WorldWideScience

Sample records for designer disordered materials

  1. Total scattering of disordered crystalline functional materials

    International Nuclear Information System (INIS)

    Shamoto, Shin-Ichi; Kodama, Katsuaki; Iikubo, Satoshi; Taguchi, Tomitsugu

    2009-01-01

    There are disorders in some modern functional materials. As an example, the crystalline phase of an optical recording material has low thermal conductivity but high electrical conductivity, simultaneously. This contradiction is a challenge to material scientists in designing good functional materials, which should have at least two types of crystallographic sites. One site limits thermal conductivity while the other site carries electrons or holes with high mobility. This problem exists with not only optical recording materials but also thermoelectric materials. The periodic boundary condition gets lost in the disordered parts. This therefore, makes atomic pair distribution function (PDF) analysis with a wide range of real space suitable for investigating the form and size of crystalline parts as well as disordered parts in the material. Pulsed neutron powder diffraction is one of the best tools for use in this new type of emerging research, together with synchrotron X-ray powder diffraction and electron diffraction.

  2. Disorder-induced stiffness degradation of highly disordered porous materials

    Science.gov (United States)

    Laubie, Hadrien; Monfared, Siavash; Radjaï, Farhang; Pellenq, Roland; Ulm, Franz-Josef

    2017-09-01

    The effective mechanical behavior of multiphase solid materials is generally modeled by means of homogenization techniques that account for phase volume fractions and elastic moduli without considering the spatial distribution of the different phases. By means of extensive numerical simulations of randomly generated porous materials using the lattice element method, the role of local textural properties on the effective elastic properties of disordered porous materials is investigated and compared with different continuum micromechanics-based models. It is found that the pronounced disorder-induced stiffness degradation originates from stress concentrations around pore clusters in highly disordered porous materials. We identify a single disorder parameter, φsa, which combines a measure of the spatial disorder of pores (the clustering index, sa) with the pore volume fraction (the porosity, φ) to scale the disorder-induced stiffness degradation. Thus, we conclude that the classical continuum micromechanics models with one spherical pore phase, due to their underlying homogeneity assumption fall short of addressing the clustering effect, unless additional texture information is introduced, e.g. in form of the shift of the percolation threshold with disorder, or other functional relations between volume fractions and spatial disorder; as illustrated herein for a differential scheme model representative of a two-phase (solid-pore) composite model material.

  3. Inverse problems in complex material design: Applications to non-crystalline solids

    Science.gov (United States)

    Biswas, Parthapratim; Drabold, David; Elliott, Stephen

    The design of complex amorphous materials is one of the fundamental problems in disordered condensed-matter science. While impressive developments of ab-initio simulation methods during the past several decades have brought tremendous success in understanding materials property from micro- to mesoscopic length scales, a major drawback is that they fail to incorporate existing knowledge of the materials in simulation methodologies. Since an essential feature of materials design is the synergy between experiment and theory, a properly developed approach to design materials should be able to exploit all available knowledge of the materials from measured experimental data. In this talk, we will address the design of complex disordered materials as an inverse problem involving experimental data and available empirical information. We show that the problem can be posed as a multi-objective non-convex optimization program, which can be addressed using a number of recently-developed bio-inspired global optimization techniques. In particular, we will discuss how a population-based stochastic search procedure can be used to determine the structure of non-crystalline solids (e.g. a-SiH, a-SiO2, amorphous graphene, and Fe and Ni clusters). The work is partially supported by NSF under Grant Nos. DMR 1507166 and 1507670.

  4. Hyperuniform Disordered photonic bandgap materials, from 2D to 3D, and their applications

    Science.gov (United States)

    Man, Weining; Florescu, Marian; Sahba, Shervin; Sellers, Steven

    Recently, hyperuniform disordered systems attracted increasing attention due to their unique physical properties and the potential possibilities of self-assembling them. We had introduced a class of 2D hyperuniform disordered (HUD) photonic bandgap (PBG) materials enabled by a novel constrained optimization method for engineering the material's isotropic photonic bandgap. The intrinsic isotropy in these disordered structures is an inherent advantage associated with the lack of crystalline order, offering unprecedented freedom for functional defect design impossible to achieve in photonic crystals. Beyond our previous experimental work using macroscopic samples with microwave radiation, we demonstrated functional devices based on submicron-scale planar hyperuniform disordered PBG structures further highlight their ability to serve as highly compact, flexible and energy-efficient platforms for photonic integrated circuits. We further extended the design, fabrication, and characterization of the disordered photonic system into 3D. We also identify local self-uniformity as a novel measure of a disordered network's internal structural similarity, which we found crucial for photonic band gap formation. National Science Foundations award DMR-1308084.

  5. Designing Material Materialising Design

    DEFF Research Database (Denmark)

    Nicholas, Paul

    2013-01-01

    Designing Material Materialising Design documents five projects developed at the Centre for Information Technology and Architecture (CITA) at the Royal Danish Academy of Fine Arts, School of Architecture. These projects explore the idea that new designed materials might require new design methods....... Focusing on fibre reinforced composites, this book sustains an exploration into the design and making of elastically tailored architectural structures that rely on the use of computational design to predict sensitive interdependencies between geometry and behaviour. Developing novel concepts...

  6. Macroscopic properties of model disordered materials

    International Nuclear Information System (INIS)

    Knackstedt, M.A.; Roberts, A.P.

    1996-01-01

    Disordered materials are ubiquitous in nature and in industry. Soils, sedimentary rocks, wood, bone, polymer composites, foams, catalysts, gels, concretes and ceramics have properties that depend on material structure. Present techniques for predicting properties are limited by the theoretical and computational difficulty of incorporating a realistic description of material structure. A general model for microstructure was recently proposed by Berk [Berk, Phys.Rev.A, 44 5069 (1991)]. The model is based on level cuts of a Gaussian random field with arbitrary spectral density. The freedom in specifying the parameters of the model allows the modeling of physical materials with diverse morphological characteristics. We have shown that the model qualitatively accounts for the principal features of a wider variety of disordered materials including geologic media, membranes, polymer blends, ceramics and foams. Correlation functions are derived for the model microstructure. From this characterisation we derive mechanical and conductive properties of the materials. Excellent agreement with experimentally measured properties of disordered solids is obtained. The agreement provides a strong hint that it is now possible to correlate effective physical properties of porous solids to microstructure. Simple extensions to modelling properties of non-porous multicomponent blends; metal alloys, ceramics, metal/matrix and polymer composites are also discussed

  7. Total Scattering Analysis of Disordered Nanosheet Materials

    Science.gov (United States)

    Metz, Peter C.

    Two dimensional materials are of increasing interest as building blocks for functional coatings, catalysts, and electrochemical devices. While increasingly sophisticated processing routes have been designed to obtain high-quality exfoliated nanosheets and controlled, self-assembled mesostructures, structural characterization of these materials remains challenging. This work presents a novel method of analyzing pair distribution function (PDF) data for disordered nanosheet ensembles, where supercell stacking models are used to infer atom correlations over as much as 50 A. Hierarchical models are used to reduce the parameter space of the refined model and help eliminate strongly correlated parameters. Three data sets for restacked nanosheet assemblies with stacking disorder are analyzed using these methods: simulated data for graphene-like layers, experimental data for 1 nm thick perovskite layers, and experimental data for highly defective delta-MnO2 layers. In each case, the sensitivity of the PDF to the real-space distribution of layer positions is demonstrated by exploring the fit residual as a function of stacking vectors. The refined models demonstrate that nanosheets tend towards local interlayer ordering, which is hypothesized to be driven by the electrostatic potential of the layer surfaces. Correctly accounting for interlayer atom correlations permits more accurate refinement of local structural details including local structure perturbations and defect site occupancies. In the delta-MnO2 nanosheet material, the new modeling approach identified 14% Mn vacancies while application of 3D periodic crystalline models to the < 7 A PDF region suggests a 25% vacancy concentration. In contrast, the perovskite nanosheet material is demonstrated to exhibit almost negligible structural relaxation in contrast with the bulk crystalline material from which it is derived.

  8. Phonon bottleneck identification in disordered nanoporous materials

    Science.gov (United States)

    Romano, Giuseppe; Grossman, Jeffrey C.

    2017-09-01

    Nanoporous materials are a promising platform for thermoelectrics in that they offer high thermal conductivity tunability while preserving good electrical properties, a crucial requirement for high-efficiency thermal energy conversion. Understanding the impact of the pore arrangement on thermal transport is pivotal to engineering realistic materials, where pore disorder is unavoidable. Although there has been considerable progress in modeling thermal size effects in nanostructures, it has remained a challenge to screen such materials over a large phase space due to the slow simulation time required for accurate results. We use density functional theory in connection with the Boltzmann transport equation to perform calculations of thermal conductivity in disordered porous materials. By leveraging graph theory and regressive analysis, we identify the set of pores representing the phonon bottleneck and obtain a descriptor for thermal transport, based on the sum of the pore-pore distances between such pores. This approach provide a simple tool to estimate phonon suppression in realistic porous materials for thermoelectric applications and enhance our understanding of heat transport in disordered materials.

  9. Disorder-induced localization in crystalline phase-change materials.

    Science.gov (United States)

    Siegrist, T; Jost, P; Volker, H; Woda, M; Merkelbach, P; Schlockermann, C; Wuttig, M

    2011-03-01

    Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal-insulator transition without a structural change are therefore of interest. Mechanisms leading to metal-insulator transition include electron correlation (Mott transition) or disorder (Anderson localization), but a clear distinction is difficult. Here we report on a metal-insulator transition on increasing annealing temperature for a group of crystalline phase-change materials, where the metal-insulator transition is due to strong disorder usually associated only with amorphous solids. With pronounced disorder but weak electron correlation, these phase-change materials form an unparalleled quantum state of matter. Their universal electronic behaviour seems to be at the origin of the remarkable reproducibility of the resistance switching that is crucial to their applications in non-volatile-memory devices. Controlling the degree of disorder in crystalline phase-change materials might enable multilevel resistance states in upcoming storage devices.

  10. Cybermaterials: materials by design and accelerated insertion of materials

    Science.gov (United States)

    Xiong, Wei; Olson, Gregory B.

    2016-02-01

    Cybermaterials innovation entails an integration of Materials by Design and accelerated insertion of materials (AIM), which transfers studio ideation into industrial manufacturing. By assembling a hierarchical architecture of integrated computational materials design (ICMD) based on materials genomic fundamental databases, the ICMD mechanistic design models accelerate innovation. We here review progress in the development of linkage models of the process-structure-property-performance paradigm, as well as related design accelerating tools. Extending the materials development capability based on phase-level structural control requires more fundamental investment at the level of the Materials Genome, with focus on improving applicable parametric design models and constructing high-quality databases. Future opportunities in materials genomic research serving both Materials by Design and AIM are addressed.

  11. The disorder effect on the performance of novel waveguides constructed in two-dimensional amorphous photonic materials

    International Nuclear Information System (INIS)

    Chen Xiao; Wang Yi-Quan

    2011-01-01

    On the basis of two-dimensional amorphous photonic materials, we have designed a novel waveguide by inserting thinner cylindrical inclusions in the centre of basic hexagonal units of the amorphous structure along a given path. This waveguide in amorphous structure is similar to the coupled resonator optical waveguides in periodic photonic crystals. The transmission of this waveguide for S-polarized waves is investigated by a multiple-scattering method. Compared with the conventional waveguide by removing a line of cells from amorphous photonic materials, the guiding properties of this waveguide, including the transmissivity and bandwidth, are improved significantly. Then we study the effect of various types of positional disorder on the functionality of this device. Our results show that the waveguide performance is quite sensitive to the disorder located on the boundary layer of the waveguide, but robust against the disorder in the other area in amorphous structure except the waveguide border. This disorder effect in amorphous photonic materials is similar to the case in periodic photonic crystals. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  12. Materials in Participatory Design Processes

    DEFF Research Database (Denmark)

    Hansen, Nicolai Brodersen

    This dissertation presents three years of academic inquiry into the question of what role materials play in interaction design and participatory design processes. The dissertation aims at developing conceptual tools, based on Deweys pragmatism, for understanding how materials aid design reflection....... It has been developed using a research-through-design approach in which the author has conducted practical design work in order to investigate and experiment with using materials to scaffold design inquiry. The results of the PhD work is submitted as seven separate papers, submitted to esteemed journals...... and conferences within the field of interaction design and HCI. The work is motivated both by the growing interest in materials in interaction design and HCI and the interest in design processes and collaboration within those fields. At the core of the dissertation lies an interest in the many different materials...

  13. Structure analysis of liquids and disordered materials using pulsed neutron diffraction and total scattering

    International Nuclear Information System (INIS)

    Suzuya, Kentaro

    2011-01-01

    Neutron diffraction·total scattering at pulsed neutron source is a powerful method to analyze the complex structure of disordered materials: liquids, glasses, amorphous materials and disordered crystals. The basic idea of the structure of disordered materials, the fundamental diffraction theory for disordered materials, and structure analysis of disordered materials using pulsed neutron diffraction·total scattering technique (TOF method) are described in detail. In addition, the precise information of the world highest class J-PARC MLF spallation neutron source and typical J-PARC neutron total scattering instrument NOVA are also given. Recent structural modelling methods of disordered materials such like reverse Monte Carlo (RMC) simulation method is briefly described using an example of the analysis of a typical disordered material silica glass. (author)

  14. Virtual materials design using databases of calculated materials properties

    International Nuclear Information System (INIS)

    Munter, T R; Landis, D D; Abild-Pedersen, F; Jones, G; Wang, S; Bligaard, T

    2009-01-01

    Materials design is most commonly carried out by experimental trial and error techniques. Current trends indicate that the increased complexity of newly developed materials, the exponential growth of the available computational power, and the constantly improving algorithms for solving the electronic structure problem, will continue to increase the relative importance of computational methods in the design of new materials. One possibility for utilizing electronic structure theory in the design of new materials is to create large databases of materials properties, and subsequently screen these for new potential candidates satisfying given design criteria. We utilize a database of more than 81 000 electronic structure calculations. This alloy database is combined with other published materials properties to form the foundation of a virtual materials design framework (VMDF). The VMDF offers a flexible collection of materials databases, filters, analysis tools and visualization methods, which are particularly useful in the design of new functional materials and surface structures. The applicability of the VMDF is illustrated by two examples. One is the determination of the Pareto-optimal set of binary alloy methanation catalysts with respect to catalytic activity and alloy stability; the other is the search for new alloy mercury absorbers.

  15. Dielectric spectroscopy studies of low-disorder and low-dimensional materials

    OpenAIRE

    Tripathi, Pragya

    2016-01-01

    In this thesis we employ dielectric spectroscopy (in different implementations) to study the dielectric properties of different materials ranging from completely disordered supercooled liquids to low-disorder solids with only ratcheting reorientational motions, to low-dimensional systems such as thin films or needle-like crystals. The probed material properties include the electrical conductivity, the space-charge processes due to sample heterogeneities, molecular dynamics, hydrogen-bond dyna...

  16. Crack phantoms: localized damage correlations and failure in network models of disordered materials

    International Nuclear Information System (INIS)

    Zaiser, M; Moretti, P; Lennartz-Sassinek, S

    2015-01-01

    We study the initiation of failure in network models of disordered materials such as random fuse and spring models, which serve as idealized representations of fracture processes in quasi-two-dimensional, disordered material systems. We consider two different geometries, namely rupture of thin sheets and delamination of thin films, and demonstrate that irrespective of geometry and implementation of the disorder (random failure thresholds versus dilution disorder) failure initiation is associated with the emergence of typical localized correlation structures in the damage patterns. These structures (‘crack phantoms’) exhibit well-defined characteristic lengths, which relate to the failure stress by scaling relations that are typical for critical crack nuclei in disorder-free materials. We discuss our findings in view of the fundamental nature of failure processes in materials with random microstructural heterogeneity. (paper)

  17. Short-pulse laser interactions with disordered materials and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.; Tien, C.L. [Univ. of California, Berkeley, CA (United States)

    1995-12-31

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regime in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.

  18. An investigation of transverse localization in a disordered waveguide array containing plasma materials

    International Nuclear Information System (INIS)

    Ghasempour Ardakani, Abbas

    2014-01-01

    We investigate wave propagation through a disordered waveguide array composed of plasma materials. We first consider a system in which both the low and high index regions are plasma materials. To introduce disorder through the system, the electron plasma densities of the high index regions are selected to be random numbers. We study the effect of disorder strength on transverse localization. Our numerical results reveal that increasing the disorder level improves the quality of the transverse localization. The dependence of the localization features on the plasma density of the low index media and average of the plasma density of the high-index regions is also studied. Localization degrades with increasing plasma density of the low index media. However, transverse localization improves with increasing average plasma density of the high-index regions. Thus, using plasma materials in the disordered photonic lattices makes it possible to control transverse localization characteristics with plasma parameters, as well as applying an external magnetic field. Second, we consider a disordered waveguide array composed alternately of normal and plasma materials. The influence of the operating wavelength variation on the transverse localization is also discussed in this disordered system. It is demonstrated that the effective width of the injected wave at the output end increases with increasing wavelength. In this case, the increase of the average refractive index of normal materials leads to the improvement of transverse localization. (papers)

  19. Engaging design materials, formats and Framings in specific, situated co-designing

    DEFF Research Database (Denmark)

    Agger Eriksen, Mette

    Engaging co-designers in specific situations of co- designing often also means engaging tangible working materials. However, it can be challenging, so rather than seeing it as applying design methods, the paper propose applying what I call a micro-material perspective. The practical concept captu......-design situations" clustered in three quite well- known types of co-design situations framed for; Exploring Current Use(r) Practices, Mapping Networks and Co-Designing (Possible) Futures.......Engaging co-designers in specific situations of co- designing often also means engaging tangible working materials. However, it can be challenging, so rather than seeing it as applying design methods, the paper propose applying what I call a micro-material perspective. The practical concept...... captures both paying attention to the physical design materials, the formats of their exploration and the framings of focus when understanding and planning such specific co-design situations. To exemplify applying the perspective, the paper describes and discusses six specific examples of "co...

  20. Alternate Materials In Design Of Radioactive Material Packages

    International Nuclear Information System (INIS)

    Blanton, P.; Eberl, K.

    2010-01-01

    This paper presents a summary of design and testing of material and composites for use in radioactive material packages. These materials provide thermal protection and provide structural integrity and energy absorption to the package during normal and hypothetical accident condition events as required by Title 10 Part 71 of the Code of Federal Regulations. Testing of packages comprising these materials is summarized.

  1. Materials Driven Architectural Design and Representation

    DEFF Research Database (Denmark)

    Kruse Aagaard, Anders

    2015-01-01

    This paper aims to outline a framework for a deeper connection between experimentally obtained material knowledge and architectural design. While materials and architecture in the process of realisation are tightly connected, architectural design and representation are often distanced from...... another role in relation to architectural production. It is, in this paper, the intention to point at material research as an active initiator in explorative approaches to architectural design methods and architectural representation. This paper will point at the inclusion of tangible and experimental...... material research in the early phases of architectural design and to that of the architectural set of tools and representation. The paper will through use of existing research and the author’s own material research and practice suggest a way of using a combination of digital drawing, digital fabrication...

  2. Tools for Material Design and Selection

    Science.gov (United States)

    Wehage, Kristopher

    The present thesis focuses on applications of numerical methods to create tools for material characterization, design and selection. The tools generated in this work incorporate a variety of programming concepts, from digital image analysis, geometry, optimization, and parallel programming to data-mining, databases and web design. The first portion of the thesis focuses on methods for characterizing clustering in bimodal 5083 Aluminum alloys created by cryomilling and powder metallurgy. The bimodal samples analyzed in the present work contain a mixture of a coarse grain phase, with a grain size on the order of several microns, and an ultra-fine grain phase, with a grain size on the order of 200 nm. The mixing of the two phases is not homogeneous and clustering is observed. To investigate clustering in these bimodal materials, various microstructures were created experimentally by conventional cryomilling, Hot Isostatic Pressing (HIP), Extrusion, Dual-Mode Dynamic Forging (DMDF) and a new 'Gradient' cryomilling process. Two techniques for quantitative clustering analysis are presented, formulated and implemented. The first technique, the Area Disorder function, provides a metric of the quality of coarse grain dispersion in an ultra-fine grain matrix and the second technique, the Two-Point Correlation function, provides a metric of long and short range spatial arrangements of the two phases, as well as an indication of the mean feature size in any direction. The two techniques are implemented on digital images created by Scanning Electron Microscopy (SEM) and Electron Backscatter Detection (EBSD) of the microstructures. To investigate structure--property relationships through modeling and simulation, strategies for generating synthetic microstructures are discussed and a computer program that generates randomized microstructures with desired configurations of clustering described by the Area Disorder Function is formulated and presented. In the computer program, two

  3. Nonequilibrium Thermodynamics of Driven Disordered Materials

    Science.gov (United States)

    Bouchbinder, Eran

    2011-03-01

    We present a nonequilibrium thermodynamic framework for describing the dynamics of driven disordered solids (noncrystalline solids near and below their glass temperature, soft glassy materials such as colloidal suspensions and heavily dislocated polycrystalline solids). A central idea in our approach is that the set of mechanically stable configurations, i.e. the part of the system that is described by inherent structures, evolves slowly as compared to thermal vibrations and is characterized by an effective disorder temperature. Our thermodynamics-motivated equations of motion for the flow of energy and entropy are supplemented by coarse-grained internal variables that carry information about the relevant microscopic physics. Applications of this framework to amorphous visco-plasticity (Shear-Transformation-Zone theory), glassy memory effects (the Kovacs effect) and dislocation-mediated polycrystalline plasticity will be briefly discussed.

  4. Designing with residual materials

    NARCIS (Netherlands)

    Walhout, W.; Wever, R.; Blom, E.; Addink-Dölle, L.; Tempelman, E.

    2013-01-01

    Many entrepreneurial businesses have attempted to create value based on the residual material streams of third parties. Based on ‘waste’ materials they designed products, around which they built their company. Such activities have the potential to yield sustainable products. Many of such companies

  5. Free Material Design with Multiple Load Cases

    DEFF Research Database (Denmark)

    Pedersen, Pauli; Pedersen, Niels Leergaard

    2012-01-01

    Multiple load cases and the consideration of strength is a reality that most structural designs are exposed to. Improved possibility to produce specific materials, say by fiber lay-up, put focus on research on free material optimization. A formulation for such design problems together with a prac......Multiple load cases and the consideration of strength is a reality that most structural designs are exposed to. Improved possibility to produce specific materials, say by fiber lay-up, put focus on research on free material optimization. A formulation for such design problems together...... with a practical recursive design procedure is presented and illustrated with examples. The presented finite element analysis involve many elements as well as many load cases. Separating the local amount of material from a description with unit trace for the local anisotropy, gives the free materials formulation...... a more physical interpretation of the material constraint....

  6. Materials design data for fusion reactors

    International Nuclear Information System (INIS)

    Tavassoli, A.A.F.

    1998-01-01

    Design data needed for fusion reactors are characterized by the diversity of materials and the complexity of loading situations found in these reactors. In addition, advanced fabrication techniques, such as hot isostatic pressing, envisaged for fabrication of single and multilayered in-vessel components, could significantly change the original materials properties for which the current design rules are written. As a result, additional materials properties have had to be generated for fusion reactors and new structural design rules formulated. This paper recalls some of the materials properties data generated for ITER and DEMO, and gives examples of how these are converted into design criteria. In particular, it gives specific examples for the properties of 316LN-IG and modified 9Cr-1Mo steels, and CuCrZr alloy. These include, determination of tension, creep, isochronous, fatigue, and creep-fatigue curves and their analysis and conversion into design limits. (orig.)

  7. Materials design data for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A.A.F. [CEA Commissariat a l`Energie Atomique, Gif sur Yvette (France). CEREM

    1998-10-01

    Design data needed for fusion reactors are characterized by the diversity of materials and the complexity of loading situations found in these reactors. In addition, advanced fabrication techniques, such as hot isostatic pressing, envisaged for fabrication of single and multilayered in-vessel components, could significantly change the original materials properties for which the current design rules are written. As a result, additional materials properties have had to be generated for fusion reactors and new structural design rules formulated. This paper recalls some of the materials properties data generated for ITER and DEMO, and gives examples of how these are converted into design criteria. In particular, it gives specific examples for the properties of 316LN-IG and modified 9Cr-1Mo steels, and CuCrZr alloy. These include, determination of tension, creep, isochronous, fatigue, and creep-fatigue curves and their analysis and conversion into design limits. (orig.) 19 refs.

  8. Designing Instructional Materials: Some Guidelines.

    Science.gov (United States)

    Burbank, Lucille; Pett, Dennis

    Guidelines for the design of instructional materials are outlined in this paper. The principles of design are presented in five major categories: (1) general design (structural appeal and personal appeal); (2) instructional design (attention, memory, concept learning, and attitude change); (3) visual design (media considerations, pictures, graphs…

  9. Design and computation of modern engineering materials

    CERN Document Server

    Altenbach, Holm

    2014-01-01

     The idea of this monograph is to present the latest results related to design and computation of engineering materials and structures. The contributions cover the classical fields of mechanical, civil and materials engineering up to biomechanics and advanced materials processing and optimization. The materials and structures covered can be categorized into modern steels and titanium alloys, composite materials, biological and natural materials, material hybrids and modern joining technologies. Analytical modelling, numerical simulation, the application of state-of-the-art design tools and sophisticated experimental techniques are applied to characterize the performance of materials and to design and optimize structures in different fields of engineering applications.

  10. Shape Does Matter : Designing materials in products

    NARCIS (Netherlands)

    Saakes, D.P.

    2010-01-01

    In this thesis I investigate how to support designing the appearance of materials in products, specifically how to search for new materials and to explore the interactions between materials and shape. Central in this thesis is a novel design called Skin 2.0. Skin allows designers in the early

  11. Designed materials: what and how

    Science.gov (United States)

    Mazumder, Jyotirmoy; Dutta, Debasish; Ghosh, Amit K.; Kikuchi, Noboru

    2003-03-01

    Quest for a material to suit the service performance is almost as old as human civilization. So far materials engineers have developed a series of alloys, polymers, ceramics, and composites to serve many of the performance requirements in a modern society. However, challenges appear when one needs to satisfy more than one boundary condition. For example, a component with negative Coefficient of Thermal Expansion (CTE) using a ductile metal was almost impossible until recently. Synthesis of various technologies such as Direct Metal Deposition (DMD) Homogenization Design Method (HDM) and mutli material Computer Aided Design (CAD) was necessary to achieve this goal. Rapid fabrication of three-dimensional shapes of engineering materials such as H13 tool steel and nickel super alloys are now possible using Direct Materials Deposition (DMD) technique as well as similar techniques such as Light Engineered New Shaping (LENS) or Directed Light Fabrication (DLF). However, DMD has closed loop capability that enables better dimension and thermal cycle control. This enables one to deposit different material at different pixels with a given height directly from a CAD drawing. The feedback loop also controls the thermal cycle. H13 tool steel is one of the difficult alloys for deposition due to residual stress accumulation from martensitic transformation. However, it is the material of choice for the die and tool industry. DMD has demonstrated successful fabrication of complicated shapes and dies and tools, even with H13 alloys. This process also offers copper chill blocks and water-cooling channels as the integral part of the tool. On the other hand ZrO2 was co-deposited with nickel super alloys using DMD. Flexibility of the process is enormous and essentially it is an enabling technology to marterialize many a design. Using DMD in conjunction with HDM and multi-material CAD, one can produce components with predetermined performance such as negative co-efficient of expansion, by

  12. Disorder and strain-induced complexity in functional materials

    CERN Document Server

    Saxena, Avadh; Planes, Antoni; Kakeshita, Tomoyuki

    2012-01-01

    This book brings together an emerging consensus on our understanding of the complex functional materials including ferroics, perovskites, multiferroics, CMR and high-temperature superconductors. The common theme is the existence of many competing ground states and frustration as a collusion of spin, charge, orbital and lattice degrees of freedom in the presence of disorder and (both dipolar and elastic) long-range forces. An important consequence of the complex unit cell and the competing interactions is that the emergent materials properties are very sensitive to external fields thus rendering these materials with highly desirable, technologically important applications enabled by cross-response.

  13. DESIGN OF MANUAL MATERIAL HANDLING SYSTEM THROUGH COMPUTER AIDED ERGONOMICS: A CASE STUDY AT BDTSC TEXTILE FIRM

    Directory of Open Access Journals (Sweden)

    Amare Matebu

    2014-12-01

    Full Text Available Designing of lifting, pushing and pulling activities based on the physical and physiological capabilities of the operators is essential. The purpose of this study is to analyze manual material handling (MMH working posture of the operators using 3D Static Strength Prediction Program (3DSSPP software and to identify major areas causing long last injury of operators. The research has investigated the fit between the demands of tasks and the capabilities of operators. At the existing situations, the actual capabilities of operators have been computed with the help of 3DSSPP software and compared with NIOSH standards. Accordingly, operators' working posture is at an unacceptable position that exposes them for musculoskeletal disorders. Then, after the improvement of the design of MMH device (cart's roller, the result showed that the forces required by the operators to push and pull the sliver cans have been reduced from 931.77 Newton to 194.23 Newton. Furthermore, improvement of MMH cart's roller has reduced the awkward posture of operators and the risk of musculoskeletal disorders. The improved manual material handling design also saves about 1828.40 ETB per month for the company.

  14. Role of oxygen disorder in the ferroelectric phase transitions for various materials

    International Nuclear Information System (INIS)

    Pasciak, Marek; Goossens, Darren J.; Welberry, Richard T.

    2009-01-01

    Full text: The nature of ferroelectric phase transitions in many materials have been questioned for many years. Whereas some methods provide definitive evidence of mode softening, other methods, such as local structure probes, indicate the existence of disorder in the paraelectric phase [1]. It is now widely accepted, that the ferroelectric phase transition usually has two components - soft-mode displacive and order-disorder. The latter leads inevitably to some form of pretransitional clusters in the paraelectric phase [2]. In relaxor ferroelectrics, in which disorder drives the transformation, such polar clusters can exist over a wide range of temperatures. Diffuse scattering is a powerful tool for studying such disorder and also for studying short-range order correlations in atomic displacements [3]. In this work we concentrate on the role of oxygens in various materials. By different means of molecular simulations we build models in which the oxygens constitute a framework for short range order correlations. This leads to a discussion of the differences between x-ray and neutron diffuse scattering patterns that may arise due to the disorder of oxygens.

  15. Nano-Scale Positioning Design with Piezoelectric Materials

    Directory of Open Access Journals (Sweden)

    Yung Yue Chen

    2017-12-01

    Full Text Available Piezoelectric materials naturally possess high potential to deliver nano-scale positioning resolution; hence, they are adopted in a variety of engineering applications widely. Unfortunately, unacceptable positioning errors always appear because of the natural hysteresis effect of the piezoelectric materials. This natural property must be mitigated in practical applications. For solving this drawback, a nonlinear positioning design is proposed in this article. This nonlinear positioning design of piezoelectric materials is realized by the following four steps: 1. The famous Bouc–Wen model is utilized to present the input and output behaviors of piezoelectric materials; 2. System parameters of the Bouc–Wen model that describe the characteristics of piezoelectric materials are simultaneously identified with the particle swam optimization method; 3. Stability verification for the identified Bouc–Wen model; 4. A nonlinear feedback linearization control design is derived for the nano-scale positioning design of the piezoelectric material, mathematically. One important contribution of this investigation is that the positioning error between the output displacement of the controlled piezoelectric materials and the desired trajectory in nano-scale level can be proven to converge to zero asymptotically, under the effect of the hysteresis.

  16. Evaluation of Generalized Performance across Materials When Using Video Technology by Students with Autism Spectrum Disorder and Moderate Intellectual Disability

    Science.gov (United States)

    Mechling, Linda C.; Ayres, Kevin M.; Foster, Ashley L.; Bryant, Kathryn J.

    2015-01-01

    The purpose of this study was to evaluate the ability of four high school-aged students with a diagnosis of autism spectrum disorder and moderate intellectual disability to generalize performance of skills when using materials different from those presented through video models. An adapted alternating treatments design was used to evaluate student…

  17. Rational design of reconfigurable prismatic architected materials

    Science.gov (United States)

    Overvelde, Johannes T. B.; Weaver, James C.; Hoberman, Chuck; Bertoldi, Katia

    2017-01-01

    Advances in fabrication technologies are enabling the production of architected materials with unprecedented properties. Most such materials are characterized by a fixed geometry, but in the design of some materials it is possible to incorporate internal mechanisms capable of reconfiguring their spatial architecture, and in this way to enable tunable functionality. Inspired by the structural diversity and foldability of the prismatic geometries that can be constructed using the snapology origami technique, here we introduce a robust design strategy based on space-filling tessellations of polyhedra to create three-dimensional reconfigurable materials comprising a periodic assembly of rigid plates and elastic hinges. Guided by numerical analysis and physical prototypes, we systematically explore the mobility of the designed structures and identify a wide range of qualitatively different deformations and internal rearrangements. Given that the underlying principles are scale-independent, our strategy can be applied to the design of the next generation of reconfigurable structures and materials, ranging from metre-scale transformable architectures to nanometre-scale tunable photonic systems.

  18. Materials design and development of functional materials for industry

    International Nuclear Information System (INIS)

    Asahi, Ryoji; Morikawa, Takeshi; Hazama, Hirofumi; Matsubara, Masato

    2008-01-01

    It is now well recognized that we are witnessing a golden age of innovation with novel materials, with discoveries that are important for both basic science and industry. With the development of theory along with computing power, quantum materials design-the synthesis of materials with the desired properties in a controlled way via materials engineering on the atomic scale-is becoming a major component of materials research. Computational prediction based on first-principles calculations has helped to find an efficient way to develop materials that are much needed for industry, as we have seen in the successful development of visible-light sensitized photocatalysts and thermoelectric materials. Close collaboration between theory and experiment is emphasized as an essential for success

  19. The automated design of materials far from equilibrium

    Science.gov (United States)

    Miskin, Marc Z.

    Automated design is emerging as a powerful concept in materials science. By combining computer algorithms, simulations, and experimental data, new techniques are being developed that start with high level functional requirements and identify the ideal materials that achieve them. This represents a radically different picture of how materials become functional in which technological demand drives material discovery, rather than the other way around. At the frontiers of this field, materials systems previously considered too complicated can start to be controlled and understood. Particularly promising are materials far from equilibrium. Material robustness, high strength, self-healing and memory are properties displayed by several materials systems that are intrinsically out of equilibrium. These and other properties could be revolutionary, provided they can first be controlled. This thesis conceptualizes and implements a framework for designing materials that are far from equilibrium. We show how, even in the absence of a complete physical theory, design from the top down is possible and lends itself to producing physical insight. As a prototype system, we work with granular materials: collections of athermal, macroscopic identical objects, since these materials function both as an essential component of industrial processes as well as a model system for many non-equilibrium states of matter. We show that by placing granular materials in the context of design, benefits emerge simultaneously for fundamental and applied interests. As first steps, we use our framework to design granular aggregates with extreme properties like high stiffness, and softness. We demonstrate control over nonlinear effects by producing exotic aggregates that stiffen under compression. Expanding on our framework, we conceptualize new ways of thinking about material design when automatic discovery is possible. We show how to build rules that link particle shapes to arbitrary granular packing

  20. Virtual Reality for Materials Design Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to research and develop materials through applied virtual reality to enable interactive "materials-by-design." Extensive theoretical and computational...

  1. How to design education on mental disorders for general ...

    African Journals Online (AJOL)

    Objective: This study looks at how the WHO programme Mental Disorders in Primary Care should be adapted for GPs in the South African context in order to positively impact the recognition and management of mental disorders. Design: Participatory action research was used to adapt the WHO programme. There were 3 ...

  2. A model for the build-up of disordered material in ion bombarded Si

    International Nuclear Information System (INIS)

    Nelson, R.S.

    1977-01-01

    A new model based on experimental observation is developed for the build-up of disordered material in ion bombarded silicon. The model assumes that disordered zones are created in a background of migrating point defects, these zones then act as neutral sinks for such defects which interact with the zones and cause recrystallization. A simple steady state rate theory is developed to describe the build-up of disordered material with ion dose as a function of temperature. In general the theory predicts two distinct behaviour patterns depending on the temperature and the ion mass, namely a linear build-up with dose to complete disorder for heavy bombarding ions and a build-up to saturation at a relatively low level for light ions such as protons. However, in some special circumstances a transition region is predicted where the build-up of disorder approximately follows a (dose)sup(1/2) relationship before reverting to a linear behaviour at high dose. (author)

  3. Multiple scattering in synchrotron studies of disordered materials

    International Nuclear Information System (INIS)

    Poulsen, H.F.; Neuefeind, J.

    1995-01-01

    A formalism for the multiple scattering and self-absorption in synchrotron studies of disordered materials is presented. The formalism goes beyond conventionally used approximations and treat the cross sections, the beam characteristics, the state of polarization, and the electronic correction terms in full. Using hard X-rays it is shown how the simulated distributions can be directly compared to experimental data. ((orig.))

  4. Optimal Design of Porous Materials

    DEFF Research Database (Denmark)

    Andreassen, Erik

    The focus of this thesis is topology optimization of material microstructures. That is, creating new materials, with attractive properties, by combining classic materials in periodic patterns. First, large-scale topology optimization is used to design complicated three-dimensional materials......, throughout the thesis extra attention is given to obtain structures that can be manufactured. That is also the case in the final part, where a simple multiscale method for the optimization of structural damping is presented. The method can be used to obtain an optimized component with structural details...

  5. Covalently bonded disordered thin-film materials. Materials Research Society symposium proceedings Volume 498

    International Nuclear Information System (INIS)

    Siegal, M.P.; Milne, W.I.; Jaskie, J.E.

    1998-01-01

    The current and potential impact of covalently bonded disordered thin films is enormous. These materials are amorphous-to-nanocrystalline structures made from light atomic weight elements from the first row of the periodic table. Examples include amorphous tetrahedral diamond-like carbon, boron nitride, carbon nitride, boron carbide, and boron-carbon-nitride. These materials are under development for use as novel low-power, high-visibility elements in flat-panel display technologies, cold-cathode sources for microsensors and vacuum microelectronics, encapsulants for both environmental protection and microelectronics, optical coatings for laser windows, and ultra-hard tribological coatings. researchers from 17 countries and a broad range of academic institutions, national laboratories and industrial organizations come together in this volume to report on the status of key areas and recent discoveries. More specifically, the volume is organized into five sections. The first four highlight ongoing work primarily in the area of amorphous/nanocrystalline (disordered) carbon thin films; theoretical and experimental structural characterization; electrical and optical characterizations; growth methods; and cold-cathode electron emission results. The fifth section describes the growth, characterization and application of boron- and carbon-nitride thin films

  6. Design tools and materials in creative work

    DEFF Research Database (Denmark)

    Hansen, Nicolai Brodersen; Dalsgaard, Peter; Halskov, Kim

    2017-01-01

    -oriented perspectives, we wish to examine the potentials and limitations in current uses of design tools and materials, and discuss and explore when and how we can introduce ones. Participation in the workshop requires participants to document and analyse central themes in a case, and the resulting material will serve......This workshop aims to examine and discuss the role and nature of design tools and materials in creative work, and to explore how novel tools can meaningfully combine existing and novel tools to support and augment creative work. By exploring and combining methodological, theoretical, and design...

  7. Material mediation and embodied actions in collaborative design process

    Directory of Open Access Journals (Sweden)

    Henna Lahti

    2016-02-01

    Full Text Available Material and embodied practices are an intrinsic part of craft and design education. This article reports a study in which textile teacher-students designed three-dimensional toys based on children’s drawings. Three students in each team worked on the given materials and designed the shape of the toy together. Materials for designing were either: 1 pen and paper, 2 masking tape and thin cardboard, or 3 wire and non-woven interfacing fabric. After the modelling phase, the final toys were created by sewing. Research data consisted of the video recordings of three design sessions representing the various design materials given to the students. By conducting multiple levels of analysis, we examined how the participants used materials and gestures to support their communication. The results highlight the strengths of 3D modelling techniques, particularly through comparison with the drawing technique undertaken by one design team. We found that simple material tools support students’ design process and suggest this could be applied to other design settings.

  8. Design to Robotic Production for Informed Materialization Processes

    Directory of Open Access Journals (Sweden)

    Sina Mostafavi

    2017-12-01

    Full Text Available Design to Robotic Production (D2RP establishes links between digital design and production in order to achieve informed materialization at an architectural scale. D2RP research is being discussed under the computation, automation and materialization themes, by reference to customizable digital design means, robotic fabrication setups and informed materialization strategies implemented by the Robotic Building group at Hyperbody, TU Delft.

  9. ITER status, design and material objectives

    International Nuclear Information System (INIS)

    Aymar, R.

    2002-01-01

    During the ITER Engineering Design Activities (EDA), completed in July 2001, the Joint Central Team and Home Teams developed a robust design of ITER, summarised in this paper, with parameters which fully meet the required scientific and technological objectives, construction costs and safety requirements, with appropriate margins. The design is backed by R and D to qualify the technology, including materials R and D. Materials for ITER components have been selected largely because of their availability and well-established manufacturing technologies, taking account of the low fluence experienced during neutron irradiation, and the experimental nature of the device. Nevertheless, for specific needs relevant to a future fusion reactor, improved materials, in particular for magnet structures, in-vessel components, and joints between the different materials needed for plasma facing components, have been successfully developed. Now, with the technical readiness to decide on ITER construction, negotiations, supported by coordinated technical activities of an international team and teams from participant countries, are underway on joint construction of ITER with a view to the signature/ratification of an agreement in 2003

  10. Mass of materials: the impact of designers on construction ergonomics.

    Science.gov (United States)

    Smallwood, John

    2012-01-01

    Many construction injuries are musculoskeletal related in the form of sprains and strains arising from the handling of materials, which are specified by designers. The paper presents the results of a study conducted among delegates attending two 'designing for H&S' (DfH&S) seminars using a questionnaire. The salient findings include: the level of knowledge relative to the mass and density of materials is limited; designers generally do not consider the mass and density of materials when designing structures and elements and specifying materials; to a degree designers appreciate that the mass and density of materials impact on construction ergonomics; designers rate their knowledge of the mass and density of materials as limited, and designers appreciate the potential of the consideration of the mass and density of materials to contribute to an improvement in construction ergonomics. Conclusions include: designers lack the requisite knowledge relative to the mass and density of materials; designers are thus precluded from conducting optimum design hazard identification and risk assessments, and tertiary built environment designer education does not enlighten designers relative to construction ergonomics. Recommendations include: tertiary built environment designer education should construction ergonomics; professional associations should raise the level of awareness relative to construction ergonomics, and design practices should include a category 'mass and density of materials' in their practice libraries.

  11. Extending ITER materials design to welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A.-A.F. [DMN/Dir, CEA/Saclay, Commissariat a l' Energie Atomique, 91191 Gif sur Yvette cedex (France)]. E-mail: tavassoli@cea.fr

    2007-08-01

    This paper extends the ITER materials properties documentation to weld metals and incorporates the needs of Test Blanket Modules for higher temperature materials properties. Since the main structural material selected for ITER is type 316L(N)-IG, the paper is focused on weld metals and joining techniques for this steel. Materials properties data are analysed according to the French design and construction rules for nuclear components (RCC-MR) and design allowables are equally derived using the same rules. Particular attention is paid to the type of weld metal, to the type and position of welding and their influence on the materials properties data and design allowables. The primary goal of this work, starting with 19-12-2 weld metal, is to produce comprehensive materials properties documentations that when combined with codification and inspection documents would satisfy ITER licensing needs. As a result, structural stability and capability of welded joints during manufacturing of ITER components and their subsequent service, including the effects of irradiation and eventual incidental or accidental situations, are also covered.

  12. Design rules for charge-transport efficient host materials for phosphorescent organic light-emitting diodes.

    Science.gov (United States)

    May, Falk; Al-Helwi, Mustapha; Baumeier, Björn; Kowalsky, Wolfgang; Fuchs, Evelyn; Lennartz, Christian; Andrienko, Denis

    2012-08-22

    The use of blue phosphorescent emitters in organic light-emitting diodes (OLEDs) imposes demanding requirements on a host material. Among these are large triplet energies, the alignment of levels with respect to the emitter, the ability to form and sustain amorphous order, material processability, and an adequate charge carrier mobility. A possible design strategy is to choose a π-conjugated core with a high triplet level and to fulfill the other requirements by using suitable substituents. Bulky substituents, however, induce large spatial separations between conjugated cores, can substantially reduce intermolecular electronic couplings, and decrease the charge mobility of the host. In this work we analyze charge transport in amorphous 2,8-bis(triphenylsilyl)dibenzofuran, an electron-transporting material synthesized to serve as a host in deep-blue OLEDs. We show that mesomeric effects delocalize the frontier orbitals over the substituents recovering strong electronic couplings and lowering reorganization energies, especially for electrons, while keeping energetic disorder small. Admittance spectroscopy measurements reveal that the material has indeed a high electron mobility and a small Poole-Frenkel slope, supporting our conclusions. By linking electronic structure, molecular packing, and mobility, we provide a pathway to the rational design of hosts with high charge mobilities.

  13. Bionic Design, Materials and Performance of Bone Tissue Scaffolds

    Directory of Open Access Journals (Sweden)

    Tong Wu

    2017-10-01

    Full Text Available Design, materials, and performance are important factors in the research of bone tissue scaffolds. This work briefly describes the bone scaffolds and their anatomic structure, as well as their biological and mechanical characteristics. Furthermore, we reviewed the characteristics of metal materials, inorganic materials, organic polymer materials, and composite materials. The importance of the bionic design in preoperative diagnosis models and customized bone scaffolds was also discussed, addressing both the bionic structure design (macro and micro structure and the bionic performance design (mechanical performance and biological performance. Materials and performance are the two main problems in the development of customized bone scaffolds. Bionic design is an effective way to solve these problems, which could improve the clinical application of bone scaffolds, by creating a balance between mechanical performance and biological performance.

  14. Molecular designing of nanoparticles and functional materials

    Directory of Open Access Journals (Sweden)

    Ignjatović Nenad L.

    2017-01-01

    Full Text Available The interdisciplinary research team implemented the program titled “Molecular designing of nanoparticles with controlled morphological and physicochemical characteristics and functional materials based on them” (MODENAFUNA, between 2011 and 2016, gaining new knowledge significant to the further improvement of nanomaterials and nanotechnologies. It gathered under its umbrella six main interrelated topics pertaining to the design and control of morphological and physicochemical properties of nanoparticles and functional material based on them using new methods of synthesis and processing: 1 inorganic nanoparticles, 2 cathode materials for lithium-ion batteries, 3 functional ceramics with improved electrical and optical properties, 4 full density nanostructured calcium phosphate and functionally-graded materials, 5 nano-calcium phosphate in bone tissue engineering and 6 biodegradable micro- and nano-particles for the controlled delivery of medicaments. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III45004: Molecular designing of nanoparticles with controlled morphological and physicochemical characteristics and functional materials based on them

  15. Thermoelectric nanomaterials materials design and applications

    CERN Document Server

    Koumoto, Kunihito

    2014-01-01

    Presently, there is an intense race throughout the world to develop good enough thermoelectric materials which can be used in wide scale applications. This book focuses comprehensively on very recent up-to-date breakthroughs in thermoelectrics utilizing nanomaterials and methods based in nanoscience. Importantly, it provides the readers with methodology and concepts utilizing atomic scale and nanoscale materials design (such as superlattice structuring, atomic network structuring and properties control, electron correlation design, low dimensionality, nanostructuring, etc.). Furthermore, also

  16. Materials data base as an interface between fusion reactor designs and materials development

    International Nuclear Information System (INIS)

    Ishino, S.; Iwata, S.

    1983-01-01

    The materials data base is an integrated information system of experimental and/or calculated data of materials being compiled to meet the broad needs for materials data by taking advantage of the data base management systems. In this paper the objective of such computerized data base is described from the viewpoint of materials engineers and fusion system designers. Materials data spread themselves widely from the field that relates fundamental understanding of the behaviors of electrons, atoms, vacancies, dislocations and so on to the performance of components, devices, machines and systems. In our approach this information is described as ''relations'' by a set of tables which comprise related variables, for example, a set of values about essential properties for materials selection. This approach based on the relational model enables relational operations, i.e. SELECTION, PROJECTION, JOIN and so on, to select suitable materials, to set trade-off parameters for system designers and to establish design criteria. Stored data comprise (i) fundamental properties for all elements and potential structural materials, (ii) low cycle fatigue, irradiation creep and swelling data for type 316 stainless steels. These data have been selected and evaluated from critical reviews of existing data base of about 2 mega bytes data, some examples of materials selections and extraction of trade-off parameters are shown as a subject of critical issue concerning how to bridge the large gap between materials developments and system designs. (author)

  17. Audiovisual materials are effective for enhancing the correction of articulation disorders in children with cleft palate.

    Science.gov (United States)

    Pamplona, María Del Carmen; Ysunza, Pablo Antonio; Morales, Santiago

    2017-02-01

    Children with cleft palate frequently show speech disorders known as compensatory articulation. Compensatory articulation requires a prolonged period of speech intervention that should include reinforcement at home. However, frequently relatives do not know how to work with their children at home. To study whether the use of audiovisual materials especially designed for complementing speech pathology treatment in children with compensatory articulation can be effective for stimulating articulation practice at home and consequently enhancing speech normalization in children with cleft palate. Eighty-two patients with compensatory articulation were studied. Patients were randomly divided into two groups. Both groups received speech pathology treatment aimed to correct articulation placement. In addition, patients from the active group received a set of audiovisual materials to be used at home. Parents were instructed about strategies and ideas about how to use the materials with their children. Severity of compensatory articulation was compared at the onset and at the end of the speech intervention. After the speech therapy period, the group of patients using audiovisual materials at home demonstrated significantly greater improvement in articulation, as compared with the patients receiving speech pathology treatment on - site without audiovisual supporting materials. The results of this study suggest that audiovisual materials especially designed for practicing adequate articulation placement at home can be effective for reinforcing and enhancing speech pathology treatment of patients with cleft palate and compensatory articulation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. 46 CFR 58.05-1 - Material, design and construction.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Material, design and construction. 58.05-1 Section 58.05... AUXILIARY MACHINERY AND RELATED SYSTEMS Main Propulsion Machinery § 58.05-1 Material, design and construction. (a) The material, design, construction, workmanship, and arrangement of main propulsion machinery...

  19. Using learning materials for design-based interventions

    DEFF Research Database (Denmark)

    Gissel, Stig Toke

    2015-01-01

    This article considers a methodological issue concerning the use of learning materials for interventions in design-based research. When the researcher uses existing or creates new didacticised learning materials for research purposes and tests their applicability in authentic contexts, many...... variables are in play. When using or designing a learning material a lot of choices have to be made and effects are difficult to isolate. The advantage of using learning materials for interventions is that results could have high ecological validity. In the article this methodological issue is exemplified...... through a research project using and developing digital learning materials for developing literacy in the early grades. One of many important choices to be made in elaborating this learning material concerns which texts should be used for supporting students’ literacy development in the lower grades...

  20. Review of ASME-NH Design Materials for Creep-Fatigue

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Kim, Jong Bum

    2010-01-01

    To review and recommend the candidate design materials for the Sodium-Cooled Fast Reactor, the material sensitivity evaluations by the comparison of design data between the ASME-NH materials were performed by using the SIE ASME-NH computer program implementing the material database of the ASME-NH. The design material data provided by the ASME-NH code are the elastic modulus and yield Strength, Time-Independent Allowable Stress Intensity value, time-dependent allowable stress intensity value, expected minimum stress-to rupture value, stress rupture Factors for weldment, isochronous stress-strain curves, and design fatigue curves. Among these, the data related with the creep-fatigue evaluation are investigated in this study

  1. The Plastic Bakery : A Case of Material Driven Design

    NARCIS (Netherlands)

    Majumdar, P.; Karana, E.; Sonneveld, M.H.; Karana, E.; Giaccardi, E.; Nimkulrat, N.; Niedderer, K.; Camere, S.

    2017-01-01

    A growing number of scholars argue that understanding how people experience materials in products, i.e. Materials Experience, is essential in
    designing meaningful material applications. Material Driven Design (MDD) has been developed as the method to understand these experiential traits
    of

  2. The socio-materiality of designing organizational change

    DEFF Research Database (Denmark)

    Stang Våland, Marianne; Georg, Susse

    2014-01-01

    Purpose – The purpose of this paper is to examine the managerial implications of adopting a design attitude to organizational change. Design/methodology/approach – Based on an ethnographic study of a merger, the paper investigates the intricate interplay between architectural design...... and organizational change in the context of physically relocating an organization to a new office building. Emphasis is given to the socio-materiality of this double design process. Findings – The data suggests that taking a design attitude toward managing organizational change can allow different actors...... to participate in organizational design processes, releasing management from its traditional role as the keeper of the design solution. Research limitations/implications – Although based on a single case, the paper provides insights into the socio-materiality of organizational change that is relevant in other...

  3. Structural and microstructural design in brittle materials

    International Nuclear Information System (INIS)

    Evans, A.G.

    1979-12-01

    Structural design with brittle materials requires that the stress level in the component correspond to a material survival probability that exceeds the minimum survival probability permitted in that application. This can be achieved by developing failure models that fully account for the probability of fracture from defects within the material (including considerations of fracture statistics, fracture mechanics and stress analysis) coupled with non-destructive techniques that determine the size of the large extreme of critical defects. Approaches for obtaining the requisite information are described. The results provide implications for the microstructural design of failure resistant brittle materials by reducing the size of deleterious defects and enhancing the fracture toughness

  4. Implications of materials behavior on design codes

    International Nuclear Information System (INIS)

    Roberts, D.I.

    1981-01-01

    In the U.S., the design of Class 1 elevated-temperature components of reactor systems is governed by the rules of ASME Boiler and Pressure Vessel Cases N47 (design) and N48 (construction). The rules of Case N47, in particular, are sophisticated and complex, and a substantial quantity of materials behavior data is needed to design to these rules. Requirements include a detailed knowledge of creep, rupture, creep-fatigue, etc. In addition, many other factors, including such aspects as the influence on service performance of environment, welds, and fabrication-induced cold work, must be considered in the design. This paper reviews the impact of some recent HTGR materials data on design rules and approaches. (Auth.)

  5. Workshop on materials control and accounting system design

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1989-01-01

    The chapter describes the workshop aimed at reinforcing, through participation in the design exercise, the concepts of nuclear materials control and accountability. Topics include: workshop format; key elements of a materials management and accounting (MC and A) system; and MC and A system design including safeguards organization and management, material access areas, key measurement points, nuclear materials measurements, physical inventory, material balance closings, and internal controls. Appended to this chapter is a detailed description of a facility that produces metallic plutonium and the safeguards requirements for this facility

  6. Composite materials design and applications

    CERN Document Server

    Gay, Daniel; Tsai, Stephen W

    2002-01-01

    PART ONE. PRINCIPLES OF CONSTRUCTIONCOMPOSITE MATERIALS, INTEREST AND PROPERTIESWhat is Composite Material Fibers and MatrixWhat can be Made Using Composite Materials?Typical Examples of Interest on the Use of Composite MaterialsExamples on Replacing Conventional Solutions with CompositesPrincipal Physical PropertiesFABRICATION PROCESSESMolding ProcessesOther Forming ProcessesPractical Hints in the Manufacturing ProcessesPLY PROPERTIESIsotropy and AnisotropyCharacteristics of the Reinforcement-Matrix MixtureUnidirectional PlyWoven FabricsMats and Reinforced MatricesMultidimensional FabricsMetal Matrix CompositesTestsSANDWICH STRUCTURES:What is a Sandwich Structure?Simplified FlexureA Few Special AspectsFabrication and Design ProblemsNondestructive Quality ControlCONCEPTION AND DESIGNDesign of a Composite PieceThe LaminateFailure of LaminatesSizing of LaminatesJOINING AND ASSEMBLYRiveting and BoltingBondingInsertsCOMPOSITE MATERIALS AND AEROSPACE CONSTRUCTIONAircraftHelicoptersPropeller Blades for AirplanesTur...

  7. Friction material composites copper-metal-free material design perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2015-01-01

    This book examines material composites used in connection with brake friction, their design and safety. To aid in understanding, the essentials of friction are explained. This second edition was extended to include friction material composites without copper, as they offer an environmentally friendlier option. The second edition is intended to support beginners by offering insights into the essentials of friction material composites, helping them to develop a broader understanding of brake friction materials. Friction materials find wide-ranging applications in household and industrial appliances, brake pads for automotive applications, rail brake friction pads and composition brake blocks. This second edition is an introductory volume to a set of related books, and is based on the author’s experience and expertise with various material manufacturers, brake manufacturers, vehicle manufacturers, researchers and testing labs around the world with which the author has been associated for the past 28 years.

  8. Material and design considerations of FBGA reliability performance

    International Nuclear Information System (INIS)

    Lee, Teck Kheng; Ng, T.C.; Chai, Y.M.

    2004-01-01

    FBGA package reliability is usually assessed through the conventional approaches of die attach and mold compound material optimization. However, with the rapid changes and fast-moving pace of electronic packaging and the introduction of new soldermask and core materials, substrate design has also become a critical factor in determining overall package reliability. The purpose of this paper is to understand the impact design and soldermask material of a rigid substrate on overall package reliability. Three different soldermask patterns with a matrix of different die attach, mold compound, and soldermask materials are assessed using the moisture sensitivity test (MST). Package reliability is also assessed through the use of temperature cycling (T/C) at conditions 'B' and 'C'. For material optimization, three different mold compounds and die attach materials are used. Material adhesion between different die attach materials and soldermask materials are obtained through die shear performed at various temperatures and preset moisture conditions. A study correlating the different packaging material properties and their relative adhesion strengths with overall package reliability in terms of both MST and T/C performance was performed. Soldermask design under the die pads was found to affect package reliability. For example, locating vias at the edge of the die is not desirable because the vias acts as initiation point for delamination and moisture-induced failure. Through die shear testing, soldermask B demonstrated higher adhesion properties compared to soldermask A across several packaging materials and enhanced the overall package reliability in terms of both MST and T/C performance. Both MST JEDEC level 1 and the T/C of 'B' and 'C' at 1000 cycles have been achieved through design and package material optimization

  9. Implications of materials behavior on design codes

    International Nuclear Information System (INIS)

    Roberts, D.I.

    1981-04-01

    In the US, the design of Class 1 elevated-temperature components of reactor systems is governed by the rules of ASME Boiler and Pressure Vessel Cases N47 (design) and N48 (construction). The rules of Case N47, in particular, are sophisticated and complex, and a substantial quantity of materials behavior data is needed to design to these rules. Requirements include a detailed knowledge of creep, rupture, creep-fatigue, etc. In addition, many other factors, including such aspects as the influence on service performance of environment, welds, and fabrication-induced cold work, must be considered in the design. This paper reviews the impact of some recent HTGR materials data on design rules and approaches. In the construction area, for example, recent data regarding the elevated-temperature properties and behavior of cold-formed austenitic materials such as Alloy 800H have resulted in rule changes. Observed creep-fatigue behavior of Alloy 800H and 2-1/4Cr to 1Mo steel is causing active review of the pertinence of linear damage summation approaches

  10. Conduction and Narrow Escape in Dense, Disordered, Particulate-based Heterogeneous Materials

    Science.gov (United States)

    Lechman, Jeremy

    For optimal and reliable performance, many technological devices rely on complex, disordered heterogeneous or composite materials and their associated manufacturing processes. Examples include many powder and particulate-based materials found in phyrotechnic devices for car airbags, electrodes in energy storage devices, and various advanced composite materials. Due to their technological importance and complex structure, these materials have been the subject of much research in a number of fields. Moreover, the advent of new manufacturing techniques based on powder bed and particulate process routes, the potential of functional nano-structured materials, and the additional recognition of persistent shortcomings in predicting reliable performance of high consequence applications; leading to ballooning costs of fielding and maintaining advanced technologies, should motivate renewed efforts in understanding, predicting and controlling these materials' fabrication and behavior. Our particular effort seeks to understand the link between the top-down control presented in specific non-equilibrium processes routes (i.e., manufacturing processes) and the variability and uncertainty of the end product performance. Our ultimate aim is to quantify the variability inherent in these constrained dynamical or random processes and to use it to optimize and predict resulting material properties/performance and to inform component design with precise margins. In fact, this raises a set of deep and broad-ranging issues that have been recognized and as touching the core of a major research challenge at Sandia National Laboratories. In this talk, we will give an overview of recent efforts to address aspects of this vision. In particular the case of conductive properties of packed particulate materials will be highlighted. Combining a number of existing approaches we will discuss new insights and potential directions for further development toward the stated goal. Sandia National

  11. New ways of integrating material knowledge into the design process

    DEFF Research Database (Denmark)

    Højris, Anders; Nielsen, Louise Møller

    2013-01-01

    – based on technical performance, no longer apply. Accordingly the approach in this paper is to view information and knowledge about materials through the perspective of organizational memory and technology brokering. This paper is build upon two cases from the German based design studio: designaffairs...... libraries and thereby access to information on new material possibilities has also changed the way designers integrate knowledge about materials into the design process. This means that the traditional design process model, where the selection of materials takes place after the design of form and function...... in order to help clients to find the right material among hundreds of samples. Furthermore a number of material libraries have also been developed into online database, which provides detailed information about new material and makes the information accessible from almost everywhere. The access to material...

  12. Radiation effects on superconductivity in A15 materials

    International Nuclear Information System (INIS)

    Faehnle, M.

    1981-01-01

    At present the A15 superconductor Nb 3 Sn is one of the most attractive materials for the design of magnet systems for fusion reactors. There the materials are exposed to a high flux of neutrons up to 10 18 to 10 19 n/cm 2 during a continuous fusion reactor operation within ten years. As a result the critical parameters of the superconducting materials are changed which must be taken into account when designing reliable magnet systems. The neutron radiation damage in A15 materials thereby is characterized by small highly disordered regions within a less disordered matrix. The highly disordered regions are responsible for the increase of the critical current density after low-dose neutron irradiation of non-optimized materials and have an influence on the superconducting transition width. In contrast, the change of the superconducting parameters after high-dose irradiation may be understood essentially by considering the properties of the matrix alone. 23 refs

  13. High-energy synchrotron x-ray diffraction studies on disordered materials. From ambient condition to an extreme condition

    International Nuclear Information System (INIS)

    Kohara, Shinji; Ohishi, Yasuo; Suzuya, Kentaro; Takata, Masaki

    2007-01-01

    High-energy x-rays from synchrotron radiation source allow us to measure high-quality diffraction data of the disordered materials from under ambient condition to an extreme condition, which is necessary to reveal the detailed structure of glass, liquid, and amorphous materials. We introduce the high-energy x-ray diffraction beamline and dedicated diffractometer for glass, liquid, and amorphous materials with the recent developments of ancillary equipments. Furthermore our recent studies on the structures of disordered materials reviewed. (author)

  14. The innovative application studty on eco-packaging design and materials

    Directory of Open Access Journals (Sweden)

    Cui Yong Min

    2016-01-01

    Full Text Available The paper solves the increasingly deteriorate environmental problems by positively exploring how to utilize and develop eco-packaging design reasonably. The paper explores an effective method that combines eco-packaging and environmental protection materials, hoping to define the sustainable development road of packaging design. The paper is centered on the design application of eco-packaging and environmental protection materials, applies and analyzes the method to obtain innovative design requirements and development tendency of eco-packaging design by analyzing status and significance of eco-packaging design, combining with the development and main types of eco-packaging packaging materials, and based on the achievements acquired by eco-packaging and environmental protection materials. Meanwhile, the paper also reveals mutual dependence and mutual promotion of eco-packaging design and eco-packaging materials.

  15. Inverse design of dielectric materials by topology optimization

    DEFF Research Database (Denmark)

    Otomori, M.; Andkjær, Jacob Anders; Sigmund, Ole

    2012-01-01

    The capabilities and operation of electromagnetic devices can be dramatically enhanced if artificial materials that provide certain prescribed properties can be designed and fabricated. This paper presents a systematic methodology for the design of dielectric materials with prescribed electric...... permittivity. A gradient-based topology optimization method is used to find the distribution of dielectric material for the unit cell of a periodic microstructure composed of one or two dielectric materials. The optimization problem is formulated as a problem to minimize the square of the difference between...

  16. DESIGN OF PARTICULATE MATERIAL COMPACTOR ROLLS DIAMETER

    Directory of Open Access Journals (Sweden)

    Peter Peciar

    2017-09-01

    Full Text Available At present, in a period of an industrial expansion great emphasis is placed on the environment. That means aiming for a reduced energy consumption, and also lessening dustiness from very fine powder material. This category also includes particulate material agglomeration processes. Because this process is very energy-intensive, it is necessary to correctly design these devices. The aim of this paper is to focus on a theoretical design of a production compactor with the rolls diameter for an experimental particulate material, based on Johanson’s theory and experimentally measured material properties. The material used for experimental measurements was an NPK-based industrial fertilizer consisting of several components. The results of this paper is the dependence of the ratio of the maximum compression pressure to the initial compression pressure from the rolls diameter of the proposed compactor.

  17. Material and design considerations of FBGA reliability performance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Teck Kheng; Ng, T.C.; Chai, Y.M

    2004-09-01

    FBGA package reliability is usually assessed through the conventional approaches of die attach and mold compound material optimization. However, with the rapid changes and fast-moving pace of electronic packaging and the introduction of new soldermask and core materials, substrate design has also become a critical factor in determining overall package reliability. The purpose of this paper is to understand the impact design and soldermask material of a rigid substrate on overall package reliability. Three different soldermask patterns with a matrix of different die attach, mold compound, and soldermask materials are assessed using the moisture sensitivity test (MST). Package reliability is also assessed through the use of temperature cycling (T/C) at conditions 'B' and 'C'. For material optimization, three different mold compounds and die attach materials are used. Material adhesion between different die attach materials and soldermask materials are obtained through die shear performed at various temperatures and preset moisture conditions. A study correlating the different packaging material properties and their relative adhesion strengths with overall package reliability in terms of both MST and T/C performance was performed. Soldermask design under the die pads was found to affect package reliability. For example, locating vias at the edge of the die is not desirable because the vias acts as initiation point for delamination and moisture-induced failure. Through die shear testing, soldermask B demonstrated higher adhesion properties compared to soldermask A across several packaging materials and enhanced the overall package reliability in terms of both MST and T/C performance. Both MST JEDEC level 1 and the T/C of 'B' and 'C' at 1000 cycles have been achieved through design and package material optimization.

  18. Modeling Disordered Materials with a High Throughput ab-initio Approach

    Science.gov (United States)

    2015-11-13

    Modeling Disordered Materials with a High Throughput ab - initio Approach Kesong Yang,1 Corey Oses,2 and Stefano Curtarolo3, 4 1Department of...J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169–11186 (1996

  19. Advances in wind turbine blade design and materials

    DEFF Research Database (Denmark)

    Wind energy is gaining critical ground in the area of renewable energy, with wind energy being predicted to provide up to 8% of the world’s consumption of electricity by 2021. Advances in wind turbine blade design and materials reviews the design and functionality of wind turbine rotor blades...... as well as the requirements and challenges for composite materials used in both current and future designs of wind turbine blades. Part one outlines the challenges and developments in wind turbine blade design, including aerodynamic and aeroelastic design features, fatigue loads on wind turbine blades......, and characteristics of wind turbine blade airfoils. Part two discusses the fatigue behavior of composite wind turbine blades, including the micromechanical modelling and fatigue life prediction of wind turbine blade composite materials, and the effects of resin and reinforcement variations on the fatigue resistance...

  20. Mechanical and materials engineering of modern structure and component design

    CERN Document Server

    Altenbach, Holm

    2015-01-01

    This book presents the latest findings on mechanical and materials engineering as applied to the design of modern engineering materials and components. The contributions cover the classical fields of mechanical, civil and materials engineering, as well as bioengineering and advanced materials processing and optimization. The materials and structures discussed can be categorized into modern steels, aluminium and titanium alloys, polymers/composite materials, biological and natural materials, material hybrids and modern nano-based materials. Analytical modelling, numerical simulation, state-of-the-art design tools and advanced experimental techniques are applied to characterize the materials’ performance and to design and optimize structures in different fields of engineering applications.

  1. Candidate container materials for Yucca Mountain waste package designs

    International Nuclear Information System (INIS)

    McCright, R.D.; Halsey, W.G.; Gdowski, G.E.; Clarke, W.L.

    1991-09-01

    Materials considered as candidates for fabricating nuclear waste containers are reviewed in the context of the Conceptual Design phase of a potential repository located at Yucca Mountain. A selection criteria has been written for evaluation of candidate materials for the next phase -- Advanced Conceptual Design. The selection criteria is based on the conceptual design of a thin-walled container fabricated from a single metal or alloy; the criteria consider the performance requirements on the container and the service environment in which the containers will be emplaced. A long list of candidate materials is evaluated against the criteria, and a short list of materials is proposed for advanced characterization in the next design phase

  2. Fiber-reinforced composites materials, manufacturing, and design

    CERN Document Server

    Mallick, P K

    2007-01-01

    The newly expanded and revised edition of Fiber-Reinforced Composites: Materials, Manufacturing, and Design presents the most up-to-date resource available on state-of-the-art composite materials. This book is unique in that it not only offers a current analysis of mechanics and properties, but also examines the latest advances in test methods, applications, manufacturing processes, and design aspects involving composites. This third edition presents thorough coverage of newly developed materials including nanocomposites. It also adds more emphasis on underlying theories, practical methods, and problem-solving skills employed in real-world applications of composite materials. Each chapter contains new examples drawn from diverse applications and additional problems to reinforce the practical relevance of key concepts. New in The Third Edition: Contains new sections on material substitution, cost analysis, nano- and natural fibers, fiber architecture, and carbon-carbon composites Provides a new chapter on poly...

  3. Designing Context-Aware Cognitive Behavioral Therapy for Unipolar and Bipolar Disorders

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Frost, Mads; Tuxen, Nanna

    2016-01-01

    This position paper presents our preliminary design of context-aware cognitive behavioral therapy for unipolar and bipolar disorders. We report on the background for this study and the methods applied in the ongoing design process. The paper ends by presenting and discussing different design...

  4. Material constraints on high-speed design

    Science.gov (United States)

    Bucur, Diana; Militaru, Nicolae

    2015-02-01

    Current high-speed circuit designs with signal rates up to 100Gbps and above are implying constraints for dielectric and conductive materials and their dependence of frequency, for component elements and for production processes. The purpose of this paper is to highlight through various simulation results the frequency dependence of specific parameters like insertion and return loss, eye diagrams, group delay that are part of signal integrity analyses type. In low-power environment designs become more complex as the operation frequency increases. The need for new materials with spatial uniformity for dielectric constant is a need for higher data rates circuits. The fiber weave effect (FWE) will be analyzed through the eye diagram results for various dielectric materials in a differential signaling scheme given the fact that the FWE is a phenomenon that affects randomly the performance of the circuit on balanced/differential transmission lines which are typically characterized through the above mentioned approaches. Crosstalk between traces is also of concern due to propagated signals that have tight rise and fall times or due to high density of the boards. Criteria should be considered to achieve maximum performance of the designed system requiring critical electronic properties.

  5. Interplay between topology and disorder in a two-dimensional semi-Dirac material

    OpenAIRE

    Sriluckshmy, P. V.; Saha, Kush; Moessner, Roderich

    2017-01-01

    We investigate the role of disorder in a two-dimensional semi-Dirac material characterized by a linear dispersion in one, and a parabolic dispersion in the orthogonal, direction. Using the self-consistent Born approximation, we show that disorder can drive a topological Lifshitz transition from an insulator to a semi-metal, as it generates a momentum independent off-diagonal contribution to the self-energy. Breaking time-reversal symmetry enriches the topological phase diagram with three dist...

  6. Evaluation of materials and design modifications for aircraft brakes

    Science.gov (United States)

    Ho, T. L.; Kennedy, F. E.; Peterson, M. B.

    1975-01-01

    A test program is described which was carried out to evaluate several proposed design modifications and several high-temperature friction materials for use in aircraft disk brakes. The evaluation program was carried out on a specially built test apparatus utilizing a disk brake and wheel half from a small het aircraft. The apparatus enabled control of brake pressure, velocity, and braking time. Tests were run under both constant and variable velocity conditions and covered a kinetic energy range similar to that encountered in aircraft brake service. The results of the design evaluation program showed that some improvement in brake performance can be realized by making design changes in the components of the brake containing friction material. The materials evaluation showed that two friction materials show potential for use in aircraft disk brakes. One of the materials is a nickel-based sintered composite, while the other is a molybdenum-based material. Both materials show much lower wear rates than conventional copper-based materials and are better able to withstand the high temperatures encountered during braking. Additional materials improvement is necessary since both materials show a significant negative slope of the friction-velocity curve at low velocities.

  7. Translating material and design space

    DEFF Research Database (Denmark)

    Tamke, Martin; Ramsgaard Thomsen, Mette; Joseffson, Kristoffer

    2009-01-01

    This paper shares findings from the project DevA (Developable surfaces in Architecture), a research by design based project developed a collaboration between academic and industry partners. The project aims to investigate the use of curved sheet material in architecture using hybridised 3D...

  8. Materials for Nuclear Plants From Safe Design to Residual Life Assessments

    CERN Document Server

    Hoffelner, Wolfgang

    2013-01-01

    The clamor for non-carbon dioxide emitting energy production has directly  impacted on the development of nuclear energy. As new nuclear plants are built, plans and designs are continually being developed to manage the range of challenging requirement and problems that nuclear plants face especially when managing the greatly increased operating temperatures, irradiation doses and extended design life spans. Materials for Nuclear Plants: From Safe Design to Residual Life Assessments  provides a comprehensive treatment of the structural materials for nuclear power plants with emphasis on advanced design concepts.   Materials for Nuclear Plants: From Safe Design to Residual Life Assessments approaches structural materials with a systemic approach. Important components and materials currently in use as well as those which can be considered in future designs are detailed, whilst the damage mechanisms responsible for plant ageing are discussed and explained. Methodologies for materials characterization, material...

  9. Battery designs with high capacity anode materials and cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Masarapu, Charan; Anguchamy, Yogesh Kumar; Han, Yongbong; Deng, Haixia; Kumar, Sujeet; Lopez, Herman A.

    2017-10-03

    Improved high energy capacity designs for lithium ion batteries are described that take advantage of the properties of high specific capacity anode active compositions and high specific capacity cathode active compositions. In particular, specific electrode designs provide for achieving very high energy densities. Furthermore, the complex behavior of the active materials is used advantageously in a radical electrode balancing design that significantly reduced wasted electrode capacity in either electrode when cycling under realistic conditions of moderate to high discharge rates and/or over a reduced depth of discharge.

  10. Computer aided materials design; Keisanki zairyo sekkei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The questionnaire survey on the computer aided materials design (CAMD), and the survey of current domestic and overseas software concerned were carried out to clarify developmental issues. The current elementary technology of CAMD was also surveyed to study its several problems caused with a progress of material design technology due to drastic diffusion of CAMD. This project aims at establishment of a new demanded software, computer chemistry, focusing attention on functional materials such as catalyst, polymer and non-linear electronic materials. Microscopic simulation technology was mainly surveyed in fiscal 1996. Although some fruitful results have been obtained in the fields of medical and agricultural chemicals, organic compounds, proteins, catalysts and electronic materials, such some problems are pointed out as `CAMD cannot handle an actual size of the target system` and `commercially available software are very expensive.` Reliable tool development as elementary technology, and the verification of its applications are thus required. Meso-dynamics, polymers, surface reaction and integrated technological environment attract users` attention. 27 refs., 16 figs., 2 tabs.

  11. High-throughput theoretical design of lithium battery materials

    International Nuclear Information System (INIS)

    Ling Shi-Gang; Gao Jian; Xiao Rui-Juan; Chen Li-Quan

    2016-01-01

    The rapid evolution of high-throughput theoretical design schemes to discover new lithium battery materials is reviewed, including high-capacity cathodes, low-strain cathodes, anodes, solid state electrolytes, and electrolyte additives. With the development of efficient theoretical methods and inexpensive computers, high-throughput theoretical calculations have played an increasingly important role in the discovery of new materials. With the help of automatic simulation flow, many types of materials can be screened, optimized and designed from a structural database according to specific search criteria. In advanced cell technology, new materials for next generation lithium batteries are of great significance to achieve performance, and some representative criteria are: higher energy density, better safety, and faster charge/discharge speed. (topical review)

  12. Material selection for design, manufacturing and application

    International Nuclear Information System (INIS)

    Zaid, A.I.O.

    2011-01-01

    Developing a new engineering material product or changing an existing one requires new design selecting material and choosing appropriate and economical manufacturing processes. These three main factors play a great role on the performance of the product in service. These items are independent and should not be performed in isolation from each other. With the great advancement of technology in the last decade and with the greater number of engineering materials which are now available, together with the increasing pressure to produce more economic and get reliable products an integrated approach which considers design, material selection and the appropriate manufacturing process makes it easier to achieve the optimum product that combines the functional requirements with the reliability at competitive cost. These diverse activities or items are interdependent; therefore should not be considered in isolation from each other, for example, it is not sufficient that design of the product should satisfy the technical, safety and legal requirements, it must also be possible to be manufactured economically and to be sold at a competitive price and easily disposed at the end of its working life cycle. In this paper, the interaction of these items together in order to arrive to the optimum solution for a particular application are given and discussed. (author)

  13. Designing Teaching Materials for Learning Problem Solving in Technology Education

    NARCIS (Netherlands)

    Doornekamp, B.G.

    In the process of designing teaching materials for learning problem solving in technology education, domain-specific design specifications are considered important elements to raise learning outcomes with these materials. Two domain-specific design specifications were drawn up using a four-step

  14. Photovoltaic module encapsulation design and materials selection, volume 1

    Science.gov (United States)

    Cuddihy, E.; Carroll, W.; Coulbert, C.; Gupta, A.; Liang, R. H.

    1982-01-01

    Encapsulation material system requirements, material selection criteria, and the status and properties of encapsulation materials and processes available are presented. Technical and economic goals established for photovoltaic modules and encapsulation systems and their status are described. Available encapsulation technology and data are presented to facilitate design and material selection for silicon flat plate photovoltaic modules, using the best materials available and processes optimized for specific power applications and geographic sites. The operational and environmental loads that encapsulation system functional requirements and candidate design concepts and materials that are identified to have the best potential to meet the cost and performance goals for the flat plate solar array project are described. Available data on encapsulant material properties, fabrication processing, and module life and durability characteristics are presented.

  15. European DEMO design strategy and consequences for materials

    Science.gov (United States)

    Federici, G.; Biel, W.; Gilbert, M. R.; Kemp, R.; Taylor, N.; Wenninger, R.

    2017-09-01

    Demonstrating the production of net electricity and operating with a closed fuel-cycle remain unarguably the crucial steps towards the exploitation of fusion power. These are the aims of a demonstration fusion reactor (DEMO) proposed to be built after ITER. This paper briefly describes the DEMO design options that are being considered in Europe for the current conceptual design studies as part of the Roadmap to Fusion Electricity Horizon 2020. These are not intended to represent fixed and exclusive design choices but rather ‘proxies’ of possible plant design options to be used to identify generic design/material issues that need to be resolved in future fusion reactor systems. The materials nuclear design requirements and the effects of radiation damage are briefly analysed with emphasis on a pulsed ‘low extrapolation’ system, which is being used for the initial design integration studies, based as far as possible on mature technologies and reliable regimes of operation (to be extrapolated from the ITER experience), and on the use of materials suitable for the expected level of neutron fluence. The main technical issues arising from the plasma and nuclear loads and the effects of radiation damage particularly on the structural and heat sink materials of the vessel and in-vessel components are critically discussed. The need to establish realistic target performance and a development schedule for near-term electricity production tends to favour more conservative technology choices. The readiness of the technical (physics and technology) assumptions that are being made is expected to be an important factor for the selection of the technical features of the device.

  16. On strength design using free material subjected to multiple load cases

    DEFF Research Database (Denmark)

    Pedersen, Pauli; Pedersen, Niels Leergaard

    2013-01-01

    Multiple load cases and the consideration of strength is a reality that most structural designs are exposed to. Improved possibility to produce specific materials, say by fiber lay-up, put focus on research on free material optimization. A formulation for such design problems together with a prac......Multiple load cases and the consideration of strength is a reality that most structural designs are exposed to. Improved possibility to produce specific materials, say by fiber lay-up, put focus on research on free material optimization. A formulation for such design problems together...... with a practical recursive design procedure is presented and illustrated with examples. The presented finite element analysis involve many elements as well as many load cases. Separating the local amount of material from a description with unit trace for the local anisotropy, gives the free materials formulation...

  17. CubeSat Material Limits for Design for Demise

    Science.gov (United States)

    Kelley, R. L.; Jarkey, D. R.

    2014-01-01

    The CubeSat form factor of nano-satellite (a satellite with a mass between one and ten kilograms) has grown in popularity due to their ease of construction and low development and launch costs. In particular, their use as student led payload design projects has increased due to the growing number of launch opportunities. CubeSats are often deployed as secondary or tertiary payloads on most US launch vehicles or they may be deployed from the ISS. The focus of this study will be on CubeSats launched from the ISS. From a space safety standpoint, the development and deployment processes for CubeSats differ significantly from that of most satellites. For large satellites, extensive design reviews and documentation are completed, including assessing requirements associated with re-entry survivability. Typical CubeSat missions selected for ISS deployment have a less rigorous review process that may not evaluate aspects beyond overall design feasibility. CubeSat design teams often do not have the resources to ensure their design is compliant with re-entry risk requirements. A study was conducted to examine methods to easily identify the maximum amount of a given material that can be used in the construction of a CubeSats without posing harm to persons on the ground. The results demonstrate that there is not a general equation or relationship that can be used for all materials; instead a limiting value must be defined for each unique material. In addition, the specific limits found for a number of generic materials that have been previously used as benchmarking materials for re-entry survivability analysis tool comparison will be discussed.

  18. Design of advanced materials for linear and nonlinear dynamics

    DEFF Research Database (Denmark)

    Frandsen, Niels Morten Marslev

    to reveal the fundamental dynamic characteristics and thus the relevant design parameters.The thesis is built around the characterization of two one-dimensional, periodic material systems. The first is a nonlinear mass-spring chain with periodically varying material properties, representing a simple......The primary catalyst of this PhD project has been an ambition to design advanced materials and structural systems including, and possibly even exploiting, nonlinear phenomena such as nonlinear modal interaction leading to energy conversion between modes. An important prerequisite for efficient...... but general model of inhomogeneous structural materials with nonlinear material characteristics. The second material system is an “engineered” material in the sense that a classical structural element, a linear elastic and homogeneous rod, is “enhanced” by applying a mechanism on its surface, amplifying...

  19. Advanced composite structures. [metal matrix composites - structural design criteria for spacecraft construction materials

    Science.gov (United States)

    1974-01-01

    A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.

  20. Interplay between topology and disorder in a two-dimensional semi-Dirac material

    Science.gov (United States)

    Sriluckshmy, P. V.; Saha, Kush; Moessner, Roderich

    2018-01-01

    We investigate the role of disorder in a two-dimensional semi-Dirac material characterized by a linear dispersion in one direction and a parabolic dispersion in the orthogonal direction. Using the self-consistent Born approximation, we show that disorder can drive a topological Lifshitz transition from an insulator to a semimetal, as it generates a momentum-independent off-diagonal contribution to the self-energy. Breaking time-reversal symmetry enriches the topological phase diagram with three distinct regimes—single-node trivial, two-node trivial, and two-node Chern. We find that disorder can drive topological transitions from both the single- and two-node trivial to the two-node Chern regime. We further analyze these transitions in an appropriate tight-binding Hamiltonian of an anisotropic hexagonal lattice by calculating the real-space Chern number. Additionally, we compute the disorder-averaged entanglement entropy which signals both the topological Lifshitz and Chern transition as a function of the anisotropy of the hexagonal lattice. Finally, we discuss experimental aspects of our results.

  1. Critical plasma-materials issues for fusion reactor designs

    International Nuclear Information System (INIS)

    Wilson, K.L.; Bauer, W.

    1983-01-01

    Plasma-materials interactions are a dominant driving force in the design of fusion power reactors. This paper presents a summary of plasma-materials interactions research. Emphasis is placed on critical aspects related to reactor design. Particular issues to be addressed are plasma edge characterization, hydrogen recycle, impurity introduction, and coating development. Typical wall fluxes in operating magnetically confined devices are summarized. Recent calculations of tritium inventory and first wall permeation, based on laboratory measurements of hydrogen recycling, are given for various reactor operating scenarios. Impurity introduction/wall erosion mechanisms considered include sputtering, chemical erosion, and evaporation (melting). Finally, the advanced material development for in-vessel components is discussed. (author)

  2. Materials design for electrocatalytic carbon capture

    Directory of Open Access Journals (Sweden)

    Xin Tan

    2016-05-01

    Full Text Available We discuss our philosophy for implementation of the Materials Genome Initiative through an integrated materials design strategy, exemplified here in the context of electrocatalytic capture and separation of CO2 gas. We identify for a group of 1:1 X–N graphene analogue materials that electro-responsive switchable CO2 binding behavior correlates with a change in the preferred binding site from N to the adjacent X atom as negative charge is introduced into the system. A reconsideration of conductive N-doped graphene yields the discovery that the N-dopant is able to induce electrocatalytic binding of multiple CO2 molecules at the adjacent carbon sites.

  3. Materials challenges supporting new sodium fast reactor designs

    International Nuclear Information System (INIS)

    Gelineau, O.; Goff, S. Dubiez-le; Dubuisson, Ph.; Dalle, F.; Blat, M.

    2009-01-01

    Sodium Fast Reactor is considered in France as the most mature technology of the different Generation IV systems. In the short-term the designing work is focused on the identification of the potential tracks to improve competitiveness, safety, efficiency and to reduce cost. In that frame the materials have a key role to play. This paper is focused on the new materials envisaged and on the Research and Development program launched in France by Areva NP, CEA and EDF in order to sustain the innovative design options: ferritic steels as candidates for exchangers, steam generators and possibly sodium circuits, optimization of materials and fabrication processes to improve safety and risk management, extension of material databases to take into account the 60 years life duration including irradiation and ageing effect. (author)

  4. The effectiveness of direct instruction for teaching language to children with autism spectrum disorders: identifying materials.

    Science.gov (United States)

    Ganz, Jennifer B; Flores, Margaret M

    2009-01-01

    Students with autism spectrum disorders (ASD) frequently demonstrate language delays (American Psychiatric Association 2000). This study investigated the effects of a Direct Instruction (DI) language program implemented with elementary students with ASD. There is little research in the area of DI as a language intervention for students with ASD. This study examined the effectiveness of DI with regard to students' oral language skills, specifically the identification of materials of which objects were made. A single-subject changing criterion design was employed. A functional relation between DI and oral language skills was demonstrated through replication of skill increase over three criterion changes and across three students. The results and their implications are discussed further.

  5. DESIGNING ENGLISH LEARNING MATERIALS TO FOSTER CHILDREN‟S CREATIVITY

    Directory of Open Access Journals (Sweden)

    C. Murni Wahyanti

    2017-04-01

    Full Text Available Learning materials form an important part of English teaching-learning processes in Elementary schools. In many cases, teachers and students rely on the learning materials available and the materials dictate teachers‘ strategies. Despite the availability of commercially produced materials, it is considered necessary for teachers to construct or adapt learning materials. Teachers know better about their students‘ ability, needs and interests. In addition, the materials can be more contextual. Good materials should foster children‘s creative thinking since creativity is one of the important skills children need to develop. Features of creativity involve using imagination, generating ideas and questions, experimenting with alternatives, being original and making judgment. This presentation will focus on how to develop learning materials that can foster children‘s creativity. It will discuss about why teachers need to design their own materials, principles for designing effective English learning materials, the concepts and components of creativity and the importance of creativity in language learning. Examples of how to apply features of creativity in the English learning materials for children will be provided.

  6. Local Material as a Character of Contemporary Interior Design in Indonesia

    Science.gov (United States)

    Susanto, Dalhar; Puti Angelia, Dini; Ningsih, Tria Amalia

    2017-12-01

    Excellent design needs to fulfill universal requirements (utility, aesthetic, ergonomic, durability, and safe). Besides of all the requirements, an excellent design has to be shown its distinctiveness, uniqueness, and identity. To create an excellent design, we can use one of locality approach, it means local material utilization. From time to time, the material is linking each other in unity with environment context, human, knowledge, culture, social, economy, user needs and material availability. The aspects are the important part to get the reflective identity and local values in architecture and interior design work in Indonesia. It can be proofed by some of the architecture and interior work precedent, like traditional or vernacular in Nusantara or contemporary interior design work from Indonesian designer who has recognized to promote the locality value. However interior design works in Indonesia cannot be shown the characteristic of Indonesia identity and locality currently, it is different than another country work, like Japan, Italy, or Scandinavia. Interior design work from these countries can be easily known with accentuating of characteristic their places, such as material, color, detail, or geometry pattern in the product that has been produced. Meanwhile, some of the region in Indonesia are tropical climate and brought about much of local material and it has potential to make a unique work which has the local identity. This paper will discuss the result of a searching potential of local material usefulness as interior design identity in Indonesia. This research is done by typology method, which means discover the presence of some of the architecture elements appears to be related material. The elements are the pattern, color, craftsmanship, building element, object, and type of material in some of the contemporary interior design work in Indonesia were considered superior and capable of lifting elements recognized locality.

  7. A Strategy for Material-specific e-Textile Interaction Design

    DEFF Research Database (Denmark)

    Gowrishankar, Ramyah; Bredies, Katharina; Ylirisku, Salu

    2017-01-01

    The interaction design of e-Textile products are often characterized by conventions adopted from electronic devices rather than developing interactions that can be specific to e-Textiles. We argue that textile materials feature a vast potential for the design of novel digital interactions....... Especially the shape-reformation capabilities of textiles may inform the design of expressive and aesthetically rewarding applications. In this chapter, we propose ways in which the textileness of e-Textiles can be better harnessed. We outline an e-Textile Interaction Design strategy that is based...... on defining the material-specificity of e-Textiles as its ability to deform in ways that match the expectations we have of textile materials. It embraces an open-ended exploration of textile-related interactions (for e.g. stretching, folding, turning-inside-out etc.) and their potential for electronic...

  8. The innovative application studty on eco-packaging design and materials

    OpenAIRE

    Cui Yong Min; Ren Xin Guang

    2016-01-01

    The paper solves the increasingly deteriorate environmental problems by positively exploring how to utilize and develop eco-packaging design reasonably. The paper explores an effective method that combines eco-packaging and environmental protection materials, hoping to define the sustainable development road of packaging design. The paper is centered on the design application of eco-packaging and environmental protection materials, applies and analyzes the method to obtain innovative design r...

  9. Computational Materials Program for Alloy Design

    Science.gov (United States)

    Bozzolo, Guillermo

    2005-01-01

    The research program sponsored by this grant, "Computational Materials Program for Alloy Design", covers a period of time of enormous change in the emerging field of computational materials science. The computational materials program started with the development of the BFS method for alloys, a quantum approximate method for atomistic analysis of alloys specifically tailored to effectively deal with the current challenges in the area of atomistic modeling and to support modern experimental programs. During the grant period, the program benefited from steady growth which, as detailed below, far exceeds its original set of goals and objectives. Not surprisingly, by the end of this grant, the methodology and the computational materials program became an established force in the materials communitiy, with substantial impact in several areas. Major achievements during the duration of the grant include the completion of a Level 1 Milestone for the HITEMP program at NASA Glenn, consisting of the planning, development and organization of an international conference held at the Ohio Aerospace Institute in August of 2002, finalizing a period of rapid insertion of the methodology in the research community worlwide. The conference, attended by citizens of 17 countries representing various fields of the research community, resulted in a special issue of the leading journal in the area of applied surface science. Another element of the Level 1 Milestone was the presentation of the first version of the Alloy Design Workbench software package, currently known as "adwTools". This software package constitutes the first PC-based piece of software for atomistic simulations for both solid alloys and surfaces in the market.Dissemination of results and insertion in the materials community worldwide was a primary focus during this period. As a result, the P.I. was responsible for presenting 37 contributed talks, 19 invited talks, and publishing 71 articles in peer-reviewed journals, as

  10. LUTE primary mirror materials and design study report

    Science.gov (United States)

    Ruthven, Greg

    1993-02-01

    The major objective of the Lunar Ultraviolet Telescope Experiment (LUTE) Primary Mirror Materials and Design Study is to investigate the feasibility of the LUTE telescope primary mirror. A systematic approach to accomplish this key goal was taken by first understanding the optical, thermal, and structural requirements and then deriving the critical primary mirror-level requirements for ground testing, launch, and lunar operations. After summarizing the results in those requirements which drove the selection of material and the design for the primary mirror are discussed. Most important of these are the optical design which was assumed to be the MSFC baseline (i.e. 3 mirror optical system), telescope wavefront error (WFE) allocations, the telescope weight budget, and the LUTE operational temperature ranges. Mechanical load levels, reflectance and microroughness issues, and options for the LUTE metering structure were discussed and an outline for the LUTE telescope sub-system design specification was initiated. The primary mirror analysis and results are presented. The six material substrate candidates are discussed and four distinct mirror geometries which are considered are shown. With these materials and configurations together with varying the location of the mirror support points, a total of 42 possible primary mirror designs resulted. The polishability of each substrate candidate was investigated and a usage history of 0.5 meter and larger precision cryogenic mirrors (the operational low end LUTE temperature of 60 K is the reason we feel a survey of cryogenic mirrors is appropriate) that were flown or tested are presented.

  11. Thermally activated creep and fluidization in flowing disordered materials

    Science.gov (United States)

    Merabia, Samy; Detcheverry, François

    2016-11-01

    When submitted to a constant mechanical load, many materials display power law creep followed by fluidization. A fundamental understanding of these processes is still far from being achieved. Here, we characterize creep and fluidization on the basis of a mesoscopic viscoplastic model that includes thermally activated yielding events and a broad distribution of energy barriers, which may be lowered under the effect of a local deformation. We relate the creep exponent observed before fluidization to the width of barrier distribution and to the specific form of stress redistribution following yielding events. We show that Andrade creep is accompanied by local strain hardening driven by stress redistribution and find that the fluidization time depends exponentially on the applied stress. The simulation results are interpreted in the light of a mean-field analysis, and should help in rationalizing the creep phenomenology in disordered materials.

  12. The materials challenge for LFR core design

    International Nuclear Information System (INIS)

    Grasso, Giacomo; Agostini, Pietro

    2013-01-01

    LFR share the main issues of all Fast Reactors, while presenting specific issues due to the use of lead as coolant. A number of constraints impairs the design of a LFR core, possibly resulting in a viability domain not exploitable for producing electricity in an efficient (hence economic) way. In particular, the most restrictive issues to be faced pend on the cladding. The selection of proper cladding materials provides the solution for the issues impairing the resistance of the cladding against stresses and irradiation effects. On the other hand, the protection of the cladding requires surface protections like oxide scales (passivation) or adherent layers (coating). Oxide scales seem not sufficient for a stable and effective protection of the base material. The application of adherent layers seems the only promising solution for protecting the cladding against corrosion. For the short term (i.e.: ALFRED), advanced 15/15Ti with coating is the reference solution for the cladding, allowing a core design complying with all the design constraints and goals. The candidate coatings are already being tested under irradiation to proceed towards qualification. In parallel, new base materials and/or coatings are presently under investigation. For the long term (i.e.: ELFR), the availability of such advanced materials/coatings might allow the extension of the viability domain towards higher and broader ranges (temperature, dpa, etc.), extending the fields of applications of LFRs and resulting in higher performances

  13. Timber Curtain: Designing with material capabilities

    DEFF Research Database (Denmark)

    Lahmy, Maya; Larsen, Niels Martin

    2015-01-01

    of the generative phase to fabrication of the artefact. Brought together by various conceptual and structural elements the Timber Curtain forms a 4.5 x 2.5 x 0.5 m construct of assembled wood components, digitally crafted through advanced production techniques. Concerned with materiality and processing of the wood......Timber Curtain explores relations between digital precision and material indeterminacy. It is an installation engaging spatially through its presence as a 1:1 architectural component as well as it is exploring novel technologies in the architectural design process from the very beginning...... an associative digital model that could gather and compute in put from material behaviour and out put manufacturing data was scripted. This method enables material capacity to be pushed to the limit of its performance allowing novel sensuous and structural qualities to emerge. The method is developed with use...

  14. [Clothing and heat disorder].

    Science.gov (United States)

    Satsumoto, Yayoi

    2012-06-01

    The influence of the clothing material properties(like water absorbency and rapid dryness, water vapor absorption, water vapor permeability and air permeability) and the design factor of the clothing(like opening condition and fitting of clothing), which contributed to prevent heat disorder, was outlined. WBGT(wet-bulb globe temperature) is used to show a guideline for environmental limitation of activities to prevent heat disorder. As the safety function is more important than thermal comfort for some sportswear and protective clothing with high cover area, clothing itself increases the risk of heat disorder. WBGT is corrected by CAF (clothing adjustment factor) in wearing such kind of protective clothing.

  15. IBARAKI Materials Design Diffractometer for J-PARC

    International Nuclear Information System (INIS)

    Ishigaki, Toru; Harjo, Stefanus; Yonemura, Masao; Kamiyama, Takashi; Aizawa, Kazuya; Oikawa, Kenichi; Sakuma, Takashi; Morii, Yukio; Arai, Masatoshi; Ebata, Kazuhiro; Takano, Yoshiki; Kasao, Takuro

    2006-01-01

    Ibaraki prefecture, the local government of the area for J-PARC site, has decided to build a versatile powder diffractometer (IBARAKI Materials Design Diffractometer) to promote industrial applications for neutron beams in J-PARC. This diffractometer is designed to be a high throughput one enabling materials scientists to use it like the chemical analytical instruments in their material development processes. It covers in d range 0.18< d(A)<5 with Δd/d=0.16% at the high-resolution scattering detector bank, and covers 5< d(A)<800 with gradually changing resolution. Typical measuring time to obtain a 'Rietveld-quality' data is several minutes for the sample size of laboratory X-ray diffractometer. To promote industrial application, a utilization system for this diffractometer is required. We will establish a support system for both academic and industrial users who are willing to use neutron but have not been familiar with neutron diffraction

  16. Interrelationship betwen material strength and component design under elevated temperature for FBR

    International Nuclear Information System (INIS)

    Nakagawa, Y.

    Structural design under elevated temperature for fast breeder reactor plant is very troublesome compared to that of for lower temperature. This difficulty can be mainly discussed from two different stand points. One is design and design code, another is material strength. Components in FBR are operated under creep regime and time dependent creep behaviour should be elevated properly. This means the number and combinations of design code and material strength are significantly large and makes these systems very complicated. Material selection is, in no words, not an easy job. This should be done by not only material development but also component design stand point. With valuable experience of construction and research on FBR, a lot of information on component design and material behaviour is available. And it is a time to choose the ''best material'' from the entire stand points of component construction. (author)

  17. Assessing Cognitive Function in Bipolar Disorder: Challenges and Recommendations for Clinical Trial Design

    Science.gov (United States)

    Burdick, Katherine E.; Ketter, Terence A.; Goldberg, Joseph F.; Calabrese, Joseph R.

    2015-01-01

    OBJECTIVE Neurocognitive impairment in schizophrenia has been recognized for more than a century. In contrast, only recently have significant neurocognitive deficits been recognized in bipolar disorder. Converging data suggest the importance of cognitive problems in relation to quality of life in bipolar disorder, highlighting the need for treatment and prevention efforts targeting cognition in bipolar patients. Future treatment trials targeting cognitive deficits will be met with methodological challenges due to the inherent complexity and heterogeneity of the disorder, including significant diagnostic comorbidities, the episodic nature of the illness, frequent use of polypharmacy, cognitive heterogeneity, and a lack of consensus regarding measurement of cognition and outcome in bipolar patients. Guidelines for use in designing future trials are needed. PARTICIPANTS The members of the consensus panel (each of the bylined authors) were selected based upon their expertise in bipolar disorder. Dr. Burdick is a neuropsychologist who has studied cognition in this illness for 15 years; Drs. Ketter, Calabrese, and Goldberg each bring considerable expertise in the treatment of bipolar disorder both within and outside of controlled clinical trials. This consensus statement was derived from work together at scientific meetings (e.g. symposium presention at the 2014 Annual meeting of the American Society of Clinical Psychopharmacology, among others) and ongoing discussions by conference call. With the exception of the public presentations on this topic, these meetings were closed to outside participants. EVIDENCE A literature review was undertaken by the authors to identify illness-specific challenges relevant to the design and conduct of treatment trials targeting neurocognition in bipolar disorder. Expert opinion from each of the authors guided the consensus recommendations. CONSENSUS PROCESS Consensus recommendations, reached by unanimous opinion of the authors, are

  18. Cervical Musculoskeletal Impairments and Temporomandibular Disorders

    OpenAIRE

    Susan Armijo-Olivo; David Magee

    2012-01-01

    ABSTRACT Objectives The study of cervical muscles and their significance in the development and perpetuation of Temporomandibular Disorders has not been elucidated. Thus this project was designed to investigate the association between cervical musculoskeletal impairments and Temporomandibular Disorders. Material and Methods A sample of 154 subjects participated in this study. All subjects underwent a series of physical tests and electromyographic assessment (i.e. head and neck posture, maxima...

  19. Cultivating Design Thinking in Students through Material Inquiry

    Science.gov (United States)

    Renard, Helene

    2014-01-01

    Design thinking is a way of understanding and engaging with the world that has received much attention in academic and business circles in recent years. This article examines a hands-on learning model as a vehicle for developing design thinking capacity in students. An overview of design thinking grounds the discussion of the material-based…

  20. A Novel Design Framework for Structures/Materials with Enhanced Mechanical Performance

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2018-04-01

    Full Text Available Structure/material requires simultaneous consideration of both its design and manufacturing processes to dramatically enhance its manufacturability, assembly and maintainability. In this work, a novel design framework for structural/material with a desired mechanical performance and compelling topological design properties achieved using origami techniques is presented. The framework comprises four procedures, including topological design, unfold, reduction manufacturing, and fold. The topological design method, i.e., the solid isotropic material penalization (SIMP method, serves to optimize the structure in order to achieve the preferred mechanical characteristics, and the origami technique is exploited to allow the structure to be rapidly and easily fabricated. Topological design and unfold procedures can be conveniently completed in a computer; then, reduction manufacturing, i.e., cutting, is performed to remove materials from the unfolded flat plate; the final structure is obtained by folding out the plate from the previous procedure. A series of cantilevers, consisting of origami parallel creases and Miura-ori (usually regarded as a metamaterial and made of paperboard, are designed with the least weight and the required stiffness by using the proposed framework. The findings here furnish an alternative design framework for engineering structures that could be better than the 3D-printing technique, especially for large structures made of thin metal materials.

  1. A Novel Design Framework for Structures/Materials with Enhanced Mechanical Performance

    Science.gov (United States)

    Liu, Jie; Fan, Xiaonan; Wen, Guilin; Qing, Qixiang; Wang, Hongxin; Zhao, Gang

    2018-01-01

    Structure/material requires simultaneous consideration of both its design and manufacturing processes to dramatically enhance its manufacturability, assembly and maintainability. In this work, a novel design framework for structural/material with a desired mechanical performance and compelling topological design properties achieved using origami techniques is presented. The framework comprises four procedures, including topological design, unfold, reduction manufacturing, and fold. The topological design method, i.e., the solid isotropic material penalization (SIMP) method, serves to optimize the structure in order to achieve the preferred mechanical characteristics, and the origami technique is exploited to allow the structure to be rapidly and easily fabricated. Topological design and unfold procedures can be conveniently completed in a computer; then, reduction manufacturing, i.e., cutting, is performed to remove materials from the unfolded flat plate; the final structure is obtained by folding out the plate from the previous procedure. A series of cantilevers, consisting of origami parallel creases and Miura-ori (usually regarded as a metamaterial) and made of paperboard, are designed with the least weight and the required stiffness by using the proposed framework. The findings here furnish an alternative design framework for engineering structures that could be better than the 3D-printing technique, especially for large structures made of thin metal materials. PMID:29642555

  2. A Novel Design Framework for Structures/Materials with Enhanced Mechanical Performance.

    Science.gov (United States)

    Liu, Jie; Fan, Xiaonan; Wen, Guilin; Qing, Qixiang; Wang, Hongxin; Zhao, Gang

    2018-04-09

    Abstract : Structure/material requires simultaneous consideration of both its design and manufacturing processes to dramatically enhance its manufacturability, assembly and maintainability. In this work, a novel design framework for structural/material with a desired mechanical performance and compelling topological design properties achieved using origami techniques is presented. The framework comprises four procedures, including topological design, unfold, reduction manufacturing, and fold. The topological design method, i.e., the solid isotropic material penalization (SIMP) method, serves to optimize the structure in order to achieve the preferred mechanical characteristics, and the origami technique is exploited to allow the structure to be rapidly and easily fabricated. Topological design and unfold procedures can be conveniently completed in a computer; then, reduction manufacturing, i.e., cutting, is performed to remove materials from the unfolded flat plate; the final structure is obtained by folding out the plate from the previous procedure. A series of cantilevers, consisting of origami parallel creases and Miura-ori (usually regarded as a metamaterial) and made of paperboard, are designed with the least weight and the required stiffness by using the proposed framework. The findings here furnish an alternative design framework for engineering structures that could be better than the 3D-printing technique, especially for large structures made of thin metal materials.

  3. Design and Fabrication of Aerospace-Grade Digital Composite Materials

    Data.gov (United States)

    National Aeronautics and Space Administration — This project aims to advance design rules and fabrication approaches to create aerospace-grade structures from digital composite materials. Digital materials are...

  4. Exploring Socio-material Orderings in Ethnography of Architectural Design

    DEFF Research Database (Denmark)

    Lotz, Katrine; Stang Våland, Marianne

    How can the socio-material assemblages involved in contemporary ‘doings of architecture’ be identified and studied? The paper discusses recent transformations within architectural design practice and the extended network of local actors and technologies mobilized in contemporary building...... construction. Interested in examining how the current requirements in the field are – and can be - handled in architectural production, we aim to contribute to the ongoing development of ethnography of Architectural Design (Yaneva 2008, 2009, 2012). In our research, we focus on recent requirements...... in contemporary architectural design. We attempt to follow the actors in detail through their socio-material involvements and ‘architectural inventions’ such as visualized motives of space, materials, atmospheres, buildingparts and -components, and to explore how relations continuously tie and untie as a means...

  5. Revolutionising catenary design: the use of new materials

    NARCIS (Netherlands)

    Smulders, H.W.M.; Wouters, P.A.A.F.; Minkman, J.A.; Waes, van J.B.M.

    2011-01-01

    Traditionally materials used for catenary support structures are steel, concrete or even wood, in combination with the use of insulators. The development of new materials such as Fibre Reinforced Plastics (FRP) makes a new revolutionary design possible. The use of FRP is expanding rapidly at the

  6. Structural optimization for materially informed design to robotic production processes

    NARCIS (Netherlands)

    Bier, H.H.; Mostafavi, S.

    2015-01-01

    Hyperbody’s materially informed Design-to-Robotic-Production (D2RP) processes for additive and subtractive manufacturing aim to achieve performative porosity in architecture at various scales. An extended series of D2RP experiments aiming to produce prototypes at 1:1 scale wherein design materiality

  7. Designing Web-Based Educative Curriculum Materials for the Social Studies

    Science.gov (United States)

    Callahan, Cory; Saye, John; Brush, Thomas

    2013-01-01

    This paper reports on a design experiment of web-based curriculum materials explicitly created to help social studies teachers develop their professional teaching knowledge. Web-based social studies curriculum reform efforts, human-centered interface design, and investigations into educative curriculum materials are reviewed, as well as…

  8. Design of Molecular Materials: Supramolecular Engineering

    Science.gov (United States)

    Simon, Jacques; Bassoul, Pierre

    2001-02-01

    This timely and fascinating book is destined to be recognised as THE book on supramolecular engineering protocols. It covers this sometimes difficult subject in an approachable form, gathering together information from many sources. Supramolecular chemistry, which links organic chemistry to materials science, is one of the fastest growth areas of chemistry research. This book creates a correlation between the structure of single molecules and the physical and chemical properties of the resulting materials. By making systematic changes to the component molecules, the resulting solid can be engineered for optimum performance. There is a clearly written development from synthesis of designer molecules to properties of solids and further on to devices and complex materials systems, providing guidelines for mastering the organisation of these systems. Topics covered include: Systemic chemistry Molecular assemblies Notions of symmetry Supramolecular engineering Principe de Curie Organisation in molecular media Molecular semiconductors Industrial applications of molecular materials This superb book will be invaluable to researchers in the field of supramolecular materials and also to students and teachers of the subject.

  9. Facilitating Effects of Nanoparticles/Materials on Sensitive Immune-Related Lung Disorders

    International Nuclear Information System (INIS)

    Inoue, K.I.; Takano, H.

    2011-01-01

    Although the adverse health effects of nanoparticles/materials have been proposed and are being clarified, their facilitating effects on preexisting pathological conditions have not been fully examined. In this paper, we provide insights into the immunotoxicity of nanoparticles/materials as an aggravating factor in hyper susceptible subjects, especially those with immune-related respiratory disorders using our in vivo experimental model. We first exhibit the effects of nanoparticles/materials on lung inflammation induced by bacterial endotoxin (lipopolysaccharide: LPS) in vivo as a disease model in innate immunity, and demonstrated that nanoparticles instilled through both an intratracheal tube and an inhalation system can exacerbate the lung inflammation. Secondly, we introduce the effects of nanoparticles/materials on allergic asthma in vivo as a disease model in adaptive immunity, and showed that repetitive pulmonary exposure to nanoparticles has aggravating effects on allergic airway inflammation, including adjuvant effects on Th2-milieu. Taken together, nanoparticle exposure may synergistically facilitate pathological inflammatory conditions in the lung via both innate and adaptive immunological abnormalities.

  10. Designing with Matter: From Programmable Materials to Processual Things

    Directory of Open Access Journals (Sweden)

    Agustina Andreoletti

    2016-11-01

    Full Text Available This paper explores the potential of active matter, from a practical exploration of the concept to a theoretical discussion based on the material findings. It begins by addressing the ideas of materiality and material performance through the project “Chrysalis Gemini” and then provides an overview of the notion of programmability.To this end, we move to the description and analysis of programming, focusing on its relationship with hardware, software and material. In particular, we address the idea of programmable matter, and we introduce the term processuality. We consider the importance of adaptability, analysing the experience of humans, their interaction with the environment, with artefacts and with material within a design context.In this manner this study seeks to highlight how contextualisation and interconnected processes become relevant as a design argument. This is achieved by presenting the relational potential of processual material and things and their ongoing transformation. 

  11. Bremsstrahlung convertors: materials design and development

    International Nuclear Information System (INIS)

    Allred, R.E.

    1976-03-01

    An improved bremsstrahlung convertor for use at high electron beam energies was developed. The convertor consists of three main components: (1) conversion foil; (2) electron scavenger; and (3) impulse shield. Structural failures of the impulse shield were experimentally determined to be caused by shock wave interactions. Convertor materials and design modifications were aimed at attenuation of the magnitude of the shock and maximization of energy absorption by the convertor materials. Techniques proven successful included the introduction of porosity into electron scavenger and impulse shield materials, the use of a standoff between the conversion foil and the electron scavenger, the insertion of a gap between the scavenger and impulse shield, and the use of advanced composite materials for the impulse shield. These modifications have increased the convertor operating range from 4 cal/gm Au to over 8 cal/gm Au. Kevlar 49 reinforced-resin composites have proven to have the best combination of strength, stiffness, toughness, and x-ray transport properties for use as bremmstrahlung convertor impulse shields

  12. Disordered kagomé spin ice

    Science.gov (United States)

    Greenberg, Noah; Kunz, Andrew

    2018-05-01

    Artificial spin ice is made from a large array of patterned magnetic nanoislands designed to mimic naturally occurring spin ice materials. The geometrical arrangement of the kagomé lattice guarantees a frustrated arrangement of the islands' magnetic moments at each vertex where the three magnetic nanoislands meet. This frustration leads to a highly degenerate ground state which gives rise to a finite (residual) entropy at zero temperature. In this work we use the Monte Carlo simulation to explore the effects of disorder in kagomé spin ice. Disorder is introduced to the system by randomly removing a known percentage of magnetic islands from the lattice. The behavior of the spin ice changes as the disorder increases; evident by changes to the shape and locations of the peaks in heat capacity and the residual entropy. The results are consistent with observations made in diluted physical spin ice materials.

  13. Design of POLCA material control systems

    NARCIS (Netherlands)

    Riezebos, J.

    2010-01-01

    POLCA is a material control system designed for make-to-order or engineer-to-order companies. These firms have to cope with a high variety of customised products, and strong pressure to provide short throughput times. POLCA constrains the amount of work in progress on the shop floor in order to

  14. 14 CFR 25.613 - Material strength properties and material design values.

    Science.gov (United States)

    2010-01-01

    ... statistical basis. (b) Material design values must be chosen to minimize the probability of structural... following probability: (1) Where applied loads are eventually distributed through a single member within an... probability with 95 percent confidence. (2) For redundant structure, in which the failure of individual...

  15. 14 CFR 29.613 - Material strength properties and design values.

    Science.gov (United States)

    2010-01-01

    ... Administrator: (1) MIL—HDBK-5, “Metallic Materials and Elements for Flight Vehicle Structure”. (2) MIL—HDBK-17, “Plastics for Flight Vehicles”. (3) ANC-18, “Design of Wood Aircraft Structures”. (4) MIL—HDBK-23... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Material strength properties and design...

  16. 14 CFR 27.613 - Material strength properties and design values.

    Science.gov (United States)

    2010-01-01

    ... Administrator: (1) MIL-HDBK-5, “Metallic Materials and Elements for Flight Vehicle Structure”. (2) MIL-HDBK-17, “Plastics for Flight Vehicles”. (3) ANC-18, “Design of Wood Aircraft Structures”. (4) MIL-HDBK-23... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Material strength properties and design...

  17. A design methodology for materials control and accounting information systems

    International Nuclear Information System (INIS)

    Helman, P.; Strittmatter, R.B.

    1987-01-01

    Modern approaches to nuclear materials safeguards have significantly increased the data processing needs of safeguards information systems. Implementing these approaches will require developing efficient, cost-effective designs. Guided by database design research, we are developing a design methodology for distributed materials control and accounting (MCandA) information systems. The methodology considers four design parameters: network topology, allocation of data to nodes, high-level global processing strategy, and local file structures to optimize system performance. Characteristics of system performance that are optimized are response time for an operation, timeliness of data, validity of data, and reliability. The ultimate goal of the research is to develop a comprehensive computerized design tool specifically tailored to the design of MCandA systems

  18. Soft computing in design and manufacturing of advanced materials

    Science.gov (United States)

    Cios, Krzysztof J.; Baaklini, George Y; Vary, Alex

    1993-01-01

    The potential of fuzzy sets and neural networks, often referred to as soft computing, for aiding in all aspects of manufacturing of advanced materials like ceramics is addressed. In design and manufacturing of advanced materials, it is desirable to find which of the many processing variables contribute most to the desired properties of the material. There is also interest in real time quality control of parameters that govern material properties during processing stages. The concepts of fuzzy sets and neural networks are briefly introduced and it is shown how they can be used in the design and manufacturing processes. These two computational methods are alternatives to other methods such as the Taguchi method. The two methods are demonstrated by using data collected at NASA Lewis Research Center. Future research directions are also discussed.

  19. Urban public space materials. Maintenance and design?

    Directory of Open Access Journals (Sweden)

    Manuel Iglesias Campos

    2016-10-01

    Full Text Available In this paper, certain aspects related to the conservation of materials commonly used in the design of public spaces are analysed and discussed from a starting point of maintenance definition. The main area of discussion is whether materials selection for pavements and urban furniture, and their placement in the designed space, take into account their maintenance needs. Here the definition of maintenance is the cleaning and repair done by municipal services that is always necessary after construction. From certain examples it can be concluded that, in several cases, the form, the organization and the distribution of the different elements within the public space can cause difficulties for its appropriate conservation, giving rise to alterations and consequently having a negative impact on the durability of this space.

  20. Design of lightweight multi-material automotive bodies using new material performance indices of thin-walled beams for the material selection with crashworthiness consideration

    International Nuclear Information System (INIS)

    Cui, Xintao; Zhang, Hongwei; Wang, Shuxin; Zhang, Lianhong; Ko, Jeonghan

    2011-01-01

    Currently, automotive bodies are constructed usually using a single material, e.g. steel or aluminum. Compared to single-material automotive bodies, multi-material automotive bodies allow optimal material selection in each structural component for higher product performance and lower cost. This paper presents novel material performance indices and procedures developed to guide systematic material selection for multi-material automotive bodies. These new indices enable to characterize the crashworthiness performance of complex-shaped thin-walled beams in multi-material automotive bodies according to material types. This paper also illustrates the application of these performance indices and procedures by designing a lightweight multi-material automotive body. These procedures will help to design a lightweight and affordable body favored by the automotive industry, thus to reduce fuel consumption and greenhouse gas emissions.

  1. Reducing work-related Musculoskeletal Disorders (MSDs) through design: Views of ergonomics and design practitioners.

    Science.gov (United States)

    Punchihewa, Himan K G; Gyi, Diane E

    2015-01-01

    Work-related Musculoskeletal Disorders (MSDs) affect the well-being of workers. Unfortunately, user requirements for design to reduce workplace risk factors for MSDs are not always effectively communicated to designers creating a mismatch between the user requirements and what is ultimately produced. To understand the views of practitioners of design and ergonomics regarding tools for participatory design and features they would like to see in such tools. An online questionnaire survey was conducted with a cohort of practitioners of ergonomics and design (n = 32). In-depth interviews were then conducted with a subset of these practitioners (n = 8). To facilitate discussion, a prototype integrated design tool was developed and demonstrated to practitioners using a verbalized walkthrough approach. According to the results of the questionnaire survey, the majority (70%) believed an integrated approach to participatory design would help reduce work-related MSDs and suggested ways to achieve this, for example, through sharing design information. The interviews showed the majority (n = 7) valued being provided with guidance on design activities and ways to manage and present information. It is believed that an integrated approach to design in order to help reduce work-related MSDs is highly important and a provision to evaluate design solutions would be desirable for practitioners of design and ergonomics.

  2. Topology optimization for design of segmented permanent magnet arrays with ferromagnetic materials

    Science.gov (United States)

    Lee, Jaewook; Yoon, Minho; Nomura, Tsuyoshi; Dede, Ercan M.

    2018-03-01

    This paper presents multi-material topology optimization for the co-design of permanent magnet segments and iron material. Specifically, a co-design methodology is proposed to find an optimal border of permanent magnet segments, a pattern of magnetization directions, and an iron shape. A material interpolation scheme is proposed for material property representation among air, permanent magnet, and iron materials. In this scheme, the permanent magnet strength and permeability are controlled by density design variables, and permanent magnet magnetization directions are controlled by angle design variables. In addition, a scheme to penalize intermediate magnetization direction is proposed to achieve segmented permanent magnet arrays with discrete magnetization directions. In this scheme, permanent magnet strength is controlled depending on magnetization direction, and consequently the final permanent magnet design converges into permanent magnet segments having target discrete directions. To validate the effectiveness of the proposed approach, three design examples are provided. The examples include the design of a dipole Halbach cylinder, magnetic system with arbitrarily-shaped cavity, and multi-objective problem resembling a magnetic refrigeration device.

  3. Bioinspiration from fish for smart material design and function

    International Nuclear Information System (INIS)

    Lauder, G V; Madden, P G A; Tangorra, J L; Anderson, E; Baker, T V

    2011-01-01

    Fish are a potentially rich source of inspiration for the design of smart materials. Fish exemplify the use of flexible materials to generate forces during locomotion, and a hallmark of fish functional design is the use of body and fin deformation to power propulsion and maneuvering. As a result of nearly 500 million years of evolutionary experimentation, fish design has a number of interesting features of note to materials engineers. In this paper we first provide a brief general overview of some key features of the mechanical design of fish, and then focus on two key properties of fish: the bilaminar mechanical design of bony fish fin rays that allows active muscular control of curvature, and the role of body flexibility in propulsion. After describing the anatomy of bony fish fin rays, we provide new data on their mechanical properties. Three-point bending tests and measurement of force inputs to and outputs from the fin rays show that these fin rays are effective displacement transducers. Fin rays in different regions of the fin differ considerably in their material properties, and in the curvature produced by displacement of one of the two fin ray halves. The mean modulus for the proximal (basal) region of the fin rays was 1.34 GPa, but this varied from 0.24 to 3.7 GPa for different fin rays. The distal fin region was less stiff, and moduli for the different fin rays measured varied from 0.11 to 0.67 GPa. These data are similar to those for human tendons (modulus around 0.5 GPa). Analysis of propulsion using flexible foils controlled using a robotic flapping device allows investigation of the effect of altering flexural stiffness on swimming speed. Flexible foils with the leading edge moved in a heave show a distinct peak in propulsive performance, while the addition of pitch input produces a broad plateau where the swimming speed is relatively unaffected by the flexural stiffness. Our understanding of the material design of fish and the control of tissue

  4. Virtual Welded-Joint Design Integrating Advanced Materials and Processing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z.; Dong, P.; Liu, S.; Babu, S.; Olson, G.; DebRoy, T.

    2005-04-15

    The primary goal of this project is to increase the fatigue life of a welded-joint by 10 times and to reduce energy use by 25% through product performance and productivity improvements using an integrated modeling approach. The fatigue strength of a welded-joint is currently the bottleneck to design high performance and lightweight welded structures using advanced materials such as high strength steels. In order to achieve high fatigue strength in a welded-joint it is necessary to manage the weld bead shape for lower stress concentration, produce preferable residual stress distribution, and obtain the desired microstructure for improved material toughness and strength. This is a systems challenge that requires the optimization of the welding process, the welding consumable, the base material, as well as the structure design. The concept of virtual welded-joint design has been proposed and established in this project. The goal of virtual welded-joint design is to develop a thorough procedure to predict the relationship of welding process, microstructure, property, residual stress, and the ultimate weld fatigue strength by a systematic modeling approach. The systematic approach combines five sub-models: weld thermal-fluid model, weld microstructure model, weld material property model, weld residual stress model, and weld fatigue model. The systematic approach is thus based on interdisciplinary applied sciences including heat transfer, computational fluid dynamics, materials science, engineering mechanics, and material fracture mechanics. The sub-models are based on existing models with further development. The results from modeling have been validated with critical experiments. The systematic modeling approach has been used to design high fatigue resistant welds considering the combined effects of weld bead geometry, residual stress, microstructure, and material property. In particular, a special welding wire has been developed in this project to introduce

  5. Using Sibling Designs to Understand Neurodevelopmental Disorders: From Genes and Environments to Prevention Programming

    OpenAIRE

    Wade, Mark; Prime, Heather; Madigan, Sheri

    2015-01-01

    Neurodevelopmental disorders represent a broad class of childhood neurological conditions that have a significant bearing on the wellbeing of children, families, and communities. In this review, we draw on evidence from two common and widely studied neurodevelopmental disorders—autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD)—to demonstrate the utility of genetically informed sibling designs in uncovering the nature and pathogenesis of these conditions. Speci...

  6. Multi-material topology design of laminates with strength criteria

    DEFF Research Database (Denmark)

    Lund, Erik

    2012-01-01

    The objective of this paper is to present a novel approach for multi-material topology optimization of laminated composite structures where strength constraints are taken into account together with other global structural performance measures. The topology design problem considered contains very...... many design variables, and when strength criteria are included in the problem, a very large number of criteria functions must be considered in the optimization problem to be solved. Thus, block aggregation methods are introduced, such that global strength measures are obtained. These formulations...... are illustrated for multi-material laminated design problems where the maximum failure index is minimized while compliance and mass constraints are taken into account....

  7. "Intelligent" design of molecular materials: Understanding the concepts of design in supramolecular synthesis of network solids

    Science.gov (United States)

    Moulton, Brian D.

    This work endeavors to delineate modern paradigms for crystal engineering, i.e. the design and supramolecular synthesis of functional molecular materials. Paradigms predicated on an understanding of the geometry of polygons and polyhedra are developed. The primary focus is on structural determination by single crystal X-ray crystallography, structural interpretation using a suite of graphical visualization and molecular modeling software, and on the importance of proper graphical representation in the presentation and explanation of crystal structures. A detailed analysis of a selected series of crystal structures is presented. The reduction of these molecular networks to schematic representations that illustrate their fundamental connectivity facilitates the understanding of otherwise complex supramolecular solids. Circuit symbols and Schlafli notation are used to describe the network topologies, which enables networks of different composition and metrics to be easily compared. This reveals that molecular orientations in the crystals and networks are commensurate with networks that can be derived from spherical close packed lattices. The development of a logical design strategy for a new class of materials based on our understanding of the chemical composition and topology of these networks is described. The synthesis and crystal structure of a series of new materials generated by exploitation of this design strategy is presented, in addition to a detailed analysis of the topology of these materials and their relationship to a 'parent' structure. In summary, this dissertation demonstrates that molecular polygons can self-assemble at their vertexes to produce molecular architectures and crystal structures that are consistent with long established geometric dogma. The design strategy represents a potentially broad ranging approach to the design of nanoporous structures from a wide range of chemical components that are based on molecular shape rather than chemical

  8. Materials-by-design: computation, synthesis, and characterization from atoms to structures

    Science.gov (United States)

    Yeo, Jingjie; Jung, Gang Seob; Martín-Martínez, Francisco J.; Ling, Shengjie; Gu, Grace X.; Qin, Zhao; Buehler, Markus J.

    2018-05-01

    In the 50 years that succeeded Richard Feynman’s exposition of the idea that there is ‘plenty of room at the bottom’ for manipulating individual atoms for the synthesis and manufacturing processing of materials, the materials-by-design paradigm is being developed gradually through synergistic integration of experimental material synthesis and characterization with predictive computational modeling and optimization. This paper reviews how this paradigm creates the possibility to develop materials according to specific, rational designs from the molecular to the macroscopic scale. We discuss promising techniques in experimental small-scale material synthesis and large-scale fabrication methods to manipulate atomistic or macroscale structures, which can be designed by computational modeling. These include recombinant protein technology to produce peptides and proteins with tailored sequences encoded by recombinant DNA, self-assembly processes induced by conformational transition of proteins, additive manufacturing for designing complex structures, and qualitative and quantitative characterization of materials at different length scales. We describe important material characterization techniques using numerous methods of spectroscopy and microscopy. We detail numerous multi-scale computational modeling techniques that complements these experimental techniques: DFT at the atomistic scale; fully atomistic and coarse-grain molecular dynamics at the molecular to mesoscale; continuum modeling at the macroscale. Additionally, we present case studies that utilize experimental and computational approaches in an integrated manner to broaden our understanding of the properties of two-dimensional materials and materials based on silk and silk-elastin-like proteins.

  9. Facilitating Effects of Nanoparticles/Materials on Sensitive Immune-Related Lung Disorders

    Directory of Open Access Journals (Sweden)

    Ken-ichiro Inoue

    2011-01-01

    Full Text Available Although the adverse health effects of nanoparticles/materials have been proposed and are being clarified, their facilitating effects on preexisting pathological conditions have not been fully examined. In this paper, we provide insights into the immunotoxicity of nanoparticles/materials as an aggravating factor in hypersusceptible subjects, especially those with immune-related respiratory disorders using our in vivo experimental model. We first exhibit the effects of nanoparticles/materials on lung inflammation induced by bacterial endotoxin (lipopolysaccharide: LPS in vivo as a disease model in innate immunity, and demonstrated that nanoparticles instilled through both an intratracheal tube and an inhalation system can exacerbate the lung inflammation. Secondly, we introduce the effects of nanoparticles/materials on allergic asthma in vivo as a disease model in adaptive immunity, and showed that repetitive pulmonary exposure to nanoparticles has aggravating effects on allergic airway inflammation, including adjuvant effects on Th2-milieu. Taken together, nanoparticle exposure may synergistically facilitate pathological inflammatory conditions in the lung via both innate and adaptive immunological abnormalities.

  10. Big-deep-smart data in imaging for guiding materials design

    Science.gov (United States)

    Kalinin, Sergei V.; Sumpter, Bobby G.; Archibald, Richard K.

    2015-10-01

    Harnessing big data, deep data, and smart data from state-of-the-art imaging might accelerate the design and realization of advanced functional materials. Here we discuss new opportunities in materials design enabled by the availability of big data in imaging and data analytics approaches, including their limitations, in material systems of practical interest. We specifically focus on how these tools might help realize new discoveries in a timely manner. Such methodologies are particularly appropriate to explore in light of continued improvements in atomistic imaging, modelling and data analytics methods.

  11. Using Sibling Designs to Understand Neurodevelopmental Disorders: From Genes and Environments to Prevention Programming.

    Science.gov (United States)

    Wade, Mark; Prime, Heather; Madigan, Sheri

    2015-01-01

    Neurodevelopmental disorders represent a broad class of childhood neurological conditions that have a significant bearing on the wellbeing of children, families, and communities. In this review, we draw on evidence from two common and widely studied neurodevelopmental disorders-autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD)-to demonstrate the utility of genetically informed sibling designs in uncovering the nature and pathogenesis of these conditions. Specifically, we examine how twin, recurrence risk, and infant prospective tracking studies have contributed to our understanding of genetic and environmental liabilities towards neurodevelopmental morbidity through their impact on neurocognitive processes and structural/functional neuroanatomy. It is suggested that the siblings of children with ASD and ADHD are at risk not only of clinically elevated problems in these areas, but also of subthreshold symptoms and/or subtle impairments in various neurocognitive skills and other domains of psychosocial health. Finally, we close with a discussion on the practical relevance of sibling designs and how these might be used in the service of early screening, prevention, and intervention efforts that aim to alleviate the negative downstream consequences associated with disorders of neurodevelopment.

  12. Observation of disorder effects on charged carrier mobility in triphenylene-based discotic materials

    International Nuclear Information System (INIS)

    Zhang Chunxiu; He, Zhiqun; Mao Huaxiang; Wang Junjie; Wang Dongdong; Wang Yongsheng; Li Zhongxiao; Pu Jialing

    2007-01-01

    A discotic 2,6,10-trihydroxy-3,7,11-tripentyloxytriphenylene material and a triphenylene-based hyperbranched macromolecule were synthesized, in which the latter was prepared from AB m molecules in a one-pot reaction. Adipic chloride and butyryl chloride were chosen as terminal groups to the 2,6,10-trihydroxy-3,7,11-tripentyloxytriphenylene. Mesophase and their structural orders were determined using a polarized optical microscope and a differential scanning calorimeter. Carrier mobilities of the pure and composite materials were measured via a time-of-flight method. A change in carrier mobility on the morphology of the materials was further discussed. It was found that degree of crystallization was the key for a discotic triphenylene material to possess charge-transporting properties, no matter it is ordered or disordered

  13. Lightweight structure design for wind energy by integrating nanostructured materials

    International Nuclear Information System (INIS)

    Li, Ying; Lu, Jian

    2014-01-01

    Highlights: • Integrate high-strength nano-materials into lightweight design. • Lightweight design scheme for wind turbine tower application. • Expand the bending formulae for tapered tubular structures with varying thickness. • We rewrite the Secant Formula for a tapered beam under eccentric compression. - Abstract: Wind power develops very fast nowadays with high expectation. Although at the mean time, the use of taller towers, however, smacks head-on into the issue of transportability. The engineering base and computational tools have to be developed to match machine size and volume. Consequently the research on the light weight structures of tower is carrying out in the main countries which are actively developing wind energy. This paper reports a new design scheme of light weight structure for wind turbine tower. This design scheme is based on the integration of the nanostructured materials produced by the Surface Mechanical Attrition Treatment (SMAT) process. The objective of this study is to accomplish the weight reduction by optimizing the wall thickness of the tapered tubular structure. The basic methods include the identification of the critical zones and the distribution of the high strength materials according to different necessities. The equivalent strength or stiffness design method and the high strength material properties after SMAT process are combined together. Bending and buckling are two main kinds of static loads concerned in consideration. The study results reveal that there is still enough margin for weight reduction in the traditional wind turbine tower design

  14. Data Science and Optimal Learning for Material Discovery and Design

    Science.gov (United States)

    ; Optimal Learning for Material Discovery & Design Data Science and Optimal Learning for Material inference and optimization methods that can constrain predictions using insights and results from theory directions in the application of information theoretic tools to materials problems related to learning from

  15. Advanced materials for aqueous supercapacitors in the asymmetric design

    Directory of Open Access Journals (Sweden)

    Muniyandi Rajkumar

    2015-12-01

    Full Text Available Supercapacitors have been recognized as one of the promising energy storage devices in the future energy technology. In this perspective, rapid progress is made in the development of fundamental and applied aspects of supercapacitors. Various techniques have been developed specifically to estimate the specific capacitance. Numerous efforts have been made in the literature to increase the specific capacitance of electrode materials. Recently, researchers pay more attention on designing supercapacitors of asymmetric type with extending cell voltage and dissimilar materials with complementary working potentials. Researchers try to increase the specific energy of asymmetric supercapacitors (ASCs. Conversely, it is still a challenge to find a suitable operation conditions for ASCs in various designs, especially for the one with battery type electrode. In this review, we describe our recent research works and other reports on the preparation of various nanostructured electrode materials and the performances of both symmetric and asymmetric supercapacitors. Finally, we demonstrate effects of charge balance on the capacitive performances of ASCs which consist of one electrode material of the battery type and one capacitive material. We also demonstrate how to evaluate the charge capacities of both positive and negative electrode materials for this ASC application.

  16. Wide band design on the scaled absorbing material filled with flaky CIPs

    Science.gov (United States)

    Xu, Yonggang; Yuan, Liming; Gao, Wei; Wang, Xiaobing; Liang, Zichang; Liao, Yi

    2018-02-01

    The scaled target measurement is an important method to get the target characteristic. Radar absorbing materials are widely used in the low detectable target, considering the absorbing material frequency dispersion characteristics, it makes designing and manufacturing scaled radar absorbing materials on the scaled target very difficult. This paper proposed a wide band design method on the scaled absorbing material of the thin absorption coating with added carbonyl iron particles. According to the theoretical radar cross section (RCS) of the plate, the reflection loss determined by the permittivity and permeability was chosen as the main design factor. Then, the parameters of the scaled absorbing materials were designed using the effective medium theory, and the scaled absorbing material was constructed. Finally, the full-size coating plate and scaled coating plates (under three different scale factors) were simulated; the RCSs of the coating plates were numerically calculated and measured at 4 GHz and a scale factor of 2. The results showed that the compensated RCS of the scaled coating plate was close to that of the full-size coating plate, that is, the mean deviation was less than 0.5 dB, and the design method for the scaled material was very effective.

  17. Designing high-Performance layered thermoelectric materials through orbital engineering

    DEFF Research Database (Denmark)

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.

    2016-01-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited...... insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach...... naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth...

  18. A Tutorial Design Process Applied to an Introductory Materials Engineering Course

    Science.gov (United States)

    Rosenblatt, Rebecca; Heckler, Andrew F.; Flores, Katharine

    2013-01-01

    We apply a "tutorial design process", which has proven to be successful for a number of physics topics, to design curricular materials or "tutorials" aimed at improving student understanding of important concepts in a university-level introductory materials science and engineering course. The process involves the identification…

  19. Growing grass: a smart material interactive display, design and construction history

    NARCIS (Netherlands)

    Minuto, A.; Nijholt, Antinus

    2012-01-01

    In this paper we will present the design process and development of "Follow the Grass", our smart material interactive pervasive display, with related technical detailed explanation. We will present the design steps and prototypes with instructions for the use of smart materials (NiTiNOL) to create

  20. Molecular modeling for the design of novel performance chemicals and materials

    CERN Document Server

    Rai, Beena

    2012-01-01

    Molecular modeling (MM) tools offer significant benefits in the design of industrial chemical plants and material processing operations. While the role of MM in biological fields is well established, in most cases MM works as an accessory in novel products/materials development rather than a tool for direct innovation. As a result, MM engineers and practitioners are often seized with the question: ""How do I leverage these tools to develop novel materials or chemicals in my industry?"" Molecular Modeling for the Design of Novel Performance Chemicals and Materials answers this important questio

  1. Becoming a Do-it-yourself Designer of English Language Teaching Materials

    Directory of Open Access Journals (Sweden)

    Mark Wyatt

    2011-01-01

    Full Text Available Many language teachers around the world design materials to supplement those they are provided with to address the needs of the learners in their particular context. This is a task which requires practical knowledge of various kinds relating to learners and language learning, teaching and materials design. However, while there is a growing body of research into the practical knowledge of language teachers, little of this is longitudinal and there is a lack of research into how teachers develop as materials designers. This article focuses on one teacher's growth as a DIY (do-it-yourself designer of English language teaching materials during an in-service BA TESOL (teaching English to speakers of other languages programme in the Middle East. Using qualitative case study methodology, I follow the teacher's development over three years, exploring changes in ideas and teaching practices. Implications for in-service language teacher education are discussed. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs1101334

  2. Tunable structural color in organisms and photonic materials for design of bioinspired materials

    International Nuclear Information System (INIS)

    Fudouzi, Hiroshi

    2011-01-01

    In this paper, the key topics of tunable structural color in biology and material science are overviewed. Color in biology is considered for selected groups of tropical fish, octopus, squid and beetle. It is caused by nanoplates in iridophores and varies with their spacing, tilting angle and refractive index. These examples may provide valuable hints for the bioinspired design of photonic materials. 1D multilayer films and 3D colloidal crystals with tunable structural color are overviewed from the viewpoint of advanced materials. The tunability of structural color by swelling and strain is demonstrated on an example of opal composites. (topical review)

  3. Tunable structural color in organisms and photonic materials for design of bioinspired materials

    Directory of Open Access Journals (Sweden)

    Hiroshi Fudouzi

    2011-01-01

    Full Text Available In this paper, the key topics of tunable structural color in biology and material science are overviewed. Color in biology is considered for selected groups of tropical fish, octopus, squid and beetle. It is caused by nanoplates in iridophores and varies with their spacing, tilting angle and refractive index. These examples may provide valuable hints for the bioinspired design of photonic materials. 1D multilayer films and 3D colloidal crystals with tunable structural color are overviewed from the viewpoint of advanced materials. The tunability of structural color by swelling and strain is demonstrated on an example of opal composites.

  4. Tunable structural color in organisms and photonic materials for design of bioinspired materials

    Science.gov (United States)

    Fudouzi, Hiroshi

    2011-01-01

    In this paper, the key topics of tunable structural color in biology and material science are overviewed. Color in biology is considered for selected groups of tropical fish, octopus, squid and beetle. It is caused by nanoplates in iridophores and varies with their spacing, tilting angle and refractive index. These examples may provide valuable hints for the bioinspired design of photonic materials. 1D multilayer films and 3D colloidal crystals with tunable structural color are overviewed from the viewpoint of advanced materials. The tunability of structural color by swelling and strain is demonstrated on an example of opal composites. PMID:27877454

  5. Graded territories: Towards the design, specification and simulation of materially graded bending active structures

    DEFF Research Database (Denmark)

    Nicholas, Paul; Tamke, Martin; Ramsgaard Thomsen, Mette

    2012-01-01

    these structures, the property of bending is activated and varied through bespoke material means so as to match a desired form. Within the architectural design process, formal control depends upon design approaches for material specification and simulation that consider behavior at the level of the material...... element as well as the structure. We describe an evolving approach to material specification and simulation, and highlight the digital and material considerations that frame the process.......The ability to make materials with bespoke behavior affords new perspectives on incorporating material properties within the design process not available through natural materials. This paper reports the design and assembly of two bending-active, fibre-reinforced composite structures. Within...

  6. Materials selection in micromechanical design: an application of the Ashby approach

    OpenAIRE

    Srikar, V.T.; Spearing, S.M.

    2003-01-01

    The set of materials available to microsystems designers is rapidly expanding. Techniques now exist to introduce and integrate a large number of metals, alloys, ceramics, glasses, polymers, and elastomers into microsystems, motivating the need for a rational approach for materials selection in microsystems design. As a step toward such an approach, we focus on the initial stages of materials selection for micromechanical structures with minimum feature sizes greater than 1 /spl mu/m. The vari...

  7. Engaging Students On-Line:Does Gender Matter in Adoption of Learning Material Design?

    Directory of Open Access Journals (Sweden)

    Norziani Dahalan

    2013-12-01

    Full Text Available Education is reforming with the birth of the internet. Learning is not solely based on classroom basis but also through on-line. The revolution of Internet has transformed teaching via face-to-face into virtual teaching. The expansion of teaching deliveries suggests that we need interactive mechanism to accommodate course material for on-line students. However, creating on-line materials requires the conception of on-line instructional design. A suitable online material design will allow learners to engage with learning. Learners will have opportunities to develop their own understanding. In addition, suitable learning material will strengthen learner’s knowledge construction from their short-term memory to long-term memory. The purpose of this paper is to discover the learning material design approach based on gender by evaluating lecturer’s adoption of online material design using Keller’s ARCS model. The sample consisting of 30 lecturers from distance education learning reveals that gender differs in their adoption of learning material design specifically on getting attention of the student. The result also shows that relevance and satisfaction contribute to gender differences in learning material adoption. Limitations of the study and practical implications of these findings discussed.

  8. Teaching English Using Video Materials: Design and Delivery of a Practical Course

    Science.gov (United States)

    Lopez-Alvarado, Julio

    2017-01-01

    In this paper, a practical course for listening, speaking, reading and writing was designed using authentic video material. The aim of this paper is to offer tools to the TEFL teacher in order to design new course materials using video material. The development procedure is explained in detail, and the underpinning main theories are also…

  9. Structural studies of disordered materials using high-energy x-ray diffraction from ambient to extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kohara, Shinji [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Itou, Masayoshi [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Suzuya, Kentaro [Japan Atomic Energy Agency (J-PARC/JAEA), Tokai, Naka, Ibaraki 319-1195 (Japan); Inamura, Yasuhiro [Japan Atomic Energy Agency (J-PARC/JAEA), Tokai, Naka, Ibaraki 319-1195 (Japan); Sakurai, Yoshiharu [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Ohishi, Yasuo [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Takata, Masaki [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2007-12-19

    High-energy x-rays from a synchrotron radiation source allow us to obtain high-quality diffraction data for disordered materials from ambient to extreme conditions, which is necessary for revealing the detailed structures of glass, liquid and amorphous materials. We introduced high-energy x-ray diffraction beamlines and a dedicated diffractometer for glass, liquid and amorphous materials at SPring-8 and report the recent developments of ancillary equipment. Furthermore, the structures of liquid and amorphous materials determined from the high-energy x-ray diffraction data obtained at SPring-8 are discussed.

  10. Design of an intelligent materials data base for the IFR

    International Nuclear Information System (INIS)

    Mikaili, R.; Lambert, J.D.B.; Orth, T.D.

    1992-01-01

    In the development of the integral fast reactor (IFR) concept, there is a consensus that materials considerations are an important part of the reactor design, operation, and maintenance and that materials performance is central to liquid-metal reactor reliability and safety. In the design of the IRF materials data base, artificial intelligence techniques are being used to ensure efficient control of information. Intelligent control will provide for the selection of menus to be displayed, efficient data-base searches, and application-dependent guidance through the data base. The development of the IRF data base has progressed to the point of (a) completing the design of the data-base architecture and tables, (b) installing computer hardware for storing large amounts of data, (c) outlining strategies for data transferal, and (d) identifying ways to validate and secure the integrity of data

  11. A general solution to the material performance index for bending strength design

    International Nuclear Information System (INIS)

    Burgess, S.C.; Pasini, D.; Smith, D.J.; Alemzadeh, K.

    2006-01-01

    This paper presents a general solution to the material performance index for the bending strength design of beams. In general, the performance index for strength design is ρ f q /ρ where σ f is the material strength, ρ is the material density and q is a function of the direction of scaling. Previous studies have only solved q for three particular cases: proportional scaling of width and height (q=2/3), constrained height (q=1) and constrained width (q=1/2). This paper presents a general solution to the exponent q for any arbitrary direction of scaling. The index is used to produce performance maps that rank relative material performance for particular design cases. The performance index and the performance maps are applied to a design case study

  12. Sensory Integration Training Tool Design for Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Jiang Lijun

    2017-01-01

    Full Text Available This study aims to design a training tool for therapy of children with autism spectrum disorder (ASDs. Typically, ASDs pass through obstacle track several times with sandbags, which should be picked up from starting point and threw into a box at the end during sensory integration therapy. Counting the sandbags can help ASDs to have concept about the progress of mission. We redesign the counting box named “Skybox” which can help counting by playing sound after detect something throw in it. Aims to probe into the sound preference of two main subjects, an experiment with four kinds of sounds is conducted in this paper by using the method of paired comparisons. The result shows they like animals most, followed by human voice and nature sounds, and music instrument is the last. The material preference experiment shows two subjects like acrylic most, wood and paper are secondary while furry is the last. Skybox shortens their training time for 23.53%, 29.87% and 37.37% in three different projects. We consider that Skybox attracts ASDs therefore reduces their distraction and improves their performance in the usability test.

  13. Material orientation design of planar structures with prescribed anisotropy classes. Study of rhombic systems

    Science.gov (United States)

    Czubacki, Radosław

    2018-01-01

    The paper deals with the minimum compliance problem of 2D structures made of a non-homogeneous elastic material. In the first part of the paper a comparison between solutions of Free Material Design (FMD), Cubic Material Design (CMD) and Isotropic Material Design (IMD) is shown for a simply supported plate in a shape of a deep beam, subjected to a concentrated in-plane force at its upper face. The isoperimetric condition fixes the value of the cost of the design expressed as the integral of the trace of the Hooke tensor. In the second part of the paper the material design approaches are extended to rhombic system in 2D. For the rhombic system the material properties of the structures are set, the design variables being the trajectories of anisotropy directions which in 2D are described by one parameter. In the Orthotropic Orientation Design (OOD) no isoperimetric condition is used.

  14. Entombment Using Cementitious Materials: Design Considerations and International Experience

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Roger Ray

    2002-08-01

    Cementitious materials have physical and chemical properties that are well suited for the requirements of radioactive waste management. Namely, the materials have low permeability and durability that is consistent with the time frame required for short-lived radionuclides to decay. Furthermore, cementitious materials can provide a long-term chemical environment that substantially reduces the mobility of some long-lived radionuclides of concern for decommissioning (e.g., C-14, Ni-63, Ni-59). Because of these properties, cementitious materials are common in low-level radioactive waste disposal facilities throughout the world and are an attractive option for entombment of nuclear facilities. This paper describes design considerations for cementitious barriers in the context of performance over time frames of a few hundreds of years (directed toward short-lived radionuclides) and time frames of thousands of years (directed towards longer-lived radionuclides). The emphasis is on providing an overview of concepts for entombment that take advantage of the properties of cementitious materials and experience from the design of low-level radioactive waste disposal facilities. A few examples of the previous use of cementitious materials for entombment of decommissioned nuclear facilities and proposals for the use in future decommissioning of nuclear reactors in a few countries are also included to provide global perspective.

  15. Entombment Using Cementitious Materials: Design Considerations and International Experience

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, R.R.

    2002-05-15

    Cementitious materials have physical and chemical properties that are well suited for the requirements of radioactive waste management. Namely, the materials have low permeability and durability that is consistent with the time frame required for short-lived radionuclides to decay. Furthermore, cementitious materials can provide a long-term chemical environment that substantially reduces the mobility of some long-lived radionuclides of concern for decommissioning (e.g., C-14, Ni-63, Ni-59). Because of these properties, cementitious materials are common in low-level radioactive waste disposal facilities throughout the world and are an attractive option for entombment of nuclear facilities. This paper describes design considerations for cementitious barriers in the context of performance over time frames of a few hundreds of years (directed toward short-lived radionuclides) and time frames of thousands of years (directed towards longer-lived radionuclides). The emphasis is on providing a n overview of concepts for entombment that take advantage of the properties of cementitious materials and experience from the design of low-level radioactive waste disposal facilities. A few examples of the previous use of cementitious materials for entombment of decommissioned nuclear facilities and proposals for the use in future decommissioning of nuclear reactors in a few countries are also included to provide global perspective.

  16. Entombment Using Cementitious Materials: Design Considerations and International Experience

    International Nuclear Information System (INIS)

    Seitz, R.R.

    2002-01-01

    Cementitious materials have physical and chemical properties that are well suited for the requirements of radioactive waste management. Namely, the materials have low permeability and durability that is consistent with the time frame required for short-lived radionuclides to decay. Furthermore, cementitious materials can provide a long-term chemical environment that substantially reduces the mobility of some long-lived radionuclides of concern for decommissioning (e.g., C-14, Ni-63, Ni-59). Because of these properties, cementitious materials are common in low-level radioactive waste disposal facilities throughout the world and are an attractive option for entombment of nuclear facilities. This paper describes design considerations for cementitious barriers in the context of performance over time frames of a few hundreds of years (directed toward short-lived radionuclides) and time frames of thousands of years (directed towards longer-lived radionuclides). The emphasis is on providing a n overview of concepts for entombment that take advantage of the properties of cementitious materials and experience from the design of low-level radioactive waste disposal facilities. A few examples of the previous use of cementitious materials for entombment of decommissioned nuclear facilities and proposals for the use in future decommissioning of nuclear reactors in a few countries are also included to provide global perspective

  17. How to design education on mental disorders for general ...

    African Journals Online (AJOL)

    Design: Participatory action research was used to adapt the WHO programme. There were 3 phases to the study. Firstly a co-operative inquiry group of 10 GPs adapted the WHO materials. Secondly the findings of the inquiry were incorporated into the design of a web-based distance education programme. Thirdly the ...

  18. Influence of disorder on transfer characteristics of organic electrochemical transistors

    KAUST Repository

    Friedlein, Jacob T.

    2017-07-13

    Organic electrochemical transistors (OECTs) are receiving a great deal of attention as transducers of biological signals due to their high transconductance. A ubiquitous property of these devices is the non-monotonic dependence of transconductance on gate voltage. However, this behavior is not described by existing models. Using OECTs made of materials with different chemical and electrical properties, we show that this behavior arises from the influence of disorder on the electronic transport properties of the organic semiconductor and occurs even in the absence of contact resistance. These results imply that the non-monotonic transconductance is an intrinsic property of OECTs and cannot be eliminated by device design or contact engineering. Finally, we present a model based on the physics of electronic conduction in disordered materials. This model fits experimental transconductance curves and describes strategies for rational material design to improve OECT performance in sensing applications.

  19. Influence of disorder on transfer characteristics of organic electrochemical transistors

    KAUST Repository

    Friedlein, Jacob T.; Rivnay, Jonathan; Dunlap, David H.; McCulloch, Iain; Shaheen, Sean E.; McLeod, Robert R.; Malliaras, George G.

    2017-01-01

    Organic electrochemical transistors (OECTs) are receiving a great deal of attention as transducers of biological signals due to their high transconductance. A ubiquitous property of these devices is the non-monotonic dependence of transconductance on gate voltage. However, this behavior is not described by existing models. Using OECTs made of materials with different chemical and electrical properties, we show that this behavior arises from the influence of disorder on the electronic transport properties of the organic semiconductor and occurs even in the absence of contact resistance. These results imply that the non-monotonic transconductance is an intrinsic property of OECTs and cannot be eliminated by device design or contact engineering. Finally, we present a model based on the physics of electronic conduction in disordered materials. This model fits experimental transconductance curves and describes strategies for rational material design to improve OECT performance in sensing applications.

  20. Influence of disorder on transfer characteristics of organic electrochemical transistors

    Science.gov (United States)

    Friedlein, Jacob T.; Rivnay, Jonathan; Dunlap, David H.; McCulloch, Iain; Shaheen, Sean E.; McLeod, Robert R.; Malliaras, George G.

    2017-07-01

    Organic electrochemical transistors (OECTs) are receiving a great deal of attention as transducers of biological signals due to their high transconductance. A ubiquitous property of these devices is the non-monotonic dependence of transconductance on gate voltage. However, this behavior is not described by existing models. Using OECTs made of materials with different chemical and electrical properties, we show that this behavior arises from the influence of disorder on the electronic transport properties of the organic semiconductor and occurs even in the absence of contact resistance. These results imply that the non-monotonic transconductance is an intrinsic property of OECTs and cannot be eliminated by device design or contact engineering. Finally, we present a model based on the physics of electronic conduction in disordered materials. This model fits experimental transconductance curves and describes strategies for rational material design to improve OECT performance in sensing applications.

  1. Computational materials design

    International Nuclear Information System (INIS)

    Snyder, R.L.

    1999-01-01

    Full text: Trial and error experimentation is an extremely expensive route to the development of new materials. The coming age of reduced defense funding will dramatically alter the way in which advanced materials have developed. In the absence of large funding we must concentrate on reducing the time and expense that the R and D of a new material consumes. This may be accomplished through the development of computational materials science. Materials are selected today by comparing the technical requirements to the materials databases. When existing materials cannot meet the requirements we explore new systems to develop a new material using experimental databases like the PDF. After proof of concept, the scaling of the new material to manufacture requires evaluating millions of parameter combinations to optimize the performance of the new device. Historically this process takes 10 to 20 years and requires hundreds of millions of dollars. The development of a focused set of computational tools to predict the final properties of new materials will permit the exploration of new materials systems with only a limited amount of materials characterization. However, to bound computational extrapolations, the experimental formulations and characterization will need to be tightly coupled to the computational tasks. The required experimental data must be obtained by dynamic, in-situ, very rapid characterization. Finally, to evaluate the optimization matrix required to manufacture the new material, very rapid in situ analysis techniques will be essential to intelligently monitor and optimize the formation of a desired microstructure. Techniques and examples for the rapid real-time application of XRPD and optical microscopy will be shown. Recent developments in the cross linking of the world's structural and diffraction databases will be presented as the basis for the future Total Pattern Analysis by XRPD. Copyright (1999) Australian X-ray Analytical Association Inc

  2. Three roles for textiles as tangible working materials in co-design processes

    DEFF Research Database (Denmark)

    Heimdal, Elisabeth Jacobsen; Rosenqvist, Tanja Schultz

    2012-01-01

    Textiles are increasingly complex materials used in a growing number of applications, e. g. in architecture. The textile industry must therefore engage with other professions when developing both textiles and products of which textiles are a part. In this article, we argue that tools taken from...... the field of participatory design represent a potential for staging such co-design situations and report on our experience from a co-design process where architects, engineers and textile experts engaged in designing future textile solutions for Danish hospital environments. During this process we used what...... we call tangible working materials to stage the collaboration between the stakeholders engaged as co-designers. Our experience using the tangible working materials showed us that they can be divided into three types, with different attributes and roles in the design process: real, mediating...

  3. Study of New Materials Design based on Hadoop

    Directory of Open Access Journals (Sweden)

    Wu Jun

    2016-01-01

    Full Text Available With the rapid development of information technology, the scientific research shows that the data mining and other information technology could be used in the design of new materials. It is explicit that Intelligent Materials research focuses on using physical and chemical principles combined with computer techniques such as Big Data, Cloud computing and Intelligent modeling and simulation to solve chemical problems. In this paper, based on the cluster based outlier algorithm as the main body, this paper discusses the definition New Materials research In the Hadoop cloud platform, and the parallel processing of Map-Reduce model. The performance this model of new material was established by using the method of Map-Reduction provided the basis for the performance optimization.

  4. Materializing a responsive interior: designing minimum energy structures

    DEFF Research Database (Denmark)

    Mossé, Aurélie; Kofod, Guggi; Ramsgaard Thomsen, Mette

    2011-01-01

    This paper discusses a series of design-led experiments investigating future possibilities for architectural materialization relying on minimum energy structures as an example of adaptive structure. The structures have been made as laminates of elastic membrane under high tension with flexible...... (Lendlein, Kelch 2002) or light (van Oosten, Bastiaansen et al. 2009). All in all, this approach could form a whole new design paradigm, in which efficient 2D-manufacturing can lead to highly flexible, low weight and adaptable 3D-structures. This is illustrated by the design and manufacture of electro...

  5. Materials by design

    International Nuclear Information System (INIS)

    Eberhardt, J.; Hay, P.J.; Carpenter, J.A. Jr.

    1986-01-01

    Major developments in materials characterization instrumentation over the past decade have helped significantly to elucidate complex processes and phenomena connected with the microstructure of materials and interfacial interactions. Equally remarkable advances in theoretical models and computer technology also have been taking place during this period. These latter now permit, for example, in selected cases the computation of material structures and bonding and the prediction of some material properties. Two assessments of the state of the art of instrumental techniques and theoretical methods for the study of material structures and properties have recently been conducted. This paper discusses aspects from these assessments of computational theoretical methods apply to materials

  6. Materials, Designs and Standards Used in Ski-Boots for Alpine Skiing

    Directory of Open Access Journals (Sweden)

    Matteo Moncalero

    2013-10-01

    Full Text Available This review article reports the recent advances in the study, design and production of ski-boots for alpine skiing. An overview of the different designs and the materials used in ski-boot construction is provided giving particular emphasis to the effect of these parameters on the final performances and on the prevention of injuries. The use of specific materials for ski-boots dedicated to different disciplines (race skiing, mogul skiing, ski-mountaineering etc. has been correlated with the chemical and physical properties of the polymeric materials employed. A review of the scientific literature and the most interesting patents is also presented, correlating the results reported with the performances and industrial production of ski-boots. Suggestions for new studies and the use of advanced materials are also provided. A final section dedicated to the standards involved in ski-boot design completes this review article.

  7. Designing Educative Curriculum Materials: A Theoretically and Empirically Driven Process

    Science.gov (United States)

    Davis, Elizabeth A.; Palincsar, Annemarie Sullivan; Arias, Anna Maria; Bismack, Amber Schultz; Marulis, Loren M.; Iwashyna, Stefanie K.

    2014-01-01

    In this article, the authors argue for a design process in the development of educative curriculum materials that is theoretically and empirically driven. Using a design-based research approach, they describe their design process for incorporating educative features intended to promote teacher learning into existing, high-quality curriculum…

  8. FOREWORD: Computational methodologies for designing materials Computational methodologies for designing materials

    Science.gov (United States)

    Rahman, Talat S.

    2009-02-01

    It would be fair to say that in the past few decades, theory and computer modeling have played a major role in elucidating the microscopic factors that dictate the properties of functional novel materials. Together with advances in experimental techniques, theoretical methods are becoming increasingly capable of predicting properties of materials at different length scales, thereby bringing in sight the long-sought goal of designing material properties according to need. Advances in computer technology and their availability at a reasonable cost around the world have made tit all the more urgent to disseminate what is now known about these modern computational techniques. In this special issue on computational methodologies for materials by design we have tried to solicit articles from authors whose works collectively represent the microcosm of developments in the area. This turned out to be a difficult task for a variety of reasons, not the least of which is space limitation in this special issue. Nevertheless, we gathered twenty articles that represent some of the important directions in which theory and modeling are proceeding in the general effort to capture the ability to produce materials by design. The majority of papers presented here focus on technique developments that are expected to uncover further the fundamental processes responsible for material properties, and for their growth modes and morphological evolutions. As for material properties, some of the articles here address the challenges that continue to emerge from attempts at accurate descriptions of magnetic properties, of electronically excited states, and of sparse matter, all of which demand new looks at density functional theory (DFT). I should hasten to add that much of the success in accurate computational modeling of materials emanates from the remarkable predictive power of DFT, without which we would not be able to place the subject on firm theoretical grounds. As we know and will also

  9. Designing towards the Unknown: Engaging with Material and Aesthetic Uncertainty

    Directory of Open Access Journals (Sweden)

    Danielle Wilde

    2017-12-01

    Full Text Available New materials with new capabilities demand new ways of approaching design. Destabilising existing methods is crucial to develop new methods. Yet, radical destabilisation—where outcomes remain unknown long enough that new discoveries become possible—is not easy in technology design where complex interdisciplinary teams with time and resource constraints need to deliver concrete outcomes on schedule. The Poetic Kinaesthetic Interface project (PKI engages with this problematic directly. In PKI we use unfolding processes—informed by participatory, speculative and critical design—in emergent actions, to design towards unknown outcomes, using unknown materials. The impossibility of this task is proving as useful as it is disruptive. At its most potent, it is destabilising expectations, aesthetics and processes. Keeping the researchers, collaborators and participants in a state of unknowing, is opening the research potential to far-ranging possibilities. In this article we unpack the motivations driving the PKI project. We present our mixed-methodology, which entangles textile crafts, design interactions and materiality to shape an embodied enquiry. Our research outcomes are procedural and methodological. PKI brings together diverse human, non-human, known and unknown actors to discover where the emergent assemblages might lead. Our approach is re-invigorating—as it demands re-envisioning of—the design process.

  10. Materials design data for reduced activation martensitic steel type EUROFER

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A.-A.F. E-mail: tavassoli@cea.fr; Alamo, A.; Bedel, L.; Forest, L.; Gentzbittel, J.-M.; Rensman, J.-W.; Diegele, E.; Lindau, R.; Schirra, M.; Schmitt, R.; Schneider, H.C.; Petersen, C.; Lancha, A.-M.; Fernandez, P.; Filacchioni, G.; Maday, M.F.; Mergia, K.; Boukos, N.; Baluc,; Spaetig, P.; Alves, E.; Lucon, E

    2004-08-01

    Materials design limits derived so far from the data generated in Europe for the reduced activation ferritic/martensitic (RAFM) steel type Eurofer are presented. These data address the short-term needs of the ITER Test Blanket Modules and a DEMOnstration fusion reactor. Products tested include plates, bars, tubes, TIG and EB welds, as well as powder consolidated blocks and solid-solid HIP joints. Effects of thermal ageing and low dose neutron irradiation are also included. Results are sorted and screened according to design code requirements before being introduced in reference databases. From the physical properties databases, variations of magnetic properties, modulus of elasticity, density, thermal conductivity, thermal diffusivity, specific heat, mean and instantaneous linear coefficients of thermal expansion versus temperature are derived. From the tensile and creep properties databases design allowable stresses are derived. From the instrumented Charpy impact and fracture toughness databases, ductile to brittle transition temperature, toughness and behavior of materials in different fracture modes are evaluated. From the fatigue database, total strain range versus number of cycles to failure curves are plotted and used to derive fatigue design curves. Cyclic curves are also derived and compared with monotonic hardening curves. Finally, irradiated and aged materials data are compared to ensure that the safety margins incorporated in unirradiated design limits are not exceeded.

  11. Hybrid materials science: a promised land for the integrative design of multifunctional materials

    Science.gov (United States)

    Nicole, Lionel; Laberty-Robert, Christel; Rozes, Laurence; Sanchez, Clément

    2014-05-01

    For more than 5000 years, organic-inorganic composite materials created by men via skill and serendipity have been part of human culture and customs. The concept of ``hybrid organic-inorganic'' nanocomposites exploded in the second half of the 20th century with the expansion of the so-called ``chimie douce'' which led to many collaborations between a large set of chemists, physicists and biologists. Consequently, the scientific melting pot of these very different scientific communities created a new pluridisciplinary school of thought. Today, the tremendous effort of basic research performed in the last twenty years allows tailor-made multifunctional hybrid materials with perfect control over composition, structure and shape. Some of these hybrid materials have already entered the industrial market. Many tailor-made multiscale hybrids are increasingly impacting numerous fields of applications: optics, catalysis, energy, environment, nanomedicine, etc. In the present feature article, we emphasize several fundamental and applied aspects of the hybrid materials field: bioreplication, mesostructured thin films, Lego-like chemistry designed hybrid nanocomposites, and advanced hybrid materials for energy. Finally, a few commercial applications of hybrid materials will be presented.

  12. Hybrid materials science: a promised land for the integrative design of multifunctional materials.

    Science.gov (United States)

    Nicole, Lionel; Laberty-Robert, Christel; Rozes, Laurence; Sanchez, Clément

    2014-06-21

    For more than 5000 years, organic-inorganic composite materials created by men via skill and serendipity have been part of human culture and customs. The concept of "hybrid organic-inorganic" nanocomposites exploded in the second half of the 20th century with the expansion of the so-called "chimie douce" which led to many collaborations between a large set of chemists, physicists and biologists. Consequently, the scientific melting pot of these very different scientific communities created a new pluridisciplinary school of thought. Today, the tremendous effort of basic research performed in the last twenty years allows tailor-made multifunctional hybrid materials with perfect control over composition, structure and shape. Some of these hybrid materials have already entered the industrial market. Many tailor-made multiscale hybrids are increasingly impacting numerous fields of applications: optics, catalysis, energy, environment, nanomedicine, etc. In the present feature article, we emphasize several fundamental and applied aspects of the hybrid materials field: bioreplication, mesostructured thin films, Lego-like chemistry designed hybrid nanocomposites, and advanced hybrid materials for energy. Finally, a few commercial applications of hybrid materials will be presented.

  13. On the utility of within-participant research design when working with patients with neurocognitive disorders.

    Science.gov (United States)

    Steingrimsdottir, Hanna Steinunn; Arntzen, Erik

    2015-01-01

    Within-participant research designs are frequently used within the field of behavior analysis to document changes in behavior before, during, and after treatment. The purpose of the present article is to show the utility of within-participant research designs when working with older adults with neurocognitive disorders. The reason for advocating for these types of experimental designs is that they provide valid information about whether the changes that are observed in the dependent variable are caused by manipulations of the independent variable, or whether the change may be due to other variables. We provide examples from published papers where within-participant research design has been used with patients with neurocognitive disorders. The examples vary somewhat, demonstrating possible applications. It is our suggestion that the within-participant research design may be used more often with the targeted client group than is documented in the literature at the current date.

  14. Using Sibling Designs to Understand Neurodevelopmental Disorders: From Genes and Environments to Prevention Programming

    Directory of Open Access Journals (Sweden)

    Mark Wade

    2015-01-01

    Full Text Available Neurodevelopmental disorders represent a broad class of childhood neurological conditions that have a significant bearing on the wellbeing of children, families, and communities. In this review, we draw on evidence from two common and widely studied neurodevelopmental disorders—autism spectrum disorder (ASD and attention-deficit hyperactivity disorder (ADHD—to demonstrate the utility of genetically informed sibling designs in uncovering the nature and pathogenesis of these conditions. Specifically, we examine how twin, recurrence risk, and infant prospective tracking studies have contributed to our understanding of genetic and environmental liabilities towards neurodevelopmental morbidity through their impact on neurocognitive processes and structural/functional neuroanatomy. It is suggested that the siblings of children with ASD and ADHD are at risk not only of clinically elevated problems in these areas, but also of subthreshold symptoms and/or subtle impairments in various neurocognitive skills and other domains of psychosocial health. Finally, we close with a discussion on the practical relevance of sibling designs and how these might be used in the service of early screening, prevention, and intervention efforts that aim to alleviate the negative downstream consequences associated with disorders of neurodevelopment.

  15. High-temperature mechanical and material design for SiC composites

    International Nuclear Information System (INIS)

    Ghoniem, N.M.

    1992-01-01

    Silicon Carbide (SiC) fiber reinforced composites (FRC's) are strong potential candidate structural and high heat flux materials for fusion reactors. During this past decade, they have been vigorously developed for use in aerospace and transportation applications. Recent fusion reactor systems studies, such as ARIES, have concluded that further development of SiC composites will result in significant safety, operational, and waste disposal advantages for fusion systems. A concise discussion of the main material and design issues related to the use of SiC FRC's as structural materials in future fusion systems is given in this paper. The status of material processing of SiC/SiC composites is first reviewed. The advantages and shortcomings of the leading processing technology, known as Chemical Vapor Infiltration are particularly highlighted. A brief outline of the design-relevant physical, mechanical, and radiation data base is then presented. SiC/SiC FRC's possess the advantage of increased apparent toughness under mechanical loading conditions. This increased toughness, however, is associated with the nucleation and propagation of small crack patterns in the structure. Design approaches and failure criteria under these conditions are discussed

  16. Design of Peptide Immunotherapies for MHC Class-II-Associated Autoimmune Disorders

    Directory of Open Access Journals (Sweden)

    Masha Fridkis-Hareli

    2013-01-01

    Full Text Available Autoimmune disorders, that occur when autoreactive immune cells are induced to activate their responses against self-tissues, affect one percent of the world population and represent one of the top 10 leading causes of death. The major histocompatibility complex (MHC is a principal susceptibility locus for many human autoimmune diseases, in which self-tissue antigens providing targets for pathogenic lymphocytes are bound to HLA molecules encoded by disease-associated alleles. In spite of the attempts to design strategies for inhibition of antigen presentation targeting the MHC-peptide/TCR complex via generation of blocking antibodies, altered peptide ligands (APL, or inhibitors of costimulatory molecules, potent therapies with minimal side effects have yet to be developed. Copaxone (glatiramer acetate, GA is a random synthetic amino acid copolymer that reduces the relapse rate by about 30% in relapsing-remitting multiple sclerosis (MS patients. Based on the elucidated binding motifs of Copaxone and of the anchor residues of the immunogenic myelin basic protein (MBP peptide to HLA-DR molecules, novel copolymers have been designed and proved to be more effective in suppressing MS-like disease in mice. In this report, we describe the rationale for design of second-generation synthetic random copolymers as candidate drugs for a number of MHC class-II-associated autoimmune disorders.

  17. Conceptual Design Report for the Irradiated Materials Characterization Laboratory (IMCL)

    Energy Technology Data Exchange (ETDEWEB)

    Stephanie Austad

    2010-06-01

    This document describes the design at a conceptual level for the Irradiated Materials Characterization Laboratory (IMCL) to be located at the Materials and Fuels Complex (MFC) at the Idaho National Laboratory (INL). The IMCL is an 11,000-ft2, Hazard Category-2 nuclear facility that is designed for use as a state of the-art nuclear facility for the purpose of hands-on and remote handling, characterization, and examination of irradiated and nonirradiated nuclear material samples. The IMCL will accommodate a series of future, modular, and reconfigurable instrument enclosures or caves. To provide a bounding design basis envelope for the facility-provided space and infrastructure, an instrument enclosure or cave configuration was developed and is described in some detail. However, the future instrument enclosures may be modular, integral with the instrument, or reconfigurable to enable various characterization environments to be configured as changes in demand occur. They are not provided as part of the facility.

  18. Design and fabrication of irradiation testing capsule for research reactor materials

    International Nuclear Information System (INIS)

    Yang, Seong Woo; Kim, Bong Goo; Park, Seung Jae; Cho, Man Soon; Choo, Kee Nam; Oh, Jong Myeong; Choi, Myeong Hwan; Lee, Byung Chul; Kang, Suk Hoon; Kim, Dae Jong; Chun, Young Bum; Kim, Tae Kyu

    2012-01-01

    Recently, the demand of research reactors is increasing because there are many ageing research reactors in the world. Also, the production of radioisotope related with the medical purpose is very important. Korea Atomic Energy Research Institute (KAERI) is designing and licensing for Jordan Research and Training Reactor (JRTR) and new type research reactor for export which will be constructed in Amman, Jordan and Busan, Korea, respectively. Thus, It is expected that more research reactors will be designed and constructed by KAERI. To design the research reactor, the irradiation performance and behavior of core structure material are necessary. However, the irradiation behavior of these materials is not yet investigated. Therefore, the irradiation performance must be verified by irradiation test. 11M 20K and 11M 21K irradiation capsules were designed and fabricated to conduct the irradiation test for some candidate core materials, Zircaloy 4, beryllium, and graphite, at HANARO. In this paper, the design and fabrication features of 11M 20K and 11M 21K were discussed

  19. Design and fabrication of irradiation testing capsule for research reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seong Woo; Kim, Bong Goo; Park, Seung Jae; Cho, Man Soon; Choo, Kee Nam; Oh, Jong Myeong; Choi, Myeong Hwan; Lee, Byung Chul; Kang, Suk Hoon; Kim, Dae Jong; Chun, Young Bum; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    Recently, the demand of research reactors is increasing because there are many ageing research reactors in the world. Also, the production of radioisotope related with the medical purpose is very important. Korea Atomic Energy Research Institute (KAERI) is designing and licensing for Jordan Research and Training Reactor (JRTR) and new type research reactor for export which will be constructed in Amman, Jordan and Busan, Korea, respectively. Thus, It is expected that more research reactors will be designed and constructed by KAERI. To design the research reactor, the irradiation performance and behavior of core structure material are necessary. However, the irradiation behavior of these materials is not yet investigated. Therefore, the irradiation performance must be verified by irradiation test. 11M 20K and 11M 21K irradiation capsules were designed and fabricated to conduct the irradiation test for some candidate core materials, Zircaloy 4, beryllium, and graphite, at HANARO. In this paper, the design and fabrication features of 11M 20K and 11M 21K were discussed.

  20. Design of a materials testing experiment for the INTOR

    International Nuclear Information System (INIS)

    Vogel, M.A.; Opperman, E.K.

    1981-01-01

    The United States, Japan, USSR and the European community are jointly participating in the design of an International Tokamak Reactor called INTOR. In support of the US contribution to the INTOR design, the features of an experiment for bulk neutron irradiation damage studies were developed. It is anticipated that materials testing will be an important part of the programmatic mission of INTOR and consequently the requirements for materials testing in INTOR must be identified early in the reactor design to insure compatibility. The design features of the experiment, called a Channel Test, are given in this paper. The major components of the channel test are the water cooled heat sink (channel module) and the specimen capsule. The temperature within each of the 153 specimen capsules is predetermined by engineering the thermal barrier between the specimen capsule and heat sink. Individual capsules can be independently accessed and are designed to operate at a predetermined temperature within the range of 50 to 700 0 C. The total irradiation volume within a single channel test is 45 liters. Features of the channel test that result in experimental versatility and simplified remote access and handling are discussed

  1. MDTS: automatic complex materials design using Monte Carlo tree search

    Science.gov (United States)

    Dieb, Thaer M.; Ju, Shenghong; Yoshizoe, Kazuki; Hou, Zhufeng; Shiomi, Junichiro; Tsuda, Koji

    2017-12-01

    Complex materials design is often represented as a black-box combinatorial optimization problem. In this paper, we present a novel python library called MDTS (Materials Design using Tree Search). Our algorithm employs a Monte Carlo tree search approach, which has shown exceptional performance in computer Go game. Unlike evolutionary algorithms that require user intervention to set parameters appropriately, MDTS has no tuning parameters and works autonomously in various problems. In comparison to a Bayesian optimization package, our algorithm showed competitive search efficiency and superior scalability. We succeeded in designing large Silicon-Germanium (Si-Ge) alloy structures that Bayesian optimization could not deal with due to excessive computational cost. MDTS is available at https://github.com/tsudalab/MDTS.

  2. Design and construction of the Fuels and Materials Examination Facility

    International Nuclear Information System (INIS)

    Burgess, C.A.

    1979-01-01

    Final design is more than 85 percent complete on the Fuels and Materials Examination Facility, the facility for post-irradiation examination of the fuels and materials tests irradiated in the FFTF and for fuel process development, experimental test pin fabrication and supporting storage, assay, and analytical chemistry functions. The overall facility is generally described with specific information given on some of the design features. Construction has been initiated and more than 10% of the construction contracts have been awarded on a fixed price basis

  3. Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design

    Science.gov (United States)

    Liu, Jilei; Wang, Jin; Xu, Chaohe; Li, Chunzhong; Lin, Jianyi

    2017-01-01

    Abstract Tremendous efforts have been dedicated into the development of high‐performance energy storage devices with nanoscale design and hybrid approaches. The boundary between the electrochemical capacitors and batteries becomes less distinctive. The same material may display capacitive or battery‐like behavior depending on the electrode design and the charge storage guest ions. Therefore, the underlying mechanisms and the electrochemical processes occurring upon charge storage may be confusing for researchers who are new to the field as well as some of the chemists and material scientists already in the field. This review provides fundamentals of the similarities and differences between electrochemical capacitors and batteries from kinetic and material point of view. Basic techniques and analysis methods to distinguish the capacitive and battery‐like behavior are discussed. Furthermore, guidelines for material selection, the state‐of‐the‐art materials, and the electrode design rules to advanced electrode are proposed. PMID:29375964

  4. Implications of material selection on the design of packaging machinery.

    Science.gov (United States)

    Merritt, J P

    2009-01-01

    Material selection has significant implications on the design and cost of horizontal-form-fill-seal packaging machinery. To avoid excessive costs, machine redesigns and project delays, material selection must be reconciled early in the project and revisited throughout the construction of the machine.

  5. Performance evaluation of seal coat materials and designs.

    Science.gov (United States)

    2011-01-01

    "This project presents an evaluation of seal coat materials and design method. The primary objectives of this research are 1) to evaluate seal coat performance : from various combinations of aggregates and emulsions in terms of aggregate loss; 2) to ...

  6. European DEMO divertor target: Operational requirements and material-design interface

    Directory of Open Access Journals (Sweden)

    J.H. You

    2016-12-01

    Full Text Available Recently, an integrated program of conceptual design activities for the European DEMO reactor was launched in the framework of the EUROfusion Consortium, where reliable power handling capability was identified as one of the most critical scientific as well as technological challenges for a DEMO reactor. The divertor is the key in-vessel plasma-facing component being in charge of power exhaust and removal of impurity particles. The DEMO divertor target will have to withstand extreme thermal loads where the local peak heat flux is expected to reach up to 20 MW/m2 during slow transient events in DEMO. To assure sufficient heat removal capability of the divertor target against normal and transient operational scenarios under expected cumulative neutron dose of up to 13 dpa is one of the fundamental engineering challenges imposed on target design. To develop the design of the DEMO divertor and related technologies, an R&D work package ‘Divertor’ has been set up in this consortium. The subproject ‘Target Development’ is devoted to the development of the conceptual design and the core technologies of the plasma-facing target. Devising and implementing novel structural heat sink materials (e.g. W/Cu composites to advanced target design concepts is one of the major objectives of this subproject. In this paper, the underlying design requirements imposed by the envisaged power exhaust goal and the prominent material-design interface issues are discussed. In addition, the candidate design concepts being currently considered are presented together with the related material issues. Finally, the first results achieved so far are presented.

  7. Materials interaction tests to identify base and coating materials for an enhanced in-vessel core catcher design

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, J.L.; Knudson, D.L.; Condie, K.G.; Swank, W.D. [Idaho National Engineering and Environmental Laboratory, Idaho Falls ID (United States); Cheung, F.B. [Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park PA (United States); Suh, K.Y. [Seoul National University, Department of Nuclear Engineering, Seoul (Korea, Republic of); Kim, S.B. [Korea Atomic Energy Research Institute, Severe Accident Research Project, Taejon (Korea, Republic of)

    2004-07-01

    An enhanced in-vessel core catcher is being designed and evaluated, it must ensure In-Vessel Retention of core materials that may relocate under severe accident conditions in advanced reactors. To reduce cost and simplify manufacture and installation, this new core catcher design consists of several interlocking sections that are machined to fit together when inserted into the lower head. If needed, the core catcher can be manufactured with holes to accommodate lower head penetrations. Each section of the core catcher consists of two material layers with an option to add a third layer (if deemed necessary): a base material, which has the capability to support and contain the mass of core materials that may relocate during a severe accident; an insulating oxide coating material on top of the base material, which resists interactions with high-temperature core materials; and an optional coating on the bottom side of the base material to prevent any potential oxidation of the base material during the lifetime of the reactor. Initial evaluations suggest that a thermally-sprayed oxide material is the most promising candidate insulator coating for a core catcher. Tests suggest that 2 coatings can provide adequate protection to a stainless steel core catcher: -) a 500 {mu}m thick zirconium dioxide coating over a 100-200 {mu}m Inconel 718 bond coating, and -) a 500 {mu}m thick magnesium zirconate coating.

  8. Design and Use of Interactive Social Stories for Children with Autism Spectrum Disorder (ASD)

    Science.gov (United States)

    Sani-Bozkurt, Sunagul; Vuran, Sezgin; Akbulut, Yavuz

    2017-01-01

    The current study aimed to design technology-supported interactive social stories to teach social skills to children with autism spectrum disorder (ASD). A design-based research was implemented with children with ASD along with the participation of their mothers, teachers, peers and field experts. An iterative remediation process was followed…

  9. Predicting the microstructure-dependent mechanical performance of materials for early-stage design

    International Nuclear Information System (INIS)

    Dimiduk, D.M.; Uchic, M.D.; Parathasarathy, T.A.; Rao, S.I.; Choi, Y.-S.

    2004-01-01

    A description is offered of a simulation and testing methodology for structural materials that incorporates the influence of the local, microscopic and submicroscopic heterogeneous nature of material properties directly into design procedures. The new methodology builds upon a multitude of rapid microstructural and property assessments of selected local regions of a material (i.e. single-crystal regions, defected regions, grain aggregates, etc.), perhaps from a fully-processed component, or from materials specifically prepared to represent selected aspects of the full-scale process. The results from these assessments are used to define parameters within a hierarchy of mathematical and numerical representations of the material, and together in turn these may be used in design performance simulation codes to predict the intrinsic response of larger-scale structures. Further, the methodology may be used to anticipate the effects of defects on the performance of the full-scale structure. Most steps of this alternative design and test methodology are amenable to automation, and the methodology as a whole will reduce the number of iterative large-scale cycles required to qualify a material's suitability for structural service; thus, the new method is a framework for accelerating the development of structural materials

  10. Numerical study and design optimization of electromagnetic energy harvesters integrated with flexible magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sang Won [Hanyang University, Seoul (Korea, Republic of)

    2017-05-15

    This study presents a new design of an electromagnetic energy harvester integrated with a soft magnetic material. The harvester design optimizes the magnetic material characteristics and the size of a rectangular permanent magnet. The design employs a complete magnetic circuit made of (1) a thin-film soft magnetic material that facilitates a flexible but highly (magnetically) permeable beam and (2) an optimally-sized magnet that maximizes the harvester performance. The design is demonstrated to reduce magnetic flux leakage, and thus considerably enhances both magnetic flux density (B) and its change by time (dB/dt), which both influence harvester performance. The improvement in harvester performances strongly depends on critical design parameters, especially, the magnet size and characteristics of magnetic materials, including permeability, stiffness, and thickness. The analyses conclude that recently-introduced nanomaterials (having ultrahigh magnetic permeability) can potentially innovate harvester performances. However, the performance may be degraded without design optimization. Once optimized, the integrated nanomaterials facilitate a significant improvement compared with a conventional design without integrated magnetic materials.

  11. Numerical study and design optimization of electromagnetic energy harvesters integrated with flexible magnetic materials

    International Nuclear Information System (INIS)

    Yoon, Sang Won

    2017-01-01

    This study presents a new design of an electromagnetic energy harvester integrated with a soft magnetic material. The harvester design optimizes the magnetic material characteristics and the size of a rectangular permanent magnet. The design employs a complete magnetic circuit made of (1) a thin-film soft magnetic material that facilitates a flexible but highly (magnetically) permeable beam and (2) an optimally-sized magnet that maximizes the harvester performance. The design is demonstrated to reduce magnetic flux leakage, and thus considerably enhances both magnetic flux density (B) and its change by time (dB/dt), which both influence harvester performance. The improvement in harvester performances strongly depends on critical design parameters, especially, the magnet size and characteristics of magnetic materials, including permeability, stiffness, and thickness. The analyses conclude that recently-introduced nanomaterials (having ultrahigh magnetic permeability) can potentially innovate harvester performances. However, the performance may be degraded without design optimization. Once optimized, the integrated nanomaterials facilitate a significant improvement compared with a conventional design without integrated magnetic materials.

  12. The Importance of Phonons with Negative Phase Quotient in Disordered Solids.

    Science.gov (United States)

    Seyf, Hamid Reza; Lv, Wei; Rohskopf, Andrew; Henry, Asegun

    2018-02-08

    Current understanding of phonons is based on the phonon gas model (PGM), which is best rationalized for crystalline materials. However, most of the phonons/modes in disordered materials have a different character and thus may contribute to heat conduction in a fundamentally different way than is described by PGM. For the modes in crystals, which have sinusoidal character, one can separate the modes into two primary categories, namely acoustic and optical modes. However, for the modes in disordered materials, such designations may no longer rigorously apply. Nonetheless, the phase quotient (PQ) is a quantity that can be used to evaluate whether a mode more so shares a distinguishing property of acoustic vibrations manifested as a positive PQ, or a distinguishing property of an optical vibrations manifested as negative PQ. In thinking about this characteristic, there is essentially no intuition regarding the role of positive vs. negative PQ vibrational modes in disordered solids. Given this gap in understanding, herein we studied the respective contributions to thermal conductivity for several disordered solids as a function of PQ. The analysis sheds light on the importance of optical like/negative PQ modes in structurally/compositionally disordered solids, whereas in crystalline materials, the contributions of optical modes are usually small.

  13. Electron work function-a promising guiding parameter for material design.

    Science.gov (United States)

    Lu, Hao; Liu, Ziran; Yan, Xianguo; Li, Dongyang; Parent, Leo; Tian, Harry

    2016-04-14

    Using nickel added X70 steel as a sample material, we demonstrate that electron work function (EWF), which largely reflects the electron behavior of materials, could be used as a guide parameter for material modification or design. Adding Ni having a higher electron work function to X70 steel brings more "free" electrons to the steel, leading to increased overall work function, accompanied with enhanced e(-)-nuclei interactions or higher atomic bond strength. Young's modulus and hardness increase correspondingly. However, the free electron density and work function decrease as the Ni content is continuously increased, accompanied with the formation of a second phase, FeNi3, which is softer with a lower work function. The decrease in the overall work function corresponds to deterioration of the mechanical strength of the steel. It is expected that EWF, a simple but fundamental parameter, may lead to new methodologies or supplementary approaches for metallic materials design or tailoring on a feasible electronic base.

  14. Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials

    International Nuclear Information System (INIS)

    Lidorikis, E.; Sigalas, M. M.; Economou, E. N.; Soukoulis, C. M.

    2000-01-01

    By using two ab initio numerical methods, we study the effects that disorder has on the spectral gaps and on wave localization in two-dimensional photonic-band-gap materials. We find that there are basically two different responses depending on the lattice realization (solid dielectric cylinders in air or vice versa), the wave polarization, and the particular form under which disorder is introduced. Two different pictures for the photonic states are employed, the ''nearly free'' photon and the ''strongly localized'' photon. These originate from the two different mechanisms responsible for the formation of the spectral gaps, i.e., multiple scattering and single scatterer resonances, and they qualitatively explain our results. (c) 2000 The American Physical Society

  15. Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science.

    Science.gov (United States)

    Guerette, Paul A; Hoon, Shawn; Seow, Yiqi; Raida, Manfred; Masic, Admir; Wong, Fong T; Ho, Vincent H B; Kong, Kiat Whye; Demirel, Melik C; Pena-Francesch, Abdon; Amini, Shahrouz; Tay, Gavin Z; Ding, Dawei; Miserez, Ali

    2013-10-01

    Efforts to engineer new materials inspired by biological structures are hampered by the lack of genomic data from many model organisms studied in biomimetic research. Here we show that biomimetic engineering can be accelerated by integrating high-throughput RNA-seq with proteomics and advanced materials characterization. This approach can be applied to a broad range of systems, as we illustrate by investigating diverse high-performance biological materials involved in embryo protection, adhesion and predation. In one example, we rapidly engineer recombinant squid sucker ring teeth proteins into a range of structural and functional materials, including nanopatterned surfaces and photo-cross-linked films that exceed the mechanical properties of most natural and synthetic polymers. Integrating RNA-seq with proteomics and materials science facilitates the molecular characterization of natural materials and the effective translation of their molecular designs into a wide range of bio-inspired materials.

  16. Hartree-fock-slater method for materials science the DV-X alpha method for design and characterization of materials

    CERN Document Server

    Adachi, H; Kawai, J

    2006-01-01

    Molecular-orbital calculations for materials design such as alloys, ceramics, and coordination compounds are now possible for experimentalists. Molecuar-orbital calculations for the interpretation of chemical effect of spectra are also possible for experimentalists. The most suitable molecular-orbital calculation method for these purpose is the DV-Xa method, which is robust in such a way that the calculation converges to a result even if the structure of the molecule or solid is impossible in the pressure and temperature ranges on earth. This book specially addresses the methods to design novel materials and to predict the spectralline shape of unknown materials using the DV-Xa molecular-orbital method, but is also useful for those who want to calculate electronic structures of materials using any kind of method.

  17. A Review on Disorder-Driven Metal-Insulator Transition in Crystalline Vacancy-Rich GeSbTe Phase-Change Materials.

    Science.gov (United States)

    Wang, Jiang-Jing; Xu, Ya-Zhi; Mazzarello, Riccardo; Wuttig, Matthias; Zhang, Wei

    2017-07-27

    Metal-insulator transition (MIT) is one of the most essential topics in condensed matter physics and materials science. The accompanied drastic change in electrical resistance can be exploited in electronic devices, such as data storage and memory technology. It is generally accepted that the underlying mechanism of most MITs is an interplay of electron correlation effects (Mott type) and disorder effects (Anderson type), and to disentangle the two effects is difficult. Recent progress on the crystalline Ge₁Sb₂Te₄ (GST) compound provides compelling evidence for a disorder-driven MIT. In this work, we discuss the presence of strong disorder in GST, and elucidate its effects on electron localization and transport properties. We also show how the degree of disorder in GST can be reduced via thermal annealing, triggering a disorder-driven metal-insulator transition. The resistance switching by disorder tuning in crystalline GST may enable novel multilevel data storage devices.

  18. Creativity and innovations in ELT materials development looking beyond the current design

    CERN Document Server

    Bao, Dat

    2018-01-01

    This book challenges current practices in ELT materials design in order to transform coursebook quality. It proposes ways to improve task design through resources such as drama, poetry, literature and online resources; and it maps out a number of unusual connections between theory and practice in the field of ELT materials development.

  19. Mobility gaps in disordered graphene-based materials: an ab initio -based tight-binding approach to mesoscopic transport

    Energy Technology Data Exchange (ETDEWEB)

    Biel, Blanca [Dpto. Electronica y Tecnologia de Computadores, Facultad de Ciencias, and CITIC, Universidad de Granada (Spain); Cresti, Alessandro; Triozon, Francois [CEA, LETI, MINATEC, Grenoble (France); Avriller, Remi [Departamento de Fysica Teorica de la Materia Condensada C-V, Facultad de Ciencias, Universidad Autonoma de Madrid (Spain); Dubois, Simon; Charlier, Jean-Christophe [PCPM and ETSF, Universit' e Catholique de Louvain (Belgium); Lopez-Bezanilla, Alejandro [CEA, INAC, SPSMS, Grenoble (France); Blase, X. [Institut N' eel, CNRS et Universit' e Joseph Fourier, Grenoble (France); Roche, Stephan [CIN2 (CSIC-ICN), Campus UAB, Barcelona (Spain); CEA, INAC, SP2M, Grenoble (France)

    2010-11-15

    As is common knowledge, armchair graphene nanoribbons (aGNRs) share many electronic features with carbon nanotubes (CNTs). Nevertheless, crucial differences emerge when disorder comes into play. It is thus instructive, both from a theoretical and a technological perspective, to analyze the impact of possible types of disorder on the transport properties of these graphene-based materials. Here we report such a comparative study between CNTs and GNRs, which points out the similarities and differences emerging as a consequence of doping by substitutional boron and nitrogen impurities. The role of edge defects (absent in CNTs) is also contrasted with chemical doping disorder. All disorder models have been derived from accurate ab initio calculations of the electronic structures (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Construction of irradiated material examination facility-basic design

    International Nuclear Information System (INIS)

    Ro, Seung Gy; Kim, Eun Ka; Hong, Gye Won; Herr, Young Hoi; Hong, Kwon Pyo; Lee, Myeong Han; Baik, Sang Youl; Choo, Yong Sun; Baik, Seung Je

    1989-02-01

    The basic design of the hot cell facility which has the main purpose of doing mechanical and physical property tests of irradiated materials, the examination process, and the annexed facility has been made. Also basic and detall designs for the underground excavation work have been performed. The project management and tasks required for the license application have been carried out in due course. The facility is expected to be completed by the end of 1992, if the budgetary support is sufficient. (Author)

  1. Disorder in materials with complex crystal structures: the Non-Local Coherent Potential Approximation for compounds with multiple sublattices

    International Nuclear Information System (INIS)

    Marmodoro, A; Staunton, J B

    2011-01-01

    Over the last few years the Non-Local Coherent Potential Approximation (NL-CPA) has been shown to provide an effective way to describe the electronic structure and related properties of disordered systems, where short-range order (SRO) and other local environment effects are important. Here we present its generalization to materials with multi-atom per unit cell lattices. The method is described using a Green function formalism and illustrated by an implementation for a simplified one-dimensional tight-binding model with substitutional disorder. This development paves the way for a natural reimplementation of the Korringa-Kohn-Rostoker (KKR) multiple scattering solution of Kohn-Sham equations for ab-initio calculations of real materials.

  2. Designs for the Evaluation of Teacher Training Materials. Report No. 2.

    Science.gov (United States)

    Okey, James R.; Ciesla, Jerome L.

    This paper describes methods to assess the impact on students of a teacher using skills learned in a training program. Three designs for assessing the effects of teacher training materials are presented: time series design, equivalent time-samples design, and posttest-only control group design. Data obtained by classroom teachers while using the…

  3. Probabilistic Fatigue Design of Composite Material for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2011-01-01

    In the present paper a probabilistic design approach to fatigue design of wind turbine blades is presented. The physical uncertainty on the fatigue strength for composite material is estimated using public available fatigue tests. Further, the model uncertainty on Miner rule for damage accumulation...

  4. Materials design principles of ancient fish armour

    Science.gov (United States)

    Bruet, Benjamin J. F.; Song, Juha; Boyce, Mary C.; Ortiz, Christine

    2008-09-01

    Knowledge of the structure-property-function relationships of dermal scales of armoured fish could enable pathways to improved bioinspired human body armour, and may provide clues to the evolutionary origins of mineralized tissues. Here, we present a multiscale experimental and computational approach that reveals the materials design principles present within individual ganoid scales from the `living fossil' Polypterus senegalus. This fish belongs to the ancient family Polypteridae, which first appeared 96 million years ago during the Cretaceous period and still retains many of their characteristics. The mechanistic origins of penetration resistance (approximating a biting attack) were investigated and found to include the juxtaposition of multiple distinct reinforcing composite layers that each undergo their own unique deformation mechanisms, a unique spatial functional form of mechanical properties with regions of differing levels of gradation within and between material layers, and layers with an undetectable gradation, load-dependent effective material properties, circumferential surface cracking, orthogonal microcracking in laminated sublayers and geometrically corrugated junctions between layers.

  5. Enclosed mechanical seal face design for brittle materials copyright

    International Nuclear Information System (INIS)

    Marsi, J.A.

    1994-01-01

    Metal carbides are widely used as seal face material due to their hardness and wear resistance. Silicon carbide (SiC) has excellent performance as a seal face material, but it is relatively brittle and may break due to accidental overloads outside the boundary of normal operating conditions. In mechanical seals for nuclear primary coolant pumps, the shattered SiC pieces can get into the reactor system and cause serious damage. The conventional method of containing an SiC seal face is to shrink-fit it in a holder, which may lead the seal designer to contend with unwanted seal face deflections. This paper presents a successful, tested design which does not rely on shrink-fits. 5 refs., 9 figs., 4 tabs

  6. Special Features of Using Secondary Materials in the Interior Design of Public Dining Establishments

    Science.gov (United States)

    Kuznetsova, Irina; Hapchuk, Olena; Lukinov, Vitaly

    2017-10-01

    This article analyses the latest publications studying the use and practical application of secondary resources as raw materials in design. This analysis is based on the list of secondary resources and their applications in interior decoration. In particular, the interiors of public catering enterprises were analysed. Restaurants with different functional purposes that were classified into several categories with specific peculiarities of interior design were identified. This article presents and describes different types of public catering enterprises based on those categories. The interior design of a public catering enterprise is regarded as a considerably complex system. Different types of secondary materials were reviewed to identify the most frequently used materials for interior space design. This article describes the main peculiarities of the use of secondary materials and presents examples of their practical application. The function of secondary materials in the interior design of public catering enterprises were detected and reviewed. On the basis of the analysis, several directions for the practical application of our results in the field of public catering enterprise design were suggested.

  7. Phase-Change Memory Materials by Design: A Strain Engineering Approach.

    Science.gov (United States)

    Zhou, Xilin; Kalikka, Janne; Ji, Xinglong; Wu, Liangcai; Song, Zhitang; Simpson, Robert E

    2016-04-20

    Van der Waals heterostructure superlattices of Sb2 Te1 and GeTe are strain-engineered to promote switchable atomic disordering, which is confined to the GeTe layer. Careful control of the strain in the structures presents a new degree of freedom to design the properties of functional superlattice structures for data storage and photonics applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Road Materials and Pavement Design volume 17(2)

    CSIR Research Space (South Africa)

    De Beer, Morris

    2016-03-01

    Full Text Available Materials and Pavement Design Volume 17, 2016 - Issue 2 Editorial Board Page ebi | Published online: 03 Oct 2016  http://dx.doi.org/10.1080/14680629.2016.1244475 Editors-in-Chief Hervé DI BENEDETTO - University of Lyon/ENTPE, Vaulx-en-Velin, France...

  9. Robotic Materials Handling in Space: Mechanical Design of the Robot Operated Materials Processing System HitchHiker Experiment

    Science.gov (United States)

    Voellmer, George

    1997-01-01

    The Goddard Space Flight Center has developed the Robot Operated Materials Processing System (ROMPS) that flew aboard STS-64 in September, 1994. The ROMPS robot transported pallets containing wafers of different materials from their storage racks to a furnace for thermal processing. A system of tapered guides and compliant springs was designed to deal with the potential misalignments. The robot and all the sample pallets were locked down for launch and landing. The design of the passive lockdown system, and the interplay between it and the alignment system are presented.

  10. A Review on Disorder-Driven Metal–Insulator Transition in Crystalline Vacancy-Rich GeSbTe Phase-Change Materials

    Science.gov (United States)

    Wang, Jiang-Jing; Xu, Ya-Zhi; Mazzarello, Riccardo; Wuttig, Matthias; Zhang, Wei

    2017-01-01

    Metal–insulator transition (MIT) is one of the most essential topics in condensed matter physics and materials science. The accompanied drastic change in electrical resistance can be exploited in electronic devices, such as data storage and memory technology. It is generally accepted that the underlying mechanism of most MITs is an interplay of electron correlation effects (Mott type) and disorder effects (Anderson type), and to disentangle the two effects is difficult. Recent progress on the crystalline Ge1Sb2Te4 (GST) compound provides compelling evidence for a disorder-driven MIT. In this work, we discuss the presence of strong disorder in GST, and elucidate its effects on electron localization and transport properties. We also show how the degree of disorder in GST can be reduced via thermal annealing, triggering a disorder-driven metal–insulator transition. The resistance switching by disorder tuning in crystalline GST may enable novel multilevel data storage devices. PMID:28773222

  11. The design and application of effective written instructional material: a review of published work.

    Science.gov (United States)

    Mayberry, John F

    2007-09-01

    This review will consider the evidence base for the format of educational material drawing on academic papers and the practice of the design industry. The core issues identified from the review are drawn together in guidelines for educational posters, text and web based material. The review deals with the design of written material both for use in leaflets and books as well as the impact of factors such as font type and size as well as colour on poster design. It sets these aspects of educational material within a research framework, which looks at impact on learning and subsequent change in practice. These issues are examined through a practical example of a poster designed for a regional gastroenterology meeting.

  12. High-energy X-ray diffraction studies of disordered materials

    International Nuclear Information System (INIS)

    Kohara, Shinji; Suzuya, Kentaro

    2003-01-01

    With the arrival of the latest generation of synchrotron sources and the introduction of advanced insertion devices (wigglers and undulators), the high-energy (E≥50 keV) X-ray diffraction technique has become feasible, leading to new approaches in the quantitative study of the structure of disordered materials. High-energy X-ray diffraction has several advantages: higher resolution in real space due to a wide range of scattering vector Q, smaller correction terms (especially the absorption correction), reduction of truncation errors, the feasibility of running under extreme environments, including high-temperatures and high-pressures, and the ability to make direct comparisons between X-ray and neutron diffraction data. Recently, high-energy X-ray diffraction data have been combined with neutron diffraction data from a pulsed source to provide more detailed and reliable structural information than that hitherto available

  13. Honeycomb technology materials, design, manufacturing, applications and testing

    CERN Document Server

    Bitzer, Tom

    1997-01-01

    Honeycomb Technology is a guide to honeycomb cores and honeycomb sandwich panels, from the manufacturing methods by which they are produced, to the different types of design, applications for usage and methods of testing the materials. It explains the different types of honeycomb cores available and provides tabulated data of their properties. The author has been involved in the testing and design of honeycomb cores and sandwich panels for nearly 30 years. Honeycomb Technology reflects this by emphasizing a `hands-on' approach and discusses procedures for designing sandwich panels, explaining the necessary equations. Also included is a section on how to design honeycomb energy absorbers and one full chapter discussing honeycomb core and sandwich panel testing. Honeycomb Technology will be of interest to engineers in the aircraft, aerospace and building industries. It will also be of great use to engineering students interested in basic sandwich panel design.

  14. Brief Cognitive Behavior Therapy in Patients with Social Anxiety Disorder: A Preliminary Investigation

    OpenAIRE

    Pinjarkar, Ravikant G; Sudhir, Paulomi M; Math, Suresh Bada

    2015-01-01

    Context: Cognitive behavior therapy (CBT) is the treatment of choice in anxiety disorders. However, there is little evidence for the effectiveness brief CBT in social anxiety. Aims: We examined the effectiveness of a brief CBT of six sessions in patients with social anxiety disorder. Settings and Design: A single case design study baseline; post and 1 month follow-up was adopted. Materials and Methods: Seven patients with a DSM IV diagnosis of social anxiety underwent 6 weekly sessions of bri...

  15. Design and selection of materials for sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Chetal, S.C.

    2011-01-01

    Sodium cooled fast reactors are currently in operation, under construction or under design by a number of countries. The design of sodium cooled fast reactor is covered by French RCC - MR code and ASME code NH. The codes cover rules as regards to materials, design and construction. These codes do not cover the effect of irradiation and environment. Elevated temperature design criteria in nuclear codes are much stringent in comparison to non nuclear codes. Sodium corrosion is not an issue in selection of materials provided oxygen impurity in sodium is controlled for which excellent reactor operating experience is available. Austenitic stainless steels have remained the choice for the permanent structures of primary sodium system. Stabilized austenitic stainless steel are rejected because of poor operating experience and non inclusion in the design codes. Route for improved creep behaviour lies in compositional modifications in 316 class steel. However, the weldability needs to be ensured. For cold leg component is non creep regime, SS 304 class steel is favoured from overall economics. Enhanced fuel burn up can be realized by the use of 9-12%Cr 1%Mo class steel for the wrapper of MOX fuel design, and cladding and wrapper for metal fuel reactors. Minor compositional modifications of 20% cold worked 15Cr-15Ni class austenitic stainless steel will be a strong candidate for the cladding of MOX fuel design in the short term. Long term objective for the cladding will be to develop oxide dispersion strengthened steel. 9%Cr 1%Mo class steel (Gr 91) is an ideal choice for integrated once through sodium heated steam generators. One needs to incorporate operating experience from reactors and thermal power stations, industrial capability and R and D feedback in preparing the technical specifications for procurement of wrought products and welding consumables to ensure reliable operation of the components and systems over the design life. The paper highlights the design approach

  16. Materials Process Design Branch. Work Unit Directive (WUD) 54

    National Research Council Canada - National Science Library

    LeClair, Steve

    2002-01-01

    The objectives of the Manufacturing Research WUD 54 are to 1) conduct in-house research to develop advanced materials process design/control technologies to enable more repeatable and affordable manufacturing capabilities and 2...

  17. 14 CFR 23.613 - Material strength properties and design values.

    Science.gov (United States)

    2010-01-01

    ... statistical basis. (b) Design values must be chosen to minimize the probability of structural failure due to... must be shown by selecting design values that ensure material strength with the following probability... failure of which would result in loss of structural integrity of the component; 99 percent probability...

  18. Optimal Design of Gradient Materials and Bi-Level Optimization of Topology Using Targets (BOTT)

    Science.gov (United States)

    Garland, Anthony

    The objective of this research is to understand the fundamental relationships necessary to develop a method to optimize both the topology and the internal gradient material distribution of a single object while meeting constraints and conflicting objectives. Functionally gradient material (FGM) objects possess continuous varying material properties throughout the object, and they allow an engineer to tailor individual regions of an object to have specific mechanical properties by locally modifying the internal material composition. A variety of techniques exists for topology optimization, and several methods exist for FGM optimization, but combining the two together is difficult. Understanding the relationship between topology and material gradient optimization enables the selection of an appropriate model and the development of algorithms, which allow engineers to design high-performance parts that better meet design objectives than optimized homogeneous material objects. For this research effort, topology optimization means finding the optimal connected structure with an optimal shape. FGM optimization means finding the optimal macroscopic material properties within an object. Tailoring the material constitutive matrix as a function of position results in gradient properties. Once, the target macroscopic properties are known, a mesostructure or a particular material nanostructure can be found which gives the target material properties at each macroscopic point. This research demonstrates that topology and gradient materials can both be optimized together for a single part. The algorithms use a discretized model of the domain and gradient based optimization algorithms. In addition, when considering two conflicting objectives the algorithms in this research generate clear 'features' within a single part. This tailoring of material properties within different areas of a single part (automated design of 'features') using computational design tools is a novel benefit

  19. Evaluation of aluminum drill-pipe material and design

    Energy Technology Data Exchange (ETDEWEB)

    Placido, Joao C. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Lourenco, Marcelo I.; Netto, Theodoro Antoun [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE)

    2008-07-01

    Experimental program and numerical analyses were carried out to investigate the fatigue mechanisms of aluminum drill pipes designed and manufactured in compliance with ISO 15546. The main objective is to improve the fatigue performance of these components by selecting the appropriate aluminum alloy and by enhancing the mechanical design of the threaded steel connector. This paper presents the experimental test program and numerical analyses conducted on a drill-pipe of different materials (Al-Cu-Mg and Al-Zn-Mg system aluminum alloys) and geometry. Material mechanical properties, including S-N curve, were determined through small-scale tests on specimens cut from actual drill pipes. Full-scale experiments were also performed in laboratory. A finite element model of the drill pipe, including the tool-joint region, was developed. The model simulates, through different load steps, the tool-joint hot assembly, and then reproduces the physical experiments numerically in order to obtain the actual stress distribution. Good correlation between full-scale and small-scale fatigue tests was obtained by adjusting the strain/stress levels monitored in the full-scale tests in light of the numerical simulations and performing fatigue life calculations via multiaxial fatigue models. The weak points of the current practice design are highlighted for further development. (author)

  20. Design of facilities for processing pyrophoric radioactive material

    International Nuclear Information System (INIS)

    Bristow, H.A.S.; Hunter, S.D.

    1976-01-01

    The safe processing of large quantities of plutonium-bearing material poses difficult problems the solution of which sometimes involves conflicting requirements. The difficulties are increased when plutonium of a high burnup is used and the position becomes considerably more complicated when the chemical nature of the material being handled is such that it is pyrophoric. This paper describes the design principles and methods used to establish a facility capable of manufacturing large quantities of mixed plutonium/uranium carbide. The facility which included process stages such as milling, granulation, pellet pressing, furnacing and pin filling, was largely a conversion of an existing processing line. The paper treats the major plant hazards individually and indicates the methods used to counter them, outlining the main design principles employed and describing their application to selected items of equipment. Examples of the problems encountered with typical items of equipment are discussed. Some guide-lines are listed which should be of general value to designers and developers working on equipment for processing plutonium-bearing solids. The methods described have been successfully employed to provide a plant for the manufacture of mixed plutonium/uranium carbide on a scale of many hundreds of kilograms with no serious incident.(author)

  1. Novel material and structural design for large-scale marine protective devices

    International Nuclear Information System (INIS)

    Qiu, Ang; Lin, Wei; Ma, Yong; Zhao, Chengbi; Tang, Youhong

    2015-01-01

    Highlights: • Large-scale protective devices with different structural designs have been optimized. • Large-scale protective devices with novel material designs have been optimized. • Protective devices constructed of sandwich panels have the best anti-collision performance. • Protective devices with novel material design can reduce weight and construction cost. - Abstract: Large-scale protective devices must endure the impact of severe forces, large structural deformation, the increased stress and strain rate effects, and multiple coupling effects. In evaluation of the safety of conceptual design through simulation, several key parameters considered in this research are maximum impact force, energy dissipated by the impactor (e.g. a ship) and energy absorbed by the device and the impactor stroke. During impact, the main function of the ring beam structure is to resist and buffer the impact force between ship and bridge pile caps, which could guarantee that the magnitude of impact force meets the corresponding requirements. The means of improving anti-collision performance can be to increase the strength of the beam section or to exchange the steel material with novel fiber reinforced polymer laminates. The main function of the buoyancy tank is to absorb and transfer the ship’s kinetic energy through large plastic deformation, damage, or friction occurring within itself. The energy absorption effect can be improved by structure optimization or by the use of new sandwich panels. Structural and material optimization schemes are proposed on the basis of conceptual design in this research, and protective devices constructed of sandwich panels prove to have the best anti-collision performance

  2. Computational Design of Batteries from Materials to Systems

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Santhanagopalan, Shriram [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yang, Chuanbo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Graf, Peter A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Usseglio Viretta, Francois L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Li, Qibo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Finegan, Donal [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pesaran, Ahmad A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yao, Koffi (Pierre) [Argonne National Laboratory; Abraham, Daniel [Argonne National Laboratory; Dees, Dennis [Argonne National Laboratory; Jansen, Andy [Argonne National Laboratory; Mukherjee, Partha [Texas A& M University; Mistry, Aashutosh [Texas A& M University; Verma, Ankit [Texas A& M University; Lamb, Josh [Sandia National Laboratories; Darcy, Eric [NASA

    2017-09-01

    Computer models are helping to accelerate the design and validation of next generation batteries and provide valuable insights not possible through experimental testing alone. Validated 3-D physics-based models exist for predicting electrochemical performance, thermal and mechanical response of cells and packs under normal and abuse scenarios. The talk describes present efforts to make the models better suited for engineering design, including improving their computation speed, developing faster processes for model parameter identification including under aging, and predicting the performance of a proposed electrode material recipe a priori using microstructure models.

  3. Computational Chemistry Toolkit for Energetic Materials Design

    Science.gov (United States)

    2006-11-01

    industry are aggressively engaged in efforts to develop multiscale modeling and simulation methodologies to model and analyze complex phenomena across...energetic materials design. It is hoped that this toolkit will evolve into a collection of well-integrated multiscale modeling methodologies...Experimenta Theoreticala This Work 1-5-Diamino-4- methyl- tetrazolium nitrate 8.4 41.7 47.5 1-5-Diamino-4- methyl- tetrazolium azide 138.1 161.6

  4. Perspective: Role of structure prediction in materials discovery and design

    Directory of Open Access Journals (Sweden)

    Richard J. Needs

    2016-05-01

    Full Text Available Materials informatics owes much to bioinformatics and the Materials Genome Initiative has been inspired by the Human Genome Project. But there is more to bioinformatics than genomes, and the same is true for materials informatics. Here we describe the rapidly expanding role of searching for structures of materials using first-principles electronic-structure methods. Structure searching has played an important part in unraveling structures of dense hydrogen and in identifying the record-high-temperature superconducting component in hydrogen sulfide at high pressures. We suggest that first-principles structure searching has already demonstrated its ability to determine structures of a wide range of materials and that it will play a central and increasing part in materials discovery and design.

  5. Design rules for phase-change materials in data storage applications

    Energy Technology Data Exchange (ETDEWEB)

    Lencer, Dominic; Salinga, Martin [I. Physikalisches Institut IA, RWTH Aachen University, 52056 Aachen (Germany); Wuttig, Matthias [I. Physikalisches Institut IA, RWTH Aachen University, 52056 Aachen (Germany); Juelich-Aachen Research Alliance, Section Fundamentals of Future Information Technology (JARA-FIT), 52056 Aachen (Germany)

    2011-05-10

    Phase-change materials can rapidly and reversibly be switched between an amorphous and a crystalline phase. Since both phases are characterized by very different optical and electrical properties, these materials can be employed for rewritable optical and electrical data storage. Hence, there are considerable efforts to identify suitable materials, and to optimize them with respect to specific applications. Design rules that can explain why the materials identified so far enable phase-change based devices would hence be very beneficial. This article describes materials that have been successfully employed and discusses common features regarding both typical structures and bonding mechanisms. It is shown that typical structural motifs and electronic properties can be found in the crystalline state that are indicative for resonant bonding, from which the employed contrast originates. The occurence of resonance is linked to the composition, thus providing a design rule for phase-change materials. This understanding helps to unravel characteristic properties such as electrical and thermal conductivity which are discussed in the subsequent section. Then, turning to the transition kinetics between the phases, the current understanding and modeling of the processes of amorphization and crystallization are discussed. Finally, present approaches for improved high-capacity optical discs and fast non-volatile electrical memories, that hold the potential to succeed present-day's Flash memory, are presented. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Design rules for phase-change materials in data storage applications.

    Science.gov (United States)

    Lencer, Dominic; Salinga, Martin; Wuttig, Matthias

    2011-05-10

    Phase-change materials can rapidly and reversibly be switched between an amorphous and a crystalline phase. Since both phases are characterized by very different optical and electrical properties, these materials can be employed for rewritable optical and electrical data storage. Hence, there are considerable efforts to identify suitable materials, and to optimize them with respect to specific applications. Design rules that can explain why the materials identified so far enable phase-change based devices would hence be very beneficial. This article describes materials that have been successfully employed and dicusses common features regarding both typical structures and bonding mechanisms. It is shown that typical structural motifs and electronic properties can be found in the crystalline state that are indicative for resonant bonding, from which the employed contrast originates. The occurence of resonance is linked to the composition, thus providing a design rule for phase-change materials. This understanding helps to unravel characteristic properties such as electrical and thermal conductivity which are discussed in the subsequent section. Then, turning to the transition kinetics between the phases, the current understanding and modeling of the processes of amorphization and crystallization are discussed. Finally, present approaches for improved high-capacity optical discs and fast non-volatile electrical memories, that hold the potential to succeed present-day's Flash memory, are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Designing Reading Materials for the Faculty of Social and Political Sciences at UIN Syarif Hidayatullah Jakarta

    Directory of Open Access Journals (Sweden)

    Devi Yusnita

    2016-01-01

    Full Text Available This research is aimed to design reading materials for the Faculty of Social and Political Sciences, UIN Syarif HIdayatullah Jakarta, due to the absence of such specific materials in the market. To produce satisfactory teaching materials, the researcher did some steps i.e. doing needs analysis, reviewing the principles of materials design and reading strategies, designing course framework, designing syllabus, designing the reading materials, and implementing the sample lessons. The needs analysis was intended to find out what the students needed and to find out the subjects the students learned from the institution in order to produce adequate reading materials. Based on the needs analysis, the researcher then identified the global aims of the course, thereby, the writer designed course framework. This course framework contained general points of reading themes and topics, information of classroom activities that followed up reading, the length of study session, the number of the course meetings, and the number of participants. The course framework became the basis to write the syllabus. Finally the syllabus became the basis for designing reading materials.

  8. Technical Meeting on Liquid Metal Reactor Concepts: Core Design and Structural Materials. Working Material

    International Nuclear Information System (INIS)

    2013-01-01

    The objective of the TM on “Liquid metal reactor concept: core design and structural materials” was to present and discuss innovative liquid metal fast reactor (LMFR) core designs with special focus on the choice, development, testing and qualification of advanced reactor core structural materials. Main results arising from national and international R&D programmes and projects in the field were reviewed, and new activities to be carried out under the IAEA aegis were identified on the basis of the analysis of current research and technology gaps

  9. Steps Towards Industrialization of Cu–III–VI2Thin‐Film Solar Cells:Linking Materials/Device Designs to Process Design For Non‐stoichiometric Photovoltaic Materials

    Science.gov (United States)

    Chang, Hsueh‐Hsin; Sharma, Poonam; Letha, Arya Jagadhamma; Shao, Lexi; Zhang, Yafei; Tseng, Bae‐Heng

    2016-01-01

    The concept of in‐line sputtering and selenization become industrial standard for Cu–III–VI2 solar cell fabrication, but still it's very difficult to control and predict the optical and electrical parameters, which are closely related to the chemical composition distribution of the thin film. The present review article addresses onto the material design, device design and process design using parameters closely related to the chemical compositions. Its variation leads to change in the Poisson equation, current equation, and continuity equation governing the device design. To make the device design much realistic and meaningful, we need to build a model that relates the opto‐electrical properties to the chemical composition. The material parameters as well as device structural parameters are loaded into the process simulation to give a complete set of process control parameters. The neutral defect concentrations of non‐stoichiometric CuMSe2 (M = In and Ga) have been calculated under the specific atomic chemical potential conditions using this methodology. The optical and electrical properties have also been investigated for the development of a full‐function analytical solar cell simulator. The future prospects regarding the development of copper–indium–gallium–selenide thin film solar cells have also been discussed. PMID:27840790

  10. Steps Towards Industrialization of Cu-III-VI2Thin-Film Solar Cells:Linking Materials/Device Designs to Process Design For Non-stoichiometric Photovoltaic Materials.

    Science.gov (United States)

    Hwang, Huey-Liang; Chang, Hsueh-Hsin; Sharma, Poonam; Letha, Arya Jagadhamma; Shao, Lexi; Zhang, Yafei; Tseng, Bae-Heng

    2016-10-01

    The concept of in-line sputtering and selenization become industrial standard for Cu-III-VI 2 solar cell fabrication, but still it's very difficult to control and predict the optical and electrical parameters, which are closely related to the chemical composition distribution of the thin film. The present review article addresses onto the material design, device design and process design using parameters closely related to the chemical compositions. Its variation leads to change in the Poisson equation, current equation, and continuity equation governing the device design. To make the device design much realistic and meaningful, we need to build a model that relates the opto-electrical properties to the chemical composition. The material parameters as well as device structural parameters are loaded into the process simulation to give a complete set of process control parameters. The neutral defect concentrations of non-stoichiometric CuMSe 2 (M = In and Ga) have been calculated under the specific atomic chemical potential conditions using this methodology. The optical and electrical properties have also been investigated for the development of a full-function analytical solar cell simulator. The future prospects regarding the development of copper-indium-gallium-selenide thin film solar cells have also been discussed.

  11. Rational design of stealthy hyperuniform two-phase media with tunable order

    Science.gov (United States)

    DiStasio, Robert A.; Zhang, Ge; Stillinger, Frank H.; Torquato, Salvatore

    2018-02-01

    Disordered stealthy hyperuniform materials are exotic amorphous states of matter that have attracted recent attention because of their novel structural characteristics (hidden order at large length scales) and physical properties, including desirable photonic and transport properties. It is therefore useful to devise algorithms that enable one to design a wide class of such amorphous configurations at will. In this paper, we present several algorithms enabling the systematic identification and generation of discrete (digitized) stealthy hyperuniform patterns with a tunable degree of order, paving the way towards the rational design of disordered materials endowed with novel thermodynamic and physical properties. To quantify the degree of order or disorder of the stealthy systems, we utilize the discrete version of the τ order metric, which accounts for the underlying spatial correlations that exist across all relevant length scales in a given digitized two-phase (or, equivalently, a two-spin state) system of interest. Our results impinge on a myriad of fields, ranging from physics, materials science and engineering, visual perception, and information theory to modern data science.

  12. Regulatory compliance in the design of packages used to transport radioactive materials

    International Nuclear Information System (INIS)

    Raske, D.T.

    1993-01-01

    Shipments of radioactive materials within the regulatory jurisdiction of the US Department of Energy (DOE) must meet the package design requirements contained in Title 10 of the Code of Federal Regulations, Part 71, and DOE Order 5480.3. These regulations do not provide design criteria requirements, but only detail the approval standards, structural performance criteria, and package integrity requirements that must be met during transport. The DOE recommended design criterion for high-level Category I radioactive packagings is Section III, Division 1, of the ASME Boiler and Pressure Vessel Code. However, alternative design criteria may be used if all the design requirements are satisfied. The purpose of this paper is to review alternatives to the Code criteria and discuss their applicability to the design of containment vessels in packages for high-level radioactive materials. Issues such as design qualification by physical testing, the use of scale models, and problems encountered using a non-ASME design approach are addressed

  13. Materials Design and System Construction for Conventional and New-Concept Supercapacitors.

    Science.gov (United States)

    Wu, Zhong; Li, Lin; Yan, Jun-Min; Zhang, Xin-Bo

    2017-06-01

    With the development of renewable energy and electrified transportation, electrochemical energy storage will be more urgent in the future. Supercapacitors have received extensive attention due to their high power density, fast charge and discharge rates, and long-term cycling stability. During past five years, supercapacitors have been boomed benefited from the development of nanostructured materials synthesis and the promoted innovation of devices construction. In this review, we have summarized the current state-of-the-art development on the fabrication of high-performance supercapacitors. From the electrode material perspective, a variety of materials have been explored for advanced electrode materials with smart material-design strategies such as carbonaceous materials, metal compounds and conducting polymers. Proper nanostructures are engineered to provide sufficient electroactive sites and enhance the kinetics of ion and electron transport. Besides, new-concept supercapacitors have been developed for practical application. Microsupercapacitors and fiber supercapacitors have been explored for portable and compact electronic devices. Subsequently, we have introduced Li-/Na-ion supercapacitors composed of battery-type electrodes and capacitor-type electrode. Integrated energy devices are also explored by incorporating supercapacitors with energy conversion systems for sustainable energy storage. In brief, this review provides a comprehensive summary of recent progress on electrode materials design and burgeoning devices constructions for high-performance supercapacitors.

  14. Evaluation of critical materials in five additional advance design photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.A.; Watts, R.L.; Martin, P.; Gurwell, W.E.

    1981-02-01

    The objective of this study is to identify potential material supply constraints due to the large-scale deployment of five advanced photovoltaic (PV) cell designs, and to suggest strategies to reduce the impacts of these production capacity limitations and potential future material shortages. The Critical Materials Assessment Program (CMAP) screens the designs and their supply chains and identifies potential shortages which might preclude large-scale use of the technologies. The results of the screening of five advanced PV cell designs are presented: (1) indium phosphide/cadmium sulfide, (2) zinc phosphide, (3) cadmium telluride/cadmium sulfide, (4) copper indium selenium, and (5) cadmium selenide photoelectrochemical. Each of these five cells is screened individually assuming that they first come online in 1991, and that 25 Gwe of peak capacity is online by the year 2000. A second computer screening assumes that each cell first comes online in 1991 and that each cell has a 5 GWe of peak capacity by the year 2000, so that the total online capacity for the five cells is 25 GWe. Based on a review of the preliminary baseline screening results, suggestions were made for varying such parameters as the layer thickness, cell production processes, etc. The resulting PV cell characterizations were then screened again by the CMAP computer code. The CMAP methodology used to identify critical materials is described; and detailed characterizations of the advanced photovoltaic cell designs under investigation, descriptions of additional cell production processes, and the results are presented. (WHK)

  15. Chalcogenide Glass Radiation Sensor; Materials Development, Design and Device Testing

    Energy Technology Data Exchange (ETDEWEB)

    Mitkova, Maria; Butt, Darryl; Kozicki, Michael; Barnaby, Hugo

    2013-04-30

    studied the effect of x-rays and γ-rays, on thin film chalcogenide glasses and applied them in conjunction with film incorporating a silver source in a new type of radiation sensor for which we have an US patent application [3]. In this report, we give data about our studies regarding our designed radiation sensor along with the testing and performance at various radiation doses. These studies have been preceded by materials characterization research related to the compositional and structural characteristics of the active materials used in the radiation sensor design. During the work on the project, we collected a large volume of material since every experiment was repeated many times to verify the results. We conducted a comprehensive material research, analysis and discussion with the aim to understand the nature of the occurring effects, design different structures to harness these effects, generated models to aid in the understanding the effects, built different device structures and collected data to quantify device performance. These various aspects of our investigation have been detailed in previous quarterly reports. In this report, we present our main results and emphasize on the results pertaining to the core project goals materials development, sensor design and testing and with an emphasis on classifying the appropriate material and design for the optimal application. The report has three main parts: (i) Presentation of the main data; (ii) Bulleted summary of the most important results; (iii) List of the patent, journal publications, conference proceedings and conferences participation, occurring as a result of working on the project.

  16. Combinatorial thin film materials science: From alloy discovery and optimization to alloy design

    Energy Technology Data Exchange (ETDEWEB)

    Gebhardt, Thomas, E-mail: gebhardt@mch.rwth-aachen.de; Music, Denis; Takahashi, Tetsuya; Schneider, Jochen M.

    2012-06-30

    This paper provides an overview of modern alloy development, from discovery and optimization towards alloy design, based on combinatorial thin film materials science. The combinatorial approach, combining combinatorial materials synthesis of thin film composition-spreads with high-throughput property characterization has proven to be a powerful tool to delineate composition-structure-property relationships, and hence to efficiently identify composition windows with enhanced properties. Furthermore, and most importantly for alloy design, theoretical models and hypotheses can be critically appraised. Examples for alloy discovery, optimization, and alloy design of functional as well as structural materials are presented. Using Fe-Mn based alloys as an example, we show that the combination of modern electronic-structure calculations with the highly efficient combinatorial thin film composition-spread method constitutes an effective tool for knowledge-based alloy design.

  17. Combinatorial thin film materials science: From alloy discovery and optimization to alloy design

    International Nuclear Information System (INIS)

    Gebhardt, Thomas; Music, Denis; Takahashi, Tetsuya; Schneider, Jochen M.

    2012-01-01

    This paper provides an overview of modern alloy development, from discovery and optimization towards alloy design, based on combinatorial thin film materials science. The combinatorial approach, combining combinatorial materials synthesis of thin film composition-spreads with high-throughput property characterization has proven to be a powerful tool to delineate composition–structure–property relationships, and hence to efficiently identify composition windows with enhanced properties. Furthermore, and most importantly for alloy design, theoretical models and hypotheses can be critically appraised. Examples for alloy discovery, optimization, and alloy design of functional as well as structural materials are presented. Using Fe-Mn based alloys as an example, we show that the combination of modern electronic-structure calculations with the highly efficient combinatorial thin film composition-spread method constitutes an effective tool for knowledge-based alloy design.

  18. Data-driven design optimization for composite material characterization

    Science.gov (United States)

    John G. Michopoulos; John C. Hermanson; Athanasios Iliopoulos; Samuel G. Lambrakos; Tomonari Furukawa

    2011-06-01

    The main goal of the present paper is to demonstrate the value of design optimization beyond its use for structural shape determination in the realm of the constitutive characterization of anisotropic material systems such as polymer matrix composites with or without damage. The approaches discussed are based on the availability of massive experimental data...

  19. Material control system design: Test Bed Nitrate Storage Area (TBNSA)

    International Nuclear Information System (INIS)

    Clark, G.A.; Da Roza, R.A.; Dunn, D.R.; Sacks, I.J.; Harrison, W.; Huebel, J.G.; Ross, W.N.; Salisbury, J.D.; Sanborn, R.H.; Weissenberger, S.

    1978-05-01

    This report provides an example of a hypothetical Special Nuclear Material (SNM) Safeguard Material Control and Accounting (MC and A) System which will be used as a subject for the demonstration of the Lawrence Livermore Laboratory MC and A System Evaluation Methodology in January 1978. This methodology is to become a tool in the NRC evaluation of license applicant submittals for Nuclear Fuel Cycle facilities. The starting point for this test bed design was the Allied-General Nuclear Services--Barnwell Nuclear Fuel Plant Reprocessing plant as described in the Final Safety Analysis Report (FSAR), of August 1975. The test bed design effort was limited to providing an SNM safeguard system for the plutonium nitrate storage area of this facility

  20. Designing through Material

    DEFF Research Database (Denmark)

    Kruse Aagaard, Anders

    2014-01-01

    as an opportunity to connect the digital environment with the reality of materials – and use realisation and materialisation to generate architectural developments and findings through an iterative mode of thinking about the dialogue between drawing, materials and fabrication. Consequently the interest and mind...

  1. High-performance green semiconductor devices: materials, designs, and fabrication

    Science.gov (United States)

    Jung, Yei Hwan; Zhang, Huilong; Gong, Shaoqin; Ma, Zhenqiang

    2017-06-01

    From large industrial computers to non-portable home appliances and finally to light-weight portable gadgets, the rapid evolution of electronics has facilitated our daily pursuits and increased our life comforts. However, these rapid advances have led to a significant decrease in the lifetime of consumer electronics. The serious environmental threat that comes from electronic waste not only involves materials like plastics and heavy metals, but also includes toxic materials like mercury, cadmium, arsenic, and lead, which can leak into the ground and contaminate the water we drink, the food we eat, and the animals that live around us. Furthermore, most electronics are comprised of non-renewable, non-biodegradable, and potentially toxic materials. Difficulties in recycling the increasing amount of electronic waste could eventually lead to permanent environmental pollution. As such, discarded electronics that can naturally degrade over time would reduce recycling challenges and minimize their threat to the environment. This review provides a snapshot of the current developments and challenges of green electronics at the semiconductor device level. It looks at the developments that have been made in an effort to help reduce the accumulation of electronic waste by utilizing unconventional, biodegradable materials as components. While many semiconductors are classified as non-biodegradable, a few biodegradable semiconducting materials exist and are used as electrical components. This review begins with a discussion of biodegradable materials for electronics, followed by designs and processes for the manufacturing of green electronics using different techniques and designs. In the later sections of the review, various examples of biodegradable electrical components, such as sensors, circuits, and batteries, that together can form a functional electronic device, are discussed and new applications using green electronics are reviewed.

  2. Software development for specific geometry and safe design of isotropic material multicell beams

    International Nuclear Information System (INIS)

    Tariq, M.M.; Ahmed, M.A.

    2011-01-01

    Comparison of analytical results with finite element results for analysis of isotropic material multicell beams subjected to free torsion case is the main idea of this paper. Progress in the fundamentals and applications of advanced materials and their processing technologies involves costly experiments and prototype testing for reliability. The software development for design analysis of structures with advanced materials is a low cost but challenging research. Multicell beams have important industrial applications in the aerospace and automotive sectors. This paper explains software development to test different materials in design of a multicell beam. Objective of this paper is to compute the torsional loading of multicell beams of isotropic materials for safe design in both symmetrical and asymmetrical geometries. Software has been developed in Microsoft Visual Basic. Distribution of Saint Venant shear flows, shear stresses, factors of safety, volume, mass, weight, twist, polar moment of inertia and aspect ratio for free torsion in multicell beam have been calculated using this software. The software works on four algorithms, these are, Specific geometry algorithm, material selection algorithm, factor of safety algorithm and global algorithm. User can specify new materials analytically, or choose a pre-defined material from the list, which includes, plain carbon steels, low alloy steels, stainless steels, cast irons, aluminum alloys, copper alloys, magnesium alloys, titanium alloys, precious metals and refractory metals. Although this software is restricted to multicell beam comprising of three cells, however future versions can have ability to address more complicated shapes and cases of multicell beams. Software also describes nomenclature and mathematical formulas applied to help user understand the theoretical background. User can specify geometry of multicell beam for three rectangular cells. Software computes shear flows, shear stresses, safety factors

  3. Preliminary Design and Investigation of Integrated Compressor with Composite Material Wheel

    Science.gov (United States)

    Wang, Jifeng; Müller, Norbert

    2012-06-01

    An integrated water vapor compressor with composite material wheel is developed and strength analysis using FEM is presented. The design of wound composite material allows for integrating all rotating parts of the drive that may simply reduce to only the rotor of the electrical motor, since no drive shaft is required anymore. This design can reduce the number of parts and mass, which is convenient for engineers to maintain the compressor. The electrical motors are brushless DC motors operating through a frequency drive and apply a torque on the wheels through the materials bonded in the wheel shrouds. This system allows a large amount of compression to be produced in a multi-stage compression setup. To determine the stress and vibration characteristics of this integrated compressor, numerical analysis is carried out using FEM. The simulation result shows that the integrated compressor with composite material wheel can be used in a chiller system where water as a refrigerant.

  4. Design guides for radioactive-material-handling facilities and equipment

    International Nuclear Information System (INIS)

    Doman, D.R.; Barker, R.E.

    1980-01-01

    Fourteen key areas relating to facilities and equipment for handling radioactive materials involved in examination, reprocessing, fusion fuel handling and remote maintenance have been defined and writing groups established to prepare design guides for each areas. The guides will give guidance applicable to design, construction, operation, maintenance and safety, together with examples and checklists. Each guide will be reviewed by an independent review group. The guides are expected to be compiled and published as a single document

  5. Material gap membrane distillation: A new design for water vapor flux enhancement

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Amy, Gary L.

    2013-01-01

    A new module design for membrane distillation, namely material gap membrane distillation (MGMD), for seawater desalination has been proposed and successfully tested. It has been observed that employing appropriate materials between the membrane

  6. Elementary Students' Learning of Materials Science Practices Through Instruction Based on Engineering Design Tasks

    Science.gov (United States)

    Wendell, Kristen Bethke; Lee, Hee-Sun

    2010-12-01

    Materials science, which entails the practices of selecting, testing, and characterizing materials, is an important discipline within the study of matter. This paper examines how third grade students' materials science performance changes over the course of instruction based on an engineering design challenge. We conducted a case study of nine students who participated in engineering design-based science instruction with the goal of constructing a stable, quiet, thermally comfortable model house. The learning outcome of materials science practices was assessed by clinical interviews conducted before and after the instruction, and the learning process was assessed by students' workbooks completed during the instruction. The interviews included two materials selection tasks for designing a sturdy stepstool and an insulated pet habitat. Results indicate that: (1) students significantly improved on both materials selection tasks, (2) their gains were significantly positively associated with the degree of completion of their workbooks, and (3) students who were highly engaged with the workbook's reflective record-keeping tasks showed the greatest improvement on the interviews. These findings suggest the important role workbooks can play in facilitating elementary students' learning of science through authentic activity such as engineering design.

  7. Engineering design skills coverage in K-12 engineering program curriculum materials in the USA

    Science.gov (United States)

    Chabalengula, Vivien M.; Mumba, Frackson

    2017-11-01

    The current K-12 Science Education framework and Next Generation Science Standards (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed curriculum materials that are being used in K-12 settings. However, little is known about the nature and extent to which engineering design skills outlined in NGSS are addressed in these K-12 engineering education programme curriculum materials. We analysed nine K-12 engineering education programmes for the nature and extent of engineering design skills coverage. Results show that developing possible solutions and actual designing of prototypes were the highly covered engineering design skills; specification of clear goals, criteria, and constraints received medium coverage; defining and identifying an engineering problem; optimising the design solution; and demonstrating how a prototype works, and making iterations to improve designs were lowly covered. These trends were similar across grade levels and across discipline-specific curriculum materials. These results have implications on engineering design-integrated science teaching and learning in K-12 settings.

  8. Women, Co-occurring Disorders, and Violence Study: evaluation design and study population.

    Science.gov (United States)

    McHugo, G J; Kammerer, N; Jackson, E W; Markoff, L S; Gatz, M; Larson, M J; Mazelis, R; Hennigan, K

    2005-03-01

    The Women, Co-occurring Disorders, and Violence Study (WCDVS) was a multi-site cooperative study to evaluate new service models for women with co-occurring mental health and substance use disorders and a history of physical and/or sexual abuse. Despite common features in the service interventions and evaluation procedures, diversity across the nine sites plus differences introduced by non-random assignment led to numerous methodological challenges. This article describes the design, measurement, and analysis decisions behind the WCDVS and lays the foundation for understanding participant-level outcomes and service costs. This article also describes the study population, as recruited and following attrition at the 6-month follow-up, in order to address the threat of selection bias to inferences drawn from this multi-site study.

  9. Materials Design and System Construction for Conventional and New‐Concept Supercapacitors

    Science.gov (United States)

    Wu, Zhong; Li, Lin

    2017-01-01

    With the development of renewable energy and electrified transportation, electrochemical energy storage will be more urgent in the future. Supercapacitors have received extensive attention due to their high power density, fast charge and discharge rates, and long‐term cycling stability. During past five years, supercapacitors have been boomed benefited from the development of nanostructured materials synthesis and the promoted innovation of devices construction. In this review, we have summarized the current state‐of‐the‐art development on the fabrication of high‐performance supercapacitors. From the electrode material perspective, a variety of materials have been explored for advanced electrode materials with smart material‐design strategies such as carbonaceous materials, metal compounds and conducting polymers. Proper nanostructures are engineered to provide sufficient electroactive sites and enhance the kinetics of ion and electron transport. Besides, new‐concept supercapacitors have been developed for practical application. Microsupercapacitors and fiber supercapacitors have been explored for portable and compact electronic devices. Subsequently, we have introduced Li‐/Na‐ion supercapacitors composed of battery‐type electrodes and capacitor‐type electrode. Integrated energy devices are also explored by incorporating supercapacitors with energy conversion systems for sustainable energy storage. In brief, this review provides a comprehensive summary of recent progress on electrode materials design and burgeoning devices constructions for high‐performance supercapacitors. PMID:28638780

  10. Design of materials with extreme thermal expansion using a three-phase topology optimization method

    DEFF Research Database (Denmark)

    Sigmund, Ole; Torquato, S.

    1997-01-01

    We show how composites with extremal or unusual thermal expansion coefficients can be designed using a numerical topology optimization method. The composites are composed of two different material phases and void. The optimization method is illustrated by designing materials having maximum therma...

  11. Masked Visual Analysis: Minimizing Type I Error in Visually Guided Single-Case Design for Communication Disorders

    Science.gov (United States)

    Byun, Tara McAllister; Hitchcock, Elaine R.; Ferron, John

    2017-01-01

    Purpose: Single-case experimental designs are widely used to study interventions for communication disorders. Traditionally, single-case experiments follow a response-guided approach, where design decisions during the study are based on participants' observed patterns of behavior. However, this approach has been criticized for its high rate of…

  12. Bulk-shield design for the Fusion Materials Irradiation Test facility

    International Nuclear Information System (INIS)

    Carter, L.L.; Mann, F.M.; Morford, R.J.; Johnson, D.L.; Huang, S.T.

    1982-07-01

    The accelerator-based Fusion Materials Irradiation Test (FMIT) facility will provide a high-fluence, fusion-like radiation environment for the testing of materials. While the neutron spectrum produced in the forward direction by the 35 MeV deuterons incident upon a flowing lithium target is characterized by a broad peak around 14 MeV, a high energy tail extends up to about 50 MeV. Some shield design considerations are reviewed

  13. Industrial aspects: materials, designing and quality

    International Nuclear Information System (INIS)

    Blanc, M.

    2008-01-01

    First, this article reviews the evolution of the PWR fuel assembly manufactured by Westinghouse over 30 years and secondly gives a glimpse of the industrial organization of Westinghouse. The progressive changes in the design of the fuel assembly can be illustrated by the materials used: first Inconel then zircaloy-4, zirlo and now the optimized zirlo. The Westinghouse nuclear fuel destined to French pressurized reactors is fabricated in either Sweden (Vasteras) or in Spain (Juzbado). Fuel tubes are produced in Usa (Blairsville) or in Sweden (Sandvik). In the last 5 years Westinghouse has launched important programs for improving industrial processes and final products to reach customer satisfaction. (A.C.)

  14. Educative Curriculum Materials: Uptake, Impact, and Implications for Research and Design

    Science.gov (United States)

    Davis, Elizabeth A.; Palincsar, Annemarie Sullivan; Smith, P. Sean; Arias, Anna Maria; Kademian, Sylvie M.

    2017-01-01

    The authors synthesize the findings of a research project to extend what is known about educative curriculum materials, or curriculum materials designed with the intent of supporting teacher learning as well as student learning. Drawing on a three-year program of research, including several close observational case studies and a large-scale…

  15. The radioactive materials packaging handbook: Design, operations, and maintenance

    International Nuclear Information System (INIS)

    Shappert, L.B.; Bowman, S.M.; Arnold, E.D.

    1998-01-01

    As part of its required activities in 1994, the US Department of Energy (DOE) made over 500,000 shipments. Of these shipments, approximately 4% were hazardous, and of these, slightly over 1% (over 6,400 shipments) were radioactive. Because of DOE's cleanup activities, the total quantities and percentages of radioactive material (RAM) that must be moved from one site to another is expected to increase in the coming years, and these materials are likely to be different than those shipped in the past. Irradiated fuel will certainly be part of the mix as will RAM samples and waste. However, in many cases these materials will be of different shape and size and require a transport packaging having different shielding, thermal, and criticality avoidance characteristics than are currently available. This Handbook provides guidance on the design, testing, certification, and operation of packages for these materials

  16. The radioactive materials packaging handbook: Design, operations, and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Shappert, L.B.; Bowman, S.M. [Oak Ridge National Lab., TN (United States); Arnold, E.D. [Lockheed Martin Energy Systems, Oak Ridge, TN (United States)] [and others

    1998-08-01

    As part of its required activities in 1994, the US Department of Energy (DOE) made over 500,000 shipments. Of these shipments, approximately 4% were hazardous, and of these, slightly over 1% (over 6,400 shipments) were radioactive. Because of DOE`s cleanup activities, the total quantities and percentages of radioactive material (RAM) that must be moved from one site to another is expected to increase in the coming years, and these materials are likely to be different than those shipped in the past. Irradiated fuel will certainly be part of the mix as will RAM samples and waste. However, in many cases these materials will be of different shape and size and require a transport packaging having different shielding, thermal, and criticality avoidance characteristics than are currently available. This Handbook provides guidance on the design, testing, certification, and operation of packages for these materials.

  17. Materials for construction and civil engineering science, processing, and design

    CERN Document Server

    Margarido, Fernanda

    2015-01-01

    This expansive volume presents the essential topics related to construction materials composition and their practical application in structures and civil installations. The book's diverse slate of expert authors assemble invaluable case examples and performance data on the most important groups of materials used in construction, highlighting aspects such as nomenclature, the properties, the manufacturing processes, the selection criteria, the products/applications, the life cycle and recyclability, and the normalization. Civil Engineering Materials: Science, Processing, and Design is ideal for practicing architects; civil, construction, and structural engineers, and serves as a comprehensive reference for students of these disciplines. This book also: ·       Provides a substantial and detailed overview of traditional materials used in structures and civil infrastructure ·       Discusses properties of natural and synthetic materials in construction and materials' manufacturing processes ·  �...

  18. Safety by design of printed multilayer materials intended for food packaging.

    Science.gov (United States)

    Domeño, Celia; Aznar, Margarita; Nerín, Cristina; Isella, Francesca; Fedeli, Mauro; Bosetti, Osvaldo

    2017-07-01

    Printing inks are commonly used in multilayer plastics materials used for food packaging, and compounds present in inks can migrate to the food either by diffusion through the multilayers or because of set-off phenomena. To avoid this problem, the right design of the packaging is crucial. This paper studies the safety by design of multilayer materials. First, the migration from four different multilayers manufactured using polyethylene terephthalate (PET), aluminium (Al) and polyethylene (PE) was determined. The structural differences among materials such as the presence of inks or lacquer coatings as well as the differences in layers position allowed the study of a safety-by-design approach. Sixty-nine different compounds were detected and identified; 49 of them were not included in the positive list of Regulation EU/10/2011 or in Swiss legislation and 15 belong to Cramer class III, which means that they have a theoretical high toxicity. Some of the compounds related to ink composition were pyrene, a compound commercially used to make dyes and dye precursors and the antioxidant Irganox 1300. The application of external lacquers decreased the concentration of some migrants but also brought the potential for new migrants coming from its composition. A final risk assessment of the material allowed evaluating food safety for different food simulants and confirm it.

  19. System design for safe robotic handling of nuclear materials

    International Nuclear Information System (INIS)

    Drotning, W.; Wapman, W.; Fahrenholtz, J.; Kimberly, H.; Kuhlmann, J.

    1996-01-01

    Robotic systems are being developed by the Intelligent Systems and Robotics Center at Sandia National Laboratories to perform automated handling tasks with radioactive nuclear materials. These systems will reduce the occupational radiation exposure to workers by automating operations which are currently performed manually. Because the robotic systems will handle material that is both hazardous and valuable, the safety of the operations is of utmost importance; assurance must be given that personnel will not be harmed and that the materials and environment will be protected. These safety requirements are met by designing safety features into the system using a layered approach. Several levels of mechanical, electrical and software safety prevent unsafe conditions from generating a hazard, and bring the system to a safe state should an unexpected situation arise. The system safety features include the use of industrial robot standards, commercial robot systems, commercial and custom tooling, mechanical safety interlocks, advanced sensor systems, control and configuration checks, and redundant control schemes. The effectiveness of the safety features in satisfying the safety requirements is verified using a Failure Modes and Effects Analysis. This technique can point out areas of weakness in the safety design as well as areas where unnecessary redundancy may reduce the system reliability

  20. Spiritual Psychotherapy for Adolescents with Conduct Disorder: Designing and Piloting a Therapeutic Package.

    Science.gov (United States)

    Mohammadi, Mohammad Reza; Salmanian, Maryam; Ghobari-Bonab, Bagher; Bolhari, Jafar

    2017-10-01

    Objective: Spiritual psychotherapy has been conceptualized in the context of love and belief as principles of existence. Spiritual psychotherapy can provide an opportunity to design programs to treat conduct disorder. The aim of this study was to introduce the Spiritual Psychotherapy Package for Adolescents with Conduct Disorder and execute it as a pilot study. Method: The intervention is a manual-guided program conducted over 14 group sessions, using the perspectives of object relations and attachment approach. It was executed for a group of eight adolescent boys with conduct disorder (mean age: 17.01 years) at Tehran reformatory. The Aggression Questionnaire and the Attachment to God Inventory were completed pre- and post-intervention. Results: There were no significant differences in outcome measures from pre- to post- intervention. Cohen's dav was applied to estimate the measure of the effect size in this study. Cohen's dav measures of avoidance and anxious attachment to God showed acceptable effect sizes. However, Cohen's dav measure of verbal aggression indicated a small effect size. Conclusion: We found evidence indicating acceptability of spiritual psychotherapy among adolescents with conduct disorder in attachment to God.

  1. Data mining for materials design: A computational study of single molecule magnet

    Energy Technology Data Exchange (ETDEWEB)

    Dam, Hieu Chi [Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Faculty of Physics, Vietnam National University, 334 Nguyen Trai, Hanoi (Viet Nam); Pham, Tien Lam; Ho, Tu Bao [Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Nguyen, Anh Tuan [Faculty of Physics, Vietnam National University, 334 Nguyen Trai, Hanoi (Viet Nam); Nguyen, Viet Cuong [HPC Systems, Inc., 3-9-15 Kaigan, Minato-ku, Tokyo 108-0022 (Japan)

    2014-01-28

    We develop a method that combines data mining and first principles calculation to guide the designing of distorted cubane Mn{sup 4+} Mn {sub 3}{sup 3+} single molecule magnets. The essential idea of the method is a process consisting of sparse regressions and cross-validation for analyzing calculated data of the materials. The method allows us to demonstrate that the exchange coupling between Mn{sup 4+} and Mn{sup 3+} ions can be predicted from the electronegativities of constituent ligands and the structural features of the molecule by a linear regression model with high accuracy. The relations between the structural features and magnetic properties of the materials are quantitatively and consistently evaluated and presented by a graph. We also discuss the properties of the materials and guide the material design basing on the obtained results.

  2. Materials and design concepts for space-resilient structures

    Science.gov (United States)

    Naser, Mohannad Z.; Chehab, Alaa I.

    2018-04-01

    Space exploration and terraforming nearby planets have been fascinating concepts for the longest time. Nowadays, that technological advancements with regard to space exploration are thriving, it is only a matter of time before humans can start colonizing nearby moons and planets. This paper presents a state-of-the-art literature review on recent developments of "space-native" construction materials, and highlights evolutionary design concepts for "space-resilient" structures (i.e., colonies and habitats). This paper also details effects of harsh (and unique) space environments on various terrestrial and extraterrestrial construction materials, as well as on space infrastructure and structural systems. The feasibility of exploiting available space resources in terms of "in-situ resource utilization" and "harvesting of elements and compounds", as well as emergence of enabling technologies such as "cultured (lab-grown)" space construction materials are discussed. Towards the end of the present review, number of limitations and challenges facing Lunar and Martian exploration, and venues in-need for urgent research are identified and examined.

  3. New Design Concept for an Excavator Arms by Using Composite Material

    Science.gov (United States)

    Solazzi, L.; Assi, A.; Ceresoli, F.

    2018-06-01

    The purpose of the present paper is to lightweight design an excavator arms, by using a different materials and in particular composite material. Specifically, the research is based on the study of a commercial excavator, by determining its geometry and analyzing the load conditions to which it is exposed. These are determined in relation to either the load diagram of the machine or the possible utilities of the excavator, such as the rotation of the machine. The materials used and implemented in the different analytical and numerical elaborations are classic construction steel S 355 (UNI EN 10025-3), high-resistance steel S 890 (UNI EN 10025-6), aluminum Al 6063 T6 (UNI EN 573-3) and the composite material made by carbon fiber and epoxy resin. The adopted constraints for the design of new arms with different materials, non-conventional for these applications, are numerous. The new solutions must present a safety factor either with respect to the yield tensile strength or to the critical load of buckling greater than or equal to the one determined for the excavator in its original geometrical conformation. Another criterion, which has heavily conditioned the geometry of the arms, was given by the fact that the developed solutions must present a very similar value of the maximum displacement in the different load conditions analyzed. A new geometry for arms made by composite material was developed. It was an elliptical conic section, instead of the classic rectangular section, in order to use the filament winding technological process. As for the adoption of the composite material, we focused on the study and the design of this material as long as the interaction with the extremities (made of aluminum) which are interfaced either with the link between the arms or with the elements of the hydraulic plant which serves for the arms movement. From the results developed, it emerges that the solution developed by adopting composite materials is the one that permits the

  4. Materials design considerations and selection for a large rad waste incinerator

    International Nuclear Information System (INIS)

    Vormelker, P.R.; Jenkins, C.F.; Burns, H.H.

    1997-01-01

    A new incinerator has been built to process self-generated, low level radioactive wastes at the Department of Energy's Savannah River Site. Wastes include protective clothing and other solid materials used during the handling of radioactive materials, and liquid chemical wastes resulting from chemical and waste management operations. The basic design and materials of construction selected to solve the anticipated corrosion problems from hot acidic gases are reviewed. Problems surfacing during trial runs prior to radioactive operations are discussed

  5. International Fusion Materials Irradiation Facility conceptual design activity. Present status and perspective

    International Nuclear Information System (INIS)

    Kondo, Tatsuo; Noda, Kenji; Oyama, Yukio

    1998-01-01

    For developing the materials for nuclear fusion reactors, it is indispensable to study on the neutron irradiation behavior under fusion reactor conditions, but there is not any high energy neutron irradiation facility that can simulate fusion reactor conditions at present. Therefore, the investigation of the IFMIF was begun jointly by Japan, USA, Europe and Russia following the initiative of IEA. The conceptual design activities were completed in 1997. As to the background and the course, the present status of the research on heavy irradiation and the testing means for fusion materials, the requirement and the technical basis of high energy neutron irradiation, and the international joint design activities are reported. The materials for fusion reactors are exposed to the neutron irradiation with the energy spectra up to 14 MeV. The requirements from the users that the IFMIF should satisfy, the demand of the tests for the materials of prototype and demonstration fusion reactors and the evaluation of the neutron field characteristics of the IFMIF are discussed. As to the conceptual design of the IFMIF, the whole constitution, the operational mode, accelerator system and target system are described. (K.I.)

  6. Design challenges in transdiagnostic psychotherapy research: Comparing Transdiagnostic Behavior Therapy (TBT) to existing evidence-based psychotherapy in veterans with affective disorders.

    Science.gov (United States)

    Gros, Daniel F

    2015-07-01

    To address the limitations of disorder-specific approaches, newer transdiagnostic approaches to psychotherapy have been developed to provide a single treatment that is capable of addressing several, related disorders. However, the recruitment of multiple diagnoses presents many challenges to the traditional design of psychotherapy randomized controlled trials (RCTs). The goal of the manuscript is to present the challenges and rationale for designing a RCT for transdiagnostic treatment to inform and aid in the development of future investigations. A recently funded and ongoing RCT for Transdiagnostic Behavior Therapy (TBT) is used as an example to discuss the related design challenges. The TBT study involves the recruitment of 96 veteran participants with any of the following eight principal diagnoses: posttraumatic stress disorder, panic disorder, social anxiety disorder, obsessive compulsive disorder, generalized anxiety disorder, specific phobia, major depressive disorder, or persistent depressive disorder. Within the TBT study, participants will complete a semi-structured diagnostic interview and a series of transdiagnostic self-report measures to determine eligibility and assess baseline symptomatology. Qualifying participants will be randomized to TBT or control psychotherapy. Additional assessments will be completed at post-treatment and 6-month follow-up. Due to the transdiagnostic nature of the sample, adjustments to the recruitment and randomization procedures, selection of measures, selection of control psychotherapy, and analysis plan were required. These adjustments have implications to future trials on transdiagnostic psychotherapy protocols as well as future research in line with the transdiagnostic focus of the National Institute of Mental Health's Research Domain Criteria (RDoC) funding strategy. Published by Elsevier Inc.

  7. Process Materialization Using Templates and Rules to Design Flexible Process Models

    Science.gov (United States)

    Kumar, Akhil; Yao, Wen

    The main idea in this paper is to show how flexible processes can be designed by combining generic process templates and business rules. We instantiate a process by applying rules to specific case data, and running a materialization algorithm. The customized process instance is then executed in an existing workflow engine. We present an architecture and also give an algorithm for process materialization. The rules are written in a logic-based language like Prolog. Our focus is on capturing deeper process knowledge and achieving a holistic approach to robust process design that encompasses control flow, resources and data, as well as makes it easier to accommodate changes to business policy.

  8. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Final report

    International Nuclear Information System (INIS)

    Martone, M.

    1997-01-01

    This report documents the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member

  9. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Martone, M [ENEA, Centro Ricerche Frascati, Rome (Italy)

    1997-01-01

    This report documents the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member.

  10. Towards intelligent microstructural design of Nanocomposite Materials. Lightweight, high strength structural/armor materials for service in extreme environments

    International Nuclear Information System (INIS)

    Mara, Nathan Allan; Bronkhorst, Curt Allan; Beyerlein, Irene Jane

    2015-01-01

    The intent of this research effort is to prove the hypothesis that: Through the employment of controlled processing parameters which are based upon integrated advanced material characterization and multi-physics material modeling, bulk nanolayered composites can be designed to contain high densities of preferred interfaces that can serve as supersinks for the defects responsible for premature damage and failure.

  11. Towards intelligent microstructural design of Nanocomposite Materials. Lightweight, high strength structural/armor materials for service in extreme environments

    Energy Technology Data Exchange (ETDEWEB)

    Mara, Nathan Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bronkhorst, Curt Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Beyerlein, Irene Jane [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-21

    The intent of this research effort is to prove the hypothesis that: Through the employment of controlled processing parameters which are based upon integrated advanced material characterization and multi-physics material modeling, bulk nanolayered composites can be designed to contain high densities of preferred interfaces that can serve as supersinks for the defects responsible for premature damage and failure.

  12. Strength behaviour of sintered steel from the view of design-relevant material data

    International Nuclear Information System (INIS)

    Sonsino, C.M.; Esper, F.J.; Leuze, G.

    1982-01-01

    A reliable design of sintered components and an aimed material's selection requires the knowledge of designrelevant material data as Cyclic stress-strain-curves, crack propagation and fracture toughness properties as well as statistically evaluated S-N-curves, because conventional material data as tensile strength, monotonic yield strength, elongation, area reduction and impact strength can lead to a false estimation of the material's fatigue behaviour. For this reason the powder metallurgical industry began to determine design-relevant material data on the example of the porous Fe-Cu-C- and Fe-Cu-Ni-alloys. The fatigue tests with notched specimen and different modes of loading show that porous sintered parts having mechanical notches are less sensitive to external notches than wrought steel, because crack-propagation is delayed by pores. The possibility to manufacture cyclic hardening alloys, their relative notch-insensitivity and with wrought steel comparable scatter of fatigue properties show the importance of sintered alloys as alternative materials. (orig.) [de

  13. Materials for Consideration in Standardized Canister Design Activities.

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Charles R.; Ilgen, Anastasia Gennadyevna; Enos, David George; Teich-McGoldrick, Stephanie; Hardin, Ernest

    2014-10-01

    This document identifies materials and material mitigation processes that might be used in new designs for standardized canisters for storage, transportation, and disposal of spent nuclear fuel. It also addresses potential corrosion issues with existing dual-purpose canisters (DPCs) that could be addressed in new canister designs. The major potential corrosion risk during storage is stress corrosion cracking of the weld regions on the 304 SS/316 SS canister shell due to deliquescence of chloride salts on the surface. Two approaches are proposed to alleviate this potential risk. First, the existing canister materials (304 and 316 SS) could be used, but the welds mitigated to relieve residual stresses and/or sensitization. Alternatively, more corrosion-resistant steels such as super-austenitic or duplex stainless steels, could be used. Experimental testing is needed to verify that these alternatives would successfully reduce the risk of stress corrosion cracking during fuel storage. For disposal in a geologic repository, the canister will be enclosed in a corrosion-resistant or corrosion-allowance overpack that will provide barrier capability and mechanical strength. The canister shell will no longer have a barrier function and its containment integrity can be ignored. The basket and neutron absorbers within the canister have the important role of limiting the possibility of post-closure criticality. The time period for corrosion is much longer in the post-closure period, and one major unanswered question is whether the basket materials will corrode slowly enough to maintain structural integrity for at least 10,000 years. Whereas there is extensive literature on stainless steels, this evaluation recommends testing of 304 and 316 SS, and more corrosion-resistant steels such as super-austenitic, duplex, and super-duplex stainless steels, at repository-relevant physical and chemical conditions. Both general and localized corrosion testing methods would be used to

  14. Symptomatic knee disorders in floor layers and graphic designers. A cross-sectional study

    DEFF Research Database (Denmark)

    Jensen, Lilli Kirkeskov; Rytter, Søren; Bonde, Jens Peter

    2012-01-01

    Previous studies have described an increased risk of developing tibio-femoral osteoarthritis (TF OA), meniscal tears and bursitis among those with a trade as floor layers. The purpose of this study was to analyse symptomatic knee disorders among floor layers that were highly exposed to kneeling w...... work tasks compared to graphic designers without knee-demanding work tasks....

  15. Comparison of gap frame designs and materials for precision cathode strip chambers

    International Nuclear Information System (INIS)

    Horvath, J.A.; Pratuch, S.M.; Belser, F.C.

    1993-01-01

    Precision cathode strip chamber perimeter designs that incorporate either continuous or discrete-post gap frames are analyzed. The effects of ten design and material combinations on gravity sag, mass, stress, and deflected shape are evaluated. Procedures are recommended for minimizing mass in the chamber perimeter region while retaining structural integrity and electrical design latitude

  16. Research report on design allowable values of structural materials for LMFBR

    International Nuclear Information System (INIS)

    1978-11-01

    The present report is composed of following two main parts. i) review and re-evaluation on test results by FCI Sub-committee studies, performed from 1973 to 1976, ii) review on procedures for determining design allowable values of structural materials for LMFBR components. Re-evaluation works have been made on monotonic tensile properties at elevated temperatures, creep and creep rupture properties, creep-fatigue properties (strain rate and tensile strain hold time effects on strain fatigue properties at elevated temperatures) of Types 316 and 304 stainless steel and 2 1/4Cr-1Mo steel (base and weld metals) produced in Japan. In the first half of the present report, creep-fatigue test results obtained by FCI Sub-committee studies are subjected to re-evaluation by the present P-FCI Sub-committee. Reviews have been made on testing methods on FCI's-creep-fatigue experiments with other test data of the test materials; high temperature monotonic tensile data, creep and creep rupture data, and origin of the test materials. The data of FCI studies are compared with other reference data obtained by several Japanese laboratories. In the latter half of the present report, procedures including ASME's are reviewed for setting design allowable values for LMFBR components on the basis of high temperature strength properties obtained with materials produced in Japan. A creep rupture data of Japanese steels are issued and examined to make proposal for a design allowable stress of S sub(t) through parameter survey. (author)

  17. The Creativity Dimension of Instructional Materials Designed by Prospective Teachers: The Comparison across Domains

    Directory of Open Access Journals (Sweden)

    Ersoy Esen

    2017-01-01

    Full Text Available This study aims at revealing the creativity dimension of the materials designed and developed by the second year students studying at the department of Computer Education and Instructional Technology. A part of the participants has completed the process by designing materials in their own field, information technologies; while some of them have done so by designing materials in the field of mathematics. The data have been retrieved from an experimental study of 13 weeks. “Teaching Material Creativity Rubric” developed by the researchers, has been used as the data collection tool. The rubric has been developed in order to evaluate the creativity dimensions of products. While developing the rubric, the creative product evaluation dimensions of [14] have been a source of inspiration. The products developed by the students have been evaluated through the retrieved data, in terms of their creativity. The rubric developed includes Originality, Practicality & Sensibility, Productivity & Flexibility, Feasibility, Inclusiveness, and Insightfulness dimensions. In this research, the data of the aforementioned dimensions and sub-dimensions have been evaluated. The results present that the creativity level of the products on teaching information technologies, which have been developed by Computer Education and Instructional Technology (CEIT students, is high. It has been argued that the creativity of domain-specifically developed materials is higher, through literature. Keywords: Material Design in Computers, Mathematics Teaching, Originality, Applicability, Creativity, Creativity and Domainswords.

  18. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Executive summary

    International Nuclear Information System (INIS)

    1997-01-01

    This report is a summary of the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member

  19. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This report is a summary of the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member.

  20. Designing ICT Training Material for Chinese Language Arts Teachers.

    Science.gov (United States)

    Lin, Janet Mei-Chuen; Wu, Cheng-Chih; Chen, Hsiu-Yen

    The purpose of this research is to tailor the design of information and communications technology (ICT) training material to the needs of Chinese language arts teachers such that the training they receive will be conducive to effective integration of ICT into instruction. Eighteen experienced teachers participated in a Delphi-like survey that…

  1. Teachers’ Pedagogic Design of Digital Interactive Whiteboard Materials in the UK Secondary School

    Directory of Open Access Journals (Sweden)

    Carey Jewitt

    2008-03-01

    Full Text Available Teachers have always made texts for use in the classroom. The wide spread introduction of Interactive whiteboard (IWB technology into UK classrooms, and the screen more generally, makes the multimodal resources of color, image, dynamic movement, and sound newly available for pedagogic design in newly connectable ways. These facilities present teachers with new questions about how to design and use teaching materials, new possibilites and constraints. This presentation will examine teachers' design of digital multimodal resources for IWBs and the influence of prevalent policy discourses of interactivity, multimodality and fast pace influence on teacher’s digital materials for the IWB.

  2. Design, Synthesis and Characterization of Functional Metal-Organic Framework Materials

    KAUST Repository

    Alamer, Badriah

    2015-06-01

    Over the past few decades, vast majority of industrial and academic research throughout the world has witnessed the emergence of materials that can serve as ideal candidates for potential utility in desired applications, and these materials are known as Metal Organic Framework (MOFs). This exceptional new family of porous materials is fabricated by linkage of metal ions or clusters and organic linkers via strong bonds. MOFs have been awarded with remarkable interest and widely studied due to their inherent structural methodology (e.g. use of various metals, expanded library of organic building blocks with different geometry and functionality particularly frameworks designed from carboxylate organic linkers) and unquestionably unique structural and chemical features for many practical applications. (i.e. gas storage/separation, catalysis, drug delivery etc). Simply, metal organic frameworks epitomize the beauty of porous chemical structures. From a design perspective, the introduction of the Molecular Building Block (MBB) approach is actively being pursued pathway by researchers toward the construction of MOFs by employing inorganic building blocks and organic linkers and taking advantage of not only their multiple coordination modes and geometries but also the way in which they are reticulated to generate final framework. In this thesis, research studies will be directed toward (i) the investigation of the relationship between experimental parameters and synthesis of well-known fcu –MOF, (ii) rational design and synthesis of new rare earth (RE) based MOFs, (ii) isoreticular materials based on particular MBB ([M3O(RCO2)6]), M= p-and d-block metals, and (iv) zeolite- like metal organic framework assembled from single-metal ion based MBB ([MN2(CO2)4]) via 2-, 3-,and 4-connected organic linkers. Consequently, the porosity, chemical and thermal stability, and gas sorption properties will be evaluated and detailed.

  3. Molecular Understanding and Structural-Based Design of Polyacrylamides and Polyacrylates as Antifouling Materials.

    Science.gov (United States)

    Chen, Hong; Zhao, Chao; Zhang, Mingzhen; Chen, Qiang; Ma, Jie; Zheng, Jie

    2016-04-12

    Design and synthesis of highly bioinert and biocompatible antifouling materials are crucial for a broad range of biomedical and engineering applications. Among antifouling materials, polyacrylamides and polyacrylates have proved so promising because of cheap raw materials, ease of synthesis and applicability, and abundant functional groups. The strong surface hydration and the high surface packing density of polyacrylamides and polyacrylates are considered to be the key contributors to their antifouling property. In this article, we review our studies on the design and synthesis of a series of polyacrylamides and polyacrylates with different molecular structures. These polymers can be fabricated into different architectural forms (brushes, nanoparticles, nanogels, and hydrogels), all of which are highly resistant to the attachment of proteins, cells, and bacteria. We find that small structural changes in the polymers can lead to large enhancement in surface hydration and antifouling performance, both showing a positive correlation. This reveals a general design rule for effective antifouling materials. Furthermore, polyacrylamides and polyacrylates are readily functionalized with other bioactive compounds to achieve different new multifunctionalities.

  4. Neutron diffraction studies on ordered and disordered materials

    International Nuclear Information System (INIS)

    Krishna, P.S.R

    2016-01-01

    Knowledge of the symmetry and distribution of atoms in the unit cell and the bonding between atoms is the key point for understanding, designing and manipulating chemical behavior or physical properties of novel materials for technological applications. This could be achieved using diffraction techniques. At the Dhruva national facility, BARC, Mumbai, a Powder diffractometer (PD2) and a High-Q diffractometer (HQD) are in operation for more than 2 decades. PD2 and HQD are equipped with banks of 5 and 10 position sensitive detectors (PSD) respectively, to cover the Q-ranges 9.4 Å -1 and 15 Å -1 respectively. The resolutions (Δd/d) of these instruments are 0.8% (λ = 1.24 Å) and 2.5% (λ = 0.78 Å). We report about the studies of changes in the long range order in crystalline materials as a function of temperature and/or composition as well as short and intermediate range orders studied in amorphous materials on these diffractometers in recent years. PD2 has been extensively used in the structural/phase transition studies of ferroics, multiferroics, nanoferrites along with magnetic structure determinations. On the other hand, HQD has been extensively used to understand the short and intermediate range order in network glasses like chalcogenides, H-bonded alcohols, Telluride glasses etc. We will be discussing the recent structural results obtained on many of these crystalline systems, glasses and molecular fluids on both of these diffractometers. (author)

  5. Space Shuttle Orbiter - Leading edge structural design/analysis and material allowables

    Science.gov (United States)

    Johnson, D. W.; Curry, D. M.; Kelly, R. E.

    1986-01-01

    Reinforced Carbon-Carbon (RCC), a structural composite whose development was targeted for the high temperature reentry environments of reusable space vehicles, has successfully demonstrated that capability on the Space Shuttle Orbiter. Unique mechanical properties, particularly at elevated temperatures up to 3000 F, make this material ideally suited for the 'hot' regions of multimission space vehicles. Design allowable characterization testing, full-scale development and qualification testing, and structural analysis techniques will be presented herein that briefly chart the history of the RCC material from infancy to eventual multimission certification for the Orbiter. Included are discussions pertaining to the development of the design allowable data base, manipulation of the test data into usable forms, and the analytical verification process.

  6. Readability in reading materials selection and coursebook design for college English in China

    OpenAIRE

    Lu, Zhongshe

    2002-01-01

    This thesis studies the application of readability in reading materials selection and coursebook design for college English in an EFL context in China. Its aim is to develop rationales which coursebook writers can utilise in selecting materials as texts and as a basis for designing tasks. This study, through a combination of quantitative and qualitative research methods, argues that readability is applicable in the EFL Chinese context, and readability plays a important role in determining...

  7. Efficient Parameter Searches for Colloidal Materials Design with Digital Alchemy

    Science.gov (United States)

    Dodd, Paul, M.; Geng, Yina; van Anders, Greg; Glotzer, Sharon C.

    Optimal colloidal materials design is challenging, even for high-throughput or genomic approaches, because the design space provided by modern colloid synthesis techniques can easily have dozens of dimensions. In this talk we present the methodology of an inverse approach we term ''digital alchemy'' to perform rapid searches of design-paramenter spaces with up to 188 dimensions that yield thermodynamically optimal colloid parameters for target crystal structures with up to 20 particles in a unit cell. The method relies only on fundamental principles of statistical mechanics and Metropolis Monte Carlo techniques, and yields particle attribute tolerances via analogues of familiar stress-strain relationships.

  8. Recycling issues facing target and RTL materials of inertial fusion designs

    International Nuclear Information System (INIS)

    El-Guebaly, L.; Wilson, P.; Sawan, M.; Henderson, D.; Varuttamaseni, A.

    2005-01-01

    Designers of heavy ion (HI) and Z-pinch inertial fusion power plants have explored the potential of recycling the target and recyclable transmission line (RTL) materials as an alternate option to disposal in a geological repository. This work represents the first time a comprehensive recycling assessment was performed on both machines with an exact pulse history. Our results offer two divergent conclusions on the recycling issue. For the HI concept, target recycling is not a 'must' requirement and the preferred option is the one-shot use scenario as target materials represent a small waste stream, less than 1% of the total nuclear island waste. We recommend using low-cost hohlraum materials once-through and then disposing of them instead of recycling expensive materials such as Au and Gd. On the contrary, RTL recycling is a 'must' requirement for the Z-pinch concept in order to minimize the RTL inventory and enhance the economics. The RTLs meet the low level waste and recycling dose requirements with a wide margin when recycled for the entire plant life even without a cooling period. While recycling offers advantages to the Z-pinch system, it adds complexity and cost to the HI designs

  9. Examples of density, orientation and shape optimal design for stiffness and/or strength with orthotropic materials

    DEFF Research Database (Denmark)

    Pedersen, Pauli

    2004-01-01

    The balance between stiffness and strength design is considered in the present paper. For materials with different levels of orthotropy (including isotropy), we optimize the density distribution as well as the orientational distribution for a short cantilever problem, and discuss the tendencies...... in design and response (energy distributions and stress directions). For a hole in a biaxial stress field, the shape design of the boundary hole is also incorporated. The resulting tapered density distributions may be difficult to manufacture, for example, in micro-mechanics production. For such problems...... a penalization approach to obtain "black and white" designs, i.e. uniform material or holes, is often applied in optimal design. A specific example is studied to show the effect of the penalization, but is restricted here to an isotropic material. When the total amount of material is not specified, a conflict...

  10. First wall and blanket module safety enhancement by material selection and design decision

    International Nuclear Information System (INIS)

    Merrill, B.J.

    1980-01-01

    A thermal/mechanical study has been performed which illustrates the behavior of a fusion reactor first wall and blanket module during a loss of coolant flow event. The relative safety advantages of various material and design options were determined. A generalized first wall-blanket concept was developed to provide the flexibility to vary the structural material (stainless steel vs titanium), coolant (helium vs water), and breeder material (liquid lithium vs solid lithium aluminate). In addition, independent vs common first wall-blanket cooling and coupled adjacent module cooling design options were included in the study. The comparative analyses were performed using a modified thermal analysis code to handle phase change problems

  11. High-Pressure Design of Advanced BN-Based Materials

    Directory of Open Access Journals (Sweden)

    Oleksandr O. Kurakevych

    2016-10-01

    Full Text Available The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN with hardness comparable to diamond, and superhard boron subnitride B13N2. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc. are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure–temperature conditions are considered.

  12. Materials for Hydrogen Storage in Nanocavities: Design criteria

    Energy Technology Data Exchange (ETDEWEB)

    Reguera, E. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada del IPN, Unidad Legaria, Legaria 694, Col. Irrigacion (Mexico)

    2009-11-15

    The adsorption potential for a given adsorbate depends of both, material surface and adsorbate properties. In this contribution the possible guest-host interactions for H{sub 2} within a cavity or on a surface are discussed considering the molecule physical properties. Five different interactions contribute to the adsorption forces for this molecule: 1) quadrupole moment interaction with the local electric field gradient; 1) electron cloud polarization by a charge center; 3) dispersive forces (van der Waals); 4) quadrupole moment versus quadrupole moment between neighboring H{sub 2} molecules, and, 5) H{sub 2} coordination to a metal center. The relative importance of these five interactions for the hydrogen storage in nanocavities is discussed from experimental evidences in order to extract materials design criteria for molecular hydrogen storage. (author)

  13. PREFACE: International Conference on Advanced Structural and Functional Materials Design 2008

    Science.gov (United States)

    Kakeshita, Tomoyuki

    2009-07-01

    The Ministry of Education, Culture, Sports, Science and Technology of Japan started the Priority Assistance for the Formation of Worldwide Renowned Centers of Research - Global COE Program. This program is based on the competitive principle where a third party evaluation decides which program to support and to give priority support to the formation of world-class centers of research. Our program Center of Excellence for Advanced Structural and Functional Materials Design was selected as one of 13 programs in the field of Chemistry and Materials Science. This center is composed of two materials-related Departments in the Graduate School of Engineering: Materials and Manufacturing Science and Adaptive Machine Systems, and 4 Research Institutes: Center for Atomic and Molecular Technologies, Welding and Joining Research Institute, Institute of Scientific and Industrial Research and Research Center for Ultra-High Voltage Electron Microscopy. Recently, materials research, particularly that of metallic materials, has specialized only in individual elemental characteristics and narrow specialty fields, and there is a feeling that the original role of materials research has been forgotten. The 6 educational and research organizations which make up the COE program cooperatively try to develop new advanced structural and functional materials and achieve technological breakthrough for their fabrication processes from electronic, atomic, microstructural and morphological standpoints, focusing on their design and application: development of high performance structural materials such as space plane and turbine blades operating under a severe environment, new fabrication and assembling methods for electronic devices, development of evaluation technique for materials reliability, and development of new biomaterials for regeneration of biological hard tissues. The aim of this international conference was to report the scientific progress in our Global COE program and also to discuss

  14. Design and Evaluation of Ergonomic Interventions for the Prevention of Musculoskeletal Disorders in India

    Science.gov (United States)

    2014-01-01

    Background Improper workstation, work procedures and tools are found to be the risk factors for the development of musculoskeletal disorders among the informal sector workers of the developing countries. Low cost ergonomic interventions can effectively improve such adverse conditions. Case presentation In the present article some studies related to design interventions in different informal and agricultural sectors were discussed and their efficacies were analyzed. It was observed that with the help of appropriate interventions musculoskeletal disorders were reduced, adverse physiological conditions were improved when awkward postures were corrected and ultimately the organisational productivity was increased. Conclusion Proper implementation of ergonomic interventions can ultimately improve the economy of the nation. PMID:25009740

  15. The ideal usage of sustainable materials and local resources of the interior space design in Jordan

    Energy Technology Data Exchange (ETDEWEB)

    Fahmi Hussien, Mayyadah [Department of Interior Design, Faculty of Architect and Art, Petra University (Jordan)], Email: Mayada19732004@yahoo.com

    2011-07-01

    A large amount of waste is generated by buildings over their life cycle, from construction and operation to destruction. Sustainable design principles and recycling programs in buildings can help moderate this waste. The simplest way is directly through the materials used in the building's construction. The materials and resources used should focus on the health and productivity consequences for the building's inhabitants and its environmental, social and economic impacts. This aim of this study is to make certain recommendations with respect to the use of sustainable building materials and resources in indoor spaces in Jordan. A general overview of collection and storage of recyclable materials, waste management, material reuse, and green and rapidly renewable materials is given. Sustainable material usage in the elements of interior design in Jordan is also discussed in two case studies. A set of indicators is proposed which identify the ideal sustainable materials and resources for use in interior design in Jordan to provide a healthy living environment.

  16. Implementation of outpatient schema therapy for borderline personality disorder: study design

    Directory of Open Access Journals (Sweden)

    van Asselt Thea

    2009-10-01

    Full Text Available Abstract Background Schema Therapy (ST is an integrative psychotherapy based upon a cognitive schema model which aims at identifying and changing dysfunctional schemas and modes through cognitive, experiential and behavioral pathways. It is specifically developed for patients with personality disorders. Its effectiveness and efficiency have been demonstrated in a few randomized controlled trials, but ST has not been evaluated in regular mental healthcare settings. This paper describes the study protocol of a multisite randomized 2-group design, aimed at evaluating the implementation of outpatient schema therapy for patients with borderline personality disorder (BPD in regular mental healthcare and at determining the added value of therapist telephone availability outside office hours in case of crisis. Methods/Design Patient outcome measures will be assessed with a semi-structured interview and self-report measures on BPD, therapeutic alliance, quality of life, costs and general psychopathology at baseline, 6, 12, 18 and 36 months. Intention-to-treat analyses will be executed with survival analysis for dichotomous variables, and one-sample t-tests and ANCOVAs for continuous variables with baseline as covariate and condition as between group factor. All tests will be two-tailed with a significance level of 5%. Discussion The study will provide an answer to the question whether ST can be effectively implemented and whether phone support by the therapist has an additional value. Trial Registration The Dutch Cochrane Center, NTR (TC = 1781.

  17. Design of materials configurations for enhanced phononic and electronic properties

    Science.gov (United States)

    Daraio, Chiara

    The discovery of novel nonlinear dynamic and electronic phenomena is presented for the specific cases of granular materials and carbon nanotubes. This research was conducted for designing and constructing optimized macro-, micro- and nano-scale structural configurations of materials, and for studying their phononic and electronic behavior. Variation of composite arrangements of granular elements with different elastic properties in a linear chain-of-sphere, Y-junction or 3-D configurations led to a variety of novel phononic phenomena and interesting physical properties, which can be potentially useful for security, communications, mechanical and biomedical engineering applications. Mechanical and electronic properties of carbon nanotubes with different atomic arrangements and microstructures were also investigated. Electronic properties of Y-junction configured carbon nanotubes exhibit an exciting transistor switch behavior which is not seen in linear configuration nanotubes. Strongly nonlinear materials were designed and fabricated using novel and innovative concepts. Due to their unique strongly nonlinear and anisotropic nature, novel wave phenomena have been discovered. Specifically, violations of Snell's law were detected and a new mechanism of wave interaction with interfaces between NTPCs (Nonlinear Tunable Phononic Crystals) was established. Polymer-based systems were tested for the first time, and the tunability of the solitary waves speed was demonstrated. New materials with transformed signal propagation speed in the manageable range of 10-100 m/s and signal amplitude typical for audible speech have been developed. The enhancing of the mitigation of solitary and shock waves in 1-D chains were demonstrated and a new protective medium was designed for practical applications. 1-D, 2-D and 3-D strongly nonlinear system have been investigated providing a broad impact on the whole area of strongly nonlinear wave dynamics and creating experimental basis for new

  18. Materials selection in mechanical design

    International Nuclear Information System (INIS)

    Ashby, M.F.; Cebon, D.

    1993-01-01

    A novel materials-selection procedure has been developed and implemented in software. The procedure makes use of Materials Selection Charts: a new way of displaying material property data; and performance indices: combinations of material properties which govern performance. Optimisation methods are employed for simultaneous selection of both material and shape. (orig.)

  19. Materials selection in mechanical design

    OpenAIRE

    Ashby , M.; Cebon , D.

    1993-01-01

    A novel materials-selection procedure has been developed and implemented in software. The procedure makes use of Materials Selection Charts: a new way of displaying material property data; and performance indices: combinations of material properties which govern performance. Optimisation methods are employed for simultaneous selection of both material and shape.

  20. Material Control and Accounting Design Considerations for High-Temperature Gas Reactors

    International Nuclear Information System (INIS)

    Bjornard, Trond; Hockert, John

    2011-01-01

    The subject of this report is domestic safeguards and security by design (2SBD) for high-temperature gas reactors, focusing on material control and accountability (MC and A). The motivation for the report is to provide 2SBD support to the Next Generation Nuclear Plant (NGNP) project, which was launched by Congress in 2005. This introductory section will provide some background on the NGNP project and an overview of the 2SBD concept. The remaining chapters focus specifically on design aspects of the candidate high-temperature gas reactors (HTGRs) relevant to MC and A, Nuclear Regulatory Commission (NRC) requirements, and proposed MC and A approaches for the two major HTGR reactor types: pebble bed and prismatic. Of the prismatic type, two candidates are under consideration: (1) GA's GT-MHR (Gas Turbine-Modular Helium Reactor), and (2) the Modular High-Temperature Reactor (M-HTR), a derivative of Areva's Antares reactor. The future of the pebble-bed modular reactor (PBMR) for NGNP is uncertain, as the PBMR consortium partners (Westinghouse, PBMR (Pty) and The Shaw Group) were unable to agree on the path forward for NGNP during 2010. However, during the technology assessment of the conceptual design phase (Phase 1) of the NGNP project, AREVA provided design information and technology assessment of their pebble bed fueled plant design called the HTR-Module concept. AREVA does not intend to pursue this design for NGNP, preferring instead a modular reactor based on the prismatic Antares concept. Since MC and A relevant design information is available for both pebble concepts, the pebble-bed HTGRs considered in this report are: (1) Westinghouse PBMR; and (2) AREVA HTR-Module. The DOE Office of Nuclear Energy (DOE-NE) sponsors the Fuel Cycle Research and Development program (FCR and D), which contains an element specifically focused on the domestic (or state) aspects of SBD. This Material Protection, Control and Accountancy Technology (MPACT) program supports the present

  1. Designing affective video games to support the social-emotional development of teenagers with autism spectrum disorders.

    Science.gov (United States)

    Khandaker, Mitu

    2009-01-01

    Autism spectrum disorders (ASD) are a group of developmental neuropsychiatric disorders, comprised of three diagnostic entities - autistic disorder (AD), Asperger's disorder (AS), and Pervasive Developmental Disorder Not Otherwise Specified (including atypical autism) (PDD-NOS). A number of intervention techniques are currently used to reduce some of the associated challenges, with techniques ranging from behavioral therapy to dietary interventions and traditional counseling. This positional paper proposes the use of video games which leverage affective computing technologies as intervention in autism spectrum disorders in the context of the use of traditional play therapy with adolescents, who may feel uncomfortable engaging in traditional play with toys they may be too old for. It aims to explore the potential for greater 'social physics' made possible by affective computing technologies. This involves computationally 'recognizing' emotions in a user, often through the use of multimodal affective sensors, including facial expressions, postural shifts, and physiological signals such as heart rate, skin conductivity, and EEG signals. However, it is suggested that this should be augmented by researching the effect of social game design mechanisms on social-emotional development, particularly for those who experience difficulty with social interaction.

  2. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    International Nuclear Information System (INIS)

    1995-01-01

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL's weapons research, development, and testing (WRD ampersand T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL's inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system

  3. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

  4. Fractal nature of humic materials

    International Nuclear Information System (INIS)

    Rice, J.A.

    1992-01-01

    Fractals are geometric representatives of strongly disordered systems whose structure is described by nonintegral dimensions. A fundamental tenet of fractal geometry is that disorder persists at any characterization scale-length used to describe the system. The nonintegral nature of these fractal dimensions is the result of the realization that a disordered system must possess more structural detail than an ordered system with classical dimensions of 1, 2, or 3 in order to accommodate this ''disorder within disorder.'' Thus from a fractal perspective, disorder is seen as an inherent characteristic of the system rather than as a perturbative phenomena forced upon it. Humic materials are organic substances that are formed by the profound alteration of organic matter in a natural environment. They can be operationally divided into 3 fractions; humic acid (soluble in base), fulvic acid (soluble in acid or base), and humin (insoluble in acid or base). Each of these fraction has been shown to be an extremely heterogeneous mixture. These mixtures have proven so intractable that they may represent the ultimate in molecular disorder. In fact, based on the characteristics that humic materials must possess in order to perform their functions in natural systems, it has been proposed that the fundamental chemical characteristic of a humic material is not a discrete chemical structure but a pronounced lack of order on a molecular level. If the fundamental chemical characteristic of a humic material is a strongly disordered nature, as has been proposed, then humic materials should be amenable to characterization by fractal geometry. The purpose of this paper is to test this hypothesis

  5. Parametric analysis and design of a screw extruder for slightly non-Newtonian (pseudoplastic materials

    Directory of Open Access Journals (Sweden)

    J.I. Orisaleye

    2018-04-01

    Full Text Available Extruders have found application in the food, polymer and pharmaceutical industries. Rheological characteristics of materials are important in the specification of design parameters of screw extruders. Biopolymers, which consist of proteins, nucleic acids and polysaccharides, are shear-thinning (pseudoplastic within normal operating ranges. However, analytical models to predict and design screw extruders for non-Newtonian pseudoplastic materials are rare. In this study, an analytical model suitable to design a screw extruder for slightly non-Newtonian materials was developed. The model was used to predict the performance of the screw extruder while processing materials with power law indices slightly deviating from unity (the Newtonian case. Using non-dimensional analysis, the effects of design and operational parameters were investigated. Expressions to determine the optimum channel depth and helix angle were also derived. The model is capable of predicting the performance of the screw extruder within the range of power law indices considered (1/2⩽n⩽1. The power law index influences the choice of optimum channel depth and helix angle of the screw extruder. Keywords: Screw extruder, Slightly non-Newtonian, Shear-thinning, Pseudoplastic, Biopolymer, Power law

  6. Reuse of low specific activity material as part of LLWR design optimisation

    International Nuclear Information System (INIS)

    Huntington, Amy; Cummings, Richard; Shevelan, John; Sumerling, Trevor; Baker, Andrew J.

    2013-01-01

    A final cap will be emplaced over the disposed waste as part of the closure engineering for the UK's Low Level Waste Repository (LLWR). Additional profiling material will be required above the waste to obtain the required land-form. Consideration has been given to the potential opportunity to reuse Low Specific Activity Material (LSAM, defined as up to 200 Bq g -1 ) imported from other sites as a component of the necessary profiling material for the final repository cap. Justification of such a strategy would ultimately require a demonstration that the solution is optimal with respect to other options for the long-term management of such materials. The proposal is currently at the initial evaluation stage and seeks to establish how LSAM reuse within the cap could be achieved within the framework of an optimised safety case for the LLWR, should such a management approach be pursued. The key considerations include the following: The LSAM must provide the same engineering function as the remainder of the profiling material. The cap design must ensure efficient leachate collection, drainage and control for Low Level Waste (LLW) (and, by extension, LSAM) during the Period of Authorisation. In the longer term the engineering design must passively direct any accumulating waters preferentially away from surface water systems. An initial design has been developed that would allow the placement of around 220,000 m 3 of LSAM. The potential impact of the proposal has been assessed against the current Environmental Safety Case. (authors)

  7. Systematic design of 3D auxetic lattice materials with programmable Poisson's ratio for finite strains

    Science.gov (United States)

    Wang, Fengwen

    2018-05-01

    This paper presents a systematic approach for designing 3D auxetic lattice materials, which exhibit constant negative Poisson's ratios over large strain intervals. A unit cell model mimicking tensile tests is established and based on the proposed model, the secant Poisson's ratio is defined as the negative ratio between the lateral and the longitudinal engineering strains. The optimization problem for designing a material unit cell with a target Poisson's ratio is formulated to minimize the average lateral engineering stresses under the prescribed deformations. Numerical results demonstrate that 3D auxetic lattice materials with constant Poisson's ratios can be achieved by the proposed optimization formulation and that two sets of material architectures are obtained by imposing different symmetry on the unit cell. Moreover, inspired by the topology-optimized material architecture, a subsequent shape optimization is proposed by parametrizing material architectures using super-ellipsoids. By designing two geometrical parameters, simple optimized material microstructures with different target Poisson's ratios are obtained. By interpolating these two parameters as polynomial functions of Poisson's ratios, material architectures for any Poisson's ratio in the interval of ν ∈ [ - 0.78 , 0.00 ] are explicitly presented. Numerical evaluations show that interpolated auxetic lattice materials exhibit constant Poisson's ratios in the target strain interval of [0.00, 0.20] and that 3D auxetic lattice material architectures with programmable Poisson's ratio are achievable.

  8. Physical and Model Uncertainty for Fatigue Design of Composite Material

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    The main aim of the present report is to establish stochastic models for the uncertainties related to fatigue design of composite materials. The uncertainties considered are the physical uncertainty related to the static and fatigue strength and the model uncertainty related to Miners rule...

  9. Bioinspired Design of Building Materials for Blast and Ballistic Protection

    Directory of Open Access Journals (Sweden)

    Yu-Yan Sun

    2016-01-01

    Full Text Available Nacre in abalone shell exhibits high toughness despite the brittle nature of its major constituent (i.e., aragonite. Its specific structure is a major contributor to the energy absorption capacity of nacre. This paper reviews the mechanisms behind the performance of nacre under shear, uniaxial tension, compression, and bending conditions. The remarkable combination of stiffness and toughness on nacre can motivate the development of bioinspired building materials for impact resistance applications, and the possible toughness designs of cement-based and clay-based composite materials with a layered and staggered structure were discussed.

  10. Harvesting bioenergy with rationally designed complex functional materials

    Science.gov (United States)

    Kuang, Liangju

    A key challenge in renewable energy is to capture, convert and store solar power with earth-abundant materials and environmentally benign technologies. The goal of this thesis is to develop rationally designed complex functional materials for bio-renewable energy applications. On one hand, photoconversion membrane proteins (MPs) are nature's nanoengineering feats for renewable energy management. Harnessing their functions in synthetic systems could help understand, predict, and ultimately control matter and energy at the nanoscale. This is particularly enticing in the post-genome era as recombinant or cell-free expression of many MPs with high yields becomes possible. However, the labile nature of lipid bilayers renders them unsuitable for use in a broad range of engineered systems. A knowledge gap exists about how to design robust synthetic nanomembranes as lipid-bilayer-mimics to support MP functions and how to direct hierarchical MP reconstitution into those membranes to form 2-D or 3-D ordered proteomembrane arrays. Our studies on proteorhodopsin (PR) and bacterial reaction center (BRC), the two light-harvesting MPs, reveal that a charge-interaction-directed reconstitution (CIDR) mechanism induces spontaneous reconstitution of detergent-solubilized MPs into various amphiphilic block copolymer membranes, many of which have far superior stability than lipid bilayers. Our preliminary data also suggest MPs are not enslaved by the biological membranes they derive from; rather, the chemically nonspecific material properties of MP-supporting membranes may act as allosteric regulators. Versatile chemical designs are possible to modulate the conformational energetics of MPs, hence their transport performance in synthetic systems. On the other hand, microalgae are widely regarded as a sustainable feedstock for biofuel production. Microalgae-derived biofuels have not been commercialized yet because current technologies for microalgae dewatering add a huge cost to the

  11. Design and material selection for ITER first wall/blanket, divertor and vacuum vessel

    Science.gov (United States)

    Ioki, K.; Barabash, V.; Cardella, A.; Elio, F.; Gohar, Y.; Janeschitz, G.; Johnson, G.; Kalinin, G.; Lousteau, D.; Onozuka, M.; Parker, R.; Sannazzaro, G.; Tivey, R.

    1998-10-01

    Design and R&D have progressed on the ITER vacuum vessel, shielding and breeding blankets, and the divertor. The principal materials have been selected and the fabrication methods selected for most of the components based on design and R&D results. The resulting design changes are discussed for each system.

  12. Design and construction of thermal desorption measurement system for tritium contained materials

    International Nuclear Information System (INIS)

    Hara, M.; Hatano, Y.; Calderoni, P.; Shimada, M.

    2014-01-01

    The dual-mode thermal desorption analysis system was designed and built in Idaho National Laboratory (INL) to examine the evolution of the hydrogen isotope gas from materials. The system is equipped with a mass spectrometer for stable hydrogen isotopes and an ionization chamber for tritium components. The performance of the system built was tested with using tritium contained materials. The evolution of tritiated gas species from contaminated materials was measured successfully by using the system. (author)

  13. Connecting drug delivery reality to smart materials design.

    Science.gov (United States)

    Grainger, David W

    2013-09-15

    Inflated claims to both design and mechanistic novelty in drug delivery and imaging systems, including most nanotechnologies, are not supported by the generally poor translation of these systems to clinical efficacy. The "form begets function" design paradigm is seductive but perhaps over-simplistic in translation to pharmaceutical efficacy. Most innovations show few clinically important distinctions in their therapeutic benefits in relevant preclinical disease and delivery models, despite frequent claims to the contrary. Long-standing challenges in drug delivery issues must enlist more realistic, back-to-basics approaches to address fundamental materials properties in complex biological systems, preclinical test beds, and analytical methods to more reliably determine fundamental pharmaceutical figures of merit, including drug carrier purity and batch-batch variability, agent biodistribution, therapeutic index (safety), and efficacy. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. [Design of plant leaf bionic camouflage materials based on spectral analysis].

    Science.gov (United States)

    Yang, Yu-Jie; Liu, Zhi-Ming; Hu, Bi-Ru; Wu, Wen-Jian

    2011-06-01

    The influence of structure parameters and contents of plant leaves on their reflectance spectra was analyzed using the PROSPECT model. The result showed that the bionic camouflage materials should be provided with coarse surface and spongy inner structure, the refractive index of main content must be close to that of plant leaves, the contents of materials should contain chlorophyll and water, and the content of C-H bond must be strictly controlled. Based on the analysis above, a novel camouflage material, which was constituted by coarse transparent waterproof surface, chlorophyll, water and spongy material, was designed. The result of verifiable experiment showed that the reflectance spectra of camouflage material exhibited the same characteristics as those of plant leaves. The similarity coefficient of reflectance spectrum of the camouflage material and camphor leaves was 0.988 1, and the characteristics of camouflage material did not change after sunlight treatment for three months. The bionic camouflage material, who exhibited a high spectral similarity with plant leaves and a good weather resistance, will be an available method for reconnaissance of hyperspectral imaging hopefully.

  15. Advances in design and modeling of porous materials

    Science.gov (United States)

    Ayral, André; Calas-Etienne, Sylvie; Coasne, Benoit; Deratani, André; Evstratov, Alexis; Galarneau, Anne; Grande, Daniel; Hureau, Matthieu; Jobic, Hervé; Morlay, Catherine; Parmentier, Julien; Prelot, Bénédicte; Rossignol, Sylvie; Simon-Masseron, Angélique; Thibault-Starzyk, Frédéric

    2015-07-01

    This special issue of the European Physical Journal Special Topics is dedicated to selected papers from the symposium "High surface area porous and granular materials" organized in the frame of the conference "Matériaux 2014", held on November 24-28, 2014 in Montpellier, France. Porous materials and granular materials gather a wide variety of heterogeneous, isotropic or anisotropic media made of inorganic, organic or hybrid solid skeletons, with open or closed porosity, and pore sizes ranging from the centimeter scale to the sub-nanometer scale. Their technological and industrial applications cover numerous areas from building and civil engineering to microelectronics, including also metallurgy, chemistry, health, waste water and gas effluent treatment. Many emerging processes related to environmental protection and sustainable development also rely on this class of materials. Their functional properties are related to specific transfer mechanisms (matter, heat, radiation, electrical charge), to pore surface chemistry (exchange, adsorption, heterogeneous catalysis) and to retention inside confined volumes (storage, separation, exchange, controlled release). The development of innovative synthesis, shaping, characterization and modeling approaches enables the design of advanced materials with enhanced functional performance. The papers collected in this special issue offer a good overview of the state-of-the-art and science of these complex media. We would like to thank all the speakers and participants for their contribution to the success of the symposium. We also express our gratitude to the organization committee of "Matériaux 2014". We finally thank the reviewers and the staff of the European Physical Journal Special Topics who made the publication of this special issue possible.

  16. Ferroelectric materials for piezoelectric actuators by optimal design

    International Nuclear Information System (INIS)

    Jayachandran, K.P.; Guedes, J.M.; Rodrigues, H.C.

    2011-01-01

    Research highlights: → Microstructure optimization of ferroelectric materials by stochastic optimization. → Polycrystalline ferroelectrics possess better piezo actuation than single crystals. → Randomness of the grain orientations would enhance the overall piezoelectricity. - Abstract: Optimization methods provide a systematic means of designing heterogeneous materials with tailored properties and microstructures focussing on a specific objective. An optimization procedure incorporating a continuum modeling is used in this work to identify the ideal orientation distribution of ferroelectrics (FEs) for application in piezoelectric actuators. Piezoelectric actuation is dictated primarily by the piezoelectric strain coefficients d iμ . Crystallographic orientation is inextricably related to the piezoelectric properties of FEs. This suggests that piezoelectric properties can be tailored by a proper choice of the parameters which control the orientation distribution. Nevertheless, this choice is complicated and it is impossible to analyze all possible combinations of the distribution parameters or the angles themselves. Stochastic optimization combined with a generalized Monte Carlo scheme is used to optimize the objective functions, the effective piezoelectric coefficients d 31 and d 15 . The procedure is applied to heterogeneous, polycrystalline, FE ceramics which are essentially an aggregate of variously oriented grains (crystallites). Global piezoelectric properties are calculated using the homogenization method at each grain configuration chosen by the optimization algorithm. Optimal design variables and microstructure that would generate polycrystalline configurations that multiply the macroscopic piezoelectricity are identified.

  17. Tailoring the self-assembly of linear alkyl chains for the design of advanced materials with technological applications.

    Science.gov (United States)

    Hoppe, Cristina E; Williams, Roberto J J

    2018-03-01

    The self-assembly of n-alkyl chains at the bulk or at the interface of different types of materials and substrates has been extensively studied in the past. The packing of alkyl chains is driven by Van der Waals interactions and can generate crystalline or disordered domains, at the bulk of the material, or self-assembled monolayers at an interface. This natural property of alkyl chains has been employed in recent years to develop a new generation of materials for technological applications. These studies are dispersed in a variety of journals. The purpose of this article was to discuss some selected examples where these advanced properties arise from a process involving the self-assembly of alkyl chains. We included a description of electronic devices and new-generation catalysts with properties derived from a controlled two-dimensional (2D) or three-dimensional (3D) self-assembly of alkyl chains at an interface. Then, we showed that controlling the crystallization of alkyl chains at the bulk can be used to generate a variety of advanced materials such as superhydrophobic coatings, shape memory hydrogels, hot-melt adhesives, thermally reversible light scattering (TRLS) films for intelligent windows and form-stable phase change materials (FS-PCMs) for the storage of thermal energy. Finally, we discussed two examples where advanced properties derive from the formation of disordered domains by physical association of alkyl chains. This was the case of photoluminescent nanocomposites and materials used for reversible optical storage. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Pelamis WEC - main body structural design and materials selection

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, C.

    2003-07-01

    This report summarises the results of a study evaluating the potential use of rolled steel, glass reinforced plastic, wood-epoxy laminate, and different forms of concrete as primary structural materials for the Pelamis Wave Energy Converter (WEC) as part of a strategy to refine the design by highlighting cost savings for long-term manufacture. Details are given of the drawing up of a load spectrum in order to assess the candidate structures, the choice of glass reinforced plastic, concrete, and steel for further evaluation based on preliminary screening, the assessment of the material requirements for each candidate structure, and cost estimates. The advantages of the use of concrete are discussed and recommendations are presented.

  19. Design and "As Flown" Radiation Environments for Materials in Low Earth Orbit

    Science.gov (United States)

    Minow, Joseph; McWilliams, Brett; Altstatt, Richard; Koontz, Steven

    2006-01-01

    A conservative design approach was adopted by the International Space Station Program for specifying total ionizing radiation dose requirements for use in selecting and qualifying materials for construction of the International Space Station. The total ionizing dose design environment included in SSP 30512 Space Station Ionizing Radiation Design Environment is based on trapped proton and electron fluence derived from the solar maximum versions of the AE-8 and AP-8 models, respectively, specified for a circular orbit at 500 km altitude and 51.7 degree inclination. Since launch, the range of altitudes utilized for Space Station operations vary from a minimum of approximately 330 km to a maximum of approximately 405 km with a mean operational altitude less than 400 km. The design environment, therefore, overestimates the radiation environment because the particle flux in the South Atlantic Anomaly is the primary contributor to radiation dose in low Earth orbit and flux within the Anomaly is altitude dependent. In addition, a 2X multiplier is often applied to the design environment to cover effects from the contributions of galactic cosmic rays, solar energetic particle events, geomagnetic storms, and uncertainties in the trapped radiation models which are not explicitly included in the design environment. Application of this environment may give radiation dose overestimates on the order of 1OX to 30X for materials exposed to the space environment, suggesting that materials originally qualified for ten year exposures on orbit may be used for longer periods without replacement. In this paper we evaluate the "as flown" radiation environments derived from historical records of the ISS flight trajectory since launch and compare the results with the SSP 30512 design environment to document the magnitude of the radiation dose overestimate provided by the design environment. "As flown" environments are obtained from application of the AE-8/AP-8 trapped particle models along

  20. Quantifying the effects of disorder on switching of perpendicular spin ice arrays

    Science.gov (United States)

    Kempinger, Susan; Fraleigh, Robert; Lammert, Paul; Crespi, Vincent; Samarth, Nitin; Zhang, Sheng; Schiffer, Peter

    There is much contemporary interest in probing custom designed, frustrated systems such as artificial spin ice. To that end, we study arrays of lithographically patterned, single-domain Pt/Co multilayer islands. Due to the perpendicular anisotropy of these materials, we are able to use diffraction-limited magneto-optical Kerr effect microscopy to access the magnetic state in situ with an applied field. As we tune the interaction strength by adjusting the lattice spacing, we observe the switching field distribution broadening with increasing dipolar interactions. Using a simple mathematical analysis we extract the intrinsic disorder (the disorder that would be present without interactions) from these switching field distributions. We also characterize the intrinsic disorder by systematically removing neighbor effects from the switching field distribution. Understanding this disorder contribution as well as the interaction strength allows us to more accurately characterize the moment correlation. This project was funded by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Grant No. DE- SC0010778

  1. Applications of ATILA FEM software to smart materials case studies in designing devices

    CERN Document Server

    Uchino, Kenji

    2013-01-01

    ATILA Finite Element Method (FEM) software facilitates the modelling and analysis of applications using piezoelectric, magnetostrictor and shape memory materials. It allows entire designs to be constructed, refined and optimized before production begins. Through a range of instructive case studies, Applications of ATILA FEM software to smart materials provides an indispensable guide to the use of this software in the design of effective products.Part one provides an introduction to ATILA FEM software, beginning with an overview of the software code. New capabilities and loss integratio

  2. Conceptual design of reinforced concrete structures using topology optimization with elastoplastic material modeling

    DEFF Research Database (Denmark)

    Bogomolny, Michael; Amir, Oded

    2012-01-01

    Design of reinforced concrete structures is governed by the nonlinear behavior of concrete and by its different strengths in tension and compression. The purpose of this article is to present a computational procedure for optimal conceptual design of reinforced concrete structures on the basis...... response must be considered. Optimized distribution of materials is achieved by introducing interpolation rules for both elastic and plastic material properties. Several numerical examples illustrate the capability and potential of the proposed procedure. Copyright © 2012 John Wiley & Sons, Ltd....

  3. Road Materials and Pavement Design Volume 17(1)

    CSIR Research Space (South Africa)

    De Beer, Morris

    2016-03-01

    Full Text Available Materials and Pavement Design Volume 17, 2016 - Issue 1 Editorial Board Page ebi | Published online: 03 Oct 2016  http://dx.doi.org/10.1080/14680629.2016.1244475 Editors-in-Chief Hervé DI BENEDETTO - University of Lyon/ENTPE, Vaulx-en-Velin, France... Andrew Charles COLLOP - De Montfort University, Leicester, UK William G. BUTTLAR - University of Missouri, Urbana-Champaign, USA Editor-in-Chief at Large Jorge B. Sousa - Consulpav, Oeiras, Portugal Associate Editors Morris de Beer - CSIR Built...

  4. Design and synthesis of polyoxometalate-framework materials from cluster precursors

    Science.gov (United States)

    Vilà-Nadal, Laia; Cronin, Leroy

    2017-10-01

    Inorganic oxide materials are used in semiconductor electronics, ion exchange, catalysis, coatings, gas sensors and as separation materials. Although their synthesis is well understood, the scope for new materials is reduced because of the stability limits imposed by high-temperature processing and top-down synthetic approaches. In this Review, we describe the derivatization of polyoxometalate (POM) clusters, which enables their assembly into a range of frameworks by use of organic or inorganic linkers. Additionally, bottom-up synthetic approaches can be used to make metal oxide framework materials, and the features of the molecular POM precursors are retained in these structures. Highly robust all-inorganic frameworks can be made using metal-ion linkers, which combine molecular synthetic control without the need for organic components. The resulting frameworks have high stability, and high catalytic, photochemical and electrochemical activity. Conceptually, these inorganic oxide materials bridge the gap between zeolites and metal-organic frameworks (MOFs) and establish a new class of all-inorganic POM frameworks that can be designed using topological and reactivity principles similar to MOFs.

  5. Site layout and balance of plant design for an accelerator-driven materials processing complex

    Energy Technology Data Exchange (ETDEWEB)

    Cunliffe, J.; Taussig, R.; Ghose, S. [Bechtel Corporation, San Francisco, CA (United States)] [and others

    1995-10-01

    High energy proton beam accelerators are under consideration for use in radioisotope production, surplus weapons material destruction, radioactive waste transmutation, and thorium-based energy conversion cycles. While there are unique aspects to each of these applications that must be accommodated in the design of the associated facility, all share a set of fundamental characteristics that in large measure dictate the site layout features and many balance-of-plant (BOP) design requirements found to be common to all. This paper defines these key design determinants and goes on to discuss the manner in which they have been accommodated in the pre-conceptual design for a particular materials production application. An estimate of the costs associated with this BOP design is also presented with the aim of guiding future evaluations where the basic plant designs are similar to that of this specific case.

  6. Designing Next Generation Rechargeable Battery Materials from First-Principles

    Science.gov (United States)

    Kim, Soo

    Technology has advanced rapidly, especially in the twenty-first century, influencing our day-to-day life on unprecedented levels. Most such advances in technology are closely linked to, and often driven by, the discovery and design of new materials. It follows that the discovery of new materials can not only improve existing technologies but also lead to revolutionary ones. In particular, there is a growing need to develop new energy materials that are reliable, clean, and affordable for emerging applications such as portable electronics, electric vehicles, and power grid systems. Many researchers have been actively searching for more cost-effective and clean electrode materials for lithium-ion batteries (LIBs) during the last few decades. These new electrode materials are also required to achieve higher electrochemical performance, compared to the already commercialized electrodes. Unfortunately, discovering the next sustainable energy materials based on a traditional 'trial-and-error' method via experiment would be extremely slow and difficult. In the last two decades, computational compilations of battery material properties such as voltage, diffusivity, and phase stability against irreversible phase transformation(s) using first-principles density functional theory (DFT) calculations have helped researchers to understand the underlying mechanism in many oxide materials that are used as LIB electrodes. Here, we have examined the (001) and (111) surface structures of LiMn2O4 (LMO) spinel cathode materials using DFT calculations within the generalized gradient approximation (GGA) + U approach. Our theoretical results explain the observation of a wide spectrum of polyhedral shapes between (001)- and (111)-dominated LMO particles in experiments, which can be described by the narrow range of surface energies and their sensitivity to synthesis conditions. We further show that single-layer graphene coatings help suppress manganese dissolution in LMO by chemically

  7. Flocking through disorder

    Science.gov (United States)

    Morin, Alexandre; Desreumaux, Nicolas; Caussin, Jean-Baptiste; Bartolo, Denis

    How do flocks, herds and swarms proceed through disordered environments? This question is not only crucial to animal groups in the wild, but also to virtually all applications of collective robotics, and active materials composed of synthetic motile units. In stark contrast, appart from very rare exceptions, our physical understanding of flocking has been hitherto limited to homogeneous media. Here we explain how collective motion survives to geometrical disorder. To do so, we combine experiments on motile colloids cruising through random microfabricated obstacles, and analytical theory. We explain how disorder and bending elasticity compete to channel the flow of polar flocks along sparse river networks akin those found beyond plastic depinning in driven condensed matter. Further increasing disorder, we demonstrate that collective motion is suppressed in the form of a first-order phase transition generic to all polar active materials.

  8. Ultra High-Performance Fiber-Reinforced Concrete (UHPFRC: a review of material properties and design procedures

    Directory of Open Access Journals (Sweden)

    T. E. T. Buttignol

    Full Text Available ABSTRACT This paper does a review of the recent achievements on the knowledge of UHPFRC properties and in the development of design procedures. UHPFRC is defined as a new material, with unique properties (high ductility, low permeability, very high strength capacity in compression, higher toughness in comparison to conventional concrete. It is important to know both material and mechanical properties to fully take advantage of its outstanding properties for structural applications. However, since this is a new material, the current design codes are not well suited and should be reviewed before being applied to UHPFRC. In the first part, the following material properties are addressed: hydration process; permeability; fibers role; mix design; fiber-matrix bond properties workability; mixing procedure; and curing. In the second part, the mechanical properties of the material are discussed, together with some design recommendations. The aspects herein examined are: size effect; compressive and flexural strength; tensile stress-strain relation; shear and punching shear capacity; creep and shrinkage; fracture energy; steel bars anchorage and adherence. Besides, the tensile mechanical characterization is described using inverse analysis based on bending tests data. In the last part, material behavior at high temperature is discussed, including physical-chemical transformations of the concrete, spalling effect, and transient creep. In the latter case, a new Load Induced Thermal Strain (LITS semi-empirical model is described and compared with UHPC experimental results.

  9. Design and material selection for ITER first wall/blanket, divertor and vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Ioki, K.; Barabash, V.; Cardella, A.; Elio, F.; Gohar, Y.; Janeschitz, G.; Johnson, G.; Kalinin, G.; Lousteau, D.; Onozuka, M.; Parker, R.; Sannazzaro, G.; Tivey, R. [ITER JCT, Garching (Germany)

    1998-10-01

    Design and R and D have progressed on the ITER vacuum vessel, shielding and breeding blankets, and the divertor. The principal materials have been selected and the fabrication methods selected for most of the components based on design and R and D results. The resulting design changes are discussed for each system. (orig.) 11 refs.

  10. Geotechnical materials considerations for conceptual repository design in the Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    Versluis, W.S.; Balderman, M.A.

    1984-01-01

    The Palo Duro Basin is only one of numerous potential repository locations for placement of a nuclear waste repository. Conceptual designs in the Palo Duro Basin involve considerations of the character and properties of the geologic materials found on several sites throughout the Basin. The first consideration presented includes current basin exploration results and interpretations of engineering properties for the basin geologic sequences. The next consideration presented includes identification of the characteristics of rock taken from the geologic sequence of interest through laboratory and field testing. Values for materials properties of representative samples are obtained for input into modeling of the material response to repository placement. Conceptual designs which respond to these geotechnical considerations are discussed. 4 references, 4 figures, 4 tables

  11. Exascale Co-design for Modeling Materials in Extreme Environments

    Energy Technology Data Exchange (ETDEWEB)

    Germann, Timothy C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-07-08

    Computational materials science has provided great insight into the response of materials under extreme conditions that are difficult to probe experimentally. For example, shock-induced plasticity and phase transformation processes in single-crystal and nanocrystalline metals have been widely studied via large-scale molecular dynamics simulations, and many of these predictions are beginning to be tested at advanced 4th generation light sources such as the Advanced Photon Source (APS) and Linac Coherent Light Source (LCLS). I will describe our simulation predictions and their recent verification at LCLS, outstanding challenges in modeling the response of materials to extreme mechanical and radiation environments, and our efforts to tackle these as part of the multi-institutional, multi-disciplinary Exascale Co-design Center for Materials in Extreme Environments (ExMatEx). ExMatEx has initiated an early and deep collaboration between domain (computational materials) scientists, applied mathematicians, computer scientists, and hardware architects, in order to establish the relationships between algorithms, software stacks, and architectures needed to enable exascale-ready materials science application codes within the next decade. We anticipate that we will be able to exploit hierarchical, heterogeneous architectures to achieve more realistic large-scale simulations with adaptive physics refinement, and are using tractable application scale-bridging proxy application testbeds to assess new approaches and requirements. Such current scale-bridging strategies accumulate (or recompute) a distributed response database from fine-scale calculations, in a top-down rather than bottom-up multiscale approach.

  12. Particle localization and hyperuniformity of polymer-grafted nanoparticle materials

    Energy Technology Data Exchange (ETDEWEB)

    Chremos, Alexandros [Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD (United States); Douglas, Jack F.

    2017-05-15

    The properties of materials largely reflect the degree and character of the localization of the molecules comprising them so that the study and characterization of particle localization has central significance in both fundamental science and material design. Soft materials are often comprised of deformable molecules and many of their unique properties derive from the distinct nature of particle localization. We study localization in a model material composed of soft particles, hard nanoparticles with grafted layers of polymers, where the molecular characteristics of the grafted layers allow us to ''tune'' the softness of their interactions. Soft particles are particular interesting because spatial localization can occur such that density fluctuations on large length scales are suppressed, while the material is disordered at intermediate length scales; such materials are called ''disordered hyperuniform''. We use molecular dynamics simulation to study a liquid composed of polymer-grafted nanoparticles (GNP), which exhibit a reversible self-assembly into dynamic polymeric GNP structures below a temperature threshold, suggesting a liquid-gel transition. We calculate a number of spatial and temporal correlations and we find a significant suppression of density fluctuations upon cooling at large length scales, making these materials promising for the practical fabrication of ''hyperuniform'' materials. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. [Executive function training in attention deficit hyperactivity disorder].

    Science.gov (United States)

    Abad-Mas, Luis; Ruiz-Andrés, Rosalía; Moreno-Madrid, Francisca; Sirera-Conca, M Angeles; Cornesse, Marcel; Delgado-Mejía, Iván D; Etchepareborda, Máximo C

    2011-03-01

    A number of different treatments have been proposed to treat attention deficit hyperactivity disorder (ADHD), yet little material has been published in the literature to improve the performance of the mechanisms behind attention, inhibitory control, cognitive flexibility and working memory in these children. We think that a working model that is effective in the treatment of persons with ADHD can only be consolidated by means of a thorough understanding of the syndromes involved in this deficit. In addition to reviewing the latest and most significant proposals aimed at improving the cognitive under-standing of the disorder, this work also refers to three neurobiological syndromes that are recognised as forming part of ADHD, i.e. medial cingulate syndrome, dorsolateral syndrome and orbitofrontal syndrome. Advances in neuroscientific research and the design of computerised treatment materials offer extremely valuable data that will undoubtedly help to improve the results of psychopedagogical and neuropsychological interventions in ADHD, since they provide information about the temporal and spatial equation.

  14. From molecular design and materials construction to organic nanophotonic devices.

    Science.gov (United States)

    Zhang, Chuang; Yan, Yongli; Zhao, Yong Sheng; Yao, Jiannian

    2014-12-16

    CONSPECTUS: Nanophotonics has recently received broad research interest, since it may provide an alternative opportunity to overcome the fundamental limitations in electronic circuits. Diverse optical materials down to the wavelength scale are required to develop nanophotonic devices, including functional components for light emission, transmission, and detection. During the past decade, the chemists have made their own contributions to this interdisciplinary field, especially from the controlled fabrication of nanophotonic molecules and materials. In this context, organic micro- or nanocrystals have been developed as a very promising kind of building block in the construction of novel units for integrated nanophotonics, mainly due to the great versatility in organic molecular structures and their flexibility for the subsequent processing. Following the pioneering works on organic nanolasers and optical waveguides, the organic nanophotonic materials and devices have attracted increasing interest and developed rapidly during the past few years. In this Account, we review our research on the photonic performance of molecular micro- or nanostructures and the latest breakthroughs toward organic nanophotonic devices. Overall, the versatile features of organic materials are highlighted, because they brings tunable optical properties based on molecular design, size-dependent light confinement in low-dimensional structures, and various device geometries for nanophotonic integration. The molecular diversity enables abundant optical transitions in conjugated π-electron systems, and thus brings specific photonic functions into molecular aggregates. The morphology of these micro- or nanostructures can be further controlled based on the weak intermolecular interactions during molecular assembly process, making the aggregates show photon confinement or light guiding properties as nanophotonic materials. By adoption of some active processes in the composite of two or more

  15. Materials and design experience in a slurry-fed electric glass melter

    International Nuclear Information System (INIS)

    Barnes, S.M.; Larson, D.E.

    1981-08-01

    The design of a slurry-fed electric gas melter and an examination of the performance and condition of the construction materials were completed. The joule-heated, ceramic-lined melter was constructed to test the applicability of materials and processes for high-level waste vitrification. The developmental Liquid-Fed Ceramic Melter (LFCM) was operated for three years with simulated high-level waste and was subjected to conditions more severe than those expected for a nuclear waste vitrification plant

  16. Design of a deposit of waste materials coming from mining exploitations

    International Nuclear Information System (INIS)

    Castro, Alvaro; Pinzon, Hernan; Vargas, William; Pinzon, Andres

    2005-01-01

    This paper presents the design process and stability assessment of a waste backfill in a limestone quarry method. The study shows the geotechnical and mining features of waste and underground materials affected by backfill. The mainly waste materials are: clay, gravel, and blocks of clay stone, sandstone and limestone, all to be disposed by a layered embankment. The constructive method is selected and the stability analysis of deposit and soil foundation was made by equilibrium method without considering deformations

  17. Uncertainty analysis in raw material and utility cost of biorefinery synthesis and design

    DEFF Research Database (Denmark)

    Cheali, Peam; Quaglia, Alberto; Gernaey, Krist

    2014-01-01

    are characterized by considerable uncertainty. These uncertainties might have significant impact on the results of the design problem, and therefore need to be carefully evaluated and managed, in order to generate candidates for robust design. In this contribution, we study the effect of data uncertainty (raw...... material price and utility cost) on the design of a biorefinery process network....

  18. Materials 2014: a great success for materials sector

    International Nuclear Information System (INIS)

    Isnard, Olivier; Crepin, Jerome

    2014-01-01

    In this work are presented the summaries of the 19 symposiums presented at the conference: 'Materials 2014' and whose topics were: eco-materials, materials for energy storage and conversion, strategic materials, rare elements and recycling, surfaces functionalization and physico-chemical characterization, interfaces and coatings, corrosion, aging, durability, damage mechanical behaviours, disordered materials, glasses and their functionalization, materials and health, functional materials, porous, granular and with a high surface area materials, nano-materials, nano-structured systems, assembling processes, carbonaceous materials, great instruments and studies of materials, materials in severe conditions, powder forming processes, metallic materials and structures lightening. (O.M.)

  19. Synergistic Integration of Experimental and Simulation Approaches for the de Novo Design of Silk-Based Materials.

    Science.gov (United States)

    Huang, Wenwen; Ebrahimi, Davoud; Dinjaski, Nina; Tarakanova, Anna; Buehler, Markus J; Wong, Joyce Y; Kaplan, David L

    2017-04-18

    Tailored biomaterials with tunable functional properties are crucial for a variety of task-specific applications ranging from healthcare to sustainable, novel bio-nanodevices. To generate polymeric materials with predictive functional outcomes, exploiting designs from nature while morphing them toward non-natural systems offers an important strategy. Silks are Nature's building blocks and are produced by arthropods for a variety of uses that are essential for their survival. Due to the genetic control of encoded protein sequence, mechanical properties, biocompatibility, and biodegradability, silk proteins have been selected as prototype models to emulate for the tunable designs of biomaterial systems. The bottom up strategy of material design opens important opportunities to create predictive functional outcomes, following the exquisite polymeric templates inspired by silks. Recombinant DNA technology provides a systematic approach to recapitulate, vary, and evaluate the core structure peptide motifs in silks and then biosynthesize silk-based polymers by design. Post-biosynthesis processing allows for another dimension of material design by controlled or assisted assembly. Multiscale modeling, from the theoretical prospective, provides strategies to explore interactions at different length scales, leading to selective material properties. Synergy among experimental and modeling approaches can provide new and more rapid insights into the most appropriate structure-function relationships to pursue while also furthering our understanding in terms of the range of silk-based systems that can be generated. This approach utilizes nature as a blueprint for initial polymer designs with useful functions (e.g., silk fibers) but also employs modeling-guided experiments to expand the initial polymer designs into new domains of functional materials that do not exist in nature. The overall path to these new functional outcomes is greatly accelerated via the integration of

  20. Elementary Students' Learning of Materials Science Practices through Instruction Based on Engineering Design Tasks

    Science.gov (United States)

    Wendell, Kristen Bethke; Lee, Hee-Sun

    2010-01-01

    Materials science, which entails the practices of selecting, testing, and characterizing materials, is an important discipline within the study of matter. This paper examines how third grade students' materials science performance changes over the course of instruction based on an engineering design challenge. We conducted a case study of nine…

  1. Collaborative stepped care for anxiety disorders in primary care: aims and design of a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Spinhoven Philip

    2009-09-01

    Full Text Available Abstract Background Panic disorder (PD and generalized anxiety disorder (GAD are two of the most disabling and costly anxiety disorders seen in primary care. However, treatment quality of these disorders in primary care generally falls beneath the standard of international guidelines. Collaborative stepped care is recommended for improving treatment of anxiety disorders, but cost-effectiveness of such an intervention has not yet been assessed in primary care. This article describes the aims and design of a study that is currently underway. The aim of this study is to evaluate effects and costs of a collaborative stepped care approach in the primary care setting for patients with PD and GAD compared with care as usual. Methods/design The study is a two armed, cluster randomized controlled trial. Care managers and their primary care practices will be randomized to deliver either collaborative stepped care (CSC or care as usual (CAU. In the CSC group a general practitioner, care manager and psychiatrist work together in a collaborative care framework. Stepped care is provided in three steps: 1 guided self-help, 2 cognitive behavioral therapy and 3 antidepressant medication. Primary care patients with a DSM-IV diagnosis of PD and/or GAD will be included. 134 completers are needed to attain sufficient power to show a clinically significant effect of 1/2 SD on the primary outcome measure, the Beck Anxiety Inventory (BAI. Data on anxiety symptoms, mental and physical health, quality of life, health resource use and productivity will be collected at baseline and after three, six, nine and twelve months. Discussion It is hypothesized that the collaborative stepped care intervention will be more cost-effective than care as usual. The pragmatic design of this study will enable the researchers to evaluate what is possible in real clinical practice, rather than under ideal circumstances. Many requirements for a high quality trial are being met. Results of

  2. Salt-bridge networks within globular and disordered proteins: characterizing trends for designable interactions.

    Science.gov (United States)

    Basu, Sankar; Mukharjee, Debasish

    2017-07-01

    There has been considerable debate about the contribution of salt bridges to the stabilization of protein folds, in spite of their participation in crucial protein functions. Salt bridges appear to contribute to the activity-stability trade-off within proteins by bringing high-entropy charged amino acids into close contacts during the course of their functions. The current study analyzes the modes of association of salt bridges (in terms of networks) within globular proteins and at protein-protein interfaces. While the most common and trivial type of salt bridge is the isolated salt bridge, bifurcated salt bridge appears to be a distinct salt-bridge motif having a special topology and geometry. Bifurcated salt bridges are found ubiquitously in proteins and interprotein complexes. Interesting and attractive examples presenting different modes of interaction are highlighted. Bifurcated salt bridges appear to function as molecular clips that are used to stitch together large surface contours at interacting protein interfaces. The present work also emphasizes the key role of salt-bridge-mediated interactions in the partial folding of proteins containing long stretches of disordered regions. Salt-bridge-mediated interactions seem to be pivotal to the promotion of "disorder-to-order" transitions in small disordered protein fragments and their stabilization upon binding. The results obtained in this work should help to guide efforts to elucidate the modus operandi of these partially disordered proteins, and to conceptualize how these proteins manage to maintain the required amount of disorder even in their bound forms. This work could also potentially facilitate explorations of geometrically specific designable salt bridges through the characterization of composite salt-bridge networks. Graphical abstract ᅟ.

  3. New approach to design of ceramic/polymer material compounds

    International Nuclear Information System (INIS)

    Todt, A; Nestler, D; Trautmann, M; Wagner, G

    2016-01-01

    The damage tolerance of carbon fibre-reinforced ceramic-matrix composite materials depends on their porosity and can be rather significant. Complex structures are difficult to produce. The integration of simple geometric structures of ceramic-matrix composite materials in complex polymer-based hybrid structures is a possible approach of realising those structures. These hybrid material compounds, produced in a cost-efficient way, combine the different advantages of the individual components in one hybrid material compound. In addition the individual parts can be designed to fit a specific application and the resulting forces. All these different advantages result in a significant reduction of not only the production costs and the production time, but also opens up new areas of application, such as the large-scale production of wear-resistant and chemically inert, energy dampening components for reactors or in areas of medicine. The low wettability of the ceramic component however is a disadvantage of this approach. During the course of this contribution, different C/C composite materials with a specific porosity were produced, while adjusting the resin/hardening agent-ratio, as well as the processing parameters. After the production, different penetration tests were conducted with a polymer component. The final part of the article is comprised of the microstructural analysis and the explanation of the mechanical relationships. (paper)

  4. Advances in regulation and package design for transportation or storage of radioactive materials 1991

    International Nuclear Information System (INIS)

    Carlson, R.W.; Fischer, L.E.; Chou, C.K.

    1991-01-01

    The design of packages for the transport or storage of radioactive materials, particularly spent nuclear fuel, has been evolving in three major areas. The most significant changes have been increases n the capacity of packages. Testing has received increasing importance to supplement analysis and to verify the accuracy of the computer models to represent the more complex designs. New materials have also been proposed that are capable of serving more than one function within a package which would reduce weight and offer the possibility of simplifying package design. It is the intent of the papers presented in this volume to address the impact of these developments by presenting papers that describe testing methods, materials development programs and recent package designs. Decommissioning of nuclear facilities is a field that is beginning to emerge as a major field of endeavor that spans the mechanical engineering, nuclear engineering and many other disciplines. Papers included in this publication describe efforts to understand the mechanics of decontamination of surfaces that have been exposed to radioactive materials and the application of robotics to perform tasks that would be excessively hazardous for humans. Presentation of these papers within the format of the ASME has been chosen to focus attention upon the importance of designing packages in accordance with the Boiler and Pressure Vessel Coal. The papers contained herein have been subjected to a formal review process in accordance with ASME requirements

  5. Impact of schoolchildren's involvement in the design process on the effectiveness of healthy food promotion materials.

    Science.gov (United States)

    Gustafson, Christopher R; Abbey, Bryce M; Heelan, Kate A

    2017-06-01

    Marketing techniques may improve children's vegetable consumption. However, student participation in the design of marketing materials may increase the material's salience, while also improving children's commitment and attitudes towards healthy eating. The impact of student-led design of vegetable promotional materials on choice and consumption was investigated using 1614 observations of students' vegetable choice and plate waste in four public elementary schools in Kearney, Nebraska. Data were collected on children's vegetable choice and consumption in four comparison groups: 1) control; 2) students designed materials only; 3) students were exposed to promotional materials only; and 4) students designed materials that were then posted in the lunchroom. Vegetable choice and consumption data were collected through a validated digital photography-based plate-waste method. Multivariate linear regression was used to estimate average treatment effects of the conditions at various time periods. Dependent variables were vegetable choice and consumption, and independent variables included the condition, time period, and interaction terms, as well as controls for gender and grade. Relative to baseline, students in group 4 doubled their vegetable consumption ( p  < 0.001) when materials were posted. Vegetable consumption remained elevated at a follow-up 2-3 months later ( p  < 0.05). Students in group 3 initially increased the quantity of vegetables selected ( p  < 0.05), but did not increase consumption. In the follow-up period, however, students in group 3 increased their vegetable consumption ( p  < 0.01). Involving elementary-aged students in the design of vegetable promotional materials that were posted in the lunchroom increased the amount of vegetables students consumed.

  6. Designing Biomimetic, Dissipative Material Systems

    Energy Technology Data Exchange (ETDEWEB)

    Balazs, Anna C. [Univ. of Pittsburgh, PA (United States). Chemical Engineering Dept.; Whitesides, George M. [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology; Brinker, C. Jeffrey [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering. Dept. of Chemistry. Dept. of Molecular Genetics and Microbiology. Center for Micro-Engineered Materials; Aranson, Igor S. [UChicago, LLC., Argonne, IL (United States); Chaikin, Paul [New York Univ. (NYU), NY (United States). Dept. of Physics; Dogic, Zvonimir [Brandeis Univ., Waltham, MA (United States). Dept. of Physics; Glotzer, Sharon [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering. Dept. of Materials Science and Engineering. Dept. of Macromolecular Science and Engineering Physics; Hammer, Daniel [Univ. of Pennsylvania, Philadelphia, PA (United States). School of Engineering and Applied Science; Irvine, Darrell [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials Science and Engineering and Biological Engineering; Little, Steven R. [Univ. of Pittsburgh, PA (United States). Chemical Engineering Dept.; Olvera de la Cruz, Monica [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Parikh, Atul N. [Univ. of California, Davis, CA (United States). Dept. of Biomedical Engineering. Dept. of Chemical Engineering and Materials Science; Stupp, Samuel [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering. Dept. of Chemistry. Dept. of Medicine. Dept. of Biomedical Engineering; Szostak, Jack [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology

    2016-01-21

    Throughout human history, new materials have been the foundation of transformative technologies: from bronze, paper, and ceramics to steel, silicon, and polymers, each material has enabled far-reaching advances. Today, another new class of materials is emerging—one with both the potential to provide radically new functions and to challenge our notion of what constitutes a “material”. These materials would harvest, transduce, or dissipate energy to perform autonomous, dynamic functions that mimic the behaviors of living organisms. Herein, we discuss the challenges and benefits of creating “dissipative” materials that can potentially blur the boundaries between living and non-living matter.

  7. Applications of Evolutionary Algorithms to Electromagnetic Materials Characterization and Design Problems

    Science.gov (United States)

    Frasch, Jonathan Lemoine

    Determining the electrical permittivity and magnetic permeability of materials is an important task in electromagnetics research. The method using reflection and transmission scattering parameters to determine these constants has been widely employed for many years, ever since the work of Nicolson, Ross, and Weir in the 1970's. For general materials that are homogeneous, linear, and isotropic, the method they developed (the NRW method) works very well and provides an analytical solution. For materials which possess a metal backing or are applied as a coating to a metal surface, it can be difficult or even impossible to obtain a transmission measurement, especially when the coating is thin. In such a circumstance, it is common to resort to a method which uses two reflection type measurements. There are several such methods for free-space measurements, using multiple angles or polarizations for example. For waveguide measurements, obtaining two independent sources of information from which to extract two complex parameters can be a challenge. This dissertation covers three different topics. Two of these involve different techniques to characterize conductor-backed materials, and the third proposes a method for designing synthetic validation standards for use with standard NRW measurements. All three of these topics utilize modal expansions of electric and magnetic fields to analyze propagation in stepped rectangular waveguides. Two of the projects utilize evolutionary algorithms (EA) to design waveguide structures. These algorithms were developed specifically for these projects and utilize fairly recent innovations within the optimization community. The first characterization technique uses two different versions of a single vertical step in the waveguide. Samples to be tested lie inside the steps with the conductor reflection plane behind them. If the two reflection measurements are truly independent it should be possible to recover the values of two complex

  8. Rational design of new materials using recombinant structural proteins: Current state and future challenges.

    Science.gov (United States)

    Sutherland, Tara D; Huson, Mickey G; Rapson, Trevor D

    2018-01-01

    Sequence-definable polymers are seen as a prerequisite for design of future materials, with many polymer scientists regarding such polymers as the holy grail of polymer science. Recombinant proteins are sequence-defined polymers. Proteins are dictated by DNA templates and therefore the sequence of amino acids in a protein is defined, and molecular biology provides tools that allow redesign of the DNA as required. Despite this advantage, proteins are underrepresented in materials science. In this publication we investigate the advantages and limitations of using proteins as templates for rational design of new materials. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  9. Comorbidity of Drug Abuse in Adolescents: Screening for Depression, Attention Deficit/Hyperactivity Disorder, and Conduct Disorder

    Directory of Open Access Journals (Sweden)

    Ali Reza Jazayeri

    2000-07-01

    Full Text Available Objective: To screen comorbidity with substance abuse in adolescents. Among different disorders, 3 disorders of attention deficit/hyperactivity disorder (ADHD, conduct disorder, and depression were studied in a sample of Iranian adolescents.   Materials & Methods: A total of 33 substance abusers, 35 criminal substance abusers, 34 non-substance abusers were selected from Tehran correctional and rehabilitation center for adolescents and 33 normal subjects (girl and boy were studied from schools of Tehran south using Achenbach youth self-report questionnaire (YSR (Achenbach, 1991, demographic and history of drug abuse questionnaire (designed by researchers. Results: There was a significant different regarding attention deficit/hyperactivity disorder between two groups of substance abuser and non-substance abuser, but the difference was not significant between boys and girls. Regarding conduct disorder, there was a significant difference between two sexes. In boys, there was a significant difference between substance abusers and normal groups. In depression disorder, the difference between two sexes was significant regarding boys differences were observed between three groups selected from correctional and rehabilitation center and normal group regarding girls, there was a significant difference between substance abusers with criminals and normal group. Conclusion: Apparently, these 3 disorders have shown significant difference between two sexes. ADHD pattern was the same in two sexes. There was a significant difference between two sexes with regard to depression and conduct disorder. In both sexes, ADHD was not correlated with substance abuse. The conduct disorder was not related to substance abuse in both sexes and depression disorder was only related to substance abuse in girls. Considering the youth self-report test (YSR, there is a special mental profile for substance abusers, which separates them from non-substance abusers.

  10. Development of integrated platform for computational material design

    Energy Technology Data Exchange (ETDEWEB)

    Kiyoshi, Matsubara; Kumi, Itai; Nobutaka, Nishikawa; Akifumi, Kato [Center for Computational Science and Engineering, Fuji Research Institute Corporation (Japan); Hideaki, Koike [Advance Soft Corporation (Japan)

    2003-07-01

    The goal of our project is to design and develop a problem-solving environment (PSE) that will help computational scientists and engineers develop large complicated application software and simulate complex phenomena by using networking and parallel computing. The integrated platform, which is designed for PSE in the Japanese national project of Frontier Simulation Software for Industrial Science, is defined by supporting the entire range of problem solving activity from program formulation and data setup to numerical simulation, data management, and visualization. A special feature of our integrated platform is based on a new architecture called TASK FLOW. It integrates the computational resources such as hardware and software on the network and supports complex and large-scale simulation. This concept is applied to computational material design and the project 'comprehensive research for modeling, analysis, control, and design of large-scale complex system considering properties of human being'. Moreover this system will provide the best solution for developing large and complicated software and simulating complex and large-scaled phenomena in computational science and engineering. A prototype has already been developed and the validation and verification of an integrated platform will be scheduled by using the prototype in 2003. In the validation and verification, fluid-structure coupling analysis system for designing an industrial machine will be developed on the integrated platform. As other examples of validation and verification, integrated platform for quantum chemistry and bio-mechanical system are planned.

  11. Development of integrated platform for computational material design

    International Nuclear Information System (INIS)

    Kiyoshi, Matsubara; Kumi, Itai; Nobutaka, Nishikawa; Akifumi, Kato; Hideaki, Koike

    2003-01-01

    The goal of our project is to design and develop a problem-solving environment (PSE) that will help computational scientists and engineers develop large complicated application software and simulate complex phenomena by using networking and parallel computing. The integrated platform, which is designed for PSE in the Japanese national project of Frontier Simulation Software for Industrial Science, is defined by supporting the entire range of problem solving activity from program formulation and data setup to numerical simulation, data management, and visualization. A special feature of our integrated platform is based on a new architecture called TASK FLOW. It integrates the computational resources such as hardware and software on the network and supports complex and large-scale simulation. This concept is applied to computational material design and the project 'comprehensive research for modeling, analysis, control, and design of large-scale complex system considering properties of human being'. Moreover this system will provide the best solution for developing large and complicated software and simulating complex and large-scaled phenomena in computational science and engineering. A prototype has already been developed and the validation and verification of an integrated platform will be scheduled by using the prototype in 2003. In the validation and verification, fluid-structure coupling analysis system for designing an industrial machine will be developed on the integrated platform. As other examples of validation and verification, integrated platform for quantum chemistry and bio-mechanical system are planned

  12. Latest advances in supercapacitors: from new electrode materials to novel device designs.

    Science.gov (United States)

    Wang, Faxing; Wu, Xiongwei; Yuan, Xinhai; Liu, Zaichun; Zhang, Yi; Fu, Lijun; Zhu, Yusong; Zhou, Qingming; Wu, Yuping; Huang, Wei

    2017-11-13

    Notably, many significant breakthroughs for a new generation of supercapacitors have been reported in recent years, related to theoretical understanding, material synthesis and device designs. Herein, we summarize the state-of-the-art progress toward mechanisms, new materials, and novel device designs for supercapacitors. Firstly, fundamental understanding of the mechanism is mainly focused on the relationship between the structural properties of electrode materials and their electrochemical performances based on some in situ characterization techniques and simulations. Secondly, some emerging electrode materials are discussed, including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), MXenes, metal nitrides, black phosphorus, LaMnO 3 , and RbAg 4 I 5 /graphite. Thirdly, the device innovations for the next generation of supercapacitors are provided successively, mainly emphasizing flow supercapacitors, alternating current (AC) line-filtering supercapacitors, redox electrolyte enhanced supercapacitors, metal ion hybrid supercapacitors, micro-supercapacitors (fiber, plane and three-dimensional) and multifunctional supercapacitors including electrochromic supercapacitors, self-healing supercapacitors, piezoelectric supercapacitors, shape-memory supercapacitors, thermal self-protective supercapacitors, thermal self-charging supercapacitors, and photo self-charging supercapacitors. Finally, the future developments and key technical challenges are highlighted regarding further research in this thriving field.

  13. The Effectiveness of Scaffolding Design in Training Writing Skills Physics Teaching Materials

    Directory of Open Access Journals (Sweden)

    Parlindungan Sinaga

    2015-01-01

    Full Text Available Result of field studies showed low writing skill of teachers in teaching material. The root of the problem lies in their inability on translating description of teaching material into writing. This research focused on the effectiveness of scaffolding design. The scaffolding design was tested in the selected topics of physics courses for pre-service teachers through learning to write activity approach. The treatment effectiveness was determined by considering the effect size and normalized gain percentage, while the hypothesis was tested using “the Kruskal-Wallis test”. The research results showed that scaffolding between the stages of planning and translating plans into text was effective in improving pre-service physics teachers’ ability of writing physics teaching materials and was similarly effective in improving their conceptual understanding of the topics of electromagnetism, waves, and optics. Learning to write activity implemented in the course of physics with selected topics was effective in improving the ability of pre-service teachers in translating among different modes of representation and making multiple concept representations. The hypothesis test demonstrated that there was a significant difference in the abilities of writing teaching materials and conceptual understanding between experimental and control classes.

  14. Development of Digital Materials Database for Design and Construction of New Power Plants

    International Nuclear Information System (INIS)

    Ren, Weiju

    2008-01-01

    To facilitate materials selection, structural design, and future maintenance of the Generation IV nuclear reactor systems, an interactive, internet accessible materials property database, dubbed Gen IV Materials Handbook, has been under development with the support of the United States Department of Energy. The Handbook will provide an authoritative source of information on structural materials needed for the development of various Gen IV nuclear reactor systems along with powerful data analysis and management tools. In this paper, the background, history, framework, major features, contents, and development strategy of the Gen IV Materials Handbook are discussed. Current development status and future plans are also elucidated.

  15. Systematic design of phononic band-gap materials and structures by topology optimization

    DEFF Research Database (Denmark)

    Sigmund, Ole; Jensen, Jakob Søndergaard

    2003-01-01

    Phononic band-gap materials prevent elastic waves in certain frequency ranges from propagating, and they may therefore be used to generate frequency filters, as beam splitters, as sound or vibration protection devices, or as waveguides. In this work we show how topology optimization can be used...... to design and optimize periodic materials and structures exhibiting phononic band gaps. Firstly, we optimize infinitely periodic band-gap materials by maximizing the relative size of the band gaps. Then, finite structures subjected to periodic loading are optimized in order to either minimize the structural...

  16. Disorder-specific neuroanatomical correlates of attentional bias in obsessive-compulsive disorder, panic disorder, and hypochondriasis

    NARCIS (Netherlands)

    van den Heuvel, O.A.; Veltman, D.J.; Groenewegen, H.J.; Witter, M.P.; Merkelbach, J.; Cath, D.C.; van Balkom, A.J.; van Oppen, P.; van Dyck, R.

    2005-01-01

    Context: Attentional bias to disease-relevant emotional cues is considered to be pathogenetically relevant in anxiety disorders. Objective: To investigate functional neural correlates and disease specificity of attentional bias across different anxiety disorders. Design: A cognitive and emotional

  17. Disorder-specific neuroanatomical correlates of attentional bias in obsessive-compulsive disorder, panic disorder, and hypochondriasis

    NARCIS (Netherlands)

    van den Heuvel, Odile A.; Veltman, Dick J.; Groenewegen, Henk J.; Witter, Menno P.; Merkelbach, Jille; Cath, Danielle C.; van Balkom, Anton J. L. M.; van Oppen, Patricia; van Dyck, Richard

    2005-01-01

    CONTEXT: Attentional bias to disease-relevant emotional cues is considered to be pathogenetically relevant in anxiety disorders. OBJECTIVE: To investigate functional neural correlates and disease specificity of attentional bias across different anxiety disorders. DESIGN: A cognitive and emotional

  18. New Materials Design

    National Research Council Canada - National Science Library

    Voth, Gregory

    1999-01-01

    Progress has been made on several projects under the Challenge Project award. In the area of high energy density materials, calculations are under way on Al atoms embedded in clusters of H2 molecule...

  19. On the Constitutive Response Characterization for Composite Materials Via Data-Driven Design Optimization

    Science.gov (United States)

    John G. Michopoulos; John G. Hermanson; Athanasios lliopoulos; Samuel Lambrakos; Tomonari Furukawa

    2011-01-01

    In the present paper we focus on demonstrating the use of design optimization for the constitutive characterization of anisotropic material systems such as polymer matrix composites, with or without damage. All approaches are based on the availability of experimental data originating from mechatronic material testing systems that can expose specimens to...

  20. Pre-conceptual design activities for the materials plasma exposure experiment

    International Nuclear Information System (INIS)

    Lumsdaine, Arnold; Rapp, Juergen; Varma, Venugopal; Bjorholm, Thomas; Bradley, Craig; Caughman, John; Duckworth, Robert; Goulding, Richard; Graves, Van; Giuliano, Dominic; Lessard, Timothy; McGinnis, Dean; Meitner, Steven

    2016-01-01

    Highlights: • The development of long-pulse nuclear fusion devices requires testing plasma facing components at reactor relevant conditions. • The pre-conceptual design of a proposed linear plasma facility is presented. • Engineering considerations for multiple systems—plasma source and heating, magnet, vacuum, water cooling, and target, are presented. - Abstract: The development of next step fusion facilities such as DEMO or a Fusion Nuclear Science Facility (FNSF) requires first closing technology gaps in some critical areas. Understanding the material-plasma interface is necessary to enable the development of divertors for long-pulse plasma facilities. A pre-conceptual design for a proposed steady-state linear plasma device, the Materials Plasma Exposure Experiment (MPEX), is underway. A helicon plasma source along with ion cyclotron and electron Bernstein wave heating systems will produce ITER divertor relevant plasma conditions with steady-state parallel heat fluxes of up to 40 MW/m"2 with ion fluxes up to 10"2"4/m"2 s on target. Current plans are for the device to use superconducting magnets to produce 1–2 T fields. As a steady-state device, active cooling will be required for components that interact with the plasma (targets, limiters, etc.), as well as for other plasma facing components (transport regions, vacuum tanks, diagnostic ports). Design concepts for the vacuum system, the cooling system, and the plasma heating systems have been completed. The device will include the capability for handling samples that have been neutron irradiated in order to consider the multivariate effects of neutrons, plasma, and high heat-flux on the microstructure of divertor candidate materials. A vacuum cask, which can be disconnected from the high field environment in order to perform in-vacuo diagnosis of the surface evolution is also planned for the facility.

  1. Pre-conceptual design activities for the materials plasma exposure experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lumsdaine, Arnold, E-mail: lumsdainea@ornl.gov; Rapp, Juergen; Varma, Venugopal; Bjorholm, Thomas; Bradley, Craig; Caughman, John; Duckworth, Robert; Goulding, Richard; Graves, Van; Giuliano, Dominic; Lessard, Timothy; McGinnis, Dean; Meitner, Steven

    2016-11-01

    Highlights: • The development of long-pulse nuclear fusion devices requires testing plasma facing components at reactor relevant conditions. • The pre-conceptual design of a proposed linear plasma facility is presented. • Engineering considerations for multiple systems—plasma source and heating, magnet, vacuum, water cooling, and target, are presented. - Abstract: The development of next step fusion facilities such as DEMO or a Fusion Nuclear Science Facility (FNSF) requires first closing technology gaps in some critical areas. Understanding the material-plasma interface is necessary to enable the development of divertors for long-pulse plasma facilities. A pre-conceptual design for a proposed steady-state linear plasma device, the Materials Plasma Exposure Experiment (MPEX), is underway. A helicon plasma source along with ion cyclotron and electron Bernstein wave heating systems will produce ITER divertor relevant plasma conditions with steady-state parallel heat fluxes of up to 40 MW/m{sup 2} with ion fluxes up to 10{sup 24}/m{sup 2} s on target. Current plans are for the device to use superconducting magnets to produce 1–2 T fields. As a steady-state device, active cooling will be required for components that interact with the plasma (targets, limiters, etc.), as well as for other plasma facing components (transport regions, vacuum tanks, diagnostic ports). Design concepts for the vacuum system, the cooling system, and the plasma heating systems have been completed. The device will include the capability for handling samples that have been neutron irradiated in order to consider the multivariate effects of neutrons, plasma, and high heat-flux on the microstructure of divertor candidate materials. A vacuum cask, which can be disconnected from the high field environment in order to perform in-vacuo diagnosis of the surface evolution is also planned for the facility.

  2. Sustainable hydrogen - A challenge for materials science and equipment design

    International Nuclear Information System (INIS)

    Duta, Anca; Enesca, Alexandru Ioan; Perniu, Dana

    2006-01-01

    Full text: Hydrogen is the ideal fuel, considering its fully non-polluting by-products. Still, in discussions on 'sustainable hydrogen', there must be considered all the steps implied in hydrogen production, storage and use and the overall energy balance represents the real starting point of evaluating the sustainability. So far, hydrogen production is related to rather energy-consuming processes; extended research is devoted to develop high efficiency processes, but the industrial hydrogen production makes use of either large electrical or thermal energy amounts. Hydrogen production via water photolysis represents, consequently a viable alternative although many steps have to be elaborated to reached the industrial scale of these processes. Hydrogen storing represents another problem that affects its application; a safe storage way, in metal hydrides, is still under intensive research all over the world. The group of the Centre of Product Design for Sustainable Development is engaged in research for developing a laboratory photolyser, able to produce hydrogen and to offer an efficient storage alternative. The photolyser is a photo-electrochemical cell, and the efficiency of the photolysis process depends on several factors: - the photo-electrodes: thin films of wide band gap semiconductors with tailored properties; - the aqueous environment, with effect on the electrode materials properties and stability; - the external bias; - the cell design. The paper focuses mainly on the photo-electrode materials that were tested. The influence of the composition, crystalline and defect structure, of the morphology and of the interfaces on the photolysis process are reviewed. The effect of the pH in the aqueous media is discussed along with the stability of the materials and the reversibility of the adsorption/desorption processes. The design criteria that must be fulfilled in developing the photolyser are also discussed. (authors)

  3. Symptomatic knee disorders in floor layers and graphic designers. A cross-sectional study

    Directory of Open Access Journals (Sweden)

    Jensen Lilli

    2012-09-01

    Full Text Available Abstract Background Previous studies have described an increased risk of developing tibio-femoral osteoarthritis (TF OA, meniscal tears and bursitis among those with a trade as floor layers. The purpose of this study was to analyse symptomatic knee disorders among floor layers that were highly exposed to kneeling work tasks compared to graphic designers without knee-demanding work tasks. Methods Data on the Knee injury and Osteoarthritis Outcome Score (KOOS were collected by questionnaires. In total 134 floor layers and 120 graphic designers had a bilateral radiographic knee examination to detect TF OA and patella-femoral (PF OA. A random sample of 92 floor layers and 49 graphic designers had Magnetic Resonance Imaging (MRI of both knees to examine meniscal tears. Means of the subscales of KOOS were compared by analysis of variance. The risk ratio of symptomatic knee disorders defined as a combination of radiological detected knee OA or MRI-detected meniscal tears combined with a low KOOS score was estimated by logistic regression in floor layers with 95% confidence interval (CI and adjusted for age, body mass index, traumas, and knee-straining sports activities. Symptomatic knee OA or meniscal tears were defined as a combination of low KOOS-scores and radiographic or MRI pathology. Results Symptomatic TF and medial meniscal tears were found in floor layers compared to graphic designers with odds ratios 2.6 (95%CI 0.99-6.9 and 2.04 (95% CI 0.77-5.5, respectively. There were no differences in PF OA. Floor layers scored significantly lower on all KOOS subscales compared to graphic designers. Significantly lower scores on the KOOS subscales were also found for radiographic TF and PF OA regardless of trade but not for meniscal tears. Conclusions The study showed an overall increased risk of developing symptomatic TF OA in a group of floor layers with a substantial amount of kneeling work positions. Prevention would be appropriate to reduce the

  4. Materials issues in the design of the ITER first wall, blanket, and divertor

    International Nuclear Information System (INIS)

    Mattas, R.F.; Smith, D.L.; Wu, C.H.; Shatalov, G.

    1992-01-01

    During the ITER conceptual design study, a property data base was assembled, the key issues were identified, and a comprehensive R ampersand D plan was formulated to resolve these issues. The desired properties of candidate ITER divertor, first wall, and blanket materials are briefly reviewed, and the major materials issues are presented. Estimates of the influence of materials properties on the performance limits of the first wall, blanket, and divertor are presented

  5. [Design of standard voice sample text for subjective auditory perceptual evaluation of voice disorders].

    Science.gov (United States)

    Li, Jin-rang; Sun, Yan-yan; Xu, Wen

    2010-09-01

    To design a speech voice sample text with all phonemes in Mandarin for subjective auditory perceptual evaluation of voice disorders. The principles for design of a speech voice sample text are: The short text should include the 21 initials and 39 finals, this may cover all the phonemes in Mandarin. Also, the short text should have some meanings. A short text was made out. It had 155 Chinese words, and included 21 initials and 38 finals (the final, ê, was not included because it was rarely used in Mandarin). Also, the text covered 17 light tones and one "Erhua". The constituent ratios of the initials and finals presented in this short text were statistically similar as those in Mandarin according to the method of similarity of the sample and population (r = 0.742, P text were statistically not similar as those in Mandarin (r = 0.731, P > 0.05). A speech voice sample text with all phonemes in Mandarin was made out. The constituent ratios of the initials and finals presented in this short text are similar as those in Mandarin. Its value for subjective auditory perceptual evaluation of voice disorders need further study.

  6. 7 CFR 1717.605 - Design standards, plans and specifications, construction standards, and RUS accepted materials.

    Science.gov (United States)

    2010-01-01

    ..., construction standards, and RUS accepted materials. 1717.605 Section 1717.605 Agriculture Regulations of the... standards, plans and specifications, construction standards, and RUS accepted materials. All borrowers... system design, construction standards, and the use of RUS accepted materials. Borrowers must comply with...

  7. Alternative routes for highway shipments of radioactive materials and lessons learned from state designations

    International Nuclear Information System (INIS)

    1990-07-01

    Pursuant to the Hazardous Materials Transportation Act (HMTA), the Department of Transportation (DOT) has promulgated a comprehensive set of regulations regarding the highway transportation of high-level radioactive materials. These regulations, under docket numbers HM-164 and HM-164A, establish interstate highways as the preferred routes for the transportation of radioactive materials within and through the states. The regulations also provide a methodology by which a state may select altemative routes. First, the state must establish a ''state routing agency'', defined as an entity authorized to use the state legal process to impose routing requirements on carriers of radioactive material (49 CFR 171.8). Once identified, the state routing agency must select routes in accordance with DOTs Guidelines for Selecting Preferred Highway Routes for Large Quantity Shipments of Radioactive Materials or an equivalent routing analysis. Adjoining states and localities should be consulted on the impact of proposed alternative routes as a prerequisite of final route selection. Lastly, the states must provide written notice to DOT of any alternative route designation before the routes are deemed effective. The purpose of this report is to discuss the ''lessons learned'' by the five states within the southern region that have designated alternative or preferred routes under the regulations of the Department of Transportation (DOT) established for the transportation of radioactive materials. The document was prepared by reviewing applicable federal laws and regulations, examining state reports and documents and contacting state officials and routing agencies involved in making routing decisions. In undertaking this project, the Southern States Energy Board hopes to reveal the process used by states that have designated alternative routes and thereby share their experiences (i.e., lessons learned) with other southern states that have yet to make designations

  8. The first sustainable material designed for air particulate matter capture: An introduction to Azure Chemistry.

    Science.gov (United States)

    Zanoletti, A; Bilo, F; Depero, L E; Zappa, D; Bontempi, E

    2018-07-15

    This work presents a new porous material (SUNSPACE) designed for air particulate matter (PM) capture. It was developed in answer to the European Commission request of an innovative, affordable, and sustainable solution, based on design-driven material, to reduce the concentration of air particulate matter in urban areas. SUNSPACE material was developed from by-products and low-cost materials, such as silica fume and sodium alginate. Its capability to catch ultrafine PM was evaluated by different ad-hoc tests, considering diesel exhaust fumes and incense smoke PM. Despite the fact that procedures and materials can be designed for remediation, the high impact on the environment, for example in terms of natural resources consumption and emissions, are not usually considered. Instead, we believe that the technologies must be always evaluated in terms of material embodied energy (EE) and carbon footprint (CF). We define our approach to solve environment problems by a sustainable methodology "Azure Chemistry". For the SUNSPACE synthesis, the multi-criteria decision analysis was performed to select the best sustainable solution. The emissions and the energies involved in the synthesis of SUNSPACE material were evaluated with the Azure Chemistry approach, showing that this could be the best available technology to face the problem of capturing the PM in urban area. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Micro-/nanostructured multicomponent molecular materials: design, assembly, and functionality.

    Science.gov (United States)

    Yan, Dongpeng

    2015-03-23

    Molecule-based micro-/nanomaterials have attracted considerable attention because their properties can vary greatly from the corresponding macro-sized bulk systems. Recently, the construction of multicomponent molecular solids based on crystal engineering principles has emerged as a promising alternative way to develop micro-/nanomaterials. Unlike single-component materials, the resulting multicomponent systems offer the advantages of tunable composition, and adjustable molecular arrangement, and intermolecular interactions within their solid states. The study of these materials also supplies insight into how the crystal structure, molecular components, and micro-/nanoscale effects can influence the performance of molecular materials. In this review, we describe recent advances and current directions in the assembly and applications of crystalline multicomponent micro-/nanostructures. Firstly, the design strategies for multicomponent systems based on molecular recognition and crystal engineering principles are introduced. Attention is then focused on the methods of fabrication of low-dimensional multicomponent micro-/nanostructures. Their new applications are also outlined. Finally, we briefly discuss perspectives for the further development of these molecular crystalline micro-/nanomaterials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Sustainable manufacturing: Effect of material selection and design on the environmental impact in the manufacturing process

    International Nuclear Information System (INIS)

    Harun, Mohd Hazwan Syafiq; Salaam, Hadi Abdul; Taha, Zahari

    2013-01-01

    The environmental impact of a manufacturing process is also dependent on the selection of the material and design of a product. This is because the manufacturing of a product is directly connected to the amount of carbon emitted in consuming the electrical energy for that manufacturing process. The difference in the general properties of materials such as strength, hardness and impact will have significant effect on the power consumption of the machine used to complete the product. In addition the environmental impact can also be reduced if the proposed designs use less material. In this study, an LCA tool called Eco-It is used. Evaluate the environmental impact caused by manufacturing simple jig. A simple jig with 4 parts was used as a case study. Two experiments were carried out. The first experiment was to study the environmental effects of different material, and the second experiment was to study the environmental impact of different design. The materials used for the jig are Aluminium and mild steel. The results showed a decrease in the rate of carbon emissions by 60% when Aluminium is use instead from mild steel, and a decrease of 26% when the-design is modified

  11. Exploring the effect of materials designed with augmented reality on language learners' vocabulary learning

    Directory of Open Access Journals (Sweden)

    Ekrem Solak

    2015-07-01

    Full Text Available The purpose of this study was to determine the motivational level of the participants in a language classroom towards course materials designed in accordance with augmented reality technology and to identify the correlation between academic achievement and motivational level. 130 undergraduate students from a state-run university in Turkey participated in this study and Turkish version of Material Motivational Survey was used to determine the undergraduate students’ motivational level about the materials which were designed with AR technology to teach English words at the elementary level. The results of this study suggested that AR technology materials had positive impact on increasing undergraduate students’ motivation towards vocabulary learning in language classroom. This study also signified that a positive significant correlation was found between academic achievement and the motivation in the use of AR technology in language classroom.

  12. Computational methods for 2D materials: discovery, property characterization, and application design.

    Science.gov (United States)

    Paul, J T; Singh, A K; Dong, Z; Zhuang, H; Revard, B C; Rijal, B; Ashton, M; Linscheid, A; Blonsky, M; Gluhovic, D; Guo, J; Hennig, R G

    2017-11-29

    The discovery of two-dimensional (2D) materials comes at a time when computational methods are mature and can predict novel 2D materials, characterize their properties, and guide the design of 2D materials for applications. This article reviews the recent progress in computational approaches for 2D materials research. We discuss the computational techniques and provide an overview of the ongoing research in the field. We begin with an overview of known 2D materials, common computational methods, and available cyber infrastructures. We then move onto the discovery of novel 2D materials, discussing the stability criteria for 2D materials, computational methods for structure prediction, and interactions of monolayers with electrochemical and gaseous environments. Next, we describe the computational characterization of the 2D materials' electronic, optical, magnetic, and superconducting properties and the response of the properties under applied mechanical strain and electrical fields. From there, we move on to discuss the structure and properties of defects in 2D materials, and describe methods for 2D materials device simulations. We conclude by providing an outlook on the needs and challenges for future developments in the field of computational research for 2D materials.

  13. Los Alamos National Laboratory new generation standard nuclear material storage container - the SAVY4000 design

    International Nuclear Information System (INIS)

    Stone, Timothy Amos

    2010-01-01

    Incidents involving release of nuclear materials stored in containers of convenience such as food pack cans, slip lid taped cans, paint cans, etc. has resulted in defense board concerns over the lack of prescriptive performance requirements for interim storage of nuclear materials. Los Alamos National Laboratory (LANL) has shared in these incidents and in response proactively moved into developing a performance based standard involving storage of nuclear material (RD003). This RD003 requirements document has sense been updated to reflect requirements as identified with recently issued DOE M 441.1-1 'Nuclear Material Packaging Manual'. The new packaging manual was issued at the encouragement of the Defense Nuclear Facilities Safety Board with a clear directive for protecting the worker from exposure due to loss of containment of stored materials. The Manual specifies a detailed and all inclusive approach to achieve a high level of protection; from package design and performance requirements, design life determinations of limited life components, authorized contents evaluations, and surveillance/maintenance to ensure in use package integrity over time. Materials in scope involve those stored outside an approved engineered-contamination barrier that would result in a worker exposure of in excess of 5 rem Committed Effective Does Equivalent (CEDE). Key aspects of meeting the challenge as developed around the SAVY-3000 vented storage container design will be discussed. Design performance and acceptance criteria against the manual, bounding conditions as established that the user must ensure are met to authorize contents in the package (based upon the activity of heat-source plutonium (90% Pu-238) oxide, which bounds the requirements for weapons-grade plutonium oxide), interface as a safety class system within the facility under the LANL plutonium facility DSA, design life determinations for limited life components, and a sense of design specific surveillance program

  14. Interepisodic Functioning in Patients with Bipolar Disorder in Remission

    OpenAIRE

    Wesley, Mareena Susan; Manjula, M.; Thirthalli, Jagadisha

    2018-01-01

    Background and Objectives: Patients with bipolar disorder (BD), despite recovering symptomatically, suffer from several functional impairments even in remission. The actual causes of impaired functioning are less known. Materials and Methods: The study aimed to examine the clinical and psychosocial determinants of functioning in patients with BD in remission. A cross-sectional single-group design was adopted (n = 150). Participants meeting the study criteria were screened with Mini-Internatio...

  15. A statistical characterization method for damping material properties and its application to structural-acoustic system design

    International Nuclear Information System (INIS)

    Jung, Byung C.; Lee, Doo Ho; Youn, Byeng D.; Lee, Soo Bum

    2011-01-01

    The performance of surface damping treatments may vary once the surface is exposed to a wide range of temperatures, because the performance of viscoelastic damping material is highly dependent on operational temperature. In addition, experimental data for dynamic responses of viscoelastic material are inherently random, which makes it difficult to design a robust damping layout. In this paper a statistical modeling procedure with a statistical calibration method is suggested for the variability characterization of viscoelastic damping material in constrained-layer damping structures. First, the viscoelastic material property is decomposed into two sources: (I) a random complex modulus due to operational temperature variability, and (II) experimental/model errors in the complex modulus. Next, the variability in the damping material property is obtained using the statistical calibration method by solving an unconstrained optimization problem with a likelihood function metric. Two case studies are considered to show the influence of the material variability on the acoustic performances in the structural-acoustic systems. It is shown that the variability of the damping material is propagated to that of the acoustic performances in the systems. Finally, robust and reliable damping layout designs of the two case studies are obtained through the reliability-based design optimization (RBDO) amidst severe variability in operational temperature and the damping material

  16. Economic evaluations and Randomized trials in spinal disorders: Principles and methods

    DEFF Research Database (Denmark)

    Korthals-de Bos, I; Van Tulder, M; Van Dieten, H

    2004-01-01

    Study Design. Descriptive methodologic recommendations. Objective. To help researchers designing, conducting, and reporting economic evaluations in the field of back and neck pain. Summary of Background Data. Economic evaluations of both existing and new therapeutic interventions are becoming...... increasingly important. There is a need to improve the methods of economic evaluations in the field of spinal disorders. Materials and Methods. To improve the methods of economic evaluations in the field of spinal disorders, this article describes the various steps in an economic evaluation, using as example...... a study on the cost-effectiveness of manual therapy, physiotherapy, and usual care provided by the general practitioner for patients with neck pain. Results. An economic evaluation is a study in which two or more interventions are systematically compared with regard to both costs and effects...

  17. Benders decomposition for discrete material optimization in laminate design with local failure criteria

    DEFF Research Database (Denmark)

    Munoz, Eduardo; Stolpe, Mathias; Bendsøe, Martin P.

    2009-01-01

    in any discrete angle optimization design, or material selection problems. The mathematical modeling of this problem is more general than the one of standard topology optimization. When considering only two material candidates with a considerable difference in stiffness, it corresponds exactly...... to a topology optimization problem. The problem is modeled as a discrete design problem coming from a finite element discretization of the continuum problem. This discretization is made of shell or plate elements. For each element (selection domain), only one of the material candidates must be selected...... of the relaxed master problem and the current best compliance (weight) found get close enough with respect to certain tolerance. The method is investigated by computational means, using the finite element method to solve the analysis problems, and a commercial branch and cut method for solving the relaxed master...

  18. Development of digital materials database for design and construction of new power plants

    International Nuclear Information System (INIS)

    Ren, W.

    2008-01-01

    To facilitate materials selection, structural design, and future maintenance of the Generation IV nuclear reactor systems, an interactive, internet accessible materials property database, dubbed Gen IV Materials Handbook, has been under development with the support of the United States Department of Energy. The Handbook will provide an authoritative source of information on structural materials needed for the development of various Gen IV nuclear reactor systems along with powerful data analysis and management tools. In this paper the background, history, framework, major features, contents, and development strategy of the Gen IV Materials Handbook are discussed. Current development status and future plans are also elucidated. (authors)

  19. Participatory Communication Referred to Meta-Design Approach through the FleXpeaker™ Application of Innovative Material in Exhibition Design

    Directory of Open Access Journals (Sweden)

    Pei-Hsuan Su

    2016-07-01

    Full Text Available Modelling a communication system in material culture today always involves with objects, people, organizations, activities and interrelationships among them. The researcher suggests bringing together stakeholders engaged to exchange ideas, which the interactions relate to multiple professions and disciplines in a participatory scope of communication system. Owing to the invention of digital media, the status quo of images and sounds has revolutionized and caused changes of the mode of art exhibitions that produce activities and aesthetic concepts in terms of numerical representation, modularity, automation, visual variability and transcoding. Underlying a participatory-design approach, the research emphasizes a co-creative meta-interpretation of museum‟s visitors. In addition, the research delves further into the use of new media-FleXpeaker™ [ITRI], as the carrier. Combining art and design with innovative technology, the research focuses on examining design objects and innovative material which are applied in new media art and exhibition, in the hope to find new angles of participatory interpretation of the “integrated innovation” in curating an exhibition.

  20. Rationale and design for cognitive behavioral therapy for anxiety disorders in children with autism spectrum disorder: a study protocol of a randomized controlled trial.

    Science.gov (United States)

    Kilburn, Tina R; Sørensen, Merete Juul; Thastum, Mikael; Rapee, Ronald M; Rask, Charlotte Ulrikka; Arendt, Kristian Bech; Thomsen, Per Hove

    2018-04-02

    Autism spectrum disorder (ASD) is found in approximately 1% of the population and includes core symptoms that affect general and social development. Beside these core symptoms, it is suggested that up to 60% of children with ASD suffer from comorbid anxiety disorders which may further affect educational, social and general development as well as quality of life. The main goal of this study is to examine the effectiveness of a manualized cognitive behavioral therapy (CBT) anxiety program adapted for children with ASD. This study is a randomized controlled trial (RCT). Fifty children with ASD and anxiety, aged 7 to 13 years, will be randomly assigned to group CBT or a wait-list control (WL) condition. The design will follow a two (CBT and WL) by two (pre-post assessment) mixed between-within design. The control group will receive intervention after the waitlist period of 13 weeks. Primary outcomes are diagnostic status and severity of the anxiety disorders, measured with The Anxiety Disorder Interview Schedule for DSM-IV, Parent and Child Versions. Secondary outcomes are parent and child ratings on questionnaires on the child's level of anxiety and impact on everyday life. Additional outcomes entail information gathered from parents, child and teachers on the child's behavior and negative self-statements, together with social and adaptive skills. Follow-up data will be collected 3 months after intervention. This study aims to evaluate the effectiveness of a manualized CBT program in Danish children with ASD and anxiety within a mental health clinic setting. The hypothesis is that training anxiety reduction skills will decrease anxiety in children, as well as ensure better psychosocial development for the child in general. https://ClinicalTrials.gov ( NCT02908321 ). Registered 19th of September 2016.

  1. Representing Clarity: Using Universal Design Principles to Create Effective Hybrid Course Learning Materials

    Science.gov (United States)

    Spiegel, Cheri Lemieux

    2012-01-01

    This article describes how the author applied principles of universal design to hybrid course materials to increase student understanding and, ultimately, success. Pulling the three principles of universal design--consistency, color, and icon representation--into the author's Blackboard course allowed her to change the types of reading skills…

  2. Design and Optimization of Composite Automotive Hatchback Using Integrated Material-Structure-Process-Performance Method

    Science.gov (United States)

    Yang, Xudong; Sun, Lingyu; Zhang, Cheng; Li, Lijun; Dai, Zongmiao; Xiong, Zhenkai

    2018-03-01

    The application of polymer composites as a substitution of metal is an effective approach to reduce vehicle weight. However, the final performance of composite structures is determined not only by the material types, structural designs and manufacturing process, but also by their mutual restrict. Hence, an integrated "material-structure-process-performance" method is proposed for the conceptual and detail design of composite components. The material selection is based on the principle of composite mechanics such as rule of mixture for laminate. The design of component geometry, dimension and stacking sequence is determined by parametric modeling and size optimization. The selection of process parameters are based on multi-physical field simulation. The stiffness and modal constraint conditions were obtained from the numerical analysis of metal benchmark under typical load conditions. The optimal design was found by multi-discipline optimization. Finally, the proposed method was validated by an application case of automotive hatchback using carbon fiber reinforced polymer. Compared with the metal benchmark, the weight of composite one reduces 38.8%, simultaneously, its torsion and bending stiffness increases 3.75% and 33.23%, respectively, and the first frequency also increases 44.78%.

  3. The design and modeling of periodic materials with novel properties

    Science.gov (United States)

    Berger, Jonathan Bernard

    Cellular materials are ubiquitous in our world being found in natural and engineered systems as structural materials, sound and energy absorbers, heat insulators and more. Stochastic foams made of polymers, metals and even ceramics find wide use due to their novel properties when compared to monolithic materials. Properties of these so called hybrid materials, those that combine materials or materials and space, are derived from the localization of thermomechanical stresses and strains on the mesoscale as a function of cell topology. The effects of localization can only be generalized in stochastic materials arising from their inherent potential complexity, possessing variations in local chemistry, microstructural inhomogeneity and topological variations. Ordered cellular materials on the other hand, such as lattices and honeycombs, make for much easier study, often requiring analysis of only a single unit-cell. Theoretical bounds predict that hybrid materials have the potential to push design envelopes offering lighter stiffer and stronger materials. Hybrid materials can achieve very low and even negative coefficients of thermal expansion (CTE) while retaining a relatively high stiffness -- properties completely unmatched by monolithic materials. In the first chapter of this thesis a two-dimensional lattice is detailed that possess near maximum stiffness, relative to the tightest theoretical bound, and low, zero and even appreciably negative thermal expansion. Its CTE and stiffness are given in closed form as a function of geometric parameters and the material properties. This result is confirmed with finite elements (FE) and experiment. In the second chapter the compressive stiffness of three-dimensional ordered foams, both closed and open cell, are predicted with FE and the results placed in property space in terms of stiffness and density. A novel structure is identified that effectively achieves theoretical bounds for Young's, shear and bulk modulus

  4. Band Gap Optimization Design of Photonic Crystals Material

    Science.gov (United States)

    Yu, Y.; Yu, B.; Gao, X.

    2017-12-01

    The photonic crystal has a fundamental characteristic - photonic band gap, which can prevent light to spread in the crystals. This paper studies the width variation of band gaps of two-dimension square lattice photonic crystals by changing the geometrical shape of the unit cells’ inner medium column. Using the finite element method, we conduct numerical experiments on MATLAB 2012a and COMSOL 3.5. By shortening the radius in vertical axis and rotating the medium column, we design a new unit cell, with a 0.3*3.85e-7 vertical radius and a 15 degree deviation to the horizontal axis. The new cell has a gap 1.51 percent wider than the circle medium structure in TE gap and creates a 0.0124 wide TM gap. Besides, the experiment shows the first TM gap is partially overlapped by the second TE gap in gap pictures. This is helpful to format the absolute photonic band gaps and provides favorable theoretical basis for designing photonic communication material.

  5. Scattering and multiple scattering in disordered materials

    International Nuclear Information System (INIS)

    Weaver, R.L.; Butler, W.H.

    1992-01-01

    The papers in this section were presented at a joint session of symposium V on Applications of Multiple Scattering Theory and of Symposium P on Disordered Systems. They show that the ideas of scattering theory can help us to understand a very broad class of phenomena

  6. Autism Spectrum Disorders in Children with Functional Defecation Disorders

    NARCIS (Netherlands)

    Peeters, B.; Noens, I.; Philips, E.M.; Kuppens, S.P.E.; Benninga, M.A.

    2013-01-01

    Objective: To prospectively assess the prevalence of autism spectrum disorder (ASD) symptoms in children presenting with functional defecation disorders. Study design: Children (age 4-12 years) with functional constipation or functional non-retentive fecal incontinence according to the Rome III

  7. Science of materials. Progress report, January 1-December 31, 1979

    International Nuclear Information System (INIS)

    1979-01-01

    The research program includes studies of the microchemistry, microstructure, deformation, corrosion and fracture of metals, ceramics and alloy materials, of the hydrogen embrittlement of metals, the mechanism of heat transfer across interfacts, catalytic properties of surfaces, and erosion of surfaces by fluid suspended particles. The structure of liquids, polymers and disordered solids is under investigation with emphasis on molecular interactions and bonding, on ionic conduction, phase transitions and radiation damage. Ferro- and pyro-electric materials with potential for solar energy applications are under development. The study of optical properties includes the mechanism of luminescence, the design of molecular photoreceptors, and new semiconductor materials for photovoltaic devices

  8. Science of materials. Progress report, January 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The research program includes studies of the microchemistry, microstructure, deformation, corrosion and fracture of metals, ceramics and alloy materials, of the hydrogen embrittlement of metals, the mechanism of heat transfer across interfacts, catalytic properties of surfaces, and erosion of surfaces by fluid suspended particles. The structure of liquids, polymers and disordered solids is under investigation with emphasis on molecular interactions and bonding, on ionic conduction, phase transitions and radiation damage. Ferro- and pyro-electric materials with potential for solar energy applications are under development. The study of optical properties includes the mechanism of luminescence, the design of molecular photoreceptors, and new semiconductor materials for photovoltaic devices.

  9. Transition fields in organic materials: From percolation to inverted Marcus regime. A consistent Monte Carlo simulation in disordered PPV

    Science.gov (United States)

    Volpi, Riccardo; Stafström, Sven; Linares, Mathieu

    2015-03-01

    In this article, we analyze the electric field dependence of the hole mobility in disordered poly(p-phenylene vinylene). The charge carrier mobility is obtained from Monte Carlo simulations. Depending on the field strength three regions can be identified: the percolation region, the correlation region, and the inverted region. Each region is characterized by a different conduction mechanism and thus a different functional dependence of the mobility on the electric field. Earlier studies have highlighted that Poole-Frenkel law, which appears in the correlation region, is based on the type of correlation caused by randomly distributed electric dipoles. This behavior is thus observed in a limited range of field strengths, and by studying a broader range of electric fields, a more fundamental understanding of the transport mechanism is obtained. We identify the electric fields determining the transitions between the different conduction mechanisms in the material and we explain their physical origin. In principle, this allows us to characterize the mobility field dependence for any organic material. Additionally, we study the charge carrier trapping mechanisms due to diagonal and off-diagonal disorder, respectively.

  10. Ideology, capitalist division of labour and social role of the designer: a study on the production of materiality in fashion design

    Directory of Open Access Journals (Sweden)

    Joana Martins Contino

    2016-12-01

    Full Text Available Aiming to discuss about social division of labour and how it appears in the fashion design field, in addition to debate about the social role of fashion designer in the production chain, this paper presents two opposing notions that aim to explain important changes that have occurred in industrial society in the second half of twentieth century: “post-industrial society” of the author Daniel Bell, and “late capitalism” from Ernst Mandel. Each of these theories come from different ideological positions and impacts on the field of design with regard to theoretical production and the professional qualification and practices of designers. Thus, through bibliographic research, we began this paper with a reflection on the materiality and immateriality production in design. Then we confront these two important theoretical currents and relate them to others that we believe to be arising from one of them – "end of work", "design as a process" – and to objective and concrete issues of one of the design branches in which material production and the huge number of workers are undeniable: the fashion design field. Among these issues are the social division of labour and the propagation of the mythical notion of the individual creator, even propagated by the education system.

  11. Materials design data for reduced activation martensitic steel type F82H

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A.-A.F. E-mail: tavassoli@cea.fr; Rensman, J.-W.; Schirra, M.; Shiba, K

    2002-11-01

    This paper presents materials data for design of ITER test blanket modules with the reduced activation ferritic martensitic steel type F82H as structural material. From the physical properties databases, variations of modulus of elasticity, density, thermal conductivity, thermal diffusivity, specific heat, mean and instantaneous linear coefficients of thermal expansion versus temperature are derived. Also reported are Poisson's ratio and magnetic properties. From the tension test results, nominal and minimum stress values of S{sub y} and S{sub u} are derived and used for calculation of allowable primary membrane stress intensity S{sub m}. Likewise, uniform and total elongations, as well as reduction of area data, are used for calculation of minimum and true ductility at rupture values. From the instrumented Charpy impact and fracture toughness test data, ductile to brittle transition temperature, toughness and behavior of material in different fracture modes are evaluated. The effect of specimen size and geometry are discussed but preference is given to standard size specimens. From the fatigue data, total strain range versus number of cycles to failure curves are plotted and used to derive fatigue design curves, using a reduction factor of 2 on strain and a reduction factor of 20 on number of cycles to failure. Cyclic hardening curves are also derived and compared with monotonic hardening curves. From the creep data, time dependent allowable stresses S{sub r} and S{sub t} are calculated. Combination of tension and creep results are used to deduce S{sub mt} and isochronus curves. Finally, irradiated and aged materials data are compared to insure that the safety margins incorporated in unirradiated design limits are not exceeded.

  12. In silico design of porous polymer networks: high-throughput screening for methane storage materials.

    Science.gov (United States)

    Martin, Richard L; Simon, Cory M; Smit, Berend; Haranczyk, Maciej

    2014-04-02

    Porous polymer networks (PPNs) are a class of advanced porous materials that combine the advantages of cheap and stable polymers with the high surface areas and tunable chemistry of metal-organic frameworks. They are of particular interest for gas separation or storage applications, for instance, as methane adsorbents for a vehicular natural gas tank or other portable applications. PPNs are self-assembled from distinct building units; here, we utilize commercially available chemical fragments and two experimentally known synthetic routes to design in silico a large database of synthetically realistic PPN materials. All structures from our database of 18,000 materials have been relaxed with semiempirical electronic structure methods and characterized with Grand-canonical Monte Carlo simulations for methane uptake and deliverable (working) capacity. A number of novel structure-property relationships that govern methane storage performance were identified. The relationships are translated into experimental guidelines to realize the ideal PPN structure. We found that cooperative methane-methane attractions were present in all of the best-performing materials, highlighting the importance of guest interaction in the design of optimal materials for methane storage.

  13. On design-oriented research and digital learning materials in higher education

    NARCIS (Netherlands)

    Hartog, R.J.M.

    2012-01-01

    The context of the research described in this thesis is formed by a number of research projects that were aimed at the design, development, implementation, use and evaluation of innovative digital learning materials. Most of these projects were carried out mainly within Wageningen University. In

  14. Color Research and Its Application to the Design of Instructional Materials.

    Science.gov (United States)

    Pett, Dennis; Wilson, Trudy

    1996-01-01

    Reviews color research and considers its implications for the design of instructional materials. Topics include physiological and psychological effects; color and learning, including attention, search tasks, retention and other objective measures, and non-objective measures; color and the cathode ray tube (CRT); and further research needs.…

  15. Design and Implementation of Company Tailored Automated Material Handling

    DEFF Research Database (Denmark)

    Langer, Gilad; Bilberg, Arne

    1996-01-01

    This article focuses on the problems of analysing automation of material handling systems in order to develop an efficient automated solution that is specifically tailored to the company. The research has resulted in development of new methods for evaluating factory automation from design...... to implementation. The goals of the research were to analyse and evaluate automation in order to obtain an advantageous combination of human and automated resources. The idea is to asses different solutions in a virtual environment, where experiments and analyses can be performed so that the company can justify...... for their application with computer aided information processing tools. The framework is named the "Automated Material Handling (AMH) Preference GuideLine". The research has been carried out in close co-operation with Danish and European industry, where implementations of automation can be referred to. It is our...

  16. Pediatric Sleep Disorders: Validation of the Sleep Disorders Inventory for Students

    Science.gov (United States)

    Luginbuehl, Marsha; Bradley-Klug, Kathy L.; Ferron, John; Anderson, W. McDowell; Benbadis, Selim R.

    2008-01-01

    Approximately 20%-25% of the pediatric population will likely develop a sleep disorder sometime during childhood or adolescence. Studies have shown that untreated sleep disorders can negatively affect cognitive abilities, and academic and behavior performance. The Sleep Disorders Inventory for Students (SDIS) is a screening instrument designed to…

  17. Fracture mechanics based design for radioactive material transport packagings -- Historical review

    International Nuclear Information System (INIS)

    Smith, J.A.; Salzbrenner, D.; Sorenson, K.; McConnell, P.

    1998-04-01

    The use of a fracture mechanics based design for the radioactive material transport (RAM) packagings has been the subject of extensive research for more than a decade. Sandia National Laboratories (SNL) has played an important role in the research and development of the application of this technology. Ductile iron has been internationally accepted as an exemplary material for the demonstration of a fracture mechanics based method of RAM packaging design and therefore is the subject of a large portion of the research discussed in this report. SNL's extensive research and development program, funded primarily by the U. S. Department of Energy's Office of Transportation, Energy Management and Analytical Services (EM-76) and in an auxiliary capacity, the office of Civilian Radioactive Waste Management, is summarized in this document along with a summary of the research conducted at other institutions throughout the world. In addition to the research and development work, code and standards development and regulatory positions are also discussed

  18. Band engineering and rational design of high-performance thermoelectric materials by first-principles

    Directory of Open Access Journals (Sweden)

    Lili Xi

    2016-06-01

    Full Text Available Understanding and manipulation of the band structure are important in designing high-performance thermoelectric (TE materials. Our recent work has involved the utilization of band structure in various topics of TE research, i.e., the band convergence, the conductive network, dimensionality reduction by quantum effects, and high throughput material screening. In non-cubic chalcopyrite compounds, we revealed the relations between structural factors and band degeneracy, and a simple unity-η rule was proposed for selecting high performance diamond-like TE materials. Based on the deep understanding of the electrical and thermal transport, we identified the conductive network in filled skutterudites with the “phonon glass-electron crystal” (PGEC paradigm, and extended this concept to caged-free Cu-based diamond-like compounds. By combining the band structure calculations and the Boltzmann transport theory, we conducted a high-throughput material screening in half-Heusler (HH systems, and several promising compositions with high power factors were proposed out of a large composition collection. At last, we introduced the Rashba spin-splitting effect into thermoelectrics, and its influence on the electrical transport properties was discussed. This review demonstrated the importance of the microscopic perspectives for the optimization and design of novel TE materials.

  19. Design of portable bridge of material access on level 8 m

    International Nuclear Information System (INIS)

    Hasibuan, D.

    1999-01-01

    Base on the planning to increase of the working capability of the rabbit system facility, using the design of mentioned portable bridge on material access has been done. Using the designed installation, the transportation of the middle and high active samples from the isotop cell to the scanning room will be easy to be done. The design has been done by using the maximum actual load, and also the chosen steel shape dimension compliance with ASTM standard. The installation required 2 pieces of W 6 x 12 steel beam by 111.82 inches in length, 4 pieces W 6 x 12 steel beam by 47.25'' in length and a piece of steel plate by 111.82'' x 47.25'' x 0.394''. This paper concluded that this design is feasible to be fabricated

  20. Derivation of time dependent design-values for SNR 300 structural material

    International Nuclear Information System (INIS)

    Lorenz, H.; Breitling, H.; de Heesen, E.

    1976-01-01

    Time-dependent design values were derived from long-term creep rupture data for steel X 6 CrNi 1811 in the unwelded and welded condition. The design values had to satisfy the ASME CC 1592 criterea with respect to creep rupture strength, time to reach 1% strain and transition to tertiary creep as well as the requirement of German regulatory rules to properly account for weld bahaviour. For the evaluation and extrapolation 2 proven computer programmes were used. The design data derived under consideration of weld joints show relative good agreement with the values of ASME CC 1592. Consideration of welds leads to lower design values above 550 0 C and 5x10 3 h with the difference between rolled and weld material becoming larger with increasing time and temperature. (author)

  1. Role of Disorder in Enhancing Lithium-Ion Battery Performance

    DEFF Research Database (Denmark)

    Yue, Yuanzheng; He, W.

    and type of disorder, material performances can be significantly enhanced. Disorder can be tuned by doping, calcination, redox reaction, composition tuning, and so on. Recently we have fabricated a cathode material for lithium ion battery by introducing heterostructure and disorder into the material...... material exhibits the extremely high reversible lithium ion capacity and extraordinary rate capability with high cycling stability at high discharge current. In this presentation we demonstrate that the disorder plays a decisive role in achieving those exceptional electrochemical performances. We describe...... how the disorder affects the migration of both lithium ions and electrons. It is found that both the modified glassy surface and the heterogeneous superlattice structure greatly contribute to the extremely high discharge/charge rates owing to the enhanced storage capacity of lithium ions and ultrafast...

  2. An analysis of teaching competence in science teachers involved in the design of context-based curriculum materials

    NARCIS (Netherlands)

    Putter - Smits, de L.G.A.; Taconis, R.; Driel, van J.H.; Jochems, W.M.G.

    2012-01-01

    The committees for the current Dutch context-based innovation in secondary science education employed teachers to design context-based curriculum materials. A study on the learning of science teachers in design teams for context-based curriculum materials is presented in this paper. In a correlation

  3. Thermal stress analysis and the effect of temperature dependence of material properties on Doublet III limiter design

    International Nuclear Information System (INIS)

    McKelvey, T.E.; Koniges, A.E.; Marcus, F.; Sabado, M.; Smith, R.

    1979-10-01

    Temperature and thermal stress parametric design curves are presented for two materials selected for Doublet III primary limiter applications. INC X-750 is a candidate for the medium Z limiter design and ATJ graphite for the low Z design. The dependence of significant material properties on temperature is shown and the impact of this behavior on the decision to actively or passively cool the limiter is discussed

  4. TFTR materials issues and problems during design and construction

    International Nuclear Information System (INIS)

    Sabado, M.; Little, R.

    1984-01-01

    TFTR as well as its contemporaries, T15, JT60, and JET, have important contributions to make towards our understanding of plasma conditions in the thermonuclear regime. One of the main objectives of TFTR is to produce fusion power densities approaching those in a fusion reactor, approx.= 1 Wcm -3 at Q approx.= 1-2. TFTR will be the first tokamak to routinely use deuterium tritium, and produce approx.= 10 19 fusion neutrons per pulse. With startup of TFTR on December 24, 1982, the demonstration of physics feasibility of 'breakeven' is close at hand. Since TFTR performance will be reactor relevant, the capability of materials/components to withstand the hostile effects of a plasma environment will be presented. It is intended that designers of future fusion devices benefit from the materials technology developments and applications on TFTR. In an attempt to comply with this mandate, this paper will describe TFTR issues on materials, their developments, selections, problems, and solutions. Special emphasis will be given, in particular, to the impurity control devices in TFTR, namely, the limiter and surface pumping system located inside the vacuum vessel. The plasma will interact with these components and they will be subjected to disruptions, a vacuum of 10 -6 to 10 -8 torr and a nominal temperatures of 0 C. 'Painful' materials development problems encountered will be reviewed, as well as important 'lessons learned'. A briefing on the materials of construction will be given, with some comments on the problems that developed and their solutions. (orig.)

  5. Design of materials with extreme thermal expansion using a three-phase topology optimization method

    DEFF Research Database (Denmark)

    Sigmund, Ole; Torquato, S.

    1997-01-01

    Composites with extremal or unusual thermal expansion coefficients are designed using a three-phase topology optimization method. The composites are made of two different material phases and a void phase. The topology optimization method consists in finding the distribution of material phases...... materials having maximum directional thermal expansion (thermal actuators), zero isotropic thermal expansion, and negative isotropic thermal expansion. It is shown that materials with effective negative thermal expansion coefficients can be obtained by mixing two phases with positive thermal expansion...

  6. Sensing and collecting radioactive materials as a project to teach engineering design

    International Nuclear Information System (INIS)

    Drake, D.; Majdi, T.; Strack, J.

    2015-01-01

    The remote detection and isolation of radioactive materials is both a challenging engineering design project and a relevant issue given modern nuclear circumstances. This project is used in the undergraduate capstone class of the Engineering Physics Department at McMaster University to teach students engineering design. This paper discusses the course outline and learning outcomes of the students who took the course over the 2014-2015 academic year. (author)

  7. Sensing and collecting radioactive materials as a project to teach engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Drake, D.; Majdi, T.; Strack, J., E-mail: draked2@mcmaster.ca [McMaster University, Hamiltion, ON (Canada); and others

    2015-07-01

    The remote detection and isolation of radioactive materials is both a challenging engineering design project and a relevant issue given modern nuclear circumstances. This project is used in the undergraduate capstone class of the Engineering Physics Department at McMaster University to teach students engineering design. This paper discusses the course outline and learning outcomes of the students who took the course over the 2014-2015 academic year. (author)

  8. New technical design of food packaging makes the opening process easier for patients with hand disorders.

    Science.gov (United States)

    Hensler, Stefanie; Herren, Daniel B; Marks, Miriam

    2015-09-01

    Opening packaged food is a complex daily activity carried out worldwide. Peelable packaging, as used for cheese or meat, causes real problems for many consumers, especially elderly people and those with hand disorders. Our aim was to investigate the possibility of producing meat packaging that is easier for patients with hand disorders to open. One hundred patients with hand osteoarthritis were asked to open a meat package currently available in supermarkets (Type A) and a modified, newly designed version (Type B), and rate their experiences with a consumer satisfaction index (CSI). The mean CSI of the Type B packs was 68.9%, compared with 41.9% for Type A (p food packages that afford greater consumer satisfaction. Such future packaging would benefit not only people with hand disorders but also the population as a whole. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  9. Introducing correlations into carrier transport simulations of disordered materials through seeded nucleation: impact on density of states, carrier mobility, and carrier statistics

    Science.gov (United States)

    Brown, J. S.; Shaheen, S. E.

    2018-04-01

    Disorder in organic semiconductors has made it challenging to achieve performance gains; this is a result of the many competing and often nuanced mechanisms effecting charge transport. In this article, we attempt to illuminate one of these mechanisms in the hopes of aiding experimentalists in exceeding current performance thresholds. Using a heuristic exponential function, energetic correlation has been added to the Gaussian disorder model (GDM). The new model is grounded in the concept that energetic correlations can arise in materials without strong dipoles or dopants, but may be a result of an incomplete crystal formation process. The proposed correlation has been used to explain the exponential tail states often observed in these materials; it is also better able to capture the carrier mobility field dependence, commonly known as the Poole-Frenkel dependence, when compared to the GDM. Investigation of simulated current transients shows that the exponential tail states do not necessitate Montroll and Scher fits. Montroll and Scher fits occur in the form of two distinct power law curves that share a common constant in their exponent; they are clearly observed as linear lines when the current transient is plotted using a log-log scale. Typically, these fits have been found appropriate for describing amorphous silicon and other disordered materials which display exponential tail states. Furthermore, we observe the proposed correlation function leads to domains of energetically similar sites separated by boundaries where the site energies exhibit stochastic deviation. These boundary sites are found to be the source of the extended exponential tail states, and are responsible for high charge visitation frequency, which may be associated with the molecular turnover number and ultimately the material stability.

  10. Designing Plasmonic Materials and Optical Metasurfaces for Light Manipulation and Optical Sensing

    Science.gov (United States)

    Chen, Wenxiang

    Metamaterials are artificial materials designed to create optical properties that do not exist in nature. They are assemblies of subwavelength structures that are tailored in size, shape, composition, and orientation to realize the desired property. Metamaterials are promising for applications in diverse areas: optical filters, lenses, holography, sensors, photodetectors, photovoltaics, photocatalysts, medical devices, and many more, because of their excellent abilities in bending, absorbing, enhancing and blocking light. However, the practical use of metamaterials is challenged by the lack of plasmonic materials with proper permittivity for different applications and the slow and expensive fabrication methods available to pattern sub-wavelength structures. We have also only touched the surface in exploring the innovative uses of metamaterials to solve world problems. In this thesis, we study the fundamental optical properties of metamaterial building blocks by designing material permittivity. We continuously tune the interparticle distance in colloidal Au nanocrystal (NC) solids via the partial ligand exchange process. Then we combine top-down nanoimprint lithography with bottom-up assembly of colloidal NCs to develop a large-area, low-cost fabrication method for subwavelength nanostructures. Via this method, we fabricate and characterize nano-antenna arrays of different sizes and demonstrate metasurface quarter wave-plates of different bandwidth, and compare their performances with simulation results. We also integrate the metasurfaces with chemically- and mechanically-responsive polymers for strong-signal sensing. In the first design, we combine ultrathin plasmonic nanorods with hydrogel to fabricate optical moisture sensors for agricultural use. In the second application, we design mechanically tunable Au grating resonances on a polydimethylsiloxane (PDMS) substrate. The dimensions of Au grating are carefully engineered to achieve a hybridized, ultrasharp, and

  11. Decoupling interrelated parameters for designing high performance thermoelectric materials.

    Science.gov (United States)

    Xiao, Chong; Li, Zhou; Li, Kun; Huang, Pengcheng; Xie, Yi

    2014-04-15

    The world's supply of fossil fuels is quickly being exhausted, and the impact of their overuse is contributing to both climate change and global political unrest. In order to help solve these escalating problems, scientists must find a way to either replace combustion engines or reduce their use. Thermoelectric materials have attracted widespread research interest because of their potential applications as clean and renewable energy sources. They are reliable, lightweight, robust, and environmentally friendly and can reversibly convert between heat and electricity. However, after decades of development, the energy conversion efficiency of thermoelectric devices has been hovering around 10%. This is far below the theoretical predictions, mainly due to the interdependence and coupling between electrical and thermal parameters, which are strongly interrelated through the electronic structure of the materials. Therefore, any strategy that balances or decouples these parameters, in addition to optimizing the materials' intrinsic electronic structure, should be critical to the development of thermoelectric technology. In this Account, we discuss our recently developed strategies to decouple thermoelectric parameters for the synergistic optimization of electrical and thermal transport. We first highlight the phase transition, which is accompanied by an abrupt change of electrical transport, such as with a metal-insulator and semiconductor-superionic conductor transition. This should be a universal and effective strategy to optimize the thermoelectric performance, which takes advantage of modulated electronic structure and critical scattering across phase transitions to decouple the power factor and thermal conductivity. We propose that solid-solution homojunction nanoplates with disordered lattices are promising thermoelectric materials to meet the "phonon glass electron crystal" approach. The formation of a solid solution, coupled with homojunctions, allows for

  12. Conceptual design report: Nuclear materials storage facility renovation. Part 3, Supplemental information

    International Nuclear Information System (INIS)

    1995-01-01

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL's weapons research, development, and testing (WRD ampersand T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL's inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. It is organized into seven parts. Part I - Design Concept describes the selected solution. Part III - Supplemental Information contains calculations for the various disciplines as well as other supporting information and analyses

  13. Automated Screening for Three Inborn Metabolic Disorders: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Kavitha S

    2006-12-01

    Full Text Available Background: Inborn metabolic disorders (IMDs form a large group of rare, but often serious, metabolic disorders. Aims: Our objective was to construct a decision tree, based on classification algorithm for the data on three metabolic disorders, enabling us to take decisions on the screening and clinical diagnosis of a patient. Settings and Design: A non-incremental concept learning classification algorithm was applied to a set of patient data and the procedure followed to obtain a decision on a patient’s disorder. Materials and Methods: Initially a training set containing 13 cases was investigated for three inborn errors of metabolism. Results: A total of thirty test cases were investigated for the three inborn errors of metabolism. The program identified 10 cases with galactosemia, another 10 cases with fructosemia and the remaining 10 with propionic acidemia. The program successfully identified all the 30 cases. Conclusions: This kind of decision support systems can help the healthcare delivery personnel immensely for early screening of IMDs.

  14. Atomic disorder and superconductivity in A15 materials

    International Nuclear Information System (INIS)

    Faehnle, M.

    1982-01-01

    The validity of a modified linear chain model for describing the properties of A15 superconductors is discussed in detail. Using this simple model for the electronic density of states, we calculate the critical temperature and the Fermi level as functions of atomic disorder with concentration c within the framework of the BCS theory. Thereby the experimentally observed saturation effect of the critical temperature is reproduced by taking into account the contribution of three-dimensional electronic states. The microscopic versions of the Ginzburg-Landau equations for systems with a strongly varying electronic density of states and a strongly varying electron velocity are derived for clean and dirty superconductors in order to calculate the Ginzburg-Landau parameter, the coherence length, the penetration depth, and the upper critical field as functions of atomic disorder. It is shown that these quantities depend strongly on the values inserted for the mean free electron path 1(c). Good agreement between theoretical and experimental results is obtained by an appropriate choice of 1(c). In contrast, the thermodynamic critical field is nearly independent of 1(c). In all cases we derive a depression of the pinning forces and the critical current densities with increasing atomic disorder in good agreement with the experiments

  15. Nanoscale materials in chemistry

    National Research Council Canada - National Science Library

    Klabunde, Kenneth J; Richards, Ryan

    2009-01-01

    ...: Disordered, Porous Nanostructures Stephanie L. Brock 209 9 Ordered Microporous and Mesoporous Materials Freddy Kleitz 243 10 Applications of Microporous and Mesoporous Materials Anirban Ghosh,...

  16. Gambling disorder: estimated prevalence rates and risk factors in Macao.

    Science.gov (United States)

    Wu, Anise M S; Lai, Mark H C; Tong, Kwok-Kit

    2014-12-01

    An excessive, problematic gambling pattern has been regarded as a mental disorder in the Diagnostic and Statistical Manual for Mental Disorders (DSM) for more than 3 decades (American Psychiatric Association [APA], 1980). In this study, its latest prevalence in Macao (one of very few cities with legalized gambling in China and the Far East) was estimated with 2 major changes in the diagnostic criteria, suggested by the 5th edition of DSM (APA, 2013): (a) removing the "Illegal Act" criterion, and (b) lowering the threshold for diagnosis. A random, representative sample of 1,018 Macao residents was surveyed with a phone poll design in January 2013. After the 2 changes were adopted, the present study showed that the estimated prevalence rate of gambling disorder was 2.1% of the Macao adult population. Moreover, the present findings also provided empirical support to the application of these 2 recommended changes when assessing symptoms of gambling disorder among Chinese community adults. Personal risk factors of gambling disorder, namely being male, having low education, a preference for casino gambling, as well as high materialism, were identified.

  17. Concurrent design of composite materials and structures considering thermal conductivity constraints

    Science.gov (United States)

    Jia, J.; Cheng, W.; Long, K.

    2017-08-01

    This article introduces thermal conductivity constraints into concurrent design. The influence of thermal conductivity on macrostructure and orthotropic composite material is extensively investigated using the minimum mean compliance as the objective function. To simultaneously control the amounts of different phase materials, a given mass fraction is applied in the optimization algorithm. Two phase materials are assumed to compete with each other to be distributed during the process of maximizing stiffness and thermal conductivity when the mass fraction constraint is small, where phase 1 has superior stiffness and thermal conductivity whereas phase 2 has a superior ratio of stiffness to density. The effective properties of the material microstructure are computed by a numerical homogenization technique, in which the effective elasticity matrix is applied to macrostructural analyses and the effective thermal conductivity matrix is applied to the thermal conductivity constraint. To validate the effectiveness of the proposed optimization algorithm, several three-dimensional illustrative examples are provided and the features under different boundary conditions are analysed.

  18. Stochastic analysis of capillary condensation in disordered mesopores.

    Science.gov (United States)

    Gommes, Cedric J; Roberts, Anthony P

    2018-05-08

    Most mesoporous materials of practical interest are inherently disordered, which has a significant impact on the condensation and evaporation of vapours in their pores. Traditionally, the effect of disorder is theoretically analyzed in a perturbative approach whereby slight elements of disorder (constriction, corrugation) are added to geometrically ideal pores. We propose an alternative approach, which consists of using a stochastic geometrical model to describe both the porous material and the condensate within the pores. This is done through a multiphase generalisation of the standard Gaussian random field model of disordered materials. The model parameters characterising the condensate provide a low-dimensional approximation of its configuration space, and we use a Derjaguin-Broekhoff-de Boer approximation to calculate the free-energy landscape. Our analysis notably questions the existence of vapour-like metastable states in realistically disordered mesoporous materials. Beyond capillary condensation, our general methodology is applicable to a broad array of confined phenomena.

  19. Computational design of surfaces, nanostructures and optoelectronic materials

    Science.gov (United States)

    Choudhary, Kamal

    Properties of engineering materials are generally influenced by defects such as point defects (vacancies, interstitials, substitutional defects), line defects (dislocations), planar defects (grain boundaries, free surfaces/nanostructures, interfaces, stacking faults) and volume defects (voids). Classical physics based molecular dynamics and quantum physics based density functional theory can be useful in designing materials with controlled defect properties. In this thesis, empirical potential based molecular dynamics was used to study the surface modification of polymers due to energetic polyatomic ion, thermodynamics and mechanics of metal-ceramic interfaces and nanostructures, while density functional theory was used to screen substituents in optoelectronic materials. Firstly, polyatomic ion-beams were deposited on polymer surfaces and the resulting chemical modifications of the surface were examined. In particular, S, SC and SH were deposited on amorphous polystyrene (PS), and C2H, CH3, and C3H5 were deposited on amorphous poly (methyl methacrylate) (PMMA) using molecular dynamics simulations with classical reactive empirical many-body (REBO) potentials. The objective of this work was to elucidate the mechanisms by which the polymer surface modification took place. The results of the work could be used in tailoring the incident energy and/or constituents of ion beam for obtaining a particular chemistry inside the polymer surface. Secondly, a new Al-O-N empirical potential was developed within the charge optimized many body (COMB) formalism. This potential was then used to examine the thermodynamic stability of interfaces and mechanical properties of nanostructures composed of aluminum, its oxide and its nitride. The potentials were tested for these materials based on surface energies, defect energies, bulk phase stability, the mechanical properties of the most stable bulk phase, its phonon properties as well as with a genetic algorithm based evolution theory of

  20. Designing strip footing foundations using expanded polystyrene (EPS) as fill material

    DEFF Research Database (Denmark)

    Psarropoulos, Prodromos; Zania, Varvara; Spyrakos, Konstantinos

    2010-01-01

    One of the modern uses of expanded polystyrene (EPS) is in strip footings as fill material. The current study investigates the effect of the geofoam filling in the static and seismic design of the base slab founded on strip footings. For this purpose the finite element method is employed, and three......-dimensional as well as two-dimensional parametric analyses are conducted taking into account static and seismic loading conditions. The interaction of the soil–geofoam–foundation system is taken into consideration. The use of EPS as fill material in foundation systems is proven to be not only technically but also...

  1. Design Features and Capabilities of the First Materials Science Research Rack

    Science.gov (United States)

    Pettigrew, P. J.; Lehoczky, S. L.; Cobb, S. D.; Holloway, T.; Kitchens, L.

    2003-01-01

    The First Materials Science Research Rack (MSRR-1) aboard the International Space Station (ISS) will offer many unique capabilities and design features to facilitate a wide range of materials science investigations. The initial configuration of MSRR-1 will accommodate two independent Experiment Modules (EMS) and provide the capability for simultaneous on-orbit processing. The facility will provide the common subsystems and interfaces required for the operation of experiment hardware and accommodate telescience capabilities. MSRR1 will utilize an International Standard Payload Rack (ISPR) equipped with an Active Rack Isolation System (ARIS) for vibration isolation of the facility.

  2. Synthesis of new Schiff bases as materials for the design of ...

    African Journals Online (AJOL)

    Synthesis of new Schiff bases as materials for the design of photovoltaics cells. ... We describe the synthesis of new organic Schiff bases chromophores 5 containing a rhodanine-3- acetic as electron accepteur moiety. Imines 3 were obtained by a condensation reaction from a lead molecule, the aminothiazolinethione 1 with ...

  3. Design and Demonstration of a Material-Plasma Exposure Target Station for Neutron Irradiated Samples

    International Nuclear Information System (INIS)

    Rapp, Juergen; Aaron, A. M.; Bell, Gary L.; Burgess, Thomas W.; Ellis, Ronald James; Giuliano, D.; Howard, R.; Kiggans, James O.; Lessard, Timothy L.; Ohriner, Evan Keith; Perkins, Dale E.; Varma, Venugopal Koikal

    2015-01-01

    Fusion energy is the most promising energy source for the future, and one of the most important problems to be solved progressing to a commercial fusion reactor is the identification of plasma-facing materials compatible with the extreme conditions in the fusion reactor environment. The development of plasma-material interaction (PMI) science and the technology of plasma-facing components are key elements in the development of the next step fusion device in the United States, the so-called Fusion Nuclear Science Facility (FNSF). All of these PMI issues and the uncertain impact of the 14-MeV neutron irradiation have been identified in numerous expert panel reports to the fusion community. The 2007 Greenwald report classifies reactor plasma-facing materials (PFCs) and materials as the only Tier 1 issues, requiring a ''. . . major extrapolation from the current state of knowledge, need for qualitative improvements and substantial development for both the short and long term.'' The Greenwald report goes on to list 19 gaps in understanding and performance related to the plasma-material interface for the technology facilities needed for DEMO-oriented R&D and DEMO itself. Of the 15 major gaps, six (G7, G9, G10, G12, G13) can possibly be addressed with ORNL's proposal of an advanced Material Plasma Exposure eXperiment. Establishing this mid-scale plasma materials test facility at ORNL is a key element in ORNL's strategy to secure a leadership role for decades of fusion R&D. That is to say, our end goal is to bring the ''signature facility'' FNSF home to ORNL. This project is related to the pre-conceptual design of an innovative target station for a future Material-Plasma Exposure eXperiment (MPEX). The target station will be designed to expose candidate fusion reactor plasma-facing materials and components (PFMs and PFCs) to conditions anticipated in fusion reactors, where PFCs will be exposed to dense high-temperature hydrogen plasmas providing steady-state heat fluxes of

  4. Materials for MW sized aerogenerators. I - The influence of design on operating parameters

    Science.gov (United States)

    Wyatt, L. M.

    1983-09-01

    Materials and fatigue design deficiencies in the development and production of MW-scale wind turbines with 30-yr, reliable, cost-effective lifetimes are surveyed. Attention is given to existing wind turbines, the performance of materials to date, and fundamental materials properties. Failures thus far have arisen from the coincidence of fundamental vibration frequency or a low order harmonic of components with an exciting frequency, malfunction of control mechanisms, and inadequate engineering. All the failures can be avoided, and most occur in the rotor. Two-bladed horizontal configurations permit use of a through-center section while requiring teetering to reduce stresses; three-bladed designs offer higher output for the same diameter and less of a stress moment on the tower and yaw components. Hydraulic components have caused trouble, which could be eliminated with redundancy. The torsional vibrations to which a Darrieus wind turbine is subject in every revolution can be ameliorated with three blades and eradicated with four. The Musgrove wind turbine requires thin blades to maintain a high aspect ratio, but simultaneously introduces buckling stresses. Blade materials used or proposed are carbon steel, GFRP, wood, stainless steel, CFRP, aluminum, titanium, and prestressed concrete.

  5. Correlation of Disorder and Charge Transport in a Range of Indacenodithiophene-Based Semiconducting Polymers

    KAUST Repository

    Nikolka, Mark

    2017-12-13

    Over the past 25 years, various design motifs have emerged for the development of organic semiconductors for demanding applications in flexible organic light emitting diode display backplanes or even printed organic logic. Due to their large area uniformity paired with high charge carrier mobilities, conjugated polymers have attracted increasing attention in this respect. However, the performances delivered by current generation conjugated polymers still fall short of many industrial requirements demanding devices with ideal transistor characteristics and higher mobilities. The discovery of conjugated polymers with low energetic disorder, such as the indacenodithiophene-based polymer indacenodithiophene-co-benzothiadiazole, represent an exciting opportunity to breach this chasm if these materials can be further optimized while maintaining their low disorder. Here, it is shown how both the charge transport properties as well as the energetic disorder are affected by tuning the molecular structure of a large range of indacenodithiophene-based semiconducting polymer derivatives. This study allows to understand better the interplay between molecular design and structure of the polymer backbone and the degree of energetic disorder that governs the charge transport properties in thin polymer films.

  6. In-Vessel Coil Material Failure Rate Estimates for ITER Design Use

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Cadwallader

    2013-01-01

    The ITER international project design teams are working to produce an engineering design for construction of this large tokamak fusion experiment. One of the design issues is ensuring proper control of the fusion plasma. In-vessel magnet coils may be needed for plasma control, especially the control of edge localized modes (ELMs) and plasma vertical stabilization (VS). These coils will be lifetime components that reside inside the ITER vacuum vessel behind the blanket modules. As such, their reliability is an important design issue since access will be time consuming if any type of repair were necessary. The following chapters give the research results and estimates of failure rates for the coil conductor and jacket materials to be used for the in-vessel coils. Copper and CuCrZr conductors, and stainless steel and Inconel jackets are examined.

  7. Observation of structural universality in disordered systems using bulk diffusion measurement

    Science.gov (United States)

    Papaioannou, Antonios; Novikov, Dmitry S.; Fieremans, Els; Boutis, Gregory S.

    2017-12-01

    We report on an experimental observation of classical diffusion distinguishing between structural universality classes of disordered systems in one dimension. Samples of hyperuniform and short-range disorder were designed, characterized by the statistics of the placement of micrometer-thin parallel permeable barriers, and the time-dependent diffusion coefficient was measured by NMR methods over three orders of magnitude in time. The relation between the structural exponent, characterizing disorder universality class, and the dynamical exponent of the diffusion coefficient is experimentally verified. The experimentally established relation between structure and transport exemplifies the hierarchical nature of structural complexity—dynamics are mainly determined by the universality class, whereas microscopic parameters affect the nonuniversal coefficients. These results open the way for noninvasive characterization of structural correlations in porous media, complex materials, and biological tissues via a bulk diffusion measurement.

  8. Crack propagation in disordered materials: how to decipher fracture surfaces

    Science.gov (United States)

    Ponson, L.

    For a half-century, engineers know how to describe and predict the propagation of a crack in a model elastic homogeneous medium. The case of real materials is much more complex. Indeed, we do not know how to relate their lifetime or their resistance to their microstructure. To achieve such a prediction, understanding the role of the microstructural disorder on the behavior of a crack is determinant. Fracture surfaces represent a promising field of investigation to address this question. From the study of various disordered materials, we propose a statistical description of their roughness and determine to which extent their properties are dependent of the material. We show that fracture surfaces display an anisotropic scale invariant geometry characterized by two universal exponents. Glass ceramics is then studied because its microstructure can be tuned in a controlled manner. Their fracture surfaces display the same general anisotropic properties but with surprisingly low exponents independent of the detail of the ceramics microstructure. This suggests the existence of a second universality class in failure problems. Using finally theoretical tools from out-of-equilibrium statistical physics and fracture mechanics, we relate the statistical properties of fracture surfaces with the mechanisms occurring at the microscopic scale during the failure of a material. In particular, we show that the first class of fracture surfaces results from a failure involving damage processes while the second one results from a perfectly brittle failure. Propagation de fissures dans les matériaux désordonnés : comment déchiffrer les surfaces de rupture. Depuis près d'un demi-siècle, les ingénieurs savent décrire et prévoir la propagation d'une fissure dans un milieu élastique homogène modèle. Le cas des matériaux réels est beaucoup plus complexe. En effet, on ne sait pas relier leur durée de vie ou leur résistance à leur microstructure. Passage obligé avant de telles

  9. (Dis)organizing through imbrications of human and material agencies

    DEFF Research Database (Denmark)

    Tavella, Elena

    and material agencies. However there is a lack of insight into how human and material agencies are imbricated during the emergence of (dis)order, and how different imbrications lead to (dis)order. This paper addresses this gap by presenting a content analysis of a book reporting the Battle of Stalingrad during...... World War II. Drawing on the theory of affordances, the author identifies how different materials were used by the German and Soviet armies to organize specific activities, and whether and how those activities led to order and/or disorder. The analysis suggests that soldiers used different materials...... to organize different activities within one and the same organizational context, which led to (dis)order. Whether order or disorder emerged was dependent on how human and material agencies were imbricated within the conduct of particular activities, and how they related to internal or external influencing...

  10. Application of the ASME code in designing containment vessels for packages used to transport radioactive materials

    International Nuclear Information System (INIS)

    Raske, D.T.; Wang, Z.

    1992-01-01

    The primary concern governing the design of shipping packages containing radioactive materials is public safety during transport. When these shipments are within the regulatory jurisdiction of the US Department of Energy, the recommended design criterion for the primary containment vessel is either Section III or Section VIII, Division 1, of the ASME Boiler and Pressure Vessel Code, depending on the activity of the contents. The objective of this paper is to discuss the design of a prototypic containment vessel representative of a packaging for the transport of high-level radioactive material

  11. Monte Carlo design of a system for the detection of explosive materials and analysis of the dose

    International Nuclear Information System (INIS)

    Hernandez A, P. L.; Medina C, D.; Rodriguez I, J. L.; Salas L, M. A.; Vega C, H. R.

    2015-10-01

    The problems associated with insecurity and terrorism have forced to designing systems for detecting nuclear materials, drugs and explosives that are installed on roads, ports and airports. Organic materials are composed of C, H, O and N; similarly the explosive materials are manufactured which can be distinguished by the concentration of these elements. Its elemental composition, particularly the concentration of hydrogen and oxygen, allow distinguish them from other organic substances. When these materials are irradiated with neutrons nuclear reactions (n, γ) are produced, where the emitted photons are ready gamma rays whose energy is characteristic of each element and its abundance allows estimating their concentration. The aim of this study was designed using Monte Carlo methods a system with neutron source, gamma rays detector and moderator able to distinguish the presence of Rdx and urea. In design were used as moderators: paraffin, light water, polyethylene and graphite; as detectors were used HPGe and the NaI(Tl). The design that showed the best performance was the moderator of light water and HPGe, with a source of 241 AmBe. For this design, the values of ambient dose equivalent around the system were calculated. (Author)

  12. Effects of framework design and layering material on fracture strength of implant-supported zirconia-based molar crowns.

    Science.gov (United States)

    Kamio, Shingo; Komine, Futoshi; Taguchi, Kohei; Iwasaki, Taro; Blatz, Markus B; Matsumura, Hideo

    2015-12-01

    To evaluate the effects of framework design and layering material on the fracture strength of implant-supported zirconia-based molar crowns. Sixty-six titanium abutments (GingiHue Post) were tightened onto dental implants (Implant Lab Analog). These abutment-implant complexes were randomly divided into three groups (n = 22) according to the design of the zirconia framework (Katana), namely, uniform-thickness (UNI), anatomic (ANA), and supported anatomic (SUP) designs. The specimens in each design group were further divided into two subgroups (n = 11): zirconia-based all-ceramic restorations (ZAC group) and zirconia-based restorations with an indirect composite material (Estenia C&B) layered onto the zirconia framework (ZIC group). All crowns were cemented on implant abutments, after which the specimens were tested for fracture resistance. The data were analyzed with the Kruskal-Wallis test and the Mann-Whitney U-test with the Bonferroni correction (α = 0.05). The following mean fracture strength values (kN) were obtained in UNI design, ANA design, and SUP design, respectively: Group ZAC, 3.78, 6.01, 6.50 and Group ZIC, 3.15, 5.65, 5.83. In both the ZAC and ZIC groups, fracture strength was significantly lower for the UNI design than the other two framework designs (P = 0.001). Fracture strength did not significantly differ (P > 0.420) between identical framework designs in the ZAC and ZIC groups. A framework design with standardized layer thickness and adequate support of veneer by zirconia frameworks, as in the ANA and SUP designs, increases fracture resistance in implant-supported zirconia-based restorations under conditions of chewing attrition. Indirect composite material and porcelain perform similarly as layering materials on zirconia frameworks. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Towards Rational Design of Functional Fluoride and Oxyfluoride Materials from First Principles

    Science.gov (United States)

    Charles, Nenian

    Complex transition metal compounds (TMCs) research has produced functional materials with a range of properties, including ferroelectricity, colossal magnetoresistance, nonlinear optical activity and high-temperature superconductivity. Conventional routes to tune properties in transition metal oxides, for example, have relied primarily on cation chemical substitution and interfacial effects in thin film heterostructures. In heteroanionic TMCs, exhibiting two chemically distinct anions coordinating the same or different cations, engineering of the anion sub-lattice for property control is a promising alternative approach. The presence of multiple anions provides additional design variables, such as anion order, that are absent in homoanionic counterparts. The more complex structural and chemical phase space of heteroanionic materials provides a unique opportunity to realize enhanced or unanticipated electronic, optical, and magnetic responses. Although there is growing interest in heteroanionic materials, and synthetic and characterization advances are occurring for these materials, the crystal-chemistry principles for realizing structural and property control are only slowing emerging. This dissertation employs anion engineering to investigate phenomena in transition metal fluorides and oxyfluorides compounds using first principles density functional theory calculations. Oxyfluorides are particularly intriguing owing their tendency to stabilize highly ordered anion sublattices as well as the potential to combine the advantageous properties of transition metal oxides and fluorides. This work 1) addresses the challenges of studying fluorides and oxyfluorides using first principles calculations; 2) evaluates the feasibility of using external stimuli, such as epitaxial strain and hydrostatic pressure, to control properties of fluorides and oxyfluorides; and 3) formulates a computational workflow based on multiple levels of theory and computation to elucidate structure

  14. Conceptual design report: Nuclear materials storage facility renovation. Part 3, Supplemental information

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. It is organized into seven parts. Part I - Design Concept describes the selected solution. Part III - Supplemental Information contains calculations for the various disciplines as well as other supporting information and analyses.

  15. Therapeutic Assessment for Preadolescent Boys with Oppositional Defiant Disorder: A Replicated Single-Case Time-Series Design

    Science.gov (United States)

    Smith, Justin D.; Handler, Leonard; Nash, Michael R.

    2010-01-01

    The Therapeutic Assessment (TA) model is a relatively new treatment approach that fuses assessment and psychotherapy. The study examines the efficacy of this model with preadolescent boys with oppositional defiant disorder and their families. A replicated single-case time-series design with daily measures is used to assess the effects of TA and to…

  16. Curriculum Design for Inquiry: Preservice Elementary Teachers' Mobilization and Adaptation of Science Curriculum Materials

    Science.gov (United States)

    Forbes, Cory T.; Davis, Elizabeth A.

    2010-01-01

    Curriculum materials are crucial tools with which teachers engage students in science as inquiry. In order to use curriculum materials effectively, however, teachers must develop a robust capacity for pedagogical design, or the ability to mobilize a variety of personal and curricular resources to promote student learning. The purpose of this study…

  17. An investigation of structural design methodology for HTGR reactor internals with ceramic materials (Contract research)

    International Nuclear Information System (INIS)

    Sumita, Junya; Shibata, Taiju; Nakagawa, Shigeaki; Iyoku, Tatsuo; Sawa, Kazuhiro

    2008-03-01

    To advance the performance and safety of HTGR, heat-resistant ceramic materials are expected to be used as reactor internals of HTGR. C/C composite and superplastic zirconia are the promising materials for this purpose. In order to use these new materials as reactor internals in HTGR, it is necessary to establish a structure design method to guarantee the structural integrity under environmental and load conditions. Therefore, C/C composite expected as reactor internals of VHTR is focused and an investigation on the structural design method applicable to the C/C composite and a basic applicability of the C/C composite to representative structures of HTGR were carried out in this report. As the results, it is found that the competing risk theory for the strength evaluation of the C/C composite is applicable to design method and C/C composite is expected to be used as reactor internals of HTGR. (author)

  18. Process design of press hardening with gradient material property influence

    International Nuclear Information System (INIS)

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-01-01

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  19. RF structure design of the China Material Irradiation Facility RFQ

    Science.gov (United States)

    Li, Chenxing; He, Yuan; Xu, Xianbo; Zhang, Zhouli; Wang, Fengfeng; Dou, Weiping; Wang, Zhijun; Wang, Tieshan

    2017-10-01

    The radio frequency structure design of the radio frequency quadrupole (RFQ) for the front end of China Material Irradiation Facility (CMIF), which is an accelerator based neutron irradiation facility for fusion reactor material qualification, has been completed. The RFQ is specified to accelerate 10 mA continuous deuteron beams from the energies of 20 keV/u to 1.5 MeV/u within the vane length of 5250 mm. The working frequency of the RFQ is selected to 162.5 MHz and the inter-vane voltage is set to 65 kV. Four-vane cavity type is selected and the cavity structure is designed drawing on the experience of China Initiative Accelerator Driven System (CIADS) Injector II RFQ. In order to reduce the azimuthal asymmetry of the field caused from errors in fabrication and assembly, a frequency separation between the working mode and its nearest dipole mode is reached to 17.66 MHz by utilizing 20 pairs of π-mode stabilizing loops (PISLs) distributed along the longitudinal direction with equal intervals. For the purpose of tuning, 100 slug tuners were introduced to compensate the errors caused by machining and assembly. In order to obtain a homogeneous electrical field distribution along cavity, vane cutbacks are introduced and output endplate is modified. Multi-physics study of the cavity with radio frequency power and water cooling is performed to obtain the water temperature tuning coefficients. Through comparing to the worldwide CW RFQs, it is indicated that the power density of the designed structure is moderate for operation under continuous wave (CW) mode.

  20. Insights into Inverse Materials Design from Phase Transitions in Shape Space

    Science.gov (United States)

    Cersonsky, Rose; van Anders, Greg; Dodd, Paul M.; Glotzer, Sharon C.

    In designing new materials for synthesis, the inverse materials design approach posits that, given a structure, we can predict a building block optimized for self- assembly. How does that building block change as pressure is varied to maintain the same crystal structure? We address this question for entropically stabilized colloidal crystals by working in a generalized statistical thermodynamic ensemble where an alchemical potential variable is fixed and its conjugate variable, particle shape, is allowed to fluctuate. We show that there are multiple regions of shape behavior and phase transitions in shape space between these regions. Furthermore, while past literature has looked towards packing arguments for proposing shape-filling candidate building blocks for structure formation, we show that even at very high pressures, a structure will attain lowest free energy by modifying these space-filling shapes. U.S. Army Research Office under Grant Award No. W911NF-10-1-0518, Emerging Frontiers in Research and Innovation Award EFRI-1240264, National Science Foundation Grant Number ACI- 1053575, XSEDE award DMR 140129, Rackham Merit Fellowship Program.

  1. STRUCTURAL DESIGN CRITERIA FOR TARGET/BLANKET SYSTEM COMPONENT MATERIALS FOR THE ACCELERATOR PRODUCTION OF TRITIUM PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    W. JOHNSON; R. RYDER; P. RITTENHOUSE

    2001-01-01

    The design of target/blanket system components for the Accelerator Production of Tritium (APT) plant is dependent on the development of materials properties data specified by the designer. These data are needed to verify that component designs are adequate. The adequacy of the data will be related to safety, performance, and economic considerations, and to other requirements that may be deemed necessary by customers and regulatory bodies. The data required may already be in existence, as in the open technical literature, or may need to be generated, as is often the case for the design of new systems operating under relatively unique conditions. The designers' starting point for design data needs is generally some form of design criteria used in conjunction with a specified set of loading conditions and associated performance requirements. Most criteria are aimed at verifying the structural adequacy of the component, and often take the form of national or international standards such as the ASME Boiler and Pressure Vessel Code (ASME B and PV Code) or the French Nuclear Structural Requirements (RCC-MR). Whether or not there are specific design data needs associated with the use of these design criteria will largely depend on the uniqueness of the conditions of operation of the component. A component designed in accordance with the ASME B and PV Code, where no unusual environmental conditions exist, will utilize well-documented, statistically-evaluated developed in conjunction with the Code, and will not be likely to have any design data needs. On the other hand, a component to be designed to operate under unique APT conditions, is likely to have significant design data needs. Such a component is also likely to require special design criteria for verification of its structural adequacy, specifically accounting for changes in materials properties which may occur during exposure in the service environment. In such a situation it is common for the design criteria

  2. Selected topics in special nuclear materials safeguard system design

    International Nuclear Information System (INIS)

    King, L.L.; Thatcher, C.D.; Clarke, J.D.; Rodriguez, M.P.

    1991-01-01

    During the past two decades the improvements in circuit integration have given rise to many new applications in digital processing technology by continuously reducing the unit cost of processing power. Along with this increase in processing power a corresponding decrease in circuit volume has been achieved. Progress has been so swift that new classes of applications become feasible every 2 or 3 years. This is especially true in the application of proven new technology to special nuclear materials (SNM) safeguard systems. Several areas of application were investigated in establishing the performance requirements for the SNM safeguard system. These included the improvements in material control and accountability and surveillance by using multiple sensors to continuously monitor SNM inventory within the selected value(s); establishing a system architecture to provide capabilities needed for present and future performance requirements; and limiting operating manpower exposure to radiation. This paper describes two selected topics in the application of state-of-the-art, well-proven technology to SNM safeguard system design

  3. 78 FR 73097 - Ocean Dumping; Sabine-Neches Waterway (SNWW) Ocean Dredged Material Disposal Site Designation

    Science.gov (United States)

    2013-12-05

    ...: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: The EPA today designates four new Ocean... suitable dredged material generated from new work (construction) and future maintenance dredging from the... dredged material generated from new work (construction) and future maintenance dredging along the SNWW...

  4. Breeding blanket design for ITER and prototype (DEMO) fusion reactors and breeding materials issues

    Energy Technology Data Exchange (ETDEWEB)

    Takatsu, H; Enoeda, M [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1998-03-01

    Current status of the designs of the ITER breeding blanket and DEMO blankets is introduced placing emphasis on the breeding materials selection and related issues. The former design is based on the up-to-date design activities, as of October 1997, being performed jointly by Joint Central Team (JCT) and Home Teams (HT`s), while the latter is based on the DEMO blanket test module designs being proposed by each Party at the TBWG (Test Blanket Working Group) meetings. (J.P.N.)

  5. Design of intense neutron source for fusion material study and the role of universities

    International Nuclear Information System (INIS)

    Ishino, Shiori

    1993-01-01

    Need and requirement for the intense neutron source for fusion materials study have been discussed for many years. Recently, international climate has been becoming gradually maturing to consider this problem more seriously because of the recognition of crucial importance of solving materials problems for fusion energy development. The present symposium was designed to discuss the problems associated with the intense neutron source for material irradiation studies which will have a potential for the National Institute for Fusion Science to become one of the important future research areas. The symposium comprises five sessions; first, the role of materials research in fusion development strategies was discussed followed by a brief summary of current IFMIF (International Fusion Materials Irradiation Facility) activity. Despite the pressing need for intense fusion neutron source, currently available neutron sources are reactor or accelerator based sources of which FFTF and LASREF were discussed. Then, various concepts of intense neutron source candidates were presented including ESNIT, which are currently under design by JAERI. In the fourth session, discussions were made on the study of materials with the intense neutron source from the viewpoint of materials scientists and engineers as the user of the facility. This is followed by discussions on the role of universities from the two stand points, namely, fusion irradiation studies and fusion materials development. Finally summary discussions were made by the participants, indicating important role fundamental studies in universities for the full utilization of irradiation data and the need of pure 14 MeV neutron source for fundamental studies together with the intense surrogate neutron sources. (author)

  6. Computer-Aided Design of Materials for use under High Temperature Operating Condition

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopal, K. R.; Rao, I. J.

    2010-01-31

    The procedures in place for producing materials in order to optimize their performance with respect to creep characteristics, oxidation resistance, elevation of melting point, thermal and electrical conductivity and other thermal and electrical properties are essentially trial and error experimentation that tend to be tremendously time consuming and expensive. A computational approach has been developed that can replace the trial and error procedures in order that one can efficiently design and engineer materials based on the application in question can lead to enhanced performance of the material, significant decrease in costs and cut down the time necessary to produce such materials. The work has relevance to the design and manufacture of turbine blades operating at high operating temperature, development of armor and missiles heads; corrosion resistant tanks and containers, better conductors of electricity, and the numerous other applications that are envisaged for specially structured nanocrystalline solids. A robust thermodynamic framework is developed within which the computational approach is developed. The procedure takes into account microstructural features such as the dislocation density, lattice mismatch, stacking faults, volume fractions of inclusions, interfacial area, etc. A robust model for single crystal superalloys that takes into account the microstructure of the alloy within the context of a continuum model is developed. Having developed the model, we then implement in a computational scheme using the software ABAQUS/STANDARD. The results of the simulation are compared against experimental data in realistic geometries.

  7. Comparative study of attachment relationships in young children with symptoms of externalizing disorders: Attention-deficit hyperactivity disorder, oppositional defiant disorder, and conduct disorder and normal children

    Directory of Open Access Journals (Sweden)

    Solmaz Najafi Shoar

    2016-07-01

    Full Text Available This study aimed to compare the relationship of attachment between children with externalizing disorder (ADHD and less conflict and conduct disorder was performed with normal children. And the correlation was causalcomparative research design. The study population included all male students in Year 94 was 12.7 years in Tabriz To this aim, and to a multi-stage random sampling method, a sample of 200 (150 patients with symptoms and 50 normal KCAQ people were selected and CSI-4 was performed on them. The data were analyzed using ANOVA. The results showed that children with externalizing disorders and normal children in terms of attachment there is a significant difference (P <0/005. So that children with attention disorders and children with the disorder more or less active and less conflict in relationships have insecure attachment styles. Another finding of the study showed that children with conduct disorder, avoidant, ambivalent insecure attachment relationships are the common children are secure attachment relationships. Thus, the results of this study have practical implications in clinical areas to the extent that the design of such attachment-based interventions are necessary.

  8. Design Efficient and Ultralong Pure Organic Room-Temperature Phosphorescent Materials by Structural Isomerism.

    Science.gov (United States)

    Xiong, Yu; Zhao, Zheng; Zhao, Wei Jun; Ma, Hui Li; Peng, Qian; He, Zi Kai; Zhang, Xue Peng; Chen, Yun Cong; He, Xue Wen; Lam, Jacky; Tang, Ben Zhong

    2018-05-08

    Pure organic materials with ultralong room temperature phosphorescence (RTP) are attractive alternatives to inorganic phosphors. However, without heavy atoms and carbonyl or heteroatomic groups, they generally show inefficient intersystem crossing (ISC) due to the weak spin-orbit coupling (SOC). Many efforts have been made to enhance SOC but examples in realizing both efficient and ultralong RTP have been limited. Here we present a novel design principle based on the realization of small energy gap between the lowest singlet and triplet states (ΔEST) and pure ππ* configuration of the lowest triplet state (T1) via structural isomerism to obtain efficient and ultralong RTP materials. The meta-isomer of carbazole-substituted methyl benzoate exhibits an ultralong lifetime of 795.0 ms with a quantum yield of 2.1%, whose performance is among the best RTP materials reported so far. Study on the structure-property relationship demonstrates that the varied steric and conjugation effects imposed by ester substituent at different positions are responsible for the small ΔEST and pure ππ* configuration of T1. This rational design will open a new avenue for exploring novel pure organic RTP materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Covalent Organic Frameworks: From Materials Design to Biomedical Application

    Directory of Open Access Journals (Sweden)

    Fuli Zhao

    2017-12-01

    Full Text Available Covalent organic frameworks (COFs are newly emerged crystalline porous polymers with well-defined skeletons and nanopores mainly consisted of light-weight elements (H, B, C, N and O linked by dynamic covalent bonds. Compared with conventional materials, COFs possess some unique and attractive features, such as large surface area, pre-designable pore geometry, excellent crystallinity, inherent adaptability and high flexibility in structural and functional design, thus exhibiting great potential for various applications. Especially, their large surface area and tunable porosity and π conjugation with unique photoelectric properties will enable COFs to serve as a promising platform for drug delivery, bioimaging, biosensing and theranostic applications. In this review, we trace the evolution of COFs in terms of linkages and highlight the important issues on synthetic method, structural design, morphological control and functionalization. And then we summarize the recent advances of COFs in the biomedical and pharmaceutical sectors and conclude with a discussion of the challenges and opportunities of COFs for biomedical purposes. Although currently still at its infancy stage, COFs as an innovative source have paved a new way to meet future challenges in human healthcare and disease theranostic.

  10. Design-based modeling of magnetically actuated soft diaphragm materials

    Science.gov (United States)

    Jayaneththi, V. R.; Aw, K. C.; McDaid, A. J.

    2018-04-01

    Magnetic polymer composites (MPC) have shown promise for emerging biomedical applications such as lab-on-a-chip and implantable drug delivery. These soft material actuators are capable of fast response, large deformation and wireless actuation. Existing MPC modeling approaches are computationally expensive and unsuitable for rapid design prototyping and real-time control applications. This paper proposes a macro-scale 1-DOF model capable of predicting force and displacement of an MPC diaphragm actuator. Model validation confirmed both blocked force and displacement can be accurately predicted in a variety of working conditions i.e. different magnetic field strengths, static/dynamic fields, and gap distances. The contribution of this work includes a comprehensive experimental investigation of a macro-scale diaphragm actuator; the derivation and validation of a new phenomenological model to describe MPC actuation; and insights into the proposed model’s design-based functionality i.e. scalability and generalizability in terms of magnetic filler concentration and diaphragm diameter. Due to the lumped element modeling approach, the proposed model can also be adapted to alternative actuator configurations, and thus presents a useful tool for design, control and simulation of novel MPC applications.

  11. Exascale Co-Design Center for Materials in Extreme Environments (ExMatEx) Annual Report - Year 2

    Energy Technology Data Exchange (ETDEWEB)

    Germann, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Richards, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McPherson, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Belak, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-11-25

    All activities of the Exascale Co-design Center for Materials in Extreme Environments (Ex- MatEx) are focused on the two ultimate goals of the project: (1) demonstrating and delivering a prototype scale-bridging materials science application based upon adaptive physics refinement, and (2) identifying the requirements for the exascale ecosystem that are necessary to perform computational materials science simulations (both single- and multi-scale). During the first year of ExMatEx, our focus was on establishing how we do computational materials science, by developing an initial suite of flexible proxy applications. These “proxy apps” are the primary vehicle for the co-design process, involving assessments and tradeoff evaluations both within the ExMatEx team, and with the entire exascale ecosystem. These interactions have formed the basis of our second year activities. The set of artifacts from these co-design interactions are the lessons learned, that are used to re-express the applications and algorithms within the context of emerging architectures, programming models, and runtime systems.

  12. Critical Phenomena of the Disorder Driven Localization-Delocalization Transition

    International Nuclear Information System (INIS)

    Marc Ruehlaender

    2001-01-01

    Metal-to-insulator transitions are generally linked to two phenomena: electron-electron correlations and disorder. Although real systems are usually responding to a mixture of both, they can be classified as undergoing a Mott-transition, if the former process dominates, or an Anderson-transition, if the latter dominates. High-T c superconductors, e.g., are a candidate for the first class. Materials in which disorder drives the metal-to-insulator transition include doped semiconductors and amorphous materials. After briefly reviewing the previous research on transport in disordered materials and the disorder-induced metal-to-insulator transition, a summary of the model and the methods used in subsequent chapters is given

  13. Friction Material Composites Materials Perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2012-01-01

    Friction Material Composites is the first of the five volumes which strongly educates and updates engineers and other professionals in braking industries, research and test labs. It explains besides the formulation of design processes and its complete manufacturing input. This book gives an idea of mechanisms of friction and how to control them by designing .The book is  useful for designers  of automotive, rail and aero industries for designing the brake systems effectively with the integration of friction material composite design which is critical. It clearly  emphasizes the driving  safety and how serious designers should  select the design input. The significance of friction material component like brake pad or a liner as an integral part of the brake system of vehicles is explained. AFM pictures at nanolevel illustrate broadly the explanations given.

  14. Requirements Identification Towards a Design of Adaptive ICTs for Supporting Bipolar Disorder Treatment in Different Healthcare Contexts

    Directory of Open Access Journals (Sweden)

    Emanuele Torri

    2015-10-01

    Full Text Available This paper presents patient and caregiver perspective on ICTs supporting bipolar disorder management in multinational healthcare provisioning contexts. The envisioned mHealth solutions should adopt general requirements that could be instantiated into different clinical settings. Engagement of users in designing new technologies for mental health is crucial to ensure empowerment and patient-centeredness of services. We performed focus groups to understand user needs, attitudes and experiences towards the supportive ICTs in two target regions where the expected solutions will operate. The survey offered valuable inputs for the construction of the clinical requirements used to produce a trans-national call for tender on mobile health solutions aimed at supporting bipolar disorders treatment among public purchasers in different European countries. The study was part of the NYMHPA-MD (Next Generation Mobile Platform for Health in Mental Disorders project, co-funded by the European Commission.

  15. Reduced cost design of liquid lithium target for international fusion material irradiation facility (IFMIF)

    International Nuclear Information System (INIS)

    Nakamura, Hiroo; Ida, Mizuho; Sugimoto, Masayoshi; Takeuchi, Hiroshi; Yutani, Toshiaki

    2001-01-01

    The International Fusion Materials Irradiation Facility (IFMIF) is being jointly planned to provide an accelerator-based D-Li neutron source to produce intense high energy neutrons (2 MW/m 2 ) up to 200 dpa and a sufficient irradiation volume (500 cm 3 ) for testing the candidate materials and components up to about a full lifetime of their anticipated use in ITER and DEMO. To realize such a condition, 40 MeV deuteron beam with a current of 250 mA is injected into high speed liquid lithium flow with a speed of 20 m/s. Following Conceptual Design Activity (1995-1998), a design study with focus on cost reduction without changing its original mission has been done in 1999. The following major changes to the CAD target design have been considered in the study and included in the new design: i) number of the Li target has been changed from 2 to 1, ii) spare of impurity traps of the Li loop was removed although the spare will be stored in a laboratory for quick exchange, iii) building volume was reduced via design changes in lithium loop length. This paper describes the reduced cost design of the lithium target system and recent status of Key Element Technology activities. (author)

  16. Design and Demonstration of a Material-Plasma Exposure Target Station for Neutron Irradiated Samples

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Juergen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Aaron, A. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bell, Gary L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burgess, Thomas W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ellis, Ronald James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giuliano, D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kiggans, James O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lessard, Timothy L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ohriner, Evan Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Perkins, Dale E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Varma, Venugopal Koikal [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-20

    Fusion energy is the most promising energy source for the future, and one of the most important problems to be solved progressing to a commercial fusion reactor is the identification of plasma-facing materials compatible with the extreme conditions in the fusion reactor environment. The development of plasma–material interaction (PMI) science and the technology of plasma-facing components are key elements in the development of the next step fusion device in the United States, the so-called Fusion Nuclear Science Facility (FNSF). All of these PMI issues and the uncertain impact of the 14-MeV neutron irradiation have been identified in numerous expert panel reports to the fusion community. The 2007 Greenwald report classifies reactor plasma-facing materials (PFCs) and materials as the only Tier 1 issues, requiring a “. . . major extrapolation from the current state of knowledge, need for qualitative improvements and substantial development for both the short and long term.” The Greenwald report goes on to list 19 gaps in understanding and performance related to the plasma–material interface for the technology facilities needed for DEMO-oriented R&D and DEMO itself. Of the 15 major gaps, six (G7, G9, G10, G12, G13) can possibly be addressed with ORNL’s proposal of an advanced Material Plasma Exposure eXperiment. Establishing this mid-scale plasma materials test facility at ORNL is a key element in ORNL’s strategy to secure a leadership role for decades of fusion R&D. That is to say, our end goal is to bring the “signature facility” FNSF home to ORNL. This project is related to the pre-conceptual design of an innovative target station for a future Material–Plasma Exposure eXperiment (MPEX). The target station will be designed to expose candidate fusion reactor plasma-facing materials and components (PFMs and PFCs) to conditions anticipated in fusion reactors, where PFCs will be exposed to dense high-temperature hydrogen plasmas providing steady

  17. Radiological and clinical characterization of the lysosomal storage disorders: non-lipid disorders.

    Science.gov (United States)

    Parker, E I; Xing, M; Moreno-De-Luca, A; Harmouche, E; Terk, M R

    2014-01-01

    Lysosomal storage diseases (LSDs) are a large group of genetic metabolic disorders that result in the accumulation of abnormal material, such as mucopolysaccharides, glycoproteins, amino acids and lipids, within cells. Since many LSDs manifest during infancy or early childhood, with potentially devastating consequences if left untreated, timely identification is imperative to prevent irreversible damage and early death. In this review, the key imaging features of the non-lipid or extralipid LSDs are examined and correlated with salient clinical manifestations and genetic information. Disorders are stratified based on the type of excess material causing tissue or organ dysfunction, with descriptions of the mucopolysaccharidoses, mucolipidoses, alpha-mannosidosis, glycogen storage disorder II and cystinosis. In addition, similarities and differences in radiological findings between each of these LSDs are highlighted to facilitate further recognition. Given the rare and extensive nature of the LSDs, mastery of their multiple clinical and radiological traits may seem challenging. However, an understanding of the distinguishing imaging characteristics of LSDs and their clinical correlates may allow radiologists to play a key role in the early diagnosis of these progressive and potentially fatal disorders.

  18. The influence of actuator materials and nozzle designs on electrostatic charge of pressurised metered dose inhaler (pMDI) formulations.

    Science.gov (United States)

    Chen, Yang; Young, Paul M; Fletcher, David F; Chan, Hak Kim; Long, Edward; Lewis, David; Church, Tanya; Traini, Daniela

    2014-05-01

    To investigate the influence of different actuator materials and nozzle designs on the electrostatic charge properties of a series of solution metered dose inhaler (pMDI) aerosols. Actuators were manufactured with flat and cone nozzle designs using five different materials from the triboelectric series (Nylon, Polyethylene terephthalate, Polyethylene-High density, Polypropylene copolymer and Polytetrafluoroethylene). The electrostatic charge profiles of pMDI containing beclomethasone dipropionate (BDP) as model drug in HFA-134a propellant, with different concentrations of ethanol were studied. Electrostatic measurements were taken using a modified electrical low-pressure impactor (ELPI) and the deposited drug mass assayed chemically using HPLC. The charge profiles of HFA 134a alone have shown strong electronegativity with all actuator materials and nozzle designs, at an average of -1531.34 pC ± 377.34. The presence of co-solvent ethanol significantly reduced the negative charge magnitude. BDP reduced the suppressing effect of ethanol on the negative charging of the propellant. For all tested formulations, the flat nozzle design showed no significant differences in net charge between different actuator materials, whereas the charge profiles of cone designs followed the triboelectric series. The electrostatic charging profiles from a solution pMDI containing BDP and ethanol can be significantly influenced by the actuator material, nozzle design and formulation components. Ethanol concentration appears to have the most significant impact. Furthermore, BDP interactions with ethanol and HFA have an influence on the electrostatic charge of aerosols. By choosing different combinations of actuator materials and orifice design, the fine particle fractions of formulations can be altered.

  19. Differentiating Children with Attention-Deficit/Hyperactivity Disorder, Conduct Disorder, Learning Disabilities and Autistic Spectrum Disorders by Means of Their Motor Behavior Characteristics

    Science.gov (United States)

    Efstratopoulou, Maria; Janssen, Rianne; Simons, Johan

    2012-01-01

    The study was designed to investigate the discriminant validity of the Motor Behavior Checklist (MBC) for distinguishing four group of children independently classified with Attention-Deficit/Hyperactivity Disorder, (ADHD; N = 22), Conduct Disorder (CD; N = 17), Learning Disabilities (LD; N = 24) and Autistic Spectrum Disorders (ASD; N = 20).…

  20. Solid state photochemistry. Subpanel A-2(a): Design of molecular precursors for electronic materials

    Energy Technology Data Exchange (ETDEWEB)

    Wells, R.L. [Duke Univ., Durham, NC (United States)

    1996-09-01

    Recent achievements of synthetic chemistry in the field of electronic materials are presented in three categories; viz, precursor design for improved processing, new chemistry for selective growth, and new growth techniques. This is followed by a discussion of challenges and opportunities in two general areas designated as composition and structure, and growth and processing.

  1. A review of materials for spectral design coatings in signature management applications

    Science.gov (United States)

    Andersson, Kent E.; Škerlind, Christina

    2014-10-01

    The current focus in Swedish policy towards national security and high-end technical systems, together with a rapid development in multispectral sensor technology, adds to the utility of developing advanced materials for spectral design in signature management applications. A literature study was performed probing research databases for advancements. Qualitative text analysis was performed using a six-indicator instrument: spectrally selective reflectance; low gloss; low degree of polarization; low infrared emissivity; non-destructive properties in radar and in general controllability of optical properties. Trends are identified and the most interesting materials and coating designs are presented with relevant performance metrics. They are sorted into categories in the order of increasing complexity: pigments and paints, one-dimensional structures, multidimensional structures (including photonic crystals), and lastly biomimic and metamaterials. The military utility of the coatings is assessed qualitatively. The need for developing a framework for assessing the military utility of incrementally increasing the performance of spectrally selective coatings is identified.

  2. Technical Meeting on Liquid Metal Reactor Concepts: Core Design and Structural Materials. Presentations

    International Nuclear Information System (INIS)

    2013-01-01

    The objective of the Technical Meeting is to present and discuss innovative liquid metal fast reactor (LMFR) core designs with special focus on the choice, development, testing and qualification of advanced reactor core structural materials

  3. Material Agency In User-Centred Design Practices: High School Students Improvising (with) Smart Sensor Prototypes

    NARCIS (Netherlands)

    Sauer, S.

    2015-01-01

    This paper investigates (digital) materiality through an analysis of the "sociomaterial configuration" (Orlikowski 2009) of the participatory design project SensorLab (2010). In SensorLab, users were enrolled as designers: a group of high school students developed and tested smart pollution-sensing

  4. Material Agency In User-Centred Design Practices: High School Students Improvising (with) Smart Sensor Prototypes

    NARCIS (Netherlands)

    Sauer, S.C.

    2015-01-01

    This paper investigates (digital) materiality through an analysis of the “sociomaterial configuration” (Orlikowski 2009) of the participatory design project SensorLab (2010). In SensorLab, users were enrolled as designers: a group of high school students developed and tested smart pollution-sensing

  5. Materials data base and design equations for the UCLA solid breeder blanket

    International Nuclear Information System (INIS)

    Sharafat, S.; Amodeo, R.; Ghoniem, N.M.

    1986-01-01

    The need for a complete and coherent material data base for fusion reactor systems has been an important issue for some time now. Since the choices for materials used in fusion reactors are becoming more apparent, it is important to be able to quickly access this data to facilitate reactor design. The philosophy of a data base is one of expansion and modification. This will lead to a constantly growing collection of most recently acquired information. Based on this philosophy special care has been given to the structure, the accessibility and ease of modification. The data base is developed primarily for use on Personal Computers (PC's). In Section 10.2. materials and properties investigated for this blanket study are listed. Section 10.3. is a list of phenomenological equations and mathematical fits for all materials and properties considered. Section 10.4. describes the authors efforts to develop a swelling equations based on the few experimental data points available for breeder materials. In Section 10.5. the sintering phenomena for ceramics is investigated

  6. Safety design of the international fusion materials irradiation facility (IFMIF)

    International Nuclear Information System (INIS)

    Konishi, Satoshi; Yamaki, Daiju; Katsuta, Hiroji; Moeslang, Anton; Jameson, R.A.; Martone, Marcello; Shannon, T.E.

    1997-11-01

    In the Conceptual Design Activity of the IFMIF, major subsystems, as well as the entire facility is carefully designed to satisfy the safety requirements for any possible construction sites. Each subsystem is qualitatively analyzed to identify possible hazards to the workers, public and environments using Failure Mode and Effect Analysis (FMEA). The results are reflected in the design and operation procedure. Shielding of radiation, particularly neutron around the test cell is one of the most important issue in normal operation. Radiation due to beam halo and activation is a hazard for operation personnel in the accelerator system. For the maintenance, remote handling technology is designed to be applied in various facilities of the IFMIF. Lithium loop and target system hold the majority of the radioactive material in the facility. Tritium and beryllium-7 are generated by the nuclear reaction during operation and thus needed to be removed continuously. They are also the potential hazards of airborne source in off-normal events. Minimization of inventory, separation and immobilization, and multiple confinement are considered in the design. Generation of radioactive waste is anticipated to be minor, but waste treatment systems for gas, liquid and solid wastes are designed to minimize the environmental impact. Lithium leak followed by a fire is a major concern, and extensive prevention plan is made in the target design. One of the design option considered is composed of; primary enclosure of the lithium loop, secondary containment filled with positive pressure argon, and an air tight lithium cell made of concrete with a steel lining. This study will report some technical issues considered in the design of IFMIF. It was concluded that the IFMIF can be designed and constructed to meet or exceed current safely standards for workers, public and the environment with existing technology and reasonable construction cost. (J.P.N.)

  7. Materials compatibility considerations for a fusion-fission hybrid reactor design

    International Nuclear Information System (INIS)

    DeVan, J.H.; Tortorelli, P.F.

    1983-01-01

    The Tandem Mirror Hybrid Reactor is a fusion reactor concept that incorporates a fission-suppressed breeding blanket for the production of 233 U to be used in conventional fission power reactors. The present paper reports on compatibility considerations related to the blanket design. These considerations include solid-solid interactions and liquid metal corrosion. Potential problems are discussed relative to the reference blanket operating temperature (490 0 C) and the recycling time of breeding materials (<1 year)

  8. Material properties of Grade 91 steel at elevated temperature and their comparison with a design code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong Yeon; Kim, Woo Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Han Sang; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of)

    2013-10-15

    In this study, the material properties of tensile strength, creep properties, and creep crack growth model for Gr.91 steel at elevated temperature were obtained from material tests at KAERI, and the test data were compared with those of the French elevated temperature design code, RCC-MRx. The conservatism of the material properties in the French design code is highlighted. Mod.9Cr-1Mo (ASME Grade 91; Gr.91) steel is widely adopted as candidate material for Generation IV nuclear systems as well as for advanced thermal plants. In a Gen IV sodium-cooled fast reactor of the PGSFR (Prototype Gen IV Sodium-cooled Fast Reactor) being developed by KAERI (Korea Atomic Energy Research Institute), Gr.91 steel is selected as the material for the steam generator, secondary piping, and decay heat exchangers. However, as this material has a relatively shorter history of usage in an actual plant than austenitic stainless steel, there are still many issues to be addressed including the long-term creep rupture life extrapolation and ratcheting behavior with cyclic softening characteristics.

  9. 75 FR 54497 - Ocean Dumping; Guam Ocean Dredged Material Disposal Site Designation

    Science.gov (United States)

    2010-09-08

    .... SUMMARY: The EPA is designating the Guam Deep Ocean Disposal Site (G- DODS) as a permanent ocean dredged... administration of ocean disposal permits; (2) development and maintenance of a site monitoring program; (3... include: (1) Regulating quantities and types of material to be disposed, including the time, rates, and...

  10. Shield design for the Fusion Materials Irradiation Test facility

    International Nuclear Information System (INIS)

    Carter, L.L.; Mann, F.M.; Morford, R.J.; Wilcox, A.D.; Johnson, D.L.; Huang, S.T.

    1983-03-01

    The shield design for the Fusion Materials Irradiation Test facility is based upon one-, two- and three-dimensional transport calculations with experimental measurements utilized to refine the nuclear data including the neutron cross sections from 20 to 50 MeV and the gamma ray and neutron source terms. The high energy neutrons and deuterons produce activation products from the numerous reactions that are kinematically allowed. The analyses for both beam-on and beam-off (from the activation products) conditions have required extensive nuclear data libraries and the utilization of Monte Carlo, discrete ordinates, point kernel and auxiliary computer codes

  11. Explicit memory in anxiety disorders

    NARCIS (Netherlands)

    Becker, E.S.; Roth, W.T.; Andrich, M.; Margraf, J.

    1999-01-01

    Two experiments were conducted to study selective memory bias favoring anxiety-relevant materials in patients with anxiety disorders. In the 1st experiment, 32 patients with generalized anxiety disorder (GAD), 30 with social phobia (speaking anxiety), and 31 control participants incidentally learned

  12. Teacher design knowledge and beliefs for technology enhanced learning materials in early literacy: Four portraits

    NARCIS (Netherlands)

    Boschman, Ferry; McKenney, Susan; Pieters, Jules; Voogt, Joke

    2016-01-01

    Teacher engagement in the design of technology-rich learning material is beneficial to teacher learning and may create a sense of ownership, both of which are conducive to bringing about innovation with technology. During collaborative design, teachers draw on various types of knowledge and

  13. Teacher design knowledge and beliefs for technology enhanced learning materials in early literacy: Four portraits

    NARCIS (Netherlands)

    Boschman, F.; McKenney, S.; Pieters, J.M.; Voogt, J.

    2015-01-01

    Teacher engagement in the design of technology-rich learning material is beneficial to teacher learning and may create a sense of ownership, both of which are conducive to bringing about innovation with technology. During collaborative design, teachers draw on various types of knowledge and beliefs:

  14. Nonlinear machine learning in soft materials engineering and design

    Science.gov (United States)

    Ferguson, Andrew

    The inherently many-body nature of molecular folding and colloidal self-assembly makes it challenging to identify the underlying collective mechanisms and pathways governing system behavior, and has hindered rational design of soft materials with desired structure and function. Fundamentally, there exists a predictive gulf between the architecture and chemistry of individual molecules or colloids and the collective many-body thermodynamics and kinetics. Integrating machine learning techniques with statistical thermodynamics provides a means to bridge this divide and identify emergent folding pathways and self-assembly mechanisms from computer simulations or experimental particle tracking data. We will survey a few of our applications of this framework that illustrate the value of nonlinear machine learning in understanding and engineering soft materials: the non-equilibrium self-assembly of Janus colloids into pinwheels, clusters, and archipelagos; engineering reconfigurable ''digital colloids'' as a novel high-density information storage substrate; probing hierarchically self-assembling onjugated asphaltenes in crude oil; and determining macromolecular folding funnels from measurements of single experimental observables. We close with an outlook on the future of machine learning in soft materials engineering, and share some personal perspectives on working at this disciplinary intersection. We acknowledge support for this work from a National Science Foundation CAREER Award (Grant No. DMR-1350008) and the Donors of the American Chemical Society Petroleum Research Fund (ACS PRF #54240-DNI6).

  15. Circuit design on plastic foils

    CERN Document Server

    Raiteri, Daniele; Roermund, Arthur H M

    2015-01-01

    This book illustrates a variety of circuit designs on plastic foils and provides all the information needed to undertake successful designs in large-area electronics.  The authors demonstrate architectural, circuit, layout, and device solutions and explain the reasons and the creative process behind each. Readers will learn how to keep under control large-area technologies and achieve robust, reliable circuit designs that can face the challenges imposed by low-cost low-temperature high-throughput manufacturing.   • Discusses implications of problems associated with large-area electronics and compares them to standard silicon; • Provides the basis for understanding physics and modeling of disordered material; • Includes guidelines to quickly setup the basic CAD tools enabling efficient and reliable designs; • Illustrates practical solutions to cope with hard/soft faults, variability, mismatch, aging and bias stress at architecture, circuit, layout, and device levels.

  16. Bamboo as sustainable material for furniture design in disaster and remote areas in Indonesia

    Science.gov (United States)

    Sofiana, Yunida; Wahidiyat, Mita; Caroline, Octaviana Sylvia

    2018-03-01

    Bamboo has been known as a sustainable material for architecture, but only used on a small scale for furniture. However, even though it a sustainable resource, many people considered Bamboo as outcast material for furniture because of its appearance. Evidently, the use of bamboo is often used to make simple tools with similar traditional designs for everyday life. The tradition of using bamboo was not further explored with respect to the ongoing development of creative design and function in the era of today’s modern technology. In retrospect to the above issues, this study is aimed to introduce the used of bamboo for material furniture in disaster and remote areas in Indonesia to increases their quality of life. It uses a research by a method of collecting data through surveys, literature review, interviews and training to determine the types of bamboo used for material furniture in disaster and remote territories. The results of this study is intended to show that the use of bamboo can be further developed into furniture for disaster and remote territory to create higher values of the products and increase the quality of life.

  17. Mix design and mechanical performance of geopolymer binder for sustainable construction and building material

    Science.gov (United States)

    Saeli, Manfredi; Novais, Rui M.; Seabra, Maria Paula; Labrincha, João A.

    2017-11-01

    Sustainability in construction is a major concern worldwide, due to the huge volume of materials and energy consumed by this sector. Associated supplementing industries (e.g. Portland cement production) constitute a significant source of CO2 emissions and global warming. Valorisation and reuse of industrial wastes and by-products make geopolymers a solid and sustainable via to be followed as a valid alternative to Portland cement. In this work the mix design of a green fly ash-based geopolymer is evaluated as an environmentally friendly construction material. In the pursuit of sustainability, wastes from a regional kraft pulp industry are exploited for the material processing. Furthermore, a simple, reproducible, and low-cost manufacture is used. The mix design is hence optimised in order to improve the desirable mechanical performance of the material intended for structural applications in construction. Tests indicate that geopolymers may efficiently substitute the ordinary Portland cement as a mortar/concrete binder. Furthermore, valorisation and reuse of wastes in geopolymers is a suboptimal way of gaining financial surplus for the involved industrial players, while contributes for the implementation of a desirable circular economy.

  18. Material gap membrane distillation: A new design for water vapor flux enhancement

    KAUST Repository

    Francis, Lijo

    2013-08-19

    A new module design for membrane distillation, namely material gap membrane distillation (MGMD), for seawater desalination has been proposed and successfully tested. It has been observed that employing appropriate materials between the membrane and the condensation plate in an air gap membrane distillation (AGMD) module enhanced the water vapor flux significantly. An increase in the water vapor flux of about 200-800% was observed by filling the gap with sand and DI water at various feed water temperatures. However, insulating materials such as polypropylene and polyurethane have no effect on the water vapor flux. The influence of material thickness and characteristics has also been investigated in this study. An increase in the water gap width from 9. mm to 13. mm increases the water vapor flux. An investigation on an AGMD and MGMD performance comparison, carried out using two different commercial membranes provided by different manufacturers, is also reported in this paper. © 2013 Elsevier B.V.

  19. Experimental validation of 3D printed material behaviors and their influence on the structural topology design

    Science.gov (United States)

    Yang, Kai Ke; Zhu, Ji Hong; Wang, Chuang; Jia, Dong Sheng; Song, Long Long; Zhang, Wei Hong

    2018-05-01

    The purpose of this paper is to investigate the structures achieved by topology optimization and their fabrications by 3D printing considering the particular features of material microstructures and macro mechanical performances. Combining Digital Image Correlation and Optical Microscope, this paper experimentally explored the anisotropies of stiffness and strength existing in the 3D printed polymer material using Stereolithography (SLA) and titanium material using Selective Laser Melting (SLM). The standard specimens and typical structures obtained by topology optimization were fabricated along different building directions. On the one hand, the experimental results of these SLA produced structures showed stable properties and obviously anisotropic rules in stiffness, ultimate strengths and places of fractures. Further structural designs were performed using topology optimization when the particular mechanical behaviors of SLA printed materials were considered, which resulted in better structural performances compared to the optimized designs using `ideal' isotropic material model. On the other hand, this paper tested the mechanical behaviors of SLM printed multiscale lattice structures which were fabricated using the same metal powder and the same machine. The structural stiffness values are generally similar while the strength behaviors show a difference, which are mainly due to the irregular surface quality of the tiny structural branches of the lattice. The above evidences clearly show that the consideration of the particular behaviors of 3D printed materials is therefore indispensable for structural design and optimization in order to improve the structural performance and strengthen their practical significance.

  20. Experimental validation of 3D printed material behaviors and their influence on the structural topology design

    Science.gov (United States)

    Yang, Kai Ke; Zhu, Ji Hong; Wang, Chuang; Jia, Dong Sheng; Song, Long Long; Zhang, Wei Hong

    2018-02-01

    The purpose of this paper is to investigate the structures achieved by topology optimization and their fabrications by 3D printing considering the particular features of material microstructures and macro mechanical performances. Combining Digital Image Correlation and Optical Microscope, this paper experimentally explored the anisotropies of stiffness and strength existing in the 3D printed polymer material using Stereolithography (SLA) and titanium material using Selective Laser Melting (SLM). The standard specimens and typical structures obtained by topology optimization were fabricated along different building directions. On the one hand, the experimental results of these SLA produced structures showed stable properties and obviously anisotropic rules in stiffness, ultimate strengths and places of fractures. Further structural designs were performed using topology optimization when the particular mechanical behaviors of SLA printed materials were considered, which resulted in better structural performances compared to the optimized designs using `ideal' isotropic material model. On the other hand, this paper tested the mechanical behaviors of SLM printed multiscale lattice structures which were fabricated using the same metal powder and the same machine. The structural stiffness values are generally similar while the strength behaviors show a difference, which are mainly due to the irregular surface quality of the tiny structural branches of the lattice. The above evidences clearly show that the consideration of the particular behaviors of 3D printed materials is therefore indispensable for structural design and optimization in order to improve the structural performance and strengthen their practical significance.