WorldWideScience

Sample records for design meets engineering

  1. Association of engineering geologists 32nd annual meeting

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    This book contains the proceedings of the 32nd Annual Meeting of the Association of Engineering Geologists. Included are the following articles: Engineering geology---a tool in petroleum exploration ventures font, The soil headspace survey method as an indicator of soil and groundwater contamination by petroleum products, Determination of compressive strength of coal for pillar design hirt

  2. Manpower simulation for the power plant design engineering

    International Nuclear Information System (INIS)

    Moon, B.S.; Juhn, P.E.

    1982-01-01

    Some observation from the examination of actual manhour curves for the power design engineering obtained from Sargent and Lundy Engineers and of a few of the model curves proposed by Bechtel, are analyzed in this paper. A model curve representing typical design engineering manhour has been determined as probability density function for the Gamma Distribution. By means of this model curve, we strategically forecast the future engineering manpower requirements to meet the Covernment's long range nuclear power plan. As a sensitivity analysis, the directions for the localization of nuclear power plant design engineering, are studied in terms of the performance factor for the experienced versus inexperienced engineers. (Author)

  3. Design reliability engineering

    International Nuclear Information System (INIS)

    Buden, D.; Hunt, R.N.M.

    1989-01-01

    Improved design techniques are needed to achieve high reliability at minimum cost. This is especially true of space systems where lifetimes of many years without maintenance are needed and severe mass limitations exist. Reliability must be designed into these systems from the start. Techniques are now being explored to structure a formal design process that will be more complete and less expensive. The intent is to integrate the best features of design, reliability analysis, and expert systems to design highly reliable systems to meet stressing needs. Taken into account are the large uncertainties that exist in materials, design models, and fabrication techniques. Expert systems are a convenient method to integrate into the design process a complete definition of all elements that should be considered and an opportunity to integrate the design process with reliability, safety, test engineering, maintenance and operator training. 1 fig

  4. Engineering test facility design definition

    Science.gov (United States)

    Bercaw, R. W.; Seikel, G. R.

    1980-01-01

    The Engineering Test Facility (ETF) is the major focus of the Department of Energy (DOE) Magnetohydrodynamics (MHD) Program to facilitate commercialization and to demonstrate the commercial operability of MHD/steam electric power. The ETF will be a fully integrated commercial prototype MHD power plant with a nominal output of 200 MW sub e. Performance of this plant is expected to meet or surpass existing utility standards for fuel, maintenance, and operating costs; plant availability; load following; safety; and durability. It is expected to meet all applicable environmental regulations. The current design concept conforming to the general definition, the basis for its selection, and the process which will be followed in further defining and updating the conceptual design.

  5. The Complex Dynamics of Student Engagement in Novel Engineering Design Activities

    Science.gov (United States)

    McCormick, Mary

    In engineering design, making sense of "messy," design situations is at the heart of the discipline (Schon, 1983); engineers in practice bring structure to design situations by organizing, negotiating, and coordinating multiple aspects (Bucciarelli, 1994; Stevens, Johri, & O'Connor, 2014). In classroom settings, however, students are more often given well-defined, content-focused engineering tasks (Jonassen, 2014). These tasks are based on the assumption that elementary students are unable to grapple with the complexity or open-endedness of engineering design (Crismond & Adams, 2012). The data I present in this dissertation suggest the opposite. I show that students are not only able to make sense of, or frame (Goffman, 1974), complex design situations, but that their framings dynamically involve their nascent abilities for engineering design. The context of this work is Novel Engineering, a larger research project that explores using children's literature as an access point for engineering design. Novel Engineering activities are inherently messy: there are characters with needs, settings with implicit constraints, and rich design situations. In a series of three studies, I show how students' framings of Novel Engineering design activities involve their reasoning and acting as beginning engineers. In the first study, I show two students whose caring for the story characters contributes to their stability in framing the task: they identify the needs of their fictional clients and iteratively design a solution to meet their clients' needs. In the second, I show how students' shifting and negotiating framings influence their engineering assumptions and evaluation criteria. In the third, I show how students' coordinating framings involve navigating a design process to meet clients' needs, classroom expectations, and technical requirements. Collectively, these studies contribute to literature by documenting students' productive beginnings in engineering design. The

  6. Control Design for a Generic Commercial Aircraft Engine

    Science.gov (United States)

    Csank, Jeffrey; May, Ryan D.

    2010-01-01

    This paper describes the control algorithms and control design process for a generic commercial aircraft engine simulation of a 40,000 lb thrust class, two spool, high bypass ratio turbofan engine. The aircraft engine is a complex nonlinear system designed to operate over an extreme range of environmental conditions, at temperatures from approximately -60 to 120+ F, and at altitudes from below sea level to 40,000 ft, posing multiple control design constraints. The objective of this paper is to provide the reader an overview of the control design process, design considerations, and justifications as to why the particular architecture and limits have been chosen. The controller architecture contains a gain-scheduled Proportional Integral controller along with logic to protect the aircraft engine from exceeding any limits. Simulation results illustrate that the closed loop system meets the Federal Aviation Administration s thrust response requirements

  7. 40 CFR 1048.415 - What happens if in-use engines do not meet requirements?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What happens if in-use engines do not... Testing In-use Engines § 1048.415 What happens if in-use engines do not meet requirements? (a) Determine... families showing that you designed them to exceed the minimum requirements for controlling emissions. We...

  8. 40 CFR 1045.103 - What exhaust emission standards must my outboard and personal watercraft engines meet?

    Science.gov (United States)

    2010-07-01

    ... engines in the engine family are designed to operate. You must meet the numerical emission standards for... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION...

  9. 40 CFR 1045.105 - What exhaust emission standards must my sterndrive/inboard engines meet?

    Science.gov (United States)

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION... the fuel type on which the engines in the engine family are designed to operate. You must meet the numerical emission standards for hydrocarbons in this section based on the following types of hydrocarbon...

  10. Microbeads and Engineering Design in Chemistry: No Small Educational Investigation

    Science.gov (United States)

    Hoffman, Adam; Turner, Ken

    2015-01-01

    A multipart laboratory activity introducing microbeads was created to meet engineering and engineering design practices consistent with new Next Generation Science Standards (NGSS). Microbeads are a current topic of concern as they have been found to cause adverse impacts in both marine and freshwater systems resulting in multiple states proposing…

  11. 40 CFR 1045.415 - What happens if in-use engines do not meet requirements?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What happens if in-use engines do not... VESSELS In-Use Testing § 1045.415 What happens if in-use engines do not meet requirements? (a) Determine... families showing that you designed them to exceed the minimum requirements for controlling emissions. We...

  12. Main engineering features driving design concept and engineering design constraints

    International Nuclear Information System (INIS)

    Saito, Ryusei; Kobayashi, Takeshi; Yamada, Masao

    1987-09-01

    Major engineering design philosophies are described, which are essential bases for an engineering design and may have significant impacts on a reactor design concept. Those design philosophies are classified into two groups, engineering design drivers and engineering design constraints. The design drivers are featured by the fact that a designer is free to choose and the choice may be guided by his opinion, such as coil system, a mechanical configuration, a tritium breeding scenario, etc.. The design constraints may follow a natural law or engineering limit, such as material strength, coil current density, and so on. (author)

  13. The NDCX-II engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Waldron, W.L., E-mail: WLWaldron@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Abraham, W.J.; Arbelaez, D. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Friedman, A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Galvin, J.E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Gilson, E.P. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Greenway, W.G. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Grote, D.P. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Jung, J.-Y.; Kwan, J.W.; Leitner, M.; Lidia, S.M.; Lipton, T.M.; Reginato, L.L.; Regis, M.J.; Roy, P.K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sharp, W.M. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Stettler, M.W.; Takakuwa, J.H.; Volmering, J. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); and others

    2014-01-01

    The Neutralized Drift Compression Experiment (NDCX-II) is a user facility located at Lawrence Berkeley National Laboratory which is uniquely designed for ion-beam-driven high energy density laboratory physics and heavy ion fusion research. Construction was completed in March 2012 and the facility is now in the commissioning phase. A significant amount of engineering was carried out in order to meet the performance parameters required for a wide range of target heating experiments while making the most cost-effective use of high-value hardware available from a decommissioned high current electron induction accelerator. The technical challenges and design of this new ion induction accelerator facility are described.

  14. Design and test of aircraft engine isolators for reduced interior noise

    Science.gov (United States)

    Unruh, J. F.; Scheidt, D. C.

    1982-01-01

    Improved engine vibration isolation was proposed to be the most weight and cost efficient retrofit structure-borne noise control measure for single engine general aviation aircraft. A study was carried out the objectives: (1) to develop an engine isolator design specification for reduced interior noise transmission, (2) select/design candidate isolators to meet a 15 dB noise reduction design goal, and (3) carry out a proof of concept evaluation test. Analytical model of the engine, vibration isolators and engine mount structure were coupled to an empirical model of the fuselage for noise transmission evaluation. The model was used to develop engine isolator dynamic properties design specification for reduced noise transmission. Candidate isolators ere chosen from available product literature and retrofit to a test aircraft. A laboratory based test procedure was then developed to simulate engine induced noise transmission in the aircraft for a proof of concept evaluation test. Three candidate isolator configurations were evaluated for reduced structure-borne noise transmission relative to the original equipment isolators.

  15. Examination of engineering design teacher self-efficacy and knowledge base in secondary technology education and engineering-related courses

    Science.gov (United States)

    Vessel, Kanika Nicole

    2011-12-01

    There is an increasing demand for individuals with engineering education and skills of varying fields in everyday life. With the proper education students of high-needs schools can help meet the demand for a highly skilled and educated workforce. Researchers have assumed the supply and demand has not been met within the engineering workforce as a result of students' collegiate educational experiences, which are impacted by experiences in K-12 education. Although factors outside of the classroom contribute to the inability of universities to meet the increasing demand for the engineering workforce, most noted by researchers is the academic unpreparedness of freshman engineering students. The unpreparedness of entering freshman engineering students is a result of K-12 classroom experiences. This draws attention not only to the quality and competence of teachers present in the K-12 classroom, but the type of engineering instruction these students are receiving. This paper was an effort to systematically address one of the more direct and immediate factors impacting freshman engineering candidates, the quality of secondary engineering educators. Engineers develop new ideas using the engineering design process, which is taught at the collegiate level, and has been argued to be the best approach to teach technological literacy to all K-12 students. However, it is of importance to investigate whether technology educators have the knowledge and understanding of engineering design, how to transfer that knowledge in the classroom to students through instructional strategies, and their perception of their ability to do that. Therefore, the purpose of this study is to show the need for examining the degree to which technology and non-technology educators are implementing elements of engineering design in the curriculum.

  16. Wolsong 2, 3, and 4 quarterly progress review report on NSSS design and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sung Hoon; Kim, Sun Kee; Park, Tae Keun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-01-01

    This is the Quarterly Progress Review Report for Wolsong NPP 2, 3 and 4 NSSS Design and Engineering which evaluates the performance of the project and describes the project highlight, manpower loading status, design and engineering and project related meetings by quarterly basis. 29 figs., 16 tabs. (Author).

  17. Design of nuclear power generation plants adopting model engineering method

    International Nuclear Information System (INIS)

    Waki, Masato

    1983-01-01

    The utilization of model engineering as the method of design has begun about ten years ago in nuclear power generation plants. By this method, the result of design can be confirmed three-dimensionally before actual production, and it is the quick and sure method to meet the various needs in design promptly. The adoption of models aims mainly at the improvement of the quality of design since the high safety is required for nuclear power plants in spite of the complex structure. The layout of nuclear power plants and piping design require the model engineering to arrange rationally enormous quantity of things in a limited period. As the method of model engineering, there are the use of check models and of design models, and recently, the latter method has been mainly taken. The procedure of manufacturing models and engineering is explained. After model engineering has been completed, the model information must be expressed in drawings, and the automation of this process has been attempted by various methods. The computer processing of design is in progress, and its role is explained (CAD system). (Kako, I.)

  18. Customizing CAD system and its application for engineering design

    International Nuclear Information System (INIS)

    Shin, Jeong Ho; Kwak, Byung Man

    2003-01-01

    The computer is an important tool to design an engineering system and CAD systems are widely used for various design practice. To meet the market requirements, the old mass production system is being changed into the mass customization system. As for CAD systems, it is increasingly required to extend, automate, and customize a wide range of functionality. This article describes the state-of-the-art of the principal technologies for customizing CAD systems. And we have implemented an application that enables the parametric design by directly inputting numerical values of parameters for a CAD model. Based on this application, we have developed another system that makes it possible sharing of part family data between SolidEdge and Pro/Engineer. Through customization of CAD systems, it is possible to improve the product quality using external knowledge-based systems or to integrate with external system such as CAE tools. This paper can be a guide for engineering designers who want to customize CAD systems

  19. 40 CFR 1039.101 - What exhaust emission standards must my engines meet after the 2014 model year?

    Science.gov (United States)

    2010-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE... are designed to operate, except for engines certified under § 1039.615. For engines certified under... must meet the numerical emission standards for NMHC in this section based on the following types of...

  20. Full Scale Technology Demonstration of a Modern Counterrotating Unducted Fan Engine Concept. Design Report

    Science.gov (United States)

    1987-01-01

    The Unducted Fan engine (UDF trademark) concept is based on an ungeared, counterrotating, unducted, ultra-high-bypass turbofan configuration. This engine is being developed to provide a high thrust-to-weight ratio power plant with exceptional fuel efficiency for subsonic aircraft application. This report covers the design methodology and details for the major components of this engine. The design intent of the engine is to efficiently produce 25,000 pounds of static thrust while meeting life and stress requirements. The engine is required to operate at Mach numbers of 0.8 or above.

  1. Engineering Antifragile Systems: A Change In Design Philosophy

    Science.gov (United States)

    Jones, Kennie H.

    2014-01-01

    While technology has made astounding advances in the last century, problems are confronting the engineering community that must be solved. Cost and schedule of producing large systems are increasing at an unsustainable rate and these systems often do not perform as intended. New systems are required that may not be achieved by current methods. To solve these problems, NASA is working to infuse concepts from Complexity Science into the engineering process. Some of these problems may be solved by a change in design philosophy. Instead of designing systems to meet known requirements that will always lead to fragile systems at some degree, systems should be designed wherever possible to be antifragile: designing cognitive cyberphysical systems that can learn from their experience, adapt to unforeseen events they face in their environment, and grow stronger in the face of adversity. Several examples are presented of on ongoing research efforts to employ this philosophy.

  2. Meeting Human Reliability Requirements through Human Factors Design, Testing, and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    R. L. Boring

    2007-06-01

    In the design of novel systems, it is important for the human factors engineer to work in parallel with the human reliability analyst to arrive at the safest achievable design that meets design team safety goals and certification or regulatory requirements. This paper introduces the System Development Safety Triptych, a checklist of considerations for the interplay of human factors and human reliability through design, testing, and modeling in product development. This paper also explores three phases of safe system development, corresponding to the conception, design, and implementation of a system.

  3. Various advanced design projects promoting engineering education

    Science.gov (United States)

    1994-01-01

    The Universities Space Research Association (USRA) Advanced Design Program (ADP) program promotes engineering education in the field of design by presenting students with challenging design projects drawn from actual NASA interests. In doing so, the program yields two very positive results. Firstly, the students gain a valuable experience that will prepare them for design problems with which they will be faced in their professional careers. Secondly, NASA is able to use the work done by students as an additional resource in meeting its own design objectives. The 1994 projects include: Universal Test Facility; Automated Protein Crystal Growth Facility; Stiffening of the ACES Deployable Space Boom; Launch System Design for Access to Space; LH2 Fuel Tank Design for SSTO Vehicle; and Feed System Design for a Reduced Pressure Tank.

  4. Proceedings of the Scientific Meeting in Nuclear Instrumentation Engineering

    International Nuclear Information System (INIS)

    Achmad Suntoro; Rony Djokorayono; Ferry Sujatno; Utaja

    2010-11-01

    The Proceeding of the Scientific Meeting in Nuclear Instrumentation Engineering held on Nov, 30, 2010 by the Centre for Nuclear Instrumentation Engineering - National Nuclear Energy Agency. The Proceedings of the Scientific Contains 40 papers Consist of Nuclear Instrumentation Engineering for Industry, Environment, and Nuclear Facilities. (PPIKSN)

  5. Report for Working Group 1: Design Research in Civil and Environmental Engineering

    DEFF Research Database (Denmark)

    Thompson, Mary Kathryn; Paradisi, Irene

    2013-01-01

    The first 2013 DCEE working group meeting focused on issues associated with design research in civil and environmental engineering. It addressed some of the motivation for establishing design as a research discipline in CEE and some of the challenges and outstanding questions about how to do so....

  6. Control Design for an Advanced Geared Turbofan Engine

    Science.gov (United States)

    Chapman, Jeffryes W.; Litt, Jonathan S.

    2017-01-01

    This paper describes the design process for the control system of an advanced geared turbofan engine. This process is applied to a simulation that is representative of a 30,000 lbf thrust class concept engine with two main spools, ultra-high bypass ratio, and a variable area fan nozzle. Control system requirements constrain the non-linear engine model as it operates throughout its flight envelope of sea level to 40,000 ft and from 0 to 0.8 Mach. The control architecture selected for this project was developed from literature and reflects a configuration that utilizes a proportional integral controller integrated with sets of limiters that enable the engine to operate safely throughout its flight envelope. Simulation results show the overall system meets performance requirements without exceeding system operational limits.

  7. Using Dedal to share and reuse distributed engineering design information

    Science.gov (United States)

    Baya, Vinod; Baudin, Catherine; Mabogunje, Ade; Das, Aseem; Cannon, David M.; Leifer, Larry J.

    1994-01-01

    The overall goal of the project is to facilitate the reuse of previous design experience for the maintenance, repair and redesign of artifacts in the electromechanical engineering domain. An engineering team creates information in the form of meeting summaries, project memos, progress reports, engineering notes, spreadsheet calculations and CAD drawings. Design information captured in these media is difficult to reuse because the way design concepts are referred to evolve over the life of a project and because decisions, requirements and structure are interrelated but rarely explicitly linked. Based on protocol analysis of the information seeking behavior of designer's, we defined a language to describe the content and the form of design records and implemented this language in Dedal, a tool for indexing, modeling and retrieving design information. We first describe the approach to indexing and retrieval in Dedal. Next we describe ongoing work in extending Dedal's capabilities to a distributed environment by integrating it with World Wide Web. This will enable members of a design team who are not co-located to share and reuse information.

  8. Group Design Problems in Engineering Design Graphics.

    Science.gov (United States)

    Kelley, David

    2001-01-01

    Describes group design techniques used within the engineering design graphics sequence at Western Washington University. Engineering and design philosophies such as concurrent engineering place an emphasis on group collaboration for the solving of design problems. (Author/DDR)

  9. ITER EDA newsletter. V. 3, no. 1. (International Thermonuclear Experimental Reactor Engineering Design Activities)

    International Nuclear Information System (INIS)

    1994-01-01

    This issues of the ITER EDA (Engineering Design Activities) Newsletter contains reports on the Fourth ITER Management Advisory Committee Meeting (MAC) held at San Diego, USA, 13-14 January, 1994, a Technical Committee Meeting on Plasma Equilibrium and Control held at Naka, Japan, 9-12 November 1993, and a Technical Committee Meeting on Radio-Frequency Heating and Current Drive held in Garching, Germany, 21-26 October 1993

  10. Engineering education for youth: Diverse elementary school students' experiences with engineering design

    Science.gov (United States)

    Hegedus, Theresa

    Lingering concerns over the persistent achievement gap amidst the trend of an increasingly diverse society have been compounded by calls from the Oval Office, the National Science Board, and nationwide media to also address our current creativity crisis. Now, more than ever, we have a responsibility to produce a STEM-capable (science, technology, engineering, and mathematics) workforce to meet the demands of our rapidly changing local and global economic landscape. Barriers exist in our traditional educational system, which has historically limited underrepresented groups' affiliation and membership in the disciplines of science and engineering. The recent incorporation of engineering into the latest science education reform efforts presents an opportunity to expose students as early as elementary school to engineering practices and habits of mind, which have the potential to stimulate creative thinking skills through engineering design. This qualitative study was designed to examine the ways in which engineering education has the potential to promote creativity and academic competence in elementary science classrooms. As a part of my study, a diverse group of students from two fifth-grade classrooms took part in a 10-12 hour, engineering-based curriculum unit (Engineering is Elementary) during their regular science instructional time. Using a sociocultural lens, to include cultural production and identities in practice as part of my framework, I analyzed group and individual performances through classroom observations, student interviews, and teacher reflections to better understand the meaning students made of their experiences with engineering. Findings from the study included the ways in which creativity was culturally produced in the classroom to include: 1) idea generation; 2) design and innovation; 3) gumption/resourcefulness; and 4) social value. Opportunities for collaboration increased through each stage of the unit culminating with the design challenge

  11. Designing Liquid Rocket Engine Injectors for Performance, Stability, and Cost

    Science.gov (United States)

    Westra, Douglas G.; West, Jeffrey S.

    2014-01-01

    NASA is developing the Space Launch System (SLS) for crewed exploration missions beyond low Earth orbit. Marshall Space Flight Center (MSFC) is designing rocket engines for the SLS Advanced Booster (AB) concepts being developed to replace the Shuttle-derived solid rocket boosters. One AB concept uses large, Rocket-Propellant (RP)-fueled engines that pose significant design challenges. The injectors for these engines require high performance and stable operation while still meeting aggressive cost reduction goals for access to space. Historically, combustion stability problems have been a critical issue for such injector designs. Traditional, empirical injector design tools and methodologies, however, lack the ability to reliably predict complex injector dynamics that often lead to combustion stability. Reliance on these tools alone would likely result in an unaffordable test-fail-fix cycle for injector development. Recently at MSFC, a massively parallel computational fluid dynamics (CFD) program was successfully applied in the SLS AB injector design process. High-fidelity reacting flow simulations were conducted for both single-element and seven-element representations of the full-scale injector. Data from the CFD simulations was then used to significantly augment and improve the empirical design tools, resulting in a high-performance, stable injector design.

  12. Engineering Margin Factors Used in the Design of the VVER Fuel Cycles

    Science.gov (United States)

    Lizorkin, M. P.; Shishkov, L. K.

    2017-12-01

    The article describes methods for determination of the engineering margin factors currently used to estimate the uncertainties of the VVER reactor design parameters calculated via the KASKAD software package developed at the National Research Center Kurchatov Institute. These margin factors ensure the meeting of the operating (design) limits and a number of other restrictions under normal operating conditions.

  13. Renovation of a Mechanical Engineering Senior Design Class to an Industry-Tied and Team-Oriented Course

    Science.gov (United States)

    Liu, Yucheng

    2017-01-01

    In this work, an industry-based and team-oriented education model was established based on a traditional mechanical engineering (ME) senior design class in order to better prepare future engineers and leaders so as to meet the increasing demand for high-quality engineering graduates. In the renovated curriculum, industry-sponsored projects became…

  14. Creating meaningful learning experiences: Understanding students' perspectives of engineering design

    Science.gov (United States)

    Aleong, Richard James Chung Mun

    There is a societal need for design education to prepare holistic engineers with the knowledge, skills, and attitudes to innovate and compete globally. Design skills are paramount to the espoused values of higher education, as institutions of higher learning strive to develop in students the cognitive abilities of critical thinking, problem solving, and creativity. To meet these interests from industry and academia, it is important to advance the teaching and learning of engineering design. This research aims to understand how engineering students learn and think about design, as a way for engineering educators to optimize instructional practice and curriculum development. Qualitative research methodology was used to investigate the meaning that engineering students' ascribe to engineering design. The recruitment of participants and corresponding collection of data occurred in two phases using two different data collection techniques. The first phase involved the distribution of a one-time online questionnaire to all first year, third year, and fourth year undergraduate engineering students at three Canadian Universities. After the questionnaire, students were asked if they would be willing to participate in the second phase of data collection consisting of a personal interview. A total of ten students participated in interviews. Qualitative data analysis procedures were conducted on students' responses from the questionnaire and interviews. The data analysis process consisted of two phases: a descriptive phase to code and categorize the data, followed by an interpretative phase to generate further meaning and relationships. The research findings present a conceptual understanding of students' descriptions about engineering design, structured within two educational orientations: a learning studies orientation and a curriculum studies orientation. The learning studies orientation captured three themes of students' understanding of engineering design: awareness

  15. Collaborative engineering-design support system

    Science.gov (United States)

    Lee, Dong HO; Decker, D. Richard

    1994-01-01

    Designing engineering objects requires many engineers' knowledge from different domains. There needs to be cooperative work among engineering designers to complete a design. Revisions of a design are time consuming, especially if designers work at a distance and with different design description formats. In order to reduce the design cycle, there needs to be a sharable design describing the engineering community, which can be electronically transportable. Design is a process of integrating that is not easy to define definitively. This paper presents Design Script which is a generic engineering design knowledge representation scheme that can be applied in any engineering domain. The Design Script is developed through encapsulation of common design activities and basic design components based on problem decomposition. It is implemented using CLIPS with a Windows NT graphical user interface. The physical relationships between engineering objects and their subparts can be constructed in a hierarchical manner. The same design process is repeatedly applied at each given level of hierarchy and recursively into lower levels of the hierarchy. Each class of the structure can be represented using the Design Script.

  16. Problem Decomposition and Recomposition in Engineering Design: A Comparison of Design Behavior between Professional Engineers, Engineering Seniors, and Engineering Freshmen

    Science.gov (United States)

    Song, Ting; Becker, Kurt; Gero, John; DeBerard, Scott; DeBerard, Oenardi; Reeve, Edward

    2016-01-01

    The authors investigated the differences in using problem decomposition and problem recomposition between dyads of engineering experts, engineering seniors, and engineering freshmen. Participants worked in dyads to complete an engineering design challenge within 1 hour. The entire design process was video and audio recorded. After the design…

  17. Meeting report of the consultancy meeting on comparison of curricula in nuclear engineering within the ANENT countries

    International Nuclear Information System (INIS)

    2007-01-01

    The participants of the Meeting have agreed to conclude: 1. The participants have been acquainted with the following: a. Curricula on nuclear science and nuclear engineering of the host country - Russia, as well as of the Republic of Korea, India and Vietnam; b. Nuclear education activities of the World Nuclear University (WNU); c. Nuclear education facilities at Moscow Engineering Physics Institute (MEPhI). 2. Discussions and analysis were made on the curricula in nuclear engineering education in the Region. 3. Main efforts were focused on developing a draft of the ANENT Reference Curricula for Master's Degree in Nuclear Engineering. The skeleton of the first draft of the Reference Curricula was created. 4. The idea about the ANENT Master's Degree in Nuclear Engineering (ANENT MDNE) was discussed. Realization of such degree would strongly and directly enhance and heighten the regional educational level in nuclear engineering in the near future. It is also expected to facilitate credit transfer and mutual recognition of degrees within the ANENT member countries in line with the ANENT's long term goals. 5. It was suggested to conduct an intensive exchange of opinions between experts and educators in the ANENT member countries to develop the ANENT MDNE further based on the skeleton of the draft. 6. It was preferable to start more extensive discussion about the idea of the ANENT MDNE and how to realize it effectively and reasonably as soon as possible. 7. The ANENT members were encouraged to discuss about ANENT Activity 4 at the next Meeting of the ANENT Coordination Committee. 8. The participants expressed their heartfelt thanks to the collective of Moscow Engineering Physics Institute (MEPhI) - the Host Organization - and to all the members of the Local Organizing Committee of the Meeting, as well as to the ANENT Scientific Secretary, for the warm atmosphere and perfect conditions provided for the success of the Meeting

  18. Systems engineering agile design methodologies

    CERN Document Server

    Crowder, James A

    2013-01-01

    This book examines the paradigm of the engineering design process. The authors discuss agile systems and engineering design. The book captures the entire design process (functionbases), context, and requirements to affect real reuse. It provides a methodology for an engineering design process foundation for modern and future systems design. This book captures design patterns with context for actual Systems Engineering Design Reuse and contains a new paradigm in Design Knowledge Management.

  19. Teaching engineering design research

    DEFF Research Database (Denmark)

    Blessing, Lucienne; Andreasen, Mogens Myrup

    2005-01-01

    The importance og engineering design as an industrial activity, and the increasingly complex and dynamic context in which it takes place, has led to the wish to improve the effectiveness and efficiency of engineering design in practice as well as in education. Although attempts have been made...... to improve design for centuries, it was not until well in the second half of the 20th century that engineering design became a research topic (see pahl and Beitz (1996), Heymann (2004) for historical overviews). Engineering research, such as research into thermodynamics, mechanics and materials, has a much...... by PhD students. This has created the demand for a clear, efficient way of learning the crafmanship of doing design research, a demand which is in strong contrast to the state of design research in general. This article reflects the authors' efforts in running a summer school om engineering design...

  20. Design and CFD analysis of intake port and exhaust port for a 4 valve cylinder head engine

    Science.gov (United States)

    Latheesh, V. M.; Parthasarathy, P.; Baskaran, V.; Karthikeyan, S.

    2018-02-01

    In cylinder air motion in a compression ignition engine effects mixing of air-fuel, quality of combustion and emission produced. The primary objective is to design and analyze intake and the exhaust port for a four valve cylinder head to meet higher emission norms for a given diesel engine with two valves. In this work, an existing cylinder head designed for two valves was redesigned with 4 valves. The modern trend also confirms this approach. This is being followed in the design and development of new generation engines to meet the stringent environment norms, competition in market and demand for more fuel-efficient engines. The swirl ratio and flow coefficient were measured for different valve lifts using STAR CCM+. CFD results were validated with the two-valve cylinder experimental results. After validation, a comparison between two-valve and four-valve cylinder head was done. The conversion of two valve cylinder head to 4 valves may not support modern high swirl generating port layout and requires a trade-off between many design parameters.

  1. 34 CFR 350.33 - What cooperation requirements must a Rehabilitation Engineering Research Center meet?

    Science.gov (United States)

    2010-07-01

    ... Rehabilitation Engineering Research Center meet? A Rehabilitation Engineering Research Center— (a) Shall... 34 Education 2 2010-07-01 2010-07-01 false What cooperation requirements must a Rehabilitation Engineering Research Center meet? 350.33 Section 350.33 Education Regulations of the Offices of the Department...

  2. Establishing a `Centre for Engineering Experimentation and Design Simulation': a step towards restructuring engineering education in India

    Science.gov (United States)

    Venkateswarlu, P.

    2017-07-01

    Reforms in undergraduate engineering curriculum to produce engineers with entrepreneurial skills should address real-world problems relevant to industry and society with active industry support. Technology-assisted, hands-on projects involving experimentation, design simulation and prototyping will transform graduates into professionals with necessary skills to create and advance knowledge that meets global standards. To achieve this goal, this paper proposes establishing a central facility, 'Centre for Engineering Experimentation and Design Simulation' (CEEDS) in autonomous engineering colleges in India. The centre will be equipped with the most recent technology resources and computational facilities where students execute novel interdisciplinary product-oriented projects benefiting both industry and society. Students undertake two projects: a short-term project aimed at an engineering solution to a problem in energy, health and environment and the other a major industry-supported project devoted to a product that enhances innovation and creativity. The paper presents the current status, the theoretical and pedagogical foundation for the centre's relevance, an activity plan and its implementation in the centre for product-based learning with illustrative examples.

  3. Engineering graphic modelling a workbook for design engineers

    CERN Document Server

    Tjalve, E; Frackmann Schmidt, F

    2013-01-01

    Engineering Graphic Modelling: A Practical Guide to Drawing and Design covers how engineering drawing relates to the design activity. The book describes modeled properties, such as the function, structure, form, material, dimension, and surface, as well as the coordinates, symbols, and types of projection of the drawing code. The text provides drawing techniques, such as freehand sketching, bold freehand drawing, drawing with a straightedge, a draughting machine or a plotter, and use of templates, and then describes the types of drawing. Graphic designers, design engineers, mechanical engine

  4. Vehicular engine design

    CERN Document Server

    Hoag, Kevin

    2016-01-01

    This book provides an introduction to the design and mechanical development of reciprocating piston engines for vehicular applications. Beginning from the determination of required displacement and performance, coverage moves into engine configuration and architecture. Critical layout dimensions and design trade-offs are then presented for pistons, crankshafts, engine blocks, camshafts, valves, and manifolds.  Coverage continues with material strength and casting process selection for the cylinder block and cylinder heads. Each major engine component and sub-system is then taken up in turn, from lubrication system, to cooling system, to intake and exhaust systems, to NVH. For this second edition latest findings and design practices are included, with the addition of over sixty new pictures and many new equations.

  5. The 25 kWe solar thermal Stirling hydraulic engine system: Conceptual design

    Science.gov (United States)

    White, Maurice; Emigh, Grant; Noble, Jack; Riggle, Peter; Sorenson, Torvald

    1988-01-01

    The conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to a 11 meter test bed concentrator is documented. A manufacturing cost assessment for 10,000 units per year was made. The design meets all program objectives including a 60,000 hr design life, dynamic balancing, fully automated control, more than 33.3 percent overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk.

  6. Thermal and Mechanical Design Aspects of the LIFE Engine

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, R P; Gerhard, M A; Latkowski, J F; Kramer, K J; Morris, K R; Peterson, P F; Seifried, J E

    2008-10-25

    The Laser Inertial confinement fusion - Fission Energy (LIFE) engine encompasses the components of a LIFE power plant responsible for converting the thermal energy of fusion and fission reactions into electricity. The design and integration of these components must satisfy a challenging set of requirements driven by nuclear, thermal, geometric, structural, and materials considerations. This paper details a self-consistent configuration for the LIFE engine along with the methods and technologies selected to meet these stringent requirements. Included is discussion of plant layout, coolant flow dynamics, fuel temperatures, expected structural stresses, power cycle efficiencies, and first wall survival threats. Further research and to understand and resolve outstanding issues is also outlined.

  7. Creating to understand – developmental biology meets engineering in Paris

    NARCIS (Netherlands)

    Kicheva, Anna; Rivron, Nicolas C.

    2017-01-01

    In November 2016, developmental biologists, synthetic biologists and engineers gathered in Paris for a meeting called ‘Engineering the embryo’. The participants shared an interest in exploring how synthetic systems can reveal new principles of embryonic development, and how the in vitro manipulation

  8. 5th Drag Reduction in Engineering Flows Meeting

    CERN Document Server

    1991-01-01

    The European Drag Reduction Meeting has been held on 15th and 16th November 1990 in London. This was the fifth of the annual European meetings on drag reduction in engineering flows. The main objective of this meeting was to discuss up-to-date results of drag reduction research carried out in Europe. The organiser has adopted the philosophy of discussing the yesterday's results rather than the last year's results. No written material has therefore been requested for the meeting. It was only after the meeting the submission of papers was requested to the participants, from which 16 papers were selected for this proceedings volume. The meeting has attracted a record number of participants with a total of 52 researchers from seven European countries, U. K. , France, Germany, the Netherlands, Italy, Switzerland and U. S. S. R. as well as from Japan, Canada and Australia. The subjects covered in this proceedings volume include riblets, LEBUs (Large Eddy Break-Up device), surface roughness, compliant surfaces and p...

  9. Sharing the design intent between industrial designers and engineering designers

    DEFF Research Database (Denmark)

    Laursen, Esben Skov; Møller, Louise

    2016-01-01

    The aim of the paper is to understand the challenges sharing the product frame between industrial designers with the engineering designers. The study is based on six case studies. The analysis showed correspondence between industrial designers and engineering designers in their understanding...... of the key elements of the context and concept. However the analysis also showed a lack of correspondence between the industrial designers and engineering designers in regards to the product framing and thereby how the different elements of the product frame is connected and interrelated....

  10. Engineering Design for Engineering Design: Benefits, Models, and Examples from Practice

    Science.gov (United States)

    Turner, Ken L., Jr.; Kirby, Melissa; Bober, Sue

    2016-01-01

    Engineering design, a framework for studying and solving societal problems, is a key component of STEM education. It is also the area of greatest challenge within the Next Generation Science Standards, NGSS. Many teachers feel underprepared to teach or create activities that feature engineering design, and integrating a lesson plan of core content…

  11. Design and Analysis of a Turbopump for a Conceptual Expander Cycle Upper-Stage Engine

    Science.gov (United States)

    Dorney, Daniel J.; Rothermel, Jeffry; Griffin, Lisa W.; Thornton, Randall J.; Forbes, John C.; Skelly, Stephen E.; Huber, Frank W.

    2006-01-01

    As part of the development of technologies for rocket engines that will power spacecraft to the Moon and Mars, a program was initiated to develop a conceptual upper stage engine with wide flow range capability. The resulting expander cycle engine design employs a radial turbine to allow higher pump speeds and efficiencies. In this paper, the design and analysis of the pump section of the engine are discussed. One-dimensional meanline analyses and three-dimensional unsteady computational fluid dynamics simulations were performed for the pump stage. Configurations with both vaneless and vaned diffusers were investigated. Both the meanline analysis and computational predictions show that the pump will meet the performance objectives. Additional details describing the development of a water flow facility test are also presented.

  12. The Engineering Design of Man-Machine Interface for RTS

    International Nuclear Information System (INIS)

    Yenn, T.-C.

    2002-01-01

    The purpose of this paper is to present the engineering design of the advanced Man-Machine Interface (MMI) of the Integrated system for Radwaste Treatment and Storage (RTS) facility in Institute of Nuclear Energy Research (INER) Taiwan, ROC. To build the RTS, a multi-function radwaste facility with a total storage of about 10,000 drums, is a five-year project starting in 2000 including intermediate activity waste treatment and combustible waste storage. The completed engineering design of the MMI is based on proven technologies and digital control systems, enhancing the radwaste management efficiency and reliability of operator's performance as well as assuring the dose exposure of personnel meeting the regulation standard. Over past few years, INER has accumulated extensive experience in the area of radwaste treatment and storage. Therefore, we are confident that we will complete this project with fulfillment of the requirements of RTS

  13. 75 FR 48411 - Research, Engineering and Development Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-08-10

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Research, Engineering and Development.... 2), notice is hereby given of a meeting of the FAA Research, Engineering and Development (R, E&D) Advisory Committee. Name: Research, Engineering & Development Advisory Committee. Time and Date: September...

  14. Quiet engine program flight engine design study

    Science.gov (United States)

    Klapproth, J. F.; Neitzel, R. E.; Seeley, C. T.

    1974-01-01

    The results are presented of a preliminary flight engine design study based on the Quiet Engine Program high-bypass, low-noise turbofan engines. Engine configurations, weight, noise characteristics, and performance over a range of flight conditions typical of a subsonic transport aircraft were considered. High and low tip speed engines in various acoustically treated nacelle configurations were included.

  15. Design of the Curriculum for a Second-Cycle Course in Civil Engineering in the Context of the Bologna Framework

    Science.gov (United States)

    Gavin, K. G.

    2010-01-01

    This paper describes the design of the curriculum for a Master of Engineering programme in civil engineering at University College Dublin. The revised programme was established to meet the requirements of the Bologna process and this paper specifically considers the design of a new, second-cycle master's component of the programme. In addition to…

  16. Empirical Research In Engineering Design

    DEFF Research Database (Denmark)

    Ahmed, Saeema

    2007-01-01

    Increasingly engineering design research involves the use of empirical studies that are conducted within an industrial environment [Ahmed, 2001; Court 1995; Hales 1987]. Research into the use of information by designers or understanding how engineers build up experience are examples of research...... of research issues. This paper describes case studies of empirical research carried out within industry in engineering design focusing upon information, knowledge and experience in engineering design. The paper describes the research methods employed, their suitability for the particular research aims...

  17. Progress in IFMIF Engineering Validation and Engineering Design Activities

    International Nuclear Information System (INIS)

    Heidinger, R.; Knaster, J.; Matsumoto, H.; Sugimoto, M.; Mosnier, A.; Arbeiter, F.; Baluc, N.; Cara, P.; Chel, S.; Facco, A.; Favuzza, P.; Heinzel, V.; Ibarra, A.; Massaut, V.; Micciche, G.; Nitti, F.S.; Theile, J.

    2013-01-01

    Highlights: ► The IFMIF/EVEDA project has entered into the crucial phase of concluding the Interim IFMIF Engineering Design Report. ► The IFMIF plant configuration has been established with the definition of five IFMIF facilities and of their interfaces. ► Three major prototypes of the IFMIF main systems have been designed and are being manufactured, commissioned and operated. -- Abstract: The International Fusion Materials Irradiation Facility (IFMIF) Engineering Design and Engineering Validation Activities (EVEDA) are being developed in a joint project in the framework of the Broader Approach (BA) Agreement between EU and Japan. This project has now entered into a crucial phase as the engineering design of IFMIF is now being formulated in a series of 3 subsequent phases for delivering an Interim IFMIF Engineering Design Report (IIEDR) by mid of 2013. Content of these phases is explained, including the plant configuration detailing the 5 IFMIF facilities and their systems. Together with the Engineering Design Activities, prototyping sub-projects are pursued in the Engineering Validation Activities which consist of the design, manufacturing and testing of the following prototypical systems: Linear IFMIF Prototype Accelerator (LIPAc), EVEDA Lithium Test Loop (ELTL), and High Flux Test Module (HFTM) with the prototypical helium cooling loop (HELOKA). Highlights are described from recent experiments in the Engineering Validation Activities

  18. Comparison of Problem Solving from Engineering Design to Software Design

    DEFF Research Database (Denmark)

    Ahmed-Kristensen, Saeema; Babar, Muhammad Ali

    2012-01-01

    Observational studies of engineering design activities can inform the research community on the problem solving models that are employed by professional engineers. Design is defined as an ill-defined problem which includes both engineering design and software design, hence understanding problem...... solving models from other design domains is of interest to the engineering design community. For this paper an observational study of two software design sessions performed for the workshop on “Studying professional Software Design” is compared to analysis from engineering design. These findings provide...... useful insights of how software designers move from a problem domain to a solution domain and the commonalities between software designers’ and engineering designers’ design activities. The software designers were found to move quickly to a detailed design phase, employ co-.evolution and adopt...

  19. Comparison of Problem Solving from Engineering Design to Software Design

    DEFF Research Database (Denmark)

    Ahmed-Kristensen, Saeema; Babar, Muhammad Ali

    2012-01-01

    solving models from other design domains is of interest to the engineering design community. For this paper an observational study of two software design sessions performed for the workshop on “Studying professional Software Design” is compared to analysis from engineering design. These findings provide......Observational studies of engineering design activities can inform the research community on the problem solving models that are employed by professional engineers. Design is defined as an ill-defined problem which includes both engineering design and software design, hence understanding problem...... useful insights of how software designers move from a problem domain to a solution domain and the commonalities between software designers’ and engineering designers’ design activities. The software designers were found to move quickly to a detailed design phase, employ co-.evolution and adopt...

  20. Computational methods in metabolic engineering for strain design.

    Science.gov (United States)

    Long, Matthew R; Ong, Wai Kit; Reed, Jennifer L

    2015-08-01

    Metabolic engineering uses genetic approaches to control microbial metabolism to produce desired compounds. Computational tools can identify new biological routes to chemicals and the changes needed in host metabolism to improve chemical production. Recent computational efforts have focused on exploring what compounds can be made biologically using native, heterologous, and/or enzymes with broad specificity. Additionally, computational methods have been developed to suggest different types of genetic modifications (e.g. gene deletion/addition or up/down regulation), as well as suggest strategies meeting different criteria (e.g. high yield, high productivity, or substrate co-utilization). Strategies to improve the runtime performances have also been developed, which allow for more complex metabolic engineering strategies to be identified. Future incorporation of kinetic considerations will further improve strain design algorithms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Antibody Engineering & Therapeutics 2016: The Antibody Society's annual meeting, December 11-15, 2016, San Diego, CA.

    Science.gov (United States)

    Larrick, James W; Alfenito, Mark R; Scott, Jamie K; Parren, Paul W H I; Burton, Dennis R; Bradbury, Andrew R M; Lemere, Cynthia A; Messer, Anne; Huston, James S; Carter, Paul J; Veldman, Trudi; Chester, Kerry A; Schuurman, Janine; Adams, Gregory P; Reichert, Janice M

    Antibody Engineering & Therapeutics, the largest meeting devoted to antibody science and technology and the annual meeting of The Antibody Society, will be held in San Diego, CA on December 11-15, 2016. Each of 14 sessions will include six presentations by leading industry and academic experts. In this meeting preview, the session chairs discuss the relevance of their topics to current and future antibody therapeutics development. Session topics include bispecifics and designer polyclonal antibodies; antibodies for neurodegenerative diseases; the interface between passive and active immunotherapy; antibodies for non-cancer indications; novel antibody display, selection and screening technologies; novel checkpoint modulators / immuno-oncology; engineering antibodies for T-cell therapy; novel engineering strategies to enhance antibody functions; and the biological Impact of Fc receptor engagement. The meeting will open with keynote speakers Dennis R. Burton (The Scripps Research Institute), who will review progress toward a neutralizing antibody-based HIV vaccine; Olivera J. Finn, (University of Pittsburgh School of Medicine), who will discuss prophylactic cancer vaccines as a source of therapeutic antibodies; and Paul Richardson (Dana-Farber Cancer Institute), who will provide a clinical update on daratumumab for multiple myeloma. In a featured presentation, a representative of the World Health Organization's INN expert group will provide a perspective on antibody naming. "Antibodies to watch in 2017" and progress on The Antibody Society's 2016 initiatives will be presented during the Society's special session. In addition, two pre-conference workshops covering ways to accelerate antibody drugs to the clinic and the applications of next-generation sequencing in antibody discovery and engineering will be held on Sunday December 11, 2016.

  2. The MSFC Collaborative Engineering Process for Preliminary Design and Concept Definition Studies

    Science.gov (United States)

    Mulqueen, Jack; Jones, David; Hopkins, Randy

    2011-01-01

    This paper describes a collaborative engineering process developed by the Marshall Space Flight Center's Advanced Concepts Office for performing rapid preliminary design and mission concept definition studies for potential future NASA missions. The process has been developed and demonstrated for a broad range of mission studies including human space exploration missions, space transportation system studies and in-space science missions. The paper will describe the design team structure and specialized analytical tools that have been developed to enable a unique rapid design process. The collaborative engineering process consists of integrated analysis approach for mission definition, vehicle definition and system engineering. The relevance of the collaborative process elements to the standard NASA NPR 7120.1 system engineering process will be demonstrated. The study definition process flow for each study discipline will be will be outlined beginning with the study planning process, followed by definition of ground rules and assumptions, definition of study trades, mission analysis and subsystem analyses leading to a standardized set of mission concept study products. The flexibility of the collaborative engineering design process to accommodate a wide range of study objectives from technology definition and requirements definition to preliminary design studies will be addressed. The paper will also describe the applicability of the collaborative engineering process to include an integrated systems analysis approach for evaluating the functional requirements of evolving system technologies and capabilities needed to meet the needs of future NASA programs.

  3. Shedding Light on Engineering Design

    Science.gov (United States)

    Capobianco, Brenda M.; Nyquist, Chell; Tyrie, Nancy

    2013-01-01

    This article describes the steps incorporated to teach an engineering design process in a fifth-grade science classroom. The engineering design-based activity was an existing scientific inquiry activity using UV light--detecting beads and purposefully creating a series of engineering design-based challenges around the investigation. The…

  4. Engineering Design vs. Artistic Design: Some Educational Consequences

    Science.gov (United States)

    Eder, Wolfgang Ernst

    2013-01-01

    "Design" can be a noun, or a verb. Six paths for research into engineering design (as verb) are identified, they must be coordinated for internal consistency and plausibility. Design research tries to clarify design processes and their underlying theories--for designing in general, and for particular forms, e.g., design engineering. Theories are a…

  5. Engineering Encounters: Identifying an Engineering Design Problem

    Science.gov (United States)

    Chizek, Lisa; VanMeeteren, Beth; McDermott, Mark; Uhlenberg, Jill

    2018-01-01

    Engineering is an intriguing way for students to connect the design process with their knowledge of science (NRC 2012). This article describes the "Engineering a Pancake Recipe" design process which was created to make the structure and properties of matter more meaningful for fifth grade students. The whole pancake recipe engineering…

  6. Stirling engine design manual

    Science.gov (United States)

    Martini, W. R.

    1978-01-01

    This manual is intended to serve both as an introduction to Stirling engine analysis methods and as a key to the open literature on Stirling engines. Over 800 references are listed and these are cross referenced by date of publication, author and subject. Engine analysis is treated starting from elementary principles and working through cycles analysis. Analysis methodologies are classified as first, second or third order depending upon degree of complexity and probable application; first order for preliminary engine studies, second order for performance prediction and engine optimization, and third order for detailed hardware evaluation and engine research. A few comparisons between theory and experiment are made. A second order design procedure is documented step by step with calculation sheets and a worked out example to follow. Current high power engines are briefly described and a directory of companies and individuals who are active in Stirling engine development is included. Much remains to be done. Some of the more complicated and potentially very useful design procedures are now only referred to. Future support will enable a more thorough job of comparing all available design procedures against experimental data which should soon be available.

  7. Iteration in Early-Elementary Engineering Design

    Science.gov (United States)

    McFarland Kendall, Amber Leigh

    K-12 standards and curricula are beginning to include engineering design as a key practice within Science Technology Engineering and Mathematics (STEM) education. However, there is little research on how the youngest students engage in engineering design within the elementary classroom. This dissertation focuses on iteration as an essential aspect of engineering design, and because research at the college and professional level suggests iteration improves the designer's understanding of problems and the quality of design solutions. My research presents qualitative case studies of students in kindergarten and third-grade as they engage in classroom engineering design challenges which integrate with traditional curricula standards in mathematics, science, and literature. I discuss my results through the lens of activity theory, emphasizing practices, goals, and mediating resources. Through three chapters, I provide insight into how early-elementary students iterate upon their designs by characterizing the ways in which lesson design impacts testing and revision, by analyzing the plan-driven and experimentation-driven approaches that student groups use when solving engineering design challenges, and by investigating how students attend to constraints within the challenge. I connect these findings to teacher practices and curriculum design in order to suggest methods of promoting iteration within open-ended, classroom-based engineering design challenges. This dissertation contributes to the field of engineering education by providing evidence of productive engineering practices in young students and support for the value of engineering design challenges in developing students' participation and agency in these practices.

  8. Fusion Engineering Device design description

    International Nuclear Information System (INIS)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein

  9. Fusion engineering device design description

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.

  10. Fusion engineering device design description

    International Nuclear Information System (INIS)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein

  11. Designed by Engineers: An analysis of interactionaries with engineering students

    Directory of Open Access Journals (Sweden)

    Henrik Artman

    2014-12-01

    Full Text Available The aim of this study is to describe and analyze learning taking place in a collaborative design exercise involving engineering students. The students perform a time-constrained, open-ended, complex interaction design task, an “interactionary”. A multimodal learning perspective is used. We have performed detailed analyses of video recordings of the engineering students, including classifying aspects of interaction. Our results show that the engineering students carry out and articulate their design work using a technology-centred approach and focus more on the function of their designs than on aspects of interaction. The engineering students mainly make use of ephemeral communication strategies (gestures and speech rather than sketching in physical materials. We conclude that the interactionary may be an educational format that can help engineering students learn the messiness of design work. We further identify several constraints to the engineering students’ design learning and propose useful interventions that a teacher could make during an interactionary. We especially emphasize interventions that help engineering students-retain aspects of human-centered design throughout the design process. This study partially replicates a previous study which involved interaction design students.

  12. Technical Meeting on Design, Manufacturing and Irradiation Behaviour of Fast Reactors Fuels. Presentations

    International Nuclear Information System (INIS)

    2011-01-01

    The purpose of this meeting was to enable a rationalization and advancement of the design and manufacturing processes, a better selection of promising fuels, and a reduction of the time and costs currently required for R and D and testing, as well as to contribute to the improvement of the safety features of fuels under all operational states and accidental conditions. An overview of the status and perspective of the design, manufacturing and irradiation behaviour of fast reactors fuels were provided during this meeting. The main objectives are the following: Ensure sharing and dissemination of knowledge and expertise; Discuss specific features and issues of existing fuels; Improve knowledge and data for the design and engineering of fast reactor fuel and core structural materials; Discuss perspectives on advanced fuels; Consider modern technological, design and testing tools enabling reliable performance of fuels in current and planned operational environments; Establish international consensus in the developmental efforts on advanced fast reactor technologies, including collaborative programs and experiments. Contribute to the preparation and outline of the planned IAEA Coordinated Research Project on 'Examination of advanced fast reactor fuel and core structural materials. Each of the 24 presentations made at the meeting have been indexed separately

  13. Instructional design considerations promoting engineering design self-efficacy

    Science.gov (United States)

    Jackson, Andrew M.

    Engineering design activities are frequently included in technology and engineering classrooms. These activities provide an open-ended context for practicing critical thinking, problem solving, creativity, and innovation---collectively part of the 21st Century Skills which are increasingly needed for success in the workplace. Self-efficacy is a perceptual belief that impacts learning and behavior. It has been shown to directly impact each of these 21st Century Skills but its relation to engineering design is only recently being studied. The purpose of this study was to examine how instructional considerations made when implementing engineering design activities might affect student self-efficacy outcomes in a middle school engineering classroom. Student responses to two self-efficacy inventories related to design, the Engineering Design Self-Efficacy Instrument and Creative Thinking Self-Efficacy Inventory, were collected before and after participation in an engineering design curriculum. Students were also answered questions on specific factors of their experience during the curriculum which teachers may exhibit control over: teamwork and feedback. Results were analyzed using Pearson's correlation coefficients, paired and independent t-tests, and structural equation modeling to better understand patterns for self-efficacy beliefs in students. Results suggested that design self-efficacy and creative thinking self-efficacy are significantly correlated, r(1541) = .783, p classroom strategies for increasing self-efficacy and given specific recommendations related to teamwork and feedback to support students. Finally, although there were weaknesses in the study related to the survey administration, future research opportunities are presented which may build from this work.

  14. Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development & Performance Analysis

    Science.gov (United States)

    Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan

    2014-01-01

    ATA-002 Technical Team has successfully designed, developed, tested and assessed the SLS Pathfinder propulsion systems for the Main Base Heating Test Program. Major Outcomes of the Pathfinder Test Program: Reach 90% of full-scale chamber pressure Achieved all engine/motor design parameter requirements Reach steady plume flow behavior in less than 35 msec Steady chamber pressure for 60 to 100 msec during engine/motor operation Similar model engine/motor performance to full-scale SLS system Mitigated nozzle throat and combustor thermal erosion Test data shows good agreement with numerical prediction codes Next phase of the ATA-002 Test Program Design & development of the SLS OML for the Main Base Heating Test Tweak BSRM design to optimize performance Tweak CS-REM design to increase robustness MSFC Aerosciences and CUBRC have the capability to develop sub-scale propulsion systems to meet desired performance requirements for short-duration testing.

  15. Proceedings of the specialist meeting on positron annihilation study for science and engineering

    International Nuclear Information System (INIS)

    Shirai, Yasuharu; Yoshiie, Toshimasa

    2013-01-01

    The utilization of positron beams in the field of materials science and engineering has increased remarkably in these years. It is meaningful for researches working in this field to gather together to promote and exchange views and information between them. For this purpose, the Specialist Research Meeting on Positron Beam Techniques for Science and Engineering was held on November 30 and December 1, 2012 at the Research Reactor Institute, Kyoto University. 59 participants jointed the Meeting and 30 papers were presented. This volume contains the summary and selected transparencies presented in the meeting. (J.P.N.)

  16. Collaboration between Industrial Designers and Design Engineers - Comparing the Understanding of Design Intent.

    Science.gov (United States)

    Laursen, Esben Skov; Møller, Louise

    2015-01-01

    This paper describes a case study comparing the understanding of design intent between industrial designers and design engineers. The study is based on the hypothesis that it is not all aspects of the design intent that are equally difficult to share between industrial designers and design engineers in the product development process. The study builds on five semi-structured interviews, where two industrial designers and three design engineers were interviewed about different aspects of the design intent. Based on our results, there seem to be indications that the more complex and abstract elements of industrial design knowledge such as the meaning, semantics, values, emotions and social aspects of the product are less shared by the design engineers. Moreover, the results also indicate that the different aspects of the design intent are perceived separately, rather than as part of a whole by the design engineers. The connection between the different aspects of the design intent is not shared between the industrial designer and design engineer making the shared knowledge less meaningful to the design engineers. The results of this study cannot be claimed to be conclusive due to the limited empirical material. Further investigation and analytically richer data are required in order to verify and broaden the findings. More case studies have therefore been planned in order to understand the area better.

  17. Decision-Based Design Integrating Consumer Preferences into Engineering Design

    CERN Document Server

    Chen, Wei; Wassenaar, Henk Jan

    2013-01-01

    Building upon the fundamental principles of decision theory, Decision-Based Design: Integrating Consumer Preferences into Engineering Design presents an analytical approach to enterprise-driven Decision-Based Design (DBD) as a rigorous framework for decision making in engineering design.  Once the related fundamentals of decision theory, economic analysis, and econometrics modelling are established, the remaining chapters describe the entire process, the associated analytical techniques, and the design case studies for integrating consumer preference modeling into the enterprise-driven DBD framework. Methods for identifying key attributes, optimal design of human appraisal experiments, data collection, data analysis, and demand model estimation are presented and illustrated using engineering design case studies. The scope of the chapters also provides: •A rigorous framework of integrating the interests from both producer and consumers in engineering design, •Analytical techniques of consumer choice model...

  18. Engineering and design skills

    DEFF Research Database (Denmark)

    Schrøder, Anne Lise

    2006-01-01

    In various branches of society there is focus on the need for design skills and innovation potential as a means of communicating and handling constant change. In this context, the traditional idea of the engineer as a poly-technician inventing solutions by understanding the laws of nature...... concept of diagrammatic reasoning to some extent incarnates the very method of engineering and design. On this background, it is argued how the work field and techniques of the engineer and the engineering scientist could be characterized in a broader creative context of learning and communication....... This leads to considering the fundamental skills of the engineering practice as basic abilities to see the structures and dynamics of the world, to model it, and to create new solutions concerning practical as well as theoretical matters. Finally, it is assumed that the essence of engineering “bildung...

  19. Engineers: Designers--No Alibis.

    Science.gov (United States)

    Stevens, Susan A. R.; Wilkins, Linda C.

    Engineering is the science, art, and business of designing and getting things done; engineers are required to make things happen through interpersonal relationships. At Monash University (Australia), a new course, Management for Engineers, was set up in 1990 to encourage a more holistic approach to the process of engineering. The course included…

  20. Design description of a microprocessor based Engine Monitoring and Control unit (EMAC) for small turboshaft

    Science.gov (United States)

    Baez, A. N.

    1985-01-01

    Research programs have demonstrated that digital electronic controls are more suitable for advanced aircraft/rotorcraft turbine engine systems than hydromechanical controls. Commercially available microprocessors are believed to have the speed and computational capability required for implementing advanced digital control algorithms. Thus, it is desirable to demonstrate that off-the-shelf microprocessors are indeed capable of performing real time control of advanced gas turbine engines. The engine monitoring and control (EMAC) unit was designed and fabricated specifically to meet the requirements of an advanced gas turbine engine control system. The EMAC unit is fully operational in the Army/NASA small turboshaft engine digital research program.

  1. Documenting the Engineering Design Process

    Science.gov (United States)

    Hollers, Brent

    2017-01-01

    Documentation of ideas and the engineering design process is a critical, daily component of a professional engineer's job. While patent protection is often cited as the primary rationale for documentation, it can also benefit the engineer, the team, company, and stakeholders through creating a more rigorously designed and purposeful solution.…

  2. Engineering Encounters: Minding Design Missteps

    Science.gov (United States)

    Crismond, David; Gellert, Laura; Cain, Ryan; Wright, Shequana

    2013-01-01

    The "Next Generation Science Standards" (NGSS) (Achieve Inc. 2013) asks teachers to give engineering design equal standing with scientific inquiry in their science lessons. This article asks the following questions: What do engineering design practices look like, and how do you assess them? How similar and different is engineering design…

  3. Hybrid vehicle system studies and optimized hydrogen engine design

    Science.gov (United States)

    Smith, J. R.; Aceves, S.

    1995-04-01

    We have done system studies of series hydrogen hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. We have evaluated the impact of various on-board storage options on fuel economy. Experiments in an available engine at the Sandia CRF demonstrated NO(x) emissions of 10 to 20 ppM at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid simulation studies indicate that exhaust NO(x) concentrations must be less than 180 ppM to meet the 0.2 g/mile ULEV or Federal Tier II emissions regulations. LLNL has designed and fabricated a first generation optimized hydrogen engine head for use on an existing Onan engine. This head features 15:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses. Initial testing shows promise of achieving an indicated efficiency of nearly 50% and emissions of less than 100 ppM NO(x). Hydrocarbons and CO are to be measured, but are expected to be very low since their only source is engine lubricating oil. A successful friction reduction program on the Onan engine should result in a brake thermal efficiency of about 42% compared to today's gasoline engines of 32%. Based on system studies requirements, the next generation engine will be about 2 liter displacement and is projected to achieve 46% brake thermal efficiency with outputs of 15 kW for cruise and 40 kW for hill climb.

  4. Incorporating Sustainability and Green Design Concepts into Engineering and Technology Curricula

    Directory of Open Access Journals (Sweden)

    Radian G. Belu

    2016-05-01

    Full Text Available Human society is facing an uncertain future due to the present day unsustainable use of natural resources and the growing imbalance with our natural environment. Sustainability is an endeavour with uncertain outcomes requiring collaboration, teamwork, and abilities to work with respect and learn from other disciplines and professions, as well as with governments, local communities, political and civic organizations. The creation of a sustainable society is a complex and multi-stage endeavour that will dominate twenty first century.  Sustainability has four basic aspects: environment, technology, economy, and societal organization. Schools with undergraduate engineering or engineering technology programs are working to include sustainability and green design concepts into their curricula. Teaching sustainability and green design has increasingly become an essential feature of the present day engineering education. It applies to all of engineering, as all engineered systems interact with the environment in complex and important ways. Our project main goals are to provide the students with multiple and comprehensive exposures, to what it mean to have a sustainable mindset and to facilitate the development of the passion and the skills to integrate sustainable practices into engineering tools and methods. In this study we are describing our approaches to incorporating sustainability and green design into our undergraduate curricula and to list a variety of existing resources that can easily be adopted or adapted by our faculty for this purpose. Our approaches are: (1 redesigning existing courses through development of new curricular materials that still meet the objectives of the original course and (2 developing upper division elective courses that address specific topics related to sustainability, green design, green manufacturing and life-cycle assessment. 

  5. Engineering Design of the ITER AC/DC Power Supplies

    International Nuclear Information System (INIS)

    Oh, B. H.; Lee, K. W.; Hwang, C. K.; Jin, J. T.; Chang, D. S.; Kim, T. S.

    2009-02-01

    To design high power pulse power supplies, especially in huge power supplies have not designed till now, it is necessary to analyze a system's characteristics and relations with another systems as well as to know high voltage, high current control technologies. Contents of this project are; - Study for the engineering designs changed recently by ITER Organization(IO) and writing specifications for the power supplies to reduce project risk. - Detailed analysis of the AC/DC Converters and writing subtask reports on the Task Agreement. - Study for thyristor numbers, DCR's specifications for Korea-China sharing meetings. - Study for the grounding systems of the ITER power supply system. The results may used as one of reference for practical designs of the high power coil power supplies and also may used in various field such as electroplating, plasma arc furnaces, electric furnaces

  6. [Veneer computer aided design based on reverse engineering technology].

    Science.gov (United States)

    Liu, Ming-li; Chen, Xiao-dong; Wang, Yong

    2012-03-01

    To explore the computer aided design (CAD) method of veneer restoration, and to assess if the solution can help prosthesis meet morphology esthetics standard. A volunteer's upper right central incisor needed to be restored with veneer. Super hard stone models of patient's dentition (before and after tooth preparation) were scanned with the three-dimensional laser scanner. The veneer margin was designed as butt-to-butt type. The veneer was constructed using reverse engineering (RE) software. The technique guideline of veneers CAD was explore based on RE software, and the veneers was smooth, continuous and symmetrical, which met esthetics construction needs. It was a feasible method to reconstruct veneer restoration based on RE technology.

  7. Shedding light on the subject: introduction to illumination engineering and design for multidiscipline engineering students

    Science.gov (United States)

    Ronen, Ram S.; Smith, R. Frank

    1995-10-01

    Educating engineers and architects in Illumination Engineering and related subjects has become a very important field and a very satisfying and rewarding one. Main reasons include the need to significantly conserve lighting energy and meet government regulations while supplying appropriate light levels and achieving aesthetical requirements. The proliferation of new lamps, luminaries and lighting controllers many of which are 'energy savers' also helps a trend to seek help from lighting engineers when designing new commercial and residential buildings. That trend is believed to continue and grow as benefits become attractive and new government conservation regulations take affect. To make things even better one notices that Engineering and Science students in most disciplines make excellent candidates for Illumination Engineers because of their background and teaching them can move ahead at a brisk pace and be a rewarding experience nevertheless. In the past two years, Cal Poly Pomona College of Engineering has been the beneficiary of a DOE/California grant. Its purpose was to precipitate and oversee light curricula in various California community colleges and also develop and launch an Illumination Engineering minor at Cal Poly University. Both objectives have successfully been met. Numerous community colleges throughout California developed and are offering a sequence of six lighting courses leading to a certificate; the first graduating class is now coming out of both Cypress and Consumnes Community Colleges. At Cal Poly University a four course/laboratory sequence leading to a minor in Illumination Engineering (ILE) is now offered to upper division students in the College of Engineering, College of Science and College of Architecture and Design. The ILE sequence will briefly be described. The first course, Introduction to Illumination Engineering and its laboratory are described in more detail alter. Various methods of instruction including lectures, self work

  8. Engineering design: A cognitive process approach

    Science.gov (United States)

    Strimel, Greg Joseph

    The intent of this dissertation was to identify the cognitive processes used by advanced pre-engineering students to solve complex engineering design problems. Students in technology and engineering education classrooms are often taught to use an ideal engineering design process that has been generated mostly by educators and curriculum developers. However, the review of literature showed that it is unclear as to how advanced pre-engineering students cognitively navigate solving a complex and multifaceted problem from beginning to end. Additionally, it was unclear how a student thinks and acts throughout their design process and how this affects the viability of their solution. Therefore, Research Objective 1 was to identify the fundamental cognitive processes students use to design, construct, and evaluate operational solutions to engineering design problems. Research Objective 2 was to determine identifiers within student cognitive processes for monitoring aptitude to successfully design, construct, and evaluate technological solutions. Lastly, Research Objective 3 was to create a conceptual technological and engineering problem-solving model integrating student cognitive processes for the improved development of problem-solving abilities. The methodology of this study included multiple forms of data collection. The participants were first given a survey to determine their prior experience with engineering and to provide a description of the subjects being studied. The participants were then presented an engineering design challenge to solve individually. While they completed the challenge, the participants verbalized their thoughts using an established "think aloud" method. These verbalizations were captured along with participant observational recordings using point-of-view camera technology. Additionally, the participant design journals, design artifacts, solution effectiveness data, and teacher evaluations were collected for analysis to help achieve the

  9. Cabin fuselage structural design with engine installation and control system

    Science.gov (United States)

    Balakrishnan, Tanapaal; Bishop, Mike; Gumus, Ilker; Gussy, Joel; Triggs, Mike

    1994-01-01

    Design requirements for the cabin, cabin system, flight controls, engine installation, and wing-fuselage interface that provide adequate interior volume for occupant seating, cabin ingress and egress, and safety are presented. The fuselage structure must be sufficient to meet the loadings specified in the appropriate sections of Federal Aviation Regulation Part 23. The critical structure must provide a safe life of 10(exp 6) load cycles and 10,000 operational mission cycles. The cabin seating and controls must provide adjustment to account for various pilot physiques and to aid in maintenance and operation of the aircraft. Seats and doors shall not bind or lockup under normal operation. Cabin systems such as heating and ventilation, electrical, lighting, intercom, and avionics must be included in the design. The control system will consist of ailerons, elevator, and rudders. The system must provide required deflections with a combination of push rods, bell cranks, pulleys, and linkages. The system will be free from slack and provide smooth operation without binding. Environmental considerations include variations in temperature and atmospheric pressure, protection against sand, dust, rain, humidity, ice, snow, salt/fog atmosphere, wind and gusts, and shock and vibration. The following design goals were set to meet the requirements of the statement of work: safety, performance, manufacturing and cost. To prevent the engine from penetrating the passenger area in the event of a crash was the primary safety concern. Weight and the fuselage aerodynamics were the primary performance concerns. Commonality and ease of manufacturing were major considerations to reduce cost.

  10. Architectural Engineers

    DEFF Research Database (Denmark)

    Petersen, Rikke Premer

    engineering is addresses from two perspectives – as an educational response and an occupational constellation. Architecture and engineering are two of the traditional design professions and they frequently meet in the occupational setting, but at educational institutions they remain largely estranged....... The paper builds on a multi-sited study of an architectural engineering program at the Technical University of Denmark and an architectural engineering team within an international engineering consultancy based on Denmark. They are both responding to new tendencies within the building industry where...... the role of engineers and architects increasingly overlap during the design process, but their approaches reflect different perceptions of the consequences. The paper discusses some of the challenges that design education, not only within engineering, is facing today: young designers must be equipped...

  11. Design and development of Stirling Engines for stationary power generation applications in the 500 to 3000 hp range. Subtask 1A report: state-of-the-art conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-03-01

    The first portion of the Conceptual Design Study of Stirling Engines for Stationary Power Application in the 500 to 3000 hp range which was aimed at state-of-the-art stationary Stirling engines for a 1985 hardware demonstration is summarized. The main goals of this effort were to obtain reliable cost data for a stationary Stirling engine capable of meeting future needs for total energy/cogeneration sysems and to establish a pragmatic and conservative base design for a first generation hardware. Starting with an extensive screening effort, 4 engine types, i.e., V-type crank engine, radial engine, swashplate engine, and rhombic drive engine, and 3 heat transport systems, i.e., heat pipe, pressurized gas heat transport loop, and direct gas fired system, were selected. After a preliminary layout cycle, the rhombic drive engine was eliminated due to intolerable maintenance difficulties on the push rod seals. V, radial and swashplate engines were taken through a detailed design/layout cycle, to establish all important design features and reliable engine weights. After comparing engine layouts and analyzing qualitative and quantitative evaluation criteria, the V-crank engine was chosen as the candidate for a 1985 hardware demonstration.

  12. A Continuing Education Short Course and Engineering Curriculum to Accelerate Workforce Development in Wind Power Plant Design, Construction, and Operations

    Energy Technology Data Exchange (ETDEWEB)

    Tinjum, James [Univ. of Wisconsin, Madison, WI (United States)

    2012-11-29

    Significant advances in wind turbine technology and wind turbine power plant capabilities are appearing in the U.S. Sites that only 10 years ago might have been overlooked are being considered for build out. However, the development of a skilled workforce in the engineering fields and construction trades lags the potential market, especially if the industry is expected to site, design, construct, and operate sufficient wind power plant sites to meet the potential for 20% wind energy by 2030. A select few firms have penetrated the engineer-procure-construction (EPC) market of wind power plant construction. Competition and know-how in this market is vital to achieve cost-effective, design-construct solutions. The industry must produce or retrain engineers, contractors, and technicians to meet ambitious goals. Currently, few universities offer undergraduate or graduate classes that teach the basics in designing, building, and maintaining wind power plants that are safe, efficient, and productive.

  13. INCORPORATION OF HUMAN FACTORS ENGINEERING ANALYSES AND TOOLS INTO THE DESIGN PROCESS FOR DIGITAL CONTROL ROOM UPGRADES

    International Nuclear Information System (INIS)

    O'HARA, J.M.; BROWN, W.

    2004-01-01

    Many nuclear power plants are modernizing with digital instrumentation and control systems and computer-based human-system interfaces (HSIs). The purpose of this paper is to summarize the human factors engineering (HFE) activities that can help to ensure that the design meets personnel needs. HFE activities should be integrated into the design process as a regular part of the engineering effort of a plant modification. The HFE activities will help ensure that human performance issues are addressed, that new technology supports task performance, and that the HSIs are designed in a manner that is compatible with human physiological, cognitive and social characteristics

  14. Protein design for pathway engineering.

    Science.gov (United States)

    Eriksen, Dawn T; Lian, Jiazhang; Zhao, Huimin

    2014-02-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. 5th National meeting of the SA Institution of Chemical Engineers: chemical engineering in support of industry and society. V. 1-3

    International Nuclear Information System (INIS)

    1988-01-01

    The 5th national meeting of the SA Institution of Chemical Engineering was held from 15-16 August 1988 at Pretoria. The subject scope covered on the meeting include the broad spectrum of work done by the chemical engineer. The main categories include the processing of agricultural products, biotechnology, coal and hydrocarbons, the chemical engineering practice, fluid dynamics, gas treatment, heat and mass transfer, materials of construction, minerals processing, source materials and products, training and education, vapour-liquid equilibrium, and water and effluents. One seminar specifically covers process engineering in the context of nuclear reactors and two other papers cover supported liquid membrane extraction of uranium

  16. Mechanical design engineering handbook

    CERN Document Server

    Childs, Peter R N

    2013-01-01

    Mechanical Design Engineering Handbook is a straight-talking and forward-thinking reference covering the design, specification, selection, use and integration of machine elements fundamental to a wide range of engineering applications. Develop or refresh your mechanical design skills in the areas of bearings, shafts, gears, seals, belts and chains, clutches and brakes, springs, fasteners, pneumatics and hydraulics, amongst other core mechanical elements, and dip in for principles, data and calculations as needed to inform and evaluate your on-the-job decisions. Covering the full spectrum

  17. Proceedings of the specialist meeting on positron annihilation study for science and engineering 2011

    International Nuclear Information System (INIS)

    Shirai, Yasuharu; Yoshiie, Toshimasa

    2012-01-01

    The utilization of positron beams in the field of materials science and engineering has increased remarkably in these years. It is meaningful for researches working in this field to gather together to promote and exchange views and information between them. For this purpose, the Specialist Research Meeting on Positron Beam Techniques for Science and Engineering was held on December 2nd and 3rd, 2011 at the Research Reactor Institute, Kyoto University. 66 participants jointed the Meeting and 28 papers were presented. This volume contains the summary and selected transparencies presented in the meeting. (J.P.N.)

  18. Managing engineering to meet construction requirements

    International Nuclear Information System (INIS)

    Martin, D.F.; Houchen, J.D.

    1976-01-01

    The San Onofre Units 2 and 3 Project schedule is compared with Bechtel's Generic Nuclear Power Plant schedule. This comparison shows that the major delays experienced on the San Onofre Project have resulted from the regulatory process. To date, Engineering has met Construction's requirements and the Project has not experienced any Engineering related delays. The San Onofre Project has been faced with many uncertainties, such as limited site area, high seismic design criteria, new and changing Federal and State regulations, shifts in supplier market conditions and unpredictable supplier performance. Each of these uncertainties has impacted the Engineering effort and jeopardized project schedule goals. The SCE-Bechtel Engineering Management team has acted to mitigate the impact of these uncertainties through use of a cost trend program, simplification of SCE-Bechtel interfaces, close Engineering-Construction coordination, the use of task forces to handle critical supplier problems and the use of additional Engineering personnel, etc. so that Construction requirements have been met

  19. Instructional Design Issues in a Distributed Collaborative Engineering Design (CED) Instructional Environment

    Science.gov (United States)

    Koszalka, Tiffany A.; Wu, Yiyan

    2010-01-01

    Changes in engineering practices have spawned changes in engineering education and prompted the use of distributed learning environments. A distributed collaborative engineering design (CED) course was designed to engage engineering students in learning about and solving engineering design problems. The CED incorporated an advanced interactive…

  20. Educating engineering designers for a multidisciplinary future

    DEFF Research Database (Denmark)

    engineering design education. Educating engineering designers today significantly differs from traditional engineering education (McAloone, et.al., 2007). However, a broader view of design activities gains little attention. The project course Product/Service-Systems, which is coupled to the lecture based...... course Product life and Environmental issues at the Technical University of Denmark (DTU) and the master programme Product Development Processes at the Luleå University of Technology (LTU), Sweden, are both curriculums with a broader view than traditional (mechanical) engineering design. Based...... on these two representatives of a Scandinavian approach, the purpose in this presentation is to describe two ways of educating engineering designers to enable them to develop these broader competencies of socio-technical aspects of engineering design. Product Development Processes at LTU A process, called...

  1. Engineering test facility design center

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This section describes the status of this design

  2. Design and study of Engineering Test Facility - Helium Circulator

    International Nuclear Information System (INIS)

    Jiang Huijing; Ye Ping; Zhao Gang; Geng Yinan; Wang Jie

    2015-01-01

    Helium circulator is one of the key equipment of High-temperature Gas-cooled Reactor Pebble-bed Module (HTR-PM). In order to simulate most normal and accident operating conditions of helium circulator in HTR-PM, a full scale, rated flow rate and power, engineering test loop, which was called Engineering Test Facility - Helium Circulator (ETF-HC), was designed and established. Two prototypes of helium circulator, which was supported by Active Magnetic Bearing (AMB) or sealed by dry gas seals, would be tested on ETF-HC. Therefore, special interchangeable design was under consideration. ETF-HC was constructed compactly, which consisted of eleven sub-systems. In order to reduce the flow resistance of the circuit, special ducts, elbows, valves and flowmeters were selected. Two stages of heat exchange loops were designed and a helium - high pressure pure water heat exchanger was applied to ensure water wouldn't be vaporized while simulating accident conditions. Commissioning tests were carried out and operation results showed that ETF-HC meets the requirement of helium circulator operation. On this test facility, different kinds of experiments were supposed to be held, including mechanical and aerodynamic performance tests, durability tests and so on. These tests would provide the features and performance of helium circulator and verify its feasibility, availability and reliability. (author)

  3. Conceptual designs of advanced fast reactor. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1996-10-01

    A Technical Committee meeting (TCM) was held on Conceptual Designs of Advanced Fast Power Reactors to review the lessons learned from the construction and operation of demonstration and near-commercial size plants. This TCM focused on design and development of advanced fast reactors and identified methodologies to evaluate the economic competitiveness and reliability of advanced projects. The Member States which participated in the TCM were at different stages of LMFR development. The Russian Federation, Japan and India had prototype and/or experimental LMFRs and continue with mature R and D programmes. China, the Republic of Korea and Brazil were at the beginning of LMFR development. Therefore the aims of the TCM were to obtain technical descriptions of different design approaches for experimental, prototype, demonstration and commercial LMFRs, and to describe the engineering judgements made in developing the design approaches. Refs, figs, tabs

  4. Conceptual designs of advanced fast reactor. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    A Technical Committee meeting (TCM) was held on Conceptual Designs of Advanced Fast Power Reactors to review the lessons learned from the construction and operation of demonstration and near-commercial size plants. This TCM focused on design and development of advanced fast reactors and identified methodologies to evaluate the economic competitiveness and reliability of advanced projects. The Member States which participated in the TCM were at different stages of LMFR development. The Russian Federation, Japan and India had prototype and/or experimental LMFRs and continue with mature R and D programmes. China, the Republic of Korea and Brazil were at the beginning of LMFR development. Therefore the aims of the TCM were to obtain technical descriptions of different design approaches for experimental, prototype, demonstration and commercial LMFRs, and to describe the engineering judgements made in developing the design approaches. Refs, figs, tabs.

  5. Integrating ergonomic knowledge into engineering design processes

    DEFF Research Database (Denmark)

    Hall-Andersen, Lene Bjerg

    Integrating ergonomic knowledge into engineering design processes has been shown to contribute to healthy and effective designs of workplaces. However, it is also well-recognized that, in practice, ergonomists often have difficulties gaining access to and impacting engineering design processes...... employed in the same company, constituted a supporting factor for the possibilities to integrate ergonomic knowledge into the engineering design processes. However, the integration activities remained discrete and only happened in some of the design projects. A major barrier was related to the business...... to the ergonomic ambitions of the clients. The ergonomists’ ability to navigate, act strategically, and compromise on ergonomic inputs is also important in relation to having an impact in the engineering design processes. Familiarity with the engineering design terminology and the setup of design projects seems...

  6. Sustainable Product Design, Engineering and Management Education for Industrial Design Engineering

    NARCIS (Netherlands)

    Boks, C.; Diehl, J.C.; Wever, R.

    2006-01-01

    Developments in the field of sustainable product design are manifold, which means that education in this field is rapidly evolving as well. In this paper, the continuously evolving portfolio of courses offered at Delft University of Technology’s Industrial Design Engineering faculty is

  7. Identification of advanced human factors engineering analysis, design and evaluation methods

    International Nuclear Information System (INIS)

    Plott, C.; Ronan, A. M.; Laux, L.; Bzostek, J.; Milanski, J.; Scheff, S.

    2006-01-01

    NUREG-0711 Rev.2, 'Human Factors Engineering Program Review Model,' provides comprehensive guidance to the Nuclear Regulatory Commission (NRC) in assessing the human factors practices employed by license applicants for Nuclear Power Plant control room designs. As software based human-system interface (HSI) technologies supplant traditional hardware-based technologies, the NRC may encounter new HSI technologies or seemingly unconventional approaches to human factors design, analysis, and evaluation methods which NUREG-0711 does not anticipate. A comprehensive survey was performed to identify advanced human factors engineering analysis, design and evaluation methods, tools, and technologies that the NRC may encounter in near term future licensee applications. A review was conducted to identify human factors methods, tools, and technologies relevant to each review element of NUREG-0711. Additionally emerging trends in technology which have the potential to impact review elements, such as Augmented Cognition, and various wireless tools and technologies were identified. The purpose of this paper is to provide an overview of the survey results and to highlight issues that could be revised or adapted to meet with emerging trends. (authors)

  8. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables

  9. Investigating mind markers in design meetings

    NARCIS (Netherlands)

    Heylen, Dirk K.J.

    In the context of the European AMI1 project, “Augmented Multiparty Interaction��? more than one hundred hours of video and audio data have been collected of groups of four people engaged in a meeting with the task to design a new remote control. The collection of meetings is being annotated on

  10. Scaffolds for design communication : research through design of shared understanding in design meetings

    NARCIS (Netherlands)

    Dijk, van J.; Lugt, van der R.

    2013-01-01

    In this paper we explore the influence of the physical and social environment (the design space) son the formation of shared understanding in multidisciplinary design teams. We concentrate on the creative design meeting as a microenvironment for studying processes of design communication. Our

  11. ITER technical advisory committee meeting

    International Nuclear Information System (INIS)

    Fujiwara, M.

    1999-01-01

    The ITER Technical Advisory Committee (TAC) meeting took place on December 20-22, 1999 at the Naka Joint Work Site. The objective of this meeting was to review the document 'Technical Basis for ITER-FEAT Outline Design (ODR)' issued by the Director on December 10. It was also aimed at providing the ITER Meeting scheduled for January 19-20, 2000 in Tokyo with a technical assessment of ODR and recommendations for the optimization of the anticipated plasma performance and engineering design, based on the guidelines approved by the Council in June 1998 and recommendations of the last TAC meeting

  12. Engineering Design Thinking

    Science.gov (United States)

    Lammi, Matthew; Becker, Kurt

    2013-01-01

    Engineering design thinking is "a complex cognitive process" including divergence-convergence, a systems perspective, ambiguity, and collaboration (Dym, Agogino, Eris, Frey, & Leifer, 2005, p. 104). Design is often complex, involving multiple levels of interacting components within a system that may be nested within or connected to other systems.…

  13. Engineering design skills coverage in K-12 engineering program curriculum materials in the USA

    Science.gov (United States)

    Chabalengula, Vivien M.; Mumba, Frackson

    2017-11-01

    The current K-12 Science Education framework and Next Generation Science Standards (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed curriculum materials that are being used in K-12 settings. However, little is known about the nature and extent to which engineering design skills outlined in NGSS are addressed in these K-12 engineering education programme curriculum materials. We analysed nine K-12 engineering education programmes for the nature and extent of engineering design skills coverage. Results show that developing possible solutions and actual designing of prototypes were the highly covered engineering design skills; specification of clear goals, criteria, and constraints received medium coverage; defining and identifying an engineering problem; optimising the design solution; and demonstrating how a prototype works, and making iterations to improve designs were lowly covered. These trends were similar across grade levels and across discipline-specific curriculum materials. These results have implications on engineering design-integrated science teaching and learning in K-12 settings.

  14. Iteration in Early-Elementary Engineering Design

    Science.gov (United States)

    McFarland Kendall, Amber Leigh

    2017-01-01

    K-12 standards and curricula are beginning to include engineering design as a key practice within Science Technology Engineering and Mathematics (STEM) education. However, there is little research on how the youngest students engage in engineering design within the elementary classroom. This dissertation focuses on iteration as an essential aspect…

  15. Design, analysis, and control of a large transport aircraft utilizing selective engine thrust as a backup system for the primary flight control. Ph.D. Thesis

    Science.gov (United States)

    Gerren, Donna S.

    1995-01-01

    A study has been conducted to determine the capability to control a very large transport airplane with engine thrust. This study consisted of the design of an 800-passenger airplane with a range of 5000 nautical miles design and evaluation of a flight control system, and design and piloted simulation evaluation of a thrust-only backup flight control system. Location of the four wing-mounted engines was varied to optimize the propulsive control capability, and the time constant of the engine response was studied. The goal was to provide level 1 flying qualities. The engine location and engine time constant did not have a large effect on the control capability. The airplane design did meet level 1 flying qualities based on frequencies, damping ratios, and time constants in the longitudinal and lateral-directional modes. Project pilots consistently rated the flying qualities as either level 1 or level 2 based on Cooper-Harper ratings. However, because of the limited control forces and moments, the airplane design fell short of meeting the time required to achieve a 30 deg bank and the time required to respond a control input.

  16. Multidisciplinary systems engineering architecting the design process

    CERN Document Server

    Crowder, James A; Demijohn, Russell

    2016-01-01

    This book presents Systems Engineering from a modern, multidisciplinary engineering approach, providing the understanding that all aspects of systems design, systems, software, test, security, maintenance and the full life-cycle must be factored in to any large-scale system design; up front, not factored in later. It lays out a step-by-step approach to systems-of-systems architectural design, describing in detail the documentation flow throughout the systems engineering design process. It provides a straightforward look and the entire systems engineering process, providing realistic case studies, examples, and design problems that will enable students to gain a firm grasp on the fundamentals of modern systems engineering.  Included is a comprehensive design problem that weaves throughout the entire text book, concluding with a complete top-level systems architecture for a real-world design problem.

  17. Managing design with the effective use of communication media : the relationship between design dialogues and design team meetings

    NARCIS (Netherlands)

    Emmitt, S.; Otter, den A.F.H.J.

    2007-01-01

    Effective and efficient design team communication is an essential component of architectural design and construction projects. Face-to-face communication, via meetings and dialogue, is an essential means for design team members to discuss and communicate design ideas. Meetings represent an important

  18. Making room in engineering design practices

    DEFF Research Database (Denmark)

    Petersen, Rikke Premer; Buch, Anders

    2016-01-01

    This article aims to explore the challenges that occur from a practice perspective when a new approach to engineering design enters an existing ecology of professional practices in a workplace. Using four empirical episodes, the article illustrates a concrete effort to challenge what counts...... as ‘real engineering’ or what is recognized as part of the engineering expertise. Using an ethnographic, case-studybased research design the article documentshowholistically minded professionals do engineering design ‘by other means’, in ways that strive to promote user experience approaches. The article...... aims to show how engineering practices do not exist in isolation within an organization and how ambitions to transform professional engineering work practices require a change in the very ecologies of practices that exist across an organization...

  19. Stirling engine design manual, 2nd edition

    Science.gov (United States)

    Martini, W. R.

    1983-01-01

    This manual is intended to serve as an introduction to Stirling cycle heat engines, as a key to the available literature on Stirling engines and to identify nonproprietary Stirling engine design methodologies. Two different fully described Stirling engines are discussed. Engine design methods are categorized as first order, second order, and third order with increased order number indicating increased complexity. FORTRAN programs are listed for both an isothermal second order design program and an adiabatic second order design program. Third order methods are explained and enumerated. In this second edition of the manual the references are updated. A revised personal and corporate author index is given and an expanded directory lists over 80 individuals and companies active in Stirling engines.

  20. Incorporating Engineering Design Challenges into STEM Courses

    OpenAIRE

    Householder, Daniel L.; Hailey, Christine E.

    2012-01-01

    Successful strategies for incorporating engineering design challenges into science, technology, engineering, and mathematics (STEM) courses in American high schools are presented in this paper. The developers have taken the position that engineering design experiences should be an important component of the high school education of all American youth. In most instances, these experiences in engineering design are infused into instruction programs in standards-based courses in science, technol...

  1. DESIGN QUALITY IN MECHANICAL ENGINEERING APPLICATION

    Directory of Open Access Journals (Sweden)

    Ayşegül Akdogan Eker

    2010-09-01

    Full Text Available There is a close relationship between material chose and quality in mechanical engineering application like there is in all the other engineering applications. If this relation is balanced then engineering success increases. Material chose comes to fore in the design process most of the time. The two most important responsibilities of the design engineer in here is to chose suitable material and to know the production processes about design. The chose of material of a design that will fulfill the needs all through its life has great importance. It is needed to limit the material applicants by choosing the most suitable ones among variable material. Choosing materials that were examined before and whose behavior is well known provides the designer to feel confident. However since using highly successful materials would increase the competitive power of the designs; designers should follow the developments in materials and know the features of new materials. The description of these features can be interpreted within quality. Quality from the point of engineer is the total fulfillment of expectations.Engineer today are faced with very important problems such as fast technological innovations, a dynamic socio-economical environment, global rivalry. One of the life buoys they stick while trying to solve these problems is total method of quality control. Total Quality model which can provide higher competitive power compared to classical management model brings success only when applied with its whole components. "Approach toward prevention" and "measurement and statistics" have an important place among these elements. The first step of the approach toward prevention composes of design quality and Quality Function Deployment (QFD, or in other words The House of Quality method that will provide this. In this paper; considering the quality function deployment, how the chose of material are done in mechanical engineering applications will be explained.

  2. Design of automotive engine coolant hoses

    Directory of Open Access Journals (Sweden)

    Hrishikesh D BACHCHHAV

    2018-03-01

    Full Text Available In this paper, we are present the performance of engine coolant hoses (radiator hoses used in passenger cars by checking various physical behaviours such as hose leakage, hose burst, hose collapse or any mechanical damage as studied-thru design guidelines, CFD analysis and product validation testing and also check pressure drop of the hoses when engine will be running. The design term is more likely used for technical part modelling using CAD tool. Later on, we will focus on the transformation of the part design to process design. The process design term is more likely used for "tooling design" for manufacturing of the product using CAD Tool. Then inlet hose carries coolant from engine to radiator inlet tank, then coolant circulated in radiator and passed through radiator outlet tank to water pump of engine with the help of outlet hose. After that …nding any leakage, Burst, damage or collapse of hose and pressure drop of the hose with the help of design checklist, CFD Analysis and product validation testing.

  3. Engineering design of advanced marine reactor MRX

    International Nuclear Information System (INIS)

    1997-10-01

    JAERI has studied the design of an advanced marine reactor (named as MRX), which meets requirements of the enhancement of economy and reliability, by reflecting results and knowledge obtained from the development of N.S. Mutsu. The MRX with a power of 100 MWt is intended to be used for ship propulsion such as an ice-breaker, container cargo ship and so on. After completion of the conceptual design, the engineering design was performed in four year plan from FY 1993 to 1996. (1) Compactness, light-weightiness and simplicity of the reactor system are realized by adopting an integral-type PWR, i.e. by installing the steam generator, the pressurizer, and the control rod drive mechanism (CRDM) inside the pressure vessel. Because of elimination of the primary coolant circulation pipes in the MRX, possibility of large-scale pipe break accidents can be eliminated. This contributes to improve the safety of the reactor system and to simplify the engineered safety systems. (2) The in-vessel type CRDM contributes not only to eliminate possibilities of rod ejection accidents, but also to make the reactor system compact. (3) The concept of water-filled containment where the reactor pressure vessel is immersed in the water is adopted. It can be of use for emergency core cooling system which maintains core flooding passively in case of a loss-of-coolant accident. The water-filled containment system also contributes essentially light-weightness of the reactor system since the water inside containment acts as a radiation shield and in consequence the secondary radiation shield can be eliminated. (4) Adoption of passive decay heat removal systems has contributed in a greater deal to simplification of the engineered safety systems and to enhancement of reliability of the systems. (5) Operability has been improved by simplification of the whole reactor system, by adoption of the passive safety systems, advanced automatic operation systems, and so on. (J.P.N.)

  4. 45th IGE (Institute of Gas Engineers) Autumn Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Riley, T; De Winton, C

    1980-01-01

    Topics discussed at the 45th Institute of Gas Engineers Autumn Meeting (London, 1979) are outlined, including safety standards and recommendations for gas transmission and distribution systems, gas characteristics and utilization, heat transfer research, gas receiver stresses, the potential of hydrogen as an energy fuel, gas appliances and controls, pipe failure, refactories in gasifiers, synthetic natural gas, coal conversion techniques, and technological innovations.

  5. The Design and Development of a Computerized Tool Support for Conducting Senior Projects in Software Engineering Education

    Science.gov (United States)

    Chen, Chung-Yang; Teng, Kao-Chiuan

    2011-01-01

    This paper presents a computerized tool support, the Meetings-Flow Project Collaboration System (MFS), for designing, directing and sustaining the collaborative teamwork required in senior projects in software engineering (SE) education. Among many schools' SE curricula, senior projects serve as a capstone course that provides comprehensive…

  6. Product design engineering - a global education trend in multidisciplinary training for creative product design

    Science.gov (United States)

    de Vere, Ian; Melles, Gavin; Kapoor, Ajay

    2010-03-01

    Product design is the convergence point for engineering and design thinking and practices. Until recently, product design has been taught either as a component of mechanical engineering or as a subject within design schools but increasingly there is global recognition of the need for greater synergies between industrial design and engineering training. Product design engineering (PDE) is a new interdisciplinary programme combining the strengths of the industrial design and engineering. This paper examines the emergence of PDE in an environment of critique of conventional engineering education and exemplifies the current spread of programmes endorsing a hybrid programme of design and engineering skills. The paper exemplifies PDE with the analysis of the programme offered at Swinburne University of Technology (Australia), showing how the teaching of 'designerly' thinking to engineers produces a new graduate particularly suited to the current and future environment of produce design practice. The paper concludes with reflections on the significance of this innovative curriculum model for the field of product design and for engineering design in general.

  7. Automotive Stirling engine: Mod 2 design report

    Science.gov (United States)

    Nightingale, Noel P.

    1986-01-01

    The design of an automotive Stirling engine that achieves the superior fuel economy potential of the Stirling cycle is described. As the culmination of a 9-yr development program, this engine, designated the Mod 2, also nullifies arguments that Stirling engines are heavy, expensive, unreliable, demonstrating poor performance. Installed in a General Motors Chevrolet Celebrity car, this engine has a predicted combined fuel economy on unleaded gasoline of 17.5 km/l (41 mpg)- a value 50% above the current vehicle fleet average. The Mod 2 Stirling engine is a four-cylinder V-drive design with a single crankshaft. The engine is also equipped with all the controls and auxiliaries necessary for automotive operation.

  8. Complex engineering systems science meets technology

    CERN Document Server

    Minai, Ali A; Bar-Yam, Yaneer

    2006-01-01

    Every time that we take money out of an ATM, surf the internet or simply turn on a light switch, we enjoy the benefits of complex engineered systems. Systems like power grids and global communication networks are so ubiquitous in our daily lives that we usually take them for granted, only noticing them when they break down. But how do such amazing technologies and infrastructures come to be what they are? How are these systems designed? How do distributed networks work? How are they made to respond rapidly in 'real time'? And as the demands that we place on these systems become increasingly complex, are traditional systems-engineering practices still relevant? This volume examines the difficulties that arise in creating highly complex engineered systems and new approaches that are being adopted. Topics addressed range from the formal representation and classification of distributed networked systems to revolutionary engineering practices inspired by biological evolution. By bringing together the latest resear...

  9. Design and Performance Optimizations of Advanced Erosion-Resistant Low Conductivity Thermal Barrier Coatings for Rotorcraft Engines

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2012-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future rotorcraft engine higher fuel efficiency and lower emission goals. For thermal barrier coatings designed for rotorcraft turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability, because the rotorcraft are often operated in the most severe sand erosive environments. Advanced low thermal conductivity and erosion-resistant thermal barrier coatings are being developed, with the current emphasis being placed on thermal barrier coating toughness improvements using multicomponent alloying and processing optimization approaches. The performance of the advanced thermal barrier coatings has been evaluated in a high temperature erosion burner rig and a laser heat-flux rig to simulate engine erosion and thermal gradient environments. The results have shown that the coating composition and architecture optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic oxidation durability

  10. Teaching ethics to engineers: ethical decision making parallels the engineering design process.

    Science.gov (United States)

    Bero, Bridget; Kuhlman, Alana

    2011-09-01

    In order to fulfill ABET requirements, Northern Arizona University's Civil and Environmental engineering programs incorporate professional ethics in several of its engineering courses. This paper discusses an ethics module in a 3rd year engineering design course that focuses on the design process and technical writing. Engineering students early in their student careers generally possess good black/white critical thinking skills on technical issues. Engineering design is the first time students are exposed to "grey" or multiple possible solution technical problems. To identify and solve these problems, the engineering design process is used. Ethical problems are also "grey" problems and present similar challenges to students. Students need a practical tool for solving these ethical problems. The step-wise engineering design process was used as a model to demonstrate a similar process for ethical situations. The ethical decision making process of Martin and Schinzinger was adapted for parallelism to the design process and presented to students as a step-wise technique for identification of the pertinent ethical issues, relevant moral theories, possible outcomes and a final decision. Students had greatest difficulty identifying the broader, global issues presented in an ethical situation, but by the end of the module, were better able to not only identify the broader issues, but also to more comprehensively assess specific issues, generate solutions and a desired response to the issue.

  11. Engineering Design of KSTAR tokamak main structure

    International Nuclear Information System (INIS)

    Im, K.H.; Cho, S.; Her, N.I.

    2001-01-01

    The main components of the KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak including vacuum vessel, plasma facing components, cryostat, thermal shield and magnet supporting structure are in the final stage of engineering design. Hundai Heavy Industries (HHI) has been involved in the engineering design of these components. The current configuration and the final engineering design results for the KSTAR main structure are presented. (author)

  12. Advanced Control Considerations for Turbofan Engine Design

    Science.gov (United States)

    Connolly, Joseph W.; Csank, Jeffrey T.; Chicatelli, Amy

    2016-01-01

    This paper covers the application of a model-based engine control (MBEC) methodology featuring a self tuning on-board model for an aircraft turbofan engine simulation. The nonlinear engine model is capable of modeling realistic engine performance, allowing for a verification of the advanced control methodology over a wide range of operating points and life cycle conditions. The on-board model is a piece-wise linear model derived from the nonlinear engine model and updated using an optimal tuner Kalman Filter estimation routine, which enables the on-board model to self-tune to account for engine performance variations. MBEC is used here to show how advanced control architectures can improve efficiency during the design phase of a turbofan engine by reducing conservative operability margins. The operability margins that can be reduced, such as stall margin, can expand the engine design space and offer potential for efficiency improvements. Application of MBEC architecture to a nonlinear engine simulation is shown to reduce the thrust specific fuel consumption by approximately 1% over the baseline design, while maintaining safe operation of the engine across the flight envelope.

  13. Building Design Variables Usage as a Tool of Value Engineering During Designing

    Directory of Open Access Journals (Sweden)

    Sahid Nur

    2017-01-01

    Full Text Available The deployment of construction economics has become more desirable today, mainly due to need to establish how building costs are spent, and be able to come up with the most optimum alternatives. This research article therefore, explored 1 the various costs inputs called design variables used by design consultants, plus their underlying factors, 2 how the practice of value engineering (VE impacts on projects in Indonesia. A qualitative methodology, was used inform of a questionnaire, designed based on a 5 pointer liker scale approach, and distributed among 30 respondents consisting of consultants and clients in areas of Surakarta. The collected data was processed using statistical method of relative importance index, followed by descriptive analysis inform of bar and pie charts. The results obtained were that building plane shape (index 83.2, was mostly used, which itself depended on external features of building membrane and shape of building site (80.0 each, then other variables were building complexity (82.1; and building façade (77.9, meanwhile the least used was sharing walls (index 62.1, Lastly, VE was found to benefit the industry by producing designs which meet time, cost and quality targets, on the other hand material wastages and loss of confidence was reported once VE was neglected.

  14. Incorporating Engineering Design Challenges into STEM Courses

    Science.gov (United States)

    Householder, Daniel L., Ed.; Hailey, Christine E., Ed.

    2012-01-01

    Successful strategies for incorporating engineering design challenges into science, technology, engineering, and mathematics (STEM) courses in American high schools are presented in this paper. The developers have taken the position that engineering design experiences should be an important component of the high school education of all American…

  15. Model-Based Engineering Design for Trade Space Exploration throughout the Design Cycle

    Science.gov (United States)

    Lamassoure, Elisabeth S.; Wall, Stephen D.; Easter, Robert W.

    2004-01-01

    This paper presents ongoing work to standardize model-based system engineering as a complement to point design development in the conceptual design phase of deep space missions. It summarizes two first steps towards practical application of this capability within the framework of concurrent engineering design teams and their customers. The first step is standard generation of system sensitivities models as the output of concurrent engineering design sessions, representing the local trade space around a point design. A review of the chosen model development process, and the results of three case study examples, demonstrate that a simple update to the concurrent engineering design process can easily capture sensitivities to key requirements. It can serve as a valuable tool to analyze design drivers and uncover breakpoints in the design. The second step is development of rough-order- of-magnitude, broad-range-of-validity design models for rapid exploration of the trade space, before selection of a point design. At least one case study demonstrated the feasibility to generate such models in a concurrent engineering session. The experiment indicated that such a capability could yield valid system-level conclusions for a trade space composed of understood elements. Ongoing efforts are assessing the practicality of developing end-to-end system-level design models for use before even convening the first concurrent engineering session, starting with modeling an end-to-end Mars architecture.

  16. Product design and development engineering

    International Nuclear Information System (INIS)

    Lee, Kookhwan

    2008-01-01

    This book gives design of molded plastics, design of press product, design of die casting products, the application of communication terminal design, application and design of machine elements(screw, spring, bearing, gear, retaining ridge, drawing standards, KS and JIS material marks list), 3D CAD, concurrent engineering of product design, creative concept design.

  17. Optimization of scaffold design for bone tissue engineering: A computational and experimental study.

    Science.gov (United States)

    Dias, Marta R; Guedes, José M; Flanagan, Colleen L; Hollister, Scott J; Fernandes, Paulo R

    2014-04-01

    In bone tissue engineering, the scaffold has not only to allow the diffusion of cells, nutrients and oxygen but also provide adequate mechanical support. One way to ensure the scaffold has the right properties is to use computational tools to design such a scaffold coupled with additive manufacturing to build the scaffolds to the resulting optimized design specifications. In this study a topology optimization algorithm is proposed as a technique to design scaffolds that meet specific requirements for mass transport and mechanical load bearing. Several micro-structures obtained computationally are presented. Designed scaffolds were then built using selective laser sintering and the actual features of the fabricated scaffolds were measured and compared to the designed values. It was possible to obtain scaffolds with an internal geometry that reasonably matched the computational design (within 14% of porosity target, 40% for strut size and 55% for throat size in the building direction and 15% for strut size and 17% for throat size perpendicular to the building direction). These results support the use of these kind of computational algorithms to design optimized scaffolds with specific target properties and confirm the value of these techniques for bone tissue engineering. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  18. Engineer's Notebook--A Design Assessment Tool

    Science.gov (United States)

    Kelley, Todd R.

    2011-01-01

    As technology education continues to consider a move toward an engineering design focus as proposed by various leaders in technology education, it will be necessary to employ new pedagogical approaches. Hill (2006) provided some new perspectives regarding pedagogical approaches for technology education with an engineering design focus. One…

  19. Case Study: Meeting the Demand for Skilled Precision Engineers

    Science.gov (United States)

    Sansom, Chris; Shore, Paul

    2008-01-01

    Purpose: This paper aims to demonstrate how science and engineering graduates can be recruited and trained to Masters level in precision engineering as an aid to reducing the skills shortage of mechanical engineers in UK industry. Design/methodology/approach: The paper describes a partnership between three UK academic institutions and industry,…

  20. 77 FR 18268 - Proposal Review Panel for Engineering Education and Centers; Notice of Meeting

    Science.gov (United States)

    2012-03-27

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Engineering Education and Centers; Notice of... Science Foundation announces the following meeting: Name: Proposal Review Panel for Engineering Education...--ERC Research Program 3:30 p.m.--7:30 p.m. Closed--ERC Education Program Thursday, March 29, 2012 8 a.m...

  1. Technical Meeting on Impact of Fukushima Event on Current and Future Fast Reactor Designs. Presentations

    International Nuclear Information System (INIS)

    2012-01-01

    The overall purpose of the Technical Meeting was to recognize and analyse the implications of the accident occurred at the Fukushima Dai-ichi Nuclear Power Station on current and future fast neutron systems design and operation. The aim was to provide a global forum for discussing the principal lessons learned from this event, and thus to review safety principles and characteristics of existing and future fast neutron concepts, especially in relation with extreme natural events which potentially may lead to severe accident scenarios. The participants also presented and discussed innovative technical solutions, design features and countermeasures for design extension conditions - including earthquakes, tsunami and other extreme natural hazards - which can enhance the safety level of existing and future fast neutron systems. Furthermore, the meeting gave the opportunity to present advanced methods for the evaluation of the robustness of plants against design extension conditions. Another important goal of this TM was to discuss how to harmonize safety approaches and goals for next generation’s fast reactors. Finally, the meeting was intended to identify areas where further research and development in nuclear safety, technology and engineering in the light of the Fukushima accident are needed. In the frame of the implementation of its Nuclear Safety Action Plan endorsed by all Member States, the IAEA will consider these areas as potential technical topics for new Coordinated Research Projects, to be launched in the near future

  2. Theory and Practice Meets in Industrial Process Design -Educational Perspective-

    Science.gov (United States)

    Aramo-Immonen, Heli; Toikka, Tarja

    Software engineer should see himself as a business process designer in enterprise resource planning system (ERP) re-engineering project. Software engineers and managers should have design dialogue. The objective of this paper is to discuss the motives to study the design research in connection of management education in order to envision and understand the soft human issues in the management context. Second goal is to develop means of practicing social skills between designers and managers. This article explores the affective components of design thinking in industrial management domain. In the conceptual part of this paper are discussed concepts of network and project economy, creativity, communication, use of metaphors, and design thinking. Finally is introduced empirical research plan and first empirical results from design method experiments among the multi-disciplined groups of the master-level students of industrial engineering and management and software engineering.

  3. Renovation of a mechanical engineering senior design class to an industry-tied and team-oriented course

    Science.gov (United States)

    Liu, Yucheng

    2017-11-01

    In this work, an industry-based and team-oriented education model was established based on a traditional mechanical engineering (ME) senior design class in order to better prepare future engineers and leaders so as to meet the increasing demand for high-quality engineering graduates. In the renovated curriculum, industry-sponsored projects became the most important course component and critical assessment tool, from which problem-solving skills as well as employability skills of the ME students can be fully developed. Hands-on experiences in finite element analysis (FEA) modelling and simulation were also added into the renovated curriculum to promote the application of FEA on engineering design and assessment. Evaluation of the renovated course was conducted using two instruments and the results have shown that the course made the ME senior students more prepared for their future career and a win-win model was created between the industry partner and the ME programme through it. Impact of the renovated syllabus on Accreditation Board for Engineering Technology goals was discussed. Based on the current progress, a more substantial change is being planned to further improve the effectiveness and practicability of this design course. The renovated course was started to offer to the ME senior students at Mississippi State University.

  4. Expert vs. novice: Problem decomposition/recomposition in engineering design

    Science.gov (United States)

    Song, Ting

    The purpose of this research was to investigate the differences of using problem decomposition and problem recomposition among dyads of engineering experts, dyads of engineering seniors, and dyads of engineering freshmen. Fifty participants took part in this study. Ten were engineering design experts, 20 were engineering seniors, and 20 were engineering freshmen. Participants worked in dyads to complete an engineering design challenge within an hour. The entire design process was video and audio recorded. After the design session, members participated in a group interview. This study used protocol analysis as the methodology. Video and audio data were transcribed, segmented, and coded. Two coding systems including the FBS ontology and "levels of the problem" were used in this study. A series of statistical techniques were used to analyze data. Interview data and participants' design sketches also worked as supplemental data to help answer the research questions. By analyzing the quantitative and qualitative data, it was found that students used less problem decomposition and problem recomposition than engineer experts in engineering design. This result implies that engineering education should place more importance on teaching problem decomposition and problem recomposition. Students were found to spend less cognitive effort when considering the problem as a whole and interactions between subsystems than engineer experts. In addition, students were also found to spend more cognitive effort when considering details of subsystems. These results showed that students tended to use dept-first decomposition and experts tended to use breadth-first decomposition in engineering design. The use of Function (F), Behavior (B), and Structure (S) among engineering experts, engineering seniors, and engineering freshmen was compared on three levels. Level 1 represents designers consider the problem as an integral whole, Level 2 represents designers consider interactions between

  5. Toward design-based engineering of industrial microbes.

    Science.gov (United States)

    Tyo, Keith E J; Kocharin, Kanokarn; Nielsen, Jens

    2010-06-01

    Engineering industrial microbes has been hampered by incomplete knowledge of cell biology. Thus an iterative engineering cycle of modeling, implementation, and analysis has been used to increase knowledge of the underlying biology while achieving engineering goals. Recent advances in Systems Biology technologies have drastically improved the amount of information that can be collected in each iteration. As well, Synthetic Biology tools are melding modeling and molecular implementation. These advances promise to move microbial engineering from the iterative approach to a design-oriented paradigm, similar to electrical circuits and architectural design. Genome-scale metabolic models, new tools for controlling expression, and integrated -omics analysis are described as key contributors in moving the field toward Design-based Engineering. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. SEU blending project, concept to commercial operation, Part 4: engineering design

    International Nuclear Information System (INIS)

    Ingalls, D.G.; Ioffe, M.S.; Oliver, A.J.; Smith, T.P.; Ozberk, E.

    2005-01-01

    The process development test program for production of Slightly Enriched Uranium (SEU) dioxide powder and Blend of Dysprosium and Uranium (BDU) oxide powder was initiated almost simultaneously with the conceptual engineering study for the commercial plant in 2001. During the very early phases of the project it was recognized that meeting the challenging requirements would necessitate wide expertise from different departments within the Cameco operations as well as consultants from outside the Company. The project team formed reflected this recognition. The conceptual engineering study was the lead into preparation of the engineering design study in 2003, which provided the process description based on the research and development program being carried out at Cameco Technology Development (CTD), project description, and project cost estimates. The detailed engineering phase commenced in June 2004 and was in progress at the the time when this paper was presented. The detailed engineering phase is addressing all aspects of the commercial plant including all health and safety, environment and security related issues, nuclear safety, training program, all product quality assurance issues, quality management issues, powder and fuel bundle transportation issues, all regulatory requirements, establishing project execution plans and budget, and strategies to control the costs. At the end of the detailed engineering phase, construction packages will be ready for tender, and major pieces of equipment will be selected and procured. (author)

  7. Mechanical engineers' handbook, design, instrumentation, and controls

    CERN Document Server

    Kutz, Myer

    2015-01-01

    Full coverage of electronics, MEMS, and instrumentation andcontrol in mechanical engineering This second volume of Mechanical Engineers' Handbookcovers electronics, MEMS, and instrumentation and control, givingyou accessible and in-depth access to the topics you'll encounterin the discipline: computer-aided design, product design formanufacturing and assembly, design optimization, total qualitymanagement in mechanical system design, reliability in themechanical design process for sustainability, life-cycle design,design for remanufacturing processes, signal processing, dataacquisition and dis

  8. Assessment and Development of Engineering Design Processes

    DEFF Research Database (Denmark)

    Ulrikkeholm, Jeppe Bjerrum

    , the engineering companies need to have efficient engineering design processes in place, so they can design customised product variants faster and more efficiently. It is however not an easy task to model and develop such processes. To conduct engineering design is often a highly iterative, illdefined and complex...... the process can be fully understood and eventually improved. Taking its starting point in this proposition, the outcome of the research is an operational 5-phased procedure for assessing and developing engineering design processes through integrated modelling of product and process, designated IPPM......, and eventually the results are discussed, overall conclusions are made and future research is proposed. The results produced throughout the research project are developed in close collaboration with the Marine Low Speed business unit within the company MAN Diesel & Turbo. The business unit is the world market...

  9. How to Develop an Engineering Design Task

    Science.gov (United States)

    Dankenbring, Chelsey; Capobianco, Brenda M.; Eichinger, David

    2014-01-01

    In this article, the authors provide an overview of engineering and the engineering design process, and describe the steps they took to develop a fifth grade-level, standards-based engineering design task titled "Getting the Dirt on Decomposition." Their main goal was to focus more on modeling the discrete steps they took to create and…

  10. 75 FR 28820 - Notice of Public Meeting by Teleconference Concerning Heavy Duty Diesel Engine Consent Decrees

    Science.gov (United States)

    2010-05-24

    ... implementation of the provisions of the seven consent decrees signed by the United States and diesel engine..., or anticipates receiving, requests from the diesel engine manufacturers for termination of their respective decrees. This meeting notice is also available on EPA's Diesel Engine Settlement Web site at http...

  11. Non-Toxic Orbital Maneuvering System Engine Development

    Science.gov (United States)

    Green, Christopher; Claflin, Scott; Maeding, Chris; Butas, John

    1999-01-01

    Recent results using the Aestus engine operated with LOx/ethanol propellant are presented. An experimental program at Rocketdyne Propulsion and Power is underway to adapt this engine for the Boeing Reusable Space Systems Division non-toxic Orbital Maneuvering System/Reaction control System (OMS/RCS) system. Daimler-Chrysler Aerospace designed the Aestus as an nitrogen tetroxide/monomethyl hydrazine (NTO/MMH) upper-stage engine for the Ariane 5. The non-toxic OMS/RCS system's preliminary design requires a LOx/ethanol (O2/C2H5OH) engine that operates with a mixture ratio of 1.8, a specific impulse of 323 seconds, and fits within the original OMS design envelope. This paper describes current efforts to meet these requirements including, investigating engine performance using LOx/ethanol, developing the en-ine system sizing package, and meeting the vehicle operation parameters. Data from hot-fire testing are also presented and discussed.

  12. Report of the first interim meeting of the Seabed Working Group Engineering Studies Task Group

    International Nuclear Information System (INIS)

    Talbert, D.M.

    1982-02-01

    The first interim meeting of the Engineering Studies Task Group (ESTG) was held at the Delft Soil Mechanics Laboratory, Delft, The Netherlands, on 21-24 September 1981. The main business of the meeting was the development of a network analysis for the ESTG. Significant progress was made; however, substantial further development remains to be accomplished. Other items discussed were (1) progress relevant to engineering studies made in the various national programs since the sixth annual meeting of the Seabed Working Group (SWG) held in Paris, February, 1981; (2) the ESTG Boundary Conditions and Scope of Work as previously defined at the Paris meeting; (3) the Draft II SWG Five-Year Plan; (4) the deep ocean drilling proposal made by the Site Selection Task Group at the Paris meeting and expanded upon at their May, 1981, meeting; and (5) a recent compilation of data from the Nares Abyssal Plain arising from the US Program studies. Finally, consideration was given to a plan for continued work by the ESTG. A brief discussion of the principal items is given. The current state of the network analysis is shown

  13. Fuel design and engineering

    International Nuclear Information System (INIS)

    Hiemer, H.

    1975-01-01

    The essential aspects of the design and engineering of fuel assemblies for LWR reactors are outlined, and the major criteria to be met by the materials used are given. The fuel rods must be mechanically designed to withstand many stresses which are shortly dealt with here. (RB) [de

  14. Report for the 2014 DCEE Working Group Meeting

    DEFF Research Database (Denmark)

    Jensen, Lotte Bjerregaard; Thompson, Mary Kathryn

    2014-01-01

    The DCEE 2014 meeting at the Technical University of Denmark focused on interdisciplinarity in design processes while embracing the central issues of the previous workshops: design tools / methods and design education in Civil and Environmental Engineering (CEE)....

  15. Transformer engineering design, technology, and diagnostics

    CERN Document Server

    Kulkarni, SV

    2012-01-01

    Transformer Engineering: Design, Technology, and Diagnostics, Second Edition helps you design better transformers, apply advanced numerical field computations more effectively, and tackle operational and maintenance issues. Building on the bestselling Transformer Engineering: Design and Practice, this greatly expanded second edition also emphasizes diagnostic aspects and transformer-system interactions. What's New in This Edition Three new chapters on electromagnetic fields in transformers, transformer-system interactions and modeling, and monitoring and diagnostics An extensively revised chap

  16. Engineering Changes in Product Design - A Review

    Science.gov (United States)

    Karthik, K.; Janardhan Reddy, K., Dr

    2016-09-01

    Changes are fundamental to product development. Engineering changes are unavoidable and can arise at any phase of the product life cycle. The consideration of market requirements, customer/user feedbacks, manufacturing constraints, design innovations etc., turning them into viable products can be accomplished when product change is managed properly. In the early design cycle, informal changes are accepted. However, changes become formal when its complexity and cost increases, and as product matures. To maximize the market shares, manufacturers have to effectively and efficiently manage engineering changes by means of Configuration Control. The paper gives a broad overview about ‘Engineering Change Management’ (ECM) through configuration management and its implications in product design. The aim is to give an idea and understanding about the engineering changes in product design scenario to the new researchers. This paper elaborates the significant aspect of managing the engineering changes and the importance of ECM in a product life cycle.

  17. Industrial design as an innovative element in engineering education

    DEFF Research Database (Denmark)

    Schjær-Jacobsen, Hans; Abou-Hayt, Imad; Ashworth, David

    2012-01-01

    This paper describes how the Copenhagen University College of Engineering (IHK), in our continuing effort to innovate the engineering study programs, have introduced strong industrial design elements in the 210 ECTS Bachelor of Mechanical Engineering program as well as the 30 ECTS International...... Design Semester and the 10 ECTS Summer School in International Design and Development. The paper describes how implementation of novel industrial design subject areas requires the creation of new laboratory and workshop facilities in order to combine traditional engineering design disciplines...... with creative design as a driver of innovation. With a practical and problem based learning approach at IHK the students are asked to work closely together with companies to come up with engineering solutions that are sustainable from both an engineering and a design perspective....

  18. Linking First-Year and Senior Engineering Design Teams: Engaging Early Academic Career Students in Engineering Design

    Science.gov (United States)

    Fox, Garey A.; Weckler, Paul; Thomas, Dan

    2015-01-01

    In Biosystems Engineering at Oklahoma State University, senior design is a two semester course in which students work on real-world projects provided by clients. First-year (freshmen and trans­fer) students enroll in an introductory engineering course. Historically, these students worked on a team-based analysis project, and the engineering design…

  19. Design of experiments in production engineering

    CERN Document Server

    2016-01-01

    This book covers design of experiments (DoE) applied in production engineering as a combination of manufacturing technology with applied management science. It presents recent research advances and applications of design experiments in production engineering and the chapters cover metal cutting tools, soft computing for modelling and optmization of machining, waterjet machining of high performance ceramics, among others.

  20. A Model of Designing: Understanding Engineering Design Activity

    DEFF Research Database (Denmark)

    Ahmed, Saeema; Aurisicchio, Marco

    2007-01-01

    This research describes an understanding of design activity through design questions. From a number of previous studies two types of questions have been identified: 1) reasoning questions; and 2) strategic questions. Strategic questions are part of an experienced designers approach to solving a d...... solving model. An example of aerospace engineering design is used to illustrate the argument. The research contributes to an understanding of design activity....

  1. Sustainable Product Design, Engineering and Management Education for Industrial Design Engineering

    OpenAIRE

    Boks, C.; Diehl, J.C.; Wever, R.

    2006-01-01

    Developments in the field of sustainable product design are manifold, which means that education in this field is rapidly evolving as well. In this paper, the continuously evolving portfolio of courses offered at Delft University of Technology’s Industrial Design Engineering faculty is systematically discussed, with a focus on content, course formats, assignments and lessons learned from course evaluations in recent years. It is concluded that in particular integration in existing contexts (a...

  2. The future of computer-aided design and engineering at CERN

    CERN Document Server

    Høimyr, Nils-Joar

    2004-01-01

    This working note discusses design and engineering processes at CERN and Computer Aided Design and Engineering tools. The main focus of this note is Mechanical design and CAE activities and how to share and organize the data produced by CAD/CAE tools. These issues cannot be addressed without taking a global view of the engineering activities at CERN. As more and more of the detailed design work is done by external suppliers, the design processes at CERN change. Traditional design work where draftsmen are producing drawings on the request from engineers is replaced by conceptual design work done by domain specialists and engineers. Furthermore CAD and FEM tools have evolved from specialist tools to mainstream utilities mastered by most engineers. Design activities nowadays can now be carried out directly by the project engineer without the use of a design (drawing) office. This environment poses different requirements for design- and engineering support activities as well as the selection of CAE-tools. Design ...

  3. Model-Based Systems Engineering in Concurrent Engineering Centers

    Science.gov (United States)

    Iwata, Curtis; Infeld, Samantha; Bracken, Jennifer Medlin; McGuire, Melissa; McQuirk, Christina; Kisdi, Aron; Murphy, Jonathan; Cole, Bjorn; Zarifian, Pezhman

    2015-01-01

    Concurrent Engineering Centers (CECs) are specialized facilities with a goal of generating and maturing engineering designs by enabling rapid design iterations. This is accomplished by co-locating a team of experts (either physically or virtually) in a room with a narrow design goal and a limited timeline of a week or less. The systems engineer uses a model of the system to capture the relevant interfaces and manage the overall architecture. A single model that integrates other design information and modeling allows the entire team to visualize the concurrent activity and identify conflicts more efficiently, potentially resulting in a systems model that will continue to be used throughout the project lifecycle. Performing systems engineering using such a system model is the definition of model-based systems engineering (MBSE); therefore, CECs evolving their approach to incorporate advances in MBSE are more successful in reducing time and cost needed to meet study goals. This paper surveys space mission CECs that are in the middle of this evolution, and the authors share their experiences in order to promote discussion within the community.

  4. Minutes of the IFMIF technical meetings, May 17-20, 2005, Tokyo, Japan

    International Nuclear Information System (INIS)

    Ida, Mizuho; Nakamura, Hiroo; Yutani, Toshiaki; Maebara, Sunao; Umetsu, Tomotake; Sugimoto, Masayoshi

    2005-08-01

    The International Fusion Materials Irradiation Facility (IFMIF) Technical Meetings were held on May 17-20, 2005 at Japan Atomic Energy Research Institute (JAERI) Tokyo. The main objectives were 1) to review technical status of the subsystems; accelerator, target and test facilities, 2) to technically discuss interface issues between target and test facilities, 3) to review results of peer-reviews performed in the EU and Japan, 4) to harmonize design/experimental activities among the subsystems, 5) to review and discuss the Engineering Validation and Engineering Design Activity (EVEDA) tasks, and 6) to make a report of 1) - 5) to the IFMIF Executive Subcommittee. This report presents a brief summary of the Target Technical, Meeting, Test Facilities Technical Meeting, Target/Test Facilities Interface Meeting, Accelerator Technical Meeting and the Technical Integration Meeting. (author)

  5. Engineering Software Suite Validates System Design

    Science.gov (United States)

    2007-01-01

    EDAptive Computing Inc.'s (ECI) EDAstar engineering software tool suite, created to capture and validate system design requirements, was significantly funded by NASA's Ames Research Center through five Small Business Innovation Research (SBIR) contracts. These programs specifically developed Syscape, used to capture executable specifications of multi-disciplinary systems, and VectorGen, used to automatically generate tests to ensure system implementations meet specifications. According to the company, the VectorGen tests considerably reduce the time and effort required to validate implementation of components, thereby ensuring their safe and reliable operation. EDASHIELD, an additional product offering from ECI, can be used to diagnose, predict, and correct errors after a system has been deployed using EDASTAR -created models. Initial commercialization for EDASTAR included application by a large prime contractor in a military setting, and customers include various branches within the U.S. Department of Defense, industry giants like the Lockheed Martin Corporation, Science Applications International Corporation, and Ball Aerospace and Technologies Corporation, as well as NASA's Langley and Glenn Research Centers

  6. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    Science.gov (United States)

    Monell, Donald W.; Piland, William M.

    1999-01-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g. manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative

  7. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    Science.gov (United States)

    Monell, Donald W.; Piland, William M.

    2000-07-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often led to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative

  8. A simple method of calculating Stirling engines for engine design optimization

    Science.gov (United States)

    Martini, W. R.

    1978-01-01

    A calculation method is presented for a rhombic drive Stirling engine with a tubular heater and cooler and a screen type regenerator. Generally the equations presented describe power generation and consumption and heat losses. It is the simplest type of analysis that takes into account the conflicting requirements inherent in Stirling engine design. The method itemizes the power and heat losses for intelligent engine optimization. The results of engine analysis of the GPU-3 Stirling engine are compared with more complicated engine analysis and with engine measurements.

  9. Problem Solving Methods in Engineering Design

    DEFF Research Database (Denmark)

    Hartvig, Susanne C

    1999-01-01

    This short paper discusses typical engineering tasks and problem solving methods, based on a field study of engineering tasks at a Danish engineering firm. The field study has identified ten classes of design tasks and in this paper these classes are related to problem solving methods. The descri...

  10. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    International Nuclear Information System (INIS)

    Latkowski, J.F.; Kramer, K.J.; Abbott, R.P.; Morris, K.R.; DeMuth, J.; Divol, L.; El-Dasher, B.; Lafuente, A.; Loosmore, G.; Reyes, S.; Moses, G.A.; Fratoni, M.; Flowers, D.; Aceves, S.; Rhodes, M.; Kane, J.; Scott, H.; Kramer, R.; Pantano, C.; Scullard, C.; Sawicki, R.; Wilks, S.; Mehl, M.

    2010-01-01

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  11. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    Energy Technology Data Exchange (ETDEWEB)

    Latkowski, J F; Kramer, K J; Abbott, R P; Morris, K R; DeMuth, J; Divol, L; El-Dasher, B; Lafuente, A; Loosmore, G; Reyes, S; Moses, G A; Fratoni, M; Flowers, D; Aceves, S; Rhodes, M; Kane, J; Scott, H; Kramer, R; Pantano, C; Scullard, C; Sawicki, R; Wilks, S; Mehl, M

    2010-12-07

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  12. Biocatalysts: application and engineering for industrial purposes.

    Science.gov (United States)

    Jemli, Sonia; Ayadi-Zouari, Dorra; Hlima, Hajer Ben; Bejar, Samir

    2016-01-01

    Enzymes are widely applied in various industrial applications and processes, including the food and beverage, animal feed, textile, detergent and medical industries. Enzymes screened from natural origins are often engineered before entering the market place because their native forms do not meet the requirements for industrial application. Protein engineering is concerned with the design and construction of novel enzymes with tailored functional properties, including stability, catalytic activity, reaction product inhibition and substrate specificity. Two broad approaches have been used for enzyme engineering, namely, rational design and directed evolution. The powerful and revolutionary techniques so far developed for protein engineering provide excellent opportunities for the design of industrial enzymes with specific properties and production of high-value products at lower production costs. The present review seeks to highlight the major fields of enzyme application and to provide an updated overview on previous protein engineering studies wherein natural enzymes were modified to meet the operational conditions required for industrial application.

  13. 78 FR 61870 - Advisory Committee for Computer and Information Science and Engineering; Notice of Meeting

    Science.gov (United States)

    2013-10-04

    ... Committee for Computer and Information Science and Engineering (1115). Date/Time: Oct 31, 2013: 12:30 p.m... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science and Engineering; Notice of Meeting In accordance with Federal Advisory Committee Act (Pub. L. 92-463, as amended...

  14. Simple, Complex, Innovative : Design Education at Civil Engineering

    NARCIS (Netherlands)

    Van Nederveen, G.A.; Soons, F.A.M.; Suddle, S.I.; De Ridder, H.

    2011-01-01

    In faculties such as Civil Engineering, design is a not a core activity. Core activities at Civil Engineering are structural engineering, structural analysis, mechanics, fluid dynamics, etc. Design education has a relatively small share in the curriculum, compared to faculties such as Industrial

  15. Development of Engineering Design Education in the Department of Mechanical Engineering at Kanazawa Technical College

    Science.gov (United States)

    Yamada, Hirofumi; Ten-Nichi, Michio; Mathui, Hirosi; Nakamura, Akizi

    This paper introduces a method of the engineering design education for college of technology mechanical engineering students. In order to teach the practical engineering design, the MIL-STD-499A process is adapted and improved upon for a Mechatronics hands-on lesson used as the MOT method. The educational results in five years indicate that knowledge of the engineering management is useful for college students in learning engineering design. Portfolio for lessons and the hypothesis method also have better effects on the understanding of the engineering specialty.

  16. A Return to Innovative Engineering Design, Critical Thinking and Systems Engineering

    Science.gov (United States)

    Camarda, Charles J.

    2007-01-01

    I believe we are facing a critical time where innovative engineering design is of paramount importance to the success of our aerospace industry. However, the very qualities and attributes necessary for enhancing, educating, and mentoring a creative spirit are in decline in important areas. The importance of creativity and innovation in this country was emphasized by a special edition of the Harvard Business Review OnPoint entitled: "The Creative Company" which compiled a series of past and present articles on the subject of creativity and innovation and stressed its importance to our national economy. There is also a recognition of a lack of engineering, critical thinking and problem-solving skills in our education systems and a trend toward trying to enhance those skills by developing K-12 educational programs such as Project Lead the Way, "Science for All Americans", Benchmarks 2061 , etc. In addition, with respect to spacecraft development, we have a growing need for young to mid-level engineers with appropriate experience and skills in spacecraft design, development, analysis, testing, and systems engineering. As the Director of Engineering at NASA's Johnson Space Center, I realized that sustaining engineering support of an operational human spacecraft such as the Space Shuttle is decidedly different than engineering design and development skills necessary for designing a new spacecraft such as the Crew Exploration Vehicle of the Constellation Program. We learned a very important lesson post Columbia in that the Space Shuttle is truly an experimental and not an operational vehicle and the strict adherence to developed rules and processes and chains of command of an inherently bureaucratic organizational structure will not protect us from a host of known unknowns let alone unknown unknowns. There are no strict rules, processes, or procedures for understanding anomalous results of an experiment, anomalies with an experimental spacecraft like Shuttle, or in the

  17. Design engineer perceptions and attitudes regarding human factors application to nuclear power plant design

    International Nuclear Information System (INIS)

    Ma, R.; Jones, J. M.

    2006-01-01

    With the renewed interest in nuclear power and the possibility of constructing new reactors within the next decade in the U.S., there are several challenges for the regulators, designers, and vendors. One challenge is to ensure that Human Factors Engineering (HFE) is involved, and correctly applied in the life-cycle design of the Nuclear Power Plant (NPP). As an important part of the effort, people would ask: 'is the system-design engineer effectively incorporating HFE in the NPPs design?' The present study examines the sagacity of Instrumentation and Control design engineers on issues relating to awareness, attitude, and application of HFE in NPP design. A questionnaire was developed and distributed, focusing on the perceptions and attitudes of the design engineers. The responses revealed that, while the participants had a relatively high positive attitude about HFE, their awareness and application of HFE were moderate. The results also showed that senior engineers applied HFE more frequently in their design work than young engineers. This study provides some preliminary results and implications for improved HFE education and application in NPP design. (authors)

  18. LHCb RICH1 Engineering Design Review Report

    CERN Document Server

    Brook, N; Metlica, F; Muir, A; Phillips, A; Buckley, A; Gibson, V; Harrison, K; Jones, C R; Katvars, S G; Lazzeroni, C; Storey, J; Ward, CP; Wotton, S; Alemi, M; Arnabaldi, C; Bellunato, T F; Calvi, M; Matteuzzi, C; Musy, M; Negri, P; Perego, D L; Pessina, G; Chamonal, R; Eisenhardt, S; Lawrence, J; McCarron, J; Muheim, F; Playfer, S; Walker, A; Cuneo, S; Fontanelli, F; Gracco, Valerio; Mini, G; Musico, P; Petrolini, A; Sannino, M; Bates, A; MacGregor, A; O'Shea, V; Parkes, C; Paterson, S; Petrie, D; Pickford, A; Rahman, M; Soler, F; Allebone, L; Barber, J H; Cameron, W; Clark, D; Dornan, Peter John; Duane, A; Egede, U; Hallam, R; Howard, A; Plackett, R; Price, D; Savidge, T; Vidal-Sitjes, G; Websdale, D M; Adinolfi, M; Bibby, J H; Cioffi, C; Gligorov, Vladimir V; Harnew, N; Harris, F; McArthur, I A; Newby, C; Ottewell, B; Rademacker, J; Senanayake, R; Somerville, L P; Soroko, A; Smale, N J; Topp-Jørgensen, S; Wilkinson, G; Yang, S; Benayoun, M; Khmelnikov, V A; Obraztsov, V F; Densham, C J; Easo, S; Franek, B; Kuznetsov, G; Loveridge, P W; Morrow, D; Morris, JV; Papanestis, A; Patrick, G N; Woodward, M L; Aglieri-Rinella, G; Albrecht, A; Braem, André; Campbell, M; D'Ambrosio, C; Forty, R W; Frei, C; Gys, Thierry; Jamet, O; Kanaya, N; Losasso, M; Moritz, M; Patel, M; Piedigrossi, D; Snoeys, W; Ullaland, O; Van Lysebetten, A; Wyllie, K

    2005-01-01

    This document describes the concepts of the engineering design to be adopted for the upstream Ring Imaging Cherenkov detector (RICH1) of the reoptimized LHCb detector. Our aim is to ensure that coherent solutions for the engineering design and integration for all components of RICH1 are available, before proceeding with the detailed design of these components.

  19. Human factor engineering applied to nuclear power plant design

    International Nuclear Information System (INIS)

    Manrique, A.; Valdivia, J.C.

    2007-01-01

    Advantages of implementing adequate Human Factor Engineering techniques in the design of nuclear reactors have become not only a fact recognized by the majority of engineers and operators but also an explicit requirement regulated and mandatory for the new designs of the so called advanced reactors. The first step for this is preparing a plan to incorporate all the Human Factor Engineering principles and developing an integral design of the Instrumentation and Control and Man-machine interface systems. Such a plan should state: -) Activities to be performed, and -) Creation of a Human Factor Engineering team adequately qualified. The Human Factor Engineering team is an integral part of the design team and is strongly linked to the engineering organizations but simultaneously has independence to act and is free to evaluate designs and propose changes in order to enhance human behavior. TECNATOM S.A. (a Spanish company) has been a part of the Design and Human Factor Engineering Team and has collaborated in the design of an advanced Nuclear Power Plant, developing methodologies and further implementing those methodologies in the design of the plant systems through the development of the plant systems operational analysis and of the man-machine interface design. The methodologies developed are made up of the following plans: -) Human Factor Engineering implementation in the Man-Machine Interface design; -) Plant System Functional Requirement Analysis; -) Allocation of Functions to man/machine; -) Task Analysis; -) Human-System Interface design; -) Control Room Verification and -) Validation

  20. Integrating design and purchasing [in nuclear engineering] with Ingecad

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Ingecad was developed by the Ingevision division of Framatome to overcome deficiencies in traditional computer-aided design. It was developed for nuclear power project engineering around the principle of the shared management of a common database, thus making it possible to integrate several engineering disciplines. The multiuser database is managed and accessed by the different application softwares, corresponding to particular aspects of the engineering task: electrical and process control schematics; plant piping design; pressurized equipment design etc. The use of a common database ensures coherence between the different engineering disciplines, particularly between the process engineering, the plant layout design, the piping, and the instrumentation and control engineering. (author)

  1. Kansei Engineering and Website Design

    DEFF Research Database (Denmark)

    Song, Zheng; Howard, Thomas J.; Achiche, Sofiane

    2012-01-01

    a methodology based on Kansei Engineering, which has done significant work in product and industrial design but not quite been adopted in the IT field, in order to discover implicit emotional needs of users toward web site and transform them into design details. Survey and interview techniques and statistical...... methods were performed in this paper. A prototype web site was produced based on the Kansei results integrated with technical expertise and practical considerations. The results showed that the Kansei Engineering methodology in this paper played a significant role in web site design in terms of satisfying......Capturing users’ needs is critical in web site design. However, a lot of attention has been paid to enhance the functionality and usability, whereas much less consideration has been given to satisfy the emotional needs of users, which is also important to a successful design. This paper explores...

  2. Exploring the collaboration between industrial designers and engineering designers in a handover situation

    DEFF Research Database (Denmark)

    Laursen, Esben Skov

    This study focuses on handover situations between industrial designers and engineering designers in product development projects, on a ‘project level’. The handover situation creates a gap between the industrial designers and the engineering designers in the product development process which...

  3. The Influence of Toy Design Activities on Middle School Students' Understanding of the Engineering Design Processes

    Science.gov (United States)

    Zhou, Ninger; Pereira, Nielsen L.; George, Tarun Thomas; Alperovich, Jeffrey; Booth, Joran; Chandrasegaran, Senthil; Tew, Jeffrey David; Kulkarni, Devadatta M.; Ramani, Karthik

    2017-10-01

    The societal demand for inspiring and engaging science, technology, engineering, and mathematics (STEM) students and preparing our workforce for the emerging creative economy has necessitated developing students' self-efficacy and understanding of engineering design processes from as early as elementary school levels. Hands-on engineering design activities have shown the potential to promote middle school students' self-efficacy and understanding of engineering design processes. However, traditional classrooms often lack hands-on engineering design experiences, leaving students unprepared to solve real-world design problems. In this study, we introduce the framework of a toy design workshop and investigate the influence of the workshop activities on students' understanding of and self-efficacy beliefs in engineering design. Using a mixed method approach, we conducted quantitative analyses to show changes in students' engineering design self-efficacy and qualitative analyses to identify students' understanding of the engineering design processes. Findings show that among the 24 participants, there is a significant increase in students' self-efficacy beliefs after attending the workshop. We also identified major themes such as design goals and prototyping in students' understanding of engineering design processes. This research provides insights into the key elements of middle school students' engineering design learning and the benefits of engaging middle school students in hands-on toy design workshops.

  4. Experimental Engineering: Articulating and Valuing Design Experimentation

    DEFF Research Database (Denmark)

    Vallgårda, Anna; Grönvall, Erik; Fritsch, Jonas

    2017-01-01

    In this paper we propose Experimental Engineering as a way to articulate open- ended technological experiments as a legitimate design research practice. Experimental Engineering introduces a move away from an outcome or result driven design process towards an interest in existing technologies and...

  5. Technical Meeting on Impact of Fukushima Event on Current and Future Fast Reactor Designs. Working Material

    International Nuclear Information System (INIS)

    2012-01-01

    The overall purpose of the Technical Meeting was to recognize and analyse the implications of the accident occurred at the Fukushima Dai-ichi Nuclear Power Station on current and future fast neutron systems design and operation. The aim was to provide a global forum for discussing the principal lessons learned from this event, and thus to review safety principles and characteristics of existing and future fast neutron concepts, especially in relation with extreme natural events which potentially may lead to severe accident scenarios. The participants also presented and discussed innovative technical solutions, design features and countermeasures for design extension conditions - including earthquakes, tsunami and other extreme natural hazards - which can enhance the safety level of existing and future fast neutron systems. Furthermore, the meeting gave the opportunity to present advanced methods for the evaluation of the robustness of plants against design extension conditions. Another important goal of this TM was to discuss how to harmonize safety approaches and goals for next generation’s fast reactors. Finally, the meeting was intended to identify areas where further research and development in nuclear safety, technology and engineering in the light of the Fukushima accident are needed. In the frame of the implementation of its Nuclear Safety Action Plan endorsed by all Member States, the IAEA will consider these areas as potential technical topics for new Coordinated Research Projects, to be launched in the near future

  6. Coherence and correspondence in engineering design

    Directory of Open Access Journals (Sweden)

    Konstantinos V. Katsikopoulos

    2009-03-01

    Full Text Available I show how the coherence/correspondence distinction can inform the conversation about decision methods for engineering design. Some engineers argue for the application of multi-attribute utility theory while others argue for what they call heuristics. To clarify the differences among methods, I first ask whether each method aims at achieving coherence or correspondence. By analyzing statements in the design literature, I argue that utility theory aims at achieving coherence and heuristics aim at achieving correspondence. Second, I ask if achieving coherence always implies achieving correspondence. It is important to provide an answer because while in design the objective is correspondence, it is difficult to assess it, and coherence that is easier to assess is used as a surrogate. I argue that coherence does not always imply correspondence in design and that this is also the case in problems studied in judgment and decision-making research. Uncovering the conditions under which coherence implies, or does not imply, correspondence is a topic where engineering design and judgment and decision-making research might connect.

  7. Reverse engineering by design: using history to teach.

    Science.gov (United States)

    Fagette, Paul

    2013-01-01

    Engineering students rarely have an opportunity to delve into the historic antecedents of design in their craft, and this is especially true for biomedical devices. The teaching emphasis is always on the new, the innovative, and the future. Even so, over the last decade, I have coupled a research agenda with engineering special projects into a successful format that allows young biomedical engineering students to understand aspects of their history and learn the complexities of design. There is value in having knowledge of historic engineering achievements, not just for an appreciation of these accomplishments but also for understanding exactly how engineers and clinicians of the day executed their feats-in other words, how the design process works. Ultimately, this particular educational odyssey confirms that history and engineering education are not only compatible but mutually supportive.

  8. A Unique Civil Engineering Capstone Design Course

    Directory of Open Access Journals (Sweden)

    G Padmanabhan

    2018-02-01

    Full Text Available The North Dakota State University, USA, capstone course was developed as a unique model in response to the effort of the Accreditation Board of Engineering and Technology, USA, to streamline and improve design instruction in the curriculum and has steadily evolved to keep pace with the ever-changing technology and the expectations of the profession and the society we serve. A capstone design course by definition should be a design experience for students in the final year before graduation integrating all major design concepts they have learned up until then in the program. Carefully chosen real world projects with design content in all sub-disciplines of civil engineering are assigned in this team-taught course. Faculty and practicing professionals make presentations on design process; project management; leadership in an engineering environment; and public policy; global perspectives in engineering; and professional career and licensure. Practicing professionals also critique the final student presentations. Students work in teams with number of faculty serving as technical consultants, and a faculty mentor for each team to provide non-technical guidance and direction. The course requires students to demonstrate mastery of the curriculum and to work with others in a team environment. Course assessment includes evaluation of the final design, presentations, written technical reports, project design schedule, a project design journal, and reaction papers.

  9. Using the Engineering Design Cycle to Develop Integrated Project Based Learning in Aerospace Engineering

    NARCIS (Netherlands)

    Saunders-Smits, G.N.; Roling, P.; Brügemann, V.; Timmer, N.; Melkert, J.

    2012-01-01

    Over the past four years the Faculty of Aerospace Engineering at Delft University of Technology in the Netherlands has redeveloped its BSc curriculum to mimic an engineering design cycle. Each semester represents a step in the design cycle: exploration; system design; sub-system design; test,

  10. Engineering Design Skills Coverage in K-12 Engineering Program Curriculum Materials in the USA

    Science.gov (United States)

    Chabalengula, Vivien M.; Mumba, Frackson

    2017-01-01

    The current "K-12 Science Education framework" and "Next Generation Science Standards" (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed…

  11. Engineering design of systems models and methods

    CERN Document Server

    Buede, Dennis M

    2009-01-01

    The ideal introduction to the engineering design of systems-now in a new edition. The Engineering Design of Systems, Second Edition compiles a wealth of information from diverse sources to provide a unique, one-stop reference to current methods for systems engineering. It takes a model-based approach to key systems engineering design activities and introduces methods and models used in the real world. Features new to this edition include: * The addition of Systems Modeling Language (SysML) to several of the chapters, as well as the introduction of new terminology * Additional material on partitioning functions and components * More descriptive material on usage scenarios based on literature from use case development * Updated homework assignments * The software product CORE (from Vitech Corporation) is used to generate the traditional SE figures and the software product MagicDraw UML with SysML plugins (from No Magic, Inc.) is used for the SysML figures This book is designed to be an introductory reference ...

  12. 2016 Annual Meeting of the German Human Factors and Ergonomics Society

    CERN Document Server

    Duckwitz, Sönke; Flemisch, Frank; Frenz, Martin; Kuz, Sinem; Mertens, Alexander; Mütze-Niewöhner, Susanne

    2017-01-01

    These proceedings summarize the best papers in each research area represented at the 2016 Annual Meeting of the German Human Factors and Ergonomics Society, held at Institute of Industrial Engineering and Ergonomics of RWTH Aachen University from March 2-4. The meeting featured more than 200 presentations and 36 posters reflecting the diversity of subject matter in the field of human and industrial engineering. This volume addresses human factors and safety specialists, industrial engineers, work and organizational psychologists, occupational medicines as well as production planners and design engineers.

  13. Data-driven engineering design research: Opportunities using open data

    DEFF Research Database (Denmark)

    Parraguez Ruiz, Pedro; Maier, Anja

    2017-01-01

    the already available and continuously growing body of open data sources to create opportunities for research in Engineering Design. Insights are illustrated by an examination of two examples: a study of open source software repositories and an analysis of open business registries in the cleantech industry....... We conclude with a discussion about the limitations, challenges and risks of using open data in Engineering Design research and practice.......Engineering Design research relies on quantitative and qualitative data to describe design-related phenomena and prescribe improvements for design practice. Given data availability, privacy requirements and other constraints, most empirical data used in Engineering Design research can be described...

  14. NASA System Engineering Design Process

    Science.gov (United States)

    Roman, Jose

    2011-01-01

    This slide presentation reviews NASA's use of systems engineering for the complete life cycle of a project. Systems engineering is a methodical, disciplined approach for the design, realization, technical management, operations, and retirement of a system. Each phase of a NASA project is terminated with a Key decision point (KDP), which is supported by major reviews.

  15. Developing a Conceptual Design Engineering Toolbox and its Tools

    Directory of Open Access Journals (Sweden)

    R. W. Vroom

    2004-01-01

    Full Text Available In order to develop a successful product, a design engineer needs to pay attention to all relevant aspects of that product. Many tools are available, software, books, websites, and commercial services. To unlock these potentially useful sources of knowledge, we are developing C-DET, a toolbox for conceptual design engineering. The idea of C-DET is that designers are supported by a system that provides them with a knowledge portal on one hand, and a system to store their current work on the other. The knowledge portal is to help the designer to find the most appropriate sites, experts, tools etc. at a short notice. Such a toolbox offers opportunities to incorporate extra functionalities to support the design engineering work. One of these functionalities could be to help the designer to reach a balanced comprehension in his work. Furthermore C-DET enables researchers in the area of design engineering and design engineers themselves to find each other or their work earlier and more easily. Newly developed design tools that can be used by design engineers but have not yet been developed up to a commercial level could be linked to by C-DET. In this way these tools can be evaluated in an early stage by design engineers who would like to use them. This paper describes the first prototypes of C-DET, an example of the development of a design tool that enables designers to forecast the use process and an example of the future functionalities of C-DET such as balanced comprehension.

  16. Contextual Shaping of Student Design Practices: The Role of Constraint in First-Year Engineering Design

    Science.gov (United States)

    Goncher, Andrea M.

    thResearch on engineering design is a core area of concern within engineering education, and a fundamental understanding of how engineering students approach and undertake design is necessary in order to develop effective design models and pedagogies. This dissertation contributes to scholarship on engineering design by addressing a critical, but as yet underexplored, problem: how does the context in which students design shape their design practices? Using a qualitative study comprising of video data of design sessions, focus group interviews with students, and archives of their design work, this research explored how design decisions and actions are shaped by context, specifically the context of higher education. To develop a theoretical explanation for observed behavior, this study used the nested structuration. framework proposed by Perlow, Gittell, & Katz (2004). This framework explicated how teamwork is shaped by mutually reinforcing relationships at the individual, organizational, and institutional levels. I appropriated this framework to look specifically at how engineering students working on a course-related design project identify constraints that guide their design and how these constraints emerge as students interact while working on the project. I first identified and characterized the parameters associated with the design project from the student perspective and then, through multi-case studies of four design teams, I looked at the role these parameters play in student design practices. This qualitative investigation of first-year engineering student design teams revealed mutual and interconnected relationships between students and the organizations and institutions that they are a part of. In addition to contributing to research on engineering design, this work provides guidelines and practices to help design educators develop more effective design projects by incorporating constraints that enable effective design and learning. Moreover, I found

  17. Tapping into past design experiences : Knowledge sharing and creation during novice-expert design consultations

    NARCIS (Netherlands)

    Deken, F.; Kleinsmann, M.S.; Aurisicchio, M.; Lauche, K.; Bracewell, R.

    2011-01-01

    Designing is a knowledge-intensive activity. For novice design engineers, an important means of acquiring knowledge is to consult experienced colleagues. We observed novice–expert consultations as part of three engineering projects in a large aerospace company. Seven meetings were analysed in detail

  18. Management of engineering design information

    International Nuclear Information System (INIS)

    Gray, J.A.

    1991-01-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO) purchased a Design Management software package called SHERPA for use on the $1 billion Special Isotope Separation Project Sherpa is a customizable software shell that provides for the administrative management of the design function including production, approval, distribution and configuration control of project information. This project information can be either electronic or the traditional paper hardcopy. The use of this computerized system resulted in enhanced productivity and quality performance for the management, engineering, and administrative personnel on the project. The software currently runs on an HP9000 model 835 using the HP-UX operating system. The software had been completely customized to meet specific project needs. Existing databases were converted or left in tact to be accessed through the Sherpa software. Access to the system is available through IBM PCs. Dec terminals, Sun work stations, HP terminals, and X-windows terminals, in short most existing WINCO workstations. The software and hardware were delivered in February of 1990, and the system was on-line with all necessary data converted by the end of ApriL Through the use of the electronic approval function and the highly sophisticated query capabilities of the software, a cost savings of over 1500 personnel hours were realized during the closeout of the Project. The software has since been modified for use in the management of WINCO Environmental Compliance Information including Permits, NEPA, and RECRA documentation and records. Use of this software and hardware has resulted in an increase in quality and a large cost savings to WINCO

  19. Recent Development of the Two-Stroke Engine. II - Design Features. 2; Design Features

    Science.gov (United States)

    Zeman, J.

    1945-01-01

    Completing the first paper dealing with charging methods and arrangements, the present paper discusses the design forms of two-stroke engines. Features which largely influence piston running are: (a) The shape and surface condition of the sliding parts. (b) The cylinder and piston materials. (c) Heat conditions in the piston, and lubrication. There is little essential difference between four-stroke and two-stroke engines with ordinary pistons. In large engines, for example, are always found separately cast or welded frames in which the stresses are taken up by tie rods. Twin piston and timing piston engines often differ from this design. Examples can be found in many engines of German or foreign make. Their methods of operation will be dealt with in the third part of the present paper, which also includes the bibliography. The development of two-stroke engine design is, of course, mainly concerned with such features as are inherently difficult to master; that is, the piston barrel and the design of the gudgeon pin bearing. Designers of four-stroke engines now-a-days experience approximately the same difficulties, since heat stresses have increased to the point of influencing conditions in the piston barrel. Features which notably affect this are: (a) The material. (b) Prevailing heat conditions.

  20. Screening candidate systems engineers: a research design

    CSIR Research Space (South Africa)

    Goncalves, DP

    2009-07-01

    Full Text Available engineering screening methodology that could be used to screen potential systems engineers. According to their design, this can be achieved by defining a system engineering profile according to specific psychological attributes, and using this profile...

  1. Design and computation of modern engineering materials

    CERN Document Server

    Altenbach, Holm

    2014-01-01

     The idea of this monograph is to present the latest results related to design and computation of engineering materials and structures. The contributions cover the classical fields of mechanical, civil and materials engineering up to biomechanics and advanced materials processing and optimization. The materials and structures covered can be categorized into modern steels and titanium alloys, composite materials, biological and natural materials, material hybrids and modern joining technologies. Analytical modelling, numerical simulation, the application of state-of-the-art design tools and sophisticated experimental techniques are applied to characterize the performance of materials and to design and optimize structures in different fields of engineering applications.

  2. International Joint Conference on Mechanics, Design Engineering & Advanced Manufacturing

    CERN Document Server

    Nigrelli, Vincenzo; Oliveri, Salvatore; Peris-Fajarnes, Guillermo; Rizzuti, Sergio

    2017-01-01

    This book gathers papers presented at the International Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing (JCM 2016), held on 14-16 September, 2016, in Catania, Italy. It reports on cutting-edge topics in product design and manufacturing, such as industrial methods for integrated product and process design; innovative design; and computer-aided design. Further topics covered include virtual simulation and reverse engineering; additive manufacturing; product manufacturing; engineering methods in medicine and education; representation techniques; and nautical, aeronautics and aerospace design and modeling. The book is divided into eight main sections, reflecting the focus and primary themes of the conference. The contributions presented here will not only provide researchers, engineers and experts in a range of industrial engineering subfields with extensive information to support their daily work; they are also intended to stimulate new research directions, advanced applications of t...

  3. Journal of Modeling, Design and Management of Engineering ...

    African Journals Online (AJOL)

    Journal of Modeling, Design and Management of Engineering Systems. ... Journal Home > Vol 5, No 1 (2007) ... or mathematical modeling, computing, simulation, design and/or operations research tools for solving engineering problems.

  4. Engineering computer graphics in gas turbine engine design, analysis and manufacture

    Science.gov (United States)

    Lopatka, R. S.

    1975-01-01

    A time-sharing and computer graphics facility designed to provide effective interactive tools to a large number of engineering users with varied requirements was described. The application of computer graphics displays at several levels of hardware complexity and capability is discussed, with examples of graphics systems tracing gas turbine product development, beginning with preliminary design through manufacture. Highlights of an operating system stylized for interactive engineering graphics is described.

  5. Applications of Systems Engineering to the Research, Design, and Development of Wind Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.; Meadows, R.; Felker, F.; Graf, P.; Hand, M.; Lunacek, M.; Michalakes, J.; Moriarty, P.; Musial, W.; Veers, P.

    2011-12-01

    This paper surveys the landscape of systems engineering methods and current wind modeling capabilities to assess the potential for development of a systems engineering to wind energy research, design, and development. Wind energy has evolved from a small industry in a few countries to a large international industry involving major organizations in the manufacturing, development, and utility sectors. Along with this growth, significant technology innovation has led to larger turbines with lower associated costs of energy and ever more complex designs for all major subsystems - from the rotor, hub, and tower to the drivetrain, electronics, and controls. However, as large-scale deployment of the technology continues and its contribution to electricity generation becomes more prominent, so have the expectations of the technology in terms of performance and cost. For the industry to become a sustainable source of electricity, innovation in wind energy technology must continue to improve performance and lower the cost of energy while supporting seamless integration of wind generation into the electric grid without significant negative impacts on local communities and environments. At the same time, issues associated with wind energy research, design, and development are noticeably increasing in complexity. The industry would benefit from an integrated approach that simultaneously addresses turbine design, plant design and development, grid interaction and operation, and mitigation of adverse community and environmental impacts. These activities must be integrated in order to meet this diverse set of goals while recognizing trade-offs that exist between them. While potential exists today to integrate across different domains within the wind energy system design process, organizational barriers such as different institutional objectives and the importance of proprietary information have previously limited a system level approach to wind energy research, design, and

  6. CFCC working group meeting: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This report is a compilation of the vugraphs presented at this meeting. Presentations covered are: CFCC Working Group; Overview of study on applications for advanced ceramics in industries for the future; Design codes and data bases: The CFCC program and its involvement in ASTM, ISO, ASME, and military handbook 17 activities; CFCC Working Group meeting (McDermott Technology); CFCC Working Group meeting (Textron); CFCC program for DMO materials; Developments in PIP-derived CFCCs; Toughened Silcomp (SiC-Si) composites for gas turbine engine applications; CFCC program for CVI materials; Self-lubricating CFCCs for diesel engine applications; Overview of the CFCC program`s supporting technologies task; Life prediction methodologies for CFCC components; Environmental testing of CFCCs in combustion gas environments; High-temperature particle filtration ORNL/DCC CRADA; HSCT CMC combustor; and Case study -- CFCC shroud for industrial gas turbines.

  7. Fusion Engineering Device. Volume II. Design description

    International Nuclear Information System (INIS)

    1981-10-01

    This volume summarizes the design of the FED. It includes a description of the major systems and subsystems, the supporting plasma design analysis, a projected device cost and associated construction schedule, and a description of the facilities to house and support the device. This effort represents the culmination of the FY81 studies conducted at the Fusion Engineering Design Center (FEDC). Unique in these design activities has been the collaborative involvement of the Design Center personnel and numerous resource physicists from the fusion community who have made significant contributions in the physics design analysis as well as the physics support of the engineering design of the major FED systems and components

  8. Proceedings of Synthetic Biology: Engineering, Evolution and Design (SEED) Conference 2015

    Energy Technology Data Exchange (ETDEWEB)

    Silver, Pamela [Harvard Univ., Cambridge, MA (United States); SEED 2015 Conference Chair; Flach, Evan [American Institute of Chemical Engineers; SEED 2015 Conference Organizer

    2016-10-27

    Synthetic Biology is an emerging discipline that seeks to accelerate the process of engineering biology. As such, the tools are broadly applicable to application areas, including chemicals and biofuels, materials, medicine and agriculture. A characteristic of the field is to look holistically at cellular design, from sensing and genetic circuitry to the manipulation of cellular processes and actuators, to controlling metabolism, to programming multicellular behaviors. Further, the types of cells that are manipulated are broad, from in vitro systems to microbes and fungi to mammalian and plant cells and living animals. Many of the projects in synthetic biology seek to move biochemical functions across organisms. The field is highly interdisciplinary with faculty and students spread across departments that focus on engineering (biological, chemical, electrical, mechanical, civil, computer science) and basic science (biology and systems biology, chemistry, physics). While there have been many one-off workshops and meeting on synthetic biology, the 2014 Synthetic Biology: Engineering, Evolution and Design (SEED) was the first of an annual conference series that serves as a reliable place to pull together the involved disciplines in order to organize and exchange advances in the science and technology in the field. Further, the SEED conferences have a strong focus on industry, with many companies represented and actively participating. A number of these companies have started major efforts in synthetic biology including large companies (e.g., Pfizer, Novartis, Dow, Dupont, BP, Total), smaller companies have recently gone public (e.g., Amyris, Gevo, Intrexon), and many start-ups (e.g., Teslagen, Refactored Materials, Pivot, Genomatica). There are a number of loosely affiliated Synthetic Biology Centers, including ones at MIT, Boston University, UCSD, UCSF, UC-Berkeley, Imperial College, Oxford, and ETH. SEED 2015 will serve as the primary meeting at which international

  9. Robust Unconventional Interaction Design and Hybrid Tool Environments for Design and Engineering Processes

    NARCIS (Netherlands)

    Wendrich, Robert E.; Kruiper, Ruben

    2017-01-01

    This paper investigates how and whether existing or current design tools, assist and support designers and engineers in the early-phases of ideation and conceptualization stages of design and engineering processes. The research explores how fluidly and/or congruously technology affords cognitive,

  10. Variable speed gas engine-driven air compressor system

    Science.gov (United States)

    Morgan, J. R.; Ruggles, A. E.; Chen, T. N.; Gehret, J.

    1992-11-01

    Tecogen Inc. and Ingersoll-Rand Co. as a subcontractor have designed a nominal 150-hp gas engine-driven air compressor utilizing the TECODRIVE 8000 engine and the Ingersoll-Rand 178.5-mm twin screw compressor. Phase 1 included the system engineering and design, economic and applications studies, and a draft commercialization plan. Phase 2 included controls development, laboratory prototype construction, and performance testing. The testing conducted verified that the compressor meets all design specifications.

  11. Is Engineering Design Disappearing from Design Research?

    DEFF Research Database (Denmark)

    Andreasen, Mogens Myrup; Howard, Thomas J.

    2011-01-01

    Most systems and products need to be engineered during their design, based upon scientific insight into principles, mechanisms, materials and production pos-sibilities, leading to reliability, durability and value for the user. Despite the central importance and design’s crucial dependency...

  12. Capstone Engineering Design Projects for Community Colleges

    Science.gov (United States)

    Walz, Kenneth A.; Christian, Jon R.

    2017-01-01

    Capstone engineering design courses have been a feature at research universities and four-year schools for many years. Although such classes are less common at two-year colleges, the experience is equally beneficial for this population of students. With this in mind, Madison College introduced a project-based Engineering Design course in 2007.…

  13. Exploring Advanced Technology Gas Turbine Engine Design and Performance for the Large Civil Tiltrotor (LCTR)

    Science.gov (United States)

    Snyder, Christopher A.

    2014-01-01

    A Large Civil Tiltrotor (LCTR) conceptual design was developed as part of the NASA Heavy Lift Rotorcraft Systems Investigation in order to establish a consistent basis for evaluating the benefits of advanced technology for large tiltrotors. The concept has since evolved into the second-generation LCTR2, designed to carry 90 passengers for 1,000 nautical miles at 300 knots, with vertical takeoff and landing capability. This paper explores gas turbine component performance and cycle parameters to quantify performance gains possible for additional improvements in component and material performance beyond those identified in previous LCTR2 propulsion studies and to identify additional research areas. The vehicle-level characteristics from this advanced technology generation 2 propulsion architecture will help set performance levels as additional propulsion and power systems are conceived to meet ever-increasing requirements for mobility and comfort, while reducing energy use, cost, noise and emissions. The Large Civil Tiltrotor vehicle and mission will be discussed as a starting point for this effort. A few, relevant engine and component technology studies, including previous LCTR2 engine study results will be summarized to help orient the reader on gas turbine engine architecture, performance and limitations. Study assumptions and methodology used to explore engine design and performance, as well as assess vehicle sizing and mission performance will then be discussed. Individual performance for present and advanced engines, as well as engine performance effects on overall vehicle size and mission fuel usage, will be given. All results will be summarized to facilitate understanding the importance and interaction of various component and system performance on overall vehicle characteristics.

  14. Emotional engineers: toward morally responsible design.

    Science.gov (United States)

    Roeser, Sabine

    2012-03-01

    Engineers are normally seen as the archetype of people who make decisions in a rational and quantitative way. However, technological design is not value neutral. The way a technology is designed determines its possibilities, which can, for better or for worse, have consequences for human wellbeing. This leads various scholars to the claim that engineers should explicitly take into account ethical considerations. They are at the cradle of new technological developments and can thereby influence the possible risks and benefits more directly than anybody else. I have argued elsewhere that emotions are an indispensable source of ethical insight into ethical aspects of risk. In this paper I will argue that this means that engineers should also include emotional reflection into their work. This requires a new understanding of the competencies of engineers: they should not be unemotional calculators; quite the opposite, they should work to cultivate their moral emotions and sensitivity, in order to be engaged in morally responsible engineering. © The Author(s) 2010. This article is published with open access at Springerlink.com

  15. Journal of Modeling, Design and Management of Engineering ...

    African Journals Online (AJOL)

    The Journal of Modeling, Design & Management of Engineering Systems publishes original ... systems Electronic/Electrical systems Engineering management systems Fuel and Energy systems Information Technology ... systems Pubic Health systems Software Engineering systems Systems and Industrial Engineering ...

  16. Design Aspects

    International Nuclear Information System (INIS)

    Hillary, J.J.

    1974-01-01

    Summarizing part of a seminar on iodide filter testing the author classifies the design information on iodine filters which was presented at the meeting in terms of design requirements - species to be trapped sorption materials and engineering factors -, design evaluation, applications and operational experience

  17. 40 CFR 1045.320 - What happens if one of my production-line engines fails to meet emission standards?

    Science.gov (United States)

    2010-07-01

    ...-line engines fails to meet emission standards? 1045.320 Section 1045.320 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Testing Production-line Engines § 1045.320 What happens if one of my...

  18. 40 CFR 1048.320 - What happens if one of my production-line engines fails to meet emission standards?

    Science.gov (United States)

    2010-07-01

    ...-line engines fails to meet emission standards? 1048.320 Section 1048.320 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing Production-line Engines § 1048.320 What happens if one of my production...

  19. The use of genre analysis in the design of electronic meeting systems

    Directory of Open Access Journals (Sweden)

    Pedro Antunes

    2006-01-01

    Full Text Available Introduction. Genre analysis is an approach to study communication patterns and thus it can be applied to the specific context of meetings. This research investigates the impact of genre analysis on the design of electronic meeting systems. Background. The primary goal of genre analysis is to understand how virtual communities use digital communication to collaborate. This knowledge is fundamental to inform IT design, particularly in areas where communication and informality are paramount. However, the research literature does not report any experiments where genre analysis has been used to inform electronic meeting system design. Problems. The paper tackles the following common problems found in current electronic meeting systems: (1 reduced organizational integration, neglecting many contextual cues and explaining factors necessary to make meeting outcomes usable within the organization; (2 lack of support to specific communities of users, stressing the dependency on a facilitator to configure and manage the technology; and (3 lack of support to meeting occurrences that span across long time periods. Conclusion. . The paper describes how genre analysis was used to develop electronic meeting systems for several organizations and meeting genres. It covers the complete design process, from genre elicitation to validation. The obtained results demonstrate that the genre approach produces electronic meeting systems focused on organizational integration, pre-configured to communities of users, supporting long-term usage and added organizational value.

  20. Human factor engineering applied to nuclear power plant design

    International Nuclear Information System (INIS)

    Manrique, A.; Valdivia, J.C.; Jimenez, A.

    2001-01-01

    For the design and construction of new nuclear power plants as well as for maintenance and operation of the existing ones new man-machine interface designs and modifications are been produced. For these new designs Human Factor Engineering must be applied the same as for any other traditional engineering discipline. Advantages of implementing adequate Human Factor Engineering techniques in the design of nuclear reactors have become not only a fact recognized by the majority of engineers and operators but also an explicit requirement regulated and mandatory for the new designs of the so called advanced reactors. Additionally, the big saving achieved by a nuclear power plant having an operating methodology which significantly decreases the risk of operating errors makes it necessary and almost vital its implementation. The first step for this is preparing a plan to incorporate all the Human Factor Engineering principles and developing an integral design of the Instrumentation and Control and Man-machine interface systems. (author)

  1. Product Design Engineering--A Global Education Trend in Multidisciplinary Training for Creative Product Design

    Science.gov (United States)

    de Vere, Ian; Melles, Gavin; Kapoor, Ajay

    2010-01-01

    Product design is the convergence point for engineering and design thinking and practices. Until recently, product design has been taught either as a component of mechanical engineering or as a subject within design schools but increasingly there is global recognition of the need for greater synergies between industrial design and engineering…

  2. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations.

  3. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    International Nuclear Information System (INIS)

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations

  4. Practical design control implementation for medical devices

    CERN Document Server

    Justiniano, Jose

    2003-01-01

    Bringing together the concepts of design control and reliability engineering, this book is a must for medical device manufacturers. It helps them meet the challenge of designing and developing products that meet or exceed customer expectations and also meet regulatory requirements. Part One covers motivation for design control and validation, design control requirements, process validation and design transfer, quality system for design control, and measuring design control program effectiveness. Part Two discusses risk analysis and FMEA, designing-in reliability, reliability and design verific

  5. A Student Team in a University of Michigan Biomedical Engineering Design Course Constructs a Microfluidic Bioreactor for Studies of Zebrafish Development

    Science.gov (United States)

    Shen, Yu-chi; Li, David; Al-Shoaibi, Ali; Bersano-Begey, Tom; Chen, Hao; Ali, Shahid; Flak, Betsy; Perrin, Catherine; Winslow, Max; Shah, Harsh; Ramamurthy, Poornapriya; Schmedlen, Rachael H.; Takayama, Shuichi

    2009-01-01

    Abstract The zebrafish is a valuable model for teaching developmental, molecular, and cell biology; aquatic sciences; comparative anatomy; physiology; and genetics. Here we demonstrate that zebrafish provide an excellent model system to teach engineering principles. A seven-member undergraduate team in a biomedical engineering class designed, built, and tested a zebrafish microfluidic bioreactor applying microfluidics, an emerging engineering technology, to study zebrafish development. During the semester, students learned engineering and biology experimental design, chip microfabrication, mathematical modeling, zebrafish husbandry, principles of developmental biology, fluid dynamics, microscopy, and basic molecular biology theory and techniques. The team worked to maximize each person's contribution and presented weekly written and oral reports. Two postdoctoral fellows, a graduate student, and three faculty instructors coordinated and directed the team in an optimal blending of engineering, molecular, and developmental biology skill sets. The students presented two posters, including one at the Zebrafish meetings in Madison, Wisconsin (June 2008). PMID:19292670

  6. Engineering Elegant Systems: Postulates, Principles, and Hypotheses of Systems Engineering

    Science.gov (United States)

    Watson, Michael D.

    2018-01-01

    Definition: System Engineering is the engineering discipline which integrates the system functions, system environment, and the engineering disciplines necessary to produce and/or operate an elegant system; Elegant System - A system that is robust in application, fully meeting specified and adumbrated intent, is well structured, and is graceful in operation. Primary Focus: System Design and Integration: Identify system couplings and interactions; Identify system uncertainties and sensitivities; Identify emergent properties; Manage the effectiveness of the system. Engineering Discipline Integration: Manage flow of information for system development and/or operations; Maintain system activities within budget and schedule. Supporting Activities: Process application and execution.

  7. Geothermal direct use engineering and design guidebook

    International Nuclear Information System (INIS)

    Lienau, P.J.; Lunis, B.C.

    1991-01-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating and cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of the resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental consideration. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very large potential in the United States

  8. Geothermal direct use engineering and design guidebook

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Lunis, B.C. (eds.)

    1991-01-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating and cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of the resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental consideration. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very large potential in the United States.

  9. Geothermal direct use engineering and design guidebook

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G.; Culver, G.; Ellis, P.F.; Higbee, C.; Kindle, C.; Lienau, P.J.; Lunis, B.C.; Rafferty, K.; Stiger, S.; Wright, P.M.

    1989-03-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of these resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse, aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental considerations. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very potential in the United States.

  10. Optimum value engineering and integrated design methods for reducing the cost of R-2000 houses

    Energy Technology Data Exchange (ETDEWEB)

    Proskiw, G. [Proskiw Engineering Ltd., Winnipeg, MB (Canada); Parekh, A. [Natural Resources Canada, Ottawa, ON (Canada)

    2009-07-01

    Opportunities exist to reduce the incremental cost of R-2000 construction by using optimum value engineering (OVE) and integrated design (ID) techniques. OVE is a construction philosophy in which components and systems are designed to meet their intended purposes without excessive or unnecessary use of resources. This paper summarized a study that was designed to identify opportunities for reducing the costs of R-2000 houses while improving their performance. These included detailed energy and cost analysis of various OVE/ID options which were then applied to a sample of 18 representative new home designs from British Columbia, Manitoba, and New Brunswick. The paper described the OVE/ID measures studied, cost analysis, measure utilization and energy analysis. It also included a detailed discussion of individual OVE/ID measures. Examples of some of these measures were the elimination of floor system cross-bridging; support of non-load bearing partition walls; engineered wood beams; drywall clips at corners; and non-load bearing partition walls. It was concluded that significant opportunities exist to reduce the incremental cost of R-2000 houses through careful application of OVE and ID practices. 5 refs., 4 tabs., 1 fig.

  11. 76 FR 14115 - Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues

    Science.gov (United States)

    2011-03-15

    ..., Telephone (202) 267-3168, Fax (202) 267-5075, or e-mail at [email protected] . SUPPLEMENTARY INFORMATION... Committee Meeting on Transport Airplane and Engine Issues AGENCY: Federal Aviation Administration (FAA), DOT... Rulemaking Advisory Committee [[Page 14116

  12. Information Flows in Networked Engineering Design Projects

    DEFF Research Database (Denmark)

    Parraguez, Pedro; Maier, Anja

    Complex engineering design projects need to manage simultaneously multiple information flows across design activities associated with different areas of the design process. Previous research on this area has mostly focused on either analysing the “required information flows” through activity...... networks at the project level or in studying the social networks that deliver the “actual information flow”. In this paper we propose and empirically test a model and method that integrates both social and activity networks into one compact representation, allowing to compare actual and required...... information flows between design spaces, and to assess the influence that these misalignments could have on the performance of engineering design projects....

  13. Routine Design for Mechanical Engineering

    OpenAIRE

    Brinkop, Axel; Laudwein, Norbert; Maasen, Rudiger

    1995-01-01

    COMIX (configuration of mixing machines) is a system that assists members of the EKATO Sales Department in designing a mixing machine that fulfills the requirements of a customer. It is used to help the engineer design the requested machine and prepare an offer that's to be submitted to the customer. comix integrates more traditional software techniques with explicit knowledge representation and constraint propagation. During the process of routine design, some design decisions have to be mad...

  14. Merged ontology for engineering design: Contrasting empirical and theoretical approaches to develop engineering ontologies

    DEFF Research Database (Denmark)

    Ahmed, Saeema; Storga, M

    2009-01-01

    to developing the ontology engineering design integrated taxonomies (EDIT) with a theoretical approach in which concepts and relations are elicited from engineering design theories ontology (DO) The limitations and advantages of each approach are discussed. The research methodology adopted is to map......This paper presents a comparison of two previous and separate efforts to develop an ontology in the engineering design domain, together with an ontology proposal from which ontologies for a specific application may be derived. The research contrasts an empirical, user-centered approach...

  15. Design of compact nuclear power marine engineering simulator

    International Nuclear Information System (INIS)

    Gao Jinghui; Xing Hongchuan; Zhang Ronghua; Yang Yanhua; Xu Jijun

    2004-01-01

    The essentiality of compact nuclear power marine engineering simulator (NPMES) is discussed. The technology of nuclear power plant engineering simulator (NPPES) for NPMES development is introduced, and the function design, general design and model design are given in details. A compact NPMES based on the nuclear power marine of 'Mutsu' is developed. The design can help the development of NPMES, which will improve operation safety and management efficiency of marine. (authors)

  16. Systematic design of loss-engineered slow-light waveguides

    DEFF Research Database (Denmark)

    Wang, Fengwen; Jensen, Jakob Søndergaard; Mørk, Jesper

    2012-01-01

    This paper employs topology optimization to systematically design free-topology loss-engineered slow-light waveguides with enlarged group index bandwidth product (GBP). The propagation losses of guided modes are evaluated by the imaginary part of eigenvalues in complex band structure calculations......, where the scattering losses due to manufacturing imperfections are represented by an edge-related effective dissipation. The loss engineering of slow-light waveguides is realized by minimizing the propagation losses of design modes. Numerical examples illustrate that the propagation losses of free......-topology dispersion-engineered waveguides can be significantly suppressed by loss engineering. Comparisons between fixed- and free-topology loss-engineered waveguides demonstrate that the GBP can be enhanced significantly by the free-topology loss-engineered waveguides with a small increase of the propagation losses....

  17. Configuration and engineering design of the ARIES-RS tokamak power plant

    International Nuclear Information System (INIS)

    Tillack, M.S.; Malang, S.; Waganer, L.; Wang, X.R.; Sze, D.K.; El-Guebaly, L.; Wong, C.P.C.; Crowell, J.A.; Mau, T.K.; Bromberg, L.

    1997-01-01

    ARIES-RS is a conceptual design study which has examined the potential of an advanced tokamak-based power plant to compete with future energy sources and play a significant role in the future energy market. The design is a 1000 MWe, DT-burning fusion power plant based on the reversed-shear tokamak mode of plasma operation, and using moderately advanced engineering concepts such as lithium-cooled vanadium-alloy plasma-facing components. A steady-state reversed shear tokamak currently appears to offer the best combination of good economic performance and physics credibility for a tokamak-based power plant. The ARIES-RS engineering design process emphasized the attainment of the top-level mission requirements developed in the early part of the study in a collaborative effort between the ARIES Team and representatives from U.S. electric utilities and industry. Major efforts were devoted to develop a credible configuration that allows rapid removal of full sectors followed by disassembly in the hot cells during plant operation. This was adopted as the only practical means to meet availability goals. Use of an electrically insulating coating for the self-cooled blanket and divertor provides a wide design window and simplified design. Optimization of the shield, which is one of the larger cost items, significantly reduced the power core cost by using ferritic steel where the power density and radiation levels are low. An additional saving is made by radial segmentation of the blanket, such that large segments can be reused. The overall tokamak configuration is described here, together with each of the major fusion power core components: the first-wall, blanket and shield; divertor; heating, current drive and fueling systems; and magnet systems. (orig.)

  18. Integrated computer-aided design in automotive development development processes, geometric fundamentals, methods of CAD, knowledge-based engineering data management

    CERN Document Server

    Mario, Hirz; Gfrerrer, Anton; Lang, Johann

    2013-01-01

    The automotive industry faces constant pressure to reduce development costs and time while still increasing vehicle quality. To meet this challenge, engineers and researchers in both science and industry are developing effective strategies and flexible tools by enhancing and further integrating powerful, computer-aided design technology. This book provides a valuable overview of the development tools and methods of today and tomorrow. It is targeted not only towards professional project and design engineers, but also to students and to anyone who is interested in state-of-the-art computer-aided development. The book begins with an overview of automotive development processes and the principles of virtual product development. Focusing on computer-aided design, a comprehensive outline of the fundamentals of geometry representation provides a deeper insight into the mathematical techniques used to describe and model geometrical elements. The book then explores the link between the demands of integrated design pr...

  19. Engineered design of SSC cooling ponds

    International Nuclear Information System (INIS)

    Bear, J.B.

    1993-05-01

    The cooling requirements of the SSC are significant and adequate cooling water systems to meet these requirements are critical to the project's successful operation. The use of adequately designed cooling ponds will provide reliable cooling for operation while also meeting environmental goals of the project to maintain streamflow and flood peaks to preconstruction levels as well as other streamflow and water quality requirements of the Texas Water Commission and the Environmental Protection Agency

  20. Stratified charge rotary aircraft engine technology enablement program

    Science.gov (United States)

    Badgley, P. R.; Irion, C. E.; Myers, D. M.

    1985-01-01

    The multifuel stratified charge rotary engine is discussed. A single rotor, 0.7L/40 cu in displacement, research rig engine was tested. The research rig engine was designed for operation at high speeds and pressures, combustion chamber peak pressure providing margin for speed and load excursions above the design requirement for a high is advanced aircraft engine. It is indicated that the single rotor research rig engine is capable of meeting the established design requirements of 120 kW, 8,000 RPM, 1,379 KPA BMEP. The research rig engine, when fully developed, will be a valuable tool for investigating, advanced and highly advanced technology components, and provide an understanding of the stratified charge rotary engine combustion process.

  1. Integrating computer programs for engineering analysis and design

    Science.gov (United States)

    Wilhite, A. W.; Crisp, V. K.; Johnson, S. C.

    1983-01-01

    The design of a third-generation system for integrating computer programs for engineering and design has been developed for the Aerospace Vehicle Interactive Design (AVID) system. This system consists of an engineering data management system, program interface software, a user interface, and a geometry system. A relational information system (ARIS) was developed specifically for the computer-aided engineering system. It is used for a repository of design data that are communicated between analysis programs, for a dictionary that describes these design data, for a directory that describes the analysis programs, and for other system functions. A method is described for interfacing independent analysis programs into a loosely-coupled design system. This method emphasizes an interactive extension of analysis techniques and manipulation of design data. Also, integrity mechanisms exist to maintain database correctness for multidisciplinary design tasks by an individual or a team of specialists. Finally, a prototype user interface program has been developed to aid in system utilization.

  2. Production engineering jig and tool design

    CERN Document Server

    Jones, E J H

    1972-01-01

    Production Engineering: Jig and Tool Design focuses on jig and tool design as part of production engineering and covers topics ranging from inspection and gauging to multiple and consecutive tooling, tool calculation and development of form tools, deep-hole boring, and grinding-wheel form-crushing. Air and oil operated fixtures, negative rake machining, and the economics of jig and fixture practice are also discussed. This text is comprised of 22 chapters; the first of which provides an overview of the function and organization of the jig and tool department. Attention then turns to the subjec

  3. Supporting design reviews with pre-meeting virtual reality environments

    NARCIS (Netherlands)

    van den Berg, Marc Casper; Hartmann, Timo; de Graaf, Robin S.

    2017-01-01

    The purpose of this paper is to explore how design reviews can be supported with pre-meeting virtual reality environments. Previous research has not systematically investigated how virtual environments can be used to communicate the design intent (to clients) and to communicate feedback (to design

  4. Engineering Design Education: Effect of Mode of Delivery

    OpenAIRE

    Kinda Khalaf; Shadi Balawi; George W. Hitt; Mohammad A.M. Siddiqi

    2013-01-01

    This work reports on the gradual transformation from traditional teaching to student-centered, pure problem-based-learning (PBL) in engineering design education. Three different PBL-based modes of delivery with various degrees of modulation or freedom were used in conjunction with the prescriptive design cycle. The aim is to study the effect of the mode of delivery (PBL at various degrees of integration) on engineering design education and design thinking skills, specifically on the developme...

  5. Bioreactor design for tendon/ligament engineering.

    Science.gov (United States)

    Wang, Tao; Gardiner, Bruce S; Lin, Zhen; Rubenson, Jonas; Kirk, Thomas B; Wang, Allan; Xu, Jiake; Smith, David W; Lloyd, David G; Zheng, Ming H

    2013-04-01

    Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a suitable culture environment, which mimics the dynamics of the in vivo environment for tendon/ligament maturation. For clinical settings, bioreactors also have the advantages of less-contamination risk, high reproducibility of cell propagation by minimizing manual operation, and a consistent end product. In this review, we identify the key components, design preferences, and criteria that are required for the development of an ideal bioreactor for engineering tendons and ligaments.

  6. Engineered barrier systems (EBS): design requirements and constraints

    International Nuclear Information System (INIS)

    2004-01-01

    A joint NEA-EC workshop entitled 'Engineered Barrier Systems: Design Requirements and Constraints' was organised in Turku, Finland on 26-29 August 2003 and hosted by Posiva Oy. The main objectives of the workshop were to promote interaction and collaboration among experts responsible for engineering design and safety assessment in order to develop a greater understanding of how to achieve the integration needed for the successful design of engineered barrier systems, and to clarify the role that an EBS can play in the overall safety case for a repository. These proceedings present the outcomes of this workshop. (author)

  7. QCGAT aircraft/engine design for reduced noise and emissions

    Science.gov (United States)

    Lanson, L.; Terrill, K. M.

    1980-01-01

    The high bypass ratio QCGAT engine played an important role in shaping the aircraft design. The aircraft which evolved is a sleek, advanced design, six-place aircraft with 3538 kg (7,800 lb) maximum gross weight. It offers a 2778 kilometer (1500 nautical mile) range with cruise speed of 0.5 Mach number and will take-off and land on the vast majority of general aviation airfields. Advanced features include broad application of composite materials and a supercritical wing design with winglets. Full-span fowler flaps were introduced to improve landing capability. Engines are fuselage-mounted with inlets over the wing to provide shielding of fan noise by the wing surfaces. The design objectives, noise, and emission considerations, engine cycle and engine description are discussed as well as specific design features.

  8. Course Content for Life Cycle Engineering and EcoDesign

    DEFF Research Database (Denmark)

    Jerswiet, Jack; Duflou, Joost; Dewulf, Wim

    2007-01-01

    There is a need to create an awareness of Life Cycle Engineering and EcoDesign in Engineering students. Topics covered in an LCE/EcoDesign course will create an awareness of environmental impacts, especially in other design course projects. This paper suggests that an awareness of product impact...... upon the environment must be created at an early stage in undergraduate education. Deciding what to include in an LCE/EcoDesign Course can be difficult because there are many different views on the subject. However, there are more similarities than differences. All LCE/ EcoDesign Engineering courses...

  9. Knowledge management in the engineering design environment

    Science.gov (United States)

    Briggs, Hugh C.

    2006-01-01

    The Aerospace and Defense industry is experiencing an increasing loss of knowledge through workforce reductions associated with business consolidation and retirement of senior personnel. Significant effort is being placed on process definition as part of ISO certification and, more recently, CMMI certification. The process knowledge in these efforts represents the simplest of engineering knowledge and many organizations are trying to get senior engineers to write more significant guidelines, best practices and design manuals. A new generation of design software, known as Product Lifecycle Management systems, has many mechanisms for capturing and deploying a wider variety of engineering knowledge than simple process definitions. These hold the promise of significant improvements through reuse of prior designs, codification of practices in workflows, and placement of detailed how-tos at the point of application.

  10. Rethinking the Systems Engineering Process in Light of Design Thinking

    Science.gov (United States)

    2016-04-30

    systems engineering process models (Blanchard & Fabrycky, 1990) and the majority of engineering design education (Dym et al., 2005). The waterfall model ...Engineering Career Competency Model Clifford Whitcomb, Systems Engineering Professor, NPS Corina White, Systems Engineering Research Associate, NPS...Postgraduate School (NPS) in Monterey, CA. He teaches and conducts research in the design of enterprise systems, systems modeling , and system

  11. Advanced stratified charge rotary aircraft engine design study

    Science.gov (United States)

    Badgley, P.; Berkowitz, M.; Jones, C.; Myers, D.; Norwood, E.; Pratt, W. B.; Ellis, D. R.; Huggins, G.; Mueller, A.; Hembrey, J. H.

    1982-01-01

    A technology base of new developments which offered potential benefits to a general aviation engine was compiled and ranked. Using design approaches selected from the ranked list, conceptual design studies were performed of an advanced and a highly advanced engine sized to provide 186/250 shaft Kw/HP under cruise conditions at 7620/25,000 m/ft altitude. These are turbocharged, direct-injected stratified charge engines intended for commercial introduction in the early 1990's. The engine descriptive data includes tables, curves, and drawings depicting configuration, performance, weights and sizes, heat rejection, ignition and fuel injection system descriptions, maintenance requirements, and scaling data for varying power. An engine-airframe integration study of the resulting engines in advanced airframes was performed on a comparative basis with current production type engines. The results show airplane performance, costs, noise & installation factors. The rotary-engined airplanes display substantial improvements over the baseline, including 30 to 35% lower fuel usage.

  12. Additive Design and Manufacturing of Jet Engine Parts

    Directory of Open Access Journals (Sweden)

    Pinlian Han

    2017-10-01

    Full Text Available The additive design (AD and additive manufacturing (AM of jet engine parts will revolutionize the traditional aerospace industry. The unique characteristics of AM, such as gradient materials and micro-structures, have opened up a new direction in jet engine design and manufacturing. Engineers have been liberated from many constraints associated with traditional methodologies and technologies. One of the most significant features of the AM process is that it can ensure the consistency of parts because it starts from point(s, continues to line(s and layer(s, and ends with the competed part. Collaboration between design and manufacturing is the key to success in fields including aerodynamics, thermodynamics, structural integration, heat transfer, material development, and machining. Engineers must change the way they design a part, as they shift from the traditional method of “subtracting material” to the new method of “adding material” in order to manufacture a part. AD is not the same as designing for AM. A new method and new tools are required to assist with this new way of designing and manufacturing. This paper discusses in detail what is required in AD and AM, and how current problems can be solved.

  13. Everyday engineering an ethnography of design and innovation

    CERN Document Server

    Blanco, Eric

    2003-01-01

    Everyday Engineering was written to help future engineers understand what they are going to be doing in their everyday working lives, so that they can do their work more effectively and with a broader social vision. It will also give sociologists deeper insights into the sociotechnical world of engineering. The book consists of ethnographic studies in which the authors, all trained in both engineering and sociology, go into the field as participant-observers. The sites and types of engineering explored include mechanical design in manufacturing industries, instrument design, software debugging, environmental management within companies, and the implementation of a system for separating household waste.The book is organized in three parts. The first part introduces the complexity of technical practices. The second part enters the social and cultural worlds of designers to grasp their practices and motivations. The third part examines the role of writing practices and graphical representation. The epilogue uses...

  14. Engineering a General Education Program: Designing Mechanical Engineering General Education Courses

    Science.gov (United States)

    Fagette, Paul; Chen, Shih-Jiun; Baran, George R.; Samuel, Solomon P.; Kiani, Mohammad F.

    2013-01-01

    The Department of Mechanical Engineering at our institution created two engineering courses for the General Education Program that count towards second level general science credit (traditional science courses are first level). The courses were designed for the general student population based upon the requirements of our General Education Program…

  15. Using innovative instructional technology to meet training needs in public health: a design process.

    Science.gov (United States)

    Millery, Mari; Hall, Michelle; Eisman, Joanna; Murrman, Marita

    2014-03-01

    Technology and distance learning can potentially enhance the efficient and effective delivery of continuing education to the public health workforce. Public Health Training Centers collaborate with instructional technology designers to develop innovative, competency-based online learning experiences that meet pressing training needs and promote best practices. We describe one Public Health Training Center's online learning module design process, which consists of five steps: (1) identify training needs and priority competencies; (2) define learning objectives and identify educational challenges; (3) pose hypotheses and explore innovative, technology-based solutions; (4) develop and deploy the educational experience; and (5) evaluate feedback and outcomes to inform continued cycles of revision and improvement. Examples illustrate the model's application. These steps are discussed within the context of design practices in the fields of education, engineering, and public health. They incorporate key strategies from across these fields, including principles of programmatic design familiar to public health professionals, such as backward design. The instructional technology design process we describe provides a structure for the creativity, collaboration, and systematic strategies needed to develop online learning products that address critical training needs for the public health workforce.

  16. What are the Characteristics of Engineering Design Processes?

    DEFF Research Database (Denmark)

    Maier, Anja; Störrle, Harald

    2011-01-01

    This paper studies the characteristic properties of Engineering Design (ED) processes from a process modelling perspective. In a first step, we extracted nine characteristics of engineering design processes from the literature and in a second step validated the findings using results from our...... survey among academic and industrial ED process modelling experts. In a third step, we added a further nine characteristics from personal experiences in the Language Engineering Domain to capture the pragmatic perspective. We arrive at a comprehensive set of 18 characteristics grouped into 6 challenges...... for process modelling in the engineering design domain. The challenges process modelers need to address when using and developing process modelling approaches and tools are: Development, Collaboration, Products & Services, Formality, Pragmatics, and Flexibility. We then compare the importance of elicited...

  17. Electric utility engineer`s FGD manual -- Volume 1: FGD process design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-04

    Part 1 of the Electric Utility Engineer`s Flue Gas Desulfurization (FGD) Manual emphasizes the chemical and physical processes that form the basis for design and operation of lime- and limestone-based FGD systems applied to coal- or oil-fired steam electric generating stations. The objectives of Part 1 are: to provide a description of the chemical and physical design basis for lime- and limestone-based wet FGD systems; to identify and discuss the various process design parameters and process options that must be considered in developing a specification for a new FGD system; and to provide utility engineers with process knowledge useful for operating and optimizing a lime- or limestone-based wet FGD system.

  18. Simulation and Spacecraft Design: Engineering Mars Landings.

    Science.gov (United States)

    Conway, Erik M

    2015-10-01

    A key issue in history of technology that has received little attention is the use of simulation in engineering design. This article explores the use of both mechanical and numerical simulation in the design of the Mars atmospheric entry phases of the Viking and Mars Pathfinder missions to argue that engineers used both kinds of simulation to develop knowledge of their designs' likely behavior in the poorly known environment of Mars. Each kind of simulation could be used as a warrant of the other's fidelity, in an iterative process of knowledge construction.

  19. Reliable design of electronic equipment an engineering guide

    CERN Document Server

    Natarajan, Dhanasekharan

    2014-01-01

    This book explains reliability techniques with examples from electronics design for the benefit of engineers. It presents the application of de-rating, FMEA, overstress analyses and reliability improvement tests for designing reliable electronic equipment. Adequate information is provided for designing computerized reliability database system to support the application of the techniques by designers. Pedantic terms and the associated mathematics of reliability engineering discipline are excluded for the benefit of comprehensiveness and practical applications. This book offers excellent support

  20. [Designing the Annual Meeting and Active Learning System].

    Science.gov (United States)

    Kawamura, Kazumi

    2018-01-01

     At the 10th Annual Meeting of the Japanese Society for Pharmaceutical Palliative Care and Sciences our theme centered on active learning systems where adult learners engage on their own initiative. Many of the participants were pharmacists active in clinical practices. Regardless of their specialized skill-sets, pharmacists are constantly faced with difficult challenges in their daily work. Passive, one-way lectures are one resource for them, but unfortunately such lectures provide limited insights for resolving concrete problems. The present meeting aimed to show participants how to obtain information they need to solve specific real-world problems. This paper summarizes how we planned this year's meeting, including details about the debate symposium, social lunch, and online questionnaires. All these elements had the end goal of enabling learners proactivity to become their own best resource for learning. It is sincerely hoped that the design and execution of this meeting will prove resourceful for future annual meetings.

  1. Creating Learning Environment Connecting Engineering Design and 3D Printing

    Science.gov (United States)

    Pikkarainen, Ari; Salminen, Antti; Piili, Heidi

    Engineering education in modern days require continuous development in didactics, pedagogics and used practical methods. 3D printing provides excellent opportunity to connect different engineering areas into practice and produce learning by doing applications. The 3D-printing technology used in this study is FDM (Fused deposition modeling). FDM is the most used 3D-printing technology by commercial numbers at the moment and the qualities of the technology makes it popular especially in academic environments. For achieving the best result possible, students will incorporate the principles of DFAM (Design for additive manufacturing) into their engineering design studies together with 3D printing. This paper presents a plan for creating learning environment for mechanical engineering students combining the aspects of engineering design, 3D-CAD learning and AM (additive manufacturing). As a result, process charts for carrying out the 3D printing process from technological point of view and design process for AM from engineering design point of view were created. These charts are used in engineering design education. The learning environment is developed to work also as a platform for Bachelor theses, work-training environment for students, prototyping service centre for cooperation partners and source of information for mechanical engineering education in Lapland University of Applied Sciences.

  2. Developments in REDES: The Rocket Engine Design Expert System

    Science.gov (United States)

    Davidian, Kenneth O.

    1990-01-01

    The Rocket Engine Design Expert System (REDES) was developed at NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP; a nozzle design program named RAO; a regenerative cooling channel performance evaluation code named RTE; and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES was built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.

  3. Design type air engine Di Pietro

    Directory of Open Access Journals (Sweden)

    Zwierzchowski Jaroslaw

    2017-01-01

    Full Text Available The article presents a pneumatic engine constructed by Angelo Di Pietro. 3D solid models of pneumatic engine components were presented therein. A directional valve is a key element of the control system. The valve functions as a camshaft distributing air to particular engine chambers. The construction designed by Angelo Di Pietro is modern and innovative. A pneumatic engine requires low pressure to start rotary movement. With the use of CFD software, the fields of velocity vectors’ distribution were determined. Moreover, the author determined the distribution of pressure values in engine inlet and outlet channels. CFD model studies on engine operation were conducted for chosen stages of operating cycles. On the basis of simulation tests that were conducted, the values of flow rates for the engine were determined. The distribution of pressure values made it possible to evaluate the torque value on the rotating shaft.

  4. Design type air engine Di Pietro

    Science.gov (United States)

    Zwierzchowski, Jaroslaw

    The article presents a pneumatic engine constructed by Angelo Di Pietro. 3D solid models of pneumatic engine components were presented therein. A directional valve is a key element of the control system. The valve functions as a camshaft distributing air to particular engine chambers. The construction designed by Angelo Di Pietro is modern and innovative. A pneumatic engine requires low pressure to start rotary movement. With the use of CFD software, the fields of velocity vectors' distribution were determined. Moreover, the author determined the distribution of pressure values in engine inlet and outlet channels. CFD model studies on engine operation were conducted for chosen stages of operating cycles. On the basis of simulation tests that were conducted, the values of flow rates for the engine were determined. The distribution of pressure values made it possible to evaluate the torque value on the rotating shaft.

  5. 40 CFR 1048.101 - What exhaust emission standards must my engines meet?

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES... from your engines may not exceed the numerical emission standards in paragraph (a) of this section. See... specified in 40 CFR part 1065, subpart H, on which the engines in the engine family are designed to operate...

  6. Rube Goldbergineering: Lessons In Teaching Engineering Design To Future Engineers

    OpenAIRE

    Jordan, Shawn; Pereira, Nielsen

    2009-01-01

    Hands-on learning experiences and interactive learning environments can be effective in teaching K-12 students. Design, in essence, is an interactive, hands-on experience. Engineering design can be taught in the classroom using innovative hands-on projects, such as designing and building serve to teach design, promote creativity, and provide opportunities for hands-on problem solving, in addition to giving students experience working in cooperative teams. In turn, these experiences could enco...

  7. Design and analysis of a single stage to orbit nuclear thermal rocket reactor engine

    Energy Technology Data Exchange (ETDEWEB)

    Labib, Satira, E-mail: Satira.Labib@duke-energy.com; King, Jeffrey, E-mail: kingjc@mines.edu

    2015-06-15

    Graphical abstract: - Highlights: • Three NTR reactors are optimized for the single stage launch of 1–15 MT payloads. • The proposed rocket engines have specific impulses in excess of 700 s. • Reactivity and submersion criticality requirements are satisfied for each reactor. - Abstract: Recent advances in the development of high power density fuel materials have renewed interest in nuclear thermal rockets (NTRs) as a viable propulsion technology for future space exploration. This paper describes the design of three NTR reactor engines designed for the single stage to orbit launch of payloads from 1 to 15 metric tons. Thermal hydraulic and rocket engine analyses indicate that the proposed rocket engines are able to reach specific impulses in excess of 800 s. Neutronics analyses performed using MCNP5 demonstrate that the hot excess reactivity, shutdown margin, and submersion criticality requirements are satisfied for each NTR reactor. The reactors each consist of a 40 cm diameter core packed with hexagonal tungsten cermet fuel elements. The core is surrounded by radial and axial beryllium reflectors and eight boron carbide control drums. The 40 cm long reactor meets the submersion criticality requirements (a shutdown margin of at least $1 subcritical in all submersion scenarios) with no further modifications. The 80 and 120 cm long reactors include small amounts of gadolinium nitride as a spectral shift absorber to keep them subcritical upon submersion in seawater or wet sand following a launch abort.

  8. Design and analysis of a single stage to orbit nuclear thermal rocket reactor engine

    International Nuclear Information System (INIS)

    Labib, Satira; King, Jeffrey

    2015-01-01

    Graphical abstract: - Highlights: • Three NTR reactors are optimized for the single stage launch of 1–15 MT payloads. • The proposed rocket engines have specific impulses in excess of 700 s. • Reactivity and submersion criticality requirements are satisfied for each reactor. - Abstract: Recent advances in the development of high power density fuel materials have renewed interest in nuclear thermal rockets (NTRs) as a viable propulsion technology for future space exploration. This paper describes the design of three NTR reactor engines designed for the single stage to orbit launch of payloads from 1 to 15 metric tons. Thermal hydraulic and rocket engine analyses indicate that the proposed rocket engines are able to reach specific impulses in excess of 800 s. Neutronics analyses performed using MCNP5 demonstrate that the hot excess reactivity, shutdown margin, and submersion criticality requirements are satisfied for each NTR reactor. The reactors each consist of a 40 cm diameter core packed with hexagonal tungsten cermet fuel elements. The core is surrounded by radial and axial beryllium reflectors and eight boron carbide control drums. The 40 cm long reactor meets the submersion criticality requirements (a shutdown margin of at least $1 subcritical in all submersion scenarios) with no further modifications. The 80 and 120 cm long reactors include small amounts of gadolinium nitride as a spectral shift absorber to keep them subcritical upon submersion in seawater or wet sand following a launch abort

  9. High School Engineering and Technology Education Integration through Design Challenges

    Science.gov (United States)

    Mentzer, Nathan

    2011-01-01

    This study contextualized the use of the engineering design process by providing descriptions of how each element in a design process was integrated in an eleventh grade industry and engineering systems course. The guiding research question for this inquiry was: How do students engage in the engineering design process in a course where technology…

  10. Civil Engineering & Design Standards Manual

    OpenAIRE

    Vänttinen, Eetu

    2014-01-01

    Civil Discipline Engineering department in Foster Wheeler Energia Oy takes care of the construction of foundation, steel frame, platforms, cladding/roofing, HVAC, elevator, hoist and central vacuum system of the boiler building. The goal of the thesis was to compile a design manual for the department to ease up the startup of the design of a new project and standardize the design. Main objective was to gather together all the existing guidelines, standards and directives regarding the des...

  11. 78 FR 16044 - Hazardous Materials Packaging-Composite Cylinder Standards; Public Meeting

    Science.gov (United States)

    2013-03-13

    ... Toughiry, Engineering and Research Division, Office of Hazardous Materials Safety, Pipeline and Hazardous... the HMR, ISO 11119 Parts-1, -2 and -3, contain design, construction and testing requirements that are.../permits-approvals/special-permits . II. Public Meeting Topics During this public meeting, PHMSA will...

  12. Engineering graphics theoretical foundations of engineering geometry for design

    CERN Document Server

    Brailov, Aleksandr Yurievich

    2016-01-01

    This professional treatise on engineering graphics emphasizes engineering geometry as the theoretical foundation for communication of design ideas with real world structures and products. It considers each theoretical notion of engineering geometry as a complex solution of direct- and inverse-problems of descriptive geometry and each solution of basic engineering problems presented is accompanied by construction of biunique two- and three-dimension models of geometrical images. The book explains the universal structure of formal algorithms of the solutions of positional, metric, and axonometric problems, as well as the solutions of problems of construction in developing a curvilinear surface. The book further characterizes and explains the added laws of projective connections to facilitate construction of geometrical images in any of eight octants. Laws of projective connections allow constructing the complex drawing of a geometrical image in the American system of measurement and the European system of measu...

  13. Foundations for a new type of Design-Engineers

    DEFF Research Database (Denmark)

    Jørgensen, Ulrik; Brodersen, Søsser; Lindegaard, Hanne

    2011-01-01

    almost equally in the curriculum: natural and technical sciences, design synthesis and socio-technical analysis. Combined with an integration and co-ordination of disciplines, a series of projects providing a progression of challenges to the students⿿ learning, and a focus on the outcomes of the learning...... processes of competences needed in design engineering, the curriculum represents a radical innovation in engineering curriculum. The paper describes the background as well as the foundational elements constituting the educational program and presents an assessment of the key factors that has made it attract......Since 2002 a new design-engineering education has been organized at the Technical University of Denmark. It fulfils most of the requirements in the CDIO concept but builds in addition on a change in what is considered core disciplines in engineering as three fields of knowledge are represented...

  14. Industrial applications of affective engineering

    CERN Document Server

    Shiizuka, Hisao; Lee, Kun-Pyo; Otani, Tsuyoshi; Lim, Chee-Peng

    2014-01-01

    This book examines the industrial applications of affective engineering. The contributors cover new analytical methods such as fluctuation, fuzzy logic, fractals, and complex systems. These chapters also include interdisciplinary research that traverses a wide range of fields, including information engineering, human engineering, cognitive science, psychology, and design studies. The text is split into two parts: theory and applications. This work is a collection of the best papers from ISAE2013 (International Symposium of Affective Engineering) held at Kitakyushu, Japan and Japan Kansei Engineering Meeting on March 6-8, 2013.

  15. Engine cycle design considerations for nuclear thermal propulsion systems

    International Nuclear Information System (INIS)

    Pelaccio, D.G.; Scheil, C.M.; Collins, J.T.

    1993-01-01

    A top-level study was performed which addresses nuclear thermal propulsion system engine cycle options and their applicability to support future Space Exploration Initiative manned lunar and Mars missions. Technical and development issues associated with expander, gas generator, and bleed cycle near-term, solid core nuclear thermal propulsion engines are identified and examined. In addition to performance and weight the influence of the engine cycle type on key design selection parameters such as design complexity, reliability, development time, and cost are discussed. Representative engine designs are presented and compared. Their applicability and performance impact on typical near-term lunar and Mars missions are shown

  16. 40 CFR 60.4203 - How long must my engines meet the emission standards if I am a stationary CI internal combustion...

    Science.gov (United States)

    2010-07-01

    ... emission standards if I am a stationary CI internal combustion engine manufacturer? 60.4203 Section 60.4203... Combustion Engines Emission Standards for Manufacturers § 60.4203 How long must my engines meet the emission standards if I am a stationary CI internal combustion engine manufacturer? Engines manufactured by...

  17. Systems design and engineering : facilitating multidisciplinary development projects

    NARCIS (Netherlands)

    Bonnema, Gerrit Maarten; Veenvliet, Karel; Broenink, Johannes F.

    2016-01-01

    As its name implies, the aim of Systems Design and Engineering: Facilitating Multidisciplinary Development Projects is to help systems engineers develop the skills and thought processes needed to successfully develop and implement engineered systems. Such expertise typically does not come through

  18. Elementary Students' Acquisition of Academic Vocabulary Through Engineering Design

    Science.gov (United States)

    Kugelmass, Rachel

    This study examines how STEM (science, technology, engineering, and mathematics) inquiry-based learning through a hands-on engineering design can be beneficial in helping students acquire academic vocabulary. This research took place in a second grade dual- language classroom in a public, suburban elementary school. English language learners, students who speak Spanish at home, and native English speakers were evaluated in this study. Each day, students were presented with a general academic vocabulary focus word during an engineering design challenge. Vocabulary pre-tests and post-tests as well as observation field notes were used to evaluate the student's growth in reading and defining the focus academic vocabulary words. A quiz and KSB (knowledge and skill builder) packet were used to evaluate students' knowledge of science and math content and engineering design. The results of this study indicate that engineering design is an effective means for teaching academic vocabulary to students with varying levels of English proficiency.

  19. Expert System Approach For Generating And Evaluating Engine Design Alternatives

    Science.gov (United States)

    Shen, Stewart N. T.; Chew, Meng-Sang; Issa, Ghassan F.

    1989-03-01

    Artificial intelligence is becoming an increasingly important subject of study for computer scientists, engineering designers, as well as professionals in other fields. Even though AI technology is a relatively new discipline, many of its concepts have already found practical applications. Expert systems, in particular, have made significant contributions to technologies in such fields as business, medicine, engineering design, chemistry, and particle physics. This paper describes an expert system developed to aid the mechanical designer with the preliminary design of variable-stroke internal-combustion engines. The expert system accomplished its task by generating and evaluating a large number of design alternatives represented in the form of graphs. Through the application of structural and design rules directly to the graphs, optimal and near optimal preliminary design configurations of engines are deduced.

  20. Engineering design guidelines for nuclear criticality safety

    International Nuclear Information System (INIS)

    Waltz, W.R.

    1988-08-01

    This document provides general engineering design guidelines specific to nuclear criticality safety for a facility where the potential for a criticality accident exists. The guide is applicable to the design of new SRP/SRL facilities and to major modifications Of existing facilities. The document is intended an: A guide for persons actively engaged in the design process. A resource document for persons charged with design review for adequacy relative to criticality safety. A resource document for facility operating personnel. The guide defines six basic criticality safety design objectives and provides information to assist in accomplishing each objective. The guide in intended to supplement the design requirements relating to criticality safety contained in applicable Department of Energy (DOE) documents. The scope of the guide is limited to engineering design guidelines associated with criticality safety and does not include other areas of the design process, such as: criticality safety analytical methods and modeling, nor requirements for control of the design process

  1. Case-based reasoning support for engineering design

    Science.gov (United States)

    Lees, Brian; Hamza, Meer; Irgens, Chris

    2000-10-01

    The potential application of case-based reasoning (CBR) in design support is illustrated through examples drawn from research at the University of Paisley, demonstrating the suitability of CBR for different aspects of design, different problem areas, and different design goals. A quality advisory system has been developed for the early stages of mechanical engineering design, the aim of which is to provide quality advice in a variant design situation. In the domain of software engineering CBR has been applied to advise on which metrics are appropriate fora assessing the quality of the software currently under design. The system integrates CBR with concepts from quality function deployment (QFD) and incorporates a case library holding past software quality histories. CBR has been applied in support of conceptual design: to capture detailed design histories by monitoring designer actions, and thereby support design reuse through the evaluation of designs, through the provision of query, browsing and replay facilities. The resulting system is aimed to support the design of safety critical systems, by assisting in the construction of safety arguments, and cooperative design.

  2. Ideas of holistic engineering meet engineering work practices

    DEFF Research Database (Denmark)

    Buch, Anders

    2016-01-01

    This article critically reflects on the viability of the idea that reforming engineering education will result in more holistic engineering work practices. Drawing on an empirical study, the article aims to demonstrate that in order to change existing engineering work practices, it might...... be necessary to change engineers’ knowledge and skills; however, such changes are far from sufficient. Conditions and circumstances external to practitioners’ knowledge and skills are crucial if engineering work is to become more holistic. To illustrate this point, the article outlines an empirical study...... of a small team of professionals who engage in holistic engineering work practices in an engineering consultancy company. The work practices are investigated using a philosophical empirical method that inquires into the doings, sayings, and relatings of the practitioners. The study describes the practice...

  3. The Engineering Design Process: Conceptions Along the Learning-to-Teach Continuum

    Science.gov (United States)

    Iveland, Ashley

    In this study, I sought to identify differences in the views and understandings of engineering design among individuals along the learning-to-teach continuum. To do so, I conducted a comprehensive review of literature to determine the various aspects of engineering design described in the fields of professional engineering and engineering education. Additionally, I reviewed literature on the methods used in teaching engineering design at the secondary (grade 7-12) level - to describe the various models used in classrooms, even before the implementation of the Next Generation Science Standards (NGSS Lead States, 2013). Last, I defined four groups along the learning-to-teach continuum: prospective, preservice, and practicing teachers, as well as teacher educators. The context of this study centered around a California public university, including an internship program where undergraduates engaged with practicing mentor teachers in science and engineering teaching at local high schools, and a teacher education program where secondary science preservice teachers and the teacher educators who taught them participated. Interviews were conducted with all participants to gain insights into their views and understandings of engineering design. Prospective and preservice teachers were interviewed multiple times throughout the year and completed concept maps of the engineering design process multiple times as well; practicing teachers and teacher educators were interviewed once. Three levels of analyses were conducted. I identified 30 aspects of engineering discussed by participants. Through phenomenographic methods, I also constructed six conceptual categories for engineering design to organize those aspects most commonly discussed. These categories were combined to demonstrate a participant's view of engineering design (e.g., business focused, human centered, creative, etc.) as well as their complexity of understanding of engineering design overall (the more categories

  4. Biological Systems Thinking for Control Engineering Design

    Directory of Open Access Journals (Sweden)

    D. J. Murray-Smith

    2004-01-01

    Full Text Available Artificial neural networks and genetic algorithms are often quoted in discussions about the contribution of biological systems thinking to engineering design. This paper reviews work on the neuromuscular system, a field in which biological systems thinking could make specific contributions to the development and design of automatic control systems for mechatronics and robotics applications. The paper suggests some specific areas in which a better understanding of this biological control system could be expected to contribute to control engineering design methods in the future. Particular emphasis is given to the nonlinear nature of elements within the neuromuscular system and to processes of neural signal processing, sensing and system adaptivity. Aspects of the biological system that are of particular significance for engineering control systems include sensor fusion, sensor redundancy and parallelism, together with advanced forms of signal processing for adaptive and learning control. 

  5. Innovative design of ironing board based on Kansei Engineering and usability test

    Directory of Open Access Journals (Sweden)

    Zhafira Nadia

    2018-01-01

    Full Text Available Laundry business is popular service business in Indonesia that mostly involve muscle activity for lifting and ironing activity. It causes the worker get muscular fatigue and injury especially for ironing activity that is included in the static and monotonous activity. moreover, existed ironing board design in the market is not easy to be adjusted to standing or sitting position of workers. Hence, this paper aimed to design the innovative and adjustable ironing board to minimize the musculoskeletal complaint. The preliminary study is conducted by NBM questionnaires found that fatigue experienced mostly in the back, right upper arm, and calves. The product designed by Kansei engineering to satisfy consumer's feeling and assessed by USE questionnaire to fulfil consumer's usability. Orthogonal array and conjoint analysis were conducted to incorporate all attribute potentials in developing a new single concept design. Statistical analysis was also done to test the hypothesis. 80 respondents have participated in this study. The result of this study is an innovative design of ironing board which is valid to meet consumers' needs such as comfort, secure, attractive, sturdy, durable and multifunction and practical at 5% of the significant level.

  6. The engineering design evolution of IFMIF: From CDR to EDA phase

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Mario, E-mail: mario.perez@ifmif.org

    2015-10-15

    Highlights: • Brief description of International Fusion Materials Irradiation Facility (IFMIF), its background and scope its Engineering Design and Validation Activities (EVEDA) phase. • Description and justification of the main design evolutions from previous phases; and in particular from the baseline described in the “Comprehensive Design Report” (CDR). - Abstract: The International Fusion Materials Irradiation Facility (IFMIF), presently in its Engineering Design and Engineering Validation Activities (EVEDA) phase, started in 2007 under the framework of the Broader Approach (BA) Agreement between Japanese Government and EURATOM. The mandate assigned was to develop an integrated engineering design of IFMIF together with accompanying sub-projects to validate the major technological challenges that included the construction of either full scale prototypes or cleverly devised scaled down facilities, which are essential to reliably face the construction of IFMIF on schedule and cost. The Engineering Design Activities were accomplished on-schedule with the release of its “Intermediate Engineering Design Report (IIEDR)” in June 2013 compliant with our mandate. This paper highlights the design improvements implemented from the previous Conceptual Design Phase.

  7. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 4: Supplementary engineering data

    Science.gov (United States)

    1981-01-01

    The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.

  8. Integrating Engineering Design Challenges into Secondary STEM Education

    Science.gov (United States)

    Carr, Ronald L.; Strobel, Johannes

    2011-01-01

    Engineering is being currently taught in the full spectrum of the P-12 system, with an emphasis on design-oriented teaching (Brophy, Klein, Portsmore, & Rogers, 2008). Due to only a small amount of research on the learning of engineering design in elementary and middle school settings, the community of practice lacks the necessary knowledge of the…

  9. Introducing systems engineering to industrial design engineering students with hands-on experience

    NARCIS (Netherlands)

    Bonnema, Gerrit Maarten; Lutters-Weustink, Ilanit F.; van Houten, Frederikus J.A.M.; Selvaraj, H.; Muthukumar, V.

    2005-01-01

    The article presents an innovative educational project to introduce systems engineering to third year students in industrial design engineering at the University of Twente. In a short period the students are confronted with new technology, namely sensors and actuators. They have to apply this

  10. 40 CFR 1051.320 - What happens if one of my production-line vehicles or engines fails to meet emission standards?

    Science.gov (United States)

    2010-07-01

    ...-line vehicles or engines fails to meet emission standards? 1051.320 Section 1051.320 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Testing Production-Line Vehicles and Engines § 1051.320 What happens if one...

  11. Discursive Constructions of Design and Implications for Engineering Education

    DEFF Research Database (Denmark)

    Petersen, Rikke Premer

    Recognition of design discourses at play in professional practice is key when discussing ways to reintroduce designerly ways in engineering education. This paper outlines three design discourses discussed in literature and mirroring contemporary design practice: Viewing ‘design as art’ upholds...... on the discourses discussed, three key elements of design are highlighted: the materiality, the social, and the reflective sides of designing. All of these elements are represented in the issues of communication, which can be a central focus area when taking a designerly turn in engineering practice....

  12. A decision-making model for engineering designers

    DEFF Research Database (Denmark)

    Ahmed, S.; Hansen, Claus Thorp

    2002-01-01

    This paper describes research that combines the generic decision-making model of Hansen, together with design strategies employed by experienced engineering designers. The relationship between the six decision-making sub-activities and the eight design strategies are examined. By combining...

  13. Emotional Engineers : Toward Morally Responsible Design

    NARCIS (Netherlands)

    Roeser, S.

    2010-01-01

    Engineers are normally seen as the archetype of people who make decisions in a rational and quantitative way. However, technological design is not value neutral. The way a technology is designed determines its possibilities, which can, for better or for worse, have consequences for human wellbeing.

  14. Engineering aspects of the INTOR design

    International Nuclear Information System (INIS)

    Shannon, T.E.

    1981-01-01

    The INTOR engineering design has been strongly influenced by considerations for assembly and maintenance. A maintenance philosophy was established at the outset of the conceptual design to insure that the tokamak configuration would be developed to accommodate maintenance requirements. The main features of the INTOR design are summarized in this paper with primary emphasis on the impact of maintenance considerations

  15. Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering.

    Science.gov (United States)

    Denry, Isabelle; Kuhn, Liisa T

    2016-01-01

    Our goal is to review design strategies for the fabrication of calcium phosphate ceramic scaffolds (CPS), in light of their transient role in bone tissue engineering and associated requirements for effective bone regeneration. We examine the various design options available to meet mechanical and biological requirements of CPS and later focus on the importance of proper characterization of CPS in terms of architecture, mechanical properties and time-sensitive properties such as biodegradability. Finally, relationships between in vitro versus in vivo testing are addressed, with an attempt to highlight reliable performance predictors. A combinatory design strategy should be used with CPS, taking into consideration 3D architecture, adequate surface chemistry and topography, all of which are needed to promote bone formation. CPS represent the media of choice for delivery of osteogenic factors and anti-infectives. Non-osteoblast mediated mineral deposition can confound in vitro osteogenesis testing of CPS and therefore the expression of a variety of proteins or genes including collagen type I, bone sialoprotein and osteocalcin should be confirmed in addition to increased mineral content. CPS are a superior scaffold material for bone regeneration because they actively promote osteogenesis. Biodegradability of CPS via calcium and phosphate release represents a unique asset. Structural control of CPS at the macro, micro and nanoscale and their combination with cells and polymeric materials is likely to lead to significant developments in bone tissue engineering. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Fermilab HEPCloud Facility Decision Engine Design

    Energy Technology Data Exchange (ETDEWEB)

    Tiradani, Tiradani,Anthony [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Altunay, Mine [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Dagenhart, David [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kowalkowski, Jim [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Litvintsev, Dmitry [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lu, Qiming [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Mhashilkar, Parag [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Moibenko, Alexander [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Paterno, Marc [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Timm, Steven [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-05-23

    The Decision Engine is a critical component of the HEP Cloud Facility. It provides the functionality of resource scheduling for disparate resource providers, including those which may have a cost or a restricted allocation of cycles. Along with the architecture, design, and requirements for the Decision Engine, this document will provide the rationale and explanations for various design decisions. In some cases, requirements and interfaces for a limited subset of external services will be included in this document. This document is intended to be a high level design. The design represented in this document is not complete and does not break everything down in detail. The class structures and pseudo-code exist for example purposes to illustrate desired behaviors, and as such, should not be taken literally. The protocols and behaviors are the important items to take from this document. This project is still in prototyping mode so flaws and inconsistencies may exist and should be noted and treated as failures.

  17. Structure and Management of an Engineering Senior Design Course.

    Science.gov (United States)

    Tanaka, Martin L; Fischer, Kenneth J

    2016-07-01

    The design of products and processes is an important area in engineering. Students in engineering schools learn fundamental principles in their courses but often lack an opportunity to apply these methods to real-world problems until their senior year. This article describes important elements that should be incorporated into a senior capstone design course. It includes a description of the general principles used in engineering design and a discussion of why students often have difficulty with application and revert to trial and error methods. The structure of a properly designed capstone course is dissected and its individual components are evaluated. Major components include assessing resources, identifying projects, establishing teams, understanding requirements, developing conceptual designs, creating detailed designs, building prototypes, testing performance, and final presentations. In addition to the course design, team management and effective mentoring are critical to success. This article includes suggested guidelines and tips for effective design team leadership, attention to detail, investment of time, and managing project scope. Furthermore, the importance of understanding business culture, displaying professionalism, and considerations of different types of senior projects is discussed. Through a well-designed course and proper mentoring, students will learn to apply their engineering skills and gain basic business knowledge that will prepare them for entry-level positions in industry.

  18. Initial trade and design studies for the fusion engineering device

    International Nuclear Information System (INIS)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-06-01

    The Magnetic Fusion Energy Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. The Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), initiated a program of trade and design studies in October 1980 to support the selection of the FED concept. This document presents the results of these initial trade and design studies. Based on these results, a baseline configuration has been identified and the Design Center effort for the remainder of the fiscal year will be devoted to the development of a self-consistent FED design description

  19. Integrating ergonomics into engineering design: The role of objects

    DEFF Research Database (Denmark)

    Hall-Andersen, Lene Bjerg; Broberg, Ole

    2014-01-01

    The objective of this study was to explore the role of objects in integrating ergonomic knowledge in engineering design processes. An engineering design case was analyzed using the theoretical concepts of boundary objects and intermediary objects: Boundary objects facilitate collaboration between...

  20. Bioreactor Design for Tendon/Ligament Engineering

    OpenAIRE

    Wang, Tao; Gardiner, Bruce S.; Lin, Zhen; Rubenson, Jonas; Kirk, Thomas B.; Wang, Allan; Xu, Jiake; Smith, David W.; Lloyd, David G.; Zheng, Ming H.

    2012-01-01

    Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a s...

  1. Affordability Engineering: Bridging the Gap Between Design and Cost

    Science.gov (United States)

    Reeves, J. D.; DePasquale, Dominic; Lim, Evan

    2010-01-01

    Affordability is a commonly used term that takes on numerous meanings depending on the context used. Within conceptual design of complex systems, the term generally implies comparisons between expected costs and expected resources. This characterization is largely correct, but does not convey the many nuances and considerations that are frequently misunderstood and underappreciated. In the most fundamental sense, affordability and cost directly relate to engineering and programmatic decisions made throughout development programs. Systems engineering texts point out that there is a temporal aspect to this relationship, for decisions made earlier in a program dictate design implications much more so than those made during latter phases. This paper explores affordability engineering and its many sub-disciplines by discussing how it can be considered an additional engineering discipline to be balanced throughout the systems engineering and systems analysis processes. Example methods of multidisciplinary design analysis with affordability as a key driver will be discussed, as will example methods of data visualization, probabilistic analysis, and other ways of relating design decisions to affordability results.

  2. Multidimensional sustainability assessment of solar products : Educating engineers and designers

    NARCIS (Netherlands)

    Flipsen, S.F.J.; Bakker, C.A.; Verwaal, M.

    2015-01-01

    Since 2008 the faculty of Industrial Design Engineering at the TU Delft hosts the minor Sustainable Design Engineering. The minor has been highly useful as a platform to pilot new ways of teaching engineering for sustainable development. Instead of having students make life cycle assessments and

  3. Project Portal User-Centered Design and Engineering Report

    Science.gov (United States)

    2016-06-01

    TECHNICAL REPORT 3013 June 2016 Project Portal User-Centered Design and Engineering Report Deborah Gill-Hesselgrave Veronica Higgins Sarah...Design and Engineering Branch Under authority of Chris Raney, Head Command and Control Technology and Experiments Division iii EXECUTIVE...navy.mil  Christian Szatkowski christian.szatkowski@navy.mil  Roni Higgins roni.higgins@navy.mil  Jake Viraldo jacob.viraldo@navy.mil B

  4. WDM Systems and Networks Modeling, Simulation, Design and Engineering

    CERN Document Server

    Ellinas, Georgios; Roudas, Ioannis

    2012-01-01

    WDM Systems and Networks: Modeling, Simulation, Design and Engineering provides readers with the basic skills, concepts, and design techniques used to begin design and engineering of optical communication systems and networks at various layers. The latest semi-analytical system simulation techniques are applied to optical WDM systems and networks, and a review of the various current areas of optical communications is presented. Simulation is mixed with experimental verification and engineering to present the industry as well as state-of-the-art research. This contributed volume is divided into three parts, accommodating different readers interested in various types of networks and applications. The first part of the book presents modeling approaches and simulation tools mainly for the physical layer including transmission effects, devices, subsystems, and systems), whereas the second part features more engineering/design issues for various types of optical systems including ULH, access, and in-building system...

  5. 75 FR 10551 - Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues

    Science.gov (United States)

    2010-03-08

    ..., Telephone (202) 267-3168, Fax (202) 267-5075, or e-mail at [email protected] . SUPPLEMENTARY INFORMATION... participating by telephone, PLEASE CONTACT Ralen Gao by e-mail or phone for the teleconference call-in number... Committee Meeting on Transport Airplane and Engine Issues AGENCY: Federal Aviation Administration (FAA), DOT...

  6. 76 FR 60115 - Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues

    Science.gov (United States)

    2011-09-28

    ... (202) 267-5075, or e-mail at [email protected] . SUPPLEMENTARY INFORMATION: Pursuant to Section 10(a)(2... by October 12, 2011. For persons participating by telephone, please contact Ralen Gao by e-mail or... Committee Meeting on Transport Airplane and Engine Issues AGENCY: Federal Aviation Administration (FAA), DOT...

  7. Meeting to discuss laser cavity design for photon linear collider ...

    Indian Academy of Sciences (India)

    linear collider – Daresbury, UK, 10 January 2006. ALEXANDER JOHN FINCH ... On 10 January 2006, a meeting to discuss laser cavity design for the photon linear collider was held at the Daresbury .... important to continue making contact with people in fields outside the accelerator community. Few experts at this meeting ...

  8. Developing Elementary Math and Science Process Skills Through Engineering Design Instruction

    Science.gov (United States)

    Strong, Matthew G.

    This paper examines how elementary students can develop math and science process skills through an engineering design approach to instruction. The performance and development of individual process skills overall and by gender were also examined. The study, preceded by a pilot, took place in a grade four extracurricular engineering design program in a public, suburban school district. Students worked in pairs and small groups to design and construct airplane models from styrofoam, paper clips, and toothpicks. The development and performance of process skills were assessed through a student survey of learning gains, an engineering design packet rubric (student work), observation field notes, and focus group notes. The results indicate that students can significantly develop process skills, that female students may develop process skills through engineering design better than male students, and that engineering design is most helpful for developing the measuring, suggesting improvements, and observing process skills. The study suggests that a more regular engineering design program or curriculum could be beneficial for students' math and science abilities both in this school and for the elementary field as a whole.

  9. A methodology for creating ontologies for engineering design

    DEFF Research Database (Denmark)

    Ahmed, Saeema; Kim, S.; Wallace, K.M.

    2007-01-01

    This paper describes a six-stage methodology for developing ontologies for engineering design, together with the research methods and evaluation of each stage. The methodology focuses upon understanding a user's domain models through empirical research. A case study of an ontology for searching......, indexing, and retrieving engineering knowledge is described. The root concepts of the ontology were elicited from engineering designers. Relationships between concepts are extracted as the ontology is populated. The contribution of this research is a methodology to allow researchers. and industry to create...... ontologies for their particular purpose and a thesaurus for the terms within the ontology....

  10. Characterizing Distributed Concurrent Engineering Teams: A Descriptive Framework for Aerospace Concurrent Engineering Design Teams

    Science.gov (United States)

    Chattopadhyay, Debarati; Hihn, Jairus; Warfield, Keith

    2011-01-01

    As aerospace missions grow larger and more technically complex in the face of ever tighter budgets, it will become increasingly important to use concurrent engineering methods in the development of early conceptual designs because of their ability to facilitate rapid assessments and trades in a cost-efficient manner. To successfully accomplish these complex missions with limited funding, it is also essential to effectively leverage the strengths of individuals and teams across government, industry, academia, and international agencies by increased cooperation between organizations. As a result, the existing concurrent engineering teams will need to increasingly engage in distributed collaborative concurrent design. This paper is an extension of a recent white paper written by the Concurrent Engineering Working Group, which details the unique challenges of distributed collaborative concurrent engineering. This paper includes a short history of aerospace concurrent engineering, and defines the terms 'concurrent', 'collaborative' and 'distributed' in the context of aerospace concurrent engineering. In addition, a model for the levels of complexity of concurrent engineering teams is presented to provide a way to conceptualize information and data flow within these types of teams.

  11. Design the Cost Approach in Trade-Off's for Structural Components, Illustrated on the Baseline Selection of the Engine Thrust Frame of Ariane 5 ESC-B

    Science.gov (United States)

    Appolloni, L.; Juhls, A.; Rieck, U.

    2002-01-01

    Designing for value is one of the very actual upcoming methods for design optimization, which broke into the domain of aerospace engineering in the late 90's. In the frame of designing for value two main design philosophies exist: Design For Cost and Design To Cost. Design To Cost is the iterative redesign of a project until the content of the project meets a given budget. Designing For Cost is the conscious use of engineering process technology to reduce life cycle cost while satisfying, and hopefully exceeding, customer demands. The key to understanding cost, and hence to reducing cost, is the ability to measure cost accurately and to allocate it appropriately to products. Only then can intelligent decisions be made. Therefore the necessity of new methods as "Design For Value" or "Design For Competitiveness", set up with a generally multidisciplinary approach to find an optimized technical solution driven by many parameters, depending on the mission scenario and the customer/market needs. Very often three, but not more than five parametric drivers are sufficient. The more variable exist, the higher is in fact the risk to find just a sub-optimized local and not the global optimum, and the less robust is the found solution against change of input parameters. When the main parameters for optimization have been identified, the system engineer has to communicate them to all design engineers, who shall take care of these assessment variables during the entire design and decision process. The design process which has taken to the definition of the feasible structural concepts for the Engine Thrust Frame of the Ariane 5 Upper Cryogenic Stage ESC-B follows these most actual design philosophy methodologies, and combines a design for cost approach, to a design to cost optimization loop. Ariane 5 is the first member of a family of heavy-lift launchers. It aims to evolve into a family of launchers that responds to the space transportation challenges of the 21st century. New

  12. Concise Review: Organ Engineering: Design, Technology, and Integration.

    Science.gov (United States)

    Kaushik, Gaurav; Leijten, Jeroen; Khademhosseini, Ali

    2017-01-01

    Engineering complex tissues and whole organs has the potential to dramatically impact translational medicine in several avenues. Organ engineering is a discipline that integrates biological knowledge of embryological development, anatomy, physiology, and cellular interactions with enabling technologies including biocompatible biomaterials and biofabrication platforms such as three-dimensional bioprinting. When engineering complex tissues and organs, core design principles must be taken into account, such as the structure-function relationship, biochemical signaling, mechanics, gradients, and spatial constraints. Technological advances in biomaterials, biofabrication, and biomedical imaging allow for in vitro control of these factors to recreate in vivo phenomena. Finally, organ engineering emerges as an integration of biological design and technical rigor. An overall workflow for organ engineering and guiding technology to advance biology as well as a perspective on necessary future iterations in the field is discussed. Stem Cells 2017;35:51-60. © 2016 AlphaMed Press.

  13. Guidelines to design engineering education in the twenty-first century for supporting innovative product development

    Science.gov (United States)

    Violante, Maria Grazia; Vezzetti, Enrico

    2017-11-01

    In the twenty-first century, meeting our technological challenges demands educational excellence, a skilled populace that is ready for the critical challenges society faces. There is widespread consensus, however, that education systems are failing to adequately prepare all students with the essential twenty-first century knowledge and skills necessary to succeed in life, career, and citizenship. The purpose of this paper is to understand how twenty-first century knowledge and skills can be appropriately embedded in engineering education finalised to innovative product development by using additive manufacturing (AM). The study designs a learning model by which to achieve effective AM education to address the requirements of twenty-first century and to offer students the occasion to experiment with STEM (Science, technology, engineering, and mathematics) concepts. The study is conducted using the quality function deployment (QFD) methodology.

  14. Systems engineering for very large systems

    Science.gov (United States)

    Lewkowicz, Paul E.

    Very large integrated systems have always posed special problems for engineers. Whether they are power generation systems, computer networks or space vehicles, whenever there are multiple interfaces, complex technologies or just demanding customers, the challenges are unique. 'Systems engineering' has evolved as a discipline in order to meet these challenges by providing a structured, top-down design and development methodology for the engineer. This paper attempts to define the general class of problems requiring the complete systems engineering treatment and to show how systems engineering can be utilized to improve customer satisfaction and profit ability. Specifically, this work will focus on a design methodology for the largest of systems, not necessarily in terms of physical size, but in terms of complexity and interconnectivity.

  15. Structural design of Stirling engine with free pistons

    Science.gov (United States)

    Matusov, Jozef; Gavlas, Stanislav; Malcho, Milan

    2014-08-01

    Stirling engine is a device that converts thermal energy to mechanical work, which is mostly used to drive a generator of electricity. Advantage of Stirling engine is that it works with closed-cycle, where working medium is regularly cooled and heated, which acts on the working piston. This engine can be made in three modifications - alpha, beta, gamma. This paper discusses the design of the gamma Stirling engine with free pistons.

  16. Design of a high-performance rotary stratified-charge research aircraft engine

    Science.gov (United States)

    Jones, C.; Mount, R. E.

    1984-01-01

    The power section for an advanced rotary stratified-charge general aviation engine has been designed under contract to NASA. The single-rotor research engine of 40 cubic-inches displacement (RCI-40), now being procured for test initiation this summer, is targeted for 320 T.O. horse-power in a two-rotor production engine. The research engine is designed for operating on jet-fuel, gasoline or diesel fuel and will be used to explore applicable advanced technologies and to optimize high output performance variables. Design of major components of the engine is described in this paper.

  17. Applying the design-build-test paradigm in microbiome engineering.

    Science.gov (United States)

    Pham, Hoang Long; Ho, Chun Loong; Wong, Adison; Lee, Yung Seng; Chang, Matthew Wook

    2017-12-01

    The recently discovered roles of human microbiome in health and diseases have inspired research efforts across many disciplines to engineer microbiome for health benefits. In this review, we highlight recent progress in human microbiome research and how modifications to the microbiome could result in implications to human health. Furthermore, we discuss the application of a 'design-build-test' framework to expedite microbiome engineering efforts by reviewing current literature on three key aspects: design principles to engineer the human microbiome, methods to engineer microbiome with desired functions, and analytical techniques to examine complex microbiome samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. 76 FR 20051 - Advisory Committee for Computer and Information; Science and Engineering; Notice of Meeting

    Science.gov (United States)

    2011-04-11

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information; Science and... Committee for Computer and Information Science and Engineering--(1115). Date and Time: May 6, 2011 8:30 a.m... Meeting: Open. Contact Person: Carmen Whitson, Directorate for Computer and Information, Science and...

  19. 78 FR 64255 - Advisory Committee for Computer and Information Science and Engineering; Cancellation of Meeting

    Science.gov (United States)

    2013-10-28

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science and... National Science Foundation is issuing this notice to cancel the October 31 to November 1, 2013 Advisory Committee for Computer and Information Science and Engineering meeting. The public notice for this committee...

  20. Revisiting classical design in engineering from a perspective of frugality

    Directory of Open Access Journals (Sweden)

    Balkrishna C. Rao

    2017-05-01

    Full Text Available The conservative nature of design in engineering has typically unleashed products fabricated with generous amounts of raw materials. This is epitomized by the factor of safety whose values higher than unity suggests various uncertainties of design that are tackled through material padding. This effort proposes a new factor of safety called the factor of frugality that could be used in ecodesign and which addresses both rigors of the classical design process and quantification of savings in materials going into a product. An example of frugal shaft design together with some other cases has been presented to explain the working of the factor of frugality. Adoption of the frugality factor would entail a change in design philosophy whereby designers would constantly make avail of a rigorous design process coupled with material-saving schemes for realizing products that are benign to the environment. Such a change in the foundations of design would abet the stewardship of earth in avoiding planetary boundaries since engineering influences a significant proportion of human endeavors. Keywords: Safety engineering, Mechanical engineering

  1. Deep Underground Science and Engineering Laboratory - Preliminary Design Report

    CERN Document Server

    Lesko, Kevin T; Alonso, Jose; Bauer, Paul; Chan, Yuen-Dat; Chinowsky, William; Dangermond, Steve; Detwiler, Jason A; De Vries, Syd; DiGennaro, Richard; Exter, Elizabeth; Fernandez, Felix B; Freer, Elizabeth L; Gilchriese, Murdock G D; Goldschmidt, Azriel; Grammann, Ben; Griffing, William; Harlan, Bill; Haxton, Wick C; Headley, Michael; Heise, Jaret; Hladysz, Zbigniew; Jacobs, Dianna; Johnson, Michael; Kadel, Richard; Kaufman, Robert; King, Greg; Lanou, Robert; Lemut, Alberto; Ligeti, Zoltan; Marks, Steve; Martin, Ryan D; Matthesen, John; Matthew, Brendan; Matthews, Warren; McConnell, Randall; McElroy, William; Meyer, Deborah; Norris, Margaret; Plate, David; Robinson, Kem E; Roggenthen, William; Salve, Rohit; Sayler, Ben; Scheetz, John; Tarpinian, Jim; Taylor, David; Vardiman, David; Wheeler, Ron; Willhite, Joshua; Yeck, James

    2011-01-01

    The DUSEL Project has produced the Preliminary Design of the Deep Underground Science and Engineering Laboratory (DUSEL) at the rehabilitated former Homestake mine in South Dakota. The Facility design calls for, on the surface, two new buildings - one a visitor and education center, the other an experiment assembly hall - and multiple repurposed existing buildings. To support underground research activities, the design includes two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the design includes a Department of Energy-shepherded Large Cavity supporting the Long Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates one laboratory module and additional spaces for physics and Earth science efforts. With input from some 25 science and engineering collaborations, the Project has designed critical experimental space and infrastructure needs, including space for a suite of multi...

  2. High-Quality Learning Environments for Engineering Design: Using Tablet PCs and Guidelines from Research on How People Learn

    Directory of Open Access Journals (Sweden)

    Enrique Palou

    2012-04-01

    Full Text Available A team of several faculty members and graduate students at Universidad de las Amricas Puebla is improving engineering design teaching and learning by creating richer learning environments that promote an interactive classroom while integrating formative assessment into classroom practices by means of Tablet PCs and associated technologies. Learning environments that are knowledge-, learner-, community-, and assessment-centered as highlighted by the How People Learn framework, have been developed. To date, the redesign of the undergraduate course entitled Introduction to Engineering Design has signicantly (p<0.05 increased student participation; formative assessment and feedback are more common and rapid; and instructors are utilizing the information gained through real-time formative assessments to tailor instruction to meet student needs. Particularly important have been opportunities to make student thinking visible and to give them chances to revise, as well as opportunities for "what if" thinking.

  3. Fourteenth meeting of the ITER management advisory committee

    International Nuclear Information System (INIS)

    Yoshikawa, M.

    1998-01-01

    Following the Director's report on the progress made in the ITER Engineering Design Activities, the ITER Management Advisory Committee reviewed the Task Status Summary, Work Program and Task Agreements for EDA Extension, Joint Fund and a schedule of ITER meetings

  4. Requirements Engineering and Design Technology Report

    National Research Council Canada - National Science Library

    Ganska, Ralph

    1995-01-01

    This report reviews the STSC's recommendations for the selection and usage of software engineering products aimed at the requirements analysis and high-level design portions of the software lifecycle...

  5. Integration of Engineering Education by High School Teachers to Meet Standards in the Physics Classroom

    Science.gov (United States)

    Kersten, Jennifer Anna

    In recent years there has been increasing interest in engineering education at the K-12 level, which has resulted in states adopting engineering standards as a part of their academic science standards. From a national perspective, the basis for research into engineering education at the K-12 level is the belief that it is of benefit to student learning, including to "improve student learning and achievement in science and mathematics; increase awareness of engineering and the work of engineers; boost youth interest in pursuing engineering as a career; and increase the technological literacy of all students" (National Research Council, 2009a, p. 1). The above has led to a need to understand how teachers are currently implementing engineering education in their classrooms. High school physics teachers have a history of implementing engineering design projects in their classrooms, thus providing an appropriate setting to look for evidence of quality engineering education at the high school level. Understanding the characteristics of quality engineering integration can inform curricular and professional development efforts for teachers asked to implement engineering in their classrooms. Thus, the question that guided this study is: How, and to what extent, do physics teachers represent quality engineering in a physics unit focused on engineering? A case study research design was implemented for this project. Three high school physics teachers were participants in this study focused on the integration of engineering education into the physics classroom. The data collected included observations, interviews, and classroom documents that were analyzed using the Framework for Quality K-12 Engineering Education (Moore, Glancy et al., 2013). The results provided information about the areas of the K-12 engineering framework addressed during these engineering design projects, and detailed the quality of these lesson components. The results indicate that all of the design

  6. Facilitating an Elementary Engineering Design Process Module

    Science.gov (United States)

    Hill-Cunningham, P. Renee; Mott, Michael S.; Hunt, Anna-Blair

    2018-01-01

    STEM education in elementary school is guided by the understanding that engineering represents the application of science and math concepts to make life better for people. The Engineering Design Process (EDP) guides the application of creative solutions to problems. Helping teachers understand how to apply the EDP to create lessons develops a…

  7. Engineering Design EDUCATION: When, What, and HOW

    Science.gov (United States)

    Khalaf, Kinda; Balawi, Shadi; Hitt, George Wesley; Radaideh, Ahmad

    2013-01-01

    This paper presents an innovative, interdisciplinary, design-and-build course created to improve placement, content, and pedagogy for introductory engineering design education. Infused at the freshman level, the course aims to promote expert design thinking by using problem-based learning (PBL) as the mode of delivery. The course is structured to…

  8. Using a systems engineering process to develop engineered barrier system design concepts

    International Nuclear Information System (INIS)

    Jardine, L.J.; Short, D.W.

    1991-05-01

    The methodology used to develop conceptual designs of the engineered barrier system and waste packages for a geologic repository is based on an iterative systems engineering process. The process establishes a set of general mission requirements and then conducts detailed requirements analyses using functional analyses, system concept syntheses, and trade studies identifications to develop preliminary system concept descriptions. The feasible concept descriptions are ranked based on selection factors and criteria and a set of preferred concept descriptions is then selected for further development. For each of the selected concept descriptions, a specific set of requirements, including constraints, is written to provide design guidance for the next and more detailed phase of design. The process documents all relevant waste management system requirements so that the basis and source for the specific design requirements are traceable and clearly established. Successive iterations performed during design development help to insure that workable concepts are generated to satisfy the requirements. 4 refs., 2 figs

  9. Mechanical and materials engineering of modern structure and component design

    CERN Document Server

    Altenbach, Holm

    2015-01-01

    This book presents the latest findings on mechanical and materials engineering as applied to the design of modern engineering materials and components. The contributions cover the classical fields of mechanical, civil and materials engineering, as well as bioengineering and advanced materials processing and optimization. The materials and structures discussed can be categorized into modern steels, aluminium and titanium alloys, polymers/composite materials, biological and natural materials, material hybrids and modern nano-based materials. Analytical modelling, numerical simulation, state-of-the-art design tools and advanced experimental techniques are applied to characterize the materials’ performance and to design and optimize structures in different fields of engineering applications.

  10. 78 FR 79014 - Advisory Committee for Computer and Information Science and Engineering Notice of Meeting

    Science.gov (United States)

    2013-12-27

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science and...), the National Science Foundation announces the following meeting: NAME: Advisory Committee for Computer and Information Science and Engineering (1115) DATE/TIME: January 14, 2014, 3:00 p.m. to 5:00 p.m...

  11. 77 FR 24538 - Advisory Committee for Computer and Information Science And Engineering; Notice of Meeting

    Science.gov (United States)

    2012-04-24

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science And... amended), the National Science Foundation announces the following meeting: Name: Advisory Committee for Computer and Information Science and Engineering (1115). Date and Time: May 10, 2012 12 p.m.-5:30 p.m., May...

  12. 75 FR 19428 - Advisory Committee for Computer and Information Science and Engineering; Notice of Meeting

    Science.gov (United States)

    2010-04-14

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science and... amended), the National Science Foundation announces the following meeting: Name: Advisory Committee for Computer and Information Science and Engineering--(1115). Date and Time: May 7, 2010, 8:30 a.m.-5 p.m...

  13. An Arts-Based Instructional Model for Student Creativity in Engineering Design

    Directory of Open Access Journals (Sweden)

    Brian Laduca

    2017-02-01

    Full Text Available Over the past twenty years, nearly all job growth in the United States has emerged from new companies and organizations with assumedly innovative products, services, and practices. Yet, the nurturing of student creative thinking and problem solving is infrequent in engineering education. Inherent to developing these creativity skills and attributes is the need to be exposed to difference — in people and environment. Engineering education rarely offers such opportunities. Additionally, engineering students are rarely presented opportunities to develop designs responding to real human problems. This paper puts forth a new instructional model to address these needs by utilizing arts processes and practices as catalysts for both creativity development in students and transdisciplinary collaboration on problems addressing deep human needs. This model is premised on the substantiated role of the arts in developing creativity and growing understanding of the human condition. This art-based instructional model was piloted as exploratory pedagogical research during the summers of 2015 and 2016 as a partnership between the Arts Nexus (IAN and the School of Engineering at the University of Dayton. In each year, this program supported twelve student interns from engineering, business, science, the arts, and the humanities to develop innovative technologies and services meeting client needs. Student growth in creative problem-solving and transdisciplinary collaboration, as well as the success of the completed innovation technology prototype were assessed by the project mentors and participating students via survey evaluations and narrative responses. The assessment results revealed substantial student growth in student creativity and transdisciplinary collaboration and a remarkably strong evaluation of the success of the students’ innovations. Also realized for all students was a transformation in their perception of their place in the world as

  14. Numerical simulation for the design analysis of kinematic Stirling engines

    International Nuclear Information System (INIS)

    Araoz, Joseph A.; Salomon, Marianne; Alejo, Lucio; Fransson, Torsten H.

    2015-01-01

    Highlights: • A thermodynamic analysis for kinematic Stirling engines was presented. • The analysis integrated thermal, mechanical and thermodynamic interactions. • The analyses considered geometrical and operational parameters. • The results allowed to map the performance of the engine. • The analysis allow the design assessment of Stirling engines. - Abstract: The Stirling engine is a closed-cycle regenerative system that presents good theoretical properties. These include a high thermodynamic efficiency, low emissions levels thanks to a controlled external heat source, and multi-fuel capability among others. However, the performance of actual prototypes largely differs from the mentioned theoretical potential. Actual engine prototypes present low electrical power outputs and high energy losses. These are mainly attributed to the complex interaction between the different components of the engine, and the challenging heat transfer and fluid dynamics requirements. Furthermore, the integration of the engine into decentralized energy systems such as the Combined Heat and Power systems (CHP) entails additional complications. These has increased the need for engineering tools that could assess design improvements, considering a broader range of parameters that would influence the engine performance when integrated within overall systems. Following this trend, the current work aimed to implement an analysis that could integrate the thermodynamics, and the thermal and mechanical interactions that influence the performance of kinematic Stirling engines. In particular for their use in Combined Heat and Power systems. The mentioned analysis was applied for the study of an engine prototype that presented very low experimental performance. The numerical methodology was selected for the identification of possible causes that limited the performance. This analysis is based on a second order Stirling engine model that was previously developed and validated. The

  15. A Probabilistic Design Methodology for a Turboshaft Engine Overall Performance Analysis

    Directory of Open Access Journals (Sweden)

    Min Chen

    2014-05-01

    Full Text Available In reality, the cumulative effect of the many uncertainties in engine component performance may stack up to affect the engine overall performance. This paper aims to quantify the impact of uncertainty in engine component performance on the overall performance of a turboshaft engine based on Monte-Carlo probabilistic design method. A novel probabilistic model of turboshaft engine, consisting of a Monte-Carlo simulation generator, a traditional nonlinear turboshaft engine model, and a probability statistical model, was implemented to predict this impact. One of the fundamental results shown herein is that uncertainty in component performance has a significant impact on the engine overall performance prediction. This paper also shows that, taking into consideration the uncertainties in component performance, the turbine entry temperature and overall pressure ratio based on the probabilistic design method should increase by 0.76% and 8.33%, respectively, compared with the ones of deterministic design method. The comparison shows that the probabilistic approach provides a more credible and reliable way to assign the design space for a target engine overall performance.

  16. Student Interest in Engineering Design-Based Science

    Science.gov (United States)

    Selcen Guzey, S.; Moore, Tamara J.; Morse, Gillian

    2016-01-01

    Current reform efforts in science education around the world call on teachers to use integrated approaches to teach science. As a part of such reform efforts in the United States, engineering practices and engineering design have been identified in K-12 science education standards. However, there is relatively little is known about effective ways…

  17. Design, Manufacturing and Irradiation Behaviour of Fast Reactor Fuel. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2013-04-01

    Fast reactors are vital for ensuring the sustainability of nuclear energy in the long term. They offer vastly more efficient use of uranium resources and the ability to burn actinides, which are otherwise the long-lived component of high level nuclear waste. These reactors require development, qualification, testing and deployment of improved and innovative nuclear fuel and structural materials having very high radiation resistance, corrosion/erosion and other key operational properties. Several IAEA Member States have made efforts to advance the design and manufacture of technologies of fast reactor fuels, as well as to investigate their irradiation behaviour. Due to the acute shortage of fast neutron testing and post-irradiation examination facilities and the insufficient understanding of high dose radiation effects, there is a need for international exchange of knowledge and experience, generation of currently missing basic data, identification of relevant mechanisms of materials degradation and development of appropriate models. Considering the important role of nuclear fuels in fast reactor operation, the IAEA Technical Working Group on Fuel Performance and Technology (TWGFPT) proposed a Technical Meeting (TM) on 'Design, Manufacturing and Irradiation Behaviour of Fast Reactors Fuels', which was hosted by the Institute of Physics and Power Engineering (IPPE) in Obninsk, Russian Federation, from 30 May to 3 June 2011. The TM included a technical visit to the fuel production plant MSZ in Elektrostal. The purpose of the meeting was to provide a forum to share knowledge, practical experience and information on the improvement and innovation of fuels for fast reactors through scientific presentations and brainstorming discussions. The meeting brought together 34 specialists from national nuclear agencies, R and D and design institutes, fuel vendors and utilities from 10 countries. The presentations were structured into four sections: R and D Programmes on FR Fuel

  18. Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA) Users' Guide

    Science.gov (United States)

    Csank, Jeffrey T.; Zinnecker, Alicia M.

    2014-01-01

    The tool for turbine engine closed-loop transient analysis (TTECTrA) is a semi-automated control design tool for subsonic aircraft engine simulations. At a specific flight condition, TTECTrA produces a basic controller designed to meet user-defined goals and containing only the fundamental limiters that affect the transient performance of the engine. The purpose of this tool is to provide the user a preliminary estimate of the transient performance of an engine model without the need to design a full nonlinear controller.

  19. Taking Engineering Design out for a Spin

    Science.gov (United States)

    Crismond, David; Soobyiah, Mark; Cain, Ryan

    2013-01-01

    This article highlights what inquiry and design have in common, and what makes engineering design uniquely different from inquiry. A case study is presented that gives students practice in conducting fair-test experiments, in troubleshooting to learn how to make designs better, and in building science-based explanations for how things work. The…

  20. Rocket Engine Health Management: Early Definition of Critical Flight Measurements

    Science.gov (United States)

    Christenson, Rick L.; Nelson, Michael A.; Butas, John P.

    2003-01-01

    The NASA led Space Launch Initiative (SLI) program has established key requirements related to safety, reliability, launch availability and operations cost to be met by the next generation of reusable launch vehicles. Key to meeting these requirements will be an integrated vehicle health management ( M) system that includes sensors, harnesses, software, memory, and processors. Such a system must be integrated across all the vehicle subsystems and meet component, subsystem, and system requirements relative to fault detection, fault isolation, and false alarm rate. The purpose of this activity is to evolve techniques for defining critical flight engine system measurements-early within the definition of an engine health management system (EHMS). Two approaches, performance-based and failure mode-based, are integrated to provide a proposed set of measurements to be collected. This integrated approach is applied to MSFC s MC-1 engine. Early identification of measurements supports early identification of candidate sensor systems whose design and impacts to the engine components must be considered in engine design.

  1. Critical Literacy, Disciplinary Literacy: Reading the Engineering-Designed World

    Science.gov (United States)

    Wilson-Lopez, Amy; Strong, Kristin; Sias, Christina

    2017-01-01

    Globally, many people spend most of their time interacting with the products of engineering design as they wear clothes, drink clean water, use transportation systems, and more. Given the omnipresence of engineering design, whose material results are felt daily in people's lives, it seems especially important that students learn to recognize and…

  2. Software engineering design theory and practice

    CERN Document Server

    Otero, Carlos

    2012-01-01

    … intended for use as a textbook for an advanced course in software design. Each chapter ends with review questions and references. … provides an overview of the software development process, something that would not be out of line in a course on software engineering including such topics as software process, software management, balancing conflicting values of stakeholders, testing, quality, and ethics. The author has principally focused on software design though, extracting the design phase from the surrounding software development lifecycle. … Software design strategies are addressed

  3. [Participants-centered Design of Annual Meeting: From the Perspectives of Instructional Systems].

    Science.gov (United States)

    Suzuki, Katsuaki

    2018-01-01

     This paper examines the reform experience of the 10th Annual Meeting of the Japanese Society for Pharmaceutical Palliative Care and Sciences from Instructional Systems perspectives, to check whether it was effective, efficient, and appealing for participants. "Instructional Systems" has been a research area in educational technology for the past 50 years, and has also been applied to training and human resource development in healthcare domains. If an annual meeting is to be designed for participants' learning, then perspectives of Instructional Systems can be applied to interpret the effort of the reform. First, fill in the gaps of participants' knowledge, using before-and-after comparison. Design a conference to meet the needs of its participants by checking why they attend (expectations) and what they bring in (starting status). Second, design the conference as a process of innovation. The bigger the expected changes, the more carefully participants should be prepared to accommodate them. Third, follow plan-do-check-action cycles with data for confirming and revising the new ways of running the meeting. Plan to check "exportability" of the new ways, to assess whether it can be generalized to future meetings.

  4. Design of a micro-Wankel rotary engine for MEMS fabrication

    Science.gov (United States)

    Jiang, Kyle C.; Prewett, Philip D.; Ward, M. C. L.; Tian, Y.; Yang, H.

    2001-04-01

    This paper presents the design of a micro Wankel engine for deep etching micro fabrication. The micro engine design is part of a research program in progress to develop a micro actuator to supply torque for driving micro machines. To begin with, the research work concentrates on the micro Wankel engine powered by liquid CO2. Then, a Wankel internal combustion engines will be investigated. The Wankel engine is a planetary rotation engine. It is selected because of its largely 2D structure which is suitable for lithographic processes. The engine has been simplified and redesigned to suit the fabrication processes. In particular, the fuel inlet has been moved to the top cover of the housing from the side, and the outlet is made as a groove on the housing, so that the both parts can be etched. A synchronization valve is mounted on the engine to control the supply of CO2. One of advantages of the micro engines is their high energy density compared with batteries. A research study has been conducted in comparing energy densities of commonly used fuels. It shows that the energy densities of fuels for combustion engines are 10 - 30 times higher than that of batteries. The deigns of the micro Wankel engines have been tested for verification by finite element analysis, CAD assembly, and construction of a prototype, which proves the design is valid.

  5. Participatory ergonomics in industrial engineering projects: The case of a new cheese packaging line work system

    DEFF Research Database (Denmark)

    Souza da Conceição, Carolina; Broberg, Ole; Aldrich, Per

    2014-01-01

    The aim of this study is to explore and conceptualize the challenges that ergonomists meet when seeking to introduce PE methods into an industrial engineering design project in order to optimize the new work system.......The aim of this study is to explore and conceptualize the challenges that ergonomists meet when seeking to introduce PE methods into an industrial engineering design project in order to optimize the new work system....

  6. A Novel Evolutionary Engineering Design Approach for Mixed-Domain Systems

    DEFF Research Database (Denmark)

    Fan, Zhun; Hu, J.; Seo, K.

    2004-01-01

    This paper presents an approach to engineering design of mixed-domain dynamic systems. The approach aims at system-level design and has two key features: first, it generates engineering designs that satisfy predefined specifications in an automatic manner; second, it can design systems belonging ...... often encountered in evolutionary computation, a HFC (Hierarchical Fair Competition) model is adopted in this work. Examples of an analog filter design and a MEM filter design illustrate the application of the approach....

  7. Integrating Surface Modeling into the Engineering Design Graphics Curriculum

    Science.gov (United States)

    Hartman, Nathan W.

    2006-01-01

    It has been suggested there is a knowledge base that surrounds the use of 3D modeling within the engineering design process and correspondingly within engineering design graphics education. While solid modeling receives a great deal of attention and discussion relative to curriculum efforts, and rightly so, surface modeling is an equally viable 3D…

  8. Rapid product development: project engineering joined to design engineering in a concurrent engineering context

    Science.gov (United States)

    Bernard, Alain; Ouazzani, A.; Chambolle, F.; Bocquet, Jean Claud

    1997-01-01

    Software tools for designers are mainly based on geometry. Today, many industrial modelers have been rebuilt with C++, or any other object oriented language. This paper proposes to locate the research topics, in order to develop a functional link between project management tools, technical data management and product models. The 'design process' aspect will also be justified through the need of capitalizing designer intent and design history. This is related to different research works of Mechanical Engineering and Logistics Laboratory of Ecole Centrale Paris, and especially two PhD topics.

  9. Executive control systems in the engineering design environment

    Science.gov (United States)

    Hurst, P. W.; Pratt, T. W.

    1985-01-01

    Executive Control Systems (ECSs) are software structures for the unification of various engineering design application programs into comprehensive systems with a central user interface (uniform access) method and a data management facility. Attention is presently given to the most significant determinations of a research program conducted for 24 ECSs, used in government and industry engineering design environments to integrate CAD/CAE applications programs. Characterizations are given for the systems' major architectural components and the alternative design approaches considered in their development. Attention is given to ECS development prospects in the areas of interdisciplinary usage, standardization, knowledge utilization, and computer science technology transfer.

  10. Creating a Strong Foundation with Engineering Design Graphics.

    Science.gov (United States)

    Newcomer, Jeffrey L.; McKell, Eric K.; Raudebaugh, Robert A.; Kelley, David S.

    2001-01-01

    Describes the two-course engineering design graphics sequence on introductory design and graphics topics. The first course focuses on conceptual design and the development of visualization and sketching skills while the second one concentrates on detail design and parametric modeling. (Contains 28 references.) (Author/ASK)

  11. Eliciting and characterizing students' mental models within the context of engineering design

    Science.gov (United States)

    Dankenbring, Chelsey

    Recently, science education reform documents have called for the incorporation of engineering principles and practices into the K-12 science standards and curriculum. One way this has been done is through the use of engineering design tasks as a way for students to apply their scientific understandings to real-world problems. However, minimal studies have documented students' conceptions within the context of engineering design. Thus, the first chapter of this thesis outlines the steps taken to develop a draw-and-explain item that elicited students' mental models regarding the cause of the four seasons after finishing an engineering design task. Students' mental models regarding the reason for the seasons are also described. The second chapter characterizes students' conceptions regarding sun-Earth relationships, specifically the amount of daylight hours throughout the year, for students who completed either an engineering design task or more traditional learning activities. Results from these studies indicate that draw-and-explain items are an effective way of obtaining students' mental models and that students harbor a variety of alternate conceptions on astronomy related concepts within various learning contexts. Implications from this study include the need for further research regarding how engineering design is used in the classroom and how engineering design facilitates science learning. Also, professional development that allows in-service teachers to gain experience teaching engineering design is needed, as are teacher preparation programs that expose pre-service teachers to engineering design.

  12. Research on reform plan of civil engineering adult education graduation design

    Science.gov (United States)

    Su, Zhibin; Sun, Shengnan; Cui, Shicai

    2017-12-01

    As for civil engineering adult education graduation design, reform program is put forward combined with our school. The main points of reform include the following aspects. New pattern of graduation design which is consisted of basic training of engineering design, technical application and engineering innovation training is formed. Integration model of graduation design and employment is carried out. Multiple professional guidance graduation design pattern is put forward. Subject of graduation design is chosen based on the school actual circumstance. A “three stage” quality monitoring system is established. Performance evaluation pattern that concludes two oral examinations of the dissertation is strictly carried out.

  13. Elementary students' engagement in failure-prone engineering design tasks

    Science.gov (United States)

    Andrews, Chelsea Joy

    Although engineering education has been practiced at the undergraduate level for over a century, only fairly recently has the field broadened to include the elementary level; the pre-college division of the American Society of Engineering Education was established in 2003. As a result, while recent education standards require engineering in elementary schools, current studies are still filling in basic research on how best to design and implement elementary engineering activities. One area in need of investigation is how students engage with physical failure in design tasks. In this dissertation, I explore how upper elementary students engage in failure-prone engineering design tasks in an out-of-school environment. In a series of three empirical case studies, I look closely at how students evaluate failed tests and decide on changes to their design constructions, how their reasoning evolves as they repeatedly encounter physical failure, and how students and facilitators co-construct testing norms where repetitive failure is manageable. I also briefly investigate how students' engagement differs in a task that features near-immediate success. By closely examining student groups' discourse and their interactions with their design constructions, I found that these students: are able to engage in iteration and see failure-as-feedback with minimal externally-imposed structure; seem to be designing in a more sophisticated manner, attending to multiple causal factors, after experiencing repetitive failure; and are able to manage the stress and frustration of repetitive failure, provided the co-constructed testing norms of the workshop environment are supportive of failure management. These results have both pedagogical implications, in terms of how to create and facilitate design tasks, and methodological implications--namely, I highlight the particular insights afforded by a case study approach for analyzing engagement in design tasks.

  14. Implementation of knowledge-based engineering methodology in hydraulic generator design

    Directory of Open Access Journals (Sweden)

    Wei Guo

    2015-05-01

    Full Text Available Hydraulic generator design companies are always being exhorted to become more competitive by reducing the lead time and costs for their products for survival. Knowledge-based engineering technology is a rapidly developing technology with competitive advantage for design application to reduce time and cost in product development. This article addresses the structure of the hydraulic generator design system based on the knowledge-based engineering technology in detail. The system operates by creating a unified knowledge base to store the scattered knowledge among the whole life of the design process, which was contained in the expert’s brain and technical literature. It helps designers to make appropriate decisions by supplying necessary information at the right time through query and inference engine to represent the knowledge within the knowledge-based engineering application framework. It also integrates the analysis tools into one platform to help achieve global optimum solutions. Finally, an example of turbine-type selection was given to illustrate the operation process and prove its validity.

  15. Integrating chemical engineering fundamentals in the capstone process design project

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Woodley, John; Johnsson, Jan Erik

    2010-01-01

    Reaction Engineering. In order to incorporate reactor design into process design in a meaningful way, the teachers of the respective courses need to collaborate (Standard 9 – Enhancement of Faculty CDIO skills). The students also see that different components of the chemical engineering curriculum relate......All B.Eng. courses offered at the Technical University of Denmark (DTU) must now follow CDIO standards. The final “capstone” course in the B.Eng. education is Process Design, which for many years has been typical of chemical engineering curricula worldwide. The course at DTU typically has about 30...... of the CDIO standards – especially standard 3 – Integrated Curriculum - means that the course projects must draw on competences provided in other subjects which the students are taking in parallel with Process Design – specifically Process Control and Reaction Engineering. In each semester of the B...

  16. The Use of Executive Control Processes in Engineering Design by Engineering Students and Professional Engineers

    Science.gov (United States)

    Dixon, Raymond A.; Johnson, Scott D.

    2012-01-01

    A cognitive construct that is important when solving engineering design problems is executive control process, or metacognition. It is a central feature of human consciousness that enables one "to be aware of, monitor, and control mental processes." The framework for this study was conceptualized by integrating the model for creative design, which…

  17. Computer Design Technology of the Small Thrust Rocket Engines Using CAE / CAD Systems

    Science.gov (United States)

    Ryzhkov, V.; Lapshin, E.

    2018-01-01

    The paper presents an algorithm for designing liquid small thrust rocket engine, the process of which consists of five aggregated stages with feedback. Three stages of the algorithm provide engineering support for design, and two stages - the actual engine design. A distinctive feature of the proposed approach is a deep study of the main technical solutions at the stage of engineering analysis and interaction with the created knowledge (data) base, which accelerates the process and provides enhanced design quality. The using multifunctional graphic package Siemens NX allows to obtain the final product -rocket engine and a set of design documentation in a fairly short time; the engine design does not require a long experimental development.

  18. Mechanical, Permeability, and Degradation Properties of 3D Designed Poly(1,8 Octanediol-co-Citrate)(POC) Scaffolds for Soft Tissue Engineering

    Science.gov (United States)

    Jeong, Claire G.; Hollister, Scott J.

    2015-01-01

    Poly(1,8-octanediol-co-citric acid) (POC) is a synthetic biodegradable elastomer that can be processed into 3D scaffolds for tissue engineering. We investigated the effect of designed porosity on the mechanical properties, permeability and degradation profiles of the POC scaffolds. For mechanical properties, scaffold compressive data was fit to a 1D nonlinear elastic model and solid tensile data was fit to a Neohookean incompressible nonlinear elastic model. Chondrocytes were seeded on scaffolds to assess the biocompatibility of POC. Increased porosity was associated with increased degradation rate, increased permeability, and decreased mechanical stiffness which also became less nonlinear. Scaffold characterization in this paper will provide design guidance for POC scaffolds to meet the mechanical and biological parameters needed for engineering soft tissues such as cartilage. PMID:20091910

  19. Engine design optimization for running on ethanol with low emissions

    Energy Technology Data Exchange (ETDEWEB)

    Gjirja, S [Chalmers Univ. of Technology, Gothenburg (Sweden). Dept. of Thermo- and Fluid Dynamics

    1996-05-01

    The aim of this project was to optimize the Volvo AH10A245 engine design parameters for ethanol fuel with Beraid (Trade mark of the ignition improver manufactured by the Akzo Nobel Surface Chemistry AB). The method used was engine testing with variation of design, performance, and other functional parameters, which affect the engine thermodynamics, and exhaust gas composition. The first design parameter, which was tested and optimized was the compression ratio, which was optimized at the ratio of 23:1. In order to prevail the fuel spray impingement, which might affect the unburned or partially burned emissions (CO), the combustion chamber was redesigned to a straight-side wall bowl in piston. Furthermore, the injector position was optimized by means of lifting or descending it few millimeters. The best emission levels was achieved with the injector lift of 1.00 mm. The inlet air temperature was optimized for lower emissions by removing the intercooler thermostat. Injector nozzles with different cross section areas of holes were tested, and the 6 holes injector nozzles with smaller cross sectional area, compared with base nozzles, were selected. The engine performance was maintained for lower engine rated speed 2000 (instead of 2200 rpm for conventional engine) and lower intermediate speed 1250 (instead of 1320 rpm for conventional engine). Such engine performance optimization was followed by the improved specific fuel consumption, and lower emissions compared with conventional speeds. The backpressure governor, desperately needed during the first phase of engine design optimization was, finally avoided. It can only be used as in the conventional diesel engine. 7 refs, 26 figs, 18 tabs, 7 appendices

  20. Initial Validation of a Technical Writing Rubric for Engineering Design

    Directory of Open Access Journals (Sweden)

    Cheryl Bodnar

    2018-02-01

    Full Text Available Engineering design serves as the capstone experience of most undergraduate engineering programs. One of the key elements of the engineering design process is the compilation of results obtained into a technical report that can be shared and distributed to interested stakeholders including industry, faculty members and other relevant parties. In an effort to expand the tools available for assessment of engineering design technical reports, this study performed an initial validation of a previously developed Technical Writing rubric. The rubric was evaluated for its reliability to measure the intended construct, inter-rater reliability and external validity in comparison to an existing generalized written communication rubric. It was found that the rubric was reliable with Cronbach’s alpha for all dimensions between 0.817 and 0.976. The inter-rater reliability for the overall instrument was also found to be excellent at 0.85. Finally, it was observed that there were no statistically significant differences observed between the measurements obtained on the Technical Writing rubric in comparison to the more generalized Written Communication Value rubric. This demonstrates that although specific to engineering design environments the Technical Writing rubric was able to measure key constructs associated with written communication practice. This rubric can now serve as one additional tool for assessment of communication skills within engineering capstone design experiences.

  1. Design Methodology of Camshaft Driven Charge Valves for Pneumatic Engine Starts

    Directory of Open Access Journals (Sweden)

    Moser Michael M.

    2015-01-01

    Full Text Available Idling losses constitute a significant amount of the fuel consumption of internal combustion engines. Therefore, shutting down the engine during idling phases can improve its overall efficiency. For driver acceptance a fast restart of the engine must be guaranteed. A fast engine start can be performed using a powerful electric starter and an appropriate battery which are found in hybrid electric vehicles, for example. However, these devices involve additional cost and weight. An alternative method is to use a tank with pressurized air that can be injected directly into the cylinders to start the engine pneumatically. In this paper, pneumatic engine starts using camshaft driven charge valves are discussed. A general methodology for an air-optimal charge valve design is presented which can deal with various requirements. The proposed design methodology is based on a process model representing pneumatic engine operation. A design example for a two-cylinder engine is shown, and the resulting optimized pneumatic start is experimentally verified on a test bench engine. The engine’s idling speed of 1200 rpm can be reached within 350 ms for an initial pressure in the air tank of 10 bar. A detailed system analysis highlights the characteristics of the optimal design found.

  2. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering.

    Science.gov (United States)

    He, Fei; Murabito, Ettore; Westerhoff, Hans V

    2016-04-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased production flux, however, often compromises that robustness. In this contribution, we review and investigate how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed by systems and control engineering. While trade-offs between production optimality and cellular robustness have already been studied diagnostically and statically, the dynamics also matter. Integration of the dynamic design aspects of control engineering with the more diagnostic aspects of metabolic, hierarchical control and regulation analysis is leading to the new, conceptual and operational framework required for the design of robust and productive dynamic pathways. © 2016 The Author(s).

  3. Embedding object-oriented design in system engineering

    NARCIS (Netherlands)

    Wieringa, Roelf J.; Kilov, H.; Rumpe, B.; Simmonds, I.

    1999-01-01

    The Unified Modeling Language (UML) is a collection of techniques intended to document design decisions about software. This contrasts with systems engineering approaches such as for example Statemate and the Yourdon Systems Method (YSM), in which the design of an entire system consisting of

  4. 78 FR 57672 - Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues

    Science.gov (United States)

    2013-09-19

    ... U.S.C. app. 2), notice is given of an ARAC meeting to be held October 2, 2013. The agenda for the... meeting. Issued in Washington, DC on September 13, 2013. Lirio Liu, Designated Federal Officer. [FR Doc...

  5. Senior Design in Agricultural Engineering--Progress and Pitfalls.

    Science.gov (United States)

    Holmes, R. G.; Rohrbach, R. P.

    1979-01-01

    Describes a specific senior design course and its objectives. Explains the basic deficiencies and problems for design education in agricultural engineering. Also stresses the effect the project advisor has on students' attitudes toward design and the applications of the course. (SMB)

  6. 40 CFR 1048.615 - What are the provisions for exempting engines designed for lawn and garden applications?

    Science.gov (United States)

    2010-07-01

    ... certificate of conformity showing that it meets emission standards for Class II engines under 40 CFR part 90... requirements and restrictions of 40 CFR part 90 or 1054 apply to anyone manufacturing these engines, anyone manufacturing equipment that uses these engines, and all other persons in the same manner as if these engines...

  7. Protein design in systems metabolic engineering for industrial strain development.

    Science.gov (United States)

    Chen, Zhen; Zeng, An-Ping

    2013-05-01

    Accelerating the process of industrial bacterial host strain development, aimed at increasing productivity, generating new bio-products or utilizing alternative feedstocks, requires the integration of complementary approaches to manipulate cellular metabolism and regulatory networks. Systems metabolic engineering extends the concept of classical metabolic engineering to the systems level by incorporating the techniques used in systems biology and synthetic biology, and offers a framework for the development of the next generation of industrial strains. As one of the most useful tools of systems metabolic engineering, protein design allows us to design and optimize cellular metabolism at a molecular level. Here, we review the current strategies of protein design for engineering cellular synthetic pathways, metabolic control systems and signaling pathways, and highlight the challenges of this subfield within the context of systems metabolic engineering. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Protein engineering for metabolic engineering: current and next-generation tools

    Science.gov (United States)

    Marcheschi, Ryan J.; Gronenberg, Luisa S.; Liao, James C.

    2014-01-01

    Protein engineering in the context of metabolic engineering is increasingly important to the field of industrial biotechnology. As the demand for biologically-produced food, fuels, chemicals, food additives, and pharmaceuticals continues to grow, the ability to design and modify proteins to accomplish new functions will be required to meet the high productivity demands for the metabolism of engineered organisms. This article reviews advances of selecting, modeling, and engineering proteins to improve or alter their activity. Some of the methods have only recently been developed for general use and are just beginning to find greater application in the metabolic engineering community. We also discuss methods of generating random and targeted diversity in proteins to generate mutant libraries for analysis. Recent uses of these techniques to alter cofactor use, produce non-natural amino acids, alcohols, and carboxylic acids, and alter organism phenotypes are presented and discussed as examples of the successful engineering of proteins for metabolic engineering purposes. PMID:23589443

  9. System Design and Engineering, lubricating multidisciplinary development projects

    NARCIS (Netherlands)

    Bonnema, Gerrit Maarten; Veenvliet, Karel; Broenink, Johannes F.

    This text book introduces systems engineering for designing systems in multidisciplinary projects. First an overview of the systems engineering process is given. Several systems thinking tracks are presented, to think about the system in a number of ways, its context, its user, its functionality,

  10. Designing adaptive intensive interventions using methods from engineering.

    Science.gov (United States)

    Lagoa, Constantino M; Bekiroglu, Korkut; Lanza, Stephanie T; Murphy, Susan A

    2014-10-01

    Adaptive intensive interventions are introduced, and new methods from the field of control engineering for use in their design are illustrated. A detailed step-by-step explanation of how control engineering methods can be used with intensive longitudinal data to design an adaptive intensive intervention is provided. The methods are evaluated via simulation. Simulation results illustrate how the designed adaptive intensive intervention can result in improved outcomes with less treatment by providing treatment only when it is needed. Furthermore, the methods are robust to model misspecification as well as the influence of unobserved causes. These new methods can be used to design adaptive interventions that are effective yet reduce participant burden. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  11. Engineering features of the INTOR conceptual design

    International Nuclear Information System (INIS)

    Shannon, T.E.

    1981-01-01

    The INTOR engineering design has been strongly influenced by considerations for assembly and maintenance. A maintenance philosophy was established at the outset of the conceptual design to insure that the tokamak configuration would be developed to accommodate maintenance requirements. The main features of the INTOR design are summarized in this paper with primary emphasis on the impact of maintenance considerations

  12. The Engineering Design Process: Conceptions along the Learning-To-Teach Continuum

    Science.gov (United States)

    Iveland, Ashley

    2017-01-01

    In this study, I sought to identify differences in the views and understandings of engineering design among individuals along the learning-to-teach continuum. To do so, I conducted a comprehensive review of literature to determine the various aspects of engineering design described in the fields of professional engineering and engineering…

  13. Sharing best practices in teaching biomedical engineering design.

    Science.gov (United States)

    Allen, R H; Acharya, S; Jancuk, C; Shoukas, A A

    2013-09-01

    In an effort to share best practices in undergraduate engineering design education, we describe the origin, evolution and the current status of the undergraduate biomedical engineering design team program at Johns Hopkins University. Specifically, we describe the program and judge the quality of the pedagogy by relating it to sponsor feedback, project outcomes, external recognition and student satisfaction. The general pedagogic practices, some of which are unique to Hopkins, that have worked best include: (1) having a hierarchical team structure, selecting team leaders the Spring semester prior to the academic year, and empowering them to develop and manage their teams, (2) incorporating a longitudinal component that incudes freshmen as part of the team, (3) having each team choose from among pre-screened clinical problems, (4) developing relationships and fostering medical faculty, industry and government to allow students access to engineers, clinicians and clinical environments as needed, (5) providing didactic sessions on topics related to requirements for the next presentation, (6) employing judges from engineering, medicine, industry and government to evaluate designs and provide constructive criticisms approximately once every 3-4 weeks and (7) requiring students to test the efficacy of their designs. Institutional support and resources are crucial for the design program to flourish. Most importantly, our willingness and flexibility to change the program each year based on feedback from students, sponsors, outcomes and judges provides a mechanism for us to test new approaches and continue or modify those that work well, and eliminate those that did not.

  14. High School Student Modeling in the Engineering Design Process

    Science.gov (United States)

    Mentzer, Nathan; Huffman, Tanner; Thayer, Hilde

    2014-01-01

    A diverse group of 20 high school students from four states in the US were individually provided with an engineering design challenge. Students chosen were in capstone engineering courses and had taken multiple engineering courses. As students considered the problem and developed a solution, observational data were recorded and artifacts…

  15. Building a Framework for Engineering Design Experiences in STEM: A Synthesis

    Science.gov (United States)

    Denson, Cameron D.

    2011-01-01

    Since the inception of the National Center for Engineering and Technology Education in 2004, educators and researchers have struggled to identify the necessary components of a "good" engineering design challenge for high school students. In reading and analyzing the position papers on engineering design many themes emerged that may begin to form a…

  16. Quality assurance in design: policy adopted by Vickers Barrow Engineering Works

    International Nuclear Information System (INIS)

    Aubrey, J.H.

    1976-01-01

    The quality assurance system operated by the Vickers Barrow Engineering Works is described, with special reference to the design of the reactor shield and above core structure for the first commercial fast reactor. Section headings are: introduction; what is quality assurance of design; attitude of designer; design discipline; customers attitude; Engineering Company system; future application of Design Quality Assurance Record system. (U.K.)

  17. Waste package/engineered barrier system design concepts for the direct disposal of spent fuel in the potential United States' repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Stahl, D.; Harrison, D.J.

    1993-01-01

    The goal of the US Department of Energy's (DOE) Yucca Mountain Site Characterization Project (YMP) waste package development program is to design a waste package and associated engineered barrier system (EBS) that meets the applicable regulatory requirements for safe disposal of spent nuclear fuel and solidified high-level waste (HLW) in a geologic repository. Attainment of this goal relies on a multi-barrier approach, the unsaturated nature of the Yucca Mountain site, consideration of technical alternatives, and sufficient resolution of technical and regulatory uncertainties. To accomplish this, an iterative system engineering approach will be used. The NWPA of 1982 limits the content of the first US repository to 70,000 metric tons of heavy metal (MTHM). The DOE Mission Plan describes the implementation of the provisions of the NWPA for the waste management system. The Draft 1988 approach will involve selecting candidate designs, evaluating them against performance requirements, and then selecting one or two preferred designs for further detailed evaluation and final design. The reference design of the waste package described in the YMP Site Characterization Plan is a thin-walled, vertical borehole-emplaced waste package with an air gap between the package and the rock wall. The reference design appeared to meet the design requirement. However, the degree of uncertainty was large. This uncertainty led to considering several more-robust design concepts during the Advanced Conceptual Design phase of the program that include small, drift-emplaced packages and higher capacity, drift-emplaced packages, both partially and totally self-shielded. Metallic as well as ceramic materials are being considered

  18. Creativity from Constraints in Engineering Design

    DEFF Research Database (Denmark)

    Onarheim, Balder

    2012-01-01

    This paper investigates the role of constraints in limiting and enhancing creativity in engineering design. Based on a review of literature relating constraints to creativity, the paper presents a longitudinal participatory study from Coloplast A/S, a major international producer of disposable...... and ownership of formal constraints played a crucial role in defining their influence on creativity – along with the tacit constraints held by the designers. The designers were found to be highly constraint focused, and four main creative strategies for constraint manipulation were observed: blackboxing...

  19. Computer-aided design for metabolic engineering.

    Science.gov (United States)

    Fernández-Castané, Alfred; Fehér, Tamás; Carbonell, Pablo; Pauthenier, Cyrille; Faulon, Jean-Loup

    2014-12-20

    The development and application of biotechnology-based strategies has had a great socio-economical impact and is likely to play a crucial role in the foundation of more sustainable and efficient industrial processes. Within biotechnology, metabolic engineering aims at the directed improvement of cellular properties, often with the goal of synthesizing a target chemical compound. The use of computer-aided design (CAD) tools, along with the continuously emerging advanced genetic engineering techniques have allowed metabolic engineering to broaden and streamline the process of heterologous compound-production. In this work, we review the CAD tools available for metabolic engineering with an emphasis, on retrosynthesis methodologies. Recent advances in genetic engineering strategies for pathway implementation and optimization are also reviewed as well as a range of bionalytical tools to validate in silico predictions. A case study applying retrosynthesis is presented as an experimental verification of the output from Retropath, the first complete automated computational pipeline applicable to metabolic engineering. Applying this CAD pipeline, together with genetic reassembly and optimization of culture conditions led to improved production of the plant flavonoid pinocembrin. Coupling CAD tools with advanced genetic engineering strategies and bioprocess optimization is crucial for enhanced product yields and will be of great value for the development of non-natural products through sustainable biotechnological processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A Web Centric Architecture for Deploying Multi-Disciplinary Engineering Design Processes

    Science.gov (United States)

    Woyak, Scott; Kim, Hongman; Mullins, James; Sobieszczanski-Sobieski, Jaroslaw

    2004-01-01

    There are continuous needs for engineering organizations to improve their design process. Current state of the art techniques use computational simulations to predict design performance, and optimize it through advanced design methods. These tools have been used mostly by individual engineers. This paper presents an architecture for achieving results at an organization level beyond individual level. The next set of gains in process improvement will come from improving the effective use of computers and software within a whole organization, not just for an individual. The architecture takes advantage of state of the art capabilities to produce a Web based system to carry engineering design into the future. To illustrate deployment of the architecture, a case study for implementing advanced multidisciplinary design optimization processes such as Bi-Level Integrated System Synthesis is discussed. Another example for rolling-out a design process for Design for Six Sigma is also described. Each example explains how an organization can effectively infuse engineering practice with new design methods and retain the knowledge over time.

  1. Embodied Interaction Design in Engineering Education using Asus Xtion Pro

    DEFF Research Database (Denmark)

    Majgaard, Gunver

    2013-01-01

    How does a design of emerging embodied technologies, such as Asus Xtion Pro, enrich the HCI learning processes in Engineering Education? The fifth semester engineering students used the motion sensing input device, Asus Xtion Pro (similar to Microsoft’s Kinect), for the design of an embodied...

  2. Entrepreneurship and response strategies to challenges in engineering and design education

    DEFF Research Database (Denmark)

    Jørgensen, Ulrik; Pineda, Andres Felipe Valderrama

    2012-01-01

    Entrepreneurship is one of the contemporary expectations to engineers and their training at engineering schools. But what is entrepreneurship? We propose three different conceptualizations of entrepreneurship in engineering and design programs. They are: (1) the technology-driven promotion response...... centered in technological development; (2) the business selection response strategy centered in business skills (which should be additional to the technical skills); and (3) the design intervention response strategy focused on a network approach to technology, business and society. These conceptualizations...... are response strategies from engineering communities, professors and institutions to perceived challenges. We argue that all engineering educators deal in one way or another with the three response strategies when approaching issues of curricular design, academicreform and the international accreditation...

  3. Motivation for Creativity in Architectural Design and Engineering Design Students: Implications for Design Education

    Science.gov (United States)

    Casakin, Hernan; Kreitler, Shulamith

    2010-01-01

    The investigation reported here dealt with the study of motivation for creativity. The goals were to assess motivation for creativity in architectural design and engineering design students based on the Cognitive Orientation theory which defines motivation as a function of a set of belief types, themes, and groupings identified as relevant for the…

  4. Actuation and system design and evaluation OMS engine shutoff valve, Volume 1. [space shuttles

    Science.gov (United States)

    Dunn, V. B.

    1975-01-01

    A technology program was conducted to identify and verify the optimum valve and actuation system concept for the Space Shuttle Orbit Maneuvering System engine. Of major importance to the valve and actuation system selection was the ten-year, 100-mission, 10,000-cycle life requirement, while maintaining high reliability, low leakage, and low weight. Valve and actuation system concepts were comparatively evaluated against past valve failure reports and potential failure modes due to the shuttle mission profile to aid in the selection of the most optimum concept for design, manufacture and verification testing. Two valve concepts were considered during the preliminary design stage; i.e., the moving seat and lifting ball. Two actuation systems were manufactured and tested. Test results demonstrate the viability of a lifting ball concept as well as the applicability of an ac motor actuation system to best meet the requirements of the shuttle mission.

  5. Translating DWPF design criteria into an engineered facility design

    International Nuclear Information System (INIS)

    Kemp, J.B.

    1986-01-01

    The Defense Waste Processing Facility (DWPF) takes radioactive defense waste sludge and the radioactive nuclides, cesium and strontium, from the salt solution, and incorporates them in borosilicate glass in stainless steel canisters, for subsequent disposal in a deep geologic repository. The facility was designed by Bechtel National, Inc. under a subcontract from E.I. DuPont de Nemurs and Co., the prime contractor for the Department of Energy, for the design, construction and commissioning of the plant. The design criteria were specified by the DuPont Company, based upon their extensive experience as designer, and operator since the early 1950's, of the existing Savannah River Plant facilities. Some of the design criteria imposed unusual or new requirements on the detailed design of the facilities. This paper describes some of these criteria, encompassing several engineering disciplines, and discusses the solutions and designs which were developed for the DWPF

  6. Implementation of Effective Capstone Projects in Undergraduate Manufacturing Design Engineering Program

    Science.gov (United States)

    Viswanathan, Shekar

    2017-01-01

    Final program projects (capstone course) in manufacturing design engineering technology at National University are intensive experiences in critical thinking and analysis, designed to broaden students' perspectives and provide an opportunity for integration of coursework in the area of manufacturing design engineering. This paper focuses on three…

  7. Children Designing & Engineering: Contextual Learning Units in Primary Design and Technology

    Science.gov (United States)

    Hutchinson, Patricia

    2002-01-01

    The Children Designing & Engineering (CD&E) Project at the College of New Jersey is a collaborative effort of the College's Center for Design and Technology and the New Jersey Chamber of Commerce. The Project, funded by the National Science Foundation (NSF), has been charged to develop instructional materials for grades K-5. The twelve…

  8. Design methodology and projects for space engineering

    Science.gov (United States)

    Nichols, S.; Kleespies, H.; Wood, K.; Crawford, R.

    1993-01-01

    NASA/USRA is an ongoing sponsor of space design projects in the senior design course of the Mechanical Engineering Department at The University of Texas at Austin. This paper describes the UT senior design sequence, consisting of a design methodology course and a capstone design course. The philosophical basis of this sequence is briefly summarized. A history of the Department's activities in the Advanced Design Program is then presented. The paper concludes with a description of the projects completed during the 1991-92 academic year and the ongoing projects for the Fall 1992 semester.

  9. Integrating Innovation Skills in an Introductory Engineering Design-Build Course

    Science.gov (United States)

    Liebenberg, Leon; Mathews, Edward Henry

    2012-01-01

    Modern engineering curricula have started to emphasize design, mostly in the form of design-build experiences. Apart from instilling important problem-solving skills, such pedagogical frameworks address the critical social skill aspects of engineering education due to their team-based, project-based nature. However, it is required of the…

  10. Underwater striling engine design with modified one-dimensional model

    Directory of Open Access Journals (Sweden)

    Daijin Li

    2015-05-01

    Full Text Available Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA. The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.

  11. 78 FR 50138 - Aviation Rulemaking Advisory Committee; Meeting

    Science.gov (United States)

    2013-08-16

    ... Act (5 U.S.C. App. 2), we are giving notice of a meeting of the ARAC taking place on September 19...) b. Flight Controls Harmonization Working Group (Transport Airplane and Engine Subcommittee [TAE]) c... Washington, DC, on August 13, 2013. Lirio Liu, Designated Federal Officer, Aviation Rulemaking Advisory...

  12. Creative engineering design assessment background, directions, manual, scoring guide and uses

    CERN Document Server

    Charyton, Christine

    2014-01-01

    The Creative Engineering Design Assessment or CEDA is a newly developed tool to assess creativity specific to engineering design which is vital for innovation. The revised CEDA assesses usefulness in addition to originality.  Both originality and usefulness are key constructs in creativity but are primarily essential and emphasized ever more in engineering design.  Since the preliminary research was presented to the National Science Foundation, further reliability and validity has been developed and established. The CEDA is different from other general creativity measures as it demonstrates discriminant validity with the Creative Personality Scale, Creative Temperament Scale, and the Cognitive Risk Tolerance Scale, and has demonstrated convergent validity with the Purdue Creativity Test and the Purdue Spatial Visualization Test- Rotations. It focuses on engineering specific measures, measuring engineering creativity and spatial skills. The aim of this book is to disseminate the CEDA tool for use in engin...

  13. Towards Requirements in Systems Engineering for Aerospace IVHM Design

    Science.gov (United States)

    Saxena, Abhinav; Roychoudhury, Indranil; Lin, Wei; Goebel, Kai

    2013-01-01

    Health management (HM) technologies have been employed for safety critical system for decades, but a coherent systematic process to integrate HM into the system design is not yet clear. Consequently, in most cases, health management resorts to be an after-thought or 'band-aid' solution. Moreover, limited guidance exists for carrying out systems engineering (SE) on the subject of writing requirements for designs with integrated vehicle health management (IVHM). It is well accepted that requirements are key to developing a successful IVHM system right from the concept stage to development, verification, utilization, and support. However, writing requirements for systems with IVHM capability have unique challenges that require the designers to look beyond their own domains and consider the constraints and specifications of other interlinked systems. In this paper we look at various stages in the SE process and identify activities specific to IVHM design and development. More importantly, several relevant questions are posed that system engineers must address at various design and development stages. Addressing these questions should provide some guidance to systems engineers towards writing IVHM related requirements to ensure that appropriate IVHM functions are built into the system design.

  14. Design Approaches to Myocardial and Vascular Tissue Engineering.

    Science.gov (United States)

    Akintewe, Olukemi O; Roberts, Erin G; Rim, Nae-Gyune; Ferguson, Michael A H; Wong, Joyce Y

    2017-06-21

    Engineered tissues represent an increasingly promising therapeutic approach for correcting structural defects and promoting tissue regeneration in cardiovascular diseases. One of the challenges associated with this approach has been the necessity for the replacement tissue to promote sufficient vascularization to maintain functionality after implantation. This review highlights a number of promising prevascularization design approaches for introducing vasculature into engineered tissues. Although we focus on encouraging blood vessel formation within myocardial implants, we also discuss techniques developed for other tissues that could eventually become relevant to engineered cardiac tissues. Because the ultimate solution to engineered tissue vascularization will require collaboration between wide-ranging disciplines such as developmental biology, tissue engineering, and computational modeling, we explore contributions from each field.

  15. Teacher Challenges to Implement Engineering Design in Secondary Technology Education

    Science.gov (United States)

    Kelley, Todd R.; Wicklein, Robert C.

    2009-01-01

    This descriptive study examined the current status of technology education teacher practices with respect to engineering design. This article is the third article in a three-part series presenting the results of this study. The first article in the series titled "Examination of Engineering Design Curriculum Content" highlighted the research…

  16. Effects of Engineering Design-Based Science on Elementary School Science Students' Engineering Identity Development across Gender and Grade

    Science.gov (United States)

    Capobianco, Brenda M.; Yu, Ji H.; French, Brian F.

    2015-04-01

    The integration of engineering concepts and practices into elementary science education has become an emerging concern for science educators and practitioners, alike. Moreover, how children, specifically preadolescents (grades 1-5), engage in engineering design-based learning activities may help science educators and researchers learn more about children's earliest identification with engineering. The purpose of this study was to examine the extent to which engineering identity differed among preadolescents across gender and grade, when exposing students to engineering design-based science learning activities. Five hundred fifty preadolescent participants completed the Engineering Identity Development Scale (EIDS), a recently developed measure with validity evidence that characterizes children's conceptions of engineering and potential career aspirations. Data analyses of variance among four factors (i.e., gender, grade, and group) indicated that elementary school students who engaged in the engineering design-based science learning activities demonstrated greater improvements on the EIDS subscales compared to those in the comparison group. Specifically, students in the lower grade levels showed substantial increases, while students in the higher grade levels showed decreases. Girls, regardless of grade level and participation in the engineering learning activities, showed higher scores in the academic subscale compared to boys. These findings suggest that the integration of engineering practices in the science classroom as early as grade one shows potential in fostering and sustaining student interest, participation, and self-concept in engineering and science.

  17. An Industrial Case Study: Identification of Competencies of Design Engineers

    DEFF Research Database (Denmark)

    Ahmed, Saeema

    2007-01-01

    identified and the importance of these for design engineers in industry was investigated. In addition, the number of years of relevant experience required to become an expert in these types of knowledge was investigated. Knowledge related to the process was perceived as more important to those related......This paper describes the findings from an empirical study carried out with engineers in senior roles within a large company manufacturing complex products. This research aimed to identify the types of knowledge that are important for design engineers. Twenty-four knowledge categories were...... to the product. However, the number of years to become an expert in process knowledge was found to be lower than for product knowledge, despite process knowledge being perceived as more important. The findings of this research contribute to the education and training of design engineers....

  18. Internal combustion engines a detailed introduction to the thermodynamics of spark and compression ignition engines, their design and development

    CERN Document Server

    Benson, Rowland S

    1979-01-01

    Internal Combustion of Engines: A Detailed Introduction to the Thermodynamics of Spark and Compression Ignition Engines, Their Design and Development focuses on the design, development, and operations of spark and compression ignition engines. The book first describes internal combustion engines, including rotary, compression, and indirect or spark ignition engines. The publication then discusses basic thermodynamics and gas dynamics. Topics include first and second laws of thermodynamics; internal energy and enthalpy diagrams; gas mixtures and homocentric flow; and state equation. The text ta

  19. Jacobs Engineering Group Inc. receives architectural and engineering design contract from Stanford Linear Accelerator Centre

    CERN Multimedia

    2004-01-01

    "Jacobs Engineering Group Inc. announced that a subsidiary company won a contract from Stanford Linear Accelerator Center (SLAC), to provide architectural and engineering design services for the Linac Coherent Light Source (LCLS) conventional facilities" (1/2 page)

  20. Cumulative abstracts of Cryogenic Technology Section proceedings of the Meeting on Engineering and Technology in Basic Research 1982-2003

    International Nuclear Information System (INIS)

    Ikeda, Hiroshi

    2005-01-01

    The Cryogenic Technology Section in the Meeting on Engineering and Technology in Basic Research had been held by Institute of Molecular Science, Plasma Research Center and KEK since 1976. The abstracts of papers and reports read in the meeting on engineering and technology in basic research from 1982 to 2003 are classified by five parts. The first part includes 22 papers on automation system; the second part contains 17 papers on cryostat production; the third part 31 papers on peripheral device; the forth 23 papers on production of cryogenic device and the fifth 18 papers on repair and management of cryogenic device. Further information is able to be obtained by each homepage. (S.Y.)

  1. Engineering Design Graphics: Into the 21st Century

    Science.gov (United States)

    Harris, La Verne Abe; Meyers, Frederick

    2007-01-01

    Graphical plans for construction of machinery and architecture have evolved over the last 6,000 years beginning from hieroglyphics to drawings on printable media, from the "Golden Age" of engineering graphics to the innovation of computer graphics and prototyping. The evolution of engineering design graphics as a profession has also evolved. Years…

  2. Disciplinary Literacies in an Engineering Club: Exploring Productive Communication and the Engineering Design Process

    Science.gov (United States)

    Shanahan, Lynn E.; McVee, Mary B.; Slivestri, Katarina N.; Haq, Kate

    2016-01-01

    This conceptual article addresses the question: What are the disciplinary literacy practices surrounding the Engineering Design Process (EDP) at the elementary level? Recent attention has focused on developing science, technology, engineering, and math (STEM) skills for U.S. students. In the United States, the Next Generation Science Standards and…

  3. Design and fabrication of a meso-scale stirling engine and combustor.

    Energy Technology Data Exchange (ETDEWEB)

    Echekki, Tarek (Sandia National Laboratories, Livermore, CA); Haroldsen, Brent L. (Sandia National Laboratories, Livermore, CA); Krafcik, Karen L. (Sandia National Laboratories, Livermore, CA); Morales, Alfredo Martin (Sandia National Laboratories, Livermore, CA); Mills, Bernice E. (Sandia National Laboratories, Livermore, CA); Liu, Shiling (Sandia National Laboratories, Livermore, CA); Lee, Jeremiah C. (Sandia National Laboratories, Livermore, CA); Karpetis, Adionos N. (Sandia National Laboratories, Livermore, CA); Chen, Jacqueline H. (Sandia National Laboratories, Livermore, CA); Ceremuga, Joseph T. (Sandia National Laboratories, Livermore, CA); Raber, Thomas N. (Sandia National Laboratories, Livermore, CA); Hekmuuaty, Michelle A. (Sandia National Laboratories, Livermore, CA)

    2005-05-01

    Power sources capable of supplying tens of watts are needed for a wide variety of applications including portable electronics, sensors, micro aerial vehicles, and mini-robotics systems. The utility of these devices is often limited by the energy and power density capabilities of batteries. A small combustion engine using liquid hydrocarbon fuel could potentially increase both power and energy density by an order of magnitude or more. This report describes initial development work on a meso-scale external combustion engine based on the Stirling cycle. Although other engine designs perform better at macro-scales, we believe the Stirling engine cycle is better suited to small-scale applications. The ideal Stirling cycle requires efficient heat transfer. Consequently, unlike other thermodynamic cycles, the high heat transfer rates that are inherent with miniature devices are an advantage for the Stirling cycle. Furthermore, since the Stirling engine uses external combustion, the combustor and engine can be scaled and optimized semi-independently. Continuous combustion minimizes issues with flame initiation and propagation. It also allows consideration of a variety of techniques to promote combustion that would be difficult in a miniature internal combustion engine. The project included design and fabrication of both the engine and the combustor. Two engine designs were developed. The first used a cylindrical piston design fabricated with conventional machining processes. The second design, based on the Wankel rotor geometry, was fabricated by through-mold electroforming of nickel in SU8 and LIGA micromolds. These technologies provided the requisite precision and tight tolerances needed for efficient micro-engine operation. Electroformed nickel is ideal for micro-engine applications because of its high strength and ductility. A rotary geometry was chosen because its planar geometry was more compatible with the fabrication process. SU8 lithography provided rapid

  4. Building a Framework for Engineering Design Experiences in High School

    Science.gov (United States)

    Denson, Cameron D.; Lammi, Matthew

    2014-01-01

    In this article, Denson and Lammi put forth a conceptual framework that will help promote the successful infusion of engineering design experiences into high school settings. When considering a conceptual framework of engineering design in high school settings, it is important to consider the complex issue at hand. For the purposes of this…

  5. Integration, Authenticity, and Relevancy in College Science through Engineering Design

    Science.gov (United States)

    Turner, Ken L., Jr.; Hoffman, Adam R.

    2018-01-01

    Engineering design is an ideal perspective for engaging students in college science classes. An engineering design problem-solving framework was used to create a general chemistry lab activity focused on an important environmental issue--dead zones. Dead zones impact over 400 locations around the world and are a result of nutrient pollution, one…

  6. A synchronous distributed cloud-based virtual reality meeting system for architectural and urban design

    Directory of Open Access Journals (Sweden)

    Lei Sun

    2014-12-01

    Full Text Available In the spatial design fields such as architectural design and urban design, a consensus-building process among a variety of stakeholders like project executors, architects, residents, users, and general citizens is required. New technological developments such as cloud computing and Virtual Design Studios (VDS enable the creation of virtual meeting systems. This paper proposes an approach towards a synchronous distributed design meeting system. In this paper, in addition to sharing a 3D virtual space for a synchronous distributed type design meeting, we developed a prototype system that enables participants to sketch or make annotations and have discussions as well as add viewpoints to them. We applied these functions to evaluate an architectural design and urban landscape examination. In conclusion, the proposed method was evaluated as being effective and feasible. Yet, it shows a few shortcomings including the fact that simultaneous operation is limited to one client, and more arbitrary shapes should be supported in future versions of the application.

  7. Product Life Design: Notes for course 41627

    DEFF Research Database (Denmark)

    McAloone, Timothy Charles; Andreasen, Mogens Myrup

    2003-01-01

    - and ecological specifications, life cycle-oriented quality, whole life costs. - Product life systems, "the meeting", relational properties, the role of the human operator. - Modelling of the product and the product life cycle, computer modelling. - The score model, Integrated Product Development, Life Cycle...... Engineering, Concurrent Engineering. - The importance of the product concept, explicit life phase concepts. - Modelling of meetings, "universal virtues", simulation. - Product modelling, Product Data Management, life cycle databases, design history, documentation. - The structure and the content of the DFX......The course in product life design is designed to give an understanding of the phenomena of life cycle and product life thinking, the role of product design in fitting to product life systems and thus achieving sound product life perspectives. The course aims at developing an ability in the student...

  8. Design Fixation and Cooperative Learning in Elementary Engineering Design Project: A Case Study

    Directory of Open Access Journals (Sweden)

    Yi Luo

    2015-09-01

    Full Text Available This paper presents a case study examining 3rd, 4th and 5th graders’ design fixation and cooperative learning in an engineering design project. A mixed methods instrument, the Cooperative Learning Observation Protocol (CLOP, was adapted to record frequency and class observation on cooperative learning engagement through detailed field notes. Students’ design journals and reflections were also analyzed for an inductive qualitative analysis. The findings indicate three major themes of design fixation: 1 fixation on common features of things; 2 fixation on popular teenage culture; 3 fixation on the first design idea. In the cooperative learning process of elementary engineering design project, although pupils had demonstrated some abilities to solve concrete problems in a logical fashion, the participants encountered a number of obstacles in the group. Dominance, social loafing, and other problems occurring in the group process might have offset certain benefits of cooperative learning. Implications of the findings are also discussed.

  9. Design fixation and cooperative learning in elementary engineering design project: A case study

    Directory of Open Access Journals (Sweden)

    Yi Luo

    2015-09-01

    Full Text Available This paper presents a case study examining 3rd, 4th and 5th graders’ design fixation and cooperative learning in an engineering design project. A mixed methods instrument, the Cooperative Learning Observation Protocol (CLOP, was adapted to record frequency and class observation on cooperative learning engagement through detailed field notes. Students’ design journals and reflections were also analyzed for an inductive qualitative analysis. The findings indicate three major themes of design fixation: 1 fixation on common features of things; 2 fixation on popular teenage culture; 3 fixation on the first design idea. In the cooperative learning process of elementary engineering design project, although pupils had demonstrated some abilities to solve concrete problems in a logical fashion, the participants encountered a number of obstacles in the group. Dominance, social loafing, and other problems occurring in the group process might have offset certain benefits of cooperative learning. Implications of the findings are also discussed.

  10. Solar parabolic dish Stirling engine system design, simulation, and thermal analysis

    International Nuclear Information System (INIS)

    Hafez, A.Z.; Soliman, Ahmed; El-Metwally, K.A.; Ismail, I.M.

    2016-01-01

    Highlights: • Modeling and simulation for different parabolic dish Stirling engine designs using Matlab®. • The effect of solar dish design features and factors had been taken. • Estimation of output power from the solar dish using Matlab®. • The present analysis provides a theoretical guidance for designing and operating solar parabolic dish system. - Abstract: Modeling and simulation for different parabolic dish Stirling engine designs have been carried out using Matlab®. The effect of solar dish design features and factors such as material of the reflector concentrators, the shape of the reflector concentrators and the receiver, solar radiation at the concentrator, diameter of the parabolic dish concentrator, sizing the aperture area of concentrator, focal Length of the parabolic dish, the focal point diameter, sizing the aperture area of receiver, geometric concentration ratio, and rim angle have been studied. The study provides a theoretical guidance for designing and operating solar parabolic dish Stirling engines system. At Zewail city of Science and Technology, Egypt, for a 10 kW Stirling engine; The maximum solar dish Stirling engine output power estimation is 9707 W at 12:00 PM where the maximum beam solar radiation applied in solar dish concentrator is 990 W/m"2 at 12:00 PM. The performance of engine can be improved by increasing the precision of the engine parts and the heat source efficiency. The engine performance could be further increased if a better receiver working fluid is used. We can conclude that where the best time for heating the fluid and fasting the processing, the time required to heat the receiver to reach the minimum temperature for operating the Solar-powered Stirling engine for different heat transfer fluids; this will lead to more economic solar dish systems. Power output of the solar dish system is one of the most important targets in the design that show effectiveness of the system, and this has achieved when we take

  11. Design and Implementation of a Virtual Calculation Centre (VCC for Engineering Students

    Directory of Open Access Journals (Sweden)

    Alaeddine Mokri

    2010-02-01

    Full Text Available Most of the academic institutions in all over the world provide their attendees with databases where courses and other materials could be uploaded, downloaded and checked by the faculty and students. Those materials are mostly PDF files, MS Word files, MS power point presentations or downloadable computer programs. Even though those databases are very beneficial, they need to be improved to meet the students’ needs, especially in engineering faculties where students may need thermo-physical properties of some substances, charts, diagrams, conversion factors and so forth. In addition, many students see it cumbersome downloading and installing a computer program that they do not need often in their studies. As an attempt to satisfy the academic community needs in the faculty of Engineering in Abou Bekr Belkaid University (Tlemcen, Algeria, we had to devise some Web technologies and techniques to design an interactive virtual space wherein many engineering-related Web applications are accessible on-line. Students and professors can access on-line to properties of many substances, convert physical quantities from and into a variety of units, exploit computer programs on-line without installing them, generate tables and charts, and also, they can use diagrams on-line by means of the mouse. The set of those applications is called a Virtual Calculation Center. This paper goes through the different services that could be implemented in a Virtual Calculation Center, and describes the techniques and technologies used to build those applications.

  12. Gas Turbine Engine Control Design Using Fuzzy Logic and Neural Networks

    Directory of Open Access Journals (Sweden)

    M. Bazazzadeh

    2011-01-01

    Full Text Available This paper presents a successful approach in designing a Fuzzy Logic Controller (FLC for a specific Jet Engine. At first, a suitable mathematical model for the jet engine is presented by the aid of SIMULINK. Then by applying different reasonable fuel flow functions via the engine model, some important engine-transient operation parameters (such as thrust, compressor surge margin, turbine inlet temperature, etc. are obtained. These parameters provide a precious database, which train a neural network. At the second step, by designing and training a feedforward multilayer perceptron neural network according to this available database; a number of different reasonable fuel flow functions for various engine acceleration operations are determined. These functions are used to define the desired fuzzy fuel functions. Indeed, the neural networks are used as an effective method to define the optimum fuzzy fuel functions. At the next step, we propose a FLC by using the engine simulation model and the neural network results. The proposed control scheme is proved by computer simulation using the designed engine model. The simulation results of engine model with FLC illustrate that the proposed controller achieves the desired performance and stability.

  13. The Design and Semi-Physical Simulation Test of Fault-Tolerant Controller for Aero Engine

    Science.gov (United States)

    Liu, Yuan; Zhang, Xin; Zhang, Tianhong

    2017-11-01

    A new fault-tolerant control method for aero engine is proposed, which can accurately diagnose the sensor fault by Kalman filter banks and reconstruct the signal by real-time on-board adaptive model combing with a simplified real-time model and an improved Kalman filter. In order to verify the feasibility of the method proposed, a semi-physical simulation experiment has been carried out. Besides the real I/O interfaces, controller hardware and the virtual plant model, semi-physical simulation system also contains real fuel system. Compared with the hardware-in-the-loop (HIL) simulation, semi-physical simulation system has a higher degree of confidence. In order to meet the needs of semi-physical simulation, a rapid prototyping controller with fault-tolerant control ability based on NI CompactRIO platform is designed and verified on the semi-physical simulation test platform. The result shows that the controller can realize the aero engine control safely and reliably with little influence on controller performance in the event of fault on sensor.

  14. Technology Transfer Challenges: A Case Study of User-Centered Design in NASA's Systems Engineering Culture

    Science.gov (United States)

    Quick, Jason

    2009-01-01

    The Upper Stage (US) section of the National Aeronautics and Space Administration's (NASA) Ares I rocket will require internal access platforms for maintenance tasks performed by humans inside the vehicle. Tasks will occur during expensive critical path operations at Kennedy Space Center (KSC) including vehicle stacking and launch preparation activities. Platforms must be translated through a small human access hatch, installed in an enclosed worksite environment, support the weight of ground operators and be removed before flight - and their design must minimize additional vehicle mass at attachment points. This paper describes the application of a user-centered conceptual design process and the unique challenges encountered within NASA's systems engineering culture focused on requirements and "heritage hardware". The NASA design team at Marshall Space Flight Center (MSFC) initiated the user-centered design process by studying heritage internal access kits and proposing new design concepts during brainstorming sessions. Simultaneously, they partnered with the Technology Transfer/Innovative Partnerships Program to research inflatable structures and dynamic scaffolding solutions that could enable ground operator access. While this creative, technology-oriented exploration was encouraged by upper management, some design stakeholders consistently opposed ideas utilizing novel, untested equipment. Subsequent collaboration with an engineering consulting firm improved the technical credibility of several options, however, there was continued resistance from team members focused on meeting system requirements with pre-certified hardware. After a six-month idea-generating phase, an intensive six-week effort produced viable design concepts that justified additional vehicle mass while optimizing the human factors of platform installation and use. Although these selected final concepts closely resemble heritage internal access platforms, challenges from the application of the

  15. Fuel efficiency of conventional design tractors diesel engines in relation to new design

    Directory of Open Access Journals (Sweden)

    Jevtić Jeremija

    2006-01-01

    Full Text Available Total consumption of all types of energies is rather high nowadays with constant tendency of increasing. Transport section is one of the highest consumers of energy obtained from fossil fuels. It is absolutely clear that the reduction of energy consumption and the protection of environment - exhaust emission reduction, i. e. cleaner air, will be one of the main tasks of automotive industry in the first decades of the 21st century. In spite of its superiority over the petrol engine in respect of the fuel consumption, a diesel engine "suffers" from the increased exhaust emission, particles and NOx first of all and also from the noise and vibrations. The paper gives a review of fuel efficiency of conventional design tractors diesel engines in relation to new design. .

  16. The participation of Industry in the ITER engineering design activities

    International Nuclear Information System (INIS)

    Bogusch, E.

    2005-01-01

    Since the beginning of the ITER Engineering Design Activities in 1992 the participation of industry in the European contribution to the ITER project has increased continuously. A major boost resulted from a framework contract between the European Commission acting through EFDA and the European industry grouping EFET EWIV regarding the industry contribution for the ITER engineering design. The members of EFET include Ansaldo (Italy), Belgatom (Belgium), Fortum (Finland), the AREVA companies Framatome ANP GmbH (Germany) and Framatome ANP SAS (France), IBERTEF (Spain) and NNC (United Kingdom). Together with other special European engineering companies and manufacturers EFET contributed significantly to ITER Engineering Design Activities. In 1996 a list of qualified competitive companies was established which could bid for the manufacturing of prototype components in initially 15, later 17 Technologies considered essential for ITER construction preparation. In total, contracts of about 70 Mio Euro have been awarded to industry during the period 1993 to 2004. In addition to engineering design and prototype manufacturing, industry participated in various assessments of the ITER project and ITER siting investigations. Furthermore, industry has been invited by the European Commission to introduce its proposals for the promotion of the ITER project in Europe and abroad and later for the organization and management of ITER construction. (orig.)

  17. Human engineering design in medical x-ray system

    International Nuclear Information System (INIS)

    Mori, Sadayoshi

    1981-01-01

    The dimension of control desk, design of controller and indicator are studied in relation with human body dimension of radiological technologist. First, in the design of apparatus, it is reasonable to adopt the cumulative distribution in stead of mean values of human body dimension because the mean values would be cause of inadequacy to the majority of operator. Second, I reported about the fundamental items e.g. the display of controller and indicator recommended from the point of view of human engineering. Up to now the radiological technologists were intended to take a serious view of performance of X-ray apparatus only, but hereafter, we think, it is also important to induce the thought of human engineering in the design of X-ray apparatus. (J.P.N.)

  18. Perspectives on knowledge in engineering design

    Science.gov (United States)

    Rasdorf, W. J.

    1985-01-01

    Various perspectives are given of the knowledge currently used in engineering design, specifically dealing with knowledge-based expert systems (KBES). Constructing an expert system often reveals inconsistencies in domain knowledge while formalizing it. The types of domain knowledge (facts, procedures, judgments, and control) differ from the classes of that knowledge (creative, innovative, and routine). The feasible tasks for expert systems can be determined based on these types and classes of knowledge. Interpretive tasks require reasoning about a task in light of the knowledge available, where generative tasks create potential solutions to be tested against constraints. Only after classifying the domain by type and level can the engineer select a knowledge-engineering tool for the domain being considered. The critical features to be weighed after classification are knowledge representation techniques, control strategies, interface requirements, compatibility with traditional systems, and economic considerations.

  19. Mammalian designer cells: Engineering principles and biomedical applications.

    Science.gov (United States)

    Xie, Mingqi; Fussenegger, Martin

    2015-07-01

    Biotechnology is a widely interdisciplinary field focusing on the use of living cells or organisms to solve established problems in medicine, food production and agriculture. Synthetic biology, the science of engineering complex biological systems that do not exist in nature, continues to provide the biotechnology industry with tools, technologies and intellectual property leading to improved cellular performance. One key aspect of synthetic biology is the engineering of deliberately reprogrammed designer cells whose behavior can be controlled over time and space. This review discusses the most commonly used techniques to engineer mammalian designer cells; while control elements acting on the transcriptional and translational levels of target gene expression determine the kinetic and dynamic profiles, coupling them to a variety of extracellular stimuli permits their remote control with user-defined trigger signals. Designer mammalian cells with novel or improved biological functions not only directly improve the production efficiency during biopharmaceutical manufacturing but also open the door for cell-based treatment strategies in molecular and translational medicine. In the future, the rational combination of multiple sets of designer cells could permit the construction and regulation of higher-order systems with increased complexity, thereby enabling the molecular reprogramming of tissues, organisms or even populations with highest precision. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The Crab Boat Engineering Design Challenge

    Science.gov (United States)

    Love, Tyler S.; Ryan, Larry

    2017-01-01

    Crab cakes and football, that's what Maryland does!" (Abrams, Levy, Panay, & Dobkin, 2005). Although the Old Line State is notorious for harvesting delectable blue crabs, the movie "Wedding Crashers" failed to highlight something else Maryland does well: engineering design competitions. This article discusses how a multistate…

  1. Engineering Design of a Drift Tube for PEFP DTL II

    International Nuclear Information System (INIS)

    Kim, Yong Hwan; Kwon, Heok Jung; Kim, Kui Young; Kim, Han Sung; Seol, Keong Tae; Song, Young Gi; Jang, Ji Ho; Hong, In Seok; Choi, Hyun Mi; Han, Sang Hyo; Cho, Yong Sub

    2005-01-01

    As the second stage of the PEFP(Proton Engineering Frontier Project) whose final goal is to develop 100MeV, 20mA proton accelerator, Engineering design of the DTL(Drift Tube Linac) II is in proceeding. In this paper, the details of design of the DT(Drift Tube) and EQM(Electro-Quadrupole Magnet) will be reported

  2. Characterizing Design Process Interfaces as Organization Networks: Insights for Engineering Systems Management

    DEFF Research Database (Denmark)

    Ruiz, Pedro Parraguez; Eppinger, Steven; Maier, Anja

    2016-01-01

    The engineering design literature has provided guidance on how to identify and analyze design activities and their information dependencies. However, a systematic characterization of process interfaces between engineering design activities is missing, and the impact of structural and compositional...

  3. Sustainability in Design Engineering Education; Experiences in Northern Europe

    NARCIS (Netherlands)

    Dewulf, K.; Wever, R.; Boks, C.; Bakker, C.; D'hulster, F.

    2009-01-01

    In recent years, the implementation of sustainability into the curricula of engineering has become increasingly important. This paper focuses on the experiences of integrating sustainability in Design Engineering education in the academic bachelor programs at Delft University of Technology in The

  4. Presentations from the 1992 Coal Mining Impoundment Informational Meeting

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    On May 20 and 21, 1992, the MSHA Coal Mining Impoundment Informational Meeting was held at the National Mine Health and Safety Academy in Beckley, West Virginia. Fifteen presentations were given on key issues involved in the design and construction of dams associated with coal mining. The attendees were told that to improve the consistency among the plan reviewers, engineers from the Denver and Pittsburgh Technical Support Centers meet twice annually to discuss specific technical issues. It was soon discovered that the topics being discussed needed to be shared with anyone involved with coal waste dam design, construction, or inspection. The only way to accomplish that goal was through the issuance of Procedure Instruction Letters. The Letters present a consensus of engineering philosophy that could change over time. They do not present policy or carry the force of law. Currently, thirteen position papers have been disseminated and more will follow as the need arises. The individual paper were not even entered into the database.

  5. Patent Information Use in Engineering Technology Design: An Analysis of Student Work

    Science.gov (United States)

    Phillips, Margaret; Zwicky, Dave

    2017-01-01

    How might engineering technology students make use of patent information in the engineering design process? Librarians analyzed team project reports and personal reflections created by students in an undergraduate mechanical engineering technology design course, revealing that the students used patents to consider the patentability of their ideas,…

  6. Engineering Design Thinking and Information Gathering. Final Report. Research in Engineering and Technology Education

    Science.gov (United States)

    Mentzer, Nathan

    2011-01-01

    The objective of this research was to explore the relationship between information access and design solution quality of high school students presented with an engineering design problem. This objective is encompassed in the research question driving this inquiry: How does information access impact the design process? This question has emerged in…

  7. Integrating ergonomics into engineering design: the role of objects.

    Science.gov (United States)

    Hall-Andersen, Lene Bjerg; Broberg, Ole

    2014-05-01

    The objective of this study was to explore the role of objects in integrating ergonomic knowledge in engineering design processes. An engineering design case was analyzed using the theoretical concepts of boundary objects and intermediary objects: Boundary objects facilitate collaboration between different knowledge domains, while the aim of an intermediary object is to circulate knowledge and thus produce a distant effect. Adjustable layout drawings served as boundary objects and had a positive impact on the dialog between an ergonomist and designers. An ergonomic guideline document was identified as an intermediary object. However, when the ergonomic guidelines were circulated in the design process, only some of the guidelines were transferred to the design of the sterile processing plant. Based on these findings, recommendations for working with objects in design processes are included. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  8. Design and Demonstration of Emergency Control Modes for Enhanced Engine Performance

    Science.gov (United States)

    Liu, Yuan; Litt, Jonathan S.; Guo, Ten-Huei

    2013-01-01

    A design concept is presented for developing control modes that enhance aircraft engine performance during emergency flight scenarios. The benefits of increased engine performance to overall vehicle survivability during these situations may outweigh the accompanied elevated risk of engine failure. The objective involves building control logic that can consistently increase engine performance beyond designed maximum levels based on an allowable heightened probability of failure. This concept is applied to two previously developed control modes: an overthrust mode that increases maximum engine thrust output and a faster response mode that improves thrust response to dynamic throttle commands. This paper describes the redesign of these control modes and presents simulation results demonstrating both enhanced engine performance and robust maintenance of the desired elevated risk level.

  9. Cognitive engineering in the design of human-computer interaction and expert systems

    International Nuclear Information System (INIS)

    Salvendy, G.

    1987-01-01

    The 68 papers contributing to this book cover the following areas: Theories of Interface Design; Methodologies of Interface Design; Applications of Interface Design; Software Design; Human Factors in Speech Technology and Telecommunications; Design of Graphic Dialogues; Knowledge Acquisition for Knowledge-Based Systems; Design, Evaluation and Use of Expert Systems. This demonstrates the dual role of cognitive engineering. On the one hand cognitive engineering is utilized to design computing systems which are compatible with human cognition and can be effectively and be easily utilized by all individuals. On the other hand, cognitive engineering is utilized to transfer human cognition into the computer for the purpose of building expert systems. Two papers are of interest to INIS

  10. 76 FR 81485 - Chief of Engineers Environmental Advisory Board; Meeting

    Science.gov (United States)

    2011-12-28

    ... the potential effects of climate change. Following the discussions and presentations there will be a public comment period. FOR FURTHER INFORMATION CONTACT: Mr. John C. Furry, Designated Federal Officer... (202) 512-6000. Agenda: The Board will advise the Chief of Engineers on environmental policy...

  11. Practical stress analysis in engineering design

    CERN Document Server

    Huston, Ronald

    2008-01-01

    Presents the application of engineering design and analysis based on the approach of understanding the physical characteristics of a given problem and then modeling the important aspects of the physical system. This book covers such topics as contact stress analysis, singularity functions, gear stresses, fasteners, shafts, and shaft stresses.

  12. GLobal Integrated Design Environment

    Science.gov (United States)

    Kunkel, Matthew; McGuire, Melissa; Smith, David A.; Gefert, Leon P.

    2011-01-01

    The GLobal Integrated Design Environment (GLIDE) is a collaborative engineering application built to resolve the design session issues of real-time passing of data between multiple discipline experts in a collaborative environment. Utilizing Web protocols and multiple programming languages, GLIDE allows engineers to use the applications to which they are accustomed in this case, Excel to send and receive datasets via the Internet to a database-driven Web server. Traditionally, a collaborative design session consists of one or more engineers representing each discipline meeting together in a single location. The discipline leads exchange parameters and iterate through their respective processes to converge on an acceptable dataset. In cases in which the engineers are unable to meet, their parameters are passed via e-mail, telephone, facsimile, or even postal mail. The result of this slow process of data exchange would elongate a design session to weeks or even months. While the iterative process remains in place, software can now exchange parameters securely and efficiently, while at the same time allowing for much more information about a design session to be made available. GLIDE is written in a compilation of several programming languages, including REALbasic, PHP, and Microsoft Visual Basic. GLIDE client installers are available to download for both Microsoft Windows and Macintosh systems. The GLIDE client software is compatible with Microsoft Excel 2000 or later on Windows systems, and with Microsoft Excel X or later on Macintosh systems. GLIDE follows the Client-Server paradigm, transferring encrypted and compressed data via standard Web protocols. Currently, the engineers use Excel as a front end to the GLIDE Client, as many of their custom tools run in Excel.

  13. Proxemic Transitions: Designing Shape-Changing Furniture for Informal Meetings

    DEFF Research Database (Denmark)

    Grønbæk, Jens Emil; Korsgaard, Henrik; Petersen, Marianne Graves

    2017-01-01

    Shape-changing interfaces is an emerging field in HCI that explores the qualities of physically dynamic artifacts. At furniture-scale such dynamic artifacts have the potential of changing the ways we collaborate and engage with spaces. In- formed by theories of proxemics, empirical studies...... of informal meetings and design work with shape-changing furniture, we develop the notion of proxemic transitions. We present three design aspects of proxemic transitions: transition speed, step- wise reconfiguration, and situational flexibility. The design aspects focus on how to balance between physical...... between a table and a board surface. These contributions outline important aspects to consider when designing shape-changing furniture....

  14. Developing an Engineering Design Process Assessment using Mixed Methods.

    Science.gov (United States)

    Wind, Stefanie A; Alemdar, Meltem; Lingle, Jeremy A; Gale, Jessica D; Moore, Roxanne A

    Recent reforms in science education worldwide include an emphasis on engineering design as a key component of student proficiency in the Science, Technology, Engineering, and Mathematics disciplines. However, relatively little attention has been directed to the development of psychometrically sound assessments for engineering. This study demonstrates the use of mixed methods to guide the development and revision of K-12 Engineering Design Process (EDP) assessment items. Using results from a middle-school EDP assessment, this study illustrates the combination of quantitative and qualitative techniques to inform item development and revisions. Overall conclusions suggest that the combination of quantitative and qualitative evidence provides an in-depth picture of item quality that can be used to inform the revision and development of EDP assessment items. Researchers and practitioners can use the methods illustrated here to gather validity evidence to support the interpretation and use of new and existing assessments.

  15. High-frequency and microwave circuit design

    CERN Document Server

    Nelson, Charles

    2007-01-01

    An integral part of any communications system, high-frequency and microwave design stimulates major progress in the wireless world and continues to serve as a foundation for the commercial wireless products we use every day. The exceptional pace of advancement in developing these systems stipulates that engineers be well versed in multiple areas of electronics engineering. With more illustrations, examples, and worked problems, High-Frequency and Microwave Circuit Design, Second Edition provides engineers with a diverse body of knowledge they can use to meet the needs of this rapidly progressi

  16. Designing Class Activities to Meet Specific Core Training Competencies: A Developmental Approach

    Science.gov (United States)

    Guth, Lorraine J.; McDonnell, Kelly A.

    2004-01-01

    This article presents a developmental model for designing and utilizing class activities to meet specific Association for Specialists in Group Work (ASGW) core training competencies for group workers. A review of the relevant literature about teaching group work and meeting core training standards is provided. The authors suggest a process by…

  17. Development and Evaluation of an Undergraduate Multidisciplinary Project Activity in Engineering and Design

    Science.gov (United States)

    Smith, David R.; Cole, Joanne

    2012-01-01

    The School of Engineering and Design Multidisciplinary Project (MDP) at Brunel University is a one week long project based activity involving first year undergraduate students from across the School subject areas of Electronic and Computer Engineering, Mechanical Engineering, Civil Engineering and Design. This paper describes the main aims of the…

  18. A methodology for system-of-systems design in support of the engineering team

    Science.gov (United States)

    Ridolfi, G.; Mooij, E.; Cardile, D.; Corpino, S.; Ferrari, G.

    2012-04-01

    Space missions have experienced a trend of increasing complexity in the last decades, resulting in the design of very complex systems formed by many elements and sub-elements working together to meet the requirements. In a classical approach, especially in a company environment, the two steps of design-space exploration and optimization are usually performed by experts inferring on major phenomena, making assumptions and doing some trial-and-error runs on the available mathematical models. This is done especially in the very early design phases where most of the costs are locked-in. With the objective of supporting the engineering team and the decision-makers during the design of complex systems, the authors developed a modelling framework for a particular category of complex, coupled space systems called System-of-Systems. Once modelled, the System-of-Systems is solved using a computationally cheap parametric methodology, named the mixed-hypercube approach, based on the utilization of a particular type of fractional factorial design-of-experiments, and analysis of the results via global sensitivity analysis and response surfaces. As an applicative example, a system-of-systems of a hypothetical human space exploration scenario for the support of a manned lunar base is presented. The results demonstrate that using the mixed-hypercube to sample the design space, an optimal solution is reached with a limited computational effort, providing support to the engineering team and decision makers thanks to sensitivity and robustness information. The analysis of the system-of-systems model that was implemented shows that the logistic support of a human outpost on the Moon for 15 years is still feasible with currently available launcher classes. The results presented in this paper have been obtained in cooperation with Thales Alenia Space—Italy, in the framework of a regional programme called STEPS. STEPS—Sistemi e Tecnologie per l'EsPlorazione Spaziale is a research

  19. A Story-Telling Approach for a Software Engineering Course Design

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    2009-01-01

    Advanced programming and software engineering techniques are challenging to learn due to their inherent complexity. However, to the average student they are even more challenging because they have never experienced the context in which the techniques are appropriate. For instance, why learn design...... patterns to increase maintainability when student exercises are never maintained? In this paper, we outline the contextual problems that software engineering teaching has to deal with and present a story telling approach for course design as a remedy. We outline the stories that over the last five years...... have structured lecturing and mandatory exercises for our advanced programming/software engineering course, and present benefits, liabilities, and experiences with the approach comparing it to the normal, topic structured, course design....

  20. Fire Protection Engineering Design Brief Template. Hydrogen Refueling Station.

    Energy Technology Data Exchange (ETDEWEB)

    LaFleur, Angela Christine [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Muna, Alice Baca [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Groth, Katrina M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    Building a hydrogen infrastructure system is critical to supporting the development of alternate- fuel vehicles. This report provides a methodology for implementing a performance-based design of an outdoor hydrogen refueling station that does not meet specific prescriptive requirements in NFPA 2, The Hydrogen Technologies Code . Performance-based designs are a code-compliant alternative to meeting prescriptive requirements. Compliance is demonstrated by comparing a prescriptive-based fueling station design with a performance-based design approach using Quantitative Risk Assessment (QRA) methods and hydrogen risk assessment tools. This template utilizes the Sandia-developed QRA tool, Hydrogen Risk Analysis Models (HyRAM), which combines reduced-order deterministic models that characterize hydrogen release and flame behavior with probabilistic risk models to quantify risk values. Each project is unique and this template is not intended to account for site-specific characteristics. Instead, example content and a methodology are provided for a representative hydrogen refueling site which can be built upon for new hydrogen applications.

  1. Analyzing Team Based Engineering Design Process in Computer Supported Collaborative Learning

    Science.gov (United States)

    Lee, Dong-Kuk; Lee, Eun-Sang

    2016-01-01

    The engineering design process has been largely implemented in a collaborative project format. Recently, technological advancement has helped collaborative problem solving processes such as engineering design to have efficient implementation using computers or online technology. In this study, we investigated college students' interaction and…

  2. Teaching chemical product design to engineering students: course contents and challenges

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard; Kiil, Søren

    Chemical product design is not taught in the same way as traditional engineering courses like unit operations or transport phenomena. This paper gives an overview of the challenges that we, as teachers, have faced when teaching chemical product design to engineering students. Specific course...

  3. Biomedical engineering strategies in system design space.

    Science.gov (United States)

    Savageau, Michael A

    2011-04-01

    Modern systems biology and synthetic bioengineering face two major challenges in relating properties of the genetic components of a natural or engineered system to its integrated behavior. The first is the fundamental unsolved problem of relating the digital representation of the genotype to the analog representation of the parameters for the molecular components. For example, knowing the DNA sequence does not allow one to determine the kinetic parameters of an enzyme. The second is the fundamental unsolved problem of relating the parameters of the components and the environment to the phenotype of the global system. For example, knowing the parameters does not tell one how many qualitatively distinct phenotypes are in the organism's repertoire or the relative fitness of the phenotypes in different environments. These also are challenges for biomedical engineers as they attempt to develop therapeutic strategies to treat pathology or to redirect normal cellular functions for biotechnological purposes. In this article, the second of these fundamental challenges will be addressed, and the notion of a "system design space" for relating the parameter space of components to the phenotype space of bioengineering systems will be focused upon. First, the concept of a system design space will be motivated by introducing one of its key components from an intuitive perspective. Second, a simple linear example will be used to illustrate a generic method for constructing the design space in which qualitatively distinct phenotypes can be identified and counted, their fitness analyzed and compared, and their tolerance to change measured. Third, two examples of nonlinear systems from different areas of biomedical engineering will be presented. Finally, after giving reference to a few other applications that have made use of the system design space approach to reveal important design principles, some concluding remarks concerning challenges and opportunities for further development

  4. Flat-plate solar array project. Volume 6: Engineering sciences and reliability

    Science.gov (United States)

    Ross, R. G., Jr.; Smokler, M. I.

    1986-01-01

    The Flat-Plate Solar Array (FSA) Project activities directed at developing the engineering technology base required to achieve modules that meet the functional, safety, and reliability requirements of large scale terrestrial photovoltaic systems applications are reported. These activities included: (1) development of functional, safety, and reliability requirements for such applications; (2) development of the engineering analytical approaches, test techniques, and design solutions required to meet the requirements; (3) synthesis and procurement of candidate designs for test and evaluation; and (4) performance of extensive testing, evaluation, and failure analysis of define design shortfalls and, thus, areas requiring additional research and development. A summary of the approach and technical outcome of these activities are provided along with a complete bibliography of the published documentation covering the detailed accomplishments and technologies developed.

  5. High-End Computing Challenges in Aerospace Design and Engineering

    Science.gov (United States)

    Bailey, F. Ronald

    2004-01-01

    High-End Computing (HEC) has had significant impact on aerospace design and engineering and is poised to make even more in the future. In this paper we describe four aerospace design and engineering challenges: Digital Flight, Launch Simulation, Rocket Fuel System and Digital Astronaut. The paper discusses modeling capabilities needed for each challenge and presents projections of future near and far-term HEC computing requirements. NASA's HEC Project Columbia is described and programming strategies presented that are necessary to achieve high real performance.

  6. The Application of Concurrent Engineering Tools and Design Structure Matrix in Designing Tire

    Science.gov (United States)

    Ginting, Rosnani; Fachrozi Fitra Ramadhan, T.

    2016-02-01

    The development of automobile industry in Indonesia is growing rapidly. This phenomenon causes companies related to the automobile industry such as tire industry must develop products based on customers’ needs and considering the timeliness of delivering the product to the customer. It could be reached by applying strategic planning in developing an integrated concept of product development. This research was held in PT. XYZ that applied the sequential approach in designing and developing products. The need to improve in one stage of product development could occur re-designing that needs longer time in developing a new product. This research is intended to get an integrated product design concept of tire pertaining to the customer's needs using Concurrent Engineering Tools by implementing the two-phased of product development. The implementation of Concurrent Engineering approach results in applying the stage of project planning, conceptual design, and product modules. The product modules consist of four modules that using Product Architecture - Design Structure Matrix to ease the designing process of new product development.

  7. Use of probabilistic design methods for NASA applications. [to be used in design phase of Space Transportation Main Engine

    Science.gov (United States)

    Safie, Fayssal M.

    1992-01-01

    This paper presents a reliability evaluation process designed to improve the reliability of advanced launch systems. The work performed includes the development of a reliability prediction methodology to be used in the design phase of the Space Transportation Main Engine (STME). This includes prediction techniques which use historical data bases as well as deterministic and probabilistic engineering models for predicting design reliability. In summary, this paper describes a probabilistic design approach for the next-generation liquid rocket engine, the STME.

  8. Ergonomics: an aid to system design

    International Nuclear Information System (INIS)

    McCafferty, D.B.

    1990-01-01

    In recent years, the engineering community has recognized that ergonomics can make significant contributions to system design. Working together engineers and ergonomists can create designs that effectively meet system goals. By considering the role of humans and technology in the context of systems and by reducing the potential for errors, gains can be made in overall system reliability. Such efforts can reduce the need for costly backfits and increase system efficiency. (author)

  9. Should we attempt global (inlet engine airframe) control design?

    Science.gov (United States)

    Carlin, C. M.

    1980-01-01

    The feasibility of multivariable design of the entire airplane control system is briefly addressed. An intermediate step in that direction is to design a control for an inlet engine augmentor system by using multivariable techniques. The supersonic cruise large scale inlet research program is described which will provide an opportunity to develop, integrate, and wind tunnel test a control for a mixed compression inlet and variable cycle engine. The integrated propulsion airframe control program is also discussed which will introduce the problem of implementing MVC within a distributed processing avionics architecture, requiring real time decomposition of the global design into independent modules in response to hardware communication failures.

  10. Metamodels for Computer-Based Engineering Design: Survey and Recommendations

    Science.gov (United States)

    Simpson, Timothy W.; Peplinski, Jesse; Koch, Patrick N.; Allen, Janet K.

    1997-01-01

    The use of statistical techniques to build approximations of expensive computer analysis codes pervades much of todays engineering design. These statistical approximations, or metamodels, are used to replace the actual expensive computer analyses, facilitating multidisciplinary, multiobjective optimization and concept exploration. In this paper we review several of these techniques including design of experiments, response surface methodology, Taguchi methods, neural networks, inductive learning, and kriging. We survey their existing application in engineering design and then address the dangers of applying traditional statistical techniques to approximate deterministic computer analysis codes. We conclude with recommendations for the appropriate use of statistical approximation techniques in given situations and how common pitfalls can be avoided.

  11. Engineering conceptual design of CFETR divertor

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Xuebing, E-mail: pengxb@ipp.cas.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei Anhui (China); Ye, Minyou [School of Nuclear Science and Technology, University of Science and Technology of China, Jinzhai Road 96, 230026 Hefei Anhui (China); Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei Anhui (China); Song, Yuntao [Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei Anhui (China); School of Nuclear Science and Technology, University of Science and Technology of China, Jinzhai Road 96, 230026 Hefei Anhui (China); Mao, Xin [Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei Anhui (China); Chen, Peiming; Qian, Xinyuan [School of Nuclear Science and Technology, University of Science and Technology of China, Jinzhai Road 96, 230026 Hefei Anhui (China)

    2015-10-15

    Highlights: • Three divertor structures for two plasma configurations, ITER-like and snowflake. • Property of enlarging wet area for all three divertors is analyzed. • The divertor accommodating with both the plasma configurations is unfeasible. • Divertor cooling system is developed. - Abstract: The China Fusion Engineering Test Reactor (CFETR), which is in conceptual design phase, aims at producing fusion power of 50–200 MW with tritium breeding ratio of ∼1.2 and duty cycle time of 0.3–0.5. Its designed main parameters are major/minor radii of 5.7 m/1.6 m and plasma current of 10 MA. Although the fusion power is lower than the one of ITER, the relative smaller machine dimensions and planed much higher auxiliary heating power of 100–140 MW make that the power exhausting for the CFETR divertor is a very critical issue. To solve this issue, the divertor should be better designed with advanced physical operation mode, advanced configuration/geometry or high efficient cooling structure. In the paper, much effort was put on the divertor configuration and geometry. With designed magnet system, three divertor configurations can be realized, ITER-like, snowflake and super-X. However, considering structural design feasibility and remote handling compatibility, only the first two configurations were selected for the first step of engineering design. Three divertors were designed. They have different first wall geometries to accommodate with different plasma configurations, one for the ITER-like, one for the snowflake and the third one for both the configurations. All three divertors employ the same cassette body as the support and the cooling water manifold for the first wall. This feature simplifies the interface of the divertor to other components in the vacuum vessel. Besides, the cooling structure and the remote maintenance concept are also introduced in the paper.

  12. Orbit transfer vehicle advanced expander cycle engine point design study. Volume 2: Study results

    Science.gov (United States)

    Diem, H. G.

    1980-01-01

    The design characteristics of the baseline engine configuration of the advanced expander cycle engine are described. Several aspects of engine optimization are considered which directly impact the design of the baseline thrust chamber. Four major areas of the power cycle optimization are emphasized: main turbine arrangement; cycle engine source; high pressure pump design; and boost pump drive.

  13. High School Student Information Access and Engineering Design Performance

    Science.gov (United States)

    Mentzer, Nathan

    2014-01-01

    Developing solutions to engineering design problems requires access to information. Research has shown that appropriately accessing and using information in the design process improves solution quality. This quasi-experimental study provides two groups of high school students with a design problem in a three hour design experience. One group has…

  14. Engine testing the design, building, modification and use of powertrain test facilities

    CERN Document Server

    MARTYR, A J

    2012-01-01

    Engine Testing is a unique, well-organized and comprehensive collection of the different aspects of engine and vehicle testing equipment and infrastructure for anyone involved in facility design and management, physical testing and the maintenance, upgrading and trouble shooting of testing equipment. Designed so that its chapters can all stand alone to be read in sequence or out of order as needed, Engine Testing is also an ideal resource for automotive engineers required to perform testing functions whose jobs do not involve engine testing on a regular basis. This recognized standard refer

  15. E85 Optimized Engine

    Energy Technology Data Exchange (ETDEWEB)

    Bower, Stanley [Ford Motor Company, Dearborn, MI (United States)

    2011-12-31

    A 5.0L V8 twin-turbocharged direct injection engine was designed, built, and tested for the purpose of assessing the fuel economy and performance in the F-Series pickup of the Dual Fuel engine concept and of an E85 optimized FFV engine. Additionally, production 3.5L gasoline turbocharged direct injection (GTDI) EcoBoost engines were converted to Dual Fuel capability and used to evaluate the cold start emissions and fuel system robustness of the Dual Fuel engine concept. Project objectives were: to develop a roadmap to demonstrate a minimized fuel economy penalty for an F-Series FFV truck with a highly boosted, high compression ratio spark ignition engine optimized to run with ethanol fuel blends up to E85; to reduce FTP 75 energy consumption by 15% - 20% compared to an equally powered vehicle with a current production gasoline engine; and to meet ULEV emissions, with a stretch target of ULEV II / Tier II Bin 4. All project objectives were met or exceeded.

  16. Biomaterials for Tissue Engineering

    Science.gov (United States)

    Lee, Esther J.; Kasper, F. Kurtis; Mikos, Antonios G.

    2013-01-01

    Biomaterials serve as an integral component of tissue engineering. They are designed to provide architectural framework reminiscent of native extracellular matrix in order to encourage cell growth and eventual tissue regeneration. Bone and cartilage represent two distinct tissues with varying compositional and mechanical properties. Despite these differences, both meet at the osteochondral interface. This article presents an overview of current biomaterials employed in bone and cartilage applications, discusses some design considerations, and alludes to future prospects within this field of research. PMID:23820768

  17. Synthetic biology meets tissue engineering.

    Science.gov (United States)

    Davies, Jamie A; Cachat, Elise

    2016-06-15

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the 'embryological cycle' of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. © 2016 Authors; published by Portland Press Limited.

  18. 2014 Joint Conference on Mechanical Design Engineering and Advanced Manufacturing

    CERN Document Server

    Daidie, Alain; Eynard, Benoit; Paredes, Manuel

    2016-01-01

    Covering key topics in the field such as technological innovation, human-centered sustainable engineering and manufacturing, and manufacture at a global scale in a virtual world, this book addresses both advanced techniques and industrial applications of key research in interactive design and manufacturing. Featuring the full papers presented at the 2014 Joint Conference on Mechanical Design Engineering and Advanced Manufacturing, which took place in June 2014 in Toulouse, France, it presents recent research and industrial success stories related to implementing interactive design and manufacturing solutions.

  19. Pluridisciplinarity vs. interdisciplinarity in civil engineering education in seismic areas

    OpenAIRE

    Emil-Sever GEORGESCU

    2012-01-01

    Civil engineers are involved in building and maintaining a built environment that meets the sustainable development requirements. This environment is interdisciplinary in its nature, as it results from an interaction between different actors (architects, city planners, authorities, clients, civil engineers). Professional formation and training of engineers is a result of the didactic and technical efforts, which later will be reflected in the way constructions are being designed and built, so...

  20. GLobal Integrated Design Environment (GLIDE): A Concurrent Engineering Application

    Science.gov (United States)

    McGuire, Melissa L.; Kunkel, Matthew R.; Smith, David A.

    2010-01-01

    The GLobal Integrated Design Environment (GLIDE) is a client-server software application purpose-built to mitigate issues associated with real time data sharing in concurrent engineering environments and to facilitate discipline-to-discipline interaction between multiple engineers and researchers. GLIDE is implemented in multiple programming languages utilizing standardized web protocols to enable secure parameter data sharing between engineers and researchers across the Internet in closed and/or widely distributed working environments. A well defined, HyperText Transfer Protocol (HTTP) based Application Programming Interface (API) to the GLIDE client/server environment enables users to interact with GLIDE, and each other, within common and familiar tools. One such common tool, Microsoft Excel (Microsoft Corporation), paired with its add-in API for GLIDE, is discussed in this paper. The top-level examples given demonstrate how this interface improves the efficiency of the design process of a concurrent engineering study while reducing potential errors associated with manually sharing information between study participants.

  1. The System Concept and Its Application to Engineering

    CERN Document Server

    Aslaksen, Erik W

    2013-01-01

    Systems engineering is a mandatory approach in some industries, and is gaining wider acceptance for complex projects in general. However, under the imperative of delivering these projects on time and within budget, the focus has been mainly on the management aspects, with less attention to improving the core engineering activity – design. This book addresses the application of the system concept to design in several ways: by developing a deeper understanding of the system concept, by defining design and its characteristics within the process of engineering, and by applying the system concept to the early stage of design, where it has the greatest impact.   A central theme of the book is that the purpose of engineering is to be useful in meeting the needs of society, and that therefore the ultimate measure of the benefit of applying the system concept should be the extent to which it advances the achievement of that purpose. Consequently, any consistent, top-down development of the functionality required of...

  2. Web-Based Engine for Program Curriculum Designers

    Science.gov (United States)

    Hamam, H.; Loucif, S.

    2009-01-01

    Educational institutions pay careful attention to the design of program curricula, which represent a framework to meet institutional goals and missions. Of course, the success of any institution depends highly on the quality of its program curriculum. The development of such a curriculum and, more importantly, the evaluation of its quality are…

  3. Reasoning Strategies in the Context of Engineering Design with Everyday Materials

    Science.gov (United States)

    Worsley, Marcelo; Blikstein, Paulo

    2016-01-01

    "Making" represents an increasingly popular label for describing a form of engineering design. While making is growing in popularity, there are still open questions about the strategies that students are using in these activities. Assessing and improving learning in making/ engineering design contexts require that we have a better…

  4. Engineering design knowledge recycling in near-real-time

    Science.gov (United States)

    Leifer, Larry; Baya, Vinod; Toye, George; Baudin, Catherine; Underwood, Jody Gevins

    1994-01-01

    It is hypothesized that the capture and reuse of machine readable design records is cost beneficial. This informal engineering notebook design knowledge can be used to model the artifact and the design process. Design rationale is, in part, preserved and available for examination. Redesign cycle time is significantly reduced (Baya et al, 1992). These factors contribute to making it less costly to capture and reuse knowledge than to recreate comparable knowledge (current practice). To test the hypothesis, we have focused on validation of the concept and tools in two 'real design' projects this past year: (1) a short (8 month) turnaround project for NASA life science bioreactor researchers was done by a team of three mechanical engineering graduate students at Stanford University (in a class, ME210abc 'Mechatronic Systems Design and Methodology' taught by one of the authors, Leifer); and (2) a long range (8 to 20 year) international consortium project for NASA's Space Science program (STEP: satellite test of the equivalence principle). Design knowledge capture was supported this year by assigning the use of a Team-Design PowerBook. Design records were cataloged in near-real time. These records were used to qualitatively model the artifact design as it evolved. Dedal, an 'intelligent librarian' developed at NASA-ARC, was used to navigate and retrieve captured knowledge for reuse.

  5. Fundamental of biomedical engineering

    CERN Document Server

    Sawhney, GS

    2007-01-01

    About the Book: A well set out textbook explains the fundamentals of biomedical engineering in the areas of biomechanics, biofluid flow, biomaterials, bioinstrumentation and use of computing in biomedical engineering. All these subjects form a basic part of an engineer''s education. The text is admirably suited to meet the needs of the students of mechanical engineering, opting for the elective of Biomedical Engineering. Coverage of bioinstrumentation, biomaterials and computing for biomedical engineers can meet the needs of the students of Electronic & Communication, Electronic & Instrumenta

  6. An engineering design approach to systems biology.

    Science.gov (United States)

    Janes, Kevin A; Chandran, Preethi L; Ford, Roseanne M; Lazzara, Matthew J; Papin, Jason A; Peirce, Shayn M; Saucerman, Jeffrey J; Lauffenburger, Douglas A

    2017-07-17

    Measuring and modeling the integrated behavior of biomolecular-cellular networks is central to systems biology. Over several decades, systems biology has been shaped by quantitative biologists, physicists, mathematicians, and engineers in different ways. However, the basic and applied versions of systems biology are not typically distinguished, which blurs the separate aspirations of the field and its potential for real-world impact. Here, we articulate an engineering approach to systems biology, which applies educational philosophy, engineering design, and predictive models to solve contemporary problems in an age of biomedical Big Data. A concerted effort to train systems bioengineers will provide a versatile workforce capable of tackling the diverse challenges faced by the biotechnological and pharmaceutical sectors in a modern, information-dense economy.

  7. Ingenuity in Action: Connecting Tinkering to Engineering Design Processes

    Science.gov (United States)

    Wang, Jennifer; Werner-Avidon, Maia; Newton, Lisa; Randol, Scott; Smith, Brooke; Walker, Gretchen

    2013-01-01

    The Lawrence Hall of Science, a science center, seeks to replicate real-world engineering at the "Ingenuity in Action" exhibit, which consists of three open-ended challenges. These problems encourage children to engage in engineering design processes and problem-solving techniques through tinkering. We observed and interviewed 112…

  8. Studying Design Engineers Use Of Information Systems

    DEFF Research Database (Denmark)

    Restrepo-Giraldo, John Dairo

    2006-01-01

    Studying information usage by design engineers involves considering technical, social, cognitive and volitional factors. This makes it challenging, especially for researchers without a cognitive psychology background. This paper presents a summary of key findings in researching information use...

  9. On the Role of Computer Graphics in Engineering Design Graphics Courses.

    Science.gov (United States)

    Pleck, Michael H.

    The implementation of two- and three-dimensional computer graphics in a freshmen engineering design course at the university level is described. An assessment of the capabilities and limitations of computer graphics is made, along with a presentation of the fundamental role which computer graphics plays in engineering design instruction.…

  10. A Spiral Step-by-Step Educational Method for Cultivating Competent Embedded System Engineers to Meet Industry Demands

    Science.gov (United States)

    Jing,Lei; Cheng, Zixue; Wang, Junbo; Zhou, Yinghui

    2011-01-01

    Embedded system technologies are undergoing dramatic change. Competent embedded system engineers are becoming a scarce resource in the industry. Given this, universities should revise their specialist education to meet industry demands. In this paper, a spirally tight-coupled step-by-step educational method, based on an analysis of industry…

  11. Basic earthquake engineering from seismology to analysis and design

    CERN Document Server

    Sucuoğlu, Halûk

    2014-01-01

    This book provides senior undergraduate students, master students and structural engineers who do not have a background in the field with core knowledge of structural earthquake engineering that will be invaluable in their professional lives. The basics of seismotectonics, including the causes, magnitude, and intensity of earthquakes, are first explained. Then the book introduces basic elements of seismic hazard analysis and presents the concept of a seismic hazard map for use in seismic design. Subsequent chapters cover key aspects of the response analysis of simple systems and building struc­tures to earthquake ground motions, design spectrum, the adoption of seismic analysis procedures in seismic design codes, seismic design principles and seismic design of reinforced concrete structures. Helpful worked examples on seismic analysis of linear, nonlinear and base isolated buildings, earthquake-resistant design of frame and frame-shear wall systems are included, most of which can be solved using a hand calcu...

  12. Intelligent computer systems in engineering design principles and applications

    CERN Document Server

    Sunnersjo, Staffan

    2016-01-01

    This introductory book discusses how to plan and build useful, reliable, maintainable and cost efficient computer systems for automated engineering design. The book takes a user perspective and seeks to bridge the gap between texts on principles of computer science and the user manuals for commercial design automation software. The approach taken is top-down, following the path from definition of the design task and clarification of the relevant design knowledge to the development of an operational system well adapted for its purpose. This introductory text for the practicing engineer working in industry covers most vital aspects of planning such a system. Experiences from applications of automated design systems in practice are reviewed based on a large number of real, industrial cases. The principles behind the most popular methods in design automation are presented with sufficient rigour to give the user confidence in applying them on real industrial problems. This book is also suited for a half semester c...

  13. Advancing Integrated STEM Learning through Engineering Design: Sixth-Grade Students' Design and Construction of Earthquake Resistant Buildings

    Science.gov (United States)

    English, Lyn D.; King, Donna; Smeed, Joanna

    2017-01-01

    As part of a 3-year longitudinal study, 136 sixth-grade students completed an engineering-based problem on earthquakes involving integrated STEM learning. Students employed engineering design processes and STEM disciplinary knowledge to plan, sketch, then construct a building designed to withstand earthquake damage, taking into account a number of…

  14. Wind energy systems control engineering design

    CERN Document Server

    Garcia-Sanz, Mario

    2012-01-01

    IntroductionBroad Context and MotivationConcurrent Engineering: A Road Map for EnergyQuantitative Robust ControlNovel CAD Toolbox for QFT Controller DesignOutline Part I: Advanced Robust Control Techniques: QFT and Nonlinear SwitchingIntroduction to QFTQuantitative Feedback TheoryWhy Feedback? QFT OverviewInsight into the QFT TechniqueBenefits of QFTMISO Analog QFT Control SystemIntroductionQFT Method (Single-Loop MISO System)Design Procedure OutlineMinimum-Phase System Performance SpecificationsJ LTI Plant ModelsPlant Templates of P?(s), P( j_i )Nominal PlantU-Contour (Stability Bound)Trackin

  15. Control room design and human engineering in power plants

    International Nuclear Information System (INIS)

    Herbst, L.; Hinz, W.

    1982-01-01

    The concept for modern plant control rooms is primary influenced by: The automation of protection, binary control and closed loop control functions; organization employing functional areas; computer based information processing; human engineered design. Automation reduces the human work load. Employment of functional areas permits optimization of operational sequences. Computer based information processing makes it possible to output information in accordance with operating requirements. Design based on human engineering principles assures the quality of the interaction between the operator and the equipment. The degree to which these conceptional features play a role in design of power plant control rooms depends on the unit rating, the mode of operation and on the requirements respecting safety and availability of the plant. (orig.)

  16. 40 CFR 1054.103 - What exhaust emission standards must my handheld engines meet?

    Science.gov (United States)

    2010-07-01

    ... emission family are designed to operate. You must meet the numerical emission standards for hydrocarbons in... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK...

  17. 40 CFR 1054.105 - What exhaust emission standards must my nonhandheld engines meet?

    Science.gov (United States)

    2010-07-01

    ... emission family are designed to operate. You must meet the numerical emission standards for hydrocarbons in... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK...

  18. Fuel Cell Car Design Project for Freshman Engineering Courses

    Science.gov (United States)

    Duke, Steve R.; Davis, Virginia A.

    2014-01-01

    In the Samuel Ginn College of Engineering at Auburn University, we have integrated a semester long design project based on a toy fuel cell car into our freshman "Introduction to Chemical Engineering Class." The project provides the students a basic foundation in chemical reactions, energy, and dimensional analysis that facilitates…

  19. Concurrent Engineering Working Group White Paper Distributed Collaborative Design: The Next Step in Aerospace Concurrent Engineering

    Science.gov (United States)

    Hihn, Jairus; Chattopadhyay, Debarati; Karpati, Gabriel; McGuire, Melissa; Panek, John; Warfield, Keith; Borden, Chester

    2011-01-01

    As aerospace missions grow larger and more technically complex in the face of ever tighter budgets, it will become increasingly important to use concurrent engineering methods in the development of early conceptual designs because of their ability to facilitate rapid assessments and trades of performance, cost and schedule. To successfully accomplish these complex missions with limited funding, it is essential to effectively leverage the strengths of individuals and teams across government, industry, academia, and international agencies by increased cooperation between organizations. As a result, the existing concurrent engineering teams will need to increasingly engage in distributed collaborative concurrent design. The purpose of this white paper is to identify a near-term vision for the future of distributed collaborative concurrent engineering design for aerospace missions as well as discuss the challenges to achieving that vision. The white paper also documents the advantages of creating a working group to investigate how to engage the expertise of different teams in joint design sessions while enabling organizations to maintain their organizations competitive advantage.

  20. On the Architectural Engineering Competences in Architectural Design

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning

    2007-01-01

    In 1997 a new education in Architecture & Design at Department of Architecture and Design, Aalborg University was started with 50 students. During the recent years this number has increased to approximately 100 new students each year, i.e. approximately 500 students are following the 3 years...... bachelor (BSc) and the 2 years master (MSc) programme. The first 5 semesters are common for all students followed by 5 semesters with specialization into Architectural Design, Urban Design, Industrial Design or Digital Design. The present paper gives a short summary of the architectural engineering...

  1. The design status of the liquid lithium target facility of IFMIF at the end of the engineering design activities

    Energy Technology Data Exchange (ETDEWEB)

    Nitti, F.S., E-mail: francesco.nitti@enea.it [IFMIF/EVEDA Project Team, Rokkasho Japan (Japan); Ibarra, A. [CIEMAT, Madrid (Spain); Ida, M. [IHI Corporation, Tokyo (Japan); Favuzza, P. [ENEA Research Center Firenze (Italy); Furukawa, T. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Groeschel, F. [KIT Research Center, Karlsruhe (Germany); Heidinger, R. [F4E Research Center, Garching (Germany); Kanemura, T. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Knaster, J. [IFMIF/EVEDA Project Team, Rokkasho Japan (Japan); Kondo, H. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Micchiche, G. [ENEA Research Center, Brasimone (Italy); Sugimoto, M. [JAEA Research Center, Rokkasho Japan (Japan); Wakai, E. [JAEA Research Center, Tokai-mura, Ibaraki (Japan)

    2015-11-15

    Highlights: • Results of validation and design activity for the Li loop facility of IFMIF. • Demonstration of Li target stability, with surface disturbance <1 mm. • Demonstration of start-up and shut down procedures of Li loop. • Complete design of the heat removal system and C and O purification system. • Conceptual design of N and H isotopes purification systems. - Abstract: The International Fusion Material Irradiation Facility (IFMIF) is an experimental facility conceived for qualifying and characterizing structural materials for nuclear fusion applications. The Engineering Validation and Engineering Design Activity (EVEDA) is a fundamental step towards the final design. It presented two mandates: the Engineering Validation Activities (EVA), still on-going, and the Engineering Design Activities (EDA) accomplished on schedule in June 2013. Five main facilities are identified in IFMIF, among which the Lithium Target Facility constituted a technological challenge overcome thanks to the success of the main validation challenges impacting the design. The design of the liquid Lithium Target Facility at the end of the EDA phase is here detailed.

  2. The design status of the liquid lithium target facility of IFMIF at the end of the engineering design activities

    International Nuclear Information System (INIS)

    Nitti, F.S.; Ibarra, A.; Ida, M.; Favuzza, P.; Furukawa, T.; Groeschel, F.; Heidinger, R.; Kanemura, T.; Knaster, J.; Kondo, H.; Micchiche, G.; Sugimoto, M.; Wakai, E.

    2015-01-01

    Highlights: • Results of validation and design activity for the Li loop facility of IFMIF. • Demonstration of Li target stability, with surface disturbance <1 mm. • Demonstration of start-up and shut down procedures of Li loop. • Complete design of the heat removal system and C and O purification system. • Conceptual design of N and H isotopes purification systems. - Abstract: The International Fusion Material Irradiation Facility (IFMIF) is an experimental facility conceived for qualifying and characterizing structural materials for nuclear fusion applications. The Engineering Validation and Engineering Design Activity (EVEDA) is a fundamental step towards the final design. It presented two mandates: the Engineering Validation Activities (EVA), still on-going, and the Engineering Design Activities (EDA) accomplished on schedule in June 2013. Five main facilities are identified in IFMIF, among which the Lithium Target Facility constituted a technological challenge overcome thanks to the success of the main validation challenges impacting the design. The design of the liquid Lithium Target Facility at the end of the EDA phase is here detailed.

  3. A Gaussian decision-support tool for engineering design process

    NARCIS (Netherlands)

    Rajabali Nejad, Mohammadreza; Spitas, Christos

    2013-01-01

    Decision-making in design is of great importance, resulting in success or failure of a system (Liu et al., 2010; Roozenburg and Eekels, 1995; Spitas, 2011a). This paper describes a robust decision-support tool for engineering design process, which can be used throughout the design process in either

  4. [An object-oriented intelligent engineering design approach for lake pollution control].

    Science.gov (United States)

    Zou, Rui; Zhou, Jing; Liu, Yong; Zhu, Xiang; Zhao, Lei; Yang, Ping-Jian; Guo, Huai-Cheng

    2013-03-01

    Regarding the shortage and deficiency of traditional lake pollution control engineering techniques, a new lake pollution control engineering approach was proposed in this study, based on object-oriented intelligent design (OOID) from the perspective of intelligence. It can provide a new methodology and framework for effectively controlling lake pollution and improving water quality. The differences between the traditional engineering techniques and the OOID approach were compared. The key points for OOID were described as object perspective, cause and effect foundation, set points into surface, and temporal and spatial optimization. The blue algae control in lake was taken as an example in this study. The effect of algae control and water quality improvement were analyzed in details from the perspective of object-oriented intelligent design based on two engineering techniques (vertical hydrodynamic mixer and pumping algaecide recharge). The modeling results showed that the traditional engineering design paradigm cannot provide scientific and effective guidance for engineering design and decision-making regarding lake pollution. Intelligent design approach is based on the object perspective and quantitative causal analysis in this case. This approach identified that the efficiency of mixers was much higher than pumps in achieving the goal of low to moderate water quality improvement. However, when the objective of water quality exceeded a certain value (such as the control objective of peak Chla concentration exceeded 100 microg x L(-1) in this experimental water), the mixer cannot achieve this goal. The pump technique can achieve the goal but with higher cost. The efficiency of combining the two techniques was higher than using one of the two techniques alone. Moreover, the quantitative scale control of the two engineering techniques has a significant impact on the actual project benefits and costs.

  5. Advanced Engineering Environments for Space Transportation System Development

    Science.gov (United States)

    Thomas, L. Dale; Smith, Charles A.; Beveridge, James

    2000-01-01

    There are significant challenges facing today's launch vehicle industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker, all face the developer of a space transportation system. Within NASA, multiple technology development and demonstration projects are underway toward the objectives of safe, reliable, and affordable access to space. New information technologies offer promising opportunities to develop advanced engineering environments to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. At the Marshall Space Flight Center, work has begun on development of an advanced engineering environment specifically to support the design, modeling, and analysis of space transportation systems. This paper will give an overview of the challenges of developing space transportation systems in today's environment and subsequently discuss the advanced engineering environment and its anticipated benefits.

  6. 2006 Fundamental Research Underlying Solid-State Lighting: Contractors Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Fitzsimmons, Tim [Dept. of Energy (DOE), Washington, DC (United States). Office of Basic Energy Sciences. Division of Materials Sciences and Engineering; Kini, Arvind [Dept. of Energy (DOE), Washington, DC (United States). Office of Basic Energy Sciences. Division of Materials Sciences and Engineering; Kelley, Dick [Dept. of Energy (DOE), Washington, DC (United States). Office of Basic Energy Sciences. Division of Materials Sciences and Engineering

    2006-02-01

    This volume highlights the scientific content of the 2006 Fundamental Research Underlying Solid-State Lighting Contractors Meeting sponsored by the Division of Materials Sciences and Engineering (DMS&E) in the Office of Basic Energy Sciences (BES) of the U. S. Department of Energy (DOE). This meeting is the second in a series of research theme-based Contractors Meetings and will focus on BES/DMS&E-funded research that underpins solid-state lighting technology. The meeting will feature research that cuts across several DMS&E core research program areas. The major programmatic emphasis is on developing a fundamental scientific base, in terms of new concepts and new materials that could be used or mimicked in designing novel materials, processes or devices.

  7. Mechanical design and engineering calculation of the SMCAMS magnet

    International Nuclear Information System (INIS)

    Chen Guosheng

    2001-01-01

    The basis of the mechanical design of the SMCAMS magnet, and the structure characters of the magnet and its coils are introduced. Finally, the engineering design of other parts, including deflectors, probes and accelerating electrodes are described

  8. Foundations for a new type of design-engineers – experiences from DTU meeting the CDIO concept

    DEFF Research Database (Denmark)

    Jørgensen, Ulrik; Lindegaard, Hanne; Brodersen, Søsser

    2011-01-01

    serious in the CDIO syllabus, (b) a too narrow view of engineering knowledge ignoring socio-technical insights, (c) the importance of engineering practices and competences in creating authentic assignments, (d) to reverse the hierarchy of topics and disciplines, and (e) a need for mechanisms to coordinate...

  9. Design of drystore for intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Myall, M.G.

    1989-01-01

    The safe handling and storage of radioactive wastes present important engineering, financial and political considerations to the nuclear industry. The significant experience and expertise of Costain Engineering and Design Group Partnership in the design of nuclear plant has lead to the development of a new concept in dry radwaste store design. Novel concepts based on proven engineering and technology have been used to meet current stringent regulations. Savings in both costs and construction times are achieved in the product support structure and remotely operated emplacement machinery whilst satisfying seismic and structural restraints. The paper describes the main structural features of the store design, together with handling and inspection techniques. (author)

  10. Research on Visualization Design Method in the Field of New Media Software Engineering

    Science.gov (United States)

    Deqiang, Hu

    2018-03-01

    In the new period of increasingly developed science and technology, with the increasingly fierce competition in the market and the increasing demand of the masses, new design and application methods have emerged in the field of new media software engineering, that is, the visualization design method. Applying the visualization design method to the field of new media software engineering can not only improve the actual operation efficiency of new media software engineering but more importantly the quality of software development can be enhanced by means of certain media of communication and transformation; on this basis, the progress and development of new media software engineering in China are also continuously promoted. Therefore, the application of visualization design method in the field of new media software engineering is analysed concretely in this article from the perspective of the overview of visualization design methods and on the basis of systematic analysis of the basic technology.

  11. Additive Manufacturing Design Considerations for Liquid Engine Components

    Science.gov (United States)

    Whitten, Dave; Hissam, Andy; Baker, Kevin; Rice, Darron

    2014-01-01

    The Marshall Space Flight Center's Propulsion Systems Department has gained significant experience in the last year designing, building, and testing liquid engine components using additive manufacturing. The department has developed valve, duct, turbo-machinery, and combustion device components using this technology. Many valuable lessons were learned during this process. These lessons will be the focus of this presentation. We will present criteria for selecting part candidates for additive manufacturing. Some part characteristics are 'tailor made' for this process. Selecting the right parts for the process is the first step to maximizing productivity gains. We will also present specific lessons we learned about feature geometry that can and cannot be produced using additive manufacturing machines. Most liquid engine components were made using a two-step process. The base part was made using additive manufacturing and then traditional machining processes were used to produce the final part. The presentation will describe design accommodations needed to make the base part and lessons we learned about which features could be built directly and which require the final machine process. Tolerance capabilities, surface finish, and material thickness allowances will also be covered. Additive Manufacturing can produce internal passages that cannot be made using traditional approaches. It can also eliminate a significant amount of manpower by reducing part count and leveraging model-based design and analysis techniques. Information will be shared about performance enhancements and design efficiencies we experienced for certain categories of engine parts.

  12. Metabolic Engineering VII Conference

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Korpics

    2012-12-04

    The aims of this Metabolic Engineering conference are to provide a forum for academic and industrial researchers in the field; to bring together the different scientific disciplines that contribute to the design, analysis and optimization of metabolic pathways; and to explore the role of Metabolic Engineering in the areas of health and sustainability. Presentations, both written and oral, panel discussions, and workshops will focus on both applications and techniques used for pathway engineering. Various applications including bioenergy, industrial chemicals and materials, drug targets, health, agriculture, and nutrition will be discussed. Workshops focused on technology development for mathematical and experimental techniques important for metabolic engineering applications will be held for more in depth discussion. This 2008 meeting will celebrate our conference tradition of high quality and relevance to both industrial and academic participants, with topics ranging from the frontiers of fundamental science to the practical aspects of metabolic engineering.

  13. Game-Aided Education for Transportation Engineering: Design, Development, and Assessment

    OpenAIRE

    Wang, Qichao

    2017-01-01

    Transportation engineering is a wide area that covers different topics including traffic planning, highway design, pavement design, traffic safety, and traffic control. Certain concepts in those topics are challenging and are hard to understand based on textbooks and lectures. In this work, we developed five web games targeting the five topics in transportation engineering education to improve students’ understanding of those hard concepts. The games are hosted in a website server. Students c...

  14. Preparing University Students to Lead K-12 Engineering Outreach Programmes: A Design Experiment

    Science.gov (United States)

    Anthony, Anika B.; Greene, Howard; Post, Paul E.; Parkhurst, Andrew; Zhan, Xi

    2016-01-01

    This paper describes an engineering outreach programme designed to increase the interest of under-represented youth in engineering and to disseminate pre-engineering design challenge materials to K-12 educators and volunteers. Given university students' critical role as facilitators of the outreach programme, researchers conducted a two-year…

  15. UMTRA Project value engineering plan

    International Nuclear Information System (INIS)

    1990-06-01

    The objective of value engineering (VE) on the Uranium MILL Tailings Remedial Action (UMTRA) Project is to ensure that remedial action at the UMTRA Project sites is performed to meet the US Environmental Protection Agency (EPA) standards for inactive uranium mill tailings sites at the lowest cost, while maintaining a high quality of work. Through review of designs and consideration of reasonable, less expensive alternatives, VE can be an effective cost reduction tool and a means to improve the design. The UMTRA Project products are the design and construction of stabilized tailings embankments

  16. Design and implementation of a project-based active/cooperative engineering design course for freshmen

    Science.gov (United States)

    Abdulaal, R. M.; Al-Bahi, A. M.; Soliman, A. Y.; Iskanderani, F. I.

    2011-08-01

    A project-based active/cooperative design course is planned, implemented, assessed and evaluated to achieve several desired engineering outcomes. The course allows freshman-level students to gain professional hands-on engineering design experience through an opportunity to practise teamwork, quality principles, communication skills, life-long learning, realistic constraints and awareness of current domestic and global challenges. Throughout successive design reports and in-class assignments, the students are required by the end of the semester to communicate, clearly and concisely, the details of their design both orally and in writing through a functional artefact/prototype, a design notebook, an A0 project poster and a final oral presentation. In addition to these direct assessment tools, several indirect measures are used to ensure triangulation. Assignments are based on customer expectations using a detailed checklist. This paper shows the direct and indirect assessment tools that indicated a high level of achievement of course learning outcomes and a high level of student satisfaction.

  17. On the Design of Virtual Reality Learning Environments in Engineering

    Directory of Open Access Journals (Sweden)

    Diego Vergara

    2017-06-01

    Full Text Available Currently, the use of virtual reality (VR is being widely applied in different fields, especially in computer science, engineering, and medicine. Concretely, the engineering applications based on VR cover approximately one half of the total number of VR resources (considering the research works published up to last year, 2016. In this paper, the capabilities of different computational software for designing VR applications in engineering education are discussed. As a result, a general flowchart is proposed as a guide for designing VR resources in any application. It is worth highlighting that, rather than this study being based on the applications used in the engineering field, the obtained results can be easily extrapolated to other knowledge areas without any loss of generality. This way, this paper can serve as a guide for creating a VR application.

  18. Conceptual Design Automation : Abstraction complexity reduction by feasilisation and knowledge engineering

    NARCIS (Netherlands)

    Schut, E.J.

    2010-01-01

    In order to keep innovating, engineers are working more and more with engineering software, providing them a way to cut away their routine and repetitive activities. Computer aided design and simulation software are for instance considered standard tools in most engineering companies. Today, to

  19. Improving engineering performance by utilizing process indicators

    International Nuclear Information System (INIS)

    Roberts, T.E.

    1992-01-01

    The purpose of the work discussed in this paper was to develop engineering performance indicators used to facilitate improvement to the technical quality, cost-effectiveness, and delivery of engineering products and service. This work was specifically tailored for engineering support products and service associated with operating Florida Power and Light Company (FP and L) nuclear plants. The engineering process for the development of plant change packages was reviewed to identify critical in-process activities. Because each engineering project usually deals with a specific component or plant system, the different tasks are usually technically unique and of varying magnitudes. Although each engineering product may employ different analytical techniques or industry code requirements, several activities in documenting the engineering design process are generic. The quality of performance in these activities can be monitored analogously to the steps in a manufacturing process. This concept builds quality concepts into the package in lieu of inspecting package quality at the end of the process. The work has resulted in a valuable self-assessment tool that serves as a basis for engineering process improvements. The indicators are published in a semi-yearly performance report for FP and L contractors as well as FP and L in-house engineering work. Contracts have been set up to base fees on meeting targets established for the performance report. The ability to meet performance targets continues to improve

  20. Supply Chain Systems Architecture and Engineering Design: Green-field Supply Chain Integration

    OpenAIRE

    Radanliev, P

    2015-01-01

    This paper developed a new theory for supply chain architecture, and engineering design that enables integration of the business and supply chain strategies. The architecture starts with individual supply chain participants and derives insights into the complex and abstract concept of green-field integration design. The paper presented a conceptual system for depicting the interactions between business and supply chain strategy engineering. The system examines the decisions made when engineer...