WorldWideScience

Sample records for design requirements target

  1. Safety and environmental requirements and design targets for TIBER-II

    International Nuclear Information System (INIS)

    Piet, S.J.

    1987-09-01

    A consistent set of safety and environmental requirements and design targets was proposed and adopted for the TIBER-II (Tokamak Ignition/Burn Experimental Reactor) design effort. TIBER-II is the most recent US version of a fusion experimental test reactor (ETR). These safety and environmental design targets were one contribution of the Fusion Safety Program in the TIBER-II design effort. The other contribution, safety analyses, is documented in the TIBER-II design report. The TIBER-II approach, described here, concentrated on logical development of, first, a complete and consistent set of safety and environmental requirements that are likely appropriate for an ETR, and, second, an initial set of design targets to guide TIBER-II. Because of limited time in the TIBER-II design effort, the iterative process only included one iteration - one set of targets and one design. Future ETR design efforts should therefore build on these design targets and the associated safety analyses. 29 refs., 5 figs., 3 tabs

  2. National Ignition Facility subsystem design requirements target positioning subsystem SSDR 1.8.2

    International Nuclear Information System (INIS)

    Pittenger, L.

    1996-01-01

    This Subsystem Design Requirement document is a development specification that establishes the performance, design, development and test requirements for the target positioner subsystem (WBS 1.8.2) of the NIF Target Experimental System (WBS 1.8)

  3. National Ignition Facility subsystem design requirements target area auxiliary subsystem SSDR 1.8.6

    International Nuclear Information System (INIS)

    Reitz, T.

    1996-01-01

    This Subsystem Design Requirement (SSDR) establishes the performance, design, development, and test requirements for the Target Area Auxiliary Subsystems (WBS 1.8.6), which is part of the NIF Target Experimental System (WBS 1.8). This document responds directly to the requirements detailed in NIF Target Experimental System SDR 003 document. Key elements of the Target Area Auxiliary Subsystems include: WBS 1.8.6.1 Local Utility Services; WBS 1.8.6.2 Cable Trays; WBS 1.8.6.3 Personnel, Safety, and Occupational Access; WBS 1.8.6.4 Assembly, Installation, and Maintenance Equipment; WBS 1.8.6.4.1 Target Chamber Service System; WBS 1.8.6.4.2 Target Bay Service Systems

  4. European DEMO divertor target: Operational requirements and material-design interface

    Directory of Open Access Journals (Sweden)

    J.H. You

    2016-12-01

    Full Text Available Recently, an integrated program of conceptual design activities for the European DEMO reactor was launched in the framework of the EUROfusion Consortium, where reliable power handling capability was identified as one of the most critical scientific as well as technological challenges for a DEMO reactor. The divertor is the key in-vessel plasma-facing component being in charge of power exhaust and removal of impurity particles. The DEMO divertor target will have to withstand extreme thermal loads where the local peak heat flux is expected to reach up to 20 MW/m2 during slow transient events in DEMO. To assure sufficient heat removal capability of the divertor target against normal and transient operational scenarios under expected cumulative neutron dose of up to 13 dpa is one of the fundamental engineering challenges imposed on target design. To develop the design of the DEMO divertor and related technologies, an R&D work package ‘Divertor’ has been set up in this consortium. The subproject ‘Target Development’ is devoted to the development of the conceptual design and the core technologies of the plasma-facing target. Devising and implementing novel structural heat sink materials (e.g. W/Cu composites to advanced target design concepts is one of the major objectives of this subproject. In this paper, the underlying design requirements imposed by the envisaged power exhaust goal and the prominent material-design interface issues are discussed. In addition, the candidate design concepts being currently considered are presented together with the related material issues. Finally, the first results achieved so far are presented.

  5. National Ignition Facility subsystem design requirements target diagnostics subsystem SSDR 1.8.3

    International Nuclear Information System (INIS)

    Lee, D.

    1996-01-01

    This SSDR establishes the performance, design, development and test requirements for the Target Experimental System's Diagnostic, WBS 1.8. 3. This includes the individual diagnostic components, the Target Diagnostic Data Acquisition System (Target DAS), the diagnostic vacuum system, the timing/fiducial system, and the EMI protection system

  6. Design of the FMIT lithium target

    International Nuclear Information System (INIS)

    Hassberger, J.A.; Annese, C.E.; Greenwell, R.K.; Ingham, J.G.; Miles, R.R.; Miller, W.C.

    1981-01-01

    Development of the liquid lithium target for the Fusion Materials Irradiation Test (FMIT) Facility is described. The target concept, major design goals and design requirements are presented. Progress made in the research and development areas leading to detailed design of the target is discussed. This progress, including experimental and analytic results, demonstrates that the FMIT target design is capable of meeting its major design goals and requirements

  7. Fusion target design

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1978-01-01

    Most detailed fusion target design is done by numerical simulation using large computers. Although numerical simulation is briefly discussed, this lecture deals primarily with the way in which basic physical arguments, driver technology considerations and economical power production requirements are used to guide and augment the simulations. Physics topics discussed include target energetics, preheat, stability and symmetry. A specific design example is discussed

  8. Design of the target area for the National Ignition Facility

    International Nuclear Information System (INIS)

    Foley, R.J.; Karpenko, V.P.; Adams, C.H.

    1997-01-01

    The preliminary design of the target area for the National Ignition Facility has been completed. The target area is required to meet a challenging set of engineering system design requirements and user needs. The target area must provide the appropriate conditions before, during, and after each shot. The repeated introduction of large amounts of laser energy into the chamber and subsequent target emissions represent new design challenges for ICF facility design. Prior to each shot, the target area must provide the required target illumination, target chamber vacuum, diagnostics, and optically stable structures. During the shot, the impact of the target emissions on the target chamber, diagnostics, and optical elements is minimized and the workers and public are protected from excessive prompt radiation doses. After the shot, residual radioactivation is managed to allow the required accessibility. Diagnostic data is retrieved, operations and maintenance activities are conducted, and the facility is ready for the next shot. The target area subsystems include the target chamber, target positioner, structural systems, target diagnostics, environmental systems, and the final optics assembly. The engineering design of the major elements of the target area requires a unique combination of precision engineering, structural analysis, opto-mechanical design, random vibration suppression, thermal stability, materials engineering, robotics, and optical cleanliness. The facility has been designed to conduct both x- ray driven targets and to be converted at a later date for direct drive experiments. The NIF has been configured to provide a wide range of experimental environments for the anticipated user groups of the facility. The design status of the major elements of the target area is described

  9. Model Penentuan Nilai Target Functional Requirement Berbasis Utilitas

    Directory of Open Access Journals (Sweden)

    Cucuk Nur Rosyidi

    2012-01-01

    Full Text Available In a product design and development process, a designer faces a problem to decide functional requirement (FR target values. That decision is made under a risk since it is conducted in the early design phase using incomplete information. Utility function can be used to reflect the decision maker attitude towards the risk in making such decision. In this research, we develop a utility-based model to determine FR target values using quadratic utility function and information from Quality Function Deployment (QFD. A pencil design is used as a numerical example using quadratic utility function for each FR. The model can be applied for balancing customer and designer interest in determining FR target values.

  10. Optical and mechanical design of beam-target coupling sensor

    International Nuclear Information System (INIS)

    Wang Liquan; Li Tian'en; Feng Bin; Xiang Yong; Li Keyu; Zhong Wei; Liu Guodong

    2012-01-01

    A sensor based on conjugate principle has been designed for matching the light beams and the target in inertial confinement fusion. It can avoid the direct illumination of the simulation collimating light on the target under test in targeting processes. This paper introduces the optical and mechanical design of the sensor, according to its design functions and working principle. The resolution of the optical images obtained in experiments reaches 6 μm and the beam-target matching accuracy is 8.8 μm. The sensor has been successfully applied to the Shenguang-Ⅲ facility. Statistical analyses of the four-hole CH target images derived with pinhole camera shows that the targeting accuracy of the facility is better than 25 μm, satisfying the design requirements. (authors)

  11. National Ignition Facility system design requirements conventional facilities SDR001

    International Nuclear Information System (INIS)

    Hands, J.

    1996-01-01

    This System Design Requirements (SDR) document specifies the functions to be performed and the minimum design requirements for the National Ignition Facility (NIF) site infrastructure and conventional facilities. These consist of the physical site and buildings necessary to house the laser, target chamber, target preparation areas, optics support and ancillary functions

  12. Muon-catalyzed fusion experiment target and detector system. Preliminary design report

    International Nuclear Information System (INIS)

    Jones, S.E.; Watts, K.D.; Caffrey, A.J.; Walter, J.B.

    1982-03-01

    We present detailed plans for the target and particle detector systems for the muon-catalyzed fusion experiment. Requirements imposed on the target vessel by experimental conditions and safety considerations are delineated. Preliminary designs for the target vessel capsule and secondary containment vessel have been developed which meet these requirements. In addition, the particle detection system is outlined, including associated fast electronics and on-line data acquisition. Computer programs developed to study the target and detector system designs are described

  13. Safety design requirements for safety systems and components of JSFR

    International Nuclear Information System (INIS)

    Kubo, Shigenobu; Shimakawa, Yoshio; Yamano, Hidemasa; Kotake, Shoji

    2011-01-01

    Safety design requirements for JSFR were summarized taking the development targets of the FaCT project and design feature of JSFR into account. The related safety principle and requirements for Monju, CRBRP, PRISM, SPX, LWRs, IAEA standards, goals of GIF, basic principle of INPRO etc. were also taken into account so that the safety design requirements can be a next-generation global standard. The development targets for safety and reliability are set based on those of FaCT, namely, ensuring safety and reliability equal to future LWR and related fuel cycle facilities. In order to achieve these targets, the defence-in-depth concept is used as the basic safety design principle. General features of the safety design requirements are 1) Achievement of higher reliability, 2) Achievement of higher inspectability and maintainability, 3) Introduction of passive safety features, 4) Reduction of operator action needs, 5) Design consideration against Beyond Design Basis Events, 6) In-Vessel Retention of degraded core materials, 7) Prevention and mitigation against sodium chemical reactions, and 8) Design against external events. The current specific requirements for each system and component are summarized taking the basic design concept of JSFR into account, which is an advanced loop-type large-output power plant with a mixed-oxide-fuelled core. (author)

  14. Requirements for design of accelerator, beam transport, and target in a study of thermonuclear reaction cross section

    Energy Technology Data Exchange (ETDEWEB)

    Itahashi, T; Takahisa, K; Fujiwara, M; Toki, H; Ejiri, H [Osaka Univ., Ibaraki (Japan). Research Center for Nuclear Physics; Ohsumi, H; Komori, M

    1997-03-01

    A compact accelerator with high current ion source, low energy beam transport elements and windowless gas target was designed to investigate the thermonuclear reaction cross section. The idea of this project focused on the cross section measurement of the fusion reaction data {sup 3}He+{sup 3}He-{sup 4}He+p+p at 25keV. The system will be installed in Otoh Cosmo Observatory (1270m.w.e.) to get rid of the huge cosmic and environmental background. It consists of NANOGUN ECR ion source, focusing elements made of permanent magnets window less {sup 3}He gas target and/or He{sup 3} plasma target and detector telescopes with low noise and low background. Requirements for these were discussed technically and various ideas were proposed. (author)

  15. LBNF 1.2 MW TARGET: CONCEPTUAL DESIGN & FABRICATION

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, Cory F. [Fermilab; Ammigan, K. [Fermilab; Anderson, K. [Fermilab; Hartsell, B. [Fermilab; Hurh, P. [Fermilab; Hylen, J. [Fermilab; Zwaska, R. [Fermilab

    2015-06-29

    Fermilab’s Long-Baseline Neutrino Facility (LBNF) will utilize a modified design based on the NuMI low energy target that is reconfigured to accommodate beam operation at 1.2 MW. Achieving this power with a graphite target material and ancillary systems originally rated for 400 kW requires several design changes and R&D efforts related to material bonding and electrical isolation. Target cooling, structural design, and fabrication techniques must address higher stresses and heat loads that will be present during 1.2 MW operation, as the assembly will be subject to cyclic loads and thermal expansion. Mitigations must be balanced against compromises in neutrino yield. Beam monitoring and subsystem instrumentation will be updated and added to ensure confidence in target positioning and monitoring. Remote connection to the target hall support structure must provide for the eventual upgrade to a 2.4 MW target design, without producing excessive radioactive waste or unreasonable exposure to technicians during reconfiguration. Current designs and assembly layouts will be presented, in addition to current findings on processes and possibilities for prototype and final assembly fabrication.

  16. LBNF 1.2 MW Target: Conceptual Design & Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, C. [Fermilab; Ammigan, K. [Fermilab; Anderson, K. [Fermilab; Hartsell, B. [Fermilab; Hurh, P. [Fermilab; Hylen, J. [Fermilab; Zwaska, R. [Fermilab

    2015-06-01

    Fermilab’s Long-Baseline Neutrino Facility (LBNF) will utilize a modified design based on the NuMI low energy target that is reconfigured to accommodate beam operation at 1.2 MW. Achieving this power with a graphite target material and ancillary systems originally rated for 400 kW requires several design changes and R&D efforts related to material bonding and electrical isolation. Target cooling, structural design, and fabrication techniques must address higher stresses and heat loads that will be present during 1.2 MW operation, as the assembly will be subject to cyclic loads and thermal expansion. Mitigations must be balanced against compromises in neutrino yield. Beam monitoring and subsystem instrumentation will be updated and added to ensure confidence in target positioning and monitoring. Remote connection to the target hall support structure must provide for the eventual upgrade to a 2.4 MW target design, without producing excessive radioactive waste or unreasonable exposure to technicians during reconfiguration. Current designs and assembly layouts will be presented, in addition to current findings on processes and possibilities for prototype and final assembly fabrication.

  17. Spallation neutron source target station design, development, and commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Haines, J.R., E-mail: hainesjr@ornl.gov; McManamy, T.J.; Gabriel, T.A.; Battle, R.E.; Chipley, K.K.; Crabtree, J.A.; Jacobs, L.L.; Lousteau, D.C.; Rennich, M.J.; Riemer, B.W.

    2014-11-11

    The spallation neutron source target station is designed to safely, reliably, and efficiently convert a 1 GeV beam of protons to a high flux of about 1 meV neutrons that are available at 24 neutron scattering instrument beam lines. Research and development findings, design requirements, design description, initial checkout testing, and results from early operation with beam are discussed for each of the primary target subsystems, including the mercury target, neutron moderators and reflector, surrounding vessels and shielding, utilities, remote handling equipment, and instrumentation and controls. Future plans for the mercury target development program are also briefly discussed.

  18. OMEGA polar-drive target designs

    International Nuclear Information System (INIS)

    Radha, P. B.; Marozas, J. A.; Marshall, F. J.; Shvydky, A.; Collins, T. J. B.; Goncharov, V. N.; McKenty, P. W.; Sangster, T. C.; Skupsky, S.; McCrory, R. L.; Meyerhofer, D. D.

    2012-01-01

    Low-adiabat polar-drive (PD) [Skupsky et al., Phys. Plasmas 11, 2763 (2004)] implosion designs for the OMEGA [Boehly et al., Opt. Commun. 133, 495 (1997)] laser are described. These designs for cryogenic deuterium–tritium and warm plastic shells use a temporal laser pulse shape with three pickets followed by a main pulse [Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010)]. The designs are at two different on-target laser intensities, with different in-flight aspect ratios (IFARs). These designs permit studies of implosion energetics and target performance closer to ignition-relevant intensities (∼7 × 10 14 W/cm 2 at the quarter-critical surface, where nonlocal heat conduction and laser–plasma interactions can play an important role) but at lower values of IFAR ∼ 22 or at lower intensity (∼3 × 10 14 W/cm 2 ) but at a higher IFAR (IFAR ∼ 32, where shell instability can play an important role). PD geometry requires repointing of laser beams to improve shell symmetry. The higher-intensity designs optimize target performance by repointing beams to a lesser extent, compensating for the reduced equatorial drive by increasing the energies of the repointed beams. They also use custom beam profiles that improve equatorial illumination at the expense of irradiation at higher latitudes. These latter designs will be studied when new phase plates for the OMEGA Laser System, corresponding to the custom beam profiles, are obtained.

  19. Optical design of adjustable light emitting diode for different lighting requirements

    International Nuclear Information System (INIS)

    Lu Jia-Ning; Yu Jie; Tong Yu-Zhen; Zhang Guo-Yi

    2012-01-01

    Light emitting diode (LED) sources have been widely used for illumination. Optical design, especially freedom compact lens design is necessary to make LED sources applied in lighting industry, such as large-range interior lighting and small-range condensed lighting. For different lighting requirements, the size of target planes should be variable. In our paper we provide a method to design freedom lens according to the energy conservation law and Snell law through establishing energy mapping between the luminous flux emitted by a Lambertian LED source and a certain area of the target plane. The algorithm of our design can easily change the radius of each circular target plane, which makes the size of the target plane adjustable. Ray-tracing software Tracepro is used to validate the illuminance maps and polar-distribution maps. We design lenses for different sizes of target planes to meet specific lighting requirements. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. National Ignition Facility subsystem design requirements laser and target area building (LTAB) SSDR 1.2.2.1

    International Nuclear Information System (INIS)

    Kempel, P.; Hands, J.

    1996-01-01

    This Subsystem Design Requirements (SSDR) document establishes the performance, design, and verification requirements for the conventional building systems and subsystems of the Laser and Target Area Building (LTAB), including those that house and support the operation of high-energy laser equipment and the operational flow of personnel and materials throughout the facility. This SSDR addresses the following subsystems associated with the LTAB: Building structural systems for the Target Bay, Switchyards, Diagnostic Building, Decontamination Area, Laser Bays, Capacitor Bays and Operations Support Area, and the necessary space associated with building-support equipment; Architectural building features associated with housing the space and with the operational cleanliness of the functional operation of the facilities; Heating, Ventilating, and Air Conditioning (HVAC) systems for maintaining a clean and thermally stable ambient environment within the facilities; Plumbing systems that provide potable water and sanitary facilities for the occupants, plus stormwater drainage for transporting rainwater; Fire Protection systems that guard against fire damage to the facilities and their contents; Material handling systems for transporting personnel and heavy materials within the building areas; Mechanical process piping systems for liquids and gases that provide cooling and other service to experimental laser equipment and components; Electrical power and grounding systems that provide service and standby power to building and experimental equipment, including lighting distribution and communications systems for the facilities; Instrumentation and control systems that ensure the safe operation of conventional facilities systems, such as those listed above. Detailed requirements for building subsystems that are not addressed in this document (such as specific sizes, locations, or capacities) are included in detail-level NIP Project Interface Control Documents (ICDS)

  1. Present status of the conceptual design of IFMIF target facility

    International Nuclear Information System (INIS)

    Katsuta, H.; Kato, Y.; Konishi, S.; Miyauchi, Y.; Smith, D.; Hua, T.; Green, L.; Benamati, G.; Cevolani, S.; Roehrig, H.; Schutz, W.

    1998-01-01

    The conceptual design activity (CDA) for the international fusion materials irradiation facility (IFMIF) has been conducted. For the IFMIF target facility, the conceptual designs of the following two main components have been performed. The design concept of IFMIF utilizes a high energy deuteron beam of 30-40 MeV and total current of 250 mA, impinging on a flowing lithium jet to produce high energy neutrons for irradiation of candidate fusion materials. (1) The target assembly: The kinetic energy of the deuteron beam is deposited on a Li-jet target and neutrons are produced through the d-Li stripping reaction in this target. The assembly is designed to get a stable lithium jet and to prevent the onset of lithium boiling. For 40-MeV deuteron beam (total current of 250 mA) and a beam footprint of 5 x 20 cm 2 lithium jet dimensions are designed to be 2.5 cm thick and 26 cm wide. The lithium jet parameters are given. (2) Lithium loop: The loop circulates the lithium to and from the target assembly and removes the heat deposited by the deuteron beam containing systems for maintaining the-high purity of the lithium required for radiological safety and to minimize corrosion. The maximum lithium flow rate is 130 l/s and the total lithium inventory is about 21 m 3 . The IFMIF policy requires that the lithium loop system be designed to guarantee no combustion of lithium in the event of a lithium leak. This can be achieved by use of multiple confinement of the lithium carrying components. The radioactive waste generated by the target facilities is estimated. (orig.)

  2. Dead-blow hammer design applied to a calibration target mechanism to dampen excessive rebound

    Science.gov (United States)

    Lim, Brian Y.

    1991-01-01

    An existing rotary electromagnetic driver was specified to be used to deploy and restow a blackbody calibration target inside of a spacecraft infrared science instrument. However, this target was much more massive than any other previously inherited design applications. The target experienced unacceptable bounce when reaching its stops. Without any design modification, the momentum generated by the driver caused the target to bounce back to its starting position. Initially, elastomeric dampers were used between the driver and the target. However, this design could not prevent the bounce, and it compromised the positional accuracy of the calibration target. A design that successfully met all the requirements incorporated a sealed pocket 85 percent full of 0.75 mm diameter stainless steel balls in the back of the target to provide the effect of a dead-blow hammer. The energy dissipation resulting from the collision of balls in the pocket successfully dampened the excess momentum generated during the target deployment. The disastrous effects of new requirements on a design with a successful flight history, the modifications that were necessary to make the device work, and the tests performed to verify its functionality are described.

  3. Directions for reactor target design based on the US heavy ion fusion systems assessment

    International Nuclear Information System (INIS)

    Wilson, D.C.; Dudziak, D.; Magelssen, G.; Zuckerman, D.; Dreimeyer, D.

    1986-01-01

    We studied areas of major uncertainty in target design using the cost of electricity as our figure of merit. Net electric power from the plant was fixed at 1000 MW to eliminate large effects due to economies of scale. The system is relatively insensitive to target gain. Factors of three changes in gain cause only 8 to 12% changes in electricity cost. An increase in the peak power needed to drive targets poses only a small cost risk, but requires many more beamlets be transported to the target. A shortening of the required ion range causes both cost and beamlet difficulties. A factor of 4 decrease in the required range at a fixed driver energy increases electricity cost by 44% and raises the number of beamlets to 240. Finally, the heavy ion fusion system can accommodate large increases in target costs. To address the major uncertainties, target design should concentrate on the understanding requirements for ion range and peak driver power

  4. Targeting and design of chilled water network

    International Nuclear Information System (INIS)

    Foo, Dominic C.Y.; Ng, Denny K.S.; Leong, Malwynn K.Y.; Chew, Irene M.L.; Subramaniam, Mahendran; Aziz, Ramlan; Lee, Jui-Yuan

    2014-01-01

    Highlights: • Minimum flowrate targeting for chilled water network. • Mixed series/parallel configuration of chilled water-using units. • Integrated cooling and chilled water networks. - Abstract: Chilled water is a common cooling agent used in various industrial, commercial and institutional facilities. In conventional practice, chilled water is distributed via chilled water networks (CHWNs) in parallel configuration to provide required air conditioning and/or equipment cooling in the heating, ventilating and air conditioning (HVAC) system. In this paper, process integration approach based on pinch analysis technique is used to address energy efficiency issues in the CHWN system for grassroots design problem. Graphical and algebraic targeting techniques are developed to identify the minimum chilled water flowrate needed to remove a given amount of heat load from the CHWN. Doing this leads to higher chilled water return temperature and enhanced energy efficiency of the HVAC system. A recent proposed network design technique is extended to synthesize the CHWN in a mixed series/parallel configuration. A novel concept of integrated cooling and chilled water networks (IWN) is also proposed in this work, with its targeting and design techniques presented. Hypothetical examples and an industrial case study are solved to elucidate the proposed approaches

  5. GLRS-R 2-colour retroreflector target design and predicted performance

    Science.gov (United States)

    Lund, Glenn

    1993-01-01

    This paper reports on the retroreflector ground-target design for the GLRS-R spaceborne dual-wavelength laser ranging system. The described passive design flows down from the requirements of high station autonomy, high global FOV (up to 60 degrees zenith angle), little or no multiple pulse returns, and adequate optical cross section for most ranging geometries. The proposed solution makes use of 5 hollow cube-corner retroreflectors of which one points to the zenith and the remaining four are inclined from the vertical at uniform azimuthal spacings. The need for fairly large (is approximately 10 cm) retroreflectors is expected (within turbulence limitations) to generate quite narrow diffraction lobes, thus placing non-trivial requirements on the vectorial accuracy of velocity aberration corrections. A good compromise solution is found by appropriately spoiling just one of the retroreflector dihedral angles from 90 degrees, thus generating two symmetrically oriented diffraction lobes in the return beam. The required spoil angles are found to have little dependence on ground target latitude. Various link budget analyses are presented, showing the influence of such factors as point-ahead optimization, turbulence, ranging angle, atmospheric visibility and ground target thermal deformations.

  6. Some Aspects on Filter Design for Target Tracking

    Directory of Open Access Journals (Sweden)

    Bertil Ekstrand

    2012-01-01

    Full Text Available Tracking filter design is discussed. It is argued that the basis of the present stochastic paradigm is questionable. White process noise is not adequate as a model for target manoeuvring, stochastic least-square optimality is not relevant or required in practice, the fact that requirements are necessary for design is ignored, and root mean square (RMS errors are insufficient as performance measure. It is argued that there is no process noise and that the covariance of the assumed process noise contains the design parameters. Focus is on the basic tracking filter, the Kalman filter, which is convenient for clarity and simplicity, but the arguments and conclusions are relevant in general. For design the possibility of an observer transfer function approach is pointed out. The issues can also be considered as a consequence of the fact that there is a difference between estimation and design. The - filter is used for illustration.

  7. Implementing Target Value Design.

    Science.gov (United States)

    Alves, Thais da C L; Lichtig, Will; Rybkowski, Zofia K

    2017-04-01

    An alternative to the traditional way of designing projects is the process of target value design (TVD), which takes different departure points to start the design process. The TVD process starts with the client defining an allowable cost that needs to be met by the design and construction teams. An expected cost in the TVD process is defined through multiple interactions between multiple stakeholders who define wishes and others who define ways of achieving these wishes. Finally, a target cost is defined based on the expected profit the design and construction teams are expecting to make. TVD follows a series of continuous improvement efforts aimed at reaching the desired goals for the project and its associated target value cost. The process takes advantage of rapid cycles of suggestions, analyses, and implementation that starts with the definition of value for the client. In the traditional design process, the goal is to identify user preferences and find solutions that meet the needs of the client's expressed preferences. In the lean design process, the goal is to educate users about their values and advocate for a better facility over the long run; this way owners can help contractors and designers to identify better solutions. This article aims to inform the healthcare community about tools and techniques commonly used during the TVD process and how they can be used to educate and support project participants in developing better solutions to meet their needs now as well as in the future.

  8. Designing to target cost: one approach to design/construction integration

    DEFF Research Database (Denmark)

    Jørgensen, Bo

    2005-01-01

    One approach to a more integrated construction delivery process is the concept of ‘designing to target cost’ of which the first examples of application within a lean construction framework have recently been seen. This paper introduces the main principles of the design to target cost method...... and discusses the applicability of this approach to construction. The low degree of organizational and technical continuity from one construction project to the next limits the applicability of the design for target cost approach when compared to its origin in product development of mass manufactured artefacts....... It can be argued that design to target cost may also provide a frame for developing the supply chain towards better coordination and collaboration. Thus methods of design to target cost may serve to facilitate the development of a more integrated supply chain....

  9. IMPACT OF ENERGY GROUP STRUCTURE ON NUCLEAR DATA TARGET ACCURACY REQUIREMENTS FOR ADVANCED REACTOR SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    G. Palmiotti; M. Salvatores; H. Hiruta

    2011-06-01

    A target accuracy assessment study using both a fine and a broad energy structure has shown that less stringent nuclear data accuracy requirements are needed for the latter energy structure. However, even though a reduction is observed, still the requirements will be very difficult to be met unless integral experiments are also used to reduce nuclear data uncertainties. Target accuracy assessment is the inverse problem of the uncertainty evaluation. To establish priorities and target accuracies on data uncertainty reduction, a formal approach can be adopted by defining target accuracy on design parameters and finding out required accuracy on data in order to meet them. In fact, the unknown uncertainty data requirements can be obtained by solving a minimization problem where the sensitivity coefficients in conjunction with the constraints on the integral parameters provide the needed quantities for finding the solutions.

  10. Recycling issues facing target and RTL materials of inertial fusion designs

    International Nuclear Information System (INIS)

    El-Guebaly, L.; Wilson, P.; Sawan, M.; Henderson, D.; Varuttamaseni, A.

    2005-01-01

    Designers of heavy ion (HI) and Z-pinch inertial fusion power plants have explored the potential of recycling the target and recyclable transmission line (RTL) materials as an alternate option to disposal in a geological repository. This work represents the first time a comprehensive recycling assessment was performed on both machines with an exact pulse history. Our results offer two divergent conclusions on the recycling issue. For the HI concept, target recycling is not a 'must' requirement and the preferred option is the one-shot use scenario as target materials represent a small waste stream, less than 1% of the total nuclear island waste. We recommend using low-cost hohlraum materials once-through and then disposing of them instead of recycling expensive materials such as Au and Gd. On the contrary, RTL recycling is a 'must' requirement for the Z-pinch concept in order to minimize the RTL inventory and enhance the economics. The RTLs meet the low level waste and recycling dose requirements with a wide margin when recycled for the entire plant life even without a cooling period. While recycling offers advantages to the Z-pinch system, it adds complexity and cost to the HI designs

  11. Design of an ignition target for the laser megajoule, mitigating parametric instabilities

    Science.gov (United States)

    Laffite, S.; Loiseau, P.

    2010-10-01

    Laser plasma interaction (LPI) is a critical issue in ignition target design. Based on both scaling laws and two-dimensional calculations, this article describes how we can constrain a laser megajoule (LMJ) [J. Ebrardt and J. M. Chaput, J. Phys.: Conf. Ser. 112, 032005 (2008)] target design by mitigating LPI. An ignition indirect drive target has been designed for the 2/3 LMJ step. It requires 0.9 MJ and 260 TW of laser energy and power, to achieve a temperature of 300 eV in a rugby-shaped Hohlraum and give a yield of about 20 MJ. The study focuses on the analysis of linear gain for stimulated Raman and Brillouin scatterings. Enlarging the focal spot is an obvious way to reduce linear gains. We show that this reduction is nonlinear with the focal spot size. For relatively small focal spot area, linear gains are significantly reduced by enlarging the focal spot. However, there is no benefit in too large focal spots because of necessary larger laser entrance holes, which require more laser energy. Furthermore, this leads to the existence, for a given design, of a minimum value for linear gains for which we cannot go below.

  12. Design of an ignition target for the laser megajoule, mitigating parametric instabilities

    International Nuclear Information System (INIS)

    Laffite, S.; Loiseau, P.

    2010-01-01

    Laser plasma interaction (LPI) is a critical issue in ignition target design. Based on both scaling laws and two-dimensional calculations, this article describes how we can constrain a laser megajoule (LMJ) [J. Ebrardt and J. M. Chaput, J. Phys.: Conf. Ser. 112, 032005 (2008)] target design by mitigating LPI. An ignition indirect drive target has been designed for the 2/3 LMJ step. It requires 0.9 MJ and 260 TW of laser energy and power, to achieve a temperature of 300 eV in a rugby-shaped Hohlraum and give a yield of about 20 MJ. The study focuses on the analysis of linear gain for stimulated Raman and Brillouin scatterings. Enlarging the focal spot is an obvious way to reduce linear gains. We show that this reduction is nonlinear with the focal spot size. For relatively small focal spot area, linear gains are significantly reduced by enlarging the focal spot. However, there is no benefit in too large focal spots because of necessary larger laser entrance holes, which require more laser energy. Furthermore, this leads to the existence, for a given design, of a minimum value for linear gains for which we cannot go below.

  13. Injector design for liner-on-target gas-puff experiments

    Science.gov (United States)

    Valenzuela, J. C.; Krasheninnikov, I.; Conti, F.; Wessel, F.; Fadeev, V.; Narkis, J.; Ross, M. P.; Rahman, H. U.; Ruskov, E.; Beg, F. N.

    2017-11-01

    We present the design of a gas-puff injector for liner-on-target experiments. The injector is composed of an annular high atomic number (e.g., Ar and Kr) gas and an on-axis plasma gun that delivers an ionized deuterium target. The annular supersonic nozzle injector has been studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated (M > 5), ˜1 cm radius gas profile that satisfies the theoretical requirement for best performance on ˜1-MA current generators. The CFD simulations allowed us to study output density profiles as a function of the nozzle shape, gas pressure, and gas composition. We have performed line-integrated density measurements using a continuous wave (CW) He-Ne laser to characterize the liner gas density. The measurements agree well with the CFD values. We have used a simple snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector.

  14. Optimum design of beam window's diameter and thickness of Hyper target system

    International Nuclear Information System (INIS)

    Cho, C. H.; Tak, N. I.; Song, T. Y.; Park, W. S.

    2002-01-01

    HYPER is designed to transmute long-lived TRU and fission products such as Tc-99 and I-129. Pb-Bi is used as the coolant and spallation target material at the same time. HYPER is expected to need about 20mA proton beam to sustain a 1000MW th power level. The cylindrical beam tube and spherical window is adopted as the basic window shape of HYPER. The window diameter and the window thickness are varied to find the maximum allowable current based on the design criteria : Pb-Bi temperature < 500 .deg. C, window temperature < 600 .deg. C, Pb-Bi velocity < 2m/s and window stress < 160MPa. The LAHET code is used to simulate heat generation. CFX is also used for the thermal-hydraulics calculation. Based on our design criteria, the maximum allowable current is calculated to be about 9.2mA, which is smaller than the required current. Therefore, an upgrade of the target system design is required

  15. X-ray backlighting requirements for the double-shell target

    International Nuclear Information System (INIS)

    Larsen, J.T.

    1980-01-01

    We have analyzed one specific NOVA double-shell target design and have determined the x-ray energies required for probing the performance of the implosion. It is virtually impossible to study the compression of the fuel or the motion of the inner pusher. An x-ray energy of about 9 keV appears to be ideal for measuring the behavior of the outer TaCOH shell for the majority of its travel. However, it would be advantageous to have an x-ray source of about 25 keV to measure the contact between the two shells. Development of narrowband x-ray line sources are more desirable than broadband continuum sources since the intensity per keV is many times greater in the line. Intensities of the probes are determined by the self-emission levels of the target capsule. For the 9 keV line source, an intensity of upwards to 10 15 keV/keV/sh/cm 2 /sr is required with a source area of about 0.01 cm 2

  16. National Ignition Facility system design requirements Laser System SDR002

    International Nuclear Information System (INIS)

    Larson, D.W.; Bowers, J.M.; Bliss, E.S.; Karpenko, V.P.; English, E.

    1996-01-01

    This System Design Requirement document establishes the performance, design, development, and test requirements for the NIP Laser System. The Laser System generates and delivers high-power optical pulses to the target chamber, and is composed of all optical puke creating and transport elements from Puke Generation through Final Optics as well as the special equipment that supports, energizes and controls them. The Laser System consists of the following WBS elements: 1.3 Laser System 1.4 Beam Transport System 1.6 Optical Components 1.7 Laser Control 1.8.7 Final Optics

  17. Validation of a new design of tellurium dioide-irradiated target

    Energy Technology Data Exchange (ETDEWEB)

    Fllaoui, Aziz; Ghamad, Younes; Zoubir, Brahim; Ayaz, Zinel Abidine; El Morabiti, Aissam; Amayoud, Hafid [Centre National de l' Energie des Sciences et des Techniques Nucleaires, Rabat (Morocco); Chakir, El Mahjoub [Nuclear Physics Department, University Ibn Toufail, Kenitra (Morocco)

    2016-10-15

    Production of iodine-131 by neutron activation of tellurium in tellurium dioxide (TeO{sub 2}) material requires a target that meets the safety requirements. In a radiopharmaceutical production unit, a new lid for a can was designed, which permits tight sealing of the target by using tungsten inert gas welding. The leakage rate of all prepared targets was assessed using a helium mass spectrometer. The accepted leakage rate is ≤ 10 - 4 mbr.L/s, according to the approved safety report related to iodine-131 production in the TRIGA Mark II research reactor (TRIGA: Training, Research, Isotopes, General Atomics). To confirm the resistance of the new design to the irradiation conditions in the TRIGA Mark II research reactor's central thimble, a study of heat effect on the sealed targets for 7 hours in an oven was conducted and the leakage rates were evaluated. The results show that the tightness of the targets is ensured up to 600 .deg. C with the appearance of deformations on lids beyond 450 .deg. C. The study of heat transfer through the target was conducted by adopting a one-dimensional approximation, under consideration of the three transfer modes-convection, conduction, and radiation. The quantities of heat generated by gamma and neutron heating were calculated by a validated computational model for the neutronic simulation of the TRIGA Mark II research reactor using the Monte Carlo N-Particle transport code. Using the heat transfer equations according to the three modes of heat transfer, the thermal study of I-131 production by irradiation of the target in the central thimble showed that the temperatures of materials do not exceed the corresponding melting points. To validate this new design, several targets have been irradiated in the central thimble according to a preplanned irradiation program, going from 4 hours of irradiation at a power level of 0.5 MW up to 35 hours (7 h/d for 5 days a week) at 1.5 MW. The results show that the irradiated targets are

  18. Validation of a New Design of Tellurium Dioxide-Irradiated Target

    Directory of Open Access Journals (Sweden)

    Aziz Fllaoui

    2016-10-01

    Full Text Available Production of iodine-131 by neutron activation of tellurium in tellurium dioxide (TeO2 material requires a target that meets the safety requirements. In a radiopharmaceutical production unit, a new lid for a can was designed, which permits tight sealing of the target by using tungsten inert gas welding. The leakage rate of all prepared targets was assessed using a helium mass spectrometer. The accepted leakage rate is ≤ 10−4 mbr.L/s, according to the approved safety report related to iodine-131 production in the TRIGA Mark II research reactor (TRIGA: Training, Research, Isotopes, General Atomics. To confirm the resistance of the new design to the irradiation conditions in the TRIGA Mark II research reactor's central thimble, a study of heat effect on the sealed targets for 7 hours in an oven was conducted and the leakage rates were evaluated. The results show that the tightness of the targets is ensured up to 600°C with the appearance of deformations on lids beyond 450°C. The study of heat transfer through the target was conducted by adopting a one-dimensional approximation, under consideration of the three transfer modes—convection, conduction, and radiation. The quantities of heat generated by gamma and neutron heating were calculated by a validated computational model for the neutronic simulation of the TRIGA Mark II research reactor using the Monte Carlo N-Particle transport code. Using the heat transfer equations according to the three modes of heat transfer, the thermal study of I-131 production by irradiation of the target in the central thimble showed that the temperatures of materials do not exceed the corresponding melting points. To validate this new design, several targets have been irradiated in the central thimble according to a preplanned irradiation program, going from 4 hours of irradiation at a power level of 0.5 MW up to 35 hours (7 h/d for 5 days a week at 1.5 MW. The results show that the irradiated targets are

  19. Innovative product design based on comprehensive customer requirements of different cognitive levels.

    Science.gov (United States)

    Li, Xiaolong; Zhao, Wu; Zheng, Yake; Wang, Rui; Wang, Chen

    2014-01-01

    To improve customer satisfaction in innovative product design, a topology structure of customer requirements is established and an innovative product approach is proposed. The topology structure provides designers with reasonable guidance to capture the customer requirements comprehensively. With the aid of analytic hierarchy process (AHP), the importance of the customer requirements is evaluated. Quality function deployment (QFD) is used to translate customer requirements into product and process design demands and pick out the technical requirements which need urgent improvement. In this way, the product is developed in a more targeted way to satisfy the customers. the theory of innovative problems solving (TRIZ) is used to help designers to produce innovative solutions. Finally, a case study of automobile steering system is used to illustrate the application of the proposed approach.

  20. Innovative Product Design Based on Comprehensive Customer Requirements of Different Cognitive Levels

    Directory of Open Access Journals (Sweden)

    Xiaolong Li

    2014-01-01

    Full Text Available To improve customer satisfaction in innovative product design, a topology structure of customer requirements is established and an innovative product approach is proposed. The topology structure provides designers with reasonable guidance to capture the customer requirements comprehensively. With the aid of analytic hierarchy process (AHP, the importance of the customer requirements is evaluated. Quality function deployment (QFD is used to translate customer requirements into product and process design demands and pick out the technical requirements which need urgent improvement. In this way, the product is developed in a more targeted way to satisfy the customers. the theory of innovative problems solving (TRIZ is used to help designers to produce innovative solutions. Finally, a case study of automobile steering system is used to illustrate the application of the proposed approach.

  1. Computational design of high efficiency release targets for use at ISOL facilities

    CERN Document Server

    Liu, Y

    1999-01-01

    This report describes efforts made at the Oak Ridge National Laboratory to design high-efficiency-release targets that simultaneously incorporate the short diffusion lengths, high permeabilities, controllable temperatures, and heat-removal properties required for the generation of useful radioactive ion beam (RIB) intensities for nuclear physics and astrophysics research using the isotope separation on-line (ISOL) technique. Short diffusion lengths are achieved either by using thin fibrous target materials or by coating thin layers of selected target material onto low-density carbon fibers such as reticulated-vitreous-carbon fiber (RVCF) or carbon-bonded-carbon fiber (CBCF) to form highly permeable composite target matrices. Computational studies that simulate the generation and removal of primary beam deposited heat from target materials have been conducted to optimize the design of target/heat-sink systems for generating RIBs. The results derived from diffusion release-rate simulation studies for selected t...

  2. The design of a lead-bismuth target system with a dual injection tube

    International Nuclear Information System (INIS)

    Cho, C.H.; Kim, Y.; Song, T.Y.; Park, W.S.

    2005-01-01

    A spallation target system is a key component to be developed for an accelerator driven system (ADS). It is known that a 15 ∼ 25 MW spallation target is required for a practical 1000 MWth ADS. The design of a 20 MW spallation target is very challenging because more than 60% of the beam power is deposited as heat in a small volume of the target system. In the present work, a numerical design study was performed to obtain the optimal design parameters for a 20 MW spallation target for a 1000 MW ADS. A dual injection tube was proposed for the reduction of the LBE flow rate at the target channel. The results of the present study show that a 30 cm wide proton beam with a uniform beam distribution should be adopted for the spallation target of a 20 MW power. When the dual LBE injection tube is employed, the LBE flow rate could be reduced by a factor of 4 without reducing the maximum allowable beam current. (authors)

  3. Generic study on the design and operation of high power targets

    Directory of Open Access Journals (Sweden)

    A. Ahmad

    2014-02-01

    Full Text Available With the move towards beam power in the range of 1–10 MW, a thorough understanding of the response of target materials and auxiliary systems to high power densities and intense radiation fields is required. This paper provides insight into three major aspects related to the design and operation of high power solid targets: thermal stresses, coolant performance, and radiation damage. Where appropriate, a figure-of-merit approach is followed to facilitate the comparison between different target or coolant candidates. The section on radiation damage reports total and spatial variations of displacement-per-atom and helium production levels in different target materials.

  4. Target selection and mass estimation for manned NEO exploration using a baseline mission design

    Science.gov (United States)

    Boden, Ralf C.; Hein, Andreas M.; Kawaguchi, Junichiro

    2015-06-01

    In recent years Near-Earth Objects (NEOs) have received an increased amount of interest as a target for human exploration. NEOs offer scientifically interesting targets, and at the same time function as a stepping stone for achieving future Mars missions. The aim of this research is to identify promising targets from the large number of known NEOs that qualify for a manned sample-return mission with a maximum duration of one year. By developing a baseline mission design and a mass estimation model, mission opportunities are evaluated based on on-orbit mass requirements, safety considerations, and the properties of the potential targets. A selection of promising NEOs is presented and the effects of mission requirements and restrictions are discussed. Regarding safety aspects, the use of free-return trajectories provides the lowest on-orbit mass, when compared to an alternative design that uses system redundancies to ensure return of the spacecraft to Earth. It is discovered that, although a number of targets are accessible within the analysed time frame, no NEO offers both easy access and high incentive for its exploration. Under the discussed aspects a first human exploration mission going beyond the vicinity of Earth will require a trade off between targets that provide easy access and those that are of scientific interest. This lack of optimal mission opportunities can be seen in the small number of only 4 NEOs that meet all requirements for a sample-return mission and remain below an on-orbit mass of 500 metric Tons (mT). All of them require a mass between 315 and 492 mT. Even less ideal, smaller asteroids that are better accessible require an on-orbit mass that exceeds the launch capability of future heavy lift vehicles (HLV) such as SLS by at least 30 mT. These mass requirements show that additional efforts are necessary to increase the number of available targets and reduce on-orbit mass requirements through advanced mission architectures. The need for on

  5. Application of analytical target cascading method in multidisciplinary design optimization of ship conceptual design

    Directory of Open Access Journals (Sweden)

    WANG Jian

    2017-10-01

    Full Text Available [Objectives] Ship conceptual design requires the coordination of many different disciplines for comprehensive optimization, which presents a complicated system design problem affecting several fields of technology. However, the development of overall ship design is relatively slow compared with other subjects. [Methods] The decomposition and coordination strategy of ship design is presented, and the analytical target cascading (ATC method is applied to the multidisciplinary design optimization of the conceptual design phase of ships on this basis. A tank ship example covering the 5 disciplines of buoyancy and stability, rapidity, maneuverability, capacity and economy is established to illustrate the analysis process in the present study. [Results] The results demonstrate the stability, convergence and validity of the ATC method in dealing with the complex coupling effect occurring in ship conceptual design.[Conclusions] The proposed method provides an effective basis for optimization of ship conceptual design.

  6. Design and Preliminary Testing of the International Docking Adapter's Peripheral Docking Target

    Science.gov (United States)

    Foster, Christopher W.; Blaschak, Johnathan; Eldridge, Erin A.; Brazzel, Jack P.; Spehar, Peter T.

    2015-01-01

    The International Docking Adapter's Peripheral Docking Target (PDT) was designed to allow a docking spacecraft to judge its alignment relative to the docking system. The PDT was designed to be compatible with relative sensors using visible cameras, thermal imagers, or Light Detection and Ranging (LIDAR) technologies. The conceptual design team tested prototype designs and materials to determine the contrast requirements for the features. This paper will discuss the design of the PDT, the methodology and results of the tests, and the conclusions pertaining to PDT design that were drawn from testing.

  7. Meeting cross-section requirements for nuclear-energy design

    Energy Technology Data Exchange (ETDEWEB)

    Weisbin, C.R.; de Saussure, G.; Santoro, R.T. (Oak Ridge National Lab., TN (USA)); Gilai, T. (Ben-Gurion Univ. of the Negev, Beersheba (Israel))

    1982-01-01

    Current requirements in cross-section data that are essential to nuclear-energy programmes are summarized and explained and some insight into how these data might be obtained is provided. The six sections of the paper describe: design parameters and target accuracies; data collection, evaluation and analysis; determination of high-accuracy differential nuclear data for technological applications; status of selected evaluated nuclear data; analysis of benchmark testing; identification of important cross sections and inferred needs.

  8. Design choices and issues in fixed-target B experiments

    International Nuclear Information System (INIS)

    Camilleri, L.

    1993-01-01

    The main priority of any experiment on B physics in the years to come will be an endeavour to observe CP violation in the B sector. Such measurements imply the following requirements of the experiment. Trigger: a muon trigger will be sensitive to J/ψ reactions and muon tags; an electron trigger will double the number of lepton events; in order to include kaon tags and self-tagging reactions, the experiment must not rely entirely on lepton triggers. Secondary Vertex triggers and hadron p T triggers should be included in order to have the maximum flexibility. Detector: vertex detector; particle identification; good momentum resolution; electromagnetic and hadronic calorimeters; muon detector. In addition the following issues have to be addressed: Collider or fixed-target mode? If fixed target, extracted beam or internal target? If internal target, gas jet or wire target? If a gas jet, hydrogen or a heavy gas? Beam pipe design. Silicon microvertex design and radiation damage. K s 0 decay path. Particle identification. Momentum resolution. Order of detectors. No single method stands out as the open-quotes obvious one.close quotes An extracted beam yields better vertex resolution and an internal target easier triggering. A flexible and diverse triggering scheme is of prime importance in order to be sensitive to as many reactions as possible, the experiment should not be limited to lepton triggers only. Proposed experiments (P867, HERA B) at existing machines will be invaluable for testing new devices and strategies for the LHC and SSC experiments

  9. Design of the LBNF Beamline Target Station

    Energy Technology Data Exchange (ETDEWEB)

    Tariq, S. [Fermilab; Ammigan, K. [Fermilab; Anderson, K.; ; Buccellato, S. A. [Fermilab; Crowley, C. F. [Fermilab; Hartsell, B. D. [Fermilab; Hurh, P. [Fermilab; Hylen, J. [Fermilab; Kasper, P. [Fermilab; Krafczyk, G. E. [Fermilab; Lee, A. [Fermilab; Lundberg, B. [Fermilab; Reitzner, S. D. [Fermilab; Sidorov, V. [Fermilab; Stefanik, A. M. [Fermilab; Tropin, I. S. [Fermilab; Vaziri, K. [Fermilab; Williams, K. [Fermilab; Zwaska, R. M. [Fermilab; Densham, C. [RAL, Didcot

    2016-10-01

    The Long Baseline Neutrino Facility (LBNF) project will build a beamline located at Fermilab to create and aim an intense neutrino beam of appropriate energy range toward the DUNE detectors at the SURF facility in Lead, South Dakota. Neutrino production starts in the Target Station, which consists of a solid target, magnetic focusing horns, and the associated sub-systems and shielding infrastructure. Protons hit the target producing mesons which are then focused by the horns into a helium-filled decay pipe where they decay into muons and neutrinos. The target and horns are encased in actively cooled steel and concrete shielding in a chamber called the target chase. The reference design chase is filled with air, but nitrogen and helium are being evaluated as alternatives. A replaceable beam window separates the decay pipe from the target chase. The facility is designed for initial operation at 1.2 MW, with the ability to upgrade to 2.4 MW, and is taking advantage of the experience gained by operating Fermilab’s NuMI facility. We discuss here the design status, associated challenges, and ongoing R&D and physics-driven component optimization of the Target Station.

  10. Design of the MYRRHA Spallation Target Assembly

    International Nuclear Information System (INIS)

    Keijers, S.; Fernandez, R.; Stankovskiy, A.; Kennedy, G.; Van Tichelen, K.

    2015-01-01

    MYRRHA (Multi-purpose hybrid Research Reactor for High-tech Applications) is a multi-purpose research facility currently being developed at SCK.CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level. As a flexible irradiation facility, the MYRRHA research reactor will be able to work in both critical and subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material research for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by Lead Bismuth Eutectic (LBE) and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) GEN IV concept. This paper describes the evolution of the MYRRHA spallation target design. In the early phase of the MYRRHA project (XT-ADS), the target design was based on a dedicated spallation loop inside the primary reactor vessel. Within the core, the 3 central fuel assembly positions were occupied by the spallation target, which enabled a windowless design created by a free surface of LBE facing the proton beam. The windowless option was preferred because of high heat loads in combination with severe irradiation damage in the target region would result in unacceptably short lifetimes of a target window. The LBE in the loop served as spallation target and as target coolant, but was separated from the LBE cooling the reactor core. The loop was equipped with its own pump, heat exchanger and conditioning system. The change from cyclotron to linear accelerator allowed the increase in proton energy from 350 MeV to 600 MeV. This modification led to an important reduction of the specific heat load at the target level and an improvement of the neutronic performance. In addition to

  11. CFD aspects of ADSS target design

    International Nuclear Information System (INIS)

    Shashi Kumar, G.N.; Mahendra, A.K.; Sanyal, A.; Gouthaman, G.

    2004-03-01

    The preliminary studies on CFD aspects of Accelerator Driven Sub-critical System (ADSS) target design has been presented in this report. The studies involve the thermal hydraulic analysis of the Liquid Metal Spallation Target (LMST) using Lead Bismuth Eutectic (LBE) as the target material. Apart from acting as Spallation medium LBE is used to remove the heat deposited by High Energy Proton Beam. Window of the target ( one side vacuum and other side LBE) has been reported in literature to be the most critical zone where high temperatures are reached. Numerical Simulations are carried out with Artificial Neural Network coupled Computational Fluid Dynamics (CFD) code, Various studies were carried out after the verification and validation of the initial results. Window being, the main parameter to be optimised, various designs of window were tried, along with change in the window material. The best possible combination has been proposed. The thermal hydraulic studies were carried out to arrive at the acceptable operating conditions for the target. (author)

  12. Primary design of Si cooling arm structure in ICF cryogenic target

    International Nuclear Information System (INIS)

    Zhang Yong; Yi Yong; Tang Changhuan; Zhang Jicheng

    2013-01-01

    According to the requirement of the cryogenic target system to the Si cooling arm structure, the Si cooling arm was primarily designed based on the USA National Ignition Facility (NIF) target. A new three-dimensional model of Si cooling arm was developed by SolidWorks software, and the simulation and analysis of Si cooling arm in aspect of mechanical property, thermal response and assembly were made based on the model. A law about the effect of the arm length of Si cooling arm and the width and the length of bifurcation on Si cooling arm was achieved. The research may provide the theoretical foundation and reference for the further improvement of cryogenic target. (authors)

  13. Requirements for design of accelerator, beam transport, and target in a study of thermonuclear reaction cross section

    Energy Technology Data Exchange (ETDEWEB)

    Itahashi, T.; Takahisa, K.; Ohsumi, H.; Komori, M.; Fujiwara, M.; Toki, H. [Osaka Univ., Suita (Japan)

    1997-02-01

    The process of pp-de{sup +}{nu} is the basic fusion reaction for hydrogen burning in the sun and the prime reaction in chain producing photons and neutrinos. There are many works of the theoretical estimation of the reaction rate in the reaction chain in the sun. The precise measurement of the nutrinos from the sun is one of the most important current physics issues. The rate of the pp-de{sup +}{nu} is too small to be measured in laboratories. The construction of a compact ion accelerator facility with high current, low energy transport and plasma target is planned at the underground laboratory in Otoh Cosmo Observatory of Research Center for Nuclear Physics. The plasma target by using the EBIS type synthesized plasma was proposed as a bare {sup 3}He target. The production of helium ions of each charge state was tested by using the present NEOMAFIOS ECR ion source, and the obtained current is shown. For noncontaminated, high current beam transport, the strong focusing system was introduced. The design of windowless gas target, plasma target, the detection of the energetic reaction particles of protons, digital calorimeter, the couple of ECR ion source and plasma target, and the underground laboratory are reported. (K.I.)

  14. Design of a covert RFID tag network for target discovery and target information routing.

    Science.gov (United States)

    Pan, Qihe; Narayanan, Ram M

    2011-01-01

    Radio frequency identification (RFID) tags are small electronic devices working in the radio frequency range. They use wireless radio communications to automatically identify objects or people without the need for line-of-sight or contact, and are widely used in inventory tracking, object location, environmental monitoring. This paper presents a design of a covert RFID tag network for target discovery and target information routing. In the design, a static or very slowly moving target in the field of RFID tags transmits a distinct pseudo-noise signal, and the RFID tags in the network collect the target information and route it to the command center. A map of each RFID tag's location is saved at command center, which can determine where a RFID tag is located based on each RFID tag's ID. We propose the target information collection method with target association and clustering, and we also propose the information routing algorithm within the RFID tag network. The design and operation of the proposed algorithms are illustrated through examples. Simulation results demonstrate the effectiveness of the design.

  15. Tool-based requirement traceability between requirement and design artifacts

    CERN Document Server

    Turban, Bernhard

    2013-01-01

    Processes for developing safety-critical systems impose special demands on ensuring requirements traceability. Achieving valuable traceability information, however, is especially difficult concerning the transition from requirements to design. Bernhard Turban analyzes systems and software engineering theories cross-cutting the issue (embedded systems development, systems engineering, software engineering, requirements engineering and management, design theory and processes for safety-critical systems). As a solution, the author proposes a new tool approach to support designers in their thinkin

  16. Maximizing in vivo target clearance by design of pH-dependent target binding antibodies with altered affinity to FcRn.

    Science.gov (United States)

    Yang, Danlin; Giragossian, Craig; Castellano, Steven; Lasaro, Marcio; Xiao, Haiguang; Saraf, Himanshu; Hess Kenny, Cynthia; Rybina, Irina; Huang, Zhong-Fu; Ahlberg, Jennifer; Bigwarfe, Tammy; Myzithras, Maria; Waltz, Erica; Roberts, Simon; Kroe-Barrett, Rachel; Singh, Sanjaya

    2017-10-01

    Antibodies with pH-dependent binding to both target antigens and neonatal Fc receptor (FcRn) provide an alternative tool to conventional neutralizing antibodies, particularly for therapies where reduction in antigen level is challenging due to high target burden. However, the requirements for optimal binding kinetic framework and extent of pH dependence for these antibodies to maximize target clearance from circulation are not well understood. We have identified a series of naturally-occurring high affinity antibodies with pH-dependent target binding properties. By in vivo studies in cynomolgus monkeys, we show that pH-dependent binding to the target alone is not sufficient for effective target removal from circulation, but requires Fc mutations that increase antibody binding to FcRn. Affinity-enhanced pH-dependent FcRn binding that is double-digit nM at pH 7.4 and single-digit nM at pH 6 achieved maximal target reduction when combined with similar target binding affinities in reverse pH directions. Sustained target clearance below the baseline level was achieved 3 weeks after single-dose administration at 1.5 mg/kg. Using the experimentally derived mechanistic model, we demonstrate the essential kinetic interplay between target turnover and antibody pH-dependent binding during the FcRn recycling, and identify the key components for achieving maximal target clearance. These results bridge the demand for improved patient dosing convenience with the "know-how" of therapeutic modality by design.

  17. Conceptual design studies for the liquid metal target META:LIC

    International Nuclear Information System (INIS)

    Class, A.G.; Fazio, C.; Fetzer, J.R.; Gordeev, S.

    2014-01-01

    When the construction of ESS (European Spallation Source) in Sweden was initiated, the target station concept selection group decided to reevaluate a variety of target designs to respect new developments in their selection process. The META:LIC (MEgawatt TArget:Lead bIsmuth Cooled) target concept was developed following an extensive analysis of existing and new proposed designs and reached the level of proof of principle within only 2 years. ESS selected META:LIC as comparative target option for licensing purposes during the design update phase of ESS. The present work describes the design motivation of META:LIC referring to properties and design features of other targets. Therefore, META:LIC design is an evolutionary target which incorporates the extensive experience of liquid metal targets. The modular LBE (Lead Bismuth Eutectic) target concept with focus on the target module is introduced. Both, a window target option for the start of operation and a windowless option with extended lifetime are foreseen. Thermohydraulic simulations show that adequate window cooling can be realized. The stability of the free surface in the windowless option has been shown. Robust target module instrumentation based on free surface levels and the MEGAPIE experience is proposed for target control. Since the META:LIC concept foresees a horizontal extraction for both moderators and target from the monolith a safety concept based on the SNS and JSNS experience is proposed

  18. Design of a distributed radiator target for inertial fusion driven from two sides with heavy ion beams

    International Nuclear Information System (INIS)

    Tabak, M.; Callahan-Miller, D.

    1997-01-01

    We describe the status of a distributed radiator heavy ion target design. In integrated calculations this target ignited and produced 390-430 MJ of yieldwhen driven with 5.8-6.5 MJ of 3-4 GeV Pb ions. The target has cylindrical symmetry with disk endplates. The ions uniformly illuminate these endplates in a 5mm radius spot. We discuss the considerations which led to this design together with some previously unused design features: low density hohlraum walls in approximate pressure balance with internal low-Z fill materials, radiationsymmetry determined by the position of the radiator materials and particle ranges, and early time pressure symmetry possibly influenced by radiation shims. We discuss how this target scales to lower input energy or to lower beam power. Variant designs with more realistic beam focusing strategies are also discussed. We show the tradeoffs required for targets which accept higher particle energies

  19. Beams configuration design in target area with successive quadratic programming method

    International Nuclear Information System (INIS)

    Shi Zhiquan; Tan Jichun; Wei Xiaofeng; Man Jongzai; Zhang Xiaomin; Yuan Jing; Yuan Xiaodong

    1998-01-01

    The author describes the application of successive quadratic programming method (SQP) to design laser beam configuration in target area. Based on the requirement of ICF experiment physics, a math model of indirect-driver beam geometry is given. A 3D wire-frame is plotted, in which support lines represent 60 laser entireties and 240 turning points of support lines' segments stand for the spatial positions of reflectors

  20. The effect of regulatory requirements on the control and instrumentation system designer

    International Nuclear Information System (INIS)

    Golder, J.A.

    1978-01-01

    The difficulties encountered by the designer of control and protection systems for nuclear plant in attempting to satisfy the large number of imprecise regulations and recommendations which exist are described. The absence of fundamental quantitative safety requirements of international acceptability is deplored and the adoption of a major incident criteria expressed in quantitative terms as the basis for the derivation of target design criteria for protection systems and plant components is suggested. (author)

  1. Design of a control system for HIRFL-CSRe internal target facility in Lanzhou

    International Nuclear Information System (INIS)

    Wang Yanyu; Liu Wufeng; Shao Caojie; Lin Feiyu; Zhang Jianchuan; Xiao Wenjun

    2010-01-01

    It is described in this paper the design of the control system for HIRFL-CSRe internal target facility, in which there are many different kinds of units need to be monitored and controlled. The control system is composed of several subsystems which are designed to control the gas-jet temperature, chamber vacuum, valves and molecular pumps. A human-computer interaction interface is also realized to do the data acquisition, data processing and display. The whole system has been working stably and safely, it fully meets the requirements of physical experiments in the internal target facility. In January of 2010, the first physics experiment of the radioactive electron capture was finished successfully with the aids of this control system. (authors)

  2. Mechanical design and development of a high power target system for the SLC Positron Source

    International Nuclear Information System (INIS)

    Reuter, E.; Mansour, D.; Porter, T.; Sax, W.; Szumillo, A.

    1991-12-01

    In order to bring the SLC Positron Source luminosity up to design specifications, the previous (stationary) positron target had to be replaced with a version which could reliably dissipate the higher power levels and cyclic pulsed thermal stresses of the high intensity 33GeV electron beam. In addition to this basic requirement, the new target system had to meet SLAC's specifications for Ultra High Vacuum, be remotely controllable, ''radiation hard,'' and designed in such a way that it could be removed and replaced quickly and easily with minimum personnel exposure to radiation. It was also desirable to integrate the target and collection components into a compact, easily manufacturable, and easily maintainable module. This paper briefly summarize the mechanical design and development of the new modular target system, its associated controls and software, alignment, and the quick removal system. Operational experience gained with the new system over the first running cycle is also summarized

  3. Target based drug design - a reality in virtual sphere.

    Science.gov (United States)

    Verma, Saroj; Prabhakar, Yenamandra S

    2015-01-01

    The target based drug design approaches are a series of computational procedures, including visualization tools, to support the decision systems of drug design/discovery process. In the essence of biological targets shaping the potential lead/drug molecules, this review presents a comprehensive position of different components of target based drug design which include target identification, protein modeling, molecular dynamics simulations, binding/catalytic sites identification, docking, virtual screening, fragment based strategies, substructure treatment of targets in tackling drug resistance, in silico ADMET, structural vaccinology, etc along with the key issues involved therein and some well investigated case studies. The concepts and working of these procedures are critically discussed to arouse interest and to advance the drug research.

  4. Design requirements for the new reactor

    International Nuclear Information System (INIS)

    Koski, S.

    2005-01-01

    This presentation deals with the safety related design requirements specified for the new nuclear power plant to be built in Finland (FINS). The legislation, codes and standards, on which the design requirements are based, can be arranged into a hierarchical pyramid as follows: The safety related design criteria are based on the three uppermost hierarchical levels: Finnish legislation (e.g. decisions of the State Council) Basic Regulations (75-INSAG-3, USNRC General Design Criteria) Process oriented nuclear documents (YVL- guides or corresponding US/German rules). The European Utility Requirements (EUR) document was used as the starting point for the writing of the design requirements document. The structure and headlines of EUR could be kept, but in many cases the contents had to be deleted and rewritten to correspond to the requirement level of the above codes and standards. This was the case, for example, with the requirements concerning safety classification or application of failure criteria. In the presentation, the most important safety related design criteria are reviewed, with an emphasis on those requirements which exceed the requirement level applied on the existing plant units. Some hints are also given on the main differences between Finnish and international safety requirements. (orig.)

  5. Technical Design Report, Second Target Station

    International Nuclear Information System (INIS)

    Galambos, John D.; Anderson, David E.; Bethea, Katie L.; Carden, W. F.; Chae, Steven M.; Bechtol, D.; Brown, N.; Clark, A.

    2015-01-01

    The Second Target Station (STS) is a proposed upgrade for SNS. It includes a doubling of the accelerator power and an additional instrument hall. The new instrument hall will receive a 467 kW 10 Hz beam. The parameters and preliminary design aspects of the STS are presented for the accelerator, target systems, instrument hall, instruments and civil construction aspects.

  6. Shortening User Interface Design Iterations through Realtime Visualisation of Design Actions on the Target Device

    OpenAIRE

    MESKENS, Jan; LUYTEN, Kris; CONINX, Karin

    2009-01-01

    In current mobile user interface design tools, it is time consuming to export a design to the target device. This makes it hard for designers to iterate over the user interfaces they are creating. We propose Gummy-live, a GUI builder for mobile devices allowing designers to test and observe immediately on the target device each step they take in the GUI builder. This way, designers are stimulated to iteratively test and refine user interface prototypes in order to take the target device charac...

  7. 49 CFR 229.206 - Design requirements.

    Science.gov (United States)

    2010-10-01

    ...-climber, emergency egress, emergency interior lighting, and interior configuration design requirements set... 49 Transportation 4 2010-10-01 2010-10-01 false Design requirements. 229.206 Section 229.206..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design...

  8. Design Tools for Cost-Effective Implementation of Planetary Protection Requirements

    Science.gov (United States)

    Hamlin, Louise; Belz, Andrea; Evans, Michael; Kastner, Jason; Satter, Celeste; Spry, Andy

    2006-01-01

    Since the Viking missions to Mars in the 1970s, accounting for the costs associated with planetary protection implementation has not been done systematically during early project formulation phases, leading to unanticipated costs during subsequent implementation phases of flight projects. The simultaneous development of more stringent planetary protection requirements, resulting from new knowledge about the limits of life on Earth, together with current plans to conduct life-detection experiments on a number of different solar system target bodies motivates a systematic approach to integrating planetary protection requirements and mission design. A current development effort at NASA's Jet Propulsion Laboratory is aimed at integrating planetary protection requirements more fully into the early phases of mission architecture formulation and at developing tools to more rigorously predict associated cost and schedule impacts of architecture options chosen to meet planetary protection requirements.

  9. Design requirement on HYPER blanket fuel assembly

    International Nuclear Information System (INIS)

    Hwang, Woan; Lee, B. O.; Nam, C.; Ryu, W. S.; Lee, B. S.; Park, W. S.

    2000-07-01

    This document describes design requirements which are needed for designing the blanket assembly of the HYPER as design guidance. The blanket assembly of the HYPER consists of blanket fuel rods, mounting rail, spacer, upper nozzle with handling socket, bottom nozzle with mounting rail and skeleton structure. The blanket fuel rod consists of top end plug, bottom end plug with key way, blanket fuel slug, and cladding. In the assembly, the rods are in a triangular pitch array. This report contains functional requirements, performance and operational requirements, interfacing systems requirements, core restraint and interface requirements, design limits and strength requirements, system configuration and essential feature requirements, seismic requirements, structural requirements, environmental requirements, reliability and safety requirements, standard and codes, QA programs, and other requirements for the blanket fuel assembly of the HYPER

  10. Designing high power targets with computational fluid dynamics (CFD)

    International Nuclear Information System (INIS)

    Covrig, S. D.

    2013-01-01

    High power liquid hydrogen (LH2) targets, up to 850 W, have been widely used at Jefferson Lab for the 6 GeV physics program. The typical luminosity loss of a 20 cm long LH2 target was 20% for a beam current of 100 μA rastered on a square of side 2 mm on the target. The 35 cm long, 2500 W LH2 target for the Qweak experiment had a luminosity loss of 0.8% at 180 μA beam rastered on a square of side 4 mm at the target. The Qweak target was the highest power liquid hydrogen target in the world and with the lowest noise figure. The Qweak target was the first one designed with CFD at Jefferson Lab. A CFD facility is being established at Jefferson Lab to design, build and test a new generation of low noise high power targets

  11. Designing high power targets with computational fluid dynamics (CFD)

    Energy Technology Data Exchange (ETDEWEB)

    Covrig, S. D. [Thomas Jefferson National Laboratory, Newport News, VA 23606 (United States)

    2013-11-07

    High power liquid hydrogen (LH2) targets, up to 850 W, have been widely used at Jefferson Lab for the 6 GeV physics program. The typical luminosity loss of a 20 cm long LH2 target was 20% for a beam current of 100 μA rastered on a square of side 2 mm on the target. The 35 cm long, 2500 W LH2 target for the Qweak experiment had a luminosity loss of 0.8% at 180 μA beam rastered on a square of side 4 mm at the target. The Qweak target was the highest power liquid hydrogen target in the world and with the lowest noise figure. The Qweak target was the first one designed with CFD at Jefferson Lab. A CFD facility is being established at Jefferson Lab to design, build and test a new generation of low noise high power targets.

  12. Target design for high fusion yield with the double Z-pinch-driven hohlraum

    International Nuclear Information System (INIS)

    Vesey, R. A.; Herrmann, M. C.; Lemke, R. W.; Desjarlais, M. P.; Cuneo, M. E.; Stygar, W. A.; Bennett, G. R.; Campbell, R. B.; Christenson, P. J.; Mehlhorn, T. A.; Porter, J. L.; Slutz, S. A.

    2007-01-01

    A key demonstration on the path to inertial fusion energy is the achievement of high fusion yield (hundreds of MJ) and high target gain. Toward this goal, an indirect-drive high-yield inertial confinement fusion (ICF) target involving two Z-pinch x-ray sources heating a central secondary hohlraum is described by Hammer et al. [Phys. Plasmas 6, 2129 (1999)]. In subsequent research at Sandia National Laboratories, theoretical/computational models have been developed and an extensive series of validation experiments have been performed to study hohlraum energetics, capsule coupling, and capsule implosion symmetry for this system. These models have been used to design a high-yield Z-pinch-driven ICF target that incorporates the latest experience in capsule design, hohlraum symmetry control, and x-ray production by Z pinches. An x-ray energy output of 9 MJ per pinch, suitably pulse-shaped, is sufficient for this concept to drive 0.3-0.5 GJ capsules. For the first time, integrated two-dimensional (2D) hohlraum/capsule radiation-hydrodynamics simulations have demonstrated adequate hohlraum coupling, time-dependent radiation symmetry control, and the successful implosion, ignition, and burn of a high-yield capsule in the double Z-pinch hohlraum. An important new feature of this target design is mode-selective symmetry control: the use of burn-through shields offset from the capsule that selectively tune certain low-order asymmetry modes (P 2 ,P 4 ) without significantly perturbing higher-order modes and without a significant energy penalty. This paper will describe the capsule and hohlraum design that have produced 0.4-0.5 GJ yields in 2D simulations, provide a preliminary estimate of the Z-pinch load and accelerator requirements necessary to drive the system, and suggest future directions for target design work

  13. Changing paradigm from one target one ligand towards multi target directed ligand design for key drug targets of Alzheimer disease: An important role of Insilco methods in multi target directed ligands design.

    Science.gov (United States)

    Kumar, Akhil; Tiwari, Ashish; Sharma, Ashok

    2018-03-15

    Alzheimer disease (AD) is now considered as a multifactorial neurodegenerative disorder and rapidly increasing to an alarming situation and causing higher death rate. One target one ligand hypothesis is not able to provide complete solution of AD due to multifactorial nature of disease and one target one drug seems to fail to provide better treatment against AD. Moreover, current available treatments are limited and most of the upcoming treatments under clinical trials are based on modulating single target. So the current AD drug discovery research shifting towards new approach for better solution that simultaneously modulate more than one targets in the neurodegenerative cascade. This can be achieved by network pharmacology, multi-modal therapies, multifaceted, and/or the more recently proposed term "multi-targeted designed drugs. Drug discovery project is tedious, costly and long term project. Moreover, multi target AD drug discovery added extra challenges such as good binding affinity of ligands for multiple targets, optimal ADME/T properties, no/less off target side effect and crossing of the blood brain barrier. These hurdles may be addressed by insilico methods for efficient solution in less time and cost as computational methods successfully applied to single target drug discovery project. Here we are summarizing some of the most prominent and computationally explored single target against AD and further we discussed successful example of dual or multiple inhibitors for same targets. Moreover we focused on ligand and structure based computational approach to design MTDL against AD. However is not an easy task to balance dual activity in a single molecule but computational approach such as virtual screening docking, QSAR, simulation and free energy are useful in future MTDLs drug discovery alone or in combination with fragment based method. However, rational and logical implementations of computational drug designing methods are capable of assisting AD drug

  14. Design requirement on KALIMER control rod assembly duct

    International Nuclear Information System (INIS)

    Hwang, W.; Kang, H. Y.; Nam, C.; Kim, J. O.; Kim, Y. J.

    1998-03-01

    This document establishes the design guidelines which are needs for designing the control rod assembly duct of the KALIMER as design requirements. it describes control rod assembly duct of the KALIMER and its requirements that includes functional requirements, performance requirements, interfacing systems, design limits and strength requirements, seismic requirements, structural requirements, environmental requirements, reliability and safety requirements, standard and codes, QA programs, and other requirements. The control rod system consists of three parts, which are drive mechanism, drive-line, and absorber bundle. This report deals with the absorber bundle and its outer duct only because the others are beyond the scope of fuel system design. The guidelines for design requirements intend to be used for an improved design of the control rod assembly duct of the KALIMER. (author). 19 refs

  15. Design requirement on KALIMER control rod assembly duct

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, W.; Kang, H. Y.; Nam, C.; Kim, J. O.; Kim, Y. J

    1998-03-01

    This document establishes the design guidelines which are needs for designing the control rod assembly duct of the KALIMER as design requirements. it describes control rod assembly duct of the KALIMER and its requirements that includes functional requirements, performance requirements, interfacing systems, design limits and strength requirements, seismic requirements, structural requirements, environmental requirements, reliability and safety requirements, standard and codes, QA programs, and other requirements. The control rod system consists of three parts, which are drive mechanism, drive-line, and absorber bundle. This report deals with the absorber bundle and its outer duct only because the others are beyond the scope of fuel system design. The guidelines for design requirements intend to be used for an improved design of the control rod assembly duct of the KALIMER. (author). 19 refs.

  16. Analysis of the thermomechanical behavior of the IFMIF bayonet target assembly under design loading scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Bernardi, D., E-mail: davide.bernardi@enea.it [ENEA Brasimone, Camugnano, BO (Italy); Arena, P.; Bongiovì, G.; Di Maio, P.A. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, Palermo (Italy); Frisoni, M. [ENEA Bologna, Via Martiri di Monte Sole 4, Bologna (Italy); Miccichè, G.; Serra, M. [ENEA Brasimone, Camugnano, BO (Italy)

    2015-10-15

    In the framework of the IFMIF Engineering Validation and Engineering Design Activities (IFMIF/EVEDA) phase, ENEA is responsible for the design of the European concept of the IFMIF lithium target system which foresees the possibility to periodically replace only the most irradiated and thus critical component (i.e., the backplate) while continuing to operate the rest of the target for a longer period (the so-called bayonet backplate concept). In this work, the results of the steady state thermomechanical analysis of the IFMIF bayonet target assembly under two different design loading scenarios (a “hot” scenario and a “cold” scenario) are briefly reported highlighting the relevant indications obtained with respect to the fulfillment of the design requirements. In particular, the analyses have shown that in the hot scenario the temperatures reached in the target assembly are within the material acceptable limits while in the cold scenario transition below the ductile to brittle transition temperature (DBTT) cannot be excluded. Moreover, results indicate that the contact between backplate and high flux test module is avoided and that the overall structural integrity of the system is assured in both scenarios. However, stress linearization analysis reveals that ITER Structural Design Criteria for In-vessel Components (SDC-IC) design rules are not always met along the selected paths at backplate middle plane section in the hot scenario, thus suggesting the need of a revision of the backplate design or a change of the operating conditions.

  17. Adaptive Waveform Design for Cognitive Radar in Multiple Targets Situations

    Directory of Open Access Journals (Sweden)

    Xiaowen Zhang

    2018-02-01

    Full Text Available In this paper, the problem of cognitive radar (CR waveform optimization design for target detection and estimation in multiple extended targets situations is investigated. This problem is analyzed in signal-dependent interference, as well as additive channel noise for extended targets with unknown target impulse response (TIR. To address this problem, an improved algorithm is employed for target detection by maximizing the detection probability of the received echo on the promise of ensuring the TIR estimation precision. In this algorithm, an additional weight vector is introduced to achieve a trade-off among different targets. Both the estimate of TIR and transmit waveform can be updated at each step based on the previous step. Under the same constraint on waveform energy and bandwidth, the information theoretical approach is also considered. In addition, the relationship between the waveforms that are designed based on the two criteria is discussed. Unlike most existing works that only consider single target with temporally correlated characteristics, waveform design for multiple extended targets is considered in this method. Simulation results demonstrate that compared with linear frequency modulated (LFM signal, waveforms designed based on maximum detection probability and maximum mutual information (MI criteria can make radar echoes contain more multiple-target information and improve radar performance as a result.

  18. Nonfunctional requirements in systems analysis and design

    CERN Document Server

    Adams, Kevin MacG

    2015-01-01

    This book will help readers gain a solid understanding of non-functional requirements inherent in systems design endeavors. It contains essential information for those who design, use, and maintain complex engineered systems, including experienced designers, teachers of design, system stakeholders, and practicing engineers. Coverage approaches non-functional requirements in a novel way by presenting a framework of four systems concerns into which the 27 major non-functional requirements fall: sustainment, design, adaptation, and viability. Within this model, the text proceeds to define each non-functional requirement, to specify how each is treated as an element of the system design process, and to develop an associated metric for their evaluation. Systems are designed to meet specific functional needs. Because non-functional requirements are not directly related to tasks that satisfy these proposed needs, designers and stakeholders often fail to recognize the importance of such attributes as availability, su...

  19. National Ignition Facility subsystem design requirements final optics assembly subsystem SSDR 1.8.7

    International Nuclear Information System (INIS)

    Adams, C.

    1996-01-01

    This SSDR establishes the performance, design, development and test requirements for the Final Optic Assembly (FOA). The FOA (WBS 1.8.7) as part of the Target Experimental System (1.8) includes vacuum windows, frequency conversion crystals, focus lens, debris shields and supporting mechanical equipment

  20. STRUCTURAL DESIGN CRITERIA FOR TARGET/BLANKET SYSTEM COMPONENT MATERIALS FOR THE ACCELERATOR PRODUCTION OF TRITIUM PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    W. JOHNSON; R. RYDER; P. RITTENHOUSE

    2001-01-01

    The design of target/blanket system components for the Accelerator Production of Tritium (APT) plant is dependent on the development of materials properties data specified by the designer. These data are needed to verify that component designs are adequate. The adequacy of the data will be related to safety, performance, and economic considerations, and to other requirements that may be deemed necessary by customers and regulatory bodies. The data required may already be in existence, as in the open technical literature, or may need to be generated, as is often the case for the design of new systems operating under relatively unique conditions. The designers' starting point for design data needs is generally some form of design criteria used in conjunction with a specified set of loading conditions and associated performance requirements. Most criteria are aimed at verifying the structural adequacy of the component, and often take the form of national or international standards such as the ASME Boiler and Pressure Vessel Code (ASME B and PV Code) or the French Nuclear Structural Requirements (RCC-MR). Whether or not there are specific design data needs associated with the use of these design criteria will largely depend on the uniqueness of the conditions of operation of the component. A component designed in accordance with the ASME B and PV Code, where no unusual environmental conditions exist, will utilize well-documented, statistically-evaluated developed in conjunction with the Code, and will not be likely to have any design data needs. On the other hand, a component to be designed to operate under unique APT conditions, is likely to have significant design data needs. Such a component is also likely to require special design criteria for verification of its structural adequacy, specifically accounting for changes in materials properties which may occur during exposure in the service environment. In such a situation it is common for the design criteria

  1. Optimum nuclear design of target fuel rod for Mo-99 production in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Hyun [Kyung Hee University, Seoul (Korea)

    1998-04-01

    Nuclear target design for Mo-99 production in HANARO was performed, KAERI proposed target design was analyzed and its feasibility was shown. Three commercial target designs of Cintichem, ANL and KAERI were tested for the HANARO irradiation an d they all satisfied with design specification. A parametric study was done for target design options and Mo-99 yields ratio and surface heat flux were compared. Tested parameters were target fuel thickness, irradiation location, target axial length, packing density of powder fuel, size of target radius, target geometry, fuel enrichment, fuel composition, and cladding material. Optimized target fuel was designed for both LEU and HEU options. (author). 17 refs., 33 figs., 42 tabs.

  2. Experimental study of liquid-metal target designs of accelerating-controlled systems

    International Nuclear Information System (INIS)

    Iarmonov, Mikhail; Makhov, Kirill; Novozhilova, Olga; Meluzov, A.G.; Beznosov, A.V.

    2011-01-01

    Models of a liquid-metal target of an accelerator-controlled system have been experimentally studied at the Nizhny Novgorod State Technical University to develop an optimal design of the flow part of the target. The main explored variants of liquid-metal targets are: Design with a diaphragm (firm-and-impervious plug) mounted on the pipe tap of particle transport from the accelerator cavity to the working cavity of the liquid-metal target. Design without a diaphragm on the pipe tab of particle transport from the accelerator. The study was carried out in a high-temperature liquid-metal test bench under the conditions close to full-scale ones: the temperature of the eutectic lead-bismuth alloy was 260degC - 400degC, the coolant mass flow was 5-80 t/h, and the rarefaction in the gas cavity was 10 5 Pa, the coefficient of geometric similarity equal to 1. The experimental studies of hydrodynamic characteristics of flow parts in the designs of targets under full-scale conditions indicated high efficiency of a target in triggering, operating, and deactivating modes. Research and technology instructions for designs of the flow part of the liquid-metal target, the target design as a whole, and the target circuit of accelerator-controlled systems were formulated as a result of the studies. (author)

  3. Water-cooled target-box design at LAMPF

    International Nuclear Information System (INIS)

    Grisham, D.; Lambert, J.

    1983-01-01

    The target boxes in the main experimental beam line (Line A) at the Clinton P. Anderson Meson Physics Facility (LAMPF) have operated since 1976. A program of replacing the boxes is underway. This paper will present past history, design considerations, calculational results and the final box design

  4. Mechanical design of experimental apparatus for FIREX cryo-target cooling

    Science.gov (United States)

    Iwamoto, A.; Norimatsu, T.; Nakai, M.; Sakagami, H.; Fujioka, S.; Shiraga, H.; Azechi, H.

    2016-05-01

    Mechanical design of an experimental apparatus for FIREX cryo-target cooling is described. Gaseous helium (GHe) sealing system at a cryogenic environment is an important issue for laser fusion experiments. The dedicated loading system was designed for a metal gasket. We take U-TIGHTSEAL® (Usui Kokusai Sangyo Kaisha. Ltd.) with an indium plated copper jacket as an example. According to its specification, a linear load of 110 N/m along its circumference is the optimum compression; however a lower load would still maintain helium (He) leak below the required level. Its sealing performance was investigated systematically. Our system demanded 27 N/mm of the load to keep He leak tightness in a cryogenic environment. Once leak tightness was obtained, it could be reduced to 9.5 N/mm.

  5. Review of laser mega joule target area: Design and processes

    International Nuclear Information System (INIS)

    Geitzholz, M.; Lanternier, C.

    2006-01-01

    The Laser Mega Joule (LMJ) target area is currently designed to achieve ignition and significant fusion gain in laboratory. LMJ will be composed of 240 identical large 370 mm * 370 mm square laser beams. These beams will focus 2 mega-joules of energy at the wavelength of 351 nm on the center of an experiment chamber. Design studies for target equipment are well advanced, target chamber and target holder (concrete) works have already begun. A detailed overview of the target area equipment is presented: target chamber, frame, diagnostic inserter manipulator, final optic assembly, dual diagnostic and laser reference, non cryogenic target positioner. Recent technical and architectural choices are detailed including safety transfers and alignment processes (target, laser and diagnostic). All this target equipment allows us to optimize shot chrono-gram, from target metrology to the shot, including calibration process. (authors)

  6. Quantifying design trade-offs of beryllium targets on NIF

    Science.gov (United States)

    Yi, S. A.; Zylstra, A. B.; Kline, J. L.; Loomis, E. N.; Kyrala, G. A.; Shah, R. C.; Perry, T. S.; Kanzleiter, R. J.; Batha, S. H.; MacLaren, S. A.; Ralph, J. E.; Masse, L. P.; Salmonson, J. D.; Tipton, R. E.; Callahan, D. A.; Hurricane, O. A.

    2017-10-01

    An important determinant of target performance is implosion kinetic energy, which scales with the capsule size. The maximum achievable performance for a given laser is thus related to the largest capsule that can be imploded symmetrically, constrained by drive uniformity. A limiting factor for symmetric radiation drive is the ratio of hohlraum to capsule radii, or case-to-capsule ratio (CCR). For a fixed laser energy, a larger hohlraum allows for driving bigger capsules symmetrically at the cost of reduced peak radiation temperature (Tr). Beryllium ablators may thus allow for unique target design trade-offs due to their higher ablation efficiency at lower Tr. By utilizing larger hohlraum sizes than most modern NIF designs, beryllium capsules thus have the potential to operate in unique regions of the target design parameter space. We present design simulations of beryllium targets with a large CCR = 4.3 3.7 . These are scaled surrogates of large hohlraum low Tr beryllium targets, with the goal of quantifying symmetry tunability as a function of CCR. This work performed under the auspices of the U.S. DOE by LANL under contract DE-AC52- 06NA25396, and by LLNL under Contract DE-AC52-07NA27344.

  7. Requirements for Space Settlement Design

    Science.gov (United States)

    Gale, Anita E.; Edwards, Richard P.

    2004-02-01

    When large space settlements are finally built, inevitably the customers who pay for them will start the process by specifying requirements with a Request for Proposal (RFP). Although we are decades away from seeing the first of these documents, some of their contents can be anticipated now, and provide insight into the variety of elements that must be researched and developed before space settlements can happen. Space Settlement Design Competitions for High School students present design challenges in the form of RFPs, which predict basic requirements for space settlement attributes in the future, including structural features, infrastructure, living conveniences, computers, business areas, and safety. These requirements are generically summarized, and unique requirements are noted for specific space settlement locations and applications.

  8. Optimum design of exploding pusher target to produce maximum neutrons

    International Nuclear Information System (INIS)

    Kitagawa, Y.; Miyanaga, N.; Kato, Y.; Nakatsuka, M.; Nishiguchi, A.; Yabe, T.; Yamanaka, C.

    1985-03-01

    Exploding pusher target experiments have been conducted with the 1.052-μm GEKKO MII two-beam glass laser system to design an optimum target, which couples to the incident laser light most effectively to produce the maximum neutrons. Since hot electrons preheat the shell entirely in spite of strongly nonuniform irradiation, a simple model can design the optimum target, of which the shell/fuel interface is accelerated to 0.5 to 0.7 times the initial radius within a laser pulse. A 2-dimensional computer simulation supports this target design. The scaling of the neutron yield N with the laser power P is N ∝ P 2.4±0.4 . (author)

  9. Design and Implementation of the Automated Rendezvous Targeting Algorithms for Orion

    Science.gov (United States)

    DSouza, Christopher; Weeks, Michael

    2010-01-01

    The Orion vehicle will be designed to perform several rendezvous missions: rendezvous with the ISS in Low Earth Orbit (LEO), rendezvous with the EDS/Altair in LEO, a contingency rendezvous with the ascent stage of the Altair in Low Lunar Orbit (LLO) and a contingency rendezvous in LLO with the ascent and descent stage in the case of an aborted lunar landing. Therefore, it is not difficult to realize that each of these scenarios imposes different operational, timing, and performance constraints on the GNC system. To this end, a suite of on-board guidance and targeting algorithms have been designed to meet the requirement to perform the rendezvous independent of communications with the ground. This capability is particularly relevant for the lunar missions, some of which may occur on the far side of the moon. This paper will describe these algorithms which are designed to be structured and arranged in such a way so as to be flexible and able to safely perform a wide variety of rendezvous trajectories. The goal of the algorithms is not to merely fly one specific type of canned rendezvous profile. Conversely, it was designed from the start to be general enough such that any type of trajectory profile can be flown.(i.e. a coelliptic profile, a stable orbit rendezvous profile, and a expedited LLO rendezvous profile, etc) all using the same rendezvous suite of algorithms. Each of these profiles makes use of maneuver types which have been designed with dual goals of robustness and performance. They are designed to converge quickly under dispersed conditions and they are designed to perform many of the functions performed on the ground today. The targeting algorithms consist of a phasing maneuver (NC), an altitude adjust maneuver (NH), and plane change maneuver (NPC), a coelliptic maneuver (NSR), a Lambert targeted maneuver, and several multiple-burn targeted maneuvers which combine one of more of these algorithms. The derivation and implementation of each of these

  10. Benchmarking CRISPR on-target sgRNA design.

    Science.gov (United States)

    Yan, Jifang; Chuai, Guohui; Zhou, Chi; Zhu, Chenyu; Yang, Jing; Zhang, Chao; Gu, Feng; Xu, Han; Wei, Jia; Liu, Qi

    2017-02-15

    CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-based gene editing has been widely implemented in various cell types and organisms. A major challenge in the effective application of the CRISPR system is the need to design highly efficient single-guide RNA (sgRNA) with minimal off-target cleavage. Several tools are available for sgRNA design, while limited tools were compared. In our opinion, benchmarking the performance of the available tools and indicating their applicable scenarios are important issues. Moreover, whether the reported sgRNA design rules are reproducible across different sgRNA libraries, cell types and organisms remains unclear. In our study, a systematic and unbiased benchmark of the sgRNA predicting efficacy was performed on nine representative on-target design tools, based on six benchmark data sets covering five different cell types. The benchmark study presented here provides novel quantitative insights into the available CRISPR tools. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. An investigative approach to explore optimum assembly process design for annular targets carrying LEU foil

    Science.gov (United States)

    Hoyer, Annemarie

    Technetium-99m is the most widely used nuclear isotope in the medical field, with nearly 80 to 85% of all diagnostic imaging procedures. The daughter isotope of molybdenum-99 is currently produced using weapons-grade uranium. A suggested design for aluminum targets carrying low-enriched uranium (LEU) foil is presented for the fulfillment of eliminating highly enriched uranium (HEU) for medical isotope production. The assembly process that this research focuses on is the conventional draw-plug process which is currently used and lastly the sealing process. The research is unique in that it is a systematic approach to explore the optimal target assembly process to produce those targets with the required quality and integrity. Conducting 9 parametric experiments, aluminum tubes with a nickel foil fission-barrier and a surrogate stainless steel foil are assembled, welded and then examined to find defects, to determine residual stresses, and to find the best cost-effective target dimensions. The experimental design consists of 9 assembly combinations that were found through orthogonal arrays in order to explore the significance of each factor. Using probabilistic modeling, the parametric study is investigated using the Taguchi method of robust analysis. Depending on the situation, optimal conditions may be a nominal, a minimized or occasionally a maximized condition. The results will provide the best target design and will give optimal quality with little or no assembly defects.

  12. Engineering design of the EURISOL multi-MW spallation target

    CERN Document Server

    Herrera-Martínez, A; Ashrafi-Nik, M; Samec, K; Freibergs, J; Platacis, E

    2007-01-01

    The European Isotope Separation On-Line Radioactive Ion Beam project (EURISOL) is set to design the 'next-generation' European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research on nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2010. In EURISOL, four target stations are foreseen, three direct targets of approximately 100 kW of beam power and one multi-MW target assembly, all driven by a high-power particle accelerator. In this high power target station, high-intensity RIBs of neutron-rich isotopes will be obtained by inducing fission in several actinide targets surrounding a liquid metal spallation neutron source. This article summarises the work carried out within Task 2 of the EURISOL Design Study, with special attention to the coupled neutronics of the mercury proton-to-neutron converter and the fission targets. The overall performance of the facility, which will sustain fast neutron fluxes of the order of 1...

  13. ENGINEERING DESIGN OF THE EURISOL MULTI-MW SPALLATION TARGET

    CERN Document Server

    Adonai Herrera-Martinez*, Yacine Kadi, Morteza Ashrafi-Nik, Karel Samec, Janis Freibergs, Ernests Platacis

    The European Isotope Separation On-Line Radioactive Ion Beam project (EURISOL) is set to design the ‘next-generation’ European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research on nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2010. In EURISOL, four target stations are foreseen, three direct targets of approximately 100 kW of beam power and one multi-MW target assembly, all driven by a high-power particle accelerator. In this high power target station, high-intensity RIBs of neutron-rich isotopes will be obtained by inducing fission in several actinide targets surrounding a liquid metal spallation neutron source. This article summarises the work carried out within Task 2 of the EURISOL Design Study, with special attention to the coupled neutronics of the mercury proton-to-neutron converter and the fission targets. The overall performance of the facility, which will sustain fast neutron fluxes of the order ...

  14. Design of ignition targets for the National Ignition Facility

    International Nuclear Information System (INIS)

    Haan, S.W.; Dittrich, T.R.; Marinak, M.M.; Hinkel, D.E.

    1999-01-01

    This is a brief update on the work being done to design ignition targets for the National Ignition Facility. Updates are presented on three areas of current activity : improvements in modeling, work on a variety of targets spanning the parameter space of possible ignition targets ; and the setting of specifications for target fabrication and diagnostics. Highlights of recent activity include : a simulation of the Rayleigh-Taylor instability growth on an imploding capsule, done in 3D on a 72degree by 72degree wedge, with enough zones to resolve modes out to 100 ; and designs of targets at 250eV and 350eV, as well as the baseline 300 eV ; and variation of the central DT gas density, which influences both the Rayleigh-Taylor growth and the smoothness of the DT ice layer

  15. Requirements on internal targets for the Aladdin storage ring

    International Nuclear Information System (INIS)

    Holt, R.J.

    1984-01-01

    The feasibility of performing electron scattering experiments with polarized targets in electron storage rings is explored by considering an electron-deuteron scattering experiment at the Aladdin storage ring. It is noted that this new method is compatible with recent proposals for linac-stretcher-ring accelerator designs. A new method for producing a polarized hydrogen or deuterium target is proposed and some preliminary results are described. 21 references, 6 figures, 1 table

  16. Design of the fill/transfer station cryostat for the OMEGA cryogenic target system

    International Nuclear Information System (INIS)

    Gibson, C.R.; Charmin, C.M.; Del Bene, J.V.; Hoffmann, E.H.; Besenbruch, G.E.; Anteby, I.

    1997-09-01

    General Atomics is designing, testing and fabricating a system for supplying cryogenic targets for the University of Rochester's OMEGA laser system. A prototype system has demonstrated the filling of 1 mm diameter, 3 microm wall plastic spheres to 111 MPa (1,100 atm) with deuterium and then cooling to 18 K to condense the fuel. The production design must be capable of routinely filling and cooling targets with a 50/50 mix of deuterium and tritium and transferring them to a device which places the targets into the focus of 60 laser beams. This paper discusses the design and analysis of the production Fill/Transfer Station cryostat. The cryostat has two major components, a fixed base and a removable dome. The joint between the base and the dome is similar to a bayonet fitting and is sealed by a room temperature elastomeric o-ring. Since the cryostat must be housed in a glovebox, its design is driven strongly by maintenance requirements. To reach the equipment inside the cryostat, the dome is simply unbolted and lifted. The inside of the cryostat is maintained at 16 K by a closed loop helium flow system. Gaseous helium at about 1.4 MPa (200 psi) flows through tubes which are brazed to the inner walls. Cooling is provided by several cryocoolers which are located external to the cryostat. Liquid nitrogen is used as a heat intercept and to precool the helium gas

  17. Design Requirements, Epistemic Uncertainty and Solution Development Strategies in Software Design

    DEFF Research Database (Denmark)

    Ball, Linden J.; Onarheim, Balder; Christensen, Bo Thomas

    2010-01-01

    This paper investigates the potential involvement of “epistemic uncertainty” in mediating between complex design requirements and strategic switches in software design strategies. The analysis revealed that the designers produced an initial “first-pass” solution to the given design brief in a bre...... a view of software design as involving a mixed breadth-first and depth-first solution development approach, with strategic switching to depth-first design being triggered by requirement complexity and being mediated by associated feelings of uncertainty....

  18. Test of a High Power Target Design

    CERN Multimedia

    2002-01-01

    %IS343 :\\\\ \\\\ A high power tantalum disc-foil target (RIST) has been developed for the proposed radioactive beam facility, SIRIUS, at the Rutherford Appleton Laboratory. The yield and release characteristics of the RIST target design have been measured at ISOLDE. The results indicate that the yields are at least as good as the best ISOLDE roll-foil targets and that the release curves are significantly faster in most cases. Both targets use 20 -25 $\\mu$m thick foils, but in a different internal geometry.\\\\ \\\\Investigations have continued at ISOLDE with targets having different foil thickness and internal geometries in an attempt to understand the release mechanisms and in particular to maximise the yield of short lived isotopes. A theoretical model has been developed which fits the release curves and gives physical values of the diffusion constants.\\\\ \\\\The latest target is constructed from 2 $\\mu$m thick tantalum foils (mass only 10 mg) and shows very short release times. The yield of $^{11}$Li (half-life of ...

  19. Test design requirements: Thermal conductivity probe testing

    International Nuclear Information System (INIS)

    Heath, R.E.

    1985-01-01

    This document establishes the test design requirements for development of a thermal conductivity probe test. The thermal conductivity probe determines in situ thermal conductivity using a line source transient heat conduction analysis. This document presents the rationale for thermal conductivity measurement using a thermal conductivity probe. A general test description is included. Support requirements along with design constraints are detailed to allow simple design of the thermal conductivity probe and test. The schedule and delivery requirements of the responsible test designer are also included. 7 refs., 1 fig

  20. Defining Requirements and Related Methods for Designing Sensorized Garments

    Directory of Open Access Journals (Sweden)

    Giuseppe Andreoni

    2016-05-01

    Full Text Available Designing smart garments has strong interdisciplinary implications, specifically related to user and technical requirements, but also because of the very different applications they have: medicine, sport and fitness, lifestyle monitoring, workplace and job conditions analysis, etc. This paper aims to discuss some user, textile, and technical issues to be faced in sensorized clothes development. In relation to the user, the main requirements are anthropometric, gender-related, and aesthetical. In terms of these requirements, the user’s age, the target application, and fashion trends cannot be ignored, because they determine the compliance with the wearable system. Regarding textile requirements, functional factors—also influencing user comfort—are elasticity and washability, while more technical properties are the stability of the chemical agents’ effects for preserving the sensors’ efficacy and reliability, and assuring the proper duration of the product for the complete life cycle. From the technical side, the physiological issues are the most important: skin conductance, tolerance, irritation, and the effect of sweat and perspiration are key factors for reliable sensing. Other technical features such as battery size and duration, and the form factor of the sensor collector, should be considered, as they affect aesthetical requirements, which have proven to be crucial, as well as comfort and wearability.

  1. Super liquid density target designs

    International Nuclear Information System (INIS)

    Pan, Y.L.; Bailey, D.S.

    1976-01-01

    The success of laser fusion depends on obtaining near isentropic compression of fuel to very high densities and igniting this fuel. To date, the results of laser fusion experiments have been based mainly on the exploding pusher implosion of fusion capsules consisting of thin glass microballoons (wall thickness of less than 1 micron) filled with low density DT gas (initial density of a few mg/cc). Maximum DT densities of a few tenths of g/cc and temperatures of a few keV have been achieved in these experiments. We will discuss the results of LASNEX target design calculations for targets which: (a) can compress fuel to much higher densities using the capabilities of existing Nd-glass systems at LLL; (b) allow experimental measurement of the peak fuel density achieved

  2. Safety requirements applicable to the SMART design

    International Nuclear Information System (INIS)

    Seul, Kwang Won; Kim, Wee Kyong; Kim, Hho Jung

    1999-01-01

    The 330 MW thermal power of integral reactor, named SMART (System integrated Modular Advanced ReacTor), is under development at KAERI for seawater desalination application and electricity generation. The final product of nuclear desalination plant (NDP) is electricity and fresh water. Thus, in addition to the protection of the public around the plant facility from the possible release of radioactive materials, the fresh water should be prevented from radioactivity contamination. In this study, to ensure the safety of SMART reactor in the early stage of design development, the safety requirements applicable to the SMART design were investigated, based on the current regulatory requirements for the existing NPPs and the advanced light water reactor (LWR) designs. The interface requirements related to the desalination facility were also investigated, based on the recent IAEA research activities pertaining to the NDP. As a result, it was found that the current regulatory requirements and guidance for the existing NPPs and advanced LWR designs are applicable to the SMART design and its safety evaluation. However, the safety requirements related to the SMART-specific design and the desalination plant are needed to develop in the future to assure the safety of the SMART reactor

  3. IFMIF target and test cell - design and integration

    International Nuclear Information System (INIS)

    Heinzel, V.

    2007-01-01

    The International Fusion Material Irradiation Facility (IFMIF) aims at the qualification of appropriate materials for a Demonstration Fusion Power Plant (DEMO) to a fluence of up to 150 dpa (displacement per atom) at a DEMO typical neutron spectrum. It comprises two accelerators each providing a deuteron beam with 125 mA and 40 MeV. The deuterons strike a lithium target and create via stripping reactions neutrons. The neutrons are mainly forward directed into the High-Flux-Test-Module (HFTM). The Medium Flux-Test-Modules (MFTM) and the Low-Flux-Test-Modules (LFTM) are arranged in beam direction behind. In the HFTM a damage rate in steel of more than 20 dpa/fpy (displacement per atome per full power year) will be provide in a volume of 0.5 litre. The neutron spectrum is prone to produce helium and tritium in steel like in the first wall of a DEMO reactor. The Medium- Flux-Test-Modules are designed for creep fatigues in situ and tritium release test. The test modules are cooled with helium. The target is a lithium jet with a free surface towards the deuteron beams. The jet follows a concave curved so called back wall. Centrifugal forces increase the static pressure, which prevents lithium boiling at the beam tube pressure and the power release of 10 MW due to the deuteron beams. The target and Test Cell (TTC) houses the target and the test modules as well as the lithium supply tubes and a quench tank into which the lithium splashes after the target. The lithium containing components have a temperature of 250 to 350 C. Nuclear reactions mainly in beam direction contribute to heat releases in TTC components. The TTC is filled with a noble gas with almost atmospheric pressure. Natural convection transfers heat to the walls but also mitigates temperature peaks. The Forschungszentrum Karlsruhe (FZK) has developed or validated tools for: - The extended Monte Carlo Code McDeLicious for calculations of the neutron source term, dpa rates in the material specimens, activation

  4. 7 CFR 801.11 - Related design requirements.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Related design requirements. 801.11 Section 801.11... FOR GRAIN INSPECTION EQUIPMENT § 801.11 Related design requirements. (a) Suitability. The design... tolerances prescribed in §§ 801.3 through 801.10, be capable of repeating its results when the equipment is...

  5. Designing multi-targeted agents: An emerging anticancer drug discovery paradigm.

    Science.gov (United States)

    Fu, Rong-Geng; Sun, Yuan; Sheng, Wen-Bing; Liao, Duan-Fang

    2017-08-18

    The dominant paradigm in drug discovery is to design ligands with maximum selectivity to act on individual drug targets. With the target-based approach, many new chemical entities have been discovered, developed, and further approved as drugs. However, there are a large number of complex diseases such as cancer that cannot be effectively treated or cured only with one medicine to modulate the biological function of a single target. As simultaneous intervention of two (or multiple) cancer progression relevant targets has shown improved therapeutic efficacy, the innovation of multi-targeted drugs has become a promising and prevailing research topic and numerous multi-targeted anticancer agents are currently at various developmental stages. However, most multi-pharmacophore scaffolds are usually discovered by serendipity or screening, while rational design by combining existing pharmacophore scaffolds remains an enormous challenge. In this review, four types of multi-pharmacophore modes are discussed, and the examples from literature will be used to introduce attractive lead compounds with the capability of simultaneously interfering with different enzyme or signaling pathway of cancer progression, which will reveal the trends and insights to help the design of the next generation multi-targeted anticancer agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Design of a deuterium and tritium-ablator shock ignition target for the National Ignition Facility

    International Nuclear Information System (INIS)

    Terry, Matthew R.; Perkins, L. John; Sepke, Scott M.

    2012-01-01

    Shock ignition presents a viable path to ignition and high gain on the National Ignition Facility (NIF). In this paper, we describe the development of the 1D design of 0.5 MJ class, all-deuterium and tritium (fuel and ablator) shock ignition target that should be reasonably robust to Rayleigh-Taylor fluid instabilities, mistiming, and hot electron preheat. The target assumes “day one” NIF hardware and produces a yield of 31 MJ with reasonable allowances for laser backscatter, absorption efficiency, and polar drive power variation. The energetics of polar drive laser absorption require a beam configuration with half of the NIF quads dedicated to launching the ignitor shock, while the remaining quads drive the target compression. Hydrodynamic scaling of the target suggests that gains of 75 and yields 70 MJ may be possible.

  7. A novel graphical technique for Pinch Analysis applications: Energy Targets and grassroots design

    International Nuclear Information System (INIS)

    Gadalla, Mamdouh A.

    2015-01-01

    Graphical abstract: A new HEN graphical design. - Highlights: • A new graphical technique for heat exchanger networks design. • Pinch Analysis principles and design rules are better interpreted. • Graphical guidelines for optimum heat integration. • New temperature-based graphs provide user-interactive features. - Abstract: Pinch Analysis is for decades a leading tool to energy integration for retrofit and design. This paper presents a new graphical technique, based on Pinch Analysis, for the grassroots design of heat exchanger networks. In the new graph, the temperatures of hot streams are plotted versus those of the cold streams. The temperature–temperature based graph is constructed to include temperatures of hot and cold streams as straight lines, horizontal lines for hot streams, and vertical lines for cold streams. The graph is applied to determine the pinch temperatures and Energy Targets. It is then used to synthesise graphically a complete exchanger network, achieving the Energy Targets. Within the new graph, exchangers are represented by inclined straight lines, whose slopes are proportional to the ratio of heat capacities and flows. Pinch Analysis principles for design are easily interpreted using this new graphical technique to design a complete exchanger network. Network designs achieved by the new technique can guarantee maximum heat recovery. The new technique can also be employed to simulate basic designs of heat exchanger networks. The strengths of the new tool are that it is simply applied using computers, requires no commercial software, and can be used for academic purposes/engineering education

  8. Cold vacuum drying facility design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, J.J.

    1997-09-24

    This release of the Design Requirements Document is a complete restructuring and rewrite to the document previously prepared and released for project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility.

  9. Cold vacuum drying facility design requirements

    International Nuclear Information System (INIS)

    Irwin, J.J.

    1997-01-01

    This release of the Design Requirements Document is a complete restructuring and rewrite to the document previously prepared and released for project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility

  10. Massively parallel de novo protein design for targeted therapeutics

    KAUST Repository

    Chevalier, Aaron

    2017-09-26

    De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37-43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing.

  11. Massively parallel de novo protein design for targeted therapeutics

    KAUST Repository

    Chevalier, Aaron; Silva, Daniel-Adriano; Rocklin, Gabriel J.; Hicks, Derrick R.; Vergara, Renan; Murapa, Patience; Bernard, Steffen M.; Zhang, Lu; Lam, Kwok-Ho; Yao, Guorui; Bahl, Christopher D.; Miyashita, Shin-Ichiro; Goreshnik, Inna; Fuller, James T.; Koday, Merika T.; Jenkins, Cody M.; Colvin, Tom; Carter, Lauren; Bohn, Alan; Bryan, Cassie M.; Ferná ndez-Velasco, D. Alejandro; Stewart, Lance; Dong, Min; Huang, Xuhui; Jin, Rongsheng; Wilson, Ian A.; Fuller, Deborah H.; Baker, David

    2017-01-01

    De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37-43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing.

  12. Massively parallel de novo protein design for targeted therapeutics

    Science.gov (United States)

    Chevalier, Aaron; Silva, Daniel-Adriano; Rocklin, Gabriel J.; Hicks, Derrick R.; Vergara, Renan; Murapa, Patience; Bernard, Steffen M.; Zhang, Lu; Lam, Kwok-Ho; Yao, Guorui; Bahl, Christopher D.; Miyashita, Shin-Ichiro; Goreshnik, Inna; Fuller, James T.; Koday, Merika T.; Jenkins, Cody M.; Colvin, Tom; Carter, Lauren; Bohn, Alan; Bryan, Cassie M.; Fernández-Velasco, D. Alejandro; Stewart, Lance; Dong, Min; Huang, Xuhui; Jin, Rongsheng; Wilson, Ian A.; Fuller, Deborah H.; Baker, David

    2018-01-01

    De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37–43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing. PMID:28953867

  13. Design considerations for foil windows for PET radioisotope targets

    International Nuclear Information System (INIS)

    Hughey, B.J.; Shefer, R.E.; Klinkowstein, R.E.; Welch, M.J.

    1992-01-01

    This paper describes the results of a study performed at SRL to develop analytical and computational techniques for optimizing the design of conduction-cooled foil windows for PET targets. Single foil conduction cooled windows have been found to be good target entrance windows for both low energy accelerators and medium energy cyclotrons. Detailed thermal analysis has given an approximate analytical expression for the maximum temperature reached in a foil window under conditions of realistic ion beam bombardment. The effects of 'hot spots' in the beam density profile were investigated. It was shown that a factor of two safety margin in window design should be adequate to compensate for any possible beam hot spots. In addition, the reduction of foil stress by slack mounting was verified by experiments. The properties of conventional and novel foil materials were investigated for use in conduction cooled windows. Novel foil materials include two-component Al/Ti and Al/Havar foil. Results on the testing of candidate foil materials for thermal conductivity and mechanical strength at elevated temperature were presented. Two optimum foil window geometries were analyzed: a high aspect ratio window and a multiply slotted window. The multiply slotted window combines the advantages of a high aspect ratio foil window with a circular beam strike and is a promising window design for both TCA and cyclotron targets. A multiply slotted window for a N 2 gas target for 15 O production was designed using the methodologies discussed above. This prototype target was successfully tested using the TCA beam at SRL. (author) 6 figs., 3 tabs., 10 refs

  14. Customer Focused Product Design Using Integrated Model of Target Costing, Quality Function Deployment and Value Engineering

    Directory of Open Access Journals (Sweden)

    Hossein Rezaei Dolatabadi

    2013-01-01

    Full Text Available Target costing by integrating customer requirements, technical attributes and cost information into the product design phase and eliminating the non-value added functions, plays a vital role in different phases of the product life cycle. Quality Function Deployment (QFD and Value Engineering (VE are two techniques which can be used for applying target costing, successfully. The purpose of this paper is to propose an integrated model of target costing, QFD and VE to explore the role of target costing in managing product costs while promoting quality specifications meeting customers’ needs. F indings indicate that the integration of target costing, QFD and VE is an essential technique in managing the costs of production process. Findings also imply that integration of the three techniques provides a competitive cost advantage to companies.

  15. Design requirement on KALIMER blanket fuel assembly duct

    International Nuclear Information System (INIS)

    Hwang, Woan; Kang, H. Y.; Nam, C.; Kim, J. O.

    1998-03-01

    This document describes design requirements which are needed for designing the blanket fuel assembly duct of the KALIMER as design guidance. The blanket fuel assembly duct of the KALIMER consists of fuel rods, mounting rail, nosepiece, duct with pad, handling socket with pad. Blanket fuel rod consists of top end plug, bottom end plug with solid ferritic-martensitic steel rod and key way blanket fuel slug, cladding, and wire wrap. In the assembly, the rods are in a triangular pitch array, and the rod bundle is attached to the nosepiece with mounting rails. The bottom end of the assembly duct is formed by a long nosepiece which provides the lower restraint function and the paths for coolant inlet. This report contains functional requirements, performance and operational requirements, interfacing systems requirements, core restraint and interface requirements, design limits and strength requirements, system configuration and essential feature requirements, seismic requirements, structural requirements, environmental requirements, reliability and safety requirements, standard and codes, QA programs, and other requirements. (author). 20 refs., 4 figs

  16. Advanced Neutron Sources: Plant Design Requirements

    International Nuclear Information System (INIS)

    1990-07-01

    The Advanced Neutron Source (ANS) is a new, world class facility for research using hot, thermal, cold, and ultra-cold neutrons. At the heart of the facility is a 350-MW th , heavy water cooled and moderated reactor. The reactor is housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides fans out into a large guide hall, housing about 30 neutron research stations. Office, laboratory, and shop facilities are included to provide a complete users facility. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory at the end of the decade. This Plant Design Requirements document defines the plant-level requirements for the design, construction, and operation of the ANS. This document also defines and provides input to the individual System Design Description (SDD) documents. Together, this Plant Design Requirements document and the set of SDD documents will define and control the baseline configuration of the ANS

  17. Target/blanket conceptual design for the Los Alamos ATW concept

    International Nuclear Information System (INIS)

    Ames, K.; Cappiello, M.; Ireland, J.; Sapir, J.; Farnum, G.

    1992-01-01

    The Los Alamos Accelerator Transmutation of Waste (ATW) concept has many potential applications that include defense waste transmutation, defense material production (i.e., tritium and 238 Pu), and the transmutation of hazardous nuclear wastes from commercial nuclear reactors (fission products and actinides). A more advanced long-term Los Alamos effort is investigating the potential of an accelerator- driven system to produce fission energy with a minimal nuclear waste stream. All applications employ a high-energy (800- to 1600-MeV), high-current (25--250 mA) proton linear accelerator as the driver. In this report, we discuss only the target/blanket conceptual design for the commercial nuclear waste application. A conceptual design for the target/blanket of the Los Alamos ATW concept has been presented. The neutronics, mechanical design, and heat transfer have been investigated in some detail for the base-case design. Much more work needs to be done, but at this point it appears that the design is feasible and will approach the design goal of supporting two commercial power reactors with each target/blanket module

  18. Anti-malarial Drug Design by Targeting Apicoplasts: New Perspectives

    Directory of Open Access Journals (Sweden)

    Avinaba Mukherjee

    2016-03-01

    Full Text Available Objectives: Malaria has been a major global health problem in recent times with increasing mortality. Current treatment methods include parasiticidal drugs and vaccinations. However, resistance among malarial parasites to the existing drugs has emerged as a significant area of concern in anti-malarial drug design. Researchers are now desperately looking for new targets to develop anti-malarials drug which is more target specific. Malarial parasites harbor a plastid-like organelle known as the ‘apicoplast’, which is thought to provide an exciting new outlook for the development of drugs to be used against the parasite. This review elaborates on the current state of development of novel compounds targeted againstemerging malaria parasites. Methods: The apicoplast, originates by an endosymbiotic process, contains a range of metabolic pathways and housekeeping processes that differ from the host body and thereby presents ideal strategies for anti-malarial drug therapy. Drugs are designed by targeting the unique mechanism of the apicoplasts genetic machinery. Several anabolic and catabolic processes, like fatty acid, isopenetyl diphosphate and heme synthess in this organelle, have also been targeted by drugs. Results: Apicoplasts offer exciting opportunities for the development of malarial treatment specific drugs have been found to act by disrupting this organelle’s function, which wouldimpede the survival of the parasite. Conclusion: Recent advanced drugs, their modes of action, and their advantages in the treatment of malaria by using apicoplasts as a target are discussed in this review which thought to be very useful in desigining anti-malarial drugs. Targetting the genetic machinery of apicoplast shows a great advantange regarding anti-malarial drug design. Critical knowledge of these new drugs would give a healthier understanding for deciphering the mechanism of action of anti-malarial drugs when targeting apicoplasts to overcome drug

  19. Cold vacuum drying facility design requirements

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    1999-07-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.

  20. Cold vacuum drying facility design requirements

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1999-01-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified

  1. Impact of neutron and gamma radiation on the design of NIF diagnostics and target-bay systems

    Energy Technology Data Exchange (ETDEWEB)

    Eder, D.C.; Song, P.M.; Latkowski, J.F.; Reyes, S.; O' Brien, D.W.; Lee, F.D.; Young, B.K.; Koch, J.A.; Moran, M.J.; Watts, P.W.; Kimbrough, J.R.; Ng, E.W.; Landen, O.L.; MacGowan, B.J. [Lawrence Livermore National Lab., Livermore, CA (United States)

    2006-06-15

    The design of a wide range of components in and near the target bay of the National Ignition Facility (NIF) must allow for significant radiation from neutrons and gammas. Detailed 3-dimensional Monte Carlo simulations are critical to determine neutron and gamma fluxes for all target-bay components to allow optimization of location and auxiliary shielding. Demonstration of ignition poses unique challenges because of the large range (about 3 orders of magnitude) in the yield for any given attempt at ignition. Some diagnostics will provide data independent of yield, while others will provide data for lower yields and only survive high yields with little or no damage. In addition, for a given yield there is a more than 10 orders of magnitude range in neutron and gamma fluxes depending on location in the facility. For example, sensitive components in the diagnostic mezzanines and switchyards require auxiliary shielding for high-yield shots even though they are greater than 17 meters from target chamber center (TCC) and shielded by the 2 m-thick target-bay wall. In contrast, there are components 0.2 to 2 m from TCC with little or no shielding. For these components, particular attention is being made to use low-activation material because of the extremely high neutron loading levels. Many of the components closest to target center are designed to be single use to reduce worker dose from having to refurbish highly activated components. The cryogenic target positioner is an example where activation and ease of component replacement is an important part of the design. We are developing a design process for all target-bay systems that will assure reliable operation for the full range of planned yields. (authors)

  2. Impact of neutron and gamma radiation on the design of NIF diagnostics and target-bay systems

    Science.gov (United States)

    Eder, D. C.; Song, P. M.; Latkowski, J. F.; Reyes, S.; O'Brien, D. W.; Lee, F. D.; Young, B. K.; Koch, J. A.; Moran, M. J.; Watts, P. W.; Kimbrough, J. R.; Ng, E. W.; Landen, O. L.; MacGowan, B. J.

    2006-06-01

    The design of a wide range of components in and near the target bay of the National Ignition Facility (NIF) must allow for significant radiation from neutrons and gammas. Detailed 3D Monte Carlo simulations are critical to determine neutron and gamma fluxes for all target-bay components to allow optimization of location and auxiliary shielding. Demonstration of ignition poses unique challenges because of the large range (˜ 3 orders of magnitude) in the yield for any given attempt at ignition. Some diagnostics will provide data independent of yield, while others will provide data for lower yields and only survive high yields with little or no damage. In addition, for a given yield there is a more than 10 orders of magnitude range in neutron and gamma fluxes depending on location in the facility. For example, sensitive components in the diagnostic mezzanines and switchyards require auxiliary shielding for high-yield shots even though they are greater than 17 meters from target chamber center (TCC) and shielded by the 2 m-thick target-bay wall. In contrast, there are components 0.2 to 2 m from TCC with little or no shielding. For these components, particular attention is being made to use low-activation material because of the extremely high neutron loading levels. Many of the components closest to target center are designed to be single use to reduce worker dose from having to refurbish highly activated components. The cryogenic target positioner is an example where activation and ease of component replacement is an important part of the design. We are developing a design process for all target-bay systems that will assure reliable operation for the full range of planned yields.

  3. The Sources and Methods of Engineering Design Requirement

    DEFF Research Database (Denmark)

    Li, Xuemeng; Zhang, Zhinan; Ahmed-Kristensen, Saeema

    2014-01-01

    to be defined in a new context. This paper focuses on understanding the design requirement sources at the requirement elicitation phase. It aims at proposing an improved design requirement source classification considering emerging markets and presenting current methods for eliciting requirement for each source...

  4. The SNS target station preliminary Title I shielding analyses

    International Nuclear Information System (INIS)

    Johnson, J.O.; Santoro, R.T.; Lillie, R.A.; Barnes, J.M.; McNeilly, G.S.

    2000-01-01

    The Department of Energy (DOE) has given the Spallation Neutron Source (SNS) project approval to begin Title I design of the proposed facility to be built at Oak Ridge National Laboratory (ORNL). During the conceptual design phase of the SNS project, the target station bulk-biological shield was characterized and the activation of the major targets station components was calculated. Shielding requirements were assessed with respect to weight, space, and dose-rate constraints for operating, shut-down, and accident conditions utilizing the SNS shield design criteria, DOE Order 5480.25, and requirements specified in 10 CFR 835. Since completion of the conceptual design phase, there have been major design changes to the target station as a result of the initial shielding and activation analyses, modifications brought about due to engineering concerns, and feedback from numerous external review committees. These design changes have impacted the results of the conceptual design analyses, and consequently, have required a re-investigation of the new design. Furthermore, the conceptual design shielding analysis did not address many of the details associated with the engineering design of the target station. In this paper, some of the proposed SNS target station preliminary Title I shielding design analyses will be presented. The SNS facility (with emphasis on the target station), shielding design requirements, calculational strategy, and source terms used in the analyses will be described. Preliminary results and conclusions, along with recommendations for additional analyses, will also be presented. (author)

  5. Understand the Design Requirement in Companies

    DEFF Research Database (Denmark)

    Li, Xuemeng; Ahmed-Kristensen, Saeema

    2015-01-01

    requirements can lead to inappropriate products (Hall, et al., 2002). Understanding the nature of design requirements and the sources, from where they can or should be generated, is critical to before developing methods and processes to support this process. Requirement Engineering research, originated from...

  6. Knowledge-based support system for requirement elaboration in design

    International Nuclear Information System (INIS)

    Furuta, Kazuo; Kondo, Shunsuke

    1994-01-01

    Design requirements are the seeds of every design activity, but elicitation and formalization of them are not easy tasks. This paper proposes a method to support designers in such requirement elaboration process with a computer. In this method the cognitive work space of designers is modeled by abstraction and structural hierarchies, and supporting functions of knowledge-based requirement elaboration, requirement classification and assessment of contentment status of requirements are provided on this framework. A prototype system was developed and tested using fast breeder reactor design. (author)

  7. Operation and maintenance requirements of system design bases

    International Nuclear Information System (INIS)

    Banerjee, A.K.; Hanley, N.E.

    1989-01-01

    All system designs make assumptions about system operation testing, inspection, and maintenance. Existing industry codes and standards explicitly address design requirements of new systems, while issues related to system and plant reliability, life, design margins, effects of service conditions, operation, maintenance, etc., usually are implicit. However, system/component design documents of existing power plants often address the code requirements without considering the operation, maintenance, inspection, and testing (OMIT) requirements. The nuclear industry is expending major efforts at most nuclear power plants to reassemble and/or reconstitute system design bases. Stone ampersand Webster Engineering Corporation (SWEC) recently addressed the OMIT requirements of system/component design as an integral part of a utility's preventive maintenance program. For each component, SWEC reviewed vendor recommendations, NPRDS data/industry experience, the existing maintenance program, component service conditions, and actual plant experience. A maintenance program that considers component service conditions and plant experience ensures a connection between maintenance and design basis. Root cause analysis of failure and engineering evaluation of service condition are part of the program. System/component OMIT requirements also are compared against system design, service condition, degradation mechanism, etc., through system/component life-cycle evaluation

  8. Flat cladding and pellets in the design of an irradiation target

    International Nuclear Information System (INIS)

    Yorio, Daniel; Denis, Alicia C.; Soba, Alejandro; Beuter, Oscar; Marajofsky, Adolfo

    2003-01-01

    The design of an enriched uranium irradiation target made of flat pellets and cladding is proposed in order to improve the fission Mo 99 production. The variation range of each one of the parameters is studied and the basic design of the target is given

  9. Systems engineering requirements impacting MHTGR circulator design

    International Nuclear Information System (INIS)

    Chi, H.W.; Baccaglini, G.M.; Potter, R.C.; Shenoy, A.S.

    1988-01-01

    At the initiation of the MHTGR program, an important task involved translating the plant users' requirements into design conditions. This was particularly true in the case of the heat transport and shutdown cooling systems since these embody many components. This paper addresses the two helium circulators in these systems. An integrated approach is being used in the development of design and design documentation for the MHTGR plant. It is an organized and systematic development of plant functions and requirements, determined by top-down design, performance, and cost trade-off studies and analyses, to define the overall plant systems, subsystems, components, and human actions. These studies, that led to the identification of the major design parameters for the two circulators, are discussed in this paper. This includes the performance information, steady state and transient data, and the various interface requirements. The design of the circulators used in the MHTGR is presented. (author). 1 ref., 17 figs

  10. Rare isotope accelerator—conceptual design of target areas

    Science.gov (United States)

    Bollen, Georg; Baek, Inseok; Blideanu, Valentin; Lawton, Don; Mantica, Paul F.; Morrissey, David J.; Ronningen, Reginald M.; Sherrill, Bradley S.; Zeller, Albert; Beene, James R.; Burgess, Tom; Carter, Kenneth; Carrol, Adam; Conner, David; Gabriel, Tony; Mansur, Louis; Remec, Igor; Rennich, Mark; Stracener, Dan; Wendel, Mark; Ahle, Larry; Boles, Jason; Reyes, Susana; Stein, Werner; Heilbronn, Lawrence

    2006-06-01

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA's driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400 MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas.

  11. Rare isotope accelerator - conceptual design of target areas

    International Nuclear Information System (INIS)

    Bollen, Georg; Baek, Inseok; Blideanu, Valentin; Lawton, Don; Mantica, Paul F.; Morrissey, David J.; Ronningen, Reginald M.; Sherrill, Bradley S.; Zeller, Albert; Beene, James R; Burgess, Tom; Carter, Kenneth; Carrol, Adam; Conner, David; Gabriel, Tony A; Mansur, Louis K; Remec, Igor; Rennich, Mark J; Stracener, Daniel W; Wendel, Mark W; Ahle, Larry; Boles, Jason; Reyes, Susana; Stein, Werner; Heilbronn, Lawrence

    2006-01-01

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA's driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas

  12. TRAC analysis of design basis events for the accelerator production of tritium target/blanket

    International Nuclear Information System (INIS)

    Lin, J.C.; Elson, J.

    1997-01-01

    A two-loop primary cooling system with a residual heat removal system was designed to mitigate the heat generated in the tungsten neutron source rods inside the rungs of the ladders and the shell of the rungs. The Transient Reactor Analysis Code (TRAC) was used to analyze the thermal-hydraulic behavior of the primary cooling system during a pump coastdown transient; a cold-leg, large-break loss-of-coolant accident (LBLOCA); a hot-leg LBLOCA; and a target downcomer LBLOCA. The TRAC analysis results showed that the heat generated in the tungsten neutron source rods can be mitigated by the primary cooling system for the pump coastdown transient and all the LBLOCAs except the target downcomer LBLOCA. For the target downcomer LBLOCA, a cavity flood system is required to fill the cavity with water at a level above the large fixed headers

  13. Requirements' Role in Mobilizing and Enabling Design Conversation

    Science.gov (United States)

    Bergman, Mark

    Requirements play a critical role in a design conversation of systems and products. Product and system design exists at the crossroads of problems, solutions and requirements. Requirements contextualize problems and solutions, pointing the way to feasible outcomes. These are captured with models and detailed specifications. Still, stakeholders need to be able to understand one-another using shared design representations in order to mobilize bias and transform knowledge towards legitimized, desired results. Many modern modeling languages, including UML, as well as detailed, logic-based specifications are beyond the comprehension of key stakeholders. Hence, they inhibit, rather than promote design conversation. Improved design boundary objects (DBO), especially design requirements boundary objects (DRBO), need to be created and refined to improve the communications between principals. Four key features of design boundary objects that improve and promote design conversation are discussed in detail. A systems analysis and design case study is presented which demonstrates these features in action. It describes how a small team of analysts worked with key stakeholders to mobilize and guide a complex system design discussion towards an unexpected, yet desired outcome within a short time frame.

  14. Preliminary conceptual design of target system. Pt. 1. System configuration

    Energy Technology Data Exchange (ETDEWEB)

    Hino, Ryutaro; Haga, Katsuhiro; Kaminaga, Masanori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1997-07-01

    In the 21st century, neutron is expected to play a very important role in the fields of structural biology, nuclear physics, material science if a very high-intensity neutron source will be built because of its superior nature as an probe to investigate material structure and its function. The Japan Atomic Energy Research Institute has launched the Neutron Science Project for construction and utilization of a high-intensity spallation neutron source coupled with a proton accelerator. In the project, a neutron scattering facility is planned to be constructed in an early stage. Development of a 5MW spallation neutron source is one of the most difficult technical challenges in this project. A two-step development plan of the target was established to construct a 5MW-target station In the 1st step, a 1.5MW target will be constructed to develop 5MW target technology. The preliminary conceptual design was conducted to clarify the specifications of the target system of 1.5MW and 5MW including system layout, scale etc. This report describes (1) a design policy, (2) a layout of system consisting of the target, remote-handling devices, bio-shieldings etc., (3) specifications of components and facilities such as cooling systems for target and moderators, beam-port shutter and air conditioning system, (4) overhaul procedures by remote-handling devices, (5) safety assessment, and (6) necessary R and D items derived from the design activity. (author)

  15. EU-APR Design in compliance with EUR Grid Requirement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Hwan; Lee, Keun-Sung [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    European Utility Requirements (EUR) provides technical requirements for the generation III nuclear power plant in the European countries. EUR grid requirements present the plant requirements to satisfy the needs of the grid network. The grid requirements are the precondition for the operation of a generating plant on the network. This paper describes EU-APR design which has taken account of EUR grid requirements. In this paper, EU-APR designs according to the EUR grid requirements were described. EU-APR was designed in compliance with the voltage and frequency operation field and also designed to have the capability of load following such as primary control, secondary control, and daily load following. Consequently, the EU-APR design according to the EUR grid requirements is expected to get competitiveness and enhance the license feasibility in the European nuclear market.

  16. Designer's requirements for evaluation of sustainability

    DEFF Research Database (Denmark)

    Bey, Niki; Lenau, Torben Anker

    1998-01-01

    Today, sustainability of products is often evaluated on the basis of assessments of their environmental performance. Established means for this purpose are formal Life Cycle Assessment (LCA) methods. Designers have an essential influence on product design and are therefore one target group for life...... cycle-based evaluation methods. However, the application of LCA in the design process, when for example different materials and manufacturing processes have to be selected, is difficult. This is, among other things, because only a few designers have a deeper background in this area and even simplified...... LCAs involve calculations with a relatively high accuracy. Most LCA methods do therefore not qualify as hands-on tool for utilisation by typical designers.In this context, the authors raise the question, whether a largely simplified LCA-method which is exclusively based on energy considerations can...

  17. Conceptual design considerations and neutronics of lithium fall laser target chambers

    International Nuclear Information System (INIS)

    Meier, W.R.; Thomson, W.B.

    1978-01-01

    Atomics International and Lawrence Livermore Laboratory are involved in the conceptual design of a laser fusion power plant incorporating the lithium fall target chamber. In this paper we discuss some of the more important design considerations for the target chamber and evaluate its nuclear performance. Sizing and configuration of the fall, hydraulic effects, and mechanical design considerations are addressed. The nuclear aspects examined include tritium breeding, energy deposition, and radiation damage

  18. Target station design for a 1 MW pulsed spallation neutron source

    International Nuclear Information System (INIS)

    Russell, G.J.; Baker, G.D.; Brewton, R.J.

    1993-01-01

    Target stations are vital components of the 1 MW, next generation spallation neutron source proposed for LANSCE. By and large, target stations design determines the overall performance of the facility. Many traditional concepts will probably have to be rethought, and many new concepts will have to be put forward to meet the 1 MW challenge. This article gives a brief overview of the proposed neutron spallation source from the target station viewpoint, as well as the general philosophy adopted for the design of the LANSCE-II target stations. Some of the saliant concepts and features envisioned for LANSCE-II are briefly described

  19. The design, construction and performance of the MICE target

    International Nuclear Information System (INIS)

    Booth, C N; Hodgson, P; Howlett, L; Nicholson, R; Overton, E; Robinson, M; Smith, P J; Apollonio, M; Barber, G; Dobbs, A; Leaver, J; Long, K R; Shepherd, B; Adams, D; Capocci, E; McCarron, E; Tarrant, J

    2013-01-01

    The pion-production target that serves the MICE Muon Beam consists of a titanium cylinder that is dipped into the halo of the ISIS proton beam. The design and construction of the MICE target system are described along with the quality-assurance procedures, electromagnetic drive and control systems, the readout electronics, and the data-acquisition system. The performance of the target is presented together with the particle rates delivered to the MICE Muon Beam. Finally, the beam loss in ISIS generated by the operation of the target is evaluated as a function of the particle rate, and the operating parameters of the target are derived.

  20. Rare Isotope Accelerator - Conceptual Design of Target Areas

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, Georg [Michigan State University, East Lansing; Baek, Inseok [Michigan State University, East Lansing; Blideanu, Valentin [CEA, Saclay, France; Lawton, Don [Michigan State University, East Lansing; Mantica, Paul F. [Michigan State University, East Lansing; Morrissey, David J. [Michigan State University, East Lansing; Ronningen, Reginald M. [Michigan State University, East Lansing; Sherrill, Bradley S. [Michigan State University, East Lansing; Zeller, Albert [Michigan State University, East Lansing; Beene, James R [ORNL; Burgess, Tom [Oak Ridge National Laboratory (ORNL); Carter, Kenneth [Oak Ridge National Laboratory (ORNL); Carrol, Adam [Oak Ridge National Laboratory (ORNL); Conner, David [ORNL; Gabriel, Tony A [ORNL; Mansur, Louis K [ORNL; Remec, Igor [ORNL; Rennich, Mark J [ORNL; Stracener, Daniel W [ORNL; Wendel, Mark W [ORNL; Ahle, Larry [Lawrence Livermore National Laboratory (LLNL); Boles, Jason [Lawrence Livermore National Laboratory (LLNL); Reyes, Susana [Lawrence Livermore National Laboratory (LLNL); Stein, Werner [Lawrence Livermore National Laboratory (LLNL); Heilbronn, Lawrence [Lawrence Berkeley National Laboratory (LBNL)

    2006-01-01

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA s driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas.

  1. Rare isotope accelerator-conceptual design of target areas

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, Georg [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States)]. E-mail: bollen@nscl.msu.edu; Baek, Inseok; Blideanu, Valentin; Lawton, Don; Mantica, Paul F.; Morrissey, David J.; Ronningen, Reginald M.; Sherrill, Bradley S.; Zeller, Albert [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Beene, James R.; Burgess, Tom; Carter, Kenneth; Carrol, Adam; Conner, David; Gabriel, Tony; Mansur, Louis; Remec, Igor; Rennich, Mark; Stracener, Dan; Wendel, Mark [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); Ahle, Larry; Boles, Jason; Reyes, Susana; Stein, Werner [Lawrence Livermore Laboratory, Livermore, CA 94550 (United States); Heilbronn, Lawrence [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2006-06-23

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA's driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400 MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas.

  2. Conceptual design of the handling and storage system for spent target vessel

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Junichi; Sasaki, Shinobu; Kaminaga, Masanori; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    A conceptual design of a handling and storage system for spent target vessels has been carried out, in order to establish spent target technology for the neutron scattering facility. The spent target vessels must be treated remotely with high reliability and safety, since they are highly activated and contain the poisonous mercury. The system is composed of a target exchange trolley to exchange the target vessel, remote handling equipment such as manipulators, airtight casks for the spent target vessel, storage pits and so on. This report presents the results of conceptual design study on a basic plan, a handling procedure, main devices and their arrangement of a handling and storage system for the spent target vessels. (author)

  3. Improving the requirements process in Axiomatic Design Theory

    DEFF Research Database (Denmark)

    Thompson, Mary Kathryn

    2013-01-01

    This paper introduces a model to integrate the traditional requirements process into Axiomatic Design Theory and proposes a method to structure the requirements process. The method includes a requirements classification system to ensure that all requirements information can be included...... in the Axiomatic Design process, a stakeholder classification system to reduce the chances of excluding one or more key stakeholders, and a table to visualize the mapping between the stakeholders and their requirements....

  4. Safety of Nuclear Power Plants: Design. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  5. Autonomous Rover Traverse and Precise Arm Placement on Remotely Designated Targets

    Science.gov (United States)

    Felder, Michael; Nesnas, Issa A.; Pivtoraiko, Mihail; Kelly, Alonzo; Volpe, Richard

    2011-01-01

    Exploring planetary surfaces typically involves traversing challenging and unknown terrain and acquiring in-situ measurements at designated locations using arm-mounted instruments. We present field results for a new implementation of an autonomous capability that enables a rover to traverse and precisely place an arm-mounted instrument on remote targets. Using point-and-click mouse commands, a scientist designates targets in the initial imagery acquired from the rover's mast cameras. The rover then autonomously traverse the rocky terrain for a distance of 10 - 15 m, tracks the target(s) of interest during the traverse, positions itself for approaching the target, and then precisely places an arm-mounted instrument within 2-3 cm from the originally designated target. The rover proceeds to acquire science measurements with the instrument. This work advances what has been previously developed and integrated on the Mars Exploration Rovers by using algorithms that are capable of traversing more rock-dense terrains, enabling tight thread-the-needle maneuvers. We integrated these algorithms on the newly refurbished Athena Mars research rover and fielded them in the JPL Mars Yard. We conducted 43 runs with targets at distances ranging from 5 m to 15 m and achieved a success rate of 93% for placement of the instrument within 2-3 cm.

  6. Charged particle fusion targets

    International Nuclear Information System (INIS)

    Bangerter, R.O.; Meeker, D.J.

    1977-01-01

    The power, voltage, energy and other requirements of electron and ion beam fusion targets are reviewed. Single shell, multiple shell and magnetically insulated target designs are discussed. Questions of stability are also considered. In particular, it is shown that ion beam targets are stabilized by an energy spread in the ion beam

  7. Verification of the hydraulic design of the FMIT liquid lithium target

    International Nuclear Information System (INIS)

    Miles, R.R.; Annese, C.E.; Ingham, J.G.

    1983-01-01

    A liquid lithium target is being developed to generate a neutron flux for material testing in a fusion-like environment. The target consists of a thin, high speed, curved wall jet of lithium which is formed by an asymmetric nozzle. A prototype target was designed using potential flow analysis and was tested in water. Measurements of jet thickness and velocity in water and thickness in lithium were compared with isothermal design predictions and were shown to match within 1% for thickness and 5% for jet velocity

  8. Trading Robustness Requirements in Mars Entry Trajectory Design

    Science.gov (United States)

    Lafleur, Jarret M.

    2009-01-01

    One of the most important metrics characterizing an atmospheric entry trajectory in preliminary design is the size of its predicted landing ellipse. Often, requirements for this ellipse are set early in design and significantly influence both the expected scientific return from a particular mission and the cost of development. Requirements typically specify a certain probability level (6-level) for the prescribed ellipse, and frequently this latter requirement is taken at 36. However, searches for the justification of 36 as a robustness requirement suggest it is an empirical rule of thumb borrowed from non-aerospace fields. This paper presents an investigation into the sensitivity of trajectory performance to varying robustness (6-level) requirements. The treatment of robustness as a distinct objective is discussed, and an analysis framework is presented involving the manipulation of design variables to effect trades between performance and robustness objectives. The scenario for which this method is illustrated is the ballistic entry of an MSL-class Mars entry vehicle. Here, the design variable is entry flight path angle, and objectives are parachute deploy altitude performance and error ellipse robustness. Resulting plots show the sensitivities between these objectives and trends in the entry flight path angles required to design to these objectives. Relevance to the trajectory designer is discussed, as are potential steps for further development and use of this type of analysis.

  9. MEGAPIE spallation target: Design, manufacturing and preliminary tests of the first pro-typical spallation target for future ADS

    International Nuclear Information System (INIS)

    Latge, Ch.; Laffont, G.; Groeschel, F.; Thomsen, K.; Wagner, W.; Agostini, P.; Dierckx, M.; Fazio, C.; Kirchner, T.; Kurata, Y.; Song, T.; Woloshun, K.

    2006-01-01

    Partitioning and Transmutation (P and T) techniques could contribute to reduce the radioactive inventory and its associated radiotoxicity. Sub-critical Accelerator Driven Systems (ADS) are potential candidates as dedicated transmutation systems, and thus their development is a relevant R and D topic in Europe. Following a first phase focused on the understanding of the basic principles of ADS (e.g. the programme MUSE), the R and D has been streamlined and focused on practical demonstration key issues. These demonstrations cover high intensity proton accelerators (beam current in the range 1 to 20 mA), spallation targets of high power and their effective coupling with a subcritical core. Presently there is general consensus that up to 1 MW of beam power solid targets are feasible from a heat removal point of view. For higher power levels liquid metal targets are the option of choice because of their higher heat removal capability, higher spallation material density in the volume and lower specific radioactivity, Therefore, a key experiment in the ADS road map, the Megawatt Pilot Experiment (MEGAPIE) (1 MW) was initiated in 1999 in order to design and build a liquid lead-bismuth spallation target, then to operate it into the Swiss spallation neutron facility SINQ at Paul Scherrer Institute (PSI). It has to be equipped to provide the largest possible amount of scientific and technical information without jeopardizing its safe operation. The minimum design service life has been fixed at 1 year (6000 mAh). Whereas the interest of the partner institutes is driven by the development needs of ADS, PSI interest lies also in the potential use of a LM target as a SINQ standard target providing a higher neutron flux than the current solid targets. Calculations of the radial distribution of the undisturbed thermal neutron flux for the LBE target in comparison to the former Zircaloy and current steel-clad solid lead target were done with different nuclear codes; nevertheless

  10. Translating genetic research into preventive intervention: The baseline target moderated mediator design

    Directory of Open Access Journals (Sweden)

    George W. Howe

    2016-01-01

    Full Text Available In this paper we present and discuss a novel research approach, the baseline target moderated mediation (BTMM design, that holds substantial promise for advancing our understanding of how genetic research can inform prevention research. We first discuss how genetically informed research on developmental psychopathology can be used to identify potential intervention targets. We then describe the BTMM design, which employs moderated mediation within a longitudinal study to test whether baseline levels of intervention targets moderate the impact of the intervention on change in that target, and whether change in those targets mediates causal impact of preventive or treatment interventions on distal health outcomes. We next discuss how genetically informed BTMM designs can be applied to both microtrials and full-scale prevention trials. We end with a discussion of some of the advantages and limitations of this approach.

  11. RobOKoD: microbial strain design for (over)production of target compounds.

    Science.gov (United States)

    Stanford, Natalie J; Millard, Pierre; Swainston, Neil

    2015-01-01

    Sustainable production of target compounds such as biofuels and high-value chemicals for pharmaceutical, agrochemical, and chemical industries is becoming an increasing priority given their current dependency upon diminishing petrochemical resources. Designing these strains is difficult, with current methods focusing primarily on knocking-out genes, dismissing other vital steps of strain design including the overexpression and dampening of genes. The design predictions from current methods also do not translate well-into successful strains in the laboratory. Here, we introduce RobOKoD (Robust, Overexpression, Knockout and Dampening), a method for predicting strain designs for overproduction of targets. The method uses flux variability analysis to profile each reaction within the system under differing production percentages of target-compound and biomass. Using these profiles, reactions are identified as potential knockout, overexpression, or dampening targets. The identified reactions are ranked according to their suitability, providing flexibility in strain design for users. The software was tested by designing a butanol-producing Escherichia coli strain, and was compared against the popular OptKnock and RobustKnock methods. RobOKoD shows favorable design predictions, when predictions from these methods are compared to a successful butanol-producing experimentally-validated strain. Overall RobOKoD provides users with rankings of predicted beneficial genetic interventions with which to support optimized strain design.

  12. Conceptual design study of IFMIF target system

    International Nuclear Information System (INIS)

    Kato, Y.; Nakamura, H.; Ida, M.; Maekawa, H.; Katsuta, H.; Hua, T.; Cevolani, S.

    1997-01-01

    IFMIF-CDA (International Fusion Materials Irradiation Facility - Conceptual Design Activity) had been carried out during 1995 and 1996, under the auspices of the IEA. The mission of this facility is to provide an accelerator based deuterium-lithium (D-Li) neutron source to test the candidate materials of radiation - resistant and low - activation materials up to about a full lifetime of anticipated use in fusion energy reactors. The neutrons of about 14 MeV are obtained by the stripping reaction of the deuteron of Max. 40 MeV with target lithium. Total deuteron beam current is about 250 mA and beam footprint is 20 cm x 5 cm on the free surface of lithium jet. In this report general characteristics of the target lithium system and the results of thermal and flow analysis for the target lithium jet are described. (author)

  13. Supplemental design requirements document, Project W026

    International Nuclear Information System (INIS)

    Weidert, J.R.

    1993-01-01

    This document supplements and extends the Functional Design Criteria, SP-W026-FDC-001, for the Waste Receiving and Processing Facility (WRAP), Module 1. It provides additional detailed requirements, summarizes key Westinghouse Hanford Company design guidance, and establishes baseline technical agreements to be used in definitive design of the WRAP-1 facility. Revision 3 of the Supplemental Design Requirements Document has been assigned an Impact Level of 3ESQ based on the content of the entire revision. The actual changes made from Revision 2 have an Impact Level of 3S and the basis for these changes was previously reviewed and approved per WHC correspondence No. 9355770

  14. Investigation of IFMIF target assembly structure design

    International Nuclear Information System (INIS)

    Ida, Mizuho; Nakamura, Hiroo; Sugimoto, Masayoshi; Yamamura, Toshio

    2006-10-01

    In the International Fusion Materials Irradiation Facility (IFMIF), the back-wall of target assembly is the part suffered the highest neutron-flux. The back-wall and the assembly are designed to have lips for cutting/welding at the back-wall replacement. To reduce thermal stress and deformation of the back-wall under neutron irradiation, contact pressure between the back-wall and the assembly is one of dominant factors. Therefore, an investigation was performed for feasible clamping pressure of a mechanical clamp set in limited space around the back-wall. It was clarified that the clamp can give a pressure difference up to 0.4 MPa between the contact pressure and atmosphere pressure in the test cell room. Also a research was performed for the dissimilar metal welding in the back-wall. Use of 309 steel was found adequate as the intermediate filler metal through the research of previous welding. Maintaining a temperature of the target assembly so as to avoid a freezing of liquid lithium is needed at the lithium charge into the loop before the beam injection. The assembly is covered with thermal insulation. Therefore, a research and an investigation were performed for compact and light thermal-insulation effective even under helium (i.e. high heat-conduction) condition of the test cell room. The result was as follows; in the case that a thermal conductivity 0.008 W/m·K of one of found insulation materials is available in the temperature range up to 300degC of the IFMIF target assembly, needed thickness and weight of the insulation were respectively only 8.2 mm and 32 kg. Also a research was performed for high-heat-density heaters to maintain temperature of the back-wall which can not be cover with insulation due to limited space. A heater made of silicon-nitride was found to be adequate. Total heat of 8.4 kW on the back-wall was found to be achievable through an investigations of heater arrange. Also an investigation was performed for remote-handling device to

  15. Shielding design for the target room of the proton accelerator research center

    International Nuclear Information System (INIS)

    Min, Y. S.; Lee, C. W.; Mun, K. J.; Nam, J.; Kim, J. Y.

    2010-01-01

    The Proton Engineering Frontier Project (PEFP) has been developing a 100-MeV proton linear accelerator. Also, PEFP has been designing the Proton Accelerator Research Center (PARC). In the Accelerator Tunnel and Beam Experiment Hall in PARC, 10 target rooms for the 20- and 100-MeV beamline facilities exist in the Beam Experiment Hall. For the 100-MeV target rooms during 100-MeV proton beam extraction, a number of high energy neutrons, ranging up to 100-MeV, are produced. Because of the high beam current and space limitations of each target room, the shielding design of each target room should be considered seriously. For the shielding design of the 100-MeV target rooms of the PEFP, a permanent and removable local shield structure was adopted. To optimize shielding performance, we evaluated four different shield materials (concrete, HDPE, lead, iron). From the shielding calculation results, we confirmed that the proposed shielding design made it possible to keep the dose rate below the 'as low as reasonably achievable (ALARA)' objective.

  16. Designer interface peptide grafts target estrogen receptor alpha dimerization

    International Nuclear Information System (INIS)

    Chakraborty, S.; Asare, B.K.; Biswas, P.K.; Rajnarayanan, R.V.

    2016-01-01

    The nuclear transcription factor estrogen receptor alpha (ERα), triggered by its cognate ligand estrogen, regulates a variety of cellular signaling events. ERα is expressed in 70% of breast cancers and is a widely validated target for anti-breast cancer drug discovery. Administration of anti-estrogen to block estrogen receptor activation is still a viable anti-breast cancer treatment option but anti-estrogen resistance has been a significant bottle-neck. Dimerization of estrogen receptor is required for ER activation. Blocking ERα dimerization is therefore a complementary and alternative strategy to combat anti-estrogen resistance. Dimer interface peptide “I-box” derived from ER residues 503–518 specifically blocks ER dimerization. Recently using a comprehensive molecular simulation we studied the interaction dynamics of ERα LBDs in a homo-dimer. Based on this study, we identified three interface recognition peptide motifs LDKITDT (ERα residues 479–485), LQQQHQRLAQ (residues 497–506), and LSHIRHMSNK (residues 511–520) and reported the suitability of using LQQQHQRLAQ (ER 497–506) as a template to design inhibitors of ERα dimerization. Stability and self-aggregation of peptide based therapeutics poses a significant bottle-neck to proceed further. In this study utilizing peptide grafted to preserve their pharmacophoric recognition motif and assessed their stability and potential to block ERα mediated activity in silico and in vitro. The Grafted peptides blocked ERα mediated cell proliferation and viability of breast cancer cells but did not alter their apoptotic fate. We believe the structural clues identified in this study can be used to identify novel peptidometics and small molecules that specifically target ER dimer interface generating a new breed of anti-cancer agents. - Highlights: • Designer peptide grafts retain core molecular recognition motif during MD simulations. • Designer peptide grafts with Poly-ALA helix form stable

  17. Designer interface peptide grafts target estrogen receptor alpha dimerization

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, S. [Laboratory of Computational Biophysics & Bioengineering, Department of Physics, Tougaloo College, Tougaloo, MS 39174 (United States); Asare, B.K. [Department of Pharmacology and Toxicology, University of Buffalo, Buffalo, NY 14214 (United States); Biswas, P.K., E-mail: pbiswas@tougaloo.edu [Laboratory of Computational Biophysics & Bioengineering, Department of Physics, Tougaloo College, Tougaloo, MS 39174 (United States); Rajnarayanan, R.V., E-mail: rajendra@buffalo.edu [Department of Pharmacology and Toxicology, University of Buffalo, Buffalo, NY 14214 (United States)

    2016-09-09

    The nuclear transcription factor estrogen receptor alpha (ERα), triggered by its cognate ligand estrogen, regulates a variety of cellular signaling events. ERα is expressed in 70% of breast cancers and is a widely validated target for anti-breast cancer drug discovery. Administration of anti-estrogen to block estrogen receptor activation is still a viable anti-breast cancer treatment option but anti-estrogen resistance has been a significant bottle-neck. Dimerization of estrogen receptor is required for ER activation. Blocking ERα dimerization is therefore a complementary and alternative strategy to combat anti-estrogen resistance. Dimer interface peptide “I-box” derived from ER residues 503–518 specifically blocks ER dimerization. Recently using a comprehensive molecular simulation we studied the interaction dynamics of ERα LBDs in a homo-dimer. Based on this study, we identified three interface recognition peptide motifs LDKITDT (ERα residues 479–485), LQQQHQRLAQ (residues 497–506), and LSHIRHMSNK (residues 511–520) and reported the suitability of using LQQQHQRLAQ (ER 497–506) as a template to design inhibitors of ERα dimerization. Stability and self-aggregation of peptide based therapeutics poses a significant bottle-neck to proceed further. In this study utilizing peptide grafted to preserve their pharmacophoric recognition motif and assessed their stability and potential to block ERα mediated activity in silico and in vitro. The Grafted peptides blocked ERα mediated cell proliferation and viability of breast cancer cells but did not alter their apoptotic fate. We believe the structural clues identified in this study can be used to identify novel peptidometics and small molecules that specifically target ER dimer interface generating a new breed of anti-cancer agents. - Highlights: • Designer peptide grafts retain core molecular recognition motif during MD simulations. • Designer peptide grafts with Poly-ALA helix form stable

  18. Methods to enable the design of bioactive small molecules targeting RNA.

    Science.gov (United States)

    Disney, Matthew D; Yildirim, Ilyas; Childs-Disney, Jessica L

    2014-02-21

    RNA is an immensely important target for small molecule therapeutics or chemical probes of function. However, methods that identify, annotate, and optimize RNA-small molecule interactions that could enable the design of compounds that modulate RNA function are in their infancies. This review describes recent approaches that have been developed to understand and optimize RNA motif-small molecule interactions, including structure-activity relationships through sequencing (StARTS), quantitative structure-activity relationships (QSAR), chemical similarity searching, structure-based design and docking, and molecular dynamics (MD) simulations. Case studies described include the design of small molecules targeting RNA expansions, the bacterial A-site, viral RNAs, and telomerase RNA. These approaches can be combined to afford a synergistic method to exploit the myriad of RNA targets in the transcriptome.

  19. A closed-loop based framework for design requirement management

    DEFF Research Database (Denmark)

    Zhang, Zhinan; Li, Xuemeng; Liu, Zelin

    2014-01-01

    management from product lifecycle, and requirement and requirement management lifecycle views. This paper highlights the importance of requirement lifecycle management and aims at closing the requirement information loop in product lifecycle. Then, it addresses the requirement management in engineering...... design field with focusing on the dynamics nature and incomplete nature of requirements. Finally, a closed-loop based framework is proposed for requirement management in engineering design....

  20. Targets for heavy ion fusion

    International Nuclear Information System (INIS)

    Clauser, M.J.

    1978-01-01

    This paper describes some of the basic principles of fusion target implosions, using some simple targets designed for irradiation by ion beams. Present estimates are that ion beams with 1-5 MJ, and 100-500 TW will be required to ignite high gain targets. (orig.) [de

  1. Test Information Targeting Strategies for Adaptive Multistage Testing Designs.

    Science.gov (United States)

    Luecht, Richard M.; Burgin, William

    Adaptive multistage testlet (MST) designs appear to be gaining popularity for many large-scale computer-based testing programs. These adaptive MST designs use a modularized configuration of preconstructed testlets and embedded score-routing schemes to prepackage different forms of an adaptive test. The conditional information targeting (CIT)…

  2. Translating Genetic Research into Preventive Intervention: The Baseline Target Moderated Mediator Design.

    Science.gov (United States)

    Howe, George W; Beach, Steven R H; Brody, Gene H; Wyman, Peter A

    2015-01-01

    In this paper we present and discuss a novel research approach, the baseline target moderated mediation (BTMM) design, that holds substantial promise for advancing our understanding of how genetic research can inform prevention research. We first discuss how genetically informed research on developmental psychopathology can be used to identify potential intervention targets. We then describe the BTMM design, which employs moderated mediation within a longitudinal study to test whether baseline levels of intervention targets moderate the impact of the intervention on change in that target, and whether change in those targets mediates causal impact of preventive or treatment interventions on distal health outcomes. We next discuss how genetically informed BTMM designs can be applied to both microtrials and full-scale prevention trials. We use simulated data to illustrate a BTMM, and end with a discussion of some of the advantages and limitations of this approach.

  3. An optimized target-field method for MRI transverse biplanar gradient coil design

    International Nuclear Information System (INIS)

    Zhang, Rui; Xu, Jing; Huang, Kefu; Zhang, Jue; Fang, Jing; Fu, Youyi; Li, Yangjing

    2011-01-01

    Gradient coils are essential components of magnetic resonance imaging (MRI) systems. In this paper, we present an optimized target-field method for designing a transverse biplanar gradient coil with high linearity, low inductance and small resistance, which can well satisfy the requirements of permanent-magnet MRI systems. In this new method, the current density is expressed by trigonometric basis functions with unknown coefficients in polar coordinates. Following the standard procedures, we construct an objective function with respect to the total square errors of the magnetic field at all target-field points with the penalty items associated with the stored magnetic energy and the dissipated power. By adjusting the two penalty factors and minimizing the objective function, the appropriate coefficients of the current density are determined. Applying the stream function method to the current density, the specific winding patterns on the planes can be obtained. A novel biplanar gradient coil has been designed using this method to operate in a permanent-magnet MRI system. In order to verify the validity of the proposed approach, the gradient magnetic field generated by the resulted current density has been calculated via the Biot–Savart law. The results have demonstrated the effectiveness and advantage of this proposed method

  4. Improving scanner wafer alignment performance by target optimization

    Science.gov (United States)

    Leray, Philippe; Jehoul, Christiane; Socha, Robert; Menchtchikov, Boris; Raghunathan, Sudhar; Kent, Eric; Schoonewelle, Hielke; Tinnemans, Patrick; Tuffy, Paul; Belen, Jun; Wise, Rich

    2016-03-01

    In the process nodes of 10nm and below, the patterning complexity along with the processing and materials required has resulted in a need to optimize alignment targets in order to achieve the required precision, accuracy and throughput performance. Recent industry publications on the metrology target optimization process have shown a move from the expensive and time consuming empirical methodologies, towards a faster computational approach. ASML's Design for Control (D4C) application, which is currently used to optimize YieldStar diffraction based overlay (DBO) metrology targets, has been extended to support the optimization of scanner wafer alignment targets. This allows the necessary process information and design methodology, used for DBO target designs, to be leveraged for the optimization of alignment targets. In this paper, we show how we applied this computational approach to wafer alignment target design. We verify the correlation between predictions and measurements for the key alignment performance metrics and finally show the potential alignment and overlay performance improvements that an optimized alignment target could achieve.

  5. Design of a cryogenic deuterium gas target for neutron therapy

    International Nuclear Information System (INIS)

    Kuchnir, F.T.; Waterman, F.M.; Forsthoff, H.; Skaggs, L.S.; Vander Arend, P.C.; Stoy, S.

    1976-01-01

    A cryogenic deuterium gas target operating at 80 0 K and 10 atm pressure has been designed for use with a small cyclotron; the D(d,n) reaction is used to produce a neutron beam suitable for radiation therapy. The target is cooled by circulation of the gas in a closed loop between the target and an external heat exchanger immersed in liquid nitrogen

  6. Introduction to spallation physics and spallation-target design

    Energy Technology Data Exchange (ETDEWEB)

    Russell, G.J.; Pitcher, E.J.; Daemen, L.L. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    When coupled with the spallation process in appropriate target materials, high-power accelerators can be used to produce large numbers of neutrons, thus providing an alternate method to the use of nuclear reactors for this purpose. Spallation offers exciting new possibilities for generating intense neutron fluxes for a variety of applications, including: (a) spallation-neutron sources for materials science research; (b) accelerator-based production of tritium; (c) accelerator-based transmutation of waste; (d) accelerator-based destruction of plutonium; and (e) radioisotope production for medical and energy applications. Target design plays a key role in these applications, with neutron production/leakage being strongly dependent on the incident particle type and energy, and target material and geometry.

  7. Spallation neutron source target design for radioactive waste transmutation

    International Nuclear Information System (INIS)

    Beard, C.A.

    1992-01-01

    The disposal of high-level radioactive waste has long been one of the most serious problems facing the nuclear industry. Transmutation of this waste through particle bombardment has been suggested numerous times as a possible method of enhancing the waste management process. Due to advances in accelerator technology, the feasibility of an accelerator based transmutation system has increased enough to allow serious investigation of this process. Therefore, in pursuit of this goal, an accelerator target was designed for use in an accelerator based transmutation system. The target design consists of an array of tantalum rods, cooled by liquid sodium, which are arranged in a cylindrical configuration 40 cm in diameter and 125 cm in height. Tantalum was chosen as the target material over tungsten, lead, bismuth, and a lead-bismuth alloy (55 w/o bismuth) due to a large neutron yield, low activation, low chemical toxicity, and the fact that it does not produce significant amounts of long-lived isotopes through spallation or activation. The target yields a neutron source of 29.7 neutrons/proton when exposed to a 1600 MeV proton beam, and is suitable for use with both thermal or fast spectrum transmutation systems

  8. Transforming Multidisciplinary Customer Requirements to Product Design Specifications

    Science.gov (United States)

    Ma, Xiao-Jie; Ding, Guo-Fu; Qin, Sheng-Feng; Li, Rong; Yan, Kai-Yin; Xiao, Shou-Ne; Yang, Guang-Wu

    2017-09-01

    With the increasing of complexity of complex mechatronic products, it is necessary to involve multidisciplinary design teams, thus, the traditional customer requirements modeling for a single discipline team becomes difficult to be applied in a multidisciplinary team and project since team members with various disciplinary backgrounds may have different interpretations of the customers' requirements. A new synthesized multidisciplinary customer requirements modeling method is provided for obtaining and describing the common understanding of customer requirements (CRs) and more importantly transferring them into a detailed and accurate product design specifications (PDS) to interact with different team members effectively. A case study of designing a high speed train verifies the rationality and feasibility of the proposed multidisciplinary requirement modeling method for complex mechatronic product development. This proposed research offersthe instruction to realize the customer-driven personalized customization of complex mechatronic product.

  9. Conceptual design considerations and neutronics of lithium fall laser fusion target chambers

    International Nuclear Information System (INIS)

    Meier, W.R.; Thomson, W.B.

    1978-01-01

    Atomics International and Lawrence Livermore Laboratory are involved in the conceptual design of a laser fusion power plant incorporating the lithium fall target chamber. In this paper we discuss some of the more important design considerations for the target chamber and evaluate its nuclear performance. Sizing and configuration of the fall, hydraulic effects, and mechanical design considerations are addressed. The nuclear aspects examined include tritium breeding, energy deposition, and radiation damage

  10. Design requirements for the SWIFT instrument

    International Nuclear Information System (INIS)

    Rahnama, P; McDade, I; Shepherd, G; Gault, W

    2013-01-01

    The Stratospheric Wind Interferometer for Transport studies (SWIFT) instrument is a proposed limb-viewing satellite instrument that employs the method of Doppler Michelson interferometry to measure stratospheric wind velocities and ozone densities in the altitude range of 15–45 km. The values of the main instrument parameters including filter system parameters and Michelson interferometer parameters are derived using simulations and analyses. The system design requirements for the instrument and spacecraft are presented and discussed. Some of the retrieval-imposed design requirements are also discussed. Critical design issues are identified. The design optimization process is described. The sensitivity of wind measurements to instrument characteristics is investigated including the impact on critical design issues. Using sensitivity analyses, the instrument parameters were iteratively optimized in order to meet the science objectives. It is shown that wind measurements are sensitive to the thermal sensitivity of the instrument components, especially the narrow filter and the Michelson interferometer. The optimized values of the main system parameters including Michelson interferometer optical path difference, instrument visibility, instrument responsivity and knowledge of spacecraft velocity are reported. This work also shows that the filter thermal drift and the Michelson thermal drift are two main technical risks. (paper)

  11. Visual Pollution in the Context of Conflicting Design Requirements

    Directory of Open Access Journals (Sweden)

    Sumartono Sumartono

    2009-07-01

    Full Text Available All designs (graphic, product, and interior designs are directed to consider certain requirements which are followed by logical thinking to fulfill a design process. Once the requirements of each design have been well-considered and the logical design process has been fulfilled, the design is complete. Ideally, all designs are not supposed to be in conflict with each other because each one is based on a logical design process. In reality, however, the mutual existence of these designs has produced conflicting requirements and thereby conflicting logics. This conflict can be seen in visual pollution. This paper will examine the impact of visual pollution caused by billboards, street signs, posters, houses/buildings, automobiles, shopfront graphic designs, packaging designs, graffiti, etc. in the context of conflicting logics/requirements. Today, opposition grows everywhere against all visually polluting designs and outdoor advertising is the most prominent one. Some people think that it should be banned from the city. Some others, however, think that if advertisements are removed from the city, it will become a bland concrete jungle. Every city in Indonesia needs a clean-city law to control illegal advertisements and signs. It is possible to make legal yet attractive advertisements that will give positive contribution to “visual democracy” in Indonesia.

  12. Safety design guides for seismic requirements for CANDU 9

    International Nuclear Information System (INIS)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; A. C. D. Wright

    1996-03-01

    This safety design guide for seismic requirements for CANDU 9 describes the seismic design philosophy, defines the applicable earthquakes and identifies the structures and systems requiring seismic qualification to ensure that the essential safety function can be adequately satisfied following earthquake. The detailed requirements for structures, systems and components which must be seismically qualified are specified in the Appendix. The change status of the regulatory requirements, code and standards should be traced and this safety design guide shall be updated accordingly. 1 fig., (Author) .new

  13. The IFS for WFIRST CGI: Science Requirements to Design

    Science.gov (United States)

    Groff, Tyler; Gong, Qian; Mandell, Avi M.; Zimmerman, Neil; Rizzo, Maxime; McElwain, Michael; harvey, david; Saxena, Prabal; cady, eric; mejia prada, camilo

    2018-01-01

    Direct Imaging of exoplanets using a coronagraph has become a major field of research both on the ground and in space. Key to the science of direct imaging is the spectroscopic capabilities of the instrument, our ability to extract spectra, and measure the abundance of molecular species such as Methane. To take these spectra, the WFIRST coronagraph instrument (CGI) uses an integral field spectrograph (IFS), which encodes the spectrum into a two-dimensional image on the detector. This results in more efficient detection and characterization of targets, and the spectral information is critical to achieving detection limits below the speckle floor of the imager. The CGI IFS operates in three 18% bands spanning 600nm to 970nm at a nominal spectral resolution of R50. We present the current science and engineering requirements for the IFS design, the instrument design, anticipated performance, and how the calibration is integrated into the focal plane wavefront control algorithms. We also highlight the role of the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) at the JPL High Contrast Imaging Testbed to demonstrate performance and validate calibration methodologies for the flight instrument.

  14. 7 CFR 801.12 - Design requirements incorporated by reference.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Design requirements incorporated by reference. 801.12 Section 801.12 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION... OFFICIAL PERFORMANCE REQUIREMENTS FOR GRAIN INSPECTION EQUIPMENT § 801.12 Design requirements incorporated...

  15. Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site

    Energy Technology Data Exchange (ETDEWEB)

    Strauch, Eva-Maria; Bernard, Steffen M.; La, David; Bohn, Alan J.; Lee, Peter S.; Anderson, Caitlin E.; Nieusma, Travis; Holstein, Carly A.; Garcia, Natalie K.; Hooper, Kathryn A.; Ravichandran, Rashmi; Nelson, Jorgen W.; Sheffler, William; Bloom, Jesse D.; Lee, Kelly K.; Ward, Andrew B.; Yager, Paul; Fuller, Deborah H.; Wilson, Ian A.; Baker , David (UWASH); (Scripps); (FHCRC)

    2017-06-12

    Many viral surface glycoproteins and cell surface receptors are homo-oligomers1, 2, 3, 4, and thus can potentially be targeted by geometrically matched homo-oligomers that engage all subunits simultaneously to attain high avidity and/or lock subunits together. The adaptive immune system cannot generally employ this strategy since the individual antibody binding sites are not arranged with appropriate geometry to simultaneously engage multiple sites in a single target homo-oligomer. We describe a general strategy for the computational design of homo-oligomeric protein assemblies with binding functionality precisely matched to homo-oligomeric target sites5, 6, 7, 8. In the first step, a small protein is designed that binds a single site on the target. In the second step, the designed protein is assembled into a homo-oligomer such that the designed binding sites are aligned with the target sites. We use this approach to design high-avidity trimeric proteins that bind influenza A hemagglutinin (HA) at its conserved receptor binding site. The designed trimers can both capture and detect HA in a paper-based diagnostic format, neutralizes influenza in cell culture, and completely protects mice when given as a single dose 24 h before or after challenge with influenza.

  16. Conceptual design report for the University of Rochester cryogenic target delivery system

    International Nuclear Information System (INIS)

    Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J.; Bittner, D.N.; Hendricks, C.D.

    1993-05-01

    The upgrade of the Omega laser at the University of Rochester's Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D 2 or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility

  17. Conceptual design report for the University of Rochester cryogenic target delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J. (General Atomics, San Diego, CA (United States)); Bittner, D.N.; Hendricks, C.D. (W.J. Schafer Associates, Livermore, CA (United States))

    1993-05-01

    The upgrade of the Omega laser at the University of Rochester's Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D[sub 2] or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility.

  18. Conceptual design report for the University of Rochester cryogenic target delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J. [General Atomics, San Diego, CA (United States); Bittner, D.N.; Hendricks, C.D. [W.J. Schafer Associates, Livermore, CA (US)

    1993-05-01

    The upgrade of the Omega laser at the University of Rochester`s Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D{sub 2} or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility.

  19. IFMIF Li target back-plate design integration and thermo-mechanical analysis

    International Nuclear Information System (INIS)

    Riccardi, B.; Roccella, S.; Micciche, G.

    2006-01-01

    The International Fusion Materials Irradiation Facility (IFMIF) is an accelerator-driven intense neutron source where fusion reactor candidate materials will be tested. The neutron flux is produced by means of a deuteron beam (current 250 mA, energy 40 MeV) that strikes a liquid lithium target circulating in a lithium loop. The support on which the liquid lithium flows, i.e. the back-plate, is the most heavily exposed component to neutron flux. A '' bayonet '' concept solution for the back-plate was proposed by ENEA with the objectives of improving the back-plate reliability and simplifying the remote handling procedures. On the base of this concept, a back-plate mock-up was fabricated and validated. Starting from the findings of the mock up design, a back-plate design integration exercise was carried out in order to check if the back-plate geometrical features are compatible with the target assembly and the Vertical Test Assemblies (VTA). The work carried out has demonstrated that even with the changes operated for the design integration (increase of in-plane dimensions and reduction of thickness) the bayonet concept is able to guarantee a tight connection to the target assembly. A thermo-mechanical analysis of the back-plate has been carried out by means of ABAQUS code. The thermal load used as input for the calculations, i.e. the neutron heat generation, has been estimated by means of Monte Carlo Mc-Delicious code. The two boundary constraint cases (full and minimum contact with target assembly) considered for each back-plate geometry option represent the extreme cases of the real operating condition of the plate. The influence of the contact heat exchange coefficient and the back-plate thickness has been also evaluated. For all these reasons, the results of the analysis can be considered as the domain of variability of the real working conditions. The results show that AISI 316L steel is not suitable as black-plate material: the stress induced in the plate, in

  20. National Ignition Facility subsystem design requirements NIF site improvements SSDR 1.2.1

    International Nuclear Information System (INIS)

    Kempel, P.; Hands, J.

    1996-01-01

    This Subsystem Design Requirements (SSDR) document establishes the performance, design, and verification requirements associated with the NIF Project Site at Lawrence Livermore National Laboratory (LLNL) at Livermore, California. It identifies generic design conditions for all NIF Project facilities, including siting requirements associated with natural phenomena, and contains specific requirements for furnishing site-related infrastructure utilities and services to the NIF Project conventional facilities and experimental hardware systems. Three candidate sites were identified as potential locations for the NIF Project. However, LLNL has been identified by DOE as the preferred site because of closely related laser experimentation underway at LLNL, the ability to use existing interrelated infrastructure, and other reasons. Selection of a site other than LLNL will entail the acquisition of site improvements and infrastructure additional to those described in this document. This SSDR addresses only the improvements associated with the NIF Project site located at LLNL, including new work and relocation or demolition of existing facilities that interfere with the construction of new facilities. If the Record of Decision for the PEIS on Stockpile Stewardship and Management were to select another site, this SSDR would be revised to reflect the characteristics of the selected site. Other facilities and infrastructure needed to support operation of the NIF, such as those listed below, are existing and available at the LLNL site, and are not included in this SSDR. Office Building. Target Receiving and Inspection. General Assembly Building. Electro- Mechanical Shop. Warehousing and General Storage. Shipping and Receiving. General Stores. Medical Facilities. Cafeteria services. Service Station and Garage. Fire Station. Security and Badging Services

  1. Towards Requirements in Systems Engineering for Aerospace IVHM Design

    Science.gov (United States)

    Saxena, Abhinav; Roychoudhury, Indranil; Lin, Wei; Goebel, Kai

    2013-01-01

    Health management (HM) technologies have been employed for safety critical system for decades, but a coherent systematic process to integrate HM into the system design is not yet clear. Consequently, in most cases, health management resorts to be an after-thought or 'band-aid' solution. Moreover, limited guidance exists for carrying out systems engineering (SE) on the subject of writing requirements for designs with integrated vehicle health management (IVHM). It is well accepted that requirements are key to developing a successful IVHM system right from the concept stage to development, verification, utilization, and support. However, writing requirements for systems with IVHM capability have unique challenges that require the designers to look beyond their own domains and consider the constraints and specifications of other interlinked systems. In this paper we look at various stages in the SE process and identify activities specific to IVHM design and development. More importantly, several relevant questions are posed that system engineers must address at various design and development stages. Addressing these questions should provide some guidance to systems engineers towards writing IVHM related requirements to ensure that appropriate IVHM functions are built into the system design.

  2. The design status of the liquid lithium target facility of IFMIF at the end of the engineering design activities

    Energy Technology Data Exchange (ETDEWEB)

    Nitti, F.S., E-mail: francesco.nitti@enea.it [IFMIF/EVEDA Project Team, Rokkasho Japan (Japan); Ibarra, A. [CIEMAT, Madrid (Spain); Ida, M. [IHI Corporation, Tokyo (Japan); Favuzza, P. [ENEA Research Center Firenze (Italy); Furukawa, T. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Groeschel, F. [KIT Research Center, Karlsruhe (Germany); Heidinger, R. [F4E Research Center, Garching (Germany); Kanemura, T. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Knaster, J. [IFMIF/EVEDA Project Team, Rokkasho Japan (Japan); Kondo, H. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Micchiche, G. [ENEA Research Center, Brasimone (Italy); Sugimoto, M. [JAEA Research Center, Rokkasho Japan (Japan); Wakai, E. [JAEA Research Center, Tokai-mura, Ibaraki (Japan)

    2015-11-15

    Highlights: • Results of validation and design activity for the Li loop facility of IFMIF. • Demonstration of Li target stability, with surface disturbance <1 mm. • Demonstration of start-up and shut down procedures of Li loop. • Complete design of the heat removal system and C and O purification system. • Conceptual design of N and H isotopes purification systems. - Abstract: The International Fusion Material Irradiation Facility (IFMIF) is an experimental facility conceived for qualifying and characterizing structural materials for nuclear fusion applications. The Engineering Validation and Engineering Design Activity (EVEDA) is a fundamental step towards the final design. It presented two mandates: the Engineering Validation Activities (EVA), still on-going, and the Engineering Design Activities (EDA) accomplished on schedule in June 2013. Five main facilities are identified in IFMIF, among which the Lithium Target Facility constituted a technological challenge overcome thanks to the success of the main validation challenges impacting the design. The design of the liquid Lithium Target Facility at the end of the EDA phase is here detailed.

  3. The design status of the liquid lithium target facility of IFMIF at the end of the engineering design activities

    International Nuclear Information System (INIS)

    Nitti, F.S.; Ibarra, A.; Ida, M.; Favuzza, P.; Furukawa, T.; Groeschel, F.; Heidinger, R.; Kanemura, T.; Knaster, J.; Kondo, H.; Micchiche, G.; Sugimoto, M.; Wakai, E.

    2015-01-01

    Highlights: • Results of validation and design activity for the Li loop facility of IFMIF. • Demonstration of Li target stability, with surface disturbance <1 mm. • Demonstration of start-up and shut down procedures of Li loop. • Complete design of the heat removal system and C and O purification system. • Conceptual design of N and H isotopes purification systems. - Abstract: The International Fusion Material Irradiation Facility (IFMIF) is an experimental facility conceived for qualifying and characterizing structural materials for nuclear fusion applications. The Engineering Validation and Engineering Design Activity (EVEDA) is a fundamental step towards the final design. It presented two mandates: the Engineering Validation Activities (EVA), still on-going, and the Engineering Design Activities (EDA) accomplished on schedule in June 2013. Five main facilities are identified in IFMIF, among which the Lithium Target Facility constituted a technological challenge overcome thanks to the success of the main validation challenges impacting the design. The design of the liquid Lithium Target Facility at the end of the EDA phase is here detailed.

  4. Steam generator design requirements for ACR-1000

    International Nuclear Information System (INIS)

    Subash, S.; Hau, K.

    2006-01-01

    Atomic Energy of Canada Limited (AECL) has developed the ACR-1000 (Advanced CANDU Reactor-1000 ) to meet market expectations for enhanced safety of plant operation, high capacity factor, low operating cost, increased operating life, simple component replacement, reduced capital cost, and shorter construction schedule. The ACR-1000 design is based on the use of horizontal fuel channels surrounded by a heavy water moderator, the same feature as in all CANDU reactors. The major innovation in the ACR-1000 is the use of low enriched uranium fuel, and light water as the coolant, which circulates in the fuel channels. This results in a compact reactor core design and a reduction of heavy water inventory, both contributing to a significant decrease in capital cost per MWe produced. The ACR-1000 plant is a two-unit, integrated plant with each unit having a nominal gross output of about 1165 MWe with a net output of approximately 1085 MWe. The plant design is adaptable to a single unit configuration, if required. This paper focuses on the technical considerations that went into developing some of the important design requirements for the steam generators for the ACR-1000 plant and how these requirements are specified in the Technical Specification, which is the governing document for the steam generator (SG) detail design. Layout of these SGs in the plant is briefly described and their impacts on the SG design. (author)

  5. Design Requirements for Communication-Intensive Interactive Applications

    Science.gov (United States)

    Bolchini, Davide; Garzotto, Franca; Paolini, Paolo

    Online interactive applications call for new requirements paradigms to capture the growing complexity of computer-mediated communication. Crafting successful interactive applications (such as websites and multimedia) involves modeling the requirements for the user experience, including those leading to content design, usable information architecture and interaction, in profound coordination with the communication goals of all stakeholders involved, ranging from persuasion to social engagement, to call for action. To face this grand challenge, we propose a methodology for modeling communication requirements and provide a set of operational conceptual tools to be used in complex projects with multiple stakeholders. Through examples from real-life projects and lessons-learned from direct experience, we draw on the concepts of brand, value, communication goals, information and persuasion requirements to systematically guide analysts to master the multifaceted connections of these elements as drivers to inform successful communication designs.

  6. Spectrum analysis on quality requirements consideration in software design documents.

    Science.gov (United States)

    Kaiya, Haruhiko; Umemura, Masahiro; Ogata, Shinpei; Kaijiri, Kenji

    2013-12-01

    Software quality requirements defined in the requirements analysis stage should be implemented in the final products, such as source codes and system deployment. To guarantee this meta-requirement, quality requirements should be considered in the intermediate stages, such as the design stage or the architectural definition stage. We propose a novel method for checking whether quality requirements are considered in the design stage. In this method, a technique called "spectrum analysis for quality requirements" is applied not only to requirements specifications but also to design documents. The technique enables us to derive the spectrum of a document, and quality requirements considerations in the document are numerically represented in the spectrum. We can thus objectively identify whether the considerations of quality requirements in a requirements document are adapted to its design document. To validate the method, we applied it to commercial software systems with the help of a supporting tool, and we confirmed that the method worked well.

  7. Criteria for selection of target materials and design of high-efficiency-release targets for radioactive ion beam generation

    CERN Document Server

    Alton, G D; Liu, Y

    1999-01-01

    In this report, we define criteria for choosing target materials and for designing, mechanically stable, short-diffusion-length, highly permeable targets for generation of high-intensity radioactive ion beams (RIBs) for use at nuclear physics and astrophysics research facilities based on the ISOL principle. In addition, lists of refractory target materials are provided and examples are given of a number of successful targets, based on these criteria, that have been fabricated and tested for use at the Holifield Radioactive Ion Beam Facility (HRIBF).

  8. Laser targets: introduction

    International Nuclear Information System (INIS)

    Rosen, M.D.

    1985-01-01

    The laser target design group was engaged in three main tasks in 1984: (1) analyzing Novette implosion and hohlraum-scaling data, (2) planning for the first experiments on Nova, and (3) designing laboratory x-ray laser targets and experiments. The Novette implosion and hohlraum scaling data are mostly classified and are therefore not discussed in detail here. The authors achieved average final/initial pusher pr ratios of about 50, some 3 times higher than the value achieved in the best Shiva shots. These pr values imply a fuel compression to 100 times liquid density, although this figure and other aspects of the experiments are subject to further interpretation because of detailed questions of target symmetry and stability. Their main long-term goal for Nova is to produce a so-called hydrodynamically equivalent target (HET) - that is, a target whose hydrodynamic behavior (implosion velocity, convergence ratio, symmetry and stability requirements, etc.) is very much like that of a high-gain target, but one that is scaled down in size to match the energy available from Nova and is too small to achieve enough hot-spot pr to ignite the cold, near-Fermi-degenerate fuel around it. Their goal for Nova's first year is to do experiments that will teach them how to achieve the symmetry and stability conditions required by an HET

  9. Safety Design Approach for the Development of Safety Requirements for Design of Commercial HTGR

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Sato, Hiroyuki; Nakagawa, Shigeaki; Tachibana, Yukio; Nishihara, Tetsuo; Yan, Xing; Sakaba, Nariaki; Kunitomi, Kazuhiko

    2014-01-01

    The research committee on “Safety requirements for HTGR design” was established in 2013 under the Atomic Energy Society of Japan to develop the draft safety requirements for the design of commercial High Temperature Gas-cooled Reactors (HTGRs), which incorporate the HTGR safety features demonstrated using the High Temperature Engineering Test Reactor (HTTR), lessons learned from the accident of Fukushima Daiichi Nuclear Power Station and requirements for the integration of the hydrogen production plants. The safety design approach for the commercial HTGRs which is a basement of the safety requirements is determined prior to the development of the safety requirements. The safety design approaches for the commercial HTGRs are to confine the radioactive materials within the coated fuel particles not only during normal operation but also during accident conditions, and the integrity of the coated fuel particles and other requiring physical barriers are protected by the inherent and passive safety features. This paper describes the main topics of the research committee, the safety design approaches and the safety functions of the commercial HTGRs determined in the research committee. (author)

  10. High gain direct drive target designs and supporting experiments with KrF

    International Nuclear Information System (INIS)

    Karasik, Max; Bates, Jason W.; Aglitskiy, Yefim

    2013-01-01

    Krypton-fluoride laser is an attractive inertial fusion energy driver from the standpoint of target physics. Target designs taking advantage of zooming, shock ignition, and favorable physics with KrF reach energy gains of 200 with sub-MJ laser energy. The designs are robust under 2D simulations. Experiments on the Nike KrF laser support the physics basis. (author)

  11. Requirements Engineering and Design Technology Report

    National Research Council Canada - National Science Library

    Ganska, Ralph

    1995-01-01

    This report reviews the STSC's recommendations for the selection and usage of software engineering products aimed at the requirements analysis and high-level design portions of the software lifecycle...

  12. Targeting Allostery with Avatars to Design Inhibitors Assessed by Cell Activity: Dissecting MRE11 Endo- and Exonuclease Activities.

    Science.gov (United States)

    Moiani, Davide; Ronato, Daryl A; Brosey, Chris A; Arvai, Andrew S; Syed, Aleem; Masson, Jean-Yves; Petricci, Elena; Tainer, John A

    2018-01-01

    For inhibitor design, as in most research, the best system is question dependent. We suggest structurally defined allostery to design specific inhibitors that target regions beyond active sites. We choose systems allowing efficient quality structures with conformational changes as optimal for structure-based design to optimize inhibitors. We maintain that evolutionarily related targets logically provide molecular avatars, where this Sanskrit term for descent includes ideas of functional relationships and of being a physical embodiment of the target's essential features without requiring high sequence identity. Appropriate biochemical and cell assays provide quantitative measurements, and for biomedical impacts, any inhibitor's activity should be validated in human cells. Specificity is effectively shown empirically by testing if mutations blocking target activity remove cellular inhibitor impact. We propose this approach to be superior to experiments testing for lack of cross-reactivity among possible related enzymes, which is a challenging negative experiment. As an exemplary avatar system for protein and DNA allosteric conformational controls, we focus here on developing separation-of-function inhibitors for meiotic recombination 11 nuclease activities. This was achieved not by targeting the active site but rather by geometrically impacting loop motifs analogously to ribosome antibiotics. These loops are neighboring the dimer interface and active site act in sculpting dsDNA and ssDNA into catalytically competent complexes. One of our design constraints is to preserve DNA substrate binding to geometrically block competing enzymes and pathways from the damaged site. We validate our allosteric approach to controlling outcomes in human cells by reversing the radiation sensitivity and genomic instability in BRCA mutant cells. © 2018 Elsevier Inc. All rights reserved.

  13. Requirements of Integrated Design Teams While Evaluating Advanced Energy Retrofit Design Options in Immersive Virtual Environments

    Directory of Open Access Journals (Sweden)

    Xue Yang

    2015-12-01

    Full Text Available One of the significant ways to save energy use in buildings is to implement advanced energy retrofits in existing buildings. Improving energy performance of buildings through advanced energy retrofitting requires a clear understanding of the cost and energy implications of design alternatives from various engineering disciplines when different retrofit options are considered. The communication of retrofit design alternatives and their energy implications is essential in the decision-making process, as it affects the final retrofit selections and hence the energy efficiency of the retrofitted buildings. The objective of the research presented here was to identify a generic list of information requirements that are needed to be shared and collectively analyzed by integrated design teams during advanced energy retrofit design review meetings held in immersive settings. While identifying such requirements, the authors used an immersive environment based iterative requirements elicitation approach. The technology was used as a means to better identify the information requirements of integrated design teams to be analyzed as a group. This paper provides findings on information requirements of integrated design teams when evaluating retrofit options in immersive virtual environments. The information requirements were identified through interactions with sixteen experts in design and energy modeling domain, and validated with another group of participants consisting of six design experts who were experienced in integrated design processes. Industry practitioners can use the findings in deciding on what information to share with integrated design team members during design review meetings that utilize immersive virtual environments.

  14. Requirements for effective use of CFD in aerospace design

    Science.gov (United States)

    Raj, Pradeep

    1995-01-01

    This paper presents a perspective on the requirements that Computational Fluid Dynamics (CFD) technology must meet for its effective use in aerospace design. General observations are made on current aerospace design practices and deficiencies are noted that must be rectified for the U.S. aerospace industry to maintain its leadership position in the global marketplace. In order to rectify deficiencies, industry is transitioning to an integrated product and process development (IPPD) environment and design processes are undergoing radical changes. The role of CFD in producing data that design teams need to support flight vehicle development is briefly discussed. An overview of the current state of the art in CFD is given to provide an assessment of strengths and weaknesses of the variety of methods currently available, or under development, to produce aerodynamic data. Effectiveness requirements are examined from a customer/supplier view point with design team as customer and CFD practitioner as supplier. Partnership between the design team and CFD team is identified as an essential requirement for effective use of CFD. Rapid turnaround, reliable accuracy, and affordability are offered as three key requirements that CFD community must address if CFD is to play its rightful role in supporting the IPPD design environment needed to produce high quality yet affordable designs.

  15. Design requirement for electrical system of an advanced research reactor

    International Nuclear Information System (INIS)

    Jung, Hoan Sung; Kim, H. K.; Kim, Y. K.; Wu, J. S.; Ryu, J. S.

    2004-12-01

    An advanced research reactor is being designed since 2002 and the conceptual design has been completed this year for the several types of core. Also the fuel was designed for the potential cores. But the process system, the I and C system, and the electrical system design are under pre-conceptual stage. The conceptual design for those systems will be developed in the next year. Design requirements for the electrical system set up to develop conceptual design. The same goals as reactor design - enhance safety, reliability, economy, were applied for the development of the requirements. Also the experience of HANARO design and operation was based on. The design requirements for the power distribution, standby power supply, and raceway system will be used for the conceptual design of electrical system

  16. Design requirement for electrical system of an advanced research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hoan Sung; Kim, H. K.; Kim, Y. K.; Wu, J. S.; Ryu, J. S

    2004-12-01

    An advanced research reactor is being designed since 2002 and the conceptual design has been completed this year for the several types of core. Also the fuel was designed for the potential cores. But the process system, the I and C system, and the electrical system design are under pre-conceptual stage. The conceptual design for those systems will be developed in the next year. Design requirements for the electrical system set up to develop conceptual design. The same goals as reactor design - enhance safety, reliability, economy, were applied for the development of the requirements. Also the experience of HANARO design and operation was based on. The design requirements for the power distribution, standby power supply, and raceway system will be used for the conceptual design of electrical system.

  17. Change in requirements during the design process

    DEFF Research Database (Denmark)

    Sudin, Mohd Nizam Bin; Ahmed-Kristensen, Saeema

    2011-01-01

    Specification is an integral part of the product development process. Frequently, more than a single version of a specification is produced due to changes in requirements. These changes are often necessary to ensure the scope of the design problem is as clear as possible. However, the negative...... on a pre-defined coding scheme. The results of the study shows that change in requirements were initiated by internal stakeholders through analysis and evaluation activities during the design process, meanwhile external stakeholders were requested changes during the meeting with consultant. All...

  18. System requirements and design description for the environmental requirements management interface (ERMI)

    International Nuclear Information System (INIS)

    Biebesheimer, E.

    1997-01-01

    This document describes system requirements and the design description for the Environmental Requirements Management Interface (ERMI). The ERMI database assists Tank Farm personnel with scheduling, planning, and documenting procedure compliance, performance verification, and selected corrective action tracking activities for Tank Farm S/RID requirements. The ERMI database was developed by Science Applications International Corporation (SAIC). This document was prepared by SAIC and edited by LMHC

  19. Target design for heavy ion beam fusion

    International Nuclear Information System (INIS)

    Meyer-ter-Vehn, J.; Metzler, N.

    1981-07-01

    Target design for Heavy Ion Beam Fusion and related physics are discussed. First, a modified version of the Kidder-Bodner model for pellet gain is presented and is used to define the working point (Esub(beam) = 4.8 MJ, Gain 83) for a reactor size target. Secondly, stopping of heavy ions in hot dense plasma is investigated and numerical results for stopping powers and ranges of 10 GeV Bi-ions in Pb, Li, and PbLi-alloy are given. Finally, results of an explicit implosion calculation, using the 1-D code MINIHY, are discussed in detail. The hydrodynamic efficiency is found to be about 5%. Special attention is given to the shock sequence leading to the ignition configuration. Also the growth of Rayleigh-Taylor instability at the absorber-pusher interface is estimated. (orig.)

  20. Design of a tripartite network for the prediction of drug targets

    Science.gov (United States)

    Kunimoto, Ryo; Bajorath, Jürgen

    2018-02-01

    Drug-target networks have aided in many target prediction studies aiming at drug repurposing or the analysis of side effects. Conventional drug-target networks are bipartite. They contain two different types of nodes representing drugs and targets, respectively, and edges indicating pairwise drug-target interactions. In this work, we introduce a tripartite network consisting of drugs, other bioactive compounds, and targets from different sources. On the basis of analog relationships captured in the network and so-called neighbor targets of drugs, new drug targets can be inferred. The tripartite network was found to have a stable structure and simulated network growth was accompanied by a steady increase in assortativity, reflecting increasing correlation between degrees of connected nodes leading to even network connectivity. Local drug environments in the tripartite network typically contained neighbor targets and revealed interesting drug-compound-target relationships for further analysis. Candidate targets were prioritized. The tripartite network design extends standard drug-target networks and provides additional opportunities for drug target prediction.

  1. Challenges Surrounding the Injection and Arrival of Targets at LIFE Fusion Chamber Center

    Energy Technology Data Exchange (ETDEWEB)

    Miles, R; Spaeth, M; Manes, K; Amendt, P; Tabak, M; Bond, T; Kucheyev, S; Latkowski, J; Loosmore, G; Bliss, E; Baker, K; Bhandarkar, S; Petzoldt, R; Alexander, N; Tillack, M; Holdener, D

    2010-12-01

    IFE target designers must consider several engineering requirements in addition to the physics requirements for successful target implosion. These considerations include low target cost, high manufacturing throughput, the ability of the target to survive the injection into the fusion chamber and arrive in a condition and physical position consistent with proper laser-target interaction and ease of post-implosion debris removal. This article briefly describes these considerations for the Laser Inertial Fusion-based Energy (LIFE) targets currently being designed.

  2. Target designs for the Brookhaven National Laboratory 5-MW pulsed spallation neutron source

    International Nuclear Information System (INIS)

    Ludewig, H.; Todosow, M.; Powell, J.R.

    1996-01-01

    A feasibility study of a compact high power density target for a spallation neutron source was under-taken. The target arrangement consists primarily of heavy metal, with appropriate cooling passages. A high intensity proton beam of intermediate energy is directed at the target, where it interacts with the heavy metal nuclei. The subsequent spallation reactions produce several neutrons per proton resulting in an intense neutron source. The proton beam is assumed to havean energy of 5 MW, and to be cyclic with a repetition rate of 10Hz and 50Hz. The study was divided into two broad sections. First, an analysis of preliminary target designs was undertaken to ensure the overall feasibility of the concepts involved in the design and eventual construction of such a high power density target. Second, two proposed target designs, based on the first set of analyses, are investigated in more detail. Special care is taken to ensure that the neutron fluxes in the moderator are at the desired level no material compatibility problems exist,and the target is able to operate in a reliable and safe manner. Several target materials, coolant types, and target arrangements are investigated in the first section. The second section concentrates on a single target material and geometric arrangement. However, several structural material choices continue to be investigated with the aim of minimizing the effects of structural heating, and associated thermally induced stresses. In the final section the conclusions of this preliminary study are summarized

  3. Design of the solid target structure and the study on the coolant flow distribution in the solid target using the 2-dimensional flow analysis

    International Nuclear Information System (INIS)

    Haga, Katsuhiro; Terada, Atsuhiko; Ishikura, Shuichi; Teshigawara, Makoto; Kinoshita, Hidetaka; Kobayashi, Kaoru; Kaminaga, Masaki; Hino, Ryutaro; Susuki, Akira

    1999-11-01

    A solid target cooled by heavy water is presently under development under the Neutron Science Research Project of the Japan Atomic Energy Research Institute (JAERI). Target plates of several millimeters thickness made of heavy metal are used as the spallation target material and they are put face to face in a row with one to two millimeters gaps in between though which heavy water flows, as the coolant. Based on the design criteria regarding the target plate cooling, the volume percentage of the coolant, and the thermal stress produced in the target plates, we conducted thermal and hydraulic analysis with a one dimensional target plate model. We choosed tungsten as the target material, and decided on various target plate thicknesses. We then calculated the temperature and the thermal stress in the target plates using a two dimensional model, and confirmed the validity of the target plate thicknesses. Based on these analytical results, we proposed a target structure in which forty target plates are divided into six groups and each group is cooled using a single pass of coolant. In order to investigate the relationship between the distribution of the coolant flow, the pressure drop, and the coolant velocity, we conducted a hydraulic analysis using the general purpose hydraulic analysis code. As a result, we realized that an uniform coolant flow distribution can be achieved under a wide range of flow velocity conditions in the target plate cooling channels from 1 m/s to 10 m/s. The pressure drop along the coolant path was 0.09 MPa and 0.17 MPa when the coolant flow velocity was 5 m/s and 7 m/s respectively, which is required to cool the 1.5 MW and 2.5 MW solid targets. (author)

  4. Distributed Cognition in the Management of Design Requirements

    OpenAIRE

    Hansen, Sean; Lyytinen, Kalle

    2009-01-01

    In this position statement, we outline a new theoretical framework of the distribution of design requirements processes. Building upon the Theory of Distributed Cognition, we characterize contemporary requirements efforts as distributed cognitive systems in which elements of a design vision are distributed socially, structurally, and temporally. We discuss the various forms of distribution observed in real-world systems development projects and the processes by which representational states ...

  5. Design study of ITER-like divertor target for DEMO

    International Nuclear Information System (INIS)

    Crescenzi, Fabio; Bachmann, C.; Richou, M.; Roccella, S.; Visca, E.; You, J.-H.

    2015-01-01

    Highlights: • ‘DEMO’ is a near-term Power Plant Conceptual Study (PPCS). • The ITER-like design concept represents a promising solution also for DEMO plasma facing units. • The optimization of PFUs aims to enhance the thermo-mechanical behaviour of the component. • The optimized geometry was evaluated by ITER SDC-IC criteria and in terms of low cycle fatigue (LCF). - Abstract: A near-term water-cooled target solution has to be evaluated together with the required technologies and its power exhaust limit under ‘DEMO’ conditions. The ITER-like design concept based on the mono-block technology using W as armour material and the CuCrZr-IG as structural material with an interlayer of pure copper represents a promising solution also for DEMO. This work reports the design study of an “optimized” ITER-like Water Cooled Divertor able to withstand a heat flux of 10 MW m"−"2, as requested for DEMO operating conditions. The optimization of plasma facing unit (PFU) aims to enhance the thermo-mechanical behaviour of the component by varying some geometrical parameters (monoblock size, interlayer thickness and, tube diameter and thickness). The optimization was performed by means of the multi-variable optimization algorithms using the FEM code ANSYS. The coolant hydraulic conditions (inlet pressure, temperature and velocity) were fixed for simplicity. This study is based on elastic analysis and 3 dimensional modelling. The resulting optimized geometry was evaluated on the basis of the ITER SDC-IC criteria and in terms of low cycle fatigue (LCF). The margin to the critical heat flux (CHF) was also estimated. Further design study (taking into account the effect of neutron radiation on the material properties) together with mock-up fabrication and high-heat-flux (HHF) tests are foreseen in next work programmes.

  6. Design study of ITER-like divertor target for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Crescenzi, Fabio, E-mail: fabio.crescenzi@enea.it [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati (Roma) (Italy); Bachmann, C. [EFDA, Power Plant Physics and Technology, Boltzmannstraße 2, 85748 Garching (Germany); Richou, M. [CEA, IRFM, F-13108 Saint Paul Lez Durance (France); Roccella, S.; Visca, E. [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati (Roma) (Italy); You, J.-H. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2015-10-15

    Highlights: • ‘DEMO’ is a near-term Power Plant Conceptual Study (PPCS). • The ITER-like design concept represents a promising solution also for DEMO plasma facing units. • The optimization of PFUs aims to enhance the thermo-mechanical behaviour of the component. • The optimized geometry was evaluated by ITER SDC-IC criteria and in terms of low cycle fatigue (LCF). - Abstract: A near-term water-cooled target solution has to be evaluated together with the required technologies and its power exhaust limit under ‘DEMO’ conditions. The ITER-like design concept based on the mono-block technology using W as armour material and the CuCrZr-IG as structural material with an interlayer of pure copper represents a promising solution also for DEMO. This work reports the design study of an “optimized” ITER-like Water Cooled Divertor able to withstand a heat flux of 10 MW m{sup −2}, as requested for DEMO operating conditions. The optimization of plasma facing unit (PFU) aims to enhance the thermo-mechanical behaviour of the component by varying some geometrical parameters (monoblock size, interlayer thickness and, tube diameter and thickness). The optimization was performed by means of the multi-variable optimization algorithms using the FEM code ANSYS. The coolant hydraulic conditions (inlet pressure, temperature and velocity) were fixed for simplicity. This study is based on elastic analysis and 3 dimensional modelling. The resulting optimized geometry was evaluated on the basis of the ITER SDC-IC criteria and in terms of low cycle fatigue (LCF). The margin to the critical heat flux (CHF) was also estimated. Further design study (taking into account the effect of neutron radiation on the material properties) together with mock-up fabrication and high-heat-flux (HHF) tests are foreseen in next work programmes.

  7. Epitope-based peptide vaccine design and target site depiction against Ebola viruses: an immunoinformatics study.

    Science.gov (United States)

    Khan, M A; Hossain, M U; Rakib-Uz-Zaman, S M; Morshed, M N

    2015-07-01

    Ebola viruses (EBOVs) have been identified as an emerging threat in recent year as it causes severe haemorrhagic fever in human. Epitope-based vaccine design for EBOVs remains a top priority because a mere progress has been made in this regard. Another reason is the lack of antiviral drug and licensed vaccine although there is a severe outbreak in Central Africa. In this study, we aimed to design an epitope-based vaccine that can trigger a significant immune response as well as to prognosticate inhibitor that can bind with potential drug target sites using various immunoinformatics and docking simulation tools. The capacity to induce both humoral and cell-mediated immunity by T cell and B cell was checked for the selected protein. The peptide region spanning 9 amino acids from 42 to 50 and the sequence TLASIGTAF were found as the most potential B and T cell epitopes, respectively. This peptide could interact with 12 HLAs and showed high population coverage up to 80.99%. Using molecular docking, the epitope was further appraised for binding against HLA molecules to verify the binding cleft interaction. In addition with this, the allergenicity of the epitopes was also evaluated. In the post-therapeutic strategy, docking study of predicted 3D structure identified suitable therapeutic inhibitor against targeted protein. However, this computational epitope-based peptide vaccine designing and target site prediction against EBOVs open up a new horizon which may be the prospective way in Ebola viruses research; the results require validation by in vitro and in vivo experiments. © 2015 John Wiley & Sons Ltd.

  8. National Ignition Facility subsystem design requirements optics assembly building (OAB) SSDR 1.2.2.3

    International Nuclear Information System (INIS)

    Kempel, P.; Hands, J.

    1996-01-01

    This Subsystem Design Requirement (SSDR) document establishes the performance, design, and verification requirements 'for the conventional building systems and subsystems of the Optics Assembly Building (OAB). These building system requirements are associated with housing and supporting the operational flow of personnel and materials throughout the OAB for preparing and repairing optical and mechanical components used in the National Ignition Facility (NIF) Laser and Target Building (LTAB). This SSDR addresses the following subsystems associated with the OAB: * Structural systems for the building spaces and operational-support equipment and building- support equipment. * Architectural building features associated with housing the space, operational cleanliness, and functional operation of the facility. * Heating, Ventilating, and Air Conditioning (HVAC) systems for maintaining a clean and thermally stable ambient environment within the facility. * Plumbing systems that provide potable water and sanitary facilities for the occupants and stormwater drainage for transporting rainwater. * Fire Protection systems that guard against fire damage to the facility and its contents. * Material handling equipment for transferring optical assemblies and other materials within building areas and to the LTAB. * Mechanical process piping systems for liquids and gases that provide cooling, cleaning, and other service to optical and mechanical components. * Electrical power and grounding systems that provide service to the building and equipment, including lighting distribution and communications systems for the facilities. * Instrumentation and control systems that ensure the safe operation of conventional facilities systems, such as those listed above. Generic design criteria, such as siting data, seismic requirements, utility availability, and other information that contributes to the OAB design, are not addressed in this document

  9. Target designs for energetics experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Meezan, N B; Glenzer, S H; Suter, L J

    2008-01-01

    The goal of the first hohlraum energetics experiments on the National Ignition Facility (NIF) [G. H. Miller et al, Optical Eng. 43, 2841 (2004)] is to select the hohlraum design for the first ignition experiments. Sub-scale hohlraums heated by 96 of the 192 laser beams on the NIF are used to emulate the laser-plasma interaction behavior of ignition hohlraums. These 'plasma emulator' targets are 70% scale versions of the 1.05 MJ, 300 eV ignition hohlraum and have the same energy-density as the full-scale ignition designs. Radiation-hydrodynamics simulations show that the sub-scale target is a good emulator of plasma conditions inside the ignition hohlraum, reproducing density n e within 10% and temperature T e within 15% along a laser beam path. Linear backscatter gain analysis shows the backscatter risk to be comparable to that of the ignition target. A successful energetics campaign will allow the National Ignition Campaign to focus its efforts on optimizing ignition hohlraums with efficient laser coupling

  10. New designs of LMJ targets for early ignition experiments

    International Nuclear Information System (INIS)

    Clerouin, C; Bonnefille, M; Dattolo, E; Fremerye, P; Galmiche, D; Gauthier, P; Giorla, J; Laffite, S; Liberatore, S; Loiseau, P; Malinie, G; Masse, L; Poggi, F; Seytor, P

    2008-01-01

    The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 40 laser quads, delivering up to 1.4MJ and 380TW. New targets needing reduced laser energy with only a small decrease in robustness are then designed for this purpose. A first strategy is to use scaled-down cylindrical hohlraums and capsules, taking advantage of our better understanding of the problem, set on theoretical modelling, simulations and experiments. Another strategy is to work specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, which is with parametric instabilities a crucial drawback of indirect drive. An alternative design is proposed, made up of the nominal 60 quads capsule, named A1040, in a rugby-shaped hohlraum. Robustness evaluations of these different targets are in progress

  11. New designs of LMJ targets for early ignition experiments

    Energy Technology Data Exchange (ETDEWEB)

    Clerouin, C; Bonnefille, M; Dattolo, E; Fremerye, P; Galmiche, D; Gauthier, P; Giorla, J; Laffite, S; Liberatore, S; Loiseau, P; Malinie, G; Masse, L; Poggi, F; Seytor, P [Commissariat a l' Energie Atomique, DAM-Ile de France, BP 12 91680 Bruyeres-le-Chatel (France)], E-mail: catherine.cherfils@cea.fr

    2008-05-15

    The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 40 laser quads, delivering up to 1.4MJ and 380TW. New targets needing reduced laser energy with only a small decrease in robustness are then designed for this purpose. A first strategy is to use scaled-down cylindrical hohlraums and capsules, taking advantage of our better understanding of the problem, set on theoretical modelling, simulations and experiments. Another strategy is to work specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, which is with parametric instabilities a crucial drawback of indirect drive. An alternative design is proposed, made up of the nominal 60 quads capsule, named A1040, in a rugby-shaped hohlraum. Robustness evaluations of these different targets are in progress.

  12. High performance inertial fusion targets

    International Nuclear Information System (INIS)

    Nuckolls, J.H.; Bangerter, R.O.; Lindl, J.D.; Mead, W.C.; Pan, Y.L.

    1978-01-01

    Inertial confinement fusion (ICF) target designs are considered which may have very high gains (approximately 1000) and low power requirements (< 100 TW) for input energies of approximately one megajoule. These include targets having very low density shells, ultra thin shells, central ignitors, magnetic insulation, and non-ablative acceleration

  13. Design and Optimization for the Windowless Target of the China Nuclear Waste Transmutation Reactor

    Directory of Open Access Journals (Sweden)

    Desheng Cheng

    2016-04-01

    Full Text Available A windowless spallation target can provide a neutron source and maintain neutron chain reaction for a subcritical reactor, and is a key component of China's nuclear waste transmutation of coupling accelerator and subcritical reactor. The main issue of the windowless target design is to form a stable and controllable free surface that can ensure that energy spectrum distribution is acquired for the neutron physical design when the high energy proton beam beats the lead–bismuth eutectic in the spallation target area. In this study, morphology and flow characteristics of the free surface of the windowless target were analyzed through the volume of fluid model using computational fluid dynamics simulation, and the results show that the outlet cross section size of the target is the key to form a stable and controllable free surface, as well as the outlet with an arc transition. The optimization parameter of the target design, in which the radius of outlet cross section is 60 ± 1 mm, is verified to form a stable and controllable free surface and to reduce the formation of air bubbles. This work can function as a reference for carrying out engineering design of windowless target and for verification experiments.

  14. Stress calculations for RTNS-iI 50-cm targets

    International Nuclear Information System (INIS)

    Schumacher, B.J.; House, P.A.

    1981-04-01

    Structural calculations made during design of a 50-cm target for the Rotating Target Neutron Source (RTNS-II) are detailed. The limited ability of the current 23-cm diameter target to dissipate the additional beam power required for a yield increase from 2 x 10 13 to 4 x 10 13 neutrons/second has resulted in the need for a larger target. The stresses of several design configurations for a 50-cm target were calculated. The stress contours that would occur in several different target designs with and without various types of structural reinforcement that reduce stress and deflection are presented

  15. Process of establishing design requirements and selecting alternative configurations for conceptual design of a VLA

    Directory of Open Access Journals (Sweden)

    Bo-Young Bae

    2017-04-01

    Full Text Available In this study, a process for establishing design requirements and selecting alternative configurations for the conceptual phase of aircraft design has been proposed. The proposed process uses system-engineering-based requirement-analysis techniques such as objective tree, analytic hierarchy process, and quality function deployment to establish logical and quantitative standards. Moreover, in order to perform a logical selection of alternative aircraft configurations, it uses advanced decision-making methods such as morphological matrix and technique for order preference by similarity to the ideal solution. In addition, a preliminary sizing tool has been developed to check the feasibility of the established performance requirements and to evaluate the flight performance of the selected configurations. The present process has been applied for a two-seater very light aircraft (VLA, resulting in a set of tentative design requirements and two families of VLA configurations: a high-wing configuration and a low-wing configuration. The resulting set of design requirements consists of three categories: customer requirements, certification requirements, and performance requirements. The performance requirements include two mission requirements for the flight range and the endurance by reflecting the customer requirements. The flight performances of the two configuration families were evaluated using the sizing tool developed and the low-wing configuration with conventional tails was selected as the best baseline configuration for the VLA.

  16. Safety of nuclear power plants: Design. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    The present publication supersedes the Code on the Safety of Nuclear Power Plants: Design (Safety Series No. 50-C-D (Rev. 1), issued in 1988). It takes account of developments relating to the safety of nuclear power plants since the Code on Design was last revised. These developments include the issuing of the Safety Fundamentals publication, The Safety of Nuclear Installations, and the present revision of various safety standards and other publications relating to safety. Requirements for nuclear safety are intended to ensure adequate protection of site personnel, the public and the environment from the effects of ionizing radiation arising from nuclear power plants. It is recognized that technology and scientific knowledge advance, and nuclear safety and what is considered adequate protection are not static entities. Safety requirements change with these developments and this publication reflects the present consensus. This Safety Requirements publication takes account of the developments in safety requirements by, for example, including the consideration of severe accidents in the design process. Other topics that have been given more detailed attention include management of safety, design management, plant ageing and wearing out effects, computer based safety systems, external and internal hazards, human factors, feedback of operational experience, and safety assessment and verification. This publication establishes safety requirements that define the elements necessary to ensure nuclear safety. These requirements are applicable to safety functions and the associated structures, systems and components, as well as to procedures important to safety in nuclear power plants. It is expected that this publication will be used primarily for land based stationary nuclear power plants with water cooled reactors designed for electricity generation or for other heat production applications (such as district heating or desalination). It is recognized that in the case of

  17. Safety of nuclear power plants: Design. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    The present publication supersedes the Code on the Safety of Nuclear Power Plants: Design (Safety Series No. 50-C-D (Rev. 1), issued in 1988). It takes account of developments relating to the safety of nuclear power plants since the Code on Design was last revised. These developments include the issuing of the Safety Fundamentals publication, The Safety of Nuclear Installations, and the present revision of various safety standards and other publications relating to safety. Requirements for nuclear safety are intended to ensure adequate protection of site personnel, the public and the environment from the effects of ionizing radiation arising from nuclear power plants. It is recognized that technology and scientific knowledge advance, and nuclear safety and what is considered adequate protection are not static entities. Safety requirements change with these developments and this publication reflects the present consensus. This Safety Requirements publication takes account of the developments in safety requirements by, for example, including the consideration of severe accidents in the design process. Other topics that have been given more detailed attention include management of safety, design management, plant ageing and wearing out effects, computer based safety systems, external and internal hazards, human factors, feedback of operational experience, and safety assessment and verification. This publication establishes safety requirements that define the elements necessary to ensure nuclear safety. These requirements are applicable to safety functions and the associated structures, systems and components, as well as to procedures important to safety in nuclear power plants. It is expected that this publication will be used primarily for land based stationary nuclear power plants with water cooled reactors designed for electricity generation or for other heat production applications (such as district heating or desalination). It is recognized that in the case of

  18. Update of bridge design standards in Alabama for AASHTO LRFD seismic design requirements.

    Science.gov (United States)

    2013-11-01

    The Alabama Department of Transportation (ALDOT) has been required to update their bridge design to the LRFD Bridge Design Specifications. This transition has resulted in changes to the seismic design standards of bridges in the state. Multiple bridg...

  19. Model-Based Requirements Management in Gear Systems Design Based On Graph-Based Design Languages

    Directory of Open Access Journals (Sweden)

    Kevin Holder

    2017-10-01

    Full Text Available For several decades, a wide-spread consensus concerning the enormous importance of an in-depth clarification of the specifications of a product has been observed. A weak clarification of specifications is repeatedly listed as a main cause for the failure of product development projects. Requirements, which can be defined as the purpose, goals, constraints, and criteria associated with a product development project, play a central role in the clarification of specifications. The collection of activities which ensure that requirements are identified, documented, maintained, communicated, and traced throughout the life cycle of a system, product, or service can be referred to as “requirements engineering”. These activities can be supported by a collection and combination of strategies, methods, and tools which are appropriate for the clarification of specifications. Numerous publications describe the strategy and the components of requirements management. Furthermore, recent research investigates its industrial application. Simultaneously, promising developments of graph-based design languages for a holistic digital representation of the product life cycle are presented. Current developments realize graph-based languages by the diagrams of the Unified Modelling Language (UML, and allow the automatic generation and evaluation of multiple product variants. The research presented in this paper seeks to present a method in order to combine the advantages of a conscious requirements management process and graph-based design languages. Consequently, the main objective of this paper is the investigation of a model-based integration of requirements in a product development process by means of graph-based design languages. The research method is based on an in-depth analysis of an exemplary industrial product development, a gear system for so-called “Electrical Multiple Units” (EMU. Important requirements were abstracted from a gear system

  20. Design requirements for the supercritical water oxidation test bed

    International Nuclear Information System (INIS)

    Svoboda, J.M.; Valentich, D.J.

    1994-05-01

    This report describes the design requirements for the supercritical water oxidation (SCWO) test bed that will be located at the Idaho National Engineering Laboratory (INEL). The test bed will process a maximum of 50 gph of waste plus the required volume of cooling water. The test bed will evaluate the performance of a number of SCWO reactor designs. The goal of the project is to select a reactor that can be scaled up for use in a full-size waste treatment facility to process US Department of Energy mixed wastes. EG ampersand G Idaho, Inc. will design and construct the SCWO test bed at the Water Reactor Research Test Facility (WRRTF), located in the northern region of the INEL. Private industry partners will develop and provide SCWO reactors to interface with the test bed. A number of reactor designs will be tested, including a transpiring wall, tube, and vessel-type reactor. The initial SCWO reactor evaluated will be a transpiring wall design. This design requirements report identifies parameters needed to proceed with preliminary and final design work for the SCWO test bed. A flow sheet and Process and Instrumentation Diagrams define the overall process and conditions of service and delineate equipment, piping, and instrumentation sizes and configuration Codes and standards that govern the safe engineering and design of systems and guidance that locates and interfaces test bed hardware are provided. Detailed technical requirements are addressed for design of piping, valves, instrumentation and control, vessels, tanks, pumps, electrical systems, and structural steel. The approach for conducting the preliminary and final designs and environmental and quality issues influencing the design are provided

  1. IT Requirements Integration in High-Rise Construction Design Projects

    Science.gov (United States)

    Levina, Anastasia; Ilin, Igor; Esedulaev, Rustam

    2018-03-01

    The paper discusses the growing role of IT support for the operation of modern high-rise buildings, due to the complexity of managing engineering systems of buildings and the requirements of consumers for the IT infrastructure. The existing regulatory framework for the development of design documentation for construction, including high-rise buildings, is analyzed, and the lack of coherence in the development of this documentation with the requirements for the creation of an automated management system and the corresponding IT infrastructure is stated. The lack of integration between these areas is the cause of delays and inefficiencies both at the design stage and at the stage of putting the building into operation. The paper proposes an approach to coordinate the requirements of the IT infrastructure of high-rise buildings and design documentation for construction. The solution to this problem is possible within the framework of the enterprise architecture concept by coordinating the requirements of the IT and technological layers at the design stage of the construction.

  2. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is a revision of Safety Requirements No. NS-R-1, Safety of Nuclear Power Plants: Design. It establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in the design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  3. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Russian Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is a revision of Safety Requirements No. NS-R-1, Safety of Nuclear Power Plants: Design. It establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in the design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  4. Targeted proteins for diabetes drug design

    Science.gov (United States)

    Doan Trang Nguyen, Ngoc; Thi Le, Ly

    2012-03-01

    Type 2 diabetes mellitus is a common metabolism disorder characterized by high glucose in the bloodstream, especially in the case of insulin resistance and relative insulin deficiency. Nowadays, it is very common in middle-aged people and involves such dangerous symptoms as increasing risk of stroke, obesity and heart failure. In Vietnam, besides the common treatment of insulin injection, some herbal medication is used but no unified optimum remedy for the disease yet exists and there is no production of antidiabetic drugs in the domestic market yet. In the development of nanomedicine at the present time, drug design is considered as an innovative tool for researchers to study the mechanisms of diseases at the molecular level. The aim of this article is to review some common protein targets involved in type 2 diabetes, offering a new idea for designing new drug candidates to produce antidiabetic drugs against type 2 diabetes for Vietnamese people.

  5. Targeted proteins for diabetes drug design

    International Nuclear Information System (INIS)

    Trang Nguyen, Ngoc Doan; Le, Ly Thi

    2012-01-01

    Type 2 diabetes mellitus is a common metabolism disorder characterized by high glucose in the bloodstream, especially in the case of insulin resistance and relative insulin deficiency. Nowadays, it is very common in middle-aged people and involves such dangerous symptoms as increasing risk of stroke, obesity and heart failure. In Vietnam, besides the common treatment of insulin injection, some herbal medication is used but no unified optimum remedy for the disease yet exists and there is no production of antidiabetic drugs in the domestic market yet. In the development of nanomedicine at the present time, drug design is considered as an innovative tool for researchers to study the mechanisms of diseases at the molecular level. The aim of this article is to review some common protein targets involved in type 2 diabetes, offering a new idea for designing new drug candidates to produce antidiabetic drugs against type 2 diabetes for Vietnamese people. (review)

  6. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Chinese Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  7. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (French Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  8. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Arabic Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  9. Flight Hardware Packaging Design for Stringent EMC Radiated Emission Requirements

    Science.gov (United States)

    Lortz, Charlene L.; Huang, Chi-Chien N.; Ravich, Joshua A.; Steiner, Carl N.

    2013-01-01

    This packaging design approach can help heritage hardware meet a flight project's stringent EMC radiated emissions requirement. The approach requires only minor modifications to a hardware's chassis and mainly concentrates on its connector interfaces. The solution is to raise the surface area where the connector is mounted by a few millimeters using a pedestal, and then wrapping with conductive tape from the cable backshell down to the surface-mounted connector. This design approach has been applied to JPL flight project subsystems. The EMC radiated emissions requirements for flight projects can vary from benign to mission critical. If the project's EMC requirements are stringent, the best approach to meet EMC requirements would be to design an EMC control program for the project early on and implement EMC design techniques starting with the circuit board layout. This is the ideal scenario for hardware that is built from scratch. Implementation of EMC radiated emissions mitigation techniques can mature as the design progresses, with minimal impact to the design cycle. The real challenge exists for hardware that is planned to be flown following a built-to-print approach, in which heritage hardware from a past project with a different set of requirements is expected to perform satisfactorily for a new project. With acceptance of heritage, the design would already be established (circuit board layout and components have already been pre-determined), and hence any radiated emissions mitigation techniques would only be applicable at the packaging level. The key is to take a heritage design with its known radiated emissions spectrum and repackage, or modify its chassis design so that it would have a better chance of meeting the new project s radiated emissions requirements.

  10. EURISOL-DS Overall Design of the Multi-MW Target Station

    CERN Document Server

    Olivier Choisnet, Cyril Kharoua, Yacine Kadi, Karel Samec (CERN)

    The EURISOL Design Study investigated the feasibility of a complex instrument to push back the boundaries of current physics knowledge amidst today’s ever-increasing need for realism due to constraints imposed by safety, performance and, not least, budgetary responsibility.In order to attend to these concerns, the EURISOL Multi-Megawatt converter target, its associated fission targets and the three 100 kW direct targets are all integrated into a single facility housing the ancillary equipment as well. The overall layout of the facility, its functional break-down and the main modes of operation are presented in the current report.

  11. General-purpose heat source development. Phase I: design requirements

    International Nuclear Information System (INIS)

    Snow, E.C.; Zocher, R.W.

    1978-09-01

    Studies have been performed to determine the necessary design requirements for a 238 PuO 2 General-Purpose Heat Source (GPHS). Systems and missions applications, as well as accident conditions, were considered. The results of these studies, along with the recommended GPHS design requirements, are given in this report

  12. Conceptual design of a high current ISOL target area at TRIUMF

    International Nuclear Information System (INIS)

    Beveridge, J.L.; Buchmann, L.; Clark, G.S.; Sprenger, H.; Thorson, I.; Vincent, J.; D'Auria, J.M.; Dombsky, M.

    1993-05-01

    Two similar conceptual designs for the handling of highly activated components at the target area of a high current radioactive beam facility have been investigated. The proposed designs are sufficiently flexible that practical detailed designs could be realized. Personnel exposure to radiation during the handling procedures is expected to be minimal. (author) 3 refs., 4 figs

  13. Analysis of regulatory requirement for beyond design basis events of SMART

    International Nuclear Information System (INIS)

    Kim, W. S.; Seol, K. W.

    2000-01-01

    To enhance the safety of SMART reactor, safety and regulatory requirements associated with beyond design basis events (beyond BDE), which were developed and applied to advanced light water reactor designs, were analyzed along with a design status of passive reactor. And, based on these requirements, their applicability on the SMART design was evaluated. In the design aspect, severe accident prevention and mitigation features, containment performance, and accident management were analyzed. The evaluation results show that the requirement related to beyond DBE such as ATWS, loss of residual heat removal during shutdown operation, station blackout, fire, inter-system LOCA, and well-known events from severe accident phenomena is applicable to the SMART design. However, comprehensive approach against beyond DBE is not yet provided in the SMART design, and then it is required to designate and analyze the beyond DBE-related features. This study is expected to contribute to efforts to improve plant safety and to establish regulatory requirements for safety review

  14. Modern design of far-field target motion simulators

    Science.gov (United States)

    Hauser, Robin; Swamp, Michael; Havlicsek, Howard

    2006-05-01

    Target Motion Simulators (TMS) are often used in conjunction with Flight Motion Simulators (FMS) to provide a realistic simulation of tracking and target engagement. For near-field applications, the TMS has typically been implemented with two additional gimbals around the FMS. For far-field applications, such as a radar, the TMS has traditionally been implemented with curvilinear X-Y Frames. A curvilinear frame placed at the proper distance from the FMS has the benefit of always pointing the Target back to the FMS intersection of axes. In most cases the curvilinear TMS provides good results. However, the curvilinear TMS lacks the possibility to change the distance between Target and Seeker, which is needed for operation with different radar wavelengths. Acutronic has developed a new approach using a flat frame (X-Y) TMS coupled with a gimballed payload mount that has the possibility of being used at various distances without losing the functionality of continuous pointing back to the seeker. This paper describes the electro-mechanical design and gives an overview of the Computer and Controllers used. It further addresses the problem of coordination transformation that is needed to obtain the correct pointing.

  15. Design and Characterization of High Power Targets for RIB Generation

    International Nuclear Information System (INIS)

    Zhang, Y.

    2001-01-01

    In this article, thermal modeling techniques are used to simulate ISOL targets irradiated with high power proton beams. Beam scattering effects, nuclear reactions and beam power deposition distributions in the target were computed with the Monte Carlo simulation code, GEANT4. The power density information was subsequently used as input to the finite element thermal analysis code, ANSYS, for extracting temperature distribution information for a variety of target materials. The principal objective of the studies was to evaluate techniques for more uniformly distributing beam deposited heat over the volumes of targets to levels compatible with their irradiation with the highest practical primary-beam power, and to use the preferred technique to design high power ISOL targets. The results suggest that radiation cooling, in combination, with primary beam manipulation, can be used to control temperatures in practically sized targets, to levels commensurate with irradiation with 1 GeV, 100 kW proton beams

  16. Assessment of Performance-based Requirements for Structural Design

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2005-01-01

    and for a detailed assessment of the requirements. The design requirements to be used for a factory producing elements for industrial housing for unknown costumers are discussed, and a fully developed fire is recommended as a common requirement for domestic houses, hotels, offices, schools and hospitals. In addition...

  17. Designing and modeling a centrifugal microfluidic device to separate target blood cells

    Science.gov (United States)

    Shamloo, Amir; Selahi, AmirAli; Madadelahi, Masoud

    2016-03-01

    The objective of this study is to design a novel and efficient portable lab-on-a-CD (LOCD) microfluidic device for separation of specific cells (target cells) using magnetic beads. In this study the results are shown for neutrophils as target cells. However, other kinds of target cells can be separated in a similar approach. The designed microfluidics can be utilized as a point of care system for neutrophil detection. This microfluidic system employs centrifugal and magnetic forces for separation. After model validation by the experimental data in the literature (that may be used as a design tool for developing centrifugo-magnetophoretic devices), two models are presented for separation of target cells using magnetic beads. The first model consists of one container in the inlet section and two containers in the outlets. Initially, the inlet container is filled with diluted blood sample which is a mixture of red blood cells (RBCs) plus neutrophils which are attached to Magnetic beads. It is shown that by using centrifugal and magnetic forces, this model can separate all neutrophils with recovery factor of ~100%. In the second model, due to excess of magnetic beads in usual experimental analysis (to ensure that all target cells are attached to them) the geometry is improved by adding a third outlet for these free magnetic beads. It is shown that at angular velocity of 45 rad s-1, recovery factor of 100% is achievable for RBCs, free magnetic beads and neutrophils as target cells.

  18. Design and Fabrication of Titanium Target for Portable Neutron Generator

    International Nuclear Information System (INIS)

    Lee, Cheol Ho; Oh, Byunghoon; Chang, Daesik; Jang, Dohyun; In Sang Yeol; Park, Jaewon; Hong, Kwangpyo

    2014-01-01

    For the neutron generator to produce a neutron flux of the above order, a target that produces fast neutrons in the generator plays an important role, and the target is used and applied to develop the generator due to its simplicity and inexpensive. Making suitable targets for neutron production, especially mono-energy neutrons, has always been of interest. These targets have been used for neutron production reaction studies, calibration of detectors, and neutron therapy. Different studies have been carried out on deuterium and tritium for making solid targets to produce mono-energy neutron from D-D and D-T reactions. A lot of investigations have been carried out on solid target properties such as lifetime, thermal stability, neutron yield, and energy. Vaporized zirconium and titanium layers on a high thermal conductivity substrate (Cu, Mo, Ag) have been used as deuterium and tritium absorbing metals. The density of titanium is smaller than zirconium and the range of charged particles in the titanium targets is more than that in zirconium targets. Thus, titanium targets have more neutron yield than zirconium targets in a low energy beam and titanium is usually used to make a target. The titanium target was designed and simulated to determine the suitable thickness of the target. As a result of the simulation, the target was fabricated to generate fast neutrons by the reaction. The thickness of the target was measured using a profiler. The thickness of the two targets is 2.108 and 2.190 μm. The target will be applied to produce neutrons in a neutron generator

  19. Ligand design for riboswitches, an emerging target class for novel antibiotics.

    Science.gov (United States)

    Rekand, Illimar Hugo; Brenk, Ruth

    2017-09-01

    Riboswitches are cis-acting gene regulatory elements and constitute potential targets for new antibiotics. Recent studies in this field have started to explore these targets for drug discovery. New ligands found by fragment screening, design of analogs of the natural ligands or serendipitously by phenotypic screening have shown antibacterial effects in cell assays against a range of bacteria strains and in animal models. In this review, we highlight the most advanced drug design work of riboswitch ligands and discuss the challenges in the field with respect to the development of antibiotics with a new mechanism of action.

  20. Designing nanoconjugates to effectively target pancreatic cancer cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Jameel Ahmad Khan

    Full Text Available Pancreatic cancer is the fourth leading cause of cancer related deaths in America. Monoclonal antibodies are a viable treatment option for inhibiting cancer growth. Tumor specific drug delivery could be achieved utilizing these monoclonal antibodies as targeting agents. This type of designer therapeutic is evolving and with the use of gold nanoparticles it is a promising approach to selectively deliver chemotherapeutics to malignant cells. Gold nanoparticles (GNPs are showing extreme promise in current medicinal research. GNPs have been shown to non-invasively kill tumor cells by hyperthermia using radiofrequency. They have also been implemented as early detection agents due to their unique X-ray contrast properties; success was revealed with clear delineation of blood capillaries in a preclinical model by CT (computer tomography. The fundamental parameters for intelligent design of nanoconjugates are on the forefront. The goal of this study is to define the necessary design parameters to successfully target pancreatic cancer cells.The nanoconjugates described in this study were characterized with various physico-chemical techniques. We demonstrate that the number of cetuximab molecules (targeting agent on a GNP, the hydrodynamic size of the nanoconjugates, available reactive surface area and the ability of the nanoconjugates to sequester EGFR (epidermal growth factor receptor, all play critical roles in effectively targeting tumor cells in vitro and in vivo in an orthotopic model of pancreatic cancer.Our results suggest the specific targeting of tumor cells depends on a number of crucial components 1 targeting agent to nanoparticle ratio 2 availability of reactive surface area on the nanoparticle 3 ability of the nanoconjugate to bind the target and 4 hydrodynamic diameter of the nanoconjugate. We believe this study will help define the design parameters for formulating better strategies for specifically targeting tumors with nanoparticle

  1. Computer-aided design of control systems to meet many requirements

    Science.gov (United States)

    Schy, A. A.; Adams, W. M., Jr.; Johnson, K. G.

    1974-01-01

    A method is described for using nonlinear programing in the computer-aided design of airplane control systems. It is assumed that the quality of such systems depends on many criteria. These criteria are included in the constraints vector (instead of attempting to combine them into a single scalar criterion, as is usually done), and the design proceeds through a sequence of nonlinear programing solutions in which the designer varies the specification of sets of requirements levels. The method is applied to design of a lateral stability augmentation system (SAS) for a fighter airplane, in which the requirements vector is chosen from the official handling qualities specifications. Results are shown for several simple SAS configurations designed to obtain desirable handling qualities over all design flight conditions with minimum feedback gains. The choice of the final design for each case is not unique but depends on the designer's decision as to which achievable set of requirements levels represents the best for that system. Results indicate that it may be possible to design constant parameter SAS which can satisfy the most stringent handling qualities requirements for fighter airplanes in all flight conditions. The role of the designer as a decision maker, interacting with the computer program, is discussed. Advantages of this type of designer-computer interaction are emphasized. Desirable extensions of the method are indicated.

  2. Review of nuclear piping seismic design requirements

    International Nuclear Information System (INIS)

    Slagis, G.C.; Moore, S.E.

    1994-01-01

    Modern-day nuclear plant piping systems are designed with a large number of seismic supports and snubbers that may be detrimental to plant reliability. Experimental tests have demonstrated the inherent ruggedness of ductile steel piping for seismic loading. Present methods to predict seismic loads on piping are based on linear-elastic analysis methods with low damping. These methods overpredict the seismic response of ductile steel pipe. Section III of the ASME Boiler and Pressure Vessel Code stresses limits for piping systems that are based on considerations of static loads and hence are overly conservative. Appropriate stress limits for seismic loads on piping should be incorporated into the code to allow more flexible piping designs. The existing requirements and methods for seismic design of piping systems, including inherent conservations, are explained to provide a technical foundation for modifications to those requirements. 30 refs., 5 figs., 3 tabs

  3. Long-rod projectiles against oblique targets: analysis and design recommendations

    International Nuclear Information System (INIS)

    Norris, D.M.; McMaster, W.H.; Wilkins, M.L.

    1976-01-01

    Computer calculations provide an understanding of impact phenomena associated with long rod penetrators striking targets at oblique angles. The rod and target material behaviors are described by elastic-plastic work-hardening constitutive models. Ductile fracture is simulated by setting all tensile and shear stresses to zero when the calculated plastic deformation reaches a critical value. The important penetration material properties to defeat a given target are identified. There is no single material property of overriding importance; a combination of properties is required for an efficient penetrator. Experimental results are presented to demonstrate the effects of ductility and toughness on penetration performance. Recommendations for possible improvement are suggested

  4. Preliminary design implications of SSC fixed-target operation

    International Nuclear Information System (INIS)

    Zisman, M.S.

    1984-06-01

    This paper covers some of the accelerator physics issues relevant to a possible fixed-target operating mode for the Superconducting Super Collider (SSC). In the brief time available, no attempt has been made to design this capability into the SSC. Rather, I have tried to evaluate what the performance of such a machine might be, and to indicate the hardware implications and extraction considerations that would be part of an actual design study. Where appropriate, parameters and properties of the present LBL design for the SSC have been used; these should be taken as being representative of the general class of small-aperture, high-field colliders being considered by the accelerator physics community. Thus, the numerical examples given here must ultimately be reexamined in light of the actual parameters of the particular accelerator being considered

  5. Design Requirements for Designing Responsive Modular Manufacturing Systems

    DEFF Research Database (Denmark)

    Jørgensen, Steffen; Madsen, Ole; Nielsen, Kjeld

    2011-01-01

    Customers demand the newest technologies, newest designs, the ability to customise, high quality, and all this at a low cost. These are trends which challenge the traditional way of operating manufacturing companies, especially in regard to product development and manufacturing. Research...... the needed flexibility and responsiveness, but such systems are not yet fully achieved. From related theory it is known that achieving modular benefits depend on the modular architecture; a modular architecture which must be developed according to the customer needs. This makes production needs a design...... requirement in order to achieve responsiveness and other benefits of modular manufacturing systems (MMS). Due to the complex and interrelated nature of a production system and its surroundings these production needs are complex to identify. This paper presents an analysis framework for identification...

  6. Mock Target Window OTR and IR Design and Testing

    Energy Technology Data Exchange (ETDEWEB)

    Wass, Alexander Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-19

    In order to fully verify temperature measurements made on the target window using infrared (IR) optical non-contact methods, actual comparative measurements are made with a real beam distribution as the heat source using Argonne National Laboratory’s (ANL) 35 MeV electron accelerator. Using Monte Carlo N-Particle (MCNP) simulations and thermal Finite Element Analysis (FEA), a cooled mock target window with thermocouple implants is designed to be used in such a test to achieve window temperatures up to 700°C. An uncoated and blackcoated mock window is designed to enhance the IR temperature measurements and verify optical transmitted radiation (OTR) imagery. This allows us to fully verify and characterize our temperature accuracy with our current IR camera method and any future method we may wish to explore using actual production conditions. This test also provides us with valuable conclusions/concerns regarding the calibration method we developed using our IR test stand at TA-53 in MPF-14.

  7. Colocated MIMO Radar: Beamforming, Waveform design, and Target Parameter Estimation

    KAUST Repository

    Jardak, Seifallah

    2014-04-01

    Thanks to its improved capabilities, the Multiple Input Multiple Output (MIMO) radar is attracting the attention of researchers and practitioners alike. Because it transmits orthogonal or partially correlated waveforms, this emerging technology outperformed the phased array radar by providing better parametric identifiability, achieving higher spatial resolution, and designing complex beampatterns. To avoid jamming and enhance the signal to noise ratio, it is often interesting to maximize the transmitted power in a given region of interest and minimize it elsewhere. This problem is known as the transmit beampattern design and is usually tackled as a two-step process: a transmit covariance matrix is firstly designed by minimizing a convex optimization problem, which is then used to generate practical waveforms. In this work, we propose simple novel methods to generate correlated waveforms using finite alphabet constant and non-constant-envelope symbols. To generate finite alphabet waveforms, the proposed method maps easily generated Gaussian random variables onto the phase-shift-keying, pulse-amplitude, and quadrature-amplitude modulation schemes. For such mapping, the probability density function of Gaussian random variables is divided into M regions, where M is the number of alphabets in the corresponding modulation scheme. By exploiting the mapping function, the relationship between the cross-correlation of Gaussian and finite alphabet symbols is derived. The second part of this thesis covers the topic of target parameter estimation. To determine the reflection coefficient, spatial location, and Doppler shift of a target, maximum likelihood estimation yields the best performance. However, it requires a two dimensional search problem. Therefore, its computational complexity is prohibitively high. So, we proposed a reduced complexity and optimum performance algorithm which allows the two dimensional fast Fourier transform to jointly estimate the spatial location

  8. Directives and general design requirements for a small PWR

    International Nuclear Information System (INIS)

    Arrieta, L.A.

    1992-08-01

    A proposal of directives and general requirements for the development of a small PWR conceptual design is presented. These directives address the main safety, performance and economic design aspects. The purpose is to use this work as a base for a wide discussion, involving all project participants, culminating with the definition of the final directives and general requirements. (author)

  9. [Focus Notified Bodies. New requirements for designation and monitoring].

    Science.gov (United States)

    Poos, U; Edelhäuser, R

    2014-12-01

    For medical devices with a higher risk, Notified Bodies assess whether the manufacturers and their products fulfill the requirements laid down in the European directives on medical devices. Notified Bodies are designated through a designation procedure by the designating authority, in Germany by ZLG. The requirements for the designation arise from the respective annexes of the directives on medical devices. Since these are only minimal criteria, different documents have been compiled on a European and national level to concretize these minimal criteria regarding the organization, quality management system, resources, and certification procedure. The rules of the ZLG are thereby the essential documents for designation in Germany. Moreover, according to Implementing Regulation (EU) no. 912/2013, the European commission and the other European designating authorities also have to be involved in the designation process. The aim of continuous monitoring of the Notified Bodies with assessments on the bodies' premises as well as with observed audits is to ensure the permanent fulfillment of the requirements. If nonconformities are found in a body's quality management system or in its implementation of the conformity assessment procedures, the body is obliged to provide ZLG with a corrective actions plan. In the case that the nonconformities are not resolved in time or critical nonconformities are found, ZLG may take actions, e.g., restrict the scope of designation, suspend, or - as last resort - withdraw the designation.

  10. Designing and modeling a centrifugal microfluidic device to separate target blood cells

    International Nuclear Information System (INIS)

    Shamloo, Amir; Selahi, AmirAli; Madadelahi, Masoud

    2016-01-01

    The objective of this study is to design a novel and efficient portable lab-on-a-CD (LOCD) microfluidic device for separation of specific cells (target cells) using magnetic beads. In this study the results are shown for neutrophils as target cells. However, other kinds of target cells can be separated in a similar approach. The designed microfluidics can be utilized as a point of care system for neutrophil detection. This microfluidic system employs centrifugal and magnetic forces for separation. After model validation by the experimental data in the literature (that may be used as a design tool for developing centrifugo-magnetophoretic devices), two models are presented for separation of target cells using magnetic beads. The first model consists of one container in the inlet section and two containers in the outlets. Initially, the inlet container is filled with diluted blood sample which is a mixture of red blood cells (RBCs) plus neutrophils which are attached to Magnetic beads. It is shown that by using centrifugal and magnetic forces, this model can separate all neutrophils with recovery factor of ∼100%. In the second model, due to excess of magnetic beads in usual experimental analysis (to ensure that all target cells are attached to them) the geometry is improved by adding a third outlet for these free magnetic beads. It is shown that at angular velocity of 45 rad s −1 , recovery factor of 100% is achievable for RBCs, free magnetic beads and neutrophils as target cells. (paper)

  11. Experimental study of lithium free-surface flow for IFMIF target design

    International Nuclear Information System (INIS)

    Kondo, H.; Fujisato, A.; Yamaoka, N.; Inoue, S.; Miyamoto, S.; Iida, T.; Nakamura, H.; Ida, M.; Matushita, I.; Muroga, T.; Horiike, H.

    2006-01-01

    Lithium free-surface flow experiments to verify the design of IFMIF target have been carried out at Osaka University. The present report summarizes experimental results of surface phenomena, and cavitation characteristics of the loop, so as to try to apply these results to design parameters. Waves on the lithium flow surface is similar to that on water, and can be predicted by a linear stability theory. The wave amplitude is measured by an electro-contact probe. Surface roughness on a target nozzle, caused for example by attached chemical compounds and/or wastages by erosion and corrosion, can lead to a significant loss of target flow stability as well as surface wakes. The need of a polishing manipulator or exchange of the nozzle may be anticipated. Cavitation characteristic of the loop was measured by an accelerometer. From the results, a friction factor could be estimated fort he lithium flow

  12. Supporting the design of office layout meeting ergonomics requirements.

    Science.gov (United States)

    Margaritis, Spyros; Marmaras, Nicolas

    2007-11-01

    This paper proposes a method and an information technology tool aiming to support the ergonomics layout design of individual workstations in a given space (building). The proposed method shares common ideas with previous generic methods for office layout. However, it goes a step forward and focuses on the cognitive tasks which have to be carried out by the designer or the design team trying to alleviate them. This is achieved in two ways: (i) by decomposing the layout design problem to six main stages, during which only a limited number of variables and requirements are considered and (ii) by converting the ergonomics requirements to functional design guidelines. The information technology tool (ErgoOffice 0.1) automates certain phases of the layout design process, and supports the design team either by its editing and graphical facilities or by providing adequate memory support.

  13. Design requirements for new nuclear reactor facilities in Canada

    International Nuclear Information System (INIS)

    Shim, S.; Ohn, M.; Harwood, C.

    2012-01-01

    The Canadian Nuclear Safety Commission (CNSC) has been establishing the regulatory framework for the efficient and effective licensing of new nuclear reactor facilities. This regulatory framework includes the documentation of the requirements for the design and safety analysis of new nuclear reactor facilities, regardless of size. For this purpose, the CNSC has published the design and safety analysis requirements in the following two sets of regulatory documents: 1. RD-337, Design of New Nuclear Power Plants and RD-310, Safety Analysis for Nuclear Power Plants; and 2. RD-367, Design of Small Reactor Facilities and RD-308, Deterministic Safety Analysis for Small Reactor Facilities. These regulatory documents have been modernized to document past practices and experience and to be consistent with national and international standards. These regulatory documents provide the requirements for the design and safety analysis at a high level presented in a hierarchical structure. These documents were developed in a technology neutral approach so that they can be applicable for a wide variety of water cooled reactor facilities. This paper highlights two particular aspects of these regulatory documents: The use of a graded approach to make the documents applicable for a wide variety of nuclear reactor facilities including nuclear power plants (NPPs) and small reactor facilities; and, Design requirements that are new and different from past Canadian practices. Finally, this paper presents some of the proposed changes in RD-337 to implement specific details of the recommendations of the CNSC Fukushima Task Force Report. Major changes were not needed as the 2008 version of RD-337 already contained requirements to address most of the lessons learned from the Fukushima event of March 2011. (author)

  14. Substantial reductions of input energy and peak power requirements in targets for heavy ion fusion

    International Nuclear Information System (INIS)

    Mark, J.W.K.; Pan, Y.L.

    1986-01-01

    Two ways of reducing the requirements of the heavy ion driver for inertial confinement fusion (ICF) target implosion are described. Compared to estimates of target gain not using these methods, the target input energy and peak power may be reduced by about a factor of two with the use of the hybrid-implosion concept. Another factor of two reduction in input energy may be obtained with the use of spin-polarized DT fuel in the ICF target

  15. National Ignition Facility system design requirements NIF integrated computer controls SDR004

    International Nuclear Information System (INIS)

    Bliss, E.

    1996-01-01

    This System Design Requirement document establishes the performance, design, development, and test requirements for the NIF Integrated Computer Control System. The Integrated Computer Control System (ICCS) is covered in NIF WBS element 1.5. This document responds directly to the requirements detailed in the NIF Functional Requirements/Primary Criteria, and is supported by subsystem design requirements documents for each major ICCS Subsystem

  16. MarFS-Requirements-Design-Configuration-Admin

    Energy Technology Data Exchange (ETDEWEB)

    Kettering, Brett Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Grider, Gary Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-07-08

    This document will be organized into sections that are defined by the requirements for a file system that presents a near-POSIX (Portable Operating System Interface) interface to the user, but whose data is stored in whatever form is most efficient for the type of data being stored. After defining the requirement the design for meeting the requirement will be explained. Finally there will be sections on configuring and administering this file system. More and more, data dominates the computing world. There is a “sea” of data out there in many different formats that needs to be managed and used. “Mar” means “sea” in Spanish. Thus, this product is dubbed MarFS, a file system for a sea of data.

  17. Target design for shock ignition

    International Nuclear Information System (INIS)

    Schurtz, G; Ribeyre, X; Lafon, M

    2010-01-01

    The conventional approach of laser driven inertial fusion involves the implosion of cryogenic shells of deuterium-tritium ice. At sufficiently high implosion velocities, the fuel ignites by itself from a central hot spot. In order to reduce the risks of hydrodynamic instabilities inherent to large implosion velocities, it was proposed to compress the fuel at low velocity, and ignite the compressed fuel by means of a convergent shock wave driven by an intense spike at the end of the laser pulse. This scheme, known as shock ignition, reduces the risks of shell break-up during the acceleration phase, but it may be impeded by a low coupling efficiency of the laser pulse with plasma at high intensities. This work provides a relationship between the implosion velocity and the laser intensity required to ignite the target by a shock. The operating domain of shock ignition at different energies is described.

  18. Design specification for the European Spallation Source neutron generating target element

    International Nuclear Information System (INIS)

    Aguilar, A.; Sordo, F.; Mora, T.; Mena, L.; Mancisidor, M.; Aguilar, J.; Bakedano, G.; Herranz, I.; Luna, P.; Magan, M.; Vivanco, R.; Jimenez-Villacorta, F.; Sjogreen, K.; Oden, U.; Perlado, J.M.

    2017-01-01

    The paper addresses some of the most relevant issues concerning the thermal hydraulics and radiation damage of the neutron generation target to be built at the European Spallation Source as recently approved after a critical design review. The target unit consists of a set of Tungsten blocks placed inside a wheel of 2.5 m diameter which rotates at some 0.5 Hz in order to distribute the heat generated from incoming protons which reach the target in the radial direction. The spallation material elements are composed of an array of Tungsten pieces which rest on a rotating steel support (the cassette) and are distributed in a cross-flow configuration. The thermal, mechanical and radiation effects resulting from the impact of a 2 GeV proton pulse are analysed in detail as well as an evaluation of the inventory of spallation products. The current design is found to conform to specifications and found to be robust enough to deal with several accident scenarios.

  19. Design specification for the European Spallation Source neutron generating target element

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, A. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Sordo, F., E-mail: fernando.sordo@essbilbao.org [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Instituto de Fusión Nuclear, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Mora, T. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Mena, L. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Instituto de Fusión Nuclear, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Mancisidor, M.; Aguilar, J.; Bakedano, G.; Herranz, I.; Luna, P. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Magan, M.; Vivanco, R. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Instituto de Fusión Nuclear, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Jimenez-Villacorta, F. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Sjogreen, K.; Oden, U. [European Spallation Source ERIC, P.O Box 176, SE-221 00 Lund (Sweden); Perlado, J.M. [Instituto de Fusión Nuclear, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); and others

    2017-06-01

    The paper addresses some of the most relevant issues concerning the thermal hydraulics and radiation damage of the neutron generation target to be built at the European Spallation Source as recently approved after a critical design review. The target unit consists of a set of Tungsten blocks placed inside a wheel of 2.5 m diameter which rotates at some 0.5 Hz in order to distribute the heat generated from incoming protons which reach the target in the radial direction. The spallation material elements are composed of an array of Tungsten pieces which rest on a rotating steel support (the cassette) and are distributed in a cross-flow configuration. The thermal, mechanical and radiation effects resulting from the impact of a 2 GeV proton pulse are analysed in detail as well as an evaluation of the inventory of spallation products. The current design is found to conform to specifications and found to be robust enough to deal with several accident scenarios.

  20. Design and verification experiments for the windowless spallation target of the ADS prototype Myrrha

    International Nuclear Information System (INIS)

    Kantrien Van, Tichelen; Kupschus, P.; Arien, B.; Ait Abderrahim, H.

    2003-01-01

    SCKxCEN, the Belgian Nuclear Research Centre, works on the conceptual design and basic engineering of a multipurpose ADS for R and D, dubbed MYRRHA, a small high-performance irradiation facility with fast neutron fluxes up to 1.10 15 n/cm 2 /s to start operation in about 2010. Specific to the MYRRHA ADS system is the choice for a windowless spallation target at the centre of the subcritical core. Apart from the space limitations and material property short-comings, the current and power density figures would make the design of a solid window for the spallation source next to impossible: the chosen 5 mA at the relative low energy of 350 MeV leads to a current density of order 150 μA/cm 2 (as far as we know at least a factor of 3 higher than any window design that has been attempted to meet). This is the main reason for adopting the windowless design for MYRRHA which has as a consequence that the free surface ultimately has to be compatible with the vacuum requirements of the beam transport system of the accelerator. The total beam energy will be dumped into a volume of ca 0.5 1 leading to a heating power density of ca 3 kW/cm 3 . In order to remove this heat from the LM with an average temperature increase of 100 deg C on top of the temperature of the inlet flow of 240 deg C a total flow rate of 101/s at an average flow speed of 2.5 m/s is required. It is suggested from estimates that the evaporation from 'hot spots' with elevated temperatures beyond the average 340 deg C - close to the free surface in the re-circulation zone - is then still acceptable. The design investigations are therefore directed to assess and minimise the re-circulation zone inherent in the free surface formation under the geometry and flow requirements. This paper will summarize the design programme for the windowless design of the spallation source at the centre of the subcritical core. It will include the main findings reported in (Van Tichelen, 2000) and (Van Tichelen, 2001) and the

  1. ASME Code requirements for multi-canister overpack design and fabrication

    International Nuclear Information System (INIS)

    SMITH, K.E.

    1998-01-01

    The baseline requirements for the design and fabrication of the MCO include the application of the technical requirements of the ASME Code, Section III, Subsection NB for containment and Section III, Subsection NG for criticality control. ASME Code administrative requirements, which have not historically been applied at the Hanford site and which have not been required by the US Nuclear Regulatory Commission (NRC) for licensed spent fuel casks/canisters, were not invoked for the MCO. As a result of recommendations made from an ASME Code consultant in response to DNFSB staff concerns regarding ASME Code application, the SNF Project will be making the following modifications: issue an ASME Code Design Specification and Design Report, certified by a Registered Professional Engineer; Require the MCO fabricator to hold ASME Section III or Section VIII, Division 2 accreditation; and Use ASME Authorized Inspectors for MCO fabrication. Incorporation of these modifications will ensure that the MCO is designed and fabricated in accordance with the ASME Code. Code Stamping has not been a requirement at the Hanford site, nor for NRC licensed spent fuel casks/canisters, but will be considered if determined to be economically justified

  2. Design challenges in nanoparticle-based platforms: Implications for targeted drug delivery systems

    Science.gov (United States)

    Mullen, Douglas Gurnett

    Characterization and control of heterogeneous distributions of nanoparticle-ligand components are major design challenges for nanoparticle-based platforms. This dissertation begins with an examination of poly(amidoamine) (PAMAM) dendrimer-based targeted delivery platform. A folic acid targeted modular platform was developed to target human epithelial cancer cells. Although active targeting was observed in vitro, active targeting was not found in vivo using a mouse tumor model. A major flaw of this platform design was that it did not provide for characterization or control of the component distribution. Motivated by the problems experienced with the modular design, the actual composition of nanoparticle-ligand distributions were examined using a model dendrimer-ligand system. High Pressure Liquid Chromatography (HPLC) resolved the distribution of components in samples with mean ligand/dendrimer ratios ranging from 0.4 to 13. A peak fitting analysis enabled the quantification of the component distribution. Quantified distributions were found to be significantly more heterogeneous than commonly expected and standard analytical parameters, namely the mean ligand/nanoparticle ratio, failed to adequately represent the component heterogeneity. The distribution of components was also found to be sensitive to particle modifications that preceded the ligand conjugation. With the knowledge gained from this detailed distribution analysis, a new platform design was developed to provide a system with dramatically improved control over the number of components and with improved batch reproducibility. Using semi-preparative HPLC, individual dendrimer-ligand components were isolated. The isolated dendrimer with precise numbers of ligands were characterized by NMR and analytical HPLC. In total, nine different dendrimer-ligand components were obtained with degrees of purity ≥80%. This system has the potential to serve as a platform to which a precise number of functional molecules

  3. Preliminary Design Requirements Document for Project W-314

    Energy Technology Data Exchange (ETDEWEB)

    MCGREW, D.L.

    2000-04-27

    This document sets forth functional requirements, performance requirements, and design constraints for the tank farm systems elements identified in Section 3.1 of this document. These requirements shall be used to develop the Design Requirements Baseline for those system elements. System Overview--The tank farm system at Hanford Site currently consists of 149 single shell tanks and 28 double shell tanks with associated facilities and equipment, located in 18 separate groupings. Each grouping is known as a tank farm. They are located in the areas designated as 200 West and 200 East. Table 1-1 shows the number of tanks in each farm. The farms are connected together through a transfer system consisting of piping, diversion boxes, Double Contained Receiver Tanks (DCRT) and other miscellaneous facilities and elements. The tank farm system also connects to a series of processing plants which generate radioactive and hazardous wastes. The primary functions of the tank farm system are to store, transfer, concentrate, and characterize radioactive and hazardous waste generated at Hanford, until the waste can be safely retrieved, processed and dispositioned. The systems provided by Project W-314 support the store and transfer waste functions. The system elements to be upgraded by Project W-314 are identified in Section 3.1.

  4. Preliminary Design Requirements Document for Project W-314

    International Nuclear Information System (INIS)

    MCGREW, D.L.

    2000-01-01

    This document sets forth functional requirements, performance requirements, and design constraints for the tank farm systems elements identified in Section 3.1 of this document. These requirements shall be used to develop the Design Requirements Baseline for those system elements. System Overview--The tank farm system at Hanford Site currently consists of 149 single shell tanks and 28 double shell tanks with associated facilities and equipment, located in 18 separate groupings. Each grouping is known as a tank farm. They are located in the areas designated as 200 West and 200 East. Table 1-1 shows the number of tanks in each farm. The farms are connected together through a transfer system consisting of piping, diversion boxes, Double Contained Receiver Tanks (DCRT) and other miscellaneous facilities and elements. The tank farm system also connects to a series of processing plants which generate radioactive and hazardous wastes. The primary functions of the tank farm system are to store, transfer, concentrate, and characterize radioactive and hazardous waste generated at Hanford, until the waste can be safely retrieved, processed and dispositioned. The systems provided by Project W-314 support the store and transfer waste functions. The system elements to be upgraded by Project W-314 are identified in Section 3.1

  5. Measurement of Li target thickness in the EVEDA Li Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Kanemura, Takuji, E-mail: kanemura.takuji@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita, O-arai, Higashi-Ibaraki-gun, Ibaraki 311-1393 (Japan); Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi [Japan Atomic Energy Agency, 4002 Narita, O-arai, Higashi-Ibaraki-gun, Ibaraki 311-1393 (Japan); Hoashi, Eiji; Yoshihashi, Sachiko; Horiike, Hiroshi [Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Wakai, Eiichi [Japan Atomic Energy Agency, 4002 Narita, O-arai, Higashi-Ibaraki-gun, Ibaraki 311-1393 (Japan)

    2015-10-15

    Highlights: • The objective is to validate stability of the IFMIF liquid Li target flowing at 15 m/s. • Design requirement of target thickness fluctuation is ±1 mm. • Mean and maximum wave amplitude are 0.26 and 1.46 mm, respectively. • Average thickness can be well predicted with developed analytical model. • Li target was adequately stable and satisfied design requirement. - Abstract: A high-speed (nominal: 15 m/s, range: 10–16 m/s) liquid lithium wall jet is planned to serve as the target for two 40 MeV and 125 mA deuteron beams in the International Fusion Materials Irradiation Facility (IFMIF). The design requirement of target thickness stability is 25 ± 1 mm under a vacuum of 10{sup −3} Pa. This paper presents the results of the target thickness measurement conducted in the EVEDA Li Test Loop under a wide range of conditions including the IFMIF condition (target speed of 10, 15, and 20 m/s; vacuum pressure of 10{sup −3} Pa; and Li temperature of 250 °C). For measurement, we use a laser probe method that we developed in advance; this method generates statistical measurements method using a laser distance meter. The measurement results obtained under the IFMIF nominal condition (15 m/s, 10{sup −3} Pa, 250 °C) at the IFMIF beam center are as follows: average target thickness = 26.08 ± 0.09 mm (2σ), mean wave amplitude = 0.26 ± 0.01 mm (2σ), and maximum wave amplitude = 1.46 ± 0.25 mm (2σ). Of the total wave components, 99.7% are within the design requirement. The analytically predicted target thickness is in excellent agreement with the experimental data, resulting in successful characterization of the Li target thickness.

  6. Conceptual design of a 10-MJ driver for a high gain target development facility

    International Nuclear Information System (INIS)

    Olson, R.E.

    1987-01-01

    Commercial application of inertial confinement fusion (ICF) will require inexpensive, high gain (>80) fusion targets. It is thought that the development of such targets will require a 5 to 10 year search effort utilizing a dedicated nuclear research facility with a driver capable of providing a 10 MJ, 300 to 1000 TW pulse of on-target energy. The Terget Development Facility (TDF) is a light ion driven concept for such a facility. A TDF driver based upon extrapolations from present-day pulsed power technology is described in the present paper

  7. A trajectory design method via target practice for air-breathing hypersonic vehicle

    Science.gov (United States)

    Kong, Xue; Yang, Ming; Ning, Guodong; Wang, Songyan; Chao, Tao

    2017-11-01

    There are strong coupling interactions between aerodynamics and scramjet, this kind of aircraft also has multiple restrictions, such as the range and difference of dynamic pressure, airflow, and fuel. On the one hand, we need balance the requirement between maneuverability of vehicle and stabilization of scramjet. On the other hand, we need harmonize the change of altitude and the velocity. By describing aircraft's index system of climbing capability, acceleration capability, the coupling degree in aerospace, this paper further propose a rapid design method which based on target practice. This method aimed for reducing the coupling degree, it depresses the coupling between aircraft and engine in navigation phase, satisfy multiple restriction conditions to leave some control buffer and create good condition for control implementation. According to the simulation, this method could be used for multiple typical fly commissions such as climbing, acceleration or both.

  8. MIDAS: a practical Bayesian design for platform trials with molecularly targeted agents.

    Science.gov (United States)

    Yuan, Ying; Guo, Beibei; Munsell, Mark; Lu, Karen; Jazaeri, Amir

    2016-09-30

    Recent success of immunotherapy and other targeted therapies in cancer treatment has led to an unprecedented surge in the number of novel therapeutic agents that need to be evaluated in clinical trials. Traditional phase II clinical trial designs were developed for evaluating one candidate treatment at a time and thus not efficient for this task. We propose a Bayesian phase II platform design, the multi-candidate iterative design with adaptive selection (MIDAS), which allows investigators to continuously screen a large number of candidate agents in an efficient and seamless fashion. MIDAS consists of one control arm, which contains a standard therapy as the control, and several experimental arms, which contain the experimental agents. Patients are adaptively randomized to the control and experimental agents based on their estimated efficacy. During the trial, we adaptively drop inefficacious or overly toxic agents and 'graduate' the promising agents from the trial to the next stage of development. Whenever an experimental agent graduates or is dropped, the corresponding arm opens immediately for testing the next available new agent. Simulation studies show that MIDAS substantially outperforms the conventional approach. The proposed design yields a significantly higher probability for identifying the promising agents and dropping the futile agents. In addition, MIDAS requires only one master protocol, which streamlines trial conduct and substantially decreases the overhead burden. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Project W-441 cold vacuum drying facility design requirements document

    International Nuclear Information System (INIS)

    O'Neill, C.T.

    1997-01-01

    This document has been prepared and is being released for Project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility. This document sets forth the physical design criteria, Codes and Standards, and functional requirements that were used in the design of the Cold Vacuum Drying Facility. This document contains section 3, 4, 6, and 9 of the Cold Vacuum Drying Facility Design Requirements Document. The remaining sections will be issued at a later date. The purpose of the Facility is to dry, weld, and inspect the Multi-Canister Overpacks before transport to dry storage

  10. FEA Analysis of AP-0 Target Hall Collection Lens (Current Design)

    International Nuclear Information System (INIS)

    Hurh, P.G.; Tang, Z.

    2001-01-01

    The AP-0 Target Hall Collection Lens is a pulsed device which focuses anti-protons just downstream of the Target. Since the angles at which the anti-protons depart the Target can be quite large, a very high focusing strength is required to maximize anti-proton capture into the downstream Debuncher Ring. The current design of the Collection Lens was designed to operate with a focusing gradient of 1,000 T/m. However, multiple failures of early devices resulted in lowering the normal operating gradient to about 750 T/m. At this gradient, the Lens design fares much better, lasting several million pulses, but ultimately still fails. A Finite Element Analysis (FEA) has been performed on this Collection Lens design to help determine the cause and/or nature of the failures. The Collection Lens magnetic field is created by passing high current through a central conductor cylinder. A uniform current distribution through the cylinder will create a tangential or azimuthal magnetic field that varies linearly from zero at the center of the cylinder to a maximum at the outer surface of the cylinder. Anti-proton particles passing through this cylinder (along the longitudinal direction) will see an inward focusing kick back toward the center of the cylinder proportional to the magnetic field strength. For the current Lens design a gradient of 1,000 T/m requires a current of about 580,000 amps. Since the DC power and cooling requirements would be prohibitive, the Lens is operated in a pulsed mode. Each pulse is half sine wave in shape with a pulse duration of about 350 microseconds. Because of the skin effect, the most uniform current density actually occurs about two-thirds of the way through the pulse. This means that the maximum current of the pulse is actually higher than that required in the DC case (about 670,000 amps). Since the beam must pass through the central conductor cylinder it must be made of a conducting material that is also very 'transparent' to the beam. For the

  11. National Ingition Facility subsystem design requirements optics subsystems SSDR 1.6

    International Nuclear Information System (INIS)

    English, R.E.

    1996-01-01

    This Subsystems Design Requirement (SSDR) document specifies the functions to be performed and the subsystems design requirements for the major optical components. These optical components comprise those custom designed and fabricated for amplification and transport of the full aperture NIF beam and does not include those off-the-shelf components that may be part of other optical sub-systems (i.e. alignment or diagnostic systems). This document also describes the optical component processing requirements and the QA/damage testing necessary to ensure that the optical components meet or exceed the requirements

  12. Test design requirements for overcoring stress measurements

    International Nuclear Information System (INIS)

    Stickney, R.G.

    1985-12-01

    This document establishes the test design requirements for a series of overcoring stress measurements to be performed in the Exploratory Shaft Facility. The stress measurements will be made to determine the in situ state of stress within the candidate repository horizon and to determine the magnitude and distribution of the stresses induced by the mined openings of the facility. The overcoring technique involves the measurement of strain (or deformation) in a volume of rock as the stress acting on the rock volume is relieved. This document presents an overview of the measurements, including objectives and rationale for the measurements. A description of the measurements is included. The support requirements are identified as are constraints for the design of the measurements. Discussions on Quality Assurance and Safety are also included in the document. 13 refs

  13. Rational Design of Cancer-Targeted Benzoselenadiazole by RGD Peptide Functionalization for Cancer Theranostics.

    Science.gov (United States)

    Yang, Liye; Li, Wenying; Huang, Yanyu; Zhou, Yangliang; Chen, Tianfeng

    2015-09-01

    A cancer-targeted conjugate of the selenadiazole derivative BSeC (benzo[1,2,5] selenadiazole-5-carboxylic acid) with RGD peptide as targeting molecule and PEI (polyethylenimine) as a linker is rationally designed and synthesized in the present study. The results show that RGD-PEI-BSeC forms nanoparticles in aqueous solution with a core-shell nanostructure and high stability under physiological conditions. This rational design effectively enhances the selective cellular uptake and cellular retention of BSeC in human glioma cells, and increases its selectivity between cancer and normal cells. The nanoparticles enter the cells through receptor-mediated endocytosis via clathrin-mediated and nystatin-dependent lipid raft-mediated pathways. Internalized nanoparticles trigger glioma cell apoptosis by activation of ROS-mediated p53 phosphorylation. Therefore, this study provides a strategy for the rational design of selenium-containing cancer-targeted theranostics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. An overview of some basic design features of Koeberg Nuclear Power Station highlighting how regulatory requirements can influence design

    International Nuclear Information System (INIS)

    Morrison, A.R.

    1985-01-01

    The paper attempts to show that licensing requirements significantly influence the design of nuclear power plants. The French designed Pressurised Water Reactor system adopted by Escom at Koeberg has its origins in the General Design Criteria set out in the American Code of Federal Regulations document 10CFR50. Three of the General Design Criteria have been selected for illustrating how the requirements have influenced Koeberg in terms of design, both from a hardware and software view point. The requirements of the criteria on quality standard and records are to a certain extent reflected in the Licensing Branch Guide developed by the Atomic Energy Corporation to address quality assurance. The criterion on containment design sets requirements in respect of containment design which are incorporated in the Koeberg design. The criterion on electric power systems sets many of the basic design requirements for the electrical power supply systems inside and outside the station. The existence of the criterion led Escom to introduce changes in the transmission network to meet the requirements in respect of the independent criteria for the grid connections

  15. Environmental qualification design for NPP refurbishment to comply with revised licensing requirements

    International Nuclear Information System (INIS)

    MacBeth, M. J.; Hemmings, R. L.

    2002-01-01

    Recent Canadian Nuclear Regulatory decisions have imposed Environmental Qualification (EQ) requirements for twenty-four Reactor Building (RB) airlocks at the four-unit Pickering Nuclear Generating Station-B (PNGS-B) facility. This paper describes the EQ modification design work completed by CANATOM-NPM for the problematic aspects for such projects. The airlocks allow RB access while providing a containment boundary and are designed to prevent a potential breach of containment for all analysed station conditions. Each PNGS-B unit has three large equipment airlocks and three smaller personnel airlocks. The airlocks must function under postulated worst-case design basis accident(DBA) conditions for assigned mission durations. The design must ensure that accident conditions cannot spuriously initiate an un-requested door opening. CANATOM-NPM reviewed site data to specify the necessary EQ modifications required to satisfy licensing requirements while providing a correct and complete as-found record of the existing airlock installation. The design team assessed the installed airlocks configuration against environmental qualification requirements to finalize the list of necessary modifications. A comprehensive, cross-discipline review of proposed design changes was completed to identify any further changes required to satisfy the final EQ licensing goal. The design team also conducted a design review of the EQ modification installation strategy to integrate the design deliverables with the installation team requirements while attempting to minimize necessary outage time for EQ modification installations. This project was completed on schedule and within the cost limitations required by the client with comprehensive, high quality final design packages. Overall improvements were realized for OPG system drawings and the electronic documentation of design data. The EQ modifications designed by CANATOM-NPM will ensure the continued operation of the PNGS-B NPP past December 31

  16. 1996 Design effort for IFMIF HEBT

    International Nuclear Information System (INIS)

    Blind, B.

    1997-01-01

    The paper details the 1996 design effort for the IFMIF HEBT. Following a brief overview, it lists the primary requirements for the beam at the target, describes the design approach and design tools used, introduces the beamline modules, gives the results achieved with the design at this stage, points out possible improvements and gives the names and computer locations of the TRACE3-D and PARMILA files that sum up the design work. The design does not fully meet specifications in regards to the flatness of the distribution at the target. With further work, including if necessary some backup options, the flatness specifications may be realized. It is not proposed that the specifications, namely flatness to ±5% and higher-intensity ridges that are no more than 15% above average, be changed at this time. The design also does not meet the requirement that the modules of all beamlines should operate at the same settings. However, the goal of using identical components and operational procedures has been met and only minor returning is needed to produce very similar beam distributions from all beamlines. Significant further work is required in the following areas: TRACE3-D designs and PARMILA runs must be made for the beams coming from accelerators No. 3 and No. 4. Transport of 30-MeV and 35-MeV beams to the targets and beam dump must be studied. Comprehensive error studies must be made. These must result in tolerance specifications and may require design iterations. Detailed interfacing with target-spot instrumentation is required. This instrumentation must be able to check all aspects of the specifications

  17. Identifying and Managing Engineering Design Requirements for Emerging Markets

    DEFF Research Database (Denmark)

    Li, Xuemeng

    , especially for those companies originally from developed markets, to acquire an in-depth understanding of particular design requirements in emerging markets in order to adapt both company products and approaches in such contexts. Prior studies on the identification and management of design requirements have...... predominantly been conducted in the context of developed countries and relatively affluent markets. Emerging markets are distinct from developed markets in terms of numerous contextual factors, e.g., regulatory environments and competitive landscapes. These factors influence the requirement identification...... attention. There is a need for an overview of different perspectives in requirement identification for manufacturing companies and their corresponding assessments in the context of emerging markets. Therefore, this research project is motivated to 1) investigate the process of identifying and managing...

  18. An Induction Linac Driver For A 0.44 MJ Heavy-Ion Direct Drive Target

    International Nuclear Information System (INIS)

    Seidl, P.A.; Lee, E.P.; Bangerter, R.O.; Faltens, A.

    2010-01-01

    The conceptual design of a heavy ion fusion driver system is described, including all major components. Particular issues emerging from this exercise are identified and discussed. The most important conclusion of our study is that due to stringent requirements on ion pulse phase space, we are unable to find a credible accelerator design that meets the requirements of the example target. Either the target design must be modified to accept larger ion ranges and larger focal spot sizes, or we must consider other target options.

  19. Developing plan and pre-conceptual design of target system for JAERI`s high intensity neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Hino, Ryutaro; Kaminaga, Masanori; Haga, Katsuhiro; Ishikura, Syuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nakamura, Fumito; Uchida, Shoji

    1997-11-01

    This paper presents an outline of developing plan of a target system and topics obtained by a pre-conceptual design, which aims to establish a technology base of the target system and to make clear a system concept. In the plan, two types of target - solid and mercury targets - are to be developed for a neutron scattering facility. Information obtained through the development shall be applied to designs of an irradiation and a transmutation facilities. Through the pre-conceptual design, system arrangement, scale etc. were made clear: total weight will be 12000 ton, and 26 beam lines with beam shutters will be equipped for 4 moderators. Engineering problems were also made clear through the design; high flux heat removal, dynamic stress caused by thermal shock and pressure wave, loop technology for the mercury target and a slurry moderator consisting of methane pellets and liquefied hydrogen. We are now constructing new test apparatuses and arranging computer codes for solving these problems. (author)

  20. Designing eHealth that Matters via a Multidisciplinary Requirements Development Approach.

    Science.gov (United States)

    Van Velsen, Lex; Wentzel, Jobke; Van Gemert-Pijnen, Julia Ewc

    2013-06-24

    Requirements development is a crucial part of eHealth design. It entails all the activities devoted to requirements identification, the communication of requirements to other developers, and their evaluation. Currently, a requirements development approach geared towards the specifics of the eHealth domain is lacking. This is likely to result in a mismatch between the developed technology and end user characteristics, physical surroundings, and the organizational context of use. It also makes it hard to judge the quality of eHealth design, since it makes it difficult to gear evaluations of eHealth to the main goals it is supposed to serve. In order to facilitate the creation of eHealth that matters, we present a practical, multidisciplinary requirements development approach which is embedded in a holistic design approach for eHealth (the Center for eHealth Research roadmap) that incorporates both human-centered design and business modeling. Our requirements development approach consists of five phases. In the first, preparatory, phase the project team is composed and the overall goal(s) of the eHealth intervention are decided upon. Second, primary end users and other stakeholders are identified by means of audience segmentation techniques and our stakeholder identification method. Third, the designated context of use is mapped and end users are profiled by means of requirements elicitation methods (eg, interviews, focus groups, or observations). Fourth, stakeholder values and eHealth intervention requirements are distilled from data transcripts, which leads to phase five, in which requirements are communicated to other developers using a requirements notation template we developed specifically for the context of eHealth technologies. The end result of our requirements development approach for eHealth interventions is a design document which includes functional and non-functional requirements, a list of stakeholder values, and end user profiles in the form of

  1. Supplemental design requirements document solid waste operations complex

    International Nuclear Information System (INIS)

    Ocampo, V.P.; Boothe, G.F.; Broz, D.R.; Eaton, H.E.; Greager, T.M.; Huckfeldt, R.A.; Kooiker, S.L.; Lamberd, D.L.; Lang, L.L.; Myers, J.B.

    1994-11-01

    This document provides additional and supplemental information to the WHC-SD-W112-FDC-001, WHC-SD-W113-FDC-001, and WHC-SD-W100-FDC-001. It provides additional requirements for the design and summarizes Westinghouse Hanford Company key design guidance and establishes the technical baseline agreements to be used for definitive design common to the Solid Waste Operations Complex (SWOC) Facilities (Project W-112, Project W-113, and WRAP 2A)

  2. Adapt Design: A Methodology for Enabling Modular Design for Mission Specific SUAS

    Science.gov (United States)

    2016-08-24

    GoPro GoPro ® TABLE 3. PAYLOAD FERRY MISSION REQUIREMENTS AND RESULTING DESIGN VALUES Requirement Target Value Returned Design Returned 3-D...frame taken from the GoPro ® camera feed. Figure 19 shows a fixed wing SUAS built for a similar reconnaissance mission. The results in Table 4 show

  3. Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design.

    Science.gov (United States)

    Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M

    2016-05-05

    Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared - non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.

  4. Waste Receiving and Packaging, Module 2A, Supplemental Design Requirements Document

    International Nuclear Information System (INIS)

    Lamberd, D.L.; Boothe, G.F.; Hinkle, A.L.; Horgos, R.M.; LeClair, M.D.; Nash, C.R.; Ocampo, V.P.; Pauly, T.R.; Stroup, J.L.; Weingardt, K.M.

    1994-01-01

    The Supplemental Design Requirements Document (SDRD) is used to communicate plant design information from Westinghouse Hanford Company (WHC) to the US Department of Energy (DOE) and the cognizant Architect Engineer (A/E). Information in the SDRD serves two purposes: to convey design requirements that are too detailed for inclusion in a Functional Design Criteria (FDC) report; and to serve as a means of change control for design commitments in the Conceptual Design Report. The mission of WRAP 2A on the Hanford site is the treatment of contact handled low level mixed waste (MW) for final disposal. The overall systems engineering steps used to reach construction and operation of WRAP 2A are depicted in Figure 1. The WRAP 2A SDRD focuses on the requirements to address the functional analysis provided in Figure 1. This information is provided in sections 2 through 5 of this SDRD. The mission analysis and functional analysis are to be provided in a separate supporting document. The organization of sections 2 through 5 corresponds to the requirements identified in the WRAP 2A functional analysis

  5. The Videographic Requirements Gathering Method for Adolescent-Focused Interaction Design

    Directory of Open Access Journals (Sweden)

    Tamara Peyton

    2014-08-01

    Full Text Available We present a novel method for conducting requirements gathering with adolescent populations. Called videographic requirements gathering, this technique makes use of mobile phone data capture and participant creation of media images. The videographic requirements gathering method can help researchers and designers gain intimate insight into adolescent lives while simultaneously reducing power imbalances. We provide rationale for this approach, pragmatics of using the method, and advice on overcoming common challenges facing researchers and designers relying on this technique.

  6. AUTOMATIC SHAPE-BASED TARGET EXTRACTION FOR CLOSE-RANGE PHOTOGRAMMETRY

    Directory of Open Access Journals (Sweden)

    X. Guo

    2016-06-01

    Full Text Available In order to perform precise identification and location of artificial coded targets in natural scenes, a novel design of circle-based coded target and the corresponding coarse-fine extraction algorithm are presented. The designed target separates the target box and coding box totally and owns an advantage of rotation invariance. Based on the original target, templates are prepared by three geometric transformations and are used as the input of shape-based template matching. Finally, region growing and parity check methods are used to extract the coded targets as final results. No human involvement is required except for the preparation of templates and adjustment of thresholds in the beginning, which is conducive to the automation of close-range photogrammetry. The experimental results show that the proposed recognition method for the designed coded target is robust and accurate.

  7. FIRST BEAM TESTS OF THE MUON COLLIDER TARGET TEST BEAM LINE AT THE AGS

    International Nuclear Information System (INIS)

    BROWN, K.A.; GASSNER, D.; GLENN, J.W.; PRIGL, R.; SIMOS, N.; SCADUTO, J.; TSOUPAS, N.

    2001-01-01

    In this report we will describe the muon collider target test beam line which operates off one branch of the AGS switchyard. The muon collider target test facility is designed to allow a prototype muon collider target system to be developed and studied. The beam requirements for the facility are ambitious but feasible. The system is designed to accept bunched beams of intensities up to 1.6 x 10 13 24 GeV protons in a single bunch. The target specifications require beam spot sizes on the order of 1 mm, 1 sigma rms at the maximum intensity. We will describe the optics design, the instrumentation, and the shielding design. Results from the commissioning of the beam line will be shown

  8. High heat flux cooling for accelerator targets

    International Nuclear Information System (INIS)

    Silverman, I.; Nagler, A.

    2002-01-01

    Accelerator targets, both for radioisotope production and for high neutron flux sources generate very high thermal power in the target material which absorbs the particles beam. Generally, the geometric size of the targets is very small and the power density is high. The design of these targets requires dealing with very high heat fluxes and very efficient heat removal techniques in order to preserve the integrity of the target. Normal heat fluxes from these targets are in the order of 1 kw/cm 2 and may reach levels of an order of magnitude higher

  9. The effect of requirements prioritization on avionics system conceptual design

    Science.gov (United States)

    Lorentz, John

    This dissertation will provide a detailed approach and analysis of a new collaborative requirements prioritization methodology that has been used successfully on four Coast Guard avionics acquisition and development programs valued at $400M+. A statistical representation of participant study results will be discussed and analyzed in detail. Many technically compliant projects fail to deliver levels of performance and capability that the customer desires. Some of these systems completely meet "threshold" levels of performance; however, the distribution of resources in the process devoted to the development and management of the requirements does not always represent the voice of the customer. This is especially true for technically complex projects such as modern avionics systems. A simplified facilitated process for prioritization of system requirements will be described. The collaborative prioritization process, and resulting artifacts, aids the systems engineer during early conceptual design. All requirements are not the same in terms of customer priority. While there is a tendency to have many thresholds inside of a system design, there is usually a subset of requirements and system performance that is of the utmost importance to the design. These critical capabilities and critical levels of performance typically represent the reason the system is being built. The systems engineer needs processes to identify these critical capabilities, the associated desired levels of performance, and the risks associated with the specific requirements that define the critical capability. The facilitated prioritization exercise is designed to collaboratively draw out these critical capabilities and levels of performance so they can be emphasized in system design. Developing the purpose, scheduling and process for prioritization events are key elements of systems engineering and modern project management. The benefits of early collaborative prioritization flow throughout the

  10. Ion-driver fast ignition: Reducing heavy-ion fusion driver energy and cost, simplifying chamber design, target fab, tritium fueling and power conversion

    International Nuclear Information System (INIS)

    Logan, G.; Callahan-Miller, D.; Perkins, J.; Caporaso, G.; Tabak, M.; Moir, R.; Meier, W.; Bangerter, Roger; Lee, Ed

    1998-01-01

    Ion fast ignition, like laser fast ignition, can potentially reduce driver energy for high target gain by an order of magnitude, while reducing fuel capsule implosion velocity, convergence ratio, and required precisions in target fabrication and illumination symmetry, all of which should further improve and simplify IFE power plants. From fast-ignition target requirements, we determine requirements for ion beam acceleration, pulse-compression, and final focus for advanced accelerators that must be developed for much shorter pulses and higher voltage gradients than today's accelerators, to deliver the petawatt peak powers and small focal spots (∼100 (micro)m) required. Although such peak powers and small focal spots are available today with lasers, development of such advanced accelerators is motivated by the greater likely efficiency of deep ion penetration and deposition into pre-compressed 1000x liquid density DT cores. Ion ignitor beam parameters for acceleration, pulse compression, and final focus are estimated for two examples based on a Dielectric Wall Accelerator; (1) a small target with ρr ∼ 2 g/cm 2 for a small demo/pilot plant producing ∼40 MJ of fusion yield per target, and (2) a large target with ρr ∼ 10 g/cm 2 producing ∼1 GJ yield for multi-unit electricity/hydrogen plants, allowing internal T-breeding with low T/D ratios, >75 % of the total fusion yield captured for plasma direct conversion, and simple liquid-protected chambers with gravity clearing. Key enabling development needs for ion fast ignition are found to be (1) ''Close-coupled'' target designs for single-ended illumination of both compressor and ignitor beams; (2) Development of high gradient (>25 MV/m) linacs with high charge-state (q ∼ 26) ion sources for short (∼5 ns) accelerator output pulses; (3) Small mm-scale laser-driven plasma lens of ∼10 MG fields to provide steep focusing angles close-in to the target (built-in as part of each target); (4) beam space charge

  11. Ion-driver fast ignition: Reducing heavy-ion fusion driver energy and cost, simplifying chamber design, target fab, tritium fueling and power conversion

    Energy Technology Data Exchange (ETDEWEB)

    Logan, G.; Callahan-Miller, D.; Perkins, J.; Caporaso, G.; Tabak, M.; Moir, R.; Meier, W.; Bangerter, Roger; Lee, Ed

    1998-04-01

    Ion fast ignition, like laser fast ignition, can potentially reduce driver energy for high target gain by an order of magnitude, while reducing fuel capsule implosion velocity, convergence ratio, and required precisions in target fabrication and illumination symmetry, all of which should further improve and simplify IFE power plants. From fast-ignition target requirements, we determine requirements for ion beam acceleration, pulse-compression, and final focus for advanced accelerators that must be developed for much shorter pulses and higher voltage gradients than today's accelerators, to deliver the petawatt peak powers and small focal spots ({approx}100 {micro}m) required. Although such peak powers and small focal spots are available today with lasers, development of such advanced accelerators is motivated by the greater likely efficiency of deep ion penetration and deposition into pre-compressed 1000x liquid density DT cores. Ion ignitor beam parameters for acceleration, pulse compression, and final focus are estimated for two examples based on a Dielectric Wall Accelerator; (1) a small target with {rho}r {approx} 2 g/cm{sup 2} for a small demo/pilot plant producing {approx}40 MJ of fusion yield per target, and (2) a large target with {rho}r {approx} 10 g/cm{sup 2} producing {approx}1 GJ yield for multi-unit electricity/hydrogen plants, allowing internal T-breeding with low T/D ratios, >75 % of the total fusion yield captured for plasma direct conversion, and simple liquid-protected chambers with gravity clearing. Key enabling development needs for ion fast ignition are found to be (1) ''Close-coupled'' target designs for single-ended illumination of both compressor and ignitor beams; (2) Development of high gradient (>25 MV/m) linacs with high charge-state (q {approx} 26) ion sources for short ({approx}5 ns) accelerator output pulses; (3) Small mm-scale laser-driven plasma lens of {approx}10 MG fields to provide steep focusing angles

  12. Design strategies for self-assembly of discrete targets

    International Nuclear Information System (INIS)

    Madge, Jim; Miller, Mark A.

    2015-01-01

    Both biological and artificial self-assembly processes can take place by a range of different schemes, from the successive addition of identical building blocks to hierarchical sequences of intermediates, all the way to the fully addressable limit in which each component is unique. In this paper, we introduce an idealized model of cubic particles with patterned faces that allows self-assembly strategies to be compared and tested. We consider a simple octameric target, starting with the minimal requirements for successful self-assembly and comparing the benefits and limitations of more sophisticated hierarchical and addressable schemes. Simulations are performed using a hybrid dynamical Monte Carlo protocol that allows self-assembling clusters to rearrange internally while still providing Stokes-Einstein-like diffusion of aggregates of different sizes. Our simulations explicitly capture the thermodynamic, dynamic, and steric challenges typically faced by self-assembly processes, including competition between multiple partially completed structures. Self-assembly pathways are extracted from the simulation trajectories by a fully extendable scheme for identifying structural fragments, which are then assembled into history diagrams for successfully completed target structures. For the simple target, a one-component assembly scheme is most efficient and robust overall, but hierarchical and addressable strategies can have an advantage under some conditions if high yield is a priority

  13. ISAC target operation with high proton currents

    CERN Document Server

    Dombsky, M; Schmor, P; Lane, M

    2003-01-01

    The TRIUMF-ISAC facility target stations were designed for ISOL target irradiations with up to 100 mu A proton beam currents. Since beginning operation in 1998, ISAC irradiation currents have progressively increased from initial values of approx 1 mu A to present levels of up to 40 mu A on refractory metal foil targets. In addition, refractory carbide targets have operated at currents of up to 15 mu A for extended periods. The 1-40 mu A operational regime is achieved by tailoring each target to the thermal requirements dictated by material properties such as beam power deposition, thermal conductivity and maximum operating temperature of the target material. The number of heat shields on each target can be varied in order to match the effective emissivity of the target surface for the required radiative power dissipation. Targets of different thickness, surface area and volume have been investigated to study the effect of diffusion and effusion delays on the yield of radioisotopes. For yields of short-lived p...

  14. Basic design requirements for indigenous irradiator

    International Nuclear Information System (INIS)

    Anwar Abd Rahman; Rosli Darmawan; Mohd Arif Hamzah; Fadil Ismail; Muhd Nor Atan

    2007-01-01

    Most of the irradiators owned by Nuclear Malaysia are imported from other countries. The irradiators are used for various applications such as Research and Development, agriculture and industry. There is a plan to develop locally made multi-purpose gamma irradiator in 9th Malaysia Plan which equipped with better safety features. This paper will discuss the basic requirements for the design of the irradiator. (Author)

  15. High volume fabrication of laser targets using MEMS techniques

    International Nuclear Information System (INIS)

    Spindloe, C; Tomlinson, S; Green, J; Booth, N.; Tolley, M K; Arthur, G; Hall, F; Potter, R; Kar, S; Higginbotham, A

    2016-01-01

    The latest techniques for the fabrication of high power laser targets, using processes developed for the manufacture of Micro-Electro-Mechanical System (MEMS) devices are discussed. These laser targets are designed to meet the needs of the increased shot numbers that are available in the latest design of laser facilities. Traditionally laser targets have been fabricated using conventional machining or coarse etching processes and have been produced in quantities of 10s to low 100s. Such targets can be used for high complexity experiments such as Inertial Fusion Energy (IFE) studies and can have many complex components that need assembling and characterisation with high precision. Using the techniques that are common to MEMS devices and integrating these with an existing target fabrication capability we are able to manufacture and deliver targets to these systems. It also enables us to manufacture novel targets that have not been possible using other techniques. In addition, developments in the positioning systems that are required to deliver these targets to the laser focus are also required and a system to deliver the target to a focus of an F2 beam at 0.1Hz is discussed. (paper)

  16. Working group 4B - human intrusion: Design/performance requirements

    International Nuclear Information System (INIS)

    Channell, J.

    1993-01-01

    There is no summary of the progress made by working group 4B (Human Intrusion: Design/performance Requirements) during the Electric Power Research Institute's EPRI Workshop on the technical basis of EPA HLW Disposal Criteria, March 1993. This group was to discuss the waste disposal standard, 40 CFR Part 191, in terms of the design and performance requirements of human intrusion. Instead, because there were so few members, they combined with working group 4A and studied the three-tier approach to evaluating postclosure performance

  17. ALS beamline design requirements: A guide for beamline designers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This manual is written as a guide for researchers in designing beamlines and endstations acceptable for use at the ALS. It contains guidelines and policies related to personnel safety and equipment and vacuum protection. All equipment and procedures must ultimately satisfy the safety requirements set aside in the Lawrence Berkeley National Laboratory (LBNL) Health and Safety Manual (PUB-3000) which is available from the ALS User Office or on the World WideWeb from the LBNL Homepage (http:// www.lbl.gov).

  18. USER REQUIREMENTS CUSTOMIZATION AND ATTRACTIVE QUALITY CREATION FOR DESIGN IMPROVEMENT ATTRIBUTES

    Directory of Open Access Journals (Sweden)

    Ismail Wilson Taifa

    2017-03-01

    Full Text Available The aim of this paper was to customize user requirements and quality creation for design improvement of furniture. The major purpose has been achieved with the use of Quality Function Deployment technique and Kano Model. The study involved 564 students from 3 engineering colleges. Extensive user requirements were identified with the help of Questionnaires. The use of House of Quality, Kano Model and Pareto Diagram helped in prioritizing all important features which are needed in customizing user requirements. The prioritized requirements include ergonomic design, desk adjustability, comfortability, product corners (sharp corners and latest material. All these factors both got high relative and absolute weight. Therefore, more engineering efforts need to be directed towards these requirements for achieving user customization for design improvement. The developed House of Quality with the help of Kano Model results has proved to be a good tool in customizing user requirements.

  19. Design requirements of instrumentation and control systems for next generation reactor

    International Nuclear Information System (INIS)

    Koo, In Soo; Lee, Byung Sun; Park, Kwang Hyun; Park, Heu Yoon; Lee, Dong Young; Kim, Jung Taek; Hwang, In Koo; Chung, Chul Hwan; Hur, Seop; Kim, Chang Hoi; Na, Nan Ju

    1994-03-01

    In this report, the basic design requirements of Instrumentation and Control systems for next generation reactor are described, which are top-tier level, to support the advanced I and C systems. It contains the requirements in accordance with the plant reliability, the plant performance, the operator's aid functions, the features for maintenance and testing, licensing issues for I and C systems. Advanced I and C systems are characterized such as the application of the digital and the human engineering technologies. To development of this requirements, the I and C systems for the foreign passive and the evolutionary types of reactor and the domestic conventional reators were reviewed and anlysed. At the detail design stage, these requirements will be used for top-tier requirements. To develop the detail design requirements in the future, more quantitive and qualitive analyses are need to be added. (Author) 44 refs

  20. Design requirements of instrumentation and control systems for next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koo, In Soo; Lee, Byung Sun; Park, Kwang Hyun; Park, Heu Yoon; Lee, Dong Young; Kim, Jung Taek; Hwang, In Koo; Chung, Chul Hwan; Hur, Seop; Kim, Chang Hoi; Na, Nan Ju [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-03-01

    In this report, the basic design requirements of Instrumentation and Control systems for next generation reactor are described, which are top-tier level, to support the advanced I and C systems. It contains the requirements in accordance with the plant reliability, the plant performance, the operator`s aid functions, the features for maintenance and testing, licensing issues for I and C systems. Advanced I and C systems are characterized such as the application of the digital and the human engineering technologies. To development of this requirements, the I and C systems for the foreign passive and the evolutionary types of reactor and the domestic conventional reators were reviewed and anlysed. At the detail design stage, these requirements will be used for top-tier requirements. To develop the detail design requirements in the future, more quantitive and qualitive analyses are need to be added. (Author) 44 refs.

  1. Key Design Requirements for Long-Reach Manipulators

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, D.S.

    2001-01-01

    Long-reach manipulators differ from industrial robots and teleoperators typically used in the nuclear industry in that the aspect ratio (length to diameter) of links is much greater and link flexibility, as well as joint or drive train flexibility, is likely to be significant. Long-reach manipulators will be required for a variety of applications in the Environmental Restoration and Waste Management Program. While each application will present specific functional, kinematic, and performance requirements, an approach for determining the kinematic applicability and performance characteristics is presented, with a focus on waste storage tank remediation. Requirements are identified, kinematic configurations are considered, and a parametric study of link design parameters and their effects on performance characteristics is presented.

  2. Key design requirements for long-reach manipulators

    International Nuclear Information System (INIS)

    Kwon, D.S.; March-Leuba, S.; Babcock, S.M.; Hamel, W.R.

    1993-09-01

    Long-reach manipulators differ from industrial robots and teleoperators typically used in the nuclear industry in that the aspect ratio (length to diameter) of links is much greater and link flexibility, as well as joint or drive train flexibility, is likely to be significant. Long-reach manipulators will be required for a variety of applications in the Environmental Restoration and Waste Management Program. While each application will present specific functional kinematic, and performance requirements an approach for determining the kinematic applicability and performance characteristics is presented, with a focus on waste storage tank remediation. Requirements are identified, kinematic configurations are considered, and a parametric study of link design parameters and their effects on performance characteristics is presented

  3. Key Design Requirements for Long-Reach Manipulators

    International Nuclear Information System (INIS)

    Kwon, D.S.

    2001-01-01

    Long-reach manipulators differ from industrial robots and teleoperators typically used in the nuclear industry in that the aspect ratio (length to diameter) of links is much greater and link flexibility, as well as joint or drive train flexibility, is likely to be significant. Long-reach manipulators will be required for a variety of applications in the Environmental Restoration and Waste Management Program. While each application will present specific functional, kinematic, and performance requirements, an approach for determining the kinematic applicability and performance characteristics is presented, with a focus on waste storage tank remediation. Requirements are identified, kinematic configurations are considered, and a parametric study of link design parameters and their effects on performance characteristics is presented

  4. Comparative Study on Research Reactor Design Requirements between IAEA and Korea

    International Nuclear Information System (INIS)

    Chang, Won Joon; Yune, Young Gill; Song, Myung Ho; Cho, Seung Ho

    2013-01-01

    This study has identified the gaps in the safety requirements for design of research reactors of Korea comparing with those of the IAEA. The review results showed that the gaps have arisen mainly from the following aspects: - The differences in the characteristics of design and operation between power reactor and research reactor - Enhancement of the level of safety of nuclear reactor facility - Consideration of advanced safety technologies. The review results will be utilized to reflect the IAEA safety requirements for design of research reactors into those of Korea, which will contribute to enhancing the level of safety and improving the technical standards of research reactors of Korea. The IAEA safety standards encompass international consensus to strengthen the nuclear safety and to reflect the latest advancement of nuclear safety technologies. Also, they provide reliable means to ensure the effective fulfillment of obligations under the various international safety conventions. Many countries have adopted the IAEA safety standards as their national standards in nuclear regulations. Since Korea has exported research reactor technologies abroad these days and will continue to export them in the future, it is desirable to harmonize domestic safety requirements for research reactor with those of the IAEA. The KINS (Korea Institute of Nuclear Safety) has performed a review of the IAEA safety requirements for design of research reactors comparing with those of Korea. The purpose of this comparative study is to harmonize the safety requirements for the design of research reactors of Korea with those of the IAEA as a member state of the IAEA, and to encompass global efforts to enhance the nuclear safety and to reflect the latest advancement of nuclear safety technologies into the safety requirements for the design of research reactors of Korea. Design requirements for structures, systems, and components of research reactors important to safety, which are required to

  5. Reduced cost design of liquid lithium target for international fusion material irradiation facility (IFMIF)

    International Nuclear Information System (INIS)

    Nakamura, Hiroo; Ida, Mizuho; Sugimoto, Masayoshi; Takeuchi, Hiroshi; Yutani, Toshiaki

    2001-01-01

    The International Fusion Materials Irradiation Facility (IFMIF) is being jointly planned to provide an accelerator-based D-Li neutron source to produce intense high energy neutrons (2 MW/m 2 ) up to 200 dpa and a sufficient irradiation volume (500 cm 3 ) for testing the candidate materials and components up to about a full lifetime of their anticipated use in ITER and DEMO. To realize such a condition, 40 MeV deuteron beam with a current of 250 mA is injected into high speed liquid lithium flow with a speed of 20 m/s. Following Conceptual Design Activity (1995-1998), a design study with focus on cost reduction without changing its original mission has been done in 1999. The following major changes to the CAD target design have been considered in the study and included in the new design: i) number of the Li target has been changed from 2 to 1, ii) spare of impurity traps of the Li loop was removed although the spare will be stored in a laboratory for quick exchange, iii) building volume was reduced via design changes in lithium loop length. This paper describes the reduced cost design of the lithium target system and recent status of Key Element Technology activities. (author)

  6. Optimal Design of Gradient Materials and Bi-Level Optimization of Topology Using Targets (BOTT)

    Science.gov (United States)

    Garland, Anthony

    The objective of this research is to understand the fundamental relationships necessary to develop a method to optimize both the topology and the internal gradient material distribution of a single object while meeting constraints and conflicting objectives. Functionally gradient material (FGM) objects possess continuous varying material properties throughout the object, and they allow an engineer to tailor individual regions of an object to have specific mechanical properties by locally modifying the internal material composition. A variety of techniques exists for topology optimization, and several methods exist for FGM optimization, but combining the two together is difficult. Understanding the relationship between topology and material gradient optimization enables the selection of an appropriate model and the development of algorithms, which allow engineers to design high-performance parts that better meet design objectives than optimized homogeneous material objects. For this research effort, topology optimization means finding the optimal connected structure with an optimal shape. FGM optimization means finding the optimal macroscopic material properties within an object. Tailoring the material constitutive matrix as a function of position results in gradient properties. Once, the target macroscopic properties are known, a mesostructure or a particular material nanostructure can be found which gives the target material properties at each macroscopic point. This research demonstrates that topology and gradient materials can both be optimized together for a single part. The algorithms use a discretized model of the domain and gradient based optimization algorithms. In addition, when considering two conflicting objectives the algorithms in this research generate clear 'features' within a single part. This tailoring of material properties within different areas of a single part (automated design of 'features') using computational design tools is a novel benefit

  7. Robot-Assisted Fracture Surgery: Surgical Requirements and System Design.

    Science.gov (United States)

    Georgilas, Ioannis; Dagnino, Giulio; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja

    2018-03-09

    The design of medical devices is a complex and crucial process to ensure patient safety. It has been shown that improperly designed devices lead to errors and associated accidents and costs. A key element for a successful design is incorporating the views of the primary and secondary stakeholders early in the development process. They provide insights into current practice and point out specific issues with the current processes and equipment in use. This work presents how information from a user-study conducted in the early stages of the RAFS (Robot Assisted Fracture Surgery) project informed the subsequent development and testing of the system. The user needs were captured using qualitative methods and converted to operational, functional, and non-functional requirements based on the methods derived from product design and development. This work presents how the requirements inform a new workflow for intra-articular joint fracture reduction using a robotic system. It is also shown how the various elements of the system are developed to explicitly address one or more of the requirements identified, and how intermediate verification tests are conducted to ensure conformity. Finally, a validation test in the form of a cadaveric trial confirms the ability of the designed system to satisfy the aims set by the original research question and the needs of the users.

  8. Safeguards Guidance Document for Designers of Commercial Nuclear Facilities: International Nuclear Safeguards Requirements and Practices For Uranium Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Robert Bean; Casey Durst

    2009-10-01

    This report is the second in a series of guidelines on international safeguards requirements and practices, prepared expressly for the designers of nuclear facilities. The first document in this series is the description of generic international nuclear safeguards requirements pertaining to all types of facilities. These requirements should be understood and considered at the earliest stages of facility design as part of a new process called “Safeguards-by-Design.” This will help eliminate the costly retrofit of facilities that has occurred in the past to accommodate nuclear safeguards verification activities. The following summarizes the requirements for international nuclear safeguards implementation at enrichment plants, prepared under the Safeguards by Design project, and funded by the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Office of NA-243. The purpose of this is to provide designers of nuclear facilities around the world with a simplified set of design requirements and the most common practices for meeting them. The foundation for these requirements is the international safeguards agreement between the country and the International Atomic Energy Agency (IAEA), pursuant to the Treaty on the Non-proliferation of Nuclear Weapons (NPT). Relevant safeguards requirements are also cited from the Safeguards Criteria for inspecting enrichment plants, found in the IAEA Safeguards Manual, Part SMC-8. IAEA definitions and terms are based on the IAEA Safeguards Glossary, published in 2002. The most current specification for safeguards measurement accuracy is found in the IAEA document STR-327, “International Target Values 2000 for Measurement Uncertainties in Safeguarding Nuclear Materials,” published in 2001. For this guide to be easier for the designer to use, the requirements have been restated in plainer language per expert interpretation using the source documents noted. The safeguards agreement is fundamentally a

  9. Safety Design Requirements for The Interior Architecture of Scientific Research Laboratories

    International Nuclear Information System (INIS)

    ElDib, A.A.

    2014-01-01

    The paper discusses one of the primary objectives of interior architecture design of research laboratories (specially those using radioactive materials) where it should provide a safe, accessible environment for laboratory personnel to conduct their work. A secondary objective is to allow for maximum flexibility for safe research. Therefore, health and safety hazards must be anticipated and carefully evaluated so that protective measures can be incorporated into the interior architectural design of these facilities wherever possible. The interior architecture requirements discussed in this paper illustrate some of the basic health and safety design features required for new and remodeled laboratories.The paper discusses one of the primary objectives of interior architecture design of research laboratories (specially those using radioactive materials) where it should provide a safe, accessible environment for laboratory personnel to conduct their work. A secondary objective is to allow for maximum flexibility for safe research. Therefore, health and safety hazards must be anticipated and carefully evaluated so that protective measures can be incorporated into the interior architectural design of these facilities wherever possible. The interior architecture requirements discussed in this paper illustrate some of the basic health and safety design features required for new and remodeled laboratories.

  10. Research requirements for improved design of reinforced concrete containment structures

    International Nuclear Information System (INIS)

    Banerjee, A.K.; Holley, M.J. Jr.

    1978-01-01

    Reinforced concrete is a competitive material for the construction of nuclear power plant containment structures. However, the designer is constrained by limited data on the behavior of certain construction details which require him to use what may be excessive rebar quantities and lead to difficult and costly construction. This paper discusses several design situations where research is recommended to increase the designer's options, to facilitate construction, and to extend the applicability of reinforced concrete to such changing containment requirements as may be imposed by an evolving nuclear technology. (Auth.)

  11. SU-E-T-244: Designing Low-Z Targets To Enhance Surface Dose: A Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, R [Nova Scotia Cancer Centre, Halifax, NS (Canada); Robar, J [Capital District Health Authority, Halifax, NS (Canada); Parsons, D [Dalhousie University, Halifax, Nova Scotia (Canada)

    2015-06-15

    Purpose: Recent developments in The Varian Truebeam linac platform allows for the introduction of low-Z targets into the beam line for the imaging purposes. We have proposed using a low-Z target for radiation therapy purposes to enhance the surface dose during radiation treatment. The target arm of the Varian Truebeam accelerator consists of multiple targets with are linearly translated into the beam line. We have designed two Low-Z targets made of carbon: 1) a step target consisting of three steps of 15%, 30% and 60% CSDA range for 2.5 MeV electrons Figure 1a; 2) and a ramp target, an incline plane 2cm long with thicknesses ranging from 0% to 60% CSDA range, Figure 1b. The purpose of this work will determine the spectral characteristics of these target designs and determine if they have practical clinical applications for enhancing surface dose. Methods: To calculate the spectral characteristics of these targets, a standard Monte Carlo model of a Varian Clinac accelerator was used. Simulations were performed with a carbon step target, and a carbon ramp target, located at the same position as the electron foil in the rotating carousel. Simulations were carried out using a 2.5 MeV electron beam. Results: The step target design produced spectral characteristics which were similar to spectral model using a single disk target of the same thickness. The ramp target provides a means to have positional variation of the spectral components of the beam, however, the electron component as 60% CSDA us much broader than the step target. Conclusion: The carbon step-target provides a spectral distribution which is similar to a carbon disk of comparable thickness. The spectral distribution from the ramp-target can be modified as a function of position to provide a wide range of low energy electrons for surface dose enhancement.

  12. Interaction between periodic in-service inspection requirements and design

    International Nuclear Information System (INIS)

    Prot, A.C.; Saglio, R.

    1979-03-01

    After reviewing the requirements specific of periodic In-Service Inspection related to safety problems, especially for the pressure vessels, and taking into account the experience gained with several PWR reactors, the authors show these requirements could lead to modify the primary circuit design

  13. Design and construction of a time-of-flight wall detector at External Target Facility of HIRFL-CSR

    Science.gov (United States)

    Sun, Y.; Sun, Z. Y.; Yu, Y. H.; Yan, D.; Tang, S. W.; Sun, Y. Z.; Wang, S. T.; Zhang, X. H.; Yue, K.; Fang, F.; Chen, J. L.; Zhang, Y. J.; Hu, B. T.

    2018-06-01

    A Time-Of-Flight Wall (TOFW) detector has been designed and constructed at the External Target Facility (ETF) of HIRFL-CSR. The detector covers a sensitive area of 1.2 × 1.2 m2 and consists of 30 modules. Each module is composed of a long plastic scintillator bar with two photo-multiplier tubes coupled at both ends for readout. The design and manufacture details are described and the test results are reported. The performance of the TOFW detector has been tested and measured with cosmic rays and a 310 MeV/u 40Ar beam. The results show that the time resolutions of all the TOFW modules are better than 128 ps, satisfying the requirements of the experiments which will be carried out at the ETF.

  14. Neutronics for the SNS long wavelength target station

    International Nuclear Information System (INIS)

    Iverson, E.B.; Micklich, B.J.; Carpenter, J.M.

    2001-01-01

    One of the most significant and adventurous aspects of the LWTS (Long Wavelength Target Station) design concept is the use of slab moderators, historically considered to be awkward due to the high contamination of the neutron beams with fast and high- energy neutrons. Concern over this contamination is the reason behind our proposition that none of the beam on a slab moderator should be viewed directly, that is, without a curved guide, compact bender, or other fast and high-energy neutron filter. We made a large number of calculations concerning fast neutron source term of the solid target-slab moderator configuration with monolithic solid methane, which includes a curved guide or compact beam bender. We also made optimization on target position, beam void open angle, target gap and target division of the split target configuration. All fast and high-energy neutron spectra will be reported as lethargy spectra, normalized to 1 eV. In this way, we will attempt to define the 'cost' of using slab moderators as a function of the payoff gained from their use. We report these data for general information and discussion, and further draw the conclusions. Numerous issues have arisen in the course of the LWTS concept development, which require more information than is now in hand to provide the basis for detailed design and for potential design innovations. Some of the R and D issues are listed, along with proposed efforts to fill design needs. We have devised a highly effective 'base case' conceptual design for LWTS, which we are still evaluating and optimizing. LWTS will provide distinctly unique capabilities complimentary to SNS (Spallation Neutron Source) HPTS (High Power Target Station). The configuration of LWTS is strongly coupled to instrument requirements through close interaction with scientists formulating the science case and instrument suite. (Tanaka, Y.)

  15. Future CANDU nuclear power plant design requirements document executive summary

    International Nuclear Information System (INIS)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; S. A. Usmani

    1996-03-01

    The future CANDU Requirements Document (FCRED) describes a clear and complete statement of utility requirements for the next generation of CANDU nuclear power plants including those in Korea. The requirements are based on proven technology of PHWR experience and are intended to be consistent with those specified in the current international requirement documents. Furthermore, these integrated set of design requirements, incorporate utility input to the extent currently available and assure a simple, robust and more forgiving design that enhances the performance and safety. The FCRED addresses the entire plant, including the nuclear steam supply system and the balance of the plant, up to the interface with the utility grid at the distribution side of the circuit breakers which connect the switchyard to the transmission lines. Requirements for processing of low level radioactive waste at the plant site and spent fuel storage requirements are included in the FCRED. Off-site waste disposal is beyond the scope of the FCRED. 2 tabs., 1 fig. (Author) .new

  16. Design and implementation of typical target image database system

    International Nuclear Information System (INIS)

    Qin Kai; Zhao Yingjun

    2010-01-01

    It is necessary to provide essential background data and thematic data timely in image processing and application. In fact, application is an integrating and analyzing procedure with different kinds of data. In this paper, the authors describe an image database system which classifies, stores, manages and analyzes database of different types, such as image database, vector database, spatial database, spatial target characteristics database, its design and structure. (authors)

  17. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This publication establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  18. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Russian Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  19. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This publication establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  20. REQUIREMENTS PROCESSING TOOLS AND THE BUILDING DESIGNERS MOTIVATION ON USE

    Directory of Open Access Journals (Sweden)

    Camila Pegoraro

    2017-04-01

    Full Text Available The successful development of projects requires, among other conditions, the ability to process requirements. In the construction literature, researchers have figured out that human difficulties was often at the root of Requirements Processing (RP problems throughout the design phases, and that the employment of tools could be a key factor for RP implementation. To check these outcomes and to look at how current practitioners behave in relation to the RP tools, an exploratory case study was conducted with a building design team from a public university. The aim of this paper was to investigate the perception of benefits and the motivation of designers regarding the RP tools. The results indicated that 42% of the participants are highly motivated to use new tools and that they have more interest in tools that deal directly with design activities than in those focused on data. Validation tools aroused interest as the most useful tools for designers. 66,7% of the participants mentioned that the tools can make the design process clearer, and that training and adaptation are crucial to promote acceptance and commitment to RP. The main contribution is the indication of gaps for further research and for tools improvement from the designers’ perspective.

  1. Design requirements document for Project W-465, immobilized low-activity waste interim storage

    International Nuclear Information System (INIS)

    Burbank, D.A.

    1998-01-01

    The scope of this Design Requirements Document (DRD) is to identify the functions and associated requirements that must be performed to accept, transport, handle, and store immobilized low-activity waste (ILAW) produced by the privatized Tank Waste Remediation System (TWRS) treatment contractors. The functional and performance requirements in this document provide the basis for the conceptual design of the TWRS ILAW Interim Storage facility project and provides traceability from the program level requirements to the project design activity. Technical and programmatic risk associated with the TWRS planning basis are discussed in the Tank Waste Remediation System Decisions and Risk Assessment (Johnson 1994). The design requirements provided in this document will be augmented by additional detailed design data documented by the project

  2. Evaluating the Impact of Design-Driven Requirements Using SysML

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed research will develop SysML requirements modeling patterns and scripts to automate the evaluation of the impact of design driven requirements....

  3. Project W-236A, work plan for preparation of a design requirements document

    International Nuclear Information System (INIS)

    Groth, B.D.

    1995-01-01

    This work plan outlines the tasks necessary, and defines the organizational responsibilities for preparing a Design Requirements Document (DRD) for project W-236A, Multi-Function Waste Tank Facility (MWTF). A DRD is a Systems Engineering document which bounds, at a high level, the requirements of a discrete system element of the Tank Waste Remediation System (TWRS) Program. This system element is usually assigned to a specific project, in this case the MWTF. The DRD is the document that connects the TWRS program requirements with the highest level projects requirements and provides the project's link to the overall TWRS mission. The MWTF DRD effort is somewhat unique in that the project is already in detailed design, whereas a DRO is normally prepared prior to preliminary design. The MWTF design effort was initiated with a Functional Design Criteria (FDC) and a Supplemental Design Requirements Document (SDRD) bounding the high level requirements. Another unique aspect of this effort is that some of the TWRS program requirements are still in development. Because of these unique aspects of the MWTF DRD development, the MWTF will be developed from existing TWRS Program requirements and project specific requirements contained in the FDC and SDRD. The following list describes the objectives of the MWTF DRD: determine the primary functions of the tanks through a functional decomposition of the TWRS Program high level functions; allocate the primary functions to a sub-system architecture for the tanks; define the fundamental design features in terms of performance requirements for the system and subsystems; identify system interfaces and design constraints; and document the results in a DRD

  4. Smart Contract Templates: essential requirements and design options

    OpenAIRE

    Clack, Christopher D.; Bakshi, Vikram A.; Braine, Lee

    2016-01-01

    Smart Contract Templates support legally-enforceable smart contracts, using operational parameters to connect legal agreements to standardised code. In this paper, we explore the design landscape of potential formats for storage and transmission of smart legal agreements. We identify essential requirements and describe a number of key design options, from which we envisage future development of standardised formats for defining and manipulating smart legal agreements. This provides a prelimin...

  5. Assistant in design of tissue targeting leads with radio-combinatorial screening vivo

    International Nuclear Information System (INIS)

    Liu Ciyi; Zeng Jun; Xie Wenhui; Hu Silong; Jin Muxiu

    2004-01-01

    The diagnostic and therapeutic efficiency of drug depends highly on the drug distribution in target tissues (tumor for example) both specifically and accumulatively. We report here a powerful approach in design of tissue targeting leads with the assistant of radio-combinatorial screening technique developed in our laboratory. Methods: The C-terminal amide tripeptide libraries were synthesized on Rink Amide-MBHA resin in the OXX aO1OXaO1O2O positional scanning format and iterative protoco. A technetium (V) oxo core[(TcO)3+] was bound to the N4-triligands of tripeptide libraries via four deprotonated anfide nitrogen atoms to form a structure of 99Tcm-tripeptoid libraries. The radio-combinatorial screening (RCS) in vivo was then carried out after SD rats and A549 tumor bearing mice received i.v. with 99Tcm-tripeptoid libraries. Results: Signals of tissue distribution and metabolism of libraries were recorded by g counting or imaging. From library of 8,000 99Tcm-tripeptoid members, the tissue targeting leads had been identified by RCS. Those included 99Tcm-DSG (RES), 99Tcm-VAA, and 99Tcm-VIG that had specific tissue targeting in kidney, stomach, and liver respectively. The percent injected dose per gram tissue (%ID/g) of 99Tcm labeled leads in their target tissues was highly structure-dependent The discovery of 99Tcm-VAA and 99Tcm-VIG indicates that side chain methyl at positionl and 2 are crucial for stomach and liver accumulating 99Tcm-tripeptoids. In the case of kidney targeting, Ser in the position 2 and 3 is crucial for 99Tcm-tripeptoids renal excretion and accumulation characteristics respectively. Conclusion: RCS in vivo is a powerful tool for design of tissue targeting leads. (authors)

  6. Shock ignition: a brief overview and progress in the design of robust targets

    International Nuclear Information System (INIS)

    Atzeni, S; Marocchino, A; Schiavi, A

    2015-01-01

    Shock ignition is a laser direct-drive inertial confinement fusion (ICF) scheme in which the stages of compression and hot spot formation are partly separated. The fuel is first imploded at a lower velocity than in conventional ICF, reducing the threats due to Rayleigh–Taylor instability. Close to stagnation, an intense laser spike drives a strong converging shock, which contributes to hot spot formation. This paper starts with a brief overview of the theoretical studies, target design and experimental results on shock ignition. The second part of the paper illustrates original work aiming at the design of robust targets and computation of the relevant gain curves. Following Chang et al (2010 Phys. Rev. Lett. 104 135002) a safety factor for high gain, ITF* (analogous to the ignition threshold factor ITF introduced by Clark et al (2008 Phys. Plasmas 15 056305)), is evaluated by means of parametric 1D simulations with artificially reduced reactivity. SI designs scaled as in Atzeni et al (2013 New J. Phys. 15 045004) are found to have nearly the same ITF*. For a given target, such ITF* increases with implosion velocity and laser spike power. A gain curve with a prescribed ITF* can then be simply generated by upscaling a reference target with that value of ITF*. An interesting option is scaling in size by reducing the implosion velocity to keep the ratio of implosion velocity to self-ignition velocity constant. At a given total laser energy, targets with higher ITF* are driven to higher implosion velocity and achieve a somewhat lower gain. However, a 1D gain higher than 100 is achieved at an (incident) energy below 1 MJ, an implosion velocity below 300 km s −1 and a peak incident power below 400 TW. 2D simulations of mispositioned targets show that targets with a higher ITF* indeed tolerate larger displacements. (paper)

  7. Design requirements document for project W-520, immobilized low-activity waste disposal

    International Nuclear Information System (INIS)

    Ashworth, S.C.

    1998-01-01

    This design requirements document (DRD) identifies the functions that must be performed to accept, handle, and dispose of the immobilized low-activity waste (ILAW) produced by the Tank Waste Remediation System (TWRS) private treatment contractors and close the facility. It identifies the requirements that are associated with those functions and that must be met. The functional and performance requirements in this document provide the basis for the conceptual design of the Tank Waste Remediation System Immobilized Low-Activity Waste disposal facility project (W-520) and provides traceability from the program-level requirements to the project design activity

  8. Design requirements document for project W-520, immobilized low-activity waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, S.C.

    1998-08-06

    This design requirements document (DRD) identifies the functions that must be performed to accept, handle, and dispose of the immobilized low-activity waste (ILAW) produced by the Tank Waste Remediation System (TWRS) private treatment contractors and close the facility. It identifies the requirements that are associated with those functions and that must be met. The functional and performance requirements in this document provide the basis for the conceptual design of the Tank Waste Remediation System Immobilized Low-Activity Waste disposal facility project (W-520) and provides traceability from the program-level requirements to the project design activity.

  9. Multiple Target Laser Designator (MTLD)

    Science.gov (United States)

    2007-03-01

    Optimized Liquid Crystal Scanning Element Optimize the Nonimaging Predictive Algorithm for Target Ranging, Tracking, and Position Estimation...commercial potential. 3.0 PROGRESS THIS QUARTER 3.1 Optimization of Nonimaging Holographic Antenna for Target Tracking and Position Estimation (Task 6) In

  10. Advances in target design and fabrication for experiments on NIF

    Directory of Open Access Journals (Sweden)

    Obrey K.

    2013-11-01

    Full Text Available The ability to build target platforms for National Ignition Facility (NIF is a key feature in LANL's (Los Alamos National Laboratory Target Fabrication Program. We recently built and manufactured the first LANL targets to be fielded on NIF in March 2011. Experiments on NIF require precision component manufacturing and accurate knowledge of the materials used in the targets. The characterization of foams and aerogels, the Be ignition capsule, and machining unique components are of main material focus. One important characterization metric the physics' have determined is that the knowledge of density gradients in foams is important. We are making strides in not only locating these density gradients in aerogels and foams as a result of how they are manufactured and machined but also quantifying the density within the foam using 3D confocal micro x-ray fluorescence (μXRF imaging and 3D x-ray computed tomography (CT imaging. In addition, collaborative efforts between General Atomics (GA and LANL in the characterization of the NIF Ignition beryllium capsule have shown that the copper in the capsule migrates radially from the capsule center.

  11. COST-EFFECTIVE TARGET FABRICATION FOR INERTIAL FUSION ENERGY

    International Nuclear Information System (INIS)

    GOODIN, D.T; NOBILE, A; SCHROEN, D.G; MAXWELL, J.L; RICKMAN, W.S

    2004-03-01

    A central feature of an Inertial Fusion Energy (IFE) power plant is a target that has been compressed and heated to fusion conditions by the energy input of the driver. The IFE target fabrication programs are focusing on methods that will scale to mass production, and working closely with target designers to make material selections that will satisfy a wide range of required and desirable characteristics. Targets produced for current inertial confinement fusion experiments are estimated to cost about $2500 each. Design studies of cost-effective power production from laser and heavy-ion driven IFE have found a cost requirement of about $0.25-0.30 each. While four orders of magnitude cost reduction may seem at first to be nearly impossible, there are many factors that suggest this is achievable. This paper summarizes the paradigm shifts in target fabrication methodologies that will be needed to economically supply targets and presents the results of ''nth-of-a-kind'' plant layouts and concepts for IFE power plant fueling. Our engineering studies estimate the cost of the target supply in a fusion economy, and show that costs are within the range of commercial feasibility for laser-driven and for heavy ion driven IFE

  12. Recent Developments in the VISRAD 3-D Target Design and Radiation Simulation Code

    Science.gov (United States)

    Macfarlane, Joseph; Golovkin, Igor; Sebald, James

    2017-10-01

    The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, Z, and LMJ. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e.g., that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. VISRAD includes a variety of user-friendly graphics for setting up targets and displaying results, can readily display views from any point in space, and can be used to generate image sequences for animations. We will discuss recent improvements to conveniently assess beam capture on target and beam clearance of diagnostic components, as well as plans for future developments.

  13. Targeting Aurora B to the equatorial cortex by MKlp2 is required for cytokinesis.

    Directory of Open Access Journals (Sweden)

    Mayumi Kitagawa

    Full Text Available Although Aurora B is important in cleavage furrow ingression and completion during cytokinesis, the mechanism by which kinase activity is targeted to the cleavage furrow and the molecule(s responsible for this process have remained elusive. Here, we demonstrate that an essential mitotic kinesin MKlp2 requires myosin-II for its localization to the equatorial cortex, and this event is required to recruit Aurora B to the equatorial cortex in mammalian cells. This recruitment event is also required to promote the highly focused accumulation of active RhoA at the equatorial cortex and stable ingression of the cleavage furrow in bipolar cytokinesis. Specifically, in drug-induced monopolar cytokinesis, targeting Aurora B to the cell cortex by MKlp2 is essential for cell polarization and furrow formation. Once the furrow has formed, MKlp2 further recruits Aurora B to the growing furrow. This process together with continuous Aurora B kinase activity at the growing furrow is essential for stable furrow propagation and completion. In contrast, a MKlp2 mutant defective in binding myosin-II does not recruit Aurora B to the cell cortex and does not promote furrow formation during monopolar cytokinesis. This mutant is also defective in maintaining the ingressing furrow during bipolar cytokinesis. Together, these findings reveal that targeting Aurora B to the cell cortex (or the equatorial cortex by MKlp2 is essential for the maintenance of the ingressing furrow for successful cytokinesis.

  14. Evaluation and decision of products conceptual design schemes based on customer requirements

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hong Zhong; Li, Yan Feng; Liu, Yu; Wang, Zhonglai [University of Electronic Science and Technology of China, Sichuan (China); Liu, Wenhai [2China Science Patent Trademark Agents Ltd., Beijing (China)

    2011-09-15

    Within the competitive market environment, understanding customer requirements is crucial for all corporations to obtain market share and survive competition. Only the products exactly meeting customer requirements can win in the market place. Therefore, customer requirements play a very important role in the evaluation and decision process of conceptual design schemes of products. In this paper, an evaluation and decision method based on customer requirements is presented. It utilizes the importance of customer requirements, the satisfaction degree of each evaluation metric to the specification, and an evaluation metric which models customer requirements to evaluate the satisfaction degree of each design scheme to specific customer requirements via the proposed BP neural networks. In the evaluation and decision process, fuzzy sets are used to describe the importance of customer requirements, the relationship between customer requirements and evaluation metrics, the satisfaction degree of each scheme to customer requirements, and the crisp set is used to describe the satisfaction degree of each metric to specifications. The effectiveness of the proposed method is demonstrated by an example of front suspension fork design of mountain bikes.

  15. Evaluation and decision of products conceptual design schemes based on customer requirements

    International Nuclear Information System (INIS)

    Huang, Hong Zhong; Li, Yan Feng; Liu, Yu; Wang, Zhonglai; Liu, Wenhai

    2011-01-01

    Within the competitive market environment, understanding customer requirements is crucial for all corporations to obtain market share and survive competition. Only the products exactly meeting customer requirements can win in the market place. Therefore, customer requirements play a very important role in the evaluation and decision process of conceptual design schemes of products. In this paper, an evaluation and decision method based on customer requirements is presented. It utilizes the importance of customer requirements, the satisfaction degree of each evaluation metric to the specification, and an evaluation metric which models customer requirements to evaluate the satisfaction degree of each design scheme to specific customer requirements via the proposed BP neural networks. In the evaluation and decision process, fuzzy sets are used to describe the importance of customer requirements, the relationship between customer requirements and evaluation metrics, the satisfaction degree of each scheme to customer requirements, and the crisp set is used to describe the satisfaction degree of each metric to specifications. The effectiveness of the proposed method is demonstrated by an example of front suspension fork design of mountain bikes

  16. Development of IFE target systems on the NIF

    International Nuclear Information System (INIS)

    Schultz, K.R.; Fagaly, R.L.; Bernat, T.; Meier, W.; Petzoldt, R.; Foreman, L.

    1995-01-01

    The Target Systems session of the Workshop on NIF Experiments for IFE developed a list of critical issues for inertial fusion energy (IFE) target systems, and considered the potential of the National Ignition Facility (NIF) to help in the resolution of these issues and in the development of IFE target systems. This paper describes the IFE Target System issues, categorized into target fabrication issues and target transport issues, describes potential NIF IFE target systems experiments, considers the impact of these experiments on the NIF and discusses the development required before these experiments could be done. Most target systems issues must be resolved by development in the laboratory, not in the NIF, and some must be resolved before the NIF can be successful. However, experiments done in the NIF could play a valuable role in developing target systems for IFE. These experiments should have modest impact on the basic design of the NIF, but could require several hundred dedicated, high yield shots

  17. Design upgrade of the ISOLDE target unit for HIE-ISOLDE

    CERN Document Server

    Montano, J; Gottberg, A

    2013-01-01

    The High Intensity and Energy HIE-ISOLDE project is a major upgrade of the existing ISOLDE and REX-ISOLDE facilities with the objective of increasing the energy and the intensity of the delivered radioactive ion beams (RIB) {[}1]. In order to accommodate the future increase of primary beam intensity delivered by the new LINAC4 H- driver to the Proton Synchrotron Booster (PSB) {[}2] and from this to ISOLDE, a major study is being carried out to upgrade the existing designs of the ISOLDE target and its supporting infrastructure. In particular, the extraction optics plays an important role in the initial beam transport and the quality of the beam supplied to the mass separators. Important factors include the emittance of the beam and the beam profile to avoid beam losses. A new double electrode extraction system has been developed for simplifying and improving the interface between the target unit and the frontend (target coupling table). Numerical and experimental studies have been performed in order to define ...

  18. Engineered barrier systems (EBS): design requirements and constraints

    International Nuclear Information System (INIS)

    2004-01-01

    A joint NEA-EC workshop entitled 'Engineered Barrier Systems: Design Requirements and Constraints' was organised in Turku, Finland on 26-29 August 2003 and hosted by Posiva Oy. The main objectives of the workshop were to promote interaction and collaboration among experts responsible for engineering design and safety assessment in order to develop a greater understanding of how to achieve the integration needed for the successful design of engineered barrier systems, and to clarify the role that an EBS can play in the overall safety case for a repository. These proceedings present the outcomes of this workshop. (author)

  19. Science requirements and the design of cabled ocean observatories

    Directory of Open Access Journals (Sweden)

    H. Mikada

    2006-06-01

    Full Text Available The ocean sciences are beginning a new phase in which scientists will enter the ocean environment and adaptively observe the Earth-Ocean system through remote control of sensors and sensor platforms. This new ocean science paradigm will be implemented using innovative facilities called ocean observatories which provide unprecedented levels of power and communication to access and manipulate real-time sensor networks deployed within many different environments in the ocean basins. Most of the principal design drivers for ocean observatories differ from those for commercial submarine telecommunications systems. First, ocean observatories require data to be input and output at one or more seafloor nodes rather than at a few land terminuses. Second, ocean observatories must distribute a lot of power to the seafloor at variable and fluctuating rates. Third, the seafloor infrastructure for an ocean observatory inherently requires that the wet plant be expandable and reconfigurable. Finally, because the wet communications and power infrastructure is comparatively complex, ocean observatory infrastructure must be designed for low life cycle cost rather than zero maintenance. The origin of these differences may be understood by taking a systems engineering approach to ocean observatory design through examining the requirements derived from science and then going through the process of iterative refinement to yield conceptual and physical designs. This is illustrated using the NEPTUNE regional cabled observatory power and data communications sub-systems.

  20. Current therapeutic molecules and targets in neurodegenerative diseases based on in silico drug design.

    Science.gov (United States)

    Sehgal, Sheikh Arslan; Hammad, Mirza A; Tahir, Rana Adnan; Akram, Hafiza Nisha; Ahmad, Faheem

    2018-03-15

    As the number of elderly persons increases, neurodegenerative diseases are becoming ubiquitous. There is currently a great need for knowledge concerning management of old-age neurodegenerative diseases; the most important of which are: Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis, and Huntington's disease. To summarize the potential of computationally predicted molecules and targets against neurodegenerative diseases. Review of literature published since 1997 against neurodegenerative diseases, utilizing as keywords: in silico, Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis ALS, and Huntington's disease. Due to the costs associated with experimentation and current ethical law, performing experiments directly on living organisms has become much more difficult. In this scenario, in silico techniques have been successful and have become powerful tools in the search to cure disease. Researchers use the Computer Aided Drug Design pipeline which: 1) generates 3-dimensional structures of target proteins through homology modeling 2) achieves stabilization through molecular dynamics simulation, and 3) exploits molecular docking through large compound libraries. Next generation sequencing is continually producing enormous amounts of raw sequence data while neuroimaging is producing a multitude of raw image data. To solve such pressing problems, these new tools and algorithms are required. This review elaborates precise in silico tools and techniques for drug targets, active molecules, and molecular docking studies, together with future prospects and challenges concerning possible breakthroughs in Alzheimer's, Parkinson's, Amyotrophic Lateral Sclerosis, and Huntington's disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. High performance inertial fusion targets

    International Nuclear Information System (INIS)

    Nuckolls, J.H.; Bangerter, R.O.; Lindl, J.D.; Mead, W.C.; Pan, Y.L.

    1977-01-01

    Inertial confinement fusion (ICF) designs are considered which may have very high gains (approximately 1000) and low power requirements (<100 TW) for input energies of approximately one megajoule. These include targets having very low density shells, ultra thin shells, central ignitors, magnetic insulation, and non-ablative acceleration

  2. Design and features of the target tracker of the Opera's target: study of the electron channel events

    International Nuclear Information System (INIS)

    Chon-Sen, N.

    2009-01-01

    Neutrino oscillations are now well acknowledged, the purpose of the Opera experiment is to show how ν τ appear in a ν μ beam. The ν μ beam is produced at CERN and crosses the earth crust on a distance of 732 km before being detected in the Gran-Sasso underground laboratory. The Opera experiment uses the technique of the photographic emulsion. The detector target is a series of walls of lead bricks, each brick being made of photographic emulsions intercalated with lead sheets. A target tracker enables the localization of the brick in which the neutrino interaction has happened. As soon as the brick is found, the brick is removed from the detector and the emulsion is developed and analysed. the target tracker is made up of plastic scintillator bars on which optic fibers are stuck to collect photons and send them to photomultipliers. The main purpose of this work is the calibration of the target tracker. The first chapter introduces the standard model, the neutrino and the neutrino oscillation phenomenon. The second chapter reviews the neutrino experiments worldwide. The third chapter describes the Opera experiment while chapter 4 and 5 are dedicated to the design and operation of the target tracker. The last chapter studies through simulation the behaviour of the target tracker when submitted to an electron beam in order to use it as a complementary tool for the identification of the τ → e channel. (A.C.)

  3. Design requirements and performance requirements for reactor fuel recycle manipulator systems

    International Nuclear Information System (INIS)

    Grundmann, J.G.

    1975-01-01

    The development of a new generation of remote handling devices for remote production work in support of reactor fuel recycle systems is discussed. These devices require greater mobility, speed and visual capability than remote handling systems used in research activities. An upgraded manipulator system proposed for a High-Temperature Gas-Cooled Reactor fuel refabrication facility is described. Design and performance criteria for the manipulators, cranes, and TV cameras in the proposed system are enumerated

  4. Computer-aided design of multi-target ligands at A1R, A2AR and PDE10A, key proteins in neurodegenerative diseases.

    Science.gov (United States)

    Kalash, Leen; Val, Cristina; Azuaje, Jhonny; Loza, María I; Svensson, Fredrik; Zoufir, Azedine; Mervin, Lewis; Ladds, Graham; Brea, José; Glen, Robert; Sotelo, Eddy; Bender, Andreas

    2017-12-30

    Compounds designed to display polypharmacology may have utility in treating complex diseases, where activity at multiple targets is required to produce a clinical effect. In particular, suitable compounds may be useful in treating neurodegenerative diseases by promoting neuronal survival in a synergistic manner via their multi-target activity at the adenosine A 1 and A 2A receptors (A 1 R and A 2A R) and phosphodiesterase 10A (PDE10A), which modulate intracellular cAMP levels. Hence, in this work we describe a computational method for the design of synthetically feasible ligands that bind to A 1 and A 2A receptors and inhibit phosphodiesterase 10A (PDE10A), involving a retrosynthetic approach employing in silico target prediction and docking, which may be generally applicable to multi-target compound design at several target classes. This approach has identified 2-aminopyridine-3-carbonitriles as the first multi-target ligands at A 1 R, A 2A R and PDE10A, by showing agreement between the ligand and structure based predictions at these targets. The series were synthesized via an efficient one-pot scheme and validated pharmacologically as A 1 R/A 2A R-PDE10A ligands, with IC 50 values of 2.4-10.0 μM at PDE10A and K i values of 34-294 nM at A 1 R and/or A 2A R. Furthermore, selectivity profiling of the synthesized 2-amino-pyridin-3-carbonitriles against other subtypes of both protein families showed that the multi-target ligand 8 exhibited a minimum of twofold selectivity over all tested off-targets. In addition, both compounds 8 and 16 exhibited the desired multi-target profile, which could be considered for further functional efficacy assessment, analog modification for the improvement of selectivity towards A 1 R, A 2A R and PDE10A collectively, and evaluation of their potential synergy in modulating cAMP levels.

  5. Ignition target and laser-plasma instabilities

    International Nuclear Information System (INIS)

    Laffite, S.; Loiseau, P.

    2010-01-01

    For the first time indirect drive ignition targets have been designed with the constraint of limiting laser-plasma instabilities. The amplification of these instabilities is directly proportional to the luminous flux density, it means to the sizes of the focal spots too. This study shows that increasing the sizes of the focal spots does not reduce linear amplification gains in a proportional way because the global optimization of the target implies changes in hydrodynamical conditions that in turn have an impact on the value of the amplification gain. The design of the target is a 2-step approach: the first step aims at assuring a uniform irradiation and compression of the target. The first step requires information concerning the laser focusing spots, the dimensions of the hohlraum, the inert gas contained in it, the materials of the wall. The second step is an optimization approach whose aim is to reduce the risk of laser-plasmas instabilities. This optimization is made through simulations of the amplification gains of stimulated Raman and Brillouin backscattering. This method has allowed us to design an optimized target for a rugby-shaped hohlraum. (A.C.)

  6. REQUIREMENTS FOR DESIGN, EQUIPMENT AND OPERATION MODE OF TAXI VEHICLES

    Directory of Open Access Journals (Sweden)

    Norayr Oganesovich Bludyan

    2015-09-01

    Full Text Available The analysis of international experience in application of requirements for the taxi vehicles design and equipment. The approaches to improvement of cabbing have been defined by determination of requirements for taxi vehicles.

  7. DTU-ESA millimeter-wave validation standard antenna – requirements and design

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Kim, Oleksiy S.; Breinbjerg, Olav

    2014-01-01

    from a validation campaign is achieved when a dedicated Validation Standard (VAST) antenna specifically designed for this purpose is available. The driving requirements to VAST antennas are their mechanical stability with respect to any orientation of the antenna in the gravity field and thermal...... are briefly reviewed and the baseline design is described. The emphasis is given to definition of the requirements for the mechanical and thermal stability of the antenna, which satisfy the stringent stability requirement for the mm-VAST electrical characteristics....

  8. Design of block-copolymer-based micelles for active and passive targeting

    NARCIS (Netherlands)

    Lebouille, Jérôme G J L; Leermakers, Frans A M; Cohen Stuart, Martien A.; Tuinier, Remco

    2016-01-01

    A self-consistent field study is presented on the design of active and passive targeting block-copolymeric micelles. These micelles form in water by self-assembly of triblock copolymers with a hydrophilic middle block and two hydrophobic outer blocks. A minority amount of diblock copolymers with the

  9. Design of block-copolymer-based micelles for active and passive targeting

    NARCIS (Netherlands)

    Lebouille, Jérôme G.J.L.; Leermakers, Frans A.M.; Cohen Stuart, Martien A.; Tuinier, Remco

    2016-01-01

    A self-consistent field study is presented on the design of active and passive targeting block-copolymeric micelles. These micelles form in water by self-assembly of triblock copolymers with a hydrophilic middle block and two hydrophobic outer blocks. A minority amount of diblock copolymers with

  10. Target experimental area and systems of the Us national ignition facility

    International Nuclear Information System (INIS)

    Tobin, M.; Van Wonterghem, B.; MacGowan, B.J.; Hibbard, W.; Kalantar, D.; Lee, F.D.; Pittenger, L.; Wong, K.

    2000-01-01

    One of the major goals of the US National Ignition Facility is the demonstration of laser driven fusion ignition and burn of targets by inertial confinement and provide capability for a wide variety of high energy density physics experiments. The NIF target area houses the optical systems required to focus the 192 beamlets to a target precisely positioned at the center of the 10 meter diameter, 10-cm thick aluminum target chamber. The chamber serves as mounting surface for the 48 final optics assemblies, the target alignment and positioning equipment, and the target diagnostics. The internal surfaces of the chamber are protected by louvered steel beam dumps. The target area also provides the necessary shielding against target emission and environmental protection equipment. Despite its complexity, the design provides the flexibility to accommodate the needs of the various NIF user groups, such as direct and indirect drive irradiation geometries, modular final optics design, capability to handle cryogenic targets, and easily re-configurable diagnostic instruments. Efficient target area operations are ensured by using line-replaceable designs for systems requiring frequent inspection, maintenance and reconfiguration, such as the final optics, debris shields, phase plates and the diagnostic instruments. A precision diagnostic instrument manipulator (DIMS) allows fast removal and precise repositioning of diagnostic instruments. In addition we will describe several activities to enhance the target chamber availability, such as the target debris mitigation, the use of standard experimental configurations and the development of smart shot operations planning tools. (authors)

  11. Alternative divertor target concepts for next step fusion devices

    Science.gov (United States)

    Mazul, I. V.

    2016-12-01

    The operational conditions of a divertor target in the next steps of fusion devices are more severe in comparison with ITER. The current divertor designs and technologies have a limited application concerning these conditions, and so new design concepts/technologies are required. The main reasons which practically prevent the use of the traditional motionless solid divertor target are analyzed. We describe several alternative divertor target concepts in this paper. The comparative analysis of these concepts (including the advantages and the drawbacks) is made and the prospects for their practical implementation are prioritized. The concept of the swept divertor target with a liquid metal interlayer between the moving armour and motionless heat-sink is presented in more detail. The critical issues of this design are listed and outlined, and the possible experiments are presented.

  12. Planetary mission requirements, technology and design considerations for a solar electric propulsion stage

    Science.gov (United States)

    Cork, M. J.; Hastrup, R. C.; Menard, W. A.; Olson, R. N.

    1979-01-01

    High energy planetary missions such as comet rendezvous, Saturn orbiter and asteroid rendezvous require development of a Solar Electric Propulsion Stage (SEPS) for augmentation of the Shuttle-IUS. Performance and functional requirements placed on the SEPS are presented. These requirements will be used in evolution of the SEPS design, which must be highly interactive with both the spacecraft and the mission design. Previous design studies have identified critical SEPS technology areas and some specific design solutions which are also presented in the paper.

  13. Target design for materials processing very far from equilibrium

    Science.gov (United States)

    Barnard, John J.; Schenkel, Thomas

    2016-10-01

    Local heating and electronic excitations can trigger phase transitions or novel material states that can be stabilized by rapid quenching. An example on the few nanometer scale are phase transitions induced by the passage of swift heavy ions in solids where nitrogen-vacancy color centers form locally in diamonds when ions heat the diamond matrix to warm dense matter conditions at 0.5 eV. We optimize mask geometries for target materials such as silicon and diamond to induce phase transitions by intense ion pulses (e. g. from NDCX-II or from laser-plasma acceleration). The goal is to rapidly heat a solid target volumetrically and to trigger a phase transition or local lattice reconstruction followed by rapid cooling. The stabilized phase can then be studied ex situ. We performed HYDRA simulations that calculate peak temperatures for a series of excitation conditions and cooling rates of crystal targets with micro-structured masks. A simple analytical model, that includes ion heating and radial, diffusive cooling, was developed that agrees closely with the HYDRA simulations. The model gives scaling laws that can guide the design of targets over a wide range of parameters including those for NDCX-II and the proposed BELLA-i. This work was performed under the auspices of the U.S. DOE under contracts DE-AC52-07NA27344 (LLNL), DE-AC02-05CH11231 (LBNL) and was supported by the US DOE Office of Science, Fusion Energy Sciences. LLNL-ABS-697271.

  14. 47 CFR 54.209 - Annual reporting requirements for designated eligible telecommunications carriers.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Annual reporting requirements for designated eligible telecommunications carriers. 54.209 Section 54.209 Telecommunication FEDERAL COMMUNICATIONS... Service Support § 54.209 Annual reporting requirements for designated eligible telecommunications carriers...

  15. Applying Monte Carlo Simulation to Launch Vehicle Design and Requirements Verification

    Science.gov (United States)

    Hanson, John M.; Beard, Bernard B.

    2010-01-01

    This paper is focused on applying Monte Carlo simulation to probabilistic launch vehicle design and requirements verification. The approaches developed in this paper can be applied to other complex design efforts as well. Typically the verification must show that requirement "x" is met for at least "y" % of cases, with, say, 10% consumer risk or 90% confidence. Two particular aspects of making these runs for requirements verification will be explored in this paper. First, there are several types of uncertainties that should be handled in different ways, depending on when they become known (or not). The paper describes how to handle different types of uncertainties and how to develop vehicle models that can be used to examine their characteristics. This includes items that are not known exactly during the design phase but that will be known for each assembled vehicle (can be used to determine the payload capability and overall behavior of that vehicle), other items that become known before or on flight day (can be used for flight day trajectory design and go/no go decision), and items that remain unknown on flight day. Second, this paper explains a method (order statistics) for determining whether certain probabilistic requirements are met or not and enables the user to determine how many Monte Carlo samples are required. Order statistics is not new, but may not be known in general to the GN&C community. The methods also apply to determining the design values of parameters of interest in driving the vehicle design. The paper briefly discusses when it is desirable to fit a distribution to the experimental Monte Carlo results rather than using order statistics.

  16. Soft computing model for optimized siRNA design by identifying off target possibilities using artificial neural network model.

    Science.gov (United States)

    Murali, Reena; John, Philips George; Peter S, David

    2015-05-15

    The ability of small interfering RNA (siRNA) to do posttranscriptional gene regulation by knocking down targeted genes is an important research topic in functional genomics, biomedical research and in cancer therapeutics. Many tools had been developed to design exogenous siRNA with high experimental inhibition. Even though considerable amount of work has been done in designing exogenous siRNA, design of effective siRNA sequences is still a challenging work because the target mRNAs must be selected such that their corresponding siRNAs are likely to be efficient against that target and unlikely to accidentally silence other transcripts due to sequence similarity. In some cases, siRNAs may tolerate mismatches with the target mRNA, but knockdown of genes other than the intended target could make serious consequences. Hence to design siRNAs, two important concepts must be considered: the ability in knocking down target genes and the off target possibility on any nontarget genes. So before doing gene silencing by siRNAs, it is essential to analyze their off target effects in addition to their inhibition efficacy against a particular target. Only a few methods have been developed by considering both efficacy and off target possibility of siRNA against a gene. In this paper we present a new design of neural network model with whole stacking energy (ΔG) that enables to identify the efficacy and off target effect of siRNAs against target genes. The tool lists all siRNAs against a particular target with their inhibition efficacy and number of matches or sequence similarity with other genes in the database. We could achieve an excellent performance of Pearson Correlation Coefficient (R=0. 74) and Area Under Curve (AUC=0.906) when the threshold of whole stacking energy is ≥-34.6 kcal/mol. To the best of the author's knowledge, this is one of the best score while considering the "combined efficacy and off target possibility" of siRNA for silencing a gene. The proposed model

  17. A real-time brain-machine interface combining motor target and trajectory intent using an optimal feedback control design.

    Directory of Open Access Journals (Sweden)

    Maryam M Shanechi

    Full Text Available Real-time brain-machine interfaces (BMI have focused on either estimating the continuous movement trajectory or target intent. However, natural movement often incorporates both. Additionally, BMIs can be modeled as a feedback control system in which the subject modulates the neural activity to move the prosthetic device towards a desired target while receiving real-time sensory feedback of the state of the movement. We develop a novel real-time BMI using an optimal feedback control design that jointly estimates the movement target and trajectory of monkeys in two stages. First, the target is decoded from neural spiking activity before movement initiation. Second, the trajectory is decoded by combining the decoded target with the peri-movement spiking activity using an optimal feedback control design. This design exploits a recursive Bayesian decoder that uses an optimal feedback control model of the sensorimotor system to take into account the intended target location and the sensory feedback in its trajectory estimation from spiking activity. The real-time BMI processes the spiking activity directly using point process modeling. We implement the BMI in experiments consisting of an instructed-delay center-out task in which monkeys are presented with a target location on the screen during a delay period and then have to move a cursor to it without touching the incorrect targets. We show that the two-stage BMI performs more accurately than either stage alone. Correct target prediction can compensate for inaccurate trajectory estimation and vice versa. The optimal feedback control design also results in trajectories that are smoother and have lower estimation error. The two-stage decoder also performs better than linear regression approaches in offline cross-validation analyses. Our results demonstrate the advantage of a BMI design that jointly estimates the target and trajectory of movement and more closely mimics the sensorimotor control system.

  18. Data driven polypharmacological drug design for lung cancer: analyses for targeting ALK, MET, and EGFR

    DEFF Research Database (Denmark)

    Narayanan, Dilip; Gani, Osman ABSM; Gruber, Franz XE

    2017-01-01

    encoded into molecular mechanics force fields. Cheminformatics analyses of binding data show EGFR to be dissimilar to ALK and MET, but its structure shows how it may be co-targeted with the addition of a covalent trap. This suggests a strategy for the design of a focussed chemical library based on a pan......Drug design of protein kinase inhibitors is now greatly enabled by thousands of publicly available X-ray structures, extensive ligand binding data, and optimized scaffolds coming off patent. The extensive data begin to enable design against a spectrum of targets (polypharmacology); however...... consider polypharmacological targeting of protein kinases ALK, MET, and EGFR (and its drug resistant mutant T790M) in non small cell lung cancer as an example. Both EGFR and ALK represent sources of primary oncogenic lesions, while drug resistance arises from MET amplification and EGFR mutation. A drug...

  19. Design principles for target stations and methods of remote handling at PSI

    International Nuclear Information System (INIS)

    Steiner, E.W.

    1992-01-01

    Two design concepts for target stations used at Paul Scherrer Institute (PSI) are shown. The method of the remote handling of activated elements is described and some conclusions with respect to a radioactive beam facility are given

  20. Thermal-hydraulic design concept of the solid-target system of spallation neutron source

    International Nuclear Information System (INIS)

    Tanaka, F.; Hibiki, T.; Saito, Y.; Takeda, T.; Mishima, K.

    2001-01-01

    In relation to thermal-hydraulic design of the N-Arena solid-target system of the JHF project, heat transfer experiments were performed to obtain experimental data systematically on heat transfer coefficient and CHF for vertical upward and horizontal flows in a thin rectangular channel simulating a coolant channel of the proposed spallation neutron source. Thermal-hydraulic correlations which can be used for design calculations were proposed based on the obtained data. Finally tentative results of feasibility study on maximum beam power which could be attained with a solid target were presented. The result indicated that the condition for the onset of nucleate boiling is the most significant limiting factor to the maximum beam power. (author)

  1. Incorporating functional requirements into the structural design of the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Hsiu, F.J.; Ng, C.K.; Almuti, A.M.

    1986-01-01

    Vitrification Building-type structures have unique features and design needs. The structural design requires new concepts and custom detailing. The above special structural designs have demonstrated the importance of the five design considerations listed in the introduction. Innovative ideas and close coordination are required to achieve the design objectives. Many of these innovations have been applied to the DWPF facility which is a first of a kind

  2. Preliminary design requirements document (DRD) for Project W-236B, ''Initial Pretreatment Module''

    International Nuclear Information System (INIS)

    Swanson, L.M.

    1995-01-01

    The scope of this Design Requirements Document (DRD) is to identify and define the functions, with associated requirements, which must be performed to separate Hanford Site tank waste supernatants into low-level and high-level fractions. This documents sets forth function requirements, performance requirements, and design constraints necessary to begin conceptual design for the Initial Pretreatment Module (IPM). System and physical interfaces between the IPM project and the Tank Waste Remediation System (TWRS) are identified. The constraints, performance requirements, and transfer of information and data across a technical interface will be documented in an Interface Control Document. Supplemental DRDs will be prepared to provide more detailed requirements specific to systems described in the DRD

  3. Fixed target facility at the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Loken, S.C.; Morfin, J.G.

    1985-01-01

    The question of whether a facility for fixed target physics should be provided at the SSC must be answered before the final technical design of the SSC can be completed, particularly if the eventual form of extraction would influence the magnet design. To this end, an enthusiastic group of experimentalists, theoreticians and accelerator specialists have studied this point. The accelerator physics issues were addressed by a group led by E. Colton whose report is contained in these proceedings. The physics addressable by fixed target was considered by many of the Physics area working groups and in particular by the Structure Function Group. This report is the summary of the working group which considered various SSC fixed target experiments and determined which types of beams and detectors would be required. 13 references, 5 figures.

  4. Fixed target facility at the SSC

    International Nuclear Information System (INIS)

    Loken, S.C.; Morfin, J.G.

    1985-01-01

    The question of whether a facility for fixed target physics should be provided at the SSC must be answered before the final technical design of the SSC can be completed, particularly if the eventual form of extraction would influence the magnet design. To this end, an enthusiastic group of experimentalists, theoreticians and accelerator specialists have studied this point. The accelerator physics issues were addressed by a group led by E. Colton whose report is contained in these proceedings. The physics addressable by fixed target was considered by many of the Physics area working groups and in particular by the Structure Function Group. This report is the summary of the working group which considered various SSC fixed target experiments and determined which types of beams and detectors would be required. 13 references, 5 figures

  5. The Evolution of Design Requirements in the Trajectory of Artificiality: A Research Agenda

    Science.gov (United States)

    Reymen, Isabelle; Romme, Georges

    Managing design requirements of complex socio-technical designs in heterogeneous and rapidly-changing environments demands new approaches. In this chapter we use the framework described by Krippendorff [1] to describe the evolution of requirements thinking and subsequently develop a research agenda. Krippendorff’s trajectory of artificiality shows an increasing dematerialization and human-centeredness of artifacts. He distinguishes six kinds of artifacts, namely material products; goods, services, and identities; interfaces; multi-user systems and networks; projects; and finally, discourses. Based on a review of the design literature, involving two major design journals, we find that the design of socio-technical systems currently tends to be situated on the level of multi-user systems and networks. Projects and discourses hardly get any attention in requirements thinking. We therefore develop an agenda for future research directed toward advancing requirements thinking at the level of projects and discourses as artifacts of design.

  6. Drosophila photoreceptor axon guidance and targeting requires the dreadlocks SH2/SH3 adapter protein.

    Science.gov (United States)

    Garrity, P A; Rao, Y; Salecker, I; McGlade, J; Pawson, T; Zipursky, S L

    1996-05-31

    Mutations in the Drosophila gene dreadlocks (dock) disrupt photoreceptor cell (R cell) axon guidance and targeting. Genetic mosaic analysis and cell-type-specific expression of dock transgenes demonstrate dock is required in R cells for proper innervation. Dock protein contains one SH2 and three SH3 domains, implicating it in tyrosine kinase signaling, and is highly related to the human proto-oncogene Nck. Dock expression is detected in R cell growth cones in the target region. We propose Dock transmits signals in the growth cone in response to guidance and targeting cues. These findings provide an important step for dissection of signaling pathways regulating growth cone motility.

  7. Flexible weapons architecture design

    Science.gov (United States)

    Pyant, William C., III

    Present day air-delivered weapons are of a closed architecture, with little to no ability to tailor the weapon for the individual engagement. The closed architectures require weaponeers to make the target fit the weapon instead of fitting the individual weapons to a target. The concept of a flexible weapons aims to modularize weapons design using an open architecture shell into which different modules are inserted to achieve the desired target fractional damage while reducing cost and civilian casualties. This thesis shows that the architecture design factors of damage mechanism, fusing, weapons weight, guidance, and propulsion are significant in enhancing weapon performance objectives, and would benefit from modularization. Additionally, this thesis constructs an algorithm that can be used to design a weapon set for a particular target class based on these modular components.

  8. An integrated in silico approach to design specific inhibitors targeting human poly(a-specific ribonuclease.

    Directory of Open Access Journals (Sweden)

    Dimitrios Vlachakis

    Full Text Available Poly(A-specific ribonuclease (PARN is an exoribonuclease/deadenylase that degrades 3'-end poly(A tails in almost all eukaryotic organisms. Much of the biochemical and structural information on PARN comes from the human enzyme. However, the existence of PARN all along the eukaryotic evolutionary ladder requires further and thorough investigation. Although the complete structure of the full-length human PARN, as well as several aspects of the catalytic mechanism still remain elusive, many previous studies indicate that PARN can be used as potent and promising anti-cancer target. In the present study, we attempt to complement the existing structural information on PARN with in-depth bioinformatics analyses, in order to get a hologram of the molecular evolution of PARNs active site. In an effort to draw an outline, which allows specific drug design targeting PARN, an unequivocally specific platform was designed for the development of selective modulators focusing on the unique structural and catalytic features of the enzyme. Extensive phylogenetic analysis based on all the publicly available genomes indicated a broad distribution for PARN across eukaryotic species and revealed structurally important amino acids which could be assigned as potentially strong contributors to the regulation of the catalytic mechanism of PARN. Based on the above, we propose a comprehensive in silico model for the PARN's catalytic mechanism and moreover, we developed a 3D pharmacophore model, which was subsequently used for the introduction of DNP-poly(A amphipathic substrate analog as a potential inhibitor of PARN. Indeed, biochemical analysis revealed that DNP-poly(A inhibits PARN competitively. Our approach provides an efficient integrated platform for the rational design of pharmacophore models as well as novel modulators of PARN with therapeutic potential.

  9. Computation-based virtual screening for designing novel antimalarial drugs by targeting falcipain-III: a structure-based drug designing approach.

    Science.gov (United States)

    Kesharwani, Rajesh Kumar; Singh, Durg Vijay; Misra, Krishna

    2013-01-01

    Cysteine proteases (falcipains), a papain-family of enzymes of Plasmodium falciparum, are responsible for haemoglobin degradation and thus necessary for its survival during asexual life cycle phase inside the human red blood cells while remaining non-functional for the human body. Therefore, these can act as potential targets for designing antimalarial drugs. The P. falciparum cysteine proteases, falcipain-II and falcipain- III are the enzymes which initiate the haemoglobin degradation, therefore, have been selected as targets. In the present study, we have designed new leupeptin analogues and subjected to virtual screening using Glide at the active site cavity of falcipain-II and falcipain-III to select the best docked analogues on the basis of Glide score and also compare with the result of AutoDock. The proposed analogues can be synthesized and tested in vivo as future potent antimalarial drugs. Protein falcipain-II and falcipain-III together with bounds inhibitors epoxysuccinate E64 (E64) and leupeptin respectively were retrieved from protein data bank (PDB) and latter leupeptin was used as lead molecule to design new analogues by using Ligbuilder software and refined the molecules on the basis of Lipinski rule of five and fitness score parameters. All the designed leupeptin analogues were screened via docking simulation at the active site cavity of falcipain-II and falcipain-III by using Glide software and AutoDock. The 104 new leupeptin-based antimalarial ligands were designed using structure-based drug designing approach with the help of Ligbuilder and subjected for virtual screening via docking simulation method against falcipain-II and falcipain-III receptor proteins. The Glide docking results suggest that the ligands namely result_037 shows good binding and other two, result_044 and result_042 show nearly similar binding than naturally occurring PDB bound ligand E64 against falcipain-II and in case of falcipain-III, 15 designed leupeptin analogues having

  10. In Silico Design and Experimental Validation of siRNAs Targeting Conserved Regions of Multiple Hepatitis C Virus Genotypes.

    Directory of Open Access Journals (Sweden)

    Mahmoud ElHefnawi

    Full Text Available RNA interference (RNAi is a post-transcriptional gene silencing mechanism that mediates the sequence-specific degradation of targeted RNA and thus provides a tremendous opportunity for development of oligonucleotide-based drugs. Here, we report on the design and validation of small interfering RNAs (siRNAs targeting highly conserved regions of the hepatitis C virus (HCV genome. To aim for therapeutic applications by optimizing the RNAi efficacy and reducing potential side effects, we considered different factors such as target RNA variations, thermodynamics and accessibility of the siRNA and target RNA, and off-target effects. This aim was achieved using an in silico design and selection protocol complemented by an automated MysiRNA-Designer pipeline. The protocol included the design and filtration of siRNAs targeting highly conserved and accessible regions within the HCV internal ribosome entry site, and adjacent core sequences of the viral genome with high-ranking efficacy scores. Off-target analysis excluded siRNAs with potential binding to human mRNAs. Under this strict selection process, two siRNAs (HCV353 and HCV258 were selected based on their predicted high specificity and potency. These siRNAs were tested for antiviral efficacy in HCV genotype 1 and 2 replicon cell lines. Both in silico-designed siRNAs efficiently inhibited HCV RNA replication, even at low concentrations and for short exposure times (24h; they also exceeded the antiviral potencies of reference siRNAs targeting HCV. Furthermore, HCV353 and HCV258 siRNAs also inhibited replication of patient-derived HCV genotype 4 isolates in infected Huh-7 cells. Prolonged treatment of HCV replicon cells with HCV353 did not result in the appearance of escape mutant viruses. Taken together, these results reveal the accuracy and strength of our integrated siRNA design and selection protocols. These protocols could be used to design highly potent and specific RNAi-based therapeutic

  11. Heavy ion fusion targets; issues for fast ignition

    International Nuclear Information System (INIS)

    Bangerter, Roger O.

    2014-01-01

    During the last 36 years researchers have suggested and evaluated a large number of target designs for heavy ion inertial fusion. The different target designs can be classified according to their mode of ignition, their method of implosion, and their size. Ignition modes include hot-spot ignition and fast ignition. Methods of implosion include direct drive and indirect drive. Historically there has been significant work on indirectly driven targets with hot-spot ignition. Recently there has been increasing interest in directly driven targets with ion driven fast ignition. In principle, fast ignition might lead to improved target performance. On the other hand, fast ignition imposes stringent requirements on accelerators and beam physics. Furthermore, fast ignition magnifies the importance of a number of traditional target physics issues associated with ion beam energy deposition and fuel preheat. This paper will discuss the advantages and disadvantages of the various classes of targets. It will also discuss some issues that must be resolved to assess the feasibility of ion fast ignition

  12. Conceptual design of the handling and storage system of the spent target vessel for neutron scattering facility 2

    International Nuclear Information System (INIS)

    Adachi, Junichi; Kaminaga, Masanori; Sasaki, Shinobu; Haga, Katsuhiro; Aso, Tomokazu; Kinoshita, Hidetaka; Hino, Ryutaro

    2002-01-01

    In designing the neutron scattering facility, a spent target vessel should be replaced with remote handling devices in order to protect radioactive exposure, since it would be highly activated through the high energy neutron irradiation caused by the spallation reaction between mercury of the target material and the MW-class proton beam. In the storage of the spent target vessel, it is necessary to consider decay heat of the target vessel and mercury contamination caused by vaporization of the residual mercury in the vessel. A conceptual design has been carried out to establish basic concept and to clarify its specification of main equipments on handling and storage systems for the spent target vessel. This report presents the basic concept and a system plot plan based on latest design works of remote handling devices such as a spent target vessel storage cask and a target vessel exchange trolley, which aim at reasonability and simplification. In addition, storage systems for the spent moderator vessel, the spent proton beam window and the spent reflector vessel are also investigated based on the plot plan. (author)

  13. Heterogeneity in head and neck IMRT target design and clinical practice

    International Nuclear Information System (INIS)

    Hong, Theodore S.; Tomé, Wolfgang A.; Harari, Paul M.

    2012-01-01

    Purpose: To assess patterns of H and N IMRT practice with particular emphasis on elective target delineation. Materials and methods: Twenty institutions with established H and N IMRT expertise were solicited to design clinical target volumes for the identical H and N cancer case. To limit contouring variability, a primary tonsil GTV and ipsilateral level II node were pre-contoured. Participants were asked to accept this GTV, and contour their recommended CTV and PTV. Dose prescriptions, contouring time, and recommendations regarding chemotherapy were solicited. Results: All 20 institutions responded. Remarkable heterogeneity in H and N IMRT design and practice was identified. Seventeen of 20 centers recommended treatment of bilateral necks whereas 3/20 recommended treatment of the ipsilateral neck only. The average CTV volume was 250 cm 3 (range 37–676 cm 3 ). Although there was high concordance in coverage of ipsilateral neck levels II and III, substantial variation was identified for levels I, V, and the contralateral neck. Average CTV expansion was 4.1 mm (range 0–15 mm). Eight of 20 centers recommended chemotherapy (cisplatin), whereas 12/20 recommended radiation alone. Responders prescribed on average 69 and 68 Gy to the tumor and metastatic node GTV, respectively. Average H and N target volume contouring time was 102.5 min (range 60–210 min). Conclusion: This study identifies substantial heterogeneity in H and N IMRT target definition, prescription, neck treatment, and use of chemotherapy among practitioners with established H and N IMRT expertise. These data suggest that continued efforts to standardize and simplify the H and N IMRT process are desirable for the safe and effective global advancement of H and N IMRT practice.

  14. National Ignition Facility subsystem design requirements supervisory control software SSDR 1.5.2

    International Nuclear Information System (INIS)

    Woodruff, J.; VanArsdall, P.; Bliss, E.

    1996-01-01

    This System Design Requirement document establishes the performance, design, development, and test requirements for the Supervisory Control Software, WBS 1.5.2, which is part of the NIF Integrated Computer Control System (ICCS). This document responds directly to the requirements detailed in ICCS (WBS 1-5)

  15. Functional requirements for design of the Space Ultrareliable Modular Computer (SUMC) system simulator

    Science.gov (United States)

    Curran, R. T.; Hornfeck, W. A.

    1972-01-01

    The functional requirements for the design of an interpretive simulator for the space ultrareliable modular computer (SUMC) are presented. A review of applicable existing computer simulations is included along with constraints on the SUMC simulator functional design. Input requirements, output requirements, and language requirements for the simulator are discussed in terms of a SUMC configuration which may vary according to the application.

  16. Ex-vessel core catcher design requirements and preliminary concepts evaluation

    International Nuclear Information System (INIS)

    Friedland, A.J.; Tilbrook, R.W.

    1974-01-01

    As part of the overall study of the consequences of a hypothetical failure to scram following loss of pumping power, design requirements and preliminary concepts evaluation of an ex-vessel core catcher (EVCC) were performed. EVCC is the term applied to a class of devices whose primary objective is to provide a stable subcritical and coolable configuration within containment following a postulated accident in which it is assumed that core debris has penetrated the Reactor Vessel and Guard Vessel. Under these assumed conditions a set of functional requirements were developed for an EVCC and several concepts were evaluated. The studies were specifically directed toward the FFTF design considering the restraints imposed by the physical design and construction of the FFTF plant

  17. Preliminary shielding analysis in support of the CSNS target station shutter neutron beam stop design

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bin; CHEN Yi-Xue; WANG Wei-Jin; YANG Shou-Hai; WU Jun; YIN Wen; LIANG Tian-Jiao; JIA Xue-Jun

    2011-01-01

    The construction of China Spallation Neutron Source (CSNS) has been initiated in Dongguan,Guangdong, China.Thus a detailed radiation transport analysis of the shutter neutron beam stop is of vital importance. The analyses are performed using the coupled Monte Carlo and multi-dimensional discrete ordinates method. The target of calculations is to optimize the neutron beamline shielding design to guarantee personal safety and minimize cost. Successful elimination of the primary ray effects via the two-dimensional uncollided flux and the first collision source methodology is also illustrated. Two-dimensional dose distribution is calculated. The dose at the end of the neutron beam line is less than 2.5μSv/h. The models have ensured that the doses received by the hall staff members are below the standard limit required.

  18. Exploratory investigation of the HIPPO gas-jet target fluid dynamic properties

    Energy Technology Data Exchange (ETDEWEB)

    Meisel, Zach, E-mail: zmeisel@nd.edu [Department of Physics, Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Shi, Ke; Jemcov, Aleksandar [Hessert Laboratory for Aerospace Research, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 (United States); Couder, Manoel [Department of Physics, Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2016-08-21

    In order to optimize the performance of gas-jet targets for future nuclear reaction measurements, a detailed understanding of the dependence of the gas-jet properties on experiment design parameters is required. Common methods of gas-jet characterization rely on measuring the effective thickness using nuclear elastic scattering and energy loss techniques; however, these tests are time intensive and limit the range of design modifications which can be explored to improve the properties of the jet as a nuclear reaction target. Thus, a more rapid jet-characterization method is desired. We performed the first steps towards characterizing the gas-jet density distribution of the HIPPO gas-jet target at the University of Notre Dame's Nuclear Science Laboratory by reproducing results from {sup 20}Ne(α,α){sup 20}Ne elastic scattering measurements with computational fluid dynamics (CFD) simulations performed with the state-of-the-art CFD software ANSYS Fluent. We find a strong sensitivity to experimental design parameters of the gas-jet target, such as the jet nozzle geometry and ambient pressure of the target chamber. We argue that improved predictive power will require moving to three-dimensional simulations and additional benchmarking with experimental data.

  19. A fixed target facility at the SSC

    International Nuclear Information System (INIS)

    Loken, S.; Morfin, J.G.

    1984-01-01

    The question of whether a facility for fixed target physics should be provided at the SSC must be answered before the final technical design of the SSC can be completed, particularly if the eventual form of extraction would influence the magnet design. To this end, an enthusiastic group of experimentalists, theoreticians and accelerator specialists have studied this point. The accelerator physics issues were addressed by a group whose report is contained in these proceedings. The physics addressable by fixed target was considered by many of the Physics area working groups and in particular by the Structure Function Group. This report is the summary of the working group which considered various SSC fixed target experiments and determined which types of beams and detectors would be required

  20. Target experimental area and systems of the U.S. National Ignition Facility

    International Nuclear Information System (INIS)

    Tobin, M; Van Wonterghem, B; MacGowan, B J; Hibbard, W; Kalantar, D; Lee, F D; Pittenger, L; Wong, K

    1999-01-01

    One of the major goals of the US National Ignition Facility is the demonstration of laser driven fusion ignition and burn of targets by inertial confinement and provide capability for a wide variety of high energy density physics experiments. The NIF target area houses the optical systems required to focus the 192 beamlets to a target precisely positioned at the center of the 10 meter diameter, 10-cm thick aluminum target chamber. The chamber serves as mounting surface for the 48 final optics assemblies, the target alignment and positioning equipment, and the target diagnostics. The internal surfaces of the chamber are protected by louvered steel beam dumps. The target area also provides the necessary shielding against target emission and environmental protection equipment. Despite its complexity, the design provides the flexibility to accommodate the needs of the various NIF user groups, such as direct and indirect drive irradiation geometries, modular final optics design, capability to handle cryogenic targets, and easily re-configurable diagnostic instruments. Efficient target area operations are ensured by using line-replaceable designs for systems requiring frequent inspection, maintenance and reconfiguration, such as the final optics, debris shields, phase plates and the diagnostic instruments. A precision diagnostic instrument manipulator (DIMS) allows fast removal and precise repositioning of diagnostic instruments. In addition the authors describe several activities to enhance the target chamber availability, such as the target debris mitigation, the use of standard experimental configurations and the development of smart shot operations planning tools

  1. Targeting an efficient target-to-target interval for P300 speller brain–computer interfaces

    Science.gov (United States)

    Sellers, Eric W.; Wang, Xingyu

    2013-01-01

    Longer target-to-target intervals (TTI) produce greater P300 event-related potential amplitude, which can increase brain–computer interface (BCI) classification accuracy and decrease the number of flashes needed for accurate character classification. However, longer TTIs requires more time for each trial, which will decrease the information transfer rate of BCI. In this paper, a P300 BCI using a 7 × 12 matrix explored new flash patterns (16-, 18- and 21-flash pattern) with different TTIs to assess the effects of TTI on P300 BCI performance. The new flash patterns were designed to minimize TTI, decrease repetition blindness, and examine the temporal relationship between each flash of a given stimulus by placing a minimum of one (16-flash pattern), two (18-flash pattern), or three (21-flash pattern) non-target flashes between each target flashes. Online results showed that the 16-flash pattern yielded the lowest classification accuracy among the three patterns. The results also showed that the 18-flash pattern provides a significantly higher information transfer rate (ITR) than the 21-flash pattern; both patterns provide high ITR and high accuracy for all subjects. PMID:22350331

  2. System design and as-built MCNP model comparison for the Lujan Center target moderator reflector system

    International Nuclear Information System (INIS)

    Muhrer, G.; Ferguson, P.D.; Russell, G.J.; Pitcher, E.J.

    2000-01-01

    During the design of the Manuel Lujan, Jr., Neutron Scattering Center target, a simplified Monte Carlo model was used to estimate target system performance and to aid engineers as decisions were made regarding the construction of the target system. Although the simplified model ideally would perfectly reflect the as-built system performance, assumptions were made in the model during the design process that may result in deviations between the model predictions and the as-built system performance. Now that the Lujan Center target system has been completed, a more detailed, as-built, model of the target system has been completed. The purpose of this work is to investigate differences between the predicted target system performance of the simplified model and the as-built model from the standpoint of time-averaged moderator brightness. Calculated discrepancies between the two models have been isolated to a few key issues. Figure 1 shows MCNP geometric plots of the simplified and as-built models. Major differences between these two models include details in the moderator designs (plena) and piping, full versus partial moderator canisters (only in the direction of the extracted neutron beam for the simplified model), and reflector details including cooling pipes and engineering tolerance gaps. In addition, Fig. 1 demonstrates that the detailed model includes shielding and additional material beyond that which was modeled by the original simplified model

  3. Lujan Center Mark-IV Target Neutronics Design Internal Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, Paul W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gallmeier, Franz [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guber, Klaus [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2018-02-26

    The 1L Target Moderator Reflector System (TMRS) at the Lujan Center will need to be replaced before the CY 2020 operating cycle. A Physics Division design team investigated options for improving the overall target performance for nuclear science research with minimal reduction in performance for materials science. This review concluded that devoting an optimized arrangement of the Lujan TMRS upper tier to nuclear science and using the lower tier for materials science can achieve those goals. This would open the opportunity for enhanced nuclear science research in an important neutron energy range for NNSA. There will be no other facility in the US that will compete in the keV energy range provided flight paths and instrumentation are developed to take advantage of the neutron flux and resolution.

  4. National Ignition Facility sub-system design requirements computer system SSDR 1.5.1

    International Nuclear Information System (INIS)

    Spann, J.; VanArsdall, P.; Bliss, E.

    1996-01-01

    This System Design Requirement document establishes the performance, design, development and test requirements for the Computer System, WBS 1.5.1 which is part of the NIF Integrated Computer Control System (ICCS). This document responds directly to the requirements detailed in ICCS (WBS 1.5) which is the document directly above

  5. Physics design requirements for the Tokamak Physics Experiment (TPX)

    International Nuclear Information System (INIS)

    Neilson, G.H.; Goldston, R.J.; Jardin, S.C.; Reiersen, W.T.; Porkolab, M.; Ulrickson, M.

    1993-01-01

    The design of TPX is driven by physics requirements that follow from its mission. The tokamak and heating systems provide the performance and profile controls needed to study advanced steady state tokamak operating modes. The magnetic control systems provide substantial flexibility for the study of regimes with high beta and bootstrap current. The divertor is designed for high steady state power and particle exhaust

  6. Advanced Neutron Source: Plant Design Requirements

    International Nuclear Information System (INIS)

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS

  7. Requirements for the data transfer during the examination of design documentation

    Directory of Open Access Journals (Sweden)

    Karakozova Irina

    2017-01-01

    Full Text Available When you transfer the design documents to the examination office, number of incompatible electronic documents increases dramatically. The article discusses the way to solve the problem of transferring of the text and graphic data of design documentation for state and non-state expertise, as well as verification of estimates and requirement management. The methods for the recognition of the system elements and requirements for the transferring of text and graphic design documents are provided. The need to use the classification and coding of various elements of information systems (structures, objects, resources, requirements, contracts, etc. in data transferring systems is indicated separately. The authors have developed a sequence of document processing and transmission of data during the examination, and propose a language for describing the construction of the facility, taking into account the classification criteria of the structures and construction works.

  8. Computer-aided Molecular Design of Compounds Targeting Histone Modifying Enzymes

    Science.gov (United States)

    Andreoli, Federico; Del Rio, Alberto

    2015-01-01

    Growing evidences show that epigenetic mechanisms play crucial roles in the genesis and progression of many physiopathological processes. As a result, research in epigenetic grew at a fast pace in the last decade. In particular, the study of histone post-translational modifications encountered an extraordinary progression and many modifications have been characterized and associated to fundamental biological processes and pathological conditions. Histone modifications are the catalytic result of a large set of enzyme families that operate covalent modifications on specific residues at the histone tails. Taken together, these modifications elicit a complex and concerted processing that greatly contribute to the chromatin remodeling and may drive different pathological conditions, especially cancer. For this reason, several epigenetic targets are currently under validation for drug discovery purposes and different academic and industrial programs have been already launched to produce the first pre-clinical and clinical outcomes. In this scenario, computer-aided molecular design techniques are offering important tools, mainly as a consequence of the increasing structural information available for these targets. In this mini-review we will briefly discuss the most common types of known histone modifications and the corresponding operating enzymes by emphasizing the computer-aided molecular design approaches that can be of use to speed-up the efforts to generate new pharmaceutically relevant compounds. PMID:26082827

  9. Intercultural design of man-machine systems: Machine design for the Chinese market; Interkulturelles Design fuer Mensch-Maschine-Systeme: Maschinendesign fuer den chinesischen Markt

    Energy Technology Data Exchange (ETDEWEB)

    Roese, K.; Zuehlke, D.; Liu, L. [Kaiserslautern Univ. (Germany)

    2002-07-01

    The ongoing globalization trend has imposed great needs on culture-specific machine design. For the expected business success on the foreign market the target user's special requirements should be well addressed. This paper proposes an effective approach to elicit user's culture-specific requirements on different machine design issues, which bases on the analysis of cultural environment and mentality. The approach was practically implemented in one project to elicit the user's requirements on machine design for the Chinese market. The investigation methods are briefly described and some most important culture specific design features for Mainland China are summarized. (orig.)

  10. Facility target insert shielding assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mocko, Michal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-06

    Main objective of this report is to assess the basic shielding requirements for the vertical target insert and retrieval port. We used the baseline design for the vertical target insert in our calculations. The insert sits in the 12”-diameter cylindrical shaft extending from the service alley in the top floor of the facility all the way down to the target location. The target retrieval mechanism is a long rod with the target assembly attached and running the entire length of the vertical shaft. The insert also houses the helium cooling supply and return lines each with 2” diameter. In the present study we focused on calculating the neutron and photon dose rate fields on top of the target insert/retrieval mechanism in the service alley. Additionally, we studied a few prototypical configurations of the shielding layers in the vertical insert as well as on the top.

  11. “天宫一号”目标飞行器信息管理策略%Design of information management strategy for Tiangong-1 target spacecraft

    Institute of Scientific and Technical Information of China (English)

    柏林厚; 李智勇; 南洪涛; 程伟

    2013-01-01

    “天宫一号”目标飞行器信息系统作为目标飞行器的重要功能系统,主要完成目标飞行器内部信息管理以及与地面和载人飞船的通信管理,确保目标飞行器的健康和稳定运行,支持目标飞行器各项任务的完成.文章对“天宫一号”目标飞行器信息系统的信息管理策略进行了概述,包括信息管理需求、设计原则、系统组成、主要技术特点以及可靠性安全性设计.“天宫一号”目标飞行器信息系统的信息管理策略经过首次无人和有人交会对接任务验证,满足任务要求,为后续空间站信息系统详细设计奠定了基础.%As the key functional system of the Tiangong-1 target spacecraft, the information management system is mainly responsible for the management of the internal information and the communication with the earth station and the Shenzhou spaceship, to ensure the target spacecraft's stable working and to support the accomplishment of the mission. This paper reviews the design of this target spacecraft information management strategy, including the information requirements, the design principle, the system configuration, the technical characteristics, and the reliability and safety design. With the accomplishment of China's first unmanned and manned rendezvous and docking mission, the information management strategy is demonstrated to fulfill the requirements. The information management system design of the Tiangong-1 target spacecraft lays the foundation for the specific design of China's future space station.

  12. Design improvement of the target elements of Wendelstein 7-X divertor

    International Nuclear Information System (INIS)

    Boscary, J.; Peacock, A.; Friedrich, T.; Greuner, H.; Böswirth, B.; Tittes, H.; Schulmeyer, W.; Hurd, F.

    2012-01-01

    Highlights: ► Improvement of the cooling structure design. ► Improvement of the CFC tile arrangement at the element end. ► Design and fabrication validated with high heat flux testing. ► Selected solution removes stationary heat load of 5 MW/m 2 and 2 MW/m 2 on the top and on the side facing the pumping gap of the element, respectively. - Abstract: The actively cooled high-heat flux divertor of the Wendelstein 7-X stellarator consists of individual target elements made of a water-cooled CuCrZr copper alloy heat sink armored with CFC tiles. The so-called “bi-layer” technology developed in collaboration with the company Plansee for the bonding of the tiles onto the heat sink has reliably demonstrated the removal of the specified heat load of 10 MW/m 2 in the central area of the divertor. However, due to geometrical constraints, the loading performance at the ends of the elements is reduced compared to the central part. Design modifications compatible with industrial processes have been made to improve the cooling capabilities at this location. These changes have been validated during test campaigns of full-scale prototypes carried out in the neutral beam test facility GLADIS. The tested solution can remove reliably the stationary heat load of 5 MW/m 2 and 2 MW/m 2 on the top and on the side of the element, respectively. The results of the testing allowed the release of the design and fabrication processes for the next manufacturing phase of the target elements.

  13. Test design requirements: Canister-scale heater test

    International Nuclear Information System (INIS)

    Schauer, M.I.; Craig, P.A.; Stickney, R.G.

    1986-03-01

    This document establishes the Test Design Requirements for the design of a canister scale heater test to be performed in the Exploratory Shaft test facility. The purpose of the test is to obtain thermomechanical rock mass response data for use in validation of the numerical models. The canister scale heater test is a full scale simulation of a high-level nuclear waste container in a prototypic emplacement borehole. Electric heaters are used to simulate the heat loads expected in an actual waste container. This document presents an overview of the test including objectives and justification for the test. A description of the test as it is presently envisioned is included. Discussions on Quality Assurance and Safety are also included in the document. 12 refs., 1 fig

  14. Preconceptual engineering design for the APT 3He Target/Blanket concept

    International Nuclear Information System (INIS)

    Mensink, D.L.

    1994-01-01

    A preconceptual engineering design has been developed for the 3 He Target/Blanket (T/B) System for the Accelerator Production of Tritium Project. This concept uses an array of pressure tubes containing tungsten rods for the neutron spallation source and 3 He gas contained in a metal tank and blanket tubes as the tritium production material. The engineering design is based on a physics model optimized for efficient tritium production. Principle engineering consideration were: provisions for cooling all materials including the 3 He gas; containment of the gas and radionuclides; remote handling; material compatibility; minimization of 3 He, D 2 O, and activated waste; modularity; and manufacturability. The design provides a basis for estimating the cost to implement the system

  15. An Analysis of BIM Web Service Requirements and Design to Support Energy Efficient Building Lifecycle

    Directory of Open Access Journals (Sweden)

    Yufei Jiang

    2016-04-01

    Full Text Available Energy Efficient Building (EEB design, construction, and operations require the development and sharing of building information among different individuals, organizations, and computer applications. The Representational State Transfer (RESTful Building Information Modeling (BIM web service is a solution to enable an effective exchange of data. This paper presents an investigation into the core RESTful web service requirements needed to effectively support the EEB project lifecycle. The requirements include information exchange requirements, distributed collaboration requirements, internal data storage requirements, and partial model query requirements. We also propose a RESTful web service design model on different abstraction layers to enhance the BIM lifecycle in energy efficient building design. We have implemented a RESTful Application Program Interface (API prototype on a mock BIMserver to demonstrate our idea. We evaluate our design by conducting a user study based on the Technology Acceptance Model (TAM. The results show that our design can enhance the efficiency of data exchange in EEB design scenarios.

  16. Requirements and design reference mission for the WFIRST/AFTA coronagraph instrument

    Science.gov (United States)

    Demers, Richard T.; Dekens, Frank; Calvet, Rob; Chang, Zensheu; Effinger, Robert; Ek, Eric; Hovland, Larry; Jones, Laura; Loc, Anthony; Nemati, Bijan; Noecker, Charley; Neville, Timothy; Pham, Hung; Rud, Mike; Tang, Hong; Villalvazo, Juan

    2015-09-01

    The WFIRST-AFTA coronagraph instrument takes advantage of AFTAs 2.4-meter aperture to provide novel exoplanet imaging science at approximately the same instrument cost as an Explorer mission. The AFTA coronagraph also matures direct imaging technologies to high TRL for an Exo-Earth Imager in the next decade. The coronagraph Design Reference Mission (DRM) optical design is based on the highly successful High Contrast Imaging Testbed (HCIT), with modifications to accommodate the AFTA telescope design, service-ability, volume constraints, and the addition of an Integral Field Spectrograph (IFS). In order to optimally satisfy the three science objectives of planet imaging, planet spectral characterization and dust debris imaging, the coronagraph is designed to operate in two different modes: Hybrid Lyot Coronagraph or Shaped Pupil Coronagraph. Active mechanisms change pupil masks, focal plane masks, Lyot masks, and bandpass filters to shift between modes. A single optical beam train can thus operate alternatively as two different coronagraph architectures. Structural Thermal Optical Performance (STOP) analysis predicts the instrument contrast with the Low Order Wave Front Control loop closed. The STOP analysis was also used to verify that the optical/structural/thermal design provides the extreme stability required for planet characterization in the presence of thermal disturbances expected in a typical observing scenario. This paper describes the instrument design and the flow down from science requirements to high level engineering requirements.

  17. Requirements and Design Reference Mission for the WFIRST-AFTA Coronagraph Instrument

    Science.gov (United States)

    Demers, Richard T.; Dekens, Frank; Calvet, Rob; Chang, Zensheu; Effinger, Robert; Ek, Eric; Hovland, Larry; Jones, Laura; Loc, Anthony; Nemati, Bijan; hide

    2015-01-01

    The WFIRST-AFTA coronagraph instrument take s advantage of AFTA s 2.4 -meter aperture to provide novel exoplanet imaging science at approximately the same instrument cost as an Explorer mission. The AFTA coronagraph also matures direct imaging technologies to high TRL for an Exo-Earth Imager in the next decade. The coronagraph Design Reference Mission (DRM) optical design is based on the highly successful High Contrast Imaging Testbed (HCIT), with modifications to accommodate the AFTA telescope design, service-ability, volume constraints, and the addition of an Integral Field Spectrograph (IFS). In order to optimally satisfy the three science objectives of planet imaging, planet spectral characterization and dust debris imaging, the coronagraph is designed to operate in two different modes : Hybrid Lyot Coronagraph or Shaped Pupil Coronagraph. Active mechanisms change pupil masks, focal plane masks, yot masks, and bandpass filters to shift between modes. A single optical beam train can thus operate alternatively as two different coronagraph architecture s. Structural Thermal Optical Performance (STOP) analysis predict s the instrument contrast with the Low Order Wave Front Control loop closed. The STOP analysis was also used to verify that the optical/structural/thermal design provides the extreme stability required for planet characterization in the presence of thermal disturbances expected in a typical observing scenario. This paper describes the instrument design and the flow down from science requirements to high level engineering requirements.

  18. An Updated Point Design for Heavy Ion Fusion

    International Nuclear Information System (INIS)

    Yu, S.S.; Meier, W.R.; Abbott, R.B.; Barnard, J.J.; Brown, T.; Callahan, D.A.; Heitzenroeder, P.; Latkowski, J.F.; Logan, B.G.; Pemberton, S.J.; Peterson, P.F.; Rose, D.V.; Sabbi, G.L.; Sharp, W.M.; Welch, D.R.

    2002-01-01

    An updated, self-consistent point design for a heavy ion fusion (HIF) power plant based on an induction linac driver, indirect-drive targets, and a thick liquid wall chamber has been completed. Conservative parameters were selected to allow each design area to meet its functional requirements in a robust manner, and thus this design is referred to as the Robust Point Design (RPD-2002). This paper provides a top-level summary of the major characteristics and design parameters for the target, driver, final focus magnet layout and shielding, chamber, beam propagation to the target, and overall power plant

  19. Examination of CRISPR/Cas9 design tools and the effect of target site accessibility on Cas9 activity.

    Science.gov (United States)

    Lee, Ciaran M; Davis, Timothy H; Bao, Gang

    2018-04-01

    What is the topic of this review? In this review, we analyse the performance of recently described tools for CRISPR/Cas9 guide RNA design, in particular, design tools that predict CRISPR/Cas9 activity. What advances does it highlight? Recently, many tools designed to predict CRISPR/Cas9 activity have been reported. However, the majority of these tools lack experimental validation. Our analyses indicate that these tools have poor predictive power. Our preliminary results suggest that target site accessibility should be considered in order to develop better guide RNA design tools with improved predictive power. The recent adaptation of the clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system for targeted genome engineering has led to its widespread application in many fields worldwide. In order to gain a better understanding of the design rules of CRISPR/Cas9 systems, several groups have carried out large library-based screens leading to some insight into sequence preferences among highly active target sites. To facilitate CRISPR/Cas9 design, these studies have spawned a plethora of guide RNA (gRNA) design tools with algorithms based solely on direct or indirect sequence features. Here, we demonstrate that the predictive power of these tools is poor, suggesting that sequence features alone cannot accurately inform the cutting efficiency of a particular CRISPR/Cas9 gRNA design. Furthermore, we demonstrate that DNA target site accessibility influences the activity of CRISPR/Cas9. With further optimization, we hypothesize that it will be possible to increase the predictive power of gRNA design tools by including both sequence and target site accessibility metrics. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  20. Design and fabrication of foam-insulated cryogenic target for wet-wall laser fusion reactor

    International Nuclear Information System (INIS)

    Norimatsu, T.; Takeda, T.; Nagai, K.; Mima, K.; Yamanaka, T.

    2003-01-01

    A foam insulated cryogenic target was proposed for use in a future laser fusion reactor with a wet wall. This scheme can protect the solid DT layer from melting due to surface heating by adsorption of metal vapor without significant reduction in the target gain. Design spaces for the injection velocity and the acceptable vapor pressure in the reactor are discussed. Basic technology to fabricate such structure was demonstrated by emulsion process. Concept of a cryogenic fast-ignition target with a gold guiding cone was proposed together with direct injection filling of liquid DT. (author)

  1. Design and Certification of Targets for Drop Tests at the NTRC Packaging Research Facility

    International Nuclear Information System (INIS)

    Ludwig, S.B.

    2003-01-01

    This report provides documentation of the design and certification of drop pad (targets) at the National Transportation Research Center (NTRC) Packaging Research Facility(PRF). Based on the evaluation performed, it has been demonstrated that the small (interior) drop pad (target) meets the regulatory definition of a flat, essentially unyielding, horizontal surface for packages weighing up to 3,150 lb (1,432 kg). The large (exterior) drop pad (target) meets the regulatory definition of a flat, essentially unyielding, horizontal surface for packages weighing up to 28,184 lb (12,811 kg)

  2. Data Requirements and the Basis for Designing Health Information Kiosks.

    Science.gov (United States)

    Afzali, Mina; Ahmadi, Maryam; Mahmoudvand, Zahra

    2017-09-01

    Health kiosks are an innovative and cost-effective solution that organizations can easily implement to help educate people. To determine the data requirements and basis for designing health information kiosks as a new technology to maintain the health of society. By reviewing the literature, a list of information requirements was provided in 4 sections (demographic information, general information, diagnostic information and medical history), and questions related to the objectives, data elements, stakeholders, requirements, infrastructures and the applications of health information kiosks were provided. In order to determine the content validity of the designed set, the opinions of 2 physicians and 2 specialists in medical informatics were obtained. The test-retest method was used to measure its reliability. Data were analyzed using SPSS software. In the proposed model for Iran, 170 data elements in 6 sections were presented for experts' opinion, which ultimately, on 106 elements, a collective agreement was reached. To provide a model of health information kiosk, creating a standard data set is a critical point. According to a survey conducted on the various literature review studies related to the health information kiosk, the most important components of a health information kiosk include six categories; information needs, data elements, applications, stakeholders, requirements and infrastructure of health information kiosks that need to be considered when designing a health information kiosk.

  3. ASME section XI - design and access requirements for in-service inspection

    International Nuclear Information System (INIS)

    Davis, D.D.

    1982-01-01

    The Owner of a nuclear power plant has the regulatory commitment to perform Section XI in-service inspection throughout the service life of a plant. In anticipation of what will be needed to perform adequately the required examinations and tests, sub-article IWA-1500 of Section XI not only requires that sufficient access be provided to accommodate equipment and inspection personnel but also requires that other provisions be considered such as: component surface preparations, material selections, shielding, removal and storage of hardware, handling equipment, and provisions for repairs and replacements. It is, therefore, the owner's and the architect engineer's responsibility to ensure that proper design and access provisions are incorporated to enable the owner to meet his commitments. Since the architect engineer usually has the prime responsibility for the implementation of design criteria, the owner must ensure that these provisions be considered in each phase of design and construction. The benefits of this can result in shorter outages, more meaningful examinations and tests and less radiation exposure of inspection personnel. This paper will address in detail those topics that affect design and access provisions which need to be considered during the design and construction of a nuclear power plant. (author)

  4. Design study on large-scale mercury loop for engineering test of target of high-intensity proton accelerator

    International Nuclear Information System (INIS)

    Hino, Ryutaro; Haga, Katsuhiro; Aita, Hideki; Sekita, Kenji; Sudo, Yukio; Koiso, Kohji; Kaminaga, Masanori; Takahashi, Hiromichi.

    1997-03-01

    A heavy liquid-metal target has been proposed as a representative target of a 5MW-scale neutron source for a neutron scattering facility coupled with a high-intensity proton accelerator. In the report, about mercury considered to be the best material of the heavy liquid-metal target, its properties needed for the design were formulated, and results of research on mercury treatment and of evaluation of heat removal performance on the basis of generating heat obtained by a numerical calculation of a spallation reaction were presented. From these results, a 1.5MW-scale mercury loop which equals to that for the first stage operation of the neutron science program of JAERI was designed conceptually for obtaining design data of the mercury target, and basic flow diagram of the loop and specifications of components were decided: diameter of pipelines flowing mercury at the velocity below 1m/s, power of an electro-magnet pump and structure of a cooler. Through the design, engineering problems were made clear such as selection and development of mercury-resistant materials and optimization of the loop and components for decreasing mercury inventory. (author)

  5. Modern Prodrug Design for Targeted Oral Drug Delivery

    Directory of Open Access Journals (Sweden)

    Arik Dahan

    2014-10-01

    Full Text Available The molecular information that became available over the past two decades significantly influenced the field of drug design and delivery at large, and the prodrug approach in particular. While the traditional prodrug approach was aimed at altering various physiochemical parameters, e.g., lipophilicity and charge state, the modern approach to prodrug design considers molecular/cellular factors, e.g., membrane influx/efflux transporters and cellular protein expression and distribution. This novel targeted-prodrug approach is aimed to exploit carrier-mediated transport for enhanced intestinal permeability, as well as specific enzymes to promote activation of the prodrug and liberation of the free parent drug. The purpose of this article is to provide a concise overview of this modern prodrug approach, with useful successful examples for its utilization. In the past the prodrug approach used to be viewed as a last option strategy, after all other possible solutions were exhausted; nowadays this is no longer the case, and in fact, the prodrug approach should be considered already in the very earliest development stages. Indeed, the prodrug approach becomes more and more popular and successful. A mechanistic prodrug design that aims to allow intestinal permeability by specific transporters, as well as activation by specific enzymes, may greatly improve the prodrug efficiency, and allow for novel oral treatment options.

  6. User requirements and conceptual design of the ITER Electron Cyclotron Control System

    Energy Technology Data Exchange (ETDEWEB)

    Carannante, Giuseppe, E-mail: Giuseppe.Carannante@F4E.europa.eu [Fusion for Energy, Josep Pla 2, Barcelona 08019 (Spain); Cavinato, Mario [Fusion for Energy, Josep Pla 2, Barcelona 08019 (Spain); Gandini, Franco [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Granucci, Gustavo [Istituto di Fisica del Plasma ENEA-CNR-EURATOM, via Cozzi 53, 20125 Milano (Italy); Henderson, Mark; Purohit, Dharmesh [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Saibene, Gabriella; Sartori, Filippo [Fusion for Energy, Josep Pla 2, Barcelona 08019 (Spain); Sozzi, Carlo [Istituto di Fisica del Plasma ENEA-CNR-EURATOM, via Cozzi 53, 20125 Milano (Italy)

    2015-10-15

    The ITER Electron Cyclotron (EC) plant is a complex system, essential for plasma operation. The system is being designed to supply up to 20 MW of power at 170 GHz; it consists of 24 RF sources (or Gyrotrons) connected by switchable transmission lines to four upper and one equatorial launcher. The complexity of the EC plant requires a Plant Controller, which provides the functional and operational interface with CODAC and the Plasma Control System and coordinates the various Subsystem Control Units, i.e. the local controllers of power supplies, Gyrotrons, transmission lines and launchers. A conceptual design of the Electron Cyclotron Control System (ECCS) was developed, starting from the collection of the user requirements, which have then been organized as a set of operational scenarios exploiting the EC system. The design consists in a thorough functional analysis, including also protection functions, and in the development of a conceptual I&C architecture. The main aim of the work was to identify the physics requirements and to translate them into control system requirements, in order to define the interfaces within the components of the ECCS. The definition of these interfaces is urgent because some of the subsystems are already in an advanced design phase. The present paper describes both the methodology used and the resulting design.

  7. Requirements Identification Towards a Design of Adaptive ICTs for Supporting Bipolar Disorder Treatment in Different Healthcare Contexts

    Directory of Open Access Journals (Sweden)

    Emanuele Torri

    2015-10-01

    Full Text Available This paper presents patient and caregiver perspective on ICTs supporting bipolar disorder management in multinational healthcare provisioning contexts. The envisioned mHealth solutions should adopt general requirements that could be instantiated into different clinical settings. Engagement of users in designing new technologies for mental health is crucial to ensure empowerment and patient-centeredness of services. We performed focus groups to understand user needs, attitudes and experiences towards the supportive ICTs in two target regions where the expected solutions will operate. The survey offered valuable inputs for the construction of the clinical requirements used to produce a trans-national call for tender on mobile health solutions aimed at supporting bipolar disorders treatment among public purchasers in different European countries. The study was part of the NYMHPA-MD (Next Generation Mobile Platform for Health in Mental Disorders project, co-funded by the European Commission.

  8. CFD analysis of a liquid mercury target for the National Spallation Neutron Source

    International Nuclear Information System (INIS)

    Wendel, M.W.; Tov, M.S.

    1997-01-01

    Computational fluid dynamics (CFD) is being used to analyze the design of the National Spallation Neutron Source (NSNS) target. The target is subjected to the neutronic (internal) heat generation that results from the proton collisions with the mercury nuclei. The liquid mercury simultaneously serves as the neutronic target medium, transports away the heat generated within itself, and cools the metallic target structure. Recirculation and stagnation zones within the target are of particular concern because of the likelihood that they will result in local hot spots. These zones exist because the most feasible target designs include a complete U-turn flow redirection. Although the primary concern is that the target is adequately cooled, the pressure drop from inlet to outlet must also be considered because pressure drop directly affects structural loading and required pumping power. Various design options have been considered in an effort to satisfy these design criteria. Significant improvements to the design have been recommended based on the results. Detailed results are presented for the current target design including a comparison with published pressure-drop data. Comparisons are also made with forced convection heat transfer data for liquid mercury flow in circular tubes

  9. Topical report on a preconceptual design for the Spallation-Induced Lithium Conversion (SILC) target for the accelerator production of tritium (APT)

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.; Cokinos, D.M.; Czajkowski, C.; Franz, E.M.; Kroeger, P.; Todosow, M.; Youngblood, R.; Zucker, M.

    1993-01-01

    The preconceptual design of the APT Li-Al target system, also referred to as the Spallation-Induced Lithium Conversion (SILC), target system, is summarized in this report. The system has been designed to produce a ''3/8 Goal'' quantity of tritium using the 200-mA, 1.0 GeV proton beam emerging from the LANL-designed LINAC. The SILC target system consists of a beam expander, a heavy-water-cooled lead spallation neutron source assembly surrounded by light-water-cooled Li-Al blankets, a target window, heat removal systems, and related safety systems. The preconceptual design of each of these major components is described. Descriptions are also provided for the target fabrication, tritium extraction, and waste-steam processes. Performance characteristics are presented and discussed

  10. Topical report on a preconceptual design for the Spallation-Induced Lithium Conversion (SILC) target for the accelerator production of tritium (APT)

    Energy Technology Data Exchange (ETDEWEB)

    Van Tuyle, G.J.; Cokinos, D.M.; Czajkowski, C.; Franz, E.M.; Kroeger, P.; Todosow, M.; Youngblood, R.; Zucker, M.

    1993-09-30

    The preconceptual design of the APT Li-Al target system, also referred to as the Spallation-Induced Lithium Conversion (SILC), target system, is summarized in this report. The system has been designed to produce a ``3/8 Goal`` quantity of tritium using the 200-mA, 1.0 GeV proton beam emerging from the LANL-designed LINAC. The SILC target system consists of a beam expander, a heavy-water-cooled lead spallation neutron source assembly surrounded by light-water-cooled Li-Al blankets, a target window, heat removal systems, and related safety systems. The preconceptual design of each of these major components is described. Descriptions are also provided for the target fabrication, tritium extraction, and waste-steam processes. Performance characteristics are presented and discussed.

  11. Conceptual design of a 6-10 MJ driver for a high gain target development facility

    International Nuclear Information System (INIS)

    Olson, R.E.

    1986-01-01

    Commercial application of inertial confinement fusion would require low yield (≅200-500 MJ), high gain (≥80) fusion targets. It is thought that the development off such targets would reqiure a 5-10 year research program utilizing one or more dedicated nuclear facilities with drivers capable of delivering on-target pulses of 6-10 MJ at the rate of several shots per day. The ''Target Development Facility'' (TDF) is the light ion driven version of such a facility. A TDF driver concept based upon reasonable extrapolation from present-day technology is described in this paper

  12. Constraints on LISA Pathfinder's Self-Gravity: Design Requirements, Estimates and Testing Procedures

    Science.gov (United States)

    Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, M.; Brandt, Nico; Bursi, Alessandro; Slutsky. J.; hide

    2016-01-01

    LISA Pathfinder satellite was launched on 3 December 2015 toward the Sun Earth first Lagrangian point (L1) where the LISA Technology Package (LTP), which is the main science payload, will be tested. LTP achieves measurements of differential acceleration of free-falling test masses (TMs) with sensitivity below 3 x 10(exp -14) m s(exp -2) Hz(exp - 1/2) within the 130 mHz frequency band in one dimension. The spacecraft itself is responsible for the dominant differential gravitational field acting on the two TMs. Such a force interaction could contribute a significant amount of noise and thus threaten the achievement of the targeted free-fall level. We prevented this by balancing the gravitational forces to the sub nm s(exp -2) level, guided by a protocol based on measurements of the position and the mass of all parts that constitute the satellite, via finite element calculation tool estimates. In this paper, we will introduce the gravitational balance requirements and design, and then discuss our predictions for the balance that will be achieved in flight.

  13. Design risk analysis comparison between low-activation composite and aluminum alloy target chamber for the National Ignition Facility

    International Nuclear Information System (INIS)

    Streckert, H.H.; Schleicher, R.W.

    1997-01-01

    The baseline design for the target chamber for the National Ignition Facility (NIF) consists of an aluminum alloy spherical shell. A low-activation composite chamber (e.g., carbon fiber/epoxy) has important advantages such as enhanced environmental and safety characteristics, improved chamber accessibility due to reduced neutron-induced radioactivity, and elimination of the concrete shield. However, it is critical to determine the design and manufacturing risk for the first application. The replacement of such a critical component requires a detailed development risk assessment. A semiquantitative approach to risk assessment has been applied to this problem based on failure modes, effects, and criticality analysis. This analysis consists of a systematic method for organizing the collective judgment of the designers to identify failure modes, estimate probabilities, judge the severity of the consequence, and illustrate risk in a matrix representation. The results of the analyses indicate that the composite chamber has a reasonably high probability of success in the NIF application. The aluminum alloy chamber, however, represents a lower risk, partially based on a more mature technology. 8 refs., 4 figs., 5 tabs

  14. CFD studies on thermal hydraulics of spallation targets

    International Nuclear Information System (INIS)

    Tak, N.I.; Batta, A.; Cheng, X.

    2005-01-01

    Full text of publication follows: Due to the fast advances in computer hardware as well as software in recent years, more and more interests have been aroused to use computational fluid dynamics (CFD) technology in nuclear engineering and designs. During recent many years, Forschungszentrum Karlsruhe (FZK) has been actively involved in the thermal hydraulic analysis and design of spallation targets. To understand the thermal hydraulic behaviors of spallation targets very detailed simulations are necessary because of their complex geometries, complicated boundary conditions such as spallation heat distributions, and very strict design limits. A CFD simulation is believed to be the best for this purpose even though the validation of CFD codes are not perfectly completed yet in specific topics like liquid metal heat transfer. The research activities on three spallation targets (i.e., MEGAPIE, TRADE, and XADS targets) are currently very active in Europe in order to consolidate the European ADS road-map. In the thermal hydraulics point of view, two kinds of the research activities, i.e., (1) numerical design and (2) experimental work, are required to achieve the objectives of these targets. It should be noted that CFD studies play important role on both kinds of two activities. A preliminary design of a target can be achieved by sophisticated CFD analysis and pre-and-post analyses of an experimental work using a CFD code help the design of the test section of the experiment as well as the analysis of the experimental results. The present paper gives an overview about the recent CFD studies relating to thermal hydraulics of the spallation targets recently involved in FZK. It covers numerical design studies as well as CFD studies to support experimental works. The CFX code has been adopted for the studies. Main recent results for the selected examples performed by FZK are presented and discussed with their specific lessons learned. (authors)

  15. High neutronic efficiency, low current targets for accelerator-based BNCT applications

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Todosow, M.

    1998-01-01

    The neutronic efficiency of target/filters for accelerator-based BNCT applications is measured by the proton current required to achieve a desirable neutron current at the treatment port (10 9 n/cm 2 /s). In this paper the authors describe two possible targeyt/filter concepts wihch minimize the required current. Both concepts are based on the Li-7 (p,n)Be-7 reaction. Targets that operate near the threshold energy generate neutrons that are close tothe desired energy for BNCT treatment. Thus, the filter can be extremely thin (∼ 5 cm iron). However, this approach has an extremely low neutron yield (n/p ∼ 1.0(-6)), thus requiring a high proton current. The proposed solutino is to design a target consisting of multiple extremely thin targets (proton energy loss per target ∼ 10 keV), and re-accelerate the protons between each target. Targets operating at ihgher proton energies (∼ 2.5 MeV) have a much higher yield (n/p ∼ 1.0(-4)). However, at these energies the maximum neutron energy is approximately 800 keV, and thus a neutron filter is required to degrade the average neutron energy to the range of interest for BNCT (10--20 keV). A neutron filter consisting of fluorine compounds and iron has been investigated for this case. Typically a proton current of approximately 5 mA is required to generate the desired neutron current at the treatment port. The efficiency of these filter designs can be further increased by incorporating neutron reflectors that are co-axial with the neutron source. These reflectors are made of materials which have high scattering cross sections in the range 0.1--1.0 MeV

  16. Requirements and Designs for Mars Rover RTGs

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred; Shirbacheh, M; Sankarankandath, V

    2012-01-19

    The current-generation RTGs (both GPHS and MOD) are designed for operation in a vacuum environment. The multifoil thermal insulation used in those RTGs only functions well in a good vacuum. Current RTGs are designed to operate with an inert cover gas before launch, and to be vented to space vacuum after launch. Both RTGs are sealed with a large number of metallic C-rings. Those seals are adequate for retaining the inert-gas overpressure during short-term launch operations, but would not be adequate to prevent intrusion of the Martian atmospheric gases during long-term operations there. Therefore, for the Mars Rover application, those RTGs just be modified to prevent the buildup of significant pressures of Mars atmosphere or of helium (from alpha decay of the fuel). In addition, a Mars Rover RTG needs to withstand a long-term dynamic environment that is much more severe than that seen by an RTG on an orbiting spacecraft or on a stationary planetary lander. This paper describes a typical Rover mission, its requirements, the environment it imposes on the RTG, and a design approach for making the RTG operable in such an environment. Specific RTG designs for various thermoelectric element alternatives are presented.; Reference CID #9268 and CID #9276.

  17. Hohlraum Target Alignment from X-ray Detector Images using Starburst Design Patterns

    International Nuclear Information System (INIS)

    Leach, R.R.; Conder, A.; Edwards, O.; Kroll, J.; Kozioziemski, B.; Mapoles, E.; McGuigan, D.; Wilhelmsen, K.

    2010-01-01

    National Ignition Facility (NIF) is a high-energy laser facility comprised of 192 laser beams focused with enough power and precision on a hydrogen-filled spherical, cryogenic target to initiate a fusion reaction. The target container, or hohlraum, must be accurately aligned to an x-ray imaging system to allow careful monitoring of the frozen fuel layer in the target. To achieve alignment, x-ray images are acquired through starburst-shaped windows cut into opposite sides of the hohlraum. When the hohlraum is in alignment, the starburst pattern pairs match nearly exactly and allow a clear view of the ice layer formation on the edge of the target capsule. During the alignment process, x-ray image analysis is applied to determine the direction and magnitude of adjustment required. X-ray detector and source are moved in concert during the alignment process. The automated pointing alignment system described here is both accurate and efficient. In this paper, we describe the control and associated image processing that enables automation of the starburst pointing alignment.

  18. Optimized beryllium target design for indirectly driven inertial confinement fusion experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Simakov, Andrei N., E-mail: simakov@lanl.gov; Wilson, Douglas C.; Yi, Sunghwan A.; Kline, John L.; Batha, Steven H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Clark, Daniel S.; Milovich, Jose L.; Salmonson, Jay D. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2014-02-15

    For indirect drive inertial confinement fusion, Beryllium (Be) ablators offer a number of important advantages as compared with other ablator materials, e.g., plastic and high density carbon. In particular, the low opacity and relatively high density of Be lead to higher rocket efficiencies giving a higher fuel implosion velocity for a given X-ray drive; and to higher ablation velocities providing more ablative stabilization and reducing the effect of hydrodynamic instabilities on the implosion performance. Be ablator advantages provide a larger target design optimization space and can significantly improve the National Ignition Facility (NIF) [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)] ignition margin. Herein, we summarize the Be advantages, briefly review NIF Be target history, and present a modern, optimized, low adiabat, Revision 6 NIF Be target design. This design takes advantage of knowledge gained from recent NIF experiments, including more realistic levels of laser-plasma energy backscatter, degraded hohlraum-capsule coupling, and the presence of cross-beam energy transfer.

  19. Requirements on the mechanical design of reactor systems operating at elevated temperature

    International Nuclear Information System (INIS)

    Schulz, H.; Glahn, M.

    1979-01-01

    The paper presents the contemporary status of the requirements on the mechanical design and analysis developed during the licensing procedure of reactor systems operating at elevated temperature. General requirements for the design at elevated temperature are reviewed. The main proposal is to point out some limit strain criteria which are not included in present design guidelines and codes. The developed strain criteria are used to limit the component deformations in case of power excursions like the Bethe-Tait accident. It is also applicable for loads arising from other faulted conditions. (orig.)

  20. RNAblueprint: flexible multiple target nucleic acid sequence design.

    Science.gov (United States)

    Hammer, Stefan; Tschiatschek, Birgit; Flamm, Christoph; Hofacker, Ivo L; Findeiß, Sven

    2017-09-15

    Realizing the value of synthetic biology in biotechnology and medicine requires the design of molecules with specialized functions. Due to its close structure to function relationship, and the availability of good structure prediction methods and energy models, RNA is perfectly suited to be synthetically engineered with predefined properties. However, currently available RNA design tools cannot be easily adapted to accommodate new design specifications. Furthermore, complicated sampling and optimization methods are often developed to suit a specific RNA design goal, adding to their inflexibility. We developed a C ++  library implementing a graph coloring approach to stochastically sample sequences compatible with structural and sequence constraints from the typically very large solution space. The approach allows to specify and explore the solution space in a well defined way. Our library also guarantees uniform sampling, which makes optimization runs performant by not only avoiding re-evaluation of already found solutions, but also by raising the probability of finding better solutions for long optimization runs. We show that our software can be combined with any other software package to allow diverse RNA design applications. Scripting interfaces allow the easy adaption of existing code to accommodate new scenarios, making the whole design process very flexible. We implemented example design approaches written in Python to demonstrate these advantages. RNAblueprint , Python implementations and benchmark datasets are available at github: https://github.com/ViennaRNA . s.hammer@univie.ac.at, ivo@tbi.univie.ac.at or sven@tbi.univie.ac.at. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  1. Design requirements of communication architecture of SMART safety system

    International Nuclear Information System (INIS)

    Park, H. Y.; Kim, D. H.; Sin, Y. C.; Lee, J. Y.

    2001-01-01

    To develop the communication network architecture of safety system of SMART, the evaluation elements for reliability and performance factors are extracted from commercial networks and classified the required-level by importance. A predictable determinacy, status and fixed based architecture, separation and isolation from other systems, high reliability, verification and validation are introduced as the essential requirements of safety system communication network. Based on the suggested requirements, optical cable, star topology, synchronous transmission, point-to-point physical link, connection-oriented logical link, MAC (medium access control) with fixed allocation are selected as the design elements. The proposed architecture will be applied as basic communication network architecture of SMART safety system

  2. High-resolution imaging and target designation through clouds or smoke

    Science.gov (United States)

    Perry, Michael D.

    2003-01-01

    A method and system of combining gated intensifiers and advances in solid-state, short-pulse laser technology, compact systems capable of producing high resolution (i.e., approximately less than 20 centimeters) optical images through a scattering medium such as dense clouds, fog, smoke, etc. may be achieved from air or ground based platforms. Laser target designation through a scattering medium is also enabled by utilizing a short pulse illumination laser and a relatively minor change to the detectors on laser guided munitions.

  3. 650 mm long liquid hydrogen target for use in a high intensity electron beam

    International Nuclear Information System (INIS)

    Mark, J.W.

    1983-07-01

    This paper describes a 650 mm long liquid hydrogen target constructed for use in the high intensity electron beam at the Stanford Linear Accelerator Center. The main design problem was to construct a target that would permit the heat deposited by the electron beam to be removed rapidly without boiling the hydrogen so as to maintain constant target density for optimum data taking. Design requirements, construction details and operating experience are discussed

  4. 78 FR 32988 - Core Principles and Other Requirements for Designated Contract Markets; Correction

    Science.gov (United States)

    2013-06-03

    ... COMMODITY FUTURES TRADING COMMISSION 17 CFR Part 38 RIN 3038-AD09 Core Principles and Other... regarding Core Principles and Other Requirements for Designated Contract Markets by inserting a missing... regarding Core Principles and Other Requirements for Designated Contract Markets (77 FR 36612, June 19, 2012...

  5. Nuclease Target Site Selection for Maximizing On-target Activity and Minimizing Off-target Effects in Genome Editing

    Science.gov (United States)

    Lee, Ciaran M; Cradick, Thomas J; Fine, Eli J; Bao, Gang

    2016-01-01

    The rapid advancement in targeted genome editing using engineered nucleases such as ZFNs, TALENs, and CRISPR/Cas9 systems has resulted in a suite of powerful methods that allows researchers to target any genomic locus of interest. A complementary set of design tools has been developed to aid researchers with nuclease design, target site selection, and experimental validation. Here, we review the various tools available for target selection in designing engineered nucleases, and for quantifying nuclease activity and specificity, including web-based search tools and experimental methods. We also elucidate challenges in target selection, especially in predicting off-target effects, and discuss future directions in precision genome editing and its applications. PMID:26750397

  6. Codes, standards, and requirements for DOE facilities: natural phenomena design

    International Nuclear Information System (INIS)

    Webb, A.B.

    1985-01-01

    The basic requirements for codes, standards, and requirements are found in DOE Orders 5480.1A, 5480.4, and 6430.1. The type of DOE facility to be built and the hazards which it presents will determine the criteria to be applied for natural phenomena design. Mandatory criteria are established in the DOE orders for certain designs but more often recommended guidance is given. National codes and standards form a great body of experience from which the project engineer may draw. Examples of three kinds of facilities and the applicable codes and standards are discussed. The safety program planning approach to project management used at Westinghouse Hanford is outlined. 5 figures, 2 tables

  7. Basic Block of Pipelined ADC Design Requirements

    Directory of Open Access Journals (Sweden)

    V. Kledrowetz

    2011-04-01

    Full Text Available The paper describes design requirements of a basic stage (called MDAC - Multiplying Digital-to- Analog Converter of a pipelined ADC. There exist error sources such as finite DC gain of opamp, capacitor mismatch, thermal noise, etc., arising when the switched capacitor (SC technique and CMOS technology are used. These non-idealities are explained and their influences on overall parameters of a pipelined ADC are studied. The pipelined ADC including non-idealities was modeled in MATLAB - Simulink simulation environment.

  8. Proposal for elicitation and analysis of environmental requirements into the construction design process: a case study

    Directory of Open Access Journals (Sweden)

    Camila Pegoraro

    2010-05-01

    Full Text Available Proposal: As new demands from sustainable development, environmental requirements arise as another challenge to design process management. It is already known that companies which design buildings are usually exposed to many managerial difficulties. Faced to the environmental demands, these companies require new facilities to align environmental requirements to the business goals and to include them properly in design process. This paper is based on a case study in a construction company, which was developed through interviews and document analysis. It is intended to present a procedure for the project environmental requirements elicitation, organization and analysis, which is based on the requirements engineering (ER concepts. As results it was concluded that the ER concepts are useful for the environmental requirements integration into the design process and that strategic planning should give directions for the effective environmental requirements adherence. Moreover, a procedure for environmental requirements modeling is proposed. Key-words: Design process, Requirements management, Environmental requirements, Construction

  9. Nanomedicine: Drug Delivery Systems and Nanoparticle Targeting

    International Nuclear Information System (INIS)

    Youn, Hye Won; Kang, Keon Wook; Chung, Jun Key; Lee, Dong Soo

    2008-01-01

    Applications of nanotechnology in the medical field have provided the fundamentals of tremendous improvement in precise diagnosis and customized therapy. Recent advances in nanomedicine have led to establish a new concept of theragnosis, which utilizes nanomedicines as a therapeutic and diagnostic tool at the same time. The development of high affinity nanoparticles with large surface area and functional groups multiplies diagnostic and therapeutic capacities. Considering the specific conditions related to the disease of individual patient, customized therapy requires the identification of disease target at the cellular and molecular level for reducing side effects and enhancing therapeutic efficiency. Well-designed nanoparticles can minimize unnecessary exposure of cytotoxic drugs and maximize targeted localization of administrated drugs. This review will focus on major pharmaceutical nanomaterials and nanoparticles as key components of designing and surface engineering for targeted theragnostic drug development

  10. Global climate targets and future consumption level: an evaluation of the required GHG intensity

    International Nuclear Information System (INIS)

    Girod, Bastien; Van Vuuren, Detlef Peter; Hertwich, Edgar G

    2013-01-01

    Discussion and analysis on international climate policy often focuses on the rather abstract level of total national and regional greenhouse gas (GHG) emissions. At some point, however, emission reductions need to be translated to consumption level. In this article, we evaluate the implications of the strictest IPCC representative concentration pathway for key consumption categories (food, travel, shelter, goods, services). We use IPAT style identities to account for possible growth in global consumption levels and indicate the required change in GHG emission intensity for each category (i.e. GHG emission per calorie, person kilometer, square meter, kilogram, US dollar). The proposed concept provides guidance for product developers, consumers and policymakers. To reach the 2 °C climate target (2.1 tCO 2 -eq. per capita in 2050), the GHG emission intensity of consumption has to be reduced by a factor of 5 in 2050. The climate targets on consumption level allow discussion of the feasibility of this climate target at product and consumption level. In most consumption categories products in line with this climate target are available. For animal food and air travel, reaching the GHG intensity targets with product modifications alone will be challenging and therefore structural changes in consumption patterns might be needed. The concept opens up possibilities for further research on potential solutions on the consumption and product level to global climate mitigation. (letter)

  11. Colon-targeted oral drug delivery systems: design trends and approaches.

    Science.gov (United States)

    Amidon, Seth; Brown, Jack E; Dave, Vivek S

    2015-08-01

    Colon-specific drug delivery systems (CDDS) are desirable for the treatment of a range of local diseases such as ulcerative colitis, Crohn's disease, irritable bowel syndrome, chronic pancreatitis, and colonic cancer. In addition, the colon can be a potential site for the systemic absorption of several drugs to treat non-colonic conditions. Drugs such as proteins and peptides that are known to degrade in the extreme gastric pH, if delivered to the colon intact, can be systemically absorbed by colonic mucosa. In order to achieve effective therapeutic outcomes, it is imperative that the designed delivery system specifically targets the drugs into the colon. Several formulation approaches have been explored in the development colon-targeted drug delivery systems. These approaches involve the use of formulation components that interact with one or more aspects of gastrointestinal (GI) physiology, such as the difference in the pH along the GI tract, the presence of colonic microflora, and enzymes, to achieve colon targeting. This article highlights the factors influencing colon-specific drug delivery and colonic bioavailability, and the limitations associated with CDDS. Further, the review provides a systematic discussion of various conventional, as well as relatively newer formulation approaches/technologies currently being utilized for the development of CDDS.

  12. Applying CBR to machine tool product configuration design oriented to customer requirements

    Science.gov (United States)

    Wang, Pengjia; Gong, Yadong; Xie, Hualong; Liu, Yongxian; Nee, Andrew Yehching

    2017-01-01

    Product customization is a trend in the current market-oriented manufacturing environment. However, deduction from customer requirements to design results and evaluation of design alternatives are still heavily reliant on the designer's experience and knowledge. To solve the problem of fuzziness and uncertainty of customer requirements in product configuration, an analysis method based on the grey rough model is presented. The customer requirements can be converted into technical characteristics effectively. In addition, an optimization decision model for product planning is established to help the enterprises select the key technical characteristics under the constraints of cost and time to serve the customer to maximal satisfaction. A new case retrieval approach that combines the self-organizing map and fuzzy similarity priority ratio method is proposed in case-based design. The self-organizing map can reduce the retrieval range and increase the retrieval efficiency, and the fuzzy similarity priority ratio method can evaluate the similarity of cases comprehensively. To ensure that the final case has the best overall performance, an evaluation method of similar cases based on grey correlation analysis is proposed to evaluate similar cases to select the most suitable case. Furthermore, a computer-aided system is developed using MATLAB GUI to assist the product configuration design. The actual example and result on an ETC series machine tool product show that the proposed method is effective, rapid and accurate in the process of product configuration. The proposed methodology provides a detailed instruction for the product configuration design oriented to customer requirements.

  13. [sgRNA design for the CRISPR/Cas9 system and evaluation of its off-target effects].

    Science.gov (United States)

    Xie, Sheng-song; Zhang, Yi; Zhang, Li-sheng; Li, Guang-lei; Zhao, Chang-zhi; Ni, Pan; Zhao, Shu-hong

    2015-11-01

    The third generation of CRISPR/Cas9-mediated genome editing technology has been successfully applied to genome modification of various species including animals, plants and microorganisms. How to improve the efficiency of CRISPR/Cas9 genome editing and reduce its off-target effects has been extensively explored in this field. Using sgRNA (Small guide RNA) with high efficiency and specificity is one of the critical factors for successful genome editing. Several software have been developed for sgRNA design and/or off-target evaluation, which have advantages and disadvantages respectively. In this review, we summarize characters of 16 kinds online and standalone software for sgRNA design and/or off-target evaluation and conduct a comparative analysis of these different kinds of software through developing 38 evaluation indexes. We also summarize 11 experimental approaches for testing genome editing efficiency and off-target effects as well as how to screen highly efficient and specific sgRNA.

  14. Progress in the Design of the Stabilized Liner Compressor for MTF/MIF Plasma Target Development

    Science.gov (United States)

    Frese, Sherry; Frese, Michael; Turchi, Peter; Gale, Don

    2016-10-01

    The Stabilized Liner Compressor (SLC) seeks to extend concepts for repetitive, rotationally stabilized, liquid-metal liners driven by free-pistons to much higher drive pressures (25 vs 5 kpsi) and faster implosion speeds (2000 vs 100 m/s) than previously demonstrated. Such extension is needed to enable experiments with magnetized-plasma targets presently offering sizes and lifetimes of 10's cm diam and 10's microsec. SLC represents the confluence of several difficult technologies, including pulsed high pressures, high-speed rotating machinery and alkali-metal (Na, NaK) handling. Solution of the two-dimensional, unsteady, compressible flow of a rotating liquid-metal liner requires advanced numerical techniques. We report the use of the 2-1/2 dimensional MHD code MACH2 to explore flow options, including magnetic flux compression, and to provide pulsed pressure distributions for mechanical design. Supported by ARPA-E ALPHA Program.

  15. Flexible weapons architecture design

    OpenAIRE

    Pyant, William C.

    2015-01-01

    Present day air-delivered weapons are of a closed architecture, with little to no ability to tailor the weapon for the individual engagement. The closed architectures require weaponeers to make the target fit the weapon instead of fitting the individual weapons to a target. The concept of a flexible weapons aims to modularize weapons design using an open architecture shell into which different modules are inserted to achieve the desired target fractional damage while reducing cost and civilia...

  16. Statistical inference on censored data for targeted clinical trials under enrichment design.

    Science.gov (United States)

    Chen, Chen-Fang; Lin, Jr-Rung; Liu, Jen-Pei

    2013-01-01

    For the traditional clinical trials, inclusion and exclusion criteria are usually based on some clinical endpoints; the genetic or genomic variability of the trial participants are not totally utilized in the criteria. After completion of the human genome project, the disease targets at the molecular level can be identified and can be utilized for the treatment of diseases. However, the accuracy of diagnostic devices for identification of such molecular targets is usually not perfect. Some of the patients enrolled in targeted clinical trials with a positive result for the molecular target might not have the specific molecular targets. As a result, the treatment effect may be underestimated in the patient population truly with the molecular target. To resolve this issue, under the exponential distribution, we develop inferential procedures for the treatment effects of the targeted drug based on the censored endpoints in the patients truly with the molecular targets. Under an enrichment design, we propose using the expectation-maximization algorithm in conjunction with the bootstrap technique to incorporate the inaccuracy of the diagnostic device for detection of the molecular targets on the inference of the treatment effects. A simulation study was conducted to empirically investigate the performance of the proposed methods. Simulation results demonstrate that under the exponential distribution, the proposed estimator is nearly unbiased with adequate precision, and the confidence interval can provide adequate coverage probability. In addition, the proposed testing procedure can adequately control the size with sufficient power. On the other hand, when the proportional hazard assumption is violated, additional simulation studies show that the type I error rate is not controlled at the nominal level and is an increasing function of the positive predictive value. A numerical example illustrates the proposed procedures. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Target production for inertial fusion energy

    International Nuclear Information System (INIS)

    Woodworth, J.G.; Meier, W.

    1995-03-01

    Inertial fusion energy (IFE) power plants will require the ignition and burn of 5-10 fusion fuel targets every second. The technology to economically mass produce high-quality, precision targets at this rate is beyond the current state of the art. Techniques that are scalable to high production rates, however, have been identified for all the necessary process steps, and many have been tested in laboratory experiments or are similar to current commercial manufacturing processes. In this paper, we describe a baseline target factory conceptual design and estimate its capital and operating costs. The result is a total production cost of ∼16 cents per target. At this level, target production represents about 6% of the estimated cost of electricity from a 1-GW e IFE power plant. Cost scaling relationships are presented and used to show the variation in target cost with production rate and plant power level

  18. Solid targets for production of radioisotopes with cyclotron

    International Nuclear Information System (INIS)

    Paredes G, L.; Balcazar G, M.

    1999-01-01

    The design of targets for production of radioisotopes and radiopharmaceuticals of cyclotron to medical applications requires a detailed analysis of several variables such as: cyclotron operation conditions, choice of used materials as target and their physicochemical characteristics, activity calculation, the yielding of each radioisotope by irradiation, the competition of nuclear reactions in function of the projectiles energy and the collision processes amongst others. The objective of this work is to determine the equations for the calculation for yielding of solid targets at the end of the proton irradiation. (Author)

  19. Design Requirements of an Advanced HANARO Reactor Core Cooling System

    International Nuclear Information System (INIS)

    Park, Yong Chul; Ryu, Jeong Soo

    2007-12-01

    An advanced HANARO Reactor (AHR) is an open-tank-type and generates thermal power of 20 MW and is under conceptual design phase for developing it. The thermal power is including a core fission heat, a temporary stored fuel heat in the pool, a pump heat and a neutron reflecting heat in the reflector vessel of the reactor. In order to remove the heat load, the reactor core cooling system is composed of a primary cooling system, a primary cooling water purification system and a reflector cooling system. The primary cooling system must remove the heat load including the core fission heat, the temporary stored fuel heat in the pool and the pump heat. The purification system must maintain the quality of the primary cooling water. And the reflector cooling system must remove the neutron reflecting heat in the reflector vessel of the reactor and maintain the quality of the reflector. In this study, the design requirement of each system has been carried out using a design methodology of the HANARO within a permissible range of safety. And those requirements are written by english intend to use design data for exporting the research reactor

  20. Estimasi kebutuhan spektrum untuk memenuhi target rencana pita lebar Indonesia di wilayah perkotaan [The estimation of spectrum requirements to meet the target of Indonesia broadband plan in urban area

    Directory of Open Access Journals (Sweden)

    Kasmad Ariansyah

    2015-12-01

    Full Text Available Pemerintah Indonesia telah mengesahkan Rencana Pita Lebar Indonesia menjelang akhir tahun 2014. Dokumen tersebut berisi panduan dan arah pembangunan pita lebar nasional dan berisi berisi target-target pencapaian berkelanjutan antara tahun 2014-2019. Terkait target capaian pita lebar nirkabel, ketersediaan dan kecukupan spektrum frekuensi merupakan salah satu hal yang sangat penting.  Studi ini dilakukan untuk mengestimasi kebutuhan spektrum frekuensi dalam rangka memenuhi target capaian Rencana Pita Lebar Indonesia khususnya layanan pita lebar nirkabel di wilayah perkotaan. DKI Jakarta dipilih sebagai sampel wilayah perkotaan. Analisis dilakukan dengan menghitung luas cakupan BTS, mengestimasi jumlah potensi pengguna, mengestimasi kebutuhan spektrum dan membandingkannya dengan spektrum yang sudah dialokasikan untuk mendapatkan jumlah kekurangan spektrum. 3G dan 4G diasumsikan sebagai teknologi yang digunakan untuk memenuhi sasaran pita lebar bergerak. Hasil analisis menunjukkan pada rentang tahun 2016-2019 akan terjadi kekurangan spektrum di wilayah perkotaan sebesar 2x234,5 MHz sampai dengan 2x240,5MHz (untuk mode FDD atau sebesar 313 MHz sampai dengan 321 MHz (untuk mode TDD. Spektrum frekuensi merupakan sumber daya yang reusable, dengan mengasumsikan kebutuhan spektrum di perdesaan lebih rendah dibanding kebutuhan di perkotaan, maka estimasi ini dapat pula digunakan untuk menggambarkan kebutuhan spektrum di Indonesia secara keseluruhan.*****Indonesian government has issued Indonesia Broadband Plan (IBP at the end of 2014. IBP provides guidance and direction for the development of national broadband and contains targets in the period of 2014 to 2019. Relating to wireless broadband target, the availability and the adequacy of spectrum is very important. This study was conducted to estimate the spectrum requirements to meet the Indonesia broadband plan target especially the target of mobile broadband in urban area. DKI Jakarta was taken as

  1. Polyimide capsules may hold high pressure DT fuel without cryogenic support for the National Ignition Facility indirect-drive targets

    International Nuclear Information System (INIS)

    Sanchez, J.J.; Letts, S.A.

    1997-01-01

    New target designs for the Omega upgrade laser and ignition targets in the National Ignition Facility (NIF) require thick (80 - 100 microm) cryogenic fuel layers. The Omega upgrade target will require cryogenic handling after initial fill because of the high fill pressures and the thin capsule walls. For the NIF indirectly driven targets, a larger capsule size and new materials offer hope that they can be built, filled and stored in a manner similar to the targets used in the Nova facility without requiring cryogenic handling

  2. Meeting Human Reliability Requirements through Human Factors Design, Testing, and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    R. L. Boring

    2007-06-01

    In the design of novel systems, it is important for the human factors engineer to work in parallel with the human reliability analyst to arrive at the safest achievable design that meets design team safety goals and certification or regulatory requirements. This paper introduces the System Development Safety Triptych, a checklist of considerations for the interplay of human factors and human reliability through design, testing, and modeling in product development. This paper also explores three phases of safe system development, corresponding to the conception, design, and implementation of a system.

  3. 30 CFR 77.804 - High-voltage trailing cables; minimum design requirements.

    Science.gov (United States)

    2010-07-01

    ... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.804 High-voltage trailing cables; minimum design requirements. (a) High-voltage trailing cables used in resistance grounded systems shall be... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage trailing cables; minimum design...

  4. Rational design of micro-RNA-like bifunctional siRNAs targeting HIV and the HIV coreceptor CCR5.

    Science.gov (United States)

    Ehsani, Ali; Saetrom, Pål; Zhang, Jane; Alluin, Jessica; Li, Haitang; Snøve, Ola; Aagaard, Lars; Rossi, John J

    2010-04-01

    Small-interfering RNAs (siRNAs) and micro-RNAs (miRNAs) are distinguished by their modes of action. SiRNAs serve as guides for sequence-specific cleavage of complementary mRNAs and the targets can be in coding or noncoding regions of the target transcripts. MiRNAs inhibit translation via partially complementary base-pairing to 3' untranslated regions (UTRs) and are generally ineffective when targeting coding regions of a transcript. In this study, we deliberately designed siRNAs that simultaneously direct cleavage and translational suppression of HIV RNAs, or cleavage of the mRNA encoding the HIV coreceptor CCR5 and suppression of translation of HIV. These bifunctional siRNAs trigger inhibition of HIV infection and replication in cell culture. The design principles have wide applications throughout the genome, as about 90% of genes harbor sites that make the design of bifunctional siRNAs possible.

  5. Functional Mobility Testing: A Novel Method to Establish Human System Interface Design Requirements

    Science.gov (United States)

    England, Scott A.; Benson, Elizabeth A.; Rajulu, Sudhakar

    2008-01-01

    Across all fields of human-system interface design it is vital to posses a sound methodology dictating the constraints on the system based on the capabilities of the human user. These limitations may be based on strength, mobility, dexterity, cognitive ability, etc. and combinations thereof. Data collected in an isolated environment to determine, for example, maximal strength or maximal range of motion would indeed be adequate for establishing not-to-exceed type design limitations, however these restraints on the system may be excessive over what is basally needed. Resources may potentially be saved by having a technique to determine the minimum measurements a system must accommodate. This paper specifically deals with the creation of a novel methodology for establishing mobility requirements for a new generation of space suit design concepts. Historically, the Space Shuttle and the International Space Station vehicle and space hardware design requirements documents such as the Man-Systems Integration Standards and International Space Station Flight Crew Integration Standard explicitly stated that the designers should strive to provide the maximum joint range of motion capabilities exhibited by a minimally clothed human subject. In the course of developing the Human-Systems Integration Requirements (HSIR) for the new space exploration initiative (Constellation), an effort was made to redefine the mobility requirements in the interest of safety and cost. Systems designed for manned space exploration can receive compounded gains from simplified designs that are both initially less expensive to produce and lighter, thereby, cheaper to launch.

  6. High pressure deuterium-tritium gas target vessels for muon-catalyzed fusion experiments

    International Nuclear Information System (INIS)

    Caffrey, A.J.; Spaletta, H.W.; Ware, A.G.; Zabriskie, J.M.; Hardwick, D.A.; Maltrud, H.R.; Paciotti, M.A.

    1989-01-01

    In experimental studies of muon-catalyzed fusion, the density of the hydrogen gas mixture is an important parameter. Catalysis of up to 150 fusions per muon has been observed in deuterium-tritium gas mixtures at liquid hydrogen density; at room temperature, such densities require a target gas pressure of the order of 1000 atmospheres (100 MPa, 15,000 psi). We report here the design considerations for hydrogen gas target vessels for muon-catalyzed fusion experiments that operate at 1000 and 10,000 atmospheres. The 1000 atmosphere high pressure target vessels are fabricated of Type A-286 stainless steel and lined with oxygen-free, high-conductivity (OFHC) copper to provide a barrier to hydrogen permeation of the stainless steel. The 10,000 atmosphere ultrahigh pressure target vessels are made from 18Ni (200 grade) maraging steel and are lined with OFHC copper, again to prevent hydrogen permeation of the steel. In addition to target design features, operating requirements, fabrication procedures, and secondary containment are discussed. 13 refs., 3 figs., 1 tab

  7. Seismic design and evaluation criteria based on target performance goals

    International Nuclear Information System (INIS)

    Murray, R.C.; Nelson, T.A.; Kennedy, R.P.; Short, S.A.

    1994-04-01

    The Department of Energy utilizes deterministic seismic design/evaluation criteria developed to achieve probabilistic performance goals. These seismic design and evaluation criteria are intended to apply equally to the design of new facilities and to the evaluation of existing facilities. In addition, the criteria are intended to cover design and evaluation of buildings, equipment, piping, and other structures. Four separate sets of seismic design/evaluation criteria have been presented each with a different performance goal. In all these criteria, earthquake loading is selected from seismic hazard curves on a probabilistic basis but seismic response evaluation methods and acceptable behavior limits are deterministic approaches with which design engineers are familiar. For analytical evaluations, conservatism has been introduced through the use of conservative inelastic demand-capacity ratios combined with ductile detailing requirements, through the use of minimum specified material strengths and conservative code capacity equations, and through the use of a seismic scale factor. For evaluation by testing or by experience data, conservatism has been introduced through the use of an increase scale factor which is applied to the prescribed design/evaluation input motion

  8. 29 CFR 1910.36 - Design and construction requirements for exit routes.

    Science.gov (United States)

    2010-07-01

    ... construction requirements for exit routes. (a) Basic requirements. Exit routes must meet the following design... your workplace, consult NFPA 101-2000, Life Safety Code. (c) Exit discharge. (1) Each exit discharge... route must be adequate. (1) Exit routes must support the maximum permitted occupant load for each floor...

  9. DESIGN METHODOLOGIES AND TOOLS FOR SINGLE-FLUX QUANTUM LOGIC CIRCUITS

    Science.gov (United States)

    2017-10-01

    Determine GLOBAL CLK DEF or NETLIST Produce results END STA TOOL Determine clocking scheme Determine system clock Determine slack and other path...times. It also enables the designer to input a target time for the design which produces a slack value. Positive slack meaning that the critical time is...less than the target time and the design meets the speed requirements set by the designer. A negative slack value indicates that the design does

  10. Development of requirements tracking and verification system for the software design of distributed control system

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chul Hwan; Kim, Jang Yeol; Kim, Jung Tack; Lee, Jang Soo; Ham, Chang Shik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    In this paper a prototype of Requirement Tracking and Verification System(RTVS) for a Distributed Control System was implemented and tested. The RTVS is a software design and verification tool. The main functions required by the RTVS are managing, tracking and verification of the software requirements listed in the documentation of the DCS. The analysis of DCS software design procedures and interfaces with documents were performed to define the user of the RTVS, and the design requirements for RTVS were developed. 4 refs., 3 figs. (Author)

  11. Development of requirements tracking and verification system for the software design of distributed control system

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chul Hwan; Kim, Jang Yeol; Kim, Jung Tack; Lee, Jang Soo; Ham, Chang Shik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    In this paper a prototype of Requirement Tracking and Verification System(RTVS) for a Distributed Control System was implemented and tested. The RTVS is a software design and verification tool. The main functions required by the RTVS are managing, tracking and verification of the software requirements listed in the documentation of the DCS. The analysis of DCS software design procedures and interfaces with documents were performed to define the user of the RTVS, and the design requirements for RTVS were developed. 4 refs., 3 figs. (Author)

  12. Study design requirements for RNA sequencing-based breast cancer diagnostics.

    Science.gov (United States)

    Mer, Arvind Singh; Klevebring, Daniel; Grönberg, Henrik; Rantalainen, Mattias

    2016-02-01

    Sequencing-based molecular characterization of tumors provides information required for individualized cancer treatment. There are well-defined molecular subtypes of breast cancer that provide improved prognostication compared to routine biomarkers. However, molecular subtyping is not yet implemented in routine breast cancer care. Clinical translation is dependent on subtype prediction models providing high sensitivity and specificity. In this study we evaluate sample size and RNA-sequencing read requirements for breast cancer subtyping to facilitate rational design of translational studies. We applied subsampling to ascertain the effect of training sample size and the number of RNA sequencing reads on classification accuracy of molecular subtype and routine biomarker prediction models (unsupervised and supervised). Subtype classification accuracy improved with increasing sample size up to N = 750 (accuracy = 0.93), although with a modest improvement beyond N = 350 (accuracy = 0.92). Prediction of routine biomarkers achieved accuracy of 0.94 (ER) and 0.92 (Her2) at N = 200. Subtype classification improved with RNA-sequencing library size up to 5 million reads. Development of molecular subtyping models for cancer diagnostics requires well-designed studies. Sample size and the number of RNA sequencing reads directly influence accuracy of molecular subtyping. Results in this study provide key information for rational design of translational studies aiming to bring sequencing-based diagnostics to the clinic.

  13. Design and Demonstration of a Material-Plasma Exposure Target Station for Neutron Irradiated Samples

    International Nuclear Information System (INIS)

    Rapp, Juergen; Aaron, A. M.; Bell, Gary L.; Burgess, Thomas W.; Ellis, Ronald James; Giuliano, D.; Howard, R.; Kiggans, James O.; Lessard, Timothy L.; Ohriner, Evan Keith; Perkins, Dale E.; Varma, Venugopal Koikal

    2015-01-01

    Fusion energy is the most promising energy source for the future, and one of the most important problems to be solved progressing to a commercial fusion reactor is the identification of plasma-facing materials compatible with the extreme conditions in the fusion reactor environment. The development of plasma-material interaction (PMI) science and the technology of plasma-facing components are key elements in the development of the next step fusion device in the United States, the so-called Fusion Nuclear Science Facility (FNSF). All of these PMI issues and the uncertain impact of the 14-MeV neutron irradiation have been identified in numerous expert panel reports to the fusion community. The 2007 Greenwald report classifies reactor plasma-facing materials (PFCs) and materials as the only Tier 1 issues, requiring a ''. . . major extrapolation from the current state of knowledge, need for qualitative improvements and substantial development for both the short and long term.'' The Greenwald report goes on to list 19 gaps in understanding and performance related to the plasma-material interface for the technology facilities needed for DEMO-oriented R&D and DEMO itself. Of the 15 major gaps, six (G7, G9, G10, G12, G13) can possibly be addressed with ORNL's proposal of an advanced Material Plasma Exposure eXperiment. Establishing this mid-scale plasma materials test facility at ORNL is a key element in ORNL's strategy to secure a leadership role for decades of fusion R&D. That is to say, our end goal is to bring the ''signature facility'' FNSF home to ORNL. This project is related to the pre-conceptual design of an innovative target station for a future Material-Plasma Exposure eXperiment (MPEX). The target station will be designed to expose candidate fusion reactor plasma-facing materials and components (PFMs and PFCs) to conditions anticipated in fusion reactors, where PFCs will be exposed to dense high-temperature hydrogen plasmas providing steady-state heat fluxes of

  14. A beam sweeping system for the Fermilab antiproton production target

    International Nuclear Information System (INIS)

    Bieniosek, F.M.

    1993-08-01

    In the Main Injector era beam intensities high enough to damage the antiproton production target will be available. In order to continue to operate with a tightly-focused primary beam spot on the target, and thus maintain yield, it will be necessary to spread the hot spot on the target by use of a beam sweeping system. This report summarizes the requirements for such a system, and addresses the issues involved in the design of a sweeping system

  15. Double-shell target designs for the Los Alamos Scientific Laboratory eight-beam laser system

    International Nuclear Information System (INIS)

    Kindel, J.M.; Stroscio, M.A.

    1978-03-01

    We investigate two double-pusher laser fusion targets, one that incorporates an outer exploding pusher shell and another that uses velocity multiplication. Specific designs are presented for the Los Alamos Scientific Laboratory Eight-Beam Laser System

  16. Functional Mobility Testing: A Novel Method to Create Suit Design Requirements

    Science.gov (United States)

    England, Scott A.; Benson, Elizabeth A.; Rajulu, Sudhakar L.

    2008-01-01

    This study was performed to aide in the creation of design requirements for the next generation of space suits that more accurately describe the level of mobility necessary for a suited crewmember through the use of an innovative methodology utilizing functional mobility. A novel method was utilized involving the collection of kinematic data while 20 subjects (10 male, 10 female) performed pertinent functional tasks that will be required of a suited crewmember during various phases of a lunar mission. These tasks were selected based on relevance and criticality from a larger list of tasks that may be carried out by the crew. Kinematic data was processed through Vicon BodyBuilder software to calculate joint angles for the ankle, knee, hip, torso, shoulder, elbow, and wrist. Maximum functional mobility was consistently lower than maximum isolated mobility. This study suggests that conventional methods for establishing design requirements for human-systems interfaces based on maximal isolated joint capabilities may overestimate the required mobility. Additionally, this method provides a valuable means of evaluating systems created from these requirements by comparing the mobility available in a new spacesuit, or the mobility required to use a new piece of hardware, to this newly established database of functional mobility.

  17. Defilade, Stationary Target and Moving Target Embankment, Low Water Crossing, and Course Road Designs for Soil Loss Prevention

    National Research Council Canada - National Science Library

    Svendsen, Niels G; Kalita, Prasanta K; Gebhart, Dick L; Denight, Michael L

    2006-01-01

    ... for military training requirements. This report proposes several new range structure designs to begin the iterative process of developing new range edifices that reduce soil loss, control erosion, promote sustainability, and enhance training...

  18. Package design and nutritional profile of foods targeted at children in supermarkets in Montevideo, Uruguay.

    Science.gov (United States)

    Giménez, Ana; Saldamando, Luis de; Curutchet, María Rosa; Ares, Gastón

    2017-06-12

    Marketing of unhealthy products has been identified as one of the main characteristics of the food environment that negatively affects children's eating patterns. Restrictions on advertising of unhealthy foods to children have already been imposed in different countries. However, marketing strategies are not limited to broadcast and digital advertising, but also include package design. In this context, the current study aimed to describe the food products targeted at children and sold in supermarkets in Montevideo, Uruguay, in terms of package design and nutrient profile. Two supermarkets in Montevideo were selected for data collection. In each supermarket, all products targeted at children were identified. Products were analyzed in terms of package design and nutritional profile, considering the Pan American Health Organization Nutrient Profile Model. A total of 180 unique products were identified, which included a wide range of product categories. The great majority of the products corresponded to ultra-processed products with excessive amounts of sodium, free sugars, total fat, saturated fat, and/or trans fat, which are not recommended for frequent consumption. Several marketing strategies were identified in the design of packages to attract children's attention and drive their preferences. The most common strategies were the inclusion of cartoon characters, bright colors, childish lettering, and a wide range of claims related to health and nutrition, as well as the products' sensory and hedonic characteristics. The study's findings provide additional evidence on the need to regulate packaging of products targeted at children.

  19. Safeguards Guidance for Designers of Commercial Nuclear Facilities – International Safeguards Requirements for Uranium Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Philip Casey Durst; Scott DeMuth; Brent McGinnis; Michael Whitaker; James Morgan

    2010-04-01

    For the past two years, the United States National Nuclear Security Administration, Office of International Regimes and Agreements (NA-243), has sponsored the Safeguards-by-Design Project, through which it is hoped new nuclear facilities will be designed and constructed worldwide more amenable to nuclear safeguards. In the course of this project it was recognized that commercial designer/builders of nuclear facilities are not always aware of, or understand, the relevant domestic and international safeguards requirements, especially the latter as implemented by the International Atomic Energy Agency (IAEA). To help commercial designer/builders better understand these requirements, a report was prepared by the Safeguards-by-Design Project Team that articulated and interpreted the international nuclear safeguards requirements for the initial case of uranium enrichment plants. The following paper summarizes the subject report, the specific requirements, where they originate, and the implications for design and construction. It also briefly summarizes the established best design and operating practices that designer/builder/operators have implemented for currently meeting these requirements. In preparing the subject report, it is recognized that the best practices are continually evolving as the designer/builder/operators and IAEA consider even more effective and efficient means for meeting the safeguards requirements and objectives.

  20. Consequences for designer and manufacturer of mechanical components due to future requirements in Europe

    International Nuclear Information System (INIS)

    Hans-Joachim, Frank

    2001-01-01

    In the frame of European harmonization, a lot of changes on requirements for designer and manufacturer of mechanical components have been performed. Differed organizations are involved in preparing future requirements for nuclear application. On one side the French German cooperation on the development of EPR. At the origin of this project was the common decision in 1989 of Framatome and Siemens to cooperate through NPI, to design the Nuclear Island, which meets the future needs of utilities. EDF and a group of the main German Utilities joined this cooperation in 1991 and since then they have been totally involved to the progress of the work. In addition, all the process was backed up to the end by the strong cooperation between the French and the German. Safety Authorities, which have a long lasting cooperation to define common requirements, which have to be applied to future Nuclear Power Plants. Furthermore an organization has been set up to elaborate common codes related to the EPR design, at the level of the French design and construction rules (RCC) or the German KTA safety standards, the so-called EPR technical codes (ETC). On the other side, the European utilities co-operate on a much broader basis for the establishment of European Utilities Requirements (EUR). These requirements are prepared by a group of European utilities that represent the major European electricity generating companies that are determined to keep the nuclear option open. The technical requirements specified in the EUR document define the boundaries in which future plants need to be designed in order to be acceptable for the needs of the utilities and in order to fulfill the basic requirements of competitive power generation costs and licensability in all countries represented in the EUR group. All the new requirements have to be applied by designer and manufacturer. Siemens /SNP act as a designer of a lot of various vessels and tanks, heat exchangers and other items of process

  1. Status of the Spallation Neutron Source with focus on target materials

    International Nuclear Information System (INIS)

    Mansur, L.K.; Haines, J.R.

    2006-01-01

    An overview of the design and construction of the Spallation Neutron Source (SNS) is presented. Key facility performance parameters are summarized and plans for initial operation are described. Early efforts produced a conceptual design in 1997; the project itself was initiated in 1999, with the official groundbreaking taking place in December of 1999. As of April 2005 building construction was complete and the overall project was more than 90% complete. The design of the target and surrounds are finished and the first target was installed in June 2005. First beam on target is expected in June, 2006. The engineering design of the target region is described. The key systems comprise the mercury target, moderator and reflector assemblies, remote handling systems, utilities and shielding. Through interactions with the 1 GeV proton beam, the target, moderators and reflectors produce short pulse neutrons in thermal energy ranges, which are transported to a variety of neutron scattering instruments. The mercury target module itself is described in more detail. Materials issues are expected to govern the overall lifetime and have influenced the design, fabrication and planned operation. A wide range of materials research and development has been carried out to provide experimental data and analyses to ensure the satisfactory performance of the target and to set initial design conditions. Materials R and D concentrated mainly on cavitation erosion, radiation effects, and mercury compatibility issues, including investigations of the mechanical properties during exposure to mercury. Questions that would require future materials research are discussed

  2. Energy efficient hotspot-targeted embedded liquid cooling of electronics

    International Nuclear Information System (INIS)

    Sharma, Chander Shekhar; Tiwari, Manish K.; Zimmermann, Severin; Brunschwiler, Thomas; Schlottig, Gerd; Michel, Bruno; Poulikakos, Dimos

    2015-01-01

    Highlights: • We present a novel concept for hotspot-targeted, energy efficient ELC for electronic chips. • Microchannel throttling zones distribute flow optimally without any external control. • Design is optimized for highly non-uniform multicore chip heat flux maps. • Optimized design minimizes chip temperature non-uniformity. • This is achieved with pumping power consumption less than 1% of total chip power. - Abstract: Large data centers today already account for nearly 1.31% of total electricity consumption with cooling responsible for roughly 33% of that energy consumption. This energy intensive cooling problem is exacerbated by the presence of hotspots in multicore microprocessors due to excess coolant flow requirement for thermal management. Here we present a novel liquid-cooling concept, for targeted, energy efficient cooling of hotspots through passively optimized microchannel structures etched into the backside of a chip (embedded liquid cooling or ELC architecture). We adopt an experimentally validated and computationally efficient modeling approach to predict the performance of our hotspot-targeted ELC design. The design is optimized for exemplar non-uniform chip power maps using Response Surface Methodology (RSM). For industrially acceptable limits of approximately 0.4 bar (40 kPa) on pressure drop and one percent of total chip power on pumping power, the optimized designs are computationally evaluated against a base, standard ELC design with uniform channel widths and uniform flow distribution. For an average steady-state heat flux of 150 W/cm 2 in core areas (hotspots) and 20 W/cm 2 over remaining chip area (background), the optimized design reduces the maximum chip temperature non-uniformity by 61% to 3.7 °C. For a higher average, steady-state hotspot heat flux of 300 W/cm 2 , the maximum temperature non-uniformity is reduced by 54% to 8.7 °C. It is shown that the base design requires a prohibitively high level of pumping power (about

  3. Defining System Requirements: a critical assessment of the Niam conceptual design procedure

    Directory of Open Access Journals (Sweden)

    Peta Darke

    1995-05-01

    Full Text Available Requirements definition is a fundamental activity within information systems development. Social and organisational issues are at the centre of many of the problems experienced during the development and implementation of information systems, and these need to be explored during requirements definition. The NIAM Conceptual Schema Design Procedure (CSDP is a method for identifying and describing information requirements using fact types. This paper discusses some limitations of the information requirements definition step of the CSDP which result from its lack of focus on the socio-organisational dimension of information systems development. Four different approaches to exploring the socio-organisational contexts of systems are discussed. It is proposed that one of these, viewpoint development, be incorporated into the NIAM CSDP to provide a means of exploring and understanding a system's socio organisational context and to ensure that contextual information is a major input to the requirements definition process. This results in an enhanced design procedure. Future and current research areas are identified.

  4. Designing the nanoparticle-biomolecule interface for "targeting and therapeutic delivery".

    Science.gov (United States)

    Mahon, Eugene; Salvati, Anna; Baldelli Bombelli, Francesca; Lynch, Iseult; Dawson, Kenneth A

    2012-07-20

    The endogenous transport mechanisms which occur in living organisms have evolved to allow selective transport and processing operate on a scale of tens of nanometers. This presents the possibility of unprecedented access for engineered nanoscale materials to organs and sub-cellular locations, materials which may in principle be targeted to precise locations for diagnostic or therapeutic gain. For this reason, nano-architectures could represent a truly radical departure as delivery agents for drugs, genes and therapies to treat a host of diseases. Thus, for active targeting, unlike the case of small molecular drugs where molecular structure has evolved to promote higher physiochemical affinity to specific sites, one aims to exploit these energy dependant endogenous processes. Many active targeting strategies have been developed, but despite this truly remarkable potential, in applications they have met with mixed success to date. This situation may have more to do with our current understanding and integration of knowledge across disciplines, than any intrinsic limitation on the vision itself. In this review article we suggest that much more fundamental and detailed control of the nanoparticle-biomolecule interface is required for sustained and general success in this field. In the simplest manifestation, pristine nanoparticles in biological fluids act as a scaffold for biomolecules, which adsorb rapidly to the nanoparticles' surface, conferring a new biological identity to the nanoparticles. It is this nanoparticle-biomolecule interface that is 'read' and acted upon by the cellular machinery. Moreover, where targeting moieties are grafted onto nanoparticles, they may not retain their function as a result of poor orientation, and structural or conformational disruption. Further surface adsorption of biomolecules from the surrounding environment i.e. the formation of a biomolecule corona may also obscure specific surface recognition. To transfer the remarkable

  5. Inertial fusion reactor designs

    International Nuclear Information System (INIS)

    Meier, W.

    1987-01-01

    In this paper, a variety of reactor concepts are proposed. One of the prime concerns is dealing with the x-rays and debris that are emitted by the target. Internal neutron shielding can reduce radiation damage and activation, leading to longer life systems, reduced activation and fewer safety concerns. There is really no consensus on what the best reactor concept is at this point. There has been virtually no chamber technology development to date. This is the flip side of the coin of the separability of the target physics and the reactor design. Since reactor technology has not been required to do target experiments, it's not being developed. Economic analysis of conceptual designs indicates that ICF can be economically competitive with magnetic fusion, fission and fossil plants

  6. OptMAVEn--a new framework for the de novo design of antibody variable region models targeting specific antigen epitopes.

    Directory of Open Access Journals (Sweden)

    Tong Li

    Full Text Available Antibody-based therapeutics provides novel and efficacious treatments for a number of diseases. Traditional experimental approaches for designing therapeutic antibodies rely on raising antibodies against a target antigen in an immunized animal or directed evolution of antibodies with low affinity for the desired antigen. However, these methods remain time consuming, cannot target a specific epitope and do not lead to broad design principles informing other studies. Computational design methods can overcome some of these limitations by using biophysics models to rationally select antibody parts that maximize affinity for a target antigen epitope. This has been addressed to some extend by OptCDR for the design of complementary determining regions. Here, we extend this earlier contribution by addressing the de novo design of a model of the entire antibody variable region against a given antigen epitope while safeguarding for immunogenicity (Optimal Method for Antibody Variable region Engineering, OptMAVEn. OptMAVEn simulates in silico the in vivo steps of antibody generation and evolution, and is capable of capturing the critical structural features responsible for affinity maturation of antibodies. In addition, a humanization procedure was developed and incorporated into OptMAVEn to minimize the potential immunogenicity of the designed antibody models. As case studies, OptMAVEn was applied to design models of neutralizing antibodies targeting influenza hemagglutinin and HIV gp120. For both HA and gp120, novel computational antibody models with numerous interactions with their target epitopes were generated. The observed rates of mutations and types of amino acid changes during in silico affinity maturation are consistent with what has been observed during in vivo affinity maturation. The results demonstrate that OptMAVEn can efficiently generate diverse computational antibody models with both optimized binding affinity to antigens and reduced

  7. Targeting accuracy of single-isocenter intensity-modulated radiosurgery for multiple lesions

    Energy Technology Data Exchange (ETDEWEB)

    Calvo-Ortega, J.F., E-mail: jfcdrr@yahoo.es; Pozo, M.; Moragues, S.; Casals, J.

    2017-07-01

    To investigate the targeting accuracy of intensity-modulated SRS (IMRS) plans designed to simultaneously treat multiple brain metastases with a single isocenter. A home-made acrylic phantom able to support a film (EBT3) in its coronal plane was used. The phantom was CT scanned and three coplanar small targets (a central and two peripheral) were outlined in the Eclipse system. Peripheral targets were 6 cm apart from the central one. A reference IMRS plan was designed to simultaneously treat the three targets, but only a single isocenter located at the center of the central target was used. After positioning the phantom on the linac using the room lasers, a CBCT scan was acquired and the reference plan were mapped on it, by placing the planned isocenter at the intersection of the landmarks used in the film showing the linac isocenter. The mapped plan was then recalculated and delivered. The film dose distribution was derived using a cloud computing application ( (www.radiochromic.com)) that uses a triple-channel dosimetry algorithm. Comparison of dose distributions using the gamma index (5%/1 mm) were performed over a 5 × 5 cm{sup 2} region centered over each target. 2D shifts required to get the best gamma passing rates on the peripheral target regions were compared with the reported ones for the central target. The experiment was repeated ten times in different sessions. Average 2D shifts required to achieve optimal gamma passing rates (99%, 97%, 99%) were 0.7 mm (SD: 0.3 mm), 0.8 mm (SD: 0.4 mm) and 0.8 mm (SD: 0.3 mm), for the central and the two peripheral targets, respectively. No statistical differences (p > 0.05) were found for targeting accuracy between the central and the two peripheral targets. The study revealed a targeting accuracy within 1 mm for off-isocenter targets within 6 cm of the linac isocenter, when a single-isocenter IMRS plan is designed.

  8. Low enrichment Mo-99 target development program at ANSTO

    International Nuclear Information System (INIS)

    Donlevy, Therese M.; Anderson, Peter J.; Beattie, David; Braddock, Ben; Fulton, Scott; Godfrey, Robert; Law, Russell; McNiven, Scott; Sirkka, Pertti; Storr, Greg; Wassink, David; Wong, Alan; Yeoh, Guan

    2002-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO, formerly AAEC) has been producing fission product Mo-99 in HIFAR, from the irradiation of Low Enrichment Uranium (LEU) UO 2 targets, for nearly thirty years. Over this period, the U-235 enrichment has been increased in stages, from natural to 1.8% to 2.2%. The decision to provide Australia with a replacement research reactor (RRR) for HIFAR has created an ideal opportunity to review and improve the current Mo-99 production process from target design through to chemical processing and waste management options. ANSTO has entered into a collaboration with Argonne National Laboratory (RERTR) to develop a target using uranium metal foil with U-235 enrichment of less than 20% The initial focus has been to demonstrate use of LEU foil targets in HIFAR, using existing irradiation methodology. The current effort focussed on designing a target assembly with optimised thermohydraulic characteristics to accommodate larger LEU foils to meet Mo-99 production needs. The ultimate goal is to produce an LEU target suitable for use in the Replacement Research Reactor when it is commissioned in 2005. This paper reports our activities on: - The regulatory approval processes required in order to undertake irradiation of this new target; -Supporting calculations (neutronics, computational fluid dynamics) for safety submission; - Design challenges and changes to prototype irradiation; - Trial irradiation of LEU foil target in HIFAR; - Future target and rig development program at ANSTO. (author)

  9. Monte-Carlo simulation of a high-resolution inverse geometry spectrometer on the SNS. Long Wavelength Target Station

    International Nuclear Information System (INIS)

    Bordallo, H.N.; Herwig, K.W.

    2001-01-01

    Using the Monte-Carlo simulation program McStas, we present the design principles of the proposed high-resolution inverse geometry spectrometer on the SNS-Long Wavelength Target Station (LWTS). The LWTS will provide the high flux of long wavelength neutrons at the requisite pulse rate required by the spectrometer design. The resolution of this spectrometer lies between that routinely achieved by spin echo techniques and the design goal of the high power target station backscattering spectrometer. Covering this niche in energy resolution will allow systematic studies over the large dynamic range required by many disciplines, such as protein dynamics. (author)

  10. Targeted repression of AXIN2 and MYC gene expression using designer TALEs

    International Nuclear Information System (INIS)

    Rennoll, Sherri A.; Scott, Samantha A.; Yochum, Gregory S.

    2014-01-01

    Highlights: • We designed TALE–SID fusion proteins to target AXIN2 and MYC. • TALE–SIDs bound the chromosomal AXIN2 and MYC genes and repressed their expression. • TALE–SIDs repress β-catenin S45F -dependent AXIN2 and MYC transcription. - Abstract: Designer TALEs (dTALEs) are chimeric transcription factors that can be engineered to regulate gene expression in mammalian cells. Whether dTALEs can block gene transcription downstream of signal transduction cascades, however, has yet to be fully explored. Here we tested whether dTALEs can be used to target genes whose expression is controlled by Wnt/β-catenin signaling. TALE DNA binding domains were engineered to recognize sequences adjacent to Wnt responsive enhancer elements (WREs) that control expression of axis inhibition protein 2 (AXIN2) and c-MYC (MYC). These custom DNA binding domains were linked to the mSin3A interaction domain (SID) to generate TALE–SID chimeric repressors. The TALE–SIDs repressed luciferase reporter activity, bound their genomic target sites, and repressed AXIN2 and MYC expression in HEK293 cells. We generated a novel HEK293 cell line to determine whether the TALE–SIDs could function downstream of oncogenic Wnt/β-catenin signaling. Treating these cells with doxycycline and tamoxifen stimulates nuclear accumulation of a stabilized form of β-catenin found in a subset of colorectal cancers. The TALE–SIDs repressed AXIN2 and MYC expression in these cells, which suggests that dTALEs could offer an effective therapeutic strategy for the treatment of colorectal cancer

  11. Targeted repression of AXIN2 and MYC gene expression using designer TALEs

    Energy Technology Data Exchange (ETDEWEB)

    Rennoll, Sherri A.; Scott, Samantha A.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    2014-04-18

    Highlights: • We designed TALE–SID fusion proteins to target AXIN2 and MYC. • TALE–SIDs bound the chromosomal AXIN2 and MYC genes and repressed their expression. • TALE–SIDs repress β-catenin{sup S45F}-dependent AXIN2 and MYC transcription. - Abstract: Designer TALEs (dTALEs) are chimeric transcription factors that can be engineered to regulate gene expression in mammalian cells. Whether dTALEs can block gene transcription downstream of signal transduction cascades, however, has yet to be fully explored. Here we tested whether dTALEs can be used to target genes whose expression is controlled by Wnt/β-catenin signaling. TALE DNA binding domains were engineered to recognize sequences adjacent to Wnt responsive enhancer elements (WREs) that control expression of axis inhibition protein 2 (AXIN2) and c-MYC (MYC). These custom DNA binding domains were linked to the mSin3A interaction domain (SID) to generate TALE–SID chimeric repressors. The TALE–SIDs repressed luciferase reporter activity, bound their genomic target sites, and repressed AXIN2 and MYC expression in HEK293 cells. We generated a novel HEK293 cell line to determine whether the TALE–SIDs could function downstream of oncogenic Wnt/β-catenin signaling. Treating these cells with doxycycline and tamoxifen stimulates nuclear accumulation of a stabilized form of β-catenin found in a subset of colorectal cancers. The TALE–SIDs repressed AXIN2 and MYC expression in these cells, which suggests that dTALEs could offer an effective therapeutic strategy for the treatment of colorectal cancer.

  12. Specification of Behavioural Requirements within Compositional Multi-Agent System Design

    OpenAIRE

    Herlea, D.E.; Jonker, C.M.; Treur, J.; Wijngaards, N.J.E.

    1999-01-01

    In this paper it is shown how informal and formal specification of behavioural requirements and scenarios for agents and multi-agent systems can be integrated within multi-agent system design. In particular, it is addressed how a compositional

  13. IDENTIFICATION OF MEASUREMENT ITEMS OF DESIGN REQUIREMENTS FOR LEAN AND AGILE SUPPLY CHAIN-CONFIRMATORY FACTOR ANALYSIS

    Directory of Open Access Journals (Sweden)

    D.Venkata Ramana

    2013-06-01

    Full Text Available This study examines the consistency approaches by confirmatory factor analysis that determines the construct validity, convergent validity, construct reliability and internal consistency of the items of strategic design requirements. The design requirements includes use of information technology, sourcing procedures, new product development, flexible manufacturing functions and demand management supply chain net work design, management, commitment and inventory management policies among manufacturers of volatile and unforeseeable products in Andhraadesh, India. This study suggested that the seven factor model with 20 items of the leagile supply chain design requirements had a good fit. Further, the study showed a val id and reliable measurement to identify critical items among the design requirements of leagile supply chains.

  14. Thermal-hydraulic design of cross-flow type mercury target for JAERI/KEK joint project

    International Nuclear Information System (INIS)

    Kaminaga, Masanori; Terada, Atsuhiko; Haga, Katsuhiro; Kinoshita, Hidetaka; Hino, Ryutaro

    2001-01-01

    The Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) are promoting a plan to construct a neutron scattering facility. In the facility, 1 MW pulsed proton beam from a high-intensity proton accelerator will be injected into a mercury target in order to produce high-intensity neutrons for use in the fields of life and material sciences. In the spallation mercury target system design, an integrated structure of target vessel with a safety hull was proposed to ensure the safety and to collect mercury in case of mercury leakage caused by the target beam window failure. The inner structure arrangement of the mercury target vessel was determined based on the thermal hydraulic analytical results of 3 GeV, 1 MW proton beam injection. The safety hull consists of vessels for helium and heavy water. The vessels for mercury target, helium and heavy water will be connected each other by reinforcement ribs mounted on the surface of each vessel. From the structural analyses, the structural integrity of the safety hull would be maintained under the static pressure of 0.5 MPa. (author)

  15. Targeting the dopamine D3 receptor: an overview of drug design strategies.

    Science.gov (United States)

    Cortés, Antoni; Moreno, Estefanía; Rodríguez-Ruiz, Mar; Canela, Enric I; Casadó, Vicent

    2016-07-01

    Dopamine is a neurotransmitter widely distributed in both the periphery and the central nervous system (CNS). Its physiological effects are mediated by five closely related G protein-coupled receptors (GPCRs) that are divided into two major subclasses: the D1-like (D1, D5) and the D2-like (D2, D3, D4) receptors. D3 receptors (D3Rs) have the highest density in the limbic areas of the brain, which are associated with cognitive and emotional functions. These receptors are therefore attractive targets for therapeutic management. This review summarizes the functional and pharmacological characteristics of D3Rs, including the design and clinical relevance of full agonists, partial agonists and antagonists, as well as the capacity of these receptors to form active homodimers, heterodimers or higher order receptor complexes as pharmacological targets in several neurological and neurodegenerative disorders. The high sequence homology between D3R and the D2-type challenges the development of D3R-selective compounds. The design of new D3R-preferential ligands with improved physicochemical properties should provide a better pharmacokinetic/bioavailability profile and lesser toxicity than is found with existing D3R ligands. It is also essential to optimize D3R affinity and, especially, D3R vs. D2-type binding and functional selectivity ratios. Developing allosteric and bitopic ligands should help to improve the D3R selectivity of these drugs. As most evidence points to the ability of GPCRs to form homomers and heteromers, the most promising therapeutic strategy in the future is likely to involve the application of heteromer-selective drugs. These selective ligands would display different affinities for a given receptor depending on the receptor partners within the heteromer. Therefore, designing novel compounds that specifically target and modulate D1R-D3R heteromers would be an interesting approach for the treatment of levodopa (L-DOPA)-induced dyskinesias.

  16. The Design of New HIV-IN Tethered Bifunctional Inhibitors using Multiple Microdomain Targeted Docking.

    Science.gov (United States)

    Ciubotaru, Mihai; Musat, Mihaela Georgiana; Surleac, Marius; Ionita, Elena; Petrescu, Andrei Jose; Abele, Edgars; Abele, Ramona

    2018-04-05

    Currently used antiretroviral HIV therapy drugs exclusively target critical groups in the enzymes essential for the viral life cycle. Increased mutagenesis of their genes, changes these viral enzymes which once mutated can evade therapeutic targeting, effects which confer drug resistance. To circumvent this, our review addresses a strategy to design and derive HIV-Integrase (HIV-IN) inhibitors which simultaneously target two IN functional domains, rendering it inactive even if the enzyme accumulates many mutations. First we review the enzymatic role of IN to insert the copied viral DNA into a chromosome of the host T lymphocyte, highlighting its main functional and structural features to be subjected to inhibitory action. From a functional and structural perspective we present all classes of HIV-IN inhibitors with their most representative candidates. For each chosen compound we also explain its mechanism of IN inhibition. We use the recently resolved cryo EM IN tetramer intasome DNA complex [1] onto which we dock various reference IN inhibitory chemical scaffolds such as to target adjacent functional IN domains. Pairing compounds with complementary activity, which dock in the vicinity of a IN structural microdomain, we design bifunctional new drugs which may not only be more resilient to IN mutations but also may be more potent inhibitors than their original counterparts. In the end of our review we propose synthesis pathways to link such paired compounds with enhanced synergistic IN inhibitory effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Package design and nutritional profile of foods targeted at children in supermarkets in Montevideo, Uruguay

    Directory of Open Access Journals (Sweden)

    Ana Giménez

    Full Text Available Abstract: Marketing of unhealthy products has been identified as one of the main characteristics of the food environment that negatively affects children’s eating patterns. Restrictions on advertising of unhealthy foods to children have already been imposed in different countries. However, marketing strategies are not limited to broadcast and digital advertising, but also include package design. In this context, the current study aimed to describe the food products targeted at children and sold in supermarkets in Montevideo, Uruguay, in terms of package design and nutrient profile. Two supermarkets in Montevideo were selected for data collection. In each supermarket, all products targeted at children were identified. Products were analyzed in terms of package design and nutritional profile, considering the Pan American Health Organization Nutrient Profile Model. A total of 180 unique products were identified, which included a wide range of product categories. The great majority of the products corresponded to ultra-processed products with excessive amounts of sodium, free sugars, total fat, saturated fat, and/or trans fat, which are not recommended for frequent consumption. Several marketing strategies were identified in the design of packages to attract children’s attention and drive their preferences. The most common strategies were the inclusion of cartoon characters, bright colors, childish lettering, and a wide range of claims related to health and nutrition, as well as the products’ sensory and hedonic characteristics. The study’s findings provide additional evidence on the need to regulate packaging of products targeted at children.

  18. Supplmental design requirements document enhanced radioactive and mixed waste storage: Phase 5, Project W-113

    International Nuclear Information System (INIS)

    Ocampo, V.P.

    1994-11-01

    This Supplemental Design Requirements Document (SDRD) is used to communicate Project W-113 specific plant design information from Westinghouse Hanford Company (WHC) to the United States Department of Energy (DOE) and the cognizant Architect Engineer (A/E). The SDRD is prepared after the completion of the project Conceptual Design report (CDR) and prior to the initiation of definitive design. Information in the SDRD serves two purposes: to convey design requirements that are too detailed for inclusion in the Functional Design Criteria (FDC) report and to serve as a means of change control for design commitments in the Title I and Title II design. The Solid Waste Retrieval Project (W-113) SDRD has been restructured from the equipment based outline used in previous SDRDs to a functional systems outline. This was done to facilitate identification of deficiencies in the information provided in the initial draft SDRD and aid design confirmation. The format and content of this SDRD adhere as closely as practicable to the requirements of WHC-CM-6-1, Standard Engineering Practices for Functional Design Criteria

  19. Lead Coolant Test Facility Technical and Functional Requirements, Conceptual Design, Cost and Construction Schedule

    International Nuclear Information System (INIS)

    Soli T. Khericha

    2006-01-01

    This report presents preliminary technical and functional requirements (T and FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic. Based on review of current world lead or lead-bismuth test facilities and research need listed in the Generation IV Roadmap, five broad areas of requirements of basis are identified: Develop and Demonstrate Prototype Lead/Lead-Bismuth Liquid Metal Flow Loop Develop and Demonstrate Feasibility of Submerged Heat Exchanger Develop and Demonstrate Open-lattice Flow in Electrically Heated Core Develop and Demonstrate Chemistry Control Demonstrate Safe Operation and Provision for Future Testing. These five broad areas are divided into twenty-one (21) specific requirements ranging from coolant temperature to design lifetime. An overview of project engineering requirements, design requirements, QA and environmental requirements are also presented. The purpose of this T and FRs is to focus the lead fast reactor community domestically on the requirements for the next unique state of the art test facility. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 420 C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M. It is also estimated that the facility will require two years to be constructed and ready for operation

  20. National Ignition Facility sub-system design requirements integrated timing system SSDR 1.5.3

    International Nuclear Information System (INIS)

    Wiedwald, J.; Van Aersau, P.; Bliss, E.

    1996-01-01

    This System Design Requirement document establishes the performance, design, development, and test requirements for the Integrated Timing System, WBS 1.5.3 which is part of the NIF Integrated Computer Control System (ICCS). The Integrated Timing System provides all temporally-critical hardware triggers to components and equipment in other NIF systems

  1. Evolution of general design requirements for french pressurized water reactors

    International Nuclear Information System (INIS)

    Gros, G.; Jalouneix, J.; Rollinger, F.

    1988-10-01

    The design of French pressurized water reactors is based first on deterministic principles, using the well-known defense in depth concept. This safety approach, basically reflected current American practice at that time, which consisted notably in designing engineered safeguard systems capable of limiting the consequences of accidents assumed to be credible despite the preventive measures taken. Further reflections have led to complete this approach, resulting in modifications to regulatory practice, mainly related to better practical assimilation of the problems arising during plant unit operation and reactor control after an accident and to the determination to enhance the overall consistency of the safety approach. As regards system redundancy, it should be noted that common cause failures can result in the total loss of a redundant system. System redundancy aspects will be dealt with in Chapter 2. As regards study of design basis accidents, attention was focused on the human intervention stage following automatic activation of protection and safeguard systems. This resulted, for all plant units, in the revision of operating procedures, accompanied by examination of the means required for their implementation. These subjects will be discussed in Chapter 3. Finally, as regards equipment classification, the range of equipment subjected to particular requirements, formerly limited to design basis safety classified equipment, was enlarged to include important for safety equipment. This subject will be dealt with in Chapter 5

  2. Medicinal electronomics bricolage design of hypoxia-targeting antineoplastic drugs and invention of boron tracedrugs as innovative future-architectural drugs.

    Science.gov (United States)

    Hori, Hitoshi; Uto, Yoshihiro; Nakata, Eiji

    2010-09-01

    We describe herein for the first time our medicinal electronomics bricolage design of hypoxia-targeting antineoplastic drugs and boron tracedrugs as newly emerging drug classes. A new area of antineoplastic drugs and treatments has recently focused on neoplastic cells of the tumor environment/microenvironment involving accessory cells. This tumor hypoxic environment is now considered as a major factor that influences not only the response to antineoplastic therapies but also the potential for malignant progression and metastasis. We review our medicinal electronomics bricolage design of hypoxia-targeting drugs, antiangiogenic hypoxic cell radiosensitizers, sugar-hybrid hypoxic cell radiosensitizers, and hypoxia-targeting 10B delivery agents, in which we design drug candidates based on their electronic structures obtained by molecular orbital calculations, not based solely on pharmacophore development. These drugs include an antiangiogenic hypoxic cell radiosensitizer TX-2036, a sugar-hybrid hypoxic cell radiosensitizer TX-2244, new hypoxia-targeting indoleamine 2,3-dioxygenase (IDO) inhibitors, and a hypoxia-targeting BNCT agent, BSH (sodium borocaptate-10B)-hypoxic cytotoxin tirapazamine (TPZ) hybrid drug TX-2100. We then discuss the concept of boron tracedrugs as a new drug class having broad potential in many areas.

  3. Proton-beam window design for a transmutation facility operating with a liquid lead target

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, C.; Lypsch, F.; Lizana, P. [Institute for Safety Research and Reactor Technology, Juelich (Germany)] [and others

    1995-10-01

    The proton beam target of an accelerator-driven transmutation facility can be designed as a vertical liquid lead column. To prevent lead vapor from entering the accelerator vacuum, a proton-beam window has to separate the area above the lead surface from the accelerator tube. Two radiation-cooled design alternatives have been investigated which should withstand a proton beam of 1.6 GeV and 25 mA. Temperature calculations based on energy deposition calculations with the Monte Carlo code HETC, stability analysis and spallation-induced damage calculations have been performed showing the applicability of both designs.

  4. Preconceptual design of a Long-Pulse Spallation Source (LPSS) at the LANSCE Facility: Target system, facility, and material handling considerations

    International Nuclear Information System (INIS)

    Sommer, W.F.

    1995-12-01

    This report provides a summary of a preconceptual design study for the proposed Long-Pulse Spallation. Source (LPSS) at the Los Alamos Neutron Science Center (LANSCE). The LPSS will use a 0.8-MW proton beam to produce neutrons from a tungsten target. This study focuses on the design of the target station and changes to the existing building that would be made to accommodate the LPSS. The LPSS will provide fifteen flight paths to neutron scattering instruments. In addition, options for generating ultracold neutrons, pions, and muons will be available. Flight-energy, forward-scattered neutrons on the downstream side of the target will also be available for autoradiography studies. A Target Test Bed (TTB) is also proposed for full-beam tests of component materials and advanced spallation neutron sources. The design allows for separation of the experiment hall from the beam line, target, and flight paths. The target and moderator systems and the systems/components to be tested in the TTB will be emplaced and removed separately by remotely operated, shielded equipment. Irradiated materials will be transported to a hot cell adjacent to the target chamber for testing by remotely operated instruments. These tests will provide information about how materials properties are affected by proton and neutron beams

  5. A Study on Control System Design Based on ARM Sea Target Search System

    Directory of Open Access Journals (Sweden)

    Lin Xinwei

    2015-01-01

    Full Text Available The infrared detector is used for sea target search, which can assist humans in searching suspicious objects at night and under poor visibility conditions, and improving search efficiency. This paper applies for interrupt and stack technology to solve problems of data losses that may be caused by one-to-many multi-byte protocol communication. Meanwhile, this paper implements hardware and software design of the system based on industrial-grade ARM control chip and uC / OS-II embedded operating system. The control system in the sea target search system is an information exchange and control center of the whole system, which solves the problem of controlling over the shooting angle of the infrared detector in the process of target search. After testing, the control system operates stably and reliably, and realizes rotation and control functions of the pan/tilt platform during automatic search, manual search and track.

  6. Fixed target flammable gas upgrades

    International Nuclear Information System (INIS)

    Schmitt, R.; Squires, B.; Gasteyer, T.; Richardson, R.

    1996-12-01

    In the past, fixed target flammable gas systems were not supported in an organized fashion. The Research Division, Mechanical Support Department began to support these gas systems for the 1995 run. This technical memo describes the new approach being used to supply chamber gasses to fixed target experiments at Fermilab. It describes the engineering design features, system safety, system documentation and performance results. Gas mixtures provide the medium for electron detection in proportional and drift chambers. Usually a mixture of a noble gas and a polyatomic quenching gas is used. Sometimes a small amount of electronegative gas is added as well. The mixture required is a function of the specific chamber design, including working voltage, gain requirements, high rate capability, aging and others. For the 1995 fixed target run all the experiments requested once through gas systems. We obtained a summary of problems from the 1990 fixed target run and made a summary of the operations logbook entries from the 1991 run. These summaries primarily include problems involving flammable gas alarms, but also include incidents where Operations was involved or informed. Usually contamination issues were dealt with by the experimenters. The summaries are attached. We discussed past operational issues with the experimenters involved. There were numerous incidents of drift chamber failure where contaminated gas was suspect. However analyses of the gas at the time usually did not show any particular problems. This could have been because the analysis did not look for the troublesome component, the contaminant was concentrated in the gas over the liquid and vented before the sample was taken, or that contaminants were drawn into the chambers directly through leaks or sub-atmospheric pressures. After some study we were unable to determine specific causes of past contamination problems, although in argon-ethane systems the problems were due to the ethane only

  7. Design requirements, operation and maintenance of gas-cooled reactors

    International Nuclear Information System (INIS)

    1989-06-01

    At the invitation of the Government of the USA the Technical Committee Meeting on Design Requirements, Operation and Maintenance of Gas-Cooled Reactors, was held in San Diego on September 21-23, 1988, in tandem with the GCRA Conference. Both meetings attracted a large contingent of foreign participants. Approximately 100 delegates from 18 different countries participated in the Technical Committee meeting. The meeting was divided into three sessions: Gas-cooled reactor user requirement (8 papers); Gas-cooled reactor improvements to facilitate operation and maintenance (10 papers) and Safety, environmental impacts and waste disposal (5 papers). A separate abstract was prepared for each of these 23 papers. Refs, figs and tabs

  8. Direct molecular mimicry enables off-target cardiovascular toxicity by an enhanced affinity TCR designed for cancer immunotherapy.

    Science.gov (United States)

    Raman, Marine C C; Rizkallah, Pierre J; Simmons, Ruth; Donnellan, Zoe; Dukes, Joseph; Bossi, Giovanna; Le Provost, Gabrielle S; Todorov, Penio; Baston, Emma; Hickman, Emma; Mahon, Tara; Hassan, Namir; Vuidepot, Annelise; Sami, Malkit; Cole, David K; Jakobsen, Bent K

    2016-01-13

    Natural T-cell responses generally lack the potency to eradicate cancer. Enhanced affinity T-cell receptors (TCRs) provide an ideal approach to target cancer cells, with emerging clinical data showing significant promise. Nevertheless, the risk of off target reactivity remains a key concern, as exemplified in a recent clinical report describing fatal cardiac toxicity, following administration of MAGE-A3 specific TCR-engineered T-cells, mediated through cross-reactivity with an unrelated epitope from the Titin protein presented on cardiac tissue. Here, we investigated the structural mechanism enabling TCR cross-recognition of MAGE-A3 and Titin, and applied the resulting data to rationally design mutants with improved antigen discrimination, providing a proof-of-concept strategy for altering the fine specificity of a TCR towards an intended target antigen. This study represents the first example of direct molecular mimicry leading to clinically relevant fatal toxicity, mediated by a modified enhanced affinity TCR designed for cancer immunotherapy. Furthermore, these data demonstrate that self-antigens that are expressed at high levels on healthy tissue should be treated with extreme caution when designing immuno-therapeutics.

  9. Requirements for High Level Models Supporting Design Space Exploration in Model-based Systems Engineering

    OpenAIRE

    Haveman, Steven P.; Bonnema, G. Maarten

    2013-01-01

    Most formal models are used in detailed design and focus on a single domain. Few effective approaches exist that can effectively tie these lower level models to a high level system model during design space exploration. This complicates the validation of high level system requirements during detailed design. In this paper, we define requirements for a high level model that is firstly driven by key systems engineering challenges present in industry and secondly connects to several formal and d...

  10. Deep Extragalactic VIsible Legacy Survey (DEVILS): Motivation, Design and Target Catalogue

    Science.gov (United States)

    Davies, L. J. M.; Robotham, A. S. G.; Driver, S. P.; Lagos, C. P.; Cortese, L.; Mannering, E.; Foster, C.; Lidman, C.; Hashemizadeh, A.; Koushan, S.; O'Toole, S.; Baldry, I. K.; Bilicki, M.; Bland-Hawthorn, J.; Bremer, M. N.; Brown, M. J. I.; Bryant, J. J.; Catinella, B.; Croom, S. M.; Grootes, M. W.; Holwerda, B. W.; Jarvis, M. J.; Maddox, N.; Meyer, M.; Moffett, A. J.; Phillipps, S.; Taylor, E. N.; Windhorst, R. A.; Wolf, C.

    2018-06-01

    The Deep Extragalactic VIsible Legacy Survey (DEVILS) is a large spectroscopic campaign at the Anglo-Australian Telescope (AAT) aimed at bridging the near and distant Universe by producing the highest completeness survey of galaxies and groups at intermediate redshifts (0.3 < z < 1.0). Our sample consists of ˜60,000 galaxies to Y<21.2 mag, over ˜6 deg2 in three well-studied deep extragalactic fields (Cosmic Origins Survey field, COSMOS, Extended Chandra Deep Field South, ECDFS and the X-ray Multi-Mirror Mission Large-Scale Structure region, XMM-LSS - all Large Synoptic Survey Telescope deep-drill fields). This paper presents the broad experimental design of DEVILS. Our target sample has been selected from deep Visible and Infrared Survey Telescope for Astronomy (VISTA) Y-band imaging (VISTA Deep Extragalactic Observations, VIDEO and UltraVISTA), with photometry measured by PROFOUND. Photometric star/galaxy separation is done on the basis of NIR colours, and has been validated by visual inspection. To maximise our observing efficiency for faint targets we employ a redshift feedback strategy, which continually updates our target lists, feeding back the results from the previous night's observations. We also present an overview of the initial spectroscopic observations undertaken in late 2017 and early 2018.

  11. Nuclear data for fission reactor core design and safety analysis: Requirements and status of accuracy of nuclear data

    International Nuclear Information System (INIS)

    Rowlands, J.L.

    1984-01-01

    The types of nuclear data required for fission reactor design and safety analysis, and the ways in which the data are represented and approximated for use in reactor calculations, are summarised first. The relative importance of different items of nuclear data in the prediction of reactor parameters is described and ways of investigating the accuracy of these data by evaluating related integral measurements are discussed. The use of sensitivity analysis, together with estimates of the uncertainties in nuclear data and relevant integral measurements, in assessing the accuracy of prediction of reactor parameters is described. The inverse procedure for deciding nuclear data requirements from the target accuracies for prediction of reactor parameters follows on from this. The need for assessments of the uncertainties in nuclear data evaluations and the form of the uncertainty information is discussed. The status of the accuracies of predictions and nuclear data requirements are then summarised. The reactor parameters considered include: (a) Criticality conditions, conversion and burn-up effects. (b) Energy production and deposition, decay heating, irradiation damage, dosimetry and induced radioactivity. (c) Kinetics characteristics and control, including temperature, power and coolant density coefficients, delayed neutrons and control absorbers. (author)

  12. Design and Demonstration of a Material-Plasma Exposure Target Station for Neutron Irradiated Samples

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Juergen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Aaron, A. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bell, Gary L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burgess, Thomas W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ellis, Ronald James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giuliano, D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kiggans, James O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lessard, Timothy L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ohriner, Evan Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Perkins, Dale E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Varma, Venugopal Koikal [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-20

    Fusion energy is the most promising energy source for the future, and one of the most important problems to be solved progressing to a commercial fusion reactor is the identification of plasma-facing materials compatible with the extreme conditions in the fusion reactor environment. The development of plasma–material interaction (PMI) science and the technology of plasma-facing components are key elements in the development of the next step fusion device in the United States, the so-called Fusion Nuclear Science Facility (FNSF). All of these PMI issues and the uncertain impact of the 14-MeV neutron irradiation have been identified in numerous expert panel reports to the fusion community. The 2007 Greenwald report classifies reactor plasma-facing materials (PFCs) and materials as the only Tier 1 issues, requiring a “. . . major extrapolation from the current state of knowledge, need for qualitative improvements and substantial development for both the short and long term.” The Greenwald report goes on to list 19 gaps in understanding and performance related to the plasma–material interface for the technology facilities needed for DEMO-oriented R&D and DEMO itself. Of the 15 major gaps, six (G7, G9, G10, G12, G13) can possibly be addressed with ORNL’s proposal of an advanced Material Plasma Exposure eXperiment. Establishing this mid-scale plasma materials test facility at ORNL is a key element in ORNL’s strategy to secure a leadership role for decades of fusion R&D. That is to say, our end goal is to bring the “signature facility” FNSF home to ORNL. This project is related to the pre-conceptual design of an innovative target station for a future Material–Plasma Exposure eXperiment (MPEX). The target station will be designed to expose candidate fusion reactor plasma-facing materials and components (PFMs and PFCs) to conditions anticipated in fusion reactors, where PFCs will be exposed to dense high-temperature hydrogen plasmas providing steady

  13. A role for fragment-based drug design in developing novel lead compounds for central nervous system targets

    Directory of Open Access Journals (Sweden)

    Michael J. Wasko

    2015-09-01

    Full Text Available Hundreds of millions of U.S. dollars are invested in the research and development of a single drug. Lead compound development is an area ripe for new design strategies. Therapeutic lead candidates have been traditionally found using high-throughput in vitro pharmacologic screening, a costly method for assaying thousands of compounds. This approach has recently been augmented by virtual screening, which employs computer models of the target protein to narrow the search for possible leads. A variant of virtual screening is fragment-based drug design, an emerging in silico lead discovery method that introduces low molecular weight fragments, rather than intact compounds, into the binding pocket of the receptor model. These fragments serve as starting points for growing the lead candidate. Current efforts in virtual fragment-based drug design within central nervous system (CNS targets are reviewed, as is a recent rule-based optimization strategy in which new molecules are generated within a 3D receptor binding pocket using the fragment as a scaffold. This process places special emphasis on creating synthesizable molecules but also exposes computational questions worth addressing. Fragment-based methods provide a viable, relatively low-cost alternative for therapeutic lead discovery and optimization that can be applied to CNS targets to augment current design strategies.

  14. Design requirements and development of an airborne descent path definition algorithm for time navigation

    Science.gov (United States)

    Izumi, K. H.; Thompson, J. L.; Groce, J. L.; Schwab, R. W.

    1986-01-01

    The design requirements for a 4D path definition algorithm are described. These requirements were developed for the NASA ATOPS as an extension of the Local Flow Management/Profile Descent algorithm. They specify the processing flow, functional and data architectures, and system input requirements, and recommended the addition of a broad path revision (reinitialization) function capability. The document also summarizes algorithm design enhancements and the implementation status of the algorithm on an in-house PDP-11/70 computer. Finally, the requirements for the pilot-computer interfaces, the lateral path processor, and guidance and steering function are described.

  15. Designs of contraction nozzle and concave back-wall for IFMIF target

    Energy Technology Data Exchange (ETDEWEB)

    Ida, Mizuho E-mail: ida@ifmif.tokai.jaeri.go.jp; Nakamura, Hideo; Nakamura, Hiroo; Takeuchi, Hiroshi

    2004-02-01

    For the liquid lithium flow target of International Fusion Materials Irradiation Facility (IFMIF), the double reducer (two-step contraction) nozzle with a high-contraction ratio of 10 which generated high-speed uniform jet flows up to 20 m/s was proposed. Multi-dimensional hydraulic analyses were carried out to verify the performance of the proposed nozzle. The analytical results showed that the double reducer nozzle would well generate high-speed uniform flow, while one-step contraction nozzle generated non-uniform flow and resulted in flow thickening at the beam footprint. For the target design, the range of the concave back-wall radius with no lithium boiling due to the centrifugal force and proper component arrangement in the irradiation test cell was determined by the thermal-hydraulic analysis of a free-surface flow. It was verified that the back-wall radius from 0.25 to 10 m was acceptable in the velocity range of 10-20 m/s.

  16. Designs of contraction nozzle and concave back-wall for IFMIF target

    International Nuclear Information System (INIS)

    Ida, Mizuho; Nakamura, Hideo; Nakamura, Hiroo; Takeuchi, Hiroshi

    2004-01-01

    For the liquid lithium flow target of International Fusion Materials Irradiation Facility (IFMIF), the double reducer (two-step contraction) nozzle with a high-contraction ratio of 10 which generated high-speed uniform jet flows up to 20 m/s was proposed. Multi-dimensional hydraulic analyses were carried out to verify the performance of the proposed nozzle. The analytical results showed that the double reducer nozzle would well generate high-speed uniform flow, while one-step contraction nozzle generated non-uniform flow and resulted in flow thickening at the beam footprint. For the target design, the range of the concave back-wall radius with no lithium boiling due to the centrifugal force and proper component arrangement in the irradiation test cell was determined by the thermal-hydraulic analysis of a free-surface flow. It was verified that the back-wall radius from 0.25 to 10 m was acceptable in the velocity range of 10-20 m/s

  17. Design, construction, and characterization of high-performance membrane fusion devices with target-selectivity.

    Science.gov (United States)

    Kashiwada, Ayumi; Yamane, Iori; Tsuboi, Mana; Ando, Shun; Matsuda, Kiyomi

    2012-01-31

    Membrane fusion proteins such as the hemagglutinin glycoprotein have target recognition and fusion accelerative domains, where some synergistically working elements are essential for target-selective and highly effective native membrane fusion systems. In this work, novel membrane fusion devices bearing such domains were designed and constructed. We selected a phenylboronic acid derivative as a recognition domain for a sugar-like target and a transmembrane-peptide (Leu-Ala sequence) domain interacting with the target membrane, forming a stable hydrophobic α-helix and accelerating the fusion process. Artificial membrane fusion behavior between the synthetic devices in which pilot and target liposomes were incorporated was characterized by lipid-mixing and inner-leaflet lipid-mixing assays. Consequently, the devices bearing both the recognition and transmembrane domains brought about a remarkable increase in the initial rate for the membrane fusion compared with the devices containing the recognition domain alone. In addition, a weakly acidic pH-responsive device was also constructed by replacing three Leu residues in the transmembrane-peptide domain by Glu residues. The presence of Glu residues made the acidic pH-dependent hydrophobic α-helix formation possible as expected. The target-selective liposome-liposome fusion was accelerated in a weakly acidic pH range when the Glu-substituted device was incorporated in pilot liposomes. The use of this pH-responsive device seems to be a potential strategy for novel applications in a liposome-based delivery system. © 2011 American Chemical Society

  18. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Design Requirements Document (DRD)

    Science.gov (United States)

    Rigo, H. S.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Bents, D. J.; Hatch, A. M.

    1981-01-01

    A description and the design requirements for the 200 MWe (nominal) net output MHD Engineering Test Facility (ETF) Conceptual Design, are presented. Performance requirements for the plant are identified and process conditions are indicated at interface stations between the major systems comprising the plant. Also included are the description, functions, interfaces and requirements for each of these major systems. The lastest information (1980-1981) from the MHD technology program are integrated with elements of a conventional steam electric power generating plant.

  19. Implementing ergonomics in large-scale engineering design. Communicating and negotiating requirements in an organizational context

    Energy Technology Data Exchange (ETDEWEB)

    Wulff, Ingrid Anette

    1997-12-31

    This thesis investigates under what conditions ergonomic criteria are being adhered to in engineering design. Specifically, the thesis discusses (1) the ergonomic criteria implementation process, (2) designer recognition of ergonomic requirements and the organization of ergonomics, (3) issues important for the implementation of ergonomic requirements, (4) how different means for experience transfer in design and operation are evaluated by the designers, (5) how designers ensure usability of offshore work places, and (6) how project members experience and cope with the large amount of documentation in large-scale engineering. 84 refs., 11 figs., 18 tabs.

  20. Safety-technical lay-out of the operational environment of a high-power spallation target system of the megawatt class with mercury as target material

    International Nuclear Information System (INIS)

    Butzek, M.

    2005-06-01

    This thesis is concerning the safety relevant layout of the environment of a mercury based 5-Megawatt-spallation target. All safety relevant aspects related to construction, operation and dismantling as well as economical issues were taken into account. Safety concerns are basically driven by the toxic and radioactive inventory as well as the kind and intensity of radiation produced by the spallation process. Due to significant differences in inventory and radiation between a spallation source and a fission reactor, for the design of the spallation source mentioned above the safety philosophy of a fission reactor must not be used unchanged. Rather than this a systematic study of all safety related boundary conditions is necessary. Within this thesis all safety relevant boundary conditions for this specific type of machine are given. Beside the spatial distribution of different areas inside the target station, influence of medias to be used as well as arising radiation and handling requirements are discussed in detail. A general layout of the target station is presented, serving as a basis for all further component and system development. An enclosure concept for the target station was developed, taking into account the safety relevant issues concerning the mercury used as target materials, the water cooling loops containing massive amounts of tritium as well as the materials used for the moderators potentially forming explosive mixtures. Concept and detailed technical layout of the enclosure system was chosen to guarantee safe operation of the source as well as taking care of requirement arising for handling needs. For design of the shielding different suitable materials have been discussed. A design for assembling the shielding is shown taking into account the safety relevant requirements during operation as well as during dismantling. The neutron beam shutters, buried inside the shielding were designed to optimize handling and positioning issued of the inner part