loads and forces, maintenance facilities, maintenance tools and equipment, operating equipment design, and information needs. Each chapter of the document details specific maintainability problems encountered at nuclear power plants, the safety impact of these problems, and the specific maintainability design guidelines whose application can serve to avoid these problems in new or existing plants

  7. Structural Design and Sizing of a Metallic Cryotank Concept

    Science.gov (United States)

    Sleight, David W.; Martin, Robert A.; Johnson, Theodore F.

    2013-01-01

    This paper presents the structural design and sizing details of a 33-foot (10 m) metallic cryotank concept used as the reference design to compare with the composite cryotank concepts developed by industry as part of NASA s Composite Cryotank Technology Development (CCTD) Project. The structural design methodology and analysis results for the metallic cryotank concept are reported in the paper. The paper describes the details of the metallic cryotank sizing assumptions for the baseline and reference tank designs. In particular, the paper discusses the details of the cryotank weld land design and analyses performed to obtain a reduced weight metallic cryotank design using current materials and manufacturing techniques. The paper also discusses advanced manufacturing techniques to spin-form the cryotank domes and compares the potential mass savings to current friction stir-welded technology.

  8. Study on advanced structural design for commercialized fast breeder reactors

    International Nuclear Information System (INIS)

    Morishita, Masaki; Aoto, Kazumi; Kasahara, Naoto; Asayama, Tai

    2002-01-01

    Japan Nuclear Cycle Development Institute (JNC) and Japan Atomic Power Company (JAPC) launched joint research programs on structural design and three-dimensional seismic isolation technologies, as part of the supporting R and D activities for the feasibility studies on commercialized fast breeder reactor cycle systems. A research project by JAPC under the auspices of the Ministry of Economy, Trade, and Industry (METI) with technical support by JNC is included in this joint study. This report contains the results of the research on the structural design technology. The research scope was identified as (1) System Based Code for Integrity, (2) FDS (FBR Design Standard), and (3) Standardization of new material, and the results of this year's studies are summarized as follows. (1) System Based Code for Integrity. Requirements that a structural design standard must fulfill for enhanced reliability and economy were clarified. Based on this, the authors began to develop the system-based code for integrity. A structural reliability based design approach was proposed as a basic concept for an integrated evaluation of structural integrity. A system consisting of a supreme code and partial codes was proposed. Technologies and engineering tools that are necessary to materialize this code were clarified and research and development was begun. (2) FDS(FBR Design Standard). A rational design approach against thermal loads was proposed. Applicable area of inelastic analysis methods was investigated to develop inelastic analysis guide. A new design system which realizes feedback from structural to thermal hydraulic designs was proposed with a total analysis method of thermal hydraulic and mechanical behaviors. (3) Standardization of new material. Current status of development of high-chromium ferritic steels was investigated. Those steels have excellent high temperature strength and thermal properties. The authors proposed material specifications to apply those steels to structures

  9. Study on advanced structural design for commercialized fast breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Masaki; Aoto, Kazumi; Kasahara, Naoto; Asayama, Tai [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center; Sagayama, Yutaka; Dozaki, Koji; Tanaka, Yoshihiko [Japan Atomic Power Co., Research and Development Department, Tokyo (Japan)

    2002-01-01

    Japan Nuclear Cycle Development Institute (JNC) and Japan Atomic Power Company (JAPC) launched joint research programs on structural design and three-dimensional seismic isolation technologies, as part of the supporting R and D activities for the feasibility studies on commercialized fast breeder reactor cycle systems. A research project by JAPC under the auspices of the Ministry of Economy, Trade, and Industry (METI) with technical support by JNC is included in this joint study. This report contains the results of the research on the structural design technology. The research scope was identified as (1) System Based Code for Integrity, (2) FDS (FBR Design Standard), and (3) Standardization of new material, and the results of this year's studies are summarized as follows. (1) System Based Code for Integrity. Requirements that a structural design standard must fulfill for enhanced reliability and economy were clarified. Based on this, the authors began to develop the system-based code for integrity. A structural reliability based design approach was proposed as a basic concept for an integrated evaluation of structural integrity. A system consisting of a supreme code and partial codes was proposed. Technologies and engineering tools that are necessary to materialize this code were clarified and research and development was begun. (2) FDS(FBR Design Standard). A rational design approach against thermal loads was proposed. Applicable area of inelastic analysis methods was investigated to develop inelastic analysis guide. A new design system which realizes feedback from structural to thermal hydraulic designs was proposed with a total analysis method of thermal hydraulic and mechanical behaviors. (3) Standardization of new material. Current status of development of high-chromium ferritic steels was investigated. Those steels have excellent high temperature strength and thermal properties. The authors proposed material specifications to apply those steels to

  10. MICRONEEDLE STRUCTURE DESIGN AND OPTIMIZATION USING GENETIC ALGORITHM

    Directory of Open Access Journals (Sweden)

    N. A. ISMAIL

    2015-07-01

    Full Text Available This paper presents a Genetic Algorithm (GA based microneedle design and analysis. GA is an evolutionary optimization technique that mimics the natural biological evolution. The design of microneedle structure considers the shape of microneedle, material used, size of the array, the base of microneedle, the lumen base, the height of microneedle, the height of the lumen, and the height of the drug container or reservoir. The GA is executed in conjunction with ANSYS simulation system to assess the design specifications. The GA uses three operators which are reproduction, crossover and mutation to manipulate the genetic composition of the population. In this research, the microneedle is designed to meet a number of significant specifications such as nodal displacement, strain energy, equivalent stress and flow rate of the fluid / drug that flow through its channel / lumen. A comparison study is conducted to investigate the design of microneedle structure with and without the implementation of GA model. The results showed that GA is able to optimize the design parameters of microneedle and is capable to achieve the required specifications with better performance.

  11. Intensity-demodulated torsion sensor based on thin-core polarization-maintaining fiber.

    Science.gov (United States)

    Kang, Xuexue; Zhang, Weigang; Zhang, Yanxin; Yang, Jiang; Chen, Lei; Kong, Lingxin; Zhang, Yunshan; Yu, Lin; Yan, Tieyi; Geng, Pengcheng

    2018-05-01

    An intensity-demodulated torsion sensor is designed and realized, which consists of a polarization ring as the sensing part and a section of thin-core polarization-maintaining fiber as the demodulation part. An intensity map of a sinusoidal change can be obtained at some specific wavelengths, and the experimental results correspond to the theoretical analysis well. The maximum sensitivity is about 0.29 dB/deg at the wavelength of 1584.6 nm, and the minimum sensitivity is about 0.10 dB/deg at the wavelength of 1510.2 nm. Meanwhile, the temperature characteristic is measured in the experiment. More broadly, the proposed structure can be used in an integrated smart device for loose-screw detection in devices in aeronautics and astronautics.

  12. Artificial neural networks aided conceptual stage design of water harvesting structures

    Directory of Open Access Journals (Sweden)

    Vinay Chandwani

    2016-09-01

    Full Text Available The paper presents artificial neural networks (ANNs based methodology for ascertaining the structural parameters of water harvesting structures (WHS at the conceptual stage of design. The ANN is trained using exemplar patterns generated using an in-house MSExcel based design program, to draw a functional relationship between the five inputs design parameters namely, peak flood discharge, safe bearing capacity of strata, length of structure, height of structure and silt factor and four outputs namely, top width, bottom width, foundation depth and flood lift representing the structural parameters of WHS. The results of the study show that, the structural parameters of the WHS predicted using ANN model are in close agreement with the actual field parameters. The versatility of ANN to map complex or complex unknown relationships has been proven in the study. A parametric sensitivity study is also performed to assess the most significant design parameter. The study holistically presents a neural network based decision support tool that can be used to accurately estimate the major design parameters of the WHS at the conceptual stage of design in quick time, aiding the engineer-in-charge to conveniently forecast the budget requirements and minimize the labor involved during the subsequent phases of analysis and design.

  13. Design development of graphite primary structures enables SSTO success

    Science.gov (United States)

    Biagiotti, V. A.; Yahiro, J. S.; Suh, Daniel E.; Hodges, Eric R.; Prior, Donald J.

    1997-01-01

    This paper describes the development of a graphite composite wing and a graphite composite intertank primary structure for application toward Single-Stage to Orbit space vehicles such as those under development in NASA's X-33/Reusable Launch Vehicle (RLV) Program. The trade study and designs are based on a Rockwell vertical take-off and horizontal landing (VTHL) wing-body RLV vehicle. Northrop Grumman's approach using a building block development technique is described. Composite Graphite/Bismaleimide (Gr/BMI) material characterization test results are presented. Unique intertank and wing composite subcomponent test article designs are described and test results to date are presented. Wing and intertank Full Scale Section Test Article (FSTA) objectives and designs are outlined. Trade studies, supporting building block testing, and FSTA demonstrations combine to develop graphite primary structure composite technology that enables developing X-33/RLV design programs to meet critical SSTO structural weight and operations performance criteria.

  14. Vibration Antiresonance Design for a Spacecraft Multifunctional Structure

    Directory of Open Access Journals (Sweden)

    Dong-Xu Li

    2017-01-01

    Full Text Available Spacecraft must withstand rigorous mechanical environment experiences such as acceleration, noise, vibration, and shock during the process of launching, satellite-vehicle separation, and so on. In this paper, a new spacecraft multifunctional structure concept designed by us is introduced. The multifunctional structure has the functions of not only load bearing, but also vibration reduction, energy source, thermal control, and so on, and we adopt a series of viscoelastic parts as connections between substructures. Especially in this paper, a vibration antiresonance design method is proposed to realize the vibration reduction. The complex zero-point equations of the vibration system are firstly established, and then the vibration antiresonance design for the system is achieved. For solving the difficulties due to viscoelastic characteristics of the connecting parts, we present the determining formulas to obtain the structural parameters, so that the complex zero-point equations can be satisfied. Numerical simulation and ground experiment demonstrate the correctness and effectiveness of the proposed method. This method can solve the structural vibration control problem under the function constraints of load bearing and energy supplying and will expand the performance of spacecraft functional modules.

  15. Structure based design of 11β-HSD1 inhibitors.

    Science.gov (United States)

    Singh, Suresh; Tice, Colin

    2010-11-01

    Controlling elevated tissue-specific levels of cortisol may provide a novel therapeutic approach for treating metabolic syndrome. This concept has spurred large scale medicinal chemistry efforts in the pharmaceutical industry for the design of 11β-HSD1 inhibitors. High resolution X-ray crystal structures of inhibitors in complex with the enzyme have facilitated the structure-based design of diverse classes of molecules. A summary of binding modes, trends in structure-activity relationships, and the pharmacodynamic data of inhibitors from each class is presented.

  16. A Morphogenetic Design Approach with Embedded Structural Analysis

    DEFF Research Database (Denmark)

    Jensen, Mads Brath; Kirkegaard, Poul Henning; Holst, Malene Kirstine

    2010-01-01

    The present paper explores a morphogenetic design approach with embedded structural analysis for architectural design. A material system based on a combined space truss and membrane system has been derived as a growth system with inspiration from natural growth of plants. The structural system...... is capable of adding new elements based on a structural analysis of the existing components and their internal stress levels. A GA decision-making procedure that control the generation of the growth cycles is introduced. This evaluation and generation loop is capable of successfully making decisions based...... on several, and often conflicting, inputs formulated from architectural requirements. An experiment with a tri-pyramid component has been considered, but many other space truss systems could be explored in the same manner and result in highly performative outcomes. not only with respect to the structural...

  17. Virtual design and qualification of IC backend structures

    NARCIS (Netherlands)

    Silfhout, van R.B.R.; Sluis, van der O.; Driel, van W.D.; Janssen, J.H.J.; Zhang, G.Q.

    2006-01-01

    For Integrated Circuit (IC) wafer backend development, process developers have to design robust backend structures that guarantee both functionality and reliability during waferfab processes, packaging, qualification tests and lifetime. Figure 1 shows a simplified diagram for the design (and

  18. Optimization methods in structural design

    CERN Document Server

    Rothwell, Alan

    2017-01-01

    This book offers an introduction to numerical optimization methods in structural design. Employing a readily accessible and compact format, the book presents an overview of optimization methods, and equips readers to properly set up optimization problems and interpret the results. A ‘how-to-do-it’ approach is followed throughout, with less emphasis at this stage on mathematical derivations. The book features spreadsheet programs provided in Microsoft Excel, which allow readers to experience optimization ‘hands-on.’ Examples covered include truss structures, columns, beams, reinforced shell structures, stiffened panels and composite laminates. For the last three, a review of relevant analysis methods is included. Exercises, with solutions where appropriate, are also included with each chapter. The book offers a valuable resource for engineering students at the upper undergraduate and postgraduate level, as well as others in the industry and elsewhere who are new to these highly practical techniques.Whi...

  19. Computer-Aided Design of RNA Origami Structures.

    Science.gov (United States)

    Sparvath, Steffen L; Geary, Cody W; Andersen, Ebbe S

    2017-01-01

    RNA nanostructures can be used as scaffolds to organize, combine, and control molecular functionalities, with great potential for applications in nanomedicine and synthetic biology. The single-stranded RNA origami method allows RNA nanostructures to be folded as they are transcribed by the RNA polymerase. RNA origami structures provide a stable framework that can be decorated with functional RNA elements such as riboswitches, ribozymes, interaction sites, and aptamers for binding small molecules or protein targets. The rich library of RNA structural and functional elements combined with the possibility to attach proteins through aptamer-based binding creates virtually limitless possibilities for constructing advanced RNA-based nanodevices.In this chapter we provide a detailed protocol for the single-stranded RNA origami design method using a simple 2-helix tall structure as an example. The first step involves 3D modeling of a double-crossover between two RNA double helices, followed by decoration with tertiary motifs. The second step deals with the construction of a 2D blueprint describing the secondary structure and sequence constraints that serves as the input for computer programs. In the third step, computer programs are used to design RNA sequences that are compatible with the structure, and the resulting outputs are evaluated and converted into DNA sequences to order.

  20. Containment design, performance criteria and research needs for advanced reactor designs

    International Nuclear Information System (INIS)

    Bagdi, G.; Ali, S.; Costello, J

    2004-01-01

    This paper points out some important shifts in the basic expectations in the performance requirements for containment structures and discusses the areas where the containment structure design requirements and acceptance criteria can be integrated with ultimate test based insights. Although there has not been any new reactor construction in the United States for over thirty years, several designs of evolutionary and advanced reactors have already been certified. Performance requirements for containment structures under design basis and severe accident conditions and explicit consideration of seismic margins have been used in the design certification process. In the United States, the containment structure design code is the American Society of Mechanical Engineers, Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NE-Class MC for the steel containment and Section III, Division 2 for reinforced and prestressed concrete reactor vessels and containments. This containment design code was based on the early concept of applying design basis internal pressure and associated load combinations that included the operating basis and safe shutdown earthquake ground motion. These early design criteria served the nuclear industry and the regulatory authorities in maintaining public health and safety. However, these early design criteria do not incorporate the performance criteria related to containment function in an integrated fashion. Research in large scale model testing of containment structures to failure from over pressurization and shake table testing using simulated ground motion, have produced insights related to failure modes and material behavior at failure. The results of this research provide the opportunity to integrate these observations into design and acceptance criteria. This integration process would identify 'gaps' in the present knowledge and future research needs. This knowledge base is important for gleaning risk-informed insights into

  1. Maintainability allocation

    International Nuclear Information System (INIS)

    Guyot, Christian.

    1980-06-01

    The author gives the general lines of a method for the allocation and for the evaluation of maintainability of complex systems which is to be developed during the conference. The maintainability objective is supposed to be formulated under the form of a mean time to repair (M.T.T.R.) [fr

  2. comparative study of bs 8110 and eurocode 2 in structural design ...

    African Journals Online (AJOL)

    Izuchukwu Ugwu

    To accomplish this, the analysis and design of the main structural elements ... Reinforced concrete structure is a common composite ... combination of two dissimilar but complimentary ... Design methods are formulated based on philosophies, ... LITERATURE REVIEW ... Practice for Design and Construction): It is a revision.

  3. Application of core structural design guidelines in conceptual fuel pin design

    International Nuclear Information System (INIS)

    Patel, M.R.; Stephen, J.D.

    1979-01-01

    The paper describes an application of the Draft RDT Standards F9-7, -8, and -9 to conceptual design of Fast Breeder Reactor (FBR) fuel pins. The Standards are being developed to provide guidelines for structural analysis and design of the FBR core components which have limited ductility at high fluences and are not addressed by the prevalent codes. The development is guided by a national working group sponsored by the Division of Reactor Researcch and Technology of the Department of Energy. The development program summarized in the paper includes establishment of design margins consistent with the test data and component performance requirements, and application of the design rules in various design activities. The application program insures that the quantities required for proper application of the design rules are available from the analysis methods and test data, and that the use of the same design rules in different analysis tools used at different stages of a component design producees consistent results. This is illustrated in the paper by application of the design rules in the analysis methods developed for conceptual and more detailed designs of an FBR fuel pin

  4. Design, Analysis And Realization Of Topology Optimized Concrete Structures

    DEFF Research Database (Denmark)

    Søndergaard, Asbjørn; Dombernowsky, Per

    2012-01-01

    This paper proposes the application of topology optimisation as a constitutive design tool for design and form-finding of architectural concrete structures, and realisation of these designs using large scale CNCmilling of polystyrene form-work for in situ casting....

  5. Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade

    Energy Technology Data Exchange (ETDEWEB)

    Bir, G. S.; Lawson, M. J.; Li, Y.

    2011-10-01

    This paper describes the structural design of a tidal composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-based structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.

  6. Structural evaluation in the design of electrorefiner

    International Nuclear Information System (INIS)

    Wu, T.S.; Blomquist, C.A.; Herceg, J.E.

    1995-01-01

    The electrorefiner (ER) is one piece of the process equipment for the Integral Fast Reactor (IFR) program. The ER's principal function is to perform the pyrochemical and electrochemical refining of spent and experimental fuel elements. Its principal components include a primary vessel, a heater assembly, a support-structure assembly, a cover assembly, four electrode assemblies, four elevator and rotator assemblies, and a cover-gas system. In addition, there are various miscellaneous tools and fixtures. The electrorefiner is to be installed within an existing enclosed cell. Design requirements dictate that all equipment within the cell should not be anchored. To assess the integrity of the electrorefiner during operational and seismic loads, extensive structural analyses have been performed. This paper presents some of the major structural evaluations for the electrorefiner and its auxiliary equipment. Results show that the design code requirements are satisfied, and the integrity of the electrorefiner will not be jeopardized during operational and seismic loadings

  7. A structured representation for parallel algorithm design on multicomputers

    International Nuclear Information System (INIS)

    Sun, Xian-He; Ni, L.M.

    1991-01-01

    Traditionally, parallel algorithms have been designed by brute force methods and fine-tuned on each architecture to achieve high performance. Rather than studying the design case by case, a systematic approach is proposed. A notation is first developed. Using this notation, most of the frequently used scientific and engineering applications can be presented by simple formulas. The formulas constitute the structured representation of the corresponding applications. The structured representation is simple, adequate and easy to understand. They also contain sufficient information about uneven allocation and communication latency degradations. With the structured representation, applications can be compared, classified and partitioned. Some of the basic building blocks, called computation models, of frequently used applications are identified and studied. Most applications are combinations of some computation models. The structured representation relates general applications to computation models. Studying computation models leads to a guideline for efficient parallel algorithm design for general applications. 6 refs., 7 figs

  8. High-temperature-structural design and research and development for reactor system components

    International Nuclear Information System (INIS)

    Matsumura, Makoto; Hada, Mikio

    1985-01-01

    The design of reactor system components requires high-temperature-structural design guide with the consideration of the creep effect of materials related to research and development on structural design. The high-temperature-structural design guideline for the fast prototype reactor MONJU has been developed under the active leadership by Power Reactor and Nuclear Fuel Development Corporation and Toshiba has actively participated to this work with responsibility on in-vessel components, performing research and development programs. This paper reports the current status of high-temperature-structural-design-oriented research and development programs and development of analytical system including stress-evaluation program. (author)

  9. Structural Design of HRA Database using generic task for Quantitative Analysis of Human Performance

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Hwan; Kim, Yo Chan; Choi, Sun Yeong; Park, Jin Kyun; Jung Won Dea [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This paper describes a design of generic task based HRA database for quantitative analysis of human performance in order to estimate the number of task conductions. The estimation method to get the total task conduction number using direct counting is not easy to realize and maintain its data collection framework. To resolve this problem, this paper suggests an indirect method and a database structure using generic task that enables to estimate the total number of conduction based on instructions of operating procedures of nuclear power plants. In order to reduce human errors, therefore, all information on the human errors taken by operators in the power plant should be systematically collected and examined in its management. Korea Atomic Energy Research Institute (KAERI) is carrying out a research to develop a data collection framework to establish a Human Reliability Analysis (HRA) database that could be employed as technical bases to generate human error probabilities (HEPs) and performance shaping factors (PSFs)]. As a result of the study, the essential table schema was designed to the generic task database which stores generic tasks, procedure lists and task tree structures, and other supporting tables. The number of task conduction based on the operating procedures for HEP estimation was enabled through the generic task database and framework. To verify the framework applicability, case study for the simulated experiments was performed and analyzed using graphic user interfaces developed in this study.

  10. Structural Design of HRA Database using generic task for Quantitative Analysis of Human Performance

    International Nuclear Information System (INIS)

    Kim, Seung Hwan; Kim, Yo Chan; Choi, Sun Yeong; Park, Jin Kyun; Jung Won Dea

    2016-01-01

    This paper describes a design of generic task based HRA database for quantitative analysis of human performance in order to estimate the number of task conductions. The estimation method to get the total task conduction number using direct counting is not easy to realize and maintain its data collection framework. To resolve this problem, this paper suggests an indirect method and a database structure using generic task that enables to estimate the total number of conduction based on instructions of operating procedures of nuclear power plants. In order to reduce human errors, therefore, all information on the human errors taken by operators in the power plant should be systematically collected and examined in its management. Korea Atomic Energy Research Institute (KAERI) is carrying out a research to develop a data collection framework to establish a Human Reliability Analysis (HRA) database that could be employed as technical bases to generate human error probabilities (HEPs) and performance shaping factors (PSFs)]. As a result of the study, the essential table schema was designed to the generic task database which stores generic tasks, procedure lists and task tree structures, and other supporting tables. The number of task conduction based on the operating procedures for HEP estimation was enabled through the generic task database and framework. To verify the framework applicability, case study for the simulated experiments was performed and analyzed using graphic user interfaces developed in this study.

  11. A Bayesian Network Based Adaptability Design of Product Structures for Function Evolution

    Directory of Open Access Journals (Sweden)

    Shaobo Li

    2018-03-01

    Full Text Available Structure adaptability design is critical for function evolution in product families, in which many structural and functional design factors are intertwined together with manufacturing cost, customer satisfaction, and final market sales. How to achieve a delicate balance among all of these factors to maximize the market performance of the product is too complicated to address based on traditional domain experts’ knowledge or some ad hoc heuristics. Here, we propose a quantitative product evolution design model that is based on Bayesian networks to model the dynamic relationship between customer needs and product structure design. In our model, all of the structural or functional features along with customer satisfaction, manufacturing cost, sale price, market sales, and indirect factors are modeled as random variables denoted as nodes in the Bayesian networks. The structure of the Bayesian model is then determined based on the historical data, which captures the dynamic sophisticated relationship of customer demands of a product, structural design, and market performance. Application of our approach to an electric toothbrush product family evolution design problem shows that our model allows for designers to interrogate with the model and obtain theoretical and decision support for dynamic product feature design process.

  12. Stiffness design of geometrically nonlinear structures using topology optimization

    DEFF Research Database (Denmark)

    Buhl, Thomas; Pedersen, Claus B. Wittendorf; Sigmund, Ole

    2000-01-01

    of the objective functions are found with the adjoint method and the optimization problem is solved using the Method of Moving Asymptotes. A filtering scheme is used to obtain checkerboard-free and mesh-independent designs and a continuation approach improves convergence to efficient designs. Different objective......The paper deals with topology optimization of structures undergoing large deformations. The geometrically nonlinear behaviour of the structures are modelled using a total Lagrangian finite element formulation and the equilibrium is found using a Newton-Raphson iterative scheme. The sensitivities...... functions are tested. Minimizing compliance for a fixed load results in degenerated topologies which are very inefficient for smaller or larger loads. The problem of obtaining degenerated "optimal" topologies which only can support the design load is even more pronounced than for structures with linear...

  13. Travelling wave accelerating structure design for TESLA positron injector linac

    CERN Document Server

    Jin, K; Zhou, F; Flöttmann, K

    2000-01-01

    A modified cup-like TW accelerating structure for TESLA Positron Pre-Accelerator (PPA) is designed by optimizing the structure geometry and by changing the iris thickness cell by cell in a section . This structure has high shunt-impedance and a large iris radius to meet with the requirements of high gradient and large transverse acceptance. The beam dynamics in the structure with the optimum solenoid focus field are studied. A satisfactory positron beam transmission and the beam performance at the PPA output have been obtained. In this paper the accelerating structure design is described in detail and the results are presented.

  14. Robustness Issues for Design of Innovative Timber Structures

    DEFF Research Database (Denmark)

    Hald, Frederik; Kirkegaard, Poul Henning; Sørensen, John Dalsgaard

    2013-01-01

    Robustness of structural systems has obtained a renewed interest due to a much more frequent use of advanced types of structures with limited redundancy and serious conse-quences in case of failure. The present paper summaries issues with respect to robustness of timber structures. Two different...... large span timber structures are analyzed and based on these analyses the paper presents guidelines for the future development of innovative timber struc-tures which are robust with respect to design and execution errors, unforeseen degradation and other potential hazards....

  15. Response of base isolated structure during strong ground motions beyond design earthquakes

    International Nuclear Information System (INIS)

    Yabana, Shuichi; Ishida, Katsuhiko; Shiojiri, Hiroo

    1991-01-01

    In Japan, some base isolated structures for fast breeder reactors (FBR) are tried to design. When a base isolated structure are designed, the relative displacement of isolators are generally limited so sa to be remain in linear state of those during design earthquakes. But to estimate safety margin of a base isolated structure, the response of that until the failure must be obtained experimentally to analytically during strong ground motions of beyond design earthquake. The aim of this paper is to investigate the response of a base isolated structure when the stiffness of the isolators hardens and to simulate the response during strong ground motions of beyond design earthquakes. The optimum characteristics of isolators, with which the margin of the structure are increased, are discussed. (author)

  16. Design study of blanket structure for tokamak experimental fusion reactor

    International Nuclear Information System (INIS)

    1979-11-01

    Design study of the blanket structure for JAERI Experimental Fusion Reactor (JXFR) has been carried out. Studied here were fabrication and testing of the blanket structure (blanket cells, blanket rings, piping and blanket modules), assembly and disassembly of the blanket module, and monitering and testing technique. Problems in design and fabrication of the blanket structure could be revealed. Research and development problems for the future were also disclosed. (author)

  17. Design and volume optimization of space structures

    KAUST Repository

    Jiang, Caigui; Tang, Chengcheng; Seidel, Hans-Peter; Wonka, Peter

    2017-01-01

    We study the design and optimization of statically sound and materially efficient space structures constructed by connected beams. We propose a systematic computational framework for the design of space structures that incorporates static soundness, approximation of reference surfaces, boundary alignment, and geometric regularity. To tackle this challenging problem, we first jointly optimize node positions and connectivity through a nonlinear continuous optimization algorithm. Next, with fixed nodes and connectivity, we formulate the assignment of beam cross sections as a mixed-integer programming problem with a bilinear objective function and quadratic constraints. We solve this problem with a novel and practical alternating direction method based on linear programming relaxation. The capability and efficiency of the algorithms and the computational framework are validated by a variety of examples and comparisons.

  18. Design and volume optimization of space structures

    KAUST Repository

    Jiang, Caigui

    2017-07-21

    We study the design and optimization of statically sound and materially efficient space structures constructed by connected beams. We propose a systematic computational framework for the design of space structures that incorporates static soundness, approximation of reference surfaces, boundary alignment, and geometric regularity. To tackle this challenging problem, we first jointly optimize node positions and connectivity through a nonlinear continuous optimization algorithm. Next, with fixed nodes and connectivity, we formulate the assignment of beam cross sections as a mixed-integer programming problem with a bilinear objective function and quadratic constraints. We solve this problem with a novel and practical alternating direction method based on linear programming relaxation. The capability and efficiency of the algorithms and the computational framework are validated by a variety of examples and comparisons.

  19. Bayesian Chance-Constrained Hydraulic Barrier Design under Geological Structure Uncertainty.

    Science.gov (United States)

    Chitsazan, Nima; Pham, Hai V; Tsai, Frank T-C

    2015-01-01

    The groundwater community has widely recognized geological structure uncertainty as a major source of model structure uncertainty. Previous studies in aquifer remediation design, however, rarely discuss the impact of geological structure uncertainty. This study combines chance-constrained (CC) programming with Bayesian model averaging (BMA) as a BMA-CC framework to assess the impact of geological structure uncertainty in remediation design. To pursue this goal, the BMA-CC method is compared with traditional CC programming that only considers model parameter uncertainty. The BMA-CC method is employed to design a hydraulic barrier to protect public supply wells of the Government St. pump station from salt water intrusion in the "1500-foot" sand and the "1700-foot" sand of the Baton Rouge area, southeastern Louisiana. To address geological structure uncertainty, three groundwater models based on three different hydrostratigraphic architectures are developed. The results show that using traditional CC programming overestimates design reliability. The results also show that at least five additional connector wells are needed to achieve more than 90% design reliability level. The total amount of injected water from the connector wells is higher than the total pumpage of the protected public supply wells. While reducing the injection rate can be achieved by reducing the reliability level, the study finds that the hydraulic barrier design to protect the Government St. pump station may not be economically attractive. © 2014, National Ground Water Association.

  20. Developing maintainability for tokamak fusion power systems. Phase II report. Volume II: study results

    International Nuclear Information System (INIS)

    Fuller, G.M.; Zahn, H.S.; Mantz, H.C.; Kaletta, G.R.; Waganer, L.M.; Carosella, L.A.; Conlee, J.L.

    1978-11-01

    In this second phase the impact of unscheduled maintenance, several vacuum wall arrangements, and maintenance of other reactor interfacing subsystems and maintenance equipment are added to the evaluation of the maintainability of the fusion power reactor concepts. Four concepts are normalized to common performance parameters and evaluated for their capability to achieve availability and cost of electricity goals considering both scheduled and unscheduled maintenance. The results of this evaluation are used to generate a series of maintainability design guidelines and to select the more desirable features and design options which are used to configure a preliminary reactor concept having improved maintainability

  1. Strength optimized designs of thermoelastic structures

    DEFF Research Database (Denmark)

    Pedersen, Pauli; Pedersen, Niels Leergaard

    2010-01-01

    For thermoelastic structures the same optimal design does not simultaneously lead to minimum compliance and maximum strength. Compliance may be a questionable objective and focus for the present paper is on the important aspect of strength, quantified as minimization of the maximum von Mises stre...... loads are appended....

  2. MEMS-Based Fuel Reformer with Suspended Membrane Structure

    Science.gov (United States)

    Chang, Kuei-Sung; Tanaka, Shuji; Esashi, Masayoshi

    We report a MEMS-based fuel reformer for supplying hydrogen to micro-fuel cells for portable applications. A combustor and a reforming chamber are fabricated at either side of a suspended membrane structure. This design is used to improve the overall thermal efficiency, which is a critical issue to realize a micro-fuel reformer. The suspended membrane structure design provided good thermal isolation. The micro-heaters consumed 0.97W to maintain the reaction zone of the MEMS-based fuel reformer at 200°C, but further power saving is necessary by improving design and fabrication. The conversion rate of methanol to hydrogen was about 19% at 180°C by using evaporated copper as a reforming catalyst. The catalytic combustion of hydrogen started without any assistance of micro-heaters. By feeding the fuel mixture of an equivalence ratio of 0.35, the temperature of the suspended membrane structure was maintained stable at 100°C with a combustion efficiency of 30%. In future works, we will test a micro-fuel reformer by using a micro-combustor to supply heat.

  3. Modeling the Structure and Complexity of Engineering Routine Design Problems

    NARCIS (Netherlands)

    Jauregui Becker, Juan Manuel; Wits, Wessel Willems; van Houten, Frederikus J.A.M.

    2011-01-01

    This paper proposes a model to structure routine design problems as well as a model of its design complexity. The idea is that having a proper model of the structure of such problems enables understanding its complexity, and likewise, a proper understanding of its complexity enables the development

  4. Thermo-Structural Response Caused by Structure Gap and Gap Design for Solid Rocket Motor Nozzles

    Directory of Open Access Journals (Sweden)

    Lin Sun

    2016-06-01

    Full Text Available The thermo-structural response of solid rocket motor nozzles is widely investigated in the design of modern rockets, and many factors related to the material properties have been considered. However, little work has been done to evaluate the effects of structure gaps on the generation of flame leaks. In this paper, a numerical simulation was performed by the finite element method to study the thermo-structural response of a typical nozzle with consideration of the structure gap. Initial boundary conditions for thermo-structural simulation were defined by a quasi-1D model, and then coupled simulations of different gap size matching modes were conducted. It was found that frictional interface treatment could efficiently reduce the stress level. Based on the defined flame leak criteria, gap size optimization was carried out, and the best gap matching mode was determined for designing the nozzle. Testing experiment indicated that the simulation results from the proposed method agreed well with the experimental results. It is believed that the simulation method is effective for investigating thermo-structural responses, as well as designing proper gaps for solid rocket motor nozzles.

  5. Engineering design solutions of flux swing with structural requirements for ohmic heating solenoids

    International Nuclear Information System (INIS)

    Smith, R.A.

    1977-01-01

    Here a more detailed publication is summarized which presents analytical methods with solutions that describe the structural behavior of ohmic heating solenoids to achieve a better understanding of the relationships between the functional variables that can provide the basis for recommended design improvements. The solutions relate the requirements imposed by structural integrity to the need for producing sufficient flux swing to initiate a plasma current in the tokamak fusion machine. A method is provided to perform a detailed structural analysis of every conducting turn in the radial build of the solenoid, and computer programmed listings for the closed form solutions are made available as part of the reference document. Distinction is made in deriving separate models for the regions of the solenoid where turn-to-turn radial contact is maintained with radial compression or with a bond in the presence of radial tension, and also where there is turn-to-turn radial separation due to the absence or the loss of bonding in the presence of would be radial tension. The derivations follow the theory of elasticity for a body possessing cylindrical anisotropy where the material properties are different in the radial and tangential directions. The formulations are made practical by presenting the methods for reducing stress and for relocating the relative position for potential turn-to-turn radial delamination by permitting an arbitrary traction at the outer radial surface of the solenoid in the form of pressure or displacement such as may be applied by a containment or a shrink fit structural cylinder

  6. A comparison of a 3 dimensional probabilistic method of berthing structure design and the traditional method of a berthing structure design

    NARCIS (Netherlands)

    Kool, J.J.; De Gijt, J.G.; Groenewegen, L.

    2013-01-01

    Finite element method (FEM) is increasingly applied as a first choice tool for designing structures. The same trend is seen in probabilistic designing. Consequently, the application of the combination of these two methods is discussed in this paper.In this study the presence of potential

  7. Design and research of seal structure for thermocouple column assembly

    International Nuclear Information System (INIS)

    Rao Qiqi; Li Na; Zhao Wei; Ma Zhigang

    2015-01-01

    The new seal structure was designed to satisfy the function of thermocouple column assembly and the reactor structure. This seal structure uses the packing graphite ring and adopts the self-sealing principle. Cone angle is brought to the seal face of seal structure which is conveniently to assembly and disassembly. After the sealing principle analysis and stress calculation of graphite ring which adopt the cone angle, the cone angle increases the radial force of seal structure and improves the seal effect. The stress analysis result shows the seal structure strength satisfies the regulation requirement. The cold and hot function test results shows the sealing effect is good, and the design requirement is satisfied. (authors)

  8. Application and Design of Earth Structures from the Reinforced Soils

    Directory of Open Access Journals (Sweden)

    I. Vaníček

    2000-01-01

    Full Text Available Paper describes the new problems connected with the proper design of the reinforced soil structures according to Eurocode 7 Geotechnical design. Therefore basic problems of reinforcement are briefly specified together with the influence of construction technology on the behaviour of such structures. Also up to date approach to the design method in the Czech republic are more specified. Finally the program of the new research in this field is described.

  9. Design and analysis of CANDU NPP internal structures for Japanese conditions

    International Nuclear Information System (INIS)

    Aziz, T.S.; Murakami, H.

    1991-01-01

    The design and analysis approach for the CANDU 6 Internal Concrete Structure (ICS) for Japanese seismic conditions is described. The approach consists of a seismic analysis to determine the design level accelerations; followed by a detailed finite element analysis to determine the section forces for each shell element. The extent of the design modifications for the original structure to meet the Japanese design conditions is given. (author)

  10. Design of a nuclear fuel rod support grid using axiomatic design

    International Nuclear Information System (INIS)

    Song, Kee Nam; Yoon, Kyung Ho; Kang, Byung Soo; Park, Gyung Jin; Choi, Sung Kyoo

    2002-01-01

    Recently, much attention is imposed on the design of the fuel assemblies in the Pressurized Light Water Reactor (PWR). Spacer grid is one of the main structural components in a fuel assembly. It supports fuel rods, guides cooling water, and maintains a coolable geometry from the external impact loads. In this research, a new shape of the spacer grid is designed by the axiomatic approach. The Independence axiom is utilized for the design. For conceptual design, functional requirements (FRs) are defined and corresponding design parameters (DPs) are found to satisfy FRs in sequence. Overall configuration and shapes are determined in this process. Detail design is carried out based on the result of the axiomatic design. For the detail design, the system performances are evaluated by using linear and nonlinear finite element analysis. The dimensions are determined by optimization. Some commercial codes are utilized for the analysis and design

  11. Conceptual design of CFETR divertor remote handling compatible structure

    International Nuclear Information System (INIS)

    Dai, Huaichu; Yao, Damao; Cao, Lei; Zhou, Zibo; Li, Lei

    2016-01-01

    Highlights: • Conceptual design for the CFETR divertor have been proposed, especially the divertor remote handling compatible structure. • The degrees of freedom of the divertor are analyzed in order to validate the design the divertor supports structure. • Besides the ITER-like scheme, a new scheme for the divertor remote handling compatible supports is proposed, that is the rack and pinion mechanism. • The installation/removel process is verified through simulation in Delmia in order to check design quality for remote handling requirements. - Abstract: Divertor is one of key components of tokamak fusion reactor. The CFETR is China Fusion Engineering Test Reactor. Its divertor will expose to tritium environment and neutron radiation. Materials of the divertor will be radioactived, and cannot be handled by personnel directly. To develop structure which compatible with robots handle for installation, maintenance and removing is required. This paper introduces a conceptual design of CFETR divertor module which compatible with remote handling end-effectors. The divertor module is confined by inner and outer support. The inner support is only confined divertor module radial, toroidal and vertical moving freedom degrees, but not confined rotating freedom degrees. The outer support is the structure that can confine rotating freedom degrees and should also be compatible with remote handling end-effectors.

  12. Conceptual design of CFETR divertor remote handling compatible structure

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Huaichu, E-mail: yaodm@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei (China); Yao, Damao; Cao, Lei; Zhou, Zibo; Li, Lei [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-11-15

    Highlights: • Conceptual design for the CFETR divertor have been proposed, especially the divertor remote handling compatible structure. • The degrees of freedom of the divertor are analyzed in order to validate the design the divertor supports structure. • Besides the ITER-like scheme, a new scheme for the divertor remote handling compatible supports is proposed, that is the rack and pinion mechanism. • The installation/removel process is verified through simulation in Delmia in order to check design quality for remote handling requirements. - Abstract: Divertor is one of key components of tokamak fusion reactor. The CFETR is China Fusion Engineering Test Reactor. Its divertor will expose to tritium environment and neutron radiation. Materials of the divertor will be radioactived, and cannot be handled by personnel directly. To develop structure which compatible with robots handle for installation, maintenance and removing is required. This paper introduces a conceptual design of CFETR divertor module which compatible with remote handling end-effectors. The divertor module is confined by inner and outer support. The inner support is only confined divertor module radial, toroidal and vertical moving freedom degrees, but not confined rotating freedom degrees. The outer support is the structure that can confine rotating freedom degrees and should also be compatible with remote handling end-effectors.

  13. Design, synthesis, and in vitro transfection biology of novel tocopherol based monocationic lipids: a structure-activity investigation.

    Science.gov (United States)

    Kedika, Bhavani; Patri, Srilakshmi V

    2011-01-27

    Herein, we report on the design, synthesis, and in vitro gene delivery efficacies of five novel tocopherol based cationic lipids (1-5) in transfecting CHO, B16F10, A-549, and HepG2 cells. The in vitro gene transfer efficiencies of lipids (1-5) were evaluated by both β-galactosidase reporter gene expression and inverted fluorescent microscopic experiments. The results of the present structure-activity investigation convincingly demonstrate that the tocopherol based lipid with three hydroxyl groups in its headgroup region showed 4-fold better transfection efficiency than the commercial formulation. The results also demonstrate that these tocopherol based lipids may be targeted to liver. Transfection efficiency of all the relevant lipids was maintained even when the serum was present during the transfection conditions. The results indicated that the designed systems are quite capable of transferring the DNA into all four types of cells studied with low or no toxicity.

  14. Fuel element structure - design, production and operational behaviour

    International Nuclear Information System (INIS)

    Pott, G.; Dietz, W.

    1985-01-01

    The lectures held at the meeting of the fuel element section of the Kerntechnische Gesellschaft gives a survey of developments in fuel element structure design for PWR-type, BWR-type and fast breeder reactors. For better utilization of the fuel, concepts have been developed for re-usable, removable and thus repairable fuel elements. Furthermore, the manufacturing methods for fuel element structures were refined to achieve better quality and more efficient manufacturing methods. Statements on the dimensional behaviour and on the mechanical stability of fuel element structures in normal and accident operation could be made on the basis of post-irradiation inspections. Finally, the design, manufacture and irradiation behaviour of graphite reflectors in HTGR-type reactors are described. The 12 lectures have been recorded in the data base separately. (RF) [de

  15. Conceptual Design of Deployment Structure of Morphing Nose Cone

    Directory of Open Access Journals (Sweden)

    Junlan Li

    2013-01-01

    Full Text Available For a reusable space vehicle or a missile, the shape of the nose cone has a significant effect on the drag of the vehicle. In this paper, the concept of morphing nose cone is proposed to reduce the drag when the reentry vehicle flies back into the atmosphere. The conceptual design of the structure of morphing nose cone is conducted. Mechanical design and optimization approach are developed by employing genetic algorithm to find the optimal geometric parameters of the morphing structure. An example is analyzed by using the proposed method. The results show that optimal solution supplies the minimum position error. The concept of morphing nose cone will provide a novel way for the drag reduction of reentry vehicle. The proposed method could be practically used for the design and optimization of the deployable structure of morphing nose cone.

  16. Use of designed sequences in protein structure recognition.

    Science.gov (United States)

    Kumar, Gayatri; Mudgal, Richa; Srinivasan, Narayanaswamy; Sandhya, Sankaran

    2018-05-09

    Knowledge of the protein structure is a pre-requisite for improved understanding of molecular function. The gap in the sequence-structure space has increased in the post-genomic era. Grouping related protein sequences into families can aid in narrowing the gap. In the Pfam database, structure description is provided for part or full-length proteins of 7726 families. For the remaining 52% of the families, information on 3-D structure is not yet available. We use the computationally designed sequences that are intermediately related to two protein domain families, which are already known to share the same fold. These strategically designed sequences enable detection of distant relationships and here, we have employed them for the purpose of structure recognition of protein families of yet unknown structure. We first measured the success rate of our approach using a dataset of protein families of known fold and achieved a success rate of 88%. Next, for 1392 families of yet unknown structure, we made structural assignments for part/full length of the proteins. Fold association for 423 domains of unknown function (DUFs) are provided as a step towards functional annotation. The results indicate that knowledge-based filling of gaps in protein sequence space is a lucrative approach for structure recognition. Such sequences assist in traversal through protein sequence space and effectively function as 'linkers', where natural linkers between distant proteins are unavailable. This article was reviewed by Oliviero Carugo, Christine Orengo and Srikrishna Subramanian.

  17. Patient perspectives of maintaining dignity in Indonesian clinical care settings: A qualitative descriptive study.

    Science.gov (United States)

    Asmaningrum, Nurfika; Tsai, Yun-Fang

    2018-03-01

    To gain an understanding towards the perspectives of hospitalized inpatients in Indonesia regarding maintaining dignity during clinical care. Dignity is a basic human right that is crucial for an individual's well-being. Respect for a person as a valuable human is a concept that is comparable to treating a person with dignity. Maintaining patient's dignity is an ethical goal of nursing care. Nevertheless, the concept is highly dependent on cultural context. This issue has not been well studied in Indonesia. This study used a qualitative descriptive design. Thirty-five participants were recruited by purposive sampling from medical to surgical wards of six public hospitals in Eastern Java, Indonesia. Data were collected in 2016 through individual face-to-face semi-structured interviews. Inductive content analysis was applied to the data. Four major categories which described qualities of nursing care essential for maintaining a patient's dignity in clinical care settings were revealed: (1) responsiveness; (2) respectful nurse-patient relationships; (3) caring characteristics and (4) personalized service. Our findings provide a cultural viewpoint of dignity for care recipients in Indonesia. The findings provide empirical support for linking dignified care and person-centred care principles with regards to cultural sensitivity. Nurses must not only be clinically competent but also culturally competent. The ability to provide culturally competent care is important for nurses as a strategy to maintain patient dignity during hospitalized care. © 2017 John Wiley & Sons Ltd.

  18. Maintain and Regain Well Clear: Maneuver Guidance Designs for Pilots Performing the Detect-and-Avoid Task

    Science.gov (United States)

    Monk, Kevin J.; Roberts, Zachary

    2017-01-01

    In order to support the future expansion and integration of Unmanned Aircraft Systems (UAS), ongoing research efforts have sought to produce findings that inform the minimum display information elements required for acceptable UAS pilot response times and traffic avoidance. Previous simulations have revealed performance benefits associated with DAA displays containing predictive information and suggestive maneuver guidance tools in the form of banding. The present study investigated the impact of various maneuver guidance display configurations on detect-and-avoid (DAA) task performance in a simulated airspace environment. UAS pilots ability to maintain DAA well clear was compared between displays with either the presence or absence of green DAA bands, which indicated conflict-free flight regions. Additional display comparisons assessed pilots ability to regain DAA well clear with two different guidance presentations designed to aid in DAA well clear recovery during critical encounters. Performance implications and display considerations for future UAS DAA systems are discussed.

  19. Loads for use in the design of ships and offshore structures

    DEFF Research Database (Denmark)

    Hirdaris, S.E.; Bai, W.; Dessi, Daniele

    2014-01-01

    The evaluation of structural responses is key element in the design of ships and offshore structures. Fundamental to this is the determination of the design loads to support the Rule requirements and for application in direct calculations. To date, the current design philosophy for the prediction...... of motions and wave-induced loads has been driven by empirical or first-principles calculation procedures based on well-proven applications such as ship motion prediction programs. In recent years, the software, engineering and computer technology available to predict the design loads imposed on ships...... and offshore structures has improved dramatically. Notwithstanding, with the stepwise increase in the size and structural complexity of ships and floating offshore installations and the advances in the framework of Rules and Standards it has become necessary to utilise the latest technologies to assess...

  20. Design and performance analysis of delay insensitive multi-ring structures

    DEFF Research Database (Denmark)

    Sparsø, Jens; Staunstrup, Jørgen

    1993-01-01

    A set of simple design and performance analysis techniques that have been successfully used to design a number of nontrivial delay insensitive circuits is described. Examples are building blocks for digital filters and a vector multiplier using a serial-parallel multiply and accumulate algorithm....... The vector multiplier circuit has been laid out, submitted for fabrication and successfully tested. Throughout the analysis elements from this design are used to illustrate the design and performance analysis techniques. The design technique is based on a data flow approach using pipelines and rings...... that are composed into larger multiring structures by joining and forking of signals. By limiting to this class of structures, it is possible, even for complex designs, to analyze the performance and establish an understanding of the bottlenecks....

  1. Integrated aerodynamic-structural design of a forward-swept transport wing

    Science.gov (United States)

    Haftka, Raphael T.; Grossman, Bernard; Kao, Pi-Jen; Polen, David M.; Sobieszczanski-Sobieski, Jaroslaw

    1989-01-01

    The introduction of composite materials is having a profound effect on aircraft design. Since these materials permit the designer to tailor material properties to improve structural, aerodynamic and acoustic performance, they require an integrated multidisciplinary design process. Futhermore, because of the complexity of the design process, numerical optimization methods are required. The utilization of integrated multidisciplinary design procedures for improving aircraft design is not currently feasible because of software coordination problems and the enormous computational burden. Even with the expected rapid growth of supercomputers and parallel architectures, these tasks will not be practical without the development of efficient methods for cross-disciplinary sensitivities and efficient optimization procedures. The present research is part of an on-going effort which is focused on the processes of simultaneous aerodynamic and structural wing design as a prototype for design integration. A sequence of integrated wing design procedures has been developed in order to investigate various aspects of the design process.

  2. Plate shell structures of glass

    DEFF Research Database (Denmark)

    Bagger, Anne

    to their curved shape. A plate shell structure maintains a high stiffness-to-weight ratio, while facilitating the use of plane structural elements. The study focuses on using laminated glass panes for the load bearing facets. Various methods of generating a plate shell geometry are suggested. Together with Ghent......, such as facet size, imperfections, and connection characteristics. The critical load is compared to that of a similar, but smoothly curved, shell structure. Based on the investigations throughout the study, a set of guidelines for the structural design of plate shells of glass is proposed....

  3. Development of structural design procedure of plate-fin heat exchanger for HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Mizokami, Yorikata, E-mail: yorikata_mizokami@mhi.co.jp [Mitsubishi Heavy Industries, Ltd., 1-1, Wadasaki-cho 1-Chome, Hyogo-ku, Kobe 652-8585 (Japan); Igari, Toshihide [Mitsubishi Heavy Industries, Ltd., 5-717-1, Fukahori-machi, Nagasaki 851-0392 (Japan); Kawashima, Fumiko [Kumamoto University, 39-1 Kurokami 2-Chome, Kumamoto 860-8555 (Japan); Sakakibara, Noriyuki [Mitsubishi Heavy Industries, Ltd., 5-717-1, Fukahori-machi, Nagasaki 851-0392 (Japan); Tanihira, Masanori [Mitsubishi Heavy Industries, Ltd., 16-5, Konan 2-Chome, Minato-ku, Tokyo 108-8215 (Japan); Yuhara, Tetsuo [The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Hiroe, Tetsuyuki [Kumamoto University, 39-1 Kurokami 2-Chome, Kumamoto 860-8555 (Japan)

    2013-02-15

    Highlights: ► We propose high temperature structural design procedure for plate-fin heat exchanger ► Allowable stresses for brazed structures will be newly discussed ► Validity of design procedure is confirmed by carrying out partial model tests ► Proposed design procedure is applied to heat exchangers for HTGR. -- Abstract: Highly efficient plate-fin heat exchanger for application to HTGR has been focused on recently. Since this heat exchanger is fabricated by brazing a lot of plates and fins, a new procedure for structural design of brazed structures in the HTGR temperature region up to 950 °C is required. Firstly in this paper influences on material strength due to both thermal aging during brazing process and helium gas environment were experimentally examined, and failure mode and failure limit of brazed side-bar structures were experimentally clarified. Secondly allowable stresses for aging materials and brazed structures were newly determined on the basis of the experimental results. For the purpose of validating the structural design procedure including homogenization FEM modeling, a pressure burst test and a thermal fatigue test of partial model for plate-fin heat exchanger were carried out. Finally, results of reference design of plate-fin heat exchangers of recuperator and intermediate heat exchanger for HTGR plant were evaluated by the proposed design criteria.

  4. The Design of a Lightweight RFID Middleware

    Directory of Open Access Journals (Sweden)

    Fengqun Lin

    2009-10-01

    Full Text Available Radio Frequency Identification (RFID middleware is often regarded as the central nervous system of RFID systems. In this paper, a lightweight RFID middleware is designed and implemented without the need of an Application Level Events (ALE structure, and its implementation process is described using a typical commerical enterprise. A short review of the current RFID middleware research and development is also included. The characteristics of RFID middleware are presented with a two-centric framework. The senarios of RFID data integration based on the simplified structure are provided to illuminats the design and implementation of the lightweight middleware structure and its development process. The lightweight middleware is easy to maintain and extend because of the simplified and streamlined structure and the short development cycle.

  5. [Factors influencing the sense of unintegration of thoughts in maintaining anger].

    Science.gov (United States)

    Endo, Hiroko; Yukawa, Shintaro

    2013-12-01

    Endo and Yukawa (2012) investigated the process of maintaining anger and demonstrated that a sense of unintegration of thoughts maintained anger by promoting recurrent thinking and avoidance behavior. Our present study examined how personality characteristics and situational factors affected the process of maintaining anger. Undergraduates (N=713) wrote about an anger episode, and completed questionnaires assessing their sense of unintegration of thoughts, recurrent thinking, avoidance behaviors, and maintaining anger. The questionnaires also assessed personality characteristics such as difficulty in identifying feelings, and situational factors such as the need for maintaining relationships, anger arousability, and meaning-making for the anger episode. The results of covariance structure analysis indicated that difficulties in identifying feelings and anger arousability contributed to maintaining anger by increasing the sense of unintegration of thoughts just after the episode. However, the need for maintaining relationships directly reduced the sense of unintegration of thoughts just after the episode, and indirectly decreased the present sense of unintegration of thoughts by meaning-making. Moreover, although recurrent thinking promoted the current sense of unintegration of thoughts, it also provided meaning.

  6. Structure and Computation in Immunoreagent Design: From Diagnostics to Vaccines.

    Science.gov (United States)

    Gourlay, Louise; Peri, Claudio; Bolognesi, Martino; Colombo, Giorgio

    2017-12-01

    Novel immunological tools for efficient diagnosis and treatment of emerging infections are urgently required. Advances in the diagnostic and vaccine development fields are continuously progressing, with reverse vaccinology and structural vaccinology (SV) methods for antigen identification and structure-based antigen (re)design playing increasingly relevant roles. SV, in particular, is predicted to be the front-runner in the future development of diagnostics and vaccines targeting challenging diseases such as AIDS and cancer. We review state-of-the-art methodologies for structure-based epitope identification and antigen design, with specific applicative examples. We highlight the implications of such methods for the engineering of biomolecules with improved immunological properties, potential diagnostic and/or therapeutic uses, and discuss the perspectives of structure-based rational design for the production of advanced immunoreagents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. AHTR Mechanical, Structural, and Neutronic Preconceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Varma, V.K.; Holcomb, D.E.; Peretz, F.J.; Bradley, E.C.; Ilas, D.; Qualls, A.L.; Zaharia, N.M.

    2012-09-15

    This report provides an overview of the mechanical, structural, and neutronic aspects of the Advanced High Temperature Reactor (AHTR) design concept. The AHTR is a design concept for a large output Fluoride salt cooled High-temperature Reactor (FHR) that is being developed to enable evaluation of the technology hurdles remaining to be overcome prior to FHRs becoming an option for commercial reactor deployment. This report documents the incremental AHTR design maturation performed over the past year and is focused on advancing the design concept to a level of a functional, self-consistent system. The reactor concept development remains at a preconceptual level of maturity. While the overall appearance of an AHTR design is anticipated to be similar to the current concept, optimized dimensions will differ from those presented here. The AHTR employs plate type coated particle fuel assemblies with rapid, off-line refueling. Neutronic analysis of the core has confirmed the viability of a 6-month two-batch cycle with 9 wt. % enriched uranium fuel. Refueling is intended to be performed automatically under visual guidance using dedicated robotic manipulators. The report includes a preconceptual design of the manipulators, the fuel transfer system, and the used fuel storage system. The present design intent is for used fuel to be stored inside of containment for at least six months and then transferred to local dry wells for intermediate term, on-site storage. The mechanical and structural concept development effort has included an emphasis on transportation and constructability to minimize construction costs and schedule. The design intent is that all components be factory fabricated into rail transportable modules that are assembled into subsystems at an on-site workshop prior to being lifted into position using a heavy-lift crane in an open-top style construction. While detailed accident identification and response sequence analysis has yet to be performed, the design

  8. Design of concrete structures important to safety of nuclear facilities

    International Nuclear Information System (INIS)

    2001-10-01

    Civil engineering structures in nuclear installations form an important feature having implications to safety performance of these installations. The objective and minimum requirements for the design of civil engineering buildings/structures to be fulfilled to provide adequate assurance for safety of nuclear installations in India (such as pressurised heavy water reactor and related systems) are specified in the Safety standard for civil engineering structures important to safety of nuclear facilities. This standard is written by AERB to specify guidelines for implementation of the above civil engineering safety standard in the design of concrete structures important to safety

  9. Incorporating functional requirements into the structural design of the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Hsiu, F.J.; Ng, C.K.; Almuti, A.M.

    1986-01-01

    Vitrification Building-type structures have unique features and design needs. The structural design requires new concepts and custom detailing. The above special structural designs have demonstrated the importance of the five design considerations listed in the introduction. Innovative ideas and close coordination are required to achieve the design objectives. Many of these innovations have been applied to the DWPF facility which is a first of a kind

  10. Design criteria development for the structural stability of nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Yun, C H [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Yu, T S [Daewoo Engineering Company, Sungnam (Korea, Republic of); Ko, H M [Seoul National Univ., Seoul (Korea, Republic of)

    1990-11-15

    The objective of the present project is to develop design criteria for the structural stability of rock cavity for the underground repository are defined, according to which detailed descriptions for design methodologies, design stages and stability analysis of the cavity are made. The proposed criteria can be used as a guide for the preparation of design codes which are to be established as the site condition and technical emplacement procedure are fixed. The present report first reviews basic safety requirements and criteria of the underground disposal of nuclear wastes for the establishment of design concepts and stability analysis of the rock cavity. Important factors for the design are also described by considering characteristics of the wastes and underground facilities. The present project has investigated technical aspects on the design of underground structures based on the currently established underground construction technologies, and presented a proposal for design criteria for the structural stability of the nuclear waste repository. The proposed criteria consist of general provisions, geological exploration, rock classification, design process and methods, supporting system, analyses and instrumentation.

  11. Topology Optimization for Conceptual Design of Reinforced Concrete Structures

    DEFF Research Database (Denmark)

    Amir, Oded; Bogomolny, Michael

    2011-01-01

    Design of reinforced concrete structures is governed by the nonlinear behavior of concrete and by its dierent strengths in tension and compression. The purpose of this article is to present a computational procedure for optimal conceptual design of reinforced concrete structures, based on topology...... must be consid- ered. Optimized distribution of material is achieved by introducing interpolation rules for both elastic and plastic material properties. Several numerical examples illustrate the capability and potential of the proposed procedure....

  12. Maintaining a Technology-Neutral Approach to Hydrogen Production Process Development through Conceptual Design of the Next Generation Nuclear Plant

    International Nuclear Information System (INIS)

    Michael W. Patterson

    2008-01-01

    . For integration purposes, an analysis comparing the design, cost and schedule impact of maintaining a technology neutral approach through conceptual design or making an early hydrogen process technology selection was performed. Early selection does not specifically eliminate a technology, but rather selects the first hydrogen technology for demonstration. A systems-engineering approach was taken to define decision-making criteria for selecting a hydrogen technology. The relative technical, cost and schedule risks of each approach were analyzed and risk mitigation strategies were recommended, including provisions to maintain close collaboration with the NHI. The results of these analyses are presented here

  13. Design of the detuned accelerator structure

    International Nuclear Information System (INIS)

    Wang, J.W.; Nelson, E.M.

    1993-05-01

    This is a summary of the design procedure for the detuned accelerator structure for SLAC's Next Linear Collider (NLC) program. The 11.424 GHz accelerating mode of each cavity must be synchronous with the beam. The distribution of the disk thicknesses and lowest synchronous dipole mode frequencies of the cavities in the structure is Gaussian in order to reduce the effect of wake fields. The finite element field solver YAP calculated the accelerating mode frequency and the lowest synchronous dipole mode frequency for various cavity diameters, aperture diameters and disk thicknesses. Polynomial 3-parameter fits are used to calculate the dimensions for a 1.8 m detuned structure. The program SUPERFISH was used to calculate the shunt impedances, quality factors and group velocities. The RF parameters of the section like filling time, attenuation factor, accelerating gradient and maximum surface field along the section are evaluated. Error estimates will be discussed and comparisons with conventional constant gradient and constant impedance structures will be presented

  14. Design Optimization of Irregular Cellular Structure for Additive Manufacturing

    Science.gov (United States)

    Song, Guo-Hua; Jing, Shi-Kai; Zhao, Fang-Lei; Wang, Ye-Dong; Xing, Hao; Zhou, Jing-Tao

    2017-09-01

    Irregularcellular structurehas great potential to be considered in light-weight design field. However, the research on optimizing irregular cellular structures has not yet been reporteddue to the difficulties in their modeling technology. Based on the variable density topology optimization theory, an efficient method for optimizing the topology of irregular cellular structures fabricated through additive manufacturing processes is proposed. The proposed method utilizes tangent circles to automatically generate the main outline of irregular cellular structure. The topological layoutof each cellstructure is optimized using the relative density informationobtained from the proposed modified SIMP method. A mapping relationship between cell structure and relative densityelement is builtto determine the diameter of each cell structure. The results show that the irregular cellular structure can be optimized with the proposed method. The results of simulation and experimental test are similar for irregular cellular structure, which indicate that the maximum deformation value obtained using the modified Solid Isotropic Microstructures with Penalization (SIMP) approach is lower 5.4×10-5 mm than that using the SIMP approach under the same under the same external load. The proposed research provides the instruction to design the other irregular cellular structure.

  15. Investigation of IFMIF target assembly structure design

    International Nuclear Information System (INIS)

    Ida, Mizuho; Nakamura, Hiroo; Sugimoto, Masayoshi; Yamamura, Toshio

    2006-10-01

    In the International Fusion Materials Irradiation Facility (IFMIF), the back-wall of target assembly is the part suffered the highest neutron-flux. The back-wall and the assembly are designed to have lips for cutting/welding at the back-wall replacement. To reduce thermal stress and deformation of the back-wall under neutron irradiation, contact pressure between the back-wall and the assembly is one of dominant factors. Therefore, an investigation was performed for feasible clamping pressure of a mechanical clamp set in limited space around the back-wall. It was clarified that the clamp can give a pressure difference up to 0.4 MPa between the contact pressure and atmosphere pressure in the test cell room. Also a research was performed for the dissimilar metal welding in the back-wall. Use of 309 steel was found adequate as the intermediate filler metal through the research of previous welding. Maintaining a temperature of the target assembly so as to avoid a freezing of liquid lithium is needed at the lithium charge into the loop before the beam injection. The assembly is covered with thermal insulation. Therefore, a research and an investigation were performed for compact and light thermal-insulation effective even under helium (i.e. high heat-conduction) condition of the test cell room. The result was as follows; in the case that a thermal conductivity 0.008 W/m·K of one of found insulation materials is available in the temperature range up to 300degC of the IFMIF target assembly, needed thickness and weight of the insulation were respectively only 8.2 mm and 32 kg. Also a research was performed for high-heat-density heaters to maintain temperature of the back-wall which can not be cover with insulation due to limited space. A heater made of silicon-nitride was found to be adequate. Total heat of 8.4 kW on the back-wall was found to be achievable through an investigations of heater arrange. Also an investigation was performed for remote-handling device to

  16. Structural Analysis and Seismic Design for Cold Neutron Laboratory Building

    International Nuclear Information System (INIS)

    Wu, Sangik; Kim, Y. K.; Kim, H. R.

    2007-05-01

    This report describes all the major results of the dynamic structural analysis and seismic design for the Cold Neutron Laboratory Building which is classified in seismic class II. The results are summarized of the ground response spectrum as seismic input loads, mechanical properties of subsoil, the buoyancy stability due to ground water, the maximum displacement of the main frame under the seismic load and the member design. This report will be used as a basic design report to maintenance its structural integrity in future

  17. Structural design principles for self-assembled coordination polygons and polyhedra.

    Science.gov (United States)

    Young, Neil J; Hay, Benjamin P

    2013-02-18

    Strategies for the design of ligands that combine with metal ions to form high-symmetry coordination assemblies are reviewed. Evaluation of crystal structure evidence reveals that prior design approaches, based on the concept of complementary bonding vector angles, fail to predict the majority of known examples. After explaining the reasons for this failure, it is shown how an alternative approach, de novo structure-based design, provides a practical method that predicts a much wider range of component shapes encoded to direct the formation of such assemblies.

  18. Reliability and Maintainability Engineering - A Major Driver for Safety and Affordability

    Science.gov (United States)

    Safie, Fayssal M.

    2011-01-01

    The United States National Aeronautics and Space Administration (NASA) is in the midst of an effort to design and build a safe and affordable heavy lift vehicle to go to the moon and beyond. To achieve that, NASA is seeking more innovative and efficient approaches to reduce cost while maintaining an acceptable level of safety and mission success. One area that has the potential to contribute significantly to achieving NASA safety and affordability goals is Reliability and Maintainability (R&M) engineering. Inadequate reliability or failure of critical safety items may directly jeopardize the safety of the user(s) and result in a loss of life. Inadequate reliability of equipment may directly jeopardize mission success. Systems designed to be more reliable (fewer failures) and maintainable (fewer resources needed) can lower the total life cycle cost. The Department of Defense (DOD) and industry experience has shown that optimized and adequate levels of R&M are critical for achieving a high level of safety and mission success, and low sustainment cost. Also, lessons learned from the Space Shuttle program clearly demonstrated the importance of R&M engineering in designing and operating safe and affordable launch systems. The Challenger and Columbia accidents are examples of the severe impact of design unreliability and process induced failures on system safety and mission success. These accidents demonstrated the criticality of reliability engineering in understanding component failure mechanisms and integrated system failures across the system elements interfaces. Experience from the shuttle program also shows that insufficient Reliability, Maintainability, and Supportability (RMS) engineering analyses upfront in the design phase can significantly increase the sustainment cost and, thereby, the total life cycle cost. Emphasis on RMS during the design phase is critical for identifying the design features and characteristics needed for time efficient processing

  19. Structural Bionic Design for Digging Shovel of Cassava Harvester Considering Soil Mechanics

    Directory of Open Access Journals (Sweden)

    Shihao Liu

    2014-01-01

    Full Text Available In order to improve the working performance of cassava harvester, structural bionic design for its digging shovel was conducted. Taking the oriental mole cricket's paws as bionic prototype, a new structural bionic design method for digging shovel was established, which considers the morphology-configuration-function coupling bionic. A comprehensive performance comparison method was proposed, which is used to select the bionic design schemes. The proposed bionic design method was used to improve digging shovel structure of a digging-pulling style cassava harvester, and nine bionic-type digging shovels were obtained with considering the impact of soil mechanics. After conducting mechanical properties comparative analysis for bionic-type digging shovels, the bionic design rules were summed up, and the optimal design scheme of digging shovel was obtained through combining the proposed comprehensive performance comparison method with Analytic Hierarchy Process (AHP. Studies have shown that bionic design method not only can improve the overall mechanical properties of digging shovel, but also can help to improve the harvesting effect of cassava harvester, which provides a new idea for crops harvesting machinery's structural optimization design.

  20. Design and fabrication of a continuous wave electron accelerating structure

    International Nuclear Information System (INIS)

    Takahashi, Jiro

    1997-01-01

    The Physics Institute of Sao Paulo University, SP, Brazil is fabricating a 31 MeV cw racetrack microtron (RTM) designed for nuclear physics research. This is a two-stage microtron that includes a 1.93 MeV injector linac feeding a five-turn microtron booster. After 28 turns, the main microtron delivers a 31 MeV continuous electron beam. The objective of this work is the development and fabrication of an advanced, beta=l, cw accelerating structure for the main microtron. The accelerating structure will be a side-coupled structure (SCS). We have chosen this kind of cavity, because it presents good vacuum properties, allows operation at higher accelerating electric fields and has a shunt impedance better than 81 MQ/m, with a high coupling factor ( 3 - 5%). The engineering design is the Los Alamos one. There will be two tuning plungers placed at both ends of the accelerating structure. They automatically and quickly compensate for the variation in the resonance frequency caused by changes in the structure temperature. Our design represents an advanced accelerating structure with the optimum SCS properties coexisting with the plunger's good tuning properties. (author)

  1. Preliminary structural evaluations of the STAR-LM reactor vessel and the support design

    International Nuclear Information System (INIS)

    Koo, Gyeong-Hoi; Sienicki, James J.; Moisseytsev, Anton

    2007-01-01

    In this paper, preliminary structural evaluations of the reactor vessel and support design of the STAR-LM (The Secure, Transportable, Autonomous Reactor - Liquid Metal variant), which is a lead-cooled reactor, are carried out with respect to an elevated temperature design and seismic design. For an elevated temperature design, the structural integrity of a direct coolant contact to the reactor vessel is investigated by using a detail structural analysis and the ASME-NH code rules. From the results of the structural analyses and the integrity evaluations, it was found that the design concept of a direct coolant contact to the reactor vessel cannot satisfy the ASME-NH rules for a given design condition. Therefore, a design modification with regards to the thermal barrier is introduced in the STAR-LM design. For a seismic design, detailed seismic time history response analyses for a reactor vessel with a consideration of a fluid-structure interaction are carried out for both a top support type and a bottom support type. And from the results of the hydrodynamic pressure responses, an investigation of the minimum thickness design of the reactor vessel is tentatively carried out by using the ASME design rules

  2. Design and Analysis of Jacket Substructures for Offshore Wind Turbines

    Directory of Open Access Journals (Sweden)

    I-Wen Chen

    2016-04-01

    Full Text Available This study focused on investigating various existing types of offshore jacket substructures along with a proposed twisted-tripod jacket type (modified jacket (MJ-structures. The architectures of the three-leg structure, as well as the patented twisted jacket structure motivated the design of the proposed MJ-structures. The dimensions of the structures were designed iteratively using static stress analysis to ensure that all structures had a similar level of load-carrying capability. The numerical global buckling analyses were performed for all structures after the validation by the scaled-down experiments. The local buckling strength of all compressive members was analyzed using the NORSOK standard. The results showed that the proposed MJ-structures possess excellent structural behavior and few structural nodes and components competitive with the patented twisted jacket structures, while still maintaining the advantages of low material usage similar to the three-leg jacket structures. This study provides alternatives for the initial selection and design of offshore wind turbine substructures for green energy applications.

  3. Design Tools and Workflows for Braided Structures

    DEFF Research Database (Denmark)

    Vestartas, Petras; Heinrich, Mary Katherine; Zwierzycki, Mateusz

    2017-01-01

    and merits of our method, demonstrated though four example design and analysis workflows. The workflows frame specific aspects of enquiry for the ongoing research project flora robotica. These include modelling target geometries, automatically producing instructions for fabrication, conducting structural...

  4. Web Application Design Using Server-Side JavaScript

    Energy Technology Data Exchange (ETDEWEB)

    Hampton, J.; Simons, R.

    1999-02-01

    This document describes the application design philosophy for the Comprehensive Nuclear Test Ban Treaty Research & Development Web Site. This design incorporates object-oriented techniques to produce a flexible and maintainable system of applications that support the web site. These techniques will be discussed at length along with the issues they address. The overall structure of the applications and their relationships with one another will also be described. The current problems and future design changes will be discussed as well.

  5. Structure design of lower limb exoskeletons for gait training

    Science.gov (United States)

    Li, Jianfeng; Zhang, Ziqiang; Tao, Chunjing; Ji, Run

    2015-09-01

    Due to the close physical interaction between human and machine in process of gait training, lower limb exoskeletons should be safe, comfortable and able to smoothly transfer desired driving force/moments to the patients. Correlatively, in kinematics the exoskeletons are required to be compatible with human lower limbs and thereby to avoid the uncontrollable interactional loads at the human-machine interfaces. Such requirement makes the structure design of exoskeletons very difficult because the human-machine closed chains are complicated. In addition, both the axis misalignments and the kinematic character difference between the exoskeleton and human joints should be taken into account. By analyzing the DOF(degree of freedom) of the whole human-machine closed chain, the human-machine kinematic incompatibility of lower limb exoskeletons is studied. An effective method for the structure design of lower limb exoskeletons, which are kinematically compatible with human lower limb, is proposed. Applying this method, the structure synthesis of the lower limb exoskeletons containing only one-DOF revolute and prismatic joints is investigated; the feasible basic structures of exoskeletons are developed and classified into three different categories. With the consideration of quasi-anthropopathic feature, structural simplicity and wearable comfort of lower limb exoskeletons, a joint replacement and structure comparison based approach to select the ideal structures of lower limb exoskeletons is proposed, by which three optimal exoskeleton structures are obtained. This paper indicates that the human-machine closed chain formed by the exoskeleton and human lower limb should be an even-constrained kinematic system in order to avoid the uncontrollable human-machine interactional loads. The presented method for the structure design of lower limb exoskeletons is universal and simple, and hence can be applied to other kinds of wearable exoskeletons.

  6. A Fractual Mechanical Testing and Design Strategy for FRC Structures

    DEFF Research Database (Denmark)

    Stang, Henrik; Olesen, John Forbes

    1999-01-01

    A unified testing and design strategy for fibre reinforced concrete structures is summarised. The strategy is based on fracture mechanical concepts. Emphasis is placed on material characterisation and testing specifications.......A unified testing and design strategy for fibre reinforced concrete structures is summarised. The strategy is based on fracture mechanical concepts. Emphasis is placed on material characterisation and testing specifications....

  7. Toolbox for super-structured and super-structure free multi-disciplinary building spatial design optimisation

    NARCIS (Netherlands)

    Boonstra, S.; van der Blom, K.; Hofmeyer, H.; Emmerich, M.T.M.; van Schijndel, A.W.M.; de Wilde, P.

    2018-01-01

    Multi-disciplinary optimisation of building spatial designs is characterised by large solution spaces. Here two approaches are introduced, one being super-structured and the other super-structure free. Both are different in nature and perform differently for large solution spaces and each requires

  8. Choke-mode damped structure design for the Compact Linear Collider main linac

    CERN Document Server

    Zha, Hao; Grudiev, Alexej; Huang, Wenhui; Shi, Jiaru; Tang, Chuanxiang; Wuensch, Walter

    2012-01-01

    Choke-mode damped structures are being studied as an alternative design to waveguide damped structures for the main linac of the Compact Linear Collider (CLIC). Choke-mode structures have the potential for lower pulsed temperature rise and simpler and less expensive fabrication. An equivalent circuit model based on transmission line theory for higher-order-mode damping is presented. Using this model, a new choke geometry is proposed and the wakefield performance is verified using GDFIDL. This structure has a comparable wakefield damping effect to the baseline design which uses waveguide damping. A prototype structure with the same iris dimensions and accelerating gradient as the nominal CLIC design, but with the new choke geometry, has been designed for high-power tests. DOI: 10.1103/PhysRevSTAB.15.122003

  9. Design and Development of RF Structures for Linac4

    CERN Document Server

    Vretenar, M; Gerigk, F; Pasini, M; Wegner, R

    2006-01-01

    Linac4 is a new 160 MeV H− linac proposed at CERN to replace the 50 MeV Linac2 as injector to the PS Booster, with the goal of doubling its brightness and intensity. The present design foresees after RFQ and chopping line a sequence of three accelerating structures: a Drift Tube Linac (DTL) from 3 to 40 MeV, a Cell-Coupled DTL (CCDTL) to 90 MeV and a Side Coupled Linac (SCL) up to the final energy. The DTL and CCDTL operate at 352 MHz, while in the SCL the frequency is doubled to 704 MHz. Although the injection in the PS Booster requires only a low duty cycle, the accelerating structures are designed to operate at the high duty cycle required by a possible future extension to a high-power linac driver for a neutrino facility. This paper presents the different accelerating structures, underlining the progress in the design of critical resonator elements, like post-couplers in the DTL, coupling slots in the CCDTL and bridge couplers for the SCL. Prototyping progress for the different structures is reported...

  10. High-strength concrete and the design of power plant structures

    International Nuclear Information System (INIS)

    Puttonen, J.

    1991-01-01

    Based on the literature, the design of high-strength concrete structures and the suitability of high-strength concrete for the power plant structures have been studied. Concerning the behavior of structures, a basic difference between the high-strength concrete and the traditional one is that the ductility of the high-strength concrete is smaller. In the design, the non-linear stress-strain relationship of the high-strength concrete has to be taken into account. The use of the high-strength concrete is economical if the strength of the material can be utilized. In the long term, the good durability and wear resistance of the high-strength concrete increases the economy of the material. Because of the low permeability of the high-strength concrete, it is a potential material in the safety-related structures of nuclear power plants. The study discovered no particular power plant structure which would always be economical to design of high-strength concrete. However, the high-strength concrete was found to be a competitive material in general

  11. Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, volume 1

    Science.gov (United States)

    Soderquist, Joseph R. (Compiler); Neri, Lawrence M. (Compiler); Bohon, Herman L. (Compiler)

    1992-01-01

    This publication contains the proceedings of the Ninth DOD/NASA/FAA conference on Fibrous Composites in structural Design. Presentations were made in the following areas of composite structural design: perspectives in composites; design methodology; design applications; design criteria; supporting technology; damage tolerance; and manufacturing.

  12. HexaMob—A Hybrid Modular Robotic Design for Implementing Biomimetic Structures

    Directory of Open Access Journals (Sweden)

    Sasanka Sankhar Reddy CH.

    2017-10-01

    Full Text Available Modular robots are capable of forming primitive shapes such as lattice and chain structures with the additional flexibility of distributed sensing. The biomimetic structures developed using such modular units provides ease of replacement and reconfiguration in co-ordinated structures, transportation etc. in real life scenarios. Though the research in the employment of modular robotic units in formation of biological organisms is in the nascent stage, modular robotic units are already capable of forming such sophisticated structures. The modular robotic designs proposed so far in modular robotics research vary significantly in external structures, sensor-actuator mechanisms interfaces for docking and undocking, techniques for providing mobility, coordinated structures, locomotions etc. and each robotic design attempted to address various challenges faced in the domain of modular robotics by employing different strategies. This paper presents a novel modular wheeled robotic design - HexaMob facilitating four degrees of freedom (2 degrees for mobility and 2 degrees for structural reconfiguration on a single module with minimal usage of sensor-actuator assemblies. The crucial features of modular robotics such as back-driving restriction, docking, and navigation are addressed in the process of HexaMob design. The proposed docking mechanism is enabled using vision sensor, enhancing the capabilities in docking as well as navigation in co-ordinated structures such as humanoid robots.

  13. Lightweight structure design for wind energy by integrating nanostructured materials

    International Nuclear Information System (INIS)

    Li, Ying; Lu, Jian

    2014-01-01

    Highlights: • Integrate high-strength nano-materials into lightweight design. • Lightweight design scheme for wind turbine tower application. • Expand the bending formulae for tapered tubular structures with varying thickness. • We rewrite the Secant Formula for a tapered beam under eccentric compression. - Abstract: Wind power develops very fast nowadays with high expectation. Although at the mean time, the use of taller towers, however, smacks head-on into the issue of transportability. The engineering base and computational tools have to be developed to match machine size and volume. Consequently the research on the light weight structures of tower is carrying out in the main countries which are actively developing wind energy. This paper reports a new design scheme of light weight structure for wind turbine tower. This design scheme is based on the integration of the nanostructured materials produced by the Surface Mechanical Attrition Treatment (SMAT) process. The objective of this study is to accomplish the weight reduction by optimizing the wall thickness of the tapered tubular structure. The basic methods include the identification of the critical zones and the distribution of the high strength materials according to different necessities. The equivalent strength or stiffness design method and the high strength material properties after SMAT process are combined together. Bending and buckling are two main kinds of static loads concerned in consideration. The study results reveal that there is still enough margin for weight reduction in the traditional wind turbine tower design

  14. Design of Composite Structures Using Knowledge-Based and Case Based Reasoning

    Science.gov (United States)

    Lambright, Jonathan Paul

    1996-01-01

    A method of using knowledge based and case based reasoning to assist designers during conceptual design tasks of composite structures was proposed. The cooperative use of heuristics, procedural knowledge, and previous similar design cases suggests a potential reduction in design cycle time and ultimately product lead time. The hypothesis of this work is that the design process of composite structures can be improved by using Case-Based Reasoning (CBR) and Knowledge-Based (KB) reasoning in the early design stages. The technique of using knowledge-based and case-based reasoning facilitates the gathering of disparate information into one location that is easily and readily available. The method suggests that the inclusion of downstream life-cycle issues into the conceptual design phase reduces potential of defective, and sub-optimal composite structures. Three industry experts were interviewed extensively. The experts provided design rules, previous design cases, and test problems. A Knowledge Based Reasoning system was developed using the CLIPS (C Language Interpretive Procedural System) environment and a Case Based Reasoning System was developed using the Design Memory Utility For Sharing Experiences (MUSE) xviii environment. A Design Characteristic State (DCS) was used to document the design specifications, constraints, and problem areas using attribute-value pair relationships. The DCS provided consistent design information between the knowledge base and case base. Results indicated that the use of knowledge based and case based reasoning provided a robust design environment for composite structures. The knowledge base provided design guidance from well defined rules and procedural knowledge. The case base provided suggestions on design and manufacturing techniques based on previous similar designs and warnings of potential problems and pitfalls. The case base complemented the knowledge base and extended the problem solving capability beyond the existence of

  15. Visualisation and research strategy for computational spatial and structural design interaction

    NARCIS (Netherlands)

    Peeten, D.; Hofmeyer, H.; Thabet, W

    2010-01-01

    A research engine is under development for studying the interaction of spatial and structural design processes. The design processes are being implemented as two separate configurable transformation steps; a conversion step and an optimisation step. A significant part of the spatial-to-structural

  16. Advanced analysis and design for fire safety of steel structures

    CERN Document Server

    Li, Guoqiang

    2013-01-01

    Advanced Analysis and Design for Fire Safety of Steel Structures systematically presents the latest findings on behaviours of steel structural components in a fire, such as the catenary actions of restrained steel beams, the design methods for restrained steel columns, and the membrane actions of concrete floor slabs with steel decks. Using a systematic description of structural fire safety engineering principles, the authors illustrate the important difference between behaviours of an isolated structural element and the restrained component in a complete structure under fire conditions. The book will be an essential resource for structural engineers who wish to improve their understanding of steel buildings exposed to fires. It is also an ideal textbook for introductory courses in fire safety for master’s degree programs in structural engineering, and is excellent reading material for final-year undergraduate students in civil engineering and fire safety engineering. Furthermore, it successfully bridges th...

  17. Moving Aerospace Structural Design Practice to a Load and Resistance Factor Approach

    Science.gov (United States)

    Larsen, Curtis E.; Raju, Ivatury S.

    2016-01-01

    Aerospace structures are traditionally designed using the factor of safety (FOS) approach. The limit load on the structure is determined and the structure is then designed for FOS times the limit load - the ultimate load. Probabilistic approaches utilize distributions for loads and strengths. Failures are predicted to occur in the region of intersection of the two distributions. The load and resistance factor design (LRFD) approach judiciously combines these two approaches by intensive calibration studies on loads and strength to result in structures that are efficient and reliable. This paper discusses these three approaches.

  18. Structural health monitoring feature design by genetic programming

    International Nuclear Information System (INIS)

    Harvey, Dustin Y; Todd, Michael D

    2014-01-01

    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems. (paper)

  19. Design of a 300 GHz Broadband TWT Coupler and RF-Structure

    CERN Document Server

    Krawczyk, F L

    2004-01-01

    Recent LANL activities in millimeter wave structures focus on 94 and 300 GHz structures. They aim at power generation from low power (100–2000 W) with a round electron beam (120 kV, 0.1–1.0 A) to high power (2–100 kW) with a sheet beam structure (120 kV, 20 A). Applications cover basic research, radar and secure communications and remote sensing of biological and chemical agents. In this presentation the design and cold-test measurements of a 300 GHz RF-structure with a broadband (>6% bandwidth) power coupler are presented. The design choice of two input/output waveguides, a special coupling region and the structure parameters themselves are presented. As a benchmark also a scaled up version at 10 GHz was designed and measured. These results will also be presented.

  20. Computational Strategies for the Architectural Design of Bending Active Structures

    DEFF Research Database (Denmark)

    Tamke, Martin; Nicholas, Paul

    2013-01-01

    Active bending introduces a new level of integration into the design of architectural structures, and opens up new complexities for the architectural design process. In particular, the introduction of material variation reconfigures the design space. Through the precise specification...

  1. Measures geared to maintain the competence of operating personnel at Grohnde nuclear power plant

    International Nuclear Information System (INIS)

    Bohr, H.

    1986-01-01

    Organizational structure of the German power plant 'Gemeinschaftskernkraftwerk Grohnde GmbH'. The plant characteristics of the tasks and duties and definition of competence. Measures to maintain competence. The experience by the realization of training programs to maintain competence. (orig.)

  2. Design and structural analysis of support structure for ITER vacuum vessel

    International Nuclear Information System (INIS)

    Takeda, Nobukazu; Ohmori, Junji; Nakahira, Masataka; Shibanuma, Kiyoshi

    2004-01-01

    The International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is a safety component confining radioactive materials such as tritium and activated dust. An independent VV support structure with multiple flexible plates located at the bottom of VV lower port is proposed as a new concept, which is deferent from the current design, i.e., the VV support is directly connected to the toroidal coils (TF coils). This independent concept has two advantages comparing to the current one: (1) thermal load due to the temperature deference between VV and TF coils becomes lower and (2) the TF coils are categorized as non-safety components because of its independence from VV. Stress Analyses have been performed to assess the integrity of the VV support structure using a precisely modeled VV structure. As a result, (1) the maximum displacement of the VV corresponding to the relative displacement between VV and TF coils is found to be 15 mm, much less than the current design clearance of 100 mm, and (2) the stresses of the whole VV system including VV support are estimated to be less than the allowable ones defined by ASME Section III Subsection NF, respectively. Based on these assessments, the feasibility of the proposed independent VV support has been verified as a VV support. (author)

  3. Algorithm for the real-structure design of neutron supermirrors

    International Nuclear Information System (INIS)

    Pleshanov, N.K.

    2004-01-01

    The effect of structure imperfections of neutron supermirrors on their performance is well known. Nevertheless, supermirrors are designed with the algorithms based on the theories of reflection from perfect layered structures. In the present paper an approach is suggested, in which the design of a supermirror is made on the basis of its real-structure model (the RSD algorithm) with the use of exact numerical methods. It allows taking the growth laws and the reflectance of real structures into account. The new algorithm was compared with the Gukasov-Ruban-Bedrizova (GRB) algorithm and with the most frequently used algorithm of Hayter and Mook (HM). Calculations showed that, when the parameters of the algorithms are chosen so that the supermirrors designed for a given angular acceptance m have the same number of bilayers, (a) for perfect layers the GRB, HM and RSD algorithms generate sequences of practically the same reflectance; (b) for real structures with rough interfaces and interdiffusion the GRB and HM algorithms generate sequences with insufficient number of thinner layers and the RSD algorithm turns out to be more responsive and efficient. The efficiency of the RSD algorithm increases for larger m. In addition, calculations have been carried out to demonstrate the effect of fabrication errors and absorption on the reflectance of Ni/Ti supermirrors

  4. On Rational Design of Double Hull Tanker Structures against Collision

    DEFF Research Database (Denmark)

    Paik, Jeom Kee; Chung, Jang Young; Choe, Ich Hung

    1999-01-01

    This paper is a summary of recent research and development in areas related to the design technology for double hull tanker structures against low energy collision, jointly undertaken by the Hyundai Heavy Industries, the American Bureau of Shipping, the Technical University of Denmark and the Pusan...... in the present study were (i) developing a framework for the collision design procedure for double hull tanker structures, (ii) experimental investigation of the structural crashworthiness of the collided vessels in collision or stranding, using double skinned structural models, (iii) validation of the special...... investigation of the energy absorption capability characteristics of a collided double hull VLCC side structure in collision, and (vi) development of a new modified Minorsky method for double hull tanker side structures. The tools developed and the results and insights obtained by the present study should...

  5. Upgrade and Design of Coastal Structures Exposed to Climate Changes

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Quvang Harck

    This thesis “Upgrade and Design of Coastal Structures Exposed to Climate Changes” evaluates the performance of existing types of structures when exposed to climate changes. This includes also the potential of using cost‐sharing multipurpose structures for protection against the effects of future...... climate changes. The thesis consists of three parts. The first part evaluates the performance of existing design formulae for estimation of wave actions on structures, especially in shallow water since these structures are most vulnerable to the rising sea water levels caused by climate changes. Existing...... of coastal protection structures, which are extended to a wider range of wave conditions, and which can be used to more accurately estimate the influence from climate changes. In the second part of the thesis, the extended and modified formulae are used in case studies to evaluate the influence from climate...

  6. Upgrade and Design of Coastal Structures Exposed to Climate Changes

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Quvang Harck

    This thesis "Upgrade and Design of Coastal Structures Exposed to Climate Changes" evaluates the performance of existing types of structures when exposed to climate changes. This includes also the potential of using cost‐sharing multipurpose structures for protection against the effects of future...... climate changes. The thesis consists of three parts. The first part evaluates the performance of existing design formulae for estimation of wave actions on structures, especially in shallow water since these structures are most vulnerable to the rising sea water levels caused by climate changes. Existing...... of coastal protection structures, which are extended to a wider range of wave conditions, and which can be used to more accurately estimate the influence from climate changes. In the second part of the thesis, the extended and modified formulae are used in case studies to evaluate the influence from climate...

  7. OPTICON: Pro-Matlab software for large order controlled structure design

    Science.gov (United States)

    Peterson, Lee D.

    1989-01-01

    A software package for large order controlled structure design is described and demonstrated. The primary program, called OPTICAN, uses both Pro-Matlab M-file routines and selected compiled FORTRAN routines linked into the Pro-Matlab structure. The program accepts structural model information in the form of state-space matrices and performs three basic design functions on the model: (1) open loop analyses; (2) closed loop reduced order controller synthesis; and (3) closed loop stability and performance assessment. The current controller synthesis methods which were implemented in this software are based on the Generalized Linear Quadratic Gaussian theory of Bernstein. In particular, a reduced order Optimal Projection synthesis algorithm based on a homotopy solution method was successfully applied to an experimental truss structure using a 58-state dynamic model. These results are presented and discussed. Current plans to expand the practical size of the design model to several hundred states and the intention to interface Pro-Matlab to a supercomputing environment are discussed.

  8. AHTR Mechanical, Structural, And Neutronic Preconceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Varma, Venugopal Koikal [ORNL; Holcomb, David Eugene [ORNL; Peretz, Fred J [ORNL; Bradley, Eric Craig [ORNL; Ilas, Dan [ORNL; Qualls, A L [ORNL; Zaharia, Nathaniel M [ORNL

    2012-10-01

    This report provides an overview of the mechanical, structural, and neutronic aspects of the Advanced High Temperature Reactor (AHTR) design concept. The AHTR is a design concept for a large output Fluoride salt cooled High-temperature Reactor (FHR) that is being developed to enable evaluation of the technology hurdles remaining to be overcome prior to FHRs becoming a commercial reactor class. This report documents the incremental AHTR design maturation performed over the past year and is focused on advancing the design concept to a level of a functional, self-consistent system. The AHTR employs plate type coated particle fuel assemblies with rapid, off-line refueling. Neutronic analysis of the core has confirmed the viability of a 6-month 2-batch cycle with 9 weight-percent enriched uranium fuel. Refueling is intended to be performed automatically under visual guidance using dedicated robotic manipulators. The present design intent is for used fuel to be stored inside of containment for at least 6 months and then transferred to local dry wells for intermediate term, on-site storage. The mechanical and structural concept development effort has included an emphasis on transportation and constructability to minimize construction costs and schedule. The design intent is that all components be factory fabricated into rail transportable modules that are assembled into subsystems at an on-site workshop prior to being lifted into position using a heavy-lift crane in an open-top style construction. While detailed accident identification and response sequence analysis has yet to be performed, the design concept incorporates multiple levels of radioactive material containment including fully passive responses to all identified design basis or non-very-low frequency beyond design basis accidents. Key building design elements include: 1) below grade siting to minimize vulnerability to aircraft impact, 2) multiple natural circulation decay heat rejection chimneys, 3) seismic

  9. Comparative study of codes for the seismic design of structures

    Directory of Open Access Journals (Sweden)

    S. H. C. Santos

    Full Text Available A general evaluation of some points of the South American seismic codes is presented herein, comparing them among themselves and with the American Standard ASCE/SEI 7/10 and with the European Standard Eurocode 8. The study is focused in design criteria for buildings. The Western border of South America is one of the most seismically active regions of the World. It corresponds to the confluence of the South American and Nazca plates. This region corresponds roughly to the vicinity of the Andes Mountains. This seismicity diminishes in the direction of the comparatively seismically quieter Eastern South American areas. The South American countries located in its Western Border possess standards for seismic design since some decades ago, being the Brazilian Standard for seismic design only recently published. This study is focused in some critical topics: definition of the recurrence periods for establishing the seismic input; definition of the seismic zonation and design ground motion values; definition of the shape of the design response spectra; consideration of soil amplification, soil liquefaction and soil-structure interaction; classification of the structures in different importance levels; definition of the seismic force-resisting systems and respective response modification coefficients; consideration of structural irregularities and definition of the allowable procedures for the seismic analyses. A simple building structure is analyzed considering the criteria of the several standards and obtained results are compared.

  10. Strategies for Optimal Design of Structural Systems

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    1992-01-01

    Reliability-based design of structural systems is considered. Especially systems where the reliability model is a series system of parallel systems are analysed. A sensitivity analysis for this class of problems is presented. Direct and sequential optimization procedures to solve the optimization...

  11. Basic studies on design supporting system of offshore structure. Part 2. Implementation of structural design supporting system of offshore structures; Kaiyo kozobutsu wo taisho to shita sekkei shien system ni kansuru kisoteki kenkyu. 2. Kaiyo kozobutsu no kozo sekkei shien system no kochiku

    Energy Technology Data Exchange (ETDEWEB)

    Nomoto, T.; Hamada, K.; Aoyama, K. [The University of Tokyo, Tokyo (Japan)

    1996-12-31

    In order to improve the existing design-supporting system for offshore structures, new functions are added to evaluate information of the products, especially those for structural designs. The structural analysis system should be provided with a function of design modification, to efficiently support the structural analysis of these structures. The new system adds hierarchy of various offshore structure models and three-dimensional dimensions to clarify structural and geometrical constraints and design-modification function. The design-modification function is included by use of the hierarchy. The other new functions are finite element analysis systems for the main structure and components, and rigidity calculation for the main structure. The main structure and functional element models are confirmed to be useful also for utilization of information, and provide necessary information of the product models. 11 refs., 11 figs.

  12. Basic studies on design supporting system of offshore structure. Part 2. Implementation of structural design supporting system of offshore structures; Kaiyo kozobutsu wo taisho to shita sekkei shien system ni kansuru kisoteki kenkyu. 2. Kaiyo kozobutsu no kozo sekkei shien system no kochiku

    Energy Technology Data Exchange (ETDEWEB)

    Nomoto, T; Hamada, K; Aoyama, K [The University of Tokyo, Tokyo (Japan)

    1997-12-31

    In order to improve the existing design-supporting system for offshore structures, new functions are added to evaluate information of the products, especially those for structural designs. The structural analysis system should be provided with a function of design modification, to efficiently support the structural analysis of these structures. The new system adds hierarchy of various offshore structure models and three-dimensional dimensions to clarify structural and geometrical constraints and design-modification function. The design-modification function is included by use of the hierarchy. The other new functions are finite element analysis systems for the main structure and components, and rigidity calculation for the main structure. The main structure and functional element models are confirmed to be useful also for utilization of information, and provide necessary information of the product models. 11 refs., 11 figs.

  13. Digital computer structure and design

    CERN Document Server

    Townsend, R

    2014-01-01

    Digital Computer Structure and Design, Second Edition discusses switching theory, counters, sequential circuits, number representation, and arithmetic functions The book also describes computer memories, the processor, data flow system of the processor, the processor control system, and the input-output system. Switching theory, which is purely a mathematical concept, centers on the properties of interconnected networks of ""gates."" The theory deals with binary functions of 1 and 0 which can change instantaneously from one to the other without intermediate values. The binary number system is

  14. Development and implementation of the TPX structural and cryogenic design criteria

    International Nuclear Information System (INIS)

    Zatz, I.; Heitzenroeder, P.; Schultz, J.H.

    1993-01-01

    The Tokamak Physics Experiment (TPX) is a superconducting tokamak utilizing both Nb 3 Sn and NbTi superconducting magnets and will feature a low-activation titanium alloy vacuum vessel and carbon-carbon composite divertors. Due to the unique nature of the component designs, materials, and environment, the TPX project felt it necessary to develop a design criteria (code) which will specifically address the structural and cryogenic design aspects of such a device. The developed code is intended to serve all components of the device; namely, the TF and PF magnets, vacuum vessel, first wall and divertor, cryostat, diagnostics, heating devices, shielding, and all associated structural elements. The structural portion is based largely on that developed for the Burning Plasma Experiment (BPX), which was modeled after the CIT Vacuum Vessel Structural Design Criteria and ASME Boiler and Pressure Vessel (B ampersand PV) Code. The cryogenic criteria is largely modeled after that proposed in the ITER CDA. This paper summarizes the TPX Criteria document

  15. CONTRIBUTIONS ON THE DESIGN OF UNCONVENTIONAL CORRUGATED BOARD STRUCTURES

    Directory of Open Access Journals (Sweden)

    NEIDONI Nadina

    2015-06-01

    Full Text Available The paper depicts a few contributions on the design of several unconventional corrugated board structures. In general, cardboard and corrugated cardboard is strongly linked to packaging. However, limiting these materials to their primary use does nothing else but to restrict the possibilities of using them in other interesting areas. Consequently, new structures built from cardboard have been imagined and in the paper there are presented a few unconventional uses of the corrugated fiberboard, namely as furniture elements, along with the technology used in the design and the manufacturing process.

  16. Design-Load Basis for LANL Structures, Systems, and Components

    Energy Technology Data Exchange (ETDEWEB)

    I. Cuesta

    2004-09-01

    This document supports the recommendations in the Los Alamos National Laboratory (LANL) Engineering Standard Manual (ESM), Chapter 5--Structural providing the basis for the loads, analysis procedures, and codes to be used in the ESM. It also provides the justification for eliminating the loads to be considered in design, and evidence that the design basis loads are appropriate and consistent with the graded approach required by the Department of Energy (DOE) Code of Federal Regulation Nuclear Safety Management, 10, Part 830. This document focuses on (1) the primary and secondary natural phenomena hazards listed in DOE-G-420.1-2, Appendix C, (2) additional loads not related to natural phenomena hazards, and (3) the design loads on structures during construction.

  17. Structural design of liquid oxygen/liquid methane robotic lander JANUS

    Science.gov (United States)

    Chaidez, Mariana

    As the attempt to send humans to Mars has gained momentum in the last decade, the need to find alternative propellants that are safer, less toxic, and yields a better performance has become apparent [1]. Liquid methane and oxygen have emerged as a suitable alternative. In addition, the incorporation of liquid methane/liquid oxygen into the propulsion system has demonstrated an increase in engine performance, as well as a reduction in the volume, size and complexity of the propulsion system. In an attempt to further understand the technologies that are possible to develop using liquid oxygen (LO 2) and liquid methane (LCH4), a preliminary design of a robotic lander JANUS is being completed by the Center for Space Exploration and Technology Research (cSTER). The structural design of the vehicle is important because it acts as the skeleton of the vehicle and dictates the maneuverability of the robotic lander. To develop the structure of the robotic lander, six different design vehicle concepts with varying tank configurations were considered. Finite Element Analysis (FEA) was completed on each model to optimize each vehicle. Trade studies were completed to choose the best design for JANUS. Upon completion of the trade studies the design for the first prototype of JANUS was initiated in which the tank and thrust modules were designed. This thesis will describe the design process for the structural design of the JANUS.

  18. The constructional design of cooling water discharge structures on German rivers

    International Nuclear Information System (INIS)

    Geldner, P.; Zimmermann, C.

    1975-11-01

    The present compilation of structures for discharging cooling water from power stations into rivers is an attempt to make evident developments in the constructional design of such structures and to give reasons for special structure shapes. A complete collection of all structures built in Germany, however, is difficult to realize because of the large number of power stations. For conventionally heated power stations therefore only a selection was made, while nuclear power stations in operation or under construction could almost completely be taken into account. For want of sufficient quantities of water for river water cooling, projected power stations are now almost exclusively designed for closed-circuit cooling so that the required discharge structures for elutrition water from the cooling towers as well as for the emergency and secondary cooling circuits have to be designed only for small amounts of water. (orig./HP) [de

  19. Maintaining excellence in teaching of human anatomy: University of ...

    African Journals Online (AJOL)

    Measures to address these challenges have resulted in wide disparities in curriculum design teaching methods, number and composition of instructors. Inspite of the challenges, the Department of Human Anatomy of the University of Nairobi (UON) maintained excellence of teaching for over 40yrs. This article describes the ...

  20. Topological design of compliant smart structures with embedded movable actuators

    International Nuclear Information System (INIS)

    Wang, Yiqiang; Zhang, Xiaopeng; Kang, Zhan; Luo, Zhen

    2014-01-01

    In the optimal configuration design of piezoelectric smart structures, it is favorable to use actuation elements with certain predefined geometries from the viewpoint of manufacturability of fragile piezoelectric ceramics in practical applications. However, preserving the exact shape of these embedded actuators and tracking their dynamic motions presents a more challenging research task than merely allowing them to take arbitrary shapes. This paper proposes an integrated topology optimization method for the systematic design of compliant smart structures with embedded movable PZT (lead zirconate titanate) actuators. Compared with most existing studies, which either optimize positions/sizes of the actuators in a given host structure or design the host structure with pre-determined actuator locations, the proposed method simultaneously optimizes the positions of the movable PZT actuators and the topology of the host structure, typically a compliant mechanism for amplifying the small strain stroke. A combined topological description model is employed in the optimization, where the level set model is used to track the movements of the PZT actuators and the independent point-wise density interpolation (iPDI) approach is utilized to search for the optimal topology of the host structure. Furthermore, we define an integral-type constraint function to prevent overlaps between the PZT actuators and between the actuators and the external boundaries of the design domain. Such a constraint provides a unified and explicit mathematical statement of the non-overlap condition for any number of arbitrarily shaped embedded actuators. Several numerical examples are used to demonstrate the effectiveness of the proposed optimization method. (paper)

  1. An examination on aseismatic design of civil engineering structures in nuclear power stations

    International Nuclear Information System (INIS)

    Aida, Masakazu; Nakamura, Haruaki; Suzuki, Hideya

    1990-01-01

    As for the aseismatic design of civil engineering structures in nuclear power stations, the basic way of thinking and the example design are shown in the technical guidelines and others, but when the aseismatic design is actually carried out, the techniques of aseismatic calculation and the modeling for structural analysis are left to the judgement of designers. Among such various problems, in this report, the applicability of response displacement method and response magnitude method as the aseismatic calculation techniques and the necessity of rigid region in rahmen members in structural analysis were examined, and those are described. As the structures in nuclear power stations, there are cooling water intake and discharge facilities, emergency water intake, breakwater, unloading quays, revetments, the foundations of tanks, machinery and equipment, piping and others, roads, bridges, tunnels and so on. The outline of their aseismatic design and the examination on the cases of aseismatic design are reported. These structures are frequently underground structures, which are different from those on the ground. (K.I.)

  2. Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Soderquist, J.R.; Neri, L.M.; Bohon, H.L.

    1992-09-01

    This publication contains the proceedings of the Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design held at Lake Tahoe, Nevada, during 4-7 Nov. 1991. Presentations were made in the following areas of composite structural design: perspectives in composites, design methodology, design applications, design criteria, supporting technology, damage tolerance, and manufacturing.

  3. Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, volume 3

    Science.gov (United States)

    Soderquist, Joseph R. (Compiler); Neri, Lawrence M. (Compiler); Bohon, Herman L. (Compiler)

    1992-01-01

    This publication contains the proceedings of the Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design held at Lake Tahoe, Nevada, during 4-7 Nov. 1991. Presentations were made in the following areas of composite structural design: perspectives in composites, design methodology, design applications, design criteria, supporting technology, damage tolerance, and manufacturing.

  4. Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, volume 2

    Science.gov (United States)

    Soderquist, Joseph R. (Compiler); Neri, Lawrence M. (Compiler); Bohon, Herman L. (Compiler)

    1992-01-01

    This publication contains the proceedings of the Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design held at Lake Tahoe, Nevada, during 4-7 Nov. 1991. Presentations were made in the following areas of composite structural design: perspectives in composites, design methodology, design applications, design criteria, supporting technology, damage tolerance, and manufacturing.

  5. Realization methodology for optimal design of steel structures conveyors with hanging belt

    Directory of Open Access Journals (Sweden)

    Boslovyak P.V.

    2016-03-01

    Full Text Available Presents the results of optimum design of metal structures of the fixed conveyor with hanging belt. The analysis results optimum design of steel structures of stationary conveyor with hanging belt.

  6. Hydrolytic catalysis and structural stabilization in a designed metalloprotein

    Science.gov (United States)

    Zastrow, Melissa L.; Peacock, Anna F. A.; Stuckey, Jeanne A.; Pecoraro, Vincent L.

    2011-01-01

    Metal ions are an important part of many natural proteins, providing structural, catalytic and electron transfer functions. Reproducing these functions in a designed protein is the ultimate challenge to our understanding of them. Here, we present an artificial metallohydrolase, which has been shown by X-ray crystallography to contain two different metal ions – a Zn(II) ion which is important for catalytic activity and a Hg(II) ion which provides structural stability. This metallohydrolase displays catalytic activity that compares well with several characteristic reactions of natural enzymes. It catalyses p-nitrophenyl acetate hydrolysis (pNPA) to within ~100-fold of the efficiency of human carbonic anhydrase (CA)II and is at least 550-fold better than comparable synthetic complexes. Similarly, CO2 hydration occurs with an efficiency within ~500-fold of CAII. While histidine residues in the absence of Zn(II) exhibit pNPA hydrolysis, miniscule apopeptide activity is observed for CO2 hydration. The kinetic and structural analysis of this first de novo designed hydrolytic metalloenzyme uncovers necessary design features for future metalloenzymes containing one or more metals. PMID:22270627

  7. An approach to development of structural design criteria for highly irradiated core components

    International Nuclear Information System (INIS)

    Nelson, D.V.

    1980-01-01

    The advent of the fast breeder reactor presents novel challenges in structural design and materials engineering. For instance, the core components of these reactors experience high energy neutron irradiation at elevated temperature, which causes significant time-dependent changes in material behaviour, such as a progressive loss of ductility. New structural design criteria are needed to extend elevated temperature design-by-analysis to account for these changes. Alloys best able to cope with the demands of the core operating environment are being explored and their structural behaviour characterized. The purpose of this paper is to illustrate an approach used in the development of core component structural design criteria. To do this, several design rules, plus brief rationale, from draft RDT Standards F9-7, -8 and -9 will be presented. These recently completed standards ('Structural Design Guidelines for Breeder Reactor Core Components') were prepared for the U.S. Department of Energy and represent a consensus among most organizations participating in the U.S. breeder program. (author)

  8. Using Container Structures in Architecture and Urban Design

    Science.gov (United States)

    Grębowski, Karol; Kałdunek, Daniel

    2017-10-01

    The paper presents the use of shipping containers in architecture and urban design. Even today, houses and apartments are still too expensive. Since 1923 architects have been improving the living conditions of citizens by building very simple, repeatable forms. With prefabrication technology it became possible to build quicker, causing house prices to decrease. Apartments in block of flats became affordable to more and more people. Modernism had great impact on the quality of living spaces, despite the detrimental effect of large panel technology on social life. It gave people their own bathrooms, and gifted them with simple solutions we now consider indispensable. The ambition to build cheaply but effectively is still here. The future of housing lies in prefabricated apartment modules. A well optimized creation process is the key, but taking into consideration the mistakes made by past generations should be the second most important factor. Studies show that large panel buildings were too monumental and solid for a housing structure, and offered no public spaces between them. Lack of urban design transformed a great idea into blocks that are considered to be ugly and unfriendly. Diversity is something that large panel structures were missing. While most block of flats were being constructed out of the same module (Model 770), differentiated architecture was difficult to achieve. Nowadays, increasing numbers of shipping containers are being used for housing purposes. These constructions show that it is possible to create astonishing housing with modules. Shipping containers were not designed to be a building material, but in contrast to large panel modules, there are many more possibilities of their transformation. In this paper the authors propose a set of rules that, if followed, would result in cheaper apartments, while keeping in consideration both tremendous architecture and friendly urban design. What is more, the proposed solution is designed to adapt to

  9. Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Soderquist, J.R.; Neri, L.M.; Bohon, H.L.

    1992-09-01

    This publication contains the proceedings of the Ninth DOD/NASA/FAA conference on Fibrous Composites in structural Design. Presentations were made in the following areas of composite structural design: perspectives in composites; design methodology; design applications; design criteria; supporting technology; damage tolerance; and manufacturing. Separate abstracts have been indexed into the database for articles from this report.

  10. Eighth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, part 2

    Energy Technology Data Exchange (ETDEWEB)

    Starnes, J.H. Jr.; Bohon, H.L.; Garzon, S.B.

    1990-09-01

    Papers presented at the conference are compiled. The conference provided a forum for the scientific community to exchange composite structures design information and an opportunity to observe recent progress in composite structures design and technology. Part 2 contains papers related to the following subject areas: the application in design; methodology in design; and reliability in design.

  11. Eighth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, Part 2

    Science.gov (United States)

    Starnes, James H., Jr. (Compiler); Bohon, Herman L. (Compiler); Garzon, Sherry B. (Compiler)

    1990-01-01

    Papers presented at the conference are compiled. The conference provided a forum for the scientific community to exchange composite structures design information and an opportunity to observe recent progress in composite structures design and technology. Part 2 contains papers related to the following subject areas: the application in design; methodology in design; and reliability in design.

  12. A proposal to develop a high temperature structural design guideline for HTGR components

    International Nuclear Information System (INIS)

    Hada, K.

    1989-01-01

    This paper presents some proposals for developing a high-temperature structural design guideline for HTGR structural components. It is appropriate that a basis for developing high-temperature structural design rules is rested on well-established elevated-temperature design guidelines, if the same failure modes are expected for high-temperature components as considered in such design guidelines. As for the applicability of ASME B and PV Code Case N-47 to structural design rules for high-temperature components (service temperatures ≥ 900 deg. C), the following critical issues on material properties and service life evaluation rules have been pointed out. (i) no work-hardening of stress-strain curves at high temperatures due to dynamic recrystallization; (ii) issues relating to very significant creep; (iii) ductility loss after long-term ageing at high temperatures; (iv) validity of life-fraction rule (Robinson-Taira rule) as creep-fatigue damage evaluation rule. Furthermore, the validity of design margins of elevated-temperature structural design guidelines to high-temperature design rules should be clarified. Solutions and proposals to these issues are presented in this paper. Concerning no work-hardening due to dynamic recrystallization, it is shown that viscous effects cannot be neglected even at high extension rate for tensile tests, and that changes in viscous deformation rates by dynamic recrystallization should be taken into account. The extension rate for tensile tests is proposed to change at high temperatures. The solutions and proposals to the above-mentioned issues lead to the conclusion that the design methodologies of N-47 are basically applicable to the high-temperature structural design guideline for HTGR structural components in service at about 900 deg. C. (author). 9 refs, 5 figs

  13. Recent developments for fast reactor structural design standard (FDS)

    International Nuclear Information System (INIS)

    Kasahara, N.; Nakamuria, K.; Morishita, M.; Shibamoto, H.; Nagashima, H.; Inoue, K.

    2005-01-01

    For realization of reliable and economical fast reactor (FR) plants, Japan Nuclear Cycle Development Institute(JNC) and Japan Atomic Power Company(JAPC) are cooperating on 'Feasibility Study on Commercialized FR Cycle Systems'. To certify the design concepts through evaluation of their structural integrity, the research and development of 'Elevated Temperature Structural Design Guide for Commercialized Fast Reactor (FDS)' is recognized as an essential theme. FDS focuses on particular failure modes of FRs such as ratchet deformation and creep fatigue damages due to cyclic thermal loads. To evaluate these modes, three main developments are in progress. One is 'Refinement of Failure Criteria' for particular modes of FRs. Next is development of 'Guidelines for Inelastic Design Analysis' in order to predict elastic plastic and creep behaviors. Furthermore, efforts are being made toward preparing 'Guidelines for Thermal Load Modeling' for FR component design where thermal loads are dominant. These studies were performed under the sponsorship of the Ministry of Economy, Trade and Industry of Japanese government. (authors)

  14. Flocculent and grand design spiral arm structure in cluster galaxies

    International Nuclear Information System (INIS)

    Elmegreen, D.M.

    1982-01-01

    A total of 829 spiral galaxies in 22 clusters having redshifts between z = 0.02 and 0.06 were classified according to the appearance of their spiral arm structures. The fraction of galaxies that have a grand design spiral structure was found to be higher among barred galaxies than among non-barred galaxies (at z = 0.02, 95 per cent of strongly barred galaxies have a grand design, compared with 67 per cent of non-barred or weakly barred galaxies). Cluster galaxies and distant non-cluster galaxies have the same fraction of grand design galaxies when resolution effects are considered. The grand design fraction among cluster galaxies is also similar to the fraction observed among nearby galaxies in binary systems and in groups. (author)

  15. Structural analysis technology for high-temperature design

    International Nuclear Information System (INIS)

    Greenstreet, W.L.

    1977-01-01

    Results from an ongoing program devoted to the development of verified high-temperature structural design technology applicable to nuclear reactor systems are described. The major aspects addressed by the program are (1) deformation behavior; (2) failure associated with creep rupture, brittle fracture, fatigue, creep-fatigue interactions, and crack propagation; and (3) the establishment of appropriate design criteria. This paper discusses information developed in the deformation behavior category. The material considered is type 304 stainless steel, and the temperatures range to 1100 0 F (593 0 C). In essence, the paper considers the ingredients necessary for predicting relatively high-temperature inelastic deformation behavior of engineering structures under time-varying temperature and load conditions and gives some examples. These examples illustrate the utility and acceptability of the computational methods identified and developed for prediting essential features of complex inelastic behaviors. Conditions and responses that can be encountered under nuclear reactor service conditions and invoked in the examples. (Auth.)

  16. Apoprotein Structure and Metal Binding Characterization of a de Novo Designed Peptide, α3DIV, that Sequesters Toxic Heavy Metals.

    Science.gov (United States)

    Plegaria, Jefferson S; Dzul, Stephen P; Zuiderweg, Erik R P; Stemmler, Timothy L; Pecoraro, Vincent L

    2015-05-12

    De novo protein design is a biologically relevant approach that provides a novel process in elucidating protein folding and modeling the metal centers of metalloproteins in a completely unrelated or simplified fold. An integral step in de novo protein design is the establishment of a well-folded scaffold with one conformation, which is a fundamental characteristic of many native proteins. Here, we report the NMR solution structure of apo α3DIV at pH 7.0, a de novo designed three-helix bundle peptide containing a triscysteine motif (Cys18, Cys28, and Cys67) that binds toxic heavy metals. The structure comprises 1067 NOE restraints derived from multinuclear multidimensional NOESY, as well as 138 dihedral angles (ψ, φ, and χ1). The backbone and heavy atoms of the 20 lowest energy structures have a root mean square deviation from the mean structure of 0.79 (0.16) Å and 1.31 (0.15) Å, respectively. When compared to the parent structure α3D, the substitution of Leu residues to Cys enhanced the α-helical content of α3DIV while maintaining the same overall topology and fold. In addition, solution studies on the metalated species illustrated metal-induced stability. An increase in the melting temperatures was observed for Hg(II), Pb(II), or Cd(II) bound α3DIV by 18-24 °C compared to its apo counterpart. Further, the extended X-ray absorption fine structure analysis on Hg(II)-α3DIV produced an average Hg(II)-S bond length at 2.36 Å, indicating a trigonal T-shaped coordination environment. Overall, the structure of apo α3DIV reveals an asymmetric distorted triscysteine metal binding site, which offers a model for native metalloregulatory proteins with thiol-rich ligands that function in regulating toxic heavy metals, such as ArsR, CadC, MerR, and PbrR.

  17. Development of a design basis tornado and structural design criteria for Lawrence Livermore Laboratory's Site 300

    International Nuclear Information System (INIS)

    McDonald, J.R.; Minor, J.E.; Mehta, K.C.

    1975-11-01

    Criteria are prescribed and guidance is provided for professional personnel who are involved with the evaluation of existing buildings and facilities at Site 300 near Livermore, California to resist the possible effects of extreme winds and tornadoes. The development of parameters for the effects of tornadoes and extreme winds and guidelines for evaluation and design of structures are presented. The investigations conducted are summarized and the techniques used for arriving at the combined tornado and extreme wind risk model are discussed. The guidelines for structural design methods for calculating pressure distributions on walls and roofs of structures and methods for accommodating impact loads from missiles are also presented

  18. The Open Form Inducer Approach for Structure-Based Drug Design.

    Directory of Open Access Journals (Sweden)

    Daniel Ken Inaoka

    Full Text Available Many open form (OF structures of drug targets were obtained a posteriori by analysis of co-crystals with inhibitors. Therefore, obtaining the OF structure of a drug target a priori will accelerate development of potent inhibitors. In addition to its small active site, Trypanosoma cruzi dihydroorotate dehydrogenase (TcDHODH is fully functional in its monomeric form, making drug design approaches targeting the active site and protein-protein interactions unrealistic. Therefore, a novel a priori approach was developed to determination the TcDHODH active site in OF. This approach consists of generating an "OF inducer" (predicted in silico to bind the target and cause steric repulsion with flexible regions proximal to the active site that force it open. We provide the first proof-of-concept of this approach by predicting and crystallizing TcDHODH in complex with an OF inducer, thereby obtaining the OF a priori with its subsequent use in designing potent and selective inhibitors. Fourteen co-crystal structures of TcDHODH with the designed inhibitors are presented herein. This approach has potential to encourage drug design against diseases where the molecular targets are such difficult proteins possessing small AS volume. This approach can be extended to study open/close conformation of proteins in general, the identification of allosteric pockets and inhibitors for other drug targets where conventional drug design approaches are not applicable, as well as the effective exploitation of the increasing number of protein structures deposited in Protein Data Bank.

  19. Improving design processes through structured reflection : a prototype software tool

    NARCIS (Netherlands)

    Reymen, I.M.M.J.; Melby, E.

    2001-01-01

    A prototype software tool facilitating the use of a design method supporting structured reflection on design processes is presented. The prototype, called Echo, has been developed to explore the benefits of using a software system to facilitate the use of the design method. Both the prototype

  20. Distributed collaborative probabilistic design of multi-failure structure with fluid-structure interaction using fuzzy neural network of regression

    Science.gov (United States)

    Song, Lu-Kai; Wen, Jie; Fei, Cheng-Wei; Bai, Guang-Chen

    2018-05-01

    To improve the computing efficiency and precision of probabilistic design for multi-failure structure, a distributed collaborative probabilistic design method-based fuzzy neural network of regression (FR) (called as DCFRM) is proposed with the integration of distributed collaborative response surface method and fuzzy neural network regression model. The mathematical model of DCFRM is established and the probabilistic design idea with DCFRM is introduced. The probabilistic analysis of turbine blisk involving multi-failure modes (deformation failure, stress failure and strain failure) was investigated by considering fluid-structure interaction with the proposed method. The distribution characteristics, reliability degree, and sensitivity degree of each failure mode and overall failure mode on turbine blisk are obtained, which provides a useful reference for improving the performance and reliability of aeroengine. Through the comparison of methods shows that the DCFRM reshapes the probability of probabilistic analysis for multi-failure structure and improves the computing efficiency while keeping acceptable computational precision. Moreover, the proposed method offers a useful insight for reliability-based design optimization of multi-failure structure and thereby also enriches the theory and method of mechanical reliability design.

  1. Backbone cup – a structure design competition based on topology optimization and 3D printing

    Directory of Open Access Journals (Sweden)

    Zhu Ji-Hong

    2016-01-01

    Full Text Available This paper addresses a structure design competition based on topology optimization and 3D Printing, and proposes an experimental approach to efficiently and quickly measure the mechanical performance of the structures designed using topology optimization. Since the topology optimized structure designs are prone to be geometrically complex, it is extremely inconvenient to fabricate these designs with traditional machining. In this study, we not only fabricated the topology optimized structure designs using one kind of 3D Printing technology known as stereolithography (SLA, but also tested the mechanical performance of the produced prototype parts. The finite element method is used to analyze the structure responses, and the consistent results of the numerical simulations and structure experiments prove the validity of this new structure testing approach. This new approach will not only provide a rapid access to topology optimized structure designs verifying, but also cut the turnaround time of structure design significantly.

  2. Design and Development of Mechanical Structure and Control System for Tracked Trailing Mobile Robot

    OpenAIRE

    Hongchuan Xu; Jianxing Ren; Rui Zhu; Zhiwei Chen

    2013-01-01

    Along with the science and technology unceasing progress, the uses of tracing robots become more and more widely. Tracked tracing robot was adopted as the research object in this paper, mechanical structure and control system of robot was designed and developmented. In mechanical structure design part, structure designed and positioned  were completed, including design of robot body, wheel, underpan, transmission structure and the positioning of batteries, control panel, sensors, etc, and the...

  3. Designing CNC Knit for Hybrid Membrane And Bending Active Structures

    DEFF Research Database (Denmark)

    Tamke, Martin; Holden Deleuran, Anders; Gengnagel, Christoph

    2015-01-01

    specific properties and detailing. CNC knitting with high tenacity yarn enables this practice and offers an alternative to current woven membranes. The design and fabrication of an 8m high fabric tower through an interdisciplinary team of architects, structural and textile engineers, allowed to investigate...... means to design, specify, make and test CNC knit as material for hybrid structures in architectural scale. This paper shares the developed process, identifies challenges, potentials and future work...

  4. CRBRP structural and thermal margin beyond the design base

    International Nuclear Information System (INIS)

    Strawbridge, L.E.

    1979-01-01

    Prudent margins beyond the design base have been included in the design of Clinch River Breeder Reactor Plant to further reduce the risk to the public from highly improbable occurrences. These margins include Structural Margin Beyond the Design Base to address the energetics aspects and Thermal Margin Beyond the Design Base to address the longer term thermal and radiological consequences. The assessments that led to the specification of these margins are described, along with the experimental support for those assessments. 8 refs

  5. Structural analysis for elevated temperature design of the LMFBR

    International Nuclear Information System (INIS)

    Griffin, D.S.

    1976-02-01

    In the structural design of LMFBR components for elevated temperature service it is necessary to take account of the time-dependent, creep behavior of materials. The accommodation of creep to assure design reliability has required (1) development of new design limits and criteria, (2) development of more detailed representations of material behavior, and (3) application of the most advanced analysis techniques. These developments are summarized and examples are given to illustrate the current state of technology in elevated temperature design

  6. Feasibility of N-Gram Data-Structures for Next-Generation Pathogen Signature Design

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, S N

    2009-01-26

    We determined the most appropriate data structure for handling n-gram (also known as k-mer) string comparisons and storage for genomic sequence data that will scale in terms of memory and speed. This is critical to maintain LLNL as the leader in pathogen detection, as it will guide the design of the 'Next Generation' system for computational signature prediction. There are two parts to k-mer analysis for signature prediction that we investigated. First is the enumeration and frequency counting of all observed k-mers in a sequence database (k-mer is a biological term equivalent to the CS term n-gram). Second is the down-selection and pairing of k-mers to generate a signature. We determined that for the first part, suffix arrays are the preferred method to enumerate k-mers, being memory efficient and relatively easy and fast to compute. For the second part, a subset of the k-mers can be stored and manipulated in a hash, that subset determination based on desired frequency characteristics such as most/least frequent from a set, shared among sequence sets, or discriminating across sequence sets.

  7. Spanish generation market: structure, design and results

    International Nuclear Information System (INIS)

    Agosti, L.; Padilla, A. J.; Requejo, A.

    2007-01-01

    This paper provides an overview of the structure, design and outcome of the Spanish generation market from 1998, when the market was liberalised, to date. More precisely, this paper reviews the history of the liberalisation process; describes the structure of the generation market and its evolution over time; analyses the existence of market power; and evaluates the outcome of the liberalisation process from the viewpoint of its impact on al locative efficiency, productive efficiency and dynamic efficiency. The paper concludes with a brief summary of recent regulatory reforms. (Author)

  8. Design of the accelerating structures for FMIT

    International Nuclear Information System (INIS)

    Liska, D.; Schamaun, R.; Potter, C.; Fuller, C.; Clark, D.; Greenwood, D.; Frank, J.

    1979-01-01

    Design considerations and concepts are presented for the accelerating structures for the Fusion Materials Irradiation Test (FMIT) Facility. These structures consist of three major units: 0.1- to 2-MeV radio-frequency quadrupole based on the Russian concept, a 2- to 35-MeV drift-tube linac made up of two separate tanks designed to generate either 20- or 35-MeV beams, and an energy dispersion cavity capable of spreading the energy of the beam slightly to ease thermal loading in the target. Because of probable beam activation, the drift-tube linac is designed so that alignment and maintenance do not require manned entry into the tanks. This conservatism also led to the choice of a conventional vacuum system and has influenced the choice of many of the rf interface components. The high-powered FMIT machine is very heavily beam loaded and delivers a 100-mA continuous duty deuteron beam to a flowing liquid lithium target. The power on target is 3.5 MW deposited in a 1 x 3 cm spot. Because of the critical importance of the low energy section of this accelerator on beam spill in the machine, a 5-MeV prototype will be constructed and tested at the Los Alamos Scientific Laboratory

  9. Structure-based drug design for G protein-coupled receptors.

    Science.gov (United States)

    Congreve, Miles; Dias, João M; Marshall, Fiona H

    2014-01-01

    Our understanding of the structural biology of G protein-coupled receptors has undergone a transformation over the past 5 years. New protein-ligand complexes are described almost monthly in high profile journals. Appreciation of how small molecules and natural ligands bind to their receptors has the potential to impact enormously how medicinal chemists approach this major class of receptor targets. An outline of the key topics in this field and some recent examples of structure- and fragment-based drug design are described. A table is presented with example views of each G protein-coupled receptor for which there is a published X-ray structure, including interactions with small molecule antagonists, partial and full agonists. The possible implications of these new data for drug design are discussed. © 2014 Elsevier B.V. All rights reserved.

  10. Discussion about the design for mesh data structure within the parallel framework

    International Nuclear Information System (INIS)

    Shi Guangmei; Wu Ruian; Wang Keying; Ji Xiaoyu; Hao Zhiming; Mo Jun; He Yingbo

    2010-01-01

    The mesh data structure, one of the fundamental data structure within the parallel framework, its design and realization level have an effect upon parallel capability of the parallel framework. Through the architecture and the fundamental data structure within some typical parallel framework relatively analyzed, such as JASMIN, SIERRA, and ITAPS, the design thought of parallel framework is discussed. Through borrowing ideas from layered set of services design about the SIERRA Framework, and combining with the objective of PANDA Framework in the near future, this paper present the rudimentary system about PANDA framework layered set of services. On this foundation, detailed introduction is placed in the definition and the management of the mesh data structure that it is located in the underlayer of the PANDA framework. The design and realization about parallel distributed mesh data structure of PANDA are emphatically discussed. The PANDA framework extension and application program development based on PANDA framework are grounded on our efforts.

  11. Structure design of the central solenoid in JT-60SA

    International Nuclear Information System (INIS)

    Asakawa, Shuji; Tsuchiya, Katsuhiko; Kuramochi, Masaya; Yoshida, Kiyoshi

    2009-09-01

    The upgrade of JT-60U magnet system to superconducting coils (JT-60SA: JT-60 Super Advanced) has been decided by parties of Japanese government (JA) and European commission (EU) in the framework of the Broader Approach (BA) agreement. The magnet system for JT-60SA consists of a central solenoid (CS), equilibrium field(EF) coils, toroidal field(TF) coils. The central solenoid consists the four winding pack modules. In order to counteract the thermal contraction as well as the electric magnetic repulsion and attraction together with other forces generated in each module, it is necessary to apply pre-loading to the support structure of the solenoid and to pursue a structure which is capable of sustaining such loading. In the present report, the structural design of the supporting structure of the solenoid and the jackets of the modules is verified analytically, and the results indicate that the structural design satisfies the 'Codes for Fusion Facilities - Rules on Superconducting Magnet Structure -'. (author)

  12. Improving design processes through structured reflection : a prototype software tool

    OpenAIRE

    Reymen, I.M.M.J.; Melby, E.

    2001-01-01

    A prototype software tool facilitating the use of a design method supporting structured reflection on design processes is presented. The prototype, called Echo, has been developed to explore the benefits of using a software system to facilitate the use of the design method. Both the prototype software tool and the design method are developed as part of the Ph.D. project of Isabelle Reymen. The goal of the design method is supporting designers with reflection on design processes in a systemati...

  13. Impact of operating experience on design of civil structures - An overview

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J H.K. [Ontario Hydro, Toronto, ON (Canada)

    1991-04-01

    During the past twenty years, Ontario Hydro has expanded its nuclear power to provide about one third of the electricity used in the province (coal and water powered stations provide the other two thirds). By 1992, the total installed capacity of nuclear generating stations in Ontario will further rise to over 14,000 MW. In common with other power plant design, the layout and structural design of civil facilities for a nuclear generating station are developed from consideration of functional, safety and operational requirements, as well as from past operating experience. Experience on structural performance in the sixteen units of Pickering and Bruce NGS's includes: piping and machinery vibrations, structural fatigue failures, and structural integrity due to extreme loadings not considered in the original design. The operating experience of Ontario Hydro's nuclear stations also indicates that civil structures are subjected to some degree of corrosion or degradation of certain elements similar to other mechanical components in a power station. This category of problems consists of concerns associated with thermal effects on concrete structures due to inoperative cooling system, cracking of concrete, and reliability of elastomeric seal materials at expansion joints of the containment envelop. This paper presents an overview of the operating problems and issues regarding changes in the licensing requirements related to civil structures and supporting systems of major mechanical components. The impact of these generic experience on the design of retrofits and new generating stations is also described in the paper.

  14. Impact of operating experience on design of civil structures - An overview

    International Nuclear Information System (INIS)

    Tang, J.H.K.

    1991-01-01

    During the past twenty years, Ontario Hydro has expanded its nuclear power to provide about one third of the electricity used in the province (coal and water powered stations provide the other two thirds). By 1992, the total installed capacity of nuclear generating stations in Ontario will further rise to over 14,000 MW. In common with other power plant design, the layout and structural design of civil facilities for a nuclear generating station are developed from consideration of functional, safety and operational requirements, as well as from past operating experience. Experience on structural performance in the sixteen units of Pickering and Bruce NGS's includes: piping and machinery vibrations, structural fatigue failures, and structural integrity due to extreme loadings not considered in the original design. The operating experience of Ontario Hydro's nuclear stations also indicates that civil structures are subjected to some degree of corrosion or degradation of certain elements similar to other mechanical components in a power station. This category of problems consists of concerns associated with thermal effects on concrete structures due to inoperative cooling system, cracking of concrete, and reliability of elastomeric seal materials at expansion joints of the containment envelop. This paper presents an overview of the operating problems and issues regarding changes in the licensing requirements related to civil structures and supporting systems of major mechanical components. The impact of these generic experience on the design of retrofits and new generating stations is also described in the paper

  15. Conceptual Design Gamma-Ray Large Area Space Telescope (GLAST) Tower Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, Chad

    2002-07-18

    The main objective of this work was to develop a conceptual design and engineering prototype for the Gamma-ray Large Area Space Telescope (GLAST) tower structure. This thesis describes the conceptual design of a GLAST tower and the fabrication and testing of a prototype tower tray. The requirements were that the structure had to support GLAST's delicate silicon strip detector array through ground handling, launch and in orbit operations as well as provide for thermal and electrical pathways. From the desired function and the given launch vehicle for the spacecraft that carries the GLAST detector, an efficient structure was designed which met the requirements. This thesis developed in three stages: design, fabrication, and testing. During the first stage, a general set of specifications was used to develop the initial design, which was then analyzed and shown to meet or exceed the requirements. The second stage called for the fabrication of prototypes to prove manufacturability and gauge cost and time estimates for the total project. The last step called for testing the prototypes to show that they performed as the analysis had shown and prove that the design met the requirements. As a spacecraft engineering exercise, this project required formulating a solution based on engineering judgment, analyzing the solution using advanced engineering techniques, then proving the validity of the design and analysis by the manufacturing and testing of prototypes. The design described here met all the requirements set out by the needs of the experiment and operating concerns. This strawman design is not intended to be the complete or final design for the GLAST instrument structure, but instead examines some of the main challenges involved and demonstrates that there are solutions to them. The purpose of these tests was to prove that there are solutions to the basic mechanical, electrical and thermal problems presented with the GLAST project.

  16. Design guide for category II reactors light and heavy water cooled reactors

    International Nuclear Information System (INIS)

    Brynda, W.J.; Lobner, P.R.; Powell, R.W.; Straker, E.A.

    1978-05-01

    The Department of Energy (DOE), in the ERDA Manual, requires that all DOE-owned reactors be sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that gives adequate consideration to health and safety factors. Specific guidance pertinent to the safety of DOE-owned reactors is found in Chapter 0540 of the ERDA Manual. The purpose of this Design Guide is to provide additional guidance to aid the DOE facility contractor in meeting the requirement that the siting, design, construction, modification operation, maintainance, and decommissioning of DOW-owned reactors be in accordance with generally uniform standards, guide and codes which are comparable to those applied to similar reactors licensed by the Nuclear Regulatory Commission (NRC). This Design Guide deals principally with the design and functional requirements of Category II reactor structure, components, and systems

  17. Structural design study of a proton beam window for a 1-MW spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Teraoku, Takuji; Terada, Atsuhiko; Maekawa, Fujio; Meigo, Shin-ichiro; Kaminaga, Masanori; Ishikura, Syuichi; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    A 1-MW spallation neutron source aiming at materials and life science researches will be constructed under the JAERI-KEK High-intensity Proton Accelerator Project (J-PARC). A proton beam passes through a proton beam window, and be injected into a target of the neutron source. The proton beam window functions as a boundary wall between a high vacuum area in the proton beam line and a helium atmosphere at about atmospheric pressure in a helium vessel which contains the target and moderators. The proton beam window is cooled by light water because high heat-density is generated in the window material by interactions with the proton beam. Then, uniformity of the water flow is requested at the window to suppress a hot-spot that causes excessive thermal stress and cooling water boiling. Also, the window has to be strong enough in its structure for inner stress due to water pressure and thermal stress due to heat generation. In this report, we propose two types of proton beam windows; one flat-type that is easy to manufacture, and the other, curved-type that has high stress resistivity. As a part of design study for the windows, evaluation of strength of structure and thermal hydraulic analysis were conducted. As a result, it was found that sufficient heat removal was assured with uniform water flow at the window, and stress caused by internal water pressure and thermal stress could be maintained below allowable stress values. Accordingly, it was confirmed that the proton beam window designs were feasible. (author)

  18. Mechanical and materials engineering of modern structure and component design

    CERN Document Server

    Altenbach, Holm

    2015-01-01

    This book presents the latest findings on mechanical and materials engineering as applied to the design of modern engineering materials and components. The contributions cover the classical fields of mechanical, civil and materials engineering, as well as bioengineering and advanced materials processing and optimization. The materials and structures discussed can be categorized into modern steels, aluminium and titanium alloys, polymers/composite materials, biological and natural materials, material hybrids and modern nano-based materials. Analytical modelling, numerical simulation, state-of-the-art design tools and advanced experimental techniques are applied to characterize the materials’ performance and to design and optimize structures in different fields of engineering applications.

  19. Fundamental understanding and rational design of high energy structural microbatteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuxing; Li, Qiuyan; Cartmell, Samuel; Li, Huidong; Mendoza, Sarah; Zhang, Ji-Guang; Deng, Zhiqun Daniel; Xiao, Jie

    2018-01-01

    Microbatteries play a critical role in determining the lifetime of downsized sensors, wearable devices and medical applications, etc. More often, structural batteries are required from the perspective of aesthetics and space utilization, which is however rarely explored. Herein, we discuss the fundamental issues associated with the rational design of practically usable high energy microbatteries. The tubular shape of the cell further allows the flexible integration of microelectronics. A functioning acoustic micro-transmitter continuously powered by this tubular battery has been successfully demonstrated. Multiple design features adopted to accommodate large mechanical stress during the rolling process are discussed providing new insights in designing the structural microbatteries for emerging technologies.

  20. Adaptive pressure-controlled cellular structures for shape morphing I: design and analysis

    International Nuclear Information System (INIS)

    Luo, Quantian; Tong, Liyong

    2013-01-01

    This work investigates adaptive bio-inspired pressure cellular structures for shape morphing. Optimum designs for cellular structures with void and pressure cells are proposed and then structural analyses are conducted. In the present design, a unit cell is comprised of straight and curved walls. When compressed air is pumped into a pressure cell, the curved walls deform in bending due to the pressure difference in two adjacent cells that leads to overall structural deformation in extension. One-dimensional actuation strain up to 35% can be theoretically achieved. In part I, we present basic design concepts and cellular mechanics. Unlike conventional structural analysis for cellular structures, a statically indeterminate unit cell is considered and novel analytical formulations are derived for the present pressurized cellular structures in linear and nonlinear analyses. In part II, we will present experimental testing and finite element analysis to demonstrate the feasibility of the present pressurized cellular actuators for morphing wings and to validate the present cellular mechanics formulations. (paper)

  1. Structural design of superconducting magnets for the large coil program

    International Nuclear Information System (INIS)

    Gray, W.H.; Long, C.J.; Stoddart, W.C.T.

    1979-09-01

    The Large Coil Program (LCP) is a research, development, and demonstration effort specifically for the advancement of the technologies involved in the production of large superconducting magnets. This paper presents a review of the status of the structural designs, analysis methods, and verification tests being performed by the participating LCP design teams in the USA, Switzerland, Japan, and the Federal Republic of Germany. The significant structural mechanics concerns that are being investigated with the LCP are presented

  2. Contracts for Cooperation between Web Service Programmers and HTML Designers

    DEFF Research Database (Denmark)

    Böttger, Henning; Møller, Anders; Schwartzbach, Michael I.

    2006-01-01

    Interactive Web services consist of a mixture of HTML fragments and program code. The fragments, which are maintained by designers, are combined to form HTML pages that are shown to the clients. The code, which is maintained by programmers, is executed on the server to handle the business logic....... Current Web service frameworks provide little help in separating these constituents, which complicates cooperation between programmers and HTML designers. We propose a system based on XML templates and formalized contracts allowing a flexible separation of concerns. The contracts act as interfaces between...... the programmers and the HTML designers and permit tool support for statically checking that both parties fulfill their obligations. This ensures that (1) programmers and HTML designers work more independently focusing on their own expertises, (2) the Web service implementation is better structured and thus easier...

  3. Maintaining heterokaryosis in pseudo-homothallic fungi.

    Science.gov (United States)

    Grognet, Pierre; Silar, Philippe

    2015-01-01

    Among all the strategies displayed by fungi to reproduce and propagate, some species have adopted a peculiar behavior called pseudo-homothallism. Pseudo-homothallic fungi are true heterothallics, i.e., they need 2 genetically-compatible partners to mate, but they produce self-fertile mycelium in which the 2 different nuclei carrying the compatible mating types are present. This lifestyle not only enables the fungus to reproduce without finding a compatible partner, but also to cross with any mate it may encounter. However, to be fully functional, pseudo-homothallism requires maintaining heterokaryosis at every stage of the life cycle. We recently showed that neither the structure of the mating-type locus nor hybrid-enhancing effect due to the presence of the 2 mating types accounts for the maintenance of heterokaryosis in the pseudo-homothallic fungus P. anserina. In this addendum, we summarize the mechanisms creating heterokaryosis in P. anserina and 2 other well-known pseudo-homothallic fungi, Neurospora tetrasperma and Agaricus bisporus. We also discuss mechanisms potentially involved in maintaining heterokaryosis in these 3 species.

  4. Computational Tools for RF Structure Design

    CERN Document Server

    Jensen, E

    2004-01-01

    The Finite Differences Method and the Finite Element Method are the two principally employed numerical methods in modern RF field simulation programs. The basic ideas behind these methods are explained, with regard to available simulation programs. We then go through a list of characteristic parameters of RF structures, explaining how they can be calculated using these tools. With the help of these parameters, we introduce the frequency-domain and the time-domain calculations, leading to impedances and wake-fields, respectively. Subsequently, we present some readily available computer programs, which are in use for RF structure design, stressing their distinctive features and limitations. One final example benchmarks the precision of different codes for calculating the eigenfrequency and Q of a simple cavity resonator.

  5. Piping structural design for the ITER thermal shield manifold

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Chang Hyun, E-mail: chnoh@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Chung, Wooho, E-mail: whchung@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Nam, Kwanwoo; Kang, Kyoung-O. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Bae, Jing Do; Cha, Jong Kook [Korea Marine Equipment Research Institute, Busan 606-806 (Korea, Republic of); Kim, Kyoung-Kyu [Mecha T& S, Jinju-si 660-843 (Korea, Republic of); Hamlyn-Harris, Craig; Hicks, Robby; Her, Namil; Jun, Chang-Hoon [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • We finalized piping design of ITER thermal shield manifold for procurement. • Support span is determined by stress and deflection limitation. • SQP, which is design optimization method, is used for the pipe design. • Benchmark analysis is performed to verify the analysis software. • Pipe design is verified by structural analyses. - Abstract: The thermal shield (TS) provides the thermal barrier in the ITER tokamak to minimize heat load transferred by thermal radiation from the hot components to the superconducting magnets operating at 4.2 K. The TS is actively cooled by 80 K pressurized helium gas which flows from the cold valve box to the cooling tubes on the TS panels via manifold piping. This paper describes the manifold piping design and analysis for the ITER thermal shield. First, maximum allowable span for the manifold support is calculated based on the simple beam theory. In order to accommodate the thermal contraction in the manifold feeder, a contraction loop is designed and applied. Sequential Quadratic Programming (SQP) method is used to determine the optimized dimensions of the contraction loop to ensure adequate flexibility of manifold pipe. Global structural behavior of the manifold is investigated when the thermal movement of the redundant (un-cooled) pipe is large.

  6. Turbomachinery Design Quality Checks to Avoid Friction Induced Structural Failure

    Science.gov (United States)

    Moore, Jerry H.

    1999-01-01

    A unique configuration of the P&W SSME Alternate Fuel Turbopump turbine disk/blade assembly, combined with a severe thermal environment, resulted in several structural anomalies that were driven by frictional contact forces. Understanding the mechanics of these problems provides new quality checks for future turbo machinery designs. During development testing in 1997 of the SSME alternate fuel turbopump at Stennis Space Center, several potentially serious problems surfaced with the turbine disk/blade assembly that had not been experienced in extensive earlier testing. Changes to the operational thermal environment were noted based on analytical prediction of modifications that affected performance and on stationary thermal measurements adjacent to the rotor assembly. A detailed structural investigation was required to reveal the mechanism of distress induced by the change. The turbine disk experienced cracking in several locations due to increased thermal gradient induced stress during start and shutdown transients. This was easily predictable using standard analysis procedures and expected once the thermal environment was characterized. What was not expected was the curling of a piston ring used for blade axial retention in the disk, indentation of the axial face of the blade attachment by a spacer separating the first and second stage blades, and most significantly, galling and cracking of the blade root attachment that could have resulted in blade release. Past experience, in gas turbine environments, set a precedent of never relying on friction for help and to evaluate it only in specific instances where it was obvious that it would degrade capability. In each of the three cases above, friction proved to be a determining factor that pushed the components into an unsatisfactory mode of operation. The higher than expected temperatures and rapid thermal transients combined with friction to move beyond past experience. The turbine disk/blade assembly configuration

  7. Configuration management and load monitoring procedures for nuclear plant structures

    International Nuclear Information System (INIS)

    Chu, S.L.; Skaczylo, A.T.

    1990-01-01

    This paper describes a computer-aided engineering tool called the Load Monitoring System (LMS) that was proven effective for monitoring floor framing, loads, and structural integrity. The system links structural analysis, design investigation, and reporting and automated drafting programs with a Data Base Management System (DBMS). It provides design engineers with a powerful tool for quickly incorporating, tracking, and assessing load revisions and determining effects on steel floor framing members and connections, thereby helping to reduce design man-hours, minimize the impact of structural modifications, and maintain and document the design baseline. The major benefit to utilities are the reduction in engineering costs, assistance with plant configuration management, and assurance of structural safety throughout the operating life of a nuclear plant and at evaluation for license renewal. (orig./HP)

  8. Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Soderquist, J.R.; Neri, L.M.; Bohon, H.L.

    1992-09-01

    This publication contains the proceedings of the Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design held at Lake Tahoe, Nevada, during 4-7 Nov. 1991. Presentations were made in the following areas of composite structural design: perspectives in composites, design methodology, design applications, design criteria, supporting technology, damage tolerance, and manufacturing. Separate abstracts have been prepared for articles from this report.

  9. Application of reliability based design concepts to transmission line structure foundations. Part 2

    International Nuclear Information System (INIS)

    DiGioia, A.M. Jr.; Rojas-Gonzalez, L.F.

    1991-01-01

    The application of reliability based design (RBD) methods to transmission line structure foundations has developed somewhat more slowly than that for the other structural components in line systems. In a previous paper, a procedure was proposed for the design of transmission line structures foundations using a probability based load and resistance factor design (LRFD) format. This procedure involved the determination of a foundation strength factor, φ F , which was used as a multiplier of the calculated nominal design strength to estimate the five percent exclusion limit strength required in the calculated nominal design strength to estimate the five percent exclusion limit strength required in the LRFD equation. Statistical analyses of results from full-scale load tests were used to obtain φ F values applicable to various nominal design strength equations and for drilled shafts subjected to uplift loads. These results clearly illustrated the significant economic benefits of conducting more detailed subsurface investigations for the design of transmission line structure foundations. A design example was also presented. In this paper the proposed procedure is extended to laterally load drilled shafts

  10. Design and analysis of a structural system for ZTH

    International Nuclear Information System (INIS)

    Giger, A.J.; Hill, J.

    1987-01-01

    A structural support system comprised largely of laminated epoxy fiberglass bulkheads has been designed for the ZTH air core machine, the initial experiment in the Confinement Physics Research Facility (CPRF) at LANL. Fiberglass was chosen to minimize magnetic field errors due to eddy currents. Magnetic fields for ZTH are produced, in part, by 18 poloidal field (PF) coils. Sixteen, equally spaced, 4 inch thick, radial G-10 bulkheads, positioned and held by a series of stainless steel ring beams, support the PF coils and the toroidal front end assembly. PF coils transfix and are supported by the bulkheads at locations dictated by magnetic field effects. The toroidal front end is mounted to the bulkheads by a spline ensuring constant alignment with the coil set while allowing differential expansion. The entire machine assembly is mounted on a central concrete cylinder with outboard stainless steel columns. Finite element analyses were performed as an integral part of the design process for the ZTH structure. Because of irregular shapes, multiple materials, different load cases and numerous geometric discontinuities conventional analyses of the structure could not be performed. Static and dynamic coil loads were applied to a model of the prototype support system to examine structural response. A discussion of the model, assumptions, load cases, boundary conditions, and results is given. Influence of the results on the design are presented. 3 refs

  11. Some aspects of the reliability-based design of reactor containment structures

    International Nuclear Information System (INIS)

    Schueller, G.I.

    1975-01-01

    It is generally recognized that the load which a structure is likely to experience during its design life as well as its resistance are to be represented by random variables. A rational design procedure for reactor containment structures can therefore only be carried out within a probabilistic framework. Internal load conditions caused by system failure such as loss-of-coolant accident, pressure loads etc., and external load conditions caused for instance by impact due to aircraft crashes, external pressure waves and natural hazards such as earthquakes, floods, hurricanes are described by extreme value distributions of the Fisher-Tippett types. Statistical and physical arguments are given to support their application. The occurrence of these rare events with respect to time is modeled by a Poisson process. The yield strength of the containment structure for both steel (liner) and reinforced concrete shells is also modeled by extreme value distributions (of the smallest values). The failure criterion considered here is that of collapse determined by plastic yieldline formation. A failure mechanism as considered here describes a particular regime of plastic line formation. The probability of failure of a structure under a single load application of load types likely to occur during the design life of the structure is to be determined by integrating over all possible mechanisms. Finally Freudenthal's reliability function is utilized to combine the information derived above so that a containment design for given design lifes and reliabilities is possible. (orig.) [de

  12. Bridges analysis, design, structural health monitoring, and rehabilitation

    CERN Document Server

    Bakht, Baidar

    2015-01-01

    This book offers a valuable guide for practicing bridge engineers and graduate students in structural engineering; its main purpose is to present the latest concepts in bridge engineering in fairly easy-to-follow terms. The book provides details of easy-to-use computer programs for: ·      Analysing slab-on-girder bridges for live load distribution. ·      Analysing slab and other solid bridge components for live load distribution. ·      Analysing and designing concrete deck slab overhangs of girder bridges under vehicular loads. ·      Determining the failure loads of concrete deck slabs of girder bridges under concentrated wheel loads. In addition, the book includes extensive chapters dealing with the design of wood bridges and soil-steel bridges. Further, a unique chapter on structural health monitoring (SHM) will help bridge engineers determine the actual load carrying capacities of bridges, as opposed to their perceived analytical capacities. The chapter addressing structures...

  13. PTM Along Track Algorithm to Maintain Spacing During Same Direction Pair-Wise Trajectory Management Operations

    Science.gov (United States)

    Carreno, Victor A.

    2015-01-01

    Pair-wise Trajectory Management (PTM) is a cockpit based delegated responsibility separation standard. When an air traffic service provider gives a PTM clearance to an aircraft and the flight crew accepts the clearance, the flight crew will maintain spacing and separation from a designated aircraft. A PTM along track algorithm will receive state information from the designated aircraft and from the own ship to produce speed guidance for the flight crew to maintain spacing and separation

  14. Fatigue Resistant Design Criteria for MD SHA Cantilevered Mast Arm Signal Structure

    Science.gov (United States)

    2017-12-01

    The fatigue design of the mast arm structures and connections vary significantly based on the Category of Importance factor adopted and the load cases for fatigue design loads. Consideration should include the cost and size of the structures for both...

  15. Structural design of the Sandia 34-M Vertical Axis Wind Turbine

    Science.gov (United States)

    Berg, D. E.

    Sandia National Laboratories, as the lead DOE laboratory for Vertical Axis Wind Turbine (VAWT) development, is currently designing a 34-meter diameter Darrieus-type VAWT. This turbine will be a research test bed which provides a focus for advancing technology and validating design and fabrication techniques in a size range suitable for utility use. Structural data from this machine will allow structural modeling to be refined and verified for a turbine on which the gravity effects and stochastic wind loading are significant. Performance data from it will allow aerodynamic modeling to be refined and verified. The design effort incorporates Sandia's state-of-the-art analysis tools in the design of a complete machine. The analytic tools used in this design are discussed and the conceptual design procedure is described.

  16. Practical computational toolkits for dendrimers and dendrons structure design

    Science.gov (United States)

    Martinho, Nuno; Silva, Liana C.; Florindo, Helena F.; Brocchini, Steve; Barata, Teresa; Zloh, Mire

    2017-09-01

    Dendrimers and dendrons offer an excellent platform for developing novel drug delivery systems and medicines. The rational design and further development of these repetitively branched systems are restricted by difficulties in scalable synthesis and structural determination, which can be overcome by judicious use of molecular modelling and molecular simulations. A major difficulty to utilise in silico studies to design dendrimers lies in the laborious generation of their structures. Current modelling tools utilise automated assembly of simpler dendrimers or the inefficient manual assembly of monomer precursors to generate more complicated dendrimer structures. Herein we describe two novel graphical user interface toolkits written in Python that provide an improved degree of automation for rapid assembly of dendrimers and generation of their 2D and 3D structures. Our first toolkit uses the RDkit library, SMILES nomenclature of monomers and SMARTS reaction nomenclature to generate SMILES and mol files of dendrimers without 3D coordinates. These files are used for simple graphical representations and storing their structures in databases. The second toolkit assembles complex topology dendrimers from monomers to construct 3D dendrimer structures to be used as starting points for simulation using existing and widely available software and force fields. Both tools were validated for ease-of-use to prototype dendrimer structure and the second toolkit was especially relevant for dendrimers of high complexity and size.

  17. Developing maintainability for tokamak fusion power systems. Phase II report. Volume I: executive summary

    International Nuclear Information System (INIS)

    Fuller, G.M.; Zahn, H.S.; Mantz, H.C.; Kaletta, G.R.; Waganer, L.M.; Carosella, L.A.; Conlee, J.L.

    1978-11-01

    The purpose of this report is to identify design features of fusion power reactors which contribute to the achievement of high levels of maintainability. Volume 1, the Executive Summary, presents the progress achieved toward this objective in this phase and includes a comparison with the results of the first phase study efforts. A series of maintainability design guidelines and an improved maintenance system are defined as initial steps in developing the requirements for a maintainable tokamak fusion power system. The principle comparative studies that are summarized include the determination of the benefits of various vacuum wall arrangements, the effect of unscheduled and scheduled maintenance of the first wall/blanket, some initial investigation of maintenance required for subsystems other than the first wall/blanket, and the impact of maintenance equipment failures

  18. Recommended techniques for effective maintainability. A continuous improvement initiative of the NASA Reliability and Maintainability Steering Committee

    Science.gov (United States)

    1994-01-01

    This manual presents a series of recommended techniques that can increase overall operational effectiveness of both flight and ground based NASA systems. It provides a set of tools that minimizes risk associated with: (1) restoring failed functions (both ground and flight based); (2) conducting complex and highly visible maintenance operations; and (3) sustaining a technical capability to support the NASA mission using aging equipment or facilities. It considers (1) program management - key elements of an effective maintainability effort; (2) design and development - techniques that have benefited previous programs; (3) analysis and test - quantitative and qualitative analysis processes and testing techniques; and (4) operations and operational design techniques that address NASA field experience. This document is a valuable resource for continuous improvement ideas in executing the systems development process in accordance with the NASA 'better, faster, smaller, and cheaper' goal without compromising safety.

  19. DNA Catenation Maintains Structure of Human Metaphase Chromosomes

    DEFF Research Database (Denmark)

    L. V. Bauer, David; Marie, Rodolphe; Rasmussen, Kristian Hagsted

    2012-01-01

    Mitotic chromosome structure is pivotal to cell division but difficult to observe in fine detail using conventional methods. DNA catenation has been implicated in both sister chromatid cohesion and chromosome condensation, but has never been observed directly. We have used a lab-on-a-chip microfl...

  20. Mathematical and Metaheuristic Applications in Design Optimization of Steel Frame Structures: An Extensive Review

    Directory of Open Access Journals (Sweden)

    Mehmet Polat Saka

    2013-01-01

    Full Text Available The type of mathematical modeling selected for the optimum design problems of steel skeletal frames affects the size and mathematical complexity of the programming problem obtained. Survey on the structural optimization literature reveals that there are basically two types of design optimization formulation. In the first type only cross sectional properties of frame members are taken as design variables. In such formulation when the values of design variables change during design cycles, it becomes necessary to analyze the structure and update the response of steel frame to the external loading. Structural analysis in this type is a complementary part of the design process. In the second type joint coordinates are also treated as design variables in addition to the cross sectional properties of members. Such formulation eliminates the necessity of carrying out structural analysis in every design cycle. The values of the joint displacements are determined by the optimization techniques in addition to cross sectional properties. The structural optimization literature contains structural design algorithms that make use of both type of formulation. In this study a review is carried out on mathematical and metaheuristic algorithms where the effect of the mathematical modeling on the efficiency of these algorithms is discussed.

  1. Design for a superconducting niobium RFQ structure

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K W; Kennedy, W L; Sagalovsky, L [Argonne National Lab., IL (United States)

    1992-11-01

    This paper reports a design for a niobium superconducting RFQ operating at 192 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling costs for fabrication with niobium. Results of MAFIA numerical modeling, measurements on a copper model, and plans for a beam test are discussed. (Author) fig., 7 refs.

  2. Design for a superconducting niobium RFQ structure

    International Nuclear Information System (INIS)

    Shepard, K.W.; Kennedy, W.L.; Sagalovsky, L.

    1992-01-01

    This paper reports a design for a niobium superconducting RFQ operating at 192 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling cost for fabrication with niobium. Results of MAFIA numerical modeling, measurements on a copper model, and plans for a beam test are discussed

  3. Design for a superconducting niobium RFQ structure

    International Nuclear Information System (INIS)

    Shepard, K.W.; Kennedy, W.L.; Sagalovsky, L.

    1992-01-01

    This paper reports a design for a niobium superconducting RFQ operating at 192 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling costs for fabrication with niobium. Results of MAFIA numerical modeling, measurements on a copper model, and plans for a beam test are discussed. (Author) fig., 7 refs

  4. Design for a superconducting niobium RFQ structure

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kennedy, W.L.; Sagalovsky, L.

    1992-01-01

    This paper reports a design for a niobium superconducting RFQ operating at 192 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling cost for fabrication with niobium. Results of MAFIA numerical modeling, measurements on a copper model, and plans for a beam test are discussed.

  5. Design for a superconducting niobium RFQ structure

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kennedy, W.L.; Sagalovsky, L.

    1992-09-01

    This paper reports a design for a niobium superconducting RFQ operating at 192 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling cost for fabrication with niobium. Results of MAFIA numerical modeling, measurements on a copper model, and plans for a beam test are discussed.

  6. Vibration Antiresonance Design for a Spacecraft Multifunctional Structure

    OpenAIRE

    Li, Dong-Xu; Liu, Wang; Hao, Dong

    2017-01-01

    Spacecraft must withstand rigorous mechanical environment experiences such as acceleration, noise, vibration, and shock during the process of launching, satellite-vehicle separation, and so on. In this paper, a new spacecraft multifunctional structure concept designed by us is introduced. The multifunctional structure has the functions of not only load bearing, but also vibration reduction, energy source, thermal control, and so on, and we adopt a series of viscoelastic parts as connections b...

  7. Conceptual design of an L-band recirculating superconducting traveling wave accelerating structure for ILC

    International Nuclear Information System (INIS)

    Avrakhov, P.; Kanareykin, A.; Liu, Z.; Kazakov, S.; KEK, Tsukuba; Solyak, N.; Yakovlev, V.; Gai, W.

    2007-01-01

    With this paper, we propose the conceptual design of a traveling wave accelerating structure for a superconducting accelerator. The overall goal is to study a traveling wave (TW) superconducting (SC) accelerating structure for ILC that allows an increased accelerating gradient and, therefore reduction of the length of the collider. The conceptual studies were performed in order to optimize the acceleration structure design by minimizing the surface fields inside the cavity of the structure, to make the design compatible with existing technology, and to determine the maximum achievable gain in the accelerating gradient. The proposed solution considers RF feedback system redirecting the accelerating wave that passed through the superconducting traveling wave acceleration (STWA) section back to the input of the accelerating structure. The STWA structure has more cells per unit length than a TESLA structure but provides an accelerating gradient higher than a TESLA structure, consequently reducing the cost. In this paper, the STWA cell shape optimization, coupler cell design and feedback waveguide solution are considered. We also discuss the field flatness in the superconducting TW structure, the HOM modes and multipactor performance have been studied as well. The proposed TW structure design gives an overall 46% gain over the SW ILC structure if the 10 m long TW structure is employed

  8. Study on optimum aseismic design of complex structure system focusing on damping effect

    International Nuclear Information System (INIS)

    Takahashi, Yoshitaka; Suzuki, Kohei

    1995-01-01

    Optimum design technique for the purpose of aseismic design of complex plant structures such as piping and boiler structures is proposed. Particular attention is focused on the evaluation of the optimum damping and stiffness of the structures and components. Pseudo least square algorithm is introduced to determine the optimum design parameters. Under the requirement of certain allowable maximum response to a given earthquake excitation, optimum stiffness and damping values of the structure can be simultaneously calculated by this proposed method. The applicability of the method is demonstrated through three structural models; (1) linear multi-storied building model in which stiffness and damping constant of each floor are optimized; (2) nonlinear multi-storied building model having the isolated floor in which hysteretic energy absorber of the isolator is optimized; (3) combined boiler-supporting structure model connected by the inelastic seismic ties with each other is optimized. In this model, optimum values of damping characteristic of the seismic ties are evaluated. This work is particularly important for the aseismic design of complex plant structures like integrated boiler-supporting structure in thermal power plant and piping-containment vessel structure in nuclear power plant

  9. Maintaining the Database for Information Object Analysis, Intent, Dissemination and Enhancement (IOAIDE) and the US Army Research Laboratory Campus Sensor Network (ARL CSN)

    Science.gov (United States)

    2017-01-01

    operations as well as basic knowledge of Microsoft Structured Query Language Server Management Studio (2014 or 2016). 15. SUBJECT TERMS Microsoft SQL ...designed and is maintained with Microsoft SQL Server Management Studio. The basic requirements for the IOAIDE/ARL CSN database development and... SQL server (2014 or 2016) installed. All images in this report were generated using Windows 10. The IOAIDE/ARL CSN database could reside on the

  10. Design structure for in-system redundant array repair in integrated circuits

    Science.gov (United States)

    Bright, Arthur A.; Crumley, Paul G.; Dombrowa, Marc; Douskey, Steven M.; Haring, Rudolf A.; Oakland, Steven F.; Quellette, Michael R.; Strissel, Scott A.

    2008-11-25

    A design structure for repairing an integrated circuit during operation of the integrated circuit. The integrated circuit comprising of a multitude of memory arrays and a fuse box holding control data for controlling redundancy logic of the arrays. The design structure provides the integrated circuit with a control data selector for passing the control data from the fuse box to the memory arrays; providing a source of alternate control data, external of the integrated circuit; and connecting the source of alternate control data to the control data selector. The design structure further passes the alternate control data from the source thereof, through the control data selector and to the memory arrays to control the redundancy logic of the memory arrays.

  11. Structure analysis and design of PCCV for new generation NPP

    International Nuclear Information System (INIS)

    Wang Mingdan; Wang Xiaowen; Huang Xiaolin; Xia Zufeng

    2005-01-01

    The paper documents the overall schedule work which has been done by Shanghai Nuclear Engineering Research and Design Institute (SNERDI) in the research and design scope of the new generational advanced prestressed concrete containment vessel (PCCV). It can be applied to the design of nuclear engineering and general prestressed concrete structures in civil engineering. (authors)

  12. Modeling and Design Analysis Methodology for Tailoring of Aircraft Structures with Composites

    Science.gov (United States)

    Rehfield, Lawrence W.

    2004-01-01

    Composite materials provide design flexibility in that fiber placement and orientation can be specified and a variety of material forms and manufacturing processes are available. It is possible, therefore, to 'tailor' the structure to a high degree in order to meet specific design requirements in an optimum manner. Common industrial practices, however, have limited the choices designers make. One of the reasons for this is that there is a dearth of conceptual/preliminary design analysis tools specifically devoted to identifying structural concepts for composite airframe structures. Large scale finite element simulations are not suitable for such purposes. The present project has been devoted to creating modeling and design analysis methodology for use in the tailoring process of aircraft structures. Emphasis has been given to creating bend-twist elastic coupling in high aspect ratio wings or other lifting surfaces. The direction of our work was in concert with the overall NASA effort Twenty- First Century Aircraft Technology (TCAT). A multi-disciplinary team was assembled by Dr. Damodar Ambur to work on wing technology, which included our project.

  13. Balanced Evaluation of Structural and Environmental Performances in Building Design

    Directory of Open Access Journals (Sweden)

    Marco Lamperti Tornaghi

    2018-03-01

    Full Text Available The design of new buildings, and even more the rehabilitation of existing ones, needs to satisfy modern criteria in terms of energy efficiency and environmental performance, within the context of adequate safety requirements. Tackling all these needs at the same time is cumbersome, as demonstrated by several experiences during recent earthquakes, where the improvement of energy performance vanished by seismic-induced damages. The costs of energy retrofitting must be added to the normal losses caused by the earthquake. Even though the minimum safety requirements are met (no collapse, the damage due to earthquake might be enough to waste the investment made to improve energy efficiency. Since these measures are often facilitated by corresponding incentives, the use of public funding is not cost effective. The application of the existing impact assessment methods is typically performed at the end of the architectural and structural design process. Thus, no real optimisation can be achieved, because a good structural solution could correspond to a poor environmental performance and vice versa. The proposed Sustainable Structural Design method (SSD considers both environmental and structural parameters in the life cycle perspective. The integration of environmental data in the structural performance is the focus of the method. Structural performances are considered in a probabilistic approach, through the introduction of a simplified Performance Based Assessment method. Finally, the SSD method is implemented with a case-study of an office-occupancy building, both for precast and cast-in-situ structural systems, with the aim to find the best solution in terms of sustainability and structural performance for the case at hand.

  14. Summary of EPRI projects for improving power plant maintenance and maintainability

    International Nuclear Information System (INIS)

    Shugars, H.G.; Poole, D.N.; Pack, R.W.

    1979-01-01

    The Electric Power Research Institute is sponsoring projects to improve power plant maintenance and maintainability. Areas presently being emphasized are improvements in plant design for maintainability, improvements in performing nuclear plant refuelings, and development of on-line monitoring and diagnostic systems for various plant components. The seven projects are reviewed. They are: (1) human factors review of power plant maintainability; (2) refueling outage improvement; (3) on-line monitoring and diagnostics for power plant machinery; (4) acoustic emission and vibrati1on signature analysis of fossil fuel plant components; (5) acoustic monitoring of power plant valves; (6) on-line monitoring and diagnostics for generators; and (7) detection of water induction in steam turbines. Each project contractor and the project manager are listed for reference. 8 references

  15. Reliability and Maintainability model (RAM) user and maintenance manual. Part 2

    Science.gov (United States)

    Ebeling, Charles E.

    1995-01-01

    This report documents the procedures for utilizing and maintaining the Reliability and Maintainability Model (RAM) developed by the University of Dayton for the NASA Langley Research Center (LaRC). The RAM model predicts reliability and maintainability (R&M) parameters for conceptual space vehicles using parametric relationships between vehicle design and performance characteristics and subsystem mean time between maintenance actions (MTBM) and manhours per maintenance action (MH/MA). These parametric relationships were developed using aircraft R&M data from over thirty different military aircraft of all types. This report describes the general methodology used within the model, the execution and computational sequence, the input screens and data, the output displays and reports, and study analyses and procedures. A source listing is provided.

  16. Some thoughts on the future of probabilistic structural design of nuclear components

    International Nuclear Information System (INIS)

    Stancampiano, P.A.

    1978-01-01

    This paper presents some views on the future role of probabilistic methods in the structural design of nuclear components. The existing deterministic design approach is discussed and compared to the probabilistic approach. Some of the objections to both deterministic and probabilistic design are listed. Extensive research and development activities are required to mature the probabilistic approach suficiently to make it cost-effective and competitive with current deterministic design practices. The required research activities deal with probabilistic methods development, more realistic casual failure mode models development, and statistical data models development. A quasi-probabilistic structural design approach is recommended which accounts for the random error in the design models. (Auth.)

  17. Fundamental understanding and rational design of high energy structural microbatteries

    International Nuclear Information System (INIS)

    Wang, Yuxing; Li, Qiuyan; Cartmell, Samuel; Li, Huidong; Mendoza, Sarah

    2017-01-01

    We present that microbatteries play a critical role in determining the lifetime of downsized sensors, wearable devices, medical applications, and animal acoustic telemetry transmitters among others. More often, structural batteries are required from the perspective of aesthetics and space utilization, which is however rarely explored. Herein, we discuss the fundamental issues associated with the rational design of practically usable high energy microbatteries. The tubular shape of the cell further allows the flexible integration of microelectronics. A functioning acoustic micro-transmitter continuously powered by this tubular battery has been successfully demonstrated. Finally, multiple design features adopted to accommodate large mechanical stress during the rolling process are discussed providing new insights in designing the structural microbatteries for emerging technologies.

  18. Design and commission of an experimental test rig to apply a full-scale pressure load on composite sandwich panels representative of an aircraft secondary structure

    International Nuclear Information System (INIS)

    Crump, D A; Dulieu-Barton, J M; Savage, J

    2010-01-01

    This paper describes the design of a test rig, which is used to apply a representative pressure load to a full-scale composite sandwich secondary aircraft structure. A generic panel was designed with features to represent those in the composite sandwich secondary aircraft structure. To provide full-field strain data from the panels, the test rig was designed for use with optical measurement techniques such as thermoelastic stress analysis (TSA) and digital image correlation (DIC). TSA requires a cyclic load to be applied to a structure for the measurement of the strain state; therefore, the test rig has been designed to be mounted on a standard servo-hydraulic test machine. As both TSA and DIC require an uninterrupted view of the surface of the test panel, an important consideration in the design is facilitating the optical access for the two techniques. To aid the test rig design a finite element (FE) model was produced. The model provides information on the deflections that must be accommodated by the test rig, and ensures that the stress and strain levels developed in the panel when loaded in the test rig would be sufficient for measurement using TSA and DIC. Finally, initial tests using the test rig have shown it to be capable of achieving the required pressure and maintaining a cyclic load. It was also demonstrated that both TSA and DIC data can be collected from the panels under load, which are used to validate the stress and deflection derived from the FE model

  19. Bending continuous structures with SMAs: a novel robotic fish design

    International Nuclear Information System (INIS)

    Rossi, C; Colorado, J; Coral, W; Barrientos, A

    2011-01-01

    In this paper, we describe our research on bio-inspired locomotion systems using deformable structures and smart materials, concretely shape memory alloys (SMAs). These types of materials allow us to explore the possibility of building motor-less and gear-less robots. A swimming underwater fish-like robot has been developed whose movements are generated using SMAs. These actuators are suitable for bending the continuous backbone of the fish, which in turn causes a change in the curvature of the body. This type of structural arrangement is inspired by fish red muscles, which are mainly recruited during steady swimming for the bending of a flexible but nearly incompressible structure such as the fishbone. This paper reviews the design process of these bio-inspired structures, from the motivations and physiological inspiration to the mechatronics design, control and simulations, leading to actual experimental trials and results. The focus of this work is to present the mechanisms by which standard swimming patterns can be reproduced with the proposed design. Moreover, the performance of the SMA-based actuators' control in terms of actuation speed and position accuracy is also addressed.

  20. Bending continuous structures with SMAs: a novel robotic fish design.

    Science.gov (United States)

    Rossi, C; Colorado, J; Coral, W; Barrientos, A

    2011-12-01

    In this paper, we describe our research on bio-inspired locomotion systems using deformable structures and smart materials, concretely shape memory alloys (SMAs). These types of materials allow us to explore the possibility of building motor-less and gear-less robots. A swimming underwater fish-like robot has been developed whose movements are generated using SMAs. These actuators are suitable for bending the continuous backbone of the fish, which in turn causes a change in the curvature of the body. This type of structural arrangement is inspired by fish red muscles, which are mainly recruited during steady swimming for the bending of a flexible but nearly incompressible structure such as the fishbone. This paper reviews the design process of these bio-inspired structures, from the motivations and physiological inspiration to the mechatronics design, control and simulations, leading to actual experimental trials and results. The focus of this work is to present the mechanisms by which standard swimming patterns can be reproduced with the proposed design. Moreover, the performance of the SMA-based actuators' control in terms of actuation speed and position accuracy is also addressed.

  1. Concrete structures protection, repair and rehabilitation

    CERN Document Server

    Woodson, R Dodge

    2009-01-01

    The success of a repair or rehabilitation project depends on the specific plans designed for it. Concrete Structures: Protection, Repair and Rehabilitation provides guidance on evaluating the condition of the concrete in a structure, relating the condition of the concrete to the underlying cause or causes of that condition, selecting an appropriate repair material and method for any deficiency found, and using the selected materials and methods to repair or rehabilitate the structure. Guidance is also provided for engineers focused on maintaining concrete and preparing concrete investigation r

  2. Design of end magnetic structures for the Advanced Light Source wigglers

    International Nuclear Information System (INIS)

    Humphries, D.; Akre, J.; Hoyer, E.; Marks, S.; Minamihara, Y.; Pipersky, P.; Plate, D.; Schlueter, R.

    1995-01-01

    The vertical magnetic structures for the Advanced Light planar wiggler and 20 cm period elliptical hybrid permanent magnet design. The ends of these structures are characterized by diminishing scalar potential distributions the poles which control beam trajectories. They incorporate electromagnetic correction coils to dynamically correct for variations in the first integral of the field as a function of gap. A permanent magnet trim mechanism is incorporated to minimize the transverse integrated error field distribution. The ends were designed using analytic and computer modeling techniques. The design and modeling results are presented

  3. Research and development issues for fast reactor structural design standard (FDS)

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Ando, Masanori; Morishita, Masaki

    2003-01-01

    For realization of safe and economical fast reactor (FR) plants, Japan Nuclear Cycle Development Institute (JNC) and Japan Atomic Power Company (JAPC) are cooperating on 'Feasibility Study on Commercialized FR Cycle Systems'. To certify the design concepts and validate their structural integrity, the research and development of 'Fast Reactor Structural Design Standard (FDS)' is recognized as an essential theme. FDS considers general characteristics of FRs and design needs for their rationalization. Three main subjects were settled in research and development issues of FDS. One is rationalization of failure criteria' taking characteristic design conditions into account. Next is development of 'a guideline on inelastic analysis for design' in order to predict elastic plastic and creep behaviours of high temperature components. Furthermore, efforts are being made toward preparing a guideline on thermal loads modeling' for FR component design where thermal loads are dominant. (author)

  4. Endurance time method for Seismic analysis and design of structures

    International Nuclear Information System (INIS)

    Estekanchi, H.E.; Vafai, A.; Sadeghazar, M.

    2004-01-01

    In this paper, a new method for performance based earthquake analysis and design has been introduced. In this method, the structure is subjected to accelerograms that impose increasing dynamic demand on the structure with time. Specified damage indexes are monitored up to the collapse level or other performance limit that defines the endurance limit point for the structure. Also, a method for generating standard intensifying accelerograms has been described. Three accelerograms have been generated using this method. Furthermore, the concept of Endurance Time has been described by applying these accelerograms to single and multi degree of freedom linear systems. The application of this method for analysis of complex nonlinear systems has been explained. Endurance Time method provides a uniform approach to seismic analysis and design of complex structures that can be applied in numerical and experimental investigations

  5. Key technological issues in LMFBR high-temperature structural design - the US perspective

    International Nuclear Information System (INIS)

    Corum, J.M.

    1984-01-01

    The purpose of this paper is: (1) to review the key technological issues in LMFBR high-temperature structural design, particularly as they relate to cost reduction; and (2) to provide an overview of activities sponsored by the US Department of Energy to resolve the issues and to establish stable, standardized, and defensible structural design methods and criteria. Specific areas of discussion include: weldments, structural validation tests, simplified design analysis procedures, design procedures for piping, validation of the methodology for notch-like geometries, improved life assessment procedures, thermal striping, extension of the methodology to new materials, and ASME high-temperature Code reform needs. The perceived problems and needs in each area are discussed, and the current status of related US activities is given

  6. Structural design concept and static analysis of CANDU spent fuel compact dry storage system

    International Nuclear Information System (INIS)

    Choi, K. S.; Yang, K. H.; Paek, C. R.; Jung, J. S.; Lee, H. Y.

    2003-01-01

    In this study, an structural design concept on CANDU spent fuel compact dry storage system MACSTOR/KN-400 module has been established with a view to optimally design the structural members of the system. Design loads, loading combination and structural safety criteria of the module were reviewed assuming W olsung Site. The static analysis of the module showed that compressive stress concentration due to dead load and live load occurred around the center of roof slab. Maximum stress resulted from dead load is about twice as much as the stress from live load, and structural behavior of module caused by wind load was not significant. The static analysis results will have influence on the reinforcement bar design of structural members with other structural analyses

  7. Evenly distributed unitaries: On the structure of unitary designs

    International Nuclear Information System (INIS)

    Gross, D.; Audenaert, K.; Eisert, J.

    2007-01-01

    We clarify the mathematical structure underlying unitary t-designs. These are sets of unitary matrices, evenly distributed in the sense that the average of any tth order polynomial over the design equals the average over the entire unitary group. We present a simple necessary and sufficient criterion for deciding if a set of matrices constitutes a design. Lower bounds for the number of elements of 2-designs are derived. We show how to turn mutually unbiased bases into approximate 2-designs whose cardinality is optimal in leading order. Designs of higher order are discussed and an example of a unitary 5-design is presented. We comment on the relation between unitary and spherical designs and outline methods for finding designs numerically or by searching character tables of finite groups. Further, we sketch connections to problems in linear optics and questions regarding typical entanglement

  8. Optimum topology design for the concentrated force diffusion structure of strap-on launch vehicle

    Directory of Open Access Journals (Sweden)

    Mei Yong

    2017-01-01

    Full Text Available The thrust from the booster of strap-on launch vehicle is transmitted to the core via the strap-on linkage device, so the reinforced structure to diffusion the concentrated force should be employed in the installation site of this device. To improve the bearing-force characteristics of the concentrated force diffusion structure in strap-on linkage section and realize the lightweight design requirements, topology optimization under multiple load cases is conducted for the concentrated force diffusion structure in this study. The optimal configuration finally obtained can achieve 17.7% reduction in total weight of the structure. Meanwhile, results of strength analysis under standard load cases show the stress level of this design scheme of the concentrated force diffusion structure meet design requirements and the proposed topology optimization method is suitable for the design of the concentrated force diffusion structure in concept design phase.

  9. On The Design of Gravity Structures using Wave Spectra

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Brorsen, Michael

    Although most structures are subjected to dynamic, stochastic loads, it is in fact seldom that these loads are considered in the design, Normally the design is based on an equivalent static load, establishing naturally with due consideration to the true conditions, This method is often called det...... deterministic, the loading being described as a specified function of time....

  10. MICRONEEDLE STRUCTURE DESIGN AND OPTIMIZATION USING GENETIC ALGORITHM

    OpenAIRE

    N. A. ISMAIL; S. C. NEOH; N. SABANI; B. N. TAIB

    2015-01-01

    This paper presents a Genetic Algorithm (GA) based microneedle design and analysis. GA is an evolutionary optimization technique that mimics the natural biological evolution. The design of microneedle structure considers the shape of microneedle, material used, size of the array, the base of microneedle, the lumen base, the height of microneedle, the height of the lumen, and the height of the drug container or reservoir. The GA is executed in conjunction with ANSYS simulation system to assess...

  11. Novel material and structural design for large-scale marine protective devices

    International Nuclear Information System (INIS)

    Qiu, Ang; Lin, Wei; Ma, Yong; Zhao, Chengbi; Tang, Youhong

    2015-01-01

    Highlights: • Large-scale protective devices with different structural designs have been optimized. • Large-scale protective devices with novel material designs have been optimized. • Protective devices constructed of sandwich panels have the best anti-collision performance. • Protective devices with novel material design can reduce weight and construction cost. - Abstract: Large-scale protective devices must endure the impact of severe forces, large structural deformation, the increased stress and strain rate effects, and multiple coupling effects. In evaluation of the safety of conceptual design through simulation, several key parameters considered in this research are maximum impact force, energy dissipated by the impactor (e.g. a ship) and energy absorbed by the device and the impactor stroke. During impact, the main function of the ring beam structure is to resist and buffer the impact force between ship and bridge pile caps, which could guarantee that the magnitude of impact force meets the corresponding requirements. The means of improving anti-collision performance can be to increase the strength of the beam section or to exchange the steel material with novel fiber reinforced polymer laminates. The main function of the buoyancy tank is to absorb and transfer the ship’s kinetic energy through large plastic deformation, damage, or friction occurring within itself. The energy absorption effect can be improved by structure optimization or by the use of new sandwich panels. Structural and material optimization schemes are proposed on the basis of conceptual design in this research, and protective devices constructed of sandwich panels prove to have the best anti-collision performance

  12. Advanced digital technology - improving nuclear power plant performance through maintainability

    International Nuclear Information System (INIS)

    Ford, J.L.; Senechal, R.R.; Altenhein, G.D.; Harvey, R.P.

    1998-01-01

    In today's energy sector there is ever increasing pressure on utilities to operate power plants at high capacity factors. To ensure nuclear power is competitive into the next century, it is imperative that strategic design improvements be made to enhance the performance of nuclear power plants. There are a number of factors that affect a nuclear power plant's performance; lifetime maintenance is one of the major contributors. The maturing of digital technology has afforded ABB the opportunity to make significant design improvements in the area of maintainability. In keeping with ABB's evolutionary advanced nuclear plant design approach, digital technology has systematically been incorporated into the control and protection systems of the most recent Korean nuclear units in operation and under construction. One example of this was the multi-functional design team approach that was utilized for the development of ABB's Digital Plant Protection System (DPPS). The design team consisted of engineers, maintenance technicians, procurement specialists and manufacturing personnel in order to provide a complete perspective on all facets of the design. The governing design goals of increased reliability and safety, simplicity of design, use of off-the-shelf products and reduced need for periodic surveillance testing were met with the selection of proven ABB-Advant Programmable Logic Controllers (PLCs) as the heart of the DPPS. The application of digital PLC technology allows operation for extended periods without requiring routine maintenance or re-calibration. A well documented commercial dedication program approved by the United States Nuclear Regulatory Commission (US NRC) as part of the System 80+ TM Advanced Light Water Reactor Design Certification Program, allowed the use of off-the shelf products in the design of the safety protection system. In addition, a number of mechanical and electrical improvements were made which support maintainability. The result is a DPPS

  13. Structural design of the superconducting toroidal field coils for ITER

    International Nuclear Information System (INIS)

    Wong, F.M.G.; Sborchia, C.; Thome, R.J.; Malkov, A.; Titus, P.H.

    1995-01-01

    Structural design issues and features of the superconducting toroidal field (TF) coils for the International Thermonuclear Experimental Reactor (ITER) will be discussed. Selected analyses of the structural and mechanical behavior of the ITER TF coils will also be presented. (orig.)

  14. Maintaining Department of Energy facilities general design criteria

    International Nuclear Information System (INIS)

    Metzler, J.F.

    1985-01-01

    A General Design Criteria (GDC) Planning Board has been established in the Department of Energy to streamline the improvement and maintenance of the GDC Manual. This Planning Board, composed of a membership from field organizations and Headquarters programmatic offices, started work on 15 enhancements to the GDC Manual. One of those enhancements details natural phenomena hazards criteria. In the past year the Planning Board submitted a major recommendation which has been implemented into what is known as the GDC Improvements project. The result of this project pledges to dramatically increase the GDC Manual's utilization and effectiveness

  15. Tornado-resistance design for the nuclear safety structure of Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Xia Zufeng.

    1987-01-01

    The primary design consideration of anti-tornado of the nuclear safety structure of Qinshan Nuclear Power Plant is briefly presented. It mainly includes estimating the probability of tornado arising in the site, ascertaining the design requirments of the anti-tornado structures and deciding the tornado load acted on the structures

  16. Design progress of the ITER vacuum vessel sectors and port structures

    International Nuclear Information System (INIS)

    Utin, Yu.; Ioki, K.; Alekseev, A.; Bachmann, Ch.; Cho, S.; Chuyanov, V.; Jones, L.; Kuzmin, E.; Morimoto, M.; Nakahira, M.; Sannazzaro, G.

    2007-01-01

    Recent progress of the ITER vacuum vessel (VV) design is presented. As the ITER construction phase approaches, the VV design has been improved and developed in more detail with the focus on better performance, improved manufacture and reduced cost. Based on achievements of manufacturing studies, design improvement of the typical VV Sector (no. 1) has been nearly finalized. Design improvement of other sectors is in progress-in particular, of the VV Sectors no. 2 and no. 3 which interface with tangential ports for the neutral beam (NB) injection. For all sectors, the concept for the in-wall shielding has progressed and developed in more detail. The design progress of the VV sectors has been accompanied by the progress of the port structures. In particular, design of the NB ports was advanced with the focus on the beam-facing components to handle the heat input of the neutral beams. Structural analyses have been performed to validate all design improvements

  17. Structural design aspects of innovative designs under development in the current US Liquid Metal-Cooled Reactor program

    International Nuclear Information System (INIS)

    Seidensticker, R.W.

    1986-01-01

    The US Liquid Metal-Cooled Reactor (LMR) program has been restructured and is now focussed on the development of innovative plant designs which emphasize shorter construction times, increased use of passive, inherently safe features, cost-competitiveness with LWR plants, and minimization of safety-related systems. These changes have a considerable effect on the structural design aspects of the LMR plant. These structural problems and their solutions now under study form the main focus of this paper. (orig.)

  18. Design and manufacturing of bio-based sandwich structures

    CSIR Research Space (South Africa)

    John, Maya J

    2017-03-01

    Full Text Available The aim of this chapter is to discuss the design and manufacturing of bio-based sandwich structures. As the economic advantages of weight reduction have become mandatory for many advanced industries, bio-based sandwich panels have emerged...

  19. Reliability And Maintainability Issues for the Next Linear Collider

    International Nuclear Information System (INIS)

    Wilson, Zane J.; Gold, Saul L.; Koontz, Ron F.; Lavine, Ted L.

    2011-01-01

    Large accelerators for high energy physics research traditionally have been designed using informal best design, engineering, and management practices to achieve acceptable levels of operational availability. However, the Next Linear Collider(NLC) project presents a particular challenge for operational availability due to the unprecedented size and complexity of the accelerator systems required to achieve the physics goals of high center-of-mass energy and high luminosity. Formal reliability and maintainability analysis, design, and implementation will be required to achieve acceptable operational availability for the high energy physics research program. This paper introduces some of the basic concepts of reliability analysis and applies them to the 2.6-cm microwave power system of the two 10-km-long, 250-GeV linacs that are currently proposed for the NLC design.

  20. Nested structures approach in designing an isotropic negative-index material for infrared

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei

    2009-01-01

    We propose a new generic approach for designing isotropic metamaterial with nested cubic structures. As an example, a three-dimensional isotropic unit cell design "Split Cube in Cage" (SCiC) is shown to exhibit an effective negative refractive index on infrared wavelengths. We report on the refra......We propose a new generic approach for designing isotropic metamaterial with nested cubic structures. As an example, a three-dimensional isotropic unit cell design "Split Cube in Cage" (SCiC) is shown to exhibit an effective negative refractive index on infrared wavelengths. We report...

  1. Preliminary verification of structure design for CN HCCB TBM with 1 × 4 configuration

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhou, E-mail: zhaozhou@swip.ac.cn; Zhou, Bing; Wang, Qijie; Cao, Qixiang; Feng, Kaiming; Wang, Xiaoyu; Zhang, Guoshu

    2016-02-15

    Highlights: • A new and simplification structural design scheme with 1 × 4 configuration is proposed for CN HCCB TBM. • The detail conceptual structural design for 1 × 4 TBM is completed. • The preliminary hydraulic analysis, thermo-hydraulic analysis and structural analysis for 1 × 4 TBM had been carried out. - Abstract: Based on the conceptual design of CN HCCB TBM with 1 × 4 configuration, the preliminary hydraulic analysis, thermo-hydraulic analysis and structural analysis had been carried out for it. Hydraulic and thermo-hydraulic analyses show that the coolant manifold system could meet the fluid design requirement preliminarily and the temperature of RAFMs structural parts, Be and Li{sub 4}SiO{sub 4} pebble beds are within the allowable range, and no zone shows a stress higher than the allowable limit in the preliminary structural analysis. These results indicate the design for CN HCCB TBM with 1 × 4 configuration is preliminary reasonable.

  2. Preliminary verification of structure design for CN HCCB TBM with 1 × 4 configuration

    International Nuclear Information System (INIS)

    Zhao, Zhou; Zhou, Bing; Wang, Qijie; Cao, Qixiang; Feng, Kaiming; Wang, Xiaoyu; Zhang, Guoshu

    2016-01-01

    Highlights: • A new and simplification structural design scheme with 1 × 4 configuration is proposed for CN HCCB TBM. • The detail conceptual structural design for 1 × 4 TBM is completed. • The preliminary hydraulic analysis, thermo-hydraulic analysis and structural analysis for 1 × 4 TBM had been carried out. - Abstract: Based on the conceptual design of CN HCCB TBM with 1 × 4 configuration, the preliminary hydraulic analysis, thermo-hydraulic analysis and structural analysis had been carried out for it. Hydraulic and thermo-hydraulic analyses show that the coolant manifold system could meet the fluid design requirement preliminarily and the temperature of RAFMs structural parts, Be and Li_4SiO_4 pebble beds are within the allowable range, and no zone shows a stress higher than the allowable limit in the preliminary structural analysis. These results indicate the design for CN HCCB TBM with 1 × 4 configuration is preliminary reasonable.

  3. Designing A Simple Folder Structure For A Complex Domain

    Directory of Open Access Journals (Sweden)

    Torkil Clemmensen

    2011-01-01

    Full Text Available In this paper I explore a case of designing a simple folder structure for a new e-learning software program for a university study program. The aim is to contribute to the theoretical base for human work interaction design (HWID by identifying the type of relations connecting design artifacts with work analysis and interaction design processes. The action research method was used, with the author in a double role as university researcher and project manager of a developer group within the university. Analysis was conducted through grounded theory, inspired by the HWID framework. The findings support the use of a holistic framework with asymmetrical relations between work analysis and design artifacts, and between design artifacts and interaction design. The paper concludes with suggestions for modifying the general framework, and recommendations for a HWID approach to design artifacts.

  4. Design guide for calculating fluid damping for circular cylindrical structures

    International Nuclear Information System (INIS)

    Chen, S.S.

    1983-06-01

    Fluid damping plays an important role for structures submerged in fluid, subjected to flow, or conveying fluid. This design guide presents a summary of calculational procedures and design data for fluid damping for circular cylinders vibrating in quiescent fluid, crossflow, and parallel flow

  5. Computational design of proteins with novel structure and functions

    International Nuclear Information System (INIS)

    Yang Wei; Lai Lu-Hua

    2016-01-01

    Computational design of proteins is a relatively new field, where scientists search the enormous sequence space for sequences that can fold into desired structure and perform desired functions. With the computational approach, proteins can be designed, for example, as regulators of biological processes, novel enzymes, or as biotherapeutics. These approaches not only provide valuable information for understanding of sequence–structure–function relations in proteins, but also hold promise for applications to protein engineering and biomedical research. In this review, we briefly introduce the rationale for computational protein design, then summarize the recent progress in this field, including de novo protein design, enzyme design, and design of protein–protein interactions. Challenges and future prospects of this field are also discussed. (topical review)

  6. Structural and microstructural design in brittle materials

    International Nuclear Information System (INIS)

    Evans, A.G.

    1979-12-01

    Structural design with brittle materials requires that the stress level in the component correspond to a material survival probability that exceeds the minimum survival probability permitted in that application. This can be achieved by developing failure models that fully account for the probability of fracture from defects within the material (including considerations of fracture statistics, fracture mechanics and stress analysis) coupled with non-destructive techniques that determine the size of the large extreme of critical defects. Approaches for obtaining the requisite information are described. The results provide implications for the microstructural design of failure resistant brittle materials by reducing the size of deleterious defects and enhancing the fracture toughness

  7. Safe-life and damage-tolerant design approaches for helicopter structures

    Science.gov (United States)

    Reddick, H. K., Jr.

    1983-01-01

    The safe-life and damage-tolerant design approaches discussed apply to both metallic and fibrous composite helicopter structures. The application of these design approaches to fibrous composite structures is emphasized. Safe-life and damage-tolerant criteria are applied to all helicopter flight critical components, which are generally categorized as: dynamic components with a main and tail rotor system, which includes blades, hub and rotating controls, and drive train which includes transmission, and main and interconnecting rotor shafts; and the airframe, composed of the fuselage, aerodynamic surfaces, and landing gear.

  8. Aseismic design of Hamaoka Nuclear Power Plant

    International Nuclear Information System (INIS)

    Mizuno, Norihiro

    1975-01-01

    The Hamaoka Nuclear Power Plant of Chubu Electric Power Co. is designed so as to maintain structural safety against an earthquake of 300 gal. For the purpose, a compound-type reactor-housing building is employed, which contains a reactor, operation control and waste disposal facilities. The merits accruing from this scheme are as follows. (1) The shielding walls of the waste disposal facility can be utilized effectively in aseismatic design, leading to the increased rigidity of the building and the uniform distribution of resistance. (2) Due to the large area of the foundation, the load in earthquake can be mitigated, and it resulted in the higher structural stability. Moreover, seismic energy can be dissipated into ground. After the description of the compound building structure, it is explained how the structural resistance and the ground dissipation of seismic energy contribute to potential earthquake resistance. (Mori, K.)

  9. Topology optimization aided structural design: Interpretation, computational aspects and 3D printing.

    Science.gov (United States)

    Kazakis, Georgios; Kanellopoulos, Ioannis; Sotiropoulos, Stefanos; Lagaros, Nikos D

    2017-10-01

    Construction industry has a major impact on the environment that we spend most of our life. Therefore, it is important that the outcome of architectural intuition performs well and complies with the design requirements. Architects usually describe as "optimal design" their choice among a rather limited set of design alternatives, dictated by their experience and intuition. However, modern design of structures requires accounting for a great number of criteria derived from multiple disciplines, often of conflicting nature. Such criteria derived from structural engineering, eco-design, bioclimatic and acoustic performance. The resulting vast number of alternatives enhances the need for computer-aided architecture in order to increase the possibility of arriving at a more preferable solution. Therefore, the incorporation of smart, automatic tools in the design process, able to further guide designer's intuition becomes even more indispensable. The principal aim of this study is to present possibilities to integrate automatic computational techniques related to topology optimization in the phase of intuition of civil structures as part of computer aided architectural design. In this direction, different aspects of a new computer aided architectural era related to the interpretation of the optimized designs, difficulties resulted from the increased computational effort and 3D printing capabilities are covered here in.

  10. Chimaerin suppresses Rac1 activation at the apical membrane to maintain the cyst structure.

    Directory of Open Access Journals (Sweden)

    Shunsuke Yagi

    Full Text Available Epithelial organs are made of a well-polarized monolayer of epithelial cells, and their morphology is maintained strictly for their proper functions. Previously, we showed that Rac1 activation is suppressed at the apical membrane in the mature organoid, and that such spatially biased Rac1 activity is required for the polarity maintenance. Here we identify Chimaerin, a GTPase activating protein for Rac1, as a suppressor of Rac1 activity at the apical membrane. Depletion of Chimaerin causes over-activation of Rac1 at the apical membrane in the presence of hepatocyte growth factor (HGF, followed by luminal cell accumulation. Importantly, Chimaerin depletion did not inhibit extension formation at the basal membrane. These observations suggest that Chimaerin functions as the apical-specific Rac1 GAP to maintain epithelial morphology.

  11. Structural and compositional features of high-rise buildings: experimental design in Yekaterinburg

    Science.gov (United States)

    Yankovskaya, Yulia; Lobanov, Yuriy; Temnov, Vladimir

    2018-03-01

    The study looks at the specifics of high-rise development in Yekaterinburg. High-rise buildings are considered in the context of their historical development, structural features, compositional and imaginative design techniques. Experience of Yekaterinburg architects in experimental design is considered and analyzed. Main issues and prospects of high-rise development within the Yekaterinburg structure are studied. The most interesting and significant conceptual approaches to the structural and compositional arrangement of high-rise buildings are discussed.

  12. Mechanical design issues associated with mounting, maintenance, and handling of an ITER divertor

    International Nuclear Information System (INIS)

    Goranson, D.L.; Fogarty, D.J.; Jones, G.H.

    1992-01-01

    Several designs that address plasma-facing plate configurations and thermal-hydraulic design issues have been developed for the ITER divertor. Design criteria growing out of physics requirements, physical constraints, and remote handling requirements impose severe mechanical requirements on the support structure and its attachments. These pose a challenge to the mechanical design of a divertor, which must be addressed before a functional divertor is practical that is, one that can be remotely handled, aligned, and maintained; that functions reliably under thermal loading and disruptions; and that gives the required life in the nuclear environment predicted for ITER. This paper discusses the design criteria for the divertor mounting structure and identifies the mechanical design issues that need to be addressed

  13. The Application of Concurrent Engineering Tools and Design Structure Matrix in Designing Tire

    Science.gov (United States)

    Ginting, Rosnani; Fachrozi Fitra Ramadhan, T.

    2016-02-01

    The development of automobile industry in Indonesia is growing rapidly. This phenomenon causes companies related to the automobile industry such as tire industry must develop products based on customers’ needs and considering the timeliness of delivering the product to the customer. It could be reached by applying strategic planning in developing an integrated concept of product development. This research was held in PT. XYZ that applied the sequential approach in designing and developing products. The need to improve in one stage of product development could occur re-designing that needs longer time in developing a new product. This research is intended to get an integrated product design concept of tire pertaining to the customer's needs using Concurrent Engineering Tools by implementing the two-phased of product development. The implementation of Concurrent Engineering approach results in applying the stage of project planning, conceptual design, and product modules. The product modules consist of four modules that using Product Architecture - Design Structure Matrix to ease the designing process of new product development.

  14. Design study for KALIMER upper internal structure and reactor refueling system

    International Nuclear Information System (INIS)

    Park, Jin Ho

    1996-09-01

    The design study for the KALIMER upper internal structure (UIS) and reactor refueling system has been described. Two distinct features are plug-in UIS and extended refueling outage. For the UIS system, the functional, structural and material requirements have been determined and the accommodation approaches to meet these functional requirements described. For the refueling system, the functional, structural, process and I and C (Instrument and Control) requirements have been established and the accommodation approaches for the functional and process requirements described. The impact on plant availability due to extension of the refueling outage has also been investigated. The accommodation approaches for UIS system show that the design concept of the system will satisfy the functional requirements with a few design issues to be resolved, such as UIS plug in/out handling system and cask design. It is also shown that the functional and process requirements of the refueling system are achievable with the design of the IVTM cask and related transfer system and the extended refueling outage has little effect (within 1%) on the plant availability if extra refueling time do not exceed 1 week. 1 refs. (Author)

  15. Design study for KALIMER upper internal structure and reactor refueling system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-09-01

    The design study for the KALIMER upper internal structure (UIS) and reactor refueling system has been described. Two distinct features are plug-in UIS and extended refueling outage. For the UIS system, the functional, structural and material requirements have been determined and the accommodation approaches to meet these functional requirements described. For the refueling system, the functional, structural, process and I and C (Instrument and Control) requirements have been established and the accommodation approaches for the functional and process requirements described. The impact on plant availability due to extension of the refueling outage has also been investigated. The accommodation approaches for UIS system show that the design concept of the system will satisfy the functional requirements with a few design issues to be resolved, such as UIS plug in/out handling system and cask design. It is also shown that the functional and process requirements of the refueling system are achievable with the design of the IVTM cask and related transfer system and the extended refueling outage has little effect (within 1%) on the plant availability if extra refueling time do not exceed 1 week. 1 refs. (Author).

  16. New approach to the design of core support structures for large LMFBR plants

    International Nuclear Information System (INIS)

    Burelbach, J.P.; Kann, W.J.; Pan, Y.C.; Saiveau, J.G.; Seidensticker, R.W.

    1984-01-01

    The paper describes an innovative design concept for a LMFBR Core Support Structure. A hanging Core Support Structure is described and analyzed. The design offers inherent safety features, constructibility advantages, and potential cost reductions

  17. Final design of the generic upper port plug structure for ITER diagnostic systems

    Energy Technology Data Exchange (ETDEWEB)

    Pak, Sunil, E-mail: paksunil@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Feder, Russell [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Giacomin, Thibaud; Guirao, Julio; Iglesias, Silvia; Josseaume, Fabien [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Kalish, Michael; Loesser, Douglas [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Maquet, Philippe [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Ordieres, Javier; Panizo, Marcos [NATEC, Ingenieros, Gijón (Spain); Pitcher, Spencer; Portalès, Mickael [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Proust, Maxime [CEA, Cadarache, St. Paul-lez-Durance (France); Ronden, Dennis [FOM Institute DIFFER, Nieuwegein (Netherlands); Serikov, Arkady [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Suarez, Alejandro [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Tanchuk, Victor [NIIEFA, St.-Petersburg (Russian Federation); Udintsev, Victor; Vacas, Christian [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); and others

    2016-01-15

    The generic upper port plug (GUPP) structure in ITER is a 6 m long metal box which deploys diagnostic components into the vacuum vessel. This structure is commonly used for all the diagnostic upper ports. The final design of the GUPP structure, which has successfully passed the final design review in 2013, is described here. The diagnostic port plug is cantilevered to the vacuum vessel with a heavy payload at the front, so called the diagnostic first wall (DFW) and the diagnostic shield module (DSM). Most of electromagnetic (EM) load (∼80%) occurs in DFW/DSM. Therefore, the mounting design to transfer the EM load from DFW/DSM to the GUPP structure is challenging, which should also comply with thermal expansion and tolerance for assembly and manufacturing. Another key design parameter to be considered is the gap between the port plug and the vacuum vessel port. The gap should be large enough to accommodate the remote handling of the heavy port plug (max. 25 t), the structural deflection due to external loads and machine assembly tolerance. At the same time, the gap should be minimized to stop the neutron streaming according to the ALARA (as low as reasonably achievable) principle. With these design constraints, the GUPP structure should also provide space for diagnostic integration as much as possible. This requirement has led to the single wall structure having the gun-drilled water channels inside the structure. Furthermore, intensive efforts have been made on the manufacturing study including material selection, manufacturing codes and French regulation related to nuclear equipment and safety. All these main design and manufacturing aspects are discussed in this paper, including requirements, interfaces, loads and structural assessment and maintenance.

  18. What older adults find useful for maintaining healthy eating and exercise habits.

    Science.gov (United States)

    Greaney, Mary L; Lees, Faith D; Greene, Geoffrey W; Clark, Phillip G

    2004-01-01

    Four focus groups were conducted with a total of 29 adults 60 years of age and older enrolled in the SENIOR Project, a health promotion intervention study designed to increase fruit and vegetable consumption and exercise among community-dwelling older adults. The focus groups explored the motivations of older adults to eat five or more servings of fruits and vegetables and/or exercise and the strategies used to adopt or maintain these behaviors. Participants stated that maintaining health, remaining independent, and fearing illness provided the motivation needed to adhere to these behaviors. The strategies or the behavioral processes used to adopt or maintain these behaviors included counterconditioning, helping relationships, stimulus control, and self-liberation.

  19. Inelastic structural design approach using their relaxation locus

    International Nuclear Information System (INIS)

    Kasahara, Naoto

    2000-08-01

    Elevated temperature structural design codes pay attention to strain concentration at structural discontinuities due to creep and plasticity, since it causes to enlarge creep-fatigue damage of materials. One of the difficulties to predict strain concentration is its dependency on loading, constitutive equations, and relaxation time. This study investigated fundamental mechanism of strain concentration and its main factors. The results revealed that strain concentration was caused from strain redistribution between elastic and inelastic region, which can be quantified by the characteristics of structural compliance. Characteristic of compliance is controlled by elastic region in structures and is insensitive to constitutive equations. It means that inelastic analysis is easily applied to get compliance characteristics. By utilizing this fact, simplified inelastic analysis method was proposed based on characteristics of compliance change for prediction of strain concentration. (author)

  20. Multi-level flow-based Markov clustering for design structure matrices

    NARCIS (Netherlands)

    Wilschut, T.; Etman, P.L.F.; Rooda, J.E.; Adan, I.J.B.F.

    2016-01-01

    For decomposition and integration of systems one requires extensive knowledge on system structure. A Design Structure Matrix (DSM) can provide a simple, compact and visual representation of dependencies between system elements. By permuting the rows and columns of a DSM using a clustering algorithm,